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Abstract

This thesis describes the development of an automatic generator of backtracking
protocol trace analysis tools for single-module specifications written in the formai de­
scription language, Estelle. The generated tool automatically checks the validity of
any execution trace against the given specification. The approach taken was to mod­
ify an Estelle-to-C++ compiler. Discussion about nondeterministic specifications,
multiple observation points, and on-Iine trace analysis follow. Trace analyzers for the
protocols LAPD and TPO have been tested and performance results are evaluated.
Issues in the analysis of partial traces are discussed.

Ce mémoiredécrit le développement d'un générateur automatique d'outils pour l'analyse
de traces de protocoles de communication non-déterministes, décrits par des specifi­
cations formelles Estelle à un seul module. L'outil généré vérifie automatiquement la
validité d'une trace d'exécution par rapport à la spécification de référence. L'approche
suivie consistait en la modification d'un compilateur Estelle-C++ existant. Une dis­
cussion a propos de specifications non-deterministes, de points d'observation multi­
ples, et d'analyse de traces à la volée est presentee par la suite. Des analyseurs de
traces pour les protocoles LAPD et TPO ont été testes, et leurs résultats de per­
formance évalués. Enfin, quelques points reliés à l'analyse de traces partielles sont
discutés.

Keywords: Estelle, Trace Analysis, Protocol Conformance Testing, Formai De­
scription Techniques
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Chapter 1

Introduction

Protocols are sets of rules that govern the interaction of concurrent processes in

distributed systems. The design of protocols is related to a number of established

fields, such as the design of operating systems, computer networks, and distributed

databases.

Typically, books discussing networks, operating systems and distributed databases

present protocols which have been accepted as correct by, for example, a large inter­

national organization. They rarely explain why the protocols work, what problems

they solve, or what pitfalls they avoid [23]. The process of deriving such protocols

in the first place, however, is a very involved one, which encompasses different stages

in development and testing. Furthermore, when a protocol is accepted as correct,

or free of certain kinds of faults, implementing software that follows it precise1y, or

testing existing software for conformance to the protocol, are two quite complicated

steps in systems development.

There are several ways to ways to specify a protoco1. A natural-Ianguage speci­

fication cau be easily readable by a human who requires a general understanding of

how it works, but it cau be imprecise or ambiguous. Such specifications cau make

the development of an implementation more diflicult, or more prone to bugs, which

1
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CHAPTER 1. INTRODUCTION

may cause the implementation to be incompatible with other implcmentat ions that

daim to follow the same protocol.

FDTs. or Formal Description Techniques. are used to specify software in a

very precise way. Using a specification language to this end. with very strict syntax

and semantics. reduces the problems of imprecise or ambiguous specifications. Spec­

ification languages typically resemble high-levcl programming languages. bnl they

discourage the definition of low-level details which are specific to a particlliar plat­

form. Specification languages pave the \Vay to automated implementation generation

and conformance testing.

The trace of a communication program is a record of its inputs and outputs

during its execution, which might have been captured on the communication line and

saved to a file. The internai behaviour of an implementation is typically hidden from

a protocol tester, so in this way, the implementation is viewed as a "black box~.

Trace analysis is the act of comparing the observable behaviour of a running

implementation to that of its protocol specification. It is one step in protocol con­

formance testing, and usually involves a simulated execution of differcnt parts of

the specification. Formai specifications are especially useful in the context of trace

analysis.

Usually, a trace analyzer is based on a specifie protocol. An automated technique

of generating a trace analyzer based on a formai protocol specification would make

it easier to ensure that the trace analyzer follows the specification exactly. Such a

technique would considerably facilitate this part of protocol conformance tcsting.

This thesis chronides the work done towards the development of a trace analysis

tool generator for specifications written in the FDT, Estelle. The approach taken

was to start with an Estelle-to-C++ compiler, called Dingo, developed at NIST, and

to add ail the necessary routines to turn it into a generator of backtracking trace

analysis tools. While Estelle is by no means the most popular FDT in use today,
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we chose this approach becausc it was dccrncd much casier ta start with an existing

implcmcntation compiler and modify it ta suit our needs than ta start from scratch,

and wc were unable ta obtain the sourcecode for a similar object-oriented compiler

for SOL, a much more popular FOT with similar features ta Estelle. However, the

principles and difficulties of trace analysis discussed in this thesis apply as weil to

trace analysis with respect ta specifications written in SOL, and a tool does exist

which translates SOL specifications into Estelle [41].

Background information and related research on FOTs in general, Estelle in par­

ticular, automatic implementation generation techniques, protocol verification, and

protocol conformancc testing are covered in this thesis as well.
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Chapter 2

FormaI Specifications

There are severaI ways to specify the behaviour of a protocol. A natural-language

specification can be easily readable by a human who requires a general understanding

of how it works, but it can be imprecise or ambiguous. Such specifications allow for

different human interpretations of the behaviour during protocol devclopment, and

make formaI conformance testing impossible.

FDTs, or FormaI Description Techniques, are used to spccify software in a very

precise way. Using a specification language to this end, with very strict syntax and

semantics, reduces the problems of imprecise or ambiguous specifications. Such lan­

guages leave out the machine-dependent details, but include aIl the nccessary infor­

mation about the data exchange methods, the timing of events, and valid message

criteria.

It is beneficiaI to write specifications in FDTs because such rcpresentations sim­

plify the problems of design and validation [5]. In addition, there are automatic ways

of producing executable implementations based on such specifications [6].

This chapter will discuss three different approaches to modelling a protocol. The

first one is the Extended Finite State Machine (EFSM) model, whicb is enforced by

languages sucb as SOL (Specification and Description Language) [1] and ESTeLle

4
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(Extended State Transition Language) [34J. Code written in these languages will

have state and transition definitions, with programming extensions such as variables

and procedures to make the specification easier for a human programmer. They will

often look like high-level procedural languages.

The second model was intended make the passing of messages between communi­

cating processes the most• prominent feature in sucb specifications. Based on process

algcbra..< [21] [24], the specification language developed within the ISO (International

Organization for Standardization) is known as LOTOS (Language of Temporal Or­

dering Specification) [11]. Program structure, and even f10w of control in LOTOS can

be compared to what is available in other functional programming languages, except

that there is no backtracking.

The third model discussed here is the object-oriented mode!. Object-oriented or­

ganization is quickly becoming the preferred model for data representation in many

different areas of computer science. Intuitively, it is quite easy to organize a protocol

specification in terms of its components and the methods associated with them. This

is the kind of organization enforced by languages such as SDL92 and MonDeL (Mon­

treal Description Language), a specification language developed jointly at CRIM and

BNR [3].

For each language discussed in this chapter, only the basic features and sorne of

the major differences will be described. A rigorous comparison of the advantages

and disadvantages between using Estelle, LOTOS and SOL can be found in [13].

Additionally, [8] details the formal specification of a simplified transport protocol in

each of these languages, comparing the differences between them from a very practical

perspective.

The specification languages described in this thesis were developed with the in­

tended application being telecommunications software, but most of them are robust

enough to he used to specify the operation of other types of layered, .distributed or
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concurrent software, such as operating systems and distributed databast'S.

While they are outside the scope of this thesis. there are other important FDTs

and associated tools. some based on Petri Nets and their extensions. oth,'rs on logical

programming languages, used in many large scale projects. In addition to th,'Se

formai techniques, organizations such as the OSI standardization committccs use

semi-formaI languages (which lack formaIly defined semantics) such as TTCN [35].

the Tree and Tabular Combined Notation, for specifying behaviour, and ASN.l [30],

Abstract Syntax One, for specifying data structures, of communication protocols.

2.1 Extended Finite State Machines

A finite state machine (FSM) is an abstract mode! consisting of a finite number of

states, a fini te number of input symbols, and a finite number of output symbols.

From each state, it is possible to take a transition into another state, depending on

the available input and the "firing" rules of a transit.ion (the rules that govern when

a transition can be taken, as specified in the FSM). The reader is assumcd to have

a basic knowledge of finite state machines. More information on this topic can be

found in [24].

Extendcd FSMs have extensions to the FSM model such as variables and dynamic

memory, and programming constructs which can be uscd to manipulate their values.

EFSMs support spontaneous transitions, which ca:n be taken from a particular state

regardless of the input, and they aIso permit nondeterminism, where different tran­

sitions can be fired under the same situation from the same state. An EFSM state is

a composite of the FSM state, and the values of variables and dynamic memory.

Describing a protocol using the EFSM model involves first subdividing the system

into a number of co=unicating modules, or entities, such that each module is an

EFSM [5].

One abstract co=unication mechanism between modules is known as "direct
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coupling~, where the firing of a transition in one of the modules causes a transition

to fire in other modules. Such transitions arc executed in paralleI. This kind of inter­

module communication is not very common, as it does not reflect the way most real

communicating components interact. If a transition is not coupled, it cao execute

independen'ly from the other components.

Another communication mechanism is achieved by using communication pipes,

or "channels~ as they are called in Estelle and SOL. The message-passing scheme

used in both of these languages is asynchronous, meaning that there is queuing and

bufi"ering between communicating compouents. Information received from such a pipe

is considered "input" to the module. Similarly, information sent through a pipe is

considered "output" from the module.

In a specification for a multi-Iayered protocol such as TCP fIP, each layer would

be reprcsented as a module, with a channel that connects it to each neighboring layer.

For example, the module which specifies the Transport layer would have one channel

to the application layer module, and another channel to the Internet layer module.

The EFSM model is used in FOTs such as SOL oI" Estelle. In general, specifica­

tions written in SOL or Estelle look very much Iike programs written in high-Ievel

languages, and cao be translated into other high-Ievellanguages quite naturally.

2.1.1 SDL

SOL development began in 19ï2 at the CCITT (International Consultative Commit­

tee for Telephones and Telegraphs), and the first version was issued in 19ï6. One

of the more recent versions, SOL88, is accepted as the current standard, and con­

tains many featurcs and ext<:::lsions which are not supported in the older versions [1].

SOL's syntax is modeled after a programming language caIIed CHILL, reco=ended

by CCITT.

An SOL system specification is composed of block descriptions which are com-
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posed of process descriptions. The structures are used to produce systcm dcscriptions.

regarding the system as a black box and describing the external observable behaviour

only, and internaI structures, which can be compiled into high levc1 languages auto­

matically [1).

SOL/GR is a graphical representation of SOL, where the states 'Uld transitions

are represented as a graph of shapes and arcs, complemented by a textual synta."

which supplies additional information. Programming in SOL/GR requircs a graphical

programming environment.

SOL/PR is the phrase representation of SOL, which will allow the programmer to

represent all of the structures as text. Generating SOL/PR from SOL/GR IS straight­

forward, although the transformation in the opposite direction requires graphical

layout information. According to [1), SOL/GR environments offer a high degree of

user-friendliness which greatly expedite specificatiûns in SOL.

The logical f10w of control is represented as a f1ow-chart based on the internaI

structure. Time constraints are specified by a timerconstruct. Input and output func­

tionality is supported by channels over which signals cao be sent betwecn processes.

Components, or processes, cao be dynamically created and destroyed at "interpre­

tation time" (the analog to "runtime" in specification execution) with constructs

create and stop, thp. latter constmct allowing processes to self-terminate (there is no

primitive which allows one process to terminate another). The procedure construd

is similar to the one in Pascal, and also looks very much like a jJcC!=ess description

in the SOL code, in the sense that it is also an FSM. Howevér, the calling process

suspends for the duration of the execution of the called procedure, while a newly

created process will execute concurrently with its parent proceils.

Abstract Oata Types arc also supported in SOL, allowing the low level details

of system implementation to remain as "black boxes" without thcir behaviour be­

ing specified. This solidifies the ability of SOL specifications to remain machine-
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indcpcndcnt.

Thcrc arc fcatures offcred in 50LSS such as inheritance and generators (similar

to templates in C++) which are typically associated with object-oriented languages.

2.1.2 Estelle

A less commonly used language also based on extended finite state machines is known

as Estelle, the Extended State Transition ~anguage. Initial development began in

1981, leading to the first formal release in 198i. Oefined within ISO, Estelle is a

language intended to look very much like Pascal, with extensions to allow definitions

of states and transitions. It was designed for specifying distributed systems in general,

and communication protocols in particular [12].

A system specified in Estelle consists of module instances, where each module

reprcsents a concurrent process, as an FSM. A module has a collection of states,

transition blocks, variables, procedures, and interaction points, which when connected

to other interaction points (presumably in other modules), represent connections

between them. Information can be passed through channels by way of the interaction

points.

Variables and procedures can be declared with scoping rules in the same way as

they are in Pascal. Variables can be sharable between module instances, a feature

which exists as a convenience to the programmer, but can yield specifications which

can be implemented on real systems only with great difficulty, if at ail, depending on

their capabilities.

Estelle never gained quite as much popularity as SOL, and probably never will,

because the development of Estelle programming tools has lagged behind sirnilar

developments in SOL. Moreover, SOL has been revised a number of times to make it

more object-oriented. However, Estelle is a very clear, concise specification language

which does not take very long to learn.
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Promela is a specification language developed at ATkT by Holzmann [23]. In contrast

to Estelle, which uses Pascal synta.x and semantics whcncver possible. Promcla uses

C synta.x and semantics whenever possible.

2.2 Temporal Ordering

2.2.1 LOTOS

LOTOS, also developed within the ISO, allows one to specify systems by defining the

temporal relations among the interactions that constitute the cxternally observable

behaviour of a system [11]. Other LOTOS facilities allow the description of data

structures and value expressions, based on the rormal theory of AOTs (abstract data

types).

A LOTOS specification is divided up into units called proccsses, and within cach

process, there can be a list of actions. A process can consist of severaI sub-processes,

so in generaI, a LOTOS specification is a hierarcby of processes. Sorne types of actions

involve more than one process, sucb as the sending of a signal from one to another.

These are caIIed interactions.

Signais are passed between processes through gates, which can be explicitly de­

clared as hidden from other processes, to help carry on the black box paradigm.

The message passing scheme, unlike SOL or Estelle, is syncbronous, or "rendezvous",

meaning that there is no queuing of inputs &"\d outputs, but synchronization is re­

quired with every interaction. Using render.~ous channels is beneficial because it

allows for a more complete specification of interfaces, which would be impossible in

Estelle or SOL without inc1uding implementation details [7]. Use of asynchronous

message passing may also lead to message cross-over in queues associated with the

interface, an undesired effect in reaI-time systems.
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Actions can be observable, or unobservable. The unobservable actions can not be

observed by other processes not directly involved in the action. Actions can be com­

bined in a parallel composition, so that they are meant to be executed concurrently.

They can aIso be explicitly synchronized with other actions.

Representation of values or structured data is achieved with abstract data types,

which aIlow one to specify the type of data which is being stored, but not its internai

representation. The AOTs of LOTOS are much richer than the AOTs of Estelle or

SOL, and are derived from ACT ONE, a specification language for abstract data

types (16). In general, aImost every possible implementation-specifie detail is ab­

stracted in a LOTOS specification, while specifications written in Estelle or SOL

tend to bl~ more implementation-oriented [il. More details on the AOTs of LOTOS

are outside the seope of this thesis, but are available in [11).

Even for an experieneed programmer, it is impossible to understand LOTOS

specifications without first being familiar with the meanings of the operators. The

eode is very terse and laden with symbols which form an integraI part of the language

grammar. However, it is said that onee the user has gained a familiarity with the

operators, he/she cao specify a system in a very natura! way, which refiects quite

directly the system's strueture and behaviour [11]. Aeeording to [il, LOTOS has

relatively few (eompared to SOL and Estelle), but powerfullanguage eonstruets which

make the learning of the complete language casier.

2.3 Object-Oriented Specifications

While Object-Oriented representation of systems and software is not ideal for every

application, it is perfectly suited to the area of teleco=unication. The objects cao

represent eo=unicating entities, and message passing between objects is an integral

part of an object-oriented language. 1dormation hiding, inheritanee, and persistent

objects are ail useful eonstruets for building protoeol specifications, as well as for
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maintaining a certain degree of abstraction.

Another advantage to using objccts is that they can reprcsent FSMs in quit<- a

natural way. The machine can be an object, which has an attribute called a ~Statl'~.

and methods to handle each type of incoming interaction.

2.3.1 Mondel

Mondel, unlike the other languages mentioned in this chapter, is not a standard ISO

or CClTT FDT. lt was developed as a research project between CRlM (Centre de

Recherche Informatique de Montreal) and BNR (Bell Northern Research). It wa.~

developed bccause, in the opinion of the developers, none of the existing languages

supported concurrency, object-oriented representation and persistent objects while

also meeting the requirements for writing system descriptions at the specification

and design level [3].

Mondel is an executable specification language. A Mondel specification is not

as abstract as a LOTOS one, and therefore more explicitly refiects the operation

of the system it specifies. Communication among objects is synchronous, achieved

through remote procedure calls (RPCs) with return parameters. Persistent objects

are accessed through database queries and atomic transactions. The language syntax

and semantics were formally defined with the design goal of expediting the impie­

mentation of Mondel compilers, and the partial verification of Mondel specifications.

Full multiple inheritance, strong typing, and support for assertional specifications of

object properties make Mondel a unique and powerfullanguage [3].

A ref!ective extension to Mondel, called RMondel, is also available. A ref1ective

programming language is one which allows methods of an object instance to be addl.-d

or removed at runtime.
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SOL92, the most recent version of50L, is the object-oriented extension of 50L88 [1il.
It is backwards compatible with 50L88, with sorne very minor exceptions, and sup­

ports user-defined operators, export/import variables and procedures, and ail of the

expect(~object-oriented programming constructs. A taol has aIready been developed

which translates from 50L92 to C++ [18].
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Chapter 3

Estelle

Specification Example

Module Main Module Food

l-E-cl1onneIlnlCl'foce.;::.
IPToMAinIPFlOmFeedcr

Figure 3.1: Diagram of modules comprising the TriState specification

One of the best ways to learn a new language is by example. This chapter will give

an introduction to the syntax and semantics of Estelle by presenting a simple exam­

pie specification which describes two modules and how they communicate. Furthcr

14
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dctaiIs on the I?nguage can be found in [25].

3.1 The TriState Specification
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Figure 3.1 iIlustrates a system of communicating entities connected by channels. The

formal Estelle specification, which is called Tri5tate, can be found in Appendix A.l.

Please refer to this appendix for line number references. This main module of this

specification has three states, and provides us with a very simple example which we

will use to iIlustrate sorne features of Estelle, and later in this thesis, the features of

Pet/Dingo and Tango as well.

In Estelle, specifications and modules are analogous to Pascal programs and

procedures respectively, and are declared in the same way. const, type, and var

declarations, scoping rules, and most other Pascal constructs are available in Estelle

as weil. The important syntactical difference between Estelle and Pascal is that in

Estelle, all statements must appear inside transition blocks. A transition block is a

compound statement executed as a single atomic operation. The main specification

and each module body consists of an initialize transition, followed by any number

of additional transition blocks, followed by the keyword end. This is in contrast

to a Pascal program which has a main body consisting of just a single compound

statement.

Modules use intemction points (or IFs) to communicate with other modules. A

chunk of information sent through an IP is called an intemction, and interactions

are structured data types, which cao contain a parameter !ist of valid Estelle data

structures.

The channel declaration on !ine 10 declares and groups the different kinds of valid

interactions by raie. The IOle of an IP determines which group of interactions cao be
1
transmitted, and which cao he received. The IOies for our channel called interface

are receiver and sender. The data interactioI: cao be sent through a sander IP,
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or received from a receiver IP. Conversely. data..response and close_connect~.on

interactions can be sent through the receiver IP. and received through the sender

IP.

The module declaration for Main_type is on \ine ï2. A module spccilit.'S il li­

nite state machine, with states and transitions. This module da&.< is spccilied by

an attribute systemprocess, and this means that it is a separate communicatiug

process in the specification. The possible Estelle module classes are systemprocess,

systemactivity, process, and activity.

Since modules can be nested just like Pascal procedures, it is possible to spccify a

hierarchical tree structure of module definitions. A module A nested inside another

module B is considered tù<: child of B. The parent of ail modules is the specification,

typically declared on line 1 of most Estelle specifications. The specification can also

be declared with a class attribute.

The way module instances behave with respect to each other is dependent on

the way they are nested and attributed. Modules attributed with systemprocess

or systemactivity are referred to as system modules, and specify separate commu­

nicating systems within the specification. Modules with attributes are supervising

managers of their children instances, and since a system module can not have at­

tributed parents, this means that no supervising control may be imposed on one

from its parent module. A systemprocess attribute specifies a synchronous parallel

module, where the child modules of class process all execute transitions in parallel,

while a systemactivity specifies a nondeterministic module, where the child mod­

ules of class activity execute transitions without synchroni:r.a.tion with respect to

each other. More information about module class attributes can be found in [25).

The IP declaration appears right after the module declaration, and defines an

interaction point called fromFeeder which is connected to a. channel on the receiver

end•
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On line 89, the valid states are listed for the Main_type module.

The transitions for this FSM begin on line 92 with the initialize transition,

which sets the state to Liquid and initializes sorne variables. Line 105 defines a

spontaneous delay-transition: any time the state is Nonliquid, the FSM goes to the

Liquid state after 3 seconds, and sends a datlW:"esponse to its IP.

The other transitions are taken depending on what is available to be read from

the input queue of the IP. On line 115, the transition rules for toGas are specified.

They are described below:

• There is an interaction which has not yet been "consumed" from the fromFeeder

interaction point, and it is a data interaction.

(This is the when fromFeeder.dataclause).

• The l field of the parameter is greater than O.

(This is the provided parameter.I > 0 clause).

The transition _toSolid is similar, except that it is taken when the l field is

less than or equal to O. Finally the transition _ToFinished will be taken only when

the l field is equal to 99. Notice howeyer, that this is a nondeterministic transition.

Since the l field is also greater than 0, the FSM might enter the Gas state instead of

the Finished state. This is an example of a "bad protocol", in the sense that im­

plementations strictly based on this specification may have problems co=unicating

with each other, but the nondeterministic aspect of it provides us with an illustra­

tive e.'Cample. An implementation which conforms to this specification cao send a

datlW:"esponse or a close-connection message when. it receives a data interaction

with parameter. l set to 99.

The Feeding.Hodule has a similar structure to Main.Hodule except that it sends

data interactions to its sender interaction point, and waits for datlW:"esponse inter­

actions after each one. After 10 data interactions, it sends a final data interaction
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with the parameter. l field set to 99, to signal that it is dont'. Sinet' t.ht'rt, an' nl!

transitions from the done state, this process will deadloek afkr taking this transition.

On line 142, the modvar declaration begins. These variables an' dt'clan'<! in t.llt'

scope of the main specification, rather than in the seope of one of the mo<!nll'S. If a

modvar is viewed as a pointer 1.0 a module, the init statement is analogons 1.0 a new

statement for modules. The call on line 148 causes a new proCL'SS 1.0 be spawned, of

type Main_type, and the code which il. must execute is the body delined as Main_body

(there can be multiple body definitions for each module type). Unlike a proccdnrt,

cali, init statements execute immediately and flow continues 1.0 the next statemcnt

in the calling block.

The connect statement on line 150 defines how the interaction points ..re con­

nected. Semantic mies of Estelle state that only IPs for channcls of the same typc

but of opposite roles l'an be connected together. After the initialize transition has

bP.eIl executed, the specification's main process exits, and the two newly spawned

processes can communicate freely with each other.

Section 4.2 describes how this specification is translated into C++. Section 4.:J

describes how il. would execute under Dingo.
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Chapter 4

Implementation Generation

Because of the strict synta." and semantic rules inherent in formal specifications,

it is not much more difficult to write an automatic implementation generator (also

known as an FDT compiler) than it is to write a compiler for a structured high-Ievel

programming language. There are different issues and problems which come up when

designing an FDT compiler, however.

One problem is that the parallelism in a specification must be accurately reflected

in an implementation. Sorne compilers, when given a specification for multiple in­

dependent processes, generate a single-process implementation that schedules the

actions to be performed by each module, using heuristics when no synchronization is

required. Others generate a program that spawns other processes which communicate

with each other through IPC (Inter-Process Communication) for synchronization.

Others will simply not implement certain module systems for the sake of simplicity,

and leave it up to a programmer to hand-code this aspect of the implementation.

Since timing of events is crucial in many high-speed protocols, an FDT com­

piler must generate code which will respond to events fast enough, and with enough

accuracy, to actually follow the specified behaviour. Often, implementations for high­

speed or time-crucial protocols are \\Titten manually by programmers because auto-

19
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matically generated implementations are less efficient with CPU time.

Another problem with FDT compilers is that specifications such as the one given

in Section 3.1 do not specify low-level details. such as how structured data arc encoded

and transmitted through channels. Therefore, sorne consistent way of implementing

the physicallayer might be supplied by the compiler (as is the case in Dingo). or cise

must be added manually by a programmer.

Sorne Estelle compilers which are strong in sorne areas impose restrictions on the

structure of Estelle specifications. Effectively, these are compilers for subsets of the

Estelle language. The introduction of [3ï] mentions a few such compilers which were

available before Pet/Dingo was released.

4.1 NIST Integrated Estelle Compiler

Pet/Dingo, developed at the National Institute of Standards and Technology (NlST),

is the second NIST Estelle compiler. The first one, called the NBS Prototype Com­

piler [39], generated C code and simulated parallelism through a process scheduler.

Pet/Dingo is a major step forward, in that it takes an object-oriented approach to '

specification generation and, for modules which are supposed to be implemented as

independent processes, Dingo generates independent processes which communicate

by sockets (if they are running on the same computer) or Remote Procedure Calls

(if they are running on different computers), and synchronize with cach other as

speciiied.

4.1.1 Pet

PET, or the Portable Estelle Translator, is written C++ and Bison. Bison is a parser

similar to the Unix yacc, except it has sorne enhancements in error recovery, and it

is produced by the Free Software Foundation.
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Pet performs a syntactic and semantic analysis of the Estelle specification, and

if the specification has no compiler-detcctable errors, Pet outputs an object-oriented

static model of the specification.

Pet's C++ class definitions include a hierarcby of def classes. This class hierarchy

contains a subclass to describe each possible Estelle construct, and is based on an

early definition of Smalltalk [38].

Each def subclass instance represents an identifier declaration or a statement, and

contains information about its lexic level, attributes, consistency cbeck functions, and

a linked list of its related components, whicb are pointers to other def classes. Sorne

exarnples of def subclasses are: Attribute for module attributes, ComGroups, for

comments, and TypeDef, for type definitions. The TypeDef class would have a linked

list of Decl subclass instances, one for each type declaration.

When Pet reads an Estelle specification sucb as TriState, Pet first creates an

instance of a def subclass for the Specification dec1aration, and this is treated as

the ~root" object in this representation. The root object has a related component

list consisting of the def objects representing the definitions of type, interface, feed­

ing..module, main_type, modvar, and each of the specification's transitions. The

feeding..moduledefinition object has its own component list with pointers to def ob­

jects for the type and variable declarations local to its module. Each typedef object

has a component list for each of its type identifiers.

When Pet is finished reading the Estelle specification, it will have in memory, a

tree of def objects containing all of the static information that is described by the

original Estelle specification. The leaves of this tree are the most simple èefinition

types, which have empty component lists.

Class StoreObject will represent a structured object in a storable form, and

DefStore will store such an object as a file. Pet's c1ass library also includes an object,
-é

restoreFrom, which will restore the def tree from a file created by DefStore, and
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this class is used by Dingo for the next phase in code-generation.

4.1.2 Dingo
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DINGO, or the Distributed ImplementatioN GeneratOr. can be thought of as the

second pass in the code-generation process. The executable program Dingo reads the

output of Pet into memory, organized as the same def tree which Pet stored. By

traversing the graph of pointers and objects, Dingo generates C++ code to define

objects based on each definition in the tree.

The C++ code, after it is compiled, must then be linked with Dingo's Estelle

runtime library to generate an executable implementation. This runtime library con·

tains an X Windows graphical interface, which p~rmits the user to examine variable

values, a log (If transitions taken by each module, and information about each modo

ule's current state. In addition, this runtime library contains base classes of certain

objects from which Dingo-generated objects inherit, to define the generic aspects of

an executable Estelle-based implementation. The code generation program and the

run·time library together will be hereafter referred to as the Dingo system, or Dingo

for short.

Generic Aspects of Dingo-generated objects

In the Dingo Estelle run-time library, base classes describe generic aspects of most

Estelle constructs. For example, a generic Estelle interaction is a chunk of data of

unknown structure, but the Estelle specification contains the type declarations which

specify the exact structure of each interaction type. Sorne aspects of an interaction

are co=on to all instances, such as the "point of entry". Other aspects depend

on the interaction, but still must be present in ail subclasses, 50 these methods are

virtuaI (defined for the superclass, but re-defined for each subclass). Examples of such

methods are: readParsFrom, a method which reads a stream of printable characters
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and interprets the information as the proper fields of a particular interaction, as

weIl as printOn, which will send ail the information in an interaction to a stream

as a sequence of printable characters. The superclass of aIl interactions in Dingo is

called Jnteract. Another example of an important superclass is that of the simple

interaction point, class ....sIPtype, which has a queue associated with it, information

about the channel to which it is connected, and methods to enqueue and dequeue

interactions. The routines for transmitting interactions to the interaction point on

the other end of the channel vary depending on where the other module is executing

(it could be part of the same CPU process, or another process on the same CPU, or

another process on another CPU), 50 these are inherited methods as weIl.

To support theolifferent module classes in Estelle (see Section 3.1), each mod­

ule class is implemented as a subclass of the ...Mlnstance class. These subclasses

are ....system, ...Process, and ...Activity, while ....system itself has two subclasses

....sysProcess and ....sysActivity. Each module definition in an Estelle specification

is defined as the appropriate sub-sub-class of ...Mlnstance, depending on its module

class attribute.

Each block of code (specification, module body, function, procedure, or transition)

as weIl as each structured object (such as an interaction), can have a block of memory

for variables which are accessible within its scope. Each block of memory is called a

frame. Frames get pushed and popped off of a GRM, or Global Reference Manager, as

the execution enters and exits these variable scopes. The GRM (class _GRManager)

is an object which manages an internai stack of frames, accessible through a method

getFrame which answers requests for pointers to variables, given the proper frame

index information and variable names. The proper frame index required for each call

to getFrame can be obtained at implementation generation time.

Each Estelle transition is translated into a C++ function of the same name.

A transition scheduler called selAndExec is generated for each module instance.



• CH:\PTER 4. IMPLEl'vIENTATION GENER.o\TION 24

•

•
•

The scheduler is a sequence of complicated conditiQnals which strictly depend on

the original specification, and when called during runtime. will select one fireablc

transition and execute it. An example of selAndExec appcars in Appcndix A.2. and

its behaviour is described in sections 4.2.2 and 6.2.3. It is gcncrated by thc function

defSelExecFunct in the file =od.cxx.

4.2 The TriState Implementation

A slightly modified version of Pet/Dingo \Vas run on the TriStatc specification \Vhich

appears in Appendix A.1, to generate an implcmentation. A piecc of thc gcncrated

code appears in Appendix A.2. Subsequent line numbcr references apply to thc tcxt

in that listing.

4.2.1 Transition Code

Observe the functions -Init..Trans and _ToSolid which correspond to the Estelle

transitions of the same names. They are defined on lines 1 and 21 respectively.

Before the Estelle transition statements can be executed, a frame must be declared

which contains a structure of pointers to the local variables for this transition. In

the case of Init..1'rans, there is one local variable called l of type integer. In the

implementation, the variable is declared local to the function, but then a pointer to it

is placcd in a frame structure which was generated for this particular transition. The

_GRM->enter statement pushes this frame onto the GRM stack, so that the variable

l can be accessed From the GRM in other blocks nested in this scope (in this case,

there are none), or restored when a recursive function cali returns. This is necessary

for many reasons, the most important one being that functions can not be nested in

C++, while in Estelle, they cano

Variables local to the module Mai.lWlody, such as the record V, are in the parent
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scope of the transition block. Since this trdllsition needs to access v, it makes a cali

to the GRM getFrame method, as shown on line 8, to obtain the proper address of

this record. The local variable called Vbecomes an alias to the e1ement Vin the frame

of the parent scope, which is of course, on the GRM stack.

After the variable scoping problems are resolved, the transition code, consisting of

Estelle statements which were translated into C++ (a simple process which involves

not much more than replacing Pascal operators with C++ operators) can be exe­

cuted. When these statements are complete, the frame is popped by the statement

__GRM->leaveO on line 18.

4.2.2 Selecting a Transition

The method -selAndExec, which begins on line 39, looks fairly comp!icated, but

is relative1y simple compared to the -selAndExec methods which can be generated

from more interesting protocol specifications. It will execute a transition if the timers

agrec, and if the transition is "fireable" (that is, if all the transition conditions are

true).

If a transition is fireable, a part of code is executed which sets up the proper

frames and interaction pointers, as shown on !ines 67-71, 84-92, 109-116, and 134­

141. _transBlock is a pointer to a function, and gets assigned to the location of the

proper transition function. Before the transition is executed, a call to the method

_vantToFire is made, which returns 1 with a probability of liN, where N is the

number of fireable transitions at that moment.

Finally, the -Exec block (line 150) is reached when a fireable transition wants

to fire. Frames get pushed ante the stack, and a call to _transblock is made (line

159). The state is updated, the consumed interaction is de1eted from memory, the

GRM frames are popped, and selAndExec returns.
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After a c++ implementation is generated by Dingo. it is possible to compile and ex­

ecute it. Information provided by a Dingo-generated implementation after cxecntion

includes a log of all transitions taken during execution, and a tracel of ail interactions

which were sent through interaction points. Ail line numbers in this section refer to

text from Appendix A.3.

The trace of Feeding..body, starting on line 3, shows all of the interactions which

were sent from this module. Each entry is 3 !ines long. The first !ine of each entry

begins with » followed by the module name. The second !ine specifies the name of

the interaction point «nd the name of the interaction, separated by a colon. The third

!ine is a text representation of the information held in the interaction parameter list.

This is a structure<! type, which cao consist ofother structure<! types. Each structured

type is enclosed in {curly brackets}. More information about the trace file format

cao be found in Appendix C.2.3.

In our example, the data..type which is used for sending interaction data, consists

of a lo-element array of integers H, and three simple-type fields. They are: an integer

l, a boolean J and a character K. Booleans appear in trace files as either 1 or O.

Character data appear as decimal integers representing their ASCn codes. We can

see on !ine 5 that the first data packet sent specifies that H contains even integers

from 2 to 20, l, an integer value of 0, J, a boolean true, and K, the ASCII character

number 1 (Ctrl-A). The last interaction sent from Feeding..body is !isted on line 36

and shows that the l field has the value 99, signalling the end of data packets.

The trace for KairLbody begins on !ine 42, and shows that Il data.response inter-

IThe trace file generation routines were never present in Dingo, but were adde<! te Tango during

the early stages ofdevelopment. Now, when Tango is given a normal Estelle specification te compile,

it generates an implementation which behaves the same way as a Dingo-generated implementation,

but also produces a module trace.
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actions were sent through the interaction point fromFeeder. This is the correct num­

ber of responses, since Il data interactions were received. The log files clearly show

Feeding.body taking alternate transitions send.packet and finished..waiting, while

Main.body is oscillating between states gas, liquid and solid. The final transition

taken by Main.body was ToFinished, and a close_connection was sent to the IP,

although it could have just as easily been a transition toGas as the specification

is nondeterministic and can take either transition when the l parameter is 99 (see

Section 3.1).

The trace obtained from this execution will later be used as test data for trace

analysis, but it could also be used as a test case for an IUT.
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Chapter 5

Protocol Verification and

Conformance

Communication software, like most large pieces of software, goes through a develop­

ment life cycle which resembles that of software engineering. Protocols, however, need

to be tested much more rigorously than other more popular, traditional programs,

because rather than interfacing with humans, a piece of communication software inter­

faces with another program. Slight deviations in behaviour which might be tolerated

by a human user can cause major communication problems between software.

Communication protocol verification and conformance testing each comprise a

stage in the communication software development life cycle. The first, protocol ver­

ification, typically performed during the deve10pment of the specification, is used to

verify that certain properties of correctness hold in the specification, such as exhi­

bition of desired behaviour, proper handling of invalid input sequences, and lack of

deadlocks. The second, conformance testing, applied during the implementation of

the software, involves testing conformance of the implementation to the specification.

28
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There are several approaches to protocol verification. They cao be grouped under

two categories: dynamic analysis and static analysis [i].

5.1.1 Dynamic Analysis

Dynarnic analysis cao be classified as either exhaustive or simulative [i]. The most

popular exhaustive method is called reachability analysis, especially useful for

FSM-based FDTs. It involves exhaustively exploring ail the possible interaction

sequences of two (or more) FSM-based modules in a protocol specification. A com­

posite, or global state of the system is defined as a combination of the states of each

module involved. From a given initial state, alI possible events are generated, leading

to a number of new global states. This process is repeated for each of the newly gen­

erated states, unti! no new states are generated. For FSMs, this is a finite process,

since there is a finite number of possible global states. This method determines alI

of the possible outcomes that the protocol may achieve.

Reachability analysis is useful for detecting sit)lations where the processing of a

receivable message is not defined, or where the transmission medium capa.city is ex­

ceeded. Deadlocks (global states with no exits) are easy to catch as well. [43] provides

more detailed descriptions of rea.chability analysis techniques. They are, however, dif­

ficult to apply to some EFSM-based specifications of the size and complexity found in

most practical applications, because the information comprising an EFSM state cao

include \'a.riables, as well as dynamic memory, making the number of true "states" in­

finite. Even without supporting dynamic memory, EFSM-based rea.chability ana.Iysis

has huge memory and processing requirements.

Simulation analysis restricts the verification to ooly selected paths among the

possible executions. Simulation is useful for reaI-size specifications, as the memory

and processing requirements for simulation are not as great as those of rea.chability
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analysis. The process of deciding which paths to simulate can involve random or

probability-based e.xploration.

5.1.2 Static Analysis

Some tools exist which perform a static analysis of the text of the specification. These

tools are useful for finding clerical errors related to scope rules, type conformance,

and other semantic conditions. Compilers which translate from a formal specification

language to another high-Ievel language often perform this kind of analysis as part

of the code generation process. Some forms of static flow analysis are also possible

but are limited in utility compared to reachability analysis.

Another approach, program proofs, involves the formulation of assertions which

ref1ect the desired correctness properties of a protocol. Sometimes, these properties

are supplied by the specification, but often it is up to the verifier to formulate them.

This approach is suitable for dealing with the full range of protocol properties to be

verified, not only the general properties such as deadlocks and missing transitions.

Ideally, any property for which an appropriate assertion can be formulated can be

verified, but this process is rather difficult to automate, and usually requires a good

deal of ingenuity on the part of the verifier [10).

5.2 Conformance Testing

Conformance testing involves comparing the behaviour of an Implementation Under

Test (IUT) to that of its specification. Automated tools are used to achieve this goal.

Typica1ly, there are three stages in conformance testing:

1. Test Suite Generation: A set of test cases is generated from a formal (or

50metimes an informai) specification. A test case is typically a collection of
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interactions to be fed into an IUT, often composed with additional information

about the IUT's expected response.

2. Test Case Execution: The test cases generated from the previous step are

fed into an IUT, and the results are collected.

3. Test Result Analysis The observable outputs from the IUT are analyzed

with respect to the test case's expected results.

5.2.1 Test Suite Generation

Test suite generation for FSM-based specifications involves the generation of a collec­

tion of test cases [20]. Some automated techniques for test case generation incorporate

some form ofstate spaée search, but manually-generated test suites are also common.

A test case is typicalIy a sequence of inputs which couid be "fed" into an IUT,

perhaps augmented with information about the expected observable response from

the IUT. Sometimes, the test case is expressed as a tree of interactions, where the

nodes traversed while following a path from the root to a leaf represent an input

sequence to be fed into the IUT. When the test case is expressed as a graph with

cycles, generating a set of input sequences is a little more complicated, but still

straightfonvard.

If an IUT based on the specification fails a test case, it cao be said that the IUT

is non-conforming. However, we cao not say anything about an IUT that passes our

test cases, unless we can prove that the test cases we chose to execute are complete

enough to coyer the faults for which we are testing.

A complete test suite for an FSM is one that covers every possible fauit in an

implementation. An IUT which passes every test case in a complete test suite is free

of faults. Such test suites are inordinately long, and usually infinite in length. Ex­

haustive testing, or executing every test case in a complete test suite, is impracticable
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from both a theoretical and a practical standpoint.

Fault models are used ta avoid exhaustive testing and to reduce t.he size of a

test suite, while still finding most faults in an IUT. A fault model characterizcs a

subset of possible 44mutant~, or noa-conforming implementations of the specification

in behavioral terms [31]. By definition, executing a test suite which ~covers~ a par­

ticular fault model is guaranteed to show any existing faults of that type in an 1UT.

Sorne examples of the types of faults used in FSM testing [4] are:

Output Jaults: An output fault exists when, for corresponding initial states and

inputs, an IUT outputs something which does not follow the FSM specification.

This fault model is used in all test-coverage techniques.

TransJer Jaults: A transfer fault exists if, for the corresponding initial states and

input, the IUT enters a different state than that specified by the FSM.

TransJer Jaults with additionaI states: There are certain situations when an IUT

can enter astate which does not correspond to one in the FSM, in which case,

additional states must be added ta the fault mode! ta rel1ect possible IUT

behaviors. When the IUT enters such astate, this is a transfer fault ta an

additional state.

If n is the number of states in the specification, it is assumcd that all possible

IUTs have at most m states, where m might be greater than n. As (m - n)

increases linearly, the number of test cases in the suite grows exponentially, 50

this is an expensive fault model ta use [20].

Additional transitions: For nondeterministic machines, there can exist multiple ac­

tions defined for a particular input from a particular state. In these cases, the

fault mode! would include additional transitions ta reBect possible IUT behav­

iors.
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One of the important issues in fault coverage is that of generating a test suite which

is both manageably short and reasonably thorough, ;;wo conflicting goals which force

one to make a tradcoff of one in favor of the other [20]. In addition, it is difficult to

prove that, given a test suite which covers a particular fault model for a particular

specification, there does not exist another test suite which is smaller (contains fewer

test cases) and covers the same mode!. Thus, eliminating redundant test cases is also

an interesting probiem.

Automated fault coverage techniques, when used in conformance testing, have the

advantage of being very thorough in finding faults in an implementation, but most

existing methods are suited for deterministic, minimal (without redundant states and

transitions), fully-specified (for any input sequence, from any state, sorne response is

specified) specifications.

It is possible to generate a suite that covers faults in nondeterministic specifica­

tions. Typically, sucb a technique needs to model an arbitrary nondeterministic F5M

as a deterministic F5M [19], or a minimal F5M, or an "observable"l F5M [28], to

satisfy assumptions whicb were made in the proof of the technique. A problem whicb

arises from using sucb techniques is that the tests are not necessarily repeatable; that

is, for a given sequence of input, there may be different resulting expected output

sequences depending on the internal cboices of the specification / implementation [20].

5.2.2 Test Case Execution

This step in conformance testing is fairly straightforward, involving the feeding of

test case inputs into an IUT and capturing the inputs and outputs in a trace. The

IUT specification, test case, and the obtained trace cao provide enough information

1An observable FSM is one where an input/output pair a/h uniquely identifies a transition from

a partieular state (i.e. no other transitions with the same input/output pair eau exist from the same

state). An observable FSM cao still he nondeterministic, as multiple transitions from the sam~ state

cau take a as input.
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to determine if the IUT passed or failed the test.

However, if the IUT is nondeterministic. complete guarantccd fault detection is

theoretically impossible. For example. if it is desired to test the IUT for a number of

nondeterministic reactions to a given input sequence t. the test case must be applied

to the IUT repeatedly until ail of the behaviors are exhibited. If the IUT ha., a

fault, such that one of these possible specified reactions to t is never exhibited. this

means that no number of repetitions of the test case will give conclusive evidencc that

this fault exists, for it may be that the IUT simply chose not to take a particular

nondeterministic transition each time the test was e.'(ecuted.

To get around this problem, one usuaIly makes a so-caIled complete tcsting lL.'­
sumption, which states that after a finite numbe.. of repetitions of a particular test

case, if a certain behaviour which e.'(ists in the specification is not exhibited in the

IUT, then there exists a fault in the IUT. The quaIity of the test increases with the

number of repetitions of the test case. New techniques [19] [28] for automated test

suite generation of nondeterministic protocols make this assumption.

5.2.3 Test Result Analysis

Test result anaIysis involves anaIyzing the IUT's observable behaviour in response to

each test case executed with respect to the specification. UsuaIly, the only observable

behaviour of an implementatk:l is a "trace", or a log of the interactions sent through

the IUT's interaction points. When only the observable interactions are used in test

result anaIysis, this kind of testing is caIled "black box" testing. An oracle is needed

to determine if each trace could have been generated by an implementation which

follows the specification.

A trace analyzer provides the function of this oracle and determines, usuaIly by

simulation, whether a trace is valid with respect to a formai specification. An invalid

trace is a trace whieb contains an interaction whieb could not have been generated by
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an irnplernentation which follows the specification. Below are sorne other situations

where a trace analyzer could be useful.

• A deterrninistic irnplernentation which is accepted as ~correct" cao be used as

a an operational specification [22] during the developrnent of a formai spec­

ification, which then cao be used later to generate implementations on other

platforms automatically. ln this situation, the formai specification cao be tested

for conformance to the operational specification. Since the operational specifi­

cation is deterministic, it also cao be viewed as a trace analyzer.

• It may be necessary to take two human-generated implementations which are

on different platforms and test the interoperability between them, in which case

a trace analyzer could act as an ~arbiter" and provide diagnostic information

about the behaviour of each implementation.

• A specification which is accepted as correct is used as a test verdict checker, to

determine if the test case result (pass or fail) attached to a particular trace is

-correct with respect to the specification.

Trace analyzers cao run in real-time, monitoring an implementation as it is ex­

ecuting, or they cao run in a batch-mode, processing tI"ICes which were collected

during previous implementation executions. Some co=unicate with other modules

over a network, others simulate the execution in one process. Different ~est archi­

tectures" are used under different situations [9], such as when the IUT co=unicates

with more than one module at a time.

Nondeterminism

When the specification is nondeterministic, trace analysis may require backtracking.

Imagine a simple multiplexer specified by a nondeterministic EFSM M with one FSM

state, and three interaction" poin:s, A, B, and C. The trace to be analyzed contains
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2 input interactions: -a~ arriving at A. and -b~ arriving at B. The 2 interactions

which appear in the output trace through interaction C are ~ab~. M has thrœ

nondeterrninistic transitions which look like this:

1. If available, read input from A and store in queue.

2. If available, read input from B and store in queue.

3. If available, output the next element in the queue to C.

Assume the queue structure is a dynamic data structure of infinite size.

If the two inputs arrive at the same time, there are two possible outputs for this

module: "ab" and "ba". The possible transition sequences which generate "ab" are:

[1,2,3,3], and [1,3,2,3]. The possible transition sequences which generate "ba" are:

[2,1,3,3] and [2,3,1,3].

Since aIl four transition sequences are possible, a trace analyzer can begin by

attempting one of them, and determine if it was the right choice. If the trace analyzer

picked [2,3,1,3] as the first sequence to attempt, it would nced to backtrack after

executing transition 1, due to the output mismatch. In order to try another transition

sequence [2,1,3,3], the trace anaIyzer would nced to backtrack to the state right after

taking transition 2, restoring aIl the variable vaIues, as weil as the queue state (which

only contained "b"), to be what they were when transition 2 was executed for the

first time.

Trace AnaIysis on nondeterministic specifications cao be thought of as a form

of state space search, where the search tree consists of nodes (states) and edges

(transitions). A trace is "vaIid" if there exists at least one "solution", or a path

(sequence of transitions), from the root of the tree (initiaI state) to a leaf node

(another vaIid state), which generates aIl of the interactions in the trace. If the entire

state space in the tree is searched, and no solution is found, the trace is "invaIid"•

UsuaIly, depth-first search strategy is used for trace anaIysis, aIthough for paraIlel
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or multi-threaded testers with plenty of memory, a breadth-first strategy might be

considercd as a faster alternative [2]. For realtime trace analysis, simple depth-first

scarch is not sufficient, as explained further in chapter i.

Non-Progress Cycles

In sorne specifications, there cao exist a sequence of spontaneous transitions, from a

particular FSM state to the same state again, which produces no output. If input is

available to be read at this time, this is called a non-progress cycle, and cao result in a

search trec of infinite depth. When such a cycle exists in the specification, perforrning

a complete state space search may be impossible. Sometimes an assumption is made

that the length of a non-progress sequence of transitions cao not exceed a certain

number during a trace analysis, in order to force a verdict on any test case, but this

can still result in astate space explosion of unmanageable size, and if the trace is

not found to be vaIid, then ail that cao be said about the trace is that given the

constraints on the search, no solution was found.

Sometimes, a non-progress cycle is entered while waiting for a time-dependent

event. For trace analyzers which do not kecp track of the time of events, such a

cycle should be removed from their specifications. In other situations, infinitely

cycling through the same states without making any progress is calIed a "liveIock"

which, from the black-box perspective, is indistinguishable from a deadIock. Protocol

specifications should be free ofpossible livelocks before trace analyzers (and, of course,

implementations) are written for these protocols.

Diagnostic Information

Providing useful information about the IUT fault in the event that the trace is invalid

is a non-trivial task for the trace analyzer designer. It is easy to provide informa­

tion about which transitions in the specification were attempted when "following"
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the invalid trace. It is also straightforward to implement the error messages like ~in­

teraction i in trace t mismatches with the interaction generatcd from specification

at this point in the search~. However, for nondeterministic specifications. it can be

that faults in an IUT have nothing to do with the transitions taken in the specifi­

cation during a trace analysis, and often more useful information is desired in any

case. Tetra [2], a trace analysis tool for LOTOS specifications, implements an error

explanation search routine that can guess at what is wrong with an invalid trace, if

it is due to a mismatched, missing, or extra interaction in the trace.

Initial IUT States

One of the most daunting problems a trace analyzer can face arises from the fact

that the initial IUT state is not always known at the start of the trace. In the EFSM

mode!, where variables and other parameters comprise the EFSM state, the number

of possible FSM states multiplied by the number of possible variable values is the

number of possible initial EFSM states. It may take an inordinate amount of time

to determine the initial EFSM state, given that there are so many possible ones from

which to choose. If the EFSM model also supports dynamic memory, this can yicld

an infinite number of possible initial EFSM states. At the moment, most existing

trace analyzers assume that traces start when an IUT is in an initial state, or in one

of a small set of possible initial states•
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Chapter 6

Tango

6.1 Introduction

Several trace analyzers have been written for specific protocols such as as SNA [14],

MAC [29], Class 4 Transport [26] and X.25 [32], but products such as these were, for

the most part, developed by humans, had to be tested very thoroughly before they

were put to use, and were not easily adaptable for use on other protocols. A more

general purpose taol, that can be used to analyze traces of any protocol specified in

a particular specification language, is presented here.

This chapter delineates the requirements and the development of a trace analysis

taol generator for Estelle specifications and static trace files. A static trace file is one

that does not grow during the trace analysis. For on-Une trace analysis, the size of

the trace to be analyzed is not known, and grows during the analysis. A procedure

for analyzing such traces is discussed in chapter ï.

The approach taken was to modify Dingo (see Section 4.1.2 or [36]) in such a

way that instead of simply generating an implementation that could be executed, the

compiler would generate a trace analyzer for one module in the specification. The

trace analyzer, in tum, would fire transitions depending on the trace information

39
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supplied as the input to that module. and compare its generated output to tilt., tract'd

output. backtracking when necessary.

The result of our work, Tango. also known as the Trace ANalysis Gt·neratOr.

does just that. 1t generates a trace analysis tool hascd on any singie-modllie Estelle

specification, which can analyze traces using relatively small amollnts of mcmory and

CPU time.

1-Moclule
Estelle

Specification

Original
Estelle

Specification

•

Figure 6.1: The Tango System

•
•

Related Work

A trace analysis tool for specifications written in LOTOS [Il] has been described

in [2]; it uses a state-space exploration approach similar to the one described in

this paper. Like Tango, it concentrates on the (possibly nondeterministic) control

flow of the specification and assumes (except for simple value geoeration by internai
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interactions) that the data parameters of output interactions can be (deterministi­

caIly) deduced from the input parameter values. Another approach, TESTVAL, is

described in [2iJ [42]. Applied to Estelle specifications, this approach requires that

the specification be manually transformed into Estelle.y which contains no state lists,

dynamic memory, procedures or functions, and the data structure definitions must be

defined in ASN.l. Given a specification in Estelle.y, TESTVAL generates set of paths

satisfying the input and output messages in the test case, and symbolic evaluation

is used to detect and de1ete infeasible paths in that set. The trace fails if the set

is empty. This approach is quite e1egant from a theoretical standpoint, but certain

aspects of the initial transformation are not automated, making the generation of a

trace analyzer for an arbitrary Estelle specification less straightforward.

6.2 Requirements Specification

A valid specification for Tango must contain only one module body, which specifies

the behaviour of the module to be tested in the IUT. This module is called the TAM,

or the Trace Analysis Module. Trace analysis on multiple modules executing concur­

rently is more complicated, since observable behaviour from one module considered

invalid with respect to the trace can be a result of the invalid behaviour of another

module in the system.

The TAM can have any number ofinteraction points, and these mus~ be connected

by channels to "feeding" modules in the modvar section of the specification. Feeding

modules, when executed, will read information from a trace file and feed the proper

interactions as inputs to the TAM.

The single-module specification with feeders must be translated into an object­

oriented static representation by Pet (sec Section 4.1.1) and then translated into C++

by Tango. The C++ source is then compiled by the GNU G++ compiler into an

executable TAM.
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Implementing a backtracking trace-analyzer by addhlg routines to Dingo r<'quired

the following:

• Saving TAM states. The information comprisinga TAl\I state includcs the FSM

state, an image of all variables, queue states. and dynamic data. Any time the

TAM state must be saved, a copy of this information is placcd into an object

called -state-info, which is then pushed onto a stack for later rctrieva1.

• Restoring TAM states. Ali the information which was storcd in the -state-info

must be elegantly and quickly copied into the proper places for the TAM exe­

cution to continue at the point where it was when the image was saved.

• Loading Trace Files. Trace information, both inputs and outputs, stored in a

text file, must be read in by the trace analyzer and interpretcd as -Interact

objects. The interactions from the output trace must be stored somewherc and

readily accessible by the TAM for comparing to the generated output.

• Generating feeding modules. In addition to a TAM, Tango must generate a

"feeding" module process for each one declared in the specification. Feeding

modules run in parallel with the TAM. They read input trace information from

the trace file and send it into the TAM's input queues. This way, the interactions

are available to be read from the interaction points inside the TAM.

• Comparing interactions for equality. No routines were generated for comparing

structured objects for equality by Dingo, sa the generation of == operators for

each structured object was added to Tango.

• Generating a List offireabLe transitions. When a module is about to fire a transi­

tion, the Dingo-generated implementation chooses one of the fireable transitions

and forgets about the rest (sec Section 4.2.2). A TAM must generate a list of
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aU fireable transitions, save this list for later possible backtracking, and then

the TAM may fire one of the transitions from this list.

• Dcpth-First Scareh. After the above features are implemented, it is fairly

straightforward to write a depth-first search routine, which generates and searches

through a tree of possible transition sequences for a path which satisfies the

trace.

Sorne of these steps are described in more detail below.

6.2.1 Saving and Restoring TAM States

Non-dynamic Variables

Ail non-dynamic variables are accessible through a Global Reference Manager (GRM),

which is an object belonging to each Module Instance object that is executing, and it

contains a stack of pointers to frames, each frame containing pointers to structured

data objects.

The frame 00 the bottom of the GRM stack contains pointers to ail global vari­

ables, and other frames are pushed onto the stack when scopes are eotered, and

popped when scopes are exited. The actual variables occupy automatic memory

(memory aIIocated when a function is caIled, and freed when the functioo retums)

in the generated C++ methods for each transition block. In order to save an image

of ail variables on the GRM s'tack, the following steps must be taken:

• Another GRM is created, with frames which are exactly the same structure as

the ones in the active GRM.

• For each new frame on the new GRM, memory is aIlocated for each of the frame

variable pointers.
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• The values are copied from the memory pointed to by the frames on the actÏ\'l'

GRM into the newly allocated memory for the frames in the ne,," GRl\l .

• A pointer to the new GRM is placed into the _state.info object.

A bottom-up approach was taken to solve these problems.

Frames are custom-generated for every possible transition block and interaction.

Transition blocks without local variables have frames without any data pointers

in them, but they still appear in the generated implementation. Below are sorne

frames which were generated by Dingo when run on the TriState specification in

Appendix A.l.

Il frame for the _Data interaction
struct __frame_Data {

_Data..type* Parameter;
};

Il Frame for Module _Feeding_body
struct __frame_Feeding_body {

_Interface* ToMain;
_Integer* Num_packets;
_Integer* I;
_Data_type* P;

};

Il Frame for transition _Send_packet
struct __frame_Send..packet {

_Integer* I;
};

As shown above, all local variables in Jeeding.body, P. I, and Num_packets

as weIl as channel pointers, appear in ....frame..Feeding.body. For the purposes of

backtracking, ooly the variables must be copied.

One advantage of object-oriented languages is that ail Estelle structured variables

cao be translated into objects with constructors (for creating a new instance of the
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sarne type), and assignment operators (for copying values from one object to another

of the same class). These methods were already implemented for Dingo-generated

implementations. Getting frames to allocate and copy themselves is a little more

complicated, but can be achieved using similar programming constructs.

The first step involves giving all frames a common superclass, ....:frame..generic

with virtual methods for the following:

• alloc..decls: For each variable pointer in the frame, cali its class constructor,

to allocate memory for that type of variable.

• dup..decls(....:frame..generic*): Copy data from locations pointed to by "this"

frame into locations pointed to by the frame of the argument.

• free..decls: De-allocate the objects pointed to by each variable pointer (useful

when a -state.info object is no longer necessary).

• clone..frame: returns a pointer to a clone of the frame, by calling the frame's

constructor, alloc_decls, and dup_decls.

Next, it is necessary to make Tango generate frame objects which inherit from

....:frame..generic, and custom methods to override each of the virtual ones above.

Below is an example of what Tango generated for the ...Feeding.1lotly module:

struct __frame_Feeding_body : public __frame_generic {
_Interface* ToMain;
void alloc_decls();
void free_decls();
void dup_decls(__frame~eneric*);
__frame~eneric *clone_frame();
_Integer* Num_packets;
_Integer* I;
_Data..type* P;

};
void __frame_Feed~body: :alloc_declsO{

Num_packets ~ new _Integer;
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l = new _Integer;
P = new _Data_type;

}

void __frame_Feeding_body::free_decls(){
delete Num_packets;
delete I;
delete P;
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}

void __frame_Feedin~body::dup_decls( __frame_generic *destination){
__frame_Feeding_body *dest = (__frame_Feeding_body*) destination;
*(dest->Num-packets) = *Num_packets;
*(dest->I) =*I;
*(dest->P) = *P;

}
__frame_generic *__frame_Feedin~body::clone_frame(){

__frame_Feedi~body *retval = new __frame_Feeding_body;
retval->alloc_decls();
dup_decls(retval);
return (retval);

}

The final step, making a method for the GRM that will clone itself, is relativcly

simple, and involves not much more than c10ning each frame on the GRM stack.

Dyuamic Variables

A dynamic memory manager (c1ass ....DRManager) maintains a linked list of ....DREntry

objects. Each entry contains an address, a size, and a data pointer. Each time a cali to

new is made on an Estelle data structure pointer, an entry is added to the list which

contains the address and size of the new memory block, and the data field remains set

to null. Each time a cali to dispose is made on an Estelle data structure pointer,

the corresponding entry in the list is removed. This way, only the memory blocks

with corresponding entries in the ....DRManager are the ones used by the module at

any given moment.

When the TAM state must be saved, a copy of the -DRManager list is made, and
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placed into the -state-i.nfo object. leaving the original one unchanged. Then. the

linked list in the copy is traversed. memory is allocated for the data field of each

entry. and finally. memory is copied from the location pointed to by address into the

newly allocated space. The contents of all dynamic memory in use that that moment

is then available for future possible restoration.

When the TAM state must be restored. the -DRManager copies the data back in

the other direction.

This approach is fairly simplistic, and works only when the TAM never de­

allocates memory between a save and a restore. In the event that the TAM does free

memory, a memory fault will result from copying the saved info from the old copy of

the -DRManager into its former location in memory. 5ince the former memory loca­

tion might be used for something else. the memory can not simply be re-allocated on

demand.

Two solutions to this problem are proposed here:

• Never de-allocate dynamic memory, so it will always be possible to copy a

dynamic record back into its former memory location on backtracking.

• Kecp track of all pointers to dynamic memory, and when re-allocation of dis­

posed memory is neccssary, adjust ail pointers to the old memory location so

they point to the new memory location.

The first approaeb results in a considerable amount wasted memory at runtime,

but is very simple to implement. This was the approaeb taken in the first working

version of Tange.

The second approaeb, however, was implemented in the current version of Tango.

One field was added te the -DREntry object, status, whieb can be either deleted

or active. The Tango code-generation routines had to be modified so the following

operations \Vere supported:
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Figure 6.2: An example DR Manager

• Any de-reference of a pointer in Estelle becomes a double de-reference in the

C++ implementation.

• new(p) As before, a ne\\' entry is created in the DRManager, and the DREn­

try's address field will point to the new dynamic record. Instead of setting p

to be another direct pointer to the sarne dynarnic record, p will point to the

DREntry's address pointer. The st<:.tus will be set to active.

• dispose(p) De-allocates the memory pointed to by the DREntry's address,

and marks the status field of that entry as deleted.

• On backtracking, two DR..\1anagers are consult'ed before data is resto_red: the

saved one, referred to as the source, and the active one, in the Mlnstance,

referred to as the target. The following cases must be handled:

1. Memory pointed to by a DREntry in the target which does Dot have a
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corresponding DREntry in the source to be restored should be de-aIlocated.

Thesc arc objects wJ,ich were aIlocated after the state to be restored was

saved, and are no longer necessary.

2. Any DREntry marked as deleted in the target which has a corresponding

active DREntry in the source must have its address pointer re-aIlocated,

and its ~~atus pointer set to active again. These are elements which were

de-aIlocated after the state to be restored was saved. Since eaèh Estelle

pointer is a pointer to a pointer in the DRManager, rather than a pointer to

the dynamic memory itself, a double de-reference will result in the correct

area of memory being accessed.

3. Any DREntry in the target which has an active corresponding DREntry

in the source can have the memory pointed to by its address field over­

written as before.

In a depth first search, restoring astate implies restoring to an ascending state

in the search tree. During a restore, it is acceptable to remove ail DREntries in

the target DRManager which were aIlocated between the save and the restore, as

they will never be needed again. Therefore, it is possible to maintain a one-tcrone

correspondence between the n elements in the source list, and the first n e!ements

in the target list, where n is the number of nev statements executed while taking

transitions which fonn a path from the root ilode to the node to be rcetored.

Because of the one-to-one correspondence in depth first search, it is possible to

write a restore operation which perfonns the above task and requires only one traver­

sai of each list.

Queue States

Since the channels are asynchronous, there is a queue assodated with each interaction

point. containing aIl of the inputs which arrived but were not yet consumed. The
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queue state is an importa:lt part of the TAM state.

Sorne different approaches to saving a queue state will be discussccl. At lirst ont'

might try creating a copy of the queue, where each clement in the ncw\y m'att'cl

queue is a copy of an element in the queue to be savcd. Then, upon restoring. the

active queue along with all of its clements is dcstroyed, and the copy is pnt in its

place. When there is frequent backtracking, this approach, with its high computation

and memory requirements, is not very practical. In any case, Estelle docs not permit

the changing of data clements in the queue, so saving the data and rcstoring it is a

waste of rcsourccs.

A more practical approach would just save the information requircd to have the

next enqueue and dequeue operations perform as they would have when the state wa.~

savcd. Therefore, the de-queucd elements must be available somewherc for future

restoration.

The queue in Dingo is an object of type DList, a double-linkcd list, with methods

for traversing, adding, and removing elements anywhere in the list. DList also has

methods enqueue and dequeue which, when they are the only methods used for

adding and removing elements from this list, provide an implementation of a FIFO

queue. Dingo implements a channd queue (in c!ass ~IPType) using this DList.

In Tango, the method for dequeue was re-written, so that instead of actually

removing the clement from the DList, a private member field of DList callcd Dext,

which points to an clement in the list, is consultcd to determine the next clement to

be dequeucd, a copyof that element is retumed, and the Dext pointer is updated to

point to the following clement in that list 1.

Using this approach, no clement is actually removed from the DList, and to restorc

the queue state, ail that is necessary is the restoring of the value of the Dext pointer,

and removing the clements which were enqueued since the save-state operation.

1Later in the development of Tango, it became nec:essary to change the dequeue method again,

50 it would not copy the interaction! The reasoning is explaincd in Section 6.2.3
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ln fact, the task is easier than dcscribed above. Since, during trace analysis,

ail interactions which are sent out through interaction points from the TAM are

analyzed immediately for conformance to the trace, this means that interactions sent

hy the TAM are never placed onto a queue, and thus, never need to be removed on

backtracking. Therefore, the only information needed in the -state.info for each

queue is the next pointer. History of the enqueued elements will always be available

in the queue itself.

6.2.2 Trace Files

While the IUT is being traced, the inputs sent to the IUT as weil as the outputs

rcceived by IUT must be saved into a file. These interactions are all necessary as

input to the TAM when the trace is to be analyzed. The format of a trace file is

usually simpler when it describes the interactions going through just one channel,

but because the TAM can have any number of bi-directional channels, Tango trace

files must contain information about from which channel each interaction was traced.

An example of the format for the TAM's input is described in Section 4.3, shown

in Appendix A.3, and the format is specified infonnally in Appendix C.2.3. This

format was chosen because Dingo already has methods for the stream input/output

of the interaction parameter lists, and those methods are used for reading and writing

trace files in Tango.

Each module spawned by a Tango specification has a trace file manager (class

tf..man). The tf..man keeps an a.-ray of ip..queue structures, one for each interac­

tion point in that module. Before a module begins execution, tf..man's constructor

automatically reads each interaction in the trace file. If the interaction is an output

originating from that module, it is enqueued into its corresponding ip..queue.

When the TAM executes an output statement, a. call to tf..man: :check-output

is made. This method determines if the interaction being sent through a particular
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interaction point exactly matches the interaction which appeared nl'xt in the tracl'

(which is stored in one of the tf..man ip_queues). If there is a match. the propl'r

tf..man. ip-queue next pointer is updated so that a subsequent call to check_output

will compare the output to the following interaction in the trace file for that IP.

The object tf..man must he able to save and restore its state in the l'vent of

backt!,?-cking. Since tf..man uses the same DList structure for its quenes a.< SIPType.

a list of next pointers, one for each ip-queue, is suflicient for saving and rL'Storing

tf..man states.

6.2.3 Generating a List of Fireable Transitions

The Dingo-generated routine for each module body, -selAndExec, is used as a model

for the TAM method, -generateFireable. The method generated for TriState is

shown in Appendix A.4. -generateFireable uses the same conditionals for deter­

mining ifa transition is fircable as its -selAndExec counterpart, but instead of setting

local variables for the transition frames, interaction, and transition block, a structure

of type .trans..info is created, and this structure must contain ail of the information

required for executing a fircable transition. For each transition which could have been

fired by -selAndExec, a _trans..info object is appended to a double-linkcd 1ist, and

a pointer ta that list is returned by -generateFireable.

It was during the development of -generateFireable that it becarne apparent

that some parts of Dingo were not written in a very object-oriented fashion. For

example, in the -selAndExec method featured in Appendix A.2, the interaction

pointer _cinter is assigned to point to the first interaction in the FromFeeder queue,

on line 77. Then, this interaction is deleted directly by -selAndExec on line 159.

This means that no matter how thoroughly the methods for ~IPType protect the

interactions in the queue, it is still possible that the interactions wil! be de-allocated

without the knowledge or consent of ~IPType.AlI delete statements which applied
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to interactions were removed from Tango to prevent this from happening. After this

was donc, it became obvious that the dequeue operation of DList did not necd to

return a pointer to a copy of the interaction being dequeued, but a pointer to the

actual interaction itself, as it did before (sec Section 6.2.1). Otherwise, considerable

amounts of memory would be wasted.

The frame pointers in -selAndExec point to frames which are declared locally to

-selAndExec, on lines 51 and 52. Saving pointers to these frames and exiting from

-selAndExec will cause memory CITOrs, since these pointers will point to de-allocated

automatic memory. -generateFireable must place pointers to copies of each frame

in the _trans.info fields, and thus, clone..Îrame is used to this end, as shown in

!ines 56, 85, and 114 of Appendix A.4.

Since a _trans.info object should be destroyed after executing its transition, a

destructor for _trans.info which de-aIlocates its pointers to frame copies is necessa.ry.

6.2.4 Depth-First Search

The aIgorithm for depth first search looks like this:

1. Check if aIl inputs were consumed and aIl outputs verified. If so, output a
successful result and exit

2. Generate fireable transitions. If there is more than one possible transition, save
the current TAM state.

3. Choose one of the not taken transitions from the list, mark it as "taken" and
execute it.

4. If there were no possible transitions, backtra.ck and gato step 3

5. If outputs from this transition were inva.1id, backtra.ck and goto step 3

6. Goto step 1

Backtra.cking inv'Jlves finding the deepest point in the search which contains un­
explored transitions, and restoring the state, and the list of firea.ble transitions from
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that state. In the event that ail possible t.ransitions are searclll'd. t.he 'l'AM outputs
a "trace invalid~ result. and exits.

The routine which performs the dept.h first search is the method called startTAExec

and is defined for the class -System. used for ail generated TAMs.

6.3 Runtime Options

After the initial required features were implemented, various enhancements were made

1.0 the Tango system 1.0 make il. more useful in practical applications. These are ail

referred 1.0 as runtime options, and using them is described in the Tango Tutorial,

Appendix C.2.4.

6.3.1 Initial State Search

Often, an IUT is executing for a while before a trace is collected, in which case the

initial state of the IUT is not known. Sometimes, it is desired 1.0 analyze such traces.

By default, the TAM fires the initialize transition and then starts analyzing

the trace. Tango supports an optional initial FSM state search. If the trace is found

1.0 be invalid when the TAM begins analysis from the default initial FSM state, the

TAM will backtrack 1.0 the point right after the initialize transition was taken,

choose another initial FSM state, and begin the analysis again.

Il. should be noted that when the DFS begins, the TAM currently assumes that

the values of all IUT variables and dynamic memory are initially left as set by the

initialize transition block. In the event that they were changed in the IUT before

the trace was collected, this might cause an "invalid trace" result on a valid trace.

Il. is computationally impractical 1.0 try all possible initial TAM states. In the case

of Estelle, they may be be infinite in number due 1.0 the fact that Estelle supports

dynamic memory allocation. It is frequently not sufficient simply 1.0 try differeot



• CHAPTER 6. TANGO 55

•

•
•

initial FSM states, as Tango does. Another approach for handling partial traces is

discussed in Section 9.2.3.

6.3.2 Interaction Relative Order Checking

The order of the interactions, as they appear in the trace file, can be interpreted in a

number of ways. In ail cases, if two interactions going in the same direction through

the same interaction point appear in the trace file, the order in which they appear is

observed and checked by the trace analysis tool. However, the order of interactions

which go through different interaction points, or through the same interaction point

but in different directions, can be observed (and checked) or ignored by the TAM,

depending on the runtime options.

In the case of full order checking. the inputs and outputs in the trace file must

be in an order in which the inputs can be consumed and the outputs generated by

the Estelle module specification, assuming no input or output queues. However, in

practice, the implementation under test that has generated the trace file may include

input and/or output queues associated with the different interaction points observed.

The presence of these queues may lead to an order of the interactions in the trace file

which is not compatible with the simple Estelle specification (assuming no queues).

For instance, if separate input queues are present for different interaction points,

the relative order of trace inputs pertaining to different interaction points is of no

relevance. Similarly, if the output interactions from different interaction points travel

through different queues before being recorded in the trace, the relative order of

outputs pertaining to different interaction points is of no relevance. Finally, for any

given interaction point, if an input or output queue is present in the implementation,

an input in the trace may precede the next output to be generated (in the case where

this input was already provided by the environment, but not yet processed by the

module. at the time when the output was generated).
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Inputs with respect to outputs: Checks that the next input consullled by a transition

precedes any other output interaction at the same interaction point in the trace.

This option should be used under most circumstances.

Outputs with respect to inputs: Checks that the next output ge:lerated by a tran­

sition precedes any other input interaction at the same interaction point in the

trace. This option should not used if the implementation that generated the

trace includes an input queue for the interaction point in question.

IP relative order checking: Checks that the next input consumed by a transition pre­

cedes any other input in the trace, and that any output generated precedes any

other output in the trace. This option should not be used if the implementation

that generated the trace includes input or output queues.

It is clear that the presence of the input and output queues in the implementation

reduces its observability. These issues are discussed in more detail in [15]. lt is also

important to note that the use oforder checking during the trace analysis significantly

reduces the state space of the search, because most non-spontancous transitions be­

come deterministic. This will often yield linear-time trace analysis executions with

respect to the length of the trace (sec Section 8.2.2).

Temporal Information

Currently, there is no facility in Tango to keep track of rcal-tirne relationships betwccn

events. This means that implernentations which exhibit rcal-tirne behaviors, such as

time-outs, can not be checked for conformance to a specification by a Tango-generated

TAM. Handling tracefiles with time stamps attached to cach interaction would be a

possible future enhancement to Tango, and would also elirninate sorne problerns faccd
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by protocol testers who currently can only incorporate different degrees of relative

order information in the trace files used by a TAM.

6.3.3 Disabling an IP

Disabling an IP means that outputs sent through that IP during the trace analysis

are not checked, but always considered vaIid. This feature may be useful when the

trace itself did not include output observations made at certain IPs, due to practical

problems of observability.

While it is possible with this option to use Tango to perform trace analysis when

not all outputs from the IUT are available, all input interactions arriving at the

IUT are needed for a TAM to perform trace analysis, if they affect the observable

behaviour of the implementation. This may be considered a significant limitation

of Tango, as there are situations where the inputs arriving at sorne of the IPs of

the IUT are not observable, and it is still desired to perform a trace analysis on the

interactions passing through other IPs of the IUT. Section 9.2.3 discusses sorne of the

problems involved in implementing partial trace analyzers.

6.4 The TriState Trace Analysis

This section describes the execution of a Tango-generated TAM based on TriState

(sec Appendix A.1). The trace fed to the TAM as input is the sarne trace from

Appendix A.2. This means, of course, that the TAM and the IUT are both strictly

based on the sarne specification, so the trace must be vaJjd. The trace analysis

progress report, or log file, is shown in Appendix A.S. This section describes how to

understand the contents of the log file.

Before each transition is executed, a log entry of the following format appears:

cu=entState = s
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s is the name of the current DFS state. dis the search trcc depth. c is a boolean.

indicating whether the node is a Partially Generated node and nccds to be checkcd

again later, and t is the number of fireable transitions from this state. For each

fireable transition, the transition name is listcd below that line.

When a transition is chosen, a message like this will appear in the log file:

::: Executing transition: _ToSolid

If this is a non-spontaneous transition, the input consumed results in the following

message in the logfile:

--> Input : interaction..name [index] from IP_name

Where index is an ordinal value attachcd to the interaction which indicatt'S how

many interactions appearcd in the trace file before this one.

Outputs which are produced during the execution of the transition code r<-'Sult in

a similar Output : message in the log file.

In our example, it is not until depth 22 that more than one fireable transition is

generated, and all the transitions before that match the logfile of the IUT execution

from Appendix A.2. However, at depth 34, as it was mentioned in Section 3.1,

&ter receiving the data packet with parameter. l set to 99, it is possible for an

implementation to take the transition _ToGas or _ToFinished. The TAM arbitrarily

decided to try _ToGas first, as we r.an sec on line 158. The following spontaneous

transition _ToLiquid sends a .Data.response through its interaction point. This

does not match the _Close..connection interaction which appears next in the trace,

thus we cao sec the message on line 166, and the TAM backtracks. Back at depth

2This is relevant only te dynamic trace files. Sec Section 7.2.2 for more information.



• CHAPTER 6. TANGO 59

•

•
•

22 on line 1ïO, we can again sec the Iist of transitions from that point, and here

_ToGas is marked as "already tried~, 50 the TAM takes _ToFinished, outputs a

_Close_Connection which matches the trace, and ail outputs are verified. Therefore,

the trace is valid, as expected.

Some statistics on the search appear at the bottom of the log file. The meaning

of each field is explaîned below.

CPU Time (seconds): This is the amount of CPU time used by the TAM process.

Achieved by using the clock(3C) function.

Trans executed: The number of transitions executed during the search. This can

also be thought of as the number of edges searched in the tree. During DFS,

this is the sum of generates and restores.

Generates: The number of times a calI was made to -generateFireable. During

DFS, this is the number of vertices in the search tree.

Depth: The depth of the most recently searched node in the tree.

Max Depth: The maximum depth achieved in the tree during the search.

Restores: The number of state restores during the search. During DFS, this is the

number of backtracks.

Saves: The number of state saves during the search. During DFS, this is the number

of nodes with more than l child in the search tree.

Trans per second: This is the number of executed transitions divided by the CPU

time, in seconds.
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Chapter 7

On-Line Trace Analysis

7.1 Introduction

When a trace analyzer runs on-Hne, it receives interactions from an IUT while the IUT

is executing. Such a prograrn is expected to be able to verify incoming interactions

as fast as they arrive. In addition to the speed issue, on-Hne nondeterministic trace

analysis involvesa search algorithm which is moresophisticated than DFS, to prevent

cases where the 'l'AM is indefinitely waiting for more input to arrive at a particlllar

IP, while the solution may exist elsewhere in the search tree.

Tango generates trace analyzers which implement a multi-threaded depth-lirst

search algorithm, to provide a means for on-Hne trace analysis.

Hereafter, when a 'l'AM is performing on-Hne trace analysis, wc will say that it

is runDÏng in dynamic mode, to distinguish it from a 'l'AM which is only reading

static trace files, which we would say is runDÏng in static mode.

60
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The fo!lowing featurcs were added or re-written in Tango 1.5 to implement a multi­

threaded trace analysis:

• Multiple, dynamic trace filcs

• Multi-Threaded Depth-Fil'st search

• Dynamic memory rcstore

• Queue state savefrcstore routines

7.2.1 Multiple, Dynamic Trace Files

In static-mode, Tango requires only one trace file to analyze, which may contain inter­

actions between the IUT module and all of the other modules it communicates with.

In dynamic mode, chances are that the trace is being taken from multiple observa­

tion points (channels between the IUT and its sibling modules). If Tango required

all trace data from multiple observation points to be merged into one trace file, this

could make the interface between the IUT and the TAM a little more complicated,

so Tango supports multiple trace files, as a convenience to the tester.

The way Tango handles on-line trace analysis is by treating the trace file as a "dy­

namic" trace file. A dynamic trace file is one that cao grow during the trace analysis,

while a static trace file is one which does not grow, and therefore, cao be loaded into

memory before the search begins. At any time, another process independent of Tango

cao append data to a dynamic trace file, which the TAM must check periodically for

more data to read. This should make it very easy to interface a Tango trace analyzer

with another program that collccts trace data from an IUT.

If interactions from the same observation point appear in different trace files

during a trdCe analysis, they will be placed in their proper IP queues in the order
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they are read from the trace filcs. If intcraction~ from diffcfcnt ob~{'r\'ation point~

appear in different trace files. the runtime option ip.relative ~hould not b., u~{'d,

as there is no way for Tango to determine the IP relati\'e order of int{'ra.·tion~ when

they appear in different trace files.

7.2.2 Multi-Threaded Depth-First Search

In on-line trace analysis, when a TAM has encountercd the end of input int"raction~

for a particular IP, the trace analyzer has two choices. It can wait indefinitcly fOf i\

new input to arrive, or it can "mark~ the current ~tate as astate which 1I<.-eds to he

checked again, and continue searching other paths in the tree. The former technique

allows one to continue using standard DFS, and may he a reasonable one to u~e for

certain specifications \Vith only one IP, but an indefinite delay is not acceptable if

there are interactions to consume and check which are \Vaiting in the queue~ of other

IPs.

ip A,B;
state Sl, S2;
trans

from Sl to Sl yhen A.x name Tl: begin end;
from Sl to S2 yhen A.x name T2: begin end;
from S2 to Sl yhen B.y name T3: begin output A.ack; end;

Figure i.l: Pseudo-Estelle specification ack

Imagine that the TAM is performing on-line trace analysis using our specification

ack in Figure i.l. Suppose that the inputs arrivcd from our IUT at A and B were

[x x x] and [y] respectively, and the only output traccd so far was rack]. Logically,

wc can sec that our IUT at sorne point decided to take T2 when it consumed one

of the x interactions from A. However, if our trace analyzer decided to lire TI three

times, consuming ail of the interactions arriving at A, it would arrive at a state in
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the search trcc with no possible next transitions to fire, and the output rack] would

not have bccn verified, nor would the input [y] be consumed by the TAM.

At this point, if the TAM were performing regular DFS (waiting indefinitely for

new input to arrive) and no new inputs arrived, the trace analysis would deadlock.

If the TAM decided to backtrack and analyze other paths in our search tree, it

would validate the trace upon execution of the foIIowing transitions: Tl, T2, T3, Tl.

However, in the general case, it is not reasonable to assume that a complete solution

exists elsewhere in the search tree, and it is possible that the solution began with the

transition sequence which was reached earlier. Therefore, it is necessary to save such

states, so the TAM cau analyze them again when new input arrives.

This technique will hereafter be referred to as "MuIti-Threaded Depth-First Search",

.Qr MDFS, and is implemented in the current version of Tango. MDFS is similar to

standard DFS except that at certain stages in the search, it might be necessary to

save a state, and analyze it again later. Each saved state represents a "thread" in the

search, which may lcad to a solution at a later time in the analysis. The high-Ievel

algorithm is described later in tbis section.

Implementation Details of Standard DFS

The DFS search tree is implemented as a double-ended queue of dfs.info abjects,

where cach abject cau be thought of as a "oode", or a "verte.''(" in the search tree.

Each object contains a pointer to a ..state.info abject, and a pointer to a linked

Iist of trans.info objects. Each trans.info contains all the necessary information

ta execute a transition from tbat state, and cau be t.hought of as an "edge" in the

search tree. After each transition is exCC"ted, its trans.info objeCt is marked as

"already taken" so that it is not searched again.

During a "generate" (a DFS operation tbat generates all the possible transitions

coming from the ct:rrent state), a new dfsinfo is created, and is set ta contain the
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linked list of fireable transition~ from tuis state. If thc numbcr of transitions is

greater than one. the current TAM state is saycd. Thc objcct is thcn appcndcd ta

the ~bottom~ of the search tree.

After ail edges under the current node havc becn scarched. thc node can be

removed from the search tree data structure, and the ncxt -bottam- node is consulk-d

for the next transition to search.

Implementation Details of Basic MDFS

If an input queue is empty during transition generation, this means that from thc

current state, sorne of the transitions which may have bcen fireable if input werc avail­

able, will not be fireable until new input arrives. ln this situation, the transition list

is considered "incomplete". Hereafter, a node in the search tree with an incompletc

transition list will be referred to as a ~partially generated node~, or a PG-node for

short.

After ail of the possible transitions which were generated from a PG-noclc arc

searched, it is necessary to save the PG-node for analysis later. ln basic MDFS, the

TAM will place this node on the "top" of the search tree, rather than the bottom, so

that it will only be searched after the rest of the search tree has been exhaustcd.

Whcn the rest of the tree is exhausted, PG-nodes will be the only ones left to

search. The bottom PG-Node will be restored and the TAM 'must make another

call to ..generateFireable, to determine if there are additional transitions which

are fireable from the current state which were not already tried before. If there are

newly generated tra!!sitions, they will be sea:ched next. Ifsome input queues are still

empty in this state, the node is still considered PG, and will be placed on the top of

the search tree again after the newly gèDerated transitions have been explored.
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As long as a PC-node exists in the searo::h tree, MDF5 will never terminate. This is

bccause a PC-node needs to be checked again later to determine if there are additional

fireable transitions from that state, arising from the arrivai of new input.

For traces which contain no invalid interactions, there will a/ways be PG-nodes in

the search tree. Therefore, MDF5 will never terminate with a valid result.

If one of the PC-nodes represents astate where all inputs were consumed and all

outputs were verified, the node is ca1led a Partially Generated AII-Verified node, or

PGAV-node for short. If such anode exists in the search tree, this means that the

trace is "valid" so far.

The TAM may output an "invalid" result, but this will happen only if ail of the

possible transition sequences are searched, and no PG-nodes remain in the search

tree. This can happen only if invalid interactions exist at points in the trace early

enough to prevent the consuming or producing of ail available inputs or outputs in

one of the queues.

50 what does it mean if the TAM is cycling through a set of PG-nodes, none

of which are PGAV nodes? At none of these states hav~aII inputs/outputs been

consumed/verified, but when new input arrives, there might be more transitions to

search. Does this mean that the trace is valid so far?

The answer is "maybe". Consider a specification ip3', which is like the one in

Figure ;.2, e.'l:cept that only transitions tl. t2 and t3 are defined. Imagine that

the trace collected so far contains one input from A, x, and one output to A, o. The

interaction 0 will never be generated byour specification ip3'. However, the TAM can

still nondeterministically continue consuming and verifying data interactions which

pass through IPs B and C until no more input and output trace data is available for

those IPs. When this happens, sorne PG-nodes exist, and MDF5 will indefinitely cycle

through them, \vaiting for more input to arrive at B or C, even though interaction 0



• CHA.PTER ï. ON-LINE TR.4.CE .4.N.4.LYSIS

ip A,B,C;
state sl, s2
trans

from sl to sl when B.data name t1: begin output C.data; end;
from sl to sl when C.data name t2: begin output B.data; end;
from sl to sl whcn A.x name t3: begin output A.p; end;

from sl to s2 when B.finished name t4: begin end;
from s2 to sl when A.x name t5: begin output A.o end;

Figure Î.2: Pseudo-Estelle specification, ip3
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is invalid. As each new data interaction arrives for B or C, it is analyzcd and vcrified,

and the TAM continues waiting. In this situation, an invalid trace is not detectcd by

the TAM running MDFS.

Now consider the specification ip3 where ail the transitions in Figure Î.2 are

defined. Here, wc cau sec that once an interaction finished arrives at B, then t4 is

fired, the module enters s2, 0 cau be verified, and the trace will be valid. Popular

protocols are not usually written in such a way that situations like this can happen,

so practically speaking, when ooly PG-nodes which are non-AV exist in the search

tree, this means that the trace is "likely to be invalid", but still, no conclusive result

cau be given.

It is possible that the operator would like to "force" a termination verdict on the

TAM which is executing MDFS, 50 this feature is supported in Tango, by the use of

an "end-of-file" marker in the trace file. Once the TAM is notified that there will he

no more input to arrive in any of its dynamic trace files, the PG-nodes i!i the scarch

tree become fully-generated nodes. At this point, it is possible to exhaust the scarch

tree and report a conclusive result. See Section C.2.4 for more information.
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One disadvantage of using basic MDFS becomes apparent when analyzing long valid

tracp.s of highly nondeterministic specifications. It is possible that when the end of

input is encountered, even if for only one of the IPs, the path from the root of the

trcc to the current PG-node is a partial solution (that is, part of a full solution, if one

exists) for validating the trace in progress. In the case where a PGAV-node exists,

it is almost certain that the path from the root to that node is a partial solution.

By taking PG-nodes, placing thern on the top of the tree, and forcing the TAM to

anal~'ze ail of the other possible paths, the TAM rnight end up searching through a

very large tree before getting back to the PG-nodes.

Since scarch trees of nondeterrninistic specifications rnay grow CÀ"ponentially in

size with the length of the trace to be analyzed, this could cause the TAM to spend

an inordinate arnount of tirne searching the rest of the tree, which rnay or rnay not

contain another partial path to the solution, while the path which is rnost likely to be

part of the solution will not be searched until the rest of the search tree is exhausted.

An enhanced version of MDFS incorporates dynarnic node-reordering in the search

tree, and solves this problern. Any time new input arrives, the search tree is reordered

so that PG-nodes are placed at the bottorn of the tree, and thus will be searched

irnrnediately after the new input arrives, putting the rest of the search tree "on

hold". This algorithm "'-as implernented in Tango version 1.52.

Degenerate Cases

Some protocol specifications have multiple IPs of which, during a typical test case

execution, not ail are in use. In sucb cases, the unused IPs will have ernpty queues

during the entire searcb. Therefore, we encounter a situation where each state whicb

is generated during the MDFS becomes a PG-node, and thus must be saved, for

possible future re-generation! ln this tase, MDFS will waste ail of the available
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memory very quickly.

If it is known before the trace analysis. that no inputs will cver arrive at a partie­

ular IP, using the disable.ip option will prevent this degenerate l\lDFS case from

occurring. See Section C.2.4 for more information.

However, if the first interaction passing through a particular IP arrives very late

in the trace analys!s, or if the input queue for that IP is empty for most but not

ail of the time, disabling the IP is not an option. Still, most of the nodes searchcd

will be PG-Nodes in MDFS, and saving the TAM state info for each of them will

require large amounts of memory. Tango is not weil suited for on-line analysis of this

particular combination of trace and specification types, and it is suggestcd that one

uses Tango in static mode under these circumstances.

7.2.3 Queue States

A small feature was addcd "to the queue state savefrestore routines to handlethe case

where the end of ail interactions of a particular queue is rcached. When this happens,

additional information necds to be saved in the TAM state about the "most rccently

dequeued" interaction on that IP, so that when this state is restored, newly rcceivcd

interactions will be accessible to the TAM.

7.2.4 Dynamic Memory Restore

The Dynamie Memory Restore routine which was written for statie-mode Tango as­

sumed that the search would be depth first. This assumption is useful because it

implies that any restore brings the state from a ehild to its parent (or another ascen­

dent), rather than to an arbitrary cousin or descendent in the seareh tree. During this

kind of restore, ail entries in the DRManager which were added sinee the save can be

removed during the restore. This maintains a one-tlHlne correspondenee between the

n entries which are in the DRManager to be restored, and the first n entries of the
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active DRManager. The algorithm for a depth-first search dynamic memory restore

requires only one traversal of each DRManager linked list, so it is performed in linear

time, with respect to n.

When restoring from one state to a non-ascendent node in the search tree, there is

no longer a correspondence between elements in the two DRManagers. Furtherrnore,

it is not permitted to remove entries from the active DRManager when restoring to

an ascendent, if there exist PG-nodes in the search tree which are descendents of

the state to be restored, because they will be needed again in the active DR.J\1anager

when those PG-nodes are restored.

Therefore, non-ascendent restores, and restores to states which are ascendents of

PG-nodes in the tree, require m searches through a data structure with n elements in

it, where n is the number of elements in the active DRManager, and m is the number

of elements in the DRManager to be restored.

In standard DFS, the number of entries in the active DRManager grew with ah

the number of allocations performed while executing the transitions which forrn a

path in the search tree from the root node to the current one being searched. In

MDFS, however, the number of entries in the active DRManager grows with a2, the

number of memory allocations performed during the entire search up to that point,

through any path in the tree. a2 depends on the degree of nondeterminism in the

specification, and cao be exponential with respect to al.

In theory, the faster DFS restore routine cao still be used in MDFS to restore to

a parent node, which is not the ascendent of a PG-node in the search tree, but in

the interest of simplicity, the current version of Tango performs the more general­

purpose dynamic restore algorithm for every restore during an MDFS. Even if Tango

performed regular DFS restores when possible, dynamic memory restores would be,

on average, considerably slower under MDFS than under regular DFS.

Since the DRManager data structures are unsorted linked lists, a restore under
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MDFS takes O(m X n) entry key compares. even if only a sma.ll percclltagc of thesc

entries need to have their memory re-allocated. restored, or dc-altocatcd.

If Tango is used frequently for on-line trace analysis and one is looking for aœas

to improve Tango's performance, this is an area worth investigating further. Im­

plementing a heap-like data structure for the DRManager, or llsing the faster DrS

restore algorithm whenever possible in MDFS, are the suggested enhancements.
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Chapter 8

Practical Uses of Tango

8.1 Test Case Generation

Any Estelle specification which has no external module body definitions cao be put

through Pet and Tango to generate an executable implementation which will behave

identically to a Dingo-generated implementation.

The implementation generation feature of Tango is useful for generating test cases.

Connecting the module which specifies the IUT to other "testing" modules that force

the module to exhibit certain behaviors, compiling it with Pet/Tango, and executing

it under the NIST Site Server, will yield trace files which cao be used as test cases

for an IUT, or as sample input to a Tango-generated trace analyzer.

An important difl'erence between a Tango-generated trace file and one that was

captured from one or more observation points during protocol testing, is that the

points of observation for a Tango-generated trace file are inside each module that is

being executed. This means that relative order information between interactions sent

from the sarne module, but to difl'erent IPs, is availa.ble in the gcnerated tracefile.

Furthermore, if an interaction i, listed in the Tango-generated trace file as input to

the TAM, appears before another interaction 0, listed in the trace file as an output

il
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from that TAM. this means that i was consllmcd by the implementation lwfore 0

\Vas produced. This means that using the 1/0 relative checking option on a Tango­

generated trace file will work fine, l'ven thongh the channels are asynchronons.

8.2 Trace Analysis Performance Results

The current version of Tango has been tested on sorne simple example specifications,

as well as TPO, the "Class 0 Transport Protocol~, a specification of an OSI transport

layer, for networks \Vith very reliable network layers, and the LAPD protocol, also

known as CCITT Recommendation Q.921, for the Link Layer of an ISDN 1. The

machine used for testing was a SUN 4 \Vith 32Mb of memory.

One way of measuring the performance of a Tango-generatcd trace analyzer is

in terms of transitions per second, or the number of edges searchcd in the search

tree per CPU second. This value depends on many factors, such as the amonnt

of memory used by variables and dynamic records, the frequency of hacktracking,

and the number of transition declarations in the TAM's specification. For simple

test-specifications with under 10 transition declarations, TAMs can search up to 250

transitions per second. For a slightly more interesting specification like TPO (19

transition declarations), the TAM cau search bet\Veen 40 and 60 transitions per sec­

ond. However, while analyzing traces of behemoth-like specifications such as LAPD

(over 800 transition declarations), a TAM cau take an entire second to scarch only

10 transitions.

8.2.1 LAPD

Using the LAPD specification developed at CNET [33], and using Tango in impie­

mentation generation mode, we generated 7 valid traces, by scnding various length-ed

l For more information on tbese protocols see (40)
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DI CPUT TE GE RE SA CPUT TE GE RE SA
NR 10

5 4.1 34 21 15 li 2.9 28 19 9 13
10 i.6 64 36 30 32 5.5 53 34 19 28
15 11.0 94 51 45 4i 10.9 i8 49 29 43
25 18.4 154 81 i5 ii 16.3 128 i9 49 i3
50 34.4 284 148 138 144 30.8 23i 146 91 140
75 52.2 414 215 201 211 50.i 346 213 133 20i

100 i1.i 5i9 296 285 292 62.8 483 294 189 288
DI CPUT TE GE RE SA CPUT TE GE RE SA

IF FULL
5 1.6 24 19 5 i O.ï 20 19 1 3

10 3.0 44 34 10 li 1.6 35 34 1 8
15 5.0 &1 49 15 29 2.3 50 49 1 15
25 i.i 104 ï9 25 46 3.5 80 i9 1 22
50 13.3 192 146 46 95 6.8 14i 146 1 50
75 21.0 280 213 6i 135 9.5 214 213 1 69

100 30.2 389 294 95 191 12.8 295 294 1 9ï

i3

Figure 8.1: Execution times of a TAM on LAPD traces of various sizes•
•

Key:

DI
CPUT
TE
RE
SA
GE
NR
10
IF
FULL

# of data interactions sent by the User module to LAPD module
CPU time, in seconds
Transitions executed during sea.rch
Restores, or backtracks performed during search
Number of State Saves during search
Number of Generates during search
Relative Order Checking Disabled
1/0 and 0/1 relative order checking only
IP reiative order checking only
Ali relative order checking options eI!abled
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sequences of data interactions from the User module (layer 3) to the LAPD modull'

(layer 2).

We then generated a trace analyzer based on the same specification, and ran it

four times on cach of these obtaincd traces, using dilferent relative order checking

options each time. The execution results can be found in Figure S.I.

A few comments and observations on this table appear below:

• The number of interactions LAPD sends to the network layer is not always the

number of interactions LAPD receives from the user module. This is bccause

sometimes the user module closes the connection before the network module

has had a chance to request aIl of the data being held for it by the LAPD

module. Coincidentally, the number of restores when performing IP relative

output checking only, is the number of data interactions sent by the LAPD

module. The sum of this and the DI value gives us the total number of data

interactions in the trace file.

• Using no relative checking, or 1/0 relative checking only, the transitions per

second remains roughly the same, around 9. The ratio of backtracks to transi­

tions taken also remains the same, although the search space is rcduced slightly

when 1/0 relative checking is enabled.

As indicated by our results, trace analysis was significantly faster when we en­

abled relative order checking options. This is because many nondeterministic choices

became deterministic ones, thereby reducing the state space of the search.

One problem we encountered when analyzing LAPD traces is that often, it is

desired to analyze onIy the packets transmitted between the LAPD module and the

module which represents the network layer, because the interactions passing between

the user module and the LAPD module are not necessarily observable. The cur­

rent version of Tango cao not analyze such traces, but we address this problem in

Section 9.2.3, on partial trace files.
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The performance of a Tango-generated trace analyzer depends on many factors, such

as the length of the trace data. the degree of nondeterminism in the specification,

and, in the cases of highly nondeterministic specifications, the ~luck of the draw".

Often, the time required to analyze a valid trace 1S proportional to the length of the

trace to be analyzed, but the time required to analyze an invalid trace where the

first n interactions are valid, depends more on the degree of nondeterminism in the

specification, and can be exponential with respect to n.

For example, the TPO module communicates with ty.o other modules, an ~upper

tester" and a "lower tester". The lower module represents the network layer, while the

upper module represents the user layer. When a data interaction from one module is

received by TPO, it is saved iuto a buffer of "infinite" length and, at sorne later time,

sent along to the other module. The specification (see Appendix B) enters astate

known as data after the initial handshaking is complete between the modules above

and below it. At this point, the upper and lower modules can simultaneously send

data to each other. To summarize, from the data state, TPO can do the following:

• T13: If available. read a data interaction from the upper module, and place
into buffer2.

• T14: If nonempty, send an interaction from buffer2 to the lower module.

• T15: Ifavailable, rcad a data interaction from the lower module, and place into
buffer1.

• T16: If nonempty, send an interaction from bufferl to the upper module.

Imagine a trace to be analyzed which contains the initial handshaking, followed

by 20 interactions sent from the lower module and 20 interactions sent from the upper

module. To analyze this trace, the search tree depth would be at least SO, because

cach interaction (there are 40) sent from one end to the other ,'. quîres the TPO to

read/enqueue (one transition) and dequeue/output (one transition).
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During most of the analysis. the TPO module is in the data state. and from t.his

state there will be usually at least two. and somet.imcs as many as fonr of t.1lt' abo\"<'

transitions which are fireable.

A quick ca1culation will show that if there were. on average. only 2.4 t.ransit.ions

fireable from each data state 2. a search trcc of depth 80 would cont.aill 2.6 x \O'~)

transitions. At 150 transitions per second, it could take 4.8 x \020 years t.o allalyz,"

an invalid trace!

This problem arises from the fact that a trace which has a bad or missing int.erac­

tion near the end of it gives rise to an exponential number of ~partial solutions~" ,"ach

one causing the trace a.,aiyzer to search very dccply into the trcc before ,'ncountering

the bad or missÏJ'lg interaction.

For va/id traces, however, it should be apparent that taking a"y sequence of

transitions (T13 through T16) which consume input when available from the IPs, and

output interactions when available from the TPO queues, would eventually consume

all inputs and verify all outputs. In other words, there are an exponential number of

solutions with respect to the length of the trace, and finding one of them rcquircs no

backtracking. Therefore, the search time would be linear with respect to the length

of the trace.

A logical question to ask might be: if the order of these transitions docs not

matter, how can we avoid checking all of the possible permutations'! In fact, it is

. impractica1 to analyze long invalid traces ofspecifications such as TPO without having

an answer to this question. Perhaps what is necessary is sorne form of control and

data f1ow-analysis which would show that taking one permutation of transitions is

equivalent to taking a class of others. This would provide a means to "trim" the

search tree before or during analysis. This is an area suitable for further rcsearch.

The results of executing a TAM on an invalid TPO trace are shown in Figure 8.2.

2This is the average ranout in a Tango searcb tree of depth 13 analyzing T?O
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Depth RCM CPUT TE GE RE SA
13 None 1469.5 88329 3668i 51642 34440
13 10 and 01 1.3 liS 104 69 69
13 IP only 6.i 984 495 489 428
13 Full 0.9 li3 104 69 69
21 Full 32.1 4021 2258 li63 li63
29 Full 2658 122202 655i5 5662i 5662i

Depth = Depth of search tree

RCM = Relative Checking Mode

Figure 8.2: Execution times of a TAM on invalid TPO traces
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The trace contains three data interactions sent by the upper tester, and three sent by

the lower tester, and was obtained by executing Tango in implementation generation

mode. One parameter in the last data interaction of the trace file was edited slightly

to cause a mismatch. The same trace was analyzed four times, each time using

different relative checking option combinations Then, larger traces which were edited

similarly were analyzed using full relative order checking.

If relative order information on the interactions in the trace file is available to

the tester, enabling the Tango relative order checking options will force the TAM to

analyze only the t~ansition sequences which have "progress" transitions appearing in

the same order as the interactions tbey consume or produce in the trace. In effect,

the TAM will eliminate permutations of observable and input-consuming transitions

from the search tree. In the case of TPO, there are no non-progress transitions,

but. when analyzing traces where only the last data interaction is invalid, there are

still sorne nondeterministic possibilities near the leaves of the search tree. T!:.is is

because TPO can output a disconnect indication at any time, even if data remains

in its buffers after the disconnect request is received by the TPO module. In other

words, the transition which receives the disconnect request and outputs a disconnect

indication is t17, and it becomes fireable from the data state, in addition to the
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fireable transitions described above. Enabling the relative chccking options on t.h,,,,,'

invalid traces reduced the average fanout from 2.4 1.0 1.5 on the search trCt'" w,' ''''re

able to measure, but it should be noted that the fanout would be very clos,' 1.0 1 if th,'

invalid data interaction was early enough in the trace 1.0 prevent t17 from \>tOcoming

lireable anywhere in the scarch trcc. Thus, in our el'ample, while the scarch tinw

is still el'ponential with respect to the length of the trace, searches arc significantly

faster, and in the general case, will usually (but not always) take linear timc with

respect to the length of the trace.
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Chapter 9

Conclusions

9.1 Summary

ln this thesis, the concepts of formal protocol specification, validation, and testing

were presented. Issues in automatic generation of implementations based on formal

specifications were discussed. The steps required to transform an implementation

generator into a trace analyzer generator were chronic1ed, and a fully-functional tool

to generate trace analyzers for single-module Estelle specifications Wé'S developed and

tested.

Tango provides a means to analyze traces of any single-module protocol specified

in Estelle, supporting almost all! of Estelle's programming constructs. It is efficient

with memory and CPU time, and handles nondeterminism elegantly. At the same

time, Tango cau be used to generate implementations which behave the same way

as those generated by Dingo [36]. The main shortcoming of Tango is its inability to

analyze time-dependent behavior in a specification or an IUT.

The main difficul~y of analyzing execution traces with respect to a given spec­

ification arises from the nondeterminism of the specification. In this respect, it is

1\Vith the exception of delay statements

i9
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important to note that the input and output quellcs that may be part of th(' IUT

reduce the observability and give rise to additional nondet~rminism in tilt' order of

the observcd interactions. Tango provides options for chccking this order a.~ mllch

as possible. As our practical applications have shown. the nondcterminism in many

practical protocol specifications is Iimitcd enough to make backtracking trace analysis

efficiently feasible. at least for valid traces. For invalid traccs. the analysis is oft('n

much more inefficient due to the inherent parallelism whir.h leads to many different

interleavings of events to he explored.

An additional difficulty arises during on-Iine trace analysis, wherc the analysis is

performcd while the end of the trace has not yet bœn reached. This difficulty is duc

to the fact that new inputs may occur at different IPs during the scarch. and certain

execution paths of the specification may be blockcd bccause of missing interactions at

a given IP, while other execution paths may procœd. This makcs a pure depth-lirst

search strategy impossible. We have defincd a so-callcd multi-thrcadcd depth-lirst

strategy which is applicable in these cases.

9.2 Possible Areas of Future Work

This section describes sorne current problems in trace analysis which were not solvcd

by the latest version of Tango.

9.2.1 Time-Stamped Interactions in Trace Data

Without information about the time passed between interactions in a trace, it is

impossible to determine if certain time-spccific behaviors in the IUT are exhibited as

specificd. The current version of Tango has no way of handling time information in

trace files. A future version of Tango might support this.



• CHAPTER 9. CONCLUSIONS

9.2.2 Invalid Trace Error Diagnostic Searching

81

•

•
•

There arc other trace analysis tools which attempt to provide more useful diagnostics

in the event that an invalid trace is encountered [2]. They can determine if the trace

is invalid duc to a missing or extra transition. A future version of Tango might

implement a similar kind of search.

9.2.3 Analysis of Partial Traces

For the purposes of this thesis, a partial trace has one or both of the following

propert:es:

1. It bcgins with trace data from an IUT which is not necessarily in its initial

state.

2. It does not contain input interactions passing through one or more of the IPs

which are used by the TAM based on the IUT.

Analysis of a partial trace file introduces a plethora of unknowns, making aD \ysis

significantly more diflicult. In the case where the initial module state is un!..l1own,

certain variables will be undefined, and in the event that their values are used to

determine the behaviour of the TAM, the validity of any such behaviour is question­

able.

In the case where inputs passing through one or more of the TAM's IPs are

not supplied by the trace file, the TAM must consider alI possible transitions which

consume any interaction from these IPs. Ifan "unknown" interaction has parameters,

the values of the parameters are unknown. If the values of unknoWn parameters are

used in parameters ofoutput interactions which must be checked, a true "comparison"

of these interactions to the traced interactions is not possible. Furthermore, the

average number of fircable transitions from cach state will be very high, giving rise

to a very high-order exponential state space growth.
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The implementation of a partial trace analyzer gcncrator requirL'$ the addr""sing

of the above problems. An approach to analyzing partial trac"" is discussed in this

section.

Undefined Variables

Since ail Estelle variables are translated into C++ objects. adding an ~undefilled"

attribute to each object is relatively straightforward. The constructors of such objects

will initialize this attribute to true, and ail assignment operators must set it to false

(unless, of course, they are assigned to be equal to other undefined variabiL'$ or vahl"").

For ail transitions which have provided firing rules, each boolean expression in

the provided clause which tests the vaIue of an undefined variable is as.'llmed to be

true. For the purpose of comparing generated interactions to traced interactions,

pararneters of interactions with undefined vaIues are "equal" to ail values to which

they are compared.

Undefined Input Queues

Undefined queues have the following properties:

• When determining if ail inputs have bccn consumed, an undefined queue is

assumed to be empty.

• If a transition has a when clause which is true if an undefined IP has a particular

interaction in its queue, then the when clause is evaIuated to true. Bcfore the

transition cao be fired, a new interaction must be created, of the type defined

in the when clause, with ail its pararneter vaIues set to undefined.

• The actual queue associated with the undefined IP is always empty, and dacs

not need to be saved or restored during backtrackiog.
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Sorne features of Estelle make it impossible to perform a full analysis of partial trace

files. If we restrict ourselves to a subset of the Estelle language, which does not

support control statements, our problem becomes tenable.

Estelle's control statements are while, for, repeat, case and if/then/else.

Each of these stateml'nts requires the comparison of a variable to a value, and the

execution of different statements depending on the comparison result. If the variable

to be compared is undefined, this can mean that multiple possible paths of execution

exist.

Where loops are involv~d, these paths may be infinite in number. In theory, a

proper trace analyzer must attempt ail possible execution paths to search the entire

state space, but because the state space is infinite, supporting loops is impractical.

Applying a straightforward transformation of the specification into a "norm?l

forrn" which eliminates case and if/then/else statements by adding states and transi­

tions to the specification, will simplify the problem of partial trace file analysis, and

allow Tango to analyze partial traces of specificatir's which do use these constructs.

Fortunately, most Estelle specifications makr' vr-ry infrequent use of loops and

conditionals, so in theory, it should be possible to perform partial trace analysis on

most Estelle specifications without requiring too much in the way of modification.
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Listings

A.l Estelle Specification of TriState

Feeding..Kodule ------------}

timescale second.s;

body Feeding..body for FeedingJIodule;
var

num..p&c:lI:ets. i : integer;
p : data..type;

module Feeding..Kodule systemprocess;
ip

toK&in : interface (sonder) individual queue;

type
dat"-type =record

H : =&y[1. .10J of integer;
I integer;
j : boolean;
K : char;

end;

channel interface (receiver. sender);
by sonder:

data(parameter:data-type);
by receiver:

data..response;
closo_connection;

1: Specific&tion TriState;
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17: {----­
18:
19:
20:
21:
22: ond;
23:
24:
25:
26:
27:
28:

•
•

•
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trom SENDlNG to IIAlTING
{The below provided clause eliminates non-cleterminismJ­
provided num-packets < 11
var

i : integer:
name send-packet:

begin
tor i := 1 to 10 do p.h[iJ := num-packets + i*2;
p.l := (num-packets mod 2 * 2 - 1) * num-packets;
p.j := (num-packets mod 2) = 0;
p.k := suce (p.k);
output toKain.DATA(p);

end;

body Kain..body tor llain..type;

state SENDING. vaiting. DONE:

module Kain..type systemprocess;
ip

troD1Feeder : intertace(receiver) individual quene;

Kain..type modul_·-------}

initialize
to SENDlNG
name toSending:

begin
num_packets := 0;

end;

end;

trom IIAlTING to SENDING
when toKain.data..response
name tinished-w&iting:

begin
num-packets :=num-packets + 1;

end;
end; { teeding..body }

trans
trom SENDlNG to DDRE

provided num-packets > 10
Dame 'toDone:

begin
p.i := 99;
p.k := 'a';
output toKain.DATA(p);

end;

29:
30:
31:
32:
33:
34:
3i:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70: {:------­
71:
72:
73:
74:
75:
76:
77:

•

•

•
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•

•
•

78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99,

100:
101:
102:
103:
104:
105:
106:
107,
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:

1:ype
rec't = record

isho't: boolean;
isfinished, iscold boolean;
end;

var
v rect.
D da1:a..1:ype;

state SOLID. LIQUID. GAS. FINISllEO;
stateset NONLIQUID = [SOLID. GAS];

initialize
to LIQUID
var

i : integer;
name INIT_Trans:
begin {initialize variables }

v.ishot := TRUE;
v.iscold ,= TRUE;
v.is:tinished := FALSE;

end;

'trans

:trom NONLIQUID to LIQUm
delay(3)
name toLiquid:

begin
v.ishot := FALSE;
v.iscold:= FALSE;
output :tromFeeder.data..response;

encl;

:trom LIQum to GAS
wheu :tromFeeder.data
provide~ parameter.I > 0
name toGas:

begin
v.islÏot := TRUE;

end;

:trom LIQum to SOLm
when :tromFeeder.data
provided parameter.I <= 0
name toSolid:

begin
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•

127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:

v.iscold := TRUE;
end:

to FINISHED
llhen fromFeeder .data
provided parameter.I =99
name toFinished:

hegin
v. istinished := TRUE;

output fromFeeder.close_conneceion;
end;

end;

{---------------------- SPECIFICATION BODY -----------------------}
modvar

{ module-variable-declaration-part of the specification }
Main: Main..type;
Food : Feedins-Module;

initialize
hegin { module initialization }

init Main llith Main-body:
init Food lli1:h Feedins-body;
connect Main.fromFeeder to Food.toMain

end; {of specification body}

end. {of specification TriState}

A.2 Some Dingo-Generated Routines from TriS­
tate

•
•

1: void _INIT_Trans( __stac:kElem. __bRef:_INIT_Trans.
2: __Mlnstance* __MI. __GRKanager. __GRK) {
3: Il define and push local vars; impOr1: globals
4: -frame_INIT_Trans _..trame:
5: _Integer 1;
6: __frame.I = ti;
7: __GRK->enter( "_frame. _bRef_INIT_Trans);
8: _Reet" V = .((_frame_Main_body.) __GRK->getFrame(l»->V;
9: __MI->logString( "»> executing transition _INIT_Trans");

10: Il from Estelle source;
11: {
12: V.Ishot =__TRUE;
13: V.Iscold =__TRUE;
14: V.lsfinished =__FALSE;
15:
lS: }
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}

Il pop context;
__GRK->leaveO;

int __HI_Kain..body: :_selAndExec( int __dt) {
Il selects and executes a transi if none is selected returns 0;
Il also sets mayExecuteNext to indicate vhen this module could
Il execute a transition vithout tunher inputs:
int __ok;
__SIPType* __sip = 0;

__Timer *__tim=O, *__ctim=O;
__Interact* __inter, *__cinter;
__PTB __transBlock =0;
int _t05tate;
void. _framel;
void- __frame2;
J)ata _vcs_Da:ta.;
__frame_Data __vcf_Data;
__vcf-Pata.Parameter =t __vcs_Data.Parameter;

#ifdet DPTllllZE
..-mayExecuteNext =-__IIAXNDLDDP;

#else
..-mayExecuteNext = 0;

#endif
{
_ok = 1;

_ctim =t_timers._ToLiquid;
_ok = __ctim->fireableO tt (! __ctim->optionalO Il

_vantToConsiderOpt("_ToLiquid"»;
..-mayExecuteNext = _ctim->isSetO ?

maxCJIlO,yExecuteNext, __ctim->beforeFireable(»:..-mayExecuteNext;

void _To50lid( __stackElem> __bRet_ToSolid,__Klnst3nce. __KI,
__GRKanager> __GRK) {

Il detine and push local vars; import globals
__frame_ToSolid __frame;
__GRK->enter( t __trame, __bRet_ToSolid);

_Rectt V = >«__frame_Hain_body» __GRK->getFrame(2) )->V:
#ifdd LOGT

_MI->logString( "»> executing transition _ToSolid");
#endif
Il trom Estelle source;

{
V.Iscold =__TRUE;

17: Il pop context;
16: __GRK->leave();
19: }
20:
21:
22:
23:
24:
25:
26:
27:
26:
29:
30:
31:
32:
33:
34:
35:
36:
37: }
36:
39:
40:
41:
42:
43:
44:
45:
46:
47:
46:
49:
60:
61:
62:
63:
64:
66:
66:
67:
66:
69:
60:
61:
62:
63:
64:
66:•

•

•
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•

•
•

66:
61:
68:
69:
10:
11:
12:
13:
14:
15:
16:
11:
18:
19:
80:
81:
82:
83:
84:
85:
86:
81:
88:
89:
90:
91:
92:
93:
94:
95:
96:
91:
98:
99:

100:
101:
102:
103:
104:
105:
106:
101:
108:
109:
110:
111:
112:
113:
114:

it '-_ok) {
__tramel =__trame2 =0;
__in'ter ': 0:
__tim = __ctim;
__toState =_LIQUID;
__transBlock =~_ToLiquid;

it '-_"antToFire("_ToLiquid"» goto __EXSC;
}

}
{

__ok =( (__currentState==_LIQUID»;
it (__ok ~(__cinter=FromFeeder.tirstIs(62») {

__frame_Data __pwcFrame:
Jlata....type~ Parameter=( (Jlata.) __cinter)->Parameter:
__pwcFrame. Parameter =1: Parameter;
__GRH->enter( ~__p"cFrame. __GRH->getBackRet (-1» :

__ok = «Par~eter.I > 0»:
it (_ok) {

__tim = 0;
_toState =_GAS:
__inter = __cinter;
__vcs_Data = .( _Data.) _cinter;
__frame1 =~__vc:r_Data;
_trame2 =0;
__sip =~omFeeder;

__transBlock =~_ToGas:

it (_"antToFire("_ToGas"» {
_GRH->leaveO:
goto __EXSC:

}
}
__GRH->leaveO;

}
}
{

__ok = ( (_currentState==_LIQUID»;
if (_ok ~(_cinter=FromFeeder.tirstIs(62»){

__trame_Data __p"cFrame:
_Data....type~ Parameter=('-Data.) __cinter)->Parameter:
__p"cFrame.Parameter =1: Parameter:
__GRH->enter( "-p"cFrame. _GRH->getBackRet (-1» ;
_ok = «Parameter.I <= 0));

if (_ok) {
_'tim = 0;
_toState = _SOLIn;
__inter = __cinter;
__Ilcs..Data = .( Jlata.) _cinter;
__trame1 = "_Ilc:tJlata;
-Jrame2 =0;
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115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
"160:
161:
162:
163:

__sip =~FromFeeder;

__transBloek = t_ToSolidj
if C_"antToFire("_ToSolid"» {

__GRIl->leave() ;
goto __EXEC:

}

}

__GRIl->leaveO;
}

}
{

__ok =( (__currentState-_LIQUID»;
if (__ok ~(__cinter=FromFeeder.firstIs(62») {

__trame_Data __pvc:Frame;
_Data...type~ Parameter=( CData.) __cinter)->Parameter;
__pvcFrame.Parameter =t Parameter:
__GRIl->enter( ~__p"cFrame. __GRIl->getBackRef(-l»;

__ok = «Parameter.I = 99»;
if C_ok) {

_tim = 0;
_toState = _F::NISHED;
__inter = __cinter;
__ves_Data = .( _Data-) __cinter;
__frame1 = ~_"ct_Data;

__trame2 = 0;

_sip =~omFeeder;

__transBlock = ~_ToFinished;

if C_vantToFire("_ToFinished"» {
__GRIl->leaveO;
goto __EXEC;

}
}
__GRIl->leaveO;

}
}
_EXEC:

if (_transBlock) {
vaitForResumeItSingleStep( this);
_:uayExecuteNext =0;
if ( _trame1) __GRIl->enter(_trame1._GRIl->getBackRef (-1» ;
it ( _trame2) _GRIl->enter(_trame2._GRIl->getBackRef(-1»;
if C_inter) _sip->dequeueO;
_transBlock( _GRIl->getBackRet(-1).this._GRIl);
_svitchState( _toState);
if (_inter) delete(_inter) ;
if ( _tramel) _GRIl->leaveO;
if ( _trame2) _GRIl->leaveO;
if (_tim) _tim->resetO;
__localExecution();
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164,
165:
166:
167:
168: }

A.3

__childrenUpdate( __dt);
return 1;

}

else return 0;

Execution of TriState Log and Trace Files

•

•
•

1: Trace of _Feedins-body

3: » _Feedin!-bodyCl18857-0+20SS-cbamplain. IRa. UIIontreal. CA
4: ToMain:_Data
5: { {{ 2 4 6 8 10 12 14 16 18 20 } 0 1 1}}
6: » J'eedins-bodyClt8857-0+20SS-cbamplain. IRa. UIIontreal.CA
7: ToMain:_Data
8: { {{ 3 5 7 9 11 13 15 17 19 21 } 1 0 2}}
9: » _Feedin!-bodyCll8857-0+20SS-cbamplain. IRa. UIIontreal. CA

10: ToMain:_Data
11: { {{ 4 6 8 10 12 14 16 18 20 22 } -2 1 3}}
12: » J'eedins-bodyCl18857-o+20SS-cbamplain. IRa. UIIontreal. CA
13: ToMain: _Data
14: { {{ 5 7 9 11 13 15 17 19 21 23 } 3 0 4}}
15: » _Feedins-bodyCll8857-O+20SS-cbamplain.IRO.UIIontreal.CA
16: ToMain:..Data
17: { {{ 6 8 10 12 14 16 18 20 22 24 } -4 1 5}}
18: » _Feedins-bodyCl18857-o+20SS-cbamplain.lRa.UIIontreal.CA
19: ToMain: ..Data
20: { {{ 7 9 11 13 15 17 19 21 23 25 } 5 0 6}}
21: » J'eedin!-bodyCll8857-O+2055-cbamplain.lRa.UIIontreal.CA
22: ToMain:_Data
23: {- { { 8 10 12 14 16 18 20 22 24 26 } -6 1 7H
24: » _Feedins-bodyCl18857-0+20SS- cbamplain. IRa. UIIontreal. CA
25: ToMain: _Data
26: { {{ 9 11 13 15 17 19 21 23 25 27 } 7 0 8}}
27: » _Feedins-bodyCll8867-0+20SS- cbamplain. IRa. UIIontreal. CA
28: ToMain:_Data
29: { {{ 10 12 14 16 18 20 22 24 26 28 } -8 1 9}}
30: » _Feedins-bodyel18857-o+20SS- cbamplain. IRa. UIIontreal. CA
31: ToMain: _Data
32: { {{ 11 13 15 17 19 21 23 25 27 29 } 9 0 10}}
33: » _Feedins-bodyell8857-0+20SS- cbamplain. IRa.UIIontreal. CA
34: ToMain:..Data
36: { {{ 12 14 16 18 20 22 24 26 28 30 } -10 1 11}}
36: » _Feedins-bodyCll8857-o...20SS-cbamplain.IRO.UIIontreal.CA
37: ToKain:..Data
38: { {{ 12 14 16 18 20 22 24 26 28 30 } 99 1 97}}
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39:
40: Trace ot _Kain_body
41:
42: » _Kain_bodyC18856-0+2052-champlain.lRO.UKontreal.CA
43: FromFeeder:_Data-response
44:
45: » _Kain_bodyCl8856-0+2052-champlain.lRO.UKontreal.CA
46: FromFeeder: _Data-response
47:
48: » _Kain_bodyC18856-0+2052-champlain.lRO.UKontreal.CA
49: FromFeeder:_Da~a.response

50:
51: » _Kain_bodyCl8856-0+2052-champlain.IRO.UKontreal.CA
52: FromFeeder:_Data-response
53:
54: » _Kain_bodyC18856-0+2052-cbamplain.!RO.UKontreal.CA
55: FromFeeder:_Data-response
56:
57: » _Kain_bodyC18856-0+2052-cbamplain.lRO.UKontreal.CA
58: FromFeeder:_Data-response
59:
60: » _Kain.,.bodyC188S6-0+2052-champlain. IRO. UKontreal. CA
61: FromFeeder:_Data-response• 62:
63: » _Kain.,.bodyC18856-0+2052-champlain.IRO.UKontreal.CA
64: FromFeeder:_Data-response
65:
66: » _Kain..bodyCl8866-0+2062-cbamplain.IRO.UKolltreal.CA
67: FromFeeder:Jlata-respon:le
68:
69: » _1Iain.,.bodyCl8866-0+2062-cbamplain.IRO.UKontreal.CA
70: FromFeeder: _Data-response
71:
72: » _1Iain..bodyCl8866-0+2062-cbamplain.IRO.U!Iontreal.CA
73: FromFeeder: _Data-response
74:
76: » _1Iain..bodyC18866-0+2062-cbamplain.IRO.UKontreal.CA
76: FromFeeder:_Cloae_connection
n:
78: Log tile tor _Feedins-body
79:
80: »> executing transition _ToSending
81: »> exeeuting transition _Sena..paeltet
82: »> exeeuting transition ..Finished...waiting• 83: »> exeeuting transition _SencLpaeltet
84: »> exeeuting transition _Finished...waiting
85: >>> executing transition _SencLpaeltet
86: >>> executing transition _Finished...waiting

• 87: >>> executing transition _SencLpaeltet



• .-\PPENDIX.-\. LISTINGS

88: »> executing transition _Finished_v~iting

89: »> exeeuting transition _Send_packet
90: »> executing transition _Finished_vaiting
91: »> exeeuting transition _Send_paeket
92: »> executing transition _Finished_vaiting
93: »> executing transition _Send_packet
94: »> executing transition _Finished_vaiting
95: »> exeeuting transition _Send_paeket
96: »> executing transition _Finished_vaiting
97: »> exeeuting transition _Send_paeket
98: »> exeeuting transition _Finithed_vaiting
99: »> exeeuting transition _Send_paeket

100: »> exeeuting transition _Finished_vaiting
101: »> exeeuting transition _Send_paeket
102: »> exeeuting t~ition _Finished-vaiting
103: »> exeeuting transition _ToDone
104:
105: Log file for _Kain_body
106:
107: »> exeeuting transition _INIT_Trans
108: »> exeeuting transition _ToSolid
109: »> exeeuting transition _ToLiquid
110: >>> exeeuting transition _ToGas
111: »> exeeuting transition _ToLiquid
112: >>> exeeuting transition _ToSolid
113: »> exeeuting transition _ToLiquid
114: »> exeeuting transition _ToGas
115: »> exeeuting transition _ToLiquid
116: »> exeeuting transition _ToSolid
117: »> exeeuting transition _ToLiquid
118: »> exeeuting transition _ToGas
119: »> executing transition _ToLiquid
120: »> exeeuting transition _ToSolid
121: »> exeeuting transition _ToLiquid
122: »> exeeuting transition _ToGas
123: »> exeeuting transition _ToLiquid
124: >>> exeeuting transition _ToSolid
125: >>> executing transition _ToLiquid
126: »> exeeuting transition _ToGas
127: >>> executing transition _ToLiquid
128: »> executing transition _ToSolid
129: >>> executing transition _ToLiquid
130: »> executing transition _ToFinished

•

•
•

A.4 An Example ofTANGO's generateFireableO
Method
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•

•
•

1: POList __KI_Kain_body:: __generateFireable() {
2: Il Finds all tireable trans, returns them in a POList
3: Il also sets mayExecuteNen to indicate when this module could
4: Il execute a transition vithout turther inputs;
5: int __ok;
6: __trans_into .'Ci;
7: POList retval =0;
8: __TiJaer *__tim=O, *__c'tim=O;
9: __Interact* __inter, *__cinter;

10: _Oa.:ta. __wes_Da.ta;
11: __frame_Data __Rct_Data;
12: __wctJ)a.ta..Parameter = &: _vcs_Data..Parameter;
13: #itdet OPTIKIZE
14: __mayExecu'teNen = - __IIAXNOLOOP;
15: #else
16: __mayExecuteNert = 0;
17: #endit
18: ti =0;
19: {
20: _ok = 1;
21: _c'tim = t_'timers._ToLiquid;
22: __ok = __c'tim->tireable() tt ('_c'tim->optionalO Il
23: _wan'tToCo:!siclarOpt("_ToLiquid"»;
24: -",ayExecuteNert = _ctim->isSet()?
25: maxL_mayExecu'teNert ._etim->betoreFireable(» : _mayExecu'teNert;
26: it (_ok) {
27: 'ti =nev _trans_into;
28: 'ti->_trame1 ='ti->__trame2 =0;
29: 'ti->__inter =0;
30: 'ti->_tim = _c'tim;
31: 'ti->_toS'tate = _LIQtJID;
32: 'ti->_'transBlock = t_ToLiquid;
33: ti->transHame = "_ToLiquid";
34: }
35: }
36: Il Place 'trans into OIl'tO move array:
37: it ('Ci) {
38: it (re'tval=O) re'tval =nev OLis't;
39: re'tval->append('ti);
40: }
41: 'Ci = 0;
42: {
43: _ok =( (__curren'tS'ta'te ..LIQtJID»;
44: it (_ok tt(__cin'ter=FromFeeder.tirs'tIs(64») {
45: _trame-Da'ta __pveFrame;
46: _Oa'ta...'typet Parame'ter=(LOa'ta.) _cin'ter)->Parame'ter;
47: _pveFrame.Parame'ter =t Parame'ter;
48: _GRll->eIl'ter( t-pveFrame. _GRII->ge'tBacltllet(-1» ;
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•
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49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
54:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
86:
86:
87:
88:
89:
90:
91:
92:
93:
94:
96:
96:
97:

__ok = «Parameter.I > 0»;
it C_ok) {

ti = nev __trans_into;
ti->__tim = 0;
ti->__'toState = _GAS;
ti->__inter = __cinter;
_ves_Data = .( _Dataa) __cinter;
ti->__tramel = __wct_Data.clone_trame();
ti->__trame2 =0;
ti->__sip = aFromFeeder:
ti->_transBlock =&_ToGas;
ti->transName = "_ToGas";

}

_GRII->leaveO;
}

}
Il Place trans Wo onto move array:

it (ti) {
it (retval=O) retval = new DList;
retval->append(ti);
}

ti = 0;
{
_ok = ( (_currentState=_LIQUID»;
it (_ok ü(_cinter=FromFeeder.tirstIs(54») {

_trame.J)ata -?"cFrame;
..Data..type& Parameter=( CData-) __cinter)->Parameter;
_pwcFrame. Parameter =& Parameter;
_GRII->enter( "_pvcFrame. _GRII->getBackRet(-l»;

_o)-. = «Parameter.I <= 0»;
it (_ok) {

ti = D8V _trans_in1'o;
ti->_tim = 0:
ti->_toState =_SOLIO;
ti->_inter = _cinter;
_vcs_Data = -( ..Data-) _cinter;
ti->__framel =_vct.J)ata.clone_trame();
ti->_frame2 = 0;
ti->_sip =l:FromFeeder;
ti->_transBl.ock ="_ToSolid;
ti->transHame = ·'_ToSolid";

}

_GRII->leaveO;
}

}

Il Place trans Wo onto move array:
it (ti) {

it (retval=O) retval = neV DList;
retval->append(ti);
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}

'Ci = 0:

}

/1 Place trll.1S Wo onto .,ove array:
if (ti) {

if (retval==O) retval =neR DList;
rotval->append(ti);
}

return (retval);

{
__ok =( (__currentState==_LIQUID»;
if (__ok ~(__cinter=FromFeeder.firstIs(64») {

__trame_Data __pvcFrame;
_Data..type~ Parameter=( CData.) __cinter)->Parameter;
__pwcFrame .. Parameter =a: Parameter;
__GRK->enter( ~__pRcFrame. __GRK->getBackRef(-l»;

__ok = «Parameter. l == 99»;
if ( __ok) {

ti = Dew __trans_into;
ti->__tim = Oi
ti->__toState = _FINISHED;
ti->__inter = __cinter;
__Rcs_Data = .( ..Data.) __cinter;
ti->__framel = __Rcf_Data.clone_frame();
ti->__trame2 = 0;
ti->_sip = ~omFeeder;

ti->__transBlock = ~_ToFinished;

ti->transName = "_ToFinished";
}
__GRK->leave() ;

}

98:
99:

100:
101:
102:
103:
104:
105:
106:
101:
108:
109:
110:
111:
112:
113:
114:
115:
116:
111:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129: }

•

A.5 TriState TAM Log, Analyzing Trace from
Appendix A.3

TANGO version 1.55 Trace analysis log.
Runtime Options:

1 debU8-trace level (debngging Wo during: trace)
off io_relative (In/Out Relative checking)
off ip_relative (Interaction Point Relative checking)
off debU8-10ad (Debag Wo during trace file load)

•
•

0: Log file for _Kain..bodyCl23517-0+2611-champlain.IRO.UIIontreal.CA
1: »> Executing Transition _INIT_Trans
2: No tangO.cfg fonnd- using default settings.
3:
4:
5:
6:
7:
8:
9:
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IP Queue Stats:
FromFeeder: 12 outputs 100 verify

Executed star1:TAExec

_ToSolid
from FromFeeder

_ToSolid
trom FromFeeder

search_init_state (initial state search mode)
initial_suspend (vait tor user to open vindov and resume)
all_ips (wa1t tor inputs to arrive at all IPs betore commence search)
continuous_read (keep vaiting tor input)

oU
off
off
oU

=entState = SOUD
depth:5 check..again: 0 Transihons: 1

_ToLiquid
: :: Executing Tranaihon: _ToLiquid
<- Output : ..Data..response to FromFeeder

currentState =LIQUID
depth:4 check..again: 0 Transitions: 1

_ToSolid
: :: Executing Transition:
-> Input : _Data [3]

=entState = GAS
depth:3 check..again: 0 Transihons: 1

_ToLiquid
::: Executing Transition: _ToLiquid
<- Output : _Dat....response to FromFeeder

currentState = SOLID
depth: 1 check..again: 0 Transihons: 1

_ToLiquid
::: Executing Transition: _ToLiquid
<- Output : _Dat....response 100 FromFeeder

currentState =LIQUID
depth:O check_again: 0 Transitions: 1

_ToSolid
::: Executing Transition:
--> Input : _Da1:a [1]

10:
11:
12:
13:
14:
15: Trace files to read:
16: Static : traee
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34: currentS~ate= LIQUID
35: dep1:h:2 check..again: 0 Transitions: 1
36: _ToGas
37: ::: Executing Tranaihon: _ToGas
38: -> Input : _Data [2] from FromFeeder
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
66:
67:
68: =entS'tate = LIQUID•

•

•
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_ToGas
tram FromFeeder

_ToGas
:trom FromFeeder

_ToSolid
:trom FromFeeder

_ToSolid
:trom FromFeeder

depth:6 cheek_again: 0 Transi~ions: 1
_ToGas

... Executing Transition:
--> Input : _Data [4]

currentState = uQum
depth:12 check-aga.in: 0 Transitions: 1

_ToSolid
••• Executing Transition:
--> Input : _Data [7]

currentState = UQUID
depth:l0 check-again: 0 Transitions: 1

_ToGas
••• Executing Transition:
-> Input : _Data [6]

currentState = GAS
depth:ll check-aga.in: 0 Transitions: 1

_ToLiquid
••• Executing Transition: _ToLiquid
<- OUtput : _Data..response to FromFeeder

currentState = SOLID
depth:9 ch~ck-again: 0 Transitions: 1

_ToLiquid
••• Executing Transition: _ToLiquid
<- OUtput : _Data..response to FromFeeder

currentState = LIQUID
depth:8 check_again: 0 Transitions: 1

_ToSolid
. .. Executing Transition:
--> Input : _Data [6]

currentState = GAS
depth:7 check_again: 0 Transitions: 1

_ToLiquid
..• E::ecuting Transition: _ToLiquid
<-- Output : _Data..response to FromFeeder

59:
60:
61:
62:
63:
64:
66:
66:
67:
68:
69:
70:
71:
72:
73:
74:
76:
76:
TI:
78:
79:
80:
81:
82:
83:
84:
86:
86:
87:
88:
89:
90:
91:
92:
93:
94:
96:
96:
97:
98:
99:

100: c:urrentState = SOLm
101: depth:13 check-again: 0 Transitions: 1
102: _ToLiquid
103: ••• Executing Transition: _ToLiquid
104: <- OUtput : _D:>ta..response to FromFeeder
106:
106: currentState = UQom
107: depth:14 check-again: 0 Transitions: 1•

•

•
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_ToSolid
from FromFeeder

_ToGas
from FromFeeder

_ToSolid
from FromFeeder

_TOG01S

tram FromFeeder

_ToG:>:
... Executing T=ansition:
--> Input : _Data [8]

currentState = SOLm
depth:21 checlt..again: 0 Transitions: 1

SoLiquid
••• Executing Transition: _ToLiquid
<- Output : _Data..respollSe 100 FromFeeder

currentState =LIQUm
depth: 20 check..again: 0 Transitions: 1

_ToSolid
::: Executing Transition:
-> Input : Jlata [11]

currentState = GAS
depth:19 check..again: 0 Transitions: 1

_ToLiquid
••• Executing Transition: _ToLiquid
<- Output : Jlata..response 100 FromFeeder

currentState = LIQUID
depth:18 check..again: 0 Transitions: 1

_ToGas
••• Execl1ting Transition:
-> Input : _Data [10]

currentState = SOLID
depth: 17 check_again: 0 Transitions: 1

_ToLiquid
•.• Executing Transition: _ToLiquid
<- Output : _Data..response 100 FromFeeder

currentState = LIQUID
depth: 16 check_again: 0 Transitions: 1

_ToSolid
... Executing Transition:
--> Input : _Data [9]

currentState = GAS
depth:15 check_again: 0 Transitions: 1

_ToLiquid
... Executing Transition: _ToLiquid
<-- Output : _Data..response 100 FromFeeder

108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
149:
149:
150:
151:
152:
153:
154: =entState = UQum
155: depth:22 checlt..~: 0 TransitiollS: 2
156: _ToGaa•

•

•
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Normal termination ot program•••

CPU time (seconds): .116662
Trans executed: 25. Generates: 24. Depth: 22. Max Depth:
Restores: 1. Saves: 1. Transitions per second: 214.294

curren~S~a~e=GAS
dep~h:23 check_again: 0 Transi~ions: 1

_ToLiquid
::: Executing Transition: _ToLiquid
<-- Output : _Data_response to FromFeeder
!!! Misma~ch: _Close_connec~ion[24)

Back~racking•••

curren~S~a~e= LIQUID
dep~h:22 check_again: 0 Transi~ions: 2

_ToGas [Already triedJ
_ToFinished

: :: Executing Transition: _ToFinished
--> Input : _Data [12) trom FromFeeder
<-- Output : _Close_connection to FromFeeder

AU outputs vere verihed at this state

23.

_ToGas
tram FromFeeder

_ToFinished
::: Executing Transition:
--> Inpu~ : _Da~a [12)

157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:

•

•
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Appendix B

Transport Protocol 0, Specified in

Estelle

Specitica~ionTPO:
detaul~ individu31 queue:
timescale seconds;

{ Primi~ive tunc~ions removed by SAE, replaced by puc;>], procedures}

{ This is ~he ~op level module body (specitica~ion)

The specitica~ion has ~he a~~ribu~e sys~emprocess

and 311 i~s children ( ~pO ) are processes.
The ~ime sc31e tor delays is in seconds. }

type {... is used to specity that an implementer
mus~ detine these types tor his environmen~.}

reason-type = (none, uS8r_init,
{trom X.214, Transpo~ Service disconnec~ reasons ot a tdind:}
remote_TS_user_invoked, 10c31_TS_provider_invoked,
{trom X.214, Transpo~ Service user (add. Wo vhen
disc_reason=local-TS_provider_invoked) reasons ot a ~dind:}

lac:k..resource, q~s_belov_min, misbehaviour_TS_provider,
c31led..TS_user_unknovn, c31led..TS_user_UDavailable, unknovn..reason,
{trom X.224, Transpo~ Protocol reasons ot a DR:}
not_specitied, congestiolLTSAP,
no_session..attached, address_UDknovn,
{trom X. 213. Ne~vork Service reuons:}
dise_Dormal_condition, clisc_abnormal_coDdition,
conn..rejeC1:-P8rmanent_cond, conu-rejeC1:_transient_cond,
conn..reject_QOS_na..transien~,conn..rejeC1:_QOS_na..permanent.

101
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ret_type
tpdu_size_type
option_type
addr_type
data_type

= 0 ..65535; { 0 ..2••16-1 }
= (no_size, s128, s256);
= (normal, other_option):
=packed array [1 .. 25] of char;
=packed array [1 .. 128] ot char;

•

•
•

= (lov, medium, high); {Quality ot Transport Service: must be a
list ot parameters as described in X.214,
but to simplify ve detine as this}

{ Channel detinitions tor communication betveen the prvcesses }

channel U_access_point(User,Provider);

by Provider:
tdindCt_disc_reason: reason-type; ts_user_reason: reaso:l:l-type);
tcind(to_t_addr: addr_type; frollLt_addr: addr_type; 'lu_pro: qts_type);
tcconCqts_res: qts_type);
tdatiCtsdu_frngment: data..type);

by User:
tcreqCto_t_addr: addr_type; frollLt_addr: addr_type; qts_req: qts_type);
tcresCqts_req: qts_type);
tdreq(ts_user_reason: reason..type);
tdatrCtsdu..frngment: data..type);

channel N_access_pointCUser,Provider);

by User, Provider:
crCsource_ref: ref_type; option: option..type; calling..addr: addr_type;

called..addr: addr_type; max..tpdu..size: tpdu..size_type);
dtCuser_data: data..type);
ccCdest_ref: ref_type; source_ref: reCtype; calling..addr: addr_type;

called..addr: addr_type; max..tpdu..size: tpdu..size_type);
drCdest_ref: ref_type; disconnect_reason: reason_type;

add..clear_reason: reason..type);
{ All add..reason in a Da is user defined according 100 X.224 }

by User:
ndreqCdisc_reason: reason..type);

by Provider:
ndind;
nrind;

{ lIodule header definitiona }

module TESTEILtype syatemprocess; {This is the feeding module}
ip

U: U_access-POintCUser) individual queue;
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L: N_access_poin~(Provider)

end;
body TESTER_body for TESTER_~ype; ex~ern:>l;

individual queue;

modulo TPO_~ype sys~emprocess;

ip {in~erac~ion poin~ lis~ }
U: U_access_poin~(Provider)

L: N_access_poin~(User)

end; { of module header definition }

individual queue;
individual queue:

•

•
•

{ The module has tllO interaction points named U and L;
the roles of the module are named:

Provider llith respect to U, and
User llith respect to L. }

{ The body for TPO is defined beloll: }

type

{ nodeptr, nodetype, qtype aU added by SAE in July 94 }

nodeptr =-nodetype;
nodetype = record

data data..type;
next : nodeptr;
end;

qtype = record
fi, fo : nodeptr;
count : integer;
end;

var
in..butter, out_butter: butfer_type;
local_roter, remote_reter: ref_type;
tpdu..size: tpdu..size_type;
qts_estimate: qts_type;
calling..t_addr, called..t_addr: addr_type;
tsdu..fragment, user_data: data..type;
'ts_disc_reason, ts_user_reason,
diseormee't-reason, adcLclear-reason: reasoD_type:

state idle, llfcc, llftr, data; { state definition part }
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tunc"ion 'l"s_OK('l""_r.>'l: 'l1OS_"ype): boolean;
begin
{ accep"ing 'l"s 1011 and medium bu" no" high }

it 'l"s_re'l <= medium "hen 'l"s_OK := "rue else 'l"s_OK := talse
end;

tunc"ion op"ion_OK(~p"ion: op"ion_"ype): boolean;
begin

it ophon = normal "hen op"ion_OK := "rue
clse op"ion_OK := talse

end;

104
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procedure assign_local_rd(var local_ret: reLtype );
begin

local_ret := 1; { 0 is torbidden because it means there are no local_ret assigned }
end:

procedure assign_tpdu..size(var tpdu_size: tpdu..size_type);
begin

tpdu..size := s128;
end;

procedure assisn-cLreason(var 'ts_dise_reasan: reason..'type; nev_rouan: reason..'type);
begin

'ts_dise_reason := nov_reuan;
end;

procedure assigll-u-reason(var ts_us8r_reason: reasoD..-type: nev_reason: reason-type);
begin

ts_user_reuan := nev_reuon;
end;

procedure assign..reason(var discODn8ct_reason: reason..type; new_reason: reason..type);
begin

cliacozmec:'t_reason := nev_roason;
end;

procedure assign..ac_reason(var adcLclear_reason: reason..type; new..reason: reason..type);
begin

adcLclear_reasoD := new_roason;
end;

procedure assign..qts(var 'l.ts_estimate: qts_type);
begin

qts_estimate := medium;
end;

{procedures remove. acId. init_buffer. and inaer1: re-writtell in Estelle
-- by SAE; originally they vere c_ primitive tunctiona by Daniel CUmet}
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procedure remove( var q: butfer_~ype; var fragmen~: d"~a...~ype);

var
n : nodep~r;

begin
IL := q.to;
if q.fo <> NIL ~hen

begin
:fragment := n-.data;
q.count := q.count - 1.
q.fo := q.fo-.next;
if q.fo = NIL ~hen q.fi := NIL;
dispose(n);

end;
end;

procedure acId (var q q~ype; var p nodepn);
begin

p-.next := NIL;
if (q.fi <> NIL) ~hen q.fi- .next := p;
q.~i := p;
q.coun~ := q.coun~ + 1;
if q.fo = NIL ~hen q.fo := p;

end;

procedure init_butfer(var q:butfer_~ype);

begin
q.fi := NIL;
q.fo := NIL;
q.count := 0;

end;

procedure :insert(var q: butter_type; var i: da~a...~ype);

var
n : nodeptr;

begin
nev (n);
n- .d.ata := i;
acId (q,n);

end;

initia.lize { initia.lization-part of the a.lternating bit process }
to idle {initia.lize ....jor state variable to idle }

begin {initia.lize variables }
loca.l_reter := 0;
init_buffer(in-buffer);
init_buffer(out_buffer);

end;
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{-------------------------------------------------------------------------}
{ NFS for Class 0 Transport Pro~ocol

As de:tined by Hassan Ural and Bo Yang in nA test sequence selection
me'thod for protocol testing" in IEEE Trans. on Communications. Vol. 39.
No. 4, April 1991.
Many correc~iolls ~o ~he syn~ax ..ere macle by Daniel Ouime~ in

December 93 and January 94.
}

~rans { nllllsi~ioll_declara~ioll-part of ~he TPO process }
liI!EN U.~creqC~o_~_addr, frollL~_addr, q~s_req)

FROM idle
PROVIDED q~s_OKCq~s_req)

TC vfcc
NAME t1: BEGIN

assign_local_refClocal_refer);
assiSll-~pdu-sizeC~pdu-size);

callillg..~_addr := frollL~_addr;

callecL~_addr := ~o_~_addr;

ou~pu~ L.cr Clocal_reter, Ilormal, callillg..~_addr, callecL~_addr, ~pdu-size)

END;

trans
llIŒN U.~creq {(Ilil, Ilil, q~s_req)}

FROMidle
PROVmED 1l0~ q~s_OK(q~s_req)

TC idle
NAME ~2: BEGIN

assiSll-cLreasoll(~s_disc~easoll. local_TS-provider_invoked);
assiSll-u-reasoll(~s_user~easoll.qu_belo......in);
ou~pu~ U.~dindC~s_disc_reasoll.~s_user_reasoll);

END;

~rlllls

llIŒN L.cr Csource_ref. op~ioll. callillg..addr, callecLaddr. max..~pdu-size)

FROM idle
PROVmED Cmax..~pdu-size <> Ilo_size) and op~ioIl..OK(op~ioll)

TC vf~r

NAME ~3: BEGIN
remote-%'8ter := aouree_re:t;
~pdu-size := max..~pdll..size;
callillg..~_addr := callillg..addr;
callecL~_addr := callecLaddr;
assiSll-q~s(q~s_es~imate);

output U. tcind(callecLt_addr. callillg..t_addr. qts_estimate);
END;
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llHEN L.cr (source_rd. option, calling..addr. called_addr, max_tpdu_size)
FROM idle
PROVIDED (max_tpdu_size =no_size) and option_OK(option)
TC ..ttr
NAME t4: BEGIN

remote_reter := source_ret;
assign_tpd~size(tpdu_s:ze);

calling..t_addr := calling..addr;
called_t_addr := called_addr;
assi~qts(qts_estimate);

output U. tcind(called_t_addr, calling..t_addr, qts_estimate);
END;

trans
llHEN L.cr
FROMidle
PROVmED not option..OK(option)
TC idle
NAME tS: BEGIN

assisn-reason(disconnec't_reasoD, not_specitied);
output L.drCsource_re:t, disconnect_reason, Done);

END;

trans
liHEIl L.cc
FROM ..tcc
PROvmED max..tpdu..size <> no_size
TC data
NAME t6: BEGIN
assi~qts(qts_estimate);

output U.teeon(qts_estimate);
END;

trans
liHEIl L.ee
FROM wtee
PROVmED max..tpd~sue = no_sue
TC data
RAME t7: BEGIN
assi~qts(qts_estimate);

output U.tecon(qts_estimate);
END:

trans
liHEIl L.dr
FROI! ..tee
P!lllVIDED diseolUleet..reason = user_init
TC idle
RAME t8: BEGIN

lOi
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output L.ndreq(disconnec't_reason);
output U.'tdind(add_clear_reason, discon:laet_reason);

END;

trans
llHEH L.dr
FRO" vtcc
PROVIDED disconnect_reason <> user_init
TC iclle
NAIIE 109: BEGIN

output L.ndreq(discouneet_reason);
output U.tdind(none. disconnect_reason);

END;

IDS

•

•
•

trans
llHEH U.tcres (qu_req)
FRO" vttr
PROVIDED qts_req <= qts_estilllate
TC c1ata
NAIIE 1:10: BEGIN

assisn-local_ref(local_refer);
output L.cc (remote_refer. local_refer. calling..t_addr. called..t_addr. tpdu..size);

END;

lOrans
llHEH U.tcres(qts_req)
FROII vttr
PROVIDED qts_req > qts_estilllate
TC iclle
HAllE 1011: BEGIN

assisn-reason(discounect_reason. not_specified);
assisn-ac_reason(add..clear-reason. qts_belov~);
assisn-Veason(ts_disc-reason. qts_belov~);
output L.dr(remote-refer. discounec1:-reason. add..clear_reason);
output U.tdind(none. ts_disc_reason);

END;

lOrans
llHEH U.tdreq(ts_user-reason)
FROII vttr
TC iclle
HAllE 1012: BEGIN

assign_reason(discounect_reason. ts_user-reason);
output L.dr (remote-refer. discouneet_reason. add..clear-reason)

END;

trans
lIIIEll U.tdatr(tsdu..fragment)
FROII data
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TO data
NAlIE t13: BEGIN

insen(out_butter. tsdu_tragment);
END:

trans
FROM data
TC data
PROVIDED out_butter.count > 0 {not butter_empty(out_butter)}
NAlIE U4: BEGIN

remove(out_bu:ffer. user_data);
output L.dt(user_data);

END;

trans
WREN L.dt(user_data)
FROM data
TC data
NAlIE US: BEGIN

insert (in..butter. user_data):
END:

trans
FROM data
PROVIDED in..butter.count > 0 {bufter_empty(in..butfer)}
TC data
NAlIE t16; BEGIN

remove(in..butter. tsdu..tragment):
output U.tdati(tsdu..tragment):

END;

trana
WREN U.tdreq(ts_user..reason)
FROM data
TC idle
HAllE t17: BEGItl

output L.ndreq(ts_user_reason):
END;

trana
WREN L.ndind
FROM data
TC idle
HAllE t18: BEGIN

assigc_cLreason(ts_disc..reason. loe&l_TS-provider_involl:ed):
output U. tdind(none. ts_disc_reason);

END:



•

•

•
•

APPENDIX B. TRANSPORT PROTOCOL 0, SPECIFIED IN ESTELLE

\/IŒN L.nrind
FReI! data
TC idle
NAIIE t19: BEGIN

assign_d_reasonCts_disc_reason, remote_TS_user_invoked);
output U.tdind(none, ts_disc_reason):

END;
end; { of the body_tpO}

modvar
{ module-variable-declaration-part of the Fpecification }

TPO_var: TPO_type;
TESTER_var: TESTER..type;

initialize { initialization-part of the specification}

bagin { module initialization }

bagin
init TPO_var vith body_tpO;
init TESTER..var vith TESTER...body;
connect TESTER_var.U to TPO_var.U;
connect TESTER_var.L 100 TPO_var .L;

end;
end; { of module initialization vithin the

specification's initialization-part }

end. {End of specification; the specification has no transition part }
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Appendix C

Tango Tutoria1, Version 1.5

Tango can be usoo in two ways. The first, "implementation generation mode~, will
produce an executable implementation which behaves in the same way as a Dingo­
generatOO implementation, except that traces are generatOO for each module, con­
taining inputs and outputs involving that module. The second use of Tango is as
a trace analysis tool generator, where the module which corresponds to the IUT is
referred to as the l'AM, or Trace Analysis Module. Each use is describOO in a section
of this Appendix.

C.I Implementation Generation

Any Estelle specification which has no external module body definitions can be put
through Pet and Tango to generate an executable implementation which will behave
identically to a Dingo-generatOO implementation. For more information on how such
implementations can be usOO, see [36].

During an implementation execution, each module (as opposOO to each channel)
maintains a trace file, namOO _modulename42pid.index-hostnan;e.tra, wherc pid is
the process id, index is a unique string to distinguish it from other modules of the
same name, and hostname is the name of the host executing the module proccss.
Each interaction sent from, or receivOO by module A is rcpresentOO as an entry in
module A'5 trace file. If module A receives an interaction from an IP, and that IP
is connectOO to another IP in module B, then an identical entry for that interaction
can be found in the trace file for module B as weil.

The module which reprcsents the IUT will generate a trace file which can be used
as sample input for the l'AM, since the trace file format used by the Tango-generatOO
implementations is the same as the format used by a l'AM.

111
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C.2 Trace Analysis

Starting with an Estelle protocol specification and a trace of inputs to, and outputs
From, one module of the IUT, this tutorial will provide step-by-step instructions on
how to generate a trace-analyzer From the specification and how to analyze the trace
glven.

This section describes the following steps:

1. Creating a. single-module test system specification.

2. Generating an executable Trace Analyzer

3. Formatting the tracefile.

4. Executing the Trace Analyzer

5. Viewing the results of the analysis

Figure C.I: The Tango System

'·Module
Estelle

Specification

Original
Estelle

Specification

•
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C.2.1 Creating a Single-Module Specification

During implementation ex~cution. an IUT communicates with other elltitit'S. hert~

after referred to as modules. The IUT. and the modules it communicatt'S with. com­
prise the test system. In figure 3.1. the test system is Specification Example.
which inc1udes two modules. Main and Food. The module specifying the lUT is
Module Main.

The specification which is given as input to Tango must ref\ect the structure of
the test system. Even though the module Food is not being testcd. it sti1l must be
dec1ared as a module in Tango's input specification, because it commullicates with
Main during testing.

Modules which communicate with the IUT module, ",hen they are part of the
trace analysis tool, "feed" inputs to the TAM at the beginning of the trace analysis.
Thus, they are referred to as "feeding modules" in this thesis. Since the behaviour
of feeding modules is defined in Tango, it does not need to be defined in the formaI
specification. For this reason, the convention of defining bodies of fceding modules
as extemai has bcen adopted in Tango. The example specification in listing 1 has a
module which is called Feeding.Module and can be transformed into a proper Tango
fceding module as shown below:

module Feeding_Module systemprocess;
ip

toMain : interface (sender) individual queue;
end;

body Feeding_body for Feeding_Module; external;
{ --- end of feeding module --- }

Notice that the only dec1arations for Feeding.Module which were carried over
from listing 1 are the ip dec1arations, which were DOt changed at ail.

There are a number of possible faults which can exist in a specification yielding
a trace analysis tool which will not work. It is recommended that the suggestions
below are followed to ensure a working trace analyzer generatiou.

• Place extemal body definitions jirst, and the TAM specification last. Tango
knows to generate a TAM instead of a regular Dingo implementation of a mod­
ule by the existence of an external module body definition in the specification.
Because Tango is a one-pass compiler, aIl extemal body definitions (i.e. feeding
modules) must be dec1ared above the IUT module specification. If DO feed­
mg modules appear before the IUT module specification, Tango generates an
executable implementation rather than a trace analyzer for the IUT module,
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not realizing that fceding module declarations appear afterwards. Think of the
external keyword as a compiler directive to Tango.

• Make sure that only one module has a non-external body. If more than one
module with a non-external body appears in the TAM specification, Tango will
generate independent TAMs for each module. Regardless of whether the non­
external modules are connected by channels, ail the outputs from each module
will be analyzed against the trace information rather than being sent to other
modules. Therefore, unexpected results will occur.

• Avoid primitive functions. For backtracking to work, ail functions and proce­
dures which affect the TAM state must be defined in the Estelle specification.
Functions and Procedures declared as primitive and defined in code elsewhere,
which cause side e!fects in the running operation of the implementation, would
cause unpredictable results when linked with a TAM.

• Remove delay clauses. It is recommended ail delay statements be removed
from the specification. They will only slow down the trace analysis. Time­
dependent behaviors can not be checked by a TAM in any case.

• Double-check your connections. If the modules are not connected properly in
the modvar section, the TAM may deadlock before performing any analysis.

• Set ail module attributes properly. The last step in preparing the single-module
specification is to set ail the module attributes to systemprocess, and to re­
move the root specification attribute, if there is one.

C.2.2 Generating the Executable TAM

After the TAM specification is ready to be compiled, the following steps must be
taken.

1. Generate an object-oriented static representation with pet.
pet -0 objfile estellefile

2. Generate C++ code from the the output produced by pet.
tango objfile

Tango generates a makefile template, called specname •malte . tmpl, where spee­
name is the name of the specification as described in the Estelle source.

3. malte environment variables are left blank in the template, and must be filled
with proper pathnames, as specified in the comments of the makefile template.

Example:
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LIBPATH= /home/champlain2/ezust/pde
XLIBDIR= /usr/local/lib/
MIWINDIR= /home/champlain2/ezust/pde
INCLPATH= /home/champlain2/ezust/pde
GNUINCLUDEDIR= /usr/local/lib/g++-include

11r)
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Additionally, the LDCMDDS environment variable should contain tht' nanws of
the main specification, the TAM, and all fceding modu1L.,.. scparated hy spa"t"'.
This specifies that all the modules are to be el'ecuted locally 011 tht' SiUm'

machine.

Example:

More information about the makefile template can be found in sectioll 3.11
of [36].

4. If the previous steps were successful, the malte command should compile and
link the specification and create a set of executables, one for each module, an,1
one for the root specification, called ..specname.

C.2.3 Formatting the Tracefile

The primary Tango trace file, which must be located in the same directory il>' the
executable trace analysis tool, must be called "trace". It is a standard text file, with
each interaction taking 3 \ines of text.

Each entry looks like this:

» _Module_name
Ip:_Interaction_type
{ arguments for the interaction}

While in the initial stages of generating trace files, it may be useful to see Tango's
trace file debugging information, as it will often help the user to determine where
incorrectly formatted information appears in the tracefile. Debugging information
will be sent to the log file when the runtime option, debug.load, is specified. Sec
Section C.2.4 for more information.
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Module Name Specifier

The first line must begin with "» _" followed by the name of the module that is
sending the interaction. In Tango trace files, the module name is defined as the
module body name, as it appears in the Estelle specification. If the test system has
multiple instantiations of the same module body for feeding modules, then a unique
string must be concatenated to the end of the module name for each instance, to
distinguish it from other instances of that module.

For example, in an Estelle specification that declares an array of module instances
like this:

Module Alternating_bit_type systemactivity;

body Alternating..bit_body for Alternating_bit_type; external;

modvar
Alternatiz:g_bit: array [1..2] of Alternating_bit_type;

initialize
begin { module initialization }

init Alternating_bit[l] vith Alternating_bit_body;
init Alternating_bit[2] vith Alternating_bit_body;

Dingo names eàch instance of ....Alternating..bit uniquelyas shown below:

» _Alternating_bit_bod~10489-0+3698

» _Alternating_bit_bod~10489-1+3698

When the modules ron under the same process, the process id (which follows the
ID sign) is the same for both modules, and the index of the array follows the - sign, as
shown above. 'When they run as independent processes, the process ID differs, and
the index of each module is O. As long as a unique string is appended consistently to
the name of each module, it does not matter to Tango what the string is.

Errors Ifa module name in a tracefile entry does not match any module in the TAM
system specification, the entry will be ignored. No error message will he displayed.
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Interaction Point/Interaction Specifier

The second \ine must begin with the interaction point name, as specified in the Estelle
specification for the module which sent the interaction. If a specification uses an array
of IPs, the index must be specified by concatenating an underscore followed by the
5-digit index, padded \Vith leading zeros, to the end of the IP name.

Following the IP name is a ~: _~ followed by the name of the interact.ion, as
specified in the Estelle specification.

Examples of va\id second \ines:
N_00002:_DATA_response (sends a DATA.xesponse to interaction point N[2])
U:_RECElVE_response (sends a RECElVE.xesponse to interaction point U)

Errors If the IP specifier does not match the name of an IP in the module speci­
fication, an error message "ip..i.ndex: Unable to find match for ip_name~ will
appear in the module's log file, where ip_name is the name of of the IP specifier in
the tracefile.

If the interaction type is not a valid interaction for the corresponding IP, an er­
ror message "unable to create interact from interaet" will appear in the logfile,
where interaet is the name of the interaction type in the tracefile. During the loading
of a tracefile, Tango does not check to cnsure that the role of an IP is the right role
for the interaction to be loaded. Needless to say, if an interaction does not match
the proper role of the IP, and it appears in the trace file, the trace will be detected
as invalid by the TAM.

The Interaction Parameter line

The third line ofeach trace file entry contains the parameters of the interaction. They
are enclose<! in curly brackets {}.

For simple types, such as integers, the values are printed as ASCII decimals. For
boolean types, values are printed as '0' or '1'. For characters, values are printed as
decimal numbers, in ASCII code i.e. the letter A is represented as the string '98',
B is '99', etc... For Enumerated type variables, their ordinal values are printed as
decimal integer strings, just like characters.

For records, the value of each field must be listed in the order it appears in the
specification, and the entire record contents must be enclosed in curly brackets.

For arrays, likewise, the contents of the array must appear in between curly brack­
ets, with the elements listed in index-order.

For strings (packed array of characters), a sequence of ASCII-decimal numbers
representing each character in the string should appear in ascending order by index,
and the entira string must be enclose<! in double quote characters (").

For example, an interaction which has a parameter of the fol1owing data..type:
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type
data_type = record

H array [1. .10] of integer:
l integer:
J boolean:
K char;
L packed array[1..4:1 of char;
end:

might have a parameter line which looks like this:

{ { { 2 4 6 8 10 12 14 16 18 20 } 1 0 98 .. 98 99 100 101 " } }
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where H[l] = 2, H[t! = 4, H[10] = 20, l = 99, J is false,andthepacked
array K = 'ABeD'.

There should be no newline character in the middle of a data parameter trace file
field. The parameter line can be as long as necessary to specify the values of every
field in the parameter list.

Errors When curly brackets or string delimiters mismatch, or are missing when
required, the trace analyzer may enter into an infinite loop and hang, without out­
putting an error message.

C.2.4 Runtime Options

TANGO supports a number of runtime options which provide fiexibility and power to
the user of a TAM. Ail runtime options are read by a TAM just before trace analysis
begins.

Ruùtime options can be specified in a file called tango. cfg, which must appear
in the same directory as the TAM executable. The file format is a standard textfile,
which can be edited using any text editor. Each option is specified in the file on a
!ine by itself. The order in which the options appear does not matter to Tango. Any
invalid options are ignored, yielding informative error messages in the TAM log file.

Tango will ignore text on a line followed by a # character, 50 comments in the
configuration file can be placed after it, or entire lines can be "commented out" in
this fashion.

The current version of Tango supports the following runtime options.

Relative Order

The order of the interactions, as they appear in the trace file, can be interpreted in a
number of ways. In all cases, if two interactions going in the same direction through
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the same interaction point appear in the trace file. the order in which they appear is
observed and checked by the trace analysis tooL However, the order of interactions
which go through different interaction points, or through the same interaction point
but in different directions, cao be observed (and checked) or ignored by the TAM,
depending on the runtime options. Depending on the architecture of the IUT and
its observation points, certain options should be used. Sec Section 6.3.2 for more
information.

iO..l'elative, or Inputs with respect to Outputs One form of relative order
checking is that of inputs with respect to outputs passing through the saIne channeL
For exampIe, ifthe next input interaction waiting in the queue of a particular IP is i,
and it appears in the trace file after an output 0, passing through the same channel,
which was not generated yet by the TAM, then consuming i before outputting 0

violates the 1/0 relative order of i and o. Enabling the 1/0 relative checking option
will prevent the TAM from consuming i before outputting o.

oi..l'elative, or Outputs with respect to Inputs 0/1 relative order checking
means that if 0 appears after i in the tracefile, and the TAM attempts to execute a
transition which produces 0 before consuming i, this will cause an 0/1 relative order
output mismatch.

ip..l'elative, or Interactions Passing Through Different IFs If the order of
the interactions in the trace file refiects the relative order of interactions which passed
through different interaction points, the TAM will respect this order during trace
analysis when this runtime option is used,

Using this option ensures the following:

• The "next" input to be read from an IP x is only readable if it appears in the
tracefile before "next" inputs to be read from ail other IPs,

• An output 0 to an IP x will have an "ip relative" output mismatch if an output
which has not becn verified yet, due to be sent through another IP, appears
before 0 in the tracefile.

debug.1oad, or Load Tracefile Debugging Info:

Debugging information cao be sent to the log file of each module, during the reading
of the trace file. To set this option on, place the following line in the configuration
file: debu~load

Enabling this option will give the user a better idea of which interactions are
invalid in the trace file, if the user is unsure that the format of the trace file is
correct.
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debug_trace, or Trace Analysis Debugging Info:

During trace analysis, it is possible to have the TAM include different degrees of detail
in the debugg::ig information of the log file. Using the runtime option debug_trace=,
the user can set the debug level to refiect the desired quantity of output which will
appear in the log file. Higher debugging levels slow down the actual search, and
in sorne cases, the difference in search time on the same trace but using different
debugging levels can be as great as 15%.

At the end of the analysis, as weil as after every 1000 transitions taken, statistics
about performance and number of transitions se!U"ched, regardless of the value of this
runtime option, will be listed in the logfile. Other messages which will be sent to the
Iogfile inc1ude: the final result (valid or invalid), and anyoutput messages from the
C++ implementation code.

Using a debug_trace=O option, no other messages will be sent to the log file.
Using a debug trace leve! of 0 is useful if Tango is executing too many transitions
for a more detailed log file to fit under your disk quota. This also ensures the fastest
search possible using Tango.

A debug leve! of l, the system default, is .useful if it is desired to follow the
path of execution without having too many extra details. The fol1owing additional
information will be sent to the logfile.

• Search progress information, inc1uding the state, search tree depth, and a list
of /ireable transitions which were generated at each state.

• Interactions which were tested for conformance to the trace, and information
about whether they match.

• backtracking status

With debug_trace=2, the following information, above and beyond what is listed
when tlie debug leve! is l, will he sent to the logfile.

• Frame contents for each generated transition

• Pa.ra.meter contents for each interaction

• 1/0 relative order mismatch messages

• IP relative order mismatch messages
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initial.suspend, or Initial Wait for User-Resume

If you wish to observe the c-xecution of the trace analysis from the very bcginning of
the search through the Dingo X-windows site server, you may want to have the TAM
initially suspend itself until the user intervenes with either a rcsume or a singlc-step
event. With the option initial.suspend. the TAM will not start its analysis until
the user

1. opens a module instance window for the TAM from the Local Root-Modules
menu in the SiteServer

2. clicks on either the Suspended or the Continuous Mode menu buttons. The
former will begin executing transitions as rapidly as the specification permits,
while the latter will c-'Cecute a single transition each time that menu button is
selected.

disable...ip, or Disable Output Checking on an IP

If it is not possible to observe interactions going through sorne specified IPs in an
IUT, it might be desirable to disable output checking on those IPs, while still checking
outputs going through all of the other IPs.

Usage:
disable..ip: ip-llame
Where ip_name is the symbolic name of that interaction point, as specified in the

Estelle TAM specification. It should look exactly the same as the IP name in the
trace file for interactions going through that IP.

all...ips, or Wait For Input To Arrive at AlI IPs

When the TAM and all of the feeding modules are spawned at the same time, it is
possible that the TAM might begin its search before inputs have arrived at all of
the IPs. This can cause certain transitions which should have been fireable to be
non-fireable.

By default, a TAM waits 10 seconds before beginning the seart;h. This runtime
option, when enabled, will force the TAM to wait indefinite1y, until at least one input
has arrived at each IP.

If the disable..ip option is used on a particular IP, the TAM will not wait for
data to arrive at that IP before commencing its search.

search init..state, or Search for Valid Initial FSM State

When a TAM begins its analysis, the first transition that gets fired is initialize,
and whatever state the FSM enters after that is called the initial state. In sorne
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circumstances, an obtained trace might not begin with interactions generated by an
IUT which was in this initial FSM state. Using this option, the TAM will try ail
possible initial FSM states with the trace given before outputting an invalid result.

Additional Trace Files

If you wish Tango to read from multiple trace files, additional trace files can be
specified in the runtime options file. There are two kinds of trace files: static and
dynarnic.

A static trace file is read entirely before the search begins, and is never checked
again during the analysis. A dynamic trace file will be periodically checked during
the analysis in case additional traced interactions are appended to the file. Dynamic
trace files are required for real-time on-line trace analysis.

To specify an additional static trace file, put the following !ine in tango.cfg:
static :fi1ename

To specify an additional dynamic trace file, put the following !ine in tango.cfg:
dynamic :fi1ename

The default trace file, simply called trace, is static, and will always be among
the !ist of tracefiIes from which each Tango module will attempt to read. If the
default trace file is empty or non-existent, and other valid files were specified, the
trace analysis will commence as expected, reading ooly from the valid trace files.

Since each trace file can contain interactions for any module and any IP in the
test system, it is recommended that ail interactions for one particular IP be placed
in a single trace file, rather than distributed among multiple trace files. Each Tango
module will read ail of the available interactions in each trace file, starting with the
default file, and continuing with each file, in order, as it appears in tango.cfg.

End Of Input Marker: In a dynamic trace file, to signal the end of input, a
special interaction must be appended to the file. It begins with the following !ine:

» END

At least two blank (or non-blank) !ines must follow this. To ensure termination
of the TAM search, these» END markers must appear at the end of each dynamic
trace file which is being used. See Section ï.2.2 for more information.

C.2.S Executing the TAM - User Interface

The executable created in step 2 is not a stand-alone executablej it must be run under
the NIST X Windows Dingo Site Server. In the Tango package there is a shell script,
called StartTangoSites, which executes the Site Server on the local machine. After
the Site Server window is active, the user can run the executable for the root module
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from the Unix shell. which will in turn spawn processes for the TAM and the fecding
modules. The user interface for the site server is described in detail in [36].

Double-clicking on the TAM module in the Local Root Modules list will 0pl'n a
module instance window, and from this window one may do the following:

• Suspend and single-step the trace analysis, using the menu buttons suspended
and Continuous Mode

• Examine the TAM status from the LocaLVars pull-down menu, which will dis­
play statistics on the search in progress, as well as other diagnostic information.

• View the logfile as it was when last loaded, from the Load Module Instance
module..name menu button. The logfile is loaded when the window is opencd
initially, and is re-loaded each time the user clicks on the button bar at the top
of this window.

There is a bug in Dingo which causes the module to crash if you attempt to
load its logfile when it is too big to fit into memory. Therefore, if you know that
the logfile will exceed a couple of megabytes, and you would like to monitor
the TAM status, it is recommended that you open the module instance window
near the beginning of the analysis, and refrain from clicking on the window's
.button bar during the search.

When the trace analysis is finished, a message peer exited or abruptly disconnected
will appear on the standard output. The module instance window will automatically
kill itself, if it exists.

C.2.6 Viewing the Results of the Analysis

Each module which is executed under the Site Server keeps its own log file. The
filename for a module with name modulename is:
_modulename@pid.indez-hostname.log

The trace analysis results can be viewed in the logfile for the TAM. If the de­
buglevel was greater than 0, each transition the TAM attempted would be listed
in the log file, in the order that it was tried. At the end of the file, a message all
outputs verified or trace is invalid indicates the result of the analysis. See
Section 6.4 for an example of a log file generated during trace analysis by a TAM.

The statistics given at the end of the trace, and after every 1000 transitions taken,
are explained below:

CPU Time (seconds): This is the amount of CPU time used by the TAM process.
Achieved by using the cloc:k(3C) function.



• APPENDIX C. TANGO TUTORIAL, VERSION 1.5 124

•

•
•

Trans executed: The number of transitions executed during the search. This can
also be thought of as the number of edges searched in the tree. During DFS,
this is the sum of generates and restores.

Generates: The number of times a caU was made to -generateFireable. During
DFS, this is the number of vertices in the search tree.

Depth: The depth of the most recently searched node in the tree.

Max Depth: The maximum depth achieved in the tree during the search.

Restores: The number of state restores during the search. During DFS, this is the
number of backtracks.

Saves: The number of state saves during the search. During DFS, this is the number
of nodes with more than 1 child in the search tree.

Trans per second: This is the number of executed transitions divided by the CPU
time, in seconds.
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Appendix D

List of Abbreviations

BNR: Bell Northem Research

CCITT: International Consultative Committee for Telephones and Telcgraphs.

CRIM: Centre de Recherche Informatique de Montreal

DFS: Depth-First Search

DINGO: Distributed ImplementatioN GeneratOr

EFSM: Extended Finite State Machine. See Section 2.1.

ESTL (or Estelle): Extended State Transition Language

FDT: Formal Description Technique

FSM: Finite State Machine

GRM: Global Reference Manager. See Section 4.1.2.

IP: Interaction Point. See Section 3.1.

ISDN: Integrated Services Digital Network

ISO: International Organization for Standardization

IUT: Implementation Under Test. See Section 5.2.

LAPD: Link Access Procedure D protocol

LOTOS: Language of Temporal Ordering Specification
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MDFS: Multi-Threaded Depth-First Search. See Section Î.2.2.

MaNDEL: Montreal Description Language

OSI: Open Systems Interconnection

PET: Portable Estelle Translator
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PG-Node: Anode with a Partially Generated transition list. See Section Î.2.2.

PGAV-Node: A PG-node with ail inputs consumed, and ail outputs verified. See
Section Î .2.2.

SDL: Specification and Description Language.

TAM: Trace Analysis Module. Sec section 6.2.

TANGO: Trace ANalysis GeneratOr
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