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Abstract

This thesis describes the development of an automatic generator of backtracking
protocol trace analysis tools for single-module specifications written in the formal de-
scription language, Estelle. The generated tool automatically checks the validity of
any execution trace against the given specification. The approach taken was to mod-
ify an Estelle-to-C++ compiler. Discussion about nondeterministic specifications,
multiple observation points, and on-line trace analysis follow. Trace analyzers for the
protocols LAPD and TPO have been tested and performance results are evaluated.
Issues in the analysis of partial traces are discussed.

Ce mémoiredécrit le développement d’un générateur automatique d’outils pour 'analyse
de traces de protocoles de communication non-déterministes, décrits par des specifi-
cations formelles Estelle & un seul module. L'outil généré vérifie antomatiquement la
validité d’une trace d’exécution par rapport a la spécification de référence. L’approche
suivie consistait en la modification d’un compilateur Estelle-C++ existant. Une dis-
cussion a propos de specifications non-deterministes, de points d’observation multi-
ples, et d’analyse de traces a la volée est presentee par la sunite. Des analyseurs de
traces pour les protocoles LAPD et TPO ont été testes, et leurs résultats de per-
formance évalués. Enfin, quelques points reliés & I’analyse de traces partielles sont
discutés.

Keywords: Estelle, Trace Analysis, Protocol Conformance Testing, Formal De-
scription Techniques
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Chapter 1

Introduction

Protocols are sets of rules that govern the interaction of concurrent processes in
distributed systems. The design of protocols is related to a number of established
fields, such as the design of operating systems, computer networks, and distributed
databases.

Typically, books discussing networks, operating systems and distributed databases
present protocols which have been accepted as correct by, for example, a large inter-
national organization. They rarely explain why the protocols work, what problems
they solve, or what pitfalls they avoid [23]. The process of deriving such protocols
in the first place, however, is a very involved one, which encompasses different stages
in development and testing. Furthermore, when a protocol is accepted as correct,
or free of certain kinds of faults, implementing software that follows it precisely, or
testing existing software for conformance to the protocol, are two quite complicated
steps in systems development.

There are several ways to ways to specify a protocol. A natural-language speci-
fication can be easily readable by a2 human who requires a general understanding of
how it works, but it can be imprecise or ambiguous. Such specifications can make

the development of an implementation more difficult, or more prone to bugs, which
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may cause the implementation to be incompatible with other implementations that
claim to follow the same protocol.

FDTs. or Formal Description Techniques. are used to specify software in a
very precise way. Using a specification language to this end, with very strict syntax
and semantics, reduces the problems of imprecise or ambiguous specifications. Spec-
ification languages typically resemble high-level programming languages. but they
discourage the definition of low-level details which are specific to a particular plat-
form. Specification languages pave the way to automated implementation generation
and conformance testing.

The trace of a communication program is a record of its inputs and outputs
during its execution, which might have been captured on the communication line and
saved to a file. The internal behaviour of an implementation is typically hidden from
a protocol tester, so in this way, the implementation is viewed as a “black bc->x”.

Trace analysis is the act of comparing the observable behaviour of a running
implementation to that of its protocol specification. It is one step in protocol con-
formance testing, and usually involves a simulated execution of different parts of
the specification. Formal specifications are especially useful in the context of trace
analysis.

Usually, a trace analyzer is based on a specific protocol. An automated technique
of generating a trace analyzer based on 2 formal protocol specification would make
it easier to ensure that the trace analyzer follows the specification exactly. Such a
technique would considerably facilitate this part of protocol conformance testing.

This thesis chronicles the work done towards the development of a trace analysis
tool generator for specifications written in the FDT, Estelle. The approach taken
was to start with an Estelle-to-C++ compiler, called Dingo, developed at NIST, and
to add all the necessary routines to turn it into a generator of backtracking trace
analysis tools. While E;teﬂe is by no means the most popular FDT in use today,
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we chose this approach because it was deemed much easier to start with an existing
tmplementation compiler and modify it to suit our needs than to start from scratch,
and we were unable to obtain the sourcecode for a similar object-oriented compiler
for SDL, a much more popular FDT with similar features to Estelle. However, the
principles and difficulties of trace analysis discussed in this thesis apply as well to
trace analysis with respect to specifications written in SDL. and a tool does exist
which translates SDL specifications into Estelle [41].

Background information and related research on FDTs in general, Estelle in par-
ticular, automatic implementation generation techniques, protocol verification, and

protocol conformance testing are covered in this thesis as well.



Chapter 2

Formal Specifications

There are several ways to specify the behaviour of a protocol. A natural-language
specification can be easily readable by a human who requires a general understanding
of how it works, but it can be imprecise or ambiguous. Such specifications allow for
different human interpretations of the behaviour during protocol development, and
make formal conformance testing impossible.

FDTs, or Formal Description Techniques, are used to specify software in a very
precise way. Using a specification language to this end, with very strict syntax and
semantics, reduces the problems of imprecise or ambiguous specifications. Such lan-
guages leave out the machine-dependent details, but include all the necessary infor-
mation about the data exchange methods, the timing of events, and valid message
criteria.

It is beneficial to write specifications in FDTs because such representations sim-
plify the problems of design and validation [5]. In addition, there are automatic ways
of producing executable implementations based on such specifications [6].

This chapter will discuss three different approaches to modelling a protocol. The
first one is the Extended Finite State Machine (EFSM) model, which is enforced by
languages such as SDL (Specification and Description Language) [1} and ESTeLle
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(Extended State Transition Language) [34]. Code written in these languages will
have state and transition definitions, with programming extensions such as variables
and procedures to make the specification easier for a human programmer. They will
often look like high-level procedural languages.

The sccond model was intended make the passing of messages between communi-
caling processes the most prominent feature in such specifications. Based on process
algebras [21] [24], the specification language developed within the ISO (International
Organization for Standardization) is known as LOTOS (Language of Temporal Or-
dering Specification) [11]. Program structure, and even flow of control in LOTOS can
be compared to what is available in other functional programming languages, except
that there is no backtracking.

The third model discussed here is the object-oriented model. Object-oriented or-
ganization is quickly becoming the preferred model for data representation in many
different areas of computer science. Intuitively, it is quite easy to organize a protocol
specification in terms of its components and the methods associated with them. This
is the kind of organization enforced by languages such as SDL92 and MonDeL (Mor-
treal Description Language), a specification language developed jointly at CRIM and
BNR [3].

For each language discussed in this chapter, only the basic features and some of
the major differences will be described. A rigorous comparison of the advantages
and disadvantages between using Estelle, LOTOS and SDL can be found in [13].
Additionally, [8] details the formal specification of a simplified transport protocol in
each of these languages, comparing the differences between them from a vefy practical
perspective.

The specification languages described in this thesis were developed with the in-
tended application being telecommunications software, but most of them are robust

enough to be used to specify the operation of other types of layered, distributed or
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concurrént software, such as operating systems and distributed databases.

While they are outside the scope of this thesis. there are other important FDTs
and associated tools, some based on Petri Nets and their extensions, others on logical
programming languages, used in many large scale projects. In addition to ihese
formal techniques, organizations such as the OSI standardization committees use
semi-formal languages (which lack formally defined semantics) such as TTCN [35].
the Tree and Tabular Combined Notation, for specifying behaviour, and ASN.1 [30].

Abstract Syntax One, for specifying data structures, of communication protocols.

2.1 Extended Finite State Machines

A finite state machine (FSM) is an abstract model consisting of a finitc number of
states, a finite number of input symbols, and a finite number of output symbols.
From each state, it is possible to take a transition into another state, depending on
the available input and the “firing” rules of a transition (the rules that govern when
a transition can be taken, as specified in the FSM). The reader is assumed to have
a basic knowledge of finite state machines. More information on this topic can be
found in [24].

Extended FSMs have extensions to the FSM model such as variables and dynamic
memory, aud programming constructs which can be used to manipulate their values.
EFSMs support spontaneous transitions, which can be taken from a particular state
regardless of the input, and they also permit nondeterminism, where different tran-
sitions can be fired under the same situation from the same state. An EFSM state is
a composite of the FSM state, and the values of variables and dynamic memory.

Describing a protocol using the EFSM model involves first subdividing the system
into a number of communicating modules, or entities, such that each module is an
EFSM 5.

One absiract communication mechanism between modules is known as “direct
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coupling”, where the firing of a transition in one of the modules causes 2 transition
to fire in other modules. Such transitions are executed in parallel. This kind of inter-
module communication is not very common, as it does not reflect the way most real
communicating components interact. If a transition is not coupled, it can execute
independently from the other components.

Another communication mechanism is achieved by using communication pipes,
or “channels” as they are called in Estelle and SDL. The message-passing scheme
used in both of these languages is asynchronous, meaning that there is queuing and
buffering between communicating compouents. Information received from such a pipe
is considered “input” to the module. Similarly, information sent through a pipe is
considered “output” from the module.

In a specification for a multi-layered protocol such as TCP/IP, each layer would
be represented as a module, with a channel that connects it to each neighboring layer.
For example, the module which specifies the Transport layer would have one channel
to the application layer module, and another channel to the Internet layer module.

The EFSM model is used in FDTs such as SDL or: Estelle. In general, specifica-
tions written in SDL or Estelle look very much like programs written in high-level
languages, and can be translated into other high-level languages quite naturally.

2.1.1 SDL

SDL development began in 1972 at the CCITT (International Consultative Commit-
tee for Telephones and Telegraphs), and the first version was issued in 1976. One
of the more recent versions, SDL88, is accepted as the current standard, and con-
tains many features and extensions which are not supported in the older versions [1].
SDL’s syntax is modeled after a programming language called CHILL, recommended
by CCITT.

An SDL system specification is composed of block descriptions which are com-
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posed of process descriptions. The structures are used to produce system descriptions,
regarding the system as a black box and describing the external observable behaviour
only, and internal structures, which can be compiled into high level languages auto-
matically [1].

SDL/GR is a graphical representation of SDL, where the states and transitions
are represented as a graph of shapes and arcs, complemented by a textual syntax
which supplies additional information. Programming in SDL/GR requires a graphical
programming environment.

SDL/PR is the phrase representation of SDL, which will allow the programmer to
represent all of the structures as text. Generating SDL/PR from SDL/GR 1s straight-
forward, although the transformation in the opposite direction requires graphical
layout information. According to {1], SDL/GR environments offer 2 high degree of
user-friendliness which greatly expedite specificaticns in SDL.

The logical flow of control is represented as a flow-chart based on the internal
structure. Time constraints are specified by a timer construct. Input and output func-
tionality is supported by channels over which signals can be sent between processes.
Components, or processes, can be dynamically created and destroyed at “interpre-
tation time” (the analog to “runtime” in specification execution) with constructs
create and stop, the latter construct allowing processes to self-terminate (there is no
primitive which allows one process to terminate another). The procedure construct
is similar to the one in Pascal, and also looks very much like a process description
in the SDL code, in the sense that it is also an FSM. However, the calling process
suspends for the duration of the execution of the called procedure, while a newly
created process will execute concurrently with its parent process.

Abstract Data Types are also supported in SDL, allowing the low level details
of system implementation to remain as “black boxes” without their behaviour be-

ing specified. This solidifies the ability of SDL specifications to remain machine-



CHAPTER 2. FORMAL SPECIFICATIONS 9

independent.
There are features offered in SDLS8 such as inheritance and generators (similar

to templates in C++) which are typically associated with object-oriented languages.

2.1.2 Estelle

A less commonly used language also based on extended finite state machines is known
as Estelle, the Extended State Transition Language. Initial development began in
1981, leading to the first formal release in 1987. Defined within ISO, Estelle is a
language intended to look very much like Pascal, with extensions to allow definitions
of states and transitions. It was designed for specifying distributed systems in general,
and communication protocols in particular [12].

A system specified in Estelle consists of module instances, where each module
represents a concurrent process, as an FSM. A module has a collection of states,
transition blocks, variables, procedures, and interaction points, which when connected
to other interaction points (presumably in other modules), represent connections
between them. Information can be passed through channels by way of the interaction
points. |

Variables and procedures can be declared with scoping rules in the same way as
they are in Pascal. Variables can be sharable between module instances, a feature
which exists as a convenience to the programmer, but can yield specifications which
can be implemented on real systems only with great difficulty, if at all, depending on
their capabilities. '

Estelle never gained quite as much popularity as SDL, and probably never will,
because the development of Estelle programming tools has lagged behind similar
developments in SDL. Moreover, SDL has been revised 2 number of times to make it
more object-oriented. However, Estelle is a very clear, concise specification language

which does not take very long to learn.
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2.1.3 Promela

Promela is a specification language developed at AT&T by Holzmann [23]. In contrast
to Estelle, which uses Pascal syntax and semantics whenever possible, Promela uses

C syntax and semantics whenever possible.

2.2 Temporal Ordering

2.2.1 LOTOS

LOTOS, also developed within the ISO, allows one to specify systems by defining the
temporal relations among the interactions that constitute the externally observable
behaviour of a system [11]. Other LOTOS facilities allow the description of data
structures and value expressions, based on the formal theory of ADTs (abstract data
types).

A LOTOS specification is divided up into units called processes, and within each
process, there can be a list of actions. A process can consist of several sub-processes,
so in general, a LOTOS specification is a hierarchy of processes. Some types of actions
involve more than one process, such as the sending of a signal from one to another.
These are called interactions.

Signals are passed between processes through gates, which can be explicitly de-
clared as hidden from other processes, to help carry on the black box paradigm.
The message passing scheme, unlike SDL or Estelle, is synchronous, or “rendezvous”,
meaning that there is no queuing of inputsra.n_d out;.puts, but synchronization is re-
quired with every interaction. Using rendezvous channels is beneficial because it
allows for a more complete specification of interfaces, which would be impossible in
Estelle or SDL without including implementation details [7]. Use of asynchronous
message passing may also lead to message cross-over in queues associated with the

interface, an undesired effect in real-time systems.
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Actions can be observable, or unobservable. The unobservable actions can not be
observed by other processes not directly involved in the action. Actions can be com-
bined in a parallel composition, so that they are meant to be executed concurrently.
They can also be explicitly synchronized with other actions.

Representation of values or structured data is achieved with abstract data types,
which allow one to specify the type of data which is being stored, but not its internal
representation. The ADTs of LOTOS are much richer than the ADTs of Estelle or
SDL, and are derived from ACT ONE, a specification language for abstract data
types [16]. In general, almost every possible implementation-specific detail is ab-
stracted in a LOTOS specification, while specifications written in Estelle or SDL
tend to be more implementation-oriented {7]. More details on the ADTs of LOTOS
are outside the scope of this thesis, but are available in [11].

Even for an experienced programmer, it is impossible to understand LOTOS
specifications without first being familiar with the meanings of the operators. The
code is very terse and laden with symbols which form an integral part of the language
grammar. However, it is said that once the user has gained a familiarity with the
operators, he/she can specify a system in a very natural way, which reflects quite
directly the system’s structure and behaviour [11]. According to [7], LOTOS has
relatively few (compared to SDL and Estelle), but powerful language constructs which

make the learning of the complete language easier.

2.3 Object-Oriented Specifications

While Object-Oriented representation of systems and software is not ideal for every
application, it is perfectly suited to the area of telecommunication. The objects can
represent communicating entities, and message passing between objects is an integral
part of an object-oriented language. Irformation hiding, inheritance, and persistent

objects are all useful constructs for building protocol specifications, as well as for
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maintaining a certain degree of abstraction.
Another advantage to using objects is that they can represent FSMs in quite a
natural way. The machine can be an object, which has an attribute called a “State”™,

and methods to handle each type of incoming interaction.

2.3.1 Mondel

Mondel, unlike the other languages mentioned in this chapter, is not a standard SO
or CCITT FDT. It was developed as a research project between CRIM (Centre de
Recherche Informatique de Montreal) and BNR (Bell Northern Research). It was
developed because, in the opinion of the developers, none of the existing languages
supported concurrency, object-oriented representation and persistent objects while
also meeting the requirements for writing system descriptions at the specification
and design level [3].

Mondel is an ezecutable specification language. A Mondel specification is not
as abstract as a LOTOS one, and therefore more explicitly reflects the operation
of the system it specifies. Communication amdng objects is synchronous, achieved
through remote procedure calls (RPCs) with return parameters. Persistent objects
are accessed through database queries and atomic transactions. The language syntax
and semantics were formally defined with the design goal of expediting the imple-
mentation of Mondel compilers, and the partial verification of Mondel specifications.
Full multiple inheritance, strong typing, and support for assertional specifications of
object properties make Mondel a unique and powerful language [3].

. A reflective extension to Mondel, called RMondel, is also available. A reflective
programming language is one which allows methods of an object instance to be added

or removed at runtime.



CHAPTER 2. FORMAL SPECIFICATIONS 13

2.3.2 SDL92

SDL92, the most recent version of SDL, is the object-oriented extension of SDLSS [17).
It is backwards compatible with SDL88, with some very minor exceptions, and sup-
ports user-defined operators, export/import variables and procedures, and all of the
expected object-oriented programming constructs. A tool has already been developed

which translates from SDL92 to C++ [18].
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Estelle

Specification Example
Module Main Module Food
channel Interface
IP FromFeeder 1P ToMain

Figure 3.1: Diagram of modules comprising the TriState specification

One of the best ways to learn a new language is by example. This chapter will give
an introduction to the syntax and semantics of Estelle by presenting a simple exam-

ple specification which describes two modules and how they communicate. Further

14
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details on the language can be found in [25].

3.1 The TriState Specification

Figure 3.1 illustrates a system of communicating entities connected by channels. The
formal Estelle specification, which is called TriState, can be found in Appendix A.1.
Please refer to this appendix for line number references. This main module of this
specification has three states, and provides us with a very simple example which we
will use to illustrate some features of Estelle, and later in this thesis, the features of
Pet/Dingo and Tango as well.

In Estelle, specifications and modules are analogous to Pascal programs and
procedures respectively, and are declared in the same way. const, type, and var
declarations, scoping rules, and most other Pascal constructs are available in Estelle
as well. The important syntactical difference between Estelle and Pascal is that in
Estelle, all statements must appear inside transition blocks. A transition block is a
compound statement executed as a single atomic operation. The main specification
and each module body consists of an initialize transition, followed by any number
of additional transition blocks, followed by the keyword end. This is in contrast
to a Pascal program which has a main body consisting of just a single compound
statement.

Modules use interaction points (or IPs) to communicate with other modules. A
chunk of information sent through an IP is called an interaction, and interactions
are structured data types, which can contain a parameter list of valid Estelle data
structures.

The channel declaration on line 10 declares and groups 1':he different kinds of valid
interactions by role. The role of an IP determines which group of interactions can be
lt;ra.ns::uit;t;ed, and which can be received. The roles for our channel called interface

are receiver and sender. The data interactior can be sent through a sender IP,
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or received from a receiver IP. Conversely, data_response and close_connection
interactions can be sent through the receiver IP, and received through the sender
IP.

The module declaration for Main_type is on line 72. A module specifies a fi-
nite state machine, with states and transitions. This module class is specified by
an attribute systemprocess, and this means that it is a separate communicating
process in the specification. The possible Estelle module classes are systemprocess,
systemactivity, process, and activity.

Since modules can be nested just like Pascal procedures, it is possible to specify a
hierarchical tree structure of module definitions. A module A nested inside another
module B is considered thc child of B. The parent of all modules is the specification,
typically declared on line 1 of most Estelle specifications. The specification can also
be declared with a class attribute. |

The way module instances behave with respect to each other is dependent on
the way they are nested and attributed. Modules attributed with systemprocess
or systemactivity are referred to as system modules, and specify separate commu-
nicating systems within the specification. Modules with attributes are supervising
managers of their children instances, and since a system module can not have at-
tributed parents, this means that no supervising control may be imposed on one
from its parent module. A systemprocess attribute specifies 2 synchronous parallel
module, where the child modules of class process all execute transitions in parallel,
while .a. systemactivity specifies 2 nondeterministic module, where the child mod-
ules of class activity execute transitions without synchronization with respect to
each other. More information about module class attributes can be found in [25].

The IP declaration appears right after the module declaration, and defines an
interaction point called fromFeedexr which is connected to a channel on the receiver

end.
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On line 89, the valid states are listed for the Main_type module.

The transitions for this FSM begin on line 92 with the initialize transition,
which sets the state to Liquid and initializes some variables. Line 103 defines a
spontaneous delay-transition: any time the state is Nonliquid, the FSM goes to the
Liquid state after 3 seconds, and sends a data response to its IP.

The other transitions are taken depending on what is available to be read from
the input queue of the IP. On line 115, the transition rules for toGas are specified.

They are described below:

e There is an interaction which has not yet been “consumed” from the fromFeeder
interaction point, and it is a data interaction.

(This is the when fromFeeder.data clause).

o The I field of the parameter is greater than 0.
(This is the provided parameter.I > 0 clause).

The transition _toSolid is similar, except that it is taken when the I field is
less than or equal to 0. Finally the transition _-ToFinished will be taken only when
the I field is equal to 99. Notice however, that this is a nondeterministic transition.
Since the I field is also greater than 0, the FSM might enter the Gas state instead of
the Finished state. This is an example of a “bad protocol”, in the sensé that im-
plementations strictly based on this specification may have problems communicating
with each other, but the nondeterministic aspect of it provides us with an illustra-
tive example. An implementation which conforms to this specification can send a
data.response or a close.connection message when it receives a data interaction
with parameter.I set to 99. .

The Feeding Module has a similar structure to Main Module except that it sends
data interactions to its sender interaction point, and waits for data response inter-

actions after each one. After 10 data interactions, it sends a final data interaction
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with the parameter.I field set to 99, to signal that it is done. Since there are no
transitions from the dorne state, this process will deadlock after taking this transition.

On line 142, the modvar declaration begins. These variables are declared in the
scope of the main specification, rather than in the scope of one of the modules. If a
modvar is viewed as a pointer to a module, the init statement is analogous Lo o new
statement for modules. The call on line 148 causes a2 new process to be spawned, of
type Main. type, and the code which it must execute is the body defined as Main_body
(there can be multiple body definitions for each module type). Unlike a procedure
call, init statements execute immediately and flow continues to the next statement
in the calling block.

The connect statement on line 150 defines how the interaction points arc con-
nected. Semantic rules of Estelle state that only IPs for channels of the same type
but of opposite roles can be connected together. After the initialize transition has
been executed. the specification’s main process exits, and the two newly spawned
processes can communicate freely with each other.

Section 4.2 describes how this specification is translated into C++. Section 4.3

describes how it would execute under Dingo.
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Implementation Generation

Because of the strict syntax and semantic rules inherent in formal specifications,
it is not much more difficult to write an automatic implementation generator (also
known as an FDT compiler) than it is to write a compiler for a structured high-level
programming language. There are different issues and problems which come up when
designing an FDT compiler, however.

One problem is that the parallelism in a specification must be accurately reflected
in an implementation. Some compilers, when given a specification for multiple in-
dependent processes, generate a single-process implementation that schedules the
actions to be performed by each module, using heuristics when no synchronization is
required. Others generate a program that spawns other processes which communicate
with each other through IPC (Inter-Process Communication) for synchronization.
Others will simply not implement certain module systems for the sake of simplicity,
and leave it up to a programmer to hand-code this aspect of the implementation.

Since timing of events is crucial in many high-speed protocols, an FDT com-
piler must generate code which will respond to events fast enough, and with enough
accuracy, to actually follow the specified behaviour. Often, implementations for high-

speed or time-crucial protocols are written manually by programmers because auto-

19
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matically generated implementations are less efficient with CPU time.

Another problem with FDT compilers is that specifications such as the one given
in Section 3.1 do not specify low-level details. such as how structured data are encoded
and transmitted through channels. Therefore, some consistent way of implementing
the physical layer might be supplied by the compiler (as is the casc in Dingo). or else
must be added manually by a programmer.

Some Estelle compilers which are strong in some areas impose restrictions on the
structure of Estelle specifications. Effectively, these are compilers for subsets of the

Estelle language. The introduction of [37] mentions a few such compilers which were

available before Pet/Dingo was released.

4.1 NIST Integrated Estelle Compiler

Pet/Dingo, developed at the National Institute of Standards and Technology (NIST),
is the second NIST Estelle compiler. The first one, called the NBS Prototype Com-
piler [39], generated C code and simulated parallelism through a process scheduler.
Pet/Dingo is a major step forward, in that it takes an object-oriented approach to ~
specification generation and, for modules which are supposed to be implemented as
independent processes, Dingo generates independent processes which communicate
by sockets (if they are running on the same computer) or Remote Procedure Calls

(if they are running on different computers), and synchronize with each other as

specified.

4.1.1 Pet

PET, or the Portable Estelle Translator, is written C++ and Bison. Bison is a parser
similar to the Unix yace, except it has some enhancements in error recovery, and it

is produced by the Free Software Foundation.
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Pet performs a syntactic and semantic analysis of the Estelle specification, and
if the specification has no compiler-detectable errors, Pet outputs an object-oriented
static model of the specification.

Pet’s C++ class definitions include a hierarchy of def classes. This class hierarchy
contains 2 subclass to describe each possible Estelle construct, and is based on an
early definition of Smalltalk [38].

Each def subclass instance represents an identifier declaration or a statement, and
contains information about its lexic level, attributes, consistency check functions, and
a linked list of its related components, which are pointers to other def classes. Some
examples of def subclasses are: Attribute for module attributes, ComGroups, for
comments, and TypeDef, for type definitions. The TypeDef class would have a linked
list of Decl subclass instances, one for each type declaration.

When Pet reads an Estelle specification such as TriState, Pet first creates an
instance of a def subclass for the Specification declaration, and this is treated as
the “root™ object in this representation. The root object has a related component
list consisting of the def objects representing the definitions of type, interface, feed-
ing-module, main_type, modvar, and each of the specification’s transitions. The
feeding.module definition object has its own component list with pointers to def ob-
jects for the type and variable declarations local to its module. Each typedef object
has a component list for each of its type identifiers.

When Pet is finished reading the Estelle specification, it will have in memory, a
tree of def objects containing all of the static information that is described by the
original Estelle specification. The leaves of this tree are the most simple definition
types, which have empty component lists.

Class StoreObject will represent a structured object in a storable form, and
DefStore will store such an object as a file. Pet’s class library also includes an object,

restoreFrom, which will restore the def tree from a file created by DefStore, and
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this class is used by Dingo for the next phase in code-gencration.

4.1.2 Dingo

DINGO, or the Distributed ImplementatioN GeneratOr, can be thought of as the
second pass in the code-generation process. The executable program Dingo reads the
output of Pet into memory, organized as the same def tree which Pet stored. By
traversing the graph of pointers and objects, Dingo generates C++ code to define
objects based on each definition in the tree.

The C++ code, after it is coﬁpiled, must then be linked with Dingo's Estelle
runtime library to generate an executable implementation. This runtime library con-
tains an X Windows graphical interface, which permits the user to examine variable
values, a log of transitions taken by each module, and information about each mod-
ule’s current state. In addition, this runtime library contains base classes of certain
objects from which Dingo-generated objects inherit, to define the generic aspects of
an executable Estelle-based implementation. The code generation program and the

run-time library together will be hereafter referred to as the Dingo system, or Dingo

for short.

Generic Aspects of Dingo-generated objects

In the Dingo Estelle run-time library, base classes describe generic aspects of most
Estelle constructs. For example, a generic Estelle interaction is a chunk of data of
unknown structure, but the Estelle specification contains the type declarations which
specify the exact structure of each interaction type. Some aspects of an interaction
are common to all instances, such as the “point of entry”. Other aspects depend
on the interaction, but still must be present in all subclasses, so these methods are
virtual (defined for the superclass, but re-defined for each subclass). Examples of such

methods are: readParsFrom, a method which reads a stream of printable characters
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and interprets the information as the proper fields of a particular interaction, as
well as printOn, which will send all the information in an interaction to a stream
as a sequence of printable characters. The superclass of all interactions in Dingo is
called __Interact. Another example of an important superclass is that of the simple
interaction point, class _SIPtype, which has a queue associated with it, information
about the channel to which it is connected, and methods to enqueue and dequeue
interactions. The routines for transmitting interactions to the interaction point on
the other end of the channel vary depending on where the other module is executing
(it could be part of the same CPU process, or another process on the same CPU, or
another process on another CPU), so these are inherited methods as well.

To support the lifferent module classes in Estelle (see Section 3.1), each mod-
ule class is implemented as a subclass of the _MInstance class. These subclasses
are _System, _Process, and _Activity, while _Systen itself has two subclasses
—SysProcess and __SysActivity. Each module definition in an Estelle specification
is defined as the appropriate sub-sub-class of _MInstance, depending on its module
class attribute.

Each block of code (specification, module body, function, procedure, or transition)
as well as each structured object (such as an interaction), can have a block of memory
for variables which are accessible within its scope. Each block of memory is called a
frame. Frames get pushed and popped off of 2 GRM, or Gidba.l Reference Manager, as
the execution enters and exits these variable scopes. The GRM (class _GRManager)
is an object which manages an internal stack of frames, accessible through a method
getFrame which answers requests for pointers to variables, given the proper frame
index information and variable names. The proper frame index required for each call
to getFrame can be obtained at implementation generation time.

. Each Estelle transition is translated into 2 C++ function of the same name.
A transition scheduler called selAndExec is generated for each module instance.
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The scheduler is a sequence of complicated conditicnals which strictly depend on
the original specification, and when called during runtime, will select one fireable
transition and execute it. An example of selAndExec appears in Appendix A.2, and
its behaviour is described in sections 4.2.2 and 6.2.3. It is generated by the function

defSelExecFunct in the file cxxmod.cxx.

4.2 The TriState Implementation

A slightly modified version of Pet/Dingo was run on the TriState specification which
appears in Appendix A.l, to generate an implementation. A piece of the generated

code appears in Appendix A.2. Subsequent line number references apply to the text

in that listing.

4.2.1 Transition Code

Observe the functions _Init_Trans and _ToSolid which correspond to the Estelle
transitions of the same names. They are defined on lines 1 and 21 respectively.

Before the Estelle transition statements can be executed, a frame must be declared
which contains a structure of pointers to the local variables for this transition. In
the case of Init Trans, there is one local variable called I of type integer. In the
implementation, the variable is declared local to the function, but then a pointer to it
is placed in a frame structure which was generated for this particular transition. The
—GRM->enter statement pushes this frame onto the GRM stack, so that the variable
I can be accessed from the GRM in other blocks nested in this scope (in this case,
there are none}, or restored when a recursive function call returns. This is necessary
for many reasons, the most important one being that functions can not be nested in
C++, while in Estelle, they can.

Variables local to the module Main Body, such as the record V, are in the parent
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scope of the transition block. Since this transition needs to access V, it makes a call
to the GRM getFrame method, as shown on line 8, to obtain the proper address of
this record. The local variable called V becomes an alias to the element V in the frame
of the parent scope, which is of course, on the GRM stack.

After the variable scoping problems are resolved, the transition code, consisting of
Estelle statements which were translated into C++ (a simple process which involves
not much more than replacing Pascal operators with C+-+ operators) can be exe-
cuted. When these statements are complete, the frame is popped by the statement

—.GRM->1leave() on line 18.

4.2.2 Selecting a Transition

The method _selAndExec, which begins on line 39, looks fairly complicated, but
is relatively simple compared to the _selAndExec methods which can be generated
from more interesting protocol specifications. It will execute a transition if the timers
agree, and if the transition is “fireable” (that is, if all the transition conditions are
true).

If a transition is fireable, a part of code is executed which sets up the proper
frames and interaction pointers, as shown on lines 67-71, 84-92, 109-116, and 134-
141. _transBlock is a pointer to a function, and gets assigned to the location of the
proper transition function. Before the transition is executed, a call to the method
—wantToFire is made, which returns 1 with a probability of 1/N, where N is the
number of fireable transitions at that moment.

Finally, the __Exec block (line 150) is reached when a fireable transition wants
to fire. Frames get pushed onto the stack, and a call to __transblock is made (line
159). The state is updated, the consumed interaction is deleted from memory, the
GRM frames are popped, and selAndExec returns.
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4.3 The TriState Execution

After a C++ implementation is generated by Dingo. it is possible to compile and ex-
ecute it. Information provided by a Dingo-generated implementation after execution
includes a log of all transitions taken during execution, and a trace! of all interactions
which were sent through interaction points. All line numbers in this section refer to
text from Appendix A.3.

The trace of Feeding. body, starting on line 3, shows all of the interactions which
were sent from this module. Each entry is 3 lines long. The first line of each entry
begins with >> followed by the module name. The second line specifies the name of
the interaction point and the name of the interaction, separated by a colon. The third
line is a text representation of the information held in the interaction paramecter list.
This is a structured type, which can consist of other structured types. Each structured
type is enclosed in {curly brackets}. More information about the trace file format
can be found in Appendix C.2.3.

In our example, the data_type which is used for sending interaction data, consists
of a 10-element array of integers H, and three simple-type fields. They are: an integer
I, a boolean J and a character K. Booleans appear in trace files as either 1 or 0.
Character data appear as decimal integers representing their ASCII codes. We can
see on line 5 that the first data packet sent specifies that H contains even integers
from 2 to 20, I, an integer value of 0, J, a boolean true, and K, the ASCII character
number 1 (Ctrl-A). The last interaction sent from Feeding body is listed on line 36
and shows that the I field has the value 99, signalling the end of data packets.

The trace for M2in body begins on line 42, and shows that 11 data response inter-

1The trace file generation routines were never present in Dingo, but were added to Tango during
the early stages of development. Now, when Tango is given 2 normal Estelle specification to compile,
it generates an implementation which behaves the same way as a Dingo-generated implementation,
but also produces a module trace.
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actions were sent through the interaction point fromFeeder. This is the correct num-
ber of responses, since 11 data interactions were received. The log files clearly show
Feeding body taking alternate transitions send.packet and finished waiting, while
Main_body is oscillating between states gas, liquid and solid. The final transition
taken by Main_body was ToFinished, and a close_connection was sent to the IP,
although it could have just as easily been a transition toGas as the specification
is nondeterministic and can take either transition when the I parameter is 99 (see
Section 3.1).

The trace obtained from this execution will later be used as test data for trace

analysis, but it could also be used as a test case for an IUT.
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Protocol Verification and

Conformance

Communication software, like most large pieces of software, goes through a develop-
ment life cycle which resembles that of software engineering. Protocols, however, need
to be tested much more rigorously than other more popular, traditional programs,
because rather than interfacing with humans, a piece of communication software inter-
faces with another program. Slight deviations in behaviour which might be tolerated
by a human user can cause major communication problems between software.
Communication protocol verification and conformance testing each comprise a
stage in the communication software development life cycle. The first, protocol ver-
ification, typically performed during the development of the specification, is used to
verify that certain properties of correctness hold in the specification, such as exhi-
bition of desired behaviour, proper handling of invalid input sequences, and lack of
deadlocks. The second, conformance testing, applied during the implementation of

the software, involves testing conformance of the implementation to the specification.
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5.1 Verification Methods

There are several approaches to protocol verification. They can be grouped under

two categories: dynamic analysis and static analysis [7].

5.1.1 Dynamic Analysis

Dynamic analysis can be classified as either ezhaustive or simulative [7]. The most
popular exhaustive method is called reachability analysis, especially useful for
FSM-based FDTs. It involves exhaustively exploring all the possible interaction
sequences of two (or more} FSM-based modules in a protocol specification. A com-
posite, or global state of the system is defined as a combination of the states of each
module involved. From a given initial state, all possible events are generated, leading
to a number of new global states. This process is repeated for each of the newly gen-
erated states, until no new states are generated. For FSMs, this is a finite process,
since there is a finite number of possible global states. This method determines all
of the possible outcomes that the protocol may achieve.

Reachability analysis is useful for detecting situations where the processing of a
receivable message is not defined, or where the transmission medium capacity is ex-
ceeded. Deadlocks (global states with no exits) are easy to catch as well. [43] provides
more detailed descriptions of reachability analysis techniques. They are, however, dif-
ficult to apply to some EFSM-based specifications of the size and complexity found in
most practical applications, because the information comprising an EFSM state can
include variables, as well as dynamic memory, making the number of true “states” in-
finite. Even without supporting dynamic memory, EFSM-based reachability analysis
has huge memory and processing requirements.

Simulation analysis restricts the verification to only selected paths among the
possible executions. Simulation is useful for real-size specifications, as the memory

and processing requirements for simulation are not as great as those of reachability
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analysis. The process of deciding which paths to simulate can involve random or

probability-based exploration.

5.1.2 Static Analysis

Some tools exist which perform a static analysis of the text of the specification. These
tools are useful for finding clerical errors related to scope rules, type conformance,
and other semantic conditions. Compilers which translate from a formal specification
language to another high-level language often perform this kind of analysis as part
of the code generation process. Some forms of static flow analysis are also possible
but are limited in utility compared to reachability analysis.

Another approach, program proofs, involves the formulation of assertions which
reflect the desired correctness properties of a protocol. Sometimes, these properties
are supplied by the specification, but often it is up to the verifier to formulate them.
This approach is suitable for dealing with the full range of protocol properties to be
verified, not only the general properties such as deadlocks and missing transitions.
Ideally, any property for which an appropriate assertion can be formulated can be
verified, but this process is rather difficult to automate, and usually requires a good
deal of ingenuity on the part of the verifier [10].

5.2 Conformance Testing

Conformance testing involves comparing the behaviour of an Implementation Under
Test (IUT) to that of its specification. Automated tools are used to achieve this goal.
Typically, there are three stages in conformance testing:

1. Test Suite Generation: A set of test cases is generated from a formal {or

sometimes an informal) specification. A test case is typically a collection of
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interactions to be fed into an IUT, often composed with additional information

about the IUT’s expected response.

[

. Test Case Execution: The test cases generated from the previous step are

fed into an IUT, and the results are collected.

3. Test Result Analysis The observable outputs from the IUT are analyzed

with respect to the test case’s expected results.

5.2.1 Test Suite Generation

Test suite generation for FSM-based specifications involves the generation of a collec-
tion of test cases [20]. Some automated techniques for test case generation incorporate
some form of state space search, but manually-generated test suites are also common.

A test case is typically a sequence of inputs which could be “fed” into an IUT,

‘ perhaps augmented with information about the expected observable response from
the IUT. Sometimes, the test case is expressed as 2 tree of interactions, where the
nodes traversed while following a path from the root to a leaf represent an input
sequence to be fed into the IUT. When the test case is expressed as a graph with
cycles, generating a set of input sequences is a little more complicated, but still
straightforward.

If an IUT based on the specification fails a test case, it can be said that the IUT
is non-conforming. However, we can not say anything about an IUT that passes our
test cases, unless we can prove that the test cases we chose to execute are complete
enough to cover the faults for which we are testing.

A complete test suite for an FSM is one that covers every possible fault in an

. implementation. An IUT which passes every test case in a complete test suite is free
of faults. Such test suites are inordinately long, and usually infinite in length. Ex-

haustive testing, or executing every test case in a complete test suite, is impracticable
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from both a theoretical and a practical standpoint.

Fault models are used to avoid exhaustive testing and to reduce the size of a
test suite, while still finding most faults in an IUT. A fzult model characterizes a
subset of possible “mutant”, or noa-conforming implementations of the specification
in behavioral terms [31). By definition, executing a test suite which “covers™ a par-
ticular fault model is guaranteed to show any existing faults of that type in an IUT.

Some examples of the types of faults used in FSM testing [4] are:

Qutput faulls: An output fault exists when, for corresponding initial states and
inputs, an IUT outputs something which does not follow the FSM specification.

This fault model is used in all test-coverage techniques.

Transfer faults: A transfer fault exists if, for the corresponding initial states and

input, the IUT enters a different state than that specified by the FSM.

Transfer faults with additional states: There are certain situations when an 1UT
can enter a state which does not correspond to one in the FSM, in which case,
additional states must be added to the fault model to reflect possible 1UT

behaviors. When the IUT enters such a state, this is a transfer fault to an

additional state.

If » is the number of states in the specification, it is assumed that all possible
IUTs have at most m states, where m might be greater than n. As (m — n)
increases linearly, the number of test cases in the suite grows exponentially, so

this is an expensive fault model to use [20).

Additional transitions: For nondeterministic machines, there can exist multiple ac-
tions defined for a particular input from 2 particular state. In these cases, the
fault model would include additional transitions to reflect possible JIUT behav-

tors.
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One of the important issues in fault coverage is that of generating a test suite which
is both manageably short and reasonably thorough, iwo conflicting goals which force
one to make a tradeoff of one in favor of the other [20]. In addition, it is difficult to
prove that, given a test suite which covers a particular fault model for a particular
specification, there does not exist another test suite which is smaller (contains fewer
test cases) and covers the same model. Thus, eliminating redundant test cases is also
an interesting probiem.

Automated fault coverage techniques, when used in conformance testing, have the
advantage of being very thorough in finding faults in an implementation, but most
existing methods are suited for deterministic, minimal (without redundant states and
transitions), fully-specified (for any input sequence, from any state, some response is
specified) specifications.

It is possible to generate a suite that covers faults in nondeterministic specifica-
tions. Typically, such a technique needs to model an arbitrary nondeterministic FSM
as a deterministic FSM [19], or a minimal FSM, or an “observable”™ FSM [2§], to
satisfy assumptions which were made in the proof of the technique. A problem which
arises from using such techniques is that the tests are not necessarily repeatable; that
is, for a given sequence of input, there may be different resulting expected output

sequences depending on the internal choices of the specification / implementation [20].

5.2.2 Test Case Execution

This step in conformance testing is fairly straightforward, involving the feeding of
test case inputs into an IUT and capturing the inputs and outputs in a trace. The

IUT specification, test case, and the obtained trace can provide enough information

! An observable FSM is one where an input/output pair a/b uniquely identifies a transition from
a particular state (i.e. no other transitions with the same input/output pair can exist from the same
state). An observable FSM can still be nondeterministic, as multiple transitions from the same state

can take a as input.
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to determine if the IUT passed or failed the test.

However, if the IUT is nondeterministic. complete guaranteed fault detection is
theoretically impossible. For example, if it is desired to test the IUT for a number of
nondeterministic reactions to a given input sequence ¢, the test case must be applied
to the IUT repeatedly until all of the behaviors are exhibited. If the IUT has a
fault, such that one of these possible specified reactions to ¢ is never exhibited., this
means that no number of repetitions of the test case will give conclusive evidence that
this fault exists, for it may be that the IUT simply chose not to take a particular
nondeterministic transition each time the test was executed.

To get around this problem, one usually makes a so-called complete icsting as-
sumption, which states that after a finite numbe. of repetitions of a particular test
case, if a certain behaviour which exists in the specification is not exhibited in the
IUT, then there exists a fault in the IUT. The quality of the test increases with the
number of repetitions of the test case. New techniques [19] [28] for automated test

suite generation of nondeterministic protocols make this assumption.

5.2.3 Test Result Analysis

Test result analysis involves analyzing the IUT’s observable behaviour in response to
each test case executed with respect to the specification. Usually, the only observable
behaviour of an implementatica is 2 “trace”, or a log of the interactions sent through
the IUT’s interaction points. When only the observable interactions are used in test
result analysis, this kind of testing is called “black box™ testing. An oracle is needed
to determine if each trace could have been generated by an implementation which
follows the specification.

A trace analyzer provides the function of this oracle and determines, usually by
simulation, whether a trace is valid with respect to a formal specification. An invalid

trace is a trace which contains an interaction which could not have been generated by
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an implementation which follows the specification. Below are some other situations

where a trace analyzer could be useful.

¢ A deterministic implementation which is accepted as “correct” can be used as
a an operational specification [22] during the development of 2 formal spec-
ification, which then can be used later to generate implementations on other
platforms automatically. In this situation, the formal specification can be tested
for conformance to the operational specification. Since the operational specifi-

cation is deterministic, it also can be viewed as a trace analyzer.

¢ It may be necessary to take two human-generated implementations which are
on different platforms and test the interoperability between them, in which case
a trace analyzer could act as an “arbiter” and provide diagnostic information

about the behaviour of each implementation.

. e A specification which is accepted as correct is used as a test verdict checker, to
determine if the test case result (pass or fail) attached to a particular trace is

correct with respect to the specification.

Trace analyzers can run in real-time, monitoring an implementation as it is ex-
ecuting, or they can run in a batch-mode, processing traces which were collected
during previous implementation executions. Some communicate with other modules
over a network, others simulate the execution in one process. Different “test archi-
tectures” are used under different situations [9], such as when the IUT communicates

with more than one module at a time.

Nondeterminism

When the specification is nondeterministic, trace analysis may require backtracking.
Imagine a simple multiplexer specified by a nondeterministic EFSM M with one FSM
. - state, and three interaction points; A, B, and C. The trace to be analyzed contains
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2 input interactions: “a” arriving at A. and “b” arriving at B. The 2 interactions
which appear in the output trace through interaction C are “ab™. M has threc

nondeterministic transitions which look like this:

1. If available, read input from A and store in queue.

[

. If available, read input from B and store in queue.

3. If available, output the next element in the queue to C.

Assume the queue structure is a dynamic data structure of infinite size.

If the two inputs arrive at the same time, there are two possible outputs for this
module: “ab” and “ba”. The possible transition sequences which generate “ab™ are:
[1,2,3,3], and [1,3,2,3]. The possible transition sequences which gencrate “ba” are:
[2,1,3,3] and [2,3,1,3].

Since all four transition sequences are possible, a trace analyzer can begin by
attempting one of them, and determine if it was the right choice. If the trace analyzer
picked [2,3,1,3] as the first sequence to attempt, it would nced to backtrack after
executing transition 1, due to the output mismatch. In order to try another transition
sequence [2,1,3,3], the trace analyzer would need to backtrack to the state right after
taking transition 2, restoring all the variable values, as well as the queue state (which
only contained “b”), to be what they were when transition 2 was executed for the
first time.

Trace Analysis on nondeterministic specifications can be thought of as a form
of state space search, where the search tree consists of nodes (states) and edges
(transitions). A trace is “valid” if there exists at least one “solution”, or a path
(sequence of transitions), from the root of the tree (initial state) to a leaf node
(another valid state), which generates all of the interactions in the trace. If the entire
state space in the tree is searched, and no solution is found, the trace is “invalid”.

Usually, depth-first search strategy is used for trace analysis, although for parallel
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or multi-threaded testers with plenty of memory, a breadth-first strategy might be
considered as a faster alternative [2]. For realtime trace analysis, simple depth-first

search is not sufficient, as explained further in chapter 7.

Non-Progress Cycles

In some specifications, there can exist a sequence of spontaneous transitions, from a
particular FSM state to the same state again, which produces no output. If input is
available to be read at this time, this is called a non-progress cycle, and can result in a
search tree of infinite depth. When such a cycle exists in the specification, performing
a complete state space search may be impossible. Sometimes an assumption is made
that the length of a non-progress sequence of transitions can not exceed a certain
number during a trace analysis, in order to force a verdict on any test case, but this
can still result in a state space explosion of unmanageable size, and if the trace is
not found to be valid, then all that can be said about the trace is that given the
constraints on the search, no solution was found.

Sometimes, a non-progress cycle is entered while waiting for a time-dependent
event. For trace analyzers which do not keep track of the time of events, such a
cycle should be removed from their specifications. In other situations, infinitely
cycling through the same states without making any progress is called a “livelock”
which, from the black-box perspective, is indistinguishable from a deadlock. Protocol
specifications should be free of possible livelocks before trace analyzers (and, of course,

implementations) are written for these protocols.

Diagnostic Information

Providing useful information about the IUT fault in the event that the trace is invalid
is a non-trivial task for the trace analyzer designer. It is easy to provide informa-

tion about which transitions in the specification were attempted when “following”
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the invalid trace. It is also straightforward to implement the error messages like “in-
teraction ¢ in trace ! mismatches with the interaction generated from specification
at this point in the search”. However, for nondeterministic specifications, it can be
that faults in an IUT have nothing to do with the transitions taken in the specifi-
cation during a trace analysis, and often more useful information is desired in any
case. Tetra [2], a trace analysis tool for LOTOS specifications, implements an error
explanation search routine that can guess at what is wrong with an invalid trace, if

it is due to a mismatched, missing, or extra interaction in the trace.

Initial YUT States

One of the most daunting problems a trace analyzer can face arises from the fact
that the initial IUT state is not always known at the start of the trace. In the EFSM
model, where variables and other parameters comprise the EFSM state, the number
of possible FSM states multiplied by the number of possible variable values is the
number of possible initial EFSM states. It may take an inordinate amount of time
to determine the initial EFSM state, given that there are so many possible ones from
which to choose. If the EFSM model also supports dynamic memory, this can yield
an infinite number of possible initial EFSM states. At the moment, most existing
trace analyzers assume that traces start when an IUT is in an initial state, or in one

of 2 small set of possible initial states.



Chapter 6

Tango

6.1 Introduction

Several trace analyzers have been written for specific protocols such as as SNA [14],
MAC [29], Class 4 Transport {26] and X.25 {32], but products such as these were, for
the most part, developed by humans, had to be tested very thoroughly before they
were put to use, and were not easily adaptable for use on other protocols. A more
general purpose tool, that can be used to analyze traces of any protocol specified in
a particular specification language, is presented here.

This chapter delineates the requirements and the development of a trace analysis
tool generator for Estelle specifications and static trace files. A static trace file is one
that does not grow during the trace analysis. For on-line trace analysis, the size of
the trace to be analyzed is not known, and grows during the aaalysis. A procedure
for analyzing such traces is discussed in chapter 7.

The approach taken was to modify Dingo (see Section 4.1.2 or [36]) in such a
way that instead of simply generating an implementation that could be executed, the
compiler would generate a trace analyzer for one module in the specification. The

trace analyzer, in turn, would fire transitions depending on the trace information

39
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supplied as the input to that module, and compare its generated output to the traced
output, backtracking when necessary.

The result of our work, Tango. also known as the Trace ANalvsis GeneratOr,
does just that. It generates a trace analysis tool based on any single-module Estelle

specification, which can analyze traces using relatively small amounts of memory and

CPU time.

Original 1-Module
Estelie ‘ Estelle
Specification Specification
\¥
.°bjl
ango | Representation

| Tango lib C++ Source { NIST lib

l trace file

Figure 6.1: The Tango System

Related Work

A trace analysis tool for specifications written in LOTOS [11] has been described
in [2]; it uses a state-space exploration approach similar to the one described in
this paper. Like Tango, it concentrates on the (possibly nondeterministic) control

flow of the specification and assumes (except for simple value generation by internal



CHAPTER 6. TANGO 11

interactions) that the data parameters of output interactions can be (deterministi-
cally) deduced from the input parameter values. Another approach, TESTVAL, is
described in [27) [42]. Applied to Estelle specifications, this approach requires that
the specification be manually transformed into Estelle.y which contains no state lists,
dynamic memory, procedures or functions, and the data structure definitions must be
defined in ASN.1. Given a specification in Estelle.y, TESTVAL generates set of paths
satisfying the input and output messages in the test case, and symbolic evaluation
is used to detect and delete infeasible paths in that set. The trace fails if the set
is empty. This approach is quite elegant from a theoretical standpoint, but certain
aspects of the initial transformation are not automated, making the generation of a

trace analyzer for an arbitrary Estelle specification less straightforward.

6.2 Requirements Specification

A valid specification for Tango must contain only one module body, which specifies
the behaviour of the module to be tested in the IUT. This module is called the TAM,
or the Trace Analysis Module. Trace analysis on multiple modules executing concur-
rently is more complicated, since observable behaviour from one module considered
invalid with respect to the trace can be a result of the invalid behaviour of another
module in the system.

The TAM can have any number of interaction points, and these must be connected
by channels to “feeding” modules in the modvar section of the specification. Feeding
modules, when executed, will read information from a trace file and feed the proper
interactions as inputs to the TAM.

The single-module specification with feeders must be translated into an object-
oriented static representation by Pet {see Section 4.1.1) and then translated into C--+-
by Tango. The C++ source is then compiled by the GNU G++ compiler into an
executable TAM.
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Implementing a backtracking trace-analyzer by adding routines to Dingo required

the following:

o Saving TAM states. The information comprising a TAM state includes the FSM
state, an image of all variables, queue states. and dynamic data. Any time the
TAM state must be saved, a copy of this information is placed into an object

called _state_info, which is then pushed onto a stack for later retrieval.

o Restoring TAM states. All the information which was stored in the _state.info
must be elegantly and quickly copied into the proper places for the TAM exc-

cution to continue at the point where it was when the image was saved.

e Loading Trace Files. Trace information, both inputs and outputs, stored in a

text file, must be read in by the trace analyzer and interpreted as __Interact

. objects. The interactions from the output trace must be stored somewhere and
readily accessible by the TAM for comparing to the generated output.

o Generating feeding modules. In addition to a TAM, Tango must generate a
“feeding” module process for each one declared in the specification. Feeding
modules run in parallel with the TAM. They read input trace information from
the trace file and send it into the TAM’s input queues. This way, the interactions

are available to be read from the interaction points inside the TAM.

o Comparing interactions for equality. No routines were generated for comparing
structured objects for equality by Dingo, so the generation of == operators for

each structured object was added to Tango.

o Generating a list of fireable trensitions. When a module is about to fire a transi-
. tion, the Dingo-generated implementation chooses one of the fireable transitions

and forgets about the rest (see Section 4.2.2). A TAM must generate a list of
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all fireable transitions, save this list for later possible backtracking, and then

the TAM may fire one of the transitions from this list.

o Depth-First Search. After the above features are implemented, it is fairly
straightforward to write a depth-first search routine, which generates and searches
through a tree of possible transition sequences for a path which satisfies the

trace.

Some of these steps are described in more detail below.

6.2.1 Saving and Restoring TAM States
Non-dynamic Variables

All non-dynamic variables are accessible through a Global Reference Manager (GRM),

. which is an object belonging to each Module Instance object that is executing, and it
contains a stack of pointers to frames, each frame containing pointers to structured
data objects.

The frame on the bottom of the GRM stack contains pointers to all global vari-
ables, and other frames are pushed onto the stack when scopes are entered, and
popped when scopes are exited. The actual variables occupy automatic memory
(memory allocated when a function is called, and freed when the function returns)
in the generated C++ methods for each transition block. In order to save an image
of all variables on the GRM stack, the following steps must be taken:

o Another GRM is created, with frames which are exactly the same structure as
the ones in the active GRM.

. o For each new frame on the new GRM, memory is allocated for each of the frame

variable pointers.
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o The values are copied from the memory pointed to by the frames on the active

GRM 1nto the newly allocated memory for the frames in the new GRM.

e A pointer to the new GRM is placed into the _state_info objecct.

A bottom-up approach was taken to solve these problems.

Frames are custom-generated for every possible transition block and interaction.
Transition blocks without local variables have frames without any data pointers
in them, but they still appear in the generated implementation. Below are some
frames which were generated by Dingo when run on the TriState specification in
Appendix A.l.

// frame for the _Data interaction
struct __frame_Data {

_Data_type* Parameter;
};

// Frame for Module _Feeding body
struct __frame_Feeding_body {
_Interface* ToMain;
~Integer* Num_packets;
-Integer* I;
_Data_type* P;
s

// Frame for transition _Send_packet

struct __frame_Send_packet {
_Integer* I;

3

As shown above, all local variables in ..Feeding.body, P, I, and Num.packets
as well as channel pointers, appear in _frame Feeding body. For the purposes of
backtracking, only the variables must be copied.

One advantage of object-oriented languages is that all Estelle structured variables

can be translated into objects with constructors (for creating a new instance of the
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same type), and assignment operators (for copying values from one object to another
of the same class). These methods were already implemented for Dingo-generated
implementations. Getting frames to allocate and copy themselves is a little more
complicated, but can be achieved using similar programming constructs.

The first step involves giving all frames 2 common superclass, _frame_generic

with virtual methods for the following:

¢ alloc.decls: For each variable pointer in the frame, call its class constructor,

to allocate memory for that type of variable.

¢ dup.decls(_frame generic*): Copy data from locations pointed to by “this”

frame into locations pointed to by the frame of the argument.

s free decls: De-allocate the objects pointed to by each variable pointer (useful

when a _state_info object is no longer necessary).

¢ clone_frame: returns a pointer to a clone of the frame, by calling the frame’s
constructor, alloc_decls, and dup-decls.

Next, it is necessary to make Tango generate frame objects which inherit from
-frame.generic, and custom methods to override each of the virtual ones above.

Below is an example of what Tango generated for the _Feeding Body module:

struct __frame_Feeding body : public __frame_generic {
-Interface* ToMain;
void alloc_decls();
void free_decls();
void dup_decls(__frame_generic*);
--frame_generic *clone_frame();
-Integer* Num_packets;
~Integers* I;
~Data_type* P;

};

void __frame_Feeding body::alloc_decls(){
Num_packets = new _Integer;
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I

P
3
void __frame_Feeding body::free_decls(){

delete Num_packets;

delete I;

delete P;

new _Integer;
new _Data_type;

¥

void __frame Feeding_ body: :dup_decls(__frame_generic *destination){
--frame_Feeding_ body *dest = (__frame_Feeding body*) destination;
*(dest->Num_packets) = *Num_packets;
*(dest->I) = =I;
*(dest->P) = *P;

¥

--frame_generic *__frame_Feeding body::clone_frame(){
__frame_Feeding body *retval = new __frame_Feeding_body;
retval->alloc_decls();

" dup_decls(zetval);
return (retval);

The final step, making a method for the GRM that will clone itself, is relatively

simple, and involves not much more than cloning each frame on the GRM stack.

Dyuamic Variables

A dynamic memory manager (class _DRManager) maintains a linked list of _DREntry
objects. Each entry contains an address, a size, and a data pointer. Each timea call to
new is made on an Estelle data structure pointer, an entry is added to the list which
contains the address and size of the new memory block, and the data field remains set
to null. Each time a call to dispose is made on an Estelle data structure pointer,
the corresponding entry in the list is removed. This way, only the memory blocks
with corresponding entries in the _DRManager are the ones used by the module at
any given moment.

When the TAM state must be saved, a copy of the _DRManager list is made, and
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placed into the _state_info object. leaving the original one unchanged. Then. the
linked list in the copy is traversed. memory is allocated for the data field of each
entry, and finally, memory is copied from the location pointed to by address into the
newly allocated space. The contents of all dynamic memory in use that that moment
is then available for future possible restoration.

When the TAM state must be restored. the _DRManager copies the data back in
the other direction.

This approach is fairly simplistic, and works only when the TAM never de-
allocates memory between a save and a restore. In the event that the TAM does free
memory, a memory fault will result from copying the saved info from the old copy of
the _DRManager into its former location in memory. Since the former memory loca-
tion might be used for something else. the memory can not simply be re-allocated on
demand.

Two solutions to this problem are proposed here:

e Never de-allocate dynamic memory, so it will always be possible to copy a

dynamic record back into its former memory location on backtracking.

o Kecp track of all pointers to dynamic memory, and when re-allocation of dis-

posed memory is necessary, adjust all pointers to the old memory location so

they point to the new memory location.

The first approach results in a considerable amount wasted memory at runtime,

but is very simple to implement. This was the approach taken in the first working

version of Tange.
The second approach, however, was implemented in the current version of Tango.
One field was added tc the _DREntry object, status, which can be either deleted

or active. The Tango code-generation routines had to be modified so the following

operations were supported:
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Figure 6.2: An example DR Manager

e Any de-reference of a pointer in Estelle becomes a double de-reference in the

C++ implementation.

e new(p) As before, a new entry is created in the DRManager, and the DREn-
try’s address field will point to the new dynamic record. Instead of setting p
to be another direct pointer to the same dynamic record, p will point to the

DREntry’s address pointer. The stztus will be set to active.

e dispose(p) De-allocates the memory pointed to by the DREntry’s address,
and marks the status field of that entry as deleted.

e On backtracking, two DRManagers are consulted before data is restored: the
. saved one, referred to as the source, and the active one, in the MInstance,

referred to as the target. The following cases must be handled:

. 1. Memory pointed to by 2 DREntry in the target which does not have a
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corresponding DREntry in the source to be restored should be de-allocated.
These are objects which were allocated after the state to be restored was

saved, and are no longer necessary.

[E]
H

Any DREntry marked as deleted in the target which has a corresponding
active DREntry in the source must have its address pointer re-allocated,
and its s*atus pointer set to active again. These are elements which were
de-allocated after the state to be restored was saved. Since each Estelle
pointer is a pointer to a pointer in the DRManager, rather than a pointer to
the dynamic memory itself, a double de-reference will result in the correct

area of memory being accessed.

3. Any DREatry in the target which has an active corresponding DREntry
in the source can have the memory pointed to by its address field over-

written as before.

In a depth first search, restoring a state implies restoring to an ascending state
in the search tree. During a restore, it is acceptable to remove all DREntries in
the target DRManager which were allocated between the save and the restore, as
they will never be needed again. Therefore, it is possible to maintain a one-to-one
correspondence between the n elements in the source list, and the first n elements
in the target list, where n is the number of new statements executed while taking
transitions which form a path from the root node to the node to be restored.

Because of the one-to-one correspondence in depth first search, it is possible to

write a restore operation which performs the above task and requires only one traver-
sal of each list.

Queune States . RN

Since the channels are asynchronous, there is a queue associated with each interaction

point, containing all of the inputs which arrived but were not yet consumed. The
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queue state is an important part of the TAM state.

Some different approaches to saving a queue state will be discussed. At first one
might try creating a copy of the queue, where each element in the newly created
queue 1s a copy of an element in the queue to be saved. Then, upen restoring, the
active queue along with all of its elements is destroyed, and the copy is put in its
place. When there is frequent backtracking, this approach, with its high computation
and memory requirements, is not very practical. In any case, Estelle does not permit
the changing of data elements in the queue, so saving the data and restoring it is a
waste of resources.

A more practical approach would just save the information required to have the
next enqueue and dequeue operations perform as they would have when the state was
saved. Therefore, the de-queued elements must be available somewhere for future
restoration.

The queue in Dingo is an object of type DList, a double-linked list, with methods
for traversing, adding, and removing elements anywhere in the list. DList also has
methods enquene and dequeue which, when they are the only methods used for
adding and removing elements from this list, provide an implementation of a FIFO
queue. Dingo implements a channel queue (in class _SIPType) using this DList.

In Tango, the method for dequeue was re-written, so that instead of actually
removing the element from the DList, a private member field of DList called next,
which points to an element in the list, is consulted to determine the next element to
be dequeued, a copy of that element is returned, and the next pointer is updated to
point to the following element in that list *.

Using this approach, no element is actually removed from the DList, and to restore
the queue state, all that is necessary is the restoring of the value of the next pointer,

and removing the elements which were enqueued since the save-state operation.

!Later in the development of Tango, it became necessary to change the dequeue method again,
50 it would not copy the interaction! The reasoning is explained in Section 6.2.3
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In fact, the task is easier than described above. Since, during trace analysis,
all interactions which are sent out through interaction points from the TAM are
analyzed immediately for conformance to the trace, this means that interactions sent
by the TAM are never placed onto a queue, and thus, never need to be removed on
backtracking. Therefore, the only information needed in the _state_info for each
queue is the next pointer. History of the enqueued elements will always be available

in the queue itself.

6.2.2 Trace Files

While the IUT is being traced, the inputs sent to the IUT as well as the outputs
received by IUT must be saved into a file. These interactions are all necessary as
input to the TAM when the trace is to be analyzed. The format of a trace file is
usually simnpler when it describes the interactions going through just one channel,
but because the TAM can have any number of bi-directional channels, Tango trace
files must contain information about from which channel each interaction was traced.

An example of the format for the TAM’s input is described in Section 4.3, shown
in Appendix A.3, and the format is specified informally in Appendix C.2.3. This
format was chosen because Dingo already has methods for the stream input/output
of the interaction parameter lists, and those methods are used for reading and writing
trace files in Tango.

Each module spawned by a2 Tango specification has a trace file manager (class
tfman). The tf.man keeps an array of ip.queue siructures, one for each interac-
tion point in that module. Before a module begins execution, tf _man’s constructor
automatically reads each interaction in the trace file. If the interaction is an outpu.t
originating from that module, it is enqueued into its corresponding ip.queue.

When the TAM executes an output statement, a call to tf.man: :check output
is made. This method determines if the interaction being sent through a particular
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interaction point exactly matches the interaction which appeared next in the trace
(which is stored in one of the tfman ip_queues). If there is a match, the proper
tfman.ip.gueue next pointer is updated so that a subsequent call to check.output
will compare the output to the following interaction in the trace file for that 1P,
The object tf.man must be able to save and restore its state in the event of
backtracking. Since tf_man uses the same DList structure for its queues as SIPType.

a list of next pointers, one for each ip_queue, is sufficient for saving and restoring

tfman states.

6.2.3 Generating a List of Fireable Transitions

The Dingo-generated routine for each module body, —selAndExec, is used as a model
for the TAM method, __generateFireable. The method generated for TriState is
shown in Appendix A.4. _generateFireable uses the same conditionals for deter-
mining if a transition is fireable as its ..selAndExec counterpart, but instead of setting
local variables for the transition frames, interaction, and transition block, a structure
of type _trans.info is created, and this structure must contain all of the information
required for executing 2 fireable transition. For each transition which could have been
fired by ..selAndExec, a _trans_info object is appended to a double-linked list, and
a pointer to that list is returned by __generateFireable.

It was during the development of _generateFireable that it became apparent
that some parts of Dingo were not written in a very object-oriented fashion. For
example, in the ._selAndExec method featured in Appendix A.2, the interaction
pointer _cinter is assigned to point to the first interaction in the FromFeeder queue,
on line 77. Then, this interaction is deleted directly by __selAndExec on line 159.
This means that no matter how thoroughly the methods for _SIPType protect the
interactions in the queue, it is still possible that the interactions will be de-allocated

without the knowledge or consent of _SIPType. All delete statements which applied
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to interactions were removed from Tango to prevent this from happening. After this
was done, it became obvious that the dequeue operation of DList did not need to
return a pointer to a copy of the interaction being dequeued, but a pointer to the
actual interaction itself, as it did before (see Section 6.2.1). Otherwise, considerable
amounts of memory would be wasted.

The frame pointers in __selAndExec point to frames which are declared locally to
--selAndExec, on lines 51 and 52. Saving pointers to these frames and exiting from
—-selAndExec will cause memory errors, since these pointers will point to de-allocated
automatic memory. _generateFireable must place pointers to copies of each frame
in the _trans_info fields, and thus, clone.frame is used to this end, as shown in
lines 56, 85, and 114 of Appendix A.4.

Since a _trans_info object should be destroyed after executing its transition, a

destructor for _trans_info which de-allocates its pointers to frame copies is necessary.

6.2.4 Depth-First Search
The algorithm for depth first search looks like this:

1. Check if all inputs were consumed and all outputs verified. I so, output a
successful result and exit

0]

Generate fireable transitions. If there is more than one possible transition, save
the current TAM state.

3. Choose one of the not taken transitions from the list, mark it as “taken” and
execute it.

4. If there were no possible transitions, backtrack and goto step 3
5. If outputs from this transition were invalid, backtrack and goto step 3
6. Goto step 1

Backtracking involves finding the deepest point in the search which contains un-
explored transitions, and restoring the state, and the list of fireable transitions from
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o
that state. In the event that all possible transitions are searched, the TAM outputs
a “trace invalid” result, and exits.

The routine which performs the depth first scarch is the method called startTAExec

and is defined for the class _System, used for all gencrated TAMs.

6.3 Runtime Options

After the initial required features were implemented, various enhancements were made
to the Tango system to make it more useful in practical applications. These are all
referred to as runtime options, and using them is described in the Tango Tutorial,

Appendix C.2.4.

6.3.1 Initial State Search

Often, an IUT is executing for a while before a trace is collected, in which case the
initial state of the IUT is not known. Sometimes, it is desired to analyze such traces.

By default, the TAM fires the initialize transition and then starts analyzing
the trace. Tango supports an optional initial FSM state search. If the trace is found
to be invalid when the TAM begins analysis from the default initial FSM state, the
TAM will backtrack to the point right after the initialize transition was taken,
choose another initial FSM state, and begin the analysis again.

It should be noted that when the DFS begins, the TAM currently assumes that
the values of all IUT variables and dynamic memory are initially left as set by the
initialize transition block. In the event that they were changed in the IUT before
the trace was collected, this might cause an “invalid trace” result on a valid trace.

It is computationally impractical to try all possible initial TAM states. In the case
of Estelle, they may be be infinite in number due to the fact that Estelle supports
dynamic memory allocation. It is frequently not sufficient simply to try different
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initial FSM states, as Tango does. Another approach for handling partial traces is

discussed in Section 9.2.3.

6.3.2 Interaction Relative Order Checking

The order of the interactions, as they appear in the trace file, can be interpreted in 2
number of ways. In all cases, if two interactions going in the same direction through
the same interaction point appear in the trace file, the order in which they appear is
observed and checked by the trace analysis tool. However, the order of interactions
which go through different interaction points, or through the same interaction point
but in different directions, can be observed (and checked) or ignored by the TAM,
depending on the runtime options.

In the case of full order checking, the inputs and outputs in the trace file must
be in an order in which the inputs can be consumed and the outputs generated by
the Estelle module specification, assuming no input or output queues. However, in
practice, the implementation under test that has generated the trace file may include
input and/or output queues associated with the different interaction points observed.
The presence of these queues may lead to an order of the interactions in the trace file
which is not compatible with the simple Estelle specification {assuming no queues).
For instance, if separate input queunes are present for different interaction points,
the relative order of trace inputs pertaining to different interaction points is of no
relevance. Similarly, if the output interactions from different interaction points travel
through different queues before being recorded in the trace, the relative order of
outputs pertaining to different interaction points is of no relevance. Finally, for any
given interaction point, if an input or output queue is present in the implementation,
an input in the trace may precede the next output to be generated (in the case where
this input was already provided by the environment, but not yet processed by the

module, at the time when the output was genera.fed).
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Tango supports the following options for relative order checking:

Inputs with respect to outputs: Checks that the next input consumed by a transition
precedes any other output interaction at the same interaction point in the trace.

This option should be used under most circumstances.

Outputs with respect to inputs: Checks that the next output gencrated by a tran-
sition precedes any other input interaction at the same interaction point in the
trace. This option should not used if the implementation that generated the

trace includes an input queue for the interaction point in question.

IP relative order checking: Checks that the next input consumed by a transition pre-
cedes any other input in the trace, and that any output generated precedes any
other output in the trace. This option should not be used if the implementation

. that generated the trace includes input or output queucs.

It is clear that the presence of the input and output queucs in the implementation
reduces its observability. These issues are discussed in more detail in [15]. It is also
important to note that the use of orde-r checking during the trace analysis significantly
reduces the state space of the search, because most non-spontaneous transitions be-
come deterministic. This will often yield linear-time trace analysis executions with

respect to the length of the trace (see Section 8.2.2).

Temporal Information

Currently, there is no facility in Tango to keep track of real-time relationships between
events. This means that implementations which exhibit real-time behaviors, such as
. time-outs, can not be checked for conformance to a specification by a Tango-generated
TAM. Handling tracefiles with time stamps attached to each interaction would be a

possible future enhancement to Tango, and would also eliminate some problems faced
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by protocol testers who currently can only incorporate different degrees of relative

order information in the trace files used by a TAM.

6.3.3 Disabling an IP

Disabling an IP means that outputs sent through that IP during the trace analysis
are not checked, but always considered valid. This feature may be useful when the
trace itself did not include output observations made at certain IPs, due to practical
problems of observability.

While it is possible with this option to use Tango to perform trace analysis when
not all outputs from the IUT are available, all input interactions arriving at the
IUT are needed for 2 TAM to perform trace analysis, if they affect the observable
behaviour of the implementation. This may be considered a significant limitation
of Tango, as there are situations where the inputs arriving at some of the IPs of
the IUT are not observable, and it is still desired to perform a trace analysis on the
interactions passing through other IPs of the IUT. Section 9.2.3 discusses some of the

‘problems involved in implementing partial trace analyzers.

6.4 The TriState Trace Analysis

This section describes the execution of a Tango-generated TAM based on TriState
(see Appendix A.l). The trace fed to the TAM as input is the same trace from
Appendix A.2. This means, of course, that the TAM and the IUT are both strictly
based on the same specification, so the trace must be valid. The trace analysis
progress report, or log file, is shown in Appendix A.5. This section describes how to
understand the contents of the log file. ‘

Before each transition is executed, a log entry of the following format appears:

currentState = s
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depth: d check_again: ¢ Transitions: t
<transname 1>
<transname 2>

PR

<transname t>

s is the name of the current DFS state. d is the search tree depth. ¢ is a boolean,
indicating whether the node is a Partially Generated node and needs to be checked
again later?, and ¢ is the number of fireable transitions from this state. For cach
fireable transition, the transition name is listed below that line.

When a transition is chosen, 2 message like this will appear in the log file:

::: Executing transition: _ToSolid

If this is a non-spontaneous transition, the input consumed results in the following
message in the logfile:

--> Input : interaction_name [indez] from /P_name

Where inder is an ordinal value attached to the interaction which indicates how
many interactions appeared in the trace file before this one.

Outputs which are produced during the execution of the transition code result in
a similar Output : message in the log file.

In our example, it is not until depth 22 that more than one fireable transition is
generated, and all the transitions before that match the logfile of the IUT execution
from Appendix A.2. However, at depth 34, as it was mentioned in Section 3.1,
after receiving the data packet with parameter.I set to 99, it is possible for an
implementation to take the traunsition -ToGas or .ToFinished. The TAM arbitrarily
decided to try .ToGas first, as we can see on line 158. The following spontaneous
transition .TolLiquid sends a Data_response through its interaction point. This
does not match the _Close Connection interaction which appears next in the trace,

thus we can see the message on line 166, and the TAM backtracks. Back at depth

2This is relevant only to dynamic trace files. See Section 7.2.2 for more information.
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22 on line 170, we can again sec the list of transitions from that point, and here
_ToGas is marked as “already tried”, so the TAM takes _ToFinished, outputs a
_Close.Connection which matches the trace, and all outputs are verified. Therefore,
the trace is valid, as expected.

Some statistics on the search appear at the bottom of the log file. The meaning

of cach field is explained below.

CPU Time (seconds): This is the amount of CPU time used by the TAM process.
Achieved by using the clock(3C) function.

Trans executed: The number of transitions executed during the search. This can
also be thought of as the number of edges searched in the tree. During DFS,

this is the sum of generates and restores.

Generates: The number of times a call was made to _generateFireable. During

DFS, this is the number of vertices in the search tree.
Depth: The depth of the most recently searched node in the tree.
Max Depth: The maximum depth achieved in the tree during the search.

Restores: The number of state restores during the search. During DFS, this is the

number of backtracks.

Saves: The number of state saves during the search. During DFS, this is the number

of nodes with more than 1 child in the search tree.

Trans per second: This is the number of executed transitions divided by the CPU

time, in seconds.
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On-Line Trace Analysis

7.1 Introduction

When a trace analyzer runs on-line, it receives interactions from an IUT while the [UT
is executing. Such a program is expected to be able to verify incoming intcractions
as fast as they arrive. In addition to the speed issue, on-line nondeterministic trace
analysis involves a search algorithm which is more sophisticated than DFS, to prevent
cases where the TAM is indefinitely waiting for more input to arrive at a particular
IP, while the solution may exist elsewhere in the search tree.

Tango generates trace analyzers which implement a multi-threaded depth-first
search algorithm, to provide a means for on-line trace analysis.

Hereafter, when a TAM is performing on-line trace analysis, we will say that it
is running in dynamic mode, to distinguish it from a TAM which is only reading

static trace files, which we would say is running in static mode.

60
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7.2 Requirements Specification

The following features were added or re-written in Tango 1.5 to implement a multi-

thrcaded trace analysis:

o Multiple, dynamic trace files
o Multi-Threaded Depth-First search
¢ Dynamic memory restore

o Qucue state save/restore routines

7.2.1 Multiple, Dynamic Trace Files

In static-mode, Tango requires only one trace file to analyze, which may contain inter-
actions between the IUT module and all of the other modules it communicates with.
In dynamic mode, chances are that the trace is being taken from multiple observa-
tion points (channels between the IUT and its sibling modules). If Tango required
all trace data from multiple observation points to be merged into one trace file, this
could make the interface between the IUT and the TAM a little more compli;ated,
so Tango supports multiple trace files, as a convenience to the tester.

The way Tango handles on-line trace analysis is by treating the trace file as a “dy-
namic” trace file. A dynamic trace file is one that can grow during the trace analysis,
while a static trace file is one which does not grow, and therefore, can be loaded into
memory before the search begins. At any time, another process independent of Tango
can append data to a dynamic trace file, which the TAM must check periodically for
more data to read. This should make it very easy to interface a Tango trace analyzer
with another program that collects trace data from an IUT. _

If interactions from the same observation point appear in different ‘fl;ace files

during a trace analysis, they will be placed in their proper IP queues in the order
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they are read from the trace files. If interactions from different observation points
appear in different trace files, the runtime option ip.relative should not be used.
as there is no way for Tango to determine the IP relative order of interactions when

they appear in different trace files.

7.2.2 Multi-Threaded Depth-First Search

In on-line trace analysis, when a TAM has encountered the end of input interactions
for a particular IP, the trace analyzer has two choices. It can wait indefinitely for a
new input to arrive, or it can “mark” the current state as a state which needs to be
checked again, and continue searching other paths in the tree. The former technique
allows one to continue using standard DFS, and may be a rcasonable one to use for
certain specifications with only one IP, but an indefinite delay is not acceptable if

there are interactions to consume and check which are waiting in the queues of other

IPs.

ip A,B;
state S1, 82;
trans o
from S1 to S1 when A.x name T1: begin end;
from S1 to S2 when A.x name T2: begin end;
from S2 to S1 when B.y name T3: begin output A.ack; end;

Figure 7.1: Pseudo-Estelle specification ack

Imagine that the TAM is performing on-line trace analysis using our specification
ack in Figure 7.1. Suppose that the inputs arrived from our IUT at A and B were
[x x x] and [y] respectively, and the only output traced so far was [ack]. Logically,
Wwe can see that our IUT at some point decided to take T2 when it consumed one
;'.\f the x interactions from A. However, if our trace analyzer decided to fire T1 three

times, consuming all of the interactions arriving at A, it would arrive at a state in
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the scarch tree with no possible next transitions to fire, and the output [ack] would
not have been verified, nor would the input [y] be consumed by the TAM.

At this point, if the TAM were performing regular DFS (waiting indefinitely for
new input to arrive) and no new inputs arrived, the trace analysis would deadlock.

If the TAM decided to backtrack and analyze other paths in our search tree, it
would validate the trace upon execution of the following transitions: T1, T2, T3, T1.
However, in the general case, it is not reasonable to assume that a complete solution
exists elsewhere in the search tree, and it is possible that the solution began with the
transition sequence which was reached earlier. Therefore, it is necessary to save such
states, so the TAM can analyze them again when new input arrives.

This technique will hereafter be referred to as “Multi-Threaded Depth-First Search”,
or MDFS, and is implemented iu the current version of Tango. MDF'S is similar to
standard DFS except that at certain stages in the search, it might be necessary to
save a state, and analyze it again later. Each saved state represents a “thread” in the
search, which may lead to a solution at a later time in the analysis. The high-level

algorithm is described later in this section.

Implementation Details of Standard DFS

The DFS search tree is implemented as a double-ended queue of dfs_info objects,
where each object can be thought of as a “node”, or a “vertex” in the search tree.
Each object contains a pointer to a _state_info object, and a pointer to a linked
list of trans_info objects. Each trans_info contains all the necessary information
to execute a transition from that state, and can be thought of as an “edge” in the
search tree. After each transition is execnted, its trans_info object is marked as
“already taken” so that it is not searched again. ‘

During a “generate” (a DFS operation that generates all the possible transitions

coming from the current state), a new dfs_info is created, and is set to contain the
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linked list of fireable transitions from tnis state. If the number of transitions is
greater than one, the current TAM state is saved. The object is then appended to
the “bottom™ of the search tree.

After all edges under the current node have been scarched. the node can be
removed from the search tree data structure, and the next “bottom™ node is consulied

for the next transition to search.

Implementation Details of Basic MDFS

If an input queue is empty during transition generation, this means that from the
current state, some of the transitions which may have been fireable if input were avail-
able, will not be fireable until new input arrives. In this situation, the transition list
is considered “incomplete”. Hereafter, a node in the search tree with an incomplete
transition list will be referred to as a “partially generated node”, or a PG-node for
short.

After all of the possible transitions which were generated from a PG-node are
searched, it is necessary to save the PG-node for analysis later. In basic MDFS, the
TAM will place this node on the “top” of the search tree, rather than the bottom, so
that it will only be searched after the rest of the search trec has been exhausted. .

When the rest of the tree is exhausted, PG-nodes will be the only ones Ieft to
search. The bottom PG-Node will be rétored and the TAM -must make another
call to _generateFireable, to determine if there are additional transitions which
are fireable from the current state which were not already tried before. If there are
newly generated transitions, they will be searched next. If some input queues are still
empty in this state, the node is still considered PG, and will be placed on the top of

the search tree again after the newly generated transitions have been explored.
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Termination Conditions

As long as a PG-node exists in the search tree, MDFS will never terminate. This is
because a PG-node needs to be checked again later to determine if there are additional
fircable transitions from that state, arising from the arrival of new input.

For traces which contain no invalid interactions, there will always be PG-nodes in
the search tree. Therefore, MDFS w;Il never terminate with a valid result.

If one of the PG-nodes represents a state where all inputs were consumed and all
outputs were verified, the node is called a Partially Generated All-Verified node, or
PGAV-node for short. If such a node exists in the search tree, this means that the
trace is “valid” so far.

The TAM may output an “invalid” result, but this will happen only if all of the
possible transition sequences are searched, and no PG-nodes remain in the search
tree. This can happen only if invalid interactions exist at points in the trace early
énough to prevent the consuming or producing of all available inputs or outputs in
one of the queues.

So what does it mean if the TAM is cycling through a set of PG-nodes, none
of which are PGAV nodes? At none of these states have all inputs/outputs been
consumed/verified, but when new input arrives, there migl;t be more transitions to
search. Does this mean that the trace is valid so far? ,

;Phe answer is “maybe”. Consider a specification ip3’, which is like the one in
Figure 7.2, except that only transitions t1, t2 and t3 are defined. Imagine that
the trace collected so far contains one input from A, x, and one output to A, o. The
interaction o will never be generated by our specification ip3’. However, the TAM can
still nondeterministically continue consuming and verifying data interactions which
pass through IPs B and C until no more input and output trace data is available for
those IPs. When this happens, some PG-nodes exist, and MDFS will indefinitely cycle

through them, waiting for more input to arrive at B or C, even though interaction o
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ip 4,B,C;

state sl, s2

trans
from s1 to si when B.data name tl: begin output C.data; end;
from s1 to si when C.datz name t2: begin output B.data; end;
from s1 to sl when A.Xx name t3: begin output A.p; end;

from sl1 to s2 when B.finished name t4: begin end;
from s2 to s1 when A.x name t5: begin output A.o end;

Figure 7.2: Pseudo-Estelle specification, ip3

is invalid. As each new data interaction arrives for B or C, it is analyzed and verified,
and the TAM continues waiting. In this situation, an invalid trace is not detected by
the TAM running MDFS.

Now consider the specification ip3 where all the transitions in Figure 7.2 are
defined. Here, we can see that once an interaction finished arrives at B, then t4 is
fired, the module enters s2, o can be verified, and the trace will be valid. Popular
protocols are not usually written in such a way that situations like this can happen,
so practically speaking, when only PG-nodes which are non-AV exist in the search
tree, this means that the trace is “likely to be invalid”, but still, no conclusive result
can be given.

It is possible that the operator would like to “force” a termination verdict on the
TAM which is executing MDFS, so this feature is supported in Tango, by the use of
an “end-of-file” marker in the trace file. Once the TAM is notified that there will be
no more input to arrive in any of its dynamic trace files, the PG-nodes in the search
tree become fully-generated nodes. At this point, it is possible to exhaust the scarch

tree and report a conclusive result. See Section C.2.4 for more information.
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Multi-Threaded DFS with Dynamic Node-Reordering

One disadvantage of using basic MDFS becomes apparent when analyzing long valid
traces of highly nondeterministic specifications. It is possible that when the end of
input is encountered, even if for only one of the IPs, the path from the root of the
tree to the current PG-node is a partial solution (that is, part of a full solution, if one
exists) for validating the trace in progress. In the case where a PGAV-node exists,
it 1s almost certain that the path from the root to that node is a partial solution.
By taking PG-nodes, placing them on the top of the tree, and forcing the TAM to
analyze all of the other possible paths, the TAM might end up searching through a
very large tree before getting back to the PG-nodes.

Since scarch trees of nondeterministic specifications may grow exponentially in
size with the length of the trace to be analyzed, this could cause the TAM to spend
an inordinate amount of time searching the rest of the tree, which may or may not
contain another partial path to the solution, while the path which is most likely to be
part of the solution will not be searched until the rest of the search tree is exhausted.

An enhanced version of MDFS incorporates dynamic node-reordering in the search
tree, and solves this problem. Any time new input arrives, the search tree is reordered
so that PG-nodes are placed at the bottom of the tree, and thus will be searched
immediately after the new input arrives, putting the rest of the search tree “on

kold”. This algorithm was implemented in Tango version 1.52.

Degenerate Cases

Some protocol specifications have multiple IPs of which, during a typical test case
execution, not all are in use. In such cases, the unused IPs will have empty queues
during the entire search. Therefore, we encounter a situation where each state which
is generated during the MDFS becomes a PG-node, and thus must be saved, for
possible future re-generation! In this case, MDFS will waste all of the available
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memory very quickly.

If it is known before the trace analysis. that no inputs will ever arrive at a partic-
ular IP, using the disable-ip option will prevent this degencrate MDFS case from
occurring. See Section C.2.4 for more information.

However, if the first interaction passing through a particular 1P arrives very late
in the trace analysis, or if the input queue for that IP is empty for most but not
all of the time, disabling the IP is not an option. Still, most of the nodes scarched
will be PG-Nodes in MDFS, and saving the TAM state info for each of them will
require large amounts of memory. Tango is not well suited for on-line analysis of this
particular combination of trace and specification types, and it is suggested that one

uses Tango in static mode under these circumstances.

7.2.3 Queue States

A small feature was added to the guene state save/restore routines to handle the case
“where the end of all interactions of a particular queue is reached. When this happens,
additional information needs to be saved in the TAM state about the “most recently
dequeued” interaction on that IP, so that when this state is restored, newly received

interactions will be accessible to the TAM.

7.2.4 Dynamic Memory Restore

The Dynamic Memory Restore routine which was written for static-mode Tango as-
sumed that the search would be depth first. This assumption is useful because it
implies that any mtoz;e brings the state from a child to its parent (or another ascen-
dent), rather than to an arbitrary cousin or descendent in the search tree. During this
kind of restore, all entries in the DRManager which were added since the save can be
removed during the restore. This maintains a one-to-one correspondence between the

n entries which are in the DRManager to be restored, and the first » entries of the
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active DRManager. The algorithm for a depth-first search dynamic memory restore
requires only one traversal of each DRManager linked list, so it is performed in linear
time, with respect to n.

When restoring from one state to a non-ascendent node in the search tree, there is
no longer a correspondence between elements in the two DRManagers. Furthermore,
it is not permitted to remove entries from the active DRManager when restoring to
an ascendent, if there exist PG-nodes in the search tree which are descendents of
the state to be restored, because they will be needed again in the active DRManager
when those PG-nodes are restored.

Therefore, non-ascendent restores, and restores to states which are ascendents of
PG-nodes in the tree, require m searches through a data structure with n elements in
it, where n is the number of elements in the active DRManager, and m is the number
of elements in the DRManager to be restored.

In standard DFS, the number of entries in the active DRManager grew with q,,
the number of allocations performed while executing the transitions which form a
path in the search tree from the root node to the current one being searched. In
MDFS, however, the number of entries in the active DRManager grows with a, the
number of memory allocations performed during the entire search up to that point,
through any path in the tree. @, depends on the degree of nondeterminism in the
specification, and can be exponential with respect to a;.

In theory, the faster DFS restore routine can still be used in MDFS to restore to
a parent node, which is not the ascendent of 2 PG-node in the search tree, but in
the interest of simplicity, the current version of Tango performs the more general-
purpose dynamic restore algorithm for every restore during an MDFS. Even if Tango
performed regular DFS restores when possible, dynamic memory restores would be,
on average, considerably slower under MDFS than under regular DFS.

Since the DRManager data structures are unsorted linked lists, a restore under
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MDFS takes O(m x n) entry key compares, even if only a small pereentage of these
entries need to have their memory re-allocated. restored, or de-allocated.

If Tango is used frequently for on-line trace analysis and one is looking for arcas
to improve Tango’s performance, this is an area worth investigating further. Im-
plementing a heap-like data structure for the DRManager, or using the faster DFS

restore algorithm whenever possible in MDFS, are the suggested enhancements.
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Practical Uses of Tango

8.1 Test Case Generation

Any Estelle specification which has no external module body definitions can be put
through Pet and Tango to generate an executable implementation which will behave
identically to a Dingo-generated implementation.

The implementation generation feature of Tango is useful for generating test cases.
Connecting the module which specifies the IUT to other “testing” modules that force
the module to exhibit certain behaviors, compiling it with Pet/Tango, and executing
it under the NIST Site Server, will yield trace files which can be used as test cases
for an IUT, or as sample input to a2 Tango-generated trace analyzer.

An important difference between a Tango-generated trace file and one that was
captured from one or more observation points during protocol testing, is that the
points of observation for a Tango-generated trace file are inside each module that is
being executed. This means that relative order information between interactions sent
from the same module, but to different IPs, is available in the generated tracefile.
Furthermore, if an interaction %, listed in the Tango-generated trace file as input to

the TAM, appears before another interaction o, listed in the trace file as an output

7l
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from that TAM, this means that ¢ was consumed by the implementation before o
was produced. This means that using the I/O relative checking option on a Tango-

generated trace file will work fine, even though the channels arc asynchronous.

8.2 Trace Analysis Performance Results

The current version of Tango has been tested on some simple example specifications,
as well as TPO, the “Class 0 Transport Protocol”, a specification of an OS] transport
layer, for networks with very reliable network layers, and the LAPD protocol, also
known as CCITT Recommendation Q.921, for the Link Layer of an ISDN !. The
machine used for testing was a SUN 4 with 32Mb of memory.

One way of measuring the performance of a Tango-generated trace analyzer is
in terms of transilions per second, or the number of edges searched in the scarch
tree per CPU second. This value depends on many factors, such as the amount
of memory used by variables and dynamic records, the frequency of backtracking,
and the number of transition declarations in the TAM’s specification. For simple
test-specifications with under 10 transition declarations, TAMs can scarch up to 250
transitions per second. For a slightly more interesting specification like TPO (19
transition declarations), the TAM can search between 40 and 60 transitions per sec-
ond. However, while analyzing traces of behemoth-like specifications such as LAPD

(over 800 transition declarations), a TAM can take an entire second to search only

10 transitions.

8.2.1 LAPD

Using the LAPD specification developed at CNET (33], and using Tango in imple-

mentation generation mode, we generated 7 valid traces, by sending various length-ed

1For more information on these protocols see [40]
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DI |{CPUT TE GE RE SA |[CPUT TE GE RE SA
NR 10

5 4.1 3 21 15 17 2.9 28 19 9 13
10 7.6 64 36 30 32 3.9 33 3¢ 19 28
15 11.0 94 51 45 4 10.9 8 49 29 43
25 184 154 81 75 77 16.3 128 7 49 7
50 344 284 148 138 144 | 308 237 146 91 140
75 522 414 215 201 211 50.7 346 213 133 207
100 | 71.7 579 296 285 292 | 62.8 483 294 189 288
DI |[CPUT TE GE RE SA|[CPUT TE GE RE SA
IP FULL

3 1.6 24 19 5 7 0.7 20 19 1 3
10 3.0 4 34 10 17 1.6 3 M 1 8
15 9.0 64 49 15 29 23 o0 49 1 15
25 7.7 104 79 25 46 3.5 g 79 1 22
S0 13.3 192 146 46 95 6.8 147 146 1 50
() 75 | 210 280 213 67 135| 95 214 23 1 69
100 | 30.2 389 294 95 191 128 295 294 1} 97
Key:
DI # of data interactions sent by the User module to LAPD module
CPUT CPU time, in seconds
TE Transitions executed during search
RE Restores, or backtracks performed during search
SA Number of State Saves during search
GE Number of Generates during search
NR Relative Order Checking Disabled
10 1/O and O/I relative order checking only
14 IP relative order checking only
FULL  All relative order checking options enrabled
. Figure 8.1: Execution times of a TAM on LAPD traces of various sizes
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sequences of data interactions from the User module {layer 3) to the LAPD module
(layer 2).

We then generated a trace analyzer based on the same specification, and ran it
four times on each of thesc obtained traces, using different relative order checking
options each time. The execution results can be found in Figure 8.1.

A few comments and observations on this table appear below:

e The number of interactions LAPD sends to the network laver is not always the
number of interactions LAPD receives from the user module. This is because
sometimes the user module closes the connection before the network module
has had a chance to request all of the data being held for it by the LAPD
module. Coincidentally, the number of restores when performing IP relative
output checking only, is the number of data interactions sent by the LAPD
module. The sum of this and the DI value gives us the total number of data

interactions in the trace file.

¢ Using no relative checking, or I/O relative checking only, the transitions per
second remains roughly the same, around 9. The ratio of backtracks to transi-
tions taken also remains the same, although the search space is reduced slightly

when I/O relative checking is enabled.

As indicated by our results, trace analysis was significantly faster when we cn-
abled relative order checking options. This is because many nondeterministic choices
became deterministic ones, thereby reducing the state space of the search.

One problem we encountered when analyzing LAPD traces is that often, it is
desired to analyze only the packets transmitted between the LAPD module and the
module which represents the network layer, because the interactions passing between
the user module and the LAPD module are not necessarily observable. The cur-
rent version of Tango can not analyze such traces, but we address this problqm in

Section 9.2.3, on partial trace files.
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8.2.2z TPO

The performance of 2 Tango-generated trace analyzer depends on many factors, such
as the length of the trace data, the degree of nondeterminism in the specification,
and, in the cases of highly nondeterministic specifications, the “luck of the draw”.
Often. the time required to analyze a valid trace is proportional to the length of the
trace to be analyzed, but the time required to analyze an invalid trace where the
first n interactions are valid, depends more on the degree of nondeterminism in the
specification, and can be exponential with respect to n.

For example, the TP0 module communicates with tv.o other modules, an “upper
tester” and a “lower tester”. The lower module represents the network layer, while the
upper module represents the user layer. When a data interaction from one module is
received by TP0, it is saved into a buffer of “infinite” length and, at some later time,
sent along to the other module. The specification (see Appendix B) enters a state
known as data after the initial handshaking is complete between the modules above
and below it. At this point, the upper and lower modules can simultaneously send

data to each other. To summarize, from the data state, TP0 can do the following:

e T13: If available, read a data interaction from the upper module, and place
into buffer2.

e T14: If nonempty, send an interaction from buffer2 to the lower module.
e T15: Ifavailable, read a data interaction from the lower module, and place into
bufferl.

e T16: If nonempty, send an interaction from bufferi to the upper module.

Imagine a trace to be analyzed which contains the initial handshaking, followed
by 20 interactions sent from the lower module and 20 interactions sent from the upper
module. To analyze this trace, the search tree depth would be at least 80, because
each interaction (there are 40) sent from one end to the other : quires the TPO to

read/enqueue (one transition) and dequeue/output (one transition).
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During most of the analysis. the TP} module is in the data state, and from this
state there will be usually at least two. and sometimes as many as four of the above
transitions which are fireable.

A quick calculation will show that if there werc. on average. only 2.4 transitions
fireable from each data state *, a search tree of depth 80 would contain 2.6 x 10%
transitions. At 130 transitions per second, it could take 4.8 x 10°° years to analyze
an invalid trace!

This problem arises from the fact that a trace which has a bad or missing interac-
tion near the end of it gives rise to an exponential number of “partial solutions”, cach
one causing the trace anaiyzer to search very deeply into the tree before encountering
the bad or missing interaction.

For valid traces, however, it should be apparent that taking any sequence of
transitions (T'13 through T16) which consume input when available from the [Ps, and
output interactions when available from the TP0 queucs, would eventually consume
all inputs and verify all outputs. In other words, there are an exponential number of
solutions with respect to the length of the trace, and finding one of them requires no
backtracking. Therefore, the search time would be linear with respect to the length
of the trace.

A logical question to ask might be: if the order of these transitions does not
matter, how can we avoid checking all of the possible permutations? In fact, it is
. impractical to analyze long invalid traces of specifications such as TP0 without having
an answer to this question. Perhaps what is necessary is some form of control and
data flow-analysis which would show that taking one permutation of transitions is
equivalent to taking a class of others. This would provide a2 means to “trim” the
search tree before or during analysis. This is an area suitable for further rescarch.

The results of executing a TAM on an invalid TPO trace are shown in Figure 8.2.

2This is the average fanout in a Tango search tree of depth 13 analyzing TR0



. CHAPTER 8. PRACTICAL USES OF TANGO 'n

Depth RCM CPUT TE GE RE SA
13 None 1469.5 88329 36687 51642 34440
13 10 and OI 1.3 173 104 69 69
13 IP only 6.7 984 495 489 4238

13 Full 0.9 173 104 63 69
21 Full 32.1 4021 2258 1763 1763
29 Full 2658 123202 65575 56627 56627

Depth = Depth of search tree
RCM = Relative Checking Mode

Figure 8.2: Execution times of 2 TAM on invalid TP0 traces

The trace contains three data interactions sent by the upper tester, and three sent by
the lower tester, and was obtained by executing Tango in implementation generation
mode. One parameter in the last data interaction of the trace file was edited slightly

. to cause a mismatch. The same trace was analyzed four times, each time using
different relative checking option combinations Then, larger traces which were edited
similarly were analyzed using full relative order checking.

If relative order information on the interactions in the trace file is available to
the tester, enabling the Tango relative order checking options will force the TAM to
analyze only the t-ansition sequences which have “progress” transitions appearing in
the same order as the interactions they consume or produce in the trace. In effect,
the TAM will eliminate permutations of observable and input-consuming transitions
from the search tree. In the case of TP0, there are no non-progress traunsitions,
but when analyzing traces where only the last data interaction is invalid, there are
still some nondeterministic possibilities near the leaves of the search tree. This is
because TPO can output a disconnect indication at any time, even if data remains

. in its buffers after the disconnect request is received by the TP0 module. In other
words, the tranélftion which receives the disconnect request and outputs a disconnect

. ' indication is t17, and it becomes fireable from the data state, in addition to the
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fireable transitions described above. Enabling the relative checking options on these
invalid traces reduced the average fanout from 2.4 to 1.5 on the search trees we were
able to measure, but it should be noted that the fanout would be very close to 1 if the
invalid data interaction was early enough in the trace to prevent £17 from becoming
fireable anywhere in the search tree. Thus. in our example, while the scarch time
is still exponential with respect to the length of the trace. secarches are significantly

faster, and in the general case, will usually (but not always) take linear time with

respect to the length of the trace.
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Conclusions

9.1 Summary

In this thesis, the concepts of formal protocol specification, validation, and testing
were presented. Issues in antomatic generation of implementations based on formal
specifications were discussed. The steps required to transform an implementation
generator into a trace analyzer generator were chronicled, and a fully-functional tool
to generate trace analyzers for single-module Estelle specifications wes developed and
tested.

Tango provides a means to analyze traces of any single-module protocol specified
in Estelle, supporting almost all' of Estelle’s programming constructs. It is efficient
with memory and CPU time, and handles nondeterminism elegantly. At the same
time, Tango can be used to generate implementations which behave the same way
as those generated by Dingo [36]. The main shortcoming of Tango is its inability to
analyze time-dependent behavior in a specification or an IUT.

The main difficulty of analyzing execution traces with respect to a given spec- |

ification arises from the nondeterminism of the specification. In this respect, it is

1\With the exception of delay statements
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important to note that the input and output quenes that may be part of the IUT
reduce the observability and give rise to additional nondeterminism in the order of
the observed interactions. Tango provides options for checking this order as much
as possible. As our practical applications have shown, the nondeterminism in many
practical protocol specifications is limited enough to make backtracking trace analysis
efficiently feasible, at least for valid traces. For invalid traces. the analysis is often
much more inefficient due to the inherent parallelism which lcads to many different
interleavings of events to be explored.

An additional difficulty arises during on-line tracc analysis, where the analysis is
performed while the end of the trace has not yet been reached. This difficulty is due
to the fact that new inputs may occur at different IPs during the scarch, and certain
execution paths of the specification may be blocked because of missing interactions at
a given IP, while other execution paths may proceed. This makes a pure depth-first
search strategy impossible. We have defined a so-called multi-threaded depth-first
strategy which is applicable in these cases.

9.2 DPossible Areas of Future Work

This section describes some current problems in trace analysis which were not solved

by the latest version of Tango.

9.2.1 Time-Stamped Interactions in Trace Data

Without information about the time passed between interactions in a trace, it is
impossible to determine if certain time-specific behaviors in the IUT are exhibited as
specified. The current version of Tango has no way of handling time information in

trace files. A future version of Tango might support this.
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9.2.2 Invalid Trace Error Diagnostic Searching

There are other trace znalysis tools which attempt to provide more useful diagnostics
in the cvent that an invalid trace is encountered [2]. They can determine if the trace
is invalid due to a missing or extra transition. A future version of Tango might

implement a similar kind of search.

9.2.3 Analysis of Partial Traces

For the purposes of this thesis, 2 partial trace has one or both of the following

propert:cs:

1. It begins with trace data from an IUT which is not necessarily in its initial

state.

2. It does not contain input interactions passing through one or more of the IPs

which are used by the TAM based on the IUT.

Analysis of a partial trace file introduces a plethora of unknowns, making an lysis
significantly more difficult. In the case where the initial module state is unl.noivn,
certain variables will be undefined, and in the event that their values are used to
determine the behaviour of the TAM, the validity of any such behaviour is question-
able.

In the case where inputs passing through one or more of the TAM’s IPs are
not supplied by the trace file, the TAM must consider all possible transitions which
consume any interaction from these IPs. If an “unknown” interaction has parameters,
the values of the parameters are unknown. If the values of unknown parameters are
used in parameters of output interactions which must be checked, a true “comparison”
of these interactions to the traced interactions is not possible. Furthermore, the
average number of fireable transitions from each state will be very high, giving rise

to a very high-order exponential state space growth.
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The implementation of a partial trace analyzer generator requires the addressing

of the above problems. An approach to analyzing partial traces is discussed in this

section.

Undefined Variables

Since all Estelle variables are translated into C4++ objects, adding an “undefined™
attribute to each object is relatively straightforward. The constructors of such objects
will initialize this attribute to true, and all assignment operators must set it to false
(unless, of course, they are assigned to be equal to other undefined variables or values).

For all transitions which have provided firing rules, each boolean expression in
the provided clause which tests the value of an undefined variable is assumed to be
true. For the purpose of comparing generated interactions to traced interactions,
parameters of interactions with undefined values are “equal” to all values to which

they are compared.

Undefined Input Queues

Undefined queues have the following properties:

e When determining if all inputs have been consumed, an undefined queue is

assumed to be empty.

¢ If a transition has a when clause which is true if an undefined IP has a particular
interaction in its queue, then the when clause is evaluated to true. Before the
transition can be fired, a new interaction must be created, of the type defined

in the when clause, with all its parameter values set to undefined.

o The actual queuve associated with the undefined IP is always empty, and does
not need to be saved or restored during backtracking,.
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Control! Statements

Some features of Estelle make it impossible to perform a full analysis of partial trace
files., If we restrict ourselves to a subset of the Estelle language, which does not
support control statements, our problem becomes tenable.

Estelle’s control statements are while, for, repeat, case and if/then/else.
Each of these statements requires the comparison of a variable to a value, and the
execution of different statements depending on the comparison result. If the variable
to be compared is undefined, this can mean that multiple possible paths of execution
exist.

Where loops are involved, these paths may be infinite in number. In theory, a
proper trace analyzer must attempt all possible execution paths to search the entire
state space, but because the state space is infinite, supporting loops is impractical.

Applying a straightforward transformation of the specification into a “normal
form™ which eliminates case and if/then/else statements by adding states and transi-
tions to the specification, will simplify the problem of partial trace file analysis, and
allow Tango to analyze partial traces of specificatic s which do use these constructs.

Fortunately, most Estelle specifications makcf\}rry infrequent use of loops and
conditionals, so in theory, it should be possible to perform partial trace analysis on

most Estelle specifications without requiring too much in the way of modification.
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Appendix A
Listings

A.1 Estelle Specification of TriState

1: Specification TriState; timescale seconds;
2: type

3: data_type = record

4: H : array[1..10] of integer;
S: I : integer;

6: j : boolean;

T: K : char;

8: end;

i-H
10: channel interface (receiver, sender);
11: by sender:

12: data(parameter:data_type);

13: by receiver:

14:; data_reaponse;

15: ¢loss_connection;

18:

17: { Feeding_Module

18:

19: module Feeding Module systemprocess;

20: ip

21: toMain : interface (sender) individual guene;
: end;

23:

24: body Feeding body for Feeding Module;

25: var

26: num_packets, i : integer;

27: P : data_type;

28:
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29:
30:

state SENDING, waiting, DONE;

iritialize
to SENDING
name toSending:
begin
num_packets := 0;
end;

trans
from SENDING to DONE
provided num_packets > 10
name toDone:

begin

p-i := 99;

p-k 1= ra’;

output toMain.DATA(p);
end;

from SENDING to WAITING

{The below provided clause eliminatec non-determinism}

provided num_packets < 11
var

i : integer;
name send_packet:

begin

for i := 1 to 10 do p.h[i] := num_packets + i»2;
p.I := (num_packets mod 2 * 2 - 1) * num_packets;

P.j := (oum_packets mod 2) = 0;
p.-k := succ (p.kK);
output toMain.DATA(p);

end;

from WAITING to SENDING
when toMain.data_response
name finished_waiting:
begin
num_packets := num_packets + 1;
end;
end; { feeding bdody }

Main_type module

module Nain_type systemprocess;
ip
fromFeedar : interface(receiver)
end;

bedy Nain_body for Main_type;

individual queue;
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98:

100:
. 101:
102:
103:
104:
106:
108:
107:
108:
108:
110:
111:
112:
113:
114:
115:
116:
117:
118:
118:
120:
121:

® =
123:

124:
125:

. _126:

Type
ract = record
ishot: boolean;
isfinished, iscold : boolean;
end;

var
v : rect;
D : data_type;

state SOLID, LIQUID, GAS, FINISHED;
stateset NONLIQUID = [SOLID, GAS];

initialize

to LIQUID

var
i : integer;

name INIT Trans:

begin { initialize variables }
v.ishot := TRUE;
v.iscold := TRUE:
v.isfinished := FALSE;
end;

trans

from NONLIQUID te LIQUID
delay(3)
name tolLiquid:
begin
v.ishot := FALSE;
v.iscold := FALSE;
output fromFeeder.data_response;
and;

from LIQUID to GAS
when fromFeeder.data
provided parameter.I > 0
name toGas:
begin
v.ishot := TRUE;
end;

from LIQUID to SOLID
when fromFeeder.data
provided parameter.l <= 0
name toSolid:
begin
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127: v.iscold := TRUE;

128: end;

129:

130: to FINISHED

131: when fromFeeder.data

132: provided parameter.I = 99

133: name toFinished:

134: begin

135; v.isfinished := TRUE;

136: output fromFeeder.cleose_connection;

137: aend; .

138:  end;

139:

140:

141: { SPECIFICATICON BODY +
142: meodvar

143: { module-variable-declaration-part of the specification }
144: Main: Main_type;

146: Food : Feeding Module;
146: initialize
147: begin { module initialization }

148: init Main with Main _bedy;

149: init Foed with Feeding_bedy;

150:; connect Main.fromFeeder to Food.toMain
181: end; {of specification body}

182:

153: end. {of specification TriState}

A.2 Some Dingo-Generated Routines from TriS-
tate

1: void _INIT Trans( __stackElem* __bRef:_INIT_Trans,

2: ~-MInstances __MI, __GRManagers __GRM) {

3: // define and push local wars; import globals

4: __frame INIT Trans __frame;

5: _Integer I;

6: __frame.I = &kI;
: _._GRM=->enter( &__frame, __bRef_INIT Trans);
: Rectd V = »((__frame_Main_body») __GRM->getFrame(1))->V;

9: __MI->logString( ">>> executing transition _INIT_Trans");

10: // trom Estelle source;

11: {

12: V.Iskot = __TRUE;

13: V.Iscold = __TRUE;

14: V.Isfinished = __FALSE;
15: H

15; }



APPENDIX A. LISTINGS

17:
18:
19:
20:
21:
22:

34:
35:
36:
37:
3s:
as:
40:
41:
42:
43:

45:
46:
47:
48:

s
7

// pop context;
__GRM->leave();
}

void _ToSolid( __stackElem* __bRef_ToSolid,__MInstance* __MI,
__GRManager* __GRM) {
// detine and push local vars; import globals
_frame_ToSolid __frame;
-_GRM->enter{ &__frame, __bRef_ToSolid);
_Rectk V = »((__frame_Main_body*) __GRM->getFrame(2))->V;
#ifdef LOGT
- MI->logString( “>>> executing transition _ToSolid");
#endif
// trom Estelle source:
{
V.Iscold = __TRUE;
}
// pop context;
__GRM->leave();
}

int __MI_Main_body::__selAndExec( int __dt) {
// selects and executes a trans; if none is selected returns 0;
// also sets mayExecuteNext to indicate when this module could
// execute a transition without further inputs;
int __ok;
- SIPType* __sip = 0;
—limer »__tim=0, »__ctim=0;
~Interact* __inter, =__cinter;
--PTB __transBlock = 0;
int __toState;
voids __framel;
void* __frame2;
_Data __wcs_Data;
< Trame_Data __wci_Data;
—Wect Data.Parameter = & __wcs_Data.Parameter;
#ifdef OPTIMIZE
~-m2yExecuteNext
#else
—mayExecuteNext
#endift
{
ok = 1;
_ctim = &__timers._ToLiquid;
__0k = __ctim=>fireable() &k (!__ctim->optional() ||
—-wantToConsiderOpt(”_ToLiquid"));
--mayExecuteNext = __ctim->isSet() ?
max(__mayExecuteNext,__ctim->beforeFireable()):__mayExecuteNext;

--.MAXNCLOOFP;

0;
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66:
67:
68:
€9:
70:
Ti:
T2:
73:
T4:

76:

o5:
96:

if (__ok) {
__framel = __frame2 = 0;
.. inter = 0;
__tim = __ctim;

_.toState = _LIQUID;
—-transBlock = &_ToLiquid;
if (__wantToFire("_TolLiquid")) goto __EXEC;

}
{
ok = ( {__currentState==_LIQUID));
if (__ok &&(__cinter=FromFeeder.firstIs(62))) {
~Irame_Data __pwcFrame;
_Data_typek Parameter=((_Datas} __cinter)->Parameter;
__pwcFrame,Parameter =k Parameter;
--GRM->enter( &__pwcFrame, __GRM->getBackRef{-1)});
__ok = ((Parumeter.I > 0));
it (__ok) {
wtim = 0;
__toState = _GAS;
winter = __cinter;
_.wecs_Data = *( _Datas) __cinter;
_framel = &__wcf_Data;
__frame2 = Q;
--5ip = EFronFeeder;
_-transBlock = &_ToGas;
if (_.wantToFire(" _ToGas")) {
—.GRM->1leava();
goto __EXEC;
}
}
-.GRM->leave();
}
}
{
-0k = ( (__currentState==_LIQUID)});
it {__ok &&(__cinter=FromFeeder.firstIs(62))) {
~atrame_Data __pwcFrame;
Data_type& Parameter=((_Data*) __cinter}->Parameter;
—-pucFrame.Parameter =& Parameter;
--GRM->enter( &__pwcFrame, __GRM->getBackRef(-1));
__ok = ((Parameter.I <= 0));

it (__ok) {
tim = 0;
_rwoState = _SOLID;
__inter = __cinter;

_wes_Data = «( _Data*) __cinter;
__framel = &__wcf_Data:;
_frame2 = 0
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115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:;
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
162:
153:
154:
156:
186:
157:
158:
159:
1603
161:
162:
1€63:

--5ip = kFromFeeder;
__transBlock = &_ToSolid;
if {__wantToFire{("_ToSolid")) {
__GRM->leave();
goeto __EXEC;
}
}
__GRM->leave();
}
}
{
-0k = ( (__currentState==_LIQUID));
if (__ok &&(__cinter=FromFeeder.firstIs(62))) {
~-Irame_Data __pwcFrame;
_Data_type& Parameter={(_Data*) __cinter)->Parameter;
—_pucFrame.Parameter =& Parameter;
--GRM->enter( &__prcFrame, __GRM->getBackRef{-1));
ok = ({(Parameter.l == 99));
i (__ox) {
-tim = 0;
__toState = _FINISHED;
__inter = __cinter;
_ucs_Data = =( _Data*) __cinter;
-Iramel = &__wct_Data;
~Irame2 = O;
—-8ip = &FromFeeder;
-transBlock = &_ToFinished;
iz (__wantToFire("_ToFinished")) {
~GRM->leave():
goto __EXEC;
}
}
-_GRM->leave();
}
}
-EXEC:
i (__transBlock) {
waitForResumeIfSingleStep( this);
--mayExecuteNext = 0;
iz ( __framei) __GRM->enter(__framel,_ _GRM->getBackRef(-1));
it ( __frame2) __GRM->enter{__frame2,__GRM->getBackRef(-1));
if (__inter) __sip->dequeue();
--transBlock( __GRM->getBackRef(-1),this,__GRM);
—switchState( __toState);
it (__inter) delete(__inter);
if ( __framel) __GRM=->leave{);
if ( __frame2) __GRM=>leave(): :
if (__tim) __tim->reset();
«localExecution();
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164:
165:
166:
167:
168:

A.3 Execution of TriState Log and Trace Files

1:

3:

-
-

6:
T:

10:
11:
12:
13:
14:
15:
16:
i7:
18:
19:

21:

28:

ao0:

__childrenUpdate( __dt);
return 1;

}

else return 0;

}

Trace of _Feeding body

>> _Feeding body@18857-0+2055" champlain.IR0.UMontreal.CA
ToMain:_Data

{ {{24681012 14 16 18 20} 0 1 1}}

>> _Feeding body018857-0+2055"champlain.IRO.UMontreal.CA
TeMain:_Data

{ {{35791113 1517 1921} 10 2}}

>> _Feeding_bodyQ@18857-0+2055"champlain.IRD.UMontreal.CA
ToMain:_Data

{ {f£46810 12 14 16 18 20 22 } -2 1 3}}

»> _Feeding bodyQ18857-0+2055 champlain.IR0.UMentreal.CA
ToMain:_Data

{ {{57911131517 1921231} 30 4}

>> _Feeding body@18857-0-+2055"champlain.IRO.UMontreal.CA
ToMain:_Data

{ {{68 1012 14 16 18 20 22 24 } -4 1 5}}

>> _Feeding_ body@18857-0+2055"champlain.IR0.UMontreal.CA
ToMain: _Data

{ {{79 1113 15 17 19 21 23 256 } 5 0 6}}

>> _Feeding body018857-0+2055"champlain.IR0.UMontreal .CA
ToMain:_Data

{-{{810 121416 1820222426} -6 17}

>> _Feeding body€18857-0+2056"champlain.IR0.UMontreal.CA
ToMain:_Data

{ {{91113 1517 19 21 23 26 27 } 7 0 8}}

>> _Feeding_body@18857-0+2066"champlain.IR0D.UMontreal.CA
ToMain:_Data

{ {41012 14 16 18 20 22 24 26 28 } -8 1 9}}

>> _Feeding bodyQi8857-0+2055"champlain.IRO.UMontreal.CA
ToMain:_Data

{ {{1113 1517 1521232527297} 90 10}}

>> _Feeding bodyQ18857-0+2056"champlain.IRO.UMontreal.CA
ToMain: Data

{ {41214 16 18 20 22 24 26 28 30 } -10 1 11}}

>> _Feeding body018857-0+2055"champlain.IR0D.UMontreal .CA
ToMain:_Data

{ {{12 1416 18 20 22 24 26 28 30 } 99 1 67}}

9]
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79:

86:
:

: Trace of _Main_body

>> _Main_body0Q18856-0+2052"champlain.IR0.UMontreal.CA
FromFeeder:_Data_response

>> _Main_body018856-0+2052"ckamplain.IR0.UMontreal.CA
FromFeeder:_Data_response

: >> _Main_body€18856-0+2052" champlain.IR0.UMontreal.Ci

FromFeeder:_Data_response

>> _Main_body018856-0+2052"champlain.IRO.UMontreal.CA

: FromFeeder: Data_response

: >> _Main_bodyQ18856-0+2052 " champlain.IRU.UMontreal.CA

FromFeeder:_Data_response

>> _Main_ body€@18856-0+2052"champlain.IR0O.UMontreal.CA
FromFeeder:_Data_response

>> _Main_body018856-0+2052"champlain.IR0.UMontreal.CA
FromFeedexr:_Data_response

: >> _Main_bodyQ18856-0+2052"champlain.IRO.UMontreal.CA

FromFeeder:_Data_response

>> _Main_body018856-0+2052" champlain.IR0O.UNontreal.CA
FromFeeder: _Data responze

>> _Main_bodyQ18856-0+2052"champlain.IRC.UMontreal.CA
FromFeeder:_Data_response

>> _Main_body€18856-0+2052 champlain.IR0.UMontreal .CA
FromFeeder:_Data_response

>> _Main_body€@18856-0+2052" champlain.IR0.UMontreal.CA
FromFeeder:_Close_connection

Log file for _Feeding body

>>> executing transition _ToSending

>>> executing transition _Sena_packet

>>> executing transition _Finished_waiting
>>> executing transition _Send_packet

>>> executing transition _Finished waiting
>>> executing transition _Send_packet

>>> executing transition _Finished_waiting
>>> executing transition _Send_packet
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88: >>> executing transition _Finished _waiting
89: >>> executing transition _Send_packet

90: >>> executing transition _Finished_waiting
S1: >>> executing transition _Send_packe:

92: >>> executing transition _Finished_waiting
93: >>> executing transition _Send_packet

94: >>> executing transition _Finished_waiting
95: >>> executing transition _Send_packet

96: >>> executing transition _Finished_waiting
97: >>> executing transition _Send_packet

98: >>> executing transition _Finiched waiting
99: >>> executing transition _Send_packet

100: >>> executing transition _Finished waiting
101: >>> executing transition _Send packet

102: >>> executing transition _Finished_waiting
103: >>> executing transition _ToDone

105: Log file foxr _Main_body

107: >>> executing transition _INIT _ Trans
108: >>> executing tramsition _ToSeolid
109: >>> executing transition _TolLiquid
110: >>> executing transition _ToGas
. 111: >>> executing tranmsition _ToLiquid
112: >>> executing tramsition _ToSolid
113: >>> executing transition _TolLiquid
114: >>> executing transition _ToGas
115: >>> executing transition _ToLiquid
116: >>> executing tramsition _ToSolid
117: >>> exectting transition _ToLiquid
118: >>> executing transition _ToGas
119: >>> executing transition _ToLiquid
120: >>> executing transition _ToSolid
121: >>> executing transition _Toligquid
122: >>> executing transition _ToGas
123: >>> executing transition _ToLiquid
124: >>> executing transition _ToSolid
125: >>> executing transition _Toliquid
126: >>> executing transition _ToGas
127: >>> executing transition _Toliquid
128: >>> executing transition _TeSelid
129: >>> executing transition _Teliquid
130: >>> executing transition _ToFinished

A.4 An Example of TANGO’s generateFireable()
Method
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1:
2:
3:
4:
5:
6:
T:
8:
9:
10:
11:
12:
13:
14:
15:
16:

PDList __MI_Main_body::__generateFireable() {
// Finds all fireable trans, returns them in a PDList
// also sets mayExecuteNext to indicate when this module
// execute a transition without further inputs;
int __ok;
__trans_info =ti;
PDList retval = Q;
~olimer *__tim=0, *__ctim=0;
__Interact* __inter, »__cinter;
_Data __wcs_Data; .
—.frame_Data __wecf_Data;
_uwctf_Data.Parameter = & __wcs_Data.Parameter;
#ifdef OPTIMIZE
—-mayExecuteNext
Zelse
—-mayExecuteNext
#endif
ti=0;
{
-0k = 1;
~Ctinm = &__timers._ToLiguid;
_ok = __ctim->fireable() && (!__ctim=->optional() ||
__wantToConaidarOpt (*_ToLiquid"));
__mayExecuteNext = __ctim—>isSet()?

~__MAXNOLOOP;

0;

could

94

max(__mayExecuteNext,__ctim->beforeFireable()):__mayExecuteNext;

it (__ok) {
ti = new __trans_info;
ti->__framel = ti->__frame2 = 0;
ti->__inter = 0;
ti=>__tim = __ctinm;
ti=>__toState = _LIQUID;
ti->__transBlock = &_ToLiquid;
ti->transName = *_ToLiguid";
}
¥ .
// Place trans info on%o move array:
it (sd) {
if (retval==0) retval = new DList;
retval->append(ti);
} .
ti = 0;
{
-0k = { (__currentState==_LIQUID));
it (__ok kk(__cinter=FromFeeder.firstIs(64))) {
-frame_Data __pwcFrame;
Data_typek Parameter=((_Data*) __cinter)->Parameter;
=-pPWcFrame.Parameter =k Parameter;
~GRN->enter( &__pwcFrame, __GRM->getBackRaf(-1}};
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61:

79:
80:
81:
82:
a83:
84:
856:
86:
87:
88:
89:
80:
81:
92:
83:
94:
a5:
a6:
o7:

__ok = ({Parameter.I > 0));
it (__ok) {
ti = new __trans_info;
ti=->__tim = 0;
ti->__toState = _GAS;

ti->__inter = __cinter:
__wes_Dasa = =( _Datas) __cinter;
ti->__framel = __wcf_Data.clone_frame():

ti->__frame2 = O;
ti->__sip = &FromFeeder;
ti->__transBlock = &_ToGas;

ti->transName = "_ToGas";
}
- GRM->leave();
}
}
// Place trans info onto move array:
ir (vi) {
if (retwal==0) retval = new DList;
retval->append(ti);
}
ti = 0;
{

_ok = ( (__currentState==_LIQUID));
if (__ok &&(__cinter=FromFeeder.firstIs(64))) {
—Irame_Data __pwcFrame;
_Data_typek Parameter=((_Data®) __cinter)->Parameter;
—_pwcFrame.Parameter =X Parameter;
__GRM->enter( &__pwcFrame, __GRM->getBackRef(-1));
——oF = ((Parameter.I <= 0));
if (__ok) {
ti = new __trans_info;
ti->__tim = 0;
ti->__toState = _SOLID;
ti->__inter = __cinter;
__wcs_Data = »( _Datax) __cinter;
ti=>__framel = __wcf_Data.clone_frame();
ti->__frame2 = 0;
ti->__sip = &FromFeeder;
ti=>__transBlock = &k_ToSolid;
ti->transName = "_ToSolid";

¥
—_GRM->leave();
}
}
// Place trans info onto move array:
ig (£i) {

if (retval==0) retval = new DList;
retval->append(ti);
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08: b
99: ti = 0;
100: A
101: __ok = { {__currentState==_LIQUID));
102: if (__ok &2(__cinter=FromFeeder.firstIs(64))) {
103: __frame_Data __pwcFrame;
104: _Data_type& Parameter=({_Data*) __cinter)->Parameter;
105: —-pwcFrame.Parameter =& Parameter;
106: _.GRM->enter( &__pwcFrame, __GRM->getBackRef(-1));
107: __ok = ((Parameter.I == 99));
108: it (_.ok) {
109: ti = new __trans_info;
110: ti->__tim = 0;
111: ti->__toState = _FINISHED;
112: ti->__inter = __cinter;
113: __wes_Data = =( _Dataw) __cinter:
114: ti=>__framel = __wcf_Data.clone_frame();
115: ti->__frame2 = 0;
116: ti->__gip = &FromFeeder;
117: ti=->__transBlock = & _ToFinished;
118: ti->transName = "_ToFinished";
119: }
120: —_GRM~>1leave();
. 121: }
122: }
123: // Place traas info onto move array:
124: if (i) {
125: it (retval==0) retval = new DLis%;
126: ratval->append(ti);
127:
128: return (retval);
129: }

A.5 TriState TAM Log, Analyzing Trace
Appendix A.3 |

0:

1:

2:

. 3:
4:

o

8:

o

Log 2i

le for _Main_bedy@23517-0+2611"champlain.IR0.UMontreal.CA

>>> Executing Transition _INIT Trans
No tango.cfg found- using default settings.

TANGO

version 1.56 Trace analysis log.

Runtime Options:

1

off
off
oft

debug_trace level (debugging info during trace)
io_relative (In/Dut Relative checking)
ip_relative (Interaction Point Relative checking)
debug_load (Debug info during trace file load)

96
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10: off search_init_state (initial state search mode)

11: off initial_suspend {wait for user to open window and resume)

12: off all_ips (wait for inputs to arrive at all IPs before commence search)
13: off continuous_read (keep waiting for input)

14:

15: Trace files to read:

16: Static I trace

17:

18: IP Queue Stats:

19: FromFeeder: 12 outputs to verify

20: Executed startTAExec

21:

22: currentState = LIQUID

23: depth:0 check_again: 0 Transitions: 1

24: _ToSolid

25: ::: Executing Transition: _ToSolid

26: =-> Imput : _Data [1] from FromFeeder
27:

28: currentState = SOLID

29: depth:1 check_again: 0 Transitions: 1

30: _Toliquiad

31: ::: Executing Transition: _TeLiquid

32: <-- DOutput : _Data_response to FromFeeder

33:

. 34: currentState = LIQUID
35: depth:2 check_again: 0 Tramsitions: 1
36: _ToGas

37: ::: Executing Transition: _ToGas
38: -=~> Input : _Data [2] Zfrom FromFeeder
39:
! currentState = GAS
41: depth:3 check_again: 0 Transitions: 1
42: _Toliquid
43: ::: Executing Traasition: _ToLiquid
: <—— Qutput : _Data_response to FromFeeder
45:
46: currentState = LIQUID
47: depth:4 check_again: 0 Tramsitioms: 1
48: _ToSolid
49: ::: Executing Transition: _ToSeolid
§0: --> Input : _Data [3] from FromFeeder

52: currextState = SOLID
§3: deptk:5 check_again: 0 Transitions: 1

. 64: _Toliquid
68: ::: Executing Transition: _ToLiquid
B6: <=- Output : _Data_response to FromFeeder
57T:

B8: currentState = LIQUID
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: depth:6 check_again: 0 Transitions: 1

_ToGas
::: Executing Tranmsition: _ToGas
--> Input : _Data [4] <from FromFeeder

: currentState = GAS
: depth:7 check_again: 0 Transitions: 1

_ToLiquid
t:: Ezecuting Transition: _ToLiquid
<-- Output : _Data_response to FromFeeder

¢ currentState = LIQUID
: depth:8 check_again: 0 Tramsitions: 1

_ToSolid
::: Executing Transition: _TeSolid
=-=> Input : _Data [B] from FromFeeder

currentState = SOLID

depth:9 check_again: 0 Tramnsitions: 1
_ToLiquid

::: Executing Transitionr: _ToLiquid

<—- Qutput : _Data_response to FromFeeder

currentState = LIQUID

depth:10 check_again: 0 Transitions: 1
-ToGas
::: Executing Transition: _ToGas

=-=> Input : _Data [6] <from FromFeeder

currentState = GAS

depth:1l check_again: 0 Transitions: 1
-ToLiquid

::: Executing Transition: _ToLiquid

<== Qutput : _Data_response to FromFeeder

currentState = LIQUID

depth:12 check_again: 0 Transitions: 1
ToSolid
1:: Executing Transition: _TeSolid
-=> Input : _bData [7] fxom FromFeeder

currentState = SOLID

depth:13 check_again: 0 Transitions: 1
-ToLiquid

t:: Executing Tramsition: _ToLiquid

<— Output : _Data_reaponse to FromFeeder

currentState = LIQUID
depth:14 check_again: 0 Transitions: 1
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108: ToGaz

109: ::: Executing Transition: _ToGas

110: =--> Input : _Data ([8] <from FromFeeder
111:

112: currentState = GAS

113: depth:15 check_again: 0 Transitioens: 1

1i14: _Toliquid

115: ::: Executing Transition: _ToLiquid

116: <-- Dutput : _Data_response to FromFeeder
117:

118: currentState = LIQUID

119: depth:16 check_again: 0 Transitions: 1

120: _ToSolid

121: ::: Executing Transition: _ToSolid

122: ~-> Input : _Data [9] from FromFeeder
123:

124: cuxrentState = SOLID

126: depth:17 check_again: 0 Transitions: 1

126: _ToLiguid

127: ::: Executing Tramsition: _Toliquid

128: <~= Qutput : _Data_response te FromFeeder

129:
130: currentState = LIQUID

. 131: depth:18 check_again: 0 Tramsitions: 1
132: _ToGas

133: ::: Execating Transition: _ToGas

134¢: =-> Imput : _Data [10] from FromFeeder
136:

136: currentState = GAS

137: depth:19 check_again: 0 Transitions: 1
138: _Toliquid

139: ::: Executing Transition: _ToLiquid

140: <=-=- Qutput : _Data_response to FromFeeder
141:

142: currentState = LIQUID

143: depth:20 check_again: 0 Transitions: 1
144: _ToSelid

145: ::: Executing Transition: _ToSolid

146: —> Input : _Data [11] from FromFeeder
147:

148: currentState = SOLID
149: depth:21 check_again: 0 Transitioms: 1
180: _Toliquid
161: ::: Executing Transition: _Toliquid
. 152: <-- Qutput : _Data response  to FromFeeder

154: currentState = LIQUID
155: depth:22 check_3again: 0 Transitioms: 2

I 156: _ToGas
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157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
1€8:
169:
170:
171:
172:
173:
174:
175:
176:
177
178:
179:
180:
181:
182:
183:
184:

-ToFinrished
:1: Executing Transition: _ToGas
-=> Input : _Data [12] “rom FromFeeder

currsntState = GAS
depth:23 check_again: 0 Tramsitions: 1
_ToLiquid
::: Executing Transition: _Toliquid
<-- ODutput : _Data_response to FromFeeder
11} Mismatch: _Close_conrnection[24]
Backtracking...

currentState = LIQUID
depth:22 check_again: 0 Transitions: 2

_ToGas [Already tried]

-ToFinished

::: Executing Transition: _ToFinished

--> Input : _Data [12] Zrom FromFeeder

<-- Qutput : _Close_connection to FromFeedar
All outputs were verified at this state

CPU time (seconds): .116662
Trans executed: 25. Generates: 2¢. Depth: 22. Max Depth: 23.
Restores: 1. Saves: 1. Transitions per second: 214.294

Normal termination of program...

100



Appendix B

Transport Protocol 0, Specified in
Estelle

Specification TPO;
default individeal quene;
timescale seconds;

{ Primitive functions removed by SAE, replaced by pascal procedures }

{ This is the top level module body (specification)
The specification has the attribute systemprocess
and all its children ( tp0 ) are processes.
The time scale for delays is in seconds. }

type { ... is used to specify that an implementer
must define these types for his enviroanment.}

reason_type = (none, user_init,
{from X.214, Transport Service disconnect reasons of a tdind:}
remote_TS_user_invoked, local TS_provider_invoked,
{from X.214, Transport Service user (add. info when
disc_reason=local TS_provider_invoked) reasons of a tdind:}
lack_resource, qts_below_min, misbehaviour TS_provider,
called TS user_unknown, called TS_user_unavailable, unknown_reason,
{from X.224, Transport Protocol reasons of a DR:}
not_specified, congestion TSAP,
no_session_attached, address_unknown,
{from X.213, Network Service reasons:}
disc_normal_condition, disc_abnormal_condition,
conn_reject_permanent_cond, conn_reject_transient_cond,
conn_reject_QOS_na_transient, conn_reject_QO0S_za_permanent,

101
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conn_reject_bad_info_user_data);

0..656835; { 0..2%*16-1 }
(no_size, s128, s258);
(normal, other_option);

ref_type
tpdu_size_type
option_type

addr_type packed array [1..25] of char;
data_type packed array [1..128] of char;
qts_type = (low, medium, high); {Quality of Transport Service: must be a

list of parameters as described in X.214,
but to simplify we define as this}

{ Channel definitions for communication between the pr.cesses }
channel U_access_point(User,Provider);

by Provider:
tdind(t_disc_reason: reason_type; ts_user_reason: reason_type);
teind(to_t_addr: addr_type; from_t_addr: addr_type; qtS_pro: qts_type);
tcecon(qts_res: qts_type);
tdati(tsdu_fragment: data_type);

by User:
tereq(to_t_addr: addr_type; from_t_addr: addr_type; qts_req: qts_type);
teres{qts_req: qts_type);
tdreq(ts_user_reason: reason_type);
tdatr(tsdu_fragment: data_type);

channal N_access_peoint(User,Provider);

by User, Provider:
cr{source_ref: ref_type; option: option_type; calling addr: addr_type;
called_addr: addx_type; max_tpdu_size: tpdu_size_type);
dt(user_data: data_type};
cc(dest_ref: ref_type; source_ref: ref_type; calling addr: addr_type;
called_addr: addr_type; max _tpdu_size: tpdu_size_type):
dr(dest_ref: ref_type; disconnect_reascn: reason_type;
add_clear_reason: reason_typse);
{ All add_reason in a DR is user defined according to X.224 }
by User:
ndreg(disc_reason: reason_type);
by Provider:
ndind;
nrind;

{ Module header definitions }
module TESTER_type systemprocess; {This is the feeding module}

1p
U: U_access_point{User) individual queue;
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L: N_access_point(Provider) individual queue;
end;
body TESTER_body for TESTER_type; external;

module TPO_type systemprocess;
ip {interaction point list }
U: U_access_point(Provider) individual queue;
L: N_access_point(User) individual queues;
end; { of module header definition }

{ The module has two interaction points named U and L;
the roles of the module are named:
Provider with respect to U, and
User with respect to L. }

{ The body for TPO is defined below: }
body body_tp0 for TPO_type;
type
{ nodeptr, nodetype, qtype all added by SAE in July 94 }
noedeptr = “nodetype;
nodetype = record
data : data_type;
next : nodeptr;
end;
qtype = record
2i, fo : nodeptr;

count : integer;
and;

buffer_type = qtype;

wvar
in_buffer, out_buffer: butfer_type;
local_refer, remote_refer: ref_type;
tpdu_size: tpdu_size_type:;
qts_estimate: qts_type;
calling_t_addr, called_t_addr: addr_type;
tadu_fragment, user_data: data_type;

ts_disc_reason, ts_user_reason,
disconnect_reason, add_clear_reason: reason_type;

state idle, wfcc, witr, data; { state definition part }
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function qts_OK(qts_rsq: gts_type): boolean;
begin
{ accepting qts low and medium but not high }
if qts_req <= medium then qts_OK := true else gqts_OK := false
end;

function option_OK(cption: option_type): boclean;
begin
if option = normal then option_(OK := true
else option_OK := false
and;

procedure assign_local_ref(var local_ref: ref_type );
begin
local_ref := 1; { O is forbidden because it means there are no local_ref assigned }
end;

procedure assign_tpdu_size(var tpdu_size: tpdu_size_type);
begin
tpdu_size := s5128;
and;

procedure assign_d _reason{var ts_disc_Teason: reason_type; new_reason: reason_type);

@ oy
t3_disc_reason := new_reason;
end;

procedure assign_u_reason(var ts_user_reason: reason_type; Lew_Yeasod: Ireason_type);
begin
t5_user_reason := new_reason;
end;

procedure assign_roason(var disconnect_reason: reason_type; New_Teason: reason_type);
begin
dizconnect_reason := new_reason;
and;

procedure assign_ac_reason(var add_clear_reason: reascn_type; NeW_Ireason: reason_type);
begin
add_clear_reason = newW_IGaS0R;
end;

e

procedure asaign_qts(var ats_estimate: qts_type);
begin ]
. qts_estimate := medium;
end;

g {procedures remove, add, init_buffer, and ingert re-written in Estelle
I ~ = by SAE; originally they were C++ primitive functiors by Daniel Juimet}
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procedure remove( var q: buffer_type; var fragment: data_type);
var
n : nodeptr;
begin
n := q.fo;
if g.fo <> NIL then
begin
fxagment := n”.data;
q.count := g.count - 1;
qQ.fo := g.fo".next;
if g.fo = NIL then g.fi :=
dispose(n);
end;
end;

NIL;

procedure add (var q : gtype; var p : nodeptr);
begin

P~ .next := NiL;

if (q.fi <> NIL) then q.fi".next := p;
q.fi := p;

q.count := q.count + 1;

if q.fo = NIL then g.fo := p;
® -

procedure init_buffer(var q:buffer_type);
begin
q.fi := NIL;
q.fo := NIL;
q.count := 0;
and;

procedure insert(var ¢: buffer_type: var i: data_type);
vax
n : nodeptr;
begin
new (n);
n~.data := i; c
add (qsn);
end;

initialize { initialization-part of the alternating bit process }
to idle { initialize major state variable to idle }

begin { initialize variables }

local_refexr =0

init_buffer(in_buffer);

init_buffer(out_buffer);
and;
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{ }
{ NFS for Class 0 Transpert Protocol
As defined by Hassan Ural and Bo Yang in "A test sequence selection
method for protocol testing" in IEEE Trans. on Communications, Vol. 29,
No. &, April 1991.
Many corrections to the syntax were made by Daniel Ounimet in
December 93 and January 94.
}

trans { transition-declaration-part of the TPQ process 1}
WEEN U.tcreq(to_t_addr, from_t_addr, gts_req)
FROM idle
PROVIDED qts_OK(qts_req)
T0 wifcc
NAME tl1: BEGIN
assign_local_ref(local_refer);
assign_tpdu_size(tpdu_size);
calling t_addr := from_t_addr;
called_t_addr := to_t_addr;
output L.cr (local_refer, normal, calling t_addr, called_t_addr, tpdu.size)
END;

trans

WHEN U.tcreq {(nil, nil, qts_req)}

FROM idle

PROVIDED not qts_OK(qts_req)

T0 idle

NAME t2: BEGIN
assign d_reason{ts_disc_reason, local TS_provider_invoked);
assign_u_reason{ts_user_reason, qts_below_min);
output U.tdind(ts_disc_reason, ts_user_reason);

END;

trans
WHEN L.cr (source_ref, option, calling_addr, called_addr, max_tpdu_size)
FROM idle
PROVIDED (max_tpdu_size <> no_size} and option_OK(option)
T0 witr
NAME t3: BEGIN
remote_refer := scurce_ref;
tpdu_size := max_tpdu_size;
calling t_addr := calling addr;
called_t_addr := called_addr;
assign_qts(qts_estimate);
output U.teind(called_t_addr, calling t_addr, qts_estimate);
END;

trans
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WHEN L.cr (source_ref, option, calling addr, called_addr, max_tpdu_size)
FROM idle
PROVIDED (max_tpdu_size = no_size) and option_OK(option)
0 witr
NAME t4: BEGIN

remote_refer := source_ref;

assign_tpdu_size(tpdu_size);

calling t_addr := calling_addr;

called_t_addr := called_addr;

assign_qts(qts_estimate);

output U.tcind(called_t_addr, calling t_addr, qts_ estimate);
END;

trans

VHEN L.cr

FROM idle

PROVIDED not option_OK(option)

T idle

NAME t5: BEGIN
a.ssign_rea.son(disconnect_reason. not_specifiod) H
output L.dr(source_ref, disconnect_reason, none);

END;

trans

WHEN L.cc

FROM wfce

PROVIDED max_tpdu_size <> no_size

TO data

NAME t6: BEGIN
assign_qts{qts_estimate);
output U.tccon(qts_estimate};

END;

trans

WHEN L.cc

FROM wfcc

PROVIDED max_tpdu_size = no_size

TO0 data

NAME t7: BEGIN
assign_qts(qts_estimate);
output U.tccon(gts_estimate);

END;

trans

WHEN L.dr

FROM wicc

PROVIDED disconnect_reason = user_init
TO idle

NAME t8: BEGIN
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output L.ndreq({disconnect_reason);
output U.tdind(add_clear_reason, disconnact_reason);
END;

trans

WHEN L.dr

FROM wicc

PROVIDED disconnect_resason <> user_init

TO idle

NAME t9: BEGIN
output L.ndreq(disconnect_reason);
output U.tdind(none, disconnect_reason);

END;

trans
WEEN U.tcres (qts_req)
FROM wftr
PROVIDED qts_req <= qts_estimate
T0O data
NAME t10: BEGIN
assign_local_ref(local_refer);
output L.cc {remote_refear, local_refer, calling t_addr, called_t_addr, tpdu_size);
END;

. trana

WHEN U.tcres{qts_req)

FROM witr

PROVIDED qts_req > qts_estimate

TO idle

NAME t11: BEGIN
assign_reason(disconnect_reason, not_specified);
assign_ac_reason(add_clear_reason, qts_below_min);
assign_d_reason(ts_disc_reason, gts_below_min);
output L.dr(remote_refer, disconnect_reason, add_clear_reason);
output U.tdind(none, ts_disc_reason);

END;

trans
WHEN U.tdreq{ts_user_reason)
FROM wftr
T0 idle
NAME ¢12: BEGIN
assign_reason(disconnect_reason, ts_user_reason);
output L.dr (remote_refer, disconnect_reason, add_clear_reason)

o =

trans ; -
WHEN U.tdatr(tsdu_fragment)
FROM data
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T0O data
NAME t13: BEGIN

insert(out_buffer, tsdu_fragment):
END;

trans
FROM data
TO daza
PROVIDED out_buffer.count > 0 {not buffer_empty(out_buffer)}
NAME t14: BEGIN
remove{out_buffer, user_data):
output L.dt(user_data);
END;

trans ,
WHEN L.dt(user_data)
FROM data
TO data
NAME ©15: BEGIN
insert(in_buffer, user_data);
END;

trans
FROM data .
PROVIDED in_buffer.count > 0 {buffer_empty(in_buffer)}
TO data
NAME t16: BEGIN
remove(in_buffer, tsdu_fragment);
output U.tdati(tsdu_fragment);
END;

trans
VHEN U.tdreq(ts_user_reason)
FROM data
T0 idle
NAME t17: BEGIN
ocutput L.ndreg(ts_user_reason);
END;

trans

WHEN L.ndind

FROM data

T0 idle

NAME t18: BEGIN
assigr_d_reason(ts_disc_reason, local TS_provider_invoked);
output U.tdind{none, ts_disc_reason);

END;

trans
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WHEN L.nrind

FROM data

TO idle

NAME ©19: BEGIN
assign_d_reason(ts_disc_reason, remote_TS_user_invoked);
output U.tdind(none, ts_disc_reasen);

END;

end; { of the body_tpO}

modvar
{ module-variable-declaration-part of the specification }

TPO_var: TPO_type:
TESTER_var: TESTER_type;

initialize { initialization-part of the specification }
begin { module initialization }

begin
init TPO_var with body_tp0;
init TESTER_var with TESTER_body;
connect TESTER_var.U to TPO_var.U;
connect TESTER_var.L to TPO_var.L;
end;
end; { of module initialization within the
specification’s initialization-part }

end. { End of specification; the specification has no tramsition part }
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Tango Tutorial, Version 1.5

Tango can be used in two ways. The first, “implementation generation mode”, will
produce an executable implementation which behaves in the same way as a Dingo-
generated implementation, except that traces are generated for cach module, con-
talning inputs and outputs involving that module. The second usc of Tango is as
a trace analysis tool generator, where the module which corresponds to the IUT is
referred to as the TAM, or Trace Analysis Module. Each use is described in a section
of this Appendix.

C.1 Implementation Generation

Any Estelle specification which has no external module body definitions can be put
through Pet and Tango to generate an executable implementation which will behave
identically to a Dingo-generated implementation. For more information on how such
implementations can be used, see [36].

During an implementation execution, each module (as opposed to each channel)
maintains a trace file, named _modulename@pid.indez"hostnan:e.tra, where pid is
the process id, indez is a unique string to distinguish it from other modules of the
same name, and hostneme is the name of the host executing the module process.
Each interaction sent from, or received by module A is represented as an entry in
module A’s trace file. If module A receives an interaction from an [P, and that IP
is connected to another IP in module B, then an identical entry for that interaction
can be found in the trace file for module B as well.

The module which represents the IUT will generate a trace file which can be used
as sample input for the TAM, since the trace file format used by the Tango-generated
implementations is the same as the format used by a TAM.

111
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C.2 Trace Analysis

Starting with an Estelle protocol specification and a trace of inputs to, and outputs
from, onc module of the IUT, this tutorial will provide step-by-step instructions on
how to generate a trace-analyzer from the specification and how to analyze the trace
given.

This section describes the following steps:

1. Creating a single-module test system specification.

(&
v

Generating an executable Trace Analyzer
. Formatting the tracefile.

. Executing the Trace Analyzer

[ IR - N M

. Viewing the results of the analysis

Original 1-Medule
Estelle Estelle
Specification Specification

\/
.obi'
ango < Representation
i 4|
Tango lib C++ Source NIST iib

| trace file

Figure C.1: The Tango System
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C.2.1 Creating a Single-Module Specification

During implementation exzcution. an IUT communicates with other entities, here-
after referred to as modules. The IUT, and the modules it communicates with, com-
prise the test system. In figure 3.1, the test system is Specification Example,
which includes two modules, Main and Food. The module specifying the IUT is
Module Main.

The specification which is given as input to Tange must reflect the structure of
the test system. Even though the module Food is not being tested. it still must be
declared as a module in Tango’s input specification, because it communicates with
Main during testing.

Modules which communicate with the IUT module, when they arc part of the
trace analysis tool, “feed” inputs to the TAM at the beginning of the trace analysis.
Thus, they are referred to as “feeding modules” in this thesis. Since the behaviour
of feeding modules is defined in Tango, it does not need to be defined in the formal
specification. For this reason, the convention of defining bodies of {eeding modules
as external has been adopted in Tango. The example specification in listing I has a
module which is called Feeding Module and can be transformed into a proper Tango
feeding module as shown below:

module Feeding Module systemprocess;
ip
toMain : interface (sender) individual queue;
end;

body Feeding_bedy for Feeding_Module; external;
{ -—- end of feeding module --- }

Notice that the only declarations for Feeding Module which were carried over
from listing 1 are the ip declarations, which were not changed at all.

There are a number of possible faults which can exist in a specification yielding
a trace analysis tool whick will not work. It is recommended that the suggestions
below are followed to ensure a working trace analyzer generation.

¢ Place external body definitions first, and the TAM specification last. Tango
knows to generate a TAM instead of a regular Dingo implementation of a mod-
ule by the existence of an external module body definition in the specification.
Because Tango is a one-pass compiler, all external body definitions (i.e. feeding
modules) must be declared above the IUT module specification. If no feed-
ing modules appear before the IUT module specification, Tango generates an
executable implementation rather than a trace analyzer for the IUT module,
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not realizing that feeding module declarations appear afterwards. Think of the
external keyword as a compiler directive to Tango.

e Make sure that only one module has a non-external bedy. If more than one
module with a non-external body appears in the TAM specification, Tango will
generate independent TAMs for each module. Regardless of whether the non-
external modules are connected by channels, all the ocutputs from each module
will be analyzed against the trace information rather than being sent to other
modules. Therefore, unexpected results will occur.

e Avoid primitive functions. For backtracking to work, all functions and proce-
dures which affect the TAM state must be defined in the Estelle specification.
Functions and Procedures declared as primitive and defined in code elsewhere,
which cause side effects in the running operation of the implementation, would
cause unpredictable results when linked with a TAM.

¢ Remove delay clauses. It is recommended all delay statements be removed
from the specification. They will only slow down the trace analysis. Time-
dependent behaviors can not be checked by 2 TAM in any case.

¢ Double-check your connections. If the modules are not connected properly in
. the modvar section, the TAM may deadlock before performing any analysis.

» Set all module attributes properly. The last step in preparing the single-module
specification is to set all the module atiributes to systemprocess, and to re-
move the root specification attribute, if there is one.

C.2.2 Generating the Executable TAM

After the TAM specification is ready to be compiled, the following steps must be
taken.

1. Generate an object-oriented static representation with pet.
pet -o objfile estellefile

2. Generate C++ code from the the output produced by pet.
tango objfile
Tango generates a makefile template, called specname.make.tmpl, where spec-
. name is the name of the specification as described in the Estelle source.

3. make environment variables are left blank in the template, and must be filled
with proper pathnames, as specified in the comments of the makefile template.

_ . ' Example:
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LIBPATH= /home/champlain2/ezust/pde
XLIBDIR= /usr/local/lib/

MIWINDIR= /home/champlain2/ezust/pde
INCLPATH= /home/champlain2/ezust/pde
GNUINCLUDEDIR= /usr/local/lib/g++-include

Additionally, the LOCMODS environment variable should contain the names of
the main specification, the TAM, and all feeding modules, separated by spaces.
This specifies that all the modules are to be executed locally on the same
machine.

Example:
LOCMODS = _Example _Main_body _Feeding_body

More information about the makefile template can be found in section 3.11

of [36].

4. If the previous steps were successful, the make command should compile and
link the specification and create a set of executables, one for cach module, and
one for the root specification, called _Specname.

C.2.3 Formatting the Tracefile

The primary Tango trace file, which must be located in the same directory as the
executable trace analysis tool, must be called “trace”. It is a standard text file, with
each interaction taking 3 lines of text.

Each entry looks like this:

>> _Module_name
Ip:_Interaction_type
{ arguments for the interaction}

While in the initial stages of generating trace files, it may be useful to see Tango’s
trace file debugging information, as it will often help the user to determine where
incorrectly formatted information appears in the tracefile. Debugging information
will be sent to the log file when the runtime option, debug-load, is specified. See
Section C.2.4 for more information.
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Module Name Specifier

The first line must begin with “>> _" followed by the name of the module that is
sending the interaction. In Tango trace files, the module name is defined as the
module body name, as it appears in the Estelle specification. If the test system has
multiple instantiations of the same module body for feeding modules, then a unique
string must be concatenated to the end of the module name for each instance, to
distinguish it from other instances of that module.

For example, in an Estelle specification that declares an array of module instances
like this:

Module Alternating_bit_type systemactivity;

body Alternating bit_bedy for Alternating bit_type; extermal;

modvar
Alternatirg bit: array [1..2] of Alternating bit_type;

initialize
begin { module initialization }
init Alternating bit[1] with Alternating bit_body;
init Alternating bit[2] with Alternating_bit_body;

Dingo names each instance of _Alternating bit uniquely as shown below:

>> _Alternating_bit_body®10489-0+3698
>> _Alternating_bit_body@10489-1+3658

When the modules run under the same process, the process id (which follows the
@ sign) is the same for both modules, and the index of the array follows the - sign, as
shown above. ‘When they run as independent processes, the process 1D differs, and
the index of each module is 0. As long as a unique string is appended consistently to
the name of each module, it does not matter to Tango what the string is.

Errors Ifa module namein a tracefile entry does not match any module in the TAM
system specification, the entry will be ignored. No error message will be displayed.



APPENDIX C. TANGO TUTORIAL. VERSJON 1.5 17

Interaction Point/Interaction Specifier

The second line must begin with the interaction point name, as specified in the Estelle
specification for the module which sent the interaction. If a specification uses an array
of IPs, the index must be specified by concatenating an underscore followed by the
3-digit index, padded with leading zeros, to the end of the IP name.

Following the IP name is a “:_" followed by the name of the intcraction, as
specified in the Estelle specification.

Examples of valid second lines:
N_00002:_DATA_response (sends a DATAresponse to interaction point N[2])
U:_RECEIVE_response (sends a RECEIVE response to interaction point U)

Errors If the IP specifier does not match the name of an IP in the module speci-
fication, an error message “ip_index: Unable to find match for ip.name” will
appear in the module’s log file, where ip_name is the name of of the IP specifier in
the tracefile.

If the interaction type is not a valid interaction for the corresponding 1P, an er-
ror message “unable to create interact from inleract” will appear in the logfile,
where interact is the name of the interaction type in the tracefile. During the loading
of a tracefile, Tango does not check to cnsure that the role of an IP is the right role
for the interaction to be loaded. Needless to say, if an interaction does not match

the proper role of the IP, and it appears in the trace file, the trace will be detected
as invalid by the TAM. '

The Interaction Parameter line

The third line of each trace file entry contains the parameters of the interaction. They
are enclosed in curly brackets {}.

For simple types, such as integers, the values are printed as ASCII decimals. For
boolean types, values are printed as ’0’ or '1’. For characters, values are printed as
decimal numbers, in ASCII code i.e. the letter A is represented as the string "98°,
B is '99’, etc... For Enumerated type variables, their ordinal values are printed as
decimal integer strings, just like characters.

For records, the value of each field must be listed in the order it appears in the
specification, and the entire record contents must be enclosed in curly brackets.

For arrays, likewise, the contents of the array must appear in between curly brack-
ets, with the elements listed in index-order.

For strings (packed array of characters), a sequence of ASCII-decimal numbers
representing each character in the string should appear in ascending order by index,
and the entire string must be enclosed in double quote characters ().

For example, an interaction which has a parameter of the following data type:
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type
data_type = record
H : array[1..10] of integer;
I : integer;
J : boolean;
K : char;
L : packed arrayll..4] of char;
end;

might have a parameter line which looks like this:
{{{2468101214 161820} 1 098 " 98 99 100 101 " } }

where H[1] = 2, B[2] = 4, H[10] = 20, I = 99, J is false, and the packed
array K = ?ABCD’.

There should be no newline character in the middle of a data parameter trace file
field. The parameter line can be as long as necessary to specify the values of every
field in the parameter list.

Errors When curly brackets or string delimiters mismatch, or are missing when
. required, the trace analyzer may enter into an infinite loop and hang, without out-
putting an error message.

C.2.4 Runtime Options

TANGO supports a number of runtime options which provide flexibility and power to
the user of a TAM. All runtime options are read by a TAM just before trace analysis
begins.

Runtime options can be specified in a file called tango.cfg, which must appear
in the same directory as the TAM executable. The file format is a standard textfile,
which can be edited using any text editor. Each option is specified in the file on a
line by itself. The order in which the options appear does not matter to Tango. Any
invalid options are ignored, yielding informative error messages in the TAM log file.

Tango will ignore text on a line followed by a # character, so comments in the
configuration file can be placed after it, or entire lines can be “commented out” in
this fashion. '

The current version of Tango supports the following runtime options.

Relative Order

The order of the interactions, as they appear in the trace file, can be interpreted in a
. number of ways. In all cases, if two interactions going in the same direction through
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the same interaction point appear in the trace file, the order in which they appear is
_ observed and checked by the trace analysis tool. However, the order of interactions
which go through different interaction points, or through the same interaction point
but in different directions, can be observed (and checked) or ignored by the TAM,
depending on the runtime options. Depending on the architecture of the IUT and

its observation points, certain options should be used. See Section 6.3.2 for more
information.

1o_relative, or Inputs with respect to Outputs One form of relative order
checking is that of inputs with respect to outputs passing through the same channel.
For example, if the next input interaction waiting in the queue of a particular IP is ¢,
and it appears in the trace file after an output o, passing through the same channel,
which was not generated yet by the TAM, then consuming i before outputting o
violates the I/O relative order of 7 and o. Enabling the I/O relative checking option
will prevent the TAM from consuming 7 before outputting o.

oi_relative, or Qutputs with respect to Inputs O/I relative order checking
means that if o appears after ¢ in the tracefile, and the TAM attempts to execute a

transition which produces o before consuming i, this will cause an O/I relative order
output mismatch.

ip_relative, or Interactions Passing Through Different IPs If the order of
the interactions in the trace file reflects the relative order of interactions which passed
through different interaction points, the TAM will respect this order during trace
analysis when this runtime option is used.

Using this option ensures the following:

e The “next” input to be read from an IP x is only readable if it appears in the
tracefile before “next” inputs to be read from all other IPs.

e An output o to an IP z will have an “ip relative” output mismatch if an output

which has not been verified yet, due to be sent through another IP, appears
before o in the tracefile.

debug_load, or Load Tracefile Debugging Info:

Debugging information can be sent to the log file of each module, during the reading
of the trace file. To set this option on, place the following line in the configuration
file: debug_load

Enabling this option will give the user a better idea of which interactions are
invalid in the trace file, if the user is unsure that the format of the trace file is
correct.
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debug_trace, or Trace Analysis Debugging Info:

During trace analysis, it is possible to have the TAM include different degrees of detail
in the debugg:ng information of the log file. Using the runtime option debug-traces=,
the user can set the debug level to reflect the desired quantity of output which will
appear in the log file. Higher debugging levels slow down the actual search, and
in some cases, the difference in search time on the same trace but using different
debugging levels can be as great as 15%.

At the end of the analysis, as well as after every 1000 transitions taken, statistics
about performance and number of transitions searched, regardless of the value of this
runtime option, will be listed in the logfile. Other messages which will be sent to the
logfile include: the final result (valid or invalid), and any output messages from the
C++ implementation code.

Using a debug-trace=0 option, no other messages will be sent to the log file.
Using a debug trace level of 0 is useful if Tango is executing too many transitions
for a more detailed log file to fit under your disk quota. This also ensures the fastest
search possible using Tango.

A debug level of 1, the system default, is .useful if it is desired to follow the
path of execution without having too many extra details. The following additional
information will be sent to the logfile.

e Search progress information, including the state, search tree depth, and a list
of fireable transitions which were generated at each state.

¢ Interactions which were tested for conformance to the trace, and information
about whether they match.

¢ backtracking status

With debug_trace=2, the following information, above and beyond what is listed
when the debug level is 1, will be sent to the logfile.

e Frame contents for each ‘generated transition
o Parameter contents for each interaction

o I/0 relative order mismatch messages

¢ IP relative order mismatch messages
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initial_suspend, or Initial Wait for User-Resume

If you wish to observe the execution of the trace analysis from the very beginning of
the search through the Dingo X-windows site server, you may want to have the TAM
initially suspend itself until the user intervenes with either a resume or a single-step

event. With the option initial_suspend, the TAM will not start its analysis until
the user

1. opens a module instance window for the TAM from the Local Root-Modules
menu in the SiteServer

o

clicks on either the Suspended or the Continuous Mode menu buttons. The
former will begin executing transitions as rapidly as the specification permits,
while the latter will execute a single transition each time that menu button is
selected.

disable_ip, or Disable Output Checking on an IP

If it is not possible to observe interactions going through some specified IPs in an
TUT, it might be desirable to disable output checking on those IPs, while still checking
outputs going through all of the other IPs.

Usage:

disable-ip:ip.name

Where ip_name is the symbolic name of that interaction point, as specified in the
Estelle TAM specification. It should look exactly the same as the IP name in the
trace file for interactions going through that IP.

all_ips, or Wait For Input To Arrive at All IPs

When the TAM and all of the feeding modules are spawned at the same time, it is
possible that the TAM might begin its search before inputs have arrived at all of
the IPs. This can cause certain transitions which should have been fireable to be
non-fireable.

By default, a TAM waits 10 seconds before beginning the search. This runtime
option, when enabled, will force the TAM to wait indefinitely, until at least one input
has arrived at each IP. _

If the disable_ip option is used on a particular IP, the TAM will not wait for
data to arrive at that IP before commencing its search.

search_init_state, or Search for Valid Initial FSM State -

When a TAM begins its analysis, the first transition that gets fired is initialize,
and whatever state the FSM enters after that is called the initial state. In some
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circumstances, an obtained trace might not begin with interactions generated by an
IUT which was in this initial FSM state. Using this option, the TAM will try all
possible initial FSM states with the trace given before outputting an invalid resuit.

Additional Trace Files

If you wish Tango to read from multiple trace files, additional trace files can be
specified in the runtime options file. There are two kinds of trace files: static and
dynamic.

A static trace file is read entirely before the search begins, and is never checked
again during the analysis. A dynamic trace file will be periodically checked during
the analysis in case additional traced interactions are appended to the file. Dynamic
trace files are required for real-time on-line trace analysis.

To specify an additional static trace file, put the following line in tango.cfg:

static: filename

To specify an additional dynamic trace file, put the following line in tango.cfg:

dynamic: filename

The default trace file, simply called trace, is static, and will always be among
the list of tracefiles from which each Tango module will attempt to read. If the
default trace file is empty or non-existent, and other valid files were specified, the
trace analysis will commence as expected, reading only from the valid trace files.

Since each trace file can contain interactions for any module and any IP in the
test system, it is recommended that all interactions for one particular IP be placed
in a single trace file, rather than distributed among multiple trace files. Each Tango
module will read all of the available interactions in each trace file, starting with the
default file, and continuing with each file, in order, as it appears in tango.cfg.

End Of Input Marker: In a dynamic trace file, to signal the end of input, a
special interaction must be appended to the file. It begins with the following line:

>> END

At least two blank (or non-blank) lines must follow this. To ensure termination
of the TAM search, these >> END markers must appear at the end of each dynamic
trace file which is being used. See Section 7.2.2 for more information.

C.2.5 Executing the TAM - User Interface

The executable created in step 2 is not a stand-alone executable; it must be run under
the NIST X Windows Dingo Site Server. In the Tango package there is a shell script,
called StartTangoSites, which executes the Site Server on the local machine. After
the Site Server window is active, the user can run the executable for the root module
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from the Unix shell, which will in turn spawn processes for the TAM and the feeding
modules. The user interface for the site server is described in detail in [36].

Double-clicking on the TAM module in the Local Root Modules list will open a
module instance window, and from this window one may do the following:

¢ Suspend and single-step the trace analysis, using the menu buttons suspended
and Continuous Mode

e Examine the TAM status from the Local_Vars pull-down menu, which will dis-
play statistics on the search in progress, as well as other diagnostic information.

e View the logfile as it was when last loaded, from the Load Module Instance
module.name menu button. The logfile is loaded when the window is opened

initially, and is re-loaded each time the user clicks on the button bar at the top
of this window.

There is a2 bug in Dingo which causes the module to crash if you attempt to
load its logfile when it is too big to fit into memory. Therefore, if you know that
the logfile will exceed a couple of megabytes, and you would like to monitor
the TAM statas, it is recommended that you open the module instance window

near the beginning of the analysis, and refrain from clicking on the window’s
‘button bar during the search.

When the trace analysis is finished, a message peer exited or abruptly disconnected

will appear on the standard output. The module instance window will automatically
kill itself, if 1t exists.

C.2.6 Viewing the Results of the Analysis

Each module which is executed under the Site Server keeps its own log file. The
filename for a module with name modulename is:
-modulename@pid.indez™ nostname.log

The trace analysis results can be viewed in the logfile for the TAM. If the de-
buglevel was greater than 0, each transition the TAM attempted would be listed
in the log file, in the order that it was tried. At the end of the file, 2 message all
outputs verified or trace is invalid indicates the result of the analysis. See
Section 6.4 for an example of a log file generated during trace analysis by a TAM.

The statistics given at the end of the trace, and after every 1000 transitions taken,
are explained below:

CPU Time (seconds): This is the amount of CPU time used by the TAM process.
Achieved by using the clock(3C) function.
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Trans executed: The number of transitions executed during the search. This can
also be thought of as the number of edges searched in the tree. During DFS,
this is the sum of generates and restores.

Generates: The number of times a call was made to _generateFireable. During
DFS, this is the number of vertices in the search tree.

Depth: The depth of the most recently searched node in the tree.
Max Depth: The maximum depth achieved in the tree during the search.

Restores: The number of state restores during the search. During DFS, this is the
number of backtracks.

Saves: The number of state saves during the search. During DFS, this is the number
of nodes with more than 1 child in the search tree.

Trans per second: This is the number of executed transitions divided by the CPU
time, in seconds.
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List of Abbreviations

BNR: Bell Northern Research

CCITT: International Consultative Committee for Telephones and Telegraphs.
CRIM: Centre de Recherche Informatique de Montreal
DFS: Depth-First Search

DINGO: Distributed ImplementatioN GeneratOr
EFSM: Extended Finite State Machine. See Section 2.1.
ESTL (or Estelle): Extended State Transition Language
FDT: Formal Description Technique

FSM: Finite State Machine

GRM: Global Reference Manager. See Section 4.1.2.

IP: Interaction Point. See Section 3.1.

ISDN: Integrated Services Digital Network

1SO: International Organization for Standardization
IUT: Implementation Under Test. See Section 5.2.
LAPD: Link Access Procedure D protocol

LOTOS: Language of Temporal Ordering Specification
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MONDEL: Montreal Description Language
OSI: Open Systems Interconnection

PET: Portable Estelle Translator

PGAV-Node: A PG-node with all inputs consumed, and all outputs verified. See
Section 7.2.2.

SDL: Specification and Description Language.
TAM: Trace Analysis Module. See section 6.2.
TANGO: Trace ANalysis GeneratOr
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