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ABSTRACT

The mechanical behavior of fractures in geological media is important to geotechnical
and geoenvironmental engineering. Considerable investigations have been conducted
on, firstly, the characterization of the fracture topography and secondly, on the
assessment of the influence of fracture topography on the mechanical behavior,
particularly the dilatancy of the discontinuity. The studies of the mechanical behavior
of fracture surfaces have invariably been concerned with the examination of the
mechanics of the contact surfaces, to the virtual exclusion of the progress of failure
zones into regions adjacent to the contacting fracture surfaces. This thesis conducts a
computational assessment of the role of geomaterial plasticity and surface topography
on the behavior of a fracture. The computational modelling takes accounts of the
irregularity of the joint surface, the frictional and elasticity characteristics of the
contact zones, the elasto-plastic failure of the material and incompatible deformations
that arise during shear of an irregular fracture surface. The computational shear
responses are compared for the cases where a regular fracture surface exhibits
identical shear behavior in the presence of geomaterial plasticity. For an irregular
joint, it is observed that the shear behavior is relatively unaffected by material
plasticity. Variation of dilatancy with shear cycles, however, can be directly attributed
to the presence of material plasticity. Plastic energy dissipation is related to the
normal restraints specified. Shear behavior of a specific joint appears to depend
mainly on the interfacial behavior of the limited number of asperity contact during
shear. The surface geometry of these asperities governs the dilatancy and their slopes
control the peak shear resistance. The thesis also examines briefly the influence of

initial separation of joints on the shear behavior.



RESUME

Le comportement mécanique des fractures dans les milieux rocheux a une importance
considérable pour la conception d’ouvrages geotechniques. De nombreuses
investigations ont ét¢ conduites, en premier lieu, pour caractériser la topograhie, des
surfaces, puis pour analyser I’Influence de la morphologie sur le comportement
mécanique des joints rocheux, plus particulierement sur la dilatance. Le
comportement mécanique des joints rocheux est, le plus souvent, étudi¢ gréce a la
mécanique de contact, sans prendre en compte la propagation des fractures qui se
produisent dans les zones a proximité de ces zones de contact. Dans cette thése, le
role du comportement plastique des geomateriaux et de la morphologie des surfaces
sur le comportement mécanique des joints rocheux, est etudié de maniére numérique.
Un modéle numérique prenant en compte les irrégularités de la surface des joints, les
paramétres mécaniques tels que le coefficient de frottement et 1’élasticité des zones de
contact et les déformations incompatibles qui resultent du cisaillement des joints
rocheu. Des surfaces régulicres et irreguliéres ont été testeés, et les résultats ont été
comparés dans le cas de matériaux plastique. Il y a aussi été¢ observé que le
comportement en cisaillement et peu affecté¢ par le fait que le matériaux a un
comportement  élastoplastique en le comparant aux résultats obtenus pour les
materiaux €lastiques. Cependant, la variation de la dilatance pour un essai cyclique de
cisaillement peut étre directement attributée & la présence de materiaux aux
comportement plastique. La dissipation de ’energie plastique est liée aux conditions
aux limites dans la direction normale du joint. Le comportement en cisaillement
semble dépendre directement du comportement mécanique des asperités localiseés
dans les zones de contact. La géomeétrie de ces asperités gouverne la dilatance et leurs
pentes controlent I’intensité du pic de cisaillement. L’influence de 1’ouverture initiale
des joints est aussi étudiée pour mieux comprendre le comportement mécanique des

joints.
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Chapter 1

JOINTS IN BRITTLE GEOMATERIALS

1.1 Joints in brittle materials

The development of brittle fracture in an intact material or at the bond of two distinct
materials leads to the development of discontinuities (Figure 1.1). A planar
discontinuity between two material regions with similar or identical mechanical
properties can be defined as a joint (Figure 1.2). Joints in brittle geomaterials, such as
rock and concrete, will exhibit quite similar mechanical behavior primarily due to

their brittle character.

Load transfer at joints constitutes an important aspect of the study of brittle
materials in contact. Geotechnical stability of excavations in rock, cracked concrete,
flow and transport of fluid and chemicals through materials are also influenced by the

mechanical behavior of the joints.

In current usage, the term interface, which, in the context of the study of
geomaterials, is usually regarded as the physical boundary between dissimilar
materials, is also sometimes used to signify a joint (see e.g. Selvadurai and Boulon,

1995).



Failure plane

Figure 1.1 A single shear fracture in Westerly granite [after
Friedman et al. (1970)].

I 200 mm |

Figure 1.2 A joint in Limestone [after Armand (2000)]



1.2 Review of research of rock joints

It is generally accepted that, strength, deformability and fluid flow characteristics
of rock joints depend on the roughness of the joint. Characterisations of joint
surfaces have been extensively treated by a number of researchers. Patton (1966)
idealized the random joint profile as a regular 'saw-tooth' profile. He defined a
asperity angle to propose a Mohr-Coulomb-type bilinear model of a shear strength
criterion: at low normal stresses, the joint shows dilatancy due to overriding of the
asperities; at high stresses, shear failure can occur through intact material in
asperities. Barton (1971, 1973, 1976) examined the effect of the roughness on the
peak shear strength and proposed a JRC value (Joint Roughness Coefficient) to aid
his analysis. The joint roughness was then simply characterized as an empirical
value, which can be determined either in laboratory or in situ. The procedure for
determining JRC is given in ISRM (1978). This empirical determination of JRC is
quite subjective and the value for a same 3D profile differs at different scales
(Bandis, 1981) and in different directions of shearing. Therefore in addition to the
implementation of JRC value, some conventional statistical methods have been
used to supplement the joint characterization. Among such studies are those given
by Wu and Ali (1978), Tse and Cruden (1979), Krahn and Morgenstern (1979),
Dight and Chiu (1981), and Maerz et al. (1990). The limitations of both JRC and
the conventional statistical method have also been pointed out by Maerz et al.
(1990), Miller et al. (1990), Kulatilake et al. (1995), Wakabayashi and Fugushige
(1995), and Kodikara and Johnston (1994). In an attempt to avoid directional
dependence and scale effects, fractal methods, that characterize the concept of self-
similarity and self-affinity, have been vigorously accepted by many researchers
(see e.g. Brown, 1985; Matsushita and Luchi, 1989; Malinverno, 1990; Miller et
al., 1990; Power et al., 1991; Huang et al., 1992; Odling, 1994; den Outer et al.,
1995; Lee, 1997; Kulatilake et al., 1995; Shirono and Kulatilake, 1997). A number
of methods have been suggested for estimation of the fractal parameters for joints.
There include the divider (Mandelbrot, 1983), box counting (Feder, 1988),
variogram (Orey, 1970), spectral (Berry, 1980), and roughness Iength



(Malinverno, 1990). The trends linking fractal parameters with various mechanical
parameters of rock joints have been studied by Brown and Scholz (1985), Turk et
al. (1987), Lee et al. (1990), Maerz et al. (1990), Huang et al. (1992), Xie et al.
(1993, 1994, 1997a), Odling (1994), den Outer et al. (1995), Kwasniewski and
Wang (1993), Bobji et al. (1999). Kwafniewski and Wang (1997) have examined
the damage process of joint surface during shear. A law for surface morphology
evolution, based on fractal method, has been developed by these researchers to
predict the changes of surface as functions of the plastic work (see also Nguyen
and Selvadurai, 1998). Further information on the evolution of rock joint
morphology during shear are given by Sabbadint et al. (1994, 1995), and Homand-
Etienne et al. (1995). Xie et al. (1997b) examined the stress fields near fractal
joints during compression and shear using photoelastic method. Roughness was
found to be an important factor affecting the stress field. Re et al. (1997) explored
the mechanisms underlying scale effect by focusing in particular on the variation
in the contact areas as a function of joint size using fractal analysis. Fox et al.
(2000) recently presented the effect of roughness on multi-cycle dynamic shear
behavior of a natural rock joint. Gentier et al. (2000) recently also examined
influence of fracture geometry on shear behavior and established a strong link
between them. They described results from a series of shear tests performed on
identical cement mortar replicas formed from a natural granite fractures.
Mechanical parameters measured during experiments varied depending on the
shear direction. Using a three-directional geostatistical method of fracture surface
characterization, they analyzed the dependence of size and location of damage

zones on local geometry and proposed an algorithm.

Materials such as clay, silt and fine sand which infiltrate rock joints are expected
to reduce the overall shear strength of the joint. Many laboratory tests on infilled
joints have been conducted under constant normal stress (see €.g. Goodman, 1970;
Kanji, 1974; Ladanyi and Archambault, 1977; Lama, 1978; Barla et al., 1985; Pereira,
1990; Phien-wej et al., 1990; Toledo and de Freitas, 1992). Pereira (1997) used
rotary shear tests to investigate the stress change near the rock surface during shear.

When the shear load was applied, the stress field changed continuously during the test



on an unfilled joint, due to the removal of the asperities from the rock surfaces. For
filled discontinuities this re-orientation of the stress field became less probably since
not many asperities had been damaged during the shear process. Indraratna (1999)
recently performed tests on some filled regular triangular joints under constant
normal stiffness. Appearance of additional normal stiffness causes a greater
suppression of dilatancy and leads to higher shear stresses than those results obtained
under constant normal stress. The failure intersected the asperity when fill height was
less than asperity height; it only passed through the fill material when the ratio of fill
height and asperity height was greater than some critical value, which varies from

about 1.4 to 1.8.

A clear understanding of the mechanism of fluid movements through joints
becomes necessary for the study of geoenvironmental problems. The cubic law of
hydraulic permeability of a joint surface is developed from the classic "parallel plate
model". The applicability of the cubic law to flow through fractures has been
explored experimentally and analytically, such as by Snow (1965), Iwai (1976),
Gangi (1978), Witherpoon et al. (1980), Engelder (1981), Raven and Gale (1985),
Pyrak-Nolte et al. (1987), Tsang (1987), Zimmerman et al. (1991), Iwano and
Einstein (1995), Durham and Bonner (1995) and Selvadurai (2000). Deviations from
cubic law, which stems from surface roughness, were examined by Kranz et al.

(1979), Raven and Gale (1985), Brown (1987) and Boulon et al. (1993).

Mechanical deformation of a rock joint results in changes to its aperture and
consequently its hydraulic conductivity. The behaviour of fluid flow can be coupled
with evolution of normal stress and closure of joint. Most of the modelling and
experiments conducted in connection with hydromechanical coupling problems were
performed mainly under normal loading conditions (Raven and Gale, 1985; Gentier,
1986; Billaux and Gentier, 1990; Amadei and Illangasekare, 1992). Modelling of
these couplings requires a precise characterization of joint roughness morphology.
Pyrak-Nolte and Morris (2000) found that the fluid flow through a single fracture
subjected to normal stress was dependent on spatial correlation of the aperture

distribution. In the case of shear loading conditions, the modelling of



hydromechanical coupling is much more complex and difficult. Relevant
experimental investigations have been made by Makurat et al. (1990), Olsson and
Brown (1993), Esaki et al. (1996, 1999) and Yeo (1998). The tests by Esaki et al.
(1999) revealed that, the change of permeability of the joint was approximately
similar to that of the change in its dilatancy. Initially there was some permeability
decrease due to the closing of contact points and then the permeability increased
rapidly due to the increase of dilatancy. Chen et al. (2000) performed experiments to
investigate the influence of shear displacement and normal stress on the mechanical
and hydraulic behavior of rock joints. Dilatancy induced by shear displacement
significantly enhanced the permeability of joints at high normal stress up to 40 MPa.
It was reported that equation proposed by Willis-Richard et al. (1996) underestimated
dilatancy angle while the model by Barton et al. (1985) overestimated results for
shear on joints with low-JRC and underestimated them for shear on joints with high-

JRC.

The experimental research on rock joints have been complemented and aided by
the development of computational approaches. In the early approaches to such
modelling, the finite element method featured prominently. Finite element analysis of
rock joints is often made through implementation of joint or interface elements.
Goodman (1968) proposed the first interface element specially developed for
modelling rock joints. Gens (1995) gave a classification of these elements: the link
element (Frank, 1982; Ahmad et al., 1987), continuum finite elements of small but
finite thickness (Zienkiewicz et al., 1970; Desai, 1984; Schiweiger et al., 1990) and
zero thickness joint or interface elements (Goodman, 1968; Carol, 1983). Also many
investigators have proposed constitutive models of interfaces for finite element
implementation to account for dilatancy, normal stress and shear displacement.
Roberds and Einstein (1978), using Patton (1966)'s yielding criterion, proposed a
comprehensive model to include shear, dilatancy and normal stress. Desai et al.
(1985) introduced a non-linear elastic model. Fishman and Desai (1987) developed an
elasto-plastic constitutive model for the hardening behavior of rock joints using
associative and non-associative flow rules. The same model was modified by

Navayogarajah et al. (1992) to account for monotonic and cyclic behavior of



interfaces. Plastic deformation can be divided into a slip component and damage
component. Fakharian and Evgin (2000) adopted this model to numerically simulate
3D behavior of interface under various normal boundary conditions. Plesha (1987)
considers a rough joint element with normal stiffness and shear stiffness. Important
aspect of asperity degradation was considered in this model in that the decrease of
dilatancy angle is in an exponential relationship with total plastic energy dissipation.
Nguyen and Selvadurai (1998) implemented this model in their finite element code
FRACON to examine computationally asperity degradation, permeability evolution
during dilatancy and shearing of joints in geomaterial. In addition to finite element
method, recent numerical research has featured the promising development of other
approaches in analysis of interfaces or joints in geomaterials, which includes the
boundary element method (Banerjee and Butterfield, 1981; Crouch and Starfield,
1983; Selvadurai, 1995; Selvadurai and Au, 1987, Grabinsky and Kamaleddine,
1997), the distinct element method (Cundall, 1971; Cundall and Strack, 1979;
Williams et al., 1985, 1993; Pande et al., 1992; Selvadurai and Sepehr, 1997, 1998,
1999) and the discontinuous deformation analysis method (Shi, 1988; Maclaughlin
and Sitar, 1996; Ohnishi et al., 1996).

1.3 Scope of the thesis

In the conventional analysis of joint behavior, attention is usually restricted to the
non-linear contact behavior between surfaces composing the joints. With certain
types of rocks or other brittle geomaterials, failure in the form of plastic flow and
brittle fracture can also extend to the regions in the proximity of the joints. The scope
of this research work is to use existing documented computational methodologies to
examine the manner in which the non-linear process in regions adjacent to the joint
surfaces can influence the overall shear behavior of the joints. The availability of
computational methodologies, which accommodate for elastic-plastic frictional model
and finite sliding formulations, makes it possible to account for discontinuous

displacement at joints.



Chapter 2

GEOMECHANICAL BEHAVIOR OF ROCK
JOINTS

The majority of current rock joint models are capable of predicting the shear behavior
of joint surfaces with relatively simplified surface topography. Many of these do not
take account of complex surface characteristics. Tentative quantitative description of
roughness, which greatly influences shear behavior and hydraulic conductivity of
rock joints, has been paid more attention with the help of graphical, statistical and
fractal methods. This has led to a better understanding of complex shear mechanism

and its relation to joint roughness.
2.1 Characterization of joint surface roughness

Patton (1966) performed experiments on artificial plaster joints with regular 'saw-
tooth' profile, as shown in Figure 2.1. He proposed a Mohr-Coulomb-type bilinear
model as the failure criterion for the joint. At low normal stresses, the joint shows
dilatancy due to overriding of the asperities and at higher stresses, dilatancy is
suppressed and shear through intact material is observed. Huang (1990), in his multi-
cyclic shear tests conducted under constant normal stress and one-cycle shear test
conducted under constant normal displacement, also observed the phenomenon of

shear through intact material in asperities.



2 \ a: Relative movement at joint during

asperity over-ride

a_ | b b: Relative movement during shear

through asperities
i: Asperity angle

i+, ¢, : Friction angle for the joint

0 G, ¢, Friction angle for the material

(b). Relative movement at joint during (c). Relative movement during shear

asperity over-ride through asperities

Figure 2.1 Bilinear peak shear strength [after Patton (1966),
Goodman (1976), and Brady and Brown (1993)].

Real joints have spatially irregular profiles. Barton (1971, 1973, 1976) has
examined the effect of roughness of the irregular profile on the peak shear strength.
The irregular joint roughness was simplified as a value of JRC (Joint Roughness
Coefficient), and the angle of inclination of the asperities (as defined in Patton's

model) was replaced by a dilatancy angle JRClog,,[JCS/o,], which dependeds on

normal stress o and compressive strength of the joint surface defined as JCS . These



coefficients JRC (Joint Roughness Coefficient) and JCS (Joint Compressive Strength)
can be empirically and visually determined in laboratory or in situ. The procedures
are described by ISRM (1978). The Figure 2.2 illustrates the JRC values and

corresponding joint profiles.

Joint profile JRC
1 - 4 0-2
2 ~ 24
3 h 1 46
4k ~— 68

T e 12-14
8 W 14-16
9 e e 16-18
10 ™ 18220

e bt £ torbnied  SCALE

Figure 2.2 JRC and joint profiles [after Barton (1971, 1973, 1976)]

The empirical determination of the JRC value is prone to subjectivity and will
depend on the direction of shearing (Huang and Doong, 1990; Jing et al., 1992). For
this reason, some researchers have investigated methods with direction independent

information obtained through statistical analysis. Examples of these are given by Tse

10



and Cruden (1979), Roberds et al. (1990), and Yu and Vayssade (1991). The use of
fractal methods for joint characterization is also discussed by Lee et al. (1990), and

Seidel and Haberfield (1995).

For example, Seidel and Haberfield (1995) described the fractal parameters of

roughness and their relation to shear behavior. It was concluded that, if the asperity
angle followed a Gaussian distribution, the mean angle statistic 0 was related to

standard deviations of angle s, through the relationship s, = \/%‘5' ; 8, is also related

to fractal parameters of joint through approximate relation s, =~ cos™ (N'?),

where D is the fractal dimension of joint and o is the number of equal length chords,

into which the joint length L is divided. A typical comparison between s, and JRC is

shown in Figure 2.3.

A

Idealized triangular asperity

Fractal
sg= a°

— JRC 24

Fractal
sg=9 i

e T T e —~———  RC 8-10

W Fractal
Sal17°

w/"\/\., JRC 16-18

Figure 2.3 JRC and fractal profile [after Seidel and Haberfield (1995)]
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2.2 Asperity behavior

Roughness or frictional characteristics of the joint surfaces influence their mechanical
behavior. Shear load can only be transferred through asperity contact. Deformation or
damage of surfaces in contact and asperities in contact can influence the mechanical

behavior of rock joints.

The mechanical behavior of asperities is governed by the constitutive behavior of
the parent geomaterials. Failure in form of plastic flow and brittle failure can extend
to the regions near joints. Handanyan et al. (1990) pointed out three modes of asperity
failure in their paper: these include (i) shearing of asperities (ii) the elastic or plastic
deformation and eventually sliding at the asperities and (iii) the tensile splitting of
asperities. The failure modes are schematically illustrated in Figure 2.4 (a). The
model material used in their tests was used as a synthetic gypsum which exhibited
linear elastic behavior in both unconfined compressive testing and direct tension
testing and had medium strength and average modulus characteristics of a medium
strength igneous rock. Handanyan et al. (1990) obtained the failure planes for three

formed asperities, as shown in Figure 2.4(b).

o 0.76cm|
vz 002
(a). Failure modes (b). Failure planes in various shaped

asperities

Figure 2.4 Failure of asperities [after Handanyan et al. (1990)]
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2.3 Three modes of testing

Sliding of potentially unstable rock blocks is restrained between two parallel dilatant
rock joints (Figure 2.5). The joint exhibits dilatancy due to overriding at asperities.
When dilation of the rock joints during shearing is constrained or partially
constrained, an increase in the normal stress over the shear plane occurs, which
increases the shear resistance of joints. Normal stress is a monotonic incremental
function of ¢(k,v") that satisfies that ¢(0,v') = ¢(k,0) = 0, where £ is the stiffness of
surrounding rock mass and v' is the dilatancy. Experimental techniques provide the
most reliable methods for the investigation of the mechanics of rock joints. In
experiments involving rock joints, the experimentation can follow three different
modes of testing (Figure 2.6). There include experiments conducted under conditions
where (i) the plane of the joint is subjected to a constant normal stress or (ii) the plane
of the joint is subjected to a constant normal stiffness and where (iii) the joint is
constrained from movement normal to its plane. The shear test under normal stiffness
more realistically provides the shear behavior of natural joints in a sense that it
considers the contribution of rock mass stiffness of £ on the shear behavior. Test
conducted under constant normal stress, which is a limit case of a test under constant
normal stiffness when & =0, yields shear strength too low for practical situations

(Goodman, 1976). Shear under constant normal displacement represents the limit case

when £ — .
~ ~ ~ \\\ ,
~. N . -7 ~/ /
N 4
< \)\ k \,\/ \\,\/ //
o
S L Tl K '
SR s o, = ¢k, V')
\\‘ k ~ \V, ~/
; A VAR
s N7 1 ,\/\\ ’\
\\\ // ~ , ~o \7: ~ e
~. \/4\ RN "
NN Al T T £
(a). Underground excavation in jointed rock (b). Equivalent 2-D model

Figure 2.5 Joint behavior at the roof of an excavation [after Indraratna

et al. (1999)]
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(a) Shear under constant (b) Shear under constant (c) Shear under constant

normal stress normal stiffness normal displacement

Figure 2.6 Experimental study of shear under different normal

boundary conditions.

2.4 Shear tests of joints under constant normal stress

Several investigators have examined the experimental behavior of rock joints during
shear under constant normal stress states. Among these are Patton (1966), Barton
(1973, 1976, 1986), Hoek (1977,1983, 1990), Bandis et al. (1981), Hencher and
Richards (1989), Saeb and Amadei (1992), and Kulatilake et al. (1995).

Bandis and Barton (1983) gave their results for experiments conducted on five
natural rock joints, both fresh and weathered, in slate, dolerite, limestone, silstone and
sandstone. The results of shear test on the fresh dolerite joints are documented in
detail since these results will be used in the numerical modelling exercises. The
choice for dolerite is dictated by avability of supplemetary information concerning
the failure properties of the material. Test specimens used were single-jointed
rectangular blocks. Shear tests were conducted on a portable shear apparatus under
constant normal stress. The shear loads were applied in an incremental fashion. Once
the peak shear strength was reached, the shear load was released, the joint halves
reassembled, and a new run performed under a higher normal stress. In such

arrangement, since the normal stress levels applied are relatively low compared to the

14



compressive strength, the contribution of asperity damage due to shear behavior on
one identical profile has been minimized. We document here the results for dolerite
joints, which are classified as being both fresh and weathered. Weathering effects in
the dolerite were visible along the joint planes, which were covered by a layer of
limonite (hydrated ferric oxide). The joint profiles for two cases are shown in Figure
2.8. The results for the variation of shear stress with shear displacement are also
shown in Figure 2.8. The shear behavior of weathered joints is distinctly different
from the results for the fresh joint. The material parameters relevant to the
computational modelling are the tensile and compressive strength and the elastic

constants. These correspond to

f, = tensile strength =17.3 MPa
f. = uniaxial compressive strength =165.0 MPa
E =Young's modulus = 78.0 GPa

The Possion’s ratio was not given in experitments. Uniaxial compression tests were
performed on a single cylindrical and prismatic specimens. Axial strain was recorded
by means of electrical resistance strain gauges. The axial stress-strain relationship for
fresh dolerite is illustrated in Figure 2.7. The Young’s modulus was calculated from
the slope of the tangent to the stress-strain curve at 50% of the maximum axial

compressive stress.

180.00
160.00
140.00
120.00
100.00

80.00

60.00

Stress (MPa)

40.00

20.00

r s T T T T d
-0.05 0 005 0.1 0.18 02 025

Strain (%)
Figure 2.7 Uniaxial stress-strain relation for fresh dolerite (after

Bandis et al. (1983)]
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Figure 2.8 Shear behavior of fresh and weathered dolerite joint

and corresponding joint profile [after Bandis et al. (1983)]

(f. =165.0MPa; f, =17.3MPa; E =78.0GPa)
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Sabbadini el al. (1995) measured the 3D morphology of a joint using a digitizing 3D-

videolaser processing. Joint surfaces of schist and granite were first replicated with a

silicon polymer resin model. The resin replicas were then used for moulds cast in

mortar composed of fine sand, cement, silica fume and water. No strength variables

for material are recorded. The surface morphology of the two joints and

corresponding shear behavior are shown in Figure 2.9. Although the value of the

fractal analysis indicated that granite replica surface was rougher in a 3D sense, the

shear stress for the schist replica was slightly larger than that for granite replica under

the same normal stress and at the same displacement in shear direction specified.

Shear stress (MPa)
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(a). Morphology of a schist joint replica
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Shear displacement (mm)

(c). Shear behavior of the schist replica

Shear stress (MPa)

Shear direction

(b). Morphology of a granite joint replica

08 o, =14MPa

06

0.4
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0 — e e
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Shear displacement (mm)

(d). Shear behavior of the granite replica

Figure 2.9 3D joint profile and related shear behavior under constant

normal stress [after Sabbadini et al. (1995)]
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2.5 Shear tests of joints under constant normal stiffness

At present, the published literature on tests involving constant normal stiffness is
relatively limited compared to those under constant normal stress. The earliest work
is due to Byerlee and Brace (1968) who considered the effects of mass stiffness on
fault shearing. More recently, Leichnitz (1985), Indraratna et al. (1998, 2000),
Benmokrane and Ballivy (1989), Van Sint Jan (1990), Ohnishi and Dharmaratne
(1990), Benjelloun et al. (1990) have presented experimental results for tests on

geomaterial joints conducted under constant normal stiffness.

Skinas et al. (1990) also documented the experimental results for tests conducted
under constant normal stiffness. The tests were conducted on 15cm x10cm model
joints, which were cast from natural joint surfaces, using a brittle, artificial material,
which was prepared from a sand-barytes-cement mixture. A typical set of results is
presented in Figure 2.10. Under constant normal stress k=0, joint behaved in a
relative brittle manner with a peak shear stress at 1.3 MPa . Under increasing value of
k , shear behavior gradually transformed into plastic response. An increase in the
normal stiffness leads to an increase in the normal stress and a reduction in the

dilatancy.
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Figure 2.10 Shear tests on identical joint surfaces under constant normal
stiffness [after Skinas et al. (1990)]
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Van Sint Jan (1990) presented experimental data on the shear of a random joint tested
under constant normal stiffness of 0 and 0.039 MPa/mm . Plaster of Paris is used as
the model material. The model material is weak in a sense that it has a }small
compressive strength f, =0.92 MPa . Joint profile is shown in Figure 2.11(a) and
corresponding shear behavior is presented in Figure 2.11(b) to Figure 2.11(d). Due to

the low value of f, and low initial applied normal stress, the shear stresses in such

cases are also low.
Initial o, =1.0 MPa

4 k=0.03wPa/mm
-'/ )
3F R ./-/
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(a). Joint profil (b). Normal stress vs. shear
a). Joint profile
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Figure 2.11 Shear behavior under constant normal stiffness
k =0.039 MPa/mm [after Van Sint Jan (1990)]
(f. =0.92MPa; E =1.06 GPa)
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Thomas and Johnston (1987) and Kodikara and Johnston (1994) conducted shear tests
under constant normal stiffness in order to examine the behavior of the rock socketed

pile.

An artificial rock is made to simulate and examine both the regular and irregular

rock (Mudstone)-concrete joints. The friction angle between rock and concrete was

measured between 24° and 36°. Material properties are
f. =2.8 MPa; E =360 MPa;v=0.3.

An idealization of the test is shown in Figure 2.12,

Zﬁ“‘ Steel spring 16_4

v Normal force

5 L. © .’Concrete'o 0
Shear - - » Shear
displacement — ~ displacement
& I

Figure 2.12 Configuration of test under constant normal stiffness
[after Kodikara and Johnston (1994)]

Typical results for shear test results conducted on regular and irregular triangular
concrete-rock joints are shown in Figure 2.13. It was reported that, the asperities of
the regular joints all failed at the same values of shear displacement whereas for the
irregular joints, the asperities failed at different values of shear displacement. The
regular joints showed a relatively brittle response with a high shear resistance at the
same shear displacement. The irregular aperities were more ductile with generally a

lower peak resistance.
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Figure 2.13 Shear stress vs. shear displacement of regular and irregular

joint under constant normal stiffness [after Kodikara and Johnston

(1994)] (£, = 2.8 MPa; E = 360 MPa; v = 0.3)
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Seidel and Haberfield (1995) numerically generated the 2D-fractal joint profiles and
performed experimental shear tests on joints with these profiles under constraints of
constant normal stiffness. Model material used was the same as that used by Kodikara
and Johnston (1994). Figure 2.14(a) shows three different levels of numerical
approximation of random joint profiles based on the same algorithm. In this
algorithm, an initial straight-line chord was bisected and mid-point was allowed to
displace a random distance according to the Gaussian distribution of the asperity
angle. The definition of asperity angle is given in Figure 2.3. The same process was

applied to each of the two resulting chords. The roughness of resulting profile could

be characterized by s,, which was the standard deviation of asperity angle. The
coarser approximation was taken as a base from which finer approximation was
generated. Graphical comparison between values of s, and JRC are given in Figure
2.3. A finer approximation of fractal profile led to higher roughness parameter s,. It

appears that higher values of shear stress could be obtained during shear for the finer
approximation although the indicated variation of shear stress in different cases was

considered to be within the bounds of experimental error.
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: FineéAppro‘:ximo!;iun k = 300kPa
55 =206° Initial oy = 300kPa
Medium Approximation = L ot 2
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(a). Numerically generated ot
0.0 25 5.0 15 10.0

fractal profile Shear displacement (mﬁl)

(b). Shear behavior of fractal profiles

under constant normal stiffness

Figure 2.14 Test results for numerically generated fractal profile [after

Seidel and Haberfield (1995)]
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Recently, Indraratna et al. (2000) presented results for tests conducted on natural
(field) joints under constant normal stiffness. The natural sandstone joints were
sampled from a rockslide site at Kangaroo Valley in New South Wales, Australia.
Petrological studies showed that it was a poorly sorted medium to coarse-grained
sandstone having 68-70% quartz (Geological Survey of New South Wales, 1974).
The field joints were cut at the site in the form of a block and transported to the
laboratory. The specimens [shown in Figure 2.15(c)] were finally cut into a size
measuring 250 mmx 75 mmx150mm for top part and 250 mm x 75 mm x 100 mm
for bottom part to fit the shear mould. The highly weathered sandstone had uniaxial
compressive strengths of 19 MPa to 21 MPa.

The initial normal stress was applied through a hydraulic jack. The normal
stiffness was provided by a set of normal springs. The shear load was applied via a
horizontally aligned hydraulic jack. The details of shear apparatus are shown in

Figure 2.15(a).

All natural joints were tested under constant normal stiffness & = 8.5 kN/mm. The
results for the variation of shear stress with shear displacement are presented in
Figure 2.15(c). Generally, a higher normal stress led to a higher shear stress at the
same values of shear displacement. Since the tests were performed on different
natural joints with different profiles, it was not necessary to reduce the shear stiffness

as the initial normal stress was increased.

Dilatancy was monitored at the center of the top of the specimen. As can been
from Figure 2.16(a), unconventional negative dilatancy was recorded with increasing
initial normal stress. In such cases, the normal stress would decrease rather than
increase with shear displacement. The negative dilatancy during shear could be
attributed to the weathered condition, which improved the compressibility of the rock

joint, but no clear explanations were provided.
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Bottom part

(a). Machine for shear under (b). Close view of one natural
constant normal stiffness (field) joint prepared for testing
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(c). Shear stress vs. shear displacement

Figure 2.15 Test machine, rock specimen and variation of shear stress
during shear conducted on natural rock under constant normal stiffness

[after Indraratna et al. (2000)]
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Figure 2.16 Variation of dilatancy and normal stress during shear
conducted on natural rock joint under constant normal stiffness [after

Indraratna et al. (2000)]
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2.6 Scale effect on shear behavior

Differences in the shear behavior of a joint at different scales are noticeable in results
obtained in many experimental programs. Several authors, such as Barton and
Choubey (1977), Bandis et al. (1981), Swan and Zongqi (1985), Yoshinaka et al.
(1991), Ohnishi and Yoshinaka (1992) have extensively investigated scale effect on
shear behavior of rock joints. The factors that contribute to the scale effects are still

not well understood.

Bandis and Barton (1981) points out the overall scale effects on joint behavior
under constant normal stress. Model materials were used and joint replicas had the
same joint profile as those of the prototype natural rock. Larger model joints were
broadly divided into smaller ones to account for the scale effects (Figure 2.17). It is

observed that, increasing block size or length of joint leads to:

(i) a gradual increase in peak shear displacement;
(11) an apparent transition from a “brittle” to “plastic” mode of shear behavior;

(111) insignificant scale effects in the case of relatively planar and smooth joint types.

Joint block length
Model prototype

6 cm 1.8 m
12 cm 3.6m
18 cm 54m
36 cm 10.8 m
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&
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0 1 2 3 4 5 6 7 8

Shear displacement (mm)

Figure 2.17 Scale effect on the relationship of shear stress vs. shear

displacement [after Bandis and Barton (1981)]
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Ohnishi and Yoshinaka (1992) performed experiments on regular and irregular joints
at different sizes under constant normal stress to examine the factors influencing scale
effect on shear behavior in joints. In their opinion, scale effect was strongly related to
the regularity and irregularity of the surface shape. Their test results did not show any
scale effect on the shear strength of regular or smooth joint surface. They made one
conceptual understanding of the scale effect; i.e., joints with different number of
repeated pattern of size B mm (Figure 2.18) were expected to have a same shear
behavior; the scale effect would, however, appear if the specimen of size B mm was

divided into smaller pieces and tested.
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Figure 2.18 Repeated joint pattern, which is expected to have no scale

effect on shear behavior [after Ohnishi and Yoshinaka (1992)].
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2.7 Cyclic shear behavior of rock joints

Asperties are damaged during shearing. These asperities can further be crushed
between contacted surfaces and become gouge materials residing in the valley of the
asperities, which decrease the dilatancy angle and would likely decrease the
permeability of the joint. Mechanical asperity degradation becomes obvious during

cyclic shear tests under different constraints normal to the joint.

Huang (1993) presents some experimental results of cyclic shear behavior

conducted on some regular joints of artificial plaster material under constant normal

stress. The compressive strength f, of the material is 38 MPa.

Figure 2.19 illustrates relative displacement between joint surfaces during one
complete cycle of shear. Corresponding curves for shear and dilatancy are shown in
Figure 2.20(a) and 2.20(b). Shear displacement is first increased in “forward”
direction from the original position a to maximum displacement b and decreased
again to the original position ¢ again. The dilatancy exhibited maximum value at b.
Then shear displacement is applied in “reverse” direction from original position ¢ to
maximum displacement d and decreased to original position e. The maximum
displacements in “forward” and “reverse” directions have the same values. During
shear in the “forward” direction, dilatancy observed is greater in unloading process
from b to ¢ than that in loading process from a to b. Similar phenomenon is found
during shear in the “reverse” direction, where dilatancy is also larger in unloading

process from d to e than in the loading process from c to d.
= ]
Figure 2.19 Schematic illustration of one complete cycle of shear
[after Huang (1993)]
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Figure 2.20 A single cycle of shear behavior under constant normal

stress [after Huang (1993)]
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Wibowo et al. (1992) conducted a series of 5-cycle tests under constant normal stress
and constant normal stiffness. A fracture at sizel5.24cmx 7.62 cm x 7.62 cm was
created by tensile splitting. Gypsum cement with a compressive strength of
27.58 MPa was used as the model material to duplicate the joint profile. A constant
normal load of 13.12kN (o, =2.26 MPa) was applied during the test under
conditions of constant normal stress. In another test, the stiffness k£ = 25.86 kN/mm
was added for shear under constant normal stiffness. Comparison of shear behavior

under two different constraints normal to the plane of shear is shown in Figure 2.21.
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Figure 2.21 Shear under two different boundary conditions up to 5 cycles
[after Wibowo et al. (1992)]
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Asperity degradation during multi-cycles of shear had an obvious effect on shear
behavior. Due to the damage of asperities, dilatancy and dilatancy angle all reduced
with the increase in the number of cycles, for both constant normal stress and
constant normal stiffness type tests. Shear loading damaged some relatively sharp
asperities and decreased the asperity angle, which subsequently reduced the dilatancy
value and shear stress. Asymmetry of shear behavior was found for shear of am
irregular joint under two different loading directions. Dilatancy and shear stress

showed different values in the “forward” and “reverse” directions.

The normal stiffness caused a greater suppression of dilatancy and higher shear
stresses. The contribution from normal stiffness to shear behavior was related to
dilatancy. In reverse shear, dilatancy was generally small and the shear behavior
under constant normal stiffness was very close to that obtained under constant normal

stress, especially in later cycles where dilatancy was nearly zero.
2.8 Shear induced changes in hydraulic conductivity of fractures

The normal and shear action on a joint might close or open the joint aperture due to
contraction or dilatancy. Consequently, the hydraulic properties vary due to the
changes in the aperture. Recent results of experimental investigations in this area are
given by Makurat et al. (1990), Olsson and Brown (1993), Esaki et al. (1996,1999),
and Yeo (1998).

Makurat et al. (1990) presented the experimental results of variation of hydraulic
conductivity with shear displacement conducted on natural joints in igneous rocks. A
biaxial cell is used for test shown in Figure 2.22(a). With this equipment, joints could
be closed, sheared and dilated under controlled normal stress condition, and at the
same time, fluid could be flushed through the joint. Deformation, flow rate and

stresses could be recorded simultaneously.
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Figure 2.22 Hydraulic conductivity of joints obtained by biaxial cell

testing [after Makurat et al. (1990)]
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Figure 2.22(b) presents the change of hydraulic conductivity of joint with shear
displacement for one joint under low normal stresses (compared to f,). The

hydraulic conductivity increased by nearly two orders of magnitude after 3.5 mm of
shear. This was due to the low restraint to dilatancy. Figure 2.22(c) presents the
hydraulic conductivity change during a test conducted on another joint with similar
JCS and JRC properties, but under much higher normal stress. Hydraulic conductivity
increased corresponding to shear tests in direction I, whereas it exhibited no major

change in reverse shear in direction II.

Esaki et al. (1999) measured hydraulic conductivity during shear of granite joints
with an artificial created profile. The test apparatus had the following characteristics:
(a) an artificial stationary joint could be created from an intact rock specimen; (b)
large shear displacement could be applied beyond residual stresses; (c) constant
normal loads could be applied and (d) hydraulic tests could be conducted by

supplying a constant water head to the joint during normal and shear process.

The rocks used were hard granites with porosity at 0.37% and uniaxial
compressive strength of 162 MPa. The size of specimens was 120 mm in length,
100 mm in width and 80 mm in height. The artificial fracture was then created at the
mid-height of the specimen using a pair of horizontal jacks, which applied loads
perpendicular to the direction of shear. Based on the water flow measured, the
hydraulic conductivity was estimated by using an approximating equation assuming
the cubic law applicable to the parallel plate. The tests revealed that the trend of
change of hydraulic conductivity was approximately similar to that of the dilatancy of
a joint. For the first Smmsof shear displacement, the hydraulic conductivity
increased rapidly by about 1.2 to 1.6 orders of magnitude. After reaching the residual
stress level, the hydraulic conductivity became almost constant. Reverse shear was
also applied and dilatancy was lower than that in forward shear. However, when
shearing in reverse direction is close to the initial zero point, the value of normal
displacement is greater than that prior to shear. This indicates the possible deposit of
gouge materials in the valleys of joint surface. The theoretical prediction based on

Barton (1985)'s empirical relation between hydraulic aperture and mechanical
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2.9 Summary

Although complex behavior of shear in joints is not completely understood, some

general conclusions can be observed:

(i) The surface roughness has important influence on the shear behavior of rock
joints. Traditional determination of JRC (Joint Roughness Coefficient) is prone to
subjectivity and depends on the direction of shearing. Statistical and fractal
methods give possible alternative methods with no direction and scale-

dependency in the information.

(i) Normal stiffness causes a greater suppression of dilatancy. Shear behavior
conducted under constant normal stiffness exhibits a greater ductile behavior and
higher shear stress at the same displacement, than those obtained under constant

normal stress.

(iii) The asperities deform and possibly fail during shear. Asperity damage influences
dilatancy and shear stresses during cyclic shear. Asperity degradation becomes
evident during multi-cycle shear, which decreases the dilatancy angle with

increase in the number of cycles.

(iv) Differences in the shear behavior at different scale of the joint are noticeable. The
factors that contribute to scale effects are still not well known. Joints with
repeated profile pattern will not, in general, exhibit differences in shear behavior

at different scales.

(v) Hydraulic conductivity of a joint can change by 1 to 2 orders of magnitude during
shear. The variation of hydraulic conductivity follows closely the variation of

dilatancy during shear.
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Chapter 3

CONSTITUTIVE CRITERIA FOR BRITTLE
GEOMATERIALS AND MODELLING OF
CONTACT INTERACTION

Geomaterials such as rocks and concrete exhibit brittle behavior at values of
confining stress significantly lower than their tensile and compressive strengths.
Although this behavior is well recognized, the failure of such materials is usually
characterized in relation to theory of plasticity, which is normally applicable to
materials with predominantly ductile behavior. Investigations relating to the failure of
rocks and concrete are quite extensive and comprehensive accounts of research in this
area are given by Coates (1967), Goodman (1976, 1989), Assonyi (1979), Jaeger and
Cook (1976), Jumikis (1983), Charlez (1991), Brady and Brown (1993). The
theoretical formulation of the plastic failure of a geomaterial requires the
specification of three criteria: namely a failure criterion, a hardening rule and a flow
rule. We shall briefly discuss those three aspects with special reference to the
application of the theories of materials such as rocks and concrete. This chapter also
contains a brief summary of the various failure criteria in the literature that have been
developed for describing the failure characteristic of brittle geomaterials. For

simplifity, perfect plasticity is assumed.
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3.1 Failure criterion of brittle geomaterials

The failure characteristics of brittle geomaterials such as rock depends on a variety of
factors including the types of forming minerals, the fabric of rocks, the distribution of
grain size and the degree of weathering. Igneous rocks generally consist of a
crystalline assemblage of minerals such as quartz, plagioclase, pyroxene, mica, etc
(Jaeger and Cook, 1976). Sedimentary rocks consist of an assemblage of detrital
particles and possibly pebbles from other rocks in a matrix of materials such as clay
minerals, calcite, quartz, etc. Metamorphic rocks are produced by the action of heat,
stress, or heated fluid on other rocks, sedimentary or igneous. All these minerals have
anisotropic properties. Most rocks consist of an aggregate of crystals and amorphous
particles jointed by varying amounts of cementitious materials. The boundaries
between crystals represent weakness in the structure of the rock. The size of the
crystals may be uniform or variable. The dimension of grain size of coarse granite can
sometimes reach up to several centimetres (Wahlstrom, 1994). Figure 3.1 shows a
close view of section of alkali dolerite. On a scale with dimensions ranging from
decimeters to meters, the rock mass contains sufficient number of crystals and it can
be regarded as continuous. If the interactions between grain boundaries are
sufficiently random, the average properties can be regarded as homogeneous and
isotropic. However, the failure of such a multiphase geomaterial can be more
complex and influenced by the existence of cracks at variable scales, either within the
phases or at the phase interfaces, resulting in a variability in the strength. The most
noticeable feature of failure of such a brittle geomaterial is that the strength in
uniaxial tension is significantly different from the strength in uniaxial compression
(Goodman, 1976; Chen, 1981). Although in both modes, the strength is governed by
microcrack development within the various phases and inter-phases, the closure of
cracks and frictional effects at the faces of such cracks lead to the development of
plasticity type phenomena. When the disturbance from appearance of cracks are small
in relation to the dimensions of a structure in rock, the rock mass can be treated as a
continuum. Figure 3.2 shows results of typical stress-strain data obtained through

compression testing of some brittle rocks. The tensile response of geomaterials
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exhibits similar behaviour. The mechanical behavior of concrete follows a similar
pattern. A typical example is shown in Figure 3.3. Typical features of the uniaxial
stress-strain curve for a brittle geomaterial are summarised in Figure 3.4. This figure

also presents suitable idealization within the content of elasto-plastic behavior.

1 mm

Figure 3.1 Ophitic texture of alkali dolerite: the larger clinopyroxene
crystals enclosing lath-shaped crystals of plagioclase feldspar [after
MacKenzie and Adams (1994)].
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Figure 3.4 Elasto-plastic response of geomaterials with perfect plastic

idealization

3.2 Multiaxial failure criteria for brittle geomaterials

The description of the failure behavior of brittle geomaterials due to a three-
dimensional stress state is an essential requirement for the formulation of a theory of
plasticity for brittle geomaterials. In general, the failure criterion for a material can be

represented in the form
flo;) =k (3.1

where k' is a material parameter which can depend on the post-failure hardening

characteristics of the geomaterials. In (3.1),

O-x.x o-xy Xz
c,=\o,, 0, O0,|=0, (3.2)
O-zx zy O-zz
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is the Cauchy stress tensor referred to the Cartesian coordinate system. For isotropic

geomaterials, the failure criterion can also be represented in terms of the principal

invariants /, in the form

f(IvIz’Is):ic (3-3)
where

I, =ir(cy)

I, =L[tr’ (o) -tr(o;")] (3.4)

I, =det(o;)

and tr denotes the trace of the matrix. In some instance, it is also convenient to

represent (3.1) in the form
f,J,,J5)=k" (3.5)

where J, and J, are the second and third principal invariants of the stress deviator

tensor s, defined by
-1I14.. (3.6)
Similarly, the strain deviator tensor can be also defined by

Gy =¢&; —5tr(g;)0;. 3.7

The functional form f(I,,1,,1;) or f(I,,J,,J;) now needs to be specified by

considering results of experiments. A variety of failure criteria have been proposed in
the literature and detailed descriptions of these are given by Prager and Hodge (1951),
Westergaard (1952), Prager (1959), Thomas (1961), Kachanov (1971), Chen (1981,
1994), Doltsinis (2000). Detailed description of classical failure criteria such as
Rankine (maximum stress), and Von-mises (Maximum distortional energy) criteria

are also given in the references cited previously. While all of these criteria have same
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relevance to the description of brittle failure, more relevant criteria have been

proposed in recent literature.
3.2.1 The Mohr-Coulomb failure criterion

The Mohr-Coulomb failure criterion is one of the earliest failure criteria that have
been proposed for the description of failure of brittle geomaterials including soils,
rocks and concrete. The basic hypothesis assumes that the failure of the geomaterial is

governed by the normal and shear stress at the potential plane of failure
Le.
T=c+otang (3.8)

where 7 is the shear stress on the failure plane, o is the normal stress on the failure
plane and ¢ and ¢ are the strength parameters derived, respectively, from cohesion
and angle of friction. In terms of the stress invariants, the above failure criterion can

be represented in the form

A

L1 sing + 7, sin(0 + =) + X2 cos(Z + O)sin g — ccos g = 0 (3.9)
37 3 3
where
0 =cos” 221 -%2 =% (0, 60°) (3.10)

24/3./,
and o, are the principal stresses.

3.2.2 Drucker-Prager failure criterion and its modification

The failure criterion proposed by Drucker and Prager (1952) is a simplification of the

Mohr-Coulomb failure criterion to take into account the dependence on both ./J,
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and /,. The standard failure criterion is a linear combination of these invariants and

can be written in the form
o, ++J, =k (3.11)

where a and k are material parameters governing failure.

In the computational code ABAQUS, a choice of three different yield criteria is
provided for extended Drucker-Prager type models, which are described as being
either linear, hyperbolic, or an exponential forms. In this thesis, the hyperbolic form
of Drucker-Prager failure criterion is selected due to its ability to combine
simultaneously the compressive and tensile failure, which is considered to be suitable
for brittle materials, such as rocks and concrete. The extended form of Drucker-

Prager failure criterion is given by the relationship

JI, +3J, + 11 tan g = d' (3.12)

with an asymptotic line defined by

3J, +1I tan B =d' (3.13)

where [, =d '—-j;—’tan B; d'=4Jl," +d? is hardening parameter;d is the cohesion of

material; and f is the friction angle corresponding to the limiting values of 1/, = .
The asymptotic line of the hyperbolic form of the extended Drucker-Prager failure
criterion will be identical to the classical conical form of Drucker-Prager failure

criterion if

a=—=tan f
3
d\'/— (3.14)
k=—=
3
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o

Figure 3.5 Drucker-Prager failure criterion with tension cut-off

(hyperbolic form of Drucker-Prager failure criterion)

3.3 Flow rules

To complete the description of plastic behavior of the geomaterials, it is necessary to
postulate a constitutive relation, which relates the mechanical variables to the
kinematic variables. Since the plasticity theories generally involve non-linear
responses, it is necessary to specify these constitutive responses in relation to
incremental values of the mechanical and kinematic variables. The relationship

between the incremental values of stresses do, and the incremental values of strain
de;, can only be postulated by examining experimental data conducted on specific

geomaterials. A fundamental consideration in the development of incremental plastic
stress-strain relations centers around the concept of a plastic potential. When
considering elastic behavior of materials, the strain energy function can be expressed
in terms of the stress state in the material and the strain components £, can be
obtained by differentiating the strain energy function W with respect to the

corresponding stress component Oy ie.

W=W(o,) (3.15)
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and

- (3.16)

60',.1.

&

The plastic potential is the analogue of the strain energy function for plastic behavior
of the material. If we assume the existence of a plastic potential g(o ;) then we can

determine the incremental components of the plastic strains from the relationship

def =di % (3.17)

60,.].

where dA is a plastic multiplier or a loading parameters, which needs to be
determined. Hence, if d4 and g can be determined, the plastic strain increments can
be determined. When the plastic potential g is identical to the failure criterion f, the
flow rule is said to be associated. Many of the plasticity theories currently employed
in research and design take the advantage of the associative flow rule in view of its
simplicity and other advantages resulting from development of collapse loads based

on limit theorems.

In addition to plastic strains, the geomaterial can also exhibit elastic deformation
and the incremental elastic strains, say, for an isotropic elastic material (see e.g.
Timoshenko and Goodier, 1970; Davis and Selvadurai, 1996; Chen, 1981) are given
by

| 1
dé‘ij =—26d0'y —ﬁdakké'ij (318)
and the total incremental strain tensor is given by
de, =de; +dgf (3.19)

If the plastic potential g # f, then the resulting theory of plasticity is based on a non-

associated flow rule and experimental results should be used to determine the specific
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form of g. Zienkiewicz and Taylor (2000) give a comparison of numerical results of
slope stability when associate and non-associate plastic laws are used in conjuction
with the Mohr-Coulomb failure criterion. It was found that, although very appreciable
differences in plastic strain patterns exist, only moderate differences occur in the
collapse load. Combining (3.16) and (3.17), the incremental strains in the plastically
deforming geomaterial are defined provided that dA is defined. Considering the

definition of the plastic behavior we have

=0 if i) <k' =k'butdf <0
>0 if f=k'anddf =0
Using the consistency condition
df = 2 do,; =0 (3.21)
oo
we can show (see e.g. Chen , 1981)
——aaf de; + 3 K6_GZG dey 2 5,
di=—"Ci T (3.22)

of of 3K-2G of of
+ 0O mn
0o 00y 6G 0oy 00,

once f is specified, dA can be determined through (3.22). For example, for the

Drucker-Prager material

G

A

where & is the deviator tensor defined in equation (3.7), and

do, = 2Gd¢, + Kde, 8, — dM—F=s, +3Kas,) (3.23)

_(G1]})5,,d&,, +3Kade,, (3.24)

dA
G+9Ka?

and (3.23) can be rewritten as an incremental stress-strain relation in the form of
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do; =(Dyy + Dy )dey, (3.25)
where

D, =2G6,8,+(K-2G)5,5, (3.26)

-

pr L (G G
M G+9Ka? T,

s. +3Kad .
4 y)(@

sy +3Kad,) (3.27)

3.4 The Coulomb friction model

The focus of the thesis involves the consideration of both plasticity of the geomaterial
and non-linear process that can be attributed to surface in contact. Such surfaces in
contact can result from interaction of fractured surfaces. The process that can occur at
fractured or separated geomaterial can include Coulomb friction, separation and slip.
The constitutive modelling of geomaterial and material interface responses has been
the subject of several studies. Detailed accounts of current developments are given by
Goodman and Brekke (1968), Selvadurai and Voyiadjis (1986), Selvadurai and
Boulon (1995), Desai (2001). The most elementary form of constitutive modelling of

non-linear processes at an interface utilizes the Coulomb friction model.

In the Coulomb friction model, it is assumed that, when the two planar surfaces
are in contact, there is no relative motion between surfaces in contact until the

frictional stress 7 reaches a critical stress 7, = yp, where u is the coefficient of

crit

friction and p is the pressure normal to contact plane.

Friction stress ,
T s relative slip between
_ two planar surfaces in
Forw = HP contact, where Coulomb
friction is present

».

A}

Figure 3.6 Mohr-Coulomb friction model
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The classical Coulomb friction model as illustrated in Figure 3.6 is accurate only
when the contacting surfaces are idealised planar surfaces. Surfaces in contact, in
reality, are seldom planar. The fluctuation of the topography of the surfaces leads to
the presence of contact only at a limited number of asperities (see Figure 3.7). This
also occurs as a result of damage processes during movement of regular contacting

surfaces, lodging debris at the contacting surfaces.

Two physical surfaces

-

RegionA o

-, N\~ ° __ instick-region
s S S S PN /7
Region B
Region A
‘. | =
- N
Interlock of asperities

Region B

Figure 3.7 Illustration of limitation of numerical discretization of

surface

This leads to the modification of Coulomb friction model, which exhibits
deformation prior to slip. Such models have been considered extensively in the
literature on both frictional contact modelling and modelling of geomaterial
interfaces. This general constitutive behavior can be non-linear; a simplification,
however, assumes an elastic-plastic response. In the elastic-plastic modelling, the
notion of elastic stiffness in slip is introduced and the maximum elastic slip is
restrained by the failure of asperities at the contacting surfaces, and the interface slip

occurs in a linearly elastic fashion prior to the attainment of shear failure: i. e.,

r=kys, (3.28)

$
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Tcrit = :up
A A

where k= is the stiffness during slip and s, is the maximum elastic

crit
crit crit

slip. A larger value of s_, leads to a lower stiffness in slip. The elastic-plastic slip

crit

formulation for the shear behavior of the frictional surface takes the form

dr=kds+2dp if t<t,, =mp

scrit (329)
dz = udp if 72> T
The elastic-plastic frictional model is illustrated in Figure 3.8.
Frictional shear 4
stress 7
Copig = HP |——
|
I
I
I
|
I
| e
Scrit Relative tangential slip s

Figure 3.8 Elastic-sticky friction model when dp =0

3.5 Computational Implementation

Special efforts have been made to calibrate the parameters for the failure criterion of
geomaterial. In view of the fact that computational modelling is performed using a
commercially available computational code, the chapter also discusses the
representation of the failure criterion in term of parameters used in the computational

scheme.
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3.5.1 Calibrating parameters for the hyperbolic form of Drucker-Prager

failure criterion

The Mohr-Coulomb failure criterion assumes that failure is independent of the value
of the intermediate principal stress o,. The Drucker-Prager model, however,
accounts for the influence of o,. The failure of typical geomaterials generally
includes some dependency on the intermediate principal stress o, . Implementation of
Drucker-Prager model as a yield criterion for geomaterial will be more appropriate in

situations involving plane strain behavior. The geomaterial strength parameters f,

and f,, however, cannot be used directly to define the hyperbolic form of extended

Drucker-Prager failure criterion as implemented in ABAQUS. They need to be
related to parameters in Mohr-Coulomb failure criterion. This in turn can be related to

parameters in Drucker-Prager failure criterion by a mapping method, where the
strength variables of material f, and f, are expressed in terms of parameters in

hyperbolic form of extended Drucker-Prager failure criterion.

The Mohr-Coulomb failure criterion can be rewritten in the form of

& ;"3)+(“' ;"3)sin¢—ccos¢=o (3.30)

or in the form

A W (3.31)

VI

where o, and o, are the major and minor principal stresses.

In (3.31),
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_ 2ccos¢
¢ 1-sing
_ 2ccos¢ ’

' _1+sin¢

(3.32)

and the results can also be expressed in the form

fe— /1

Jetti

VIt

2

sing =
(3.33)

The modified equivalent of the Mohr-Coulomb failure criterion is illustrated in Figure
3.9.

: Compressive strength
Shear stress A /e p g

T f, : Tensile strength

¢ ¢ : Friction angle in material

AT,
2
< >
Normal stress 7 - 2c°f’s¢ . _2ccos¢  Normal stress O
(Tensile) 1+sing I-sing  (Compressive)

Figure 3.9 Modified form of Mohr-Coulomb criterion

The Mohr-Coulomb failure criterion has an irregular hexagonal three-dimensional
shape in the principal stress space. As such, it has corners. In application of the theory
to computation, these corner regions can contribute to numerical problems. The

Drucker-Prager failure criterion is a conical surface in the principal stress space. It
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can be viewed as a smooth approximation to Mohr-Coulomb failure criterion to avoid
such difficulties (Figure 3.10). The Drucker-Prager failure criterion can be made to
match the Mohr-Coulomb failure criterion by adjusting the size of circle. For

example, if the Drucker-Prager failure criterion is made to agree with the outer apices
of the Mohr-Coulomb hexagon, the constant & and k can be related to ¢ and ¢

according to

o= 2sin¢
33 -sing)
6ccos¢ '
B3 =sing)

(3.34)
k=

If the Drucker-Prager failure criterion is to match the inner apices of the Mohr-
Coulomb hexagon, the constants of the two criteria can be related by the following

equations as

o= 2sing

«/§(3+sm¢)' (3.35)
7= 6ccos¢

BB +sing)

Drucker-Prager criterion

Mohr-Coulomb criterion

o,

Figure 3.10 Shape of the yield criteria on the 7 plane
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Under plane strain conditions, the two criteria give identical limit load for any
region of a perfectly plastic material (see e.g. Chen, 1981). This is based on the

assumption of perfect plasticity, where there are no elastic deformations at the

collapse of material. The total-strain increment component d¢; after yielding will be

fully identical to the plastic-strain increment de;, which is

def = dl—aL =dNad; +

1
;)
90, 2\/:72 ’

where s, is the stress deviator tensor. Assuming plane strain in y-direction or 2-

(3.36)

direction and using plane strain condition, i.e. de), =de, " =dg,” =0, it follows

that

s ==20J
> Vs : (3.37)

Sy =8,=7,=7,=0

and

I =3(0n +0,)-3a4J, =2(0, +0'3)—3an

L l@u-0)/20 42 _[(@,-0)/2F G-3%)
’ 1-3q? 1-3a?

The Drucker-Prager failure criterion can be rewritten as
&u9l§31)+a—3aﬂ Jz=3a°“;“3+JL—&f(3L§91)=% (3.39)

which is identical with Mohr-Coulomb failure criterion in equation (3.30), if we set

k
CcCOSP = ———
2
Vi-3a® (3.40)
Sin¢=_3_a_.
1-3a°
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Solving for k and ¢ , we obtain

sin ¢
a =————.—;‘—)
3(3+sin
( ? . (3.41)
- 3ccos¢

433 +sin’ @)

One possible way to obtain the parameters for the hyperbolic form of extended
Drucker-Prager failure criterion from Mohr-Coulomb failure criterion is to match the
Mohr-Coulomb failure criterion with the asymptotic line of the hyperbolic form. This
line has the same form as that of classical form of Drucker-Prager failure criterion.

Considering (3.14), (3.33) and (3.41), the parameters f and d' for the hyperbolic

form of Drucker-Prager failure criterion are then available through equations

an g 3500
A3 +sin’ @
(3.42)
gl_’z 3cos ¢
¢ \3+sin’¢
where
— ain 1 fc_.ft
psin fc+ft)
. (3.43)
T,
2

When f, and f, are obtained through experiments, then f and d' can be calculated

using above results. Bandis and Barton (1983) conducted shear experiments on

dolerite joints. The strength parameters for dolerite determined in these experiments

are f, =165MPa and f, =17.3 MPa. Using (3.42) and (3.43), we obtain f =51.8°
and d'=24.6 MPa.
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3.5.2 Strain energy in material regions

The relative shear between two material regions involves deformation of material and
relative sliding between material boundaries. The total energy IT is then a
combination of strain energy U in material region and frictional energy dissipation
® in the interface. The stiffness matrix for the material experiencing elasto-plastic
deformation can be found by using the incremental stress-strain relations (3.25),

(3.26) and (3.27). Rewriting them in vector and matrix forms, we have

do =D"de (3.44)
where
=D° h lasticit
D { e when no p .as 1?1 y occurs (3.45)
=D*+DP when yielding occurs

where D° is constitutive matrix due to elastic deformation and DP is a constitutive
matrix due to plastic deformation. The -elasto-plastic constitutive matrix is
combination of two factors, i.e., D* and D”. In a displacement formulation involving
small deformation, the rotations do not enter the computation. The degrees of

freedom for a point coincide with its spatial coordinates x, and can be interpolated by

global nodal coordinates x| = (x,,y,,2,)
x=N,x; =N"a (3.46)

where N, is the interpolation function from contribution of node i. In (3.46) vector

[

NT is a matrix of the form

Nl
NT=|0
0

2

N,

n

o O

, (3.47)

[

=2 o

0 0.
0 N, O0..
0 0 N,..

o
=

o o
o2 o
2 oo

[
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where n is the number of total nodes, and a is a sequential list of the spatial degrees

of freedom of each node defined by
AT = (X, V15215 X0s Vo ZyreeXys Vo Zy) - (3.48)
The strain vector € is determined from the spatial coordinate x
e=Lx=LN"a=Ba (3.49)

where B =LN" is a matrix relating the strain at one point to coordinates of each
node and L is a combination of partial derivatives arranged in a matrix form, to

determine strain at that point (see e.g. Zienkiewicz and Taylor, 2000)

9 90 o

ox

0 9 0
oy

0 o0 o

L= . %l (3.50)

0o — =
oz 0Oy

9 4 2

oz ox

o & 9

i 0z Oy |

The incremental strain vector can then be expressed in terms of incremental changes

of each node’s coordinates
de=Bda+dBa. (3.51)

And the incremental stress can also be expressed in terms of incremental changes of

each node’s coordinates

doe =D*Bda+D“dBa. (3.52)

The strain energy oU then is determined by
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8U =[S 6 AV (3.53)
14

The complete form of second variation of strain energy U is

doU =d [6e"eAV = [dsE"6 AV + [Se"do AV + [Ge"odAV
v 4 14 14

=([6a"dBo AV + [5a"B"D"dBaAV) + [Sa"B"D"BdaAV
v v v (3.54)
+ [eTedAV = 6" (K" +K® + K" )da"
4

=saTKda"

where K is the current stiffness matrix in material regions ¥, which is a

combination of several contributions: (1) K" is a part of the stiffness matrix due to

the non-linear geometry associated with large displacement, which reduces to zero in
the absence of large displacements; (ii)) K® is a part of the stiffness matrix due to

elastic and plastic deformation of the material; (iii) KV is a part of the stiffness term
due to volume change or dilatancy of the material. If finite deformations or large
strains are excluded, the effect from change of mass volume and geometry can be
neglected, and the global stiffness matrix for the problem involving relative shear
between two material regions is a combination of the contribution from elasto-plastic
deformation in material regions and relative slip and separation in the interface,

which will be discussed in Section 3.5.3.
3.5.3 Finite sliding between deformable bodies

Another part of comtribution to total energy IT is the frictional dissipatioin ® in the
interface. The application of shear forces to a joint results in relative sliding,
seperation or establishment of new contacts between the contacting surfaces. The slip
between surfaces of the joint, or relative shear displacement, is a different concept to
tangential slip between surfaces in contact shown in Figure 3.11. Shear displacement
describes the overall relative movement between joints, while tangent slip between
surfaces in contact refers to the local relative movements between regions in contact,

which are parts of the joint surfaces.
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Shear displacement Tangential slip

Figure 3.11 Concepts of shear displacement and tangent slip

The ABAQUS code adopts a finite sliding formulation to account for separation
and sliding of finite amplitude and arbitrary rotation of the surfaces in contact.

Consider a potential contact node n, with a segment of surface described by node »,,
n,.... For a linear segment, the number of nodes is 2, whereas for a quadratic

segment the number of nodes is 3 as shown in Figure 3.12.

To derive the equations governing the elements, the coordinates of nodes have
been assigned, as shown in Figure 3.12. If we consider that point x on the segment is

closest to the potential contact point x,, then the closure /# between x and x, can be

expressed in terms of normal vector n, coordinates x and x, as

nh=x-x, (3.55)
X,

o
I
I
I

n=N,(g)x;/h

| n=N,(2)x, /7 ¢ X,
o -t 5"
X
(a). Linear slide line segment (b). Quadratic slide line segment

Figure 3.12 Contact of a node with a segment of the surface
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Since x is on the segment, its position is defined completely by the interpolation
function N, for the segment, the position g and the position x; of the nodes n; that

are part of the segment.
nh = N,(g)x; (3.56)

where N, =—land N,, N, ... are functions of g. For instance, for a linear segment,

N.=1(1-
27 1-g) 3.57)
=3(1+g)
For a quadratic segment,
N,=7g(g-1
N,=1-g> . (3.58)
N,=3g(g+1)
The tangent t to sliding line at point x follows with
def
g2 dx _dx,dx (3.59)
ds dg dg
where
dx = av, —*x, (3.60)
dg dg

The position g of point x is determined from the condition that normal and tangent

must be orthogonal, i.e.,

N,
A8 X, =0 (3.61)
dg

n-t="~N(g)

Linearization of equation (3.61) yields
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onh +noh =9d&xi5g+Ni5xi =t0s + N, 0, (3.62)
g

where os is first variation of the slip. In the direction of contact, n,

oh=Nn-,; (3.63)
In the direction of slip, t,

os =-N;t-6x;, —ht-on. (3.64)
If the nodes are in contact with segment, then # =0, and

o5 =—Nt-5x,. (3.65)

To obtain the initial stress-stiffness terms, the second variations of 2 and s must be

calculated. They are

dN. dnN.
doh = -6x, -(n—=N t+tN,—-n+tN,p N t)-dx,
ds ds (3.66)
dN, dN.
d6s = 6%, - (£l N ¢ —nN, —2
1 ds J

1

n-nN;p, N t)-dx,

2

dx
dg

def d*x
where p, =—n-d >
g

Then the variation of frictional energy dissipation ® in the interface can be

expressed as

80 = [785 AT (3.67)
T

where [’ denotes the interface at two material boundaries. The second variation of ®

is obtained by

dd® = [dzds AT + [z dds AT (3.68)
r r
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By defining surface interaction conditions, such as frictional properties and
potential contact surfaces, ABAQUS then automatically identifies nodes in contact
with surface segments. Slip and closure between the node and surface segment can

represent the relative slip and separation between surfaces in contact.
3.6 Summary

The failure criterion proposed by Drucker and Prager has the added advantage over
the Mohr-Coulomb failure criterion in that the complete set of principal stresses is
used in its formulation. The Mohr-Coulomb failure criterion, as has been indicated, is
independent of the intermediate principal stress acting on the material. The
parameters in the hyperbolic form of extended Drucker-Prager failure criterion,

implemented in computational code ABAQUS, can be related to material strength

parameters f, and f, by a mapping method.

In the Coulomb friction model, it is assumed that, when the two planar surfaces
are in contact, no relative motion occurs between them and two surfaces adhere
together before the attainment of a critical frictional stress. The elastic-plastic model
takes account of the fact that contacting surfaces interact each other at limited number

of points and that surfaces in contact can exhibit deformation prior to slip.
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Chapter 4

COMPUTATIONAL SIMULATION OF EXP-
ERIMENTAL RESULTS

This chapter describes the adaptation of the ABAQUS finite element code to examine
computationally the shear behavior of a fracture, which experiences both elasto-
plastic material failure and frictional phenomena. Numerical simulations will be
compared with a set of experimental data obtained for the variation of shear stress
with shear displacement conducted by Bandis et al. (1983) on a natural unweathered

dolerite joint of 100 mm length.
4.1 Computational modelling of the dolerite joint

The general arrangement of the shear test conducted on the natural joint of
unweathered dolerite is described in Chapter 2. Because it is difficult to obtain an
identical profile of a natural dolerite joint, the same joint was sheared repeatedly.
Once the peak shear stress was reached, the shear load was released and the joint
sample reassembled. A new test was performed on the same joint at a higher normal
stress. The disadvantage of such testing procedure is that some asperities could have
been damaged during shear at lower normal stress and as a result the peak shear stress
under the higher normal stress may also be reduced. The asperity damage can also

introduce some difference in the shear stiffness.
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Figure 4.1 Computational model for simulation
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The joint is treated as a two-dimensional region, which exhibits plane strain behavior
with the assumption that the behavior of the joint is interpreted through the behavior
of a typical profile rather than that of a surface. This is the limitation in the modelling,
which will not be discussed further. The Figure 4.1 shows the dimensions of the two-
dimensional model used in computations. In the actual experiments, the lower part of
the sample is constrained to move horizontally and the upper part is held by wire
ropes. The rotation is not strictly controlled during the motion of upper part of the
joint. The center of the rotation in the system is unknown. For a roughly planar joint
similar to that used by Bandis et al. (1983), the effect from rotation is considered to
be negligible. The upper and lower sections of the sample are cast in the shear box by
concrete moulding material. The sample is assumed to be fully bonded to the
moulding material. The loading, which induces shear, is applied on lower box
through a system of jacks as shown in Figure 4.1(c). The line of application of
horizontal force is approximately at the shear plane so that no moment is considered.
A normal load is applied at the center of the upper box, which transmits this load

directly to the joint surface.

To simulate the actual conditions of the experiments, constant stress is applied on
the upper part of the model as shown in Figure 4.1(a). Two rigid plates are fully
bonded on each side of upper part to simulate the fully bonded condition between the
sample and the moulding material. Slip and separation are not allowed between the
rigid plate and upper part of the sample. For the purpose of computational modelling,
it is assumed that there is no rotation in two halves of the sample. Rotation of the
whole upper part can be restrained on the rigid plates bonded on the segment of the
upper part of the sample. The lower part is subjected to movement in the horizontal
direction. Two rigid plates are also bonded on each side of the lower segment. In
modelling the joint, the actual plane profile of the joint as determined from surface

profiling is considered. It could be argued that infinite such representations are
possible, depending on the accuracy of the measurement technique and location of the
section considered. There are, however, certain constrainments that can be imposed as
a result of the internal fabric of the rock and the necessity to include a sufficient

number of particles on the scale of the grain of the rock to simulate a continuum point
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in the computational modelling. The grain size gives the smallest dimension of the
surface discretization. The actual average grain size for dolerite varies between
0.05mm to 1mm (Wahlstrom, 1947). The value of 1 mmroughly gives the smallest
dimenstion of surface discretization. The accurate description of material at such a
scale need take account of the microstructure of the material. The microstructure of
rock mass is then disregarded in the computatinal simulation. Constraints are also
imposed by the element size of the finite element discretization required for
computational accuracy and efficiency. Within these constraints, the irregular surface
profile [Figure 4.1(d)] as measured in an experiment is accurately duplicated in the
discretization used in the finite element modelling as shown in Figure 4.1(e). The
finite element discretization of the region close to the joint surface can be approached
at various levels. This is largely influenced by the capacity of the computational
facilities. The smallest element dimension near the joint is around 0.8 mm.
Computational trials indicate that a further reduction in the size of an element close to
the joint surface does not result in a marked change in numerical results. Modified 6-
node triangular element, labeled as CPE6M and implemented in ABAQUS
computational code, is used. In this formulation, stress is compatible between two

adjacent elements.

The constitutive euqation used is the hyperbolic form of Drucker-Prager failure

criterion discussed in Chapter 3. Material strength parameters f, and f, and Young’s

modulus E are given in the experimental data. The dilation angle and friction angle

for the material are assumed to have a same value of £, which can be derived from
f. and f, according to Chapter 3 [see equations (3.42) and (3.43)]. Poisson’s ratio is

chosen as 0.23, which is assumed to be a approximate value for dolerite type rock

(Jaeger and Cook, 1976). The complete list of material properties is as follows
f. =159.0 MPa; f, =17.3 MPa; f =51.8°; E =78 GPa;v = 0.23. (4.1)

With brittle geomaterials, the strains prior to failure are generally small; as such the
large strain option is not necessary for the calculation of the stiffness matrix. To

assure the numerical accuracy, a double precision solver is used at all times.

66



W WESTISSREE T S e pemm———

Complete computational simulation requires additional surface interaction modelling.
Finite sliding formulation in computational code ABAQUS is adopted. Details of the
finite sliding formulation were presented in Chapter 3. The surface interaction model
is the Coulomb frictional model considering the elastic contact between surface
asperities. Details are presented in Chapter 3. The parameters needed will include the

coefficient of friction g and the amount of maximum elastic slip 7., . The friction

angle provided in experiments is approximately ¢ =34° or u =0.6745. In literature,

however, the friction coefficient for a planar dolerite surface is quite variable; i.e.
0.64 to 0.90. The actual variation of shear stress due to friction is expected to fall into

a zone bounded by two limited cases where x=0.64 and ¢ =0.90. No relevant

information about the maximum elastic slip is available in the literature, as such, it
needs to be back-calculated. The computational simulations are conducted on three
cases involving changes in the normal stress. The normal stresses are assigned the

values 0.52 MPa,1.05MPaand 2.10 MPa.
4.2 Some issues concerning computational simulation

The ability of the sample to rotate can influence the stress distribution normal to the
shear plane. In the experiments conducted by Bandis et al. (1983), rotation is not
strictly controlled. It is reported that rotation has some influence on the shear
behavior for a very rough joint; for a relatively planar joint, influence of a rotation is
negligible. For the convenience of computational modelling and throughout this

thesis, the occurrence of a rotation is not considered.

A further aspect of the computational modelling involves the assessment of the
mesh sensitivity (within restraints discussed in Section 4.1) on the compuational
results. Figure 4.2 shows the computational results for shear behavior derived from
two mesh configurations conducted at normal stress 2.10 MPa. The finer mesh
configuration includes double numbers of elements than the rougher one. No clear
difference of shear behavior and dilatancy is observed for two cases. This proves the

computational reliability.
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Figure 4.2 Shear behavior of the joint for two mesh discretizations
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One unknown parameter is the maximum elastic slip 7., which needs to be
back-calculated through correlation with the experimental results. The effect of y,,,

can be examined by comparison of the shear behavior obtained by using different
estimates of 7., . As indicated in Figure 4.3, different values of ¥, do not affect

peak shear stress, but results in twice different estimates of the shear stiffness.

——  b9..=015

i
—fr= b Yeu =030

Shear stress (MPa)

Relative shear displacement (mm)

Figure 4.3 Effect from maximum elastic slip 7.,
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Finally, the remaining uncertainty in computational modelling is associated with
the coefficient of friction . Although it is reported that x4 =0.6745, it can vary
depending upon the method of measurement. In literature, the friction coefficient for
a planar dolerite surface is a variable, ranging from 0.64 to 0.90. The actual
coefficient of friction might lie within this variation. Figure 4.4(a) and Figure 4.4(b)
show the variation of shear behavior with the change of the coefficient of friction, for

two cases where 7., =0.15 and ¥, =0.30, respectively.
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4.3 Comparison of computational results and experimental data

Both variation of maximum elastic slip y,,, and the coefficient of friction have some
influence on the computational simulation of experimental data. When the coefficient
of friction at 0.6745 cited in experimental data and additional estimated value
Vo =0.30 is used, it is observed (Figure 4.5) that general trend of the computational
estimates is similar to the experimental data. The peak shear stresses correlate well
with results at lower normal stress values of 1.05MPa and 0.53MPa. The shear
stiffness is slightly overestimated at the higher normal stress of 2.10 MPa, but
slightly underestimated for lower stresses of 1.05MPa and 0.52 MPa .

—— ——
e Computational results when 7., = 0.30 —r— Experimental data
- ——
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o, =1.05MPa

Shear stress (MPa)
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—
1

05
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Figure 4.5 Computational simulation of experimental data when

Veri = 0.30
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When ., is changed into 0.15, a better correlation is obtained at the lower

normal stress values of 1.05MPa and 0.52MPa as shown in Figure 4.6. The peak
shear stress is overestimated for the high normal stress of 2.10 MPa. This can be
attributed to the repeated shear conducted on the same joint (discussed in Section
4.1), where some of the asperities are susceptible to damage at lower normal stresses
and during peak shear stress. As a result, compuational results for shear stress and

shear stiffness at higher normal stress are higher than those obtained in experiments.

—— ——
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Figure 4.6 Computational simulation of experimental data when

Yee = 0.15

72



The computational modelling is also conducted to account for cases involving
material plasticity and in the absence of material plasticity. Figure 4.7 shows the
results of the two computations. These results indicate that, at least for the
unweathered dolerite joint examined here, material plasticity has no significant
influence on the shear behavior of the joint. To obtain a better understanding of the
shearing process, the Figure 4.11 shows the evolution of plastic zones during shear at

normal stress of 2.10MPa with surface interaction properties, x =0.6745 and

Yo =0.15. Only slight material plasticity is observed. Figure 4.9 and Figure 4.10

give the relative motion between two contacting regions, with corresponding shear
stress and dilatancy. The incompatible element accounts for the discontinuous

displacement at joint.
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Figure 4.7 Variation of shear stress in the

presence and absence of material plasticity
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Figure 4.9 Shear stress vs. relative shear displacement for shear at

o, =2.10 MPa, u = 0.6745
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Figure 4.10 Dilatancy vs. relative shear displacement for shear at
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Figure 4.11 Evolution of plastic zones during shear at

o, =2.10 MPa, u =0.6745
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4.4 Summary

In the computational simulation conducted here, an elastic-plastic model has been
used to examine the modelling of the surface interaction between joint surfaces. To
obtain an accurate correlation with experimental data, reliable information is

necessary, concerning the coefficient of friction g and the amount of maximum
elastic slip y,, incorporated in the model. The coefficient of friction influences the

peak shear stress and the amount of maximum elastic slip influences the shear

stiffness of joint.

This chapter has also examined the influence of material plasticity on the shear
behavior. The results indicate that, at least for the unweathered dolerite joint
examined here, material plasticity has no significant influence on the shear behavior
of the joint. This aspect needs further investigations if the computational scheme is
applicable to model joints and interfaces encountered in comparatively softer

geological media such as sandstone, shale and other sedimentary rocks.
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Chapter 5

SHEAR BEHAVIOUR OF DOLERITE JOINTS

In this chapter, we examine in some detail the shear behavior of rock joints for
different cases involving the joint profile. The existence of governing asperity on the
shear behavior is discussed first, and the shear responses of both irregular and regular
joints are compared. The analysis is then extended to the consideration of shear
behavior of an idealised triangular joint with steep asperity angles. Other factors,
including influence of the boundary contributions, loading cycles, initial separation of
joint are also examined. For the purposes of the computational modelling, attention is
primarily restricted to the modelling of dolerite rock discussed previously in Chapter

4.
5.1 The existence of governing asperities

Experimental evidence shows that rock joint exhibits different shear behavior at
different scales. The reasons for this phenomenon are diverse and sometimes are not
completely understood. The computational modelling discussed here is a perliminary
attempt to shed some light on how the scale of joint influences its mechanical
behavior, we compare the shear behavior of three joint sections at lengths, 100 mm,
50mmand 25mm. The irregular surface profile of 100 mmlength has been
examined in detail in Chapter 4. The model of the dolerite joint with this irregular
profile was presented in Chapter 4 (Figure 4.1). The application of shear results in the

relative movement of the lower section of the test specimen. The maximum relative
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shear displacement is extended to 2.5 mm , which overrides three elements closest to
joint surface. For the purpose of comparison, shear is conducted in both directions.
No rotation is allowed in the upper section of the sample during shear. The joint is
first subjected to a single cycle of shear commencing from unstressed state. During
the application of the shear, the joint is subjected to a constant normal stress of either
3MPa or 11MPa. The material properties for the dolerite required in the
computational modelling are given in equation (4.1). As shown in Figure 5.1, the

other two profiles are two subsets of this 100 mm profile.

In all three simulations, the coefficient of friction between the joint surfaces is

specified at the value x =0.6745, which is given by Barton and Bandis (1983). The

maximum elastic slip is back-calculated as y,; =0.15 (see Chapter 4). When
considering three joint sections, initially, compatible contacts are maintained over the

entire lengths of the profiles.

We can deduce that, when the specimen is not allowed to rotate, contact occurs
only at a limited number of points during shear of an irregular profile. In all three
computational models, contacting during shear, ecither in the “forward” or the
“reverse” direction, occurs only at one asperity, which is indicated in Figure 5.1 and
Figure 5.2 as “governing asperity”. The “governing asperity” usually has the largest
asperity slope. The mechanical behavior of interface of other surface sections
therefore has negligible effect on the shear behavior of the whole rock joint.
Dilatancy appears to follow along the surface geometry of this “governing asperity”
during shear for different lengths. The shear stress-relative shear displacement and
dilatancy-relative shear displacement relationships do not vary significantly in the
three different cases, either in “forward” or “reverse” direction. The dominant
asperity therefore governs the shear behavior of the entire profile. Therefore, when
rotation is excluded, the shear behavior of smaller section of joint surface including
this “governing asperity” then appears to give a representative response applicable to

larger sections of the profile.
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Figure 5.1 Shear behavior of dolerite joint at different lengths in the absence of rotation
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5.2 Shear behavior of joints with differing surface profiles

In the second model we present the results of computational modelling conducted on
joints with three types of surface profiles. Attention, however, is restricted to the two-
dimensional representation of a joint. The first has a natural irregular profile
discussed in Chapter 4; the second is a simplification of the joint, which disregards
the small roughness, but has the same peak asperity height; the third is a regular
profile, which has a different asperity height, but roughly has the same dilatancy
angle. The consideration of regular joint is based on Patton’s assumption, which
states that an irregular joint can be idealized into a regular one exhibiting the same
peak response of shear stress if both joints exhibit the same dilatancy angle. The
regular joint is also referred as “Patton’s joint” in this section. Shear on the irregular

joint under small normal stress discussed in Chapter 4 roughly exhibited a dilatancy

angle of 20°. This dilatancy angle has been chosen as the asperity angle for the
regular joint. Also this value is found to be roughly equal to the asperity angle of the
“governing asperity” discussed in section 5.1. The configurations of three joint
profiles are presented in Figure 5.3(c). The single cycle shear tests are conducted
under normal stresses of 3MPaand 11MPa, which simulates an in situ stress
corresponding to a depth of about 100 m and 350 m depth, respectively. The objective
of the study is to examine the influences of factors such as the joint profile, normal

stress, the dilatancy angle and material plasticity on the performance of the joint.

The computational model for the irregular joint is identical to that discussed in
Chapter 4. For the purpose of comparison, results are also presented for two other
joint profiles, namely, the simplified joint and Patton’s joint model. The surface
interaction properties including friction behavior and elastic slip amount are assigned
the same value as those discussed in section 5.1. When considering three joint
sections, initially, compatible contacts are maintained over the entire profile. The

finite element discretizations are shown in Figure 5.4.
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When comparing the shear responses of irregular and regular joints, the
computations indicate that the omission of the local profile of the joint or the joint
roughness greatly reduces the dilatancy and peak shear stress during shear. In
comparison with the irregular joint, the shear behavior of the simplified joint largely
underestimates both dilatancy and peak shear stress. As shown in Figure 5.5(a) and
Figure 5.6(a), these discrepancies are noticeable at normal stress levels of 3 MPa . At
the same stress level, the energy dissipation due to plastic flow in parent material
(Figure 5.7) appears to be two orders of magnitude smaller than the frictional energy
dissipation (Figure 5.8). The material region adjacent to the joint surfaces experiences
the largest plastic energy dissipation during loading process; when contacting
surfaces experience separation and slip, with respect to each other, shear stress is
almost constant and plastic deformations do not increase significantly; during the
unloading process, asperities generally response elastically and no increase in plastic
energy dissipation is observed. The irregular joint experiences a larger plastic energy
dissipation under normal stress 11 MPa (Figure 5.7 and Figure 5.9). The omission of
the local profile or roughness significantly underestimates the plastic energy
dissipation during shear. The plastic energy dissipation in the material region of the
simplified joint, which neglects contribution from small asperities, is much smaller
(Figure 5.7 and Figure 5.10). In presence of the frictional forces, the frictional
dissipation occurs when two contacting surfaces move respect to each other.
Disregarding roughness does not neglect noticeable information of frictional
dissipation. The frictional dissipation for these two joints exhibits similar trends at

both normal stress levels of 3 MPa and 11 MPa (Figure 5.8).
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The variation of dilatancy during shear of “Patton’s joint”, also, follows a
response close to that obtained for the irregular joint at normal stress 3 MPa (Figure
5.12(a). Also partially due to this factor, the regular and irregular joints exhibit
similarity of response in the shear stress [Figure 5.11(a)]. This justifies the
assumption that, in addition to the peak shear stress, which should be equal according
to Patton’s model, the variation of shear stress with shear displacement can also be
represented by a regular joint if the irregular joint is idealized into a ‘saw-tooth’
triangular joint by an appropriate method. The results for the higher normal stress of
11MPa follows a similar pattern. By observations of the surface profile of the
irregular joint, it is found that the slope of the “governing asperity” discussed in last
section has a value close to the asperity angle in Patton’s joint model. This points to a
way to predict the peak shear stress of a natural irregular joint by identifying the
“governing asperity” and its “slope”. As shown in Figure 5.13, the regular joint
model, however, neglects much of the plastic energy dissipation during shear; but it
does not exhibit a significant difference in frictional dissipation when compared with
results for the irregular joint, shown in Figure 5.14. In comparison to the simplified
joint, this difference is, however, still appreciable. This might be due to the fact that
the contacting area between two simplified surfaces is more close to that during shear
of the irregular joint and that it is the normal stress and contacting area that

determines the frictional dissipation during shear.

Roughness therefore, is observed to have greater influence on the plastic energy
dissipation whereas the surface geometry of the “governing asperity” is more related
to dilatancy. The slope of this “governing asperity” therefore determines the peak

shear stress.
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5.3 Shear behavior of a joint with an idealized steep asperity profile

The objective of this part of the modelling is to determine computationally the
influence of asperity angle on the shear behavior, notably the dilatancy and material
plastic energy dissipation in the joint. The modelling of such an idealized joint
containing regular steep asperity angle is quite arbitrary. The demarcation point
between what constitutes a sharp asperity and what constitutes a shallow asperity is
not known a priori. The behavior is influenced by other factors such as frictional
behavior at the joint, joint stiffness and plasticity of material. The objective here is to
present some computational results of influences of the asperity angle on the shear
response. The physical configuration of the joint surface comprising of sharp
asperities is shown in Figure 5.16. Three inclinations of sharp asperities are
considered. These include asperity root lengths of 10 mm, 20 mm and 40 mm. The

height of the asperities is kept constant at 15 mm and the corresponding asperity
angles are approximately 80°, 71°and 56°, respectively. The finite element mesh

configuration of conforming surfaces for an asperity angle of 80° is shown in Figure
5.17. The friction between asperity surfaces is kept constant at 0.6745 and the
interface stiffness is considered to be a variable. Initial contacts are restricted to the
asperities only. The normal stress acting on the idealized joint is also a variable in the
problem; The results are, however, presented for normal stress of 3MPa, 7MPa,
and 11 MPa . The normal stiffness at the contacting surface is assigned values of 0,
13.33 MPa/mm and 133.33 MPa/mm . The studies by Nguyen and Selvadurai (1998)

have utilized the contact stiffness of 13.33 MPa/mm to model the contact normal

stiffness.
! I: Asperity root length
| . . .
0 I I : Asperity angle determined by /
| VAYAVAVAYAY |
I |
160 mm I

Figure 5.16 Joint profile with sharp asperities
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! 160 mm

Figure 5.17 Finite element modelling of joint profile with steep

asperities

Figure 5.18 and Figure 5.19 shows the influence of asperity angle on the shear
response evaluated at normal stress of 7MPa. In Figure 5.18, plastic energy
dissipation is presented. When asperity angles are steep, shear deformation does not
induce large relative movement between the contacting surfaces. In this case,

frictional energy dissipation is much smaller than the plastic energy dissipation.

Especially when asperity is at 80°, the frictional energy dissipation disappears shown
in Figure 5.18(b). The relative shear movement observed are therefore mainly due to
elastic and plastic deformation in asperities. The plastic energy dissipation increases
with asperity root length shown in Figure 5.18(a). The increase in asperity volume
allows more plastic deformation. Longer asperity root brings higher shear resistance
shown in Figure 5.19(b). Plasticity deformation increases the element volume, which
affects the dilatancy. Therefore, as observed in Figure 5.19(a), higher plasticity
dissipation brings higher value of dilatancy during shear. Greater value of / also
leads to higher dilatancy angle. This might be due to the decreases in the
deformability of the asperity, which reduces the amount of deviations of dilatancy

angle from the asperity angle and therefore increases in the dilatancy angle.
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Figures 5.20 to Figure 5.21 illustrates the shear response of a joint with asperity

angle of 80" for different levels of normal stress. Higher normal stresses lead to
higher shear resistance and greater normal deformation. The contribution to the
plastic energy dissipation is a combination of two factors, i.e., the shear resistance
ability and stress state. Consequently, an increase in the normal stress does not
necessarily translate to an increase in the plastic energy dissipation during shear.
Figure 5.20 shows that, increasing in normal stress from 3 MPa to 7 MPa induces a
greater plastic energy dissipation; further increase in normal stress from 7 MPa to
11MPa, increases the shear resistance [Figure 5.21(b)], but it reduces the plastic
energy dissipation. The variation of dilatancy follows a similar pattern. Due to the
associated flow rule used, a greater plastic deformation leads to an increase in the
element volume, which contribute to dilatancy. Figure 5.21(a) shows that, a stress
increase from 3MPato 7MPa leads to greater dilatancy, whereas a further increase

from 7MPato 11 MPa leads to a reduction in dilatancy.
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Figure 5.20 Plastic energy dissipation in material during shear at

different values of normal stresses
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Figures 5.22 to 5.24 illustrate the shear response of joints with steepest asperity

angle 80° evaluted for initial normal stress of 7MPa and variable normal stiffness.
In these simulations, shearing of the joints does not induce relative movement
between contacting surfaces. The frictional dissipation disappears in the absence of
slip between contacting surfaces. In Figure 5.22, the plastic energy dissipation is
presented. The difference in plastic energy dissipation in the material, during shear
conducted under different stiffness condition, is small. The noticeable reduction in
plastic energy dissipation at presence of normal stiffness and in latter shear cycles is
due to the increase in the shear resistance. Figure 5.23 illustrates the evolution of
plastic zones during shear, under an initial normal stress of 7MPa and constant
normal stiffness 133.3 MPa/mm . Initially, only relative small plastic zones develop in
the parent material; the plastic zones, however, extend during the later stages of the
shear cycle. At the end of the shear cycle examined, almost all the asperities fail by a
clear plastic zone extending through its root. Although there is no relative movement

between contacting surfaces, the largest dilatancy reaches up to about 0.14 mm [see

Figure 5.24(a)]. Dilatancy angle is, however, only around at 13.0°, which greatly
deviates the asperity angle. The appearance of dilatancy at the absence of slip
between contacting surfaces indicates the possibility for evolution of hydraulic
conductivity only in parent material. The results shown in Figure 5.24(b) also indicate
that, although a slight increase in the shear resistance is noticeable due to the presence
of the shear stiffness, the shear stress-relative shear displacement behavior is

insensitive to the change of the normal stiffness.
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5.4 Shear behavior of an irregular joint under constant normal stress and

constant normal stiffness

In order t0 examine the influence of the boundary condition of normal stress or
normal stiffness on shear behavior; another rougher irregular dolerite joint, modelled
under constant normal stress and constant normal stiffness, is subjected to a single
cycle of shear. The natural profile used at 300 mm length is a left section of an
irregular profile at 1000 mm length presented by Chryssanthakis and Barton (1990).
The profile with distorted vertical scale is shown in Figure 5.25(a). The finite element
mesh on an undistorted scale is shown in Figure 5.25(b). The joint is subject to initial
normal stresses of 11MPaand20MPa. Normal stiffness is maintained at

13.33 MPa/mm during shear under constant normal stiffness.
Forward direction
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Figure 5.25 Shear of an irregular joint at 300 mm length
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The presence of normal stiffness 4 causes a greater suppression of dilatancy
(Figure 5.27) and induces higher stress normal to joint surface as relative shear takes
place. Due to this, greater shear resistance is observed in Figure 5.26. Variation of
frictional energy dissipation with normal stiffness follows a similar pattern (Figure
5.28). Computational modelling of shear on joints with steep asperity angle indicates
that reduced plastic energy dissipation will be obtained due to increase in normal
stiffness. Shearing of an irregular joint, however, gives a positive relationship
between plastic energy dissipation and normal stiffness. Contacting between irregular
surfaces only occurs at limited regions. Increasing in normal stress resulting from
presence of normal stiffness significantly changes the stress states of these contacting
regions and therefore, as shown in Figure 5.29, increases the plastic energy
dissipation in material. The differences can reach up to five times at some
displacement between the cases under constant normal stress and under constant
normal stiffness. Figure 5.30 shows the evolution of plastic zones at a higher constant
normal stress of 20MPa. For purpose of comparison, Figure 5.31 illustrates the
evolution of plastic zones under constant normal stiffness 13.33MPa and at an initial
normal stress of 20 MPa. Although plastic energy dissipation in the material has
different values for two cases, it seems that the plasticity occurs at similar locations
and exhibits a similar pattern. The reason for this might be that zones of plastic flow
are restricted to the contacting regions and the regions in contact are mainly
determined by the geometry of surfaces; the absolute value of plastic energy
dissipation is, however, more dependent on the stress states surrounding contacting

regions.
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single cycle of shear under constant normal stress and constant normal

stiffness
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Figure 5.27 Dilatancy vs. relative shear displacement during a single

cycle of shear under constant normal stress and constant normal stiffness

112



o, : Constant normal stress

0, :Initial normal stress
—s— o =11MPa, k =0 MPa/mm —&— 0, =20MPa, £ =0 MPa/mm

—&— o0, =11MPa, k =13.33MPa/mm -4~ o, =20MPa,k =13.33 MPa/mm

vvvvv

Reverse

Forwaid

‘E;~"“‘-.

108000

(]

vvvvv

Frictional emergy dissipation ( 1037 )

Frictional energy dissipation ( 10™J )

Relative shear displacement (mm)
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displacement during a single cycle of shear under constant normal
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Figure 5.29 Energy dissipation due to plastic flow vs. relative
shear displacement during a single cycle of shear under constant

normal stress and constant normal stiffness
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5.5 Variation of dilatancy during S-cycle-shear

In a plastic material, the history of loading can influence the shear behavior. In order
to investigate the influence of such an effect, a joint with an irregular profile of
300 mm length, which was presented, in the previous section, is sheared up to 5
cycles. Initial normal stress 11 MPa is applied to observe the variation of dilatancy in
different cases. Figure 5.32 shows the variation of dilatancy with shear displacement
during shear under constant normal stress of 11MPaand Figure 5.33 shows the
variation of dilatancy under initial stress 11MPa and constant normal stiffness
13.33 MPa/mm . For purpose of comparison, the variation of dilatancy in the absence
of plasticity is also presented in Figure 5.34. The peak dilatancy in different cycles is

also presented in each Figure.

In both cases, in presence of plasticity, dilatancy increases while dilatancy angle
decreases with increase in the number of shear cycles. The presence of normal
stiffness enhances the development of irreversible dilatancy. In the absence of
plasticity, however, the dilatancy remains independent of the number of loading
reversal cycles. This indicates that the change of dilatancy during load cycling is
directly related to plastic deformation of the material regions. Due to the associated
flow rule adopted, material volume increases and this results in an increase in the
dilatancy with increasing number of the shear cycles; material plastic deformation
also increases the deformability of the contacting asperities, which reduces the
dilatancy angle in later cycles. Experimental evidence (Wibowo et al., 1992),
however, indicates a decrease in both dilatancy and dilatancy angle with increasing
number of shear cycles. In actual experiments, asperities are damaged during shear
and can further be crushed to create fragmented gouge material residing at the joint
locations. In numerical modelling, however, continuum analysis makes no allowance
for creation of gouge and disintegration of asperities. Asperity failure in form of
plastic flow increases the element volume, which increases the dilatancy during shear

cycling.
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5.6 Shear behavior of an irregular joint with initial gap

The irregular dolerite joint of 300 mm length discussed in previous two sections is
further utilized to examine a situation involving the shear of a joint with an initial
seperated gap. The existence of initial gap at joint is of some interest in connection

with joints, which experience thermal shrinkage at joints and discontinuities.

The computational model used for examining the initially perfectly matched joint
is the same as that discussed in sections 5.4 and 5.5. For the purpose of comparison, a
monotonic shear simulation is also performed on the dolerite joint, which is

configurated with initial gaps at I mm and 2 mm. Since the two faces of the joint are
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in a separated condition, normal stresses cannot be applied to the joint. A constant

normal stiffness is however applied for the loading configuration.

Figure 5.35 shows the variation of shear stress with shear displacement.
Appearance of the initial aperture significantly reduces the peak shear strength. The
shear behavior appears to be more ductile with the existence of initial gap. Figure
5.36 shows the variation of dilatancy with shear displacement. The dilatancy effects

have been greatly reduced due to the presence of the initial gap.
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M= A=20mm

18

16 7 f )

14 / e 4 &
12 /
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o ©

Relative shear displacement (mm)

Figure 5.35 Shear behavior of joints with initial apertures
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Figure 5.36 Dilatancy during relative shear of joints with initial
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5.7 Summary

Computational modelling can be used to examine the shear behavior of rock joints for

a variety of cases of joint profiles and testing conditions. Although attention is only

restricted to dolerite, similar results can also be obtained to other types of rocks or

other brittle geomaterials, including concrete. The major results in this chapter are

listed below:

(i)

(ii)

(iii)

During the application of a relative shear to a rock joint, contact between the
irregular surfaces is established only at limited points. The restraint against the
two regions of the joint has some influence on this process. Computational
simulations indicate that interfacial interaction at other sections appears to
have negligible effect on the final behavior of the joint. Mechanical behavior
of interface involving these critical locations therefore governs the overall
shear behavior of the entire joint. Dilatancy during shear, which is also
influenced by the normal stiffness, roughly follows the surface geometry of
the governing asperity or asperities. A regular triangular joint with a same
asperity angle as that of the “governing asperity” exhibits a similar response
in dilatant behavior and shear stress as those associated with the irregular
joint. This provides a procedure to predict the shear resistance of an irregular

joint based on Patton’s suggestion.

In comparison between an irregular joint and the simplified joint, we observe
an important influence of roughness on the shear behavior. Omission of the
local profile neglects some important information about joint feature, such as
contributing dilatancy and peak shear stress. Most of the energy dissipation
due to plastic deformation occurs at the small governing asperities.
Disregarding such asperities contribute to a significant loss of the plastic
energy dissipation in material. Frictional energy dissipation, however, is

relatively not influenced by the omission of the local profile.

An increase in the normal stiffness k& causes a greater suppression of

dilatancy, which leads to higher shear stress and frictional energy dissipation.
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(iv)

v)

Especially, due to the presence of normal stiffness, the plastic energy
dissipation in the material region increases significantly during relative shear

of the irregular joint.

Relative movements between irregular surfaces are accompanied by dilatancy,
frictional energy dissipation and plastic energy dissipation in the parent
material. In studies of the irregular joint, the plastic energy dissipation in
material is two orders of magnitude smaller than the frictional energy
dissipation. In studies of joints with steep asperities, however, shear induces
only a slight movement with respect to each other between the contacting
surfaces. The relative movement between the joint surfaces is mainly due to
the plastic and elastic deformation in the asperities. The contribution of the
dilatancy to the shear behavior is low and the variation of the shear stress,
plastic energy dissipation with relative shear displacement is insensitive to the
values of the normal stiffness. Most of the energy will then be dissipated in
the form of plastic energy deformation in material instead of the frictional
energy dissipation at the contact surfaces. Higher normal stress leads to higher
shear resistance and higher normal deformation. The contribution of the
normal stress to plastic energy dissipation is due to a combination of these two
factors. When the asperity angle is steep, an increase in normal stress does not
necessarily result in higher plastic energy dissipation; it might increase the
plastic energy dissipation due to the increase in stress state, but sometimes this

is reduced due to the increase in shear resistance.

The presence of an initial aperture significantly changes dilatancy and shear
stress behavior of an irregular joint. The peak shear stress values tend to be

reduced as the asperture increases.

The influence of quasic-static shear cycling on the plastic behavior of the joint

can also be studied through the computational modelling procedure. In actual

experiments, asperities are damaged during shear and they can further be crushed to

create fragmented gouge material residing at the joint locations. Experimental
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evidence indicates the reduction of both dilatancy and dilatancy angle with increases
in shear cycles. In the current numerical modelling procedure, however, the
continuum behavior of both regions of the joint makes no allowance for creation of
gouge resulting from disintegration of asperities. Asperity failure in form of plastic
flow increases the element volume, which increases the dilatancy during shear
cycling. Plastic energy dissipation increases the deformability of asperities and

reduces the dilatancy angle in latter shear cycles.
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Chapter 6

CONCLUSIONS AND DISCUSSION

The study of mechanics of fractures and joints can be approached at different levels.
These include phenomenon logical approaches, which considers the behavior of a
joint simply as a constitutive response, to more detailed approaches, which consider
the joint surface topography, the nonlinear interaction and material phenomena
associated with an interface. Current available computational methodologies can be
utilized to conduct studies of both approaches. This thesis examines the study of
mechanics of a joint from considerations of the joint surface profile and the nonlinear
interactive and material behavior. The studies are focused on the examination of an
actual experiment conducted on a dolerite joint by appeal to computational modelling.

The findings of the research can be summaried according to the following:

(i) Experimental investigations show the important influences of surface
roughness on the shear behavior of rock joints. In modelling a joint, the actual
profile of the joint as determined from surface profiling is usually considered.
There are, however, limitations to the degree of refinement that can be
permitted if the results of profiling are to be used in the continuum
computational modelling process. Constraints of continuum modelling place
restrictions on the refinement of the profile to a scale, which is not
representative of the requirements for computational modelling. The smallest

element dimension cannot be smaller than the largest grain size of the parent
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(ii)

geomaterial. In this thesis, the microstructure of the rock mass is disregarded
and the smallest element size is chosen close to the grain size. In addition to
these constraints, the finite element discretization of the region close to the
joint front can be also, to a large extent, influenced by the capacity of the
computational facilities to assure computational accuracy. By defining
additional surface interaction properties, the influence of joint surface
geometry can be incorporated in a computational modeling to account for the
mechanical interaction between surfaces composing the joint. When rotation
free contact is established between irregular surfaces, contact only occurs at
limited points. Computational simulations indicate that interfacial behavior of
sections of surface, excluding contacting points, has negligible effect on final
shear behavior of the joint. Mechanical behavior of these limited contacting
points therefore has a governing effect on the shear behavior of the entire
joint. Dilatancy during shear, which is also influenced by the normal stress,
roughly follows the surface geometry of the “governing asperity”. Shear
response 1s found to be identical for surface sections at different lengths,
which includes the “governing asperity”. A regular triangular joint with a
same asperity angle as that of the “governing asperity” exhibits similar
response of dilatancy and shear stress to those of the irregular joint. The
process of establishing what is a governing asperity is not a routine. The
factors influencing the selection of the governing asperity can include features
such as the profile of joint and the steepest acute angle in the direction of

movement.

In addition to the surface roughness, surface interaction properties need to be
characterized to computationally model the shear behavior of rock joints. In
considering the Coulomb friction model, the elastic interaction properties are
assumed before surfaces slide relative to each other. These properties can be
examined by consdering the shearing of two planar surfaces. The coefficient
of friction can be obtained from the peak friction stress and the limiting
frictional stiffness reflects the elastic behavior of contacts. The coefficient of

friction has a direct influence on the peak shear stress of joint, and the
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(iif)

(iv)

)

frictional stiffness determines its overall shear stiffness. Most experiments,
however, only pay attention to the coefficient of friction of joint surface and

observations of the frictional stiffness are scarce.

Material properties required for computational simulation of the joint include
Young’s modulus, Possion’s ratio and strength parameters applicable to a
failure criterion. Both the compressive and tensile strength influences the
development of plasticity during shear. Most experiments only provide
information concerning the compressive strength of the intact material mass.
The tensile strength can, however, be estimated by specifying a reasonable
ratio between tensile strength and compressive strength generally applicable

to brittle elastic solids.

Asperities exhibit failure during shear. The failure of asperities results in
plastic deformations in the asperities, which is accompanied by plastic energy
dissipation in parent material. The plastic energy dissipation is generally 1 to
2 orders smaller than the frictional energy dissipation, during shear on an
irregular joint. When asperity angles are steep, relative shear does not induce
large relative movement between two initially matched surfaces, and most
energy will be instead expended by plastic energy dissipation in material. This
corresponds to the behavior expected of a joint zone in a real rock mass,
where asperities interlock firmly and the joint loses stability only as a result of
plastic deformation in asperties when surfaces composing the joint are forced

to experience relative movement.

Experimental evidence shows that reduced volume of material due to the
damage process and surface wearing process can reduce the dilatancy during
shear. The gouge materials produced, which residue at the joint locations, can
also reduce the dilatancy angle. In numerical modelling, however, continuum
modelling does not allow consideration of the disintegration of damaged

asperities and gouge material. Asperity failure in the form of plastic flow
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(vi)

(vii)

increases the element volume, which eventually increases the dilatancy during

multi-cycle shear.

The normal stiffness k& causes a greater suppression of dilatancy, which leads
to the development of higher shear stresses during relative shear of an
irregular joint. Numerical model also captures similar phenomena, and
evolution of energy dissipation can be traced. Presence of normal stiffness
leads to a greater frictional energy dissipation. Especially, the plastic energy
dissipation in the parent material can be almost doubled in the presence of

normal stiffness.

The hydraulic conductivity of a joint is related to its hydraulic aperture. The
normal and shear action at a joint might close or open the aperture due to
contraction or dilatancy. Consequently, the hydraulic properties can vary due
to the changes of aperture. The variation of hydraulic conductivity follows
closely with the variation of dilatancy during shear. The appearance of
dilatancy, in the absence of opening between surfaces in contact, cannot be
interpreted as an alteration in the hydraulic conductivity of the joint.
Seperation at the joint in the form of gap development is a necessary
prerequisite for altering of hydraulic conductivity. The material dilatancy can
induce alterations in the hydraulic conductivity of the parent material but that
changes are expected to be of secondary importance in comparison to the

hydraulic conductivity changes associated with aperture opening.
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