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ABSTRACT

The mechanical behavior of fractures in geological media is important to geotechnical

and geoenvironmental engineering. Considerable investigations have been conducted

on, firstly, the characterization of the fracture topography and secondly, on the

assessment of the influence of fracture topography on the mechanical behavior,

particularly the dilatancy of the discontinuity. The studies of the mechanical behavior

of fracture surfaces have invariably been concemed with the examination of the

mechanics of the contact surfaces, to the virtual exclusion of the progress of failure

zones into regions adjacent to the contacting fracture surfaces. This thesis conducts a

computational assessment of the role of geomaterial plasticity and surface topography

on the behavior of a fracture. The computational modelling takes accounts of the

irregularity of the joint surface, the frictional and elasticity characteristics of the

contact zones, the elasto-plastic failure of the material and incompatible deformations

that arise during shear of an irregular fracture surface. The computational shear

responses are compared for the cases where a regular fracture surface exhibits

identical shear behavior in the presence of geomaterial plasticity. For an irregular

joint, it is observed that the shear behavior is relatively unaffected by material

plasticity. Variation of dilatancy with shear cycles, however, can be directly attributed

to the presence of material plasticity. Plastic energy dissipation is related to the

normal restraints specified. Shear behavior of a specific joint appears to depend

mainly on the interfacial behavior of the limited number of asperity contact during

shear. The surface geometry of these asperities govems the dilatancy and their slopes

control the peak shear resistance. The thesis also examines briefly the influence of

initial separation ofjoints on the shear behavior.



RÉSUMÉ

Le comportement mécanique des fractures dans les milieux rocheux a une importance

considérable pour la conception d'ouvrages geotechniques. De nombreuses

investigations ont été conduites, en premier lieu, pour caractériser la topograhie, des

surfaces, puis pour analyser l'Influence de la morphologie sur le comportement

mécanique des joints rocheux, plus particulierement sur la dilatance. Le

comportement mécanique des joints rocheux est, le plus souvent, étudié grâce à la

mécanique de contact, sans prendre en compte la propagation des fractures qui se

produisent dans les zones à proximité de ces zones de contact. Dans cette thèse, le

rôle du comportement plastique des geomateriaux et de la morphologie des surfaces

sur le comportement mécanique des joints rocheux, est etudié de maniëre numérique.

Un modèle numérique prenant en compte les irrégularités de la surface des joints, les

paramètres mécaniques tels que le coefficient de frottement et l'élasticité des zones de

contact et les déformations incompatibles qui resultent du cisaillement des joints

rocheu. Des surfaces régulières et irregulières ont été testeés, et les résultats ont été

comparés dans le cas de matériaux plastique. Il y a aussi été observé que le

comportement en cisaillement et peu affecté par le fait que le matériaux a un

comportement élastoplastique en le comparant aux résultats obtenus pour les

materiaux élastiques. Cependant, la variation de la dilatance pour un essai cyclique de

cisaillement peut être directement attributée à la présence de materiaux aux

comportement plastique. La dissipation de l'energie plastique est liée aux conditions

aux limites dans la direction normale du joint. Le comportement en cisaillement

semble dépendre directement du comportement mécanique des asperités localiseés

dans les zones de contact. La géomètrie de ces asperités gouverne la dilatance et leurs

pentes controlent l'intensité du pic de cisaillement. L'influence de l'ouverture initiale

des joints est aussi étudiée pour mieux comprendre le comportement mécanique des

joints.
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Chapter 1

JOINTS IN BRITTLE GEOMATERIALS

1.1 Joints in brittle materials

The development of brittle fracture in an intact material or at the bond of two distinct

materials leads to the development of discontinuities (Figure 1.1). A planar

discontinuity between two material regions with similar or identical mechanical

properties can be defined as a joint (Figure 1.2). Joints in brittle geomaterials, such as

rock and concrete, will exhibit quite similar mechanical behavior primarily due to

their brittle character.

Load transfer at joints constitutes an important aspect of the study of brittle

materials in contact. Geotechnical stability of excavations in rock, cracked concrete,

flow and transport of fluid and chemicals through materials are also influenced by the

mechanical behavior of the joints.

In current usage, the term interface, which, in the context of the study of

geomaterials, is usually regarded as the physical boundary between dissimilar

materials, is also sometimes used to signi:fy a joint (see e.g. Selvadurai and Boulon,

1995).



f{ailure plane

/

1.0 mm

Figure 1.1 A single shear fracture III Westerly granite [after

Friedman et al. (1970)].

200 mm

Figure 1.2 A joint in Limestone [after Armand (2000)]
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1.2 Review of research of rock joints

It is generally accepted that, strength, defonnability and fluid flow characteristics

of rock joints depend on the roughness of the joint. Characterisations of joint

surfaces have been extensively treated by a number of researchers. Patton (1966)

idealized the random joint profile as a regular 'saw-tooth' profile. He defined a

asperity angle to propose a Mohr-Coulomb-type bilinear model of a shear strength

criterion: at low nonnal stresses, the joint shows dilatancy due to overriding of the

asperities; at high stresses, shear failure can occur through intact material in

asperities. Barton (1971, 1973, 1976) examined the effect of the roughness on the

peak shear strength and proposed a JRC value (Joint Roughness Coefficient) to aid

his analysis. The joint roughness was then simply characterized as an empirical

value, which can be detennined either in laboratory or in situ. The procedure for

detennining JRC is given in ISRM (1978). This empirical detennination of JRC is

quite subjective and the value for a same 3D profile differs at different scales

(Bandis, 1981) and in different directions of shearing. Therefore in addition to the

implementation of JRC value, sorne conventional statistical methods have been

used to supplement the joint characterization. Among such studies are those given

by Wu and Ali (1978), Tse and Cruden (1979), Krahn and Morgenstern (1979),

Dight and Chiu (1981), and Maerz et al. (1990). The limitations ofboth JRC and

the conventional statistical method have also been pointed out by Maerz et al.

(1990), Miller et al. (1990), Kulatilake et al. (1995), Wakabayashi and Fugushige

(1995), and Kodikara and Johnston (1994). In an attempt to avoid directional

dependence and scale effects, fractal methods, that characterize the concept of self­

similarity and self-affinity, have been vigorously accepted by many researchers

(see e.g. Brown, 1985; Matsushita and Luchi, 1989; Malinverno, 1990; Miller et

al., 1990; Power et al., 1991; Huang et al., 1992; Odling, 1994; den Outer et al.,

1995; Lee, 1997; Kulatilake et al., 1995; Shirono and Kulatilake, 1997). A number

of methods have been suggested for estimation of the fractal parameters for joints.

There inc1ude the divider (Mandelbrot, 1983), box counting (Feder, 1988),

variogram (Orey, 1970), spectral (Berry, 1980), and roughness length
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(Malinvemo, 1990). The trends linking fractal parameters with various mechanical

parameters of rock joints have been studied by Brown and Scholz (1985), Turk et

al. (1987), Lee et al. (1990), Maerz et al. (1990), Huang et al. (1992), Xie et al.

(1993, 1994, 1997a), Odling (1994), den Outer et al. (1995), Kwasniewski and

Wang (1993), Bobji et al. (1999). Kwafniewski and Wang (1997) have examined

the damage process of joint surface during shear. A law for surface morphology

evolution, based on fractal method, has been developed by these researchers to

predict the changes of surface as functions of the plastic work (see also Nguyen

and Selvadurai, 1998). Further information on the evolution of rock joint

morphology during shear are given by Sabbadini et al. (1994, 1995), and Homand­

Etienne et al. (1995). Xie et al. (1997b) examined the stress fields near fractal

joints during compression and shear using photoelastic method. Roughness was

found to be an important factor affecting the stress field. Re et al. (1997) explored

the mechanisms underlying scale effect by focusing in particular on the variation

in the contact areas as a function of joint size using fractal analysis. Fox et al.

(2000) recently presented the effect of roughness on multi-cycle dynamic shear

behavior of a natural rock joint. Gentier et al. (2000) recently also examined

influence of fracture geometry on shear behavior and established a strong link

between them. They described results from a series of shear tests performed on

identical cement mortar replicas formed from a natural granite fractures.

Mechanical parameters measured during experiments varied depending on the

shear direction. Using a three-directional geostatistical method of fracture surface

characterization, they analyzed the dependence of size and location of damage

zones on local geometry and proposed an algorithm.

Materials such as clay, silt and fine sand which infiltrate rock joints are expected

to reduce the overall shear strength of the joint. Many laboratory tests on infilled

joints have been conducted under constant normal stress (see e.g. Goodman, 1970;

Kanji, 1974; Ladanyi and Archambault, 1977; Lama, 1978; Barla et al., 1985; Pereira,

1990; Phien-wej et al., 1990; Toledo and de Freitas, 1992). Pereira (1997) used

rotary shear tests to investigate the stress change near the rock surface during shear.

When the shear load was applied, the stress field changed continuously during the test
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on an unfilled joint, due to the removal of the asperities from the rock surfaces. For

filled discontinuities this re-orientation of the stress field became less probably since

not many asperities had been damaged during the shear process. Indraratna (1999)

recently performed tests on sorne filled regular triangular joints under constant

normal stiffness. Appearance of additional normal stiffness causes a greater

suppression of dilatancy and leads to higher shear stresses than those results obtained

under constant normal stress. The failure intersected the asperity when fill height was

less than asperity height; it only passed through the fill material when the ratio of fill

height and asperity height was greater than sorne critical value, which varies from

about 1.4 to 1.8.

A c1ear understanding of the mechanism of fluid movements through joints

becomes necessary for the study of geoenvironmental problems. The cubic law of

hydraulic permeability of a joint surface is developed from the c1assic "parallel plate

mode!". The applicability of the cubic law to flow through fractures has been

explored experimentally and analytically, such as by Snow (1965), Iwai (1976),

Gangi (1978), Witherpoon et al. (1980), Engelder (1981), Raven and Gale (1985),

Pyrak-Nolte et al. (1987), Tsang (1987), Zimmerman et al. (1991), Iwano and

Einstein (1995), Durham and Bonner (1995) and Selvadurai (2000). Deviations from

cubic law, which stems from surface roughness, were examined by Kranz et al.

(1979), Raven and Gale (1985), Brown (1987) and Boulon et al. (1993).

Mechanical deformation of a rock joint results in changes to its aperture and

consequently its hydraulic conductivity. The behaviour of fluid flow can be coupled

with evolution of normal stress and c10sure of joint. Most of the modelling and

experiments conducted in connection with hydromechanical coupling problems were

performed mainly under normalloading conditions (Raven and Gale, 1985; Gentier,

1986; Billaux and Gentier, 1990; Amadei and Illangasekare, 1992). Modelling of

these couplings requires a precise characterization of joint roughness morphology.

Pyrak-Nolte and Morris (2000) found that the fluid flow through a single fracture

subjected to normal stress was dependent on spatial correlation of the aperture

distribution. In the case of shear loading conditions, the modelling of

5



hydromechanical coupling is much more complex and difficult. Relevant

experimental investigations have been made by Makurat et al. (1990), Olsson and

Brown (1993), Esaki et al. (1996, 1999) and Yeo (1998). The tests by Esaki et al.

(1999) revealed that, the change of permeability of the joint was approximately

similar to that of the change in its dilatancy. Initially there was sorne permeability

decrease due to the closing of contact points and then the permeability increased

rapidly due to the increase of dilatancy. Chen et al. (2000) performed experiments to

investigate the influence of shear displacement and normal stress on the mechanical

and hydraulic behavior of rock joints. Dilatancy induced by shear displacement

significantly enhanced the permeability ofjoints at high normal stress up to 40 MPa .

It was reported that equation proposed by Willis-Richard et al. (1996) underestimated

dilatancy angle while the model by Barton et al. (1985) overestimated results for

shear on joints with low-JRC and underestimated them for shear on joints with high­

JRC.

The experimental research on rock joints have been complemented and aided by

the development of computational approaches. In the early approaches to such

modelling, the finite element method featured prominently. Finite element analysis of

rock joints is often made through implementation of joint or interface elements.

Goodman (1968) proposed the first interface element specially developed for

modelling rock joints. Gens (1995) gave a classification of these elements: the link

element (Frank, 1982; Ahmad et al., 1987), continuum finite elements of small but

finite thickness (Zienkiewicz et al., 1970; Desai, 1984; Schiweiger et al., 1990) and

zero thickness joint or interface elements (Goodman, 1968; Carol, 1983). Also many

investigators have proposed constitutive models of interfaces for finite element

implementation to account for dilatancy, normal stress and shear displacement.

Roberds and Einstein (1978), using Patton (1966)'s yielding criterion, proposed a

comprehensive model to include shear, dilatancy and normal stress. Desai et al.

(1985) introduced a non-lïnear elastic model. Fishman and Desai (1987) developed an

elasto-plastic constitutive model for the hardening behavior of rock joints using

associative and non-associative flow mIes. The same model was modified by

Navayogarajah et al. (1992) to account for monotonie and cyclic behavior of
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interfaces. Plastic deformation can be divided into a slip component and damage

component. Fakharian and Evgin (2000) adopted this model to numerically simulate

3D behavior of interface under various normal boundary conditions. Plesha (1987)

considers a rough joint element with normal stiffness and shear stiffness. Important

aspect of asperity degradation was considered in this model in that the decrease of

dilatancy angle is in an exponential relationship with total plastic energy dissipation.

Nguyen and Selvadurai (1998) implemented this model in their finite element code

FRACON to examine computationally asperity degradation, permeability evolution

during dilatancy and shearing of joints in geomaterial. In addition to finite element

method, recent numerical research has featured the promising development of other

approaches in analysis of interfaces or joints in geomaterials, which includes the

boundary element method (Banerjee and Butterfield, 1981; Crouch and Starfield,

1983; Selvadurai, 1995; Selvadurai and Au, 1987; Grabinsky and Kamaleddine,

1997), the distinct element method (Cundall, 1971; Cundall and Strack, 1979;

Williams et al., 1985, 1993; Pande et al., 1992; Selvadurai and Sepehr, 1997, 1998,

1999) and the discontinuous deformation analysis method (Shi, 1988; Maclaughlin

and Sitar, 1996; Ohnishi et al., 1996).

1.3 Scope of the thesis

In the conventional analysis of joint behavior, attention is usually restricted to the

non-linear contact behavior between surfaces composing the joints. With certain

types of rocks or other brittle geomaterials, failure in the form of plastic flow and

brittle fracture can also extend to the regions in the proximity of the joints. The scope

of this research work is to use existing documented computational methodologies to

examine the manner in which the non-linear process in regions adjacent to the joint

surfaces can influence the overall shear behavior of the joints. The availability of

computational methodologies, which accommodate for elastic-plastic frictional model

and finite sliding formulations, makes it possible to account for discontinuous

displacement at joints.
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Chapter 2

GEOMECHANICAL BEHAVIOR OF

JOINTS

ROCK

The majority of current rock joint models are capable of predicting the shear behavior

of joint surfaces with relatively simplified surface topography. Many of these do not

take account of complex surface characteristics. Tentative quantitative description of

roughness, which greatly influences shear behavior and hydraulic conductivity of

rock joints, has been paid more attention with the help of graphical, statistical and

fractal methods. This has led to a better understanding of complex shear mechanism

and its relation to joint roughness.

2.1 Characterization ofjoint surface roughness

Patton (1966) performed experiments on artificial plaster joints with regular 'saw­

tooth' profile, as shown in Figure 2.1. He proposed a Mohr-Coulomb-type bilinear

model as the failure criterion for the joint. At low normal stresses, the joint shows

dilatancy due to overriding of the asperities and at higher stresses, dilatancy is

suppressed and shear through intact material is observed. Huang (1990), in his multi­

cyclic shear tests conducted under constant normal stress and one-cycle shear test

conducted under constant normal displacement, also observed the phenomenon of

shear through intact material in asperities.
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a: Relative movement at joint during

asperity over-ride

b: Relative movement during shear

through asperities

i : Asperity angle

cPl : Friction angle for the joint

Œn cP2 : Friction angle for the material

(a). Bilinear peak shear strength criterion

(b). Relative movement at joint during

asperity over-ride

(c). Relative movement during shear

through asperities

Figure 2.1 Bilinear peak shear strength rafler Patton (1966),

Goodman (1976), and Brady and Brown (1993)].

Real joints have spatially irregular profiles. Barton (1971, 1973, 1976) has

examined the effect of roughness of the irregular profile on the peak shear strength.

The irregular joint roughness was simplified as a value of JRC (Joint Roughness

Coefficient), and the angle of inclination of the asperities (as defined in Patton's

model) was replaced by a dilatancy angle JRClog1o[JCS/Œn ], which dependeds on

normal stress Œ and compressive strength of the joint surface defined as JCS. These
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coefficients JRC (Joint Roughness Coefficient) and JCS (Joint Compressive Strength)

can be empirically and visually determined in laboratory or in situ. The procedures

are described by ISRM (1978). The Figure 2.2 illustrates the JRC values and

corresponding joint profiles.

Joint profile JRC

1 ~ 1 0-2

2 r- i 2-4

3 t- 1 4-6

4 r- ..... 1 6-8

5 1 - - ..-i 8-10

6 1 10-12- .,

7 L 12-14--- ~1

8 - -1 14-16--
9 r- ---" 16-18

10 l_ - 18-20J ~ -
0 5 10
1 , 1 . , ! 1 ! ! . 1 SCALE

Figure 2.2 JRC and joint profiles [after Barton (1971, 1973, 1976)]

The empirical determination of the JRC value is prone to subjectivity and will

depend on the direction of shearing (Huang and Doong, 1990; Jing et al., 1992). For

this reason, sorne researchers have investigated methods with direction independent

information obtained through statistical analysis. Examples of these are given by Tse
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and Cruden (1979), Roberds et al. (1990), and Yu and Vayssade (1991). The use of

fractal methods for joint characterization is also discussed by Lee et al. (1990), and

Seidel and Haberfield (1995).

For example, Seidel and Haberfield (1995) described the fractal parameters of

roughness and their relation to shear behavior. It was concluded that, if the asperity

angle followed a Gaussian distribution, the mean angle statistic e was related to

standard deviations of angle se through the relationship Se =#1°1; Se is also related

to fractal parameters of joint through approximate relation se:::; cos-1(N(I-D)ID),

where D is the fractal dimension of joint and N is the number of equal length chords,

into which the joint length L is divided. A typical comparison between se and JRC is

shown in Figure 2.3.

Idealized triangular asperity

Fractal
Se. 3°

_------------ JRC2~

_-------__~---- Fractal
Se. 9°

_____---------~--JRC8-10

Fractal
Se. 17°

JRC 16-18

L

Figure 2.3 JRC and fractal profile [after Seidel and Haberfield (1995)]
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2.2 Asperity behavior

Roughness or frictional characteristics of the joint surfaces influence their mechanical

behavior. Shear load can only be transferred through asperity contact. Deformation or

damage of surfaces in contact and asperities in contact can influence the mechanical

behavior of rock joints.

The mechanical behavior of asperities is govemed by the constitutive behavior of

the parent geomaterials. Failure in form of plastic flow and brittle failure can extend

to the regions near joints. Handanyan et al. (1990) pointed out three modes of asperity

failure in their paper: these include (i) shearing of asperities (ii) the elastic or plastic

deformation and eventually sliding at the asperities and (iii) the tensile splitting of

asperities. The failure modes are schematically illustrated in Figure 2.4 (a). The

model material used in their tests was used as a synthetic gypsum which exhibited

linear elastic behavior in both unconfined compressive testing and direct tension

testing and had medium strength and average modulus characteristics of a medium

strength igneous rock. Handanyan et al. (1990) obtained the failure planes for three

formed asperities, as shown in Figure 2.4(b).

(a). Failure modes (b). Failure planes in various shaped

asperities

Figure 2.4 Failure ofasperities [after Handanyan et al. (1990)]
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2.3 Three modes of testing

Sliding of potentially unstable rock blocks is restrained between two parallel dilatant

rock joints (Figure 2.5). The joint exhibits dilatancy due to overriding at asperities.

When dilation of the rock joints during shearing is constrained or partially

constrained, an increase in the normal stress over the shear plane occurs, which

increases the shear resistance of joints. Normal stress is a monotonie incremental

function of rjJ(k, v') that satisfies that rjJ(O, v') =rjJ(k,O) =0, where k is the stiffness of

surrounding rock mass and v' is the dilatancy. Experimental techniques provide the

most reliable methods for the investigation of the mechanics of rock joints. In

experiments involving rock joints, the experimentation can follow three different

modes of testing (Figure 2.6). There include experiments conducted under conditions

where (i) the plane ofthe joint is subjected to a constant normal stress or (ii) the plane

of the joint is subjected to a constant normal stiffness and where (iii) the joint is

constrained from movement normal to its plane. The shear test under normal stiffness

more realistically provides the shear behavior of natural joints in a sense that it

considers the contribution of rock mass stiffness of k on the shear behavior. Test

conducted under constant normal stress, which is a limit case of a test under constant

normal stiffness when k =0, yields shear strength too low for practical situations

(Goodman, 1976). Shear under constant normal displacement represents the limit case

when k -+ CI) •

(a). Underground excavation injointed rock

an = rjJ(k, v')

(b). Equivalent 2-D model

Figure 2.5 Joint behavior at the roof of an excavation [after Indraratna

et al. (1999)]
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(a) Shear under constant (b) Shear under constant (c) Shear under constant

nonnal stress nonnal stiffness normal displacement

Figure 2.6 Experimental study of shear under different normal

boundary conditions.

2.4 Shear tests ofjoints under constant normal stress

Several investigators have examined the experimental behavior of rock joints during

shear under constant normal stress states. Among these are Patton (1966), Barton

(1973, 1976, 1986), Hoek (1977,1983, 1990), Bandis et al. (1981), Hencher and

Richards (1989), Saeb and Amadei (1992), and Kulatilake et al. (1995).

Bandis and Barton (1983) gave their results for experiments conducted on five

natural rock joints, both fresh and weathered, in slate, dolerite, limestone, silstone and

sandstone. The results of shear test on the fresh dolerite joints are documented in

detail since these results will be used in the numerical modelling exercises. The

choice for dolerite is dictated by avability of supplemetary information conceming

the failure properties of the material. Test specimens used were single-jointed

rectangular blocks. Shear tests were conducted on a portable shear apparatus under

constant nonnal stress. The shear loads were applied in an incremental fashion. Once

the peak shear strength was reached, the shear load was released, the joint halves

reassembled, and a new fUll perfonned under a higher normal stress. In such

arrangement, since the normal stress levels applied are relatively low compared to the

14



compressive strength, the contribution of asperity damage due to shear behavior on

one identical profile has been minimized. We document here the results for dolerite

joints, which are classified as being both fresh and weathered. Weathering effects in

the dolerite were visible along the joint planes, which were covered by a layer of

limonite (hydrated ferric oxide). The joint profiles for two cases are shown in Figure

2.8. The results for the variation of shear stress with shear displacement are also

shown in Figure 2.8. The shear behavior of weathered joints is distinctly different

from the results for the fresh joint. The material parameters relevant to the

computational modelling are the tensile and compressive strength and the elastic

constants. These correspond to

ft =tensile strength =17.3 MPa

le =uniaxial compressive strength =165.0 MPa

E =Young' s modulus = 78.0 GPa

The Possion's ratio was not given in experitments. Uniaxial compression tests were

performed on a single cylindrical and prismatic specimens. Axial strain was recorded

by means of e1ectrical resistance strain gauges. The axial stress-strain relationship for

fresh dolerite is illustrated in Figure 2.7. The Young's modulus was calculated from

the slope of the tangent to the stress-strain curve at 50% of the maximum axial

compressive stress.

1BO.OO

160.00

140.00

~ 120.00
~

:::i2 100.00
'-'

'"'" 80.00
Q)

.t::l
r/) 60.00

40.00

20.00 .

-0.05 0.05 0.1 0.15 0.2 0.25

Strain (%)

Figure 2.7 Uniaxial stress-strain relation for fresh dolerite (after

Bandis et al. (1983)]
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Figure 2.8 Shear behavior of fresh and weathered dolerite joint

and corresponding joint profile [after Bandis et al. (1983)]

(le =165.0 MPa;.ft =17.3 MPa; E = 78.0 GPa)
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Sabbadini el al. (1995) measured the 3D morphology of a joint using a digitizing 3D­

videolaser processing. Joint surfaces of schist and granite were first replicated with a

silicon polymer resin model. The resin replicas were then used for moulds cast in

mortar composed of fine sand, cement, silica fume and water. No strength variables

for material are recorded. The surface morphology of the two joints and

corresponding shear behavior are shown in Figure 2.9. Although the value of the

fractal analysis indicated that granite replica surface was rougher in a 3D sense, the

shear stress for the schist replica was slightly larger than that for granite replica under

the same normal stress and at the same displacement in shear direction specified.

?
Shear direction

(a). Morphology of a schist joint replica (b). Morphology of a granite joint replica

2 4 6 8 10 12 14 16
Shear displacement (mm)

2 4 6 8 10 12 14 16

Shear displacement (mm)

~
0.8 an =lAMPa

an =1.2MPa ~

~ 0.8 ~ 0.6
'-' '-' 1.2 MPaon 0.6 onon

Cl) on
.t:l Cl) 0.4.t:lon 0.4 on
!il !il 0.2Cl)

0.2 Cl)..d ..dVl Vl

(c). Shear behavior of the schist replica (d). Shear behavior of the granite replica

Figure 2.9 3D joint profile and related shear behavior under constant

normal stress [after Sabbadini et al. (1995)]
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2.5 Shear tests ofjoints under constant normal stiffness

At present, the published literature on tests involving constant normal stiffness is

relatively limited compared to those under constant normal stress. The earliest work

is due to Byerlee and Brace (1968) who considered the effects of mass stiffuess on

fault shearing. More recently, Leichnitz (1985), Indraratna et al. (1998, 2000),

Benmokrane and Ballivy (1989), Van Sint Jan (1990), Ohnishi and Dharmaratne

(1990), Benjelloun et al. (1990) have presented experimental results for tests on

geomaterial joints conducted under constant normal stiffuess.

Skinas et al. (1990) also documented the experimental results for tests conducted

under constant normal stiffuess. The tests were conducted on 15 cm x 10 cm model

joints, which were cast from natural joint surfaces, using a brittle, artificial material,

which was prepared from a sand-barytes-cement mixture. A typical set of results is

presented in Figure 2.10. Under constant normal stress k =0, joint behaved in a

relative brittle manner with a peak shear stress at 1.3 MPa . Under increasing value of

k, shear behavior gradually transformed into plastic response. An increase in the

normal stiffness leads to an increase in the normal stress and a reduction in the

dilatancy.
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Figure 2.10 Shear tests on identical joint surfaces under constant normal

stiffness [after Skinas et al. (1990)]

[Je ~ (25.0 - 30.0) MPa; E - (3.0 - 3.5) GPa; V - (0.22 - 0.25)]
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Van Sint Jan (1990) presented experimental data on the shear of a random joint tested

under constant normal stiffness of 0 and 0.039 MPaimm . Plaster of Paris is used as

the model materia1. The mode! material is weak in a sense that it has a small

compressive strength le = 0.92 MPa. Joint profile is shown in Figure 2.11(a) and

corresponding shear behavior is presented in Figure 2.11 (b) to Figure 2.11 (d). Due to

the low value of le and low initial applied normal stress, the shear stresses in such

cases are also low.

k =0.0.3~almm
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.' /'/" .. /'
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Shear displacement (mm)
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(c). Shear stress vs. shear displacement (d). Dilatancy vs. shear displacement

Figure 2.11 Shear behavior under constant normal stiffness

k =0.039 MPaimm [after Van Sint Jan (1990)]

(le = 0.92 MPa; E =1.06 GPa)
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Thomas and Johnston (1987) and Kodikara and Johnston (1994) conducted shear tests

under constant normal stiffness in order to examine the behavior of the rock socketed

pile.

An artificial rock is made to simulate and examine both the regular and irregular

rock (Mudstone)-concrete joints. The friction angle between rock and concrete was

measured between 24° and 36° . Material properties are

le =2.8 MPa; E =360 MPa; V =0.3.

An idealization ofthe test is shown in Figure 2.12,

Steel spring

Normal force

Shear _
displacement

o Concrete· .0

- Shear
displacement

Figure 2.12 Configuration of test under constant normal stiffness

[after Kodikara and Johnston (1994)]

Typical results for shear test results conducted on regular and irregular triangular

concrete-rock joints are shown in Figure 2.13. It was reported that, the asperities of

the regular joints all failed at the same values of shear displacement whereas for the

irregular joints, the asperities failed at different values of shear displacement. The

regular joints showed a relatively brittle response with a high shear resistance at the

same shear displacement. The irregular aperities were more ductile with generally a

lower peak resistance.
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(a) Regular joint profile and

its shear behavior

(b). Irregular joint profile and

its shear behavior

Figure 2.13 Shear stress vs. shear displacement of regular and irregular

joint under constant normal stiffness rafler Kodikara and Johnston

(1994)] (le = 2.8 MPa; E = 360 MPa; V = 0.3)
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Seidel and Haberfield (1995) numerically generated the 2D-fractal joint profiles and

performed experimental shear tests on joints with these profiles under constraints of

constant normal stiffness. Model material used was the same as that used by Kodikara

and Johnston (1994). Figure 2.l4(a) shows three different levels of numerical

approximation of random joint profiles based on the same algorithm. In this

algorithm, an initial straight-line chord was bisected and mid-point was allowed to

displace a random distance according to the Gaussian distribution of the asperity

angle. The definition of asperity angle is given in Figure 2.3. The same process was

applied to each of the two resulting chords. The roughness of resulting profile could

be characterized by SB' which was the standard deviation of asperity angle. The

coarser approximation was taken as a base from which finer approximation was

generated. Graphical comparison between values of SB and JRe are given in Figure

2.3. A finer approximation of fractal profile led to higher roughness parameter SB' It

appears that higher values of shear stress could be obtained during shear for the finer

approximation although the indicated variation of shear stress in different cases was

considered to be within the bounds of experimental error.
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(b). Shear behavior of fractal profiles
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Figure 2.14 Test results for numerically generated fractal profile [after

Seidel and Haberfield (1995)]
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Recently, Indraratna et al. (2000) presented results for tests conducted on natural

(field) joints under constant normal stiffness. The natural sandstone joints were

sampled from a rockslide site at Kangaroo Valley in New South Wales, Australia.

Petrological studies showed that it was a poorly sorted medium to coarse-grained

sandstone having 68-70% quartz (Geological Survey of New South Wales, 1974).

The field joints were cut at the site in the form of a block and transported ta the

laboratory. The specimens [shown in Figure 2.l5(c)] were finally cut into a size

measuring 250 mm x 75 mm x150 mm for top part and 250 mm x 75 mm x100 mm

for bottom part to fit the shear mould. The highly weathered sandstone had uniaxial

compressive strengths of 19 MPa to 21 MPa.

The initial normal stress was applied through a hydraulic jack. The normal

stiffness was provided by a set of normal springs. The shear load was applied via a

horizontally aligned hydraulic jack. The details of shear apparatus are shown in

Figure 2.15(a).

AlI natural joints were tested under constant normal stiffness k =8.5 kN/mm. The

results for the variation of shear stress with shear displacement are presented in

Figure 2.15(c). Generally, a higher normal stress led to a higher shear stress at the

same values of shear displacement. Since the tests were performed on different

natural joints with different profiles, it was not necessary to reduce the shear stiffness

as the initial normal stress was increased.

Dilatancy was monitored at the center of the top of the specimen. As can been

from Figure 2.l6(a), unconventional negative dilatancy was recorded with increasing

initial normal stress. In such cases, the normal stress would decrease rather than

increase with shear displacement. The negative dilatancy during shear could be

attributed to the weathered condition, which improved the compressibility of the rock

joint, but no c1ear explanations were provided.
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(c). Shear stress vs. shear displacement

Figure 2.15 Test machine, rock specimen and variation of shear stress

during shear conducted on natural rock under constant normal stiffness

[after Indraratna et al. (2000)]
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Figure 2.16 Variation of dilatancy and normal stress during shear

conducted on natural rock joint under constant normal stiffness [after

Indraratna et al. (2000)]
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2.6 Scale effect on shear behavior

Differences in the shear behavior of a joint at different scales are noticeable in results

obtained in many experimental programs. Several authors, such as Barton and

Choubey (1977), Bandis et al. (1981), Swan and Zongqi (1985), y oshinaka et al.

(1991), Ohnishi and Yoshinaka (1992) have extensively investigated scale effect on

shear behavior of rock joints. The factors that contribute to the scale effects are still

not well understood.

Bandis and Barton (1981) points out the overall scale effects on joint behavior

under constant normal stress. Model materials were used and joint replicas had the

same joint profile as those of the prototype natural rock. Larger model joints were

broadly divided into smaller ones to account for the scale effects (Figure 2.17). It is

observed that, increasing block size or length ofjoint leads to:

(i) a graduaI increase in peak shear displacement;

(ii) an apparent transition from a "brittle" to "plastic" mode of shear behavior;

(iii) insignificant scale effects in the case of relatively planar and smooth joint types.

60
o

D

..
Normal stress

10

012345678

Shear displacement (mm)

Joint block length
Model prototype
6 cm 1.8 m

12 cm 3.6 m

18cm 5.4m
36 cm 10.8 m

24.5 KPa 1.0 MPa

Figure 2.17 Scale effect on the relationship of shear stress vs. shear

displacement [after Bandis and Barton (1981)]
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Ohnishi and Yoshinaka (1992) perfonned experiments on regular and irregular joints

at different sizes under constant nonnal stress to examine the factors influencing scale

effect on shear behavior in joints. In their opinion, scale effect was strongly related to

the regularity and irregularity of the surface shape. Their test results did not show any

scale effect on the shear strength of regular or smooth joint surface. They made one

conceptual understanding of the scale effect; i.e., joints with different number of

repeated pattern of size B mm (Figure 2.18) were expected to have a same shear

behavior; the scale effect would, however, appear if the specimen of size B mm was

divided into smaller pieces and tested.

,.. B .. ,

p-Regular

C:=:J- Irregular

Figure 2.18 Repeatedjoint pattern, which is expected to have no scale

effect on shear behavior [after Ohnishi and Yoshinaka (1992)].
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2.7 Cyclic shear behavior of rock joints

Asperties are damaged during shearing. These asperities can further be crushed

between contacted surfaces and become gouge materials residing in the valley of the

asperities, which decrease the dilatancy angle and would likely decrease the

permeability of the joint. Mechanical asperity degradation becomes obvious during

cyclic shear tests under different constraints normal to the joint.

Huang (1993) presents sorne experimental results of cyclic shear behavior

conducted on sorne regular joints of artificial plaster material under constant normal

stress. The compressive strength le of the material is 38 MPa.

Figure 2.19 illustrates relative displacement between joint surfaces during one

complete cycle of shear. Corresponding curves for shear and dilatancy are shown in

Figure 2.20(a) and 2.20(b). Shear displacement is first increased in "forward"

direction from the original position a to maximum displacement band decreased

again to the original position c again. The dilatancy exhibited maximum value at b.

Then shear displacement is applied in "reverse" direction from original position c to

maximum displacement d and decreased to original position e. The maximum

displacements in "forward" and "reverse" directions have the same values. During

shear in the "forward" direction, dilatancy observed is greater in unloading process

from b to c than that in loading process from a to b. Similar phenomenon is found

during shear in the "reverse" direction, where dilatancy is also larger in unloading

process from d to e than in the loading process from c to d.

Figure 2.19 Schematic illustration of one complete cycle of shear

[after Huang (1993)]
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Wibowo et al. (1992) conducted a series of 5-cycle tests under constant nonnal stress

and constant nonnal stiffness. A fracture at sizeI5.24cmx7.62cmx7.62cmwas

created by tensile splitting. Gypsum cement with a compressive strength of

27.58 MPa was used as the model material to duplicate the joint profile. A constant

nonnal load of 13.12 kN (an = 2.26 MPa) was applied during the test under

conditions of constant nonnal stress. In another test, the stiffness k = 25.86 kN/mm

was added for shear under constant nonnal stiffness. Comparison of shear behavior

under two different constraints nonnal to the plane of shear is shown in Figure 2.21.
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Asperity degradation during multi-cycles of shear had an obvious effect on shear

behavior. Due to the damage of asperities, dilatancy and dilatancy angle all reduced

with the increase in the number of cycles, for both constant normal stress and

constant normal stiffness type tests. Shear loading damaged sorne relatively sharp

asperities and decreased the asperity angle, which subsequently reduced the dilatancy

value and shear stress. Asymmetry of shear behavior was found for shear of am

irregular joint under two different loading directions. Dilatancy and shear stress

showed different values in the "forward" and "reverse" directions.

The normal stiffness caused a greater suppression of dilatancy and higher shear

stresses. The contribution from normal stiffness to shear behavior was related to

dilatancy. In reverse shear, dilatancy was generally small and the shear behavior

under constant normal stiffness was very close to that obtained under constant normal

stress, especially in later cycles where dilatancy was nearly zero.

2.8 Shear induced changes in hydraulic conductivity of fractures

The normal and shear action on a joint might close or open the joint aperture due to

contraction or dilatancy. Consequently, the hydraulic properties vary due to the

changes in the aperture. Recent results of experimental investigations in this area are

given by Makurat et al. (1990), ülsson and Brown (1993), Esaki et al. (1996,1999),

and Yeo (1998).

Makurat et al. (1990) presented the experimental results of variation of hydraulic

conductivity with shear displacement conducted on natural joints in igneous rocks. A

biaxial cell is used for test shown in Figure 2.22(a). With this equipment, joints could

be closed, sheared and dilated under controlled normal stress condition, and at the

same time, fluid could be flushed through the joint. Deformation, flow rate and

stresses could be recorded simultaneously.
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(a). Biaxial cell for testing on natural joints
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Figure 2.22 Hydraulic conductivity of joints obtained by biaxial cell

testing [after Makurat et al. (1990)]
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Figure 2.22(b) presents the change of hydraulic conductivity of joint with shear

displacement for one joint under low normal stresses (compared to le)' The

hydraulic conductivity increased by nearly two orders of magnitude after 3.5 mm of

shear. This was due to the low restraint to dilatancy. Figure 2.22(c) presents the

hydraulic conductivity change during a test conducted on another joint with similar

JCS and JRC properties, but under much higher normal stress. Hydraulic conductivity

increased corresponding to shear tests in direction l, whereas it exhibited no major

change in reverse shear in direction II.

Esaki et al. (1999) measured hydraulic conductivity during shear of granite joints

with an artificial created profile. The test apparatus had the following characteristics:

(a) an artificial stationary joint could be created from an intact rock specimen; (b)

large shear displacement could be applied beyond residual stresses; (c) constant

normal loads could be applied and (d) hydraulic tests could be conducted by

supplying a constant water head to the joint during normal and shear process.

The rocks used were hard granites with porosity at 0.37% and uniaxial

compressive strength of 162 MPa. The size of specimens was 120 mm in length,

100 mm in width and 80 mm in height. The artificial fracture was then created at the

mid-height of the specimen using a pair of horizontal jacks, which applied loads

perpendicular to the direction of shear. Based on the water flow measured, the

hydraulic conductivity was estimated by using an approximating equation assuming

the cubic law applicable to the parallel plate. The tests revealed that the trend of

change of hydraulic conductivity was approximately similar to that of the dilatancy of

a joint. For the first 5mms of shear displacement, the hydraulic conductivity

increased rapidly by about 1.2 to 1.6 orders of magnitude. After reaching the residual

stress level, the hydraulic conductivity became almost constant. Reverse shear was

also applied and dilatancy was lower than that in forward shear. However, when

shearing in reverse direction is close to the initial zero point, the value of normal

displacement is greater than that prior to shear. This indicates the possible deposit of

gouge materials in the valleys of joint surface. The theoretical prediction based on

Barton (1985)'s empirical relation between hydraulic aperture and mechanical
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aperture E, that is, e = E
2

/ JRC 2
.
5

, generally over-estimated the experimental results
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2.9 Summary

Although complex behavior of shear in joints is not completely understood, sorne

general conclusions can be observed:

(i) The surface roughness has important influence on the shear behavior of rock

joints. Traditional determination ofJRC (Joint Roughness Coefficient) is prone to

subjectivity and depends on the direction of shearing. Statistical and fractal

methods give possible alternative methods with no direction and scale­

dependency in the information.

(ii) Normal stiffness causes a greater suppreSSIOn of dilatancy. Shear behavior

conducted under constant normal stiffness exhibits a greater ductile behavior and

higher shear stress at the same displacement, than those obtained under constant

normal stress.

(iii) The asperities deform and possibly fail during shear. Asperity damage influences

dilatancy and shear stresses during cyclic shear. Asperity degradation becomes

evident during multi-cycle shear, which decreases the dilatancy angle with

increase in the number of cycles.

(iv) Differences in the shear behavior at different scale of the joint are noticeable. The

factors that contribute to scale effects are still not well known. Joints with

repeated profile pattern will not, in general, exhibit differences in shear behavior

at different scales.

(v) Hydraulic conductivity of a joint can change by 1 to 2 orders of magnitude during

shear. The variation of hydraulic conductivity follows closely the variation of

dilatancy during shear.
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Chapter 3

CONSTITUTIVE CRITERIA FOR BRITTLE

GEOMATERIALS AND MODELLING OF

CONTACT INTERACTION

Geomaterials such as rocks and concrete exhibit brittle behavior at values of

confining stress significantly lower than their tensile and compressive strengths.

Although this behavior is well recognized, the failure of such materials is usually

characterized in relation to theory of plasticity, which is normally applicable to

materials with predominantly ductile behavior. Investigations relating to the failure of

rocks and concrete are quite extensive and comprehensive accounts of research in this

area are given by Coates (1967), Goodman (1976,1989), Assonyi (1979), Jaeger and

Cook (1976), Jumikis (1983), Charlez (1991), Brady and Brown (1993). The

theoretical formulation of the plastic failure of a geomaterial requires the

specification of three criteria: namely a failure criterion, a hardening mIe and a f10w

mIe. We shall brief1y discuss those three aspects with special reference to the

application of the theories of materials such as rocks and concrete. This chapter also

contains a brief summary of the various failure criteria in the literature that have been

developed for describing the failure characteristic of brittle geomaterials. For

simplifity, perfect plasticity is assumed.
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3.1 Failure criterion ofbrittle geomaterials

The failure characteristics ofbrittle geomaterials such as rock depends on a variety of

factors including the types of forming mineraIs, the fabric of rocks, the distribution of

grain size and the degree of weathering. Igneous rocks generally consist of a

crystalline assemblage of mineraIs such as quartz, plagioclase, pyroxene, mica, etc

(Jaeger and Cook, 1976). Sedimentary rocks consist of an assemblage of detrital

particles and possibly pebbles from other rocks in a matrix of materials such as clay

mineraIs, calcite, quartz, etc. Metamorphic rocks are produced by the action of heat,

stress, or heated fluid on other rocks, sedimentary or igneous. AlI these mineraIs have

anisotropic properties. Most rocks consist of an aggregate of crystals and amorphous

particles jointed by varying amounts of cementitious materials. The boundaries

between crystals represent weakness in the structure of the rock. The size of the

crystals may be uniform or variable. The dimension of grain size of coarse granite can

sometimes reach up to several centimetres (Wahlstrom, 1994). Figure 3.1 shows a

close view of section of alkali dolerite. On a scale with dimensions ranging from

decimeters to meters, the rock mass contains sufficient number of crystals and it can

be regarded as continuous. If the interactions between grain boundaries are

sufficient1y random, the average properties can be regarded as homogeneous and

isotropic. However, the failure of such a multiphase geomaterial can be more

complex and influenced by the existence of cracks at variable scales, either within the

phases or at the phase interfaces, resulting in a variability in the strength. The most

noticeable feature of failure of such a brittle geomaterial is that the strength in

uniaxial tension is significant1y different from the strength in uniaxial compression

(Goodman, 1976; Chen, 1981). Although in both modes, the strength is govemed by

microcrack development within the various phases and inter-phases, the closure of

cracks and frictional effects at the faces of such cracks lead to the development of

plasticity type phenomena. When the disturbance from appearance of cracks are small

in relation to the dimensions of a structure in rock, the rock mass can be treated as a

continuum. Figure 3.2 shows results of typical stress-strain data obtained through

compression testing of sorne britt1e rocks. The tensile response of geomaterials
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exhibits similar behaviour. The mechanical behavior of concrete follows a similar

pattern. A typical example is shown in Figure 3.3. Typical features of the uniaxial

stress-strain curve for a brittle geomaterial are summarised in Figure 3.4. This figure

also presents suitable idealization within the content of elasto-plastic behavior.

1 mm

Figure 3.1 Ophitic texture of alkali dolerite: the larger clinopyroxene

crystals enclosing lath-shaped crystals of plagioclase feldspar [after

MacKenzie and Adams (1994)].
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Figure 3.4 Elasto-plastic response of geomaterials with perfect plastic

idealization

3.2 Multiaxial failure criteria for brittle geomaterials

The description of the failure behavior of brittle geomaterials due to a three­

dimensional stress state is an essential requirement for the formulation of a theory of

plasticity for brittle geomaterials. In general, the failure criterion for a material can be

represented in the form

(3.1)

where k' is a material parameter which can depend on the post-failure hardening

characteristics of the geomaterials. In (3.1),

(3.2)
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is the Cauchy stress tensor referred to the Cartesian coordinate system. For isotropic

geomateria1s, the failure criterion can a1so be represented in terms of the principal

invariants In in the form

where

Il = tr(Œij)

12 =t[tr 2 (Œij) - tr(Œ/)]

13 = det(Œij)

(3.3)

(3.4)

and tr denotes the trace of the matrix. In sorne instance, it is a1so convenient to

represent (3.1) in the form

(3.5)

where J 2 and J 3 are the second and third principal invariants of the stress deviator

tensor S ij defined by

(3.6)

Similar1y, the strain deviator tensor can be a1so defined by

(3.7)

The functional form f(1pI2,13) or f(1pJp J 3) now needs to be specified by

considering results of experiments. A variety of failure criteria have been proposed in

the literature and detailed descriptions of these are given by Prager and Hodge (1951),

Westergaard (1952), Prager (1959), Thomas (1961), Kachanov (1971), Chen (1981,

1994), Doltsinis (2000). Detailed description of c1assical failure criteria such as

Rankine (maximum stress), and Von-mises (Maximum distortional energy) criteria

are also given in the references cited previously. While all of these criteria have same
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relevance to the description of brittle failure, more relevant criteria have been

proposed in recent literature.

3.2.1 The Mohr-Coulomb failure criterion

The Mohr-Coulomb failure criterion is one of the earliest failure criteria that have

been proposed for the description of failure of brittle geomaterials including soils,

rocks and concrete. The basic hypothesis assumes that the failure of the geomaterial is

govemed by the normal and shear stress at the potential plane of failure

l.e.

r=c+o"tan~ (3.8)

where r is the shear stress on the failure plane, 0" is the normal stress on the failure

plane and c and ~ are the strength parameters derived, respectively, from cohesion

and angle of friction. In terms of the stress invariants, the above failure criterion can

be represented in the form

t Il sin r/J + ..fT; sineB+ 1f) + f[i cos(' + B) sin ~ - c cos r/J = 0
3 ",3 3

where

and O"j are the principal stresses.

3.2.2 Drucker-Prager failure criterion and its modification

(3.9)

(3.10)

The failure criterion proposed by Drucker and Prager (1952) is a simplification of the

Mohr-Coulomb failure criterion to take into account the dependence on both ..fT;
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and /1. The standard failure criterion is a linear combination of these invariants and

can be written in the form

(3.11)

-
where a and k are material parameters goveming failure.

In the computational code ABAQUS, a choice of three different yield criteria is

provided for extended Drucker-Prager type models, which are described as being

either linear, hyperbolic, or an exponential forms. In this thesis, the hyperbolic form

of Drucker-Prager failure criterion is selected due to its ability to combine

simultaneously the compressive and tensile failure, which is considered to be suitable

for brittle materials, such as rocks and concrete. The extended form of Drucker­

Prager failure criterion is given by the relationship

(3.12)

with an asymptotic line defined by

(3.13)

where 10 =d'- ft tan j3; d' =~10 2 + d 2 is hardening parameter; d is the cohesion of
3

material; and j3 is the friction angle corresponding to the limiting values of t /1 =00 .

The asymptotic line of the hyperbolic form of the extended Drucker-Prager failure

criterion will be identical to the c1assical conical form of Drucker-Prager failure

criterion if

1
a = r;; tanf3

3"\/ 3

- d'
k=-

J3
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Figure 3.5 Drucker-Prager failure criterion with tension eut-off

(hyperbolic form of Drucker-Prager failure criterion)

3.3 Flow mIes

To complete the description of plastic behavior of the geomaterials, it is necessary to

postulate a constitutive relation, which relates the mechanical variables to the

kinematic variables. Since the plasticity theories generally involve non-linear

responses, it is necessary to specify these constitutive responses in relation to

incremental values of the mechanical and kinematic variables. The relationship

between the incremental values of stresses dO" ij and the incremental values of strain

dEij can only be postulated by examining experimental data conducted on specifie

geomaterials. A fundamental consideration in the development of incremental plastic

stress-strain relations centers around the concept of a plastic potential. When

considering elastic behavior of materials, the strain energy function can be expressed

in tenus of the stress state in the material and the strain components E ij can be

obtained by differentiating the strain energy function W with respect to the

corresponding stress component 0"ij , i.e.

W =W(O"ij)
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and

aw
[; .. =-­

1J acrij
(3.16)

The plastic potential is the analogue of the strain energy funetion for plastic behavior

of the materia1. Ifwe assume the existence of a plastic potential g(crij) then we ean

determine the ineremental eomponents of the plastic strains from the relationship

(3.17)

where dÂ is a plastic multiplier or a loading parameters, whieh needs to be

determined. Renee, if dÂ and g ean be determined, the plastic strain inerements ean

be determined. When the plastic potential g is identieal to the failure eriterion f , the

flow mIe is said to be assoeiated. Many of the plastieity theories eurrently emp10yed

in researeh and design take the advantage of the associative flow mIe in view of its

simplieity and other advantages resulting from development of eollapse loads based

on limit theorems.

In addition to plastic strains, the geomaterial ean also exhibit elastie deformation

and the ineremental elastie strains, say, for an isotropie elastie material (see e.g.

Timoshenko and Goodier, 1970; Davis and Selvadurai, 1996; Chen, 1981) are given

by

d[;~ =_1_ dcr" - _1-dO"kk5..
1J 2G 1J 27K 1J

and the total ineremental strain tensor is given by

(3.18)

(3.19)

If the plastic potential g "* f , then the resulting theory of plastieity is based on a non­

assoeiated flow mIe and experimental results should be used to determine the specifie
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form of g . Zienkiewicz and Taylor (2000) give a comparison of numerical results of

slope stability when associate and non-associate plastic laws are used in conjuction

with the Mohr-Coulomb failure criterion. It was found that, although very appreciable

differences in plastic strain patterns exist, only moderate differences occur in the

collapse load. Combining (3.16) and (3.17), the incremental strains in the plastically

deforming geomaterial are defined provided that dÀ is defined. Considering the

definition of the plastic behavior we have

dÀ { = 0
>0

iff(aij)<k' orf=k'butdf<O

if f = k'anddf = 0
(3.20)

U sing the consistency condition

ôf
df=-da.. =0
~ ô !ICYij

we can show (see e.g. Chen, 1981)

(3.21)

(3.22)

once f is specified, dÀ can be determined through (3.22). For example, for the

Drucker-Prager material

(3.23)

where çij is the deviator tensor defined in equation (3.7), and

(3.24)

and (3.23) can be rewritten as an incremental stress-strain relation in the form of
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(3.25)

where

(3.26)

(3.27)

3.4 The Coulomb friction model

The focus of the thesis involves the consideration of both plasticity of the geomaterial

and non-linear process that can be attributed to surface in contact. Such surfaces in

contact can result from interaction of fractured surfaces. The process that can occur at

fractured or separated geomaterial can include Coulomb friction, separation and slip.

The constitutive modelling of geomaterial and material interface responses has been

the subject of several studies. Detailed accounts of current developments are given by

Goodman and Brekke (1968), Selvadurai and Voyiadjis (1986), Selvadurai and

Boulon (1995), Desai (2001). The most elementary form of constitutive modelling of

non-linear processes at an interface utilizes the Coulomb friction model.

In the Coulomb friction model, it is assumed that, when the two planar surfaces

are in contact, there is no relative motion between surfaces in contact until the

frictional stress , reaches a critical stress 'cri! = pp, where p is the coefficient of

friction and p is the pressure normal to contact plane.

Friction stress,
'cri! = pp f---------

s

s: relative slip between
two planar surfaces in
contact, where Coulomb
friction is present

Figure 3.6 Mohr-Coulomb friction model
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The classical Coulomb friction model as illustrated in Figure 3.6 is accurate only

when the contacting surfaces are idealised planar surfaces. Surfaces in contact, in

reality, are seldom planar. The fluctuation of the topography of the surfaces leads to

the presence of contact only at a limited number of asperities (see Figure 3.7). This

also occurs as a result of damage processes during movement of regular contacting

surfaces, lodging debris at the contacting surfaces.

Two physical surfaces

in stick-region

Interlock of asperities

Figure 3.7 Illustration of limitation of numerical discretization of

surface

This leads to the modification of Coulomb friction model, which exhibits

deformation prior to slip. Such models have been considered extensively in the

literature on both frictional contact modelling and modelling of geomaterial

interfaces. This general constitutive behavior can be non-linear; a simplification,

however, assumes an elastic-plastic response. In the elastic-plastic modelling, the

notion of elastic stiffness in slip is introduced and the maximum elastic slip is

restrained by the failure of asperities at the contacting surfaces, and the interface slip

occurs in a linearly elastic fashion prior to the attainment of shear failure: i. e.,

(3.28)
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where ks = 'erif = pp is the stiffness during slip and serif is the maximum elastic
Serif Serif

slip. A larger value of serif leads to a lower stiffness in slip. The elastic-plastic slip

formulation for the shear behavior of the frictional surface takes the form

d,=ksds+ f.1S dp
Serif

d, = pdp

if r < r erif = JiP

if , ~ 'erif

(3.29)

The elastic-plastic frictional model is illustrated in Figure 3.8.

Frictional shear
stress,

'erif = pp - - --.-------

Serif Relative tangential slip S

Figure 3.8 Elastic-sticky friction model when dp =0

3.5 Computational Implementation

Special efforts have been made to calibrate the parameters for the failure criterion of

geomaterial. In view of the faet that eomputational modelling is performed using a

commercially available computational code, the chapter also discusses the

representation of the failure criterion in term of parameters used in the computational

scheme.

50



3.5.1 Calibrating parameters for the hyperbolic form of Drucker-Prager

failure criterion

The Mohr-Coulomb failure criterion assumes that failure is independent of the value

of the intermediate principal stress (j2' The Drucker-Prager model, however,

accounts for the influence of (j2' The failure of typical geomaterials generally

inc1udes sorne dependency on the intermediate principal stress (j2 • Implementation of

Drucker-Prager model as a yield criterion for geomaterial will be more appropriate in

situations involving plane strain behavior. The geomaterial strength parameters le

and It' however, cannot be used directly to define the hyperbolic form of extended

Drucker-Prager failure criterion as implemented in ABAQUS. They need to be

related to parameters in Mohr-Coulomb failure criterion. This in tum can be related to

parameters in Drucker-Prager failure criterion by a mapping method, where the

strength variables of material le and ft are expressed in terms of parameters in

hyperbolic form of extended Drucker-Prager failure criterion.

The Mohr-Coulomb failure criterion can be rewritten in the form of

(j -(j (j +(j .
(1 3) + (1 3) sm ~ - c cos~ =0

2 2

or in the form

where (jl and (j3 are the major and minor principal stresses.

In (3.31),
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J; = 2c cos t/J
e 1- sin t/J

J; = 2c cos t/J
t 1+ sin t/J

and the results can also be expressed in the form

(3.32)

(3.33)

The modified equivalent of the Mohr-Coulomb failure criterion is illustrated in Figure

3.9.

le : Compressive strength

ft : Tensile strength

t/J : Friction angle in material

Normal stress
(Tensile)

Shear stress
r

ft = 2ccosIjJ
l+sinljJ

f. = 2ccosIjJ
e 1- sinljJ

Normal stress a
(Compressive)

Figure 3.9 Modified form of Mohr-Coulomb criterion

The Mohr-Coulomb failure criterion has an irregular hexagonal three-dimensional

shape in the principal stress space. As such, it has corners. In application of the theory

to computation, these corner regions can contribute to numerical problems. The

Drucker-Prager failure criterion is a conical surface in the principal stress space. It
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can be viewed as a smooth approximation to Mohr-Coulomb failure criterion to avoid

such difficulties (Figure 3.10). The Drucker-Prager failure criterion can be made to

match the Mohr-Coulomb failure criterion by adjusting the size of circle. For

example, ifthe Drucker-Prager failure criterion is made to agree with the outer apices
-

of the Mohr-Coulomb hexagon, the constant a and k can be related to c and fjJ

according to

2sin fjJ
a =--=,-----'--

.fi(3 - sin fjJ)

k= 6ccosfjJ
.fi(3 - sinfjJ)

(3.34)

If the Drucker-Prager failure criterion is to match the inner apices of the Mohr­

Coulomb hexagon, the constants of the two criteria can be related by the fol1owing

equations as

2sin fjJ
a =-=:---'---

.fi(3 + sin fjJ)

k = 6ccosfjJ
.fi(3 + sin fjJ)

Mohr-Coulomb criterion ---+-+1

(3.35)

Drucker-Prager criterion

Figure 3.10 Shape of the yield criteria on the 1r plane

53



Under plane strain conditions, the two criteria give identical limit load for any

region of a perfectly plastic material (see e.g. Chen, 1981). This is based on the

assumption of perfect plasticity, where there are no elastic deformations at the

collapse of materiaL The total-strain increment component dEij after yielding will be

fully identical to the plastic-strain increment dE; , which is

dE!:' = dÀ al = dÀ(a8 .. + p;1 s .. )
l) a.. l) 2 J l)

crl) 2

(3.36)

where sij is the stress deviator tensor. Assuming plane strain in y-direction or 2-

direction and using plane strain condition, i.e. dE~ =dEx/ =dEy/ =0, it follows

that

Syy =-2ap;

and

Il =+(0-xx + crzz ) - 3ajT; =t(crl + cr3 ) - 3ajT;

J _ [(o-xx -crzz )/2]2 +t"x/ =[(cri -cr3 )/2]2
2 - 1_ 3a 2 1_ 3a 2

The Drucker-Prager failure criterion can be rewritten as

(3.37)

(3.38)

(3.39)

which is identical with Mohr-Coulomb failure criterion in equation (3.30), ifwe set

-
k

ccosrjJ = ..J
1-3a2

.,{, 3a
SIll'f' = ..J

1-3a2
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-
Solving for k and a , we obtain

sinqJ
a =----;======

~3(3 + sin 2 qJ)

k= 3ccosqJ

~3(3 + sin 2 qJ)

(3.41)

One possible way to obtain the parameters for the hyperbolic form of extended

Drucker-Prager failure criterion from Mohr-Coulomb failure criterion is to match the

Mohr-Coulomb failure criterion with the asymptotic line of the hyperbolic form. This

line has the same form as that of classical form of Drucker-Prager failure criterion.

Considering (3.14), (3.33) and (3.41), the parameters j3 and d' for the hyperbolic

form ofDrucker-Prager failure criterion are then available through equations

tan j3 = --;=3=s=in=:::::qJ=
~3 + sin 2 qJ

d' _ 3cosqJ

c - ~3 + sin 2 qJ

where

(3.42)

(3.43)

When le and ft are obtained through experiments, then j3 and d' can be calculated

using above results. Bandis and Barton (1983) conducted shear experiments on

dolerite joints. The strength parameters for dolerite determined in these experiments

are le =165 MPa and ft =17.3 MPa. Using (3.42) and (3.43), we obtain j3 =51.80

and d '=24.6MPa.
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3.5.2 Strain energy in material regions

The relative shear between two material regions involves deformation ofmaterial and

relative sliding between material boundaries. The total energy Il is then a

combination of strain energy U in material region and frictional energy dissipation

e in the interface. The stiffness matrix for the material experiencing elasto-plastic

deformation can be found by using the incremental stress-strain relations (3.25),

(3.26) and (3.27). Rewriting them in vector and matrix forms, we have

where

when no plasticity occurs

when yielding occurs

(3.44)

(3.45)

1

1

t

~
1

1

where De is constitutive matrix due to elastic deformation and DP is a constitutive

matrix due to plastic deformation. The elasto-plastic constitutive matrix is

combination oftwo factors, i.e., De and DP. In a displacement formulation involving

small deformation, the rotations do not enter the computation. The degrees of

freedom for a point coincide with its spatial coordinates x, and can be interpolated by

global nodal coordinates x~ =(xi'Yi'zJ

x=N.x. =NTa
1 1

(3.46)

where Ni is the interpolation function from contribution of node i. In (3.46) vector

NT is a matrix of the form

[N. 0 0 N2 0 o ... N n 0

~lNT= ~ NI 0 0 N z o ... 0 N n (3.47)

0 NI 0 0 Nz···O 0 N n
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where n is the number of total nodes, and a is a sequentiallist of the spatial degrees

of freedom of each node defined by

The strain vector E is determined from the spatial coordinate x

E =Lx =LN Ta =Ba

(3.48)

(3.49)

where B =LN T is a matrix relating the strain at one point to coordinates of each

node and L is a combination of partial derivatives arranged in a matrix form, to

determine strain at that point (see e.g. Zienkiewicz and Taylor, 2000)

a
0 0ax

0
a

0-
8y

0 0
a

1

-

L= az (3.50)a a
1

0 -az 8y

t
a

0
a

-az ax
~ 0

a a
- -az 8y

The incremental strain vector can then be expressed in terms of incremental changes

of each node's coordinates

dE =B da + dB a . (3.51)

And the incremental stress can also be expressed in terms of incremental changes of

each node's coordinates

(3.52)

The strain energy bU then is determined by
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The complete form of second variation of strain energy U is

dbV = d f &:T(filV = f d&:T(f ilV + f &:Td(f ilV + f &:T(f dilV
v v v v

= (f8aTdB(f ilV + f8a TBTnepdBailV) + f8aTBTnepBdailV
v v v

+ f&:T(fdilV = 8aT(K D + Kep + KV)daT
v

=8aTKdaT

(3.53)

(3.54)

1

1,
r
1

1

where K is the current stiffness matrix In material reglOns V, which is a

combination of several contributions: (i) K D is a part of the stiffness matrix due to

the non-linear geometry associated with large displacement, which reduces to zero in

the absence of large displacements; (ii) Kep is a part of the stiffness matrix due to

elastic and plastic deformation of the material; (iii) K v is a part of the stiffness term

due to volume change or dilatancy of the materia1. If finite deformations or large

strains are exc1uded, the effect from change of mass volume and geometry can be

neglected, and the global stiffness matrix for the problem involving relative shear

between two material regions is a combination of the contribution from elasto-plastic

deformation in material regions and relative slip and separation in the interface,

which will be discussed in Section 3.5.3.

3.5.3 Finite sliding between defonnable bodies

Another part of comtribution to total energy TI is the frictional dissipatioin e in the

interface. The application of shear forces to a joint results in relative sliding,

seperation or establishment of new contacts between the contacting surfaces. The slip

between surfaces of the joint, or relative shear displacement, is a different concept to

tangential slip between surfaces in contact shown in Figure 3.11. Shear displacement

describes the overall relative movement between joints, while tangent slip between

surfaces in contact refers to the local relative movements between regions in contact,

which are parts of the joint surfaces.
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Shear displacement Tangential slip

Figure 3.11 Concepts of shear displacement and tangent slip

The ABAQUS code adopts a finite sliding formulation to account for separation

and sliding of finite amplitude and arbitrary rotation of the surfaces in contact.

Consider a potential contact node ni with a segment of surface described by node nz'

n3 •••• For a linear segment, the number of nodes is 2, whereas for a quadratic

segment the number ofnodes is 3 as shown in Figure 3.12.

To derive the equations goveming the elements, the coordinates of nodes have

been assigned, as shown in Figure 3.12. Ifwe consider that point x on the segment is

closest to the potential contact point Xl' then the closure h between X and Xl can be

expressed in terms of normal vector n, coordinates X and Xl as

nh =X-Xl

Xl
o
1

1

l
'n = N, (g)x;l:,

O.....x_2 ----<__ ... t 0

x

(3.55)

X
Io

1

1

1 n = N;(g )x j / h

x3 t x4

x

(a). Linear slide line segment (b). Quadratic slide line segment

Figure 3.12 Contact of anode with a segment of the surface
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Since x is on the segment, its position is defined completely by the interpolation

function Ni for the segment, the position g and the position Xi of the nodes ni that

are part of the segment.

(3.56)

where NI = -1 and N z' N 3 ••• are functions of g. For instance, for a linear segment,

N z =t(l-g)

N 3 =t(l+g)

For a quadratic segment,

N z =tg(g-l)

N
3

= 1- gZ

N 4 =tg(g+l)

The tangent t to sliding line at point X follows with

de! dx dx dx
t=-=-/­

ds dg dg

where

dx dNi-=--x.
dg dg 1

(3.57)

(3.58)

(3.59)

(3.60)

The position g of point x is determined from the condition that normal and tangent

must be orthogonal, i.e.,

dN/g)
n· t = N.(g) x.. x. = 0

1 dg 1 J

Linearization of equation (3.61) yields
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(3.62)

where 8s is first variation of the slip. In the direction of contact, n,

In the direction of slip, t,

8s =-N.t ·8x. -ht·8n.
1 1

If the nodes are in contact with segment, then h =0, and

(3.63)

(3.64)

(3.65)

To obtain the initial stress-stiffness terms, the second variations of h and s must be

calculated. They are

(3.66)

/

2
de! d 2x dx

where p =-n'- -
n dg 2 dg

Then the variation of frictional energy dissipation e in the interface can be

expressed as

~ = Jr8s~r
r

(3.67)

where r denotes the interface at two material boundaries. The second variation of e
is obtained by

d~ = Jd r8s ~r +Jr d8s ~r
r r
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By defining surface interaction conditions, such as frictiona1 properties and

potentia1 contact surfaces, ABAQUS then automatically identifies nodes in contact

with surface segments. Slip and dosure between the node and surface segment can

represent the relative slip and separation between surfaces in contact.

3.6 Summary

The failure criterion proposed by Drucker and Prager has the added advantage over

the Mohr-Coulomb failure criterion in that the complete set of principal stresses is

used in its formulation. The Mohr-Coulomb failure criterion, as has been indicated, is

independent of the intermediate principal stress acting on the materia1. The

parameters in the hyperbolic form of extended Drucker-Prager failure criterion,

implemented in computational code ABAQUS, can be re1ated to material strength

parameters le and ft by a mapping method.

In the Coulomb friction model, it is assumed that, when the two planar surfaces

are in contact, no relative motion occurs between them and two surfaces adhere

together before the attainment of a critical frictional stress. The elastic-plastic mode1

takes account of the fact that contacting surfaces interact each other at limited number

of points and that surfaces in contact can exhibit deformation prior to slip.
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Chapter 4

COMPUTATIONAL SIMULATION OF EXP­

ERIMENTAL RESULTS

This chapter describes the adaptation of the ABAQUS finite element code to examine

computationally the shear behavior of a fracture, which experiences both elasto­

plastic material failure and frictional phenomena. Numerical simulations will be

compared with a set of experimental data obtained for the variation of shear stress

with shear displacement conducted by Bandis et al. (1983) on a natural unweathered

dolerite joint of 100 mm length.

4.1 Computational modelling of the dolerite joint

The general arrangement of the shear test conducted on the natural joint of

unweathered dolerite is described in Chapter 2. Because it is difficult to obtain an

identical profile of a natural dolerite joint, the same joint was sheared repeatedly.

Once the peak shear stress was reached, the shear load was released and the joint

sample reassembled. A new test was performed on the same joint at a higher normal

stress. The disadvantage of such testing procedure is that sorne asperities could have

been damaged during shear at lower normal stress and as a result the peak shear stress

under the higher normal stress may also be reduced. The asperity damage can also

introduce sorne difference in the shear stiffness.
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crn

100 mm

Movement

(a). Numerical mode! and boundary conditions (b). Portable shear box

(c). Section view of shear box

1.500

1.000

0.500

0.000 -t.-~-:-+--,---=--,..-+--f-~rr-='::'--'----r-­
o.

-0.500

-1.000

>
Shear

(d). 2D joint profile (after discretization)

(e). Mesh configuration (initially compatible, 1194 elements and 2672 nodes)

Figure 4.1 Computational mode! for simulation
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The joint is treated as a two-dimensional region, which exhibits plane strain behavior

with the assumption that the behavior of the joint is interpreted through the behavior

of a typical profile rather than that of a surface. This is the limitation in the modelling,

which will not be discussed further. The Figure 4.1 shows the dimensions of the two­

dimensional model used in computations. In the actual experiments, the lower part of

the sample is constrained to move horizontally and the upper part is held by wire

ropes. The rotation is not strictly controlled during the motion of upper part of the

joint. The center of the rotation in the system is unknown. For a roughly planar joint

similar to that used by Bandis et al. (1983), the effect from rotation is considered to

be negligible. The upper and lower sections of the sample are cast in the shear box by

concrete moulding material. The sample is assumed to be fully bonded to the

moulding material. The loading, which induces shear, is applied on lower box

through a system of jacks as shown in Figure 4.1(c). The line of application of

horizontal force is approximatelY at the shear plane so that no moment is considered.

A normal load is applied at the center of the upper box, which transmits this load

directly to the joint surface.

To simulate the actual conditions of the experiments, constant stress is applied on

the upper part of the model as shown in Figure 4.1 (a). Two rigid plates are fully

bonded on each side of upper part to simulate the fully bonded condition between the

sample and the moulding material. Slip and separation are not allowed between the

rigid plate and upper part of the sample. For the purpose of computational modelling,

it is assumed that there is no rotation in two halves of the sample. Rotation of the

whole upper part can be restrained on the rigid plates bonded on the segment of the

upper part of the sample. The lower part is subjected to movement in the horizontal

direction. Two rigid plates are also bonded on each side of the lower segment. In

modelling the joint, the actual plane profile of the joint as determined from surface

profiling is considered. It could be argued that infinite such representations are

possible, depending on the accuracy of the measurement technique and location of the

section considered. There are, however, certain constrainments that can be imposed as

a result of the internaI fabric of the rock and the necessity to include a sufficient

number of particles on the scale of the grain of the rock to simulate a continuum point
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in the computational modelling. The grain size gives the smallest dimension of the

surface discretization. The actual average grain size for dolerite varies between

0.05 mm to 1mm (Wahlstrom, 1947). The value of 1mmroughly gives the smallest

dimenstion of surface discretization. The accurate description of material at such a

scale need take account of the microstructure of the materia1. The microstructure of

rock mass is then disregarded in the computatinal simulation. Constraints are also

imposed by the element size of the finite element discretization required for

computational accuracy and efficiency. Within these constraints, the irregular surface

profile [Figure 4.1(d)] as measured in an experiment is accurately duplicated in the

discretization used in the finite element modelling as shown in Figure 4.1(e). The

finite element discretization of the region close to the joint surface can be approached

at various levels. This is largely influenced by the capacity of the computational

facilities. The smallest element dimension near the joint is around 0.8 mm.

Computational trials indicate that a further reduction in the size of an element close to

the joint surface does not result in a marked change in numerical results. Modified 6­

node triangular element, labeled as CPE6M and implemented in ABAQUS

computational code, is used. In this formulation, stress is compatible between two

adjacent elements.

The constitutive euqation used is the hyperbolic form of Drucker-Prager failure

criterion discussed in Chapter 3. Material strength parameters le and J; and Young' s

modulus E are given in the experimental data. The dilation angle and friction angle

for the material are assumed to have a same value of fJ , which can be derived from

le and J; according to Chapter 3 [see equations (3.42) and (3.43)]. Poisson's ratio is

chosen as 0.23, which is assumed to be a approximate value for dolerite type rock

(Jaeger and Cook, 1976). The complete list ofmaterial properties is as follows

le =159.0 MPa;J; =17.3MPa;j3=51.8°;E=78GPa;v=0.23. (4.1)

With brittle geomaterials, the strains prior to failure are generally small; as such the

large strain option is not necessary for the calculation of the stiffness matrix. To

assure the numerical accuracy, a double precision solver is used at all times.
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Complete computational simulation requires additional surface interaction modelling.

Finite sliding formulation in computational code ABAQUS is adopted. Details of the

finite sliding formulation were presented in Chapter 3. The surface interaction model

is the Coulomb frictional model considering the elastic contact between surface

asperities. Details are presented in Chapter 3. The parameters needed will include the

coefficient of friction Ji and the amount of maximum elastic slip r cril' The friction

angle provided in experiments is approximately fjJ = 34 0 or Ji = 0.6745. In literature,

however, the friction coefficient for a planar dolerite surface is quite variable; i.e.

0.64 to 0.90. The actual variation of shear stress due to friction is expected to fall into

a zone bounded by two limited cases where Ji = 0.64 and Ji = 0.90. No relevant

information about the maximum elastic slip is available in the literature, as such, it

needs to be back-calculated. The computational simulations are conducted on three

cases involving changes in the normal stress. The normal stresses are assigned the

values 0.52 MPa,1.05 MPaand 2.10 MPa.

4.2 Sorne issues conceming computational simulation

The ability of the sample to rotate can influence the stress distribution normal to the

shear plane. In the experiments conducted by Bandis et al. (1983), rotation is not

strictly controlled. It is reported that rotation has sorne influence on the shear

behavior for a very rough joint; for a relatively planar joint, influence of a rotation is

negligible. For the convenience of computational modelling and throughout this

thesis, the occurrence of a rotation is not considered.

A further aspect of the computational modelling involves the assessment of the

mesh sensitivity (within restraints discussed in Section 4.1) on the compuational

results. Figure 4.2 shows the computational results for shear behavior derived from

two mesh configurations conducted at normal stress 2.10 MPa. The finer mesh

configuration includes double numbers of elements than the rougher one. No clear

difference of shear behavior and dilatancy is observed for two cases. This proves the

computational reliability.
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Mesh 1: 1194
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2672 nodes

Mesh 2: 2074
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4452 nodes
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Figure 4.2 Shear behavior of the joint for two mesh discretizations
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One unknown parameter is the maximum elastic slip r crit, which needs to be

back-calculated through correlation with the experimental results. The effect of rcrit

can be examined by comparison of the shear behavior obtained by using different

estimates of rcrit. As indicated in Figure 4.3, different values of rcrit do not affect

peak shear stress, but results in twice different estimates of the shear stiffness.
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Figure 4.3 Effect from maximum e1astic slip r crit
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Finally, the remaining uncertainty in computational modelling is associated with

the coefficient of friction Ji. Although it is reported that Ji = 0.6745, it can vary

depending upon the method of measurement. In literature, the friction coefficient for

a planar dolerite surface is a variable, ranging from 0.64 to 0.90. The actual

coefficient of friction might lie within this variation. Figure 4.4(a) and Figure 4.4(b)

show the variation of shear behavior with the change of the coefficient of friction, for

two cases where rcrit = 0.15 and rcrit = 0.30, respectively.
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Figure 4.4 Variation of shear stress with the

coefficient of friction

70



4.3 Comparison of computational results and experimental data

Both variation of maximum elastic slip rcril and the coefficient of friction have sorne

influence on the computational simulation of experimental data. When the coefficient

of friction at 0.6745 cited in experimental data and additional estimated value

rcrit =0.30 is used, it is observed (Figure 4.5) that general trend of the computational

estimates is similar to the experimental data. The peak shear stresses correlate well

with results at lower normal stress values of 1.05 MPa and 0.53 MPa. The shear

stiffness is slightly overestimated at the higher normal stress of 2.10 MPa, but

slightly underestimated for lower stresses of 1.05 MPa and 0.52 MPa .

-B-

}computational re,ulls when y"" ~ 0.30 } Experimentai data
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Figure 4.5 Computational simulation of experimental data when

rcril = 0.30
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When Ycrit is changed into 0.15, a better correlation is obtained at the lower

normal stress values of 1.05 MPa and 0.52 MPa as shown in Figure 4.6. The peak

shear stress is overestimated for the high normal stress of 2.10 MPa. This can be

attributed to the repeated shear conducted on the same joint (discussed in Section

4.1), where sorne of the asperities are susceptible to damage at 10wer normal stresses

and during peak shear stress. As a result, compuational results for shear stress and

shear stiffness at higher normal stress are higher than those obtained in experiments.
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Figure 4.6 Computationa1 simulation of experimental data when

Ycrit =0.15
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The computational modelling is also conducted to account for cases involving

material plasticity and in the absence of material plasticity. Figure 4.7 shows the

results of the two computations. These results indicate that, at least for the

unweathered dolerite joint examined here, material plasticity has no significant

influence on the shear behavior of the joint. To obtain a better understanding of the

shearing process, the Figure 4.11 shows the evolution of plastic zones during shear at

normal stress of 2.10MPa with surface interaction properties, Ji = 0.6745 and

rcrit =0.15. On1y slight material plasticity is observed. Figure 4.9 and Figure 4.1 0

give the relative motion between two contacting regions, with corresponding shear

stress and dilatancy. The incompatible element accounts for the discontinuous

displacement at joint.
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Figure 4.7 Variation of shear stress in the

presence and absence of material plasticity
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4.4 Summary

In the computational simulation conducted here, an elastic-plastic model has been

used to examine the modelling of the surface interaction between joint surfaces. To

obtain an accurate correlation with experimental data, reliable information is

necessary, conceming the coefficient of friction Il and the amount of maximum

elastic slip rcri! incorporated in the model. The coefficient of friction influences the

peak shear stress and the amount of maximum e1astic slip influences the shear

stiffness ofjoint.

This chapter has also examined the influence of material plasticity on the shear

behavior. The results indicate that, at least for the unweathered dolerite joint

examined here, material plasticity has no significant influence on the shear behavior

of the joint. This aspect needs further investigations if the computational scheme is

applicable to model joints and interfaces encountered in comparatively softer

geological media such as sandstone, shale and other sedimentary rocks.
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Chapter 5

SHEAR BEHAVIOUR OF DOLERITE JOINTS

In this chapter, we examine in sorne detail the shear behavior of rock joints for

different cases involving the joint profile. The existence of goveming asperity on the

shear behavior is discussed first, and the shear responses of both irregular and regular

joints are compared. The analysis is then extended to the consideration of shear

behavior of an idealised triangular joint with steep asperity angles. Other factors,

including influence of the boundary contributions, loading cycles, initial separation of

joint are also examined. For the purposes of the computational modelling, attention is

primarily restricted to the modelling of dolerite rock discussed previously in Chapter

4.

5.1 The existence of goveming asperities

Experimental evidence shows that rock joint exhibits different shear behavior at

different scales. The reasons for this phenomenon are diverse and sometimes are not

completely understood. The computational modelling discussed here is a perliminary

attempt to shed sorne light on how the scale of joint influences its mechanical

behavior, we compare the shear behavior of three joint sections at lengths, 100 mm,

50 mm and 25 mm. The irregular surface profile of 100 mm length has been

examined in detail in Chapter 4. The model of the dolerite joint with this irregular

profile was presented in Chapter 4 (Figure 4.1). The application of shear results in the

relative movement of the lower section of the test specimen. The maximum relative
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shear displacement is extended to 2.5 mm, which overrides three elements closest to

joint surface. For the purpose of comparison, shear is conducted in both directions.

No rotation is a110wed in the upper section of the sample during shear. The joint is

first subjected to a single cycle of shear commencing from unstressed state. During

the application of the shear, the joint is subjected to a constant normal stress of either

3 MPa or Il MPa. The material properties for the do1erite required in the

computational mode11ing are given in equation (4.1). As shown in Figure 5.1, the

other two profiles are two subsets of this 100 mm profile.

In a11 three simulations, the coefficient of friction between the joint surfaces is

specified at the value JI =0.6745, which is given by Barton and Bandis (1983). The

maximum elastic slip is back-calculated as rcrit =0.15 (see Chapter 4). When

considering three joint sections, initia11y, compatible contacts are maintained over the

entire lengths of the profiles.

We can deduce that, when the specimen is not a110wed to rotate, contact occurs

only at a limited number of points during shear of an irregular profile. In a11 three

computational models, contacting during shear, either in the "forward" or the

"reverse" direction, occurs only at one asperity, which is indicated in Figure 5.1 and

Figure 5.2 as "governing asperity". The "governing asperity" usua11y has the largest

asperity slope. The mechanical behavior of interface of other surface sections

therefore has negligible effect on the shear behavior of the whole rock joint.

Dilatancy appears to fo11ow along the surface geometry of this "governing asperity"

during shear for different lengths. The shear stress-relative shear displacement and

dilatancy-relative shear displacement relationships do not vary significantly in the

three different cases, either in "forward" or "reverse" direction. The dominant

asperity therefore governs the shear behavior of the entire profile. Therefore, when

rotation is exc1uded, the shear behavior of smaller section of joint surface inc1uding

this "governing asperity" then appears to give a representative response applicable to

larger sections of the profile.
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5.2 Shear behavior ofjoints with differing surface profiles

In the second model we present the results of computational modelling conducted on

joints with three types of surface profiles. Attention, however, is restricted to the two­

dimensional representation of a joint. The first has a natural irregular profile

discussed in Chapter 4; the second is a simplification of the joint, which disregards

the small roughness, but has the same peak asperity height; the third is a regular

profile, which has a different asperity height, but roughly has the same dilatancy

angle. The consideration of regular joint is based on Patton's assumption, which

states that an irregular joint can be idealized into a regular one exhibiting the same

peak response of shear stress if both joints exhibit the same dilatancy angle. The

regular joint is also referred as "Patton's joint" in this section. Shear on the irregular

joint under small normal stress discussed in Chapter 4 roughly exhibited a dilatancy

angle of 20°. This dilatancy angle has been chosen as the asperity angle for the

regular joint. Aiso this value is found to be roughly equal to the asperity angle of the

"governing asperity" discussed in section 5.1. The configurations of three joint

profiles are presented in Figure 5.3(c). The single cycle shear tests are conducted

under normal stresses of 3 MPa and Il MPa, which simulates an in situ stress

corresponding to a depth of about 100 m and 350 m depth, respectively. The objective

of the study is to examine the influences of factors such as the joint profile, normal

stress, the dilatancy angle and material plasticity on the performance ofthe joint.

The computational model for the irregular joint is identical to that discussed in

Chapter 4. For the purpose of comparison, results are also presented for two other

joint profiles, name1y, the simplified joint and Patton's joint model. The surface

interaction properties including friction behavior and elastic slip amount are assigned

the same value as those discussed in section 5.1. When considering three joint

sections, initially, compatible contacts are maintained over the entire profile. The

finite element discretizations are shown in Figure 5.4.
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Figure 5.3 Shearing of a dolerite joint with different surface profiles
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(a) Irregular joint (initially compatible mesh, 1194 elements and 2673 nodes)

-....l
o

§

(b) Simplifiedjoint (initially compatible mesh, 726 elements and 1600 nodes)

-....l
o

§

100 mm

(c) Patton's joint (initially compatible mesh, 1026 elements and 2238 nodes)

Figure 5.4 Finite element discretizations of a joint with three profiles
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When comparing the shear responses of irregular and regular joints, the

computations indicate that the omission of the local profile of the joint or the joint

roughness greatly reduces the dilatancy and peak shear stress during shear. In

comparison with the irregular joint, the shear behavior of the simplified joint largely

underestimates both dilatancy and peak shear stress. As shown in Figure 5.5(a) and

Figure 5.6(a), these discrepancies are noticeable at normal stress leve1s of 3 MPa . At

the same stress level, the energy dissipation due to plastic flow in parent material

(Figure 5.7) appears to be two orders of magnitude smaller than the frictional energy

dissipation (Figure 5.8). The material region adjacent to the joint surfaces experiences

the largest plastic energy dissipation during loading process; when contacting

surfaces experience separation and slip, with respect to each other, shear stress is

almost constant and plastic deformations do not increase significantly; during the

unloading process, asperities generally response elastically and no increase in plastic

energy dissipation is observed. The irregular joint experiences a larger plastic energy

dissipation under normal stress Il MPa (Figure 5.7 and Figure 5.9). The omission of

the local profile or roughness significantly underestimates the plastic energy

dissipation during shear. The plastic energy dissipation in the material region of the

simplified joint, which neglects contribution from small asperities, is much smaller

(Figure 5.7 and Figure 5.10). In presence of the frictional forces, the frictional

dissipation occurs when two contacting surfaces move respect to each other.

Disregarding roughness does not neglect noticeable information of frictional

dissipation. The frictional dissipation for these two joints exhibits similar trends at

both normal stress levels of 3MPa and Il MPa (Figure 5.8).
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Figure 5.5 Shear stress vs. relative shear displacement

during shear on irregular and simplified joints
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The variation of di1atancy during shear of "Patton's joint", a1so, follows a

response close to that obtained for the irregu1ar joint at nonna1 stress 3 MPa (Figure

5.12(a). A1so partially due to this factor, the regu1ar and irregu1ar joints exhibit

simi1arity of response in the shear stress [Figure 5.11(a)]. This justifies the

assumption that, in addition to the peak shear stress, which shou1d be equa1 according

to Patton's mode1, the variation of shear stress with shear disp1acement can a1so be

represented by a regu1ar joint if the irregu1ar joint is idea1ized into a 'saw-tooth'

triangu1ar joint by an appropriate method. The results for the higher nonna1 stress of

Il MPa follows a similar pattern. By observations of the surface profile of the

irregu1ar joint, it is found that the slope of the "governing asperity" discussed in 1ast

section has a value close to the asperity angle in Patton's joint model. This points to a

way to predict the peak shear stress of a natura1 irregu1ar joint by identifying the

"governing asperity" and its "slope". As shown in Figure 5.13, the regu1ar joint

mode1, however, neg1ects much of the plastic energy dissipation during shear; but it

does not exhibit a significant difference in frictiona1 dissipation when compared with

results for the irregu1ar joint, shown in Figure 5.14. In comparison to the simp1ified

joint, this difference is, however, still appreciab1e. This might be due to the fact that

the contacting area between two simp1ified surfaces is more close to that during shear

of the irregu1ar joint and that it is the nonna1 stress and contacting area that

detennines the frictiona1 dissipation during shear.

Roughness therefore, is observed to have greater influence on the plastic energy

dissipation whereas the surface geometry of the "governing asperity" is more re1ated

to di1atancy. The slope of this "governing asperity" therefore detennines the peak

shear stress.
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Figure 5.11 Shear stress vs. relative shear displacement

during relative shear of irregular and regular joints

94



--- Irregular joint

-.- Patton' s joint

0.80.60.4

Forward

0.2

0:15 -j..... . ;/}" I··················································· 1

-0.8 ·0.6 -0.4

, ••••• mmmmmm ••••••••• •••••.0:35

i Reverse
1 0,3

I

l.

1

... ··································0,25+··············· :JJI' 1

0.2

1

Relative shear displacement (mm)

-a- Irregular joint

--tr- Patton's joint

(a). an =3 MPa

02 OA O~ O~

Forward

0.2

0,25
Reverse

: ·······························G,G5-··J ················ :

Relative shear displacement (mm)

(b). an = 11 MPa

Figure 5.12 Dilatancy vs. relative shear displacement

during relative shear of irregular and regular joints

95



Irregular joint

Patton's joint

... . mmmi

1

1

1

2

1.5

......~

-1 o 0.2 0.4 0.6 0.8

Relative shear displacement (mm)

(a). (Jn =3 MPa

-B- Irregular joint

-tr- Patton's joint

Reverse Forward

-1

25

o 0.2 0.4 0.6 0.8

Relative shear displacement (mm)

(b). (Jn =11 MPa

Figure 5.13 Plastic energy dissipation in material vs. relative shear

displacement during relative shear of regular and irregular joints

96



--- Irregular joint

-.- Patton's joint

ForwardReverse

-0.8 -0.6 -0.4 -0.2

100

0.2 0.4 0.6 0.8

Relative shear displacement (mm)

(a). O'n =3 MPa
Irregular joint

Patton's joint

.. 1200 .j .

0.80.60.40.2

200 i··············· "'''' /- .

1600

1400

600

400

800

................................. ·······Reverse 2000 .. ········Forward

1

[

Relative shear displacement (mm)

(b). O'n =11 MPa

Figure 5.14 Frictional energy dissipation vs. relative shear

displacement during relative shear of regular and irregular joints

97



Plastic
energy
dissipation
in parent
material
( 1O-3J)

7 _ofr",.....-.<______.-&---c______.>i 7

4

o
-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

\0
00

Relative shear displacement (mm)

c=::=::::>

o 1 2 3

6 5 4

<:;:===J

8

~>

9

Figure 5.15 Evolution of plastic zones during relative shear of the regular joint under constant nonnal stress Il MPa



5.3 Shear behavior of a joint with an idealized steep asperity profile

The objective of this part of the modelling is to determine computationally the

influence of asperity angle on the shear behavior, notably the dilatancy and material

plastic energy dissipation in the joint. The modelling of such an idealized joint

containing regular steep asperity angle is quite arbitrary. The demarcation point

between what constitutes a sharp asperity and what constitutes a shallow asperity is

not known a priori. The behavior is influenced by other factors such as frictional

behavior at the joint, joint stiffness and plasticity of material. The objective here is to

present sorne computational results of influences of the asperity angle on the shear

response. The physical configuration of the joint surface comprising of sharp

asperities is shown in Figure 5.16. Three inclinations of sharp asperities are

considered. These include asperity root lengths of 10 mm, 20 mm and 40 mm. The

height of the asperities is kept constant at 15 mm and the corresponding asperity

angles are approximately 80°, 71" and 56°, respectively. The finite element mesh

configuration of conforming surfaces for an asperity angle of 80° is shown in Figure

5.17. The friction between asperity surfaces is kept constant at 0.6745 and the

interface stiffness is considered to be a variable. Initial contacts are restricted to the

asperities only. The normal stress acting on the idealizedjoint is also a variable in the

problem; The results are, however, presented for normal stress of 3 MPa, 7 MPa ,

and Il MPa. The normal stiffness at the contacting surface is assigned values of 0,

13.33 MPaimm and 133.33 MPaimm. The studies by Nguyen and Selvadurai (1998)

have utilized the contact stiffness of 13.33 MPaimm to model the contact normal

stiffness.

~I

1: Asperity root length

i : Asperity angle determined by 1

160 mm

Figure 5.16 Joint profile with sharp asperities
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160 mm

Figure 5.17 Finite element modelling of joint profile with steep

asperities

Figure 5.18 and Figure 5.19 shows the influence of asperity angle on the shear

response evaluated at normal stress of 7MPa. In Figure 5.18, plastic energy

dissipation is presented. When asperity angles are steep, shear deformation does not

induce large relative movement between the contacting surfaces. In this case,

frictional energy dissipation is much smaller than the plastic energy dissipation.

Especially when asperity is at 80° , the frictional energy dissipation disappears shown

in Figure 5.18(b). The relative shear movement observed are therefore mainly due to

elastic and plastic deformation in asperities. The plastic energy dissipation increases

with asperity root length shown in Figure 5.18(a). The increase in asperity volume

allows more plastic deformation. Longer asperity root brings higher shear resistance

shown in Figure 5.l9(b). Plasticity deformation increases the element volume, which

affects the di1atancy. Therefore, as observed in Figure 5.19(a), higher plasticity

dissipation brings higher value of dilatancy during shear. Greater value of l also

leads to higher dilatancy angle. This might be due to the decreases in the

deformability of the asperity, which reduces the amount of deviations of dilatancy

angle from the asperity angle and therefore increases in the dilatancy angle.
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Figure 5.18 Energy dissipation during relative shear of

joints with different steep asperity angles
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Figure 5.19 Shear behavior ofjoints with
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Figures 5.20 to Figure 5.21 illustrates the shear response of a joint with asperity

angle of 80 0 for different levels of normal stress. Higher normal stresses lead to

higher shear resistance and greater normal deformation. The contribution to the

plastic energy dissipation is a combination of two factors, i.e., the shear resistance

ability and stress state. Consequently, an increase in the normal stress does not

necessarily translate to an increase in the plastic energy dissipation during shear.

Figure 5.20 shows that, increasing in normal stress from 3MPa to 7 MPa induces a

greater plastic energy dissipation; further increase in normal stress from 7 MPa to

11 MPa, increases the shear resistance [Figure 5.21(b)], but it reduces the plastic

energy dissipation. The variation of dilatancy follows a similar pattern. Due to the

associated flow rule used, a greater plastic deformation 1eads to an increase in the

element volume, which contribute to dilatancy. Figure 5.21(a) shows that, a stress

increase from 3MPa to 7 MPa leads to greater dilatancy, whereas a further increase

from 7 MPa to Il MPa leads to a reduction in dilatancy.

----+E- an = 3 MPa

an =7MPa

-e- an = 11 MPa

Reverse

Forward

-0.3 -0.2 -0.1 0.1 0.2 0.3

Relative shear displacement (mm)

Figure 5.20 Plastic energy dissipation in material during shear at

different values of normal stresses
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an =7 MPa

-e- an =11 MPa

0.3 04
.................... ..1

0.20.1

Forward0.14

0.12

Reverse

-0.2 -0.1

................. ·····························0·;02···

-0.3

Relative shear displacement (mm)

(a). Variation of dilatancy

Relative shear displacement

(b). Variation of shear stress

Figure 5.21 Shear behavior at different values

of normal stress
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Figures 5.22 to 5.24 illustrate the shear response of joints with steepest asperity

angle 80 0 evaluted for initial normal stress of 7 MPa and variable normal stiffness.

In these simulations, shearing of the joints does not induce relative movement

between contacting surfaces. The frictional dissipation disappears in the absence of

slip between contacting surfaces. In Figure 5.22, the plastic energy dissipation is

presented. The difference in plastic energy dissipation in the material, during shear

conducted under different stiffness condition, is small. The noticeable reduction in

plastic energy dissipation at presence of normal stiffness and in latter shear cycles is

due to the increase in the shear resistance. Figure 5.23 illustrates the evolution of

plastic zones during shear, under an initial normal stress of 7 MPa and constant

normal stiffness 133.3 MPaimm. Initially, only relative small plastic zones develop in

the parent material; the plastic zones, however, extend during the later stages of the

shear cycle. At the end of the shear cycle examined, a1most aIl the asperities fail by a

clear plastic zone extending through its root. Although there is no relative movement

between contacting surfaces, the largest dilatancy reaches up to about a.14 mm [see

Figure 5.24(a)]. Dilatancy angle is, however, only around at 13.00

, which greatly

deviates the asperity angle. The appearance of dilatancy at the absence of slip

between contacting surfaces indicates the possibility for evolution of hydraulic

conductivity only in parent material. The results shown in Figure 5.24(b) also indicate

that, although a slight increase in the shear resistance is noticeable due to the presence

of the shear stiffness, the shear stress-relative shear displacement behavior is

insensitive to the change of the normal stiffness.
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0'n : Constant normal stress

0'0 : Initial normal stress

-+- O'n =7 MPa, k =0 MPaimm

_ 0'0 =7 MPa, k =13.33 MPaimm

-+- 0'0 = 7 MPa, k = 133.3 MPaimm

0.30.20.1

250

··150

-0.1-0.2-0.3

...... ··········································"""' ~ c100 + ~~""' .,,, , '.,..,....... .

-q.4
1

Relative shear displacement (mm)

Figure 5.22 Plastic energy dissipation in material during shear

of joint with steep asperity angle of 80° at different normal

stiffness
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Figure 5.23 Evolution of plastic zones during relative shear in the absence of slip ( under initial stress 7 MPa

and constant nonnal stiffness 133.33 MPa/mm)
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(j'a =7 MPa, k =13.33 MPaimm
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(a). Variation of dilatancy
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Relative shear displacement (mm)

(b). Variation ofshear stress

Figure 5.24 Shear behavior ofjoint with steep asperity

angle of 80 0 at different normal stiffness
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5.4 Shear behavior of an irregular joint under constant normal stress and

constant normal stiffness

In order -to examine the influence of the boundary condition of normal stress or

normal stiffness on shear behavior; another rougher irregular dolerite joint, modelled

under constant normal stress and constant normal stiffness, is subjected to a single

cycle of shear. The natural profile used at 300 mm length is a left section of an

irregular profile at 1000 mm length presented by Chryssanthakis and Barton (1990).

The profile with distorted vertical scale is shown in Figure 5.25(a). The finite element

mesh on an undistorted scale is shown in Figure 5.25(b). The joint is subject to initial

normal stresses of Il MPa and 20 MPa. Normal stiffness is maintained at

13.33 MPa/mm during shear under constant normal stiffness.
Forward direction

>
Reverse direction

<

(a). 2D joint profile (after discretization)

......
o
o

§

300 mm

(b). Mesh configuration (initially compatible, 690 elements and 1594 nodes)

Figure 5.25 Shear of an irregular joint at 300 mm length
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The presence of normal stiffness k causes a greater suppression of dilatancy

(Figure 5.27) and induees higher stress normal to joint surface as relative shear takes

place. Due to this, greater shear resistance is observed in Figure 5.26. Variation of

frictional energy dissipation with normal stiffness fol1ows a similar pattern (Figure

5.28). Computational modelling of shear on joints with steep asperity angle indicates

that reduced plastic energy dissipation will be obtained due to increase in normal

stiffness. Shearing of an irregular joint, however, gives a positive relationship

between plastic energy dissipation and normal stiffness. Contacting between irregular

surfaces only occurs at limited regions. Increasing in normal stress resulting from

presence of normal stiffness significantly changes the stress states of these contacting

regions and therefore, as shown in Figure 5.29, increases the plastic energy

dissipation in materia1. The differences can reach up to five times at some

displacement between the cases under constant normal stress and under constant

normal stiffness. Figure 5.30 shows the evolution ofplastic zones at a higher constant

normal stress of 20 MPa. For purpose of comparison, Figure 5.31 illustrates the

evolution of plastic zones under constant normal stiffness 13.33MPa and at an initial

normal stress of 20 MPa. Although plastic energy dissipation in the material has

different values for two cases, it seems that the plasticity occurs at similar locations

and exhibits a similar pattern. The reason for this might be that zones of plastic flow

are restricted to the contacting regions and the regions in contact are mainly

determined by the geometry of surfaces; the absolute value of plastic energy

dissipation is, however, more dependent on the stress states surrounding contacting

reglOns.
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(Jn : Constant normal stress

(Jo : Initial normal stress

---- (Jn = Il MPa, k = aMPaimm

-t3- (Jo =Il MPa, k =13.33 MPaimm

--.- (Jn =20 MPa, k =aMPaimm
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·40+ 1
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.............. ! "".-=... ... ··30 +... .

Relative shear displacement (mm)

Figure 5.26 Shear stress vs. relative shear displacement during a

single cycle of shear under constant normal stress and constant normal

stiffness
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Figure 5.27 Dilatancy vs. relative shear displacement during a single

cycle of shear under constant normal stress and constant normal stiffness
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(50 : Initial normal stress
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Figure 5.28 Frictional energy dissipation vs. relative shear

displacement during a single cycle of shear under constant normal

stress and constant normal stiffness
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an: Constant normal stress

0'0 : Initial normal stress

.........- an =Il MPa, k =0 MPaimm ....- an =20 MPa, k =0 MPaimm

-e- 0'0 =11 MPa, k =13.33 MPaimm -tr- 0'0 =20 MPa, k =13.33 MPaimm
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Figure 5.29 Energy dissipation due to plastic flow vs. relative

shear displacement during a single cycle of shear under constant

normal stress and constant normal stiffness
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Figure 5.30 Evolution of plastic zones during a single cycle of relative shear conducted under constant normal stress 20 MPa
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Figure 5.31 Evolution of plastic zones during a single cycle of relative shear conducted under initial

normal stress 20 MPa and constant normal stiffness 13.33MPa/mm.



5.5 Variation of dilatancy during 5-cycle-shear

In a plastic material, the history of loading can influence the shear behavior. In order

to investigate the influence of such an effect, a joint with an irregular profile of

300 mm length, which was presented, in the previous section, is sheared up to 5

cycles. Initial normal stress Il MPa is applied to observe the variation of dilatancy in

different cases. Figure 5.32 shows the variation of dilatancy with shear displacement

during shear under constant normal stress of Il MPa and Figure 5.33 shows the

variation of dilatancy under initial stress Il MPa and constant normal stiffness

13.33 MPaimm. For purpose of comparison, the variation of di1atancy in the absence

ofp1asticity is also presented in Figure 5.34. The peak: dilatancy in different cycles is

also presented in each Figure.

In both cases, in presence of plasticity, dilatancy increases while dilatancy angle

decreases with increase in the number of shear cycles. The presence of normal

stiffness enhances the development of irreversible dilatancy. In the absence of

plasticity, however, the dilatancy remains independent of the number of loading

reversaI cycles. This indicates that the change of dilatancy during load cycling is

directly related to plastic deformation of the material regions. Due to the associated

flow rule adopted, material volume increases and this results in an increase in the

dilatancy with increasing number of the shear cycles; material plastic deformation

also increases the deformability of the contacting asperities, which reduces the

dilatancy angle in later cycles. Experimental evidence (Wibowo et a1., 1992),

however, indicates a decrease in both dilatancy and dilatancy angle with increasing

number of shear cycles. In actual experiments, asperities are damaged during shear

and can further be crushed to create fragmented gouge material residing at the joint

locations. In numerical modelling, however, continuum analysis makes no allowance

for creation of gouge and disintegration of asperities. Asperity failure in forro of

plastic flow increases the element volume, which increases the dilatancy during shear

cycling.
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Figure 5.32 Variation of dilatancy during 5 cycles of relative

shear conducted at a constant normal stress an =Il MPa and

zero normal stiffness
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Figure 5.33 Variation of dilatancy during 5 cycles of relative

shear conducted at an initial normal stress a 0 =Il MPa and

constant normal stiffness k =13.33 MPa/mm
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Figure 5.34 Variation of dilatancy during 5 cycles of relative

shear conducted under a constant normal stress an =Il MPa

and zero normal stiffness in the absence of plasticity

5.6 Shear behavior of an irregular joint with initial gap

The irregular dolerite joint of 300 mm length discussed in previous two sections is

further utilized to examine a situation involving the shear of a joint with an initial

seperated gap. The existence of initial gap at joint is of sorne interest in connection

withjoints, which experience thermal shrinkage atjoints and discontinuities.

The computational model used for examining the initial1y perfectly matched joint

is the same as that discussed in sections 5.4 and 5.5. For the purpose of comparison, a

monotonie shear simulation is also performed on the dolerite joint, which is

configurated with initial gaps at 1mm and 2 mm. Since the two faces of the joint are
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in a separated condition, normal stresses cannot be applied to the joint. A constant

normal stiffness is however applied for the loading configuration.

Figure 5.35 shows the variation of shear stress with shear displacement.

Appearance of the initial aperture significantly reduces the peak shear strength. The

shear behavior appears to be more ductile with the existence of initial gap. Figure

5.36 shows the variation of dilatancy with shear displacement. The dilatancy effects

have been greatly reduced due to the presence of the initial gap.
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Figure 5.35 Shear behavior ofjoints with initial apertures
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Figure 5.36 Dilatancy during relative shear of joints with initial

apertures
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5.7 Summary

Computational modelling can be used to examine the shear behavior of rock joints for

a variety of cases of joint profiles and testing conditions. Although attention is only

restricted to dolerite, similar results can also be obtained to other types of rocks or

other brittle geomaterials, inc1uding concrete. The major results in this chapter are

listed below:

(i) During the application of a relative shear to a rock joint, contact between the

irregular surfaces is established only at limited points. The restraint against the

two regions of the joint has sorne influence on this process. Computational

simulations indicate that interfacial interaction at other sections appears to

have negligible effect on the final behavior of the joint. Mechanical behavior

of interface involving these critical locations therefore govems the overall

shear behavior of the entire joint. Dilatancy during shear, which is also

influenced by the normal stiffuess, roughly follows the surface geometry of

the goveming asperity or asperities. A regular triangular joint with a same

asperity angle as that of the "governing asperity" exhibits a similar response

in dilatant behavior and shear stress as those associated with the irregular

joint. This provides a procedure to predict the shear resistance of an irregular

joint based on Patton's suggestion.

(ii) In comparison between an irregular joint and the simplified joint, we observe

an important influence of roughness on the shear behavior. Omission of the

local profile neglects sorne important information about joint feature, such as

contributing dilatancy and peak shear stress. Most of the energy dissipation

due to plastic deformation occurs at the small goveming asperities.

Disregarding such asperities contribute to a significant loss of the plastic

energy dissipation in materia1. Frictional energy dissipation, however, is

relatively not influenced by the omission of the local profile.

(iii) An increase in the normal stiffuess k causes a greater suppreSSIOn of

dilatancy, which leads to higher shear stress and frictional energy dissipation.
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Especially, due to the presence of normal stiffness, the plastic energy

dissipation in the material region increases significantly during relative shear

ofthe irregular joint.

(iv) Relative movements between irregular surfaces are accompanied by dilatancy,

frictional energy dissipation and plastic energy dissipation in the parent

material. In studies of the irregular joint, the plastic energy dissipation in

material is two orders of magnitude smaller than the frictional energy

dissipation. In studies of joints with steep asperities, however, shear induces

only a slight movement with respect to each other between the contacting

surfaces. The relative movement between the joint surfaces is mainly due to

the plastic and e1astic deformation in the asperities. The contribution of the

dilatancy to the shear behavior is low and the variation of the shear stress,

plastic energy dissipation with relative shear displacement is insensitive to the

values of the normal stiffness. Most of the energy will then be dissipated in

the form of plastic energy deformation in material instead of the frictional

energy dissipation at the contact surfaces. Higher normal stress leads to higher

shear resistance and higher normal deformation. The contribution of the

normal stress to plastic energy dissipation is due to a combination of these two

factors. When the asperity angle is steep, an increase in normal stress does not

necessarily result in higher plastic energy dissipation; it might increase the

plastic energy dissipation due to the increase in stress state, but sometimes this

is reduced due to the increase in shear resistance.

(v) The presence of an initial aperture significantly changes dilatancy and shear

stress behavior of an irregular joint. The peak shear stress values tend to be

reduced as the asperture increases.

The influence of quasic-static shear cycling on the plastic behavior of the joint

can also be studied through the computational modelling procedure. In actual

experiments, asperities are damaged during shear and they can further be crushed to

create fragmented gouge material residing at the joint locations. Experimental
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evidence indicates the reduction of both dilatancy and dilatancy angle with increases

in shear cycles. In the current numerical modelling procedure, however, the

continuum behavior of both regions of the joint makes no allowance for creation of

gouge resulting from disintegration of asperities. Asperity failure in form of plastic

flow increases the element volume, which increases the dilatancy during shear

cycling. Plastic energy dissipation increases the deformability of asperities and

reduces the dilatancy angle in latter shear cycles.
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Chapter 6

CONCLUSIONS AND DISCUSSION

The study of mechanics of fractures and joints can be approached at different levels.

These include phenomenon logical approaches, which considers the behavior of a

joint simply as a constitutive response, to more detailed approaches, which consider

the joint surface topography, the nonlinear interaction and material phenomena

associated with an interface. Current available computational methodologies can be

utilized to conduct studies of both approaches. This thesis examines the study of

mechanics of a joint from considerations of the joint surface profile and the nonlinear

interactive and material behavior. The studies are focused on the examination of an

actual experiment conducted on a dolerite joint by appeal to computational modelling.

The findings of the research can be summaried according to the following:

(i) Experimental investigations show the important influences of surface

roughness on the shear behavior of rock joints. In modelling a joint, the actual

profile of the joint as determined from surface profiling is usually considered.

There are, however, limitations to the degree of refinement that can be

permitted if the results of profiling are to be used in the continuum

computational modelling process. Constraints of continuum modelling place

restrictions on the refinement of the profile to a scale, which is not

representative of the requirements for computational modelling. The smallest

element dimension cannot be smaller than the largest grain size of the parent
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geomaterial. In this thesis, the microstructure of the rock mass is disregarded

and the smallest element size is chosen close to the grain size. In addition to

these constraints, the finite e1ement discretization of the region close to the

joint front can be also, to a large extent, influenced by the capacity of the

computational facilities to assure computational accuracy. By defining

additional surface interaction properties, the influence of joint surface

geometry can be incorporated in a computational modeling to account for the

mechanical interaction between surfaces composing the joint. When rotation

free contact is established between irregular surfaces, contact only occurs at

limited points. Computational simulations indicate that interfacial behavior of

sections of surface, excluding contacting points, has negligible effect on final

shear behavior of the joint. Mechanical behavior of these limited contacting

points therefore has a goveming effect on the shear behavior of the entire

joint. Dilatancy during shear, which is also influenced by the normal stress,

roughly follows the surface geometry of the "governing asperity". Shear

response is found to be identical for surface sections at different lengths,

which includes the "governing asperity". A regular triangular joint with a

same asperity angle as that of the "governing asperity" exhibits similar

response of dilatancy and shear stress to those of the irregular joint. The

process of establishing what is a goveming asperity is not a routine. The

factors influencing the selection of the goveming asperity can include features

such as the profile of joint and the steepest acute angle in the direction of

movement.

(ii) In addition to the surface roughness, surface interaction properties need to be

characterized to computationally model the shear behavior of rock joints. In

considering the Coulomb friction model, the elastic interaction properties are

assumed before surfaces slide relative to each other. These properties can be

examined by consdering the shearing of two planar surfaces. The coefficient

of friction can be obtained from the peak friction stress and the limiting

frictional stiffness reflects the elastic behavior of contacts. The coefficient of

friction has a direct influence on the peak shear stress of joint, and the
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frictional stiffness determines its overall shear stiffness. Most experiments,

however, only pay attention to the coefficient of friction of joint surface and

observations of the frictional stiffness are scarce.

(iii) Material properties required for computational simulation of the joint include

Young's modulus, Possion's ratio and strength parameters applicable to a

failure criterion. Both the compressive and tensile strength influences the

development of plasticity during shear. Most experiments only provide

information conceming the compressive strength of the intact material mass.

The tensile strength can, however, be estimated by specifying a reasonable

ratio between tensile strength and compressive strength generally applicable

to brittle elastic solids.

(iv) Asperities exhibit failure during shear. The failure of asperities results in

plastic deformations in the asperities, which is accompanied by plastic energy

dissipation in parent materia1. The plastic energy dissipation is generally 1 to

2 orders smaller than the frictional energy dissipation, during shear on an

irregular joint. When asperity angles are steep, relative shear does not induce

large relative movement between two initially matched surfaces, and most

energy will be instead expended by plastic energy dissipation in materia1. This

corresponds to the behavior expected of a joint zone in a real rock mass,

where asperities interlock firmly and the joint loses stability only as a result of

plastic deformation in asperties when surfaces composing the joint are forced

to experience relative movement.

(v) Experimental evidence shows that reduced volume of material due to the

damage process and surface wearing process can reduce the dilatancy during

shear. The gouge materials produced, which residue at the joint locations, can

also reduce the dilatancy angle. In numerical modelling, however, continuum

modelling does not allow consideration of the disintegration of damaged

asperities and gouge materia1. Asperity failure in the form of plastic flow
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increases the element volume, which eventually increases the dilatancy during

multi-cycle shear.

(vi) The normal stiffness k causes a greater suppression of dilatancy, which leads

to the development of higher shear stresses during relative shear of an

irregular joint. Numerical model also captures similar phenomena, and

evolution of energy dissipation can be traced. Presence of normal stiffness

leads to a greater frictional energy dissipation. Especially, the plastic energy

dissipation in the parent material can he almost doubled in the presence of

normal stiffness.

(vii) The hydraulic conductivity of a joint is related to its hydraulic aperture. The

normal and shear action at a joint might close or open the aperture due to

contraction or dilatancy. Consequently, the hydraulic properties can vary due

to the changes of aperture. The variation of hydraulic conductivity follows

closely with the variation of dilatancy during shear. The appearance of

dilatancy, in the absence of opening between surfaces in contact, cannot be

interpreted as an alteration in the hydraulic conductivity of the joint.

Seperation at the joint in the form of gap development is a necessary

prerequisite for altering of hydraulic conductivity. The material dilatancy can

induce alterations in the hydraulic conductivity of the parent material but that

changes are expected to be of secondary importance in comparison to the

hydraulic conductivity changes associated with aperture opening.
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