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Abstract

The goal of this research is to improve the subjective quality of real world imagery
encoded with spatial vector quantization (VQ). Improved subjective quality implies
that a human perceives less visually objectionable distortion when looking at the
coded images. Through study of several basic VQ) schemes, the issues fundamental to
achieving good subjective quality are uncovered and addressed in this work. Veetor
quantization is very good at reproducing quasi-uniform textures in an image, but
has difficulty in reproducing abrupt changes in textures (edges) and fine detail and
can cause a block effect which is subjectively annoying. A second generation coding
scheme is developed which takes certain propertics of the human visual system into
account. A promising method which is developed utilizes omniseient fintte state VQ,
a new quadratic distortion measure which penalizes the misrepresentation of edges,
and brightness compensation based on Steven’s power law. The proposed subjective

VQ is compared with several classical, first generation VQ methods.




Résumé

Cette recherche a pour but d’améliorer la qualité subjective des images encodées par
quantification vectorielle. L'accroissement de la qualité subjective des images signific
que 'étre humain percevra moins de distorsions désagréables en regardant les images
codées. Celle ouvrage dévoile les points fondamentaux qui régissent 'obtention d’une
honne qualité subjective en présentant plusieurs méthodes de base en quantification
vectorielle. La quantification vectorielle est une méthode qui donne de bons résultats
dans la reproduction de textures quasi-uniformes composant une image. Mais, le
codage par quantification vectorielle peut difficilement reproduire les changements
brusquent dans la texture (contours) et le fin détail de I'image, et peut méme causer
un effet de quadrillage, dans la reproduction de I'image, qui est déplaisant a la vue. Un
systeme de codage, de deuxieme génération, est développé qui prend en considération
les propriétés du systéme optique humain. Une méthode de codage prometeuse est
développée qui utilise une approche omnisciente en quantification vectorielle par états
limités, une mesure de distortion quadratique qui punit les contours érronés d'une
image, avee un systeme compensatoite d'intensité de 'image basé sur la loi des puis-
sances de Steven. Enfin, le systeme de codage par quantification vectorielle présenté
dans cette ouvrage est comparé a plusieurs autres systémes de codage de premiere

génération, en quantification vectorielle.
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Chapter 1

INTRODUCTION

Image compression is essential for applications such as I'V transmission, video con-
ferencing and facsimile transmission of printed material as well as where pictures are
stored in a database, such as archiving medical images, fingerprints and drawings.
Now, with the increasing use of images as a communication medinm, image compres-
sion techniques which offer a favorable tradeoll vis-a-vis reproduction quality, storage
requirements, and computational complexity are needed. The rescareh community
is currently investing considerable time in the design of advanced image compiession
techniques for new and evolving applications.

Image compression techniques can be classed as lossless and lossy. The formen
technique permits perfect reconstruction; whereas the latter technique does not and,
consequently, offers better compression performance. Lossy techniques produce dis-
torted image signals, and the level of distortion they intioduce depends on the charac-
teristics of the signal, the amount of compression that is achieved, and the distortion
measure that is used. This work concentrates on a lossy technigne and provides in-
sight into the dependence between compression performance and subjective guality
of the reproduced images.

Compression techniques can be roughly categorized into waveform, predictive,
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statistical, and transform. Fach of theses classes can be further subdivided based on
whether the parameters of the coder are fixed or whether they change as a function
of the data that is being coded (adaptive). Also, schemes using a model of the human
visnal system as a design starting point are classified as second generatin techniques.
The compression performance of these techniques is expected to be much higher than
those using more standard methods. Reviews of picture coding techniques can be
found in [8, 9, 26].

Wavelorm coding is a discrete-time discrete amplitude representation of the signal.
Once vhe signal is sampled, its amplitude is quantized to one of N levels. Each level
is represented by a binary word that is transmitted to the decoder, which in turn
converts these binary words to discrete amplitude levels and reconstructs the image.
When the sampled signal is one-dimensional, the technique is the well known pulse
code modulation (PCM), but when the samples are gronps of pixels forming vectors,
the technique is called vector quantization. PCM is a good technique to describe
images, but is not well suited to image compression. Vector quantization, on the
other hand, can yicld very large compressions and is a promising method in that
respect.,

In basic predictive coding systems, a prediction of the sample to be encoded is
made from previously coded data that has been transmitted. The error resulting from
the subtraction of the prediction from the value of the sample is quantized similarly
as in waveform coding. The predictor must use only data that has been transmitted
to the decoder. because the decoder must to be able to calculate the prediction on
its own to regenerate the encoded signal properly. Differential pulse code modulation
(DPCM), which is predictive PCM, has been developed for image coding. Some

schemes include human sensitivity curves to quantization noise and perform fairly
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well in the range of 1 to 2 bits per pixel.

In transform coding schemes, the original image is divided into subpictures, with
each of these subpictures transformed into a set of coefficients  The primary pur-
pose of the transformation is to represent groups of statistically dependent picture
elements as a set of roughly independent iransform coellicients. The coeflicients con-
tain sufficient information to reconstruct the original image with the use of an inverse
transform. The coeflicients are quantized and coded for transmission. At the veceiver,
the received bits are decoded into transform coeflicients to which the inverse trans-
form is applied to recover intensities of picture elements. Most of the compression
is a result of dropping small coefficients and coarsely quantizing others, as veguired
by the picture quality. The important parameters that determine the performance
of transform coders are the size and shape of the subpictures, the type of transfor-
mation used, and the selection of the transmitted coeflicients and then quantization,
The most popular transform method is the discrete cosie transtorm (DCT) which
gives very good results at 0.5 to | bits per pixel. Significant effort s locused on this
method, and it is evolving as one of the good choices for high performance image
compression coding.

Statistical coding is a stiaightforward application of rate-distortion theory called
block coding. These methods use statistics of the signal such as frequency of oceurrence
of symbols or patterns of symbols. In Huffman coding, the unage signal is divided
into small blocks of equal size. A block can take different values and a probability
measure is assigned to each of the possible values. A variable length code is then used
to give smaller length codes to those blocks which are more likely. The size of the
blocks cannot be large, as the size of the codebook required for their storage would

be too large. Therefore, many applications use the degencrate case of a single pixel
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block. In the Lempel-Ziv algorithm, strings of pixels are matched to strings that were
transmitted in the recent past. The position and the length of the encoded string
is transmitted to the decoder. The string length can be very large, in which case,
good compression is obtained. Statistical coding techniques are, in general, lossless
techniques and achieve only small compression performance for most test pictures.
Also, because of the rigidity of the techniques, it is very difficult to add other criteria
based on human subjectivity. Hence, these techniques are not considered as serious
contenders for practical image compression systems, but are useful for the compression
of scalar cocfficients having a limited range of values.

The goal of this rescarch is to improve the subjective quality of images encoded
with spatial vector quantization. By increased subjective quality, we mean that the
viewer perceives less objectionable distortion when looking at the coded images. Vec-
tor quantization is a general technique in the sense that several variations of the
basic scheme exist. Through the study of the performance of the basic scheme, we
present the difficulties that need to be addressed in order to design an efficient image
compression scheme. We will study some advanced vector quantization schemes, and
show how they use the characteristics of the image signal to improve the quality of
corled images. We will also include in the design, schemes which consider the psycho-
visual operations performed by the eye and the human brain on the visual field. The
combination of these techniques should improve the quality of the coder, so that the
end user can appreciate the subjective difference. In this thesis, we do not consider
coding complexity and hardware case of implementation. These factors are important
to consider for any application but extend beyond the scope of this thesis.

Vector quantization and its possible variations are studied in Chapter 2. We first

present a brief survey of the vector quantization techniques proposed in the literature.
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We then present in greater detail the basic vector quantization scheme and two exten-
sions of interest: predictive vector quantization and finite state vector quantization.
In Chapter 3, we si:.dy the visual psychophysics of the human and develop schemes
based on those observations. We first explain the physiological process behind human
vision. We discuss only the carly vision process which occurs in the eye and in the
first few neuron layers. We then present a model for the brightness perception process
and present how such psychovisual information is included in subjective scalar quan-
tizers proposed in the literature. We then develop a new distortion measure based on
a more subjective criterion and a scheme utilizing the brightness perception process
of the human visual system. In Chapter 4, we present the experimental simulation
results obtained with the proposed techniques taken individually, and then combined
together. We discuss the subjective quality of the coded images and the implication
of the proposed schemes as they are presented. In the conclusion, we sununarize the
subjective improvements obtained with the proposed technigues and disenss futme

work.
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Chapter 2

VECTOR QUANTIZATION

In this Chapter, we present vector quantization as a source coding technique. Vector
quantization is a very general and versatile information encoding method. For this
rcason, we also discuss several of its possible extensions and variations. We then
describe in more detail, memoryless vector quantization as a basic technique and
present two other techniques, mean predictive coding and finite-state vector quan-
tization, which also attempt to utilize the inherent memory (or redundancy) of the
picture signal. We explain how the encoders and the decoders are designed and de-
scribe commonly used techniques to optimize them. For convenience and readability,

we use VQ as an acronym for both vector quantization and vector quantizer.

2.1 Survey of Techniques

A fundamental result of Shannon’s rate-distortion theory, the branch of informa-
tion theory devoted to data compression, is that better performance can always be
achieved by coding vectors (blocks) instead of scalars. This holds even if the data
source is memoryless, i.e., consists of a sequence of independent random variables,

but greater performance gains can be obtained if the source samples are correlated.
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This theory has had a limited impact on system design in the past becanse it does
not provide constructive design techniques for vector coders and traditional scalar
coders often yielded satisfactory performance with a minimum of complexity. Before
1980, very few papers were published on the subject of vector quantization, until the
vector generalization of an algorithm for optimum design of scalar gquantizers {13]
was developed by Linde et al. [7]. This algorithm turned out to be of major impor-
tance in vector quantization and led to several new developments. Since then, vector
quantization is increasingly used in the design of a variety of systems.

This section is a succinct survey of the basic design algorithm and many of its
variations and applications. We begin with the simplest technique, the memonyless
vector quantizer which is the multidimensional extension of pulse code modulation
(PCM). Next, variations of the Basic VQ which reduce complesity or memory at the
expense of a hopefully tolerable loss in performance are described. We then discuss
VQ with memory: feedback vector quantizers such as predictive VQ and finite-state
VQ. The reader is referred to [10, 13, 20, 21, 31] for more complete surveys of VQ.

A vector quantizer can be defined as a mapping Q of a k-dimensional vector space

IR* into a finite subset Y of IR*
Q:R¥S Y ={y,:i=0,l,....N~ 1}, (2.1)

where Y is the set of reproduction vectors and N is the number of vectors in Y.
This set of reproduction vectors is commonly called the codebook and each of the
reproduction vectors is a codevector. VQ can also be seen as a combination of two
functions: an encoder, which receives the input vector x and gencerates the address
or index of the reproduction vector specified by y = Q(x), and a decoder which uses
this address to generate the reproduction vector y. If a distortion measure d(x,y)

which represents the cost associated with reproducing vector x by y 1» defined, then
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o

the best mapping Q is the one which minimizes d(x,y) [15]. The most common

distortion measure is the squared-error distortion given by

k—1
d(x,y) = |lx = ylI* = D (r; — y,)% (2.2)

=0

The VQ, diting the encoding piocess, receives a sequence of source vectors and
generates a sequence of chaunel symbols or indices. There is one index generated for
every input. vector. The decoder, when receiving the channel symbols. outputs the
codevector y that corresponds to the reccived index. While the decoder can be easily
implemented by a table lookup or a ROM, the encoder is far more complex and must
contain the decoder itself as well as a source vector matching procedure.

Source coding using vector quantization requires a large computational effort at
the encoder Lo scarch the whole codebook in order to identify the nearest matching
reproduction vector to the input vector. Several schemes have been proposed to
improve on the complexity of full search vector quantization. One such scheme is that
of tree-scarched VQ, where codevectors are situated at the leaves of the tree and the
other nodes contain some information that guides the encoder through the tree. For
example, each node of a bimary tree could contain a hyperplane that cuts the vector
space of that node in two. The encoder tests on which side of the hyperplane the input
vector lies and moves down the tree to the corresponding children node, iterating the
process until it reaches a leaf, at which point it has selected a codevector. Starting
from the top, this method tesselates the whole input vector space into Voronoi regions.
The main advantage of tree-searched techniques is that they reduce the number of
times the distortion function is computed from N to log,(N), but achieve this at the
expense of increased memory requirements (usually double) to store the codebook.
Apart from tree-based methods, some schemes attempt to reduce the amount of

processing required to compute d(x,y), while others try to arrange the codebook in a
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preordered fashion so that only a subset of the whole codebook needs to be scarched
once a simple feature is extracted from the input vector, e.g., the norm of x. Since
the goal of this thesis is to increase the subjective quality of the encoding-decoding
system and not to speed up the encoding process, we mention these schemes only for
the sake of completeness, vut will not describe them further.

Several proposed VQ schemes do some preprocessing on the input vectors before
encoding them with vector quantization. ‘T'ypically. a gain/shape technigue is used.
The sample mean of each input vector is computed and then subtracted from the
vector. The error vector obtained is called the shape vector and is encoded with
a memoryless VQ. The sample mean, which 1s called the gain, is transmitted on o
side information channel using standard scalar compression techniques. Note that
sometimes the variance is also removed from the input vector, transforming it into o
unit-variance zero-mean vector, and transmitted the same way the sample mean is.
The main goal of this technique is to try to reduce the power of the signal that is
vector quantized. thetefore obtaining better performance at a fixed rate. The use of
side information, however, may be beneficial or not. For very high quality encoding,
residual gain/shape VQ will perform very well, but at the expense of lngher rates due
to the side information. Yor very small bit 1ates, o1 for small veetor dimensions, they
usually perform poorly because the side information hecomes prevalent.

Other techniques try to improve the qunality of the codebook to obtain hetter
performance. In classified VQ [11], the input vectors are classified mito a few subjective
categories which, in turn, separates the training sequence into a few subsequences.
The categories could include sharp edge, shading edge, flat area, and mixed gradients,
The latter mainly contains vectors which cannot be classtfied in any of the other classes

and most likely consists of vectors representing a high visual activity, but without a
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clear edge. The subspaces are usually selected using objective criteria like the variance
of the block, the edge strength of individual pixels in the block, a combination of these
two, or a more coirpiex procedure. The important fact is that the training sequence
is split into subjectively similar vectors. The number of subsequences and the number
of codevectors allocated to cach is a difficult problem that needs to be addressed by
the designer. Onee the subspaces are well defined, small codebooks are designed for
cach of the classes and merged together to form the final codebook. The encoder can
perform the same classification as during the codebook design process and choose the
appropriate codebook to encode the input vectors.

Another scheme, proposed by Goldberg et al. [21], introduced the concept of
an adaptive codebook. As images are encoded, small portions or the totality of
the codebook are replenished. The new codevectors help the decoder to adapt to
spatially or temporally varying images. This technique has the disadvantage that
not only encodimg, but also codebook design processing, have to be performmed by the
cncoder. The decoder also becomes more complex as it needs to update the codebook;
a ronsiderable increase in complexity if we compare it to a ROM implementation.

Several other techniques can be classified into the category of feedback techniques,
or equivalently, coding schemes with memory. The simplest approach is predictive
coding, where an estimate of the input vector is computed based on the past infor-
mation that is available to both the encoder and the decoder. The prediction process
could require some side information to be sent to the decoder, but often does not.
Once the wnput vector estimate is obtained, it is subtracted from the input vector,
and the encoder processes the residual error. As in the case of gain/shape VQ, the
main purpose of this scheme is to reduce the dynamic range of the input vectors, but

without the use of side information. Predictive coding schemvs usually perform better
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than nonpredictive schemes, but the coding performance depends on the accuracy of
the predictor.

Another quite different technique to include memory is to use a fimte stale ve
tor quantizer (FSVQ). FSVQ schemes have two attrmibutes: a set of states with an
associated encoder to cach one, and a next state function or set of transition tules,
The codebooks for cach of the encoders contain, in most coses, the same number ol
codevectors N, so that the transmission rate depends only on N[ and not on the
states themselves. The codebook storage requirement, however, mereases linearly
with the number of states. These technigues are useful when the source signal dis-
plays several different characteristics. They ate very well suted to encode Markoy
field processes. These coding techniques can also be viewed as directed graphs, he
cause of their state-to-state transitions, and could be combined with popular scarch
optimization algorithms such as the Viterbi Algorithm. They are then called delayed
decison coding techniques because they use several mput vectors before making, o
decision on which reproduction vector to select. This inttoduces an additional delay
into the encoding of several vectors, but ensures better long 1un average distortion
behavior. We will describe FSVQ in greater detail in Section 2.1.2

Up to now, all techniques described use vectors of identical dimensions  There
is, however, a technique called hierarchical vector quantization which attempts to
incorporate vectors of many different dimensions in the encoding process. Of conrse,
at least one codebook is needed for cach of the supported dimensions I image
coding, the technique of quadtree decomposition is often used to generate 2 22, 1 7 4,
8 x 8 and 16 x 16 vectors. Flat arcas of an image are then encoded nsing large veetors
and low bit rates, whereas highly detailed areas are encoded using small vectors and

higher rates. For similar overall rates, this scheme has better spatial definttion and.
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therefore, encoding quality, than standard coding techniques.

This completes our survey of VQ techniques, wherein we briefly described the
techniques and classified them into several categories. Each category tackles one
aspect of the design of a VQ system and shows how complex and diversified vector
quantization systems can get. We will now present in detail three of the above

techniques, memor yless VQ, predictive VQ, and finite state VQ.

2.2 Memoryless Vector Quantization

Memoryless veetor quantization is the vector generalization of PCM. In this section,
we deseribe the mathematical representation of the encoding and decoding processes
as well as theit design procedure.

Let {%,} be a stationary discrete tine sequence of k-dimensional vectors x, € IR,
An N-level vector quantizer consists of a codebook or reproduction alphabet A=
{¥1:Va.---.¥n} and a mapping Q : R* — A or, cquivalently, a partition § =
{Sy,8,...,5v} of R® such that Q(x) = y, if x € S,. In fact, a VQ is usually
an encoder mapping of IR® into binary vectors or channel symbols and a decoder
mapping ftom the channel symbols to A, but for the performance analysis, only the
mapping Q is important.

The rate of a VQ is given by R = $log, N bits per input source symbol, which
is the number of binary digits that must be transmitted or stored in order for the
receiver to produce Q(x). For images, the input symbols are pixels and a group of
k pixels form a source vector. The number of codevectors N in the codebook varies
from application to application, and ranges generally between 64 to 1024 for image

coders.




CHAPTER 2. VECTOR QUANTIZATION i3

Given a distortion measure d : IR* x A — [0, 00) assigning a distortion or cost
d(x,y) to the reproduction of x by y. the performance of the quantizer Q can be

measured by the expected distortion [15]

D(Q) Eld(x, Q(x))] (2.3)

il

N
Y. Eld(x.y,]x € )P (x € S,).

i=1
where I denotes the expectation and P(x € 5,) is the probability that the mpnt
vector X is in subspace S,. An N-level quantizer is said to be optimal for a sowrce, il
D(Q) is minimized over all N-level quantizers. As in Lloyd’s wiethod [13] for & = |

and d(x,y) = (x — y)?, two necessary conditions for optimality are:

1. That S be optimal for A, which is accomplished by using a minimum distotrtion

or nearest neighbor selection rule

Q(x):yn ]f (](x-yi)fd(x’)’j)vj?é’ (:-,-I)
and which results in the cells S, being the Voronoi regions of the alphabet A.

2. That A should be optimal for 5, whicl is accomplished by choosing y, so that

Eld(x,y,)|x € 8] = min Eld(x.u)|x € 8] (.

[ €
b §
—

where u is a vector in IR* and 1 = 1,..., N,

We assume that all subspaces S, arc nonempty, i.c., that F(x € 5,) > 0V . The
obtained vector u is called the generalized centrod of the set S, with respect to d and
we write u = Cent(.5,).

These properties form the basis of Lloyd’s iterative method and its generalization

for vectors. The algorithm is fairly simple and goes as follows:
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a) Start with an initial codebook Ap and set n = 0.

b) Find the optimal partition S, for A,. This is done at the encoder using Equa-
tion 2.4. In fact, the obtained partition S, completely defines the optimal encoder
given the decoder ./i,,.

¢) Find the optimal decoder ./inﬂ for the new partition S, using Equation 2.5. This
will define completely the new decoder.

d) Alternate hetween steps b) and ¢) until some convergence criterion is met. We
nse the expected distortion as a convergence factor. If its rate of change falls below
a certain threshold, e.g., 0.1%, the iterative procedure is stopped.

This technique is commonly referred to as the LBG algorithm, named after the
three authors who proposed it. It is also sometimes referred to as the generalized
Lloyd algoiithim (GLA). The algorithin can be run using either the ‘truc’ expectation
corresponding to the known probability distribution functions, or nsing sample aver-
ages based on a long typical training sequence In the latter case. it is assumed that
the long term average is equal to the expected value, i.e.. that the source is ergodic,
which is nol a reasonable assumption for images. But, as was suggested in [15], if
the training sequence is representative and long enough, the encoder should perform
as well for signals within the training sequence as for signals outside of it. We are
going to use training sequences in this work, as it is felt that the statistical modeling
of images is too complex and prone to innacuracies.

It has been proven that the LBG algorithm is optimal for the scalar case (£ = 1)

[13, 12] when a distortion measure of the form

d(xay) = f(xax_'y)a (26)

where [ is a convex function of the error |x — y|, is used. No such conditions have

been found for & > 1. The LBG algorithm is considered to reach a local minimum
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only. The location of the minimum is highly dependent on the initial codebook A.

A procedure to properly define the initial codebook Ag is, therefore, needed. As
mentioned in [15], it can be selected in a variety of ways, from lower rate codes using,
the splitting technique [7], from lower dimension codes using the product technique
[12], or by selecting N vectors at random from the training sequence [7]. The product
technique uses an optimumn codebook designed for a smaller dimmension (smaller &)
and replicates it for the new dimensions. For instance, if a codebook is designed
for 1-dimension (scalar), it can be replicated once or twice to yield a 2-dimensional
or 3-dimensional codebook, respectively. With this approach, the LBG algorithm
converges to very good local minimum and, most of the time, to the global minimum
[12], when the source symbols from cach dimension arc approximately independent of
each other so that the input vector space shows some circular symmetiy. An image
vector space is, however, not symmetric, and the product technique should not give
good results. We thought that random sclection of vectors would not consistently
yield good codes and make comparison between techniques diffienlt. As opposed to
the other methods, the splitting technique can be justified qualitatively.

There exists another technique to design codebooks that is most often used to
design tree-searched VQ. It is the hyperplane testing method, which starts by defining
a hyperplanc that cuts the whole input vector space in two. The centroid of cach
region is used as the best representation vector for that subspace. Fach subspace is
then again subdivided in two by a hyperplane. The process continnes until enongh
code vectors are generated. In the splitting technigne, we start by finding the centroid
of the whole input sequence, the optimal I-codevector codebook. From this centroid,
two new vectors are created by adding a small perturbation vector ¢ so that y, =

Cent(So) + ¢ and y, = Cent(Sq) — €, where Sp represents the entire training set., The
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LBG algorithm uses these two vectors as an initial codebook to generate a locally
optimal 2-codevector codebook. Each of these two codevectors represent a subspace
of Sp, exactly as in the hyperplane case. Splitting each of the optimal y, and y, in
two will give four vectors that may be used to run the LBG algorithm again. This
process is iterated until the desired number of codevectors is obtained. Based on our
experience, we are confident that the splitting method yields good results.

In this research, instead of the usual squared-error distortion, we use a weighted

quadratic distortion measure of the form

[S]
-1
S

d(x’y) = (X - Y)th(x - y), (.

where Wy is a positive definite weighting matrix that depends on the input vector
x. A distortion measure of this form - the gain-normalized Itakura-Saito distortion
was considered 1 [7] for speech compression applications. Very few researchers
have tried, to our knowledge, to use such a distortion measure to encode images.
Note that the distortion measure of Equation 2.7 includes the usual squared-error
distortion measuie as a special case when Wy = I, the k x k identity matrix. The
development of our distortion measure will be completed in Chapter 3. We now
present how the LBG algorithm is applied to a quadratic distoition measure, but
need to develop some important relations first.
We assuime that the matrix ££/{Wyx), where the expectation of a matrix is the
matrix of the component expectations, is positive definite and, hence, invertible. The

following vector is, therefore, well defined
y = (B[Wx)) " E[Wyx]. (2.8)
We also immediately have the following variation of the orthogonality principle:

EWx(x—y)] = E[Wxx|— E[Wx]y (2.9)



-

CHAPTER 2. VECTOR QUANTIZATION 17

= 0.
We now derive several results:
a) Given a distortion measure d(x,y) = (x — y)Wyx(x —y) with Wy positive definite
for all z, then
Cent(S) = E[Wx|x € S| E[Wxx|x € S). (2.10)
b) Given a partition S = {5y, Sa.....Sx} and a reproduction alphabet A = {Cent(S,) :
i=1,...,N}, and letting Q denote the corresponding quantizer, then
Proof of a)
Abbreviate E[-|x € 5] to Eg[-] and define y as in (2.8) with s replaced with [s,
Then for an arbitrary u,
Es{(x — u)'Wx(x — u)]
= Bs[((x—y) + (y —u))'Wx((x —y) + (y —u))] (2.
= Esl(x —y)'Wx(x —y)] + (y — u)*Es[Wx](y - u) +

2Ay — w)ks[Wx(x - y)].

[o™
[ SN

The right-most term is zero from Equation 2.10 and, thercfore,

Es(x — u)'Wx(x — u)] 2 Es{(x - y)*Wx(x - y)] (2.1

(&™)
s
=

with equality if u = y. This characterizes y as the centroid of .S.
Proof of b)

Observe that Equation 2.10 implies

N
E[Wx(x — Q(x))] = Y P{x € $;} Es,[Wx(x — Cent(5,))] = 0, (2.14)

=1
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which, in turn, implies Equation 2.11.
For the case of a sample distribution defined by a training sequence, the centroid
of aset .S is given by
Cent(S) = (Y, Wx)( D Wix). (2.15)
Xes Xes
The numerator and the denominator terms of the centroid can be recursively com-
puted during the encoding process of the algorithm. Computationally, the most
difficult part is inversion of the average weighting matrix. In some cases, Wy is a
diagonal matrix which greatly simplifies the calculations for the inverse operation.

For the case of Wy =1, we get the more familiar forms of the squared-error case,

Cent(S) = Elx|x € 9 (2.16)

ENX = E[Qx)] (2.17)

Furthermore, if Wy does not depend on x, then Equations 2.16 and 2.17 remain true.

We have seen that only a decoder A or a space partition § = {51,S2,...,58}
and a distortion measure d(x,x — y) are needed in order to completely define a
memoryless vector quantizer. We presented a procedure to design a memoryless
VQ with a quadratic distortion measure, using the LBG algorithm and the splitting

technique. Simulation results using this technique will be presented in Section 4.1.

2.3 Predictive Vector Quantization

In the previous Section, we considered memoryless vector quantization. However,
since consecutive input vectors of an image are statistically correlated, better perfor-

mance can be achieved if the intervector dependence is incorporated into the encoder.
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There exist scveral ways to include memory in the VQ. In this section, that of predic-
tive vector quantization is discussed, whereas that of finite-state VQ will be discussed
in Section 2.4.2.

In predictive VQ [17], a prediction of an image is formed and the residual image,
the error between the prediction and the original, is vector quantized. When applied
to images, the prediction changes the distribution of the residuals as compared to
the original. If the predictor is good, the standard deviation of the input sequence
is smaller than the original, making it casier for the VQ to reproduce the image

accurately. As mentioned in [27], significant coding gains can be obtained with this

technique.
Codebook
y.;i =1, ..,N
| . .
Xn +K_P €n Q n trh ROM t + e
'_WH’" HYun +
+
W Unit,
Unit Xn Delay
Delay
Xn4l Vector Xni1 Veetor
Predictor Predictor
ENCODER DECODER

Figure 2.1: Predictive Vector Quantization. Block diagrams showing the structure of the
encoder and of the decoder

The basic algorithm for predictive VQ is a vector gencralization of scalar predictive
quantization. The block diagram of a predictive VQ is shown in Figure 2.1, where x,,,
Xn, and X,, are the input vector, the reproduction vector, an:d the estimated vector,
respectively, and where e,, denotes the error vector which is vector quantized using

codevectors y; in the codebook A. U, denotes the transmitted channel symbols or
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indices of the codevectors.

We use very simple prediction in this research, since the study of good prediction
schemes is beyond the scope of this thesis. The simplest predictor would use the last
transmitted reproduction vector as an estimate. This method, however, introduces
some artifacts, in the form of impulsive noise, that are annoying to the human viewer.
Hence, we clected to use a predictive mean scheme, where the predicted vector is a
constant vector whose intensity is equal to the mean of the last transmitted repro-
duction vector. This ensures that both the encoder and the decoder can create the
predicted vector without the use of side information. This method yields acceptable
prediction for slowly varying regions or near horizontal edges, but has the disadvan-
tage of poorly estimating vectors around vertical or diagonal edges. The residual
image has a larger standard deviation than it would if a better prediction scheme
was used, but since most parts of the test images are uniform, this prediction scheme
yields results which are acceptable for our purposes. What happens is that those
vectors lying in uniform regions will get clustered around the origin, thereby helping
the vector quantizer to represent these vectors with fewer codevectors, while using
more codevectors to represent high activity regions. Furthermore, since the predictor
does not. remove edge information from the original, an encoding scheme with a sub-
Jective encoding criterion based on the human vision of edges can be combined with
a predictive scheme to yield even better results.

The encoder for the predictive VQ scheme was designed using the LBG algorithm
in the same way as in memoryless VQ, but the input vectors were preprocessed by
the predictor before being quantized. In this sense, predictive VQ is just an add-on
feature that we imiplemented on a memoryless VQ. We will try to use prediction along

with other VQ schemes and present the results in Section 4.2.
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2.4 Finite State Vector Quantization

In this Section, we will discuss a more general technique to include memory into a vee-
tor quantizer system known as finite-state vector quantization (FSVQ). A general VQ
with memory can be completely described by a finite state space B = {0, 1,..., 3-1},
where each state b in B is associated with a separate VQ: an encoder ag, a decoder
Bs, and a codebook Cp, and having a set of rules governing the state transitions.
The channel symbol space U = {0, 1,..., N} is the same as that of memoryless VQ
and contains integers or indices pointing to codevectors in thein respective codebook.
Consider a data compression system consisting of a scquential machine such that if
the machine is in state b, then it uses the quantizer with encoder ag and decoder
Bp. Its next state is selected by a mapping called the next-state function or state-
transition function f such that, given a state b and a channel symbol w, then f(u,b)
is the new state of the machine. More precisely, given a sequence of input vectors
{Xn:n = 0,1,...} and an initial state bg, then the subsequent state sequence sy,
channel symbol sequence u,, and reproduction vector sequence y, are recitbsively

defined for n=0,1,... by

Up = ap,(Xn), Yn = B, (un), bayr = f(tn, ba). (2.18)

Since the next-state function depends only on the current state and the channel
symbol, the decoder can track the state of the encoder il it knows the initial state
and the channel sequence. The possibility to use different quantizers based on the past
without increasing the rate (no side information) helps the code to perforny better
than a memoryless quantizer of the same dimension and 1ate.

A useful property of a FSVQ is that it can be used in a directed graph encoding

system where several transitions are considered before a decision on the minimum
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Figure 2.2: Possible paths in a directed graph with four states

distortion reproduction vector is taken. One example of such a directed graph is
shown in Figure 2.2 where cach column of small circles represents the set of possible
states and cach line represents a state transition and has a codevector associated
to it. This arrangement is referred to as a labeled-transition representation because
the codevectors correspond to transitions. Instead of using the ordinary VQ encoder
which only looks at the current input vector in order to decide on a channel symbol,
a graph secarch technique such as the Viterbi algorithm can be used to search for
a minimum cost path through several levels of the directed graph before making a
decision on a channel symbol. This introduces an additional delay into the encoding
of several vectors, but it cnsures better long run average distortion behavior. This
technique is called trellis encoding and is also referred to as lookahead coding, delayed
decision coding, and multipath search coding. We point out that the Viterbi algorithm
gives optimal results [24] for a directed graph with a finite number of states, but has
a complexity that increases with the number of states. Since we are not concerned
with computational speed in this work, we use the Viterbi algorithm throughout this
thesis.

The general design technique for finite-state vector quantizers is reported in [19].

There are two principal components: the design of a set of initial state-codebooks
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Cs and of a next-state function, and the use of a variation of the LBG algorithm to
attempt to improve the state-codebooks. The latter is accomplished by a slight exten-
sion of the basic algorithm presented in [14] for the design of scalar trellis encoders,
The training sequence is first encoded using the FSVQ. and then all the codevectons
are replaced by the centroids of the training vectors which map into these codevee-
tors: however, the centroids are conditioned on both the channel symbol and the
state. While those conditional averages are likely impossible to compute analytically,
they are casily computed by running averages on a training sequence, Using the same
notation as for the memoryless case,
Yoo = Cent(Sip) = { 35 Wx}™{ D Wyx}, (2.19)
XE Sy b XES
where S is the subspace which contains all input vectors that ate mapped to /(1)
when the encoder is in state b. As with memoryless VQ, using centroids to adjust the
codebook cannot yield a code with a larger distortion and eventnally goes to a local
minimum.
The design of the first component, the initial state-codebook and the next-state
function, is more complicated. We use two different approaches: a simpler, well
known method using trellises and a complex, but more promising method referred to

in [19] as the omniscient design approach.

2.4.1 Vector trellis encoding

A vector trellis encoder (VTE) is the vector extension to the trellis waveform coder
presented in [14]. A good presentation of VT'E systemns may be found in [19)].
The most general case of a trellis decoder consists of a finite-state machine driving

a table lookup codebook. Symbols arriving from the channel drive the finite state
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Figure 2.3: Vector Trellis Encoding System: Shift Register Implementation

machine, which in turn selects the reproduction vectors from the codebook. In this
section, we consider the special case where the finite state machine is a shift register
containing the m most recent channel symbols. The content of the shift register is
used to address a ROM or a table index to select the decoder output. This decoder
structure is easily implemented in hardware. The encoder is more complex and in-
cludes a FSVQ with a next-state function governed by the shift register, and a search
encoding algorithm such as the Viterbi algorithm. We call this technique vector trellis
quantization (VTQ) to differentiate it from the more general VTE method.

In [14], an algorithm for the design of a scalar VTQ for any number of states
and fixed integer bit rates is presented. We use the same technique, but modify it to
fit the requirements of VQ and that of frectional bit rates. We use a fixed bit rate
encoder, therefore the number of transitions out of each state is the same, i.e., each
state-codehook has the same size. The next-state function is well defined given the

number of states B and the number of transitions from each state T = 2*R

, where &
is the dimension of the vectors and R is the bit rate in bits/input symbol. If j, is the
current content of the shift register and ¢, is the incoming channel symbol, then the

next-state function is given by

bnt1 = ((jn << kR) + i,) mod B, (2.20)
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where << is the left shifting operation and mod is the modulus operation and simply
truncates the right hand side to get the right most log, I3 bits.

With the next state function well defined, an initial codebook is needed before
we can start the iterative procedure of the LBG algorithm. However, the initial
state-codebooks cannot be trivially initialized and should be designed frone smaller
codebooks. Such a procedure has been presented in [14] and is called, simply, the
extension. The new, larger decoder, is constructed by adding an additional stage to
the shift register of the starting decoder. The exiension starts from a decoder with
register length I and increases it to [+ 1 Doing so. the total size of the codebook
must increase from 2! to 21, We fill in the new codevectors by duplicating the old
codebook. Let the old codebook contain codevectors {y, : ¢ = 0.1,....20 = 1}, then

the extended codebook contains codevectors y!

Vi=Yan =Y =012 1 (2.21)

Because of the regular symmetrical structure of the shift register implementation, the
new codebook €’ is identical in behavior to the old codebook for the first iteration of
the LBG algorithm. When convergence for the register length [+ 1 1s obtained after a
few iterations, the extension can be run again until the size of the desited codebook is
reached. During this procedure, the number of transitions from cach state 7" always
remains the same, and the number of states increases (doubles) at every iteration.
Hence, the initial codebook should have T codevectors and a single state.

Given that a k-dimensional VI'Q with £ states and 7' transitions per state needs
to be designed, we follow these steps:
a) Design a codebook with T codevectors using the memoryless VQ approach. Ini-
tialize B to 1.
b) Multiply B by 2. Extend the codebook.
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¢) Find the minimum average distortion encoding of the training sequence. This en-
coding induces a partition on the training sequence so that the vectors of the partition
cell corresponding to a certain codevector can be clustered together to define a new
codevector that will replace the old one. Some rule has to be defined for zero size
clusters, i.e., codevectors that were not used during the encoding process. We use the
codevector of the largest cluster that originates from the same state as the zero size
cluster as the new codevector. A small perturbation is added to the new duplicated
codevector to ensure that the state-codebook does not contain two identical vectors.
If it so happens that all the clusters originating from a state are empty, then the
codevectors from the 7' largest clusters of the whole codebook are used.

d) Compute the average distortion. If the average distortion decreases by more than
a small percentage of the previous average distortion, then go to ¢), else go to e).

¢) If the final codebook size is not reached, then go to b).

These steps combining the extension and the LBG algorithm, always assure at least
nondecreasing average distortion at every iteration. Simulation results will be shown

in Scction 4.3.1.

2.4.2 Omniscient finite state vector quantization

This method is presented in [19, 16] and is the most promising method for the design
of next-state functions for a labeled-transition FSVQ. We refer to it as the Omni-
scient FSVQ or OFSVQ. The design procedure for an OFSVQ with B states and rate
R = }log, T, where T is the number of transitions from each states and k is the
dimension of the vectors, consists of four steps:

a) Use the training sequence to design an ordinary memoryless VQ with B codevec-

tors, one {or each state of the OFSVQ. Denote the resulting codebook by C = {¢(b):
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b € B}. We refer to this VQ as the state label VQ. The codevectors in this special
codebook are called state label vectors. We consider the FSVQ to be in the deal
state b if the last input vector, when quantized with the state label VQ. gets mapped
to c¢(b). Note that this codebook and this notion of state selection are used only
in the quantizer design process; they will not be part of the quantizer that will be
implemented. The state label VQ is used for state selection in the mitial guess design
procedure, and later for nearest neighbor determination of the next-state function.
When the final design is completed, the state label VQ is discarded.

b) For each state b, design an initial reproduction codebook Cp == {dy(1). u € U}, us-
ing the memoryless VQ design algorithi for the training, subsequence composed of all

successors to vectors for which the state label VQ chooses b, that as, the subsequence

{Xn 0 b=min" d(xn_1.¢(7))}. (2.

~
te
|

where the inverse minimum notation means that the o yvielding the indicated minimum
is the chosen state. Thus, each codebook Cp is designed to provide good performance
in the following finite state machine. Given x, and a curtent state s, determine
the next state spyq of the machine by applying the stave fabel VQ 1o x,, The VQ
corresponding to the next state is then used to encode the next mput vector. This
machine is not a truec 'SVQ because the receiver cannot track the ideal state sequence
from the initial state and the channel sequence alone, and, hence, it cannot decode
the channel sequence properly unless it has some knowledge of the state sequence of
the encoder through a side information channel. This finite state machine is called
an omniscient FSVQ because the receiver requites what might be called omniscient
knowledge to decode the channel sequence.

c) The ideal state sclection using the state label VQ is now approximated in a way

that the decoder can track, hence obtaining an ordinary I'SVQ. Instead of choosing
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the next state as the state label vector that best matches the current input vector,
we select the state with a label best matching the reproduction vector of the current
input vector. In other words. the state label obtained when quantizing the current
output codevector with the state label VQ, is used as next state. This operation can
be duplicated by the decoder. Thus, given the state labels ¢(b) and the decoders /3

designed above, we define the next-state function by
J(u,b) = l;neiél—ld(xn-—hc(b))a beB,uel. (2.23)

Further, since the reproduction vectors and the state label vectors are known prior
to the encoding of the training sequence, we can compute the next state function and
store it in a table, hence speeding the encoding process.

d) Attempt to improve the state-codebooks by encoding the training sequence using
the given next-state function and updating each codevector by the centroid of the

training vectors assigned to it.

The above algorithm is called the nearest-neighbor omniscient design algorithm to
cmphasize the fact that the next-state function is determined by a nearest neighbor
or minimum distortion approximation to the omniscicnt finite state machine. Further
improvements can be obtained by iterating steps ¢) and d) of this procedure with a
state label update procedure included in the codebook relabeling. We form the new
state label vectors ¢(b) by calculating the centroid of the set of vectors which were

encoded with any of the codevectors whose next state is b,
{xXn : f(bn, a(Xn, b)) = b}. (2.24)

In other words, we compute the centroid of all source vectors which were mapped

to a state transition branch that terminates at state b. Continuing this procedure
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s
: usually improves the quantizer, but it can yield a worse quantizer. In owr experi-
; ments, however, a small increase in distortion is almost always followed by a greater
decrease in distortion in subsecquent iterations, so we allow the worse quantizer to con-
tinue the improvement procedure. When the worse quantizer converges to a better
overall quantizer, the iterative procedure has, in effect, escape-l one local minimum
{ to another, better local minimum. We will refer to this procedure as the iterative
Fa
. nearest-neighbor improvement algorithm. In the following chapters, however, we will
1 use the terminology OFSVQ to denote the ommniscient design techniques in general
; and refer to the names of the particular variations only when tequired for clarity.
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Chapter 3

VISUAL PSYCHOPHYSICS

One of the most, important objectives in the design of visual communication systems
is that they only represent, transmit, and display that information which the human
eye can see. To transmit and display characteristics of images that a human observer
cannot perceive is a waste of channel resources and display media. We must under-
stand, therefore, how we can represent pictures economically and transmit them with
the minimum accuracy required by the human eye. In this chapter, we study some
of those properties of human vision that are helpful in evaluating the quality of a
coded picture when compared with the original and help us in designing the coder
to achiceve the lowest transmission rate for a given picture quality. This approach
attempts to model the human visual system and uses the developed model as a pre-
filter on the input images. The resulting images contain presumably less information,
but, nevertheless, all the information that is required for reconstruction of the orig-
inal images. Good coding gains can be obtained when the coder, optimized on the
prefiltered images, can reproduce them with fidelity.

When further compression or lower rates are required, however, it is necessary to
study the features contained in images to which the human observer is most sensitive.

In other words. we not only need to use the transfer function of the human eye, but

30
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also the low level processing of the human visual system (HVS) which is the feature
detection process. In image processing, features can represent, for example, edge
strength and orientation, shading, texture, and color information. It is well known
that the statistics of picture signals are nonstationary and that the requited fidelity
of reproduction demanded by the human eye varies from picture element to picture
element (pixel). Consequently, for more efficient digital coding, it is desitable to adapt
the coding strategies to those local properties (features) of the picture signal which
determine the sensitivity of human obscrvers to quantization noise. We attempt to
include theses subjective features in the design of a vector quantizer

In this chapter, we present as a necessary background a physiological deseription
of important parts of the HVS. We will concentrate on the low level processing of
the human optical system (the eye, the phototeceptors, and the first few nerve cells),
particularly the brightness perception. We set aside the study of color as it is heyond
the scope of this thesis. Then. a method proposed for scalar quantization with a
subjective criteria is presented. We also qualitatively discuss the performance of the
MSE as a distortion measure and investigate why it fails to prodnce subjectively
acceptable results. Based on these observations, we develop a new distortion measure

that can be applied to vector quantizer design.

3.1 Modeling the Human Visual System

In this section, we present models of specific parts of the HVS. We start by giving
a functional description of the HVS and then present the theory behind brightness
perception. We conclude the section with the presentation of a subjective scalar

quantization scheme.
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Figure 3.1: Diagram of the cross section of the human eye. (From A.Netravali and
B.Haskell, “Digital Pictures: Representation and Compression”, Plenum Press, New York,
1988, p.253.)

3.1.1 Functional description of the human visual system

We present a functional description of the human eye as a background for constructing
a phenomenological model of the visual process consistent with physiology. The
treatment is not sufficiently detailed to correlate precisely the biological parts with
modules of the model. More detailed descriptions can be found in [2, 18].

Figure 3.1 illustrates the principal components of the human eye. Light from an
external object is focussed by the cornea and lenses to form an image of the object
on the retina. Refraction occurs at the cornea and is also affected by the varying
thickness of the lenses. Since the eye is not a “perfect” optical system, a certain
amount of spreading and consequent degradation takes place at the retina. Another
source of degradation is eye movement. Of course, voluntary eye movements are
necessary and enable us to track objects or to shift our attention from one object
to another; however, involuntary eye movements of small magnitude also occur, even
during steady fixation, and introduce a certain amount of temporal variation to the
image. These involuntary movements consist of slow drifts from the point of fixation,

corrective flicks (called saccades) at time intervals of about 0.3 to 0.7 seconds, as well
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Figure 3.2: Schematic diagram of the retina showing the interconnections between recep-
tors and bipolar, ganglion, horizontal and amacrine cells. (From A.Netravali and B. Haskell,
“Digit;zl Pictures: Representatiors and Compression”, Plenum Press, New York, 1988,
p.254.
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as high frequency tremors. Although involuntary eye movements degrade the image,
in general, they are important for maintaining contiruous visibility of the image, since
a visual stimulus that is stationary on the retina fades and eventually disappears.

A schematic diagram of the retina is shown in Figure 3.2. The retina consists of a
layer of photoreceptors and connecting nerve cells. The photoreceptors are curiously
at the point of the layer that is farthest from the incoming light, and, therefore, light
rays must pass through the layer of nerve cells before reaching the photoreceptors.
The receptors contain photosensitive pigments that are capable of absorbing light and
initiating the neural response.

The photoreceptors are of two kinds: rods and cones. In the region surrounding

the fovea, only cones are present, and they are densely packed. The density decreases
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rapidly as we move away from the fovea, vrhereas the density of rods increases. Cones
are responsible for spatial acuity and celor vision at normal daylight levels (called the
photopic range), while rods are responsible for low light vision (called the scotopic
range). Light absorbed by the receptors initiates chemical reactions that bleach the
photosensitive pigments, causing a reduction in light sensitivity that is proportional to
the fraction of pigment bleached. A change in ambient illumination causes the amount
of bleached pigment to rise and fall to a new equilibrium level, thereby providing a
mechanisin {or adapting to different light levels. The HVS can adapt in this fashion
through a very large range of illumination levels (10™ to 1).

As seen in Figure 3.2, photoreceptors make a synaptic contact with the bipolar
cells. A second synapse then connects the bipolar cells to the ganglion cells. Lateral
interactions also take place by the means of horizontal and amacrine cells. The
axons of the ganglion cells form the fibers of the optic nerve by which the signal is
transmitted to the brain. The optic nerves coming from each eye meet at the optic
chiasm, where the information is routed such that the left half of the visual field is
processed by the right hemisphere and conversely. The first parts of tue brain that
perform processing of the visual signal are the lateral geniculates, which are two small
regions situated near the center of the brain. The bulk of the vision process occurs,
however, in the visual cortex which is situated at the back of the brain.

Lateral connections made by the amacrine and horizontal cells are responsible
for amplitude companding and spatial frequency preemphasis of the visual signal
by mediating the sensitivity of the ganglion cells to light. This effect, called lateral
inhibition, results in a reduction of the signal from a cell when the neighboring cells
are illuminated. The lateral connections result, for each ganglion cell, in a receptive

field with an excitatory region in the center surrounded by an inhibitory region, or to
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the opposite, in a receptive field with an inhibitory center and an excitatory surround.
When excited, ganglion cells produce an electric pulse (firing) that propagates through
their axons (optic nerve). It is believed that the information is coded in the firing
rate of the cells, with the larger signals corresponding to the most rapid firing rates.
A light stimulus exciting a ganglion cell raises its firing rate, but any stimulus in
an inhibitory region tends to decrease its firing rate. This implies that a ganglion
produces its highest response when there is a light pattern in its excitatory region
and none in its inhibitory region. The center-surround pattein s generally civeularly
symmetric or elliptical. Since the density of the receptors is highest in the fovea, the
size of the receptive fields is the smallest near the fovea and increases with distance
from the fovea. By combining the response of several receptive fields, the brain is able
to extract some simple features from the image, like edge height, orientation, length,

thickness, and curvature.

3.1.2 Brightness perception

We present a succinct description of the brightness perception model of the human
visual system and discuss the abilities of the HVS to perceive brightness and contrast.,
More extensive studies of the subject can be found in {2, 5, I8, 30].

As seen in Section 3 1.1, the HVS comptises several different biological parts cach
playing an important role. Although there is strong evidence that each part interacts
with the others, most models that are developed use a simple suceession of black
boxes as a modeling approach for simplicity. The HVS is roughly divided into three
parts, the optical system, the photo-transducers (rods and cones), and the nenral
connections. The role of the optical system is to project a clearly focussed image

with an appropriate luminosity on the retina. The image is, however, not reproduced
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perfectly but is blurred or spread. This effect can be modeled by a low-pass filter.
The photo-transducers account for the logarithmic nonlinearities in the intensity
adaptation. As indicated by visual acuity experiments, the eye is extremely sensitive
to even the smallest amount of light. There are thresholds below which no vision is
possible, but such a study is not relevant to visual communication media as images
always fall above these thresholds. In this context, a more relevant question arises
as to how the photoreceptors are capable of maintaining a more or less consistent
response to a very large range of input stimulus intensities. It is known that the
range of inputs that can activate the HVS is of the order of 10! to 1, even though the
pupil area can only be varied by a factor of 16 to 1. We saw in Section 3.1.1 that the
magnitude of the intensity impinging on the photoreceptors is coded into a {requency
of pulses or firing rate at the output of the ganglion cells. These frequencies are,
however, quite limited in their range, not exceeding a maximum of perhaps 1000 Hz
[18], with 40 to 50 pulses per second being considered as the result of spontancous,
undetermined activity. Thus, the coded frequency range is at most 100 to 1, from
which we observe there is a significant compression from the input to the cutput.
Since linearity appears to prevail between the receptor potential output (synapse
strength) and the resulting coded frequency, it appears that this compression is a
result of the photochemical action of the transducers. It has been proposed that the

response Y is related to the input intensity I by the equation
V= k(I - I)", (3.1)

where k is a constant, Ip is the absolute threshold intensity, and n < 1. Experiments
have shown that n = 0.33, approximately the cube root. Equation 3.1 is referred to
as Steven’s power law. Although the value of n can vary from 0.2 to 0.5 depending

on the test patterns and the subject environment, Steven’s power law is considered

s e i

D3k
=

PR TR




L

CHAPTER 3. VISUAL PSYCHOPHYSICS 37

to be an acceptable way in which to model the compression of the intensity, and due
to its simplicity, it is used in many applications.

Experiments to determine brightness perception or the contrast sensitivity curve
as a function of spatial frequency reveal that the overall response of the HVS is a
bandpass filter with a center frequency in the range of 2 to 5 cycles pet degree. The
response is asymmetrical in the sense that the high frequency attenuation is steeper
than the low frequency attenuation. The system can then be modeled by a cascade
of a low-pass filter and a high-pass filter. The role of the high-pass filter is to model
some of the lateral inhibitions that occur between the phototeceptors and between the
ganglion cells. The low-pass filter models the “imperfections” of the optical system.

It can easily be observed that the brightness of an object remains fanly constant
despite very large changes in illumination. For example, we are able to maintain the
appropriate brightness ranking for a piece of coal and a sheet of white paper when
observed in direct sunlight and under normal indoor ilhuimination. The white paper
seems to be equally bright under both viewing conditions, and, n fact, the white
paper under indoor illumination is perceived as brighter than the piece of coal under
outside illumination, even if the latter reflects more light to the viewer. One way ol
modeling this brightness constancy phenomenon is to place the loganthimic process
between the low-pass filter and the high-pass filter. This is illustrated in Figure 3.3a,
which shows the intensity profile of twe images, one being six times brighter than
the other. Following the observation mentioned ecarlier, a human observer <honld not
be able to distinguish the two images even if the intensity preofile is very different.
If, however, the input were first processed nonlinearly by a logarithmic function,
Figure 3.3b would result. The size of the rectangular pulse is identical in both case,

and this is all that would remain after the ensuing high-pass operation. Hence, both
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Figure 3.3: A demonstration of the phenomenon of brightness constancy. The intensity
profile on the right-hand side of (a) is six times that of the one on the left. If both of these
are processed logarithmically, the result is (b), ir which it is observed that the two patterns
are identical except for the reference level (zero frequency component). (From T.Cornsweet,
“Visual Perception”, Academic Press, New York, 1970, p$35.)

objects would be perceived to exhibit brightness constancy.

Brightness perception can be modeled, therefore, by a one channel structure,
cascading a low-pass filter, a logarithmic like compression, and a high-pass filter.
This model is well known and is called the multiplicative model. Another model,
called the photoreceptor visual model, use a feedforward two channel structure. The

interested reader is referred to [30] for a comparison of these models.

3.2 Subjective scalar quantization

The brightness perception of the HVS is modeled based on a set of psychophysical ex-

perimental results, one of which is the contrast sensitivity curve or visibility threshold,
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obtained by the just-noticeable-difference experiment. The main procedure of this ex-
periment is to record the size of the just-noticcable-difference steps while varying the
background intensity and adjusting the intensity of a small foreground patch to he
just visible. The difference in intensity between the just visible test pateh and the
background intensity is called the visibility threshold. The background intensity is
varied through the whole range of visible intensities. This experiment determines
the sensitivity of the HVS to a small change in intensity for all possible nominal
intensities.

This test is performed with a constant background, but most pictues contain a
complex, rather than a uniform, luminance bachground. [t is important, therelore,
to know how the visibility threshold of a test stimulus chavges when it is viewed in
the vicinity of large spatial or temporal changes in the luminance of the backgiound.
It is well known that there is a reduction in the just noticeable visibility stimuli, i.e.,
an increase in the visibility threshold, caused by spatial or temporal nonuniformity
of the background. This is referred to as masking of the test stimuli by a nonuniform
background. The test stimulus is usually a small, near threshold stimulus, whereas
the masking pattern is well above the threshold of visibility. Spatial masking, i.c., the
reduced visibility of a test stimulus on both sides of a large change in the backgronnd
luminance (e.g., a sharp edge), has been known for quite some time. The visibility
threshold of the test stimulus increases rapidly as the test stimulus 1s brought closer to
the sharp edge; however, the spatial masking effect decreases as the height of the edge
is decreased. So the human 1s much more sensiltive Lo quantizalion nowsc v reqions of
an image having a slowly varying background. 'I'his phenomenon has been measured
and results presented in [26]. Subjective curves can be nsed to design a subjective

differential pulse code modulation (DPCM) scalar quantizer, where the quantization
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levels are not distributed nniformly, but according to the subjective curve so that
cach quantization interval is given equal subjective importance.

Another similar procedure was designed in [6]. This procedure attempts to mea-
sure the subjective magnitude of the test stimulus (e.g., quantization noise) when it
is above visnal threshold. At every picture element, a spatial activity function, cou-
sisting of a weighted sum of horizontal and vertical gradients at neighboring pixels,
is evaluated. 'Test conditions are first set up by adding a random noise of known
power only to picture elements where the magnitude of the spatial activity lies in a
certain narrow range. The subjective value of this noise is then determined by com-
parison with a reference picture in which white noise is added over the whole picture
and varied in power until it appears equal in quality to the test picture. The noise
visibility function V(x) is then defined as the ratio of the white noise power in the
subjectively equivalent reference picture to the power of the noise added to the test
picture only at those pixels where the spatial activity lies in an incremental range
around r. The obtained subjective curves account for two factors: the decrease in
noise visibility near spatial detail, and the fact that, in most pictures, few pixels have
high spatial detail, thereby reducing the overall subjective importance of those pixels.

‘These results were also used to design subjective scalar quantizers.

3.3 Distortion Measures

In source coding, the squared-error is by far the most often used distortion measure.
Most of the time, it is for historical reasons since everyone has been using it, but why?
In this section, we will provide some insight as to why the objective squared-error

criterion is so ubiquitous and discuss its weaknesses. We then present an alternative
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which offers a degree of subjectiveness in the distortion measure.

3.3.1 Squared-error distortion measure

We saw in Chapter 2 that vector quantization is a technique that evolved from the
multidimensional generalization of PCM. Rescarchers have been using the squared-
error criterion (2-norm) for vector quantization principally because of its tractability
and ease of computation. Further, the squared-error criterion has an intuitive appeal,
as it represents the Euclidean distance between two points.  In signalling, where
waveforms are often corrupted by white noise, such a distance measure vields optimal
results; however, probleins arise when source coding and data compiession is the
objective. Then, distortion is not introduced by an external soutce anymore, but
by the quantization process of the encoder itself. This suggests that, since we have
some control on how the distortion is introduced, we should use a distortion measure
jointly tailored to the source signal, the encoder, and the end user. Fven in light of
this, the squared-error continues to be extensively used 1 most souree compression
applications. For small distortion levels, it still gives good results, but for larger
compression ratios - and larger distortions the squared-crror can be very good ot
very bad, depending on the source signal, the encoder-decoder characteristies, and
the ultimate user or system to which the compressed signal s delivered  Designimg
an optimal distortion measure that meets all these requirements is quite diflicnlt, hut
it is desirable to include at least some of them to design a hetter distortion measnre,

When applied to vector quantization, the squared-ertor eriterion has an advantage
over other measures; when running the LBG algotithin, the centroid caleulations
simply become the expectation of the given groun of vectors. This, and the fact

that centroid calculations for any distortion measure which is not quadratic in nature
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become extremely complex, have prevented researchers from using other measures.
Unfortunately, when applied to the vector quantization of images, the squared-error
criterion introduces an adverse effect that is called the blocking effect. What happens
is that minimum mean squared-error (MMSE) vector quantizers are very good at
cncoding regions of the image where there is a minimal amount of visual activity.
Such regions nsually occur in the background or on large flat areas of the foreground
and are regions that usually convey little information to the human viewer. The
MMSE VQ fails miserably in the encoding of sharp connected edges and very fine
details of the image. The blocking effect is easily noticed on diagonal edges, where it
gives rise o a staircase instead of a smooth continuous edge.

Considerable insight can be gained as to how this happens, by looking at Equa-

tion 2.11, reproduced below:
E[Wax] = E[W<Q(x)], (3.2)

where Wy is the weighting matrix, x is an input vector, and @(x) is the codevector
chosen by the quantizer Q to be the best representation of the input vector x. If Wy

is the identity matiix, as it is for the squared-error, we obtain
E[x] = E[Q(x)] (3.3)

which shows that MMSE quantizers are optimized on the first moment (mean) of
the training sequence. Furthermore, the squared-error criteria does not take into
account the interactions between pixels and the fact that some pixels carry more
information to the HVS than others. As mentioned in Section 3.1.1, the HVS uses
to great extent the neighboring pixels in its low level processing and shows different
sensitivity to distortion for different intensity levels and neighboring background ac-

tivity. The MMSL criterion is, therefore, not advisable for VQ of images. As seen
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in Section 2.2, the quadratic distortion measure allows for both adaptation on the
input signal through W, and relatively casy centroid calculations. We believe it is
possible to use the quadratic distortion measure to help reduce the blocking effect
and improve the subjective quality of the coded images

For most test images, the training sequence consists of a large collection of in-
put vectors with a low vatiance and with varying average intensities, and a smaller
collection of input vectors with high visual activity which comprises vectors such as
sharp edges, shading edges, and high variance textures. When using a MMSIE veetor
quantizer and the LBG algorithm to design the codebook, we observe that a signifi-
cant portion of the codevectors are allocated to represent the slowly varying veetors
and much fewer to represent vectors with more details. At first, sauch o distribu-
tion of the codevectors may scem teasonable, since flat areas of the image are more
sensitive to quantization noise than those arcas where more backgiound activity is
occurring. Ilence, to have more vectors to represent noise sensitive portions of the
image seems desirable; however, this does not consider the fact that individual vectors
have different subjective meaning. It is true that edges can sustain higher levels of
quantization noise before any severe subjective unpairments oceur, but actual effects
depend strongly on the type of distortion that is introduced. In the experiments
where distortion was introduced in edges, only the height of the edge was distorted,
and the orientation and continuity of the edge was preserved. In the LBG algorithm,
the clustering process for a MMSE VQ will preserve all attributes of edges, il the
input vectors in the partition of the training sequence which is associated to a code-
vector all have similar edge charactetistics (height, intensity on both sides, position,
and orientation). For a reasonably small mimber of codevectors (e g.. 256), this is

very unlikely to happen for most training sequences and, even if a larger nnmber of
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codevectors is used, the small variations in edge height and position combined with
the averaging (expectation) process will result in a codevector with a slightly higher
variance than usual, but missing the correct subjective edge characteristics. In other
words, the averaging process enforced by the squared-error attempts to remove edge
information from the vectors and to smooth the image, a procedure which is quite
contrary to a good subjective encoding process. Apart from contours of the image,
almost everything else, and including high variance textures with the exception of
very fine details, can be reproduced fairly well with a MMSE VQ.

It should be clear that a crucial step in this research is te design better codebooks
than those that are obtained with the MMSE criterion. In fact, with a subjectively
good codebook, even a MMSE encoder (i.e., with a squared-error nearest neighbor
scarch) could yield acceptable results. The key to a good vector quantizer is to design
a codebook in which the codevectors are representative of the training sequence and
carry a lot of information to the viewer. One possible approach is to use classified
vector quantization, but this technique only refines the vectors by using more appro-
priate subsequences and avoids tackling the problems of the squared-error distortion
measure.

A fact that further complicates our task to design improved codebooks is the
absence of globally optimum methods for the design of the codebook, which force
us to use iterative methods like the LBG algorithm. This algorithm does not give
control, during the design process, over the number of codevectors that should be
used. This choice must be made prior to the first iteration, hence we have to define
the number of codevectors for which the encoder will be designed before knowing
its performance. During the design of the codebook, we have very little control on

the distortion level, and it is difficult to design a procedure that will help reduce the
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subjective impairments of the coded image.

A new codebook design procedure is proposed in [25], whete a bottom-up approach
is taken instead of the top-down approach of the LBG algorithm. This algorithm
starts with the whole training sequence and iteratively merges the two closest vectors
as computed by the distortion measure. The algorithm continues to merge vectors
until the desired number of vector is reached or until further merges would introduce
intolerable distortion. The details and implementation of this technique are rather
complex and its development falls beyond the scope of this thesis. In this work, we
use the LBG algorithm in all tests.

In order to design a good distortion mecasure, we need to look into the inherent
structure of images and try to understand what is important and what is not for
our image comprehension and appreciation. Real life scenes contain a lot of mforma-
tion and are complex in nature. A human observer can rapidly detect what is the
important information that is conveyed. Furthermore, when looking at a digitized
reproduction of the real life scene, it is possible to casily detect the deteriorations
based on a few key features. The most important feature is that contonrs of the
computer image be well defined, in the sense that their position, orientation, and
height be the same as that of the original. It is also extremely impottant that edges
be connected in the same smooth manner as i the origimal. Contrast. which is the
difference in visibility between textural elements of the image. 15 also an impottant
factor. If it is possible to casily differentiate adjacent textuies. then the contrast of
the original has been preserved (provided that the same diserimination is possible in
the original scene). Finally, if the accuracy of the very fine details is preserved, then
the reproduction is generally considered acceptable. MMSE Memoryless VQ can only

reproduce contrast with good fidelity. The contouts and the fine details are difficult
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to reproduce. Both of these characteristics can be described using edge primitives
and image processing techniques (smali edges for details and connected edges for
contours). In the next section, we propose a distortion measure which attempts to
improve the representation of edges.

The role of the distortion measure in the design of a VQ cannot be underestimated.
It is with that measure that separation of the training sequence into clusters is done.
It is used in the computation of the centroids to form the new codevectors. In fact,
the subjective quality of the codebook is intimately tied to the distortion measure
and to the training sequence. Unfortunately, it is very hard to design a distortion
measure optimized to the low level processing of the HVS, as we do not yet fully
understand it. At this point, a combination of what we do know and intuition must

be employed in our use of a quadratic distortion measure.

3.3.2 Edge based distortion measure

Whereas humans understand edges as lines separating contours, in the image pro-
cessing field an edge is defined as a distinct change in magnitude of the intensity level
of an image. These two definitions are not similar since the mathematical operator
computes abrupt changes in the intensity signal at the pixel level and the concept
of an edge is more of a connected boundary between objects. Therefore, we make
the distinction between these two concepts by defining an edge o be a transition in
an image, and a line (or contour) to be the connection of many edges to form an
object boundary. The edge can have a height or a strength depending on how sharp
the transition is. Lines are more binary in nature, a pixel is either on a line or it is
not. In this sense, edges are what is often referred to as edge primitives and can be

used to perform image segmentation as well as texture description. There has been
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extensive research in the last twenty years performed on mathematical operators that
could produce information about lines and edges. The processing to obtain this in-
formation is performed at a fairly low level in the HVS. For instance, the receptive
fields in the ganglion cells compute the primitive edge elements that are combined in
the brain to obtain more precise information such as strength, orientation, thickness,
length, and curvature of contours. Edge information, being computed so carly in our
visual pathway, is believed to he the most important image primitive on which we
base our recognition process. For example, if an artist draws a person he sees on a
picture using only a few lines, we will be able to 1ecognize the person, even though
the amount of data contained in the drawing is secmingly far less than that in the
picture. This would imply that lines carry much more information in the picture than
other image primitives.

We noted that vector quantization has difficulty reproducing edges correctly. The
VQ, being able to do almost everything else with distinction, should then also be
designed with this criteria in mind. To correctly 1eproduce edges, the distortion
measure that we propose severcly penalizes the mistepresentation of edges. It puts
emphasis on those pixels that lie near an edge and deemphasizes those that are
far from it; therefore, the elements of the weighting matiix Wy must have a large
magnitude when pixels are near an edge and small magnitude otherwise  Recalling
Equation 2.7,

dx-y,x) =(x—y)Wx(x -y) (3.4)

We observe that the diagonal clements of the matrix Wy, w,,, represent the weights
that multiply (x; — %)% If we assume that the pixel errors (&, — 5:) do not depend
on the other pixel errors (a; —y,), for all ;7 # 1, then we can use a diagonal weighting

matrix. We further assume that, for closely matched vectors x and y. adjacent




CHAPTER 3. VISUAL PSYCHOPHYSICS 48

01 —l —2 - —1 0 o 1 2
2 0 2 -1 0 1
0t -2 -10

Figure 3.4: Sobel Operator Template for the Horizontal and Diagonal Directions

pixel errors have independent signs and magnitudes. The distortion measure can be
rewritten as

d(x —y,x E wa(x, — y)2, (3.5)
where k is the vector dimension and w,, is the weight associated with pixel ;. Under
these assumptions, we have reduced the problemn of defining the matrix Wy to that
of defining the pixel weights w,,. The weights should correspond to the edge strength
of individual pixels. Several simple edge operators that produce a pixel-by-pixel edge
map can be fonnd in the literature {18]. For our purposes, where only an indication
of the edge strength is required, most methods are equivalent. We use the Sobel
operator which is a 3 x 3 template that uses the center pixel and its eight immediate
neighbors as shown in Figure 3.4. The Sobel operator computes the gradient of the
image at the center pixel in the chosen direction and uses a small amount of averaging
to reduce the sensitivity to noise. The gradient is directional and can be rotated in
one of cight directions; four of them being similar to the others by symmetry. In
our case, where only the magnitude of the edge is required, we compute only the
horizontal and vertical compoients of the gradient and approximate its magnitude

by combining the two components as

G =/} + 5%, (3.6)

where Sy, Sy. and ¢ are the magnitudes of the horizontal, vertical, and resultant

gradient, respectively. The values of G vary from zero to several hundreds, where
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larger values represent sharper edges. The edge map of the famous picture Lenna
(¢f Fignre 4.1) is shown in Figure 3.5, where bright areas represent flat portions of
the image and darker areas represent edges. Note that the dark-to-bright inversion
is performed only for display purposes and that in the edge map, the stronger edges

have a larger value. Most sharp edges are well detected and we consider this 1esult

-
~

Figure 3.5: Edge Map of the Image Lenna.

as satisfying for our purposes, but several smaller edges, like detailing edges of the
face, are not well represented. These detailing edges, althongh very important for the
subjective comprehension of the picture. do not produce high edge stiengths with the

Sobel operator.
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To display the edge map in Figure 3.5, we have linearly adjusted the edge strengths
so that they fill the complete gray scale of the image (0 to 255). It should be noted
that, since the distortion measure is linear with respect to the edge weights w,, it is
invariant to a mualtiplication of the weights by a constant. In other words, because the
distortion measure i1s used to compare the closeness of matching of the codevectors to
the input vectors and because the centroid calculations are normalized with respect
to the weights, the encoding process is invariant to the scalar multiplication of the
weights w,, by a constant. Hence, the scaling that is applied to the weights in order
to produce the edge map image could be used during the encoding process without
affecting the results. This property permits us to transform the value of the edge
strengths in a possibly nonlinear fashion and to be able to verify if the obtained
weights follow the human subjective understanding of an edge map, by looking at the
edge map image.

The tange of values of the edge strengths from the Sobel operator can he quite
large. The stiength of an edge is representative of its energy, and it is commonly
assumed that the energy of an edge is proportional to its subjective importance.
We propose an alternative which ditfers from classical cdge detection by making the
supposition that the importance of an edge has more to do with its informativeness
than its energy. This approach has heen proposed in [29] and seems to yicld edge
maps with better information content than the classical method.

It is asswmed that the information carried by an edge is related to the frequency of
occurrence of edges with a similar strength. In extreme cases where the average edge
strength is close to zero, the large edges contain considerable information, whereas
in an image where the average edge strength is very large (like in a high textured

or very noisy image), then the edges with small magnitude (or, more precisely, the
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absence of edges) are those that contain the most useful information. OF course,
this argument can still be applied when the relative frequeney of edges is similar,
but then the method yields the same performance as conventional methods,  The
concept of relative frequency is intimately related 1o that of information as defined
by information theorists. Therefore, we can use the sell-information measure on the
relative frequency (probability of occurrence) of cach edge, and use that information
measure to set the value of the weights. In order to case the process, we sepanate
the raw data of edge strengths (real numbers) into a few edge classes. Then the
prabability of occurrence of each class is casily obtained by computing the histogram
of the classes. 1f N(c,) denotes the number of occurrences of class ¢, the picture,
then H(c;), the information carried by the class ¢, is given by

N(e
ll(('_,):—l()gz( }ifj)) \ (3.7)

P

where N, is the total number of pixels in the picture. Optimally, the edge classes
should be determined with a subjective criterion such that cach class has a different
meaning to the HIVS. To our knowledge, such a procedure has not been presented in
the literature, therefore we chose to approach the problem hennistically by studying
the quality of the edge map image visually. We separate the set of all edge stiengths
into 32 linear classes and compute the self-information for each dass. The informa
tiveness associated with an edge class becomes the new edge veight for all pixels
described by that class. The new edge map that is obtained is shown in Figure 3.6.
We can observe that the details of the face and the hat are enhanced when compated
with the standard edge map. Most other features of the edge map remain practically
the same. The edge map follows the intuition of the HVS about impottant edges.
almost as if the edge map was drawn by an artist. The edge map thus obtained s

used to define Wy. For a given input vector, the corresponding pixels in the edge
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Figure 3.8: Normalized Edge Map of Lenna

map image form a vector which we call a mask vector. This mask, or equivalently
Wy, is used whenever that input vector is used. Since there is a one-to-one corre-
spondance between pixels of an image and pixels of the mask, the mask information is
provided to the encoder in the same way that the original image information is, there-
fore doubling the storage requirements in the encoder for each image in the training
sequence.

The role of this distortion measure is two fold: penalizing the misrepresentation
of pixels lying on important edges and biasing the averaging process of the clustering

algorithm in the codebook update procedure towards edges. The former is the most
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important in the sense that it separates the training sequence into subjectively similar
subsequences, which is a crucial step of the codebook design process. The distortion
measure also has a characteristic that makes it perform equally well in all ateas of an
image. If the input vector contains both small and large mask values, the distortion
measure favors those pixels with a high mask value, but if the input vector contains
only pixels with mask values of equal magnitude, then the distortion measure per
forms exactly as the squared-error distortion measure. This is true when all weights
are small or when all weights are large. So, if the input vector s in a tlat area of
the original image, the proposed distottion measute performs like the squared-error
distortion, which is fine, because we saw that the squared-crror attempts to matdh
the average of the input vectors. On the other hand, if the input vector lies ina
very high activity region where all mask values are high, this means that the region
is not traversed by an edge and tepresents only texture, in which case the proposed
distortion measure reacts again like the squated-error measnre, bt we saw that tex-
tured regions did not suffer too much fiom the block effect. The weighted quadiatic
distortion measure offers the same performance as the squared-etror criterion in areas
where MMSE VQ performs well and attempts to improve on the edge resolution and
to remove the block effect on those regions of the input image where it is most needed.

Simulation results using this distortion measure will be shown in Section 4.1,

3.4 Previsualized Image Coding

In the previous section, we designed a quadratic distortion measwe with a subjective
criterion in mind, namely the faithful reproduction of edges. In this section, we

discuss the use of brightness perception as a preprocessor which would increase the
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performance of vector quantizers.

We saw in Section 3.1.2 how the HVS processes the light intensity of images.
The multiplicative model that was presented is the result of three modules: a low-
pass module to account for the “imperfect” optics of the eve and the finite spatial
resolution of the photoreceptors, a companding function like the logarithm or Steven’s
power law to explain the large range of input intensities that humans can see, and
a high-pass filter to account for the lateral inhibitions and to explain the brightness
constancy phenomenon. In [28], the multiplicative model is applied to the original
image and the previsualized image is vector quantized and transmitted to the receiver.
The receiver generates the approximation of the previsualized image and an inverse
filter of the multiplicative model is passed through the generated image to reconstruct
the compressed image. The results shown in [28] are very encouraging. For simplicity,
however, we use only part of the multiplicative model in this research.

The spatial resolution of vector quantized images is always less than that of the
original due to the averaging process that occurs during codebook design. In this
sense, the VQ is low-pass in nature and we do not require the first module of the
brightuess perception model to enhance its performance. The other two stages can
process the input image to enhance the performance of the VQ, but we feel that
the companding of the input intensity is the most helpful one since it reduces the
dynamic range of the input signal in a way that is subjectively acceptable. The
VQ, when operating on a smaller signal space, yields better matched compressed
images; however, because of the expansion that occurs in the receiver to convert
the previsualized VQ image back to the intensity domain, the quantization errors
introduced by the VQ are expanded as well. Since companding is done so that the

HVS is less sensitive to the new errors, the overall perforinance should be better
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that without companding. Such a compression of the input intensity has two other
advantages. Flirst, it reduces the number of vectors in the codebook which have
the same subjective visual appearance despite the fact that they are mathematically
different, and, second, it enables the VQ to process edges in the same manner as
the human brain sees them. In other words, special properties of the human visual
system like brightness constancy and contrast sensitivity will he preserved.

The companding law that we use is Steven's power law in which we assume that the
proportionality constant is unity, in which case, the brightness hecomes 13 = (1 - lg)".
The ahsolute visibility threshold, Io, will he determimed later, The value of nis taken
as 1/3. Now. the intensity that is projected by most visual displays follow this
equation

I=0.299R" + 0.587G7 + 0.114 137, (3.8)
where R, G, and B are the voltages applied to the red, green, and blne ray guns,
respectively. The constant v depends on the charactenistics of the display and varies
between 1.7 and 30 with a typical value of 2.0. lor the case of grayscale images,
where the RGB components are equal, Equation 3.8 becomes [ = 07, The voltage
applied to cach gun, v, is proportional to the value of the pixel r, in the digitized
image. The brightuess associated with a pixel with value .y is given, therefore, within

a multiplicative constant, by

B = (2] —ug)" = (¢ = v})'/®, (3.9)
where vg is the smallest pixel value that can be applied to the display guns before the
signal becomes invisible under normal viewing conditions. For omr display, vg = 10
and v = 2, so that B = (22 — 100)Y/3. We use this companding function and its

inverse z; = (B% 4+ 100)*/? to transform the original image from the pixel intensity

domain into the brightness domain and back to the pixel intensity domain.




Chapter 4

SIMULATION RESULT'S

In this chapter, we present the results obtained when encoding images with the stan-
dard VQ techniques, and then present results that use the inherent redundancy of
the picture signal. We discuss the quality of the coded images both qualitatively and
quantitatively. T'hen, the results obtained with our proposed subjective schemes are
presented and compated with those of memoryless vector quantization. Finally, our
subjective schemes are combined to the most promising squared-error V() techniques
to illustrate how they interact and work together. We point out that the goal of
this thesis is not to derive the most efficient VQ scheme for image coding, but to
demonstrate the manner in which subjective criteria can be included in different VQ
schemes.

All of the encoding schemes presented in Chapter 2 have their codebooks designed
using the LBG algorithm. We now outline the experimental setup that is used.

Since it is not possible, in general, to model real world images using determinis-
tic functions or random processes, we run the LBG algmithm on a typical training
sequence of vectors. In other words, since the statistical properties of images are
unknown to us, we need to use sampled statistical averages in order to obtain the

required expectations. The choice of the training sequence and how it is generated
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depends on the application in mind. A large training sequence composed of several
images with different characteristics is used to design universal encoders, i.c., en-
coders that can process equally well almost any image; however, since our intent in
this research is to improve the subjective quality of the compressed images, we often
use smaller training sequences reduced to one image only. The encoder will then be
used to encode the image in the training sequence, This helps to amphily the some-
times subtle subjective improvements. Also, we sometimes use very short traming
sequences using only a small part of an image, in order to get a better tnsight on how
the proposed schemes perform. Note that in the latter case, the codebook and, conse-
quently, the encoder become extremely specialized to the tramning sequence, Schemes
with good performance over such small sets can yield much worse results on larger
training sequences. Intuition and experience tell us, however, that 1t is rarely the
case.

Apart from the size of the training sequence, the arrangement of vectors within the
training sequence could be important. For example, schemes with memory require
that successive vectors be correlated to work well. Therefore, instead of the usnal
left-to-right and top-to-bottom raster scan method, which can create large changes
in signal characteristics in between rows, we use a slight variation in which rows are
scanned alternatively from left-to-right and from right-to-lefl. In this way, the top-tu-
bottom structure is kept intact. This ensures that successive vectors in the training
sequence are always neighbors in the image.

The test image that we use most often is the famous image of Lenna, shown in
Figure 4.1, used internationally as a benchmark. It is a grayscale image of 512« 480
pixels with a depth of 8 bits (256 graylevels). Lennais a very good test image hecause

it has a good dynamic range of intensity and a very good contrast. It contains many
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Figure 4.1: Original Picture of Lenna

different textures with different degrees of visual activity ranging from low in the
background to high in the feathers. It also contains thin lines and small details on
the hat and in the eyes as well as sharp curved contour lines. All these properties
put together make it wifficult for a VQ scheme to reproduce the image with fidelity.
Most of the time, the image of Lenna is used alone to create the training sequence;
however, we sometimes use a smaller image that consists of the right eye of Lenna
when local effects are desired. When we want to test a coder with more universal
capabilities, we use a long training sequence of several images and use Lenna, which

o is not in the training sequence, as the test image.
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The vectors that we use are small blocks of . x 4 pixels, creating 16-dimensional
vectors. There are 15360 of those vectors in the training sequence constructed from
the image of Lenna, and since we design codebooks for which the number of codevee
tors N varies from 2 to 512, the average number of vectors of the training sequence
per codevector varies from scveral thousands to 30. In the latter case, the code
book becomes artificially better at encoding the image in the traming sequence, an
effect that shows that very long training sequences must be used if the nmmber of
codevectors in the codebook exceed 512. We often use a codebook size of 10

The results are presented in the form of pictures punted on a laser printer with
the Floyd-Steinberg dithering algorithm and with tables giving the bit rates and the
signal-to-noise ratios. The bit rates R are given i bits per pixel and are computed
by

R = Np/k = log,(Ny)/F, (rn)

where k is the vector dimension and Ny is the number of hits required to represent the
number of codevectors N, (or the number of allowed transitions for a finite state VQ).
Also, we define a compression ratio as the size in bits of the original image divided
by the size in bits of the compressed image. In our case, since the somee inage is
always 8 bits per pixcl, the compression ratio for a given transmission rate s given by
8/R. The signal-to-noise ratio that we use is the peak signal-to-noise 1atio (PSNR)
defined by
205

gyr=2
PSNR = lOI()glo (W) .

where MSE is the mean squared-error.
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4.1 Memoryless Vector Quantization

Memoryless MMSE VQ is the basic technique to which the othe. coders are compared.
We present results for a variety of compression 1atios with the image Lenna as a test
image and as a training sequence. The resultant encoded pictures are discussed to
illustrate the stiengths and weaknesses of VQ. Then, the results obtained on a long

training sequence are presented.

No. codevectors Rate | Mean | Variance | MSE | PSNR
original S 124.28 2296.5

2 0.0625 | 123.69 1504.3 | 797.22 | 19.12

4 0.1250 | 123.45 1968.7 | 295.62 | 23.42

8 0.1875 | 123.62 2120.4 | 177.45 | 25.64

| 16 0.2500 | 123.81 2169.2 | 132.01 | 26.93

32 0.3125 | 123.83 21950 99.91 ] 28.14

641 0.0750 | 123.738 2220.2 | 75.06 | 29.38

128 0.4375 | 123.78 2230.0 | 57.08} 30.5T

256 0.5000 | 123.76 225221 4445 31.65

512 0.5625 | 123.79 2264.9 | 33.79 | 32.84

Table 4.1: Results for the MMSE Memoryless VQ of the image Lenna.

We designed different codebooks for the image Lenna, and the results are shown
in Table 4.1. The two columns labeled Mean and Variance represent the mean and
variance of the decoded image. It is easily observed that the MMSE VQ is able
to reproduce the mean of the original image almost perfectly at all the rates. The
variance, which is an indication of the visual activity and of the contrast, is a much
better indicator of the quality of the reproduced image. The PSNR is also a good
indicator. It can be observed that the PSNR increases by about 1.2dB each time the

number of codevectors in the codebook is doubled, starting from 8 codevectors. After




- e

T (AL BRETIER e

e

CHAPTER 4. SIMULATION RESULTS Gl

512 codevectors. the increases are scen to be smaller, since the VQ is reaching the

limits of its abilities.

Figure 4.2: Picture Lenna encoded with a MMSE memoryless VQ using a codebook of
256 codevectors.

Figure 4.2 shows the decoded image when the codebook size is 256 codevectors
and the rate is 0.5 bits per pixel. Even if the PSNR is faitly good (more than
31dB), we can sece several impairients around the edges. The staircase effect is very
noticeable on the contours of the hat, the shoulder. and the cheeks  The sudden
intensity changes of the background are also less precise than the original. and a lot
of information has been lost in precise details around the eyes. On the other hand,

the background texture is very well reproduced. The foreground texture is also well
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reproduced where the gradient is smooth, e.g., on the shoulder and in the shadings of
the hat, but more distortion is introduced in high energy textures, e.g., in the feathers
of the hat. The latter distortion is, however, less distracting when compared to the
block effect. It is obvious from this analysis that edge definition is the hardest task
for a VQ scheme. We will stress, in the ensuing tests, the iinprovements that were
obtained over Figure 4.2 on those regions where edge definition is lacking, namely the

cyes, the lips, and all major contours.

i
A
§
i
H
Figure 4.3: Picture Lenna encoded with a MMSE memoryless VQ using a codebook of 16 ¢
codevectors. }

The picture depicted in Figure 4.3 is encoded at a rate of 0.25 bits per pixel and

(i R N

is shown to better illustrate how the block effect arises. Note that even at such a low

Y AL I
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bit rate, shading is already taking place as could be seen in the background, on the

hat, and on the shoulder. Also note that the feathers are relatively well reproduced,

even if the block effect is also visible there.

4.2 Predictive Vector Quantization

Predictive VQ is a technique in which an estimate of the input image is made with
a predictor and the residual image, ol .tained by subtraction, is vector quantized. Of
course, the efficiency of this technique is highly dependent on the guality and the
consistency of the predictor. In our case, since we ate nsing a simple predictor, we

cannot, discuss the performance of predictive VQ schemes, but can discuss the role

63

that predictive VQ might play in the development of better subjective encoders.

No. codevectors Rate | Mean | Variance MSE | PSNR
original S| 124.28 | 2296.5 |
2 0.0625 [ 123.24 1991.5 ] 641.77 [ 20.06
4 0.1250 | 123.11 20611 | 25471 | 2107
8 0.1875 | 123.37 |  2156.4 | 166.77 [ 2591
16 0.2500 | 123.44 | 2I83.4] 126.85 1 27.10
32 0.3125 [ 123.42 | 22133 9180, 2830
64 0.3750 | 123.39 | 22350 7251 ] 29.53
128 04375 | 12353 | 22186 36.60 | 30.60
256 05000 | 123.47 | 22606 | 4321 | 31.77
512 0.5625 | 123.46 |  2269.1] 3215 3302

Table 4.2: Results for the MMSE predictive VQ of the image Lenna,

The performance of our simple scheme is depicted in Table 4.2, The PSNR s

about 0.2dB greater than that of MMSE memoryless VQ at similar rates. The fact

that the dynamic range of the input signal is reduced by the predictive scheme,
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explains why the mean squared-error is smaller. The encoded image of Lenna, at a
rate of 0.5 bits per pixels is shown in Figure 4.4. It can be observed that the contours
are a little more smoother and the block effect is less visible. A more satisfying
improvement, however, is the fact that the overall contrast of the image is increased.
The effect might be difficult to observe on the printed images. but is easier to detect
on the monitor screen. We believe that this effect is due to the greater ability of
predictive VQ to represent small gradients and shading. The vectors in those regions
get mapped to residual vectors of small amplitude and are encoded with more finesse
and detail; therefore, smooth transitions between iegions are better encoded. The
subjective quality of the obtained image is greater than that of memoryless VQ. but
the problem of correct representation of curves and fine details like the eyclashes
remains.

In otder to better illustrate the subjective improvements of predictive mean VQ,
we present in Figure 4.5 the results obtained when using a smaller image as a training
sequence and 4 codevectors. The result obtained with memoryless VQ is very blocky
since only 1 different vectors are used to reconstruct the image. The predictive VQ
image, despite looking disorganized, reproduces much more accurately the gradients
and shades. The boundaries are also better defined even if the blockiness still exists. A
predictive scheme, therefore, helps to improve the subjective quality, by allowing the
decoder to generate more different vectors than the number of codevectors available
in the codebook, with the help of a context dependent parameter which in our case
is the mean of the previously transmitted block.

Predictive mean VQ is a technique which enhances the performance of the coder
by removing the mean information fromn the signal and allowing the quantizer to

concentrate on the representation of subjectively more important features such as the
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Figure 4.4: Picture Lenna encoded with a MMSE predictive VQ using a codebook of 256
codevectors.

edges and the smooth shades. Subjectively, the use of a mean predictive scheme is

advisable; a better predictor structure can be found in [27].

4.3 Finite State Vector Quantization

4.3.1 Vector trellis quantization

The vector trellis quantizer (VTQ) that we implemented is a finite state machine for

which the next-state function is driven by a shift register. [t uses the Viterbi algorithm
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Figure 4.5: Set of pictures illustrating how a predictive scheme improves subjective per-
formance. The image on the left is the original. The center image is the decoded image
obtained with a MMSE memoryless VQ with 4 codevectors, and the image on the right is
obtained with a MMSE predictive VQ with the same rate.

for optimumn coding of vector sequences. The VT'Q scheme includes memory in the
coder and helps to remove the redundancy that exists between neighboring vectors.
Although this scheme does not try to improve the subjective quality of the coded
image, the resulting quality is improved because of the existence of more vectors in
the codebook than in a memoryless codebook with the same rate. In other words,
VTQis a “cheap” way to increase the number of codevectors in the codebook without
increasing the transmission rate; however, the price to pay is a complexity incrcase
that depends on the number of states.

Figure 4.6 shows a typical result obtained with a vector trellis quantizer with 16
states and 16 transitions per state. The PSNR is 29.12dB. Although the block effect

is still very visible, we can see a definite improvement over that of Figure 4.3.

4.3.2 Omniscient finite state vector quantization

The OFSVQ coder has memory by virtue of its states. The next-state function
performs a task similar to the mean predictioa scheme. Because a transition goes to
the state which has a label closest to the last transmitted codevector, the transition

goes to the state which has the codebook containing the most codevectors of the
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Figure 4.8: Image Lenna encoded with a vector trellis quantizer with 16 states and 16
transitions per state.

same average intensity as the next input vector. This kind of specialization of state-
codebooks yields very good results when the number of states is high. In fact, for a
well behaved image where most successive vectors ate in the same intensity range and
the number of high contrast edges is small, the scheme petforms very well. Figure 4.7
shows the results obtained with 16 states and 16 transitions per state.

We can observe that the picture quality is much better than that of vector trellis
quantization and is close to that of memoryless vector quantization with 256 veetors.

The PSNR is 29.63dB, 2dB less than the memoryless VQ performance having double
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Figure 4.7: Image Lenna encoded with an omniscient finite state vector quantizer with 16
states and 16 transitions per state.

the rate. Notice that the OFSVQ has the same overall number of codevectors in the
codebook than the memoryless VQ, but transmits at half the bit rate. To achieve
this without reducing the quality is a great accomplishment that demonstrates ti..
usefulness of spatial redundancy removal with finite state vector quantization.

The choice of the number of states and the number of transitions per state is
a tradeoff between complexity and transmission rate. Further, if the size of the
codebook is restricted to a certain number of codevectors, e.g., 256, as in the previous

test, then the tradeoff becomes one of choosing enough states to get sufficient memory
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into the coder and enough transitions to provide codevectors with edge information
and to allow the next-state function to be complete in the sense that any state can
be accessed within a few transitions. The latter condition helps the delayed decision
algorithm and the Viterbi algorithm to reduce the long term distortion.

The results obtained with the iterative omniscient finite state vecetor quantization
(IOFSVQ) with 16 states and 16 transitions per states, ate only marginally better
than those of OFSVQ; however, the performance increases as the ratio of the number
of transitions to the number of states decreases. In this casel it becomes more probable
to have states which are never reached by any state transitions and are. therefore,
unused; the same can be true of some transitions exiting from a not often used state,
This fact reduces the efficiency of the coder and some scheme has to he designed
in order to correct the situation. The I0OFSVQ), because it updates the state label
codebook and the state-transition function, is less prone to this kind of problems,
although sometimes the very fact that it changes the state-tiansition table can ereate
a similar effect. The method that we use to correct the sitnation is to reinitialize an
unused codevector to the codevector originating from the same state that was used
by the most input vectors. In the case that all the codevectors originating from a
state are unused (unused state), we reinitialize the codevectors to those of the nost
used state. This method often solves the problem, but does it i an intuitive way and
does not consider the total distortion accumulated by each state o1 the state which
introduces the most subjective distortion. In fact, much more understanding of the
next-state function process is required in order to make good choices, especially when

the algorithm is using delayed decoding.
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4.4 Subjective Coding

We regroup in this section all of the techniques that were designed with a subjective
criterion, namely the luminance companding and the new distortion measure. The
discussions of the test cases are, for the most part, qualitative, and use subjective
evaluations of the entire image as well as of specific image features. The comparisons
are based on what could be seen on screen, but, unfortunately, it will sometimes be

difficult to see the differences on the printed copies.

4.4.1 Edge weighted quadratic distortion measure

The edge weighted quadratic distortion measure aims at improving the definition of
the edges. It does so fairly well, but sometimes at the expense of another repro-
duced characteristic, In the discussion of the following images, we concentrate on the
reproduction of edges and will discuss the overall effect in a later section.

The 1eproduction of edges in high quality images is difficult to discuss, although
the effects can be observed by the viewer; therefore, we prese it results with a greater
visible compression and that show net improvements over edge definition. Figure 4.8
shows the image of Lenna encoded with memoryless vector quantization with 16
vectors and using the weighted distortion measure. This figure can be compared
with Figute 1.3. It is easily observed that the edges of the hat, particularly those
at the back, are much better defined when using our proposed distortion measure.
The definition of the feathers is also increased. Further, the eye regions are more
visible using the new method; however, the smooth gradients are not reproduced as
well as in the standard method. This is a result of pushing the codevectors towards

edges and, since the total number of codevectors is the same, of removing attention
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Figure 4.8: Image Lenna encoded with a memoryless VQ using 16 codevectors and the
new edge weighted distortion measure

on the flatter areas. This action is consistent with the hypothesis we made that
edges are subjectively more important than constant arcas. In other words, even if
the results of quantization are more visible in the subjective image, it still would he
easier to find from the latter if Lenna is crying, smiling, or expressing sarcasm, than
from a memoryless mean squared-error image. In this sense, the subjective VQ image
contains more information and is, therefore, considered to be of hetter quality.

In order to more clearly sce that the proposed method really increases the edge

content of the codebook, we display the respective codehooks in Figures 4.9 and 4.10.
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In these figures, cach 4 x 4 codevector is magnified four times in each direction. The
smallest, visible squares represent one pixel. While there ace only fwo codevectors
containing distinct edges in the standard codebook, there are as many as sir in the
subjective codebook. This is a dramatic increase, considering that there are only 16
codevectors in total. For larger codebooks, the ratio of edge vectors to the total num-
ber of vector is about 1/4 for the MMSE codebook and about 1/3 for the subjective
codebook. We can, therefore, affirm that an edge weighted distortion measure can

improve the edge content of a memoryless VQ codebook.

Figure 4.9: Codebook of a memoryless VQ using 16 codevectors optimized on the image
of Lenna.

Figure 4.10: (‘odchook of a memoryless VQ using 16 code . tors and the cdge weighted
distortion measure, optimized on the image of Lenna.

Since codebooks with higher edge contents permit the reduction of the block effect.
and that visibility of this effect is directly related to the dimension of the vectors, we
attempted to use a laiger block vector size to see how the edge distortion measure
would perform m very difficult conditions. In Figure 4.11, the image is encoded with

16 codevectors of 6 x 6 pixels. We obtain an image in which the block effect is
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extremely visible. The codebook of such an encoder is shown in Figure 1.12. The
edge content of the codebook is now very low. This is due to the large number of
different input vectors, varying in luminance activity, in edge height and direction
and in luminance level, that cach codevector must represent. This suggests that
the proposed distortion incasure is good at enhancing edge information from sumdar
vectors, but cannot do so when they are more disparate. We expect, then, that
this distortion measure would work well within the framework of classiied veeton

quantization.

Figure 4.11: Image Lenna encoded with a memoryless VQ using 16 36-dimensional code-
vectors and the new edge weighted distortion measuie.
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Figure 4.12: Codebook of a memoryless VQ using 16 36-dimensional codevectors and the
new edge weighted distortion measure optimized on the image of Lenna.
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4.4.2 Luminance to brightness companding

Brightness perception is the process which determines the relative brightness of ob-

jects. As was shown in Section 3.1, the luminance coming from objects into our eyes

gets companded so that several orders of magnitude of luminance can be perceived
and processed by the brain. The effect of the companding is that we become less
sensitive to luminance changes at high background luminances. and more sensitive to
the same luminance changes at a lower nominal luminance. By applying to images
a similar companding as the one occurring in the human visual system. we attempt
to force the codebook generation algorithm to concentiate on subjectively important
intensity ranges

Figure 4.13 shows the image of Lenna encoded with intensity companding with
a 64 codevector memoryless VQ. The difference with the reference 1mage of mem-
oryless MMSE VQ is very small. The newly obtained image has slightly smoother
contours and fine gradients arc smoother as well. The companding has two effects:
it reduces the dynamic range of the input intensities, allowing the VQ to 1epresent
the average intensities with fewer vectors and to increase slightly the edge activity of
the codevectors, and, since the expanding function magnifies the differences bet ween

brightness values, the medium gradient areas of the image look slightly smoother, i.c.,
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Figure 4.13: Image of lenna encoded with a MMSE memoryless VQ with 64 codevectors
optimized on brightness companded input intensitios

the quantization cffect is less visible. This can be observed from Figures 4,14 and 4.15
which represent the codebooks designed on the companded picture and the original
picture of Lenna, respectively. While there are approximately the same number of
codevectors in hoth codebooks for the low intensities, the number of subjectively

similar codevectors in the high intensity region is less in the brightness companded

codebook.
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Figure 4.14: (lodebook of a MMSE memoryless VQ
companding optimized on the image of Lenna.
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with 64 codevectors and brightness
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Figure 4.15: Codcbook of a MMSE memoryless VQ with 61 codevectors optimized on the
image of Lenna.
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4.4.3 Edge weighted brightness companded encoding

In this Section, we show the effect obtained by combining two methods for subjective
encoding, the edge weighted quadratic distortion measure and brightness companding,.
The results obtained when encoding the image of Lenna with these methods for several
coding rates is shown in Table 4.3. The PSNR attained by this coder are again lower
than those of the MMSE coder, but the subjective quality of the resultant images is

better.

No. codevectors | Rate | Mean | Varnance | MSE | PSNR
original 8| 124.28 2296.5

2 0.0625 | 117.87 1179.6 | 879.99 | 18.69

4 0.1250 | 120.64 1772.3 |1 376.13 | 22.38

8 0.1875 | 122.04 2011.5 | 218.72 | 21.73

16 0.2500 | 122.46 2134.9 | 155.45 | 26.21

32 0.3125 | 122.51 2177.3 1 116.38 | 2747

64 0.3750 | 122.37 2201.1 90.61 | 28.56

{28 0.4375 | 122.56 2228.6 1 70.05 ] 29.68

206 0.5000 | 122.50 2251.0 | 55.84 | 30.66

Table 4.3: Results for the encoding of the image Lenna with the edge weighted distortion
measure and brightness companding,.

Figure 4.16 shows the coded image with 64 codevectors. It can be observed that
the edges are better defined and suffer much less distortion from the blocking effect,
however, the subjective methods tend to artificially increase the contrast of the image
so that the quantization effect is more visible around smoother areas of the image.
Also, the method introduces impulsive noise around sharp edges, but this type of
noise is much less aunoying to the human viewer than the blocking effect, because of

the contrast sensitivity curves of the human visual system. Overall, the subjectively
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encoded image is of better quality even if it introduces visible side effects, since these

effects create subjectively smaller impairments than MMSFE encoding.

Figure 4.16: Image Lenna encoded with the edge weighted distortion measure using G 1
codevectors and brightness companding

4.5 Subjective Omniscient FSVQ

In this section, we present results obtained when combining the most successful mem-
ory encoding technique with the subjective ones. Doing so, we also experiment with
how the proposed subjective schemes can be incorporated in alicady existing VQ

coding techniques.
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Figure 4.17: Image Lenna encoded with the edge weighted distortion measure and bright-
uess companding using omuiscient finite state vector quantization with 16 states and 16
transitions per state.

The most successful coding technique with memory that we discussed is that of
omniscient finite state vector quantization. We designed a coder with 16 states, 16
transitions per state, and using both the edge weighted quadratic distortion measure
and luminance companding. The decoded image is shown in Tigure 1.17. It can
be observed that edges are better defined by the use of the edge weighted distortion
measure. The contrast of the decoded image is also increased over that of memoryless

MMSE VQ with 256 codevectors; however, in some regions, such as the shoulder and
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the top of the hat, the contrast increase is too large and the quantization effect s
more visible. There is also some impulsive noise near edges, but this degradation
is less annoying than the blocking effect. Overall, the new technique improves the
reproduction quality of edges and contours, but represents smooth areas in a coarser
way than more standard techniques. Further rescarch in this area should, therefore,
concentrate on a scheme which is able to perform as well as MMSE w smooth aveas
and as well as the subjective quadratic distortion measure on edges. We feel that a
predictive subjective classified VQ scheme would possess the requited versatility and

capability to realize such a goal.




Chapter 5

CONCLUSION

The main goal of this research has been to experiment on low bit rate image coding
schemes, using vector quantization and attempting to increase the subjective quality

of the decoded image.

5.1 Summary of Work

The problem of low bit rate image coding was studied in two distinct steps: the
performance and shortcomings of standard vector quantization techniques proposed
in the literature was discussed, and subjective methods aimed at eliminating the
shortcomings of the former techniques were developed and examined. Discussions
of the quality of the coded pictures, for each of the presented coding schemes, were
provided along with some insights on the required codebook features and the relative
importance of the obtained improvements and impairments.

The design technique of a memoryless vector quantizer was explained in detail,
and a new (to image coding applications) quadratic distortion measure with adapta-

tion to the input vector capability was proposed. For codebook design, the variation

82
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of the LBG algorithm pertineut to this distortion measure was presented. A classi-
cal distortion measure, the squared-error, was used to encode images which hecame
benchmarks for the ensuing rescarch. The causes of its major source of distortion,
the blocking effect, were discussed. It was shown that minimum mean squared-erron
vector quantizers optimize the reproduction quality of the mean of the mput vectors
and do not consider subjectively more important features such as edges and contours.
A subjective distortion measure was proposed in the form of an edge weighted
quadratic distortion measuie It was shown that such a distortion measure can im-
prove the faithful reproduction of edges. but also mtroduces other sonrces of dis
tortions; however, these deteriorations, like edge and smooth gradient noisiness, are
subjectively less objectionable than the blocking effect. Also, based on the brightness
perception process of the human visual system. a simple prefiltering of the input image
to account for the luminance companding done by the photoreceptors was proposed.
This method helps to reproduce better smooth gradients in the high intensity range
and does not significantly affect the petformance of the coder on edge and average
luminance reproduction. The combmation of these two subjective methods results in
a technique that can be applied to mote complex vector quantization schemes,
Since typical real world imagery contains considerable spatial redundaney, vec-
tor quantizers utilizing this property were presented  Predictive vector quantization
schemes were presented as a simple feedback technigue to remove the correlation he
tween input vectors. A very simple mean predictive schemne was used to show the
possible improvements that can be obtained with this technique  Ilirst, because of
the use of the predicted mean by the decoder, several different ontput vectors can
be constructed with a single codevector, thus improving the coding quality at very

low bit rates. At higher bit rates, this effect is less noticeable. Second, becanse of
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the predicted mean removal, the input vectors, if the prediction values are good, are
normalized to quasi-zero mean vectors. These transformed vectors retain the edge
content of the original vector, but not the spatial redundancy. The codebook opti-
mized on such training sequences concentrates more on edge features than on average
intensities.

Also, two linite state vector quantization techniques were developed as another
means in which to add memory to the coder. The first technique was a vector treilis
encoding system using a shift tegister to govern the next-state function. Vector trellis
quantization was shown to provide significant coding improvements over memoryless
vector quantization at equal transmission rates. This gain in performance is obtained
at. the expense of increased complexity. The second technique is that of omniscient
finite state vector quantization, where the next-state function and the state codebooks
are designed 1o optimize the match between an input vector and the codevectors
contained in the state codebook, chosen according to past transmitted reproduction
vectors. For our test images, this methods yields the best performance of all coding
schemes with memory. The combination of coders with memory with the proposed

subjective schemes yielded good quality images at very low bit rates.

5.2 Future Work

The proposed quadratic distortion measure can be tailored to many applications.
In this thesis, we chose to emphasize edges to increase the subjective information
content. of the coded images. but it is possible to design a weighting matrix W,
with another criterion. For example, a more complex visual model could be used to

design a distortion measure that possibly could span a larger area and account for
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the brightness constancy phenomenon.

Although the distottion measure is crucial to the design of a pood quality code-
book, classification of vectors into a set of subjectively different training sequences
can also play a primordial role. For this reason, the design of a classified vector quan-
tizer with subjective classes based on the low level processing of the human visital
system and with a proper distortion measure for cach class, could yvield interesting,
results. Also, a hierarchical vector quantizer can be included in the above classified
vector quantizer, allowing for greater flexibility in both transmission rate and codg,
performance.

The generation of a good quality codebook remains the most important factor
in any vector quantization technique. Because the nearest-neighbor codebook design
algorithm presented in [25] gives much more freedom during the construction of the
codebook than the LBG algorithm, it can be used to control the number of codevee-
tors necded to properly encode a training sequence. Furthermore, since the nearest
neighbors could be matched with a complex subjective distance measure, this algo
rithm can be applied for the design of classified vector quantization with promising
results.

The quadratic distortion measure can be developed for the previsualized vector
quantizer of [28]. Since this vector quantizer operates in a transform domain which is
representative of the visual signal input to the brain, it is appropriate to use another
distortion measure than the squared-error. Along the same line of thonght, the effect
of an invertible prefiltering operation which would smear high frequency components
of the images (since low and middle frequency components are easily 1eproduced by
vector quantizers) can be studiced. Such a transformation would map the laminance

domain onto a domain suitable for near distortionless veetor quantization, and shonld
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be very robust to quantization noise. Further, a postfilter can be used at very low
bit rates, when the blocking effect appears in image areas with medium range visual
activity. The post {i'ter would be similar to a sigma-lilter, which is an averaging
filter over a small window for pixels lying in a similar intensity range. This filter
maintains very good edge quality and provides averaging to remove small amplitude
noise. In this case, the sigma-filter would fuse the boundaries between two veetors
which are part of the same region, so that the transition between the two veetors
becomes smoother. Such filtering removes some of the adverse effects of very low it

rate image coding.
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