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Abstract 

The Golgi apparatus of the cell is responsible for crucial mechanisms such as the intra­

cellular transport of molecules, and the glycosylation process. It is linked to several 

serious and deadly diseases, including cancer. Understanding which proteins make up this 

organelle, and their associated functions, is essential to provide scientists with more 

insight into these related processes. The localization of Golgi resident proteins is a 

complex and not yet fully understood process. It has kept biologists using slow, manual, 

"wet lab" methods. Artificial neural networks have the capability of learning complex 

relationships from training data, and generalizing beyond these examples. Here, we 

present a neural network prediction system based on evolutionary information, which we 

extracted from the amino acid sequences in our data set. Our predictor proved to correctly 

classify, with a 90% success rate, whether a candidate sequence was coding for a protein 

located in the Golgi apparatus. 

L'appareil de Golgi est une organelle cellulaire impliquée dans la glycolysation et le 

transport intracellulaire des protéines. Il est lié à plusieurs maladies mortelles, y compris 

le cancer. Il est essentiel de déterminer quelles protéines composent cette organelle, ainsi 

que leurs fonctions associées, pour fournir aux scientifiques une compréhension accrue 

du rôle cellulaire du Golgi. La localisation des protéines résidentes du Golgi est un 

processus complexe qui n'est pas encore entièrement compris. Ce dernier contraint Les 

biologistes à utiliser des techniques de laboratoire lentes et fastidieuses. Les réseaux de 

neurones artificiels ont la capacité d'apprendre des rapports complexes à partir d'un 

ensemble de données d'apprentissage, et de généraliser au-delà de ces exemples. Ici, 

nous présentons un système de prédiction qui utilise un réseau de neurones basé sur de 

l'information évolutive que nous avons extraite à partir de séquences d'acides aminés de 

notre ensemble de données. Notre système s'est avéré très efficace pour prédire si une 

séquence d'acides aminés codait pour une protéine résidente de l'appareil de Golgi, avec 

un taux de classification de 90%. 

The author would like to thank his supervisors, Michael T. Hallett and Doina Precup, 

whose knowledge, support, and guidance have made this work possible. 
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1. Introduction 

1.1 Proteomics 

With the human genome recentIy completed, we now have access to the full DNA 

sequence of the human species, among many others. These DNA sequences encode 

genes, which in tum, translate into peptides that are assembled into proteins. Within each 

cell in our body, proteins are the molecules responsible for cellular function. Since there 

exist over 30,000 genes coding for approximately half a million proteins, the next logical 

task is to understand the complexity and mechanisms ofbiological systems. Proteomics is 

part of the post-genomic era in computational biology; it studies protein expression, 

protein functions, interactions, pathways, and post-translational modifications. 

1.2 The problem 

Bioinformatics was in part driven by the vast amount of DNA data in the late 90's, and 

the need for good, automated analysis tools that would allow processing it. There are 

three types of analysis: functional, comparative, and structural. Here, we deal with 

functional analysis; we predict the final location of a protein within a cell, given its amino 

acid sequence. To be more exact, the problem consists of constructing an algorithm that 

correctly classifies proteins located in the Golgi apparatus of the cell, given their amino 

acid sequence. The only existing methods used for this task are slow, manual, and require 

specialized personnel. 

Many diseases are related to the glycosylation procedure that takes place in the Golgi 

apparatus. A relatively small number of the Golgi proteins have been c1assified to 

present. The ability to c1assify a wider number of proteins among the huge set of 

unknown proteins in the databases would provide researchers with more insight into 

diseases such as cancer, auto immune and inflammatory bowel diseases. Additionally, 

c1assifying a new protein with a well-characterized function, that was never before 

assigned to the Golgi apparatus, might lead to discovering a new function of this intra­

cellular compartment. Conversely, c1assifying a new protein with an unknown function as 

belonging to the Golgi, would give a hint as to the function ofthat protein. 
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1.3 Machine learning 

Machine learning addresses the problem of building computer programs that improve 

their performance on a given task through experience. For a given analytical system there 

are sorne patterns that have known desired responses; these data types form pairs, which 

we refer to as inputs and targets. The goal of supervised learning is to find a mapping that 

correctly associates the inputs with the targets. A wide range of adaptive algorithms have 

been developed in this field incIuding decision trees, artificial neural networks, and k­

nearest neighbour. Many ofthese result from the recent interest in "data mining" which is 

the application of machine learning algorithms to analyze large amounts of corporate and 

scientific data. 

A very popular approach is to use Artificial Neural Networks (ANNs). ANNs are inspired 

by the organization of the brain. They are robust to noise and very useful for learning 

real-world sensor data such as interpreting visual scenes, speech recognition, and learning 

robot control strategies [1]. 

1.4 Our approach 

There are no effective automated systems in place for predicting whether a given protein 

is Golgi resident, based on its amino acid sequence. 

The localization system of Golgi resident proteins is highly complex, and far from 

completely understood. There are no specific known patterns, and although we have 

sorne example sequences obtained from "wet lab" methods, a huge number of sequences 

are yet to be analyzed. 

The sequence of a protein is not only responsible for its localization but also for its 

structure and function. Therefore we need to design an adaptable prediction system that is 

robust to noise, and can leam to extract location information from example sequences, if 

we are to generalize beyond those examples. Artificial neural networks have been 

successfully trained to perform fairly accurately on several related problems such as 

secondary protein structure prediction [15,16], protein-coding region detection [19], and 

sorting signal prediction [17,18]. In all these cases, the prediction was based on amino 

acid or DNA sequences. 
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In this thesis, we present a similar approach for the problem of classifying Golgi resident 

proteins in a cell. We use the amino acid sequences of the proteins in our data set as the 

initial input. We preprocess these sequences using the DARWIN [8] bioinformatics tool 

in order to extract useful features. Finally, we use these computed features to train our 

ANN system, which, coupled with other machine learning techniques, leams to output a 

prediction for whether a given candidate sequence is co ding for a Golgi resident protein 

or not. 

Golgi Prediction Problem 

input: a set S = {EJ, ... ,En} where Ei is the amino acid sequence ofprotein i 

a mapping fi S - {+,-} where + represents a Golgi resident protein, and -

represents a non-Golgi resident protein. 

output: a predictor X: P - {+,-} where P is an amino acid sequence for a candidate 

protein and + (respectively, -) represents the residence (respectively, non­

residence) ofP in the Golgi. 

In the first part of this thesis, we present the biological information and background 

necessary to understand the localization mechanisms present in the cell, and properties of 

Golgi resident proteins. Next, we introduce the Artificial Neural Network, the 

backpropagation leaming algorithm, and various design and data issues related to our 

problem. We then review and analyze related approaches and problems in bioinformatics. 

In Chapters 5 and 6, we present our data set and the preliminary data analysis, which 

enables us to determine what types of features to use with our predictor. Finally, in 

Chapters 7 and 8, we describe our experimental setup and results, analyzing different 

ANN architectures and settings. We conclude by summarizing the problems encountered, 

our most successful approach, and future work considerations. 

6 



2. Protein sorting and the Golgi apparatus 

2.1 Protein Sorting 

endosome 

peroxisome 

froo 
polyribosomes 

j' 15J.1m '1 

cytosol 

lysosome 

Golgi apparatus 

m itochondrion 

endoplasmic reticulum 
..... with membrane-bound 

polyribosomes 

nucleus 

plasma membrane 

Figure 2.1: The major intracellular compartments of an animal cell [4,p.660] 

A eucaryotic cell is subdivided into different organelles, which are functionally distinct, 

intracellular, membrane bounded compartments. Each of these compartments holds a 

specific set of molecules and enzymes. It is not only necessary to understand the complex 

processes behind the transport of molecules from one organelle to the other, but also how 

the organelles are created and maintained, as well as their metabolic function [4]. Proteins 

play an important role in keeping the eucaryotic cell subdivided into distinct 

compartments. They catalyze the reactions that occur in each organelle and transport 

specifie molecules to and from their lumen (their interior). Most proteins are first 

synthesized in the cytosoI, and then delivered to their corresponding compartment. This 

delivery mechanism depends on the amino acid sequence of the transported protein, 

which is the sequence of basic chemical structural units that encodes a protein. This 

sequence can contain sorting signaIs [17]. A sorting signal is responsible for directing 

proteins to different organelles. There are three main ways by which proteins move 

between organelles: 
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Gated transport relies on the nuc1ear pores to selectively transport 

macromolecules from the cytosol to the nucleus. 

Transmembrane transport relies on membrane-bound translocators to 

transport a usually unfolded protein through the membrane. 

Vesicular transport relies on transport vesic1es to carry folded proteins from 

one organelle to another. These proteins do not have to cross a membrane. 

If a protein is going to be transported through a membrane or via a vesic1e, then it must 

have a sorting signal that is recognized by a complementary receptor protein. There are at 

least two types of sorting signaIs: 

Signal sequences consist of 15 to 60 contiguous ammo acid residues (a 

substring of the original amino acid sequence), usually located at the N­

terminus (referred to as the beginning of the amino acid sequence). 

Signal patches correspond to specific spatial arrangements when the protein 

folds, such that amino acid residues that may be far apart in the linear 

sequence come in contact when the protein folds to its native three­

dimensional state. In such a case, the ami no acid residues that form the signal 

patch represent a subsequence of the original amino acid sequence. 

The types of sorting signaIs vary from exact sequences of amino acids, to patterns of 

hydrophobicity and charge [4]. Therefore, in sorne cases, physical properties of amino 

acids (such as hydrophobicity or charge) appear to be more important in the signal 

recognition process than the exact amino acid sequence. 

2.2 Golgi resident proteins 

The Golgi apparatus is the organelle responsible for receiving lipids and proteins from the 

Endoplasmic Reticulum (ER), and dispatching them to various destinations. It represents 

the hub of the secretory pathway. It is organized as stacked cisternae (compartments), in 

which vesicular transport carries molecules from one compartment to the next. On the 

way through these cisternae, Golgi resident proteins carry out functions on the 

transported molecules such as glycosylation and proteolytic processing, membrane 

transport, recyc1ing to the ER, as well as the organizational maintenance of the organelle 

itself. Despite the intense flux of proteins in the Golgi and the complex regulatory 
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functions associated with it, its structural integrity (the set of molecules and enzymes that 

comprise the Golgi) is conserved. This suggests that either specific sorting signaIs are 

present for the retention of Golgi resident proteins [20], or that Golgi resident proteins are 

missing sorting signaIs found in other exported proteins. Additionally, experimental 

studies have shown that, although the cistemae are physically distinct entities, there is 

continuity in the mixture of enzymes present, rather than each compartment having a 

different set. The Golgi resident proteins can be divided into five classes: type l and type 

II membrane proteins, multimembrane-spanning proteins, peripheral membrane proteins, 

and soluble lumenal proteins. Furthermore, based on biochemical and functional 

properties, these proteins can be divided into at least seven groups: glycolysation 

machinery, Viral glycoproteins, recycling TGN membrane proteins, retrieval receptors, 

matrix and cytoskeletal-binding proteins, membrane transport, and others. It has been 

become very clear over the past decade that in order to have such diverse types of 

proteins within the Golgi, multiple localization mechanisms must operate. Experiments 

have shown the following examples ofthese mechanisms [20]: 

Sorting signaIs located in different parts of the sequence, such as the 

transmembrane domains of mammalian Golgi glycosyltransferases; the stem 

region in a medial-Golgi enzyme (GleNAc-TI) independent of the transmembrane 

domain; or the cytoplasmic tail of the membrane proteins in the trans-Golgi 

network. 

The aggregation of molecules inside the correct Golgi compartment that would 

prevent those molecules from exiting through vesicles. 

Retrograde transport (or intra-Golgi retrieval) which recycles proteins back to 

previous cistemae. This would also indicate that Golgi retention does not depend 

on protein immobilization as Golgi resident proteins may move around within the 

cistemae of the Golgi apparatus. 

In a multiple membrane-spanning protein (IBV M protein), only the first of the 

three membrane spanning domains is required to retain it in the Golgi, whereas in 

the MHV M protein, two signaIs are necessary, one in a transmembrane domain, 

and the other in the cytoplasmic tail. 
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Peripheral membrane proteins interacting with motifs on the cytoplasmic domains 

of membrane proteins. 

These results indicate that two sets of membrane proteins within the same Golgi 

compartment can have very different mechanisms of localization. Thus, the localization 

of Golgi proteins is very complex, and far from being fully understood. 

Furthermore, the integrity of the Golgi is currently being debated. It is not clear whether 

the Golgi is an independent organelle rebuilt from a template that divides during cell 

division, or whether it is a dynamic self-organizing aggregation of proteins and lipid 

membrane that assembles and disassembles constantly [22]. Thus, the Golgi apparatus is 

still a very controversial organelle. It plays a crucial role in the intra-cellular 

environment, and is linked to various serious or deadly diseases. Therefore, determining 

which proteins comprise this organelle is fundamental not only to understanding more 

fully the processes associated with it, but also to give an insight into the functions of 

those proteins, if they are unknown. It has been estimated that there could be up to 1000 

proteins resident in the Golgi. At the time of writing, less than one tenth of these have 

been identified. 
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3. The artificial neural network 

Artificial neural networks (ANNs) are a well-known means for uncovering complex, non­

linear relationships in multivariate data, although they are still able to map linearities. 

Examples of domains where neural nets are used include natural language processing, 

character recognition, image compression [3], biotechnology [3,7], robotics and 

interactive "intelligent" systems [4]. F eed-forward neural networks consist of very simple 

interconnected computational units (neurons) that can take numerical inputs and, via 

weighted summation and a transfer function, transform these values into an output. ANNs 

have the ability to leam (or approximate) target functions from a given data set 

(consisting of pairs of inputs and desired targets), by modifying the connection weights, 

until the output nodes match the desired target for the given input, to a certain degree of 

accuracy. Any function can be approximated to arbitrary accuracy by a network of four 

layers of units [1]. The first layer, or input layer, consists of input nodes directly related 

to the type of data being input into the network. The output from the ANN is located on 

the output layer, which encodes the type of results expected. AlI layers in between the 

input and output layers are calIed hidden layers as their inputs and outputs are only 

available within the network and not seen by the user. 

Input 
Layer 

Output 
Layer 

Direction of information flow ') 

Figure 3.1: A simple feed-forward artificial neural network 
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Figure 3.1 shows a very simple neural network consisting of only an input layer with two 

input nodes (1 and 2), connected to a single output node (3). The edges represent the 

connections between the two layers, and a weight is associated with each edge 

(weight(1,3) and weight(2,3)). This is called a feed-forward neural network as the 

information starts at the input nodes and flows towards the output nodes without loops or 

connections back to a previous layer. 

3.1 The data set 

One of the most important aspects of ANN is that they can learn from examples. These 

examples (pairs of inputs and targets) are grouped into a data set that is used to train and 

test the accuracy of the network. 

The size and distribution of the data is important since neural networks have good 

interpolation but bad extrapolation [9]. Therefore we need sufficient well-distributed 

examples to fill the space of features (used to represent these examples), and allow 

generalization. If the training set is small compared to number of weights in the neural 

network, then there is the risk of memorizing input-output pairs [16] without any 

generalization. This process is known as overfitting, and causes the network to have good 

accuracy on training data but very poor accuracy on new data. 

3.2 The Transfer function 

Typically, the output produced by a node in a neural network is computed as a function of 

its inputs. This function is called the transfer junction. Most transfer functions include the 

weighted summation operation: 
n 

net = LXiWij =x1 W1j + x2 W2j + ... + xn Wnj 

1=1 

where Wij represents the weight of the connection between no de i and node j, and Xi 

represents the output of no de i. 

Using a simple transfer function, we can compare the result of this operation to a 

threshold 8 and output a 1 if the summation is greater than 8, or a 0 otherwise. Most 

ANN applications, however, use a differentiable approximation of the step function. This 

is aiso known as the squashing or sigmoidfunction: 
1 

Output::::; t 
1 + e-ne 
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where nef represents the summation defined above. This outputs a floating-point value in 

the range (0.0,1.0): 

net ---

Figure 3.2: The sigmoid transfer function 

3.3 Backpropagation learning algorithm 

Most ANN applications that use a feed-forward neural network architecture adjust their 

weights using a gradient descent search through the space of possible connection weights. 

This is done in order to minimize the error between the network outputs and the target 

values in the training set. The typical error function on a training example d would be: 

1 n 2 

Ed ="2 ~(Oi -tJ 
where n is the number of output units, ai repiesents the output value associated with 

output unit i, and fi represents the target value associated with output unit i. 

This error is propagated backwards through the network, and the weights modified 

accordingly using the following rule: 

w .. :=w .. +n6.x .. 
lJ lJ'{ J lJ 

where YI € (0.0,1.0) is the learning rate, Xij is the ith input to unit j, and 0j is proportional 

to the error and defined as follows: 

For each output unit k: Ok = Ok (1 - Ok) (tk - Ok) 

For each hidden unitj: 0j = Oj (1 - Oj) E ÔkWjk 

The weights are often initialized to small random values, allowing them to be more easily 

adjusted towards 1 or towards 0 as a result of the training. A training pass through aU the 

vectors of the input data is called an epach. This procedure is repeated for as many 

epochs as specified, or until a desired level of accuracy is reached (if possible). 
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3.4 The local minima problem 

The gradient descent search used in the backpropagation algorithm can become trapped 

in one of the many possible local minima on the error surface. 

There are several techniques to reduce the risk of falling in a local minimum, inc1uding 

adding momentum to the learning rate. In this case, the weight update rule becomes: 

Wij := Wij + 17ÔjXij + al1ij 

where t1ij represents the last weight change applied to wij and ex is called the momentum 

rate and is in the range (0.0,1.0). 

Like the learning rate, the momentum is a user-controlled learning parameter. Lower 

values may cause longer training times, but generalization accuracy is typically good. 

Higher values may not converge to an acceptable error, but might prevent getting caught 

into a local minimum. There is no fixed rule to determine what values to choose initially, 

and such parameters are typically determined experimentally (see Chapter 8). 

Another common approach used to avoid the local minima problem consists of trying true 

gradient descent instead of stochastic gradient descent [1]. In true gradient descent, the 

error is summed over all training examples before updating weights, whereas in 

stochastic gradient descent, weights are updated after each training example. 

An alternative solution to the local minima problem is to use ensemble methods, which 

consist of forming a committee of neural networks (or other c1assifiers) trained on the 

same task. The prediction for an input is based on the output of every neural network in 

the ensemble [1,11]. For instance, we can use a majority vote of a few different 

c1assifiers. This should give a better approximation of the true hypothesis than using just 

one such classifier. Using an initial weight randomization can serve as a diversification 

factor among the neural networks in an ensemble. 

3.5 InternaI structure 

The number of input and output nodes is determined directly based on the attributes in the 

data set. This is not true for the number ofhidden nodes. The main problem is to learn the 

general features of the relationship without learning the idiosyncrasies of the training data 

set. When too many hidden nodes are used, this may lead to overfitting the training data. 
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When too few hidden nodes are used, this may lead to over-generalization. Often the 

number of hidden nodes is chosen to be between log(n) and nYz where n is the 

dimensionality of the input. This is fixed throughout the training. Altematively, the 

network structure can be dynamically modified to find the optimal number of units in the 

hidden layer. A number of such methods have been developed, two of which we outline 

below: 

Pruning connections: This method increases generalization, reduces required 

computation, and may help to pinpoint important inputs. If a weight remains close 

to 0 with little variance, then it is most likely unnecessary and may be removed. 

One such pruning algorithm is called Optimal Brain Damage [9,10). It uses 

connection weight saliencies, and has been shown to be very efficient. 

Node splitting: This method increases efficiency in leaming by locating 

undecided (useless) nodes. If the composite input and output variance is greater 

than the respective composite input and output mean, then the node is split in two, 

and a new node is created on either si de of the original node (half the variance 

apart) [5,6]. 
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4. Review of related problems and approaches 

One of the most important issues in using a neural network to deal with amino acid 

sequences is to be able to determine which features to use (i.e., extract a fixed number of 

inputs), and to determine how to encode these. In this chapter, we review sorne of the 

work on related problems and the existing approaches to this issue. 

4.1 Secondary structure prediction 

The first system we discuss, called NnPredict, consists of predicting secondary structure 

of proteins using a neural network [16]. An initial experiment uses a neural net that takes 

13 amino acids as input. This choice is centered on the amino acid to be predicted. It 

outputs one of three predictions corresponding to the three possible structure 

configurations of amino acids: V helix, 3 sheet, or tum. Each amino acid is encoded 

using a l-of-n (unary) encoding, representing each amino acid by a different permutation 

of twenty O's and a single 1. This results in a total of 13 * 21 = 273 input nodes. The 

training set consists of 91 proteins, and the test set contains 14 proteins, for a total of 105 

proteins, or 20760 amino acids. After 100 epochs, the accuracy is of 65% on the training 

set and 64% on the test set. The NnPredict system enhances this approach by adding two 

input units to encode for periodicity of V helices and 3 sheets (calculated using the 

hydrophobicity of amino acids). This brings the accuracy up to 68% on the training set, 

and 65% on the test set. In a second experiment, the authors divide the data set into 

tertiary structural classes: alI-V, alI-3, V/3, and others, corresponding to the predominant 

secondary structure of the proteins. They perform a leave-one-out cross-validation 

Gackknife) procedure on each set separately. This consists of removing one protein at a 

time from the training set and testing only that protein. This process is repeated for every 

protein in the training set. The resulting accuracies are of 79% on alI-V c1ass, 70% on alI-

3 class, and 64% on V /3 c1ass. The main problem with this algorithm is that it is short 

sighted. It only looks at a smalIlocal window at a time and does not take into account the 

global view of the protein. 

The next approach, called PHDsec [15], is also aimed at predicting the secondary 

structure of proteins. Similarly to NNPredict, this algorithm uses a neural network, but 
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achieves higher accuracy due to the use of evolutionary information, and global 

information about the protein as addition al inputs. This is achieved by not looking only at 

the sequence of 13 adjacent amino acids, but also at a multiple sequence alignment 

(MSA) of that subsequence with all sequences in the database. The MSA is an indication 

of how well a particular subsequence was conserved over time. Other inputs describe the 

protein length, the distance of the subsequence from each end, and the percentage 

occurrence, in the whole protein, of the amino acid to predict. The output is identical to 

NnPredict. The resulting accuracy is of 72% over all 3 configurations, and an average of 

74% when the proteins are divided into structural classes. 

Both of these approaches make a prediction based on a sliding window that advances 

along the amino acid sequence, predicting one amino acid at a time. Once the end of the 

sequence is reached, the results of these predictions are put together in order to predict 

the whole structure. This type of technique is well suited when trying to predict a certain 

property for one amino acid based on its neighbouring amino acids. This idea cannot be 

applied to our problem, since we want to base the prediction on the relationship between 

potentially distant amino acids, and a sliding window wou Id miss existing relationships 

between amino acids that do not belong to the same window. 

4.2 Exon prediction 

The GRAIL il system predicts which regions in a DNA sequence actually code for a 

protein [19]. These protein-coding regions are called exons. GRAIL il (version 1.3) uses 

different algorithms to extract features by separately recognizing exon-edge signaIs, using 

a frame-dependent 6-tuple preference model and a 5th order non-homogeneous Markov 

chain model. Coding signaIs are recognized using a simple neural network trained on 

frequency measures of certain short sequences of DNA bases that are found around these 

sites. Then, an integrating neural network outputs a prediction based on these measures 

combined with other general features such as GC composition (this pair of bases is more 

common in coding regions), predicted length, and properties of the adjacent regions. The 

network has 13 input nodes (corresponding to the measures previously listed), 2 hidden 

layers of 7 and 3 hidden nodes respectively, and one output node. It was trained to score 

the "partial correctness" of each potential exon candidate. The training set of 2000 
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training examples has three types of exon candidates: true, partially true (sequences that 

overlap an exon), and faise. On the test set, GRAIL II Iocated 93% of all exons, with a 

false positive rate of 12%. Among the true positives, 62% match the actual exons exactly, 

and 93% match at least one edge correctly (either the start or the end of the ex on is 

correctly predicted). 

Unlike secondary structure prediction, which uses a sliding window of amino acid 

sequence in the protein, this exon prediction system uses more general sequence pattern 

information (frequencies) as input. This is a useful encoding for global information, and 

is independent of the size of the protein. The problem with using such features is that the 

neural network does not learn to pinpoint the exon within a sequence, but relies on 

pre1iminary algorithms to detect a potential protein-coding region, and then outputs a 

score for that potential candidate. This introduces a second opportunity to make errors. 

4.3 Sorting signaIs and Iocalization prediction 

The system called TargetP [18] predicts the sorting signal of a protein based only on its 

first 100 amino acid residues (N-terminal). The sorting signal usually corresponds to a 

short sequence of amino acids which code for the localization of the protein within the 

cell. The system then enters this information into a second level neural network to predict 

its localization among four different classes: the mitochondrion, the chloroplast, the 

secretory pathway, and "other". The TargetP predictor has two layers of neural networks. 

The first layer consists of one network for each type of sorting signal. These networks 

have a sliding window that scans the first 100 amino acid residues (N-terminal). Each 

network scores each candidate residue. The first layer networks are trained to recognize 

whether or not the residue in the middle of the window is part of a sorting signal. The 

sliding windows contain 55 positions for the chloroplast class, 35 positions for the 

mitochondrion class, and 31 positions for the secretory pathway class. Each position in 

the input sequence is encoded using a 1-of-20 encoding. The outputs from these networks 

are fed into the second layer (or integrating network), which outputs one score per 

sequence and the probable localization c1ass. The input layer of this network consists of 

300 positions corresponding to the scores output by first layer networks: one for each of 

the three classes and each of the 100 amino acid residues in the query sequence. Its 
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accuracy averages at approximately 85% prediction rate, and builds on top of a previous 

prediction system called SignalP [17]. 

This approach solves, in part, the problem of the sliding window that occurred in systems 

described in Section 4.1 by using an integrating network. However it is still limited to a 

fixed number of input amino acids residues (the first 100 N-terminal in this case). 

Dividing the data set into structural classes, and training the neural network on individual 

classes has been shown empirically to greatly improve accuracy [16] over one network 

that tries to approximate each different class of output. This division into subclasses is not 

suitable for our problem, as the classification (which recognizes proteins within a 

particular location of the secretory pathway) is much more specific than the four classes 

that they predict. We want to predict the localization of a protein in the Golgi without 

differentiating between different types of Golgi resident proteins, or the different 

compartments of the Golgi. 
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5. The Data Set 

The initial data set consists of accession numbers (into the SwissProt and GenBank 

protein databases) of 201 proteins: 81 positive examples corresponding to proteins 

located in the Golgi apparatus, and 120 negative examples corresponding to 3 pro teins 

located in the cytosol, 72 proteins in the endoplasmic reticulum, 1 prote in in the 

endosome, 18 pro teins in the microsome, 16 pro teins in the mitochondria, and 2 proteins 

in the peroxisome. We retrieve the sequences from the corresponding online databases. In 

sorne cases, we notice that two or more different accession numbers sometimes refer to 

the same amino acid sequence. We compare them for redundancy by aligning every 

sequence with every other sequence in the data set (see Chapter 6 on sequence 

alignments). The final data set consists of 155 proteins (73444 amino acid residues): 58 

positive examples; and 97 negative examples where 3 are located in the cytosol, 64 in the 

endoplasmic reticulum, 1 in the endosome, Il in the microsome, 16 in the mitochondria, 

and 2 in the peroxisome (see Table 5.1, and Appendix A for the actual name and 

description of the proteins). 

These accession numbers give us access to the amino acid sequence of each protein, but 

not all of them have additional information such as domain structure, localization, and 

secondary structure information. Therefore we cannot readily use any information other 

than the sequence. In order to extract additional features, we use the bioinformatics tool 

DARWIN [8], and prediction tools from the web, such as DAS [23] in order to predict 

transmembrane domains. This is consistent with the ultimate goal of our prediction 

system, where the only information about the candidate sequence to be predicted is its 

amino acid sequence (any other features used to predict would have to be extracted using 

existing tools). 

As stated in Section 2.2, experimental results show that Golgi resident proteins are not 

necessarily localized to one Golgi compartment, but may move around between the 

different compartments [20]. This allows us to analyze the Golgi as an entity rather than 

viewing it as a set of different units. This is important to our experiments, since we have 

only 58 positive examples; dividing these into smaller sets would increase the difficulty 

of the leaming. Therefore, we foeus on c1assifying them as either being Golgi resident or 
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non-Golgi resident, without taking into account the different compartments of the Golgi 

apparatus. 
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Table 5.1: Our data set (Protein number Sequence Length Accession number) 

From here on, graphs and tables will refer to the data set examples by protein number as 

listed in table 5.1. 
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6. Preliminary data analysis 

The first step of our research consists of looking for the presence of obvious motifs, 

domains, or patterns within the sequences, that allow for the differentiation of positive 

example sequences and negative example sequences. 

6.1 Evolutionary tree 

One fact of biological sequence analysis is that evolutionary and functionally related 

amino acid sequences can differ significantly throughout much of the sequence but 

preserve the same 3D structure, or the same domains, motifs, active sites, or related 

dispersed (non-continuous) residues. One such tool we employ is the multiple sequence 

alignment (MSA). This allows us to identify the conserved features (areas of similarity) 

that correlate with structure and function. A MSA consists of finding the best scoring 

alignment of two or more sequences according to a particular scoring matrix, by inserting 

gaps within these sequences so that they all have the same length. We use DARWIN 

v2.1: This package uses a probabilistic model to create multiple sequence alignments 

from the sequences in the data set. We then use the alignments to build the evolutionary 

trees shown in Figures 6.1-6.4. The leaves represent proteins and are labeled with protein 

numbers from table 5.1. The distances labeling the edges of the trees represent 

evolutionary distances (or PAM distances). The PAM (Point Accepted Mutations) 

distance does not correspond to tirne in an irnrnediate way. One P AM unit is the amount 

of evolution that changes, on average, 1 % of the amino acids in the sequence. Note that a 

P AM distance of 10 does not necessarily rnean that 10% of the residues disagree, because 

of backflips (an amino acid being rnutated to another and back to its original one). A 

pairwise alignment (MSA of only two sequences) A has a similarity score sim(A) if it is 

10sim(A)/lO more likely that the alignment is between two sequences of common ancestry 

than between two unrelated sequences. Thus, the similarity score of an alignment 

represents an estimate of the likelihood that the two sequences evolved from a cornmon 

ancestor (versus it being a random alignment). 

The existing algorithms to compute alignments and trees are not exact and each has its 

own bias; however they do give a sense of how related the sequences are. Our purpose is 
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not to compute an exact evolutionary tree for the sequences but to determine if there is 

sorne fixed pattern or feature that would indicate a clear evolutionary split between the 

sequences in the positive set (Golgi proteins), and those in the negative set. We also show 

evolutionary trees based only on Golgi proteins, in order to analyze their distribution 

within their own set. 

Figure 6.1: Unrooted tree for aIl 155 proteins in the data set 
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Figure 6.2: Rooted tree for a1l155 pro teins in the data set 

Figure 6.3: Rooted tree for Golgi resident proteins 
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Figure 6.4: Unrooted tree for Golgi resident pro teins 

From Figures 6.1 and 6.2, we c1early see that there is no obvious split between the 

positive and negative sequences, and that they seem to be distributed uniformly 

throughout the tree. However, we do notice c1usters of positive examples, and c1usters of 

negative examples, which indicate high similarity between the sequences within the same 

c1uster. Therefore, the P AM distance and similarity score used to construct these trees 

seem to be measures that may be useful for our final predictor. Within Golgi resident 

proteins, except for small c1usters, we do not see any significant pattern dividing the 

proteins into subgroups; therefore we initially treat all positive examples together. In an 

trees, we notice that sorne sequences seem to be clearly set apart from the rest; these 

outliers may help improve the generalization of our prediction system, but may also have 

difficulty being learned (correctly c1assified). We now analyze the individual pairwise 

alignments in more detail. 
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6.2 Pairwise sequence alignments 

Another fact of biological sequence analysis is that high sequence similarity between a 

pair of sequences usually implies significant structural or functional similarity. We used 

DARWIN v2.1 [8] to compute an all-versus-all alignment (a pairwise alignment of each 

of the sequences against every other sequence). DARWIN uses adynamie programming 

algorithm together with a set of scoring matrices called the Dayhoffmatrices, to find the 

most probable alignment of the sequences. Note that although the dynamic programming 

algorithm is guaranteed to find the alignment with the highest score (i.e. the most 

probable), this computation is based on the scoring matrices, which are not necessarily 

correct for our problem. For instance, the Dayhoff matrices are more biased towards 

finding a better alignment over a longer subsequence than finding a short motif in a 

transmembrane region or finding a hydrophobicity pattern. These matrices help score the 

alignments by assigning a score to the individual alignments of any two amino acid 

residues. One problem is that these matrices are built from sequences that are chosen 

according to a set of rules, determined by biologists based on their knowledge. This 

implies a bias. The Dayhoff matrices we use are built using the SwissProt v.38 protein 

database. 

In the previous section, we used global alignments where gaps were inserted to make aIl 

sequences the same length (which is necessary in order to compare sequences 

evolutionarily). Here, we use local alignments, which consist of finding subregions with 

high similarity, instead of forcing an alignment over the whole length of the sequences. 

This may indicate particular motifs, or well-conserved regions on which we can base our 

prediction. 

Although for space and relevance reasons, we do not list the e~5)different alignments, 

we have extracted the similarity score, the estimated P AM distance, and the P AM 

variance of each pairwise sequence alignment. These results can be seen as three­

dimensional graphs (Figures 6.5-6.7), and the tables used can be downloaded online [26]. 

A P AM distance of 250 or ab ove is roughly equivalent to randomly aligned sequences. 

An alignment can be classified as good when the similarity score is 300 or above. 
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PAM: variance 
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We clearly see a pattern in the similarity graph (Figure 6.5), since quite a few of the 

positive (Golgi resident proteins) vs. positive alignments (bottom left), and of the 

negative (non-Golgi resident proteins) vs. negative alignments (top right) have similarity 

scores much higher than most of the positive vs. negative alignments. This verifies the 

observation from the previous section, where we noticed clusters of positive sequences 

and clusters of negative sequences, and supports the fact that the similarity score is an 

important feature that we should use in our prediction system. However, we cannot rely 

entirely on this score as an important number of positive vs. positive, and negative vs. 

negative alignments have low similarity scores. 

Unlike the similarity graph, the P AM distance (Figure 6.6) and P AM variance (Figure 

6.7) graphs do not show any obvious pattern. In the P AM distance graph, we still have 

very large distances between sequences in the same set, as weIl as very low distances in 

the positive vs. negative alignments. It is not clear from these alignments how useful the 

P AM distance will be in our final predictor. However, the P AM distance did show sorne 

relevance for the tree clusters in the previous section, where sequences in the same cluster 

were a short P AM distance apart. The P AM variance graph shows a high variance for the 
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negative set in general. This is consistent with the fact that this set contains sequences 

from many different organelles. AlI of these pro teins have very different functions, and it 

is not surprising that their sequences are far apart. The P AM variance may help in the 

classification of positive examples, but may lead to sorne false positives. We keep in 

mind that where one measure may give a false classification, another may correct that 

classification. Therefore all these measures will be tested experimentally in our neural 

network in order to determine how relevant they are in classifying the examples in the 

data set (see Chapter 8). 

As seen in Section 2.1, a sorting signal may consist of a short signal sequence (15-60 

residues). Therefore, the next step consists oflooking at particular alignments to see ifwe 

can recognize such a particular domain or motif. We accomplish this by extracting the 

best alignment (with respect to the similarity score) for each sequence in the all vs. all 

alignment. We then manually choose the shorter alignments. These become the domain 

candidates (listed in appendix B). If the best alignment that a particular sequence has in 

common with the whole data set is a short sequence of amino acids, this may well be a 

domain responsible for sorne function of this protein. Additionally, if such a domain is 

found in all proteins within a particular organelle, but not in the other organelles, it is 

reasonable to infer that this short domain is responsible for targeting proteins to that 

organelle. We then perform a local alignment of each of these candidate domains versus 

every sequence in the data set, however we do not find any relevant domain that is 

present within most of the positive set, but not in the negative set (or vice-versa). 

The other type of sorting signal presented in Section 2.1 is a pattern of hydrophobicity 

within the amino acid sequence. Hydrophobicity is taken into account when an alignment 

is performed. However, it is hard to detect a hydrophobie pattern from just looking at the 

alignments. Therefore, we reanalyze the candidate domains, and recompute the 

alignments, focusing on the hydrophobicity of the amino acids: each amino acid was 

classified and marked as either hydrophobie or hydrophilic (see appendix C). This allows 

us to detect any clear pattern that would characterize the positive set versus the negative 

set. No such pattern is apparent. 
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6.3 Short substrings 

Signal sequences with a length as short as 4 amino acid residues have been shown to be 

responsible for localization into different organelles (ex: KDEL for the Endoplasmic 

Reticulum) [1]. It is still possible that a short sequence of amino acids is acting as a 

sorting signal, but because of its length, was not detected using regular alignrnent tools in 

the previous section. Here, we compute every possible substring (fixed sequence of 

contiguous amino acids) of length 4 (204
), and look for their occurrence in the data set 

[26]. Figure 6.8 shows only the substrings that occur more than 10 times in either the 

positive or negative data sets. 
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Figure 6.8: Substrings oflength 4 that occur more than 10 times 
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We see that only one substring (GGLG) is present more than 10 times in the positive data 

set, and never in the negative data set. Every other substring occurs either in both sets, 

none of the sets, or only in the negative set. However GGLG occurs only 12 times, so it 

cannot be a univers al Golgi signal sequence, as it is not found in each of the 58 Golgi 

resident proteins. We then analyze the individual Golgi resident proteins in which GGLG 

is located, and find it in 7 different proteins (protein # [index]: 5 [395],6 [16,20,24,415], 

14 [381],46 [96], 53 [395], 54 [16,24,411], 56 [399]). We compare their properties and 

sequences, and find that most of them are very similar throughout their sequences. We 

conc1ude that the fact that this substring is only found in Golgi resident proteins is likely 

to be just a coincidence. 

Additionally, this shows that any sorting signal for the Golgi apparatus does not consist 

of a simple substring of length greater than 3. Therefore, signal patches (as defined in 

Section 2.1) must be responsible for the localization of proteins to the Golgi. This implies 

looking for a subsequence (sequence of amino acid residues, where each two are 

separated possibly by a gap or arbitrary substring). Finding such a subsequence is a hard 

problem that cannot be yet efficiently solved. Therefore, we try to find a simpler signal 

patch, which consists of two or more substrings of length 4 that would always occur 

together in Golgi resident proteins. Results of this computation is available online [26]. 

Similarly to the previous experiment on single substrings, the sets of short substrings that 

occur together only in Golgi resident proteins are always found among similar sequences, 

and at most on 7 Golgi resident proteins. 
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6.4 Frequencies 

Frequencies of amino acids have been shown to be relevant for sorne structural properties 

of pro teins [21]. Therefore, we analyze these frequencies in the Golgi resident sequences 

(positive set), as well as in those of other organelles (negative set), and compare them to 

the average frequencies over the whole SwissProt v.38 database (see table 6.1). 
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Y: 0.035855 (+0.003737) Y: 0.03 1.9 (+0.0010/3) Y: 0.032118 

Table 6.1: amino acid frequencies (.6frequency with SwissProt v.38) 

We see that the maximum difference for the frequency of any amino acid between the 

positive set, negative set, and the SwissProt database, is at most around 1 %, which is not 

significant enough to characterize one set versus the other, or to even use this feature in 

our predictor. 
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7. Experimental Setup 

We need to divide the data set into a training set and a test set. The training set is used to 

adjust the parameters of the neural network, while the test set is needed to quantify the 

accuracy of our predictor on data it has not yet seen. It is important that the training set 

does not have a disproportionate number of a certain type of examples (positive or 

negative), as the network may become biased towards predicting a candidate example of 

that type. Also, as we have seen in Section 3.1, it is important that the training set 

represents the whole range of possible examples, in order to have good interpolation. A 

validation set is sometimes used to detect overfitting, preventing the ANN from 

becoming too specifie to the training data. A validation set is similar to a test set, as its 

data examples are not seen during training. We use four types of partitioning techniques 

throughout our experiments: 

lOjold cross-validation: This consists of splitting the data into 10 folds, then 

training the system on 9 of them, and testing on the remaining one. This process is 

repeated ten times by rotating the sets (using a different test set, and a new neural 

network every time). Since the examples used in the test set are not used during 

training, it aIlows us to check the stability and error of our prediction system on 

unseen data. Each fold contains the same proportion of positive and negative 

examples as in the whole data set. The folds are kept constant throughout aIl the 

experiments using the 155 examples in the data set. This aIlows us to compare the 

different implementations in a more consistent way. 

Leave-one-out cross-validation: This training technique consists of training the 

network on aIl but one example, and using that example to test the predictor. The 

process is repeated for every example in the data set. This technique is very useful 

for a more detailed analysis, and enables the detection of examples that are 

predicted incorrectly. Another advantage is that we can use more examples to 

train, while still being able to test the accuracy of the neural network. This is very 

useful when the data set is relatively smaIl (as it is in our case). 
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Random testing: This technique consists in choosing a proportion of examples to 

be taken randomly from the data set for testing. The rest of the examples are used 

to train the system. 

Sampling: This technique is used when the ratio of negative to positive examples 

is too low or too high. The data set is divided into multiple smaller sets. Bach of 

these sets contains aIl of the examples of the minority class, and a proportional 

number of examples of the majority class. We then run each experiment on aIl of 

these smaIler data sets, and either compute an average or report aIl of the results 

when quantifying the accuracy of our predictor in general. 

The actual experimental platform used to train neural networks, run tests, and view 

results is our own graphical user interface application called ProteiNNet v.l.O (see 

appendix F). 
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8. Results 

The most important aspect of our prediction system is the set of features that will be used 

to represent the data. If we extract a good set of features, which somehow encode for the 

protein location, then, with enough proper training and an appropriate structure, the 

neural network system should learn the relationship. Our main problem is the fact that the 

amino acid sequences in the data set have variable length from 150 to 1500 amino acids. 

Since a neural network cannot have a variable number of inputs, we cannot use the whole 

sequence by encoding each amino acid. Another option inc1udes using general features of 

proteins, such as length, molecular weight, type of domains present, the percentage of 

each kind of amino acid, secondary structure information if available, chemical 

properties, or evolutionary distance and similarity with other proteins. We explore several 

of these features in the following experiments. Sorne features have shown to give good 

accuracy on prediction (see Chapter 4, and results 8.3). Initially, we want to gain sorne 

insight into the localization process that takes place in the cellular environment by trying 

to find local features that could be responsible for this. The results for most of the 

experiments referred to in this chapter are available online [26]. For the sake of space and 

c1arity, we describe in detail only the most relevant results. 

8.1 First n amino acids 

As seen in Chapter 2, proteins are directed to their final location by means of a sorting 

signal, and there are different types of such signaIs. Our biggest challenge is to decide 

what type to look for, and then to find an appropriate encoding for the input into the 

network. Initially we focus on the simplest sorting signal (as described in Section 2.1), 

which consists of a short sequence of amino acids usually located within the first 60 

positions on the N-terminus of the amino acid chain. 

Since the unary encoding for amino acids has been shown to be quite successful, we use a 

l-of-20 encoding. Each amino acid is encoded using 20 input nodes (the node 

corresponding to the amino acid is switched on, while the others remain off). In 

preliminary experiments, we vary the number of amino acids used up to 60 [26]. We find 

40 to give the best accuracy on training and testing. This results in an input layer of 800 
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nodes (20*40). Since one hidden layer is generally enough for most problems [1,3], and 

more than one layer increases the computational complexity drasticaIly, we decide to use 

just one hidden layer. Next, we determine how many hidden units to include in this layer. 

Preliminary experiments show that a fully connected network (with various numbers of 

hidden nodes) cannot learn successfully, as the number of connections is too large 

relative to the amount of training data available [26]. This is as expected. We require 

additional structural groupings of the inputs that have a direct relationship: with aIl 20 

inputs corresponding to an amino acid going to one hidden node, we get a total of 40 

hidden nodes, one for each residue. Since the prediction is a Boolean function, we only 

need one output node, which can take values in the range (0.0,1.0). We define this value 

to be the confidence measure for our prediction. For the percent misclassified reported in 

our results, we consider a training example as correctly classified if the predicted value is 

within 0.4 ofthe target value (0 or 1), and misclassified otherwise. 

After varying different parameters, such as learning rate, momentum, and the number of 

epochs, we find that a leaming rate of 0.3 and a momentum of 0.1 give the best results. 

The accuracy usuaIly stabilizes after approximately 500 epochs. Figure 8.1 shows the 

averaged 10-fold cross-validation results on 1000 epochs. The mean squared error graph 

on the training and test set, as weIl as the results for each individual fold, are available 

online for every graph shown here [26]. We use an initial weight randomization between 

0.5 and -0.5 for the neural network connections. 
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Figure 8.1: Averaged results of 10-fold cross-validation on first 40 amino acids 

These results seem unexpectedly good for a first set of experiments, with a prediction rate 

of 80% (misprediction rate of 20%, standard deviation of 8.4%). After analyzing the 

proteins in the data set, we notice (in the cases where that information is av ail ab le ) that an 

important number of Golgi proteins (at least haIt) have a very similar domain structure, 

consisting of a short cytoplasmic domain «10 amino acids), followed by a single 

hydrophobie membrane spanning domain (16-25 AA), and a large carboxylterminal 

catalytic domain. These represent type II membrane proteins, and we believe their 

similarity caused the neural network to predict weIl. Furthermore, if the data set is a good 

representative of the actual Golgi resident protein distribution, this result is consistent 

with the fact that Glycosyltransferases (which are all Type II membrane proteins) 

represent a very significant portion of the Golgi resident pro teins [20]. To understand if 

the network is detecting the similarity of these proteins, we compute an all-versus-all 

alignment of the proteins based only on the first 40 amino acids, and keep the best 

alignment for each one [26]. We then go through the alignments by hand, c1assifying a 

protein as its best match: Golgi resident if the sequence that gives the best alignment 

codes for a Golgi resident protein, and non-Golgi resident otherwise. The quality of the 

alignments is based on similarity and PAM distance. Out of the 155 best-matched 

alignments, we misc1assify 32, which is exactly a 20.6% misc1assification rate. Therefore, 

in this experiment, the network is predicting slightly better than we cano We conc1ude that 
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there is sorne important location information in the first 40 amino acids, but that not all 

proteins have that information. It also seems likely that type II membrane proteins are 

being classified correctly. To check this hypothesis, we fUn a leave-one-out cross­

validation on the data set to determine which proteins are not classified correctly. The 

results on the positive set are displayed in table 8.1, where: 

"11:": is the protein number as assigned in table 5.1 

undcrlincd&bold: represents type II membrane proteins 

"~ ": means the protein was correctly classified 

"X": means the protein was misclassified. 

1: 'Ii 

2: X 

4: X 

5 : 
6: X 
7: X 
S: X 

9 : 
10: X 
11: X 
12: X 

29: ~ 

32: \1 

33: \1 
22: 
2 : X 

35: X 

36: y 

37: X 

38: '1} 

39: '1/ 
40: X 

41: \1 

42: ~ 
43: X 

46: X 

47: X 

'le: X 

49: \,/ 

50: X 

51: "j 

52 : X 

--
~16: X 

':;7: X 

58: X 

Table 8.1: Leave-one-out cross-validation on the positive set 

These results show that 23 out of the known 29 type II membrane proteins are being 

correctly classified (80%), versus 37 out of 58 total Golgi resident proteins (64%). In this 

case, it is possible that the 6 proteins are misclassified due to the noise in the training set: 

If the network is really leaming the classification of Golgi resident type II membrane 

proteins, then the training set contains many false positive examples. We check this 

hypothesis in the next experiment. These results support the fact that most type II 

membrane proteins are being classified correctly compared to all other types of Golgi 

resident proteins put together. 

Next, we mn tests extracting only the known Golgi resident type II membrane proteins as 

positive examples, and we sample the negative set to get a proportional negative set size 

(we also fUn experiments without sampling, as expected these are unsuccessful for 

correctly classifying positive examples). This results in two sets ofnegative examples; we 

fUn experiments using both sets. We do not use any other proteins from the Golgi to 
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avoid using any faise negatives. We achieve around 80% accuracy overall, and in the 

positive set (using the prediction from both experiments) [26]. 

We believe the prediction overall did not improve partly because of the sampling: we had 

to remove sorne examples that might have helped correctly predict a certain other 

example in the set that we kept, and similarly in the positive set where we might have 

exc1uded sorne relevant type II proteins that had not yet been identified as such. The 

results of this experiment suggest that we reached an upper bound on the accuracy that 

can be obtained using only the first n amine acids. Therefore, in order to improve our 

prediction engine, we require more biologically motivated features to use as inputs to the 

neural network. Evolution mutates sequences by, for example, domain shuffling, 

inserting, and de1eting amino acids from an amine acid sequence [4]. Therefore, if a 

certain type of domain is responsible for localization into the Golgi apparatus, it may 

possibly be located anywhere within the sequence. Anytime the first 40 amino acids are 

used, a misc1assification would result when this domain is located past the first 40 amino 

acids. In the next section we focus on finding such a domain, and using it to predict. 
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8.2 Transmembrane domains 

As seen in Chapter 2, experimental chimeric studies [20] show that the membrane 

spanning domains of mammalian Golgi glycosyltransferases are responsible for directing 

the localization of molecules to the Golgi apparatus. This is consistent with the results 

from the previous section, as most type II membrane pro teins have their transmembrane 

domain located within the first 40 amino acids. Therefore, we base our next set of 

experiments on transmembrane domains, and use as input, 40 amino acid residues 

centered on such domains. This length is large enough to encompass each transmembrane 

domain in the data set, but still yields a reasonable number of connections in the neural 

network compared to the size of the data set. Initially, we use the same input encoding, 

output encoding and structure as in the previous experiment. 

Not all proteins have information about the location of any existing transmembrane 

domains. AIso, this information is likely not to be available for new candidate sequences 

either. Therefore, we use various online tools to extract the transmembrane domains, and 

we try to determine their exact location manually by inspecting the results of the 

prediction algorithms [26]. We use the following three tools: DAS (Dense Alignment 

Surface) which bases its prediction on low-stringency dot-plots of the query sequence 

against a collection of non-homologous membrane proteins using a special scoring matrix 

[23]; HMMtop which uses a Hidden Markov Model, and is based on the difference in the 

amino acid distributions in various structural parts of pro teins [24]; and TMAP which 

uses a Kyte-Doolittle hydropathy profile to detect transmembrane spanning domains [25]. 

The resulting data set from this analysis is summarized in appendix D. An example of 

how we put these different results together can be seen in table 8.2. 
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Prediction Transmembrane domains predicted for 

algorithm used Golgi resident protein # 5 

start index - stop index 

TMAP 30-58 

267-290 

HMMtop 37-56 

218-237 

264-283 

298-315 

DAS 37-55 

(Cutoff: 2.2) 271-278 

Setsof40 27-66 

amino acids 260-299 

used in the data 

set 

Table 8.2: Extracting transmembrane domains from protein #5 

This new data set consists of 390 data examples, with 121 transmembrane domains 

located in Golgi resident proteins, and 269 in proteins from other organelles. For the 

positive set, we cannot use aIl of the transmembrane domains as positive examples, since 

for this experiment we assume that there is only one transmembrane domain per protein, 

responsible for the targeting of that protein to the Golgi. We run several tests using the 

whole data set (121 positive, and 269 negative examples), but as expected, these results 

are only moderate1y good (70% prediction rate, standard deviation of 4.8%) [26]. This is 

probably due to the large number of false positive examples given our assumption: if 

there is actually only one transmembrane domain per protein responsible for localization 

into the Golgi then using aIl the transmembrane domains will provide many false positive 

examples. Therefore we choose one transmembrane domain for each Golgi resident 

protein. We proceed by comparing the previous results on the first 40 amino acids with 

the prediction of the transmembrane domains. We keep the first 40 amino acids when the 

prediction is correct and a transmembrane domain is present. Otherwise, we cross­

reference the different prediction algorithms, as weIl as the information from SwissProt 

(when available) to find the domain most likely to be correct. Even with aIl of these 
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sources of information, we have sorne proteins with either too many transmembrane 

do mains (in the case of multiple membrane-spanning proteins), or no such domains at aIl. 

This is probably true for the soluble and peripheral proteins. In this case we decide to 

initially remove them from the set, and consider them as "special" cases. This is do ne in 

order to compute the accuracy of our system without this noise. The resulting positive 

data set consists of 49 positive examples (listed in table 8.3), and 269 negative examples 

(see appendix D), since every transmembrane domain in the negative set should be 

considered negative (according to our assumption). 

1 (1 >40) 

2 (1->40) 

3 (1 >40) 

4 (1->40) 
'j (27 >66) 

6 (40 >79) 

'7 (:I >40) 
8 (1 >40) 

9 (J >40) 

10 (466 505) 

11 (160 >199) 

12 ( >40) 
13 (l >40) 

14 (30 >69) 28 (1->40) 

15 (1->40) 29 (11 >50) 

16 (1 >40) 30 (11 >50) 

17 (247 >286) 31 (1 >40 ) 

18 (1 >40) 32 (1->40) 

19 (11-'>50) 33 (1 >40) 

21 (1 >40) 34 (21 >60) 

22 (IJ >:50 ) 3 ,-,:) (302 >341) 

23 ( :1 >40) 36 (21 >60) 

24 (1 >40) 37 ( 1 >40 ) 

26 (1 >40 ) 38 (1 >40 ) 

2 '1 ( 1 >40) 39 ( l >40 ) 

Table 8.3: Positive transmembrane data set 

41 ( 1 >40 ) 

42 (1 >40) 

44 ( ] >40) 

45 (1·,· >40) 

47 (11 30 

>1169) 

49 ( ] >40) 

51 (1 >40) 

'~2 (300 >339) 

53 (21 >60) 

54 (31 >70) 

.5 ( 1 0) 
'-'7 
") f ( 11 0 > 49 ) 

Table 8.3 shows the new positive transmembrane data set. Each data example is 

represented by the original protein number followed by the starting and ending index of 

the 40 amino acids surrounding the transmembrane domain. 

The next obstacle we have to overcome is the disproportional size of the negative set 

compared to the positive set: training the neural network with a 5:1 negative to positive 

ratio is not likely to give very meaningful results. We run leave-one-out cross-validation 

experiments using the best-predicted positive examples, and aIl of the negative examples 

[26], but as expected these are unsuccessful (only 45% of the Golgi transmembrane 

domains are correctly classified). We proceed by sampling, and divide the data set into 3 

smaller data sets. Each of these consists of aIl of the positive examples listed in table 8.3, 

and one third ofthe negative examples [26]. The results are shown in Figure 8.2. 
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Figure 8.2: Averaged 10-fold cross-validation on transmembrane data sets 1,2 and 3 

We see from these results that the success rate is lower using the transmembrane domains 

than the success rate using the first 40 amino acids. The average over the 3 data sets is 

approximately 77% prediction accuracy (23% misc1assification rate, standard deviation 

of 8.8%). We can expect such results based on the fact that we use prediction tools to 

detect the transmembrane domains. Therefore we compute a prediction on top of a 

previous prediction. This is likely to compound error. AIso, the same sampling problem 

as in the previous section may have arisen: by dividing the negative set on the training, 

we may misclassify sorne examples that would have otherwise been correctly c1assified 

(if one or more other relevant examples had not been in a different data set). We also run 

experiments using one transmembrane domain per protein, but this gives very similar 

results [26]. 

In order to verify how well the neural network is leaming given these data sets, we 

compute an all-versus-all alignment of all the sequences in the transmembrane data set 

(318 examples). We align on the 40 amino acids around the predicted transmembrane 

domains. We then extract the best alignment (based on similarity) of each sequence 

against all other sequences [26], and manually c1assify each one as its best match in a 
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nearest neighbour fashion. Using this technique we misc1assify 93 examples, which is 

exactly 23.8 % of misc1assification rate (76.2% prediction rate). This is similar to the 

average prediction rate of the neural network over the three data sets, therefore it seems 

that sampling does not affect its performance significantly, since overall it is predicting 

with a slightly better accuracy than we can using only the alignments. Again here, we see 

that there is sorne relevant location information within the transmembrane domains, but 

only encoding the amine acid residues does not allow the neural network to learn 

anything more than strict sequence similarity. Thus we need to add more biologically 

relevant information into our system. 

As seen in Chapter 2, sorne sorting signaIs may consist of a pattern of hydrophobicity of 

the amine acids. During the preliminary data analysis, we could not detect any obvious 

such pattern, but since membrane-spanning domains consist of hydrophobic amine acids, 

we decide to incorporate the hydrophobicity of the amine acids into the network. This can 

hopefully allow the network to recognize the important segment of the 40 amino acids 

used as input, because the amine acids located within this transmembrane segment would 

naturally have more importance in the prediction. 

In order to inc1ude the hydrophobicity level, we experiment with two different encodings 

and structures for the neural network. The first consists of keeping the same internaI 

structure, but adding one extra input node for each amino acid. This represents the 

hydrophobicity level of the corresponding amine acid, scaled from 0 to 1 (as listed in 

appendix C). Each amine acid is now represented using 21 input nodes; each set ofthese 

21 input nodes is connected to one internaI hidden node. This results in a 3-layered 

840x40xl neural network. We train our system on the same three transmembrane data 

sets; the results are shown in Figure 8.3. But this experiment is unsuccessful, as it does 

not improve our prediction rate, achieving a misc1assification rate on predicted 

transmembrane domains of approximately 24% on average over the three data sets 

(standard deviation of 8.3%). This seems to indicate that the hydrophobicity level of the 

amino acids around the transmembrane domain is not a useful measure for localization 

prediction. 
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Figure 8.3: Averaged 10-fold cross-validation on transmembrane data sets 1,2 and 3 with 
1-of-20 encoding and hydrophobicity level 

In order to verify that the hydrophobicity level of the amino acids around the 

transmembrane domain is not a useful measure for localization prediction, we try a 

completely different architecture. It consists of using a single node per residue 

representing only the hydrophobicity level also scaled from 0 to 1. This results in a small 

40x40x1 3-layered neural network. We train this new network on the three 

transmembrane data sets, and find a very poor prediction rate, of approximately 67% on 

average (standard deviation of 10.1 %) [26]. This is probably due to the fact that in both 

positive and negative examples, the amino acids located in the membrane-spanning 

domain are hydrophobie. Therefore this representation may have introduced noise in the 

training by adding the same signal in both positive and negative training examples. These 

results agree with the previous experiment and lead us to conc1ude that the 

hydrophobicity within transmembrane domains does not seem like a strong measure for 

predicting protein localization. 

Using transmembrane domains seemed to be a biologically meaningful approach, but 

from the results in this section, we see that even pushing the "special" cases aside, and 

taking into account the many different levels where noise could have been introduced into 
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the data, we still see that any sorting signal might be more complex than a simple pattern 

within the transmembrane domain, or the first 40 amino acids. We need to be able to 

encode a more global view of the proteins in the data set, using features that can 

encompass more properties. 
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8.3 Similarity score and P AM distance 

In the previous experiments, we conc1uded that using a fixed number of amino acids was 

successful for sorne types of sorting signaIs which we were able to detect, but could not 

detect more complex signaIs, where we must use more global features. 

As seen in the preliminary data analysis (Chapter 6), evolutionary trees and sequence 

alignments, the similarity score, P AM distance, and P AM variance of pairwise 

alignments seem to contain useful information regarding the localization of proteins in 

the data set. Furthermore, we determined that the neural networks are learning similarity 

between short 40 residues sequences, which allows a prediction rate of 80% at best. Thus, 

using a more general measure of similarity, and averaging this measure over the positive 

and negative data set, may give us a more accurate prediction, for all the different types 

of proteins. This amounts to approximating a nearest neighbour method based on the tree 

representation in Section 6.1, but weighing and adapting to the different measures 

according to their relevance for the prediction. Assuming that the data set is 

representative of all types of Golgi resident proteins, this method should even c1assify 

soluble, and peripheral Golgi proteins that were hard to classify in the previous 

experiments. 

Using DARWIN, we compute, for each sequence in the data set, the average similarity 

score, P AM distance, and P AM variance against the positive set, and against the negative 

set (see appendix E). In order to use these measures, we design a 2-layered neural 

network, with 6 input nodes, and one output node (see Figure 8.4). 

average similarity 
score against the 
positive set 

average similarity 
score against the 
negative set 

average PAM 
distance against 
the positive set 

average PAM 
distance against 
the negative set 

overagePAM 
variance against 
the positive set 

average PAM 
variance against 
the negative set 

GOLGI-RESIDENT/ 
/ NOH GOLGI-RESIDENT 

Figure 8.4: Neural network structure 
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The output encoding is the sarne as in the previous experirnents. As for the prediction of a 

candidate sequence, we use the natural output of the neural network, which is a floating 

nurnber in the range (0.0,1.0), as the confidence rneasure for the given prediction. 

Each input is scaled individually between 0 and 1, because this has been shown to 

irnprove the leaming ability of artificial neural networks [1]. After analyzing the data 

values, we decide to use the following scaling: 

Sirnilarity score: scaled between 0 and 300, where any value greater than 300 is 

set to 1.0. 

P AM distance: scaled between 180 and 250, where any value greater than 250 is 

set to 1.0, and any value srnaller than 180 is set to 0.0. 

P AM variance: scaled between 2000 and 6000, where any value greater than 6000 

is set to 1.0, and any value srnaller than 2000 is set to 0.0. 

We run various tests [26], including randorn test sets, 10-fold cross-validation, adding a 

hidden layer, and varying the nurnber epochs (::1 0,000), as weIl as the learning rate and 

rnornenturn. We find that the network has the best accuracy using the two-Iayer structure, 

training with a classification threshold of 0.5 (the lowest possible: a data exarnple is 

correctly classified if the output is within 0.5 of the target value), a learning rate of 0.3, a 

rnornenturn of 0.1 and approxirnately 350 epochs (overfitting seern to occur in several 

experirnents after that rnany epochs). Results are shown in Figure 8.5. 
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Figure 8.5: Averaged results of 10-fold cross-validation 
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As we can see from Figure 8.5, we obtain the most successful results by correctly 

classifying approximately 90% of the data examples (10 % misclassification rate, 

standard deviation of 6.8%). Setting the classification threshold to 0.4 gives a slightly 

worst prediction rate of87% (standard deviation of7.8%) [26]. 

Therefore, using these general features allows the network to recognize proteins using 

more complex sorting signaIs that we could not detect using other methods. This 

corresponds to our observation that the neural network is approximating a nearest 

neighbour method based on the tree clusters in Section 6.1. In order to verify this, we run 

a leave-one-out cross-validation test on the data set, to detect the misclassified examples 

in table 8.4). 
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Table 8.4: Leave-one-out cross-validation on the whole data set 
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Figure 8.6: Misclassified examples in the whole data set 

t 

Figure 8.7: Misclassified examples in the positive data set 
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Examining the results in table 8.4, and Figures 8.6-7, we see that most of the 

misclassified examples are proteins that are relatively far evolutionarily from any other, 

or are somehow closer to proteins in the complementary set. Therefore, a technique based 

on evolutionary relationship such as ours, cannot possibly classify those correctly. 

We try other implementations including using the similarity score, P AM distance and 

P AM variance of the best alignment (based on similarity) against the positive and 

negative sets, instead of using the average. We modify the scaling on the inputs 

accordingly. This gives worse results with a best prediction accuracy of 84% (standard 

deviation of 8%)[26]. We also try using the first 40 amino acids and the same encoding 

and structure as in Section 8.1, but we add the average similarity score, P AM distance, 

and P AM variance connected to a 41 st hidden node. This results in an 806x41x1 structure. 

This experiment gives good accuracy with an 86% prediction rate (standard deviation of 

8.7%)[26], but not as successful as using only these six measures alone. 
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8.4 Comparison of conjectures 

In this section, we run leave-one-out cross-validation experiments for each conjecture (or 

input encoding) used in this chapter and compare the sensitivity, specificity, and overaU 

prediction rate ofthe most relevant experiments. Results are shown in table 8.5. 

The specificity indicates the number of sequences that will be predicted as Golgi resident 

despite being non-Golgi resident. It is defined as the number of true negatives (TN) 

divided by a sum of the number of true negatives and false positives (FP). Sensitivity 

indicates the amount of sequences that will be predicted as non-Golgi resident despite 

being Golgi resident. It is defined as the number of true positives divided by a sum of the 

number of true positives and false negatives. The overaU prediction rate, expressed as a 

percentage, is computed as the number of misc1assified examples (FP+FN) divided by 

total number of data examples. For aU three measures, the range is (0.0,1.0) where a 

higher value represents a better conjecture. 

Conjecture Overall Sensitivity Specificity 

(input into the neural network) prediction rate TP/(TP+FN) TN/(TN+FP) 

First 40 amino acids 76.1% 0.60 0.86 

Type II membrane pro teins set 1 75.3% 0.59 0.85 

Type II membrane proteins set 2 75.3% 0.66 0.81 

40 Transmembrane amino acids 73.9% 0.44 0.84 

("good" positives, aU negatives) 

Average Similarity, P AM distance and 90% 0.81 0.95 

P AM variance 

First 40 amino acids with average 86% 0.79 0.91 

Similarity, P AM distance and variance 

Table 8.5: Comparison ofsome ofthe different conjectures used (data taken from leave­

one-out cross-validation experiments) 

"Data suggests that Golgi retention in many instances is not determined by a discrete and 

continuous sequence motif, but rather by disparate regions of the molecules" [20]. Our 

final results support this last statement, as our prediction system is able to predict (up to a 
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certain accuracy) whether a candidate test sequence it has never seen before is coding for 

a Golgi resident protein or not: the best prediction rate is achieved by looking at different 

measures of similarity over the whole protein (Average similarity, PAM distance, and 

variance). This does represent to a certain degree disparate regions of the molecule, 

whereas earlier experiments, trying to identify a discrete and continuous sequence motif, 

either failed or were unsuccessful in giving acceptable prediction accuracy. 
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9. Conclusions & Future work 

We have seen that the localization of Golgi resident proteins is a complex and not yet 

completely understood process. There are a multitude of different localization 

mechanisms, and sometimes, combinations of these are required for properly directing a 

protein to its final location. Not only is this process complex, but the very identity of the 

Golgi as an independent organelle is still being debated. Yet, without differentiating 

between the different types of proteins in the data set, or the different compartments of 

the Golgi apparatus, we designed a neural network prediction system capable of 

successfully classifying (approximately 90% accuracy) whether a given candidate 

sequence codes for a Golgi resident protein or not. 

The data set consists of amino acid sequences of 155 proteins, among which, 58 are 

actual Golgi resident proteins. The analysis of the data for any obvious patterns or 

different types of motifs within the sequences did not yie1d any results. We required a 

framework that would be robust to noise due to the nature of the data: amino acid 

sequences that are subject to mutations. Ideally, this system would be able to represent 

complex relationships in multivariate data by learning them from the data set. If the data 

set was sufficiently representative of the actual protein distributions within the Golgi, and 

the system set up in a proper way, we would get an accurate predictor. Thus we used an 

arti fi ci al neural network with a backpropagation learning algorithm. After multiple 

experiments trying to recognize signaIs within the actual amino acid sequences, and 

encoding those in different ways, our system was predicting at a relatively good accuracy 

(80%). But this approach was limited by the failure to recognize certain types of signaIs 

such as signal patches, and other complicated non-linear localization mechanisms. We 

found the best features to be the general measures available to represent evolutionary 

similarity of protein sequences. We showed that the evolutionary comparison of 

sequences was relevant for our problem, and allowed us to extract what may be the only 

features available for a general classification of proteins into the Golgi. 

We found our results to be surprisingly good given the different biases we were faced 

with, both within the bioinformatics tools we used, and when choosing how to encode 

amino acid sequence. 
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One possible direction for future work would be to design a specifie predictor for each 

type of Golgi resident protein: type l, type TI, multiple membrane-spanning, soluble, and 

peripheral proteins. Each predictor would use its own set of features extracted from the 

amino acid sequence to make a prediction. The problem wou Id be to generate training 

sets of sufficient size for each type. Our data set was too small to be divided in such a 

way. 

Another approach would be to design a specifie predictor for each type of known sorting 

signal, and group these together using a second level neural network on top of the first 

level predictors. The advantage of such a system is the possibility of recognizing proteins 

that require multiple sorting signaIs. The data set would need to be divided into different 

classes based on what is believed to be the localization mechanism for each protein. A 

problem that can be foreseen is again, gathering a data set that would yield large enough 

training subsets when divided. More importantly this approach would assume we know 

every localization mechanism at work in the Golgi. Since there exists controversy 

surrounding this organelle (Section 2.2), this is not likely to be the case. Therefore, this 

may prevent using an important part of the data set for which we know the localization 

but not the localization mechanism. This also implies that a candidate sequence that uses 

a different type of mechanism could not be predicted. 
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APPENDIX A: THE DATA SET 

#* Protein description Species 
1 Polypeptide n-acetylgalactosaminyltransferase homo sapiens 
2 Golgi stacking protein homolog GRASP55 rattus norvegicus 
3 CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,6-sialyltransferase rattus norvegicus 
4 Polypeptide n-acetylgalactosaminyltransferase mus musculus 
5 Alpha-l,2-mannosidase homo sapiens 
6 Man9-mannosidase sus scrofa 
7 COPD BOVIN Coatomer delta subunit bos taurus 
8 N-acetyllactosaminide beta-l ,3-N -acetylglucosaminyltransferase homo sapiens 
9 P58 rattus norvegicus 
10 ERGIC-53 protein precursor homo sapiens 
11 Endo-alpha-D-mannosidase rattus norvegicus 
12 Alpha-l ,3-mannosyl-glycoprotein beta-l ,2-N -acetylglucosaminyltrans. rattus norvegicus 
13 AlJlha-2,8-sialyltransferase mus musculus 
14 Mannosyl-oligosaccharide 1,2-alpha-mannosidase lA homo sapiens 
15 Alpha-l ,6-mannosyl-glycoprotein beta-l ,2-N-acetylglucosaminyltrans. sus scrofa 
16 Alpha-l ,6-mannosyl-glycoprotein beta-l ,2-N-acetylglucosaminyltrans. rattus norvegicus 
17 ALPHA2,3-SIAL YL TRANSFERASE ST3GAL VI homo sapiens 
18 CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,6-sialyItransferase mus musculus 
19 Beta-l,4-galactosyltransferase 1 mus musculus 
20 endomembrane protein emp70 precursor isolog Homo sapiens 
21 alpha-N-acetyl-neuraminnide alpha-2,8-sialyltransferase rattus norvegicus 
22 Beta-l,4-galactosyltransferase 1 Homo sapiens 
23 Prote in-tyrosine sulfotransferase 1 mus musculus 
24 CMP -N -acetylneuraminate-beta -1 ,4-galactosamide-alpha-2,3-sialyltrans. mus musculus 
25 beta-l,4-galactosyltransferase Homo sapiens 
26 CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltrans. mus musculus 
27 Beta-l,4-galactosyltransferase 1 Homo sapiens 
28 CMP-NeuAc--GM3 alpha2-8 sialyltransferase rattus norvegicus 
29 galactosyltransferase-sialyltransferase hybrid protein ? 
30 Beta-l,4-galactosyltransferase 5 mus musculus 
31 Heparan sulfate 2-sulfotransferase mus musculus 
32 Cation-dependent mannose-6-phosphate receptor mus musculus 
33 Heparan sulfate 2-sulfotransferase Cricetulus longicaud. 
34 Beta-l,4-galactosyltransferase 7 homo sapiens 
35 Major histocompatibility complex class 1 rattus norvegicus 
36 Beta-l,4-galactosyltransferase VII homo sapiens 
37 CMP-N-acetylneuraminate-beta-l,4-galactoside alpha-2,3-sialyltransferase rattus norvegicus 
38 Heparan sulfate 2-sulfotransferase xenopus laevis 
39 UDP-GALACTOSE: beta-n-acetyl-glucosamine-beta-l ,3-galactosyltrans II mus musculus 
40 CMP-sialic acid transporter mus musculus 
41 CMP -N euA C:(beta)-N -acetylgalactosaminide (alpha )2, 6-sialyltransferase homo sapiens 
42 UDP-GALACTOSE: beta-n-acetyl-glucosamine-beta-l ,3-galactosyltrans 1 homo sapiens 
43 Ectonucleoside triphosphate diphosphohydrolase 5 [precursor] mus musculus 
44 Beta-l ,3-galactosyltransferase 4 mus musculus 
45 Beta-l ,3-galactosyltransferase 4 rattus norvegicus 
46 Golgin-160 mus musculus 
47 Golgi apparatus protein 1 [Precursor] rattus norvegicus 
48 Cis-golgi matrix protein GM130 rattus norvegicus 
49 Alpha-mannosidase II mus musculus 
50 General vesicular transport factor p 115 rattus norvegicus 
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51 Heparan sulfate N-deacetylase/N-sulfotransferase rattus norvegicus 
52 Trans-golgi network integral membrane prote in TGN38 [Precursor] rattus norvegicus 
53 Mannosyl-oligosaccharide l,2-alpha-mannosidase lB mus musculus 
54 Mannosyl-oligosaccharide l,2-alpha-mannosidase lA mus musculus 
55 Beta-1,4 N-acetylgalactosaminyltransferase rattus norvegicus 
56 Galactosyltransferase associated protein kinase P58/GTA rattus norvegicus 
57 Vesicular integral-membrane protein VIP36 [Precursor] Canis familiaris 
58 Polypeptide n-acetylgalactosaminyltransferase rattus norvegicus 
59 Alpha enolase Mus musculus 
60 Elongation factor 1 alpha [Fragment] Dryoxylon onoharae. 
61 Actin, cytoplasmic 2 Hs,Mm,Rn,Bt,Tv,Aaa 
62 Dimethylaniline monooxygenase [N-oxide forming] 5 Mus musculus 
63 Protein disulfide isomerase A3 [Precursor] Rattus norvegicus 
64 Cytochrome P450 2Cl1 Rattus norvegicus 
65 Fatty-acid amide hydrolase Rattus norvegicus 
66 Dimethylaniline monooxygenase [N-oxide forming] 5 Oryctolagus cunicul. 
67 çytochrome P450 2B3 Rattus norvegicus 
68 Cytochrome P450 4A2 [Precursor] Rattus norvegicus 
69 glucuronosyltransferase (EC 2.4.1.17) Ugt1.6 Mus musculus 
70 Cytochrome P450 4A3 Rattus norvegicus 
71 Cytochrome P450 4F4 Rattus norvegicus 
72 Fatty aldehyde dehydrogenase Rattus norvegicus 
73 Cytochrome P450 4F1 Rattus norvegicus 
74 Cytochrome P450 51 Rattus norvegicus 
75 Cytochrome P450 2D 1 Rattus norvegicus 
76 Cytochrome P450 4F5 Rattus norvegicus 
77 Tapasin [Precursor] Mus musculus 
78 Cytochrome P450 2C7 Rattus norvegicus 
79 Cytochrome P450 2J3 Rattus norvegicus 
80 Cytochrome P450 1A2 Rattus norvegicus 
81 Dimethylaniline monooxygenase [N-oxide forming] 3 Mus musculus 
82 Dimethylaniline monooxygenase [N-oxide forming] 1 Rattus norvegicus 
83 Cytochrome P450 2D5 Rattus norvegicus 
84 Cytochrome P450 2C6 Rattus norvegicus 
85 Cytochrome P450 2C23 Rattus norvegicus 
86 Cytochrome P450 17 Rattus norvegicus 
87 Cytochrome P450 3A2 Rattus norvegicus 
88 Cytochrome P450 2E1 Rattus norvegicus 
89 Cytochrome P450 2B 1 Rattus norvegicus 
90 Cytochrome P450 2C13, male-specifie Rattus norvegicus 
91 Cytochrome P450 2B2 Rattus norvegicus 
92 Cytochrome P450 2D2 Rattus norvegicus 
93 Cytochrome P450 3A1 Rattus norvegicus 
94 Cytochrome P450c21 Canis familiaris 
95 Cytochrome P450 2D 18 Rattus norvegicus 
96 Cytochrome P450 2B12 Rattus norvegicus 
97 Cytochrome P450 2D3 Rattus norvegicus 
98 Epoxide hydrolase 1 Rattus norvegicus 
99 L-gulonolactone oxidase Rattus norvegicus 
100 Cytochrome P450 3A18 Rattus norvegicus 
101 Cytochrome P450 2C39 Mus musculus 
102 Cytochrome P450 2C12, female-specific Rattus norvegicus 
103 Arylacetamide deacetylase Rattus norvegicus 
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104 Oligosaccharyltransferase Mus musculus 
105 Cytochrome P450 2Al Rattus norvegicus 
106 Cytochrome P450 2C22 Rattus norvegicus 
107 Cytochrome P450 2A2 Rattus norvegicus 
108 7 -dehydrocholesterol reductase Rattus norvegicus 
109 Delta-6 fatty acid desaturase Mus musculus 
110 F amesyl-diphosphate famesyltransferase Rattus norvegicus 
111 3 beta-hydroxysteroid dehydrogenase type III Rattus norvegicus 
112 Cytochrome P450 2C1 [Fragment] Oryctolagus cunicul. 
113 Protein transport protein Sec61 alpha subunit isoform 1 Canis familiaris 
114 Metallothionein-1 Mus musculus 
115 NADPH-cytochrome P450 reductase Rattus norvegicus 
116 Protein disulfide isomerase [Precursor] Mus musculus 
117 Protein disulfide isomerase [Precursor] Rattus norvegicus 
118 Rat 3-methylcholanthrene-inducible truncated UDP-glucuronosyltrans. Rattus norvegicus 
119 Calnexin [Precursor] Rattus norvegicus 
120 DoIichy1-diphosphooligosaccharide--g1ycosy1tr. 67 kDa subunitrPrecursor l Rattus norvegicus 
121 Dolichyl-diphosphooligosaccharide--glycosyltr. 48 kDa subunit[Precursor] Homo sapiens 
122 Corticosteroid 11-beta-dehydrogenase, isozyme 1 Rattus norvegicus 
123 NADH-cytochrome b5 reductase Rattus norvegicus 
124 Cytochrome b5 Rattus norvegicus 
125 Protein transport protein SEC61 beta subunit Homo s. , Canis f. 
126 Transmembrane 9 superfamily protein member 2 [Precursor] Homo sapiens 
127 UDP-glucuronosyltransferase Rattus norvegicus 
128 UDP-glucuronosyltransferase 2B3 precursor, microsoma1 Rattus norvegicus 
129 UDP-glucuronosyltransferase 1-1 precursor, microsomal Rattus norvegicus 
130 UDP-glucuronosyltransferase 2B2 precursor, microsomal Rattus norvegicus 
131 UDP-g1ucuronosyltransferase 1-5 precursor, microsomal Rattus norvegicus 
132 UDP GLUCURONOSYLTRANSFERASE [Fragment] Rattus norvegicus 
133 UDP-glucuronosyltransferase 2B6 precursor, micros omal Rattus norvegicus 
134 UDP-glucuronosyltransferase 2B 1 precursor, microsomal Rattus norvegicus 
135 UDP-glucuronosyltransferase 2B 12 precursor, microsomal Rattus norvegicus 
136 Long-chain-fatty-acid--CoA ligase, liver isozyme Rattus norvegicus 
137 Retinol dehydrogenase type 1 Rattus norvegicus 
138 Amine oxidase [flavin-containing] B Rattus norvegicus 
139 60 kDa heat shock protein, mitochondrial [Precursor] Mus m. , Rattus n. 
140 ATP synthase alpha chain, mitochondrial [Precursor] Xenopus laevis 
141 A TP synthase beta chain, mitochondrial [Precursor l Mus musculus 
142 NADH-ubiquinone oxidoreductase 49 kDa subunit, mitochon. [Precursor] Homo sapiens 
143 Glutamine synthetase Mus musculus 
144 Glutamine synthetase Rattus norvegicus 
145 Isocitrate dehydrogenase [NADP], mitochondrial [Precursorl Bos taurus 
146 Argininosuccinate synthase Rattus norvegicus 
147 Delta-l-pyrroline-5-carboxylate dehydrogenase, mitochondrial [Precursor] Homo sapiens 
148 A TP synthase alpha chain, mitochondrial [Precursor] [Fragment] Rattus norvegicus 
149 ATP synthase beta chain, mitochondrial [Precursor] Rattus norvegicus 
150 Voltage-dependent anion-selective channel protein 1 Mus musculus 
151 Cytochrome c oxidase polypeptide II Rattus norvegicus 
152 Cytochrome c oxidase subunit IV isoform 1, mitochondrial [Precursor] Rattus norvegicus 
153 A TP synthase e chain, mitochondrial Rattus norvegicus 
154 PEX13 Cricetulus griseus 
155 Uricase Rattus norvegicus 

*Protem number as defined in table 5.1 
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A1ignment of 2,111: 

APPENDIX B: DOMAIN CANDIDATES 
("short" best local alignments using Darwin) 

1engths=19,19 simil=73.7, PAM_dist=69.295, offsets=76969949,80071766, identity=57.9% 
LLKANVEKPVKMLIYSSKT 

11·1·11· ·1··: 1111·1 
LLDACVEASVPAFIYSSST 

A1ignment of 11,100: 
1engths=14,14 simil=66.5, PAM_dist=92.8845, offsets=77015482, 80060750, identity=50.0% 
MGHSLPMFYIYDSY 
!. ·11 ! Il II·! 1 
LATSLMLFYIYGTY 

Alignment of 12,102: 
lengths=14,13 simi1=86.8, PAM_dist=55.2992, offsets=79987594,80062813, identity=71.4% 
LLLLFFWTRPAPGR 

1111!·1 Il: III 
LLLLYLW RPSPGR 

A1ignment of 51,84: 
1engths=31,31 simi1=81.6, PAM_dist=145.42, offsets=80015286,80044609, identity=32.3% 
SSNYPSSETFEEIQFFNGHNYHKGIDWYMEF 

I·:! 1· ·I·I!· : 1:: 1:·· ·I··I!! 1·1 
SKEFPDPEIFDPGHFLDGNGKFKKSDYFMPF 

A1ignment of 52,51: 
1engths=27,27 simi1=64.1, PAM dist=151.071, offsets=80014698,80011771, identity=29.6% 
RGLEPSADASESDCGDPPPVAPSRLLP 

1: 1··::··:::···: ·II! ·11· ·11 
RALPSASKPNNTSSENNPPIQPSTPLP 

Alignment of 56,96: 
lengths=18,18 simi1=84.6, PAM_dist=86.3411, offsets=80018920,80056820, identity=55.6% 
LSDQGFDLMNKFLTYYPG 

11·1 I! 1·: ·II·I! Il 
LSSQVFELYSGFLKYFPG 

A1ignment of 58,19: 
lengths=15,15 simi1=79.4, PAM_dist=64.6616, offsets=77686757,78801537, identity=66.7% 
LGVTLVYYLSGRDLS 

Il! ·1·1·111·111 
LGIGLLYSLSGPDLS 

A1ignment of 60,69: 
lengths=25,22 simi1=69.5, PAM_dist=87.1791, offsets=80014287,80029016, identity=44.0% 
TGEFEAGISKNGQTREHALLAFTLG 
1·1111 !:.: 1 II·::·I! Il 
TQEFEAYVNASG_EHGIVVFSLG 

A1ignment of 65,149: 
1engths=11,11 simi1=77.4, PAM_dist=57.5646, offsets=80024940,80106402, identity=63.6% 
MPSPAMRRALI 
! 1: Il! 1111: 
LPAPALRRALL 

A1ignment of 99,82: 
1engths=16,16 simi1=74.8, PAM_dist=61.2582, offsets=80042332,80059747, identity=62.5% 
KRVLVVGMGNSGTDIA 
1 ! 1 . III 1: 1 . ! III 
KKVKVVGGGHSPSDIA 

A1ignment of 103,40: 
lengths=49,49 simi1=74.5, PAM_dist=171.981, offsets=79997754,80063594, identity=22.4% 
GRFKASLSENVLGSPKELAKLSVPSLVYAVQNNMAFLALSNLDAAVYQV 

I·:·I:::::! 1·: 1··· ·11·1·: I! I·:·:·!·: :·I:·!·: ·1·: 
GNLTAAVTQQILQDPDVKIKLKVQALIYPALQALDMNVPSQQENSQYPL 
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Alignment of 111,89: 
lengths=19,19 simil=89.6, PAM_dist=73.0096, offsets=80049622,80072009, identity=52.6% 
QEILDYIGHIVEKHRATLD 

1:· !:II·:II:II·III 
QKTSEWIGTLVEQHRETLD 

Alignment of 113,123: 
lengths=34,34 simil=68.4, PAM_dist=178.624, offsets=80073720,80083146, identity=23.5% 
GLGSGISLFIATNICETIVWKAFSPTTVNTGRGM 
Il .. I .. !!!:I·I ·:!I·!·!:I ::·: .. !I: 
GLPIGQHIYLSTRIDGNLVIRPYTPVSSDDDKGF 

Alignment of 114,69: 
lengths=12,12 simil=69.3, PAM_dist=119.334, offsets=80029238,80066963, identity=58.3% 
CCAYGCRKCFGG 

Il .. 11·11 ·1 
CCPVGCSKCAQG 

Alignment of 115,98: 
lengths=25,26 simil=87.7, PAM dist=102.155, offsets=80058675,80075209, identity=46.2% 
ELVLASLL GFVIYWFVSRDKEETLP 
!!II Il:-I·:·III! 1·1:1·:1 
DMVLFSLIVGVLTYWFIFRKKKEEIP 

Alignment of 119,50: 
lengths=18,18 simil=77.9, PAM_dist=93.9508, offsets=80013542,80080267, identity=38.9% 
EEEDESGDQEDDDDELDD 
III .. ·II:I!!!!:I!! 
EEEKNKGDEEEEEEKLEE 

Alignment of 120,46: 
lengths=48,48 simil=88.9, PAM dist=125.495, offsets=80004752,80081699, identity=31.2% 
SDLTSAQKEMKTKHKAYENAVSILSRRLQEALASKEATDAELNQLRAQ 
I·I:I·:I·!:I:III .. :·!:!I .. II: .. : .... :I!::I·II 
STLNSGKKSLETEHKAVTSEIAVLQSRLKTEGSDLCDRVSEMQKLDAQ 

Alignment of 125,64: 
lengths=18,21 simil=61.9, PAM_dist=88.5788, offsets=80023574,79063632, identity=42.9% 
PVLVLVLTL SSLLLLSLW 
Il ·111 !! 1-: I::! 1·: 1 
PVPVLVMSLLFIASVFMLHIW 

Alignment of 139,6: 
lengths=11,11 simil=88.2, PAM_dist=65.6683, offsets=79985275,80097549, identity=72.7% 
GGLGGGLGGGL 
Il!III!III! 
GGMGGGMGGGM 

Alignment of 147,6: 
lengths=34,34 simil=66.8, PAM dist=158.238, offsets=79985508,80104599, identity=32.4% 
DALDTLFIMKMKNEFEEAKAWVEEHLNFNVNAEV 
1 . : : : ! 1 .:. 1 : Il ! : . 1 . 1 . 1 . : 1 : : . 1 : 1 
DIFQAIFEKHYKTEFDKHKIWYEHRLIDDMVAQV 

Alignment of 148,61: 
lengths=18,18 simil=78.7, PAM_dist=78.6609, offsets=80020917,80105640, identity=50.0% 
FLGMESCGIHETTFNSIM 
1:11:1·11:11· ·!I! 
FIGMKSRGIYETPAGTIL 

Alignment of 150,19: 
lengths=9,9 simil=68.9, PAM_dist=37.1479, offsets=77686880,80107125, identity=77.8% 
KKNPEIKTG 

111 .. 1111 
KKNAKIKTG 

Alignment of 151,126: 
lengths=35,35 simil=68.6, PAM_dist=136.33, offsets=80084841,80107457, identity=28.6% 
NSLVIVLFLSGMVAMIMLRTLHKDIARYNQMDSTE 

:: 1: Il::! I·! I··I!·· ·I···!::·: ·11:·1 
HTLMIVFLISSLVLYIISLMLTTKLTHTSTMDAQE 
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Alignment of 152,103: 
lengths=36,36 simil=65.9, PAM dist=221.518, offsets=80063409,80105200, identity=19.4% 
FLLISVVLVAYYIYIPLPDDIEEPWKIILGNTLLKL 

I··!·:!····I! Il! I:·:!: ·I··:··:·! I:! 
FTALVLIWEKSYVYGPIPHTFDRDWVAMQTKRMLDM 

Alignment of 153,71: 
lengths=6,6 simil=58.1, PAM_dist=41.3497, offsets=80030920,80103636, identity=83.3% 
YSFLKP 
Il ! III 
YSYLKP 

Alignment of 154,19: 
lengths=49,49 simil=91.7, PAM_dist=182.098, offsets=77686807,80108589, identity=32.7% 
PPPPLGVSPKPRPGLDSSPGAASGPGLKSNLSSLPVPTTTGLLSLPACP 
1111 .. ..!. II·· 1 : Il :: : Il : : : 1· .: .. :. 1 .. 1 .. : 1 ... 1 
PPPPKPWETRRIPGAGSGPGTGPGPAFQSADLGPTLLTRPGQPTLTRVP 

A1ignment of 155,3: 
lengths=8,8 simil=70.0, PAM_dist=28.9482, offsets=79983922,80109430, identity=87.5% 
FEKNMVKH 

1111 III 
FEKNGVKH 
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APPENDIX C: PROPERTIES OF AMINO ACIDS 

AminoAcid 3-Letter Code l-Letter Code Molecular Weight Hydrophobicity* 

Alanine Ala A 89.09 0.616 

Cysteine Cys C 121.16 0.680 

Aspartate Asp D 133.10 0.028 

Glutamate Glu E 147.13 0.043 

Phenylalanine Phe F 165.19 1.00 

Glycine Gly G 75.07 0.501 

Histidine His H 155.16 0.165 

Isoleucine Ile 1 131.18 0.943 

Lysine Lys K 146.19 0.283 

Leucine Leu L 131.18 0.943 

Methionine Met M 149.21 0.738 

Asparagine Asn N 132.12 0.236 

Proline Pro P 115.13 0.711 

Glutamine GIn Q 146.15 0.251 

Arginine Arg R 174.20 0.000 

Serine Ser S 105.09 0.359 

Threonine The T 119.12 0.450 

Valine Val V 117.15 0.825 

Tryptophan Trp W 204.23 0.878 

Tyrosine Tyr Y 181.19 0.880 

* Scaled between 0 and 1. 
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APPENDIX D: PREDICTED TRANSMEMBRANE DOMAINS 

"x: y (a->b)" 
where "x" represent the data example number in this new data set, "y" represent the 
protein number in the original data set, "a" represents the starting index of the 40 amino 
acids around the transmembrane domain, and "b" the end index. 
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4: (306)3'15) 

5: 4 (1->40) 
6: (27 >66) 

7: (260 >299) 

Cl: 6 ('10>79) 
9: 6 (170~>209) 

10: 6 (280)319) 

11: 7 (J >40) 
12: 8 (1 >40) 

13: 9 (1 >40) 
14: 9 (471 >510) 

15: 10 (1->40) 

16: 10 (466->505) 
17: Il (1 >40) 
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J08: ':il ('-'01 >:i40) 
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APPENDIX E: AVERAGE SIMILARITY SCORE, PAM DISTANCE, AND PAM 
VARIANCE AGAINST POSITIVE AND NEGATIVE DATA SETS 

average average average PAM average PAM average PAM average PAM 

Protein Similarity Similarity distance distance variance variance 

number score against score against against against against against 
positive negative positive negative positive negative 

examples examples examples examples examples examples 
1 74.073475 47.599768 239.998283 233.361526 3398.492752 3652.811054 
2 48.734857 46.434791 244.471172 224.452117 3473.227087 3685.460425 
3 200.821406 45.660555 219.710330 248.060425 3327.592907 4093.205026 
4 74.804655 46.912512 246.045009 245.371455 3315.662192 3419.673368 
5 365.929896 49.621727 227.963204 244.322917 2878.653955 3192.925250 
6 389.605258 50.120134 218.145673 232.983985 2690.191408 3236.101254 
7 48.766320 44.821857 239.669698 242.133855 2996.676544 3744.956660 
8 51.393063 49.957234 216.926531 231.752036 3006.748314 3344.694827 
9 150.505049 47.303188 221.709405 241.898779 2978.732564 3237.629020 

10 150.625291 47.468643 221.091175 231.124326 2935.260389 3345.186437 
11 48.710264 46.368035 243.405311 256.209112 3352.925409 3885.221548 
12 48.971226 48.853335 240.746247 237.176103 3493.246561 3783.966867 
13 224.568454 48.517083 235.072545 251.704194 3030.581909 3499.446651 
14 388.127923 49.039955 206.589113 244.731345 2957.227120 3391.830568 
15 127.029065 47.859931 242.335038 233.426379 3494.143045 3659.522182 
16 126.619904 47.789094 233.650918 241.967373 3516.333173 3959.813253 
17 89.544045 48.591853 230.801013 225.489460 3718.849146 3623.202220 
18 197.697034 46.895781 227.816420 242.663378 3449.969901 3795.888464 
19 325.926569 47.526414 213.299688 222.958226 3106.082516 3583.715951 
20 50.223638 57.697203 231.803608 236.793013 3480.745929 3642.944648 
21 230.590157 48.061558 235.685657 253.057713 3116.895077 3527.745741 
22 371.422610 45.654052 209.341689 241.375514 2934.183715 3891.385716 
23 47.833011 46.598561 223.762625 233.314841 3286.791750 3647.493684 
24 89.417442 45.755103 222.241425 248.900860 3024.066991 3890.879272 
25 314.848389 45.198001 203.766139 243.166612 3468.504892 3953.933194 
26 84.124089 46.984935 210.538848 225.422568 3158.217190 3915.969218 
27 373.224094 45.266566 200.608543 246.117942 2939.383090 3932.151643 
28 230.649896 48.044894 229.863983 253.724030 2889.355446 3598.688182 
29 507.999446 48.917770 181.485147 247.374941 1970.253010 3514.079986 
30 137.641617 47.161547 222.534246 230.711229 3265.872447 3791.765569 
31 188.082799 47.738040 229.765826 245.664768 3553.891811 3480.264314 
32 45.470291 43.499967 241.354906 249.620799 4163.384419 4369.876933 
33 188.764316 47.558886 230.594855 240.971169 3488.761389 3481.929360 
34 162.792642 46.767647 207.739511 242.570086 2952.837854 3961.384271 
35 46.756342 44.918298 226.758424 236.830831 3965.517749 4109.545265 
36 162.130715 46.844842 212.361803 239.055444 2952.058497 3921.329755 
37 91.481048 47.480575 205.885811 244.959980 2910.236520 3678.714550 
38 177.430167 47.335468 231.236649 245.086284 3377.623767 3644.822145 
39 134.914187 45.342553 227.999700 252.860424 3630.391256 4006.966023 
40 45.659094 44.762077 235.479612 235.021107 3841.591338 4250.555479 
41 75.382006 44.804611 231.992126 248.924296 3159.055790 4107.047402 
42 134.852635 45.311371 229.139832 253.334426 3637.663760 4037.056149 
43 46.627042 49.203661 240.078704 236.296385 3810.882123 3315.826882 
44 131.810117 48.399177 226.606642 239.891492 3586.185098 3901.445755 
45 133.080893 47.881978 206.276318 238.726473 3478.901765 3847.925030 
46 62.565264 52.613810 221.085255 235.634803 2313.766182 2614.864108 
47 53.002949 52.319350 233.181325 235.584408 2991.914705 2708.338950 
48 58.447418 48.619086 231.228891 238.522855 2545.483181 2952.104627 
49 53.221630 52.630513 256.252482 241.414105 2888.783145 2833.901107 
50 56.625608 50.875887 233.745899 261.651412 2748.839182 3061.283674 
51 54.295158 53.353759 254.722153 232.726246 2923.576471 2968.578070 
52 46.003405 43.511021 237.729687 225.958579 4009.146414 3814.698027 
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53 363.449657 49.381345 230.857898 229.903580 3183.719516 3232.654541 
54 395.782034 49.452192 226.876579 241.892952 3017.251960 3429.256107 
55 48.954298 49.629987 242.279350 224.643619 3198.666050 3123.852087 
56 46.718841 49.229904 245.140041 238.825862 3447.787137 3410.972202 
57 66.625628 47.512048 222.638776 227.777775 3743.470615 3778.616425 
58 44.518622 42.104325 221.756679 235.991679 3938.624068 4433.543084 
59 48.348535 47.606710 243.238768 242.889709 3379.085464 3616.066568 
60 43.590907 43.929461 234.686946 230.048693 4630.021116 4334.571883 
61 45.251389 47.924770 240.611975 241.830434 3797.845470 3501.756220 
62 47.175131 148.092781 262.021009 227.185743 3726.333570 3142.426200 
63 47.685311 65.838043 251.829389 245.318043 3377.664126 3254.924985 
64 50.558040 579.795848 212.223917 195.295390 2819.290141 2110.582133 
65 47.989041 49.947691 235.967642 225.629302 3604.641107 3220.628127 
66 48.705664 149.595887 236.909234 223.847921 3227.324949 2965.329088 
67 51.339857 493.548109 231.346572 204.350345 2845.326393 2199.785717 
68 49.787923 232.994772 219.486614 211.428607 3096.553824 2567.063229 
69 49.349846 329.498111 261.491511 219.802848 3295.842289 2976.567977 
70 48.962903 232.230394 223.697691 218.018387 3315.538281 2455.641124 
71 48.171214 236.361018 262.465853 210.368507 3411.233025 2341.153613 
72 45.788586 51.175026 258.027865 242.431961 3746.740957 2890.648836 
73 47.530337 233.830273 258.813794 230.874559 3882.613285 2436.394132 
74 49.406645 110.386616 231.667791 231.192380 3173.289408 2268.509144 
75 47.627995 484.002238 233.318627 194.247165 3411.101779 2416.901940 
76 47.781748 225.241457 250.111640 222.740189 3807.018836 2575.199472 
77 49.208347 47.473224 226.297593 235.822693 3551.368483 3892.845772 
78 48.534213 582.881510 236.670738 195.634805 3298.400627 2146.617871 
79 49.224877 395.124142 238.645806 210.463086 3071.138718 2292.625658 
80 46.518114 233.636490 254.811576 204.573831 3751.917466 2322.736206 
81 47.149866 127.440456 265.213755 228.687657 4082.997639 3383.257455 
82 48.999356 124.229582 250.116359 236.745469 3586.781923 3149.965986 
83 47.227011 484.586934 238.207214 197.455023 3551.483431 2493.263804 
84 49.152166 585.537497 237.622433 180.182763 3206.013466 2102.451834 
85 48.461179 529.463080 237.145891 206.043658 3350.601786 2187.823258 
86 45.756318 228.884914 253.720180 213.332397 3830.121908 2807.633087 
87 48.140947 252.663378 255.017634 226.590736 3601.833696 2322.700396 
88 50.724197 484.652926 220.478565 208.701323 2932.254900 2313.373907 
89 48.481156 565.509342 237.473612 187.855389 3173.094495 2422.652866 
90 49.888050 550.826957 231.598439 205.635808 3393.820757 2363.521192 
91 48.859934 564.730826 224.284090 187.914781 3167.243114 2297.469121 
92 48.660540 468.904866 249.061245 197.372320 3248.320847 2328.899896 
93 48.729698 247.435922 252.336131 233.736826 3622.386108 2424.033075 
94 48.340816 194.802362 220.480013 220.401897 3397.414978 2488.382363 
95 50.176104 453.160462 245.195281 199.281414 3172.844651 2305.518815 
96 48.804608 524.452350 232.767320 194.851582 2948.436439 2284.536689 
97 46.224707 481.783075 254.475171 196.377440 3578.378338 2432.558488 
98 47.253632 48.135832 244.358814 240.078588 4040.587335 3710.097638 
99 50.552069 50.174008 236.925446 237.610168 3376.013253 3284.000004 

100 49.764691 223.472584 248.523213 226.655251 3295.041980 2547.966421 
101 50.021466 596.861252 224.693953 192.668594 3132.016207 2152.600160 
102 49.767053 536.875774 219.098794 195.949424 3180.092889 2303.297815 
103 47.489821 47.070903 236.098645 250.486821 3662.233485 3498.990380 
104 45.328141 99.429669 247.450252 227.697471 3892.304365 3267.626802 
105 49.908084 472.855236 238.572562 203.086346 2957.263849 2482.306737 
106 50.702772 508.538057 226.652682 205.905353 3123.792922 2398.676742 
107 49.527577 450.139497 232.330034 204.920406 3366.879893 2235.941113 
108 50.322266 48.684705 230.206055 238.645442 3740.962045 4022.212863 
109 50.015017 49.665612 245.747957 242.596339 3317.622741 3706.699733 
110 49.937208 47.532559 219.764686 238.013273 3180.925211 3529.384883 
111 50.208974 49.384274 246.404859 228.845757 3615.750666 3675.075232 
112 52.482402 565.912285 223.466487 183.958743 2691.439594 2311.121078 
113 45.901879 48.305229 245.164365 254.139030 3783.593028 3786.805679 
114 33.227528 32.633955 206.999677 211.274846 9606.571005 9897.600327 
115 48.414030 51.182766 252.341366 229.065488 3291.762126 3157.714501 
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116 47.725085 1l7.173326 242.033608 241.250536 3670.737957 3448.537609 
117 48.57l260 1l7.466679 237.779229 242.519816 3587.938102 3516.964242 
118 47.355465 278.500429 259.270815 213.967872 3389.169229 2992.491656 
119 50.558782 50.191596 234.375589 219.857240 3228.1l7079 331l.782875 
120 50.600646 48.639516 241.453312 256.080694 3082.057592 3321.083820 
121 45.7l7568 98.907128 245.596577 234.670617 3658.929694 3405.656068 
122 41. 966896 48.322618 256.626992 223.724817 4105.828874 3622.536359 
123 44.438279 48.862317 244.060455 220.587090 3883.132322 3531.727561 
124 40.428569 42.951350 235.936415 234.815688 5173.602148 4899.954325 
125 39.343600 40.025550 220.259139 219.425461 5902.128818 5937.494722 
126 64.880220 51.574920 239.438335 243.025901 3512.436258 3036.084749 
127 48.092727 345.603289 256.369829 217.240722 3298.320870 2875.7827l2 
128 48.17l289 314.567837 246.949397 223.824819 3519.223092 3143.772446 
129 47.429519 266.019926 235.80331l 225.396204 3472.372803 2877.595134 
130 48.429805 302.907446 245.414214 226.545746 3196.021755 2904.254681 
131 48.0607l4 269.958362 241.650101 219.718778 3547.953436 2839.4641l4 
132 47.023102 185.242446 248.590001 218.340013 3610.263213 3211.606812 
133 48.153569 313.413450 249.669846 226.355424 3690.320026 3122.283995 
134 49.015496 253.814221 257.610592 220.452310 3321.441l75 2865.033835 
135 48.770736 296.545994 250.122340 216.662644 3415.281970 3127.129295 
136 48.989356 49.874091 242.343013 244.5437l4 3563.105206 3305.149286 
137 45.938242 47.392949 238.219245 247.429490 3782.953222 3818.280662 
138 48.806224 50.6941l9 265.168536 240.749470 3625.549321 3391.614010 
139 48.837895 46.738823 231.855378 240.929159 3356.867035 3314.722792 
140 47.906513 108.648094 220.853498 226.060978 2754.368873 3296.978388 
141 46.350531 109.51l798 241.801092 224.555694 3324.3 77l 77 3253.564153 
142 47.495731 1l6.738310 244.59031l 225.519945 3316.578369 2990.766278 
143 47.311779 1l7.287838 240.968963 223.529396 3282.155913 2935.872549 
144 47.586318 49.546635 229.824531 254.827295 3576.292531 3569.121830 
145 47.233634 91.015289 240.327476 248.348506 3772.662614 4087.577766 
146 46.987l36 92.436365 245.629253 234.829700 4004.729027 3583.784528 
147 46.376370 46.294379 242.277314 243.28097l 3727.183317 3801.653058 
148 44.995728 45.894231 246.408347 222.591256 4000.136643 3839.397346 
149 47.893964 49.87l405 229.599489 240.075721 3274.915064 3599.917061 
150 44.783344 43.907l88 226.934765 236.130576 4186.743418 4534.393477 
151 45.034897 45.901417 219.545475 221.703801 4126.147280 4050.391275 
152 39.948817 42.179853 252.972182 248.897299 5791.411310 5121.918748 
153 38.928428 35.341034 199.564502 214.091458 4856.602268 6037.207077 
154 50.647880 46.13987l 243.705076 239.703644 3389.454527 3736.841386 
155 45.6131l0 44.982016 240.833739 245.261844 3775.821798 3978.721069 
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APPENDIX F: PROTEINNET USER MANUAL 

The user starts the pro gram by double c1icking on the file ProteiNNet.exe. Figure F.l 

shows the opening dialog of the program. This dialog offers three options to the user, 

accessible through the following buttons: Train Mode, Test Mode, Resu/ts Mode, and 

Predict Mode. 

Figure F.l " start dia/og 

F.I Train mode 

This Mode enables the user to train a new neural network or continue training an existing 

one. The following attributes must be specified (see Figure F.2): 

• Use existing Neural Net: If checked, the user needs to enter the name of a neural 

network file (.net), manually or by using the browse ... button. This option is 

checked when the user wants to continue training an existing neural network 
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• Load training data: The user is required to enter the narne of a data file (.dat, see 

section F.2) that will be used to train the network; this can be done rnanually or by 

using the browse ... button. 

• Learning rate: The leaming algorithm uses this parameter as the step size to 

update the connection weights in the network (floating point value between 0 and 

1). 

• Momentum: This pararneter allows the user to add rnornenturn to the weight 

update to achieve higher leaming speed (floating point value between 0 and 1). 

• Number of epochs: The number of tirnes that the whole training set will be 

presented to the network (unsigned integer value greater than 0). 

• Training mode: The learning algorithm uses this parameter to decide when to 

update the connection weights in the neural network. 

• Online: Update after every exarnple (default). 

• Batch: Update after every epoch. 

• Shuffle data: This is optional. If checked, the user will have the choice between 

having the training data shuffled 

• Once: before training starts (default). 

• Before every epoch. 

• Test Set: This option is dependent on the percentage of training exarnples chosen 

to be in the test set. By default, it is disabled since the percentage is set to a 

default value of 0%. The user must specify the relative size of the test set using a 

drop-down li st where values are between 0 and 100, in incrernents of 5%. 

o When the Amount of training data to use is larger than 0%, the user can 

choose the cross-validation option. The basic idea is that we take a certain 

portion of the data (determined by the size of the test set) and test the 

performance of the network on that set. We do this repeatedly using rnany 

different subsets, so that in the end, every data example has been part of 

the validation set at sorne point, and part of the training set at sorne other 

point. The number of runs depends on the size of the test set. 
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Figure F.2 : the Train Mode dia log 

After pressing the Start training ... button, the window becomes idle (the Start training ... 

button becomes disabled). Once the training is fini shed the user is presented with the 

results in a new dialog window (Figure F.3). The result of the training is displayed as 

curves of error measures for the training and, if available, the test data and each cross 

validation set. The choices at this point are: 

Figure F.3 : Results dia log 
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• Error measure: 

o % Misclassified: The percentage of misclassified examples (y-axis) versus the 

number of epochs (x-axis). 

o Average Error: the mean squared error on the output versus the target output. 

Here, the application plots two curves (if test set is greater than 0%) along 

with the legend: 

• Average error on the training set (y-axis) versus the number of epochs 

(x-axis). 

• Average error on the test set (y-axis) versus the number of epochs (x­

axis). 

• Result set: Only enabled if cross validation is enabled, this drop-down list in the top 

right hand corner allows to switch from one cross-validation result file to another. 

• Save results: This button allows the user to save the results from his experiment in a 

.res file. 

• Save Neural Net: This button allows the user to save the trained neural network to a 

.net file. 

F.2 Test mode 

This mode enables the user to test a previously trained neural network. The user must 

specify a neural network file to use (.net) to test its prediction accuracy; this can be done 

manually or by using the browse ... button. The user must also specify the data file (.dat) 

that will be input into the network; this can be done manually or by using the browse ... 

button. This data file must have the same format as the data file used to train the network: 

the list offeatures (Average Similarity against the positive set, Average Similarity against 

the negative set, Average PAM distance against the positive set, Average PAM distance 

against the negative set, Average P AM variance against the positive set, Average P AM 

variance against the negative set) separated by spaces, and followed by a space and a 

c1ass label (1 for Golgi resident, and 0 for non-Golgi resident), where each line represents 
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a data example (note: The last data example in the file must have a carriage retum 

character after its class label). 

The user must also specify the following: 

• Classification threshold: This drop down list enables the user to choose between 

different threshold values when classifying a data example, where a lower value 

represents a stricter classification (more restrictive). By default the classification 

threshold is set to the least restrictive value (0.5). 

After pressing the Test! button, the performance of neural network on that test set is 

displayed in the results text box (not editable by the user), in terms of the Mean Squared 

Error, and the prediction accuracy (percentage of correctly classified examples). The list 

of misclassified example is also displayed in the result box. 

Figure F.4: Test mode dia log 
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F.3 Results mode 

Figure F. 5 : Results mode dia log 

Pressing the Result Mode button from the main dialog opens up a new dialog window. 

This mode allows the user to view and compare up to two different result sets previously 

obtained. The user is asked to enter one or two names for result files. This can be done 

manually or by pressing the browse ... button. If comparing two files, the user must 

enable the check box Result file #2, and then enter a second file name. This allows 

comparing the performance of two neural nets on the same input, or of the same network 

on two different inputs, or just comparing two different nets and two different input sets. 

(See Figure F.S). 
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Training sel (resullsD.res) 
Test sel (resullsD.res) 
Training set (results9.res) 
Test set (resulls9.res) 

Figure F. 6: Results dia log ca lied from results mode 

When the button "View Results ... " is pressed, another dialog window is opened (Figure 

F.6) with the results of the comparison, if any, or just the results of the one file. At this 

point the choices will be: 

• Error measure: 

o % Misclassified: The percentage of misc1assified examples (y-axis) versus the 

number of epochs (x-axis). 

o Average Error: the mean squared error on the output versus the target output. 

Here, the application plots two curves or four curves (depending on the mode) 

along with the legend: 

• Average error on the training set (y-axis) versus the number of epochs 

(x-axis), one per result file. 

• Average error on the test set (y-axis) versus the number of epochs (x-

axis), one per result file (iftesting was enabled). 

• Result set: This drop-down list in the top right hand corner is always disabled in this 

mode. 

• Save results: This button is always disabled in this mode. 

• Save Neural Net: This button is always disabled in this mode. 
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FA Predict mode 

Figure F. 7 : Predict mode dia log 

This mode enables the user to predict one or more candidate examples using one or more 

existing neural networks. The user must specify the path to the neural network files: there 

should be at least at least one file named nnetO.net, and any additional files must be 

named nnetl.net, nnet2.net, etc. This can be do ne manually by typing in an existing path 

containing these files or by using the browse ... button. The user must also specify the text 

file that contains the candidate examples to be predicted. This can be done manually or 

by using the browse ... button. This file must have the same format as the .dat files, except 

for the" 0" or the" 1" at the end of each line (note: unlike .dat files, there does not need 

to be a carriage return after the last candidate example). 

The user must also specify the following: 

• Classification threshold: This drop down list enables the user to choose between 

different threshold values when classifying a data example, where a lower value 

represents a stricter classification (more restrictive). By default the classification 

threshold is set to the least restrictive value (0.5). 
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• Number of neural nets: The number of neural networks, from the given path, to use 

for the prediction (must be consecutive in their names: nnetO.net, nnetl.net, etc.). 

After pressing the Predict! button, the candidate examples in the prediction file will be 

input into the neural networks. For each example, the average prediction value, in the 

range (0,1), will be displayed in the results text box (not editable by the user), followed 

by the number of neural networks that predicted it as Golgi resident. 

F.S Control Flow Diagram 

The following figure represents the control flow diagram of ProteiNNet: The user goes 

down to the next dialog window by pressing the corresponding button, and cornes back to 

the previous dialog window by c10sing the CUITent dialog window. 

Start training ... 
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