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Abstract 

The livelihoods of rural households in sub-Saharan Africa have been threatened by climate 

change and underperformance of the agricultural sector. To address this challenge, multiple-season 

farming has been suggested as a potential alternative to rain-fed cultivation in order to intensify 

agricultural production and improve farmers’ well-being. This study employs a fixed effects- 

instrumental variable (FE-IV) model to estimate the impact of multiple-season farming on 

household food security and child nutrition. We find no significant impact on child nutrition; 

however, households that engage in multiple-season farming are significantly more food secure 

compared to those who solely rely on rainy season cultivation. This improvement is most 

pronounced among asset-rich and male-headed households. Multiple-season farmers also tend to 

cultivate a more diverse range of crops and are more likely to sell surpluses in markets, which 

enables them to access a more abundant and diverse food supply. Furthermore, we adopt a 

moment-based method to estimate household resilience, defined as the persistence of food security 

over time. However, we find that the current increase in food security from multiple-season 

farming does not necessarily translate into higher levels of resilience. Our study provides evidence 

of the potential of multiple-season farming to enhance agricultural productivity without expanding 

the area of cultivation. Future studies could focus on how the provision of inputs, irrigation, and 

market access may shape the decision to engage in multiple-season farming and the associated 

impact on households’ welfare. 
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Résumé 

Les moyens de subsistance des ménages ruraux en Afrique subsaharienne sont menacés 

par le changement climatique et les performances insuffisantes du secteur agricole. Pour relever 

ce défi, la culture sur plusieurs saisons a été suggérée comme une alternative potentielle à la culture 

pluviale afin d'intensifier la production agricole et d'améliorer le bien-être des agriculteurs. Cette 

étude utilise un modèle à effets fixes et variables instrumentales (FE-IV) pour estimer l'impact de 

la culture sur plusieurs saisons sur la sécurité alimentaire des ménages et la nutrition des enfants. 

Nous ne trouvons aucun impact significatif sur la nutrition des enfants ; cependant, les ménages 

qui pratiquent la culture sur plusieurs saisons sont significativement plus sûrs sur le plan 

alimentaire que ceux qui dépendent uniquement de la culture de la saison des pluies. Cette 

amélioration est plus prononcée chez les ménages aisés en termes d'actifs et dirigés par des 

hommes. Les agriculteurs pratiquant la culture sur plusieurs saisons ont également tendance à 

cultiver une gamme de cultures plus diversifiée et sont plus susceptibles de vendre les excédents 

sur les marchés, ce qui leur permet d'accéder à une offre alimentaire plus abondante et diversifiée. 

De plus, nous adoptons une méthode basée sur les moments pour estimer la résilience des ménages, 

définie comme la persistance de la sécurité alimentaire au fil du temps. Cependant, nous constatons 

que l'augmentation actuelle de la sécurité alimentaire grâce à la culture sur plusieurs saisons ne se 

traduit pas nécessairement par une plus grande sécurité alimentaire à long terme. Notre étude 

apporte des preuves du potentiel de la culture sur plusieurs saisons pour améliorer la productivité 

agricole sans étendre la superficie cultivée. Les futures études pourraient se concentrer sur la 

manière dont la fourniture d'intrants, l'irrigation et l'accès aux marchés peuvent influencer la 

décision de pratiquer la culture sur plusieurs saisons et l'impact associé sur le bien-être des 

ménages. 
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Chapter 1: Introduction 

1.1 Problem statement  

Climate change is expected to increase temperatures and the frequency of extreme weather 

events. Rising temperatures and increasingly erratic rainfall patterns are expected to result in 

growing numbers of floods and droughts, thus leading to more frequent periods of acute food 

insecurity in several countries, especially sub-Saharan African (SSA) countries located along the 

equator (Aberman, Meerman and Benson 2018). In view of the crucial role of agriculture in 

supporting the welfare of smallholder farmers in SSA, it is imperative to introduce innovations in 

agronomic practices that can enhance agricultural productivity and ensure sustainable production 

of a diverse range of foodstuffs in the face of increasingly variable climate conditions. 

Various studies have demonstrated different strategies for improving household food 

security, nutrition, and climate shock resilience, including agroecological practices such as 

intercropping and soil conservation (Santoso et al. 2021; Kansanga et al. 2021), crop 

diversification (Jones, Shrinivas, and Bezner-Kerr 2014; Chegere and Stage 2020), asset transfers 

(Phadera et al. 2019; Premand and Stoeffler 2020; Abay et al. 2022), investments in irrigation 

(Ringler et al. 2023; Kafle and Balasubramanya 2021; Mekonnen et al. 2022; Baye et al. 2021; 

Nhamo et al. 2016) and market access (Usman and Haile 2022; Chegere and Kauky 2022; Gupta, 

Sunder, and Pingali 2020), though with varying degrees of effectiveness.  

Despite the extensive literature that explore various strategies to improve agricultural 

productivity and households’ wellbeing in SSA, not much research has been done on the effect of 

overcoming the restriction of agricultural seasonality. Currently, agricultural production in much 
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of sub-Saharan Africa (SSA) exhibits a clear pattern of seasonality, with farming predominantly 

taking place during the rainy seasons. Most agricultural production in sub-Saharan Africa is rain-

fed, with only around 4% of arable land being irrigated (Burney, Nalor and Postel 2013). Farmers’ 

reliance on rainfed agriculture has made crop production vulnerable to the increasingly erratic 

rainfall shocks (CIAT 2018). However, extending the farming period to cover more than one 

season has been deemed important giving mounting land pressures and high environmental costs 

of current agricultural practices (Jayne and Sanchez 2022). Waha et al. (2020) estimate that less 

than 10% of total crop area in SSA are cultivated for more than one season, which is considerably 

less than the share of 34% in East Asia and 29% in South Asia. Before promoting multiple season 

farming in SSA and associated technologies to enhance multiple-season farming, e.g., irrigation, 

further work is need to determine the effects of multiple-season farming on food security, nutrition, 

and resilience.  

 

1.2 Study objectives 

In this study, we investigate the effects of production intensification by expanding the 

farming period from just the rainy season to both rainy and dry seasons on household food security, 

resiliency1 and child growth status. Additionally, we explore whether multiple-season farming 

leads to an increase in crop production diversity and the likelihood of selling outputs to markets. 

We use the World Bank Integrated Household Panel Survey (IHPS) data on Malawi spanning from 

2010 to 2019. The panel structure of the IHPS data allows us to control for time-invariant 

heterogeneities through fixed effects. We use instrumental variable estimations to remove some of 

 
1 We define resilience in this study as the probability of staying above a subjectively defined threshold of food 
security over time 
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the bias associated with time-varying endogeneities in households’ decision to farm multiple 

seasons. Moreover, we control for rainfall shocks by incorporating satellite data on household-

specific rainfall deviation from the historical average during the rainy season planting months. 

 

1.3 Summary of findings 

We find that multiple season farming is positively associated with increased dietary 

diversity, consuming nutrient-rich foods more frequently, and adopting less severe coping 

mechanisms to manage food insecurity. Our instrumental variable (IV) analysis indicates that the 

magnitude of the IV coefficients is larger than that of the ordinary least squares (OLS) coefficients, 

which suggests a downward bias in the OLS estimates. We also find that multiple-season farming 

has a stronger impact on food security and wellbeing among households with greater asset wealth 

and male-headed households. Moreover, we observe that households that farm in multiple seasons 

exhibit greater crop production diversity and are more likely to sell their outputs to markets. 

Additionally, we conducted a robustness check to determine if multiple-season farmers differ 

inherently from those who only cultivate during the rainy season. We observed no statistically 

significant effect of multiple-season farming on food security measures when analyzing a separate 

group of similar households whose food security measures were recorded before both rainy and 

dry season harvests. This indicates that the impacts we discovered on our sample households are 

reliable and accurate. 

We do not find a significant effect of multiple-season farming on child anthropometrics, 

and the IV estimation does not validate the impact of multiple-season farming on household 

resilience. In other words, the evidence of multiple-season farming on increasing households’ 

long-term probability to remain food secure is less robust than the concurrent response in 
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improving measures of food security. By comparing graphical evidence on different factors that 

determine households’ status of resiliency, we further argue that changes in short-term agricultural 

practices, such as farming multiple-seasons or receiving input coupons are weaker determinants 

of long-term probability to be food secure compared to structural factors such as gender of 

household head and asset holdings.  

 

1.4 Contribution to the literature 

The impact of dry-season agriculture on household well-being in Malawi has received 

limited attention in the existing literature. Studies that investigate dry-season farming in Malawi 

have mainly focused on crop cultivation on seasonal wetland gardens (dimba), which rely on 

residual moisture from receded floods (Chinsinga and Kayuni 2011; Kambewa 2005; Msusa 2011; 

Nyirenda 2020; Kerr et al. 2019; Kansaga et al. 2021; Tchale 2009). While most of these studies 

report a positive impact of dimba farming on household food security, their analyses are either 

descriptive, based on cross-sectional data, or lack controls for endogeneity in dry season farming 

decisions. In contrast, our study examines both wetland and non-wetland farmers in both seasons 

(see Table A2 for the distribution) and employs rigorous research methods to control for 

heterogeneity through fixed-effects and instrumental variable estimations, thereby reducing the 

potential for omitted variable bias. Additionally, our study offers new insights into how multiple-

season farming may influence the sustainability of food security over time by measuring resilience. 

Our findings highlight the potential for multiple-season farming to increase food security 

and offer a new policy focal point that builds on the existing literature on agricultural inputs, 

markets, and irrigation (Walls et al. 2023; Cassim and Pemba 2021; Bonuedi, Kornher and Gerber 

2022; Makate and Makate 2022; Chegere and Kauky 2022; Usman and Haile 2022; Ringler et al. 
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2023). Future research could therefore focus on increasing the provision of fertilizers, drought-

tolerant seeds, mechanization, improving market access, and building irrigation infrastructure to 

enable dry-season farming and increase year-round crop production without expanding the area of 

cultivation. 
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Chapter 2: Literature Review 

Our literature review is structured as follows: Firstly, we present an overview of existing 

literature that explores the relationship between agriculture and dietary diversity. The concept of 

dietary diversity serves as a fundamental aspect in our assessment of food security, as it 

significantly impacts the consumption of essential micro-nutrients. Subsequently, we broaden 

our focus to encompass child nutrition, by analyzing studies that investigate the interplay 

between agriculture, food security, and the nutritional well-being of children. Finally, we 

dedicate a section to examining scholarly works that aim to define resilience within the 

framework of applied economics. Additionally, we critically evaluate various approaches to 

quantifying resilience and their application in the realm of economic and developmental 

research. 

 
2.1 Agriculture and dietary diversity 

Agriculture and dietary diversity for households in developing countries are connected 

through multiple mutually influencing channels. For households whose primary source of income 

is farming, agriculture has the deterministic power over the affordability of nutritionally relevant 

food items (Headey and Masters 2021). Besides income, changes in agricultural practices, input 

accessibility, transportation and storage costs can influence food prices, thus affecting food 

consumption. Agricultural growth thus has important food and nutrition impact on localities 

characterized by high levels of food insecurity, where consumption of sufficient calories needs to 

be ensured through increasing staple crop production. Once caloric consumption has reached its 

standard, reforms need to be undertaken to stabilize food prices and make nutrient-rich food items 
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more affordable and accessible for households to diversify away from staples (Headey and Masters 

2021). 

Furthermore, when foods are not perfectly tradable due to market failures, household 

production decisions will affect consumption patterns, a situation represented by an inseparable 

household model (de Janvry, Fafchamps and Sadoulet 1991; Dillon, McGee and Oseni 2015). Such 

inseparability between production and consumption can work through prices and income, making 

food security more vulnerable to input price fluctuations and climate shocks that impact yields, as 

farmers must substitute food items purchased from the market with home-produced foods. Lack 

of access to output markets also changes production orientation, forcing farmers to devote at least 

a portion of their resources to producing subsistence crops instead of growing cash crops that have 

higher income-generating potential when sold at the market (Headey et al. 2019; Headey and 

Masters 2021; Dillon, McGee and Oseni 2015). Therefore, an inseparable production mode posts 

limitations directly on food security by limiting food availability from market purchase and 

indirectly by constraining income generation and production specialization through agriculture.  

Empirical studies of the relationship between agriculture and dietary diversity have thus 

focused mainly on household production mechanisms and market access. Jones, Shrinivas and 

Bezner-Kerr (2014) investigate the association between farm (crop) diversity and household 

dietary diversity in Malawi. They find that farm diversity is positively linked to households’ 

dietary diversity and the consumption of specific types of micronutrient-rich foods such as legumes, 

fruits and vegetables. Their findings are suggestive of the complementarity between house 

production and market access in enhancing dietary diversity: on the one hand, household 

production of fruits, legumes and vegetables make a strong contribution to the diversity of 

household diets; on the other hand, households dedicating a larger share of land to cash crops have 
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a greater dietary diversity overall, while households that focus on producing subsistence crops had 

less diverse diets. Echoing the findings of Jones, Shrinivas and Bezner-Kerr (2014), Gupta, Sunder 

and Pingali (2020) find that the cultivation of non-staple crops and livestock ownership are 

associated with higher dietary diversity in India. Furthermore, households’ expenditure on pulses, 

dairy, vegetables and fruits is also linked to more diverse diets, suggesting the market complements 

the self-production of micronutrient-rich foods in ensuring their consumption. However, both 

studies rely on cross-sectional data, so the authors cannot conclude causality due to potential 

unobservable biases (Jones, Shrinivas and Bezner-Kerr 2014; Gupta, Sunder and Pingali 2020). 

Dillon, McGee and Oseni (2015) use climate variables and the value of agricultural capital 

as instrumental variables to elicit bias-free variations in revenues from agriculture, which in turn 

they use to estimate the effect of agriculture revenue on dietary diversity in Nigerian farming 

households. In particular, the authors stress the importance of incorporating the inseparability 

between production decisions and food consumption for households facing food market 

imperfections: a concern that is resolved by including prices of agricultural inputs as control 

variables in estimating household consumption decisions. Their results reveal a positive but limited 

impact of agricultural revenue on dietary diversity. As the revenue from agriculture increases, 

households are more likely to consume tubers and vegetables. As the impact of agricultural 

revenue is small in magnitude, policy interventions need to increase the availability of other 

nutrient-rich food items in local markets to increase their consumption (Dillon, McGee and Oseni 

2015).   

Mondal et al. (2021) conduct stratified random sampling to control for sources of bias and 

establish a causal relationship between production, market access and dietary diversity. The 

authors interview semi-subsistence farmers in the State of Madhya Pradesh, India, and find that 
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crop diversification through planting multiple crops in a year is insufficient to improve dietary 

diversity. Reliance on subsistence agriculture decreases food security while growing cash crops, 

and having access to market and non-farm income source lead to higher year-round food security. 

Surprisingly, even in a semi-subsistence system, producing food crops multiple times a year is 

insufficient to improve year-round dietary diversity and food security for smallholder farmers. 

However, while selling cash crops gives farmers more purchasing power, the diversity of foods 

available for purchase in markets also depends on local food production (Mondal et al. 2021). The 

authors thus argue that creating a local market structure where micronutrient-rich foods are locally 

grown and sold at local markets might help with increased availability and reduced prices of those 

foods.  

Headey et al. (2019) used a longitudinal survey combining household, child and market 

information from rural Ethiopia to investigate the relationship between the rural food market and 

child dietary diversity. Their results suggest that when looked at individually, household 

production and market availability of non-staple foods are positively correlated with children’s 

consumption of non-staple foods. But, the coefficient of the interaction term between the number 

of food groups produced by the household and market availability has a negative sign and is 

statistically significant, suggesting a substitutive relationship between house production and 

market purchase of non-staple foods. Their finding contradicts the findings of Jones, Shrinivas and 

Bezner-Kerr (2014), which point out that household production and market access are 

complementary. Notably, Headey et al. (2019) also find that children consume more dairy products 

if many neighbouring households produce them. Since dairy is highly perishable, its production 

by neighbouring households can be critical to increasing the local availability of dairy products at 
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the market or providing households with direct access to them through non-market channels like 

gifts, barter and informal trade. 

In addition, Hirvonen and Headey (2018) analyze potential driving forces behind the 

adoption of homestead gardens in rural Ethiopia, a practice promoted by the local government to 

increase the consumption of vegetables and fruits. They find that market access is the decisive 

factor in garden adoption in water-abundant areas. In contrast, access to water is the most important 

constraint to adoption in water-scarce regions. In other words, when gardening is made possible 

by having timely access to irrigation, the market outlet for fruits and vegetables becomes a critical 

condition that encourages production diversification. This, in turn, can increase dietary diversity 

since surpluses can be consumed directly and sold to the market to generate extra income to 

purchase food items.  

In summary, the evidence on the relationship between agriculture and dietary diversity is 

complicated, with mixed results on the interplay between household production, market access 

and dietary diversity. Some studies further incorporate nutrition or growth indicators to develop 

further insights into the relationship between agriculture and food security. 

 

2.2 Agriculture, food security and child nutrition 

Household dietary diversity plays a critical role in improving child nutrition in developing 

nations. Gómez et al. (2013) describe three dimensions of malnutrition: undernourishment, namely 

the lack of basic needs of calories and proteins; micronutrient deficiencies; and obesity and 

overweight. While undernourishment has been largely tackled since the Green Revolution by the 

increase in productivity of staple crops to meet the basic needs of the malnourished, the lack of 

intake of micronutrient-rich foods such as pulses, vegetables and fruits and the overconsumption 
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of staple crops exacerbate the latter two dimensions of malnutrition, making them the major food 

security issue that threaten the health of children in low- and middle-income countries. 

Given the link between dietary diversity and nutrition, it is not surprising that research 

aimed at improving food security through agriculture aims to incorporate an analysis of nutrition 

outcomes. Agriculture can influence dietary diversity through different pathways like consumption 

of surpluses, food availability through markets, income, food prices, etc. Improving dietary 

diversity through these channels may have a considerable effect on child growth and nutrient 

intake (Gomez et al. 2013). Harou (2018), for instance, investigates whether receiving fertilizer 

vouchers in Malawi improves dietary diversity and child nutrition. The author applies fixed effects 

in panel data analysis and uses an instrumental variable to control the endogeneity in whether a 

farmer receives fertilizer vouchers. Her findings suggests that households who received vouchers 

consume cereals, nuts, vegetables, meats and fruits more frequently than non-recipients. 

Furthermore, children living in households that received vouchers exhibit higher weight-for-age 

z-score (WAZ) and weight-for-height z-score (WHZ). WAZ and WHZ are indicators of short-term 

nutrition status for children more responsive to acute changes in food security, and falling below 

-2 for each indicates wasting and undernutrition, respectively (Headey and Masters 2021; Gomez 

et al. 2013).  

Harou (2018) thus proposes two mechanisms through which fertilizer voucher increases 

child nutrition. First, the application of fertilizer increases crop yields and generates more surpluses 

to be sold at the market to generate more income from crop sales, which in turn increases the 

budget for additional food purchases. Households may also consume their harvests directly, which 

saves their budget to purchase other types of food that contribute to dietary diversity for their 
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children. Second, the increase in nutritious foods derived from sales and production may have 

benefitted the mothers who breastfed their children.  

The production and sales channels through which agriculture affects dietary diversity and 

child nutrition are confirmed by a follow-up study of the same fertilizer voucher program in 

Malawi by Chakrabati et al. (2022). Positive and significant relationships are observed between 

receiving vouchers and the production and sales of maize crops, and correlations between 

receiving vouchers, increased dietary diversity and improved child nutrition persist even as the 

fertilizer subsidy program tapers down. Therefore, the authors conclude that the effect of fertilizer 

vouchers on child nutrition is likely to have operated through the crop production and income 

channels, as it allows households to apply more agricultural inputs to boost crop production and 

sales, which enables them to increase the consumption of micronutrient-rich foods that yield better 

short-term nutrition outcomes for their children.  

Tesfaye (2021) uses a panel survey combined with historical weather data to explore the 

link between crop diversification and nutrition in the small farm sector in Ethiopia. The author 

take a step further from Jones, Shrinivas and Bezner-Kerr (2014) and Mondal et al. (2021) to 

incorporate child nutrition outcomes and consider the heterogenous effect of crop diversity on 

child growth through gender, market access and exposure to drought shocks. They apply an 

instrumental variable estimation to exploit the exogenous variation in crop diversification. The 

results suggest that crop diversity is positively associated with dietary diversity and diet quality 

(share of non-staples in diet). As for nutrition indicators, crop diversification is correlated with 

higher height-for-age z-scores (HAZ) but not with WHZ, meaning a diverse cropping profile 

reduces the chance of child stunting (long-term nutrition deficiency) but not child wasting. 

Furthermore, when the whole sample is disaggregated by gender and market access, crop diversity 
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significantly reduces wasting for girls more than for boys, and it reduces stunting for households 

with limited market access (Tesfaye 2021). The impact of heterogeneous market access confirms 

the importance of household production in ensuring food security and child growth when nutrition 

needs cannot be met through the market purchase of food items (Gomez et al. 2013; de Janvry, 

Fafchamps and Sadoulet 1991; Dillon, McGee and Oseni 2015).  

While the studies mentioned above acknowledge the connection between agriculture and 

nutrition, others find no significant correlation between agriculture and child growth outcomes. 

Like Tesfaye (2021), the study by Chegere and Stage (2020) investigates the link between crop 

production diversity, dietary diversity and child nutrition in rural Tanzania. They find that 

production diversity, income, female education and having a younger household head are 

positively linked to dietary diversity. While they also consider market access, the authors find no 

significant effect of higher market sales of crop surpluses on dietary diversity. A more salient 

relationship is observed between household production of cereal, animal protein, dairy and 

vegetables and within-household consumption. Sespite the correlation between production 

diversity and dietary diversity, no significant impact on child growth is observed, as increased 

production diversity displayed no effect on the possibility of child stunting and wasting (Chegere 

and Stage 2020).  

Santoso et al. (2021) take a different approach by conducting a randomized controlled trial 

to disseminate knowledge about sustainable agriculture, nutrition, women’s empowerment and 

participatory learning among farmers in Tanzania. Households that learned and applied agro-

ecological practices display higher child dietary diversity but not better nutrition outcomes. The 

results of Santoso et al. (2021) and Chegere and Stage (2020) provide contradictory evidence 

against the notion that diverse diets necessarily result in better child growth outcomes.  
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Finally, Headey et al. (2018) provide evidence on how socioeconomic conditions 

determine food access, thus highlighting the need to control for household characteristics when 

investigating the effect of agriculture on dietary diversity and nutrition. While researching the 

effect of remoteness to urban centers (measured by travelling time) on child growth, the authors 

find that remoteness to an urban center does not affect child stunting and dietary diversity. Instead, 

the urban-rural differences in access to food markets and basic services contribute to differences 

in diets and nutrition. Furthermore, after controlling for socioeconomic status and infrastructural 

characteristics, the urban-rural difference becomes insignificant in determining child nutrition and 

dietary diversity. The authors conclude that wealth and socioeconomic status create demand for a 

more diverse food profile, and markets will emerge regardless of the distance to urban centers. 

Therefore, improved socioeconomic status may contribute to improved market access, diets, and 

nutrition. 

 

2.3 Development resilience: definition, conceptual frameworks and measurement 

There exists multiple definitions of resilience, most of which concern the ability to resist 

the adverse impact of shocks and maintain a certain standard of well-being, as measured by 

observable outcome indicators such as food security, wealth and nutrition (Béné et al. 2012; Barrett 

and Constas 2014; FAO 2016; d’Errico, Pietrelli and Romano 2016; Alfani et al. 2015; Quandt 

2018). Various conceptualizations of resilience come with different underlying structures and 

components that explain the functioning of the resilience mechanism. In addition, some studies 

have also introduced frameworks to quantify resilience capacity.  

Alinovi, Mane and Romano (2010) represent one of the earliest attempts to propose a 

methodology for measuring household resilience to food insecurity. In their model, resilience is 
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considered a latent variable representing a household’s capacity to mobilize available options to 

sustain food security when hit by shocks. The underlying resilience framework consists of four 

building blocks: income and food access, assets, access to public services, and social safety nets. 

Under each of these building blocks are individual variables of household and community 

characteristics that influence resilience through corresponding channels. Households showing high 

adaptability and stability (i.e. livelihood options don’t vary by much over time) are considered 

resilient to shocks that threaten food security. 

In a follow-up paper, Alinovi et al. (2010) test their resilience framework by measuring the 

household resilience capacity of various livelihood groups in Kenya. In this study, the resilience 

index is estimated using two-stage factor analysis: In the first stage, an index for each building 

block is estimated separately using an iterated principal factor over a set of observable variables. 

Then, in the second stage, another factor analysis is conducted on the components (estimated 

building blocks as factors) in the first stage. The resilience index is estimated in the end as a 

weighted sum of the factors generated, and the weights are the proportions of variance explained 

by each factor. The authors’ analysis reveals considerable differences in determinants of resilience 

for each livelihood group. For instance, although large-holder farmers in their data have, on 

average, the highest overall resilience level, their access to basic services, such as water, electricity 

and education, is much lower than for salaried employees and entrepreneurs. On the other hand, 

pastoralists and small-holder farmers show an equal distribution across building blocks, but the 

average level of resilience is low. These between-group differences are relevant to policy 

implications as they inform the need for targeted policy interventions to increase certain specific 

components or reinforce the overall level of resilience. 
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Browne, Ortmann and Hendriks (2014) argue that asset ownership indicates a household’s 

ability to cope with risk to food security, which motivates them to develop asset-based indices of 

resilience. They use three methods based on principal component analysis (PCA) and one simple 

additive index to separate households into five resilience quantiles, from the most resilient to the 

least resilient. To verify the consistency of resilience identification, the authors compare household 

categorization across indices. Their results suggest that their indices perform well in separating 

households with the greatest and the least level of resilience. However, ambiguity increases when 

more in-between quantiles are included, as certain households classified in the same quantile using 

one index are classified into different quintiles using another. The resilience measurement 

framework proposed in this study does not measure the absolute level of livelihood resilience. 

Rather, the score only serves to monitor resilience-building progress over time. 

A slightly different conceptualization of household resilience is proposed by Alfani et al. 

(2015), in which resilience is defined as a household’s ability to minimize deviations from a 

supposed permanent trajectory of consumption when hit by shocks. The authors are able to 

construct counterfactual welfare estimates using the Oaxaca-Blinder framework despite only 

having cross-sectional data. This framework enables the authors to divide households into three 

groups: chronically poor, not resilient and resilient. The findings of this paper suggest that resilient 

households tend to have smaller household sizes, fewer dependents, higher levels of education and 

more asset possession. Meanwhile, resilient households tend to have higher consumption and 

lower child malnutrition. 

The resilience measurement frameworks proposed by the aforementioned studies have 

been criticized by Ansah, Gardebroek and Ihle (2019) for methodological flaws. Methods 

proposed by Alinovi, Mane and Romano (2010) and Browne, Ortmann and Hendriks (2014) 
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consider resilience as the direct "cause" of food security instead of a factor that explains it. They 

measure resilience from a set of variables that relate to food security. For instance, Alinovi et al. 

(2010) directly measure food access as part of their resilience index's "income and food access" 

component. The resilience score is then used as an explanatory variable to estimate food security. 

Since resilience and food security are not separated, the result of these studies can lead to circular 

reasoning that resilience and food security depend on each other, leading to the bias of reverse 

causality. In addition, Ansah, Gardebroek and Ihle (2019) also criticize the method adopted by 

Alfani et al. (2015) for not providing a quantitative measure for resilience capacity. Resilience in 

this study is measured as the extent to which household consumption deviates from a supposed 

optimal path after a shock. However, whether the assumed optimal consumption path is indeed 

desirable is a question. 

The resilience measurement framework proposed by Alinovi, Mane and Romano (2008) 

was later formalized into the Resilience Index Measurement and Analysis–I (RIMA-I) and applied 

to estimate household resilience capacity in studies conducted by the Food and Agricultural 

Organization (FAO). Having realized the problem of reverse causality in the underlying structure 

of RIMA-I, as explained in the last paragraph, the FAO introduced the upgraded RIMA-II 

framework in which food security is removed from the estimation procedure and is instead treated 

solely as a one-way outcome variable of resilience capacity. 

The underlying structure of RIMA-II is comprised of four pillars: access to basic services, 

assets, social safety nets and adaptive capacity. Similar to RIMA-I, the first step of measuring 

resilience capacity is to use factor analysis to estimate the four pillars from observable indicators. 

In the second step, a Multiple Indicators Multiple Causes (MIMIC) model is estimated, in which 

a system of equations is constructed to specify the relationships between the estimated resilience 
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pillars, the observable outcome indicators (e.g. food security indicators) and the unobservable 

resilience capacity (FAO 2016; d'Errico et al. 2018). After running the two steps, the model permits 

the estimation of a resilience capacity index (RCI), which provides a quantitative measure of 

resilience to inform policy analysis, target and rank households, or be included in empirical 

analyses as an explanatory variable. Several studies have used the estimated RCI to investigate the 

relationship between resilience capacity, climate shocks, policy intervention and household well-

being indicators like food security (d'Errico, Pietrelli and Romano 2016; d'Errico et al. 2018; 

d'Errico et al. 2020), household expenditure (d'Errico et al. 2020) and child nutrition (d'Errico and 

Pietrelli 2017). 

Béné et al. (2012) propose a three-dimensional framework to analyze resilience. In their 

conceptualization, resilience is considered an ability to deal with adverse changes and shocks. It 

can be represented by three capacities corresponding to responses to shocks at different intensities. 

Absorptive capacity is the ability to minimize shock exposure and speed up recovery when 

exposed to shocks at low intensities. When the absorptive capacity is exceeded, the household 

needs to use its adaptive capacity to engage in incremental changes based on changing conditions 

and adopt alternative livelihood strategies, such as adopting new framing techniques or acquiring 

new social networks. Finally, transformative capacity is required when the change required is so 

large that it overwhelms the adaptive capacity of the household. Changes result in alterations of 

the household or community’s primary structure and function, e.g., when a household forgoes 

agriculture to avoid losses from harsh climate conditions. Since shocks at different intensities and 

scales may occur together, it is crucial that the three capacities need to be strengthened together. 

Resilience is then the result of all three capacities combined. 
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Two studies adopt the conceptualization of resilience in Béné et al. (2012) and attempt to 

measure resilience quantitatively. Béné, Riba and Wilson (2018) explore the effectiveness of the 

SUR1M project in building resilience to food insecurity due to climate change and weather shocks 

in Niger. The authors argue that the SUR1M project, if successfully implemented, should 

strengthen the three resilience capacities and lead the participants to adopt appropriate responses 

to shocks and stressors. Besides looking at responses to shocks, this paper also features a resilience 

index based on self-reported disaster recovery questionnaires. The findings suggest that treated 

households are 8%-39% less likely to resort to negative coping strategies, such as reducing food 

consumption and changing diet composition. Furthermore, treated households are also more likely 

to display positive coping behaviours and show higher capacity to cope with shocks as displayed 

in a self-assessed resilience index. 

Smith and Frankenberger (2018) present another related study in which the three-

dimensional framework of resilience conceptualization is applied in a difference-in-differences 

(DID) analysis of the 2014 flooding in northern Bangladesh. The paper’s main objective is to 

determine whether households’ resilience to the shock was boosted by their resilience capacities 

before the onset of flooding and which capacities matter the most in future shocks of this type. The 

authors construct their resilience capacity index (RCI) using factor analysis to reduce observables 

to the three capacities and then again use FA to estimate the resilience capacity. To investigate 

resilience’s role as the mediating factor of the relationship between shock and food security, they 

include an interaction term between shock exposure and RCI. The study finds a significant and 

positive impact of resilience capacity alone and on the interaction term in reducing the negative 

impact of flooding on food security. Absorptive capacity is the most relevant factor to flooding, as 
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shocks of this kind tend to exhibit rapid onset that prompt households to prioritize minimizing 

exposure and recovering in its immediate aftermath (Smith and Frankenberger 2018). 

Quandt (2018) introduces an innovative approach for measuring and analyzing household 

livelihood resilience called the Household Livelihood Resilience Approach (HLRA). Resilience is 

conceived as consisting of five asset types: financial capital, human capital, social capital, physical 

capital and natural capital. Under each capital are independent variables chosen based on 

conceptual and empirical relevancy to each capital and their availability in the dataset. Values of 

each indicator are converted into numbers between 0 and 1. The composite index for each capital 

is the average value of individual variables contributing to that capital, and the overall index of 

resilience is the average of all five capitals. Quandt (2018) assigns equal weight to each indicator, 

but she also acknowledges the possibility of and the value in weighting indicators differently 

during analysis. The paper also provides empirical evidence of the method’s application in 

resilience building through agroforestry. The author finds that planting trees results in the 

protection of farmers’ physical capital (e.g. roads and other transportation infrastructures), which 

used to be vulnerable to natural disasters like flooding. Increased agroforestry also benefits natural 

and financial capitals through consolidation of soil and income diversification, which further 

increases resilience to covariate or idiosyncratic shocks. 

Finally, Barrett and Constas (2014) define resilience as the long-lasting capacity for agents 

to avoid falling into the poverty trap when impacted by shocks and stressors. In their model, agents 

are expected to maximize expected well-being subject to resource constraints. While maximization 

is optimal for everyone, some may lead to an undesirable state of well-being due to idiosyncratic 

resource constraints that make non-poor outcomes infeasible. Development resilience thus entails 

being protected from downward shifts and enables upward shifts in well-being. Based on this 
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theoretical foundation, Upton, Cissé and Barrett (2016) introduce a moment-based econometric 

approach to estimate resilience2, and subsequent work by Cissé and Barrett (2018) further lay down 

the framework of non-parametric estimation of resilience as a conditional probability to avoid 

some undesirable states of well-being. Both the mean and variance of certain welfare functions of 

interest are estimated, and lags are included to account for the persistent impact of previous welfare 

levels on current-period welfare. This method relies on the availability of panel data for the 

inclusion of lags and a subjectively determined threshold level of welfare to separate the resilient 

households from the not resilient households. However, one could combine individual household 

estimates to generate aggregate development resilience measures for a population, which can in 

turn be broken down into various subgroups based on household characteristics and use the 

model’s built-in path dynamics to project how resilience distribution will evolve for different 

groups  given current and past status of well-being (Cissé and Barrett 2018). For instance, one can 

forecast how the proportion of resilient households will change for female-headed versus male-

headed households in the presence of a drought shock in the near future. 

Knippenberg, Jensen and Constas (2018) slightly modify Barret and Constas (2014)’s 

framework to quantify resilience. The authors collect panel data at the monthly frequency in 

Malawi to analyze resilience to the perceived persistence of shocks and predict future food 

insecurity. Food insecurity is measured by Coping Strategy Index (CSI), with a higher CSI 

indicating that the household has been compelled into more coping activities due to food insecurity. 

The authors use an auto-regressive linear probability model with one lag to estimate the probability 

of shock persistence and found an overall low resistance to drought. They then use the LASSO 

 
2 Upton, Cissé and Barrett (2016) cite the working paper version of the Cissé and Barrett (2018) paper to introduce 
their conceptualization and application of the resilience indicator, but they include no econometrical description of 
the process of estimation. Therefore, I cite Cissé and Barrett (2018) as the study that introduces the moments-based 
method of resilience quantification. 
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algorithm to identify the best predictors of future CSI. They find that geographic location, access 

to drinking water, house quality and whether they live in a floodplain are the most relevant factors 

in ensuring resistance to food insecurity. 

To conclude this section, a heterogenous understanding of resilience exists in the literature. 

With different conceptual frameworks come a variety of methods for quantifying resilience. While 

some treat resilience as an indicator directly or indirectly causing changes in well-being (Browne, 

Ortmann and Hendriks 2014; Alinovi et al. 2010), others regard resilience as a capacity that 

enables more options for households to sustain their well-being in the face of shocks and stressors 

(FAO 2016; Béné et al. 2012; Quandt 2018; Smith and Frankenberger 2018). There is no 

universally agreed method for measuring resilience quantitatively (Alfani et al. 2015; Serfilippi 

and Ramnath 2018). But most recent studies tend to treat resilience as an intermediate outcome 

that influences the ultimate welfare outcomes and use data reduction techniques to reduce 

observable, context-specific dimensions into single variables (Smith and Frankenberger 2018; 

d’Errico et al. 2020; FAO 2016). In this paper, we align with subsequent studies building on Barrett 

and Constas (2014) by treating resilience as a direct outcome of household well-being. In addition, 

Serfilippi and Ramnath (2018) and Ansah, Gardebroek and Ihle (2019) provide a detailed review 

of the existing methods for conceptualizing and quantitatively evaluating resilience. 
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Chapter 3: Background of Research 

3.1 Agriculture in Malawi 

The agricultural sector plays a pivotal role in Malawi's economy by contributing 38% of 

its Gross Domestic Product (GDP) and providing livelihoods to almost 90% of the population 

(CIAT 2018; Bizikova et al. 2022). Smallholder farmers account for approximately 80% of the 

country's agricultural production, which is primarily oriented towards household consumption 

(CIAT 2018). The primary crop cultivated on nearly 75% of the smallholder farming land is maize, 

with other crops such as rice, cassava, legumes, and sweet potatoes also commonly grown (Bezner-

Kerr et al. 2019; Kansaga et al. 2021). Notably, smallholder farmers only contribute 20% of 

agricultural exports, primarily in tobacco production. 

Despite the critical role of agriculture in Malawi's economy, its productivity remains below 

potential. Various factors contribute to this underperformance, including poor market linkages, 

limited irrigation, low adoption of agricultural technologies such as chemical fertilizers and 

mechanization, pests and diseases, and climate vulnerability (CIAT 2018; Makate and Makate 

2022). Moreover, post-harvest losses are significant due to limited storage technologies, 

transportation costs of produce and inputs are high due to poor infrastructure, agro-processing and 

value addition are hindered by the lack of investment in manufacturing facilities, and poor farmer 

organization reduces the opportunity for knowledge generation and dissemination among 

smallholder farmers (GoM 2021).  

Programs and policies have been implemented to stimulate growth in the agricultural sector. 

Malawi has been a participant of the Comprehensive Africa Agriculture Development Programme 

(CAADP) since 2003, mandating its government to allocate at least 10% of its national budget 

towards promoting agricultural-led growth, poverty reduction, and food security (Matchaya, 
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Nhlengethwa and Chilonda 2014). Malawi has consistently allocated more than 10% of its national 

budget to agriculture, and it has maintained an average sectoral GDP growth rate of around 6% 

since 2008, which has contributed to the realization of the goals of the CAADP (African Union, 

2022; World Bank, 2021). Despite the steady growth in cereal (maize) productivity, the overall 

cereal productivity in Malawi is only half of the average productivity of OECD and Asian countries. 

Therefore, it is imperative to implement further policies that improve labour and land productivity, 

increase fertilizer consumption, and encourage investment in irrigation and industrialization to 

manufacture agriculture produce (Matchaya, Nhlengethwa and Chilonda 2014). 

Another program that has garnered attention for enhancing agricultural productivity in 

Malawi is the Farm Input Subsidy Program (FISP), which has been replaced by the Affordable 

Inputs Programme (AIP) in 2020 (Chakrabarti et al. 2021). FISP aimed to improve food self-

sufficiency and farm productivity by providing farmers with coupons and vouchers to purchase 

subsidised farm inputs, including fertilizers and seeds (Ajefu, Efobi and Beecroft 2021; Harou 

2018). The AIP is an improved version of FISP, which aims to address FISP’s weaknesses by 

implementing more efficient distribution and redemption of vouchers, improving the timing of 

fertilizer distributions, and better targeting households eligible for the subsidies (Walls et al., 2023). 

There have been debates about the effectiveness of FISP in enhancing crop productivity, 

primarily maize, and promoting household well-being. On the positive side, FISP has led to 

increased fertilizer use and reportedly increased maize productivity from 1480 kg/ha in 2006 to 

2100 kg/ha in 2013 (CIAT 2018). Chakrabarti et al. (2021) and Ricker-Gilbert and Jayne (2017) 

have identified a positive impact of FISP on maize production among recipient households. 

However, the latter found no cumulative effect of receiving input coupons from previous years on 

current maize production. In terms of household well-being, Harou (2018) and Chakrabarti et al. 
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(2021) find a positive impact of FISP on household dietary diversity through increasing the 

consumption of staples and micronutrient-rich foods. Ajefu, Efobi, and Beecroft (2021) confirm 

the positive effect of FISP on households' diet and further suggest that FISP beneficiary households 

exhibit smaller declines in food security when impacted by rainfall shocks. 

While the above-mentioned studies find positive impacts of FISP, others have raised doubts 

about its efficacy. Lunduka, Ricker-Gilbert and Fisher (2013) estimate the benefit-cost ratio of 

providing subsidised fertilizers to farmers and find that it does not cover the cost to the government. 

Moreover, micro-level data suggests that the increase in overall maize production is smaller than 

officially claimed, and a significant proportion of subsidised fertilizers are resold by government 

officials at the commercial price, never reaching targeted recipients. Walls et al. (2022) contend 

that FISP overly emphasised increasing maize production, which led to a lower market price for 

maize and a decline in farmers' income and dietary diversity. 

Despite the implementation of policies such as the Comprehensive Africa Agriculture 

Development Programme (CAADP) and FISP in promoting agricultural GDP growth and cereal 

crop productivity in Malawi, there is still a need for improvement in fertilizer consumption and 

productivity, and the ability of FISP to target vulnerable households and increase farmers' income 

and food security. With the replacement of FISP by the Affordable Inputs Programme (AIP) in 

2020, it remains to be seen whether the new subsidy program will effectively provide cost-effective 

access to subsidised inputs to the most-needed households, leading to higher income, food security, 

and resilience to shocks in the agricultural sector. Therefore, the enhancement of agricultural 

productivity in Malawi remains a paramount issue. 



 26 

3.2 Food security and nutrition 

Malawi, with a population of over 19 million, has an overwhelmingly rural population, 

with 83% residing in rural areas. Poverty is a pressing concern in rural areas, with 77% of the rural 

population living below the international poverty line of USD $2.15/day as of 2019, and they 

almost rely solely on agriculture for their livelihoods (World Bank 2023). Food insecurity is a 

widespread issue in Malawi, especially in rural areas, where 52% of the population experienced 

severe food insecurity in 2018 (CIAT 2018). Despite a 3.1% increase in per capita GDP between 

2005 and 2011, Malawi still faces a high prevalence of undernourishment, with 50.7% of the 

population not meeting the standard of sufficient calorie consumption (Aberman, Meerman and 

Benson 2018). The majority of the poor in Malawi are farmers who, despite producing enough 

calories annually, face food shortages during the hungry season and crop failures (Bizikova et al. 

2022). 

The dietary patterns of Malawians are primarily composed of cereals and starchy fruits, 

leading to high rates of micronutrient deficiencies and malnutrition (Bezner-Kerr et al. 2019; FAO 

et al. 2017). Food prices play a significant role in determining the consumption patterns of rural 

households. Aberman, Meerman, and Benson (2018) find that food consumption in Malawi 

depends heavily on food prices, with rural areas being particularly susceptible to inflation. A 

decrease in maize prices under FISP led to a 14% increase in maize consumption between 2004-

2011, while the consumption of green leafy vegetables and pulses decreased sharply in rural areas 

during the same period due to a rise in their prices by approximately 400% and 100%, respectively. 

Aberman, Meerman, and Benson (2018) estimate that rural households in Malawi have limited 

access to micronutrients from their diets, primarily lacking Vitamin A (stored in vegetables) and 

iron (stored in pulses). Such findings are consistent with the high levels of undernourishment in 
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Malawi, with over 23% of the population experiencing undernourishment annually (CIAT 2018). 

Moreover, more than 40% of children under the age of 5 years are stunted, while 12% and 3% are 

underweight and wasted, respectively (FAO et al. 2017). 

 

3.3 Influence of climate on agriculture and food security 

Malawi experiences a two-season climate characterized a rainy and a dry season. The rainy 

season, which lasts from November to April, is the dominant season for crop production, while the 

dry season lasts from May to October (World Bank 2021). Rainfed agriculture accounts for over 

90% of Malawi's agricultural production, with only 4% of the total cultivated area being irrigated 

(Makate and Makate 2022). The high dependence on rainfed agriculture coupled with limited 

irrigation infrastructure for smallholder farmers makes Malawi's agricultural sector vulnerable to 

climate change (GoM 2021). 

Malawi's most common climate hazards include seasonal droughts, intense rainfall, and 

floods (CIAT 2018). Between 2015 and 2017, Malawi faced four successive climate-related 

shocks, including severe floods, erratic rains, prolonged dry periods, and one of the worst droughts 

in three decades (Bizikova et al. 2022). The most recent drought event experienced in 2015/16 was 

characterized by a delayed onset of the agricultural season, leading to severe crop failure, mainly 

in the Central and Southern regions (Makate and Makate 2022). 

The impact of climate hazards on the agriculture sector has led to significant declines in 

output and concomitant price spikes for most food commodities. This vulnerability is compounded 

by limited alternative livelihood options and low governmental budgetary allocations for climate 

resilience and adaptation (CIAT 2018). Seasonal variation is observed in malnutrition rates, with 

high numbers of malnutrition occurring during the hot and drier seasons. The seasonal price 
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variation is strongest for nutrient-dense foods that are difficult to store, and rural households face 

constrained supply in other periods (Bizikova et al. 2022). Since 2006, the average incidence of 

malnutrition has increased, and rates are expected to rise in the years to come due to climate change. 

The government has implemented some measures to help address the high levels of 

malnutrition and increase farmers' adaptive capacity to climate change. These measures include 

diversifying crops, promoting winter cropping, fostering irrigation systems, promoting access to 

food in communities, including fish farming, the raising of small animals, and nutritional 

supplements for children and the sick, climate-smart agriculture, improved water and land-use 

practices, integrated soil fertility management and conservation and utilization of agrobiodiversity 

(Makate and Makate 2022). However, despite the government's investment into adaptive measures, 

Malawi is still challenged by climate variability due to unique characteristics like overreliance on 

maize as the staple crop, population growth, high poverty rates, malnutrition and widespread 

diseases (Makate and Makate 2022). 
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Chapter 4: Data 

4.1 LSMS-ISA 

This study draws on data from the Integrated Household Panel Survey (IHPS) conducted 

over four rounds, which is accessible through the Living Standards Measurement Study-Integrated 

Surveys on Agriculture (LSMS-ISA) program, jointly implemented by the World Bank and the 

government of Malawi. The sample households were selected from 102 enumeration areas (EAs) 

during the 2010 survey round and were consistently monitored in 2010, 2013, 2016, and 2019. 

Furthermore, for individuals who split off from their baseline household, the new household they 

formed or joined since 2010 was also included in the sample. 

The LSMS-ISA data comprises comprehensive information on agricultural activities, farm 

and household socioeconomic conditions, and georeferenced data, which allow for controlling 

climate conditions at the regional-household level. The sample households are representative of 

the Northern, Central, and Southern regions, and are stratified by urban and rural settlement.            

To collect information on the two agricultural seasons in Malawi, the survey team 

attempted to visit the panel households twice for each round of the survey. The first visit was 

conducted during the post-planting period of the rainy season, in which all households completed 

the first half of the agricultural questionnaire, providing information related to the rainy season 

pre-harvest, such as land area, cultivation, and input use. The second visit was made approximately 

four months after the first visit, corresponding to the post-harvest period of the rainy season. 

During the second visit, farmers reported information on the rainy season harvest and post-harvest 

matters and complete information on the following dry season, including dry season planting, 

harvest, and/or expected harvest. 
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To collect consumption data from the Household Questionnaire evenly across the panel 

period, the survey team assigned half of the panel households to panel group A and the other half 

to group B at baseline. Any split-off households that joined the sample after the baseline round of 

the survey received the same group assignment as their baseline households. During the first visit, 

households in group A were administered the full household questionnaire, and households in 

group B were only administered the household roster. Group B received the full household 

questionnaire during the second visit, while group A received a household roster update. 

Given the fieldwork organization described above, only households in group B had their 

data on food security, nutrition, and other household characteristics collected either concurrently 

with dry season harvest or after the completion of dry season harvest. To avoid reverse causality 

jeopardizing the analysis, this study restricts its sample to rural households assigned to group B, 

as it explores the impact of consecutive farming on household well-being. The total sample 

comprises 1125 households, of which 569 were consistently tracked from baseline (2010). 

Figures A1-A4 plot target households’ interview months against their timing of dry season 

harvests. Almost all rural households in group B who engaged in dry season farming have their 

full household questionnaires allocated simultaneously or after the initiation of dry season harvests, 

except for two households from 2019. This study hypothesizes that by the time food security and 

nutrition measures were recorded from our sample households, they would have had an 

expectation of dry season harvest for self-consumption or income from selling surpluses, 

generating changes in their food consumption patterns and short-term nutrition outcomes. 
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4.2 TAMSAT 

The present study employs satellite-based rainfall data from the Tropical Applications of 

Meteorology using Satellite data and ground-based observations (TAMSAT) to accurately control 

for potential rainfall shocks. TAMSAT, established by the University of Reading in 1977, provides 

monthly rainfall estimates (RFE) for all of Africa at 4km resolution, and the archive spans 1983 to 

the present (Maidment et al. 2017; Tarnavsky et al. 2014; Maidment et al. 2014). Thus, it covers 

all four rounds of the Integrated Household Survey in Malawi. Datasets of monthly rainfall 

anomalies (RFA), which are deviations from local average rainfall levels from 1983-2012, are also 

available. The study incorporates both RFE and RFA into the main dataset to control for any 

potential influence of abnormal rainfall patterns on crop production and household well-being. 

The LSMS-ISA panel contains georeferenced datasets of household latitude and longitude, 

which are calculated as the average of household GPS coordinates in each enumeration area (EA) 

plus a random off-set value (GoM 2020). By using these off-set GPS statistics and households’ 

reported months of planting, the study generates accurate rainfall controls by matching household 

GPS coordinates with location-specific rainfall estimates provided by TAMSAT. The study 

chooses to control for monthly rainfall in the year and month in which a household plants its rainy 

season crops. This choice is based on the rationale that irregular rainfall patterns during the 

planting seasons can significantly decrease maize yields, which is the primary crop grown by 

smallholder farmers during the rainy seasons and has a dominant position in Malawian household 

diets (Tadross et al. 2009; Rashid and Rasul 2011). Monthly rainfall anomaly is included to 

account for possible rainfall shocks that may threaten the yield of maize and, thus, household food 

security and income from selling surplus crops. 
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Ajefu, Efobi and Beecroft (2021) construct their own index to measure deviations in 

rainfall from the long-run mean during months of planting. Their estimates suggest that negative 

rainfall shocks in the preceding year’s planting season decrease household food and non-food 

consumptions. Therefore, the present study suspects that rainfall anomalies play a mediating role 

in determining a household’s propensity to cultivate in the dry season (as rainfall shocks result in 

a disappointing harvest from the rainy season), as well as dietary diversity and nutrition directly 

by influencing food and non-food consumption. 
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Chapter 5: Methods 

5.1 Determinants of Multiple-season Farming 

We first want to examine the factors affecting multiple season farming. To do so, we 

estimate the following logistic regression: 

 

𝑀!" = 	𝑎 + 𝜃#𝑅!" + 𝜂𝑋!" + 𝛿$ + 𝛾" + 𝜖!"     (1) 

 

where the dependent variable 𝑀!" is binary, with the value of 1 indicating that the household i 

farms in multiple seasons in year t. The regression model controls for rainfall anomaly, 𝑅!", during 

the household-specific month of planting in the rainy season (unit of measurement is millimetre). 

Moreover, 𝑋!" is a vector of time-variant household characteristics discussed further below. We 

also add district fixed effects, 𝛿$ , and year fixed effects, 𝛾" , to control for location-specific 

unobservable factors and time-specific heterogeneities that are invariant across sample households. 

Robust standard errors 𝜖!" are clustered at the enumeration area (EA) level. 

 

5.2 The effects of multiple season farming on food security, resilience and nutrition 

To examine the effect of multiple-season farming, 𝑀!", on food security, resilience and 

nutrition we estimate the following ordinary least squares (OLS) model with fixed effects: 

 

𝑌!" = 	𝛼 + 𝛽#𝑀!" + 𝛽%𝑅!" + 𝜇𝑋!" + 𝑣! + 𝜏" + 𝜀!"   (2) 

 

where the outcome variable, 𝑌!" ,  is a food security measure, resilience index, farm 

production diversity or an indicator variable for farmers selling to markets of household i in year 
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t, described in detail below. 𝑀!" and 𝑅!"  are the same as described above in equation 1. Here we 

include a household fixed effect, 𝑣!, and year fixed effect, 𝜏". The idiosyncratic errors, 𝜀!", are 

again clustered at the EA level. In addition, we also conduct subgroup analyses by households’ 

wealth and gender of household head to gain insight into the heterogeneous effects of farming in 

multiple seasons on food security, crop diversity and selling to markets. Our main parameter of 

interest is 𝛽# which represents the effect of farming in multiple seasons on our household and 

individual outcomes of interest. 

 To estimate the effect of multiple-season farming on child growth status, we estimate the 

following model,  

 

𝑌!"& = 	𝛼 + 𝑏#𝑀!" + 𝑏%𝑅!" + 𝜑𝑋!" + 𝑣! + 𝜏" + 𝜔& + 𝜀!"&    (3) 

 

where 𝑌!"&  is the height-for-age z-score (HAZ), weight-for-age z-score (WAZ) or weight-for-

height z-score (WHZ) of child j from household i in year t, described in more detail below. The 

other covariates in equation 3 are the same as in equation 2. Additionally, here we include a child-

fixed effect 𝜔& to control for time-invariant characteristics of the child. Here the main parameter 

of interest is 𝑏#. 

 

5.3 Household food security outcomes 

 We measure household food security using the following three indexes: 

- Household Dietary Diversity Score (HDDS): HDDS measures the quantity and quality of 

food access at the household level (Leroy et al. 2015; Chegere and Stage 2020; Gupta, 

Sunder and Pingali 2020). Food items are categorized into 10 food groups by the IHPS 
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survey, and HDDS is a simple count of number of food groups consumed in the past seven 

days (GoM 2020). The 10 food groups and their respective contribution to household 

member’s nutritional requirements are the following: 

o Staple foods (cereals; roots and tubers) 

o Micronutrient-rich foods (nuts and pulses; vegetables; fruits; meat, fish and animal 

products; dairy) 

o Energy-rich foods (oil and fats; sugar; condiments) 

HDDS ranges between 0 and 10 in our sample. The higher the HDDS, the more diverse the 

food consumption pattern is. 

- Food Consumption Score (FCS): FCS is a composite score of household food security that 

takes into account dietary diversity, frequency of consumption and relative nutritional 

importance of different food groups (Leroy et al. 2015; Harou 2018; Jones, Shrinivas and 

Bezner-Kerr 2014). The frequency of consumption of different food groups are weighted 

based on their nutritional importance, and the sum of all weighted consumptions is the 

value of FCS. Food groups and their respective weights are listed as follows: 

o Staples (cereal, roots and tubers): (w = 2.0) 

o Legumes and pulses (w = 3.0) 

o Vegetables (w = 1.0) 

o Fruits (w = 1.0) 

o Meat, fish and animal products (w = 4.0) 

o Dairy (w = 4.0) 

o Sugar (w = 0.5) 

o Oil (w = 0.5) 
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A FCS of 35 is considered adequate (Leroy et al. 2015) -- households whose FCS fall below 

35 are deemed to have poor food consumption.  

- Coping Strategy Index (CSI): CSI assesses the frequency of occurrence of severe coping 

strategies by households when facing food insecurity (Leroy et al. 2015; Maxwell, 

Caldwell and Langworthy 2008; Knippenberg, Jensen and Constas 2018). The number of 

days in a week a household engaged in a coping strategy is multiplied by the corresponding 

weight of severity of that strategy. Summing the products of weight*frequency of 

occurrence gives the CSI of that household. A higher CSI indicates higher food insecurity 

and lower well-being (Knippenberg, Jensen and Constas 2018). The assignment of severity 

weights is context-dependent as frequencies and severities of coping strategies can vary 

across time and places (Leroy et al. 2015; Maxwell, Caldwell and Langworthy 2008). The 

coping strategies recorded by the IHPS and their respective weights of severity are listed 

as follows: 

o Consumption of less preferred foods (w = 1) 

o Limiting portion size of meals (w = 1) 

o Reducing number of meals per day (w = 1) 

o Restricting food consumption by adults (w = 2) 

o Being forced to borrow food from other households (w = 2)  

In addition to food security measures, we use height-for age z-score (HAZ), weight-for-

age z-score (WAZ) and weight-for-height z-score (WHZ) to measure child nutrition status. Z-

scores compare the difference between the value of an individual and the median value of the 

reference population of the same age or height, divided by the standard deviation of the reference 

population (WHO 2006). While a low HAZ is regarded as a marker of chronic malnutrition, WAZ 
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and WHZ indicate short-term nutritional status and are more responsive to acute changes in food 

security (Headey and Masters 2021; Gomez et al 2013). Specifically, z-scores are calculated using 

the following formula (WHO 2006): 

 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 = 	 (()*+,-)$	/*0,)1()$!*2	34	-)4)-)25)	636,0*"!32)
(+"*2$*-$	$)/!*"!32	34	"8)	-)4)-)25)	636,0*"!32)

 (4) 

 

In the baseline round (2010) of the Integrated Household Panel Survey (IHPS), 

anthropometric statistics were taken from children aged between 0 to 5. However, the panel 

structure of the IHPS data enables us to consistently track the same individual across survey rounds 

from the year his/her household joined the sample (GoM 2020). Therefore, the oldest children in 

our sample would be 18 years old in survey round 4 (2019), whose child anthropometrics were 

first recorded in 2010 when they were at the age of 5. 

On the other hand, the reference statistics for calculating HAZ, WAZ and WHZ of 

individuals in our sample are derived from the World Health Organization growth reference data 

(WHO 2023). The World Health Organization (WHO) provides reference statistics of HAZ for 

children aged 0-19 years old, WAZ for children aged 0-10 years old, and WHZ for children aged 

0-5 years old. Due to differences in the availability of reference statistics, our sample sizes vary 

across estimations on different growth indicators (see Tables 11-13 in the results section). 

 

5.4 Household resilience outcomes 

 We also explore the effect of multiple-season farming on household resilience, defined as 

“… the capacity over time of a person, household or other aggregate unit to avoid poverty in the 

face of various stressors and the wake of myriad shocks. If and only if that capacity is and remains 
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high over time, then the unit is resilient” by Barrett and Constas (2014). Their conceptualization 

of resilience concerns the household’s probability to stay on the long-time path of well-being that 

can be measured by indicators such as income, expenditures, health or nutrition status. Cissé and 

Barrett (2018) lay down the framework for quantifying such probability by illustrating a moment-

based approach to measure resilience, which has been adopted by several other studies to estimate 

household resilience using multidimensional indexes (Abay et al. 2022; Knippenberg, Jensen and 

Constas 2018; Phadera et al. 2019).  

 Following Cissé and Barrett (2018) and Abay et al. (2022), we first estimate the following 

model: 

 

𝐹!" = 𝑎( +∑ 𝛽B(9𝐹!,"1#
9;

9<# + 𝑅!" + 𝛿(𝑋′!" + 𝜏" + 𝜃$ + 𝑢(!"    (5) 

 

We use FCS as our indicator of household well-being for resilience estimation. Therefore, 

resilience in our case focuses on measuring the conditional probability a household will achieve a 

FCS above certain subjectively defined threshold of food security based on its FCS from the 

previous round and a series of household characteristics. The higher the estimated resilience, the 

more likely the household will remain food secure in the future. Where the current FCS 𝐹!" is 

regressed on a third-order polynomial of lagged FCS 𝐹!,"1#
9 , rainfall anomaly 𝑅!" and a vector of 

household characteristics 𝑋′!". The subscript m on coefficients denotes mean. Given that FCS is 

non-negative and has a slightly right-skewed distribution each year (Figure 1), we estimate 

equation 4 using generalized linear model (GLM) and assume a Poisson distribution of the 

dependent variable (Cissé and Barrett 2018). Since including household fixed effects will be 

computationally heavy in GLM using STATA, we decide to include year and district fixed effects 
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in our resilience estimation instead. Since we do not control for household fixed effects and 

consecutive farming is not part of the estimation process, the vector of household characteristics 

𝑋′!" contains more control variables at the household level. In addition, 𝑎( is a constant term and 

𝑢(!" is the standard error term. 

Regressing current FCS on lagged FCS serves as investigating the persistence of food 

security overtime. A third order polynomial is the most parsimonious specification to 

accommodate possible nonlinear dynamics (Cissé and Barrett 2018). After running equation 4, we 

predict the conditional mean FCS 𝐹E!"  for household i in year t and the residuals 𝜎G!"  from the 

estimation. We then square the residuals to obtain an estimate of the variance of household welfare 

𝜎!"%  (Abay et al. 2022), which is used as the dependent variable in the following specification: 

 

𝜎!"% = 𝛼/ + ∑ 𝛽B/9𝐹!,"1#
9;

9<# + 𝑅!" + 𝛿/𝑋′!" + 𝜏" + 𝜃$ + 𝑢/!"    (6) 

 

All terms in equation 5 are the same as those defined in equation 4, where the subscript v here 

denotes variance. After running equation 5, we then predict conditional variance 𝜎G!"%  for each 

household.  

 After obtaining the estimated conditional mean 𝐹E!" and conditional variance 𝜎!"%  of FCS for 

each household, we are able to estimate household resilience, 𝜌G!" , defined as the conditional 

probability that a household can achieve a minimum FCS above the normative threshold of 35 

(Abay et al. 2022; Leroy et al. 2015) in year t. Following Cissé and Barrett (2018) and the 

distribution of FCS as shown in Figure 2, we assume a gamma distribution on our FCS probability 

density function and define the shape and scale parameters using 𝐹E!", 𝜎!"%  and the FCS threshold w 

= 35. The household-year specific resilience 𝜌G!" is then defined as the following: 
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𝜌G!" = 1 − 𝑔𝑎𝑚𝑚𝑎𝑝(=!"
#

>?!"
,@∗=!"

#

>?!"
# )      (7) 

 

The two fraction terms inside the cumulative gamma distribution function gammap() are the shape 

and scale parameters, respectively. Therefore, 𝜌G!"  is the cumulative probability of household i 

achieving a FCS above 35 in year t, whose value ranges between 0 and 1. We can then regress the 

estimated resilience scores on the same regressors in equations 4 and 5 to observe how current 

resilience is affected by lagged FCS, rainfall anomaly and household characteristics: 

 

𝜌G!" = 𝛼- +∑ 𝛽B-9𝐹!,"1#
9;

9<# + 𝑅!" + 𝛿-𝑋′!" + 𝜏" + 𝜃$ + 𝑢-!"      (8) 

 

where subscript r denotes household resilience and the other variables are the same as those 

defined above for equations 4 and 5. 

 

5.5 Crop type 

 Finally, to explore how multiple-season farming may affect production diversity and 

market access, we incorporate a count of crop types grown throughout the year and a dummy 

variable indicating whether a household has sold any agricultural produce to the market as outcome 

variables3.  Different types of crop can be categorized into staple crops, cash crops and vegetables 

based on their nutritional content and purpose of cultivation, which allows us to investigate the 

relative changes in the cultivation of crops in each category as a result of multiple-season farming, 

 
3 Each household i is assigned a value based on the number of crop types they planted in year t, with a higher value 
indicating greater production diversity. 
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and the associated impact on household income and food consumption. Categorization of crops 

are based on the Basic Information Document of the Malawian IHPS (GoM 2020) as follows: 

o Staple crops: rice, maize, sweet potato, Irish potato, wheat, finger millet, 

sorghum, pearl millet. 

o Cash crops: cotton, sunflower, sugarcane, tobacco. 

o Vegetables: ground bean, peas, cabbage, tanaposi (a green leafy vegetable), 

nkhwani (a green leafy vegetable), okra, tomato, onion, paprika. 

o Legumes: groundnuts, beans, soyabean, pigeon pea. 

 

5.6 Household characteristics 

 By including fixed effects in our regressions, we are able to control for time-invariant 

household characteristics, and we can control for certain time-varying variables: 

- Household size: number of members in the household. 

- Dependency ratio: the ratio between active working members aged 15-64 years old and the 

number of dependents aged 14 and below or 65 and above in the household. A low 

dependency ratio is desirable as it represents a higher proportion of working adults in the 

household to support the young and the elderly members.   

- A dummy variable equals to 1 if the household has obtained any agricultural input 

coupons/vouchers in the year. Given the time frame of the IHPS data (2010 – 2019), 

households primarily received input coupons and vouchers from the Farm Input Subsidy 

Programme (FISP) in Malawi (Harou 2018;  Ricker-Gilbert and Jayne 2017; Lunduka, 

Ricker-Gilbert and Fisher 2013). Receiving coupons and vouchers can affect households’ 

usage of farm inputs and thus may determine crop productivity, farmers’ income, food 
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consumption and nutrition (Gómez et al. 2013; Harou 2018; Chakrabarti et al. 2021; 

Ricker-Gilbert and Jayne 2017).  

- Distances to the nearest road, population center of 20,000+ population and ADMARC 

outlet: We find considerable variations in the distances of households’ location to 

infrastructures and facilities. Infrastructure like roads take less time and monetary costs to 

build, generating more variations in the distance variables per se and changing households’ 

access to transportation, marketable goods and social services (Nakamura, Bundervoet and 

Nuru 2019; Headey et al. 2018). ADMARC stands for the Agricultural Development and 

Marketing Corporation. It is a parastatal corporation which acted as the sole buyer of 

smallholder farm produce up to the liberalization of agricultural markets in 1987 

(Chinsinga and Kayuni 2011). Now, ADMARC competes with private traders in the 

procurement of crops from smallholder farmers, while its outlets are also responsible for 

crop storage, grading, financing, marketing, subsidizing agricultural inputs and selling 

reserve crops during food crises (Makuyana and Obhiambo 2014; Chirwa and Chinsinga 

2015). In recent years, however, ADMARC has been withdrawing from remote rural areas 

of Malawi due to financial constraints (Makuyana and Obhiambo 2014; Chinsinga and 

Kayuni 2011), which is likely the cause of variations in household’s distance to ADMARC 

outlets over the course of the IHPS.  

- Asset index: we control for variations in household wealth status using an asset index. 

Using asset ownership to estimate household wealth is less likely to result in recall or 

measurement error; assets are also more indicative of long-term living standards than short-

term income or expenditures (Moser and Felton 2009). We rely on Principle Component 

Analysis (PCA) to construct our asset index. PCA extracts common variations generated 
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by one variable on other variables (Moser and Felton 2009). For instance, if the ownership 

of one type of asset is highly indicative of the ownership of other assets, then it receives a 

positive coefficient; if owning one type of asset entails a lower likelihood of owning other 

assets, then it receives a negative coefficient. Coefficients of large magnitudes (positive or 

negative) are informative of the dynamics of variation in asset ownership that is the result 

of underlying household characteristics such as wealth, while coefficients near zero 

provide little information on household wealth.  

We first run a LASSO regression to select from a larger pool of variables a subset of 

variables showing high levels of multicollinearity. We then use PCA to condense the 

information provided by the subset of variables into a single index. The pool of variables 

from which we selected the most relevant ones for index building are the following: 

 

o Household assets: mortar and pestle, bed, table, chair, radio, fan, air conditioner, 

TV, bicycle, car, iron, electricity, refrigerator, lantern, clock.  

o Housing characteristics: roof material, wall material, toilet facility, cooking fuel, 

lighting fuel, number of rooms, source of drinking water. 

o Non-food expenditure: value of purchased food in the past seven days. 

o Self-reported wealth: a categorical variable indicating whether the household is 

able to meet expenses and build savings.  

 

- Additional covariates included for estimation of resilience (equations 5, 6 and 8): number 

of plots cultivated during the rainy season; gender of household head; whether the 

household has finished elementary school. 
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5.7 Instrumental variable estimations 

 Our OLS estimation of the impact of multiple-season farming on household food security, 

nutrition and resilience is likely subject to endogeneities due to time-varying unobservable 

characteristics of the household that might affect both households’ decision to farm over multiple 

seasons and our outcomes of interest. The direction of this bias can be upward or downward. For 

instance, if the accumulation of farm experience overtime enables a household to farm in both 

rainy and dry seasons through more efficient allocation of inputs between the two seasons or by 

securing financial resources for hiring labors to help with dry season cultivation (Chinsinga and 

Kayuni 2011), then the bias will be upward as we would expect a higher likelihood to farm in 

multiple seasons and better well-being status from the more experienced households as a result of 

higher crop productivity. However, if the accumulation of farm experience overtime allows a 

household to produce enough crops in the rainy season to satisfy year-round food consumption, 

then we would see a negative correlation between farm experience and the likelihood to farm in 

multiple seasons. In this case, the direction of selection bias will be downward as less experienced 

farmers whose farm productivities are lower are also more likely to engage in multiple-season 

farming to compensate for their underproduction during the rainy season. Therefore, the OLS will 

underestimate the effect of multiple-season farming on households’ food security, nutrition and 

resilience. The source of endogeneity in equations 2 and 3 comes from the fact that 𝐶𝑜𝑣(𝑀, 𝜀) ≠

0. In other words, the idiosyncratic error term is correlated with household’s choice to farm in 

multiple seasons, since there exist unobservable characteristics (such as the accumulation of farm 

experience) that simultaneously affect households’ multiple-season farming decisions and the 

outcomes of interest. 
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 To overcome this remaining endogeneity and as a robustness check of our results, we 

estimate two stage least squares. Our first stage regression is as follows (individual fixed effect 

included for child nutrition outcomes): 

 

𝑀!" = 𝛼 + 𝜌#𝑍!" + 𝜌%𝑋!" + 𝑣! + 𝜏" + 𝑢!"    (9) 

 

We denote our instruments by the vector 𝑍!", and 𝑢!" is the first-stage error term. All the other 

coefficients are the same as in equations 2 and 3. 

Reliable instruments need to satisfy two conditions (Newhouse and McClellan 1998): (1) 

they must generate sufficient amount of variation in the main predictor, i.e. 𝐶𝑜𝑣(𝑍,𝑀) ≠ 0 and 

(2) they must have no direct effect on the outcome variable other than through generating 

variations in 𝑀!", i.e. 𝐶𝑜𝑣(𝑍, 𝜀) = 0. Violating condition 1 will result in weak instruments, and 

violating condition 2 entails the correlation between the second-stage error term 𝜀!" and 𝑀R!", and 

the IV coefficients will still be biased. The instrument we picked is the proportion of households 

nearby that engage in consecutive farming in the same year. The calculation of our instrument is 

as follows: 

 

𝑝!" =
#	34	C>	83,+)830$+	2)*-DE
"3"*0	#	34	83,+)830$+	2)*-DE

     (10) 

  

The IHPS dataset contains geo-referenced variables on household locations. To preserve 

confidentiality, households in the same EA are assigned the same latitudes and longitudes plus a 

random 0-5 km offset value (GoM 2020). In other words, households located in close proximity 

share the same GPS coordinates. Therefore, we calculate the proportion of households that farmed 



 46 

consecutively across seasons out of all households that have the same latitude and longitude in that 

survey round.  

 Several studies have used the adoption decisions by neighbouring households to instrument 

for the endogenous decision of technology/program adoption by the household (Wossen et al. 2018; 

Ma and Abdulai 2016; Krishnan and Patnam 2014). The proportion of nearby multiple-season 

farmers is expected to be positively linked to the household’s propensity to farm in multiple 

seasons. This could be due to, for example, year-specific regional variations of input prices and 

water availability during the dry season or possible spill-over effects due peer-support that 

encourage more households to engage in multiple-season farming (Krishnan and Patnam 2014).  

 Our first stage results (Table A1) suggest that the condition of instrument relevancy is 

satisfied. While the exclusion restriction cannot be tested, we see no apparent ways through which 

the proportion of nearby multiple-season farmers can directly influence household food security, 

nutrition and resilience. Therefore, we argue that the instrument satisfies condition 2, enabling the 

estimation of unbiased coefficients in our second stage regression: 

 

𝑌!" = 	𝛼 + 𝛽′#𝑀R!" + 𝜇𝑋!" + 𝑣! + 𝜏" + 𝜀!"     (11) 

 

The estimated household propensity to farm in multiple seasons 𝑀R!" comes from the first-stage 

prediction. By construction, it has no correlation with the second-stage error term 𝜀!" . The IV 

coefficient 𝛽′# thus provides an accurate estimation of the effect of multiple-season farming on 

households’ well-being and is consistent and free of selection bias.  
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Chapter 6: Results 

6.1 Descriptive Statistics 

This section presents summary statistics of the sample households. Table 1 displays the 

number of households engaged in farming during both rainy and dry seasons in each district, the 

total number of households in each district, and the percentage of households that farmed in 

multiple seasons in each survey round. The summary statistics indicate that only a minority of 

households engaged in multiple-season farming in each district. However, some districts located 

in central and Southern Malawi, in particular Nkhotakota, Lilongwe, Michinji, Dedza, Ntcheu, 

Mangochi, Zomba, Thyolo, and Mulanje had a significant concentration of multiple-season 

farmers. Figure 1 shows the geographical location of these districts in Malawi. Farmers in these 

regions are exposed to persistent drought shocks, leading to severe crop failure (GoM 2016). 

Table 2 provides a summary of the percentage of households in our sample cultivating 

staple crops, cash crops, vegetables and legumes during both rainy and dry seasons. Each column 

is represented by a binary indicator which takes the value of 1 if the household cultivates at least 

one type of crop that falls under the respective category. The majority of households in our sample 

plant staple crops during the rainy seasons, consistent with the agricultural structure in Malawi. 

Maize is predominantly grown as the primary staple crop by most smallholder farmers, and 

tobacco is widely cultivated as a major cash crop for export (CIAT, 2018). In addition to staple 

crops, a substantial proportion of households also grow legumes and cash crops during the rainy 

season. However, the percentage of households planting staple crops in the rainy season steadily 

decreased from 96.13% in 2010 to 85.20% in 2019, while the percentage of households cultivating 

vegetables during the rainy season increased over the same period. 
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During the rainy season, only a small fraction of households in our sample grow vegetables. 

However, the proportion consistently increased, with the percentage of households growing 

vegetables doubling from 12.54% in 2016 to 26.97% in 2019. The drought experienced in 2016 

(Bizikova et al. 2022) adversely affected the production of water-demanding crops such as tobacco, 

resulting in a decline in the percentage of households cultivating cash crops during the rainy season 

from 16.53% in 2013 to 13.66% in 2016, and the percentage dropped even lower to 10.16% in 

2019. The cultivation of legumes during the rainy season in 2016 appeared to have been hindered 

by the drought as the percentage increase in cultivation from 2010 to 2013 was almost reversed in 

2016. However, the rainy season production of legumes among households quickly bounced back 

in 2019 as the percentage of legume-cultivating households raised from 47.59% in 2016 to 60.68% 

in 2019.  

Conversely, a minimal proportion of households cultivate any crops during the dry season. 

The percentage of households growing staple crops in the dry season is the highest in 2013 

(10.14%) and lowest in 2019 (5.95%). Only five households in our sample cultivate cash crops 

during the dry season, while the percentage of households growing vegetables is slightly lower 

than that of staple crops (4.22% - 11.53%). The percentage of households cultivating legumes in 

the dry season in each year is also negligibly small (0.18%-3.89%). 

Finally, Table 3 provides descriptive statistics of all observations in the four survey rounds 

of the Integrated Household Panel Survey dataset, which is an unbalanced panel. The observations 

include baseline households that participated in all survey rounds from 2010 to 2019, as well as 

split-off households that joined the panel after 2010. Notably, the number of observations 

fluctuates across different variables in the table due to incomplete data records for some variables. 

The estimation of resilience relies on data from previous rounds, resulting in a lower number of 
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observations for resilience, as observations from 2010 and households that joined in 2019 have no 

data for resilience estimates. 

The first column of the table presents observations from households that consistently 

farmed in rainy seasons only, while the second column shows observations from households that 

switched between farming in the rainy season only and during both rainy and dry seasons. Column 

3 contains observations from households that consistently farmed in both seasons. The last three 

columns provide t-test differences between each group of households: (1) – (2) is the mean of 

“rainy only” minus the mean of “switched between rainy and both seasons,” (1) – (3) is the 

difference in mean between “rainy only” and “both seasons only,” and (2) – (3) is the mean of 

“switched between rainy and both seasons” less the mean of “both seasons only.” 

In our sample, the majority of households only farmed during the rainy season, while a 

significant portion switched between rainy and dry seasons. Consistently farming in both seasons 

is rare and was observed in only 73 households. However, these households tended to cultivate 

more plots during the rainy season than the “rainy only” and “switched” households. Additionally, 

“both seasons only” households were located closer to large population centers with 20,000+ 

population, and experienced a lower rainfall anomaly during rainy season planting months than 

the “rainy only” and “switched” households. 

Comparing “rainy only” and “switched” households reveals that the former were located 

closer to an ADMARC outlet on average and had a lower dependency ratio, indicating fewer 

economically dependent members. However, “rainy only” households tended to be less well-off 

compared to households that switched in and out of multiple-season farming. They cultivated 

fewer plots in rainy seasons, had smaller household sizes, owned fewer assets, displayed a lower 

likelihood of obtaining input coupons, and experienced a higher rainfall anomaly. Furthermore, 
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“rainy only” households were more food insecure, as evidenced by their higher average CSI and 

lower resilience than “switched” households. Adverse coping behaviors were also more frequent 

among “rainy only” households, making them less resilient than “switched” households on average. 

 

6.2 Determinants of Multiple-Season Farming 

Table 4 presents a logistic regression showing the determinants of multiple-season farming. 

The reported coefficients are odds ratios, which show the probabilities of multiple-season farming 

associated with a marginal increase in each covariate. Model 1, presented in column 1, only 

includes rainfall anomaly as an explanatory variable. Model 2, presented in column 2, adds 

household characteristics into the regression. Model 3, presented in column 3, further adds year 

and district fixed effects. Robust standard errors are clustered by enumeration area in Table 4 and 

those after. 

The regression results show that the effect of rainfall anomaly on multiple-season farming 

is only statistically significant at the 10% level in model 2. An 1mm increase in rainfall anomaly 

during planting is associated with a 0.4% decrease in the probability of farming in multiple seasons. 

The distance to the nearest population center also has a negative effect on multiple-season farming. 

An increase by 1km in the distance to the nearest population center decreases the probability of 

multiple-season farming by 1.5%. Household size has a positive effect on multiple-season farming. 

Having an additional household member increases the probability to farm in both seasons by 7.6% 

in model 2 and by 8.9% in model 3. Obtaining input coupons has a strong positive effect on the 

probability of multiple-season farming. The probability increases by 25.8% in model 2 and by 

38.3% in model 3. However, the effects of other covariates, such as household asset index, 

dependency ratio, and distance to the nearest road and ADMARC outlet, are not statistically 
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significant in models 2 and 3. This implies that these variables have no deterministic power over 

a household's decision to farm in multiple seasons. 

 

6.3 Food Security 

In this subsection, we examine the effect of consecutive farming on households' food 

security measures. Table 5 presents the results of OLS regressions with household and year fixed 

effects, where measures of food security are regressed on households’ decision to farm in multiple 

seasons.  

The effect of multiple-season farming is positive and statistically significant at the 1% level 

for HDDS in columns 1 and 2. Households that farm in both rainy and dry seasons, on average, 

consume 0.366 more food groups in the simple model, and 0.372 more food groups in the full 

model, holding other factors constant. The effect of multiple-season farming is also positive on the 

FCS (columns 3 and 4), although the coefficients are only marginally significant at the 10% level. 

Households practicing multiple-season farming, on average, increase their FCS by around 1.75. 

The positive and statistically significant effects on HDDS and FCS suggest that multiple-season 

farming is associated with an increase in the diversity and frequency of adequate food consumption. 

No statistically significant effect is observed for the effect of multiple-season farming on CSI. 

Regarding the other control variables, a higher rainfall anomaly during the month of 

planting in the rainy season only increases HDDS by 0.002 in column 2, and the coefficient is only 

significant at the 10% level. The household's distance to the nearest population center is negatively 

correlated with household food security measures, meaning living closer to population centers 

increases dietary diversity and decreases severe coping behaviours. Having a larger household size 

leads to a higher CSI. The effect of a higher asset index is consistently positive and significant at 



 52 

a 1% level for food security. An extra unit increase in the asset index contributes to 0.675 higher 

HDDS, 8.103 higher FCS, and 1.740 lower CSI. Additionally, the effect of obtaining input 

coupons is only positive and significant for HDDS in column 2. 

Table 6 presents the results of IV regressions for HDDS, FCS, and CSI using the same set 

of household control variables as in the OLS regressions. The coefficients on multiple-season 

farming in the first row confirm the positive and significant impact of multiple-season farming on 

food security measures that is found in the OLS models. The only exception is column 3, where 

the effect of multiple-season farming on FCS has become insignificant in the reduced model. 

Moreover, the magnitudes of IV coefficients are substantially higher than the OLS coefficients. 

This suggests that the OLS estimates examining the effect multiple-season farming on food 

security are biased downward by the endogeneity in farmers’ decision to cultivate multiple seasons. 

Furthermore, the effect of control variables in Table 6 is largely consistent with those in 

Table 5. Smaller distance to the nearest population center and more asset holdings are both 

positively associated with higher HDDS and FCS and lower CSI, indicating that smaller distance 

to population centers and more household asset holding contribute to better food security for rural 

households in Malawi. Having an extra member in the household is linked to 0.308 higher CSI, 

pointing to an effect of the same magnitude as in the OLS. Obtaining input coupons is only 

significantly linked to higher HDDS in column 2, which is also consistent with the corresponding 

OLS estimate.  
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6.4 Heterogeneity Analyses on Food Security: Subgroup Analyses by Asset Holding 

and Gender of Household Head 

Tables 7 and 8 report the results for the subset of households with an asset index score 

above and below the 50th percentile (“non-poor” HHs and “poor” HHs). Multiple-season farming 

appears to have a positive impact on HDDS in OLS regressions for both subgroups, with the 

magnitude of effect being larger for the “poor” households. The OLS coefficient of multiple-

season farming on FCS is also statistically significant. When we apply IV estimation, however, 

multiple-season farming shows no significant impact on all three food security measures for the 

poor households. For the non-poor households, the positive effect on HDDS remains significant 

at the 5% level, and the magnitude of coefficient has increased from 0.310 to 1.365. The negative 

impact on CSI also becomes significant in column 6 of Table 7, suggesting that for wealthier 

households, farming in multiple seasons contributes to higher dietary diversity and less severe 

coping behaviours.  

Comparing coefficients on control variables in Tables 7 and 8, the positive influence of 

asset holding on food security measures appears to be much more robust for the non-poor 

households: An increase in the asset index by one unit results in around 0.742 higher HDDS, 

10.540 higher FCS and 2.004 lower CSI in OLS, and the estimated effects are consistent in IV 

regressions. For the poor households, we only observe a positive and significant impact on HDDS 

that is consistent in both OLS and IV regressions. In addition, obtaining input coupons decreases 

CSI for the non-poor households and increases the HDDS for the poor households.  

We also present a subgroup analysis by the gender of the household head. The split of 

sample households by gender of the household head creates an uneven distribution of observations 
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for Tables 9 and 10, as a majority of 947 households in our sample are headed by males, while 

only 324 households are led by females.  

Table 9 shows the results from restricting our sample to male-headed households. The 

effect of multiple-season farming on HDDS is positive and statistically significant in both OLS 

(column 1) and IV (column 4), and the higher magnitude of coefficient in the IV indicates the 

presence of a downward selection bias in the OLS coefficient. The effects on FCS and CSI are 

significant only for IV (columns 5 and 6), indicating that households that farm in multiple seasons, 

on average, score 7.158 higher on FCS and 5.509 lower on CSI, both of which signify higher levels 

of food security. Table 10 presents the results of our study on female-headed households. The OLS 

coefficients on multiple-season farming is positive and significant for HDDS and FCS, but these 

effects do not persist in IV regressions. Overall, male-headed households that farmed in both rainy 

and dry seasons demonstrate a more robust increase in food security than female-headed 

households. The IV coefficients are also higher in magnitude for the male-headed households, 

pointing to the presence of negative selection bias among this subgroup.  

The asset index appears to have a positive and robust influence on all three measures of 

food security for male- and female-headed households alike. For the male-headed households, no 

other household characteristic has an effect on food security that is significant in both OLS and 

IV. For the female-headed households, increase in household size and distance to the nearest 

population center are positively associated with CSI, meaning that both are linked to adopting 

more adverse strategies to cope with food insecurity. In addition, having obtained input coupons 

also increase HDDS for female-headed households. 
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6.5 Child Nutrition: HAZ, WAZ and WHZ 

Table 11-13 presents the results of a regression analysis of the height-for-age z-score 

(HAZ), weight-for-age z-score (WAZ), and weight-for-height z-score (WHZ) on the decision of 

households to farm in multiple seasons, along with other household-level controls. Our analysis 

reveals no statistically significant effect of multiple-season farming on HAZ, WAZ, and WHZ in 

both OLS and IV estimations. Despite the positive impact of multiple-season farming on 

household food security, there have been no significant changes in the long-term (HAZ) and short-

term (WAZ, WHZ) growth measures.  

In Table 11, an increase of 1KM in household distance to the nearest road decreases HAZ 

by 0.069 in OLS (column 2) and 0.068 in IV (column 4), while an increase of 1KM in distance to 

the nearest population center decreases HAZ by 0.021 in OLS (column 2) and IV (column 4). No 

variable in our model exhibits a statistically significant impact on WAZ in Table 12. In Table 13, 

planting month rainfall anomaly positively influences child WHZ. However, we observe that a 

marginal increase in distance to the nearest population center increases WHZ by 0.013 (column 4) 

in IV estimation, which is puzzling since we expect that remoteness to urban centers will lead to 

worse health outcomes for children due to lower quality access to markets and basic infrastructures 

(Headey et al., 2018).  

 

6.6 Household Resilience Estimates: the Probability of Sustaining Food Security 

The results of our resilience estimation are presented in Table 14. In column 1, we regress 

households’ current FCS on lagged FCS, rainfall anomaly and household characteristics. We 

observe no sign of persistence in food security, as the coefficient on lagged FCS is statistically 
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insignificant.4 Distance to the nearest road and ADMARC outlet are negatively associated with 

FCS. The household head being male, having finished at least elementary school, and having a 

higher household asset index increase current FCS. In column 2, we observe that higher planting 

month rainfall anomaly is associated with less variance in FCS, while the household head having 

finished at least elementary school and a higher asset index contribute to a greater variability in 

FCS. 

Finally, the results of the resilience estimation are presented in column 3. The statistically 

significant coefficients on the third-order polynomial of lagged FCS (rows 1-3) suggest a non-

linear relationship between lagged FCS and household resilience. Surprisingly, we find that lagged 

FCS has a coefficient of -0.032 on resilience, suggesting a negative inertia effect of past level food 

security on the current probability of staying above the satisfactory FCS threshold. This finding 

contradicts the positive inertia effect of past wellbeing on resilience as reported in previous studies 

(Cissé and Ikegami 2016; Cissé and Barrett 2018; Abay et al. 2022). 

When comparing the results in Columns 1 and 3, we find that rainfall anomaly, distance to 

the nearest road and ADMARC outlet, and dependency ratio are negatively associated with both 

FCS and resilience. On the other hand, the household head being male, the head having finished 

elementary school, and a higher asset index positively determine FCS and resilience. While having 

no statistical significance in influencing FCS, the number of plots cultivated in the rainy season 

and household size are positively linked to resilience, while household obtained input coupons is 

negatively associated with resilience. 

The following paragraphs present the results of the OLS and IV estimations investigating 

the effect of multiple-season farming on resilience. The variables included in the regression 

 
4 We also find that polynomials of lagged FCS with orders higher than three produce statistically insignificant coefficients. 
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specifications are identical to those used for investigating the effect on food security and child 

nutrition status. Coefficients are reported in Table 15. 

The reduced OLS model (column 1) shows that multiple-season farming increases 

resilience by 0.012, while the full OLS model (column 2) indicates a smaller effect size of 0.007. 

These results suggest that multiple-season farming increases the likelihood of a household 

maintaining a FCS above 35 over time. However, such significant impact disappears when we 

apply IV estimations in columns 3 and 4, indicating that the positive impact of multiple-season 

farming on household resilience is less robust compared to the effect multiple-season farming has 

on food security measures. 

Regarding other determinants of resilience, the coefficients associated with higher rainfall 

anomaly are consistently negative in all specifications, albeit with small magnitudes (-0.001). 

Similarly, the coefficients for household distance to the nearest road (-0.002) and population center 

(0.001), as well as household size (0.002) and dependency ratio (less than 0.001), are also small. 

The divergent signs on distances to road and population center may suggest different implications 

of transportation and access to social services on household resilience. In contrast, the asset index 

is found to be a robust determinant of resilience, with a marginal increase leading to more than 

0.16 increase in resilience in both OLS and IV estimations. However, receiving input coupons is 

negatively associated with resilience, as indicated by a 0.013 decrease in OLS and IV. 

 

6.7 Multiple-season Farming on Production Diversity and Selling to Markets 

In this section, we investigate the potential pathways through which multiple-season 

farming improves food security. Specifically, we examine the relationship between farming in 

multiple seasons and farm production diversity, as well as the likelihood of selling agricultural 
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harvests in the market. The sample was divided into various subgroups by asset index and by 

gender of household head, same as previous subgroup analyses on food security measures. 

Our findings, as presented in Table 16, indicate that farming in multiple seasons is 

positively associated with crop production diversity for rural households. This relationship is 

statistically significant at the 1% level, and the magnitude of coefficients ranged from 1.088 to 

1.282 across different subgroups, suggesting that households that farm in both rainy and dry 

seasons produce more than one extra type of crop on average compared to households that only 

farm in the rainy season, holding other factors constant. Furthermore, we find that higher asset 

levels are positively correlated with production diversity for the full sample and all subgroups. 

Having a larger household size and obtaining input coupons increases production diversity for full 

sample, poor households and male-headed households.  

We display results from the IV estimations in Table 17. Compared to OLS coefficients in 

Table 16, the IV coefficients on multiple-season farming are higher in magnitude. Specifically, the 

IV coefficients on multiple-season farming range from 1.678 for not poor households to 2.595 for 

poor households. These results suggest that the presence of bias has attenuated the impact of 

multiple-season farming on farm production diversity for all of our sample households. 

Additionally, the coefficients on other covariates generally support the OLS estimates, except in a 

few cases where the IV coefficients have become insignificant. Asset index appears to have no 

significant effect in IV regression on poor households. We argue that marginal increases in asset 

index have little effect on increasing production diversity for financially disadvantaged households. 

We disaggregate the crops count variable into staple crops, cash crops, vegetables and  

legumes to examine the effect of multiple-season farming on the cultivation of each. As few 

households grew any cash crops, we focus on the cultivation of staple crops, vegetables and 
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legumes. Our results in Table 18 show a positive and statistically significant impact of multiple 

season farming on increasing the diversity of cultivation for staple crops, vegetables and legumes. 

The magnitude of coefficients and level of statistical significance are higher for staple crops and 

vegetable diversification in both OLS and IV models. Therefore, we argue that the observed 

increase in dietary diversity from previous tables was primarily a result of the induced diversity of 

staple crops and vegetable production among farmers who farmed in multiple seasons.  

Finally, in Table 19, we present the results of a linear probability model that examines the 

effect of multiple-season farming on the likelihood of selling agricultural produce to markets. 

Subsequently, Table 20 displays the results of the IV estimation. The dependent variable is a binary 

variable that takes the value of 1 if the household has sold any agricultural produce to the market 

within a year. We provide results for the full sample in column 1. We disaggregate our sample by 

asset holding in columns 2 and 3, and by gender of household head in columns 4 and 5. 

The OLS coefficients in Table 19 suggest that multiple-season farming increases the 

probability of selling agricultural produce to the market in all cases. However, when we compare 

the OLS and IV coefficients on multiple-season farming, statistical significance is only observed 

in IV (Table 20) for the full sample (column 1), poor households (column 2), and female-headed 

households (column 4). Distance to the nearest population center is negatively correlated with 

selling to the market for female-headed households, but positively correlated with male-headed 

households in both OLS and IV. Asset index increases the probability of selling to the market for 

the full sample, non-poor households, and male-headed households in OLS, but its effect on 

male-headed households becomes insignificant in IV. The positive effect of obtaining input 

coupons is robust and consistent in both OLS and IV estimations. Surprisingly, we do not find 
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any significant effect of distance to the nearest ADMARC outlet on households' propensity to 

sell on markets. 
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Chapter 7: Discussion 

7.1 Multiple-season Farming: Determinants of Adoption, and its Impacts on 

Measures of Well-being. 

The results presented in Table 4 indicate that having a greater number of household 

members contributes to a higher availability of labor, while having access to input coupons 

facilitates the purchase of sufficient agricultural inputs to support farming during both the rainy 

and dry seasons. This finding is consistent with the work of Chinsinga and Kayuni (2011), who 

report that Malawian farmers who farm on seasonal wetlands during post-rainy season periods are 

required to invest in inputs and labor to compensate for the lack of rainfall and maintain soil 

fertility during the dry season. Thus, the positive association between household size and input 

coupons and the likelihood of farming in multiple seasons is consistent with empirical evidence. 

In terms of the impact of multiple-season farming on food security, our analysis reveals 

that households that engage in farming during both the rainy and dry seasons have a more diverse 

and nutritious diet, as reflected by the positive OLS coefficients on multiple-season farming on 

Household Dietary Diversity Score (HDDS) and Food Consumption Score (FCS). Further IV 

estimations suggest that the positive impact of multiple-season farming on reducing Coping 

Strategies Index (CSI) is statistically significant, and the coefficients on HDDS and FCS become 

more pronounced. This provides robustness to the OLS estimates and supports the conclusion that 

multiple-season farming has a positive impact on household food security.  

Negative biases in OLS coefficients are possible when multiple-season farming is inversely 

correlated with unobservable attributes of the households, such as learning potential or farm 

experience. When these factors are positively correlated with the outcome of interest, OLS 

estimates tend to underestimate the effect of the main predictor (Kabunga, Dubois, and Qaim 2012; 
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Uusitalo 1999; McArthur and McCord 2017). In the context of our analysis, a possible explanation 

for the downward bias in our OLS estimates is that farmers who lack experience or skills to obtain 

sufficient crop yields during the rainy season may choose to engage in dry-season farming. 

Consequently, multiple-season farming is often practiced by farmers who receive lower yields on 

average, resulting in a negative selection bias.  

Our findings show that there is no significant impact of multiple-season farming on child 

anthropometrics. Specifically, there is no observable increase in HAZ, WAZ, or WHZ among 

children from households engaged in multiple-season farming. The lack of significant impact on 

HAZ is in line with our expectation, as HAZ is a measure of long-term nutrient deficiency that is 

less sensitive to short-term changes in farming patterns (Headey and Masters 2021). However, we 

anticipated that multiple-season farming would lead to changes in WAZ and WHZ, given that 

weight-based indicators tend to be more responsive to changes in dietary patterns brought about 

by multiple-season farming. Contrary to our expectations, we find that the induced improvement 

in dietary diversity among multiple-season farming households has not translated into better 

nutrition outcomes. This lack of synergy between improvements in food consumption patterns and 

nutrition status has also been observed in previous studies (Chegere and Stage 2020; Santoso et al. 

2021). Improving nutrition outcomes requires addressing additional confounding factors, such as 

market quality, nutrient intake knowledge, and access to basic infrastructure (Chegere and Kauky 

2022; Headey et al. 2018). 

To estimate household resilience, we find a negative and significant correlation between 

households’ lagged FCS and current FCS. This suggests that better food consumption patterns in 

the previous survey round are linked to worse resilience to becoming food insecure in the current 

survey round. This result contradicts the findings of previous studies (Abay et al. 2022; Cissé and 
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Barrett 2018), which find that households’ recent welfare standing contributes to better household 

resilience. Moreover, we find that multiple-season farming increases household resilience in OLS, 

but such effect does not persist when we apply the IV estimation. Although multiple-season 

farming is associated with an increase in current FCS, as demonstrated by the results in Tables 5 

and 6, such an increase does not necessarily predict a higher likelihood to remain food secure in 

the future, as our IV estimates fail to validate robustness of our OLS coefficients of multiple-

season farming on resilience. 

We also present graphical evidence to compare the deterministic power of various 

household characteristics over estimated resilience. In Figures 3-6, we disaggregate households 

into subgroups by multiple-season farming status, whether they obtained any input coupon, gender 

of household head and whether they have an asset index above or below the 50th percentile of the 

distribution, respectively in each figure. We have year on the x-axis of each figure, and on the y-

axis we have the proportion of households that are not resilient in each subgroup5. We define non-

resiliency as having an estimated resilience score below 0.7. In other words, households whose 

predicted probability of achieving a FCS over 35 are below 70% are deemed not resilient.  

In Figure 3, when we disaggregate households by multiple-season farming status, we see 

only minimal difference between the proportion of households that are not resilient among 

multiple-season farmers and farmers who only farm in the rainy season. In Figure 4, households 

that obtained input coupons in 2013 and 2019 are slightly more resilient compared to households 

that did not obtain input coupons. However, we see no difference in the proportion of not-resilient 

households in each subgroup in 2016, which is the year when Malawi experienced a significant 

drought (Aberman, Meerman, and Benson 2018).  

 
5 See Figures A5-A8 in the appendix for details regarding the distribution of resilience in each subgroup. 
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However, difference in resilience among subgroups are highly discernible when 

households are disaggregated by structural variables. In Figure 5, male-headed households are 

consistently more resilient compared to female-headed households in every year. The same story 

goes when households are split by their asset holdings in Figure 6. Households with an asset index 

above 50th percentile of the distribution appear to be more resilient on average compared to those 

with an asset index below 50th percentile. Therefore, we argue that structural factors possess more 

deterministic power over households’ long-term resilience compared to short-term changes in 

agricultural practices, such as multiple season farming and obtaining input coupons for the year.  

Additionally, we find a surprising negative association between having obtained input 

coupons and resilience. Although having input coupons is associated with higher dietary diversity 

(HDDS), input coupon receivers are likely to exhibit lower resilience according to both OLS and 

IV estimations. One possible explanation for this result is that input voucher programs like the 

FISP are successful in targeting some vulnerable farmers but are flawed in consistent distribution 

over time due to issues such as capture of benefits by elites and intra-village sharing of coupons 

resulting from an egalitarian culture (Lunduka, Ricker-Gilbert and Fisher 2013; Holden and 

Lunduka 2013; Holden and Lunduka 2010). Therefore, the short-term increase in household food 

security among coupon receivers hardly predicts a sustainable improvement in resilience over the 

long run. 

 
7.2 Heterogeneity Analysis  

The impact of multiple-season farming on food security may vary at different levels of 

asset endowments, and gender differences can shape agricultural outcomes as well as decisions 

regarding food consumption (Makate and Makate 2022). Therefore, we disaggregate our sample 
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by asset index and gender of the household head, and examine potential wealth and gender 

disparities.  

Our findings indicate that multiple-season farming has a more robust impact on food 

security for households in the top 50% of the asset index distribution and households headed by 

males. In both OLS and IV estimations, multiple-season farming leads to an increase in dietary 

diversity for relatively wealthy households and male-headed households. Moreover, for non-poor 

and male-headed households, multiple-season farming is associated with less severe coping 

behaviors, as evidenced by the significant and negative coefficients on the coping strategy index 

(CSI) in their respective IV estimations. However, the positive influence of multiple-season 

farming on food security appears to be less consistent for the poor and female-headed households. 

Although the OLS estimations show improvements in household dietary diversity and food 

consumption scores (FCS), none of these effects remain statistically significant in the IV 

estimations. Therefore, we conclude that the benefits of multiple-season farming on food security 

are primarily realized by relatively wealthier and male-headed households. Asset-poor and female-

headed households do not benefit as much, possibly due to their disadvantaged positions on 

receiving subsidies for procurement of agricultural inputs (Lunduka, Ricker-Gilbert and Fisher 

2013) or low access to farm land and irrigation during the dry season (Nyirenda 2020; Makate and 

Makate 2020).  

Furthermore, our results indicate that the positive association between the asset index and 

food security is much more pronounced for non-poor households compared to poor households. 

One possible explanation for this finding is that access to food markets is constrained by wealth, 

as measured by the asset index. According to Headey et al. (2018), increases in socioeconomic 

status and demand for more diverse foods lead to improved market access, enabling asset-rich 
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households to diversify their diets through market purchases. In contrast, market access for poor 

households is limited by their lack of purchasing power, which explains why the increase in the 

asset index does not lead to significant improvements in dietary diversity. 

 

7.3 Multiple-season Farming on Production Diversity and Selling to Markets 

Our regression analyses in Tables 16 and 17 indicate that households that engage in 

multiple-season farming demonstrate higher crop diversity. This finding aligns with previous 

research, which has demonstrated that increased production diversity is associated with better 

dietary diversity (Jones, Shrinivas, & Bezner-Kerr, 2014; Chegere & Stage, 2020). It is likely that 

households practicing multiple-season farming achieve better food security outcomes by planting 

a more diverse range of crops for self-consumption. Notably, increased production diversity of 

vegetables and legumes has important implications for nutrient intake, as vegetables and legumes 

are a primary source of micronutrients such as Vitamin A and iron. On the other hand, in low-

income rural areas, the supply of food items such as green leafy vegetables tends to be limited due 

to their perishability and low demand (Headey & Masters, 2021). Therefore, the increase in 

vegetable cultivation among multiple-season farmers is likely to satisfy their consumption 

demands, particularly in regions where the supply of vegetables from markets is absent.  

Another important aspect of multiple-season farming is the increased likelihood of selling 

agricultural produce in markets. Farmers who cultivate crops in multiple seasons are more likely 

to harvest surplus compared to those who only farm in the rainy season. Thus, the greater 

probability of selling their produce in markets could be an indication of increased agricultural 

surplus and extra income from selling outputs. Chegere and Kauky (2022) have shown that a higher 

proportion of farm output sold significantly improves dietary diversity and nutritional status for 
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low-income households, as they depend more on agriculture for their income. Our IV regression 

results suggest that poor and female-headed households demonstrate a higher probability of selling 

to markets when they practice multiple-season farming. We contend that multiple-season farming 

may provide agriculture-dependent households with a strategy to obtain agricultural surplus for 

commercial purposes. The additional income they earn from selling farm produce on markets can 

be used for food purchases or reinvestment into agriculture, resulting in improved food security 

outcomes.    

 

7.4 Placebo test: Food Security, Crop Diversity and Selling to Market for 

Households in Group A 

As aforementioned, we limit our analysis to rural households assigned to Group B in the 

IHPS sample because food security and nutrition outcomes were collected from these households 

several months after they had made the decision to farm multiple seasons (GoM 2020). On the 

other hand, data on food consumption patterns and coping strategies were collected from Group A 

before the dry season farming. As a result, we do not expect rural households in Group A to exhibit 

an increase in food security measures from multiple-season farming. As a placebo test, we run the 

same analysis as in Tables 5-6 and 16-20 and for Group A farmers only, shown in Tables 21 and 

22. We find no effect on the HDDS, FCS, and CSI for Group A households in Table 21, except 

the marginally significant coefficient on CSI from the IV estimation. This validates our estimations 

from Group B and rules out the possibility of reverse causality, that is, households with superior 

food security outcomes are more likely to farm in multiple seasons.  

Additionally, the positive and statistically significant coefficients in the first row of Table 

22 confirm our hypothesis. Multiple-season farmers in Group A exhibit the same increase in crop 
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diversity and propensity for selling to markets as those in Group B. Therefore, multiple-season 

farming improves household food security by increasing the diversity of crops cultivated and the 

likelihood of selling agricultural produce on output markets. Rural households in Malawi that farm 

in both rainy and dry seasons are likely to harvest a more diverse range of crops for food 

consumption or are more likely to sell their produce on the market to generate extra income for 

food purchases or farm investments. 

 

7.5 Expansion of Plot Size Among Multiple-Season Farmers 

An essential assumption underpinning our study is that multiple-season farming enables 

farmers to achieve increased outputs without expanding their cultivation area. However, if the 

adoption of multiple-season farming necessitates the conversion of uncultivated land or forests 

into crop fields, it may not serve as a welfare-enhancing strategy due to the escalating land 

pressure in the sub-Saharan region, as highlighted by Jayne and Sanchez (2022). 

To investigate the validity of the production intensification assumption, we conducted 

regression analysis, regressing the total plot area on multiple-season farming, and present the 

results in Table 23. The OLS coefficients indicate that, on average, multiple-season farmers 

expand their cultivation area by 0.145 acres, and this effect is statistically significant at the 0.01 

level. However, when employing IV estimation, the statistical significance of the coefficient 

disappears. The significant OLS coefficient raises concerns about whether multiple-season 

farming is genuinely compatible with the goal of production intensification. 

One possible explanation for the expansion of cropping area among multiple-season 

farmers could be the portion of farmers with access to seasonal wetlands resulting from receded 

floods, as discussed in the introduction (Chinsinga and Kayuni 2011; Kambewa 2005). To 
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investigate this hypothesis, we conduct additional OLS and IV regressions, excluding the group 

of multiple-season farmers who cultivate seasonal wetlands in columns 3 and 4, and then 

excluding the group of non-wetland farmers in columns 5 and 6. 

Our results reveal that when wetland farmers are excluded from the analysis, there is no 

significant impact of multiple-season farming on plot size expansion. However, when we include 

wetland farmers, the coefficient on multiple-season farming becomes statistically significant at 

the 0.01 level in column 5. Multiple-season farmers who cultivate wetlands during the dry season 

have, on average, 0.2 acres more plots than farmers who do not engage in multiple-season 

farming. On the other hand, non-wetland farmers who farm in multiple seasons do not expand 

their plot size compared to farmers who only farm in the rainy season. Thus, the significant 

impact of multiple-season farming on plot size observed in column 1 of Table 23 could be driven 

by the group of farmers who temporarily expand their farming activity on seasonal wetlands 

during the dry season. If this is indeed the case, such expansion may not pose a problem, as 

wetland farming is temporary in nature, and the soil fertility of seasonal wetlands can be restored 

with the occurrence of the next flood (Kambewa 2005). 
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Chapter 8: Conclusion 

8.1 Conclusion 

 In this study we have shown the potential of multiple-season farming in improving food 

security, child nutrition and resilience of rural households in Malawi. To address possible sources 

of omitted variable bias, we employ an instrumental variable with fixed effect model and utilize 

household-specific satellite data of rainfall anomaly to control for the effect of planting season 

rainfall. Our findings reveal that households practicing multiple-season farming tend to consume 

more diverse diets and frequently eat nutrient-dense foods. Moreover, they are less likely to adopt 

deleterious coping strategies to cope with hunger. Heterogeneity analyses indicate that asset-rich 

and male-headed households are the most likely to benefit from multiple-season farming in terms 

of food security Although our study did not find a significant impact on child nutrition, households 

practicing multiple- season farming produce a wider variety of staple crops and vegetables and are 

more likely to sell surplus outputs in markets. This enables them to acquire more diverse and 

nutritious foods. Additionally, our OLS results suggest multiple-season farming households 

display stronger resilience against chronic food insecurity, but our IV estimation fails to provide 

robustness in our OLS results. Short-term changes in agricultural practices exert less influence 

over long-term resilience compared to structural factors that determine households’ fundamental 

ability to sustain their overall status of well-being. 

 

8.2 Limitations and Future Research 

Our study is limited by several factors. First, the lack of data on access to irrigation in the 

dry season for farmers who do not practice multiple-season farming means that we cannot 

differentiate the potential impact on households that do not have access to dry-season irrigation 
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from those who have access but choose not to practice multiple-season farming. While our IV 

fixed effect model helps to avoid endogeneity issues, having data on dry-season irrigation for the 

entire sample could improve the accuracy of our estimates.  

Furthermore, it is plausible that a greater number of multiple-season farmers in a village 

might have an impact on food availability by potentially increasing the food supply in local 

markets. This raises some concerns about the validity of the exclusion restriction associated with 

our instrumental variable. Notably, Heady et al. (2019) have observed a positive link between 

household and community production diversity and the consumption of perishable food items like 

dairy, fruits, and vegetables. If several households in the same village engage in vegetable 

cultivation during the dry season, it is possible that local markets would see an increase in the 

availability of fresh vegetables, thereby potentially improving vegetable consumption for 

neighboring households. This situation could potentially lead to the violation of the exclusion 

restriction, as farmers might experience greater dietary diversity through market purchases rather 

than solely from improved production diversity and higher agricultural income resulting from 

multi-season farming. 

Additionally, our resilience estimates are subject to the commonly adopted FCS threshold 

of 35 (Leroy et al. 2015). Choosing a different threshold may result in different means and 

distributions, thus suggesting that our chosen method of resilience construction can be vulnerable 

to the subjectivity and local contexts in choosing the appropriate threshold of resilience 

classification (Upton, Constenla-Villoslada and Barrett 2022). 

To extend the duration of agriculture, it is necessary to construct irrigation infrastructures 

and enhance market access. Several studies have demonstrated the significance of irrigation and 

market access in inducing crop diversification (Mondal et al. 2021; Hirvonen and Headey 2018). 
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Future research may examine whether increasing irrigation and market access can facilitate the 

adoption of multiple-season farming, particularly in remote regions lacking water bodies and 

market networks. Moreover, previous literature has provided evidence of the positive relationship 

between access to inputs, markets, irrigation, and improvements in household wellbeing (Harou 

2018; Walls et al., 2023; Cassim and Pemba, 2021; Makate and Makate, 2022; Usman and Haile, 

2022). Thus, future research can investigate whether the targeted provision of farm inputs, 

drought- tolerant seeds or high value-adding cash crops can enhance the income, food and nutrition 

outcomes among multiple-season farmers. This is particularly relevant if we seek to optimize 

returns in asset-poor and female-headed households, who appear to benefit less from extending 

their farming periods across rainy and dry seasons. 
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Table 2: Percentage of households cultivating di↵erent crop types, by year and seasons

% Staple Crops % Staple Crops % Cash Crops % Cash Crops % Vegetables % Vegetables % Legumes % Legumes Total number

(Rainy) (Dry) (Rainy) (Dry) (Rainy) (Dry) (Rainy) (Dry) of HHs

2010 96.13 8.26 17.40 0.53 7.73 4.22 46.40 0.18 569

2013 90.42 10.14 16.53 0.00 10.97 11.53 60.83 3.89 720

2016 88.69 9.41 13.66 0.00 12.54 6.49 47.59 2.13 893

2019 85.20 5.95 10.16 0.18 26.97 7.36 60.68 1.31 1142

Crop types are binary indicators = 1 if a household planted at least one type of crop in that category.

Categorization of crops: Staple crops: maize, rice, sweet potato, Irish potato, wheat, finger millet, sorghum,

pearl millet; Cash crops: cotton, sunflower, sugarcane, tobacco; Vegetables: ground bean, peas, cabbage,

tanaposi, nkhwani, okra, tomato, onion, paprika; Legumes: groundnuts, beans, soyabean, pigeonpea.
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Table 3: Descriptive Statistics

(1) (2) (3)
always farmed in switched between rainy always farmed in T-test
rainy seasons only and both seasons both seasons Di↵erence

Variable N Mean/SE N Mean/SE N Mean/SE (1)-(2) (1)-(3) (2)-(3)

Number of plots cultivated (rainy) 1968 1.570
(0.034)

1283 1.815
(0.047)

73 2.466
(0.187)

-0.245*** -0.896*** -0.650***

HH Distance in (KMs) to Nearest Population Center with +20,000 1966 30.414
(0.394)

1282 29.452
(0.445)

73 23.058
(1.507)

0.962 7.357*** 6.395***

HH Distance in (KMs) to Nearest ADMARC Outlet 1966 8.277
(0.129)

1282 7.461
(0.151)

73 6.722
(0.747)

0.817*** 1.556** 0.739

household size 1968 4.672
(0.051)

1283 5.221
(0.063)

73 5.110
(0.226)

-0.550*** -0.438 0.112

gender of household head (male=1) 1959 0.718
(0.010)

1276 0.741
(0.012)

73 0.795
(0.048)

-0.023 -0.076 -0.053

household head finished at least elementary school 1968 0.246
(0.010)

1283 0.231
(0.012)

73 0.151
(0.042)

0.015 0.095* 0.080

asset index 1967 -0.064
(0.007)

1283 -0.033
(0.009)

73 -0.033
(0.036)

-0.032*** -0.031 0.001

Dependency ratio 1838 106.726
(2.026)

1234 112.046
(2.396)

71 113.615
(9.235)

-5.321* -6.889 -1.569

household obtained input coupons 1968 0.279
(0.010)

1283 0.379
(0.014)

73 0.342
(0.056)

-0.100*** -0.064 0.036

Rainfall Estimate 1822 138.098
(1.480)

1280 138.522
(1.811)

73 141.132
(8.229)

-0.424 -3.035 -2.610

Rainfall Anomaly 1822 -2.052
(0.680)

1280 -6.638
(0.779)

73 5.407
(3.154)

4.585*** -7.459** -12.044***

Household Dietary Diversity Score (HDDS) 1968 7.382
(0.038)

1283 7.480
(0.046)

73 7.589
(0.191)

-0.099 -0.207 -0.109

Food consumption score (FCS) 1968 50.214
(0.403)

1283 50.737
(0.505)

73 51.404
(2.157)

-0.523 -1.190 -0.667

Coping Strategy Index (CSI) 1967 5.663
(0.162)

1282 4.872
(0.188)

73 4.890
(0.703)

0.791*** 0.773 -0.018

resilience 1032 0.680
(0.004)

872 0.696
(0.004)

23 0.698
(0.021)

-0.016*** -0.018 -0.002

Notes : The value displayed for t-tests are the di↵erences in the means across the groups. ***, **,
and * indicate significance at the 1, 5, and 10 percent critical level.
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Table 4: Logistic regression with year and district fixed e↵ects: Determinants of multiple-season farming.

Multiple-season farming
(1) (2) (3)

Rainfall Anomaly 0.997 0.996⇤ 0.998
(0.002) (0.002) (0.002)

HH Distance in (KMs) to 0.992 1.015
Nearest Road (0.012) (0.018)

HH Distance in (KMs) to 0.993 0.985⇤⇤

Nearest Population Center with +20,000 (0.009) (0.007)

HH Distance in (KMs) to 0.970 0.985
Nearest ADMARC Outlet (0.021) (0.016)

household size 1.076⇤⇤⇤ 1.089⇤⇤⇤

(0.027) (0.029)

asset index 1.050 1.096
(0.196) (0.157)

Dependency ratio 1.000 0.999
(0.001) (0.001)

household obtained input 1.258⇤ 1.383⇤⇤

coupons (0.154) (0.180)

Constant 0.176⇤⇤⇤ 0.194⇤⇤⇤ 0.495
(0.026) (0.081) (0.260)

Year Control NO NO YES
District Control NO NO YES
N 3175 3005 2942

Standard errors in parentheses

Coe�cients reported are odds ratios. Sample includes only rural HHs assigned to group B.

Dependent variable is a binary indicator of whether a household has farmed during both

rainy and dry seasons in a given year. Year and district controls included in column 3.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 5: OLS with year and household fixed e↵ects: Multiple-season farming and food security (rural HHs
in group B).

(1) (2) (3) (4) (5) (6)
HDDS HDDS FCS FCS CSI CSI

Multiple-season farming 0.366⇤⇤⇤ 0.372⇤⇤⇤ 1.753⇤ 1.733⇤ 0.025 0.077
(0.091) (0.092) (0.953) (0.960) (0.413) (0.414)

Rainfall Anomaly 0.002 0.002⇤ 0.015 0.024 -0.002 -0.002
(0.001) (0.001) (0.019) (0.018) (0.007) (0.007)

HH Distance in (KMs) to 0.012 0.069 -0.063
Nearest Road (0.015) (0.170) (0.075)

HH Distance in (KMs) to -0.008⇤ -0.069⇤ 0.028⇤

Nearest Population Center with +20,000 (0.004) (0.037) (0.017)

HH Distance in (KMs) to 0.005 0.121 -0.055
Nearest ADMARC Outlet (0.019) (0.177) (0.094)

Household size -0.004 0.398 0.295⇤⇤

(0.023) (0.258) (0.131)

Asset index 0.675⇤⇤⇤ 8.103⇤⇤⇤ -1.740⇤⇤⇤

(0.119) (1.720) (0.579)

Dependency ratio -0.000 -0.005 0.003
(0.000) (0.004) (0.002)

Household obtained input 0.190⇤⇤ 0.255 -0.542
coupons (0.086) (0.812) (0.501)

Constant 7.703⇤⇤⇤ 7.803⇤⇤⇤ 54.178⇤⇤⇤ 54.337⇤⇤⇤ 2.205⇤⇤⇤ 0.859
(0.087) (0.341) (0.908) (2.695) (0.319) (1.499)

Year FE YES YES YES YES YES YES
HH FE YES YES YES YES YES YES
N 2795 2610 2795 2610 2792 2609

Sample includes only rural HHs assigned to group B. Dependent variables are Household Dietary Diversity Score (0-10) for

columns 1-2, Food Consumption Score (0-126) for columns 3-4, and Coping Strategy Index for columns 5-6.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 6: IV regression with year and household fixed e↵ects: Multiple-season farming and households’ food
security (rural HHs in group B only).

(1) (2) (3) (4) (5) (6)
HDDS HDDS FCS FCS CSI CSI

Multiple-season farming 1.138⇤ 1.241⇤⇤ 4.943 7.572⇤ -5.536⇤⇤ -5.323⇤⇤

(0.598) (0.558) (4.509) (4.082) (2.582) (2.453)

Rainfall Anomaly 0.002⇤ 0.002⇤ 0.016 0.025 -0.004 -0.003
(0.001) (0.001) (0.018) (0.017) (0.006) (0.006)

HH Distance in (KMs) to 0.010 0.058 -0.052
Nearest Road (0.016) (0.172) (0.073)

HH Distance in (KMs) to -0.008⇤⇤ -0.071⇤ 0.029⇤

Nearest Population Center with +20,000 (0.004) (0.038) (0.016)

HH Distance in (KMs) to 0.011 0.159 -0.091
Nearest ADMARC Outlet (0.018) (0.171) (0.091)

household size -0.006 0.383 0.308⇤⇤

(0.024) (0.266) (0.145)

asset index 0.666⇤⇤⇤ 8.043⇤⇤⇤ -1.685⇤⇤⇤

(0.127) (1.776) (0.503)

Dependency ratio 0.000 -0.004 0.002
(0.000) (0.005) (0.002)

household obtained input 0.184⇤⇤ 0.221 -0.510
coupons (0.091) (0.826) (0.491)

Year FE YES YES YES YES YES YES
HH FE YES YES YES YES YES YES
N 2795 2610 2795 2610 2792 2609

Standard errors in parentheses

Sample includes only rural HHs assigned to group B. Dependent variables are Household Dietary Diversity Score (0-10) for

columns 1-2, Food Consumption Score (0-126) for columns 3-4 and Coping Strategy Index for columns 5-6. Excluded

instrument: ratio of neighbouring households that farmed in multiple seasons.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 7: OLS and IV regressions with year and household fixed e↵ects: Multiple-season farming and house-
holds’ food security (non-poor HHs).

(1) (2) (3) (4) (5) (6)
HDDS FCS CSI HDDS (IV) FCS (IV) CSI (IV)

Multiple-season farming 0.310⇤⇤ 0.912 -0.458 1.365⇤⇤ 8.823 -5.703⇤⇤

(0.123) (1.440) (0.512) (0.657) (5.950) (2.690)

Rainfall Anomaly 0.002⇤ 0.032 -0.005 0.003⇤⇤ 0.038⇤ -0.009
(0.001) (0.022) (0.009) (0.001) (0.019) (0.010)

HH Distance in (KMs) to 0.043⇤⇤⇤ 0.067 -0.000 0.040⇤⇤ 0.040 0.017
Nearest Road (0.016) (0.125) (0.126) (0.015) (0.123) (0.123)

HH Distance in (KMs) to -0.014⇤⇤⇤ -0.039 0.056⇤⇤ -0.015⇤⇤⇤ -0.047 0.061⇤⇤⇤

Nearest Population Center with +20,000 (0.004) (0.047) (0.025) (0.004) (0.052) (0.021)

HH Distance in (KMs) to 0.030 0.447 -0.080 0.032 0.466⇤ -0.092
Nearest ADMARC Outlet (0.026) (0.270) (0.114) (0.026) (0.252) (0.110)

household size -0.011 0.680⇤⇤ 0.211 -0.013 0.668⇤⇤ 0.219
(0.025) (0.289) (0.148) (0.024) (0.302) (0.169)

asset index 0.742⇤⇤⇤ 10.540⇤⇤⇤ -2.004⇤⇤⇤ 0.748⇤⇤⇤ 10.584⇤⇤⇤ -2.034⇤⇤⇤

(0.148) (2.244) (0.702) (0.159) (2.281) (0.701)

Dependency ratio -0.001 -0.013⇤⇤ 0.004 -0.001 -0.013⇤⇤ 0.004
(0.001) (0.005) (0.003) (0.000) (0.005) (0.003)

household obtained input 0.083 -1.024 -1.083⇤ 0.098 -0.913 -1.156⇤⇤

coupons (0.129) (0.986) (0.564) (0.132) (1.031) (0.545)

Constant 7.822⇤⇤⇤ 52.465⇤⇤⇤ 0.209
(0.398) (2.892) (1.532)

Year FE YES YES YES YES YES YES
HH FE YES YES YES YES YES YES
N 1344 1344 1344 1344 1344 1344

Standard errors in parentheses

Sample includes only rural HHs assigned to group B and have an asset index score above the 50th percentile. Dependent variables

are Household Dietary Diversity Score (0-10) for columns 1 and 4, Food Consumption Score (0-126) for columns 2 and 5, and Coping

Strategy Index for columns 3 and 6. Excluded instrument for IV estimations: ratio of neighbouring households that farmed in multiple

seasons.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 8: OLS and IV regressions with year and household fixed e↵ects: Multiple-season farming and house-
holds’ food security (poor HHs).

(1) (2) (3) (4) (5) (6)
HDDS FCS CSI HDDS (IV) FCS (IV) CSI (IV)

Multiple-season farming 0.447⇤⇤⇤ 2.776⇤⇤ 0.575 1.228 6.500 -5.194
(0.111) (1.223) (0.586) (0.769) (6.042) (3.506)

Rainfall Anomaly 0.002 0.011 0.001 0.001 0.011 0.002
(0.002) (0.022) (0.010) (0.002) (0.021) (0.009)

HH Distance in (KMs) to -0.012 0.068 -0.125 -0.012 0.066 -0.123
Nearest Road (0.023) (0.287) (0.081) (0.024) (0.288) (0.081)

HH Distance in (KMs) to -0.002 -0.102⇤ -0.001 -0.001 -0.101⇤ -0.003
Nearest Population Center with +20,000 (0.007) (0.055) (0.028) (0.007) (0.055) (0.025)

HH Distance in (KMs) to -0.019 -0.118 -0.045 -0.011 -0.080 -0.106
Nearest ADMARC Outlet (0.030) (0.235) (0.166) (0.027) (0.252) (0.171)

household size 0.002 -0.044 0.419⇤ -0.002 -0.060 0.444⇤

(0.043) (0.423) (0.226) (0.045) (0.423) (0.227)

asset index 0.575⇤⇤ 4.356 -1.526⇤ 0.541⇤⇤ 4.190 -1.269
(0.235) (2.709) (0.879) (0.254) (2.798) (0.785)

Dependency ratio 0.000 0.003 0.001 0.001 0.004 -0.001
(0.001) (0.007) (0.002) (0.001) (0.007) (0.003)

household obtained input 0.292⇤⇤⇤ 1.403 -0.090 0.272⇤⇤⇤ 1.311 0.053
coupons (0.091) (1.000) (0.571) (0.094) (1.030) (0.597)

Constant 7.684⇤⇤⇤ 54.456⇤⇤⇤ 1.734
(0.546) (5.053) (2.394)

Year FE YES YES YES YES YES YES
HH FE YES YES YES YES YES YES
N 1266 1266 1265 1266 1266 1265

Standard errors in parentheses

Sample includes only rural HHs assigned to group B and have an asset index score below the 50th percentile. Dependent variables

are Household Dietary Diversity Score (0-10) for columns 1 and 4, Food Consumption Score (0-126) for columns 2 and 5, and Coping

Strategy Index for columns 3 and 6. Excluded instrument for IV estimations: ratio of neighbouring households that farmed in multiple

seasons.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01



 89 

 
 

Table 9: OLS and IV regressions with year and household fixed e↵ects: Multiple-season farming and house-
holds’ food security (male headed HHs).

(1) (2) (3) (4) (5) (6)
HDDS FCS CSI HDDS (IV) FCS (IV) CSI (IV)

Multiple-season farming 0.286⇤⇤⇤ 1.021 0.302 1.525⇤⇤ 7.158⇤ -5.509⇤⇤

(0.092) (1.036) (0.345) (0.605) (4.043) (2.646)

Rainfall Anomaly 0.001 0.024 -0.003 0.001 0.025 -0.004
(0.001) (0.019) (0.006) (0.001) (0.018) (0.007)

HH Distance in (KMs) to 0.016 0.115 -0.078 0.013 0.100 -0.064
Nearest Road (0.020) (0.162) (0.096) (0.021) (0.161) (0.093)

HH Distance in (KMs) to -0.007 -0.078 0.026 -0.008 -0.082 0.030
Nearest Population Center with +20,000 (0.006) (0.049) (0.021) (0.005) (0.050) (0.020)

HH Distance in (KMs) to 0.015 0.219 -0.101 0.023 0.259 -0.139
Nearest ADMARC Outlet (0.021) (0.197) (0.103) (0.021) (0.194) (0.107)

household size -0.002 0.511⇤ 0.097 -0.007 0.484 0.122
(0.026) (0.303) (0.145) (0.028) (0.320) (0.160)

asset index 0.649⇤⇤⇤ 8.366⇤⇤⇤ -1.635⇤⇤ 0.629⇤⇤⇤ 8.266⇤⇤⇤ -1.541⇤⇤

(0.122) (1.745) (0.721) (0.146) (1.818) (0.626)

Dependency ratio -0.001 -0.008 0.006⇤⇤ -0.000 -0.007 0.005
(0.001) (0.006) (0.003) (0.001) (0.006) (0.004)

household obtained input 0.152 0.297 -0.600 0.178⇤ 0.422 -0.719
coupons (0.093) (0.882) (0.533) (0.103) (0.912) (0.513)

Constant 7.795⇤⇤⇤ 54.181⇤⇤⇤ 1.971
(0.400) (3.212) (1.771)

Year FE YES YES YES YES YES YES
HH FE YES YES YES YES YES YES
N 1902 1902 1901 1902 1902 1901

Standard errors in parentheses

Sample includes only rural HHs assigned to group B and headed by a male HH member. Dependent variables are Household Dietary

Diversity Score (0-10) for columns 1 and 4, Food Consumption Score (0-126) for columns 2 and 5, and Coping Strategy Index for

columns 3 and 6. Excluded instrument for IV estimations: ratio of neighbouring households that farmed in multiple seasons.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 10: OLS and IV regressions with year and household fixed e↵ects: Multiple-season farming and
households’ food security (female headed HHs).

(1) (2) (3) (4) (5) (6)
HDDS FCS CSI HDDS (IV) FCS (IV) CSI (IV)

Multiple-season farming 0.610⇤⇤⇤ 3.719⇤⇤ -0.483 0.284 8.479 -4.553
(0.169) (1.783) (1.083) (0.743) (8.621) (5.201)

Rainfall Anomaly 0.004⇤ 0.025 0.001 0.004⇤ 0.029 -0.002
(0.002) (0.032) (0.011) (0.002) (0.032) (0.008)

HH Distance in (KMs) to -0.012 -0.178 0.028 -0.012 -0.187 0.036
Nearest Road (0.024) (0.299) (0.059) (0.024) (0.315) (0.063)

HH Distance in (KMs) to -0.009⇤ -0.043 0.033⇤ -0.009⇤ -0.039 0.030⇤

Nearest Population Center with +20,000 (0.005) (0.067) (0.017) (0.005) (0.068) (0.016)

HH Distance in (KMs) to -0.050 -0.396 0.258 -0.052 -0.369 0.234
Nearest ADMARC Outlet (0.038) (0.621) (0.165) (0.037) (0.631) (0.162)

household size -0.001 0.153 0.704⇤⇤⇤ -0.002 0.166 0.693⇤⇤⇤

(0.045) (0.428) (0.231) (0.045) (0.420) (0.243)

asset index 0.720⇤⇤⇤ 6.460⇤⇤ -1.658⇤ 0.715⇤⇤⇤ 6.533⇤⇤ -1.720⇤

(0.265) (3.130) (0.879) (0.265) (3.098) (0.879)

Dependency ratio 0.001 0.001 -0.002 0.001 0.002 -0.003
(0.001) (0.007) (0.003) (0.001) (0.007) (0.004)

household obtained input 0.246⇤ -0.286 -0.249 0.270⇤⇤ -0.640 0.053
coupons (0.128) (1.354) (0.766) (0.123) (1.541) (0.915)

Constant 8.180⇤⇤⇤ 57.574⇤⇤⇤ -3.796⇤

(0.520) (6.244) (2.216)

Year FE YES YES YES YES YES YES
HH FE YES YES YES YES YES YES
N 708 708 708 708 708 708

Standard errors in parentheses

Sample includes only rural HHs assigned to group B and headed by a female HH member. Dependent variables are Household

Dietary Diversity Score (0-10) for columns 1 and 4, Food Consumption Score (0-126) for columns 2 and 5, and Coping Strategy

Index for columns 3 and 6. Excluded instrument for IV estimations: ratio of neighbouring households that farmed in

multiple seasons.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 11: OLS and IV regression with year, household and child fixed e↵ects: Multiple-season farming and
height-for-age z-score. (Rural HHs in Group B)

(1) (2) (3) (4)
HAZ HAZ HAZ (IV) HAZ (IV)

Household practiced -0.252 -0.208 -0.889 -0.735
agriculture during both rainy and dry seasons (0.594) (0.569) (2.067) (1.823)

Rainfall Anomaly -0.007 -0.007 -0.007 -0.006
(0.005) (0.005) (0.005) (0.005)

HH Distance in (KMs) to -0.069⇤⇤ -0.068⇤⇤

Nearest Road (0.031) (0.031)

HH Distance in (KMs) to -0.021⇤⇤⇤ -0.021⇤⇤⇤

Nearest Population Center with +20,000 (0.008) (0.007)

HH Distance in (KMs) to 0.058 0.058
Nearest ADMARC Outlet (0.078) (0.075)

household size -0.015 -0.010
(0.068) (0.062)

asset index 0.242 0.233
(0.318) (0.322)

Dependency ratio 0.001 0.001
(0.002) (0.002)

household obtained input -0.227 -0.235
coupons (0.242) (0.258)

Constant -0.762⇤⇤⇤ 0.142
(0.176) (0.658)

Year FE YES YES YES YES
HH FE YES YES YES YES
Child FE YES YES YES YES
N 1908 1898 1908 1898

Standard errors in parentheses

Dependent variable: Height-for-age Z-score (HAZ). Results from OLS are displayed in column 1-2 and IV

in column 3-4. Excluded instrument: ratio of neighbouring households that farmed in multiple seasons
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 12: OLS and IV regression with year, household and child fixed e↵ects: Multiple-season farming and
weight-for-age z-score (Rural HHs in Group B).

(1) (2) (3) (4)
WAZ WAZ WAZ (IV) WAZ (IV)

Household practiced -2.180 -2.114 -9.399 -8.572
agriculture during both rainy and dry seasons (2.182) (2.076) (8.855) (7.961)

Rainfall Anomaly -0.013 -0.012 -0.012 -0.011
(0.018) (0.017) (0.017) (0.016)

HH Distance in (KMs) to -0.081 -0.070
Nearest Road (0.062) (0.058)

HH Distance in (KMs) to -0.029 -0.022
Nearest Population Center with +20,000 (0.029) (0.024)

HH Distance in (KMs) to 0.258 0.243
Nearest ADMARC Outlet (0.293) (0.252)

household size -0.147 -0.046
(0.259) (0.187)

asset index 0.738 0.603
(0.585) (0.881)

Dependency ratio 0.003 0.003
(0.005) (0.005)

household obtained input -0.272 -0.448
coupons (0.456) (0.684)

Constant 0.721 0.705
(0.463) (0.899)

Year FE YES YES YES YES
HH FE YES YES YES YES
Child FE YES YES YES YES
N 1487 1484 1487 1484

Standard errors in parentheses

Dependent variable: Weight-for-age Z-score (WAZ). Results from OLS are displayed in column 1-2 and IV

in column 3-4. Excluded instrument: ratio of neighbouring households that farmed in multiple

seasons.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 13: OLS and IV regression with year, household and child fixed e↵ects: Multiple-season farming and
weight-for-height z-score (Rural HHs in Group B).

(1) (2) (3) (4)
WHZ WHZ WHZ (IV) WHZ (IV)

Household practiced 0.016 0.057 -1.098 -0.759
agriculture during both rainy and dry seasons (0.305) (0.303) (1.269) (1.250)

Rainfall Anomaly 0.005⇤ 0.005⇤ 0.005 0.005⇤

(0.003) (0.003) (0.003) (0.003)

HH Distance in (KMs) to 0.016 0.019
Nearest Road (0.025) (0.028)

HH Distance in (KMs) to 0.013 0.014⇤

Nearest Population Center with +20,000 (0.008) (0.008)

HH Distance in (KMs) to -0.028 -0.027
Nearest ADMARC Outlet (0.044) (0.046)

household size 0.312 0.313
(0.268) (0.271)

asset index 0.643 0.620
(0.643) (0.624)

Dependency ratio -0.003 -0.003
(0.002) (0.002)

household obtained input 0.514 0.493
coupons (0.343) (0.340)

Constant 0.386 -1.438
(0.450) (0.990)

Year FE YES YES YES YES
HH FE YES YES YES YES
Child FE YES YES YES YES
N 1153 1151 1153 1151

Standard errors in parentheses

Dependent variable: Weight-for-height Z-score (WHZ). Results from OLS are displayed in column 1-2

and IV in column 3-4. Excluded instrument: ratio of neighbouring households that farmed in multiple

seasons.
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 14: Multiple-season farming and households: Estimation based on FCS (Rural HHs in Group B only).

(1) (2) (3)
FCS Variance of FCS Resilience

lag FCS -0.004 -0.036 -0.032⇤⇤⇤

(0.006) (0.025) (0.002)

lag FCS2 0.000 0.001 0.001⇤⇤⇤

(0.000) (0.000) (0.000)

lag FCS3 -0.000⇤ -0.000 -0.000⇤⇤⇤

(0.000) (0.000) (0.000)

Rainfall Anomaly 0.000 -0.005⇤⇤⇤ -0.002⇤⇤⇤

(0.000) (0.001) (0.000)

HH Distance in (KMs) to -0.004⇤⇤⇤ -0.002 -0.012⇤⇤⇤

Nearest Road (0.001) (0.009) (0.000)

HH Distance in (KMs) to -0.001 0.003 0.000
Nearest Population Center with +20,000 (0.001) (0.004) (0.000)

HH Distance in (KMs) to -0.004⇤⇤ -0.003 -0.009⇤⇤⇤

Nearest ADMARC Outlet (0.002) (0.009) (0.001)

Number of plots cultivated in the 0.008 -0.014 0.009⇤⇤⇤

rainy season (0.005) (0.027) (0.002)

household size 0.002 0.013 0.013⇤⇤⇤

(0.004) (0.018) (0.001)

gender of household head 0.049⇤⇤⇤ 0.057 0.143⇤⇤⇤

(0.017) (0.092) (0.005)

household head finished at 0.084⇤⇤⇤ 0.338⇤⇤⇤ 0.453⇤⇤⇤

least elementary school (0.022) (0.121) (0.007)

asset index 0.250⇤⇤⇤ 0.476⇤⇤⇤ 0.879⇤⇤⇤

(0.027) (0.165) (0.010)

Dependency ratio -0.000⇤ -0.000 -0.001⇤⇤⇤

(0.000) (0.001) (0.000)

household obtained input -0.004 -0.067 -0.055⇤⇤⇤

coupons (0.019) (0.099) (0.005)

Constant 3.962⇤⇤⇤ 5.239⇤⇤⇤ 0.818⇤⇤⇤

(0.128) (0.545) (0.045)

Year FE YES YES YES
District FE YES YES YES
N 1927 1927 1927

Standard errors in parentheses
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 15: OLS and IV regression with year and household fixed e↵ects: Multiple-season farming and house-
holds’ resilience (Rural HHs in group B only).

(1) (2) (3) (4)
Resilience Resilience Resilience (IV) Resilience (IV)

Multiple-season farming 0.012⇤⇤⇤ 0.007⇤⇤ 0.035 0.022
(0.004) (0.003) (0.029) (0.022)

Rainfall Anomaly -0.000⇤⇤⇤ -0.001⇤⇤⇤ -0.000⇤⇤⇤ -0.001⇤⇤⇤

(0.000) (0.000) (0.000) (0.000)

HH Distance in (KMs) to -0.002⇤⇤⇤ -0.002⇤⇤⇤

Nearest Road (0.000) (0.000)

HH Distance in (KMs) to 0.001⇤⇤ 0.001⇤⇤⇤

Nearest Population Center with +20,000 (0.000) (0.000)

HH Distance in (KMs) to -0.001 -0.001
Nearest ADMARC Outlet (0.001) (0.001)

household size 0.002⇤⇤ 0.002⇤⇤

(0.001) (0.001)

asset index 0.165⇤⇤⇤ 0.164⇤⇤⇤

(0.007) (0.008)

Dependency ratio -0.000⇤⇤⇤ -0.000⇤⇤⇤

(0.000) (0.000)

household obtained input -0.013⇤⇤⇤ -0.013⇤⇤⇤

coupons (0.005) (0.005)

Constant 0.699⇤⇤⇤ 0.725⇤⇤⇤

(0.003) (0.012)

Year FE YES YES YES YES
HH FE YES YES YES YES
N 1692 1692 1692 1692

Standard errors in parentheses

Urban HHs are dropped from the dataset. Excluded instrument: ratio of neighbouring households that farmed

consecutively across seasons.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 16: OLS with household and year fixed e↵ects: Multiple-season farming on the number of crops
planted.

Full Sample Asset index Gender of HH head
(1) (2) (3) (4) (5)

Dependent variable: Number of crops planted

Multiple-season farming 1.143⇤⇤⇤ 1.176⇤⇤⇤ 1.103⇤⇤⇤ 1.282⇤⇤⇤ 1.088⇤⇤⇤

(0.088) (0.113) (0.087) (0.136) (0.098)

Rainfall Anomaly -0.001 -0.001 -0.000 -0.001 -0.001
(0.001) (0.001) (0.002) (0.002) (0.001)

HH Distance in (KMs) to 0.016⇤ 0.019 0.010 0.023 0.016⇤⇤

Nearest Road (0.008) (0.015) (0.010) (0.016) (0.008)

HH Distance in (KMs) to 0.005 0.002 0.007⇤ 0.002 0.006
Nearest Population Center with +20,000 (0.004) (0.005) (0.004) (0.004) (0.004)

HH Distance in (KMs) to 0.007 -0.002 0.015 0.059⇤⇤ -0.004
Nearest ADMARC Outlet (0.011) (0.013) (0.020) (0.028) (0.013)

household size 0.060⇤⇤⇤ 0.100⇤⇤⇤ 0.030 0.036 0.069⇤⇤⇤

(0.020) (0.023) (0.028) (0.028) (0.025)

asset index 0.272⇤⇤⇤ 0.307⇤⇤ 0.271⇤⇤ 0.404⇤⇤⇤ 0.216⇤⇤

(0.076) (0.133) (0.122) (0.125) (0.091)

Dependency ratio -0.000 -0.001 0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

household obtained input 0.149⇤ 0.174⇤ 0.111 0.151 0.148⇤

coupons (0.077) (0.099) (0.097) (0.108) (0.081)

Constant 1.140⇤⇤⇤ 1.121⇤⇤⇤ 1.202⇤⇤⇤ 0.773⇤⇤ 1.135⇤⇤⇤

(0.161) (0.247) (0.240) (0.329) (0.181)

Year FE YES YES YES YES YES
HH FE YES YES YES YES YES
N 2610 1266 1344 708 1902

Standard errors in parentheses

Sample includes only rural HHs assigned to group B. Dependent variable is a count of crop types that the household

plants in a given year. Samples included for each of the columns are listed as follows: (1) All sample HHs (2) Poor HHs

(3) Not poor HHs (4) Female headed HHs (5) Male headed HHs. Household and year fixed e↵ects included.

⇤ p < 0.10, ⇤⇤
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Table 17: IV regression with household and year fixed e↵ects: Multiple-season farming on the number of
crops planted.

Full Sample Asset index Gender of HH head
(1) (2) (3) (4) (5)

Dependent variable: Number of crops planted

Multiple-season farming 2.043⇤⇤⇤ 2.595⇤⇤⇤ 1.678⇤⇤⇤ 1.809⇤⇤ 2.118⇤⇤⇤

(0.574) (0.608) (0.592) (0.788) (0.565)

Rainfall Anomaly -0.000 -0.002 0.000 -0.000 -0.001
(0.001) (0.002) (0.002) (0.002) (0.001)

HH Distance in (KMs) to 0.014 0.018 0.008 0.022 0.014
Nearest Road (0.009) (0.015) (0.010) (0.017) (0.008)

HH Distance in (KMs) to 0.005 0.003 0.007⇤ 0.003 0.006
Nearest Population Center with +20,000 (0.003) (0.004) (0.004) (0.004) (0.004)

HH Distance in (KMs) to 0.012 0.012 0.016 0.062⇤⇤ 0.002
Nearest ADMARC Outlet (0.013) (0.014) (0.022) (0.027) (0.015)

household size 0.058⇤⇤⇤ 0.094⇤⇤⇤ 0.029 0.038 0.064⇤⇤⇤

(0.020) (0.025) (0.027) (0.029) (0.023)

asset index 0.262⇤⇤⇤ 0.244 0.274⇤⇤ 0.412⇤⇤⇤ 0.199⇤

(0.082) (0.156) (0.130) (0.122) (0.101)

Dependency ratio -0.000 0.000 0.000 -0.000 0.000
(0.000) (0.001) (0.000) (0.000) (0.000)

household obtained input 0.143⇤ 0.139 0.119 0.112 0.169⇤

coupons (0.075) (0.093) (0.100) (0.104) (0.086)

Year FE YES YES YES YES YES
HH FE YES YES YES YES YES
N 2610 1266 1344 708 1902

Standard errors in parentheses

Sample includes only rural HHs assigned to group B. Dependent variable is a count of crop types that the household

plant in a given year. Samples included for each of the columns are listed as follows: (1) All sample HHs (2) Poor HHs

(3) Not poor HHs (4) Female headed HHs (5) Male headed HHs. Excluded instrument for IV estimations: ratio of

neighbouring households that farmed in multiple seasons. Household and year fixed e↵ects included.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 18: OLS and IV regression with household and year fixed e↵ects: Multiple-season farming on the
number of crops planted, disaggregated by crop types.

Staple Crops Cash Crops Vegetables Legumes
(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

Multiple-season farming 0.301⇤⇤⇤ 0.802⇤⇤ 0.032 0.202⇤ 0.614⇤⇤⇤ 0.577⇤⇤⇤ 0.150⇤⇤⇤ 0.435⇤

(0.042) (0.304) (0.023) (0.103) (0.079) (0.149) (0.038) (0.238)

Rainfall Anomaly -0.000 0.000 0.001⇤⇤ 0.001⇤⇤⇤ -0.001⇤ -0.001⇤ -0.001 -0.001
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

HH Distance in (KMs) to 0.010⇤⇤ 0.009⇤⇤ 0.002 0.002 -0.002 -0.002 0.004 0.004
Nearest Road (0.004) (0.004) (0.004) (0.004) (0.003) (0.004) (0.003) (0.003)

HH Distance in (KMs) to -0.000 -0.000 -0.000 -0.000 0.002 0.002 0.003 0.003⇤

Nearest Population Center with +20,000 (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

HH Distance in (KMs) to 0.001 0.005 -0.003 -0.002 0.007 0.007 0.001 0.003
Nearest ADMARC Outlet (0.007) (0.006) (0.004) (0.004) (0.006) (0.006) (0.010) (0.011)

household size 0.023⇤⇤⇤ 0.022⇤⇤ 0.005 0.004 0.007 0.007 0.024⇤⇤ 0.023⇤⇤

(0.008) (0.008) (0.006) (0.005) (0.007) (0.007) (0.011) (0.011)

asset index 0.048 0.042 0.065⇤⇤⇤ 0.064⇤⇤⇤ 0.102⇤⇤⇤ 0.103⇤⇤⇤ 0.061 0.058
(0.040) (0.046) (0.021) (0.023) (0.038) (0.038) (0.061) (0.060)

Dependency ratio 0.000 0.000 -0.000⇤⇤ -0.000⇤ 0.000 -0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

household obtained input 0.069⇤ 0.066⇤ 0.005 0.004 0.020 0.020 0.063⇤ 0.062
coupons (0.038) (0.037) (0.019) (0.018) (0.028) (0.028) (0.036) (0.037)

Constant 0.887⇤⇤⇤ 0.212⇤⇤⇤ -0.105 0.182
(0.079) (0.042) (0.094) (0.112)

Year FE YES YES YES YES YES YES YES YES
HH FE YES YES YES YES YES YES YES YES
N 2610 2610 2610 2610 2610 2610 2610 2610

Standard errors in parentheses

Sample includes only rural HHs assigned to group B. Dependent variables are counts of di↵erent crop types planted in a given year:

Columns (1) and (2) are staple crops, columns (3) and (4) are cash crops, columns (5) and (6)are vegetables and columns (7) and (8)

are legumes. Excluded instrument for IV estimations: ratio of neighbouring households that farmed in multiple seasons. Household and

year fixed e↵ects included.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 19: Linear probability model with household and year fixed e↵ects: Multiple-season farming on the
probability of selling to market.

Full Sample Asset index Gender of HH head
(1) (2) (3) (4) (5)

Dependent variable: household sold any of its harvest to the market

Multiple-season farming 0.146⇤⇤⇤ 0.147⇤⇤ 0.137⇤⇤⇤ 0.248⇤⇤⇤ 0.105⇤⇤

(0.041) (0.057) (0.045) (0.071) (0.045)

Rainfall Anomaly 0.000 0.001⇤ -0.000 0.000 0.001
(0.000) (0.001) (0.001) (0.001) (0.001)

HH Distance in (KMs) to 0.002 0.006 -0.002 -0.002 0.005
Nearest Road (0.007) (0.011) (0.006) (0.011) (0.007)

HH Distance in (KMs) to -0.000 0.001 -0.001 -0.006⇤⇤⇤ 0.003⇤⇤

Nearest Population Center with +20,000 (0.001) (0.002) (0.001) (0.002) (0.001)

HH Distance in (KMs) to 0.005 0.003 0.008 0.013 0.002
Nearest ADMARC Outlet (0.007) (0.007) (0.011) (0.018) (0.007)

household size -0.003 0.003 -0.009 0.006 -0.009
(0.006) (0.010) (0.011) (0.015) (0.009)

asset index 0.089⇤⇤ 0.083 0.094⇤ 0.103 0.080⇤

(0.036) (0.060) (0.054) (0.074) (0.043)

Dependency ratio -0.000 -0.000⇤ 0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

household obtained input 0.077⇤⇤⇤ 0.086⇤⇤ 0.069⇤⇤ 0.104⇤⇤ 0.062⇤

coupons (0.027) (0.033) (0.032) (0.051) (0.033)

Constant 0.386⇤⇤⇤ 0.331⇤⇤ 0.423⇤⇤⇤ 0.423⇤ 0.322⇤⇤⇤

(0.084) (0.124) (0.094) (0.221) (0.096)

Year FE YES YES YES YES YES
HH FE YES YES YES YES YES
N 2610 1266 1344 708 1902

Standard errors in parentheses

Sample includes only rural HHs assigned to group B. Dependent variable is the probability of selling agricultural surplus to the market in a given

year. Samples included for each of the columns are listed as follows: (1) All sample HHs (2) Poor HHs (3) Not poor HHs (4) Female headed HHs

(5) Male headed HHs. Household and year fixed e↵ects included.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 20: IV linear probability model with household and year fixed e↵ects: Multiple-season farming on the
probability of selling to market.

Full Sample Asset index Gender of HH head
(1) (2) (3) (4) (5)

Dependent variable: household sold any of its harvest to the market

Multiple-season farming 0.528⇤ 1.023⇤⇤⇤ 0.194 0.891⇤⇤⇤ 0.375
(0.274) (0.309) (0.255) (0.330) (0.274)

Rainfall Anomaly 0.001 0.001 -0.000 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

HH Distance in (KMs) to 0.001 0.005 -0.002 -0.004 0.004
Nearest Road (0.008) (0.011) (0.006) (0.013) (0.007)

HH Distance in (KMs) to -0.000 0.001 -0.001 -0.005⇤⇤ 0.003⇤⇤

Nearest Population Center with +20,000 (0.001) (0.003) (0.001) (0.002) (0.001)

HH Distance in (KMs) to 0.008 0.012 0.008 0.017 0.004
Nearest ADMARC Outlet (0.008) (0.008) (0.011) (0.021) (0.007)

household size -0.004 -0.001 -0.009 0.007 -0.010
(0.006) (0.012) (0.011) (0.015) (0.008)

asset index 0.085⇤⇤ 0.044 0.094⇤ 0.113 0.075
(0.041) (0.081) (0.054) (0.080) (0.048)

Dependency ratio -0.000 -0.000 0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

household obtained input 0.074⇤⇤⇤ 0.064⇤ 0.070⇤⇤ 0.057 0.068⇤⇤

coupons (0.026) (0.036) (0.032) (0.059) (0.033)

Year FE YES YES YES YES YES
HH FE YES YES YES YES YES
N 2610 1266 1344 708 1902

Standard errors in parentheses

Sample includes only rural HHs assigned to group B. Dependent variable is the probability of selling agricultural surplus to the market

in a given year. Samples included for each of the columns are listed as follows: (1) All sample HHs (2) Poor HHs (3) Not poor HHs

(4) Female headed HHs (5) Male headed HHs. Excluded instrument for IV estimations: ratio of neighbouring households that farmed in

multiple seasons. Household and year fixed e↵ects included.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

1
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Table 21: Robustness check: Multiple-season farming on food security of rural households in Group A.

HDDS FCS CSI
(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Multiple-season farming 0.114 -0.497 1.680 2.481 -0.525 -6.495⇤

(0.093) (0.652) (1.259) (5.427) (0.334) (3.874)

Rainfall Anomaly 0.001 0.000 0.013 0.014 -0.005 -0.008
(0.001) (0.001) (0.017) (0.017) (0.006) (0.006)

HH Distance in (KMs) to -0.011 -0.015 -0.062 -0.057 -0.083⇤⇤ -0.118⇤⇤⇤

Nearest Road (0.009) (0.011) (0.137) (0.138) (0.033) (0.044)

HH Distance in (KMs) to 0.004 0.004 -0.007 -0.007 -0.012 -0.015
Nearest Population Center with +20,000 (0.003) (0.003) (0.066) (0.067) (0.016) (0.019)

HH Distance in (KMs) to 0.020 0.023 0.341 0.337 -0.121⇤ -0.091
Nearest ADMARC Outlet (0.025) (0.026) (0.263) (0.269) (0.071) (0.085)

household size 0.004 0.010 -0.141 -0.149 0.337⇤⇤⇤ 0.401⇤⇤⇤

(0.022) (0.024) (0.245) (0.241) (0.109) (0.106)

asset index 0.654⇤⇤⇤ 0.670⇤⇤⇤ 9.380⇤⇤⇤ 9.359⇤⇤⇤ -1.691⇤⇤⇤ -1.532⇤⇤⇤

(0.107) (0.116) (1.429) (1.422) (0.530) (0.550)

Dependency ratio -0.001⇤⇤ -0.001⇤⇤⇤ -0.017⇤⇤⇤ -0.017⇤⇤⇤ 0.004 0.004
(0.000) (0.000) (0.006) (0.006) (0.004) (0.004)

household obtained input 0.127 0.133 -0.039 -0.047 -0.144 -0.089
coupons (0.083) (0.085) (0.821) (0.808) (0.377) (0.381)

Constant 7.516⇤⇤⇤ 52.595⇤⇤⇤ 3.775⇤⇤⇤

(0.286) (2.880) (1.115)

Year FE YES YES YES YES YES YES
HH FE YES YES YES YES YES YES
N 2729 2729 2729 2729 2728 2728

Standard errors in parentheses

Sample includes only rural HHs assigned to group A. Dependent variables are Household Dietary Diversity Score (0-10)

for columns 1-2, Food Consumption Score (0-126) for columns 3-4, and Coping Strategy Index for columns 5-6.

Excluded instrument for IV estimations: ratio of neighbouring households that farmed consecutively across

seasons. Household and year fixed e↵ects included.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 22: Robustness check: Multiple-season farming on crop diversity and probability of selling to markets

Crop Diversity Selling to Markets
(1) (2) (3) (4)
OLS IV OLS IV

Multiple-season farming 1.185⇤⇤⇤ 2.180⇤⇤⇤ 0.179⇤⇤⇤ 0.333
(0.084) (0.661) (0.043) (0.209)

Rainfall Anomaly -0.002⇤⇤ -0.002 -0.000 -0.000
(0.001) (0.001) (0.000) (0.000)

HH Distance in (KMs) to 0.016 0.022⇤ 0.003 0.004
Nearest Road (0.011) (0.011) (0.003) (0.003)

HH Distance in (KMs) to -0.005⇤ -0.004 -0.002⇤⇤ -0.002⇤⇤

Nearest Population Center with +20,000 (0.003) (0.003) (0.001) (0.001)

HH Distance in (KMs) to -0.022 -0.027 0.001 0.001
Nearest ADMARC Outlet (0.014) (0.017) (0.006) (0.006)

household size 0.078⇤⇤⇤ 0.067⇤⇤⇤ 0.019⇤⇤⇤ 0.017⇤⇤

(0.017) (0.021) (0.007) (0.007)

asset index 0.192⇤ 0.166 0.025 0.021
(0.112) (0.114) (0.028) (0.029)

Dependency ratio -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000)

household obtained input 0.253⇤⇤⇤ 0.243⇤⇤⇤ 0.026 0.025
coupons (0.063) (0.067) (0.022) (0.022)

Constant 1.543⇤⇤⇤ 0.388⇤⇤⇤

(0.282) (0.062)

Year FE YES YES YES YES
HH FE YES YES YES YES
N 2729 2729 2729 2729

Standard errors in parentheses

Sample includes only rural HHs assigned to group A. Dependent variables are

the count of crop types that the household plant in a given year (columns 1-2)

and the probability of selling agricultural surplus to the market in a given

year (columns 3-4). Excluded instrument for IV estimations: ratio of

neighbouring households that farmed in multiple seasons. Household and year

fixed e↵ects included.

⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 23: OLS and IV Regressions: Multiple-season Farming on Household Plot Expansion.

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Multiple-season farming 0.145⇤⇤⇤ 0.337 0.038 0.238 0.200⇤⇤⇤ 0.499
(0.052) (0.249) (0.066) (0.542) (0.071) (0.376)

Rainfall Anomaly 0.001 0.001 0.001⇤ 0.001⇤ 0.001⇤ 0.002⇤

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

HH Distance in (KMs) to 0.002 0.001 -0.003 -0.003 0.001 0.001
Nearest Road (0.007) (0.007) (0.008) (0.008) (0.007) (0.007)

HH Distance in (KMs) to 0.001 0.001 0.001 0.001 0.001 0.001
Nearest Population Center with +20,000 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

HH Distance in (KMs) to 0.002 0.004 0.007 0.008 0.000 0.002
Nearest ADMARC Outlet (0.013) (0.013) (0.015) (0.015) (0.013) (0.012)

household size 0.105⇤⇤⇤ 0.105⇤⇤⇤ 0.113⇤⇤⇤ 0.113⇤⇤⇤ 0.098⇤⇤⇤ 0.097⇤⇤⇤

(0.017) (0.017) (0.018) (0.018) (0.017) (0.017)

asset index 0.201⇤⇤ 0.198⇤⇤ 0.218⇤⇤ 0.221⇤⇤ 0.193⇤⇤ 0.189⇤⇤

(0.082) (0.084) (0.088) (0.088) (0.083) (0.083)

Dependency ratio -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

household obtained input 0.070⇤ 0.070⇤ 0.066 0.065 0.080⇤ 0.082⇤

coupons (0.040) (0.040) (0.046) (0.045) (0.042) (0.043)

Constant 1.180⇤⇤⇤ 1.155⇤⇤⇤ 1.226⇤⇤⇤

(0.149) (0.167) (0.155)

Year FE YES YES YES YES YES YES
HH FE YES YES YES YES YES YES
Group dropped None None Wetland Wetland Non-wetland Non-wetland
N 2263 2263 1955 1955 2081 2081

N otes:Standard errors in parentheses. This table displays the OLS and IV results obtained by regressing total plot
size on multiple-season farming and other household controls. Plots with areas below the 5th percentile and above
the 95th percentile have been trimmed out to control for extreme values. Sample includes only rural HHs assigned
to group B. Columns 1 and 2 display results on all sample HHs. Farmers who farm on seasonal wetlands during the
dry season are dropped in columns 3 and 4, whereas farmers who do not farm on wetlands during the dry season are
dropped in columns 5 and 6. Dependent variable is the total plot size cultivated by a household in a given year (in
acres).Excluded instrument for IV estimations: ratio of neighbouring households that farmed in multiple seasons.
Household and year fixed e↵ects included.
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Figure 1. Map of Malawi 

 

 
Source : Maduekwe and de Vries 2019 
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Figure 3: Proportion of HHs not resilient, by multiple-season farming
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Figure 5: Proportion of HHs not resilient, by gender of HH head
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Appendix

Table A1: IV First-stage regression: Rainfall anomaly and ratio of nearby HHS farming multiple seasons on
multiple-season farming

(1)
Multiple-season farming

Local rate of adoption of 0.655⇤⇤⇤

multiple-season farming (0.081)

Rainfall Anomaly -0.000
(0.000)

HH Distance in (KMs) to 0.001
Nearest Road (0.002)

HH Distance in (KMs) to 0.001
Nearest Population Center with +20,000 (0.001)

HH Distance in (KMs) to -0.001
Nearest ADMARC Outlet (0.003)

household size 0.003
(0.005)

asset index 0.017
(0.031)

Dependency ratio -0.000⇤⇤

(0.000)

household obtained input 0.005
coupons (0.017)

Year FE YES
HH FE YES
N 2610

Standard errors in parentheses
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table A2: Cultivation on wetland among Multiple-season farmers, by year.

2010 2013 2016 2019

Number of dry-season
farmers on wetland 39 112 96 79

Number of households
farming both seasons 70 140 125 145

Percentage of wetland 56 80 77 54

5
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Figure A1: Timing of harvest and interview for Group B HHs in 2010
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Figure A2: Timing of harvest and interview for Group B HHs in 2013
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Figure A3: Timing of harvest and interview for Group B HHs in 2016
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Figure A5: Distribution of resilience by CF status
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Figure A6: Distribution of resilience by input coupons
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Figure A7: Distribution of resilience by HH asset



 120 

 
 

0
1

2
3

D
en

si
ty

0 .2 .4 .6 .8 1
Resilience

female headed
male headed

Figure A8: Distribution of resilience by gender of HH head


