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Abstract

In modern times, social media platforms provide accessible channels for interacting and

sharing information about important real-time events. However, these platforms are

also regularly targeted by coordinated information attacks. Twitter has publicly released

datasets of confirmed fake accounts under their Information Operations program to al-

low researchers to study these attacks. These accounts are commonly known as Internet

trolls.

In this thesis, we study three of the troll datasets from the Twitter Information Opera-

tions program, whose origin has been traced to Russia, China, and the Internet Research

Agency (IRA). We first augment each dataset with a carefully sampled control group of

active users engaged with similar content but not suspended by Twitter. This provides us

with a rich set of online posts to study how state-backed trolls behave, how the troll activ-

ity fluctuates over time, and how these fluctuations compare to active users. In particular,

we use graph representation learning to encode users’ activities in each timestamp into a link

prediction task. These learned representations are then used to contrast troll and active

users. We show that, on average, the model has a more challenging time predicting the

activity of trolls in two of our three datasets. The model also struggles to classify trolls

against active users in these two datasets. However, in the third dataset, trolls are more

predictable and easily distinguishable from active users.

We hypothesize that troll sophistication might be related to whether they target local

or global events. Finally, we discuss how these representations could help us better un-

derstand the activities and how they engage with active users. To show this, we group
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link embeddings into clusters, and within each cluster, we contrast the content generated

by both categories of users. Although an automatic classification might not be possible for

sophisticated trolls, learning user graph representations is, at least, helpful to understand

their patterns of activities better.
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Abrégé

En temps modernes, les plateformes de médias sociaux pourvoient des canaux accessibles

pour l’interaction et réaction aux informations sur des événements importants en temps

réel. Cependant, ces plateformes sont également régulièrement la cible d’attaques coor-

données d’informations. Pour permettre aux chercheurs d’étudier ces attaques, Twitter

a publié des données de comptes factices confirmés dans le cadre de leur programme

d’Opérations d’Information. Ces comptes sont communément appelés trolls Internet.

Dans cette thèse, nous étudions trois ensembles de données de trolls issus du pro-

gramme d’Opérations d’Information de Twitter, dont l’origine a été retracée en Russie,

en Chine et à l’Internet Research Agency (IRA). Nous augmentons, d’abord, chaque en-

semble de données avec un groupe témoin soigneusement échantillonné d’utilisateurs

actifs impliqués dans des contenus similaires, mais non suspendus par Twitter. Cela nous

fournit un riche groupe de publications en ligne pour étudier comment se comportent les

trolls financés par l’État, comment l’activité des trolls fluctue dans le temps et comment

ces fluctuations se comparent à celles des utilisateurs actifs. Particulièrement, nous utili-

sons l’apprentissage de représentations des graphes pour encoder les activités des utilisateurs

à chaque instant, en une tâche de prédiction des liens. Ces représentations apprises sont

ensuite utilisées pour contraster les trolls et les utilisateurs actifs. Nous montrons que, en

moyenne, le modèle a plus de difficulté à prédire l’activité des trolls dans deux de nos

trois ensembles de données. Dans ces deux ensembles, le modèle a également du mal à

classer les trolls par rapport aux utilisateurs actifs. Néanmois, dans le troisième ensemble
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de données, les trolls sont plus prévisibles et facilement distinguables des utilisateurs

actifs.

Nous émettons l’hypothèse que la sophistication des trolls pourrait être liée à leur cible

d’événements locaux ou globaux. Enfin, nous discutons de la façon dont ces représentations

pourraient nous aider à mieux comprendre les activités et comment elles interagissent

avec les utilisateurs actifs. Pour montrer cela, nous regroupons des vecteurs de liens en

clusters de discussion et, dans chaque cluster, nous contrastons le contenu généré par

les deux catégories d’utilisateurs. Nous concluons que, bien que la classification automa-

tique ne soit pas possible pour les trolls sophistiqués, l’apprentissage de représentations

des graphes des utilisateurs est au moins utile pour mieux comprendre leurs patrons

d’activités.
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To the sketchy worm guy. My time at Montréal could not be better without your company and
empathy. I am grateful for the chance to share our passions while we perform our daily academic
endeavors. Yet we know the philosophy of friendly gossiping ought to be maintained every Sunday,
at brunch time, for scientific advancements. Thank you for letting me be your roommate for a long
time.

To the person who started a fancy vinyl collection and introduced me to the best bar in
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Chapter 1

Introduction

We live in times where social media platforms have risen as pillars of the spread of infor-

mation. Their success can be accounted for as they provide a space for individuals and

organizations to share ideas, news, and updates with a large audience quickly and easily.

However, oftentimes, certain users take advantage of the rapid and efficient information

sharing on these platforms; thus, making the proliferation of massive false narratives pos-

sible. For instance, a plethora of social media campaigns have sprung up on Twitter1, a

popular short-posting platform, to deny reports of human rights abuses committed by

the Chinese government against Uyghurs and other minority groups in Xinjiang, often

involving spam networks of similar-looking accounts posting identical messages (Kao

et al., 2021). This is especially problematic since Twitter has one of the largest user bases

on the Internet (Dixon, 2022). But how could we study large-scale phenomena of shifting

public opinion in terms of small-scale events, such as social media posts? Is that even

possible?

Before going through the latter question’s importance, let us take a look at one of

the 21st century’s global concerns: the COVID-19 pandemic. As people’s daily lives suf-

fered a sudden transition due to mandatory isolation policies, guaranteeing the flow of

reliable information turned crucial as social networks became one of the main ways to

1https://twitter.com
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keep updated about the pandemic’s development. Unfortunately, this derived into a

phenomenon, where the spread of misinformation via conspiracy theories and other un-

substantiated rumors formed an online infodemic (Evanega et al., 2020; Gallotti et al.,

2020; Memon and Carley, 2020; Sharma et al., 2020). Here we land into an unsolved, and

sometimes even ill-defined issue: how does one identify online misinformation, such as

fake news? Even harder, and much less explored: who is behind this unreliable activity and

what are the main strategies they deploy to attract the attention of users? Perhaps by better

understanding the mechanism of misinformation, it would be possible to design better

algorithms to track it (Jin et al., 2014; Memon and Carley, 2020; Pennycook et al., 2020;

Wang et al., 2019). We align with this hypothesis and work towards it in this thesis.

In principle, Twitter tries to provide a platform for free speech2; nonetheless, that has

also resulted useful for the appearance of user infringements. It can be argued that the

current times require tighter and clearer online interaction rules, which would address

misinformation spread. In fact, some practices as old as spamming are supposed to be

regulated for the sake of ensuring better authenticity of statements and their actual mo-

tives. More sophisticated unauthentic activities have been deployed to manipulate public

opinion, which often constitutes a crucial practice by politically-driven organizations. For

example, the Russian troll farm from Internet Research Agency (IRA) has been targeting

the United States presidential elections in 2016, as confirmed by multiple reports (Volchek,

2021; Wong, 2020). Moreover, the IRA’s communication strategy has evolved to account

for the developments in misinformation tracking deployed by Twitter (Alba, 2020).

In this thesis, we focus on studying troll behavior and understanding the mechanisms

employed by them. The term troll now has a history of standard usage within the Inter-

net. There are two closely related concepts to what we refer to as trolls: bots and cyborgs

(Klepper, 2020). On one side, bots are considered to be fully automated accounts that post

predefined content, often using spamming practices to which deliver an abnormal amount

of tweets, compared to humans. In contrast, trolls are accounts entirely run by humans,

2https://help.twitter.com/en/rules-and-policies/defending-and-respecting-
our-users-voice

2
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which also follow posting practices and align with ”normal” patterns of created informa-

tion.

Cyborgs, on the other hand, constitute a combination of the earlier approaches, as hu-

mans occasionally take over bot spammers to reply and post content themselves. For this

thesis, we focus on those accounts that are harder to identify than fully automated bots,

whose decision strategies are determined by coordinated attacks. These attack operations

often occur within the context of professional groups that often post controversial content

to social networks, called troll farms (Hao, 2021).

In particular, we consider accounts released by the Information Operations program

of Twitter as trolls. As a means to encourage research, Twitter has periodically released

all tweet post content (including attached media) of, supposedly, several state-backed op-

erations. Starting on October 2018, these databases have provided ubiquitous insights

to understand the type of content that often derive from misinformation or massive co-

ordinated attacks on political events. As part of their Information Operations strategy,

the company’s transparency efforts have also made these data batches accessible for free,

with easy access directly from their website (Inf, 2021). The Twitter Election Integrity

(TEI) is, hence, an official collection of account activity that would make evident how trolls

are operating online. Each release has been identified with its respective place of origin and

comes together with a brief explanation of what led to the suspension of these accounts.

For instance, the first release (Gadde and Roth, 2018a) included data from two different

sets of accounts: 3, 841 IRA-affiliated suspended and 770 Iranian users, both producing

a combined amount of over 10 million tweets and 2 million images and videos. Figure 1.1

provides graphical examples of some of the content posted by these trolls.

Combining this vast amount of information to study massively coordinated accounts

is the pinnacle of this thesis’ research purposes. As mentioned earlier, we take a modern

approach to analyze parts of the data within the context of state-of-the-art Deep Learning

(DL) models. More specifically, we are concerned with two central questions: are these

troll behaviors more predictable than the ordinary human online traces? and can we learn a model

3



Figure 1.1 – Sample tweets posted by accounts from the Twitter Election Integrity dataset.

Most of this content is designed to inject controversial opinions that would provoke po-

larizing reactions among Twitter users. Taken from https://about.twitter.com/

en_us/values/elections-integrity.html#data.

that classifies these trolls solely from features that explain their behavior? To further formalize

these questions, we take a Graph Representation Learning (GRL) approach and provide

a collection and processing pipeline to reconstruct some of the relationships established

by these users at times they were active. More specifically, in this thesis:

• We utilize three different data releases from the TEI dataset, namely one with Chinese

users, another one with IRA users, and finally, a Russian-based set of users (but not

originating at the IRA), as examples of troll activity (these users have already been

suspended); we complement These troll datasets with a method to obtain a set of

non-suspended users, which serves as a control group. We provide two neighborhood

4
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sampling methods for active users to obtain more distant accounts (with respect to

user mentions) while making sure that each sampled tweet relates somehow to the

trolls.

• We model our data as a discrete-time temporal graph. In particular, we construct

heterogeneous user-mention-hashtag graphs to represent user activity within each

snapshot. We study troll activities over two years about, mainly, political events. We

consider four ranges for the time granularity to take the snapshots (five, ten, thirty,

and sixty days) and show how this granularity impacts the analyses.

• We encode user activities in each snapshot independently, using graph representa-

tion learning techniques. In particular, we train the models using link prediction

loss functions, which learn the distribution of certain activity (user mentions and

hashtag use), commonly formulated and used for the link prediction (LP) task. This

model keeps closer users that act similarly in each snapshot.

• Using the learned user representations in each snapshot, we track how accurately

a user’s activities can be predicted throughout time and if trolls are more or less

predictable than the control group. We also use these representations to see if we

can directly classify and detect suspended trolls. We show that the automatic clas-

sification task is difficult in two of our three datasets with Russian sources whose

activities are also harder to predict.

• Finally, we zoom in on critical snapshots tied to major electoral events in each

dataset. Therefore, we show how these learned embeddings could help understand

the engagement of trolls and the control group. Moreover, we have been able to

interpret these clusters of activity embeddings by looking at topics users are talking

about; in particular, our embeddings can group semantically related topics, even

though our approach follows a procedure agnostic to text features.

5



We further organize this thesis to provide the necessary background and support for

our work adequately. Chapter 2 builds up from the fundamentals of graph theory to cur-

rent ways these abstract items are processed by DL models while also mentioning their

relationship to our proposed work. Chapter 3 introduces our methodology, which is de-

fined as a processing pipeline that connects extracted information to classification out-

comes. Furthermore, in Chapter 4, we put into practice a pipeline with a set of experi-

ments that would help us understand how it works and answer our hypotheses. Finally,

we round up our work on Chapter 5.

6



Chapter 2

Related Work

2.1 Graph Theory

We start this chapter with a brief introduction to graph theory. Moreover, we provide the back-

ground needed to justify this thesis. To gather the necessary mathematical formality together, for

the sake of this thesis, we have adapted this section’s content from (Barabási and Pósfai, 2016,

Chapters 2, 3) and from (Easley and Kleinberg, 2010, Chapters 2, 4).

While interconnected phenomena have existed forever, the formality of graph theory

stems its motivation from the formulation and solution of the famous seven bridges of

Königsberg problem. In 1735, this Prussian city’s1 trading activity required officials to

build seven bridges across the River Pegel to connect the mainland with Kneiphof island.

The curious question posed was: could it be possible to walk across all seven bridges without

crossing the same one twice?

Later, the illustrious mathematician, Leonhard Euler, came up with proof that guar-

antees no solution for such a problem. Despite several clever attempts to develop a path

between bridges and land ends, Euler’s graph formalization guaranteed its non-existence.

Euler’s technique transformed Königsberg’s mainlands into nodes while defining connec-

tions corresponding to the number of edges in between. Figure 2.1 summarizes Euler’s

1Königsberg constitutes what currently is known as Kaliningrad, Russia
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idea visually. Graphs exist naturally within diverse settings; examples like Euler’s Königs-

berg proof provide remarkable evidence of the power of formalizing and studying graph

properties, such as the number of shared links between nodes, the existence of paths be-

tween nodes, or the areas of a network where a node is more closely connected.

Figure 2.1 – A map of Königsberg and its Kneiphof island is depicted along with the graph

proposed by Euler. Here, nodes are defined by each patch of land and are connected with

seven links (bridges). Reprinted from Barabási and Pósfai (2016).

2.1.1 Graphs, Digraphs, Matrices

In this section, we formalize the notion of graphs and digraphs and provide helpful notation and

essential properties about the subject.

Definition 2.1.1 (Simple Graph). A simple (or undirected) graph G is defined by a (finite) set

V of vertices (or nodes) and a set E ⊆ {{u, v} | (u, v) ∈ V × V }. We, thus, write G = (V,E).

Note that every edge, implies a symmetric relationship between nodes, as they satisfy

the usual set property ({u, v} = {v, u}). Using this abstraction, we may encode for the

Königsberg problem, for instance, the fact that Kneiphof island is connected with any

surrounding patches of land. However, there is still no way to specify in what order a
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person visits the patches while traveling around. This yields the necessity of defining

multiple types of graphs.

Definition 2.1.2 (Digraph, Multigraph). A digraph (or directed graph) G consists of a (finite)

set V of nodes and a set E ⊆ V ×V of edges (also known as arcs or links), which consist of ordered

pairs. A multigraph G = (V,E) consists of a set of vertices V and a multiset of pairs of vertices

(edges); thus, a multigraph allows multiple edges between two nodes. A heterogeneous graph

is a multigraph that can encode multiple relations between nodes; that is, each edge el ∈ E has a

label l that identifies its relation type.

(a) A simple graph. (b) A directed graph.

(c) A multigraph. (d) A heterogeneous graph.

Figure 2.2 – We show examples of the three main types of graphs presented in this sec-

tion. Figure (a) is a simple graph, while Figure (b) adds arrows to stress the importance

of arcs’ directions, thus, presenting a directed graph. Figure (c) is a multigraph, where

we show that nodes may have more than one arc, such as C to A. Finally, Figure (d) de-

picts a heterogeneous graph in which we allow multiple types of relations (illustrated using

different colors) between nodes.
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Definitions 2.1.1 and 2.1.2 are illustrated by Figure 2.2, where we show an example for

each type of graph. Note that for Figure 2.2-c, the multigraph, we have also used directed

edges; note that, indeed, Definition 2.1.2 allows such flexibility. Moreover, colors in the

referred example help define the types of relationships each pair of nodes share (Figure 2.2-

d). This often comes useful in many applications, as we will see throughout this thesis.

The essence of Euler’s negative proof of the Königsberg bridges’ problem arises by

observing the number of edges a node shares with the rest of the graph. In general, we

call this property the degree of a graph, which is defined in terms of each node’s degree,

as will be formalized in Definition 2.1.3.

Are there any alternative ways of representing a graph or network besides the G =

(V,E) formality? Note that a list of all edges suffices to do so. For instance, we may write

a code that manages Figure 2.2-a by just specifying the following:

[(A, C), (B, C),

(B, E), (C, D),

(C, E), (D, C),

(D, E)].

We may augment this list with other pairs to specify digraphs, such as the ones in

Figure 2.2. Nevertheless, a universal way to represent any graph arises from observing

how to organize and count all the possible connections a node may have.
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Definition 2.1.3 (Degrees, Neighborhood, and Average Degree). Given a simple node u of a

graph G = (V,E), its degree ku is defined as the number of edges it has to other nodes:

ku ≡ |{(u, v) ∈ E | ∀v ∈ V }|

• The set {v ∈ V | ∃ (u, v) ∈ E} is called u’s neighborhood (and the elements, its neighbors).

• The degree m of graph is its total number of edges. For simple graphs, this can be obtained

by adding up all node degrees:

m ≡ 1

2

N∑
i=1

ki,

where N is the total number of nodes. Note that the factor 1/2 corrects that every link is

counted twice.

• The average degree of a graph, often written as 〈k〉, is defined as the arithmetic mean over

all degrees of the graph:

〈k〉 ≡ 1

N

N∑
i=1

ki =
2m

N

Definition 2.1.4. Given a graph G = (V,E), where |V | = N , we define its adjacency matrix

A ∈ RN×N to be the one that

Aij ≡


1, if (i, j) ∈ E

0, otherwise
(2.1)

Note that the degree ki of every node i can be obtained directly from the adjacency

matrix. For undirected graphs, we sum over all columns or rows of it:

ki =
N∑
j=1

Aij =
N∑
j=1

Aji (2.2)
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For directed graphs, we distinguish the incoming from the outgoing degrees by sum-

ming over rows or columns, respectively:

kini ≡
N∑
j=1

Aij, (2.3)

kouti ≡
N∑
j=1

Aji (2.4)

In practice, we may also refer to the quantities specified in Equations 2.3 and 2.4 as the

in and out degrees of a digraph G. As for multigraphs, the reader can bear in mind that

we can use as many adjacency matrices as the number of relationships a graph is given;

hence, we can define degree features per each relation or whole. For instance, Figure 2.2-c

has 3 types of relationships. Hence, we may use a 5×5×3 tensor to encode all adjacencies

together.

By distinguishing each in-or-out direction of each arc, we may also specify every di-

graph’s adjacency matrix as two different ones with the assumed convention. Figure 2.3

displays some examples of adjacency matrices corresponding to the examples of Figure

2.2. In particular, we show both incoming and outgoing matrices for Figure 2.2-b. By con-

vention, some literature prefers the outgoing representation as the default adjacency matrix for

any digraph; hence, its degree features will be determined upon it.

We are now in the position of defining an essential matrix in graph theory: the Lapla-

cian. Many of the classic network science contributions have been made possible by ex-

ploring the properties of the graph’s Laplacian matrix; in particular, its eigenvalues can

be interpreted as clustering features that treat any adjacency matrix as a list of similarity

measures between the nodes.
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0 0 1 0 0
0 0 1 0 1
1 1 0 1 1
0 0 1 0 1
0 1 1 1 0


(a) Figure 2.2-a’s adjacency matrix.


0 0 0 0 0
0 0 1 0 0
1 0 0 0 1
0 0 1 0 0
0 1 0 1 0


(b) Figure 2.2-b’s outgoing adjacency

matrix.


0 0 1 0 0
0 0 0 0 1
0 1 0 1 0
0 0 0 0 1
0 0 1 0 0


(b) Figure 2.2-b’s incoming adjacency matrix.

Figure 2.3 – Example of the adjacency matrices for some of the graphs in Figure 2.2. Nodes

are sorted in alphabetical order from up to down (rows) and left to right (columns).

Definition 2.1.5 (Laplacian Matrix). Let G = (V,E) be a graph and A its n × n adjacency

matrix. Let D be the diagonal matrix that stores all the degrees of the nodes in G, that is, D ∈

Rn×n, Dii = ki for every i ∈ V while Dij = 0 whenever i 6= j. The Laplacian matrix L of G is

defined as the difference between the diagonal matrix D and A:

L ≡ D − A

Let A be the adjacency matrix in Figure 2.3-a. Let D be the diagonal degree matrix for

the referred graph that is,

D =



1 0 0 0 0

0 2 0 0 0

0 0 4 0 0

0 0 0 2 0

0 0 0 0 3


(2.5)
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Then, the Laplacian matrix results by subtracting A from D:

L =



1 0 −1 0 0

0 2 −1 0 −1

−1 −1 4 −1 −1

0 0 −1 2 −1

0 −1 −1 −1 3


(2.6)

The connectivity of nodes results in an essential and valuable relation that drives re-

search in graphs. Within a social network, for instance, a user’s main interests are often

deduced by looking at their closest friends, which are part of his or her neighborhood. The

so-called structural features introduce convenient ways to organize and analyze informa-

tion, with fantastic convenience when network sizes scale while preserving fundamental

abstract properties. Such features are produced by diverse kinds of users who interact

with each other.

To model interactions between humans and bots, for instance, we might want to dis-

tinguish nodes by assigning a type. A bipartite graph (Definition 2.1.6) provides a fun-

damental abstraction to achieve this distinction, which is naturally applicable in diverse

settings. Note that this definition can be generalized to the concept of k-partite graphs,

where we would be able to model the distinction of k types of nodes, which may result

convenient when modeling complex data.

Definition 2.1.6 (Bipartite Graph). Let G = (V,E) be a graph. We call G bipartite if V can be

partitioned into two disjoint sets A,B, such that (u, v) ∈ E if and only if u ∈ A and v ∈ B, for

any arbitrary nodes u, v ∈ V .

2.1.2 Paths and Distances

A bipartite graph can give a group of nodes a common label, depending on who they

are connected to. On the other hand, connectivity matters not only on the neighborhood
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level but often further neighbors are the ones giving more information to a single node2.

For example, when links encode actual distances between cities in a map, we would like

to know the shortest way to get from Montréal to Mexico City. Formally, Definition 2.1.7

summarizes some ways of referring to a graph traversal.

Definition 2.1.7 (Walk, Trail, Path, Cycle). Let G = (V,E) be a graph. A walk of length l is a

sequence of nodes (v0, v2, . . . , vl−1) such that (vi, vi+1) ∈ E for any 0 ≤ i ≤ l.

Given a walkW = (v0, v1, . . . , vl−1), we call it trail if for any edges (vi, vi+1), (vj, vj+1) ∈ W ,

if vi = vj and vi+1 = vj+1 then i = j for any i, j ∈ [0, l), i.e., there are no repeated edges.

We callW a path if for any nodes vi, vj ∈ W , if vi = vj then i = j, i.e., there are no repeated

nodes. If v0 = vl−1 we callW a cycle.

Many problems depend on the existence of paths; in particular, the traveling salesman

problem (TSP) shows that algorithms will not always be tractable. Given a point A graph,

TSP would like to know the shortest path that passes through all nodes and returns to A.

It has been famously proven this problem to be NP-complete.

As network sizes increase, the tractability of any algorithm raises its importance. It

is moreover, not always possible to deal with the whole adjacency matrix of a graph in

practice; nevertheless, local connections to a node could allow us to learn more about it.

In many applications, where we assume to explore a node’s neighborhood be the only

tractable way to use the graph, we might need a way of exploring a network without

fully processing it. This can be achieved through a walk’s stochastic generalization that

requires a probability distribution to decide which node to go to next.

2In practice, we use the term 2-hop neighborhood of node v to the set of neighbors of v’s neighbors all
together, that is, {u′‖u′ ∈ N(u), ∀u ∈ N(v)}. This concept is often generalized to the k-hop neighborhood
with similar meaning.
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Definition 2.1.8 (Random Walk). LetG = (V,E) be a graph, let πV be a probability distribution

over all nodes V , and Pv be the probability of sampling one of v’s neighbors. A random walk is

a sequence of random variables X0, X1, . . . , Xl−1, each of them taking a node xi ∈ V , that result

from the following procedure:

1. Sample a node from πV and assign it to X0.

2. Let counter i← 1

3. Sample a node from N(Xi) with probability PXi and assign it to Xi+1

4. Increase counter i← i+ 1.

5. Repeat steps 3 and 4 until i = l.

Definition 2.1.8 has no prerequisites on which πV to choose for better use. Bear in

mind that, in the fairest scenario, we can take the uniform distribution on any set of nodes.

In situations where spurious or unknown links occur, learning a random walk distribution,

conditioned on the whole set of nodes, will likely be a great idea to figure out what is a

node’s role within the overall structure of a graph.

2.1.3 Graphs and Their Components

We now go back briefly to a more deterministic setting to provide some useful definitions.

Definition 2.1.9 (Subgraph, Induced Graph). Let G = (V,E) be a graph. A subgraph of G

is any graph G′ = (V ′, E ′) where V ′ ⊆ V and E ′ ⊆ E requiring that every edge e ∈ E ′ has

its respective incident nodes in V ′. We say that a subgraph G′ of G is induced if all edges that

connect the G′’s vertices originally in G are also in G′.

Formally, we can also talk about graphs that are connected as a whole; while for those

that are not, we can also work with their connected components. This allows us to think at a

higher level where connected subgraphs matter more than individual node connectivity.
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Definition 2.1.10 (Connected Graph, Connected Components). Let G = (V,E) be a graph.

We say that G is connected if for any nodes u, v ∈ V , there exists a path that connects them. If a

graph does not satisfy the previous definition, we distinguish each maximal induced subgraph that

is connected by itself; we call these the connected components of the graph.

We know how local connections interact by dividing a graph into its connected com-

ponents. Sometimes it will not be enough to analyze the connected parts of a large net-

work. While complexity scale retakes a critical role in providing efficient algorithms, we

may relax the notion of connectivity now to distinguish which parts of a graph are more

connected than others. This is of particular interest when studying network robustness, as

well as getting a glimpse of a person’s closest friends in a social setting. Section 2.2.1 will

elaborate on the latter situation.

Definition 2.1.11 (Tree, Forest). A graph is a tree if it is connected and has no cycles. If a graph

has no cycles, we call it a forest.

Definition 2.1.11 brings in two other important types of graphs and a structure that

one can construct when traversing any graph. A tree allows us to find a way to organize

all the nodes of a graph in such a way that by traversing it, we do not repeat previously

scanned structures. For directed graphs, we often call children to the out-neighbors of a

node v, while its in-neighbors will be its parents.

For a node r, called the root, there are two important methods to explore any graph

by computing its traversal tree. Its fundamental difference relies on the order in which a

node’s neighbors are explored: while we can proceed to look at all neighbors at each time

step, we can also find the furthest node from r and recursively observe its parents. Algo-

rithm 1 (BFS) describes the popular breadth first search process in which a graph’s nodes

are completely explored from a given root node, while keeping track of neighborhoods

inside a queue.
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Algorithm 1: Breadth First Search
Input: Inputs are a graph G = (V,E) and a root node r ∈ V

1 q← EMPTY QUEUE;
2 q.enqueue(r);
3 explored← EMPTY SET;
4 explored.add(r);
5 while q is not EMPTY QUEUE do
6 v← q.deque();
7 ns← v.neighbors \ explored;
8 explored← v.neighbors

⋃
explored;

9 q.enqueue(ns);
10 end

2.2 Network Science

Most concepts and methods presented in Section 2.1 are meant to characterize the proper-

ties of a graph regardless of its use. More concretely, large networks require to be studied

on a larger scale; for instance, grouping similar nodes under specific criteria often goes

beyond determining the connectivity of a graph. Under this context, finding paths from

any arbitrary pair of nodes will not be only a retractable procedure for any clustering algo-

rithm. Still, it will dismiss any additional information encoded by the links themselves.

We now focus on quantifying large networks’ properties as a whole. Some of them

will be regarded as mere heuristics that would make sense in most use cases of networks.

Other ones will be inspired by interdisciplinary research, such as sociology, and will help

us learn from networks. Note that from now on, we will talk more about networks and

their applications rather than abstract graphs.

Definition 2.2.1 (Clustering Coefficient). Let G = (V,E) be a graph. For a node v with degree

kv, let Lv be the number of edges that connect each node of the neighbors of v, that is, the degree of

the induced subgraph with nodes N(v). The clustering coefficient of v is defined as

Cv ≡
2Lv

kv(kv − 1)

The clustering coefficient gives us a rough idea of how likely it is for a node to live within

a very dense neighborhood. To give more intuition, consider a dynamic situation where a
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new user on Facebook has arrived and is looking to be-friend his or her acquaintances. Re-

gardless of the company’s successful recommendation strategies, the user might proceed

to identify which of his or her contacts are the most popular ones; by be-friending them, it

is very likely to access other acquaintances from their respective Facebook friendship re-

lationships. We may argue that this user used a clustering coefficient comparison to access

its acquaintances quickly.

2.2.1 Properties of Large Networks

The discussion of how networks grow is large enough to dedicate a whole scientific field

to itself. On the other hand, we shall consider this context instead to study why these

networks form patterns. For starters, sociologists have been looking at why two people

are becoming friends, which has led to interesting conclusions. From a global perspective,

it is not complete randomness that drives the social network’s link size to increase (or

to shrink). Instead, and even intuitively, people look for closest friends to acquire new

friendships with their closest acquaintances. This idea is summarized by the triadic closure

principle.

Principle 2.2.2 (Triadic Closure). If two nodes in a social network have a common neighbor,

then it is very likely that they will get connected at some point.

This way of justifying how links exist within a network has been extensively studied in

sociology (Harmon, 1959; Newman, 2003; Rapoport, 1953). It makes sense to assume the

friends of my friends are trustworthy enough to be-friend them. Observe that the clustering

coefficient of a node merely provides a numerical way to measure the triadic closure of a

network. Moreover, it is worth stressing that this principle will only explain the existence

of a significant number of links, while some might follow other properties.

As friendships establish a channel for communication, studying how information prop-

agates across these links is interesting. After two people on social media finish chatting

with each other, how will the exchanged information affect the rest of their network? In a large

social network, a person’s position within a local subgraph might determine a level of
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tightness of his or her links within the whole graph. It is, thus, important to identify which

parts of a graph are further away, the ones that are more central, and the ones that link dif-

ferent areas of a network; each area has a particular role within the network’s behavior in

dynamic settings.

In particular, those edges whose existence directly affects the connectivity of a graph

as a whole are called bridges since their absence will create more connected components.

If we let some information flow across a network’s edges, bridges will be the ones that

guarantee its spread across all nodes; moreover, they shall give information on how data

propagates and its time frame. Ultimately, bridges help us to identify some of the most

fragile parts of a graph; for instance, the possible bottlenecks for potential damages to an

actual network, which is what percolation theory looks for while establishing robustness

properties.

How do we verify that a given link is a bridge, in general? Strictly by its definition,

any algorithm might not scale as it would rely on finding paths between any pair of

edges. Hence, we also rely on a weaker notion of graph connectivity: a local bridge.

For these kinds of edges, it suffices to guarantee that their removal has increased the

distance between two nodes (where distance is measured as the number of nodes of the

shortest path between two given nodes). For very complex graphs, where the small world

phenomenon implies relatively short distances between any nodes, a bridge is an important

finding to characterize and understand the network as a whole; in fact, the guarantees

of such phenomenon also imply the significance of local bridges, as they are directly

responsible for separating nodes from each other.

In the context of information flow, people in a social network are, typically, not only

agents of transmission. Other aspects, such as linguistic manners, affect how are messages

propagated and often reflect on the influence of certain users towards certain parts of

the graph. Examples of influential nodes are quickly drawn from user popularity and

engagement, which can be quantified in settings like Twitter via the number of followers.

On the other hand, neighborhood sizes could not always be a sufficient condition for any
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opinion, rumor, or meme to acquire levels of virality. More specifically, when the state

of belief of a network changes uniformly about a particular opinion, we say people are

following the herd.

The social consequences of rumor spread and the structural and external properties

that produce herding are extensively studied in the literature (Banerjee, 1992; Bikhchan-

dani et al., 1992). In practice, we refer as information cascades to the types of graphs that

signal how a rumor is spread. Intuitively, herding behavior may emerge on a set of seed

nodes that have decided to adopt an external way of thinking rather than continue follow-

ing its beliefs. Observe that cascades are trees since they depict only the nodes that are

switching their beliefs, and then they will not change anymore (hence, nodes are not re-

peated). Moreover, assembling a network to facilitate rumor spread might have negative

consequences; for instance, malicious organizations may set up a global online network

for disinformation spread that directly polarizes a country’s voter’s opinions. The key

is, thus, the careful manner in which such organizations decide to target, which shall be

identified and reinforced.

2.2.2 Homophily and Affiliation

The triadic principle provides a structural intuition of why nodes connect, yet there are

many more reasons this happens beyond having a familiar friend. Using the triadic prin-

ciple, does that imply that new friends are similar in all aspects when people meet? We

now look into a more general property that works under the context of the network itself,

that is, over the set of features that characterize each node, from which we may compare

one with the other.

In a setting where homophily is assumed to justify the nodes’ links, a user will tend

to be-friend only similar people. This is, in fact, an old idea that has come to justify be-

havior nowadays, even to the extent that it has impacted modern research in sociology.

If we try to visualize a network that exhibits homophily, we will find that many similar
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nodes are all together in the same part. This does not imply similar nodes form connected

components; instead, it could be a way to cluster the data.

When a network exhibits homophily, most nodes incident to a single edge should have

similar characteristics. For simplicity, let’s assume both nodes are labeled with the same

tag from a set of 2 possible tags to classify each node. Thus, the proportion of edges whose

incident nodes are tagged the same must dominate the one with heterogenous tags, which

implies a method for testing homophily, at least under the simplification of having only

two available tags.

As networks grow, when connections link together nodes, specific properties emerge,

despite a certain degree of randomness. One common phenomenon, known as prefer-

ential attachment, defines situations where nodes prefer to build connections with more

popular ones. This notion has been handy in understanding the emergence of large hubs

and, overall, seeing how structures in different domains tend to converge to similar de-

gree properties. Moreover, one would informally call this property a rich-gets-richer rule

since it happens when the probabilities of new link formations are proportional to current

popularity.

Speaking about hubs, we could also view these network-growing phenomena in terms

of whether existing hubs tend to keep in the same proportions or otherwise. The follow-

ing definition clarifies the idea.

Definition 2.2.3 (Assortative Network). A network is called assortative if any node of degree

k tends to form connections with nodes of a proportionally similar degree. Such a network will be

perfectly assortative if the process happens exactly between nodes of the same degree; on the other

end, if links tend to exist mostly between nodes with different degrees, we say we are dealing with

a disassortative network.

2.3 Machine Learning for Graphs

In the previous section, we dedicated time to give a background to graph analysis and to formalize

the abstract items we would work with throughout this thesis. With this in mind, we now focus
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on the machine learning approaches proposed to analyze graph data. This section is based on the

Graph Representation Learning book by Hamilton (2020).

Most of Artificial Intelligence’s (AI) progress over the last decade has occurred thanks

to the well-known subfield of Machine Learning (ML), yet we shall not confuse both

terms. For the sake of practicality, we emphasize to the reader that AI is not solely defined

in terms of machines that implement, show learning abilities, or optimize themselves somehow;

instead, AI touches a plethora of knowledge fields that range from rationality, decision

theory, sound reasoning, behavior, and thought processes (Russell and Norvig, 2009).

As for ML, this thesis will utilize its theory as an engine to acquire new findings from

our graphs. When defining what it means for a machine or a computer to learn new

knowledge, we do it by modeling our task with a mathematical function f to be optimized,

for specific parameters. While f is under-specified, ML practitioners can make assump-

tions about designing any algorithm that optimizes it. Nowadays, one of the most funda-

mental requisites to any learning paradigm relies on providing a dataset D of examples,

which will help the process.

At this point, ML approaches are divided into two paradigms: supervised and unsu-

pervised learning. When the set of examples provides a mapping between inputs x for

f and actual values f(x), we say we have found a supervised task. For an ML prac-

titioner, the goal, in this case, will be to come up with an approximated version of f ,

say f̂θ, that optimizes, or learns, a set of parameters θ by using the labeled examples

D = {(x1, y1), . . . , (xn, yn)}, where yi = f(xi), ∀ 1 ≤ i ≤ n. The set of values {yi}1≤i≤n

can specify any kind of output; in particular, if the range of values it takes is discrete,

we say we are working with a classification task and we often call the yi’s the labels of the

dataset. On the other hand, if such a set’s range spans continuous values (such as R or

(0, 1)), we refer to the task as a regression.

Supervised learning comprises most prediction tasks where f̂θ could find how many

people appear in a photo or guess the most likely next word while generating a coher-

ent sentence. Most supervised datasets must be carefully labeled for a model to learn
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from them. This is not a trivial task and often requires time, effort, and prior expertise:

for instance, a group of linguists might give us better insights on how to identify hate

speech on a corpus of Facebook posts. For this reason, unsupervised learning comes as

a fundamental paradigm to learning from properties of the data D = {xi}1≤i≤n alone.

Clustering, the task of grouping data points from D according to similar attributes, is a

common practice that has gained significant benefit, especially from deep neural networks.

In practice, we may find datasets that may not have been fully labeled; for instance, a

Kaggle3 competition might have collected a series of stock market checkpoints, indicating

the price of some shares over time; hence, a crucial issue will be to figure out how a model

can generalize its knowledge about stocks by just learning from a few ones. Machine learning

has accommodated itself to these scenarios using learning pipelines that take a semi-

supervised learning approach. Nowadays, it can be argued that a good ML model should

be able to transfer the knowledge acquired from a supervised task to a setting where novel

and unlabeled data is presented. This approach has very notably worked for computer

vision and language understanding tasks, as deep models have been able to benefit from

extensive data collections like IMAGENET (Russakovsky et al., 2015) and Wikipedia.

2.3.1 Common ML Tasks for Graphs

We present typical problems when a graph is a central structure to be processed by an

ML algorithm. Due to their versatility, many tasks can be formulated as network tasks.

Regarding large datasets, unknown relations, or dynamic settings, important properties

stemming from local to global connectivity inspire how ML operates.

For the rest of this section, we assume that we have a graph G = (V,E); We assume

it to be simple for practical purposes, as everything we discuss can be trivially done for

digraphs. There are three basic parts of G for whom, traditionally, previous work has

been devoted to predicting labels for nodes, deducing (new or existing) edges between nodes,

3https://kaggle.com
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and classifying the whole graph according to its structure. These three major approaches are

often framed as supervised (or semi-supervised) tasks.

In node classification, we would like to learn a mapping f̂ : V → Y that assigns each

node v ∈ V a label y ∈ Y . Under this formulation, we can completely frame the challenge

of labeling different types of users in a social network by certain criteria; for example,

we might want to learn their political stand according to their recent activity and other

accounts they follow.

To learn a robust model that classifies a graph’s set of nodes, a common practice is to

take a sufficiently large subset of nodes Vtrain ⊂ V as the training set. The practitioner

should know how to manage the training node’s relations, as they are not just mere data

points from the standard supervised learning formulation. Moreover, for complex net-

works, where different neighborhood structures form, it is often non-trivial to work with

a significant representation of all present phenomena in Vtrain.

Sometimes, connections between nodes are missing from recovering a network. Link

(or relation) prediction aims to learn such a problem, that is, a function f̂ : V × V → [0, 1]

that tells whether any pair of nodes have an edge between them or not. Any incomplete

relationship between entities can be framed as a link prediction task: from recommending

new accounts to follow on Instagram to completing the missing protein interactions in a

cell. For a more thorough discussion on link prediction, refer to Section 2.4.

Machine learning can be extended to labeling networks; graph classification learns a

mapping that identifies the whole structure. A training dataset, in this case, will include

complete samples of graphs, which increases its complexity significantly compared with

the previously mentioned tasks. In biochemistry, molecules are often represented by their

components and chemical bonds, which define a network; to learn how molecules will

mix up to produce novel medicine, one can train a model on a variety of medicine active

components to be able to identify new arrangements that will turn out to be part of new

drugs.
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Before continuing towards the quest of learning features from graphs, we shall stop and

look at specific computational complexity concerns. How large of a portion of a network

would affect or influence a given node? Regardless of how this question is answered, as the

number of edges increases in a quadratic way4, network science also tells us most large

graphs come with large sparsity, i.e., |E| << |V |2. Hence, one shall avoid designing

algorithms that strongly depend on computations over the graph as a whole.

To address this issue, most feature computations, including graph neural network loss

functions (Section 2.3.4) employ negative samples that contrast ground-truths of data. It

is, nevertheless, worth noting that the sampling strategy choice does significantly affect

any learning method. One can experiment with multiple ways of doing so, which of-

ten take into account the difficulty or the variety of node samples one considers inside

a node’s neighborhood. Other concerns beyond node sampling include tasks where di-

rected and multi-relational graphs are involved, where the direction of a link is important,

and where connections, themselves, might induce biases if imbalances of relational sam-

pling occur.

2.3.2 Engineering Graph Features into Vectors

The typical mathematical way to specify any network, G = (V,E), is inadequate to for-

mally frame most ML approaches, as they operate on matrix-like structures. A first, and

often naı̈ve, approach to vectorize a graph is to take its adjacency matrix AG as a full rep-

resentation. From each node’s perspective, a row from AG can be considered a one-hot

encoding feature vector as a function of its neighborhood. If G comes with edge weights,

these vectors could represent a probability distribution of graph connectivity if normal-

ized appropriately.

Adjacency matrices are (often) NOT all we need for graph vector representations!

Sometimes, it comes handy to specify a matrix of l-dimensional node features XG ∈ R|V |×l

where further context about nodes can be incorporated. This information could be any-

4which can be shown from the adjacency matrix
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thing from structural facts about a node’s further neighbors to external attributes that

characterize every node (for instance, consider all personal data belonging to a single user

on Facebook). A popular framework to learn node features will be discussed in Section

2.3.3 for structural information.

2.3.3 Node Embeddings

We now revisit node embedding techniques, which map vertices of a graph into a vector

space. These kinds of techniques are related to word embeddings, which appear in natu-

ral language processing. Ideally, the geometry of the resulting projection should recover

the relationships defined on the given graph.

Observe that there is no way to easily frame this task as supervised, as there is no

requirement for labels to be specified. Nevertheless, we still have structural information

from any given graph G = (V,E). With this in mind, we can frame an encoder-decoder

approach that will try first to project each node to a vector space and then recover the

original graph. Thus, the encoder is generally a function ENC : V → Rd that maps

to a d-dimensional space. When the encoder is parameterized by little or no learnable

variables, we say that a shallow embedding approach is being used. A suitable decoder shall

give us some graph statistics from the node embeddings, which can help us evaluate the

algorithm’s performance. A typical decoder function will work on two embedded nodes

DEC : Rd × Rd → R+, and will tell how similar are its inputs. Thus, the goal is to learn a

function that minimizes the reconstruction objective

DEC(ENC(u),ENC(v)) = DEC(zu, zv) ≈ S[u, v] (2.7)

where we assume S[·, ·] is a similarity measure between nodes and zu ∈ Rd. A common

way to achieve this objective is to use stochastic gradient descent (Robbins and Monro, 1951)
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to minimize the empirical reconstruction loss over a set of training nodes D, as follows:

L =
∑

(u,v)∈D

` (DEC(zu, zv),S[u, v]) (2.8)

It turns out that this encoder-decoder scheme usually serves to describe most graph

embedding algorithms. It suffices to define a similarity measure (S), which is targeted

by Equation 2.7, as well as a corresponding loss function. For the rest of this section, we

focus on two similar methods, whose inspiration stems from reconstructing a conditional

distribution on connected pairs of nodes (pG(· | v) for any v ∈ V ). They both form a

basis for how the methodology (Chapter 3) is presented in this thesis. Other popular

embedding methods can also be classified on whether they use a minimum squared error

(MSE) loss, such as inner-product-similarity measures (Ahmed et al., 2013; Cao et al.,

2015; Ou et al., 2016) or if they use a L2-distance between embeddings to denote similarity

and minimize the position of similar nodes in a vector space (Belkin and Niyogi, 2001).

node2vec and metapath2vec

The node2vec (Grover and Leskovec, 2016) algorithm is inspired by the popular word2vec

(Mikolov et al., 2013) strategy for to embed words into a vector space. node2vec incorpo-

rates some stochastic assumptions by interpreting the decoder function as a conditional

probability distribution of visiting a node u on a t-random walk that starts at node v, i.e.,

pG(u | v):

DEC(zv, zu) ≡
exp z>v zv∑

vk∈V exp z>v zk
(2.9)

To optimize a loss function, we assume we are given a dataset D of node pairs that

are sampled from the desired distribution (v, u) ∼ pG(u | v). At this point, we note that

optimizing any function in the whole dataset would result computationally expensive:

especially since the denominator of Equation 2.10 requires O(|D||V |) operations in the

worst case. Thus, the algorithm turns to negative sampling to overcome this threshold.
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According to Grover and Leskovec (2016), the loss function is given by

L =
∑

(v,u)∈D

− log σ(z>v zu)− γEvn∼pn(V )

[
log σ(z>v zvn)

]
(2.10)

where Zu =
∑

v∈V exp f(ni) · f(u) is a normalizing term, whose expensive computation is

often overcome via negative sampling.

The crucial part of the algorithm occurs during such sampling step, where the authors

propose to follow a biased random walk approach, similar to the well-known skip-gram tech-

nique in NLP. This follows by computing the transition probability P (ci = v | ci−1 = u),

where ci indicates which node the algorithm visits at step i. Intuitively, this distribution is

biased to visit only closed neighbors of a root node c0; eventually, this procedure repeats

per each node.

2.3.4 Graph Neural Networks

Deep neural networks have significantly impacted graph-related tasks as much as they

do in many other data-driven fields. The present section will discuss the general methods

used to formulate diverse ways of processing large networks and learning features using

neural layers. Most of these functions are inspired by other successful approaches, such

as convolutional methods, or from further study of network properties, such as the spectral

theory of graphs. In all cases, the first significant challenge is to figure out how to encode

a graph into an initial vector representation that enables any deep network to explore its

properties further.

Recall that a simple graph G = (V,E) can be represented in many ways using its ad-

jacency matrix, which does not require a specific order of nodes, and hence, of columns

and rows. Ideally, for any row or column permuted adjacency matrices of G, their re-

sulting latent representation must be the same after applying any neural layer f . More

formally, f should satisfy either permutation invariance (f(PAP>) = f(A)) or permu-

tation equivariance (f(PAP>) = Pf(A)), for any permutation matrix P and adjacency
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matrix A. The major strategy to comply with this requirement relies on implementing a

message-passing scheme on how neurons are updated, which motivates the most popular

way of referring to graph neural networks.

Neural Message Passing. Consider a graph G = (V,E), along with a matrix of node

features X ∈ R|V |×l. A GNN will have a set of hidden embeddings htv to be updated at time

t per each node v ∈ V . Intuitively, they will acquire information from the closest to the

furthest neighbors concerning each of the graph’s nodes. The update can be framed as:

ht+1
v = UPDATEt(htv,AGGREGATEt({htv, | ∀u ∈ N(u)}) (2.11)

= UPDATEt(htv,m
t
N(u)) (2.12)

where mt
N(u) is the message that is generated from v’s neighborhood. UPDATE and AG-

GREGATE are differentiable functions that are conveniently chosen as neural networks.

To enlighten the way UPDATE and AGGREGATE functions are usually implemented,

here we introduce the basic formulation of a message passing GNN:

ht+1
v = σ

Wselfh
t
v + Wneigh

∑
v∈N(v)

htv + bt+1

 (2.13)

where Wself and Wneigh are trainable parameters, while σ is a non-linear function, usually

either tanh or ReLU.

A small simplification to the neural message passing step (Equation 2.11) can be achieved

by adding self-loops to all nodes. Hence, we aggregate information from the setN(v)
⋃
{u}

that includes the update operation implicitly:

ht+1
u = AGGREGATE

(
htv | ∀v ∈ N (v) ∪ {u}

)
(2.14)

Note that the update presented in Equation 2.11 accumulates all neighbors’ values

only by adding them up together. This can often be unstable, especially for large neigh-
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Method Equation

Set pooling mN(u) = MLPθ
(∑

v∈N(u) MLPφ(hv)
)

Janossy pooling mN(u) = MLPθ
(

1
|Π|
∑

π∈Π ρθ(hv1 , . . . ,hv|N(u)|)π

)
Neighborhood attention hN(u) =

∑
v∈N(u) αu,vhv

Table 2.1 – Some of the various types of set aggregation methods, defined to exploit cer-

tain characteristics of large networks.

borhoods which may imply some difficulties while implementing any learning method.

A successful way to normalize is given by Kipf and Welling (2016):

mN(u) =
∑

v∈N(u)

hv
|N(u)||N(v)|

(2.15)

A graph convolutional network (GCN) arises from intuitively defining spectral con-

volutions on graphs by multiplying a signal by every node. The formulation presented

by Kipf and Welling (2016) also employs symmetric normalization and self-loop updates.

Its message-passing function is defined as:

htu = σ

Wt
∑

v∈N(u)∪{u}

hv
|N(u)||N(v)|

 (2.16)

Equation 2.15 is not the only way to aggregate and normalize neighbor embeddings.

This process is usually thought of as a set operation aggregation, where properties such

as permutation invariance shall be kept. Table 2.1 summarizes three popular aggregation

methods: first, a universal approximator of a set pooling operation has been shown possi-

ble (Zaheer et al., 2017) using a combination of deep fully-connected neural layers; then,

Janossy pooling (Murphy et al., 2018) computes features from all possible node permuta-

tions; and finally, it is possible to assign an attention weight to neighbor nodes in order to

give a ”influence” score while aggregating weights (Bahdanau et al., 2015).
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In a relational graph convolutional network (RGCN), the aggregation function is aug-

mented to add multiple relation types, which induces a transformation matrix per rela-

tion:

mN(u) =
∑
τ∈R

∑
v∈Nτ (u)

Wτhv
fv(N(u), N(v))

(2.17)

where fn is a normalization function.

Attention mechanisms and feature concatenation can be used to leverage generaliza-

tions of edge features from the neighborhood. This is particularly useful when we would

like to accompany neighborhood embeddings with those link features. For instance, we

can re-define the aggregation function as follows:

mN(u) = AGGREGATEbase
(
{hv ⊕ e(u,τ,v) | ∀v ∈ N(u)}

)
(2.18)

In this case, e(u,τ,v) represents any arbitrary vector representing the (u, τ, v) edge.

So far, we have only dealt with embeddings at the node level, yet nothing prevents

us from learning representation on a graph level. Any such operation, known as graph

pooling, would be capable of being implemented directly on small subgraphs, an event

to come up with a single edge embedding. There are two approaches to achieving this

goal. First, we could frame this aggregation problem as learning a mapping from a set of

node embeddings to a fixed vector representation. This function could be as naı̈ve as taking

the mean of a graph’s node embeddings; nonetheless, in Vinyals et al. (2016), a combined

module of LSTM-based approaches with attention mechanisms are provided, which has

become a popular pooling method.

The aforementioned approaches fail to exploit any structural cues found in the graph.

Topology can be leveraged by performing some clustering (otherwise known as coarsen-

ing) over the nodes and using such information to learn a function that maps a node with

the likelihood it belongs to a particular cluster. Once we learn such mapping, a plausi-

ble alternative is to iteratively run a GNN on an adjacency matrix that encodes strength
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between graph clusters, while coarsened graphs decrease in size, and information is accu-

mulated at the final stage.

Graph Isomorphism

To conclude this section, we turn back to a fundamental graph problem whose interpreta-

tion provides intuition to derive better approaches to graph representation learning. Our

characterization of graphs in Section 2.1 was incomplete, in a mathematical way, since

no notion of equality was introduced. There is no straightforward to define such a notion

since there can be multiple ways of writing an adjacency matrix for the same graph. In the

literature, the related notion of isomorphism between graphs is used to refer to graphsG1

and G2 that are identical, except maybe, in the way nodes are ordered on their respective

adjacency matrices. We can formalize this notion by considering adjacency matrices A1

and A2. We, then, say that these graphs are isomorphic if and only if there is a permutation

matrix P such that PA1P
ᵀ = A2.

Algorithm 2: Weisfieler-Lehman Algorithm
1 l1← EMPTY ARRAY(length=G1.V.len);
2 l2← EMPTY ARRAY(length=G2.V.len);
3 for i ∈ range(0, G1.V.len) do
4 l1[i]← G1.V[i].degree;
5 end
6 for i ∈ range(0, G2.V.len) do
7 l2[i]← G2.V[i].degree;
8 end
9 for i ∈ range(0, G1.V.len) do

10 l1[i]← HASH(l1[i], {{ l1[i-1] }};
11 end
12 for i ∈ range(0, G2.V.len) do
13 l2[i]← G2.V[i].degree;
14 end
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Transfer Learning on Graphs

While the pre-training and finetuning scheme seems to dominate most modern deep learn-

ing pipelines, implementing such benefits into GNNs is far from trivial. The simplest

version of any training loss of a GNN (such as Equation 2.11) can be invariantly utilized

to learn the ubiquitous complexity of an extensive network. It then makes sense to sep-

arate this process from any node or link classification task. Nevertheless, in Veličković

et al. (2018), it is shown experimentally that a randomly initialized GNN would already in-

corporate the same representation power as anyone pretrained on a neighborhood recon-

struction loss. This is also made evident in Hamilton et al. (2017), and Kipf and Welling

(2016) that the connections one can draw from message passing to the Weisfeiler-Lehman

algorithm (Section 2.3.4) explain this issue.

Nevertheless, the same authors in Veličković et al. (2018) introduce a method to pre-

train a graph neural network, yet utilizing a different kind of loss. Such method is referred

as Deep Graph Infomax jointly leverages information at node and graph levels. To do so,

it is necessary to produce a ”corrupted” version of the graph G to be optimized, which

can be achieved by slightly modifying any node embedding or adjacency matrix in a

stochastic way. All in all, further research has been proposing unsupervised ways of learn-

ing graphs. The crucial takeaway from them is that they coincide in optimizing mutual

information at certain levels of representation or any ”clever” negative sampling-based

methodology.

2.4 Link Prediction

What does finding a good video recommendation has in common with computing the best way

to relate two concepts on a knowledge graph? Both tasks can essentially be abstracted into pre-

dicting novel or existing links in a graph. Despite the diverse information large network,

edges, links, or arcs can encode, recent deep learning techniques can be generalized well

enough to diverse settings. For the current thesis, link prediction will mean that the like-
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lihood of a certain activity that a social media user performs, given time; furthermore, the

by-product of this task will be of great interest, especially considering the representational

richness a deep model can abstract, as discussed in Section 2.1.

Graphs often come incomplete. When dealing with missing links, one can distinguish

the situation when working with an entire graph is impossible, deleting existing edges

and training a model to recover the original edge set. The former type of scenario is re-

ferred to as inductive learning, as presumably knowledge will be generalized from existing

information, while the latter one is, in general, called transductive learning. Traditional

supervised learning falls into the transductive category, while inductive approaches in-

corporate some lack of supervision, which requires working with unseen data points from

train/test sets.

A complete simple graph G = (V,E), with n = |V | has n(n−1)
2

edges. Hence it is trivial

to deduce that any link prediction will have time complexity Θ(n2) in the worst case. On

the other hand, most existing methods provide a probability score of attachment between

every node.

Local Topological Predictors

The typical way of formalizing the link prediction task consists in providing a score(u, v)

for the likelihood of any pair of nodes u, v ∈ V to be connected. This value can also be

interpreted as a similarity measurement between u and v. Thus, every method will likely

implement different notions of similarity between nodes; for instance, we may assume the

small world hypothesis, which asserts nodes are strongly related by their path distances, to

design a proportional score (Liben-Nowell and Kleinberg, 2003a). Next we provide some

common ways of defining the aforementioned score function.

People with many friends in common are likelier to be friends with each other. This social

statement implies a naı̈ve way to connect nodes in a graph:

score(u, v) = |N(u) ∩N(v)| (2.19)
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Jaccard Coefficient. This measurement, which stems from information retrieval, nor-

malizes the aforementioned common neighbor score by all the neighbors each vertex has.

While such interpretation might be convenient to relate to the actual equation, we note

that the notion of a neighborhood can be extended beyond simple graphs, where features

might be shared by nodes (multi-relational settings). In practice, we also add noise to the

score to account for sparse networks or non-existent links.

score(u, v) =
|N(u)

⋂
N(v)|

|N(u)
⋃
N(v)|

+ Uniform(0, ε) (2.20)

Degree Product (Preferential Attachment). Here we work under the assumption that the

probability for a node u to have a new neighbor is proportional to ku. This can be use-

fully put in the perspective of dynamic networks, where the number of nodes and edges

increases over time. Hence, the probability of two nodes to become attached gives the

score:

score(u, v) = ku · kv + Uniform(0, ε) (2.21)

Adamic/Adar. The idea here is to measure how related are two given nodes. Once

again, while this score is presented, in the simplest case, as a measurement of neighbor-

hoods, this can be extended to multi-relational settings.

score(u, v) =
∑

x∈N(u)
⋂
N(v)

=
1

log |kx|
(2.22)

Katz Score. This score favors the attachment of any pair of nodes that have, overall, the

shortest set of paths within each other.

score(u, v) =
∞∑
`=1

β` · |paths〈`〉u,v| =
∞∑
`=1

β` · A`[u, v] (2.23)
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PageRank

Page et al. (1999b) introduced the important PageRank algorithm, which remains a funda-

mental building block of understanding network structures and engineering algorithms

that are scalable in practice. Essentially, this method of web page ranking, according to

the original formulation gives us a method to figure out the most important nodes in a

graph for a given one.

Consider running multiple random walks that start from a root node u. The average

behavior and outcomes (final nodes) will, intuitively, summarize the graph’s structure

that follows upon u’s neighbors. Moreover, this procedure shall give information on the

proximity of u with any other node v. Note that there are no guarantees that any nonzero

entry of any transition matrix P could lead to over-exploration of the network; in a very

extreme case, this can account for very distant nodes which are not necessarily part of

any shortest path. Hence, we introduce a parameter α to randomly reset to the initial ex-

ploration step.

πu = αPπu + (1− α)eu (2.24)

By repeatedly running this stochastic process, the authors derived a score function to

effectively quantify how important is node v to u:

score(u, v) = (1− α)
∑
x∈u v

P [x]α|x| (2.25)

where P [x] is the probability of traveling across a walk x = 〈vi〉ki=1 of, length k, i.e.,∑k
i=1

1
kvi

.

2.4.1 Subgraphs, Embeddings, and Attributes for Link Prediction

Progress in deep learning (DL) has had an impact on link prediction, as well. Zhang and

Chen (2018) present SEAL: a method that leverages (node) attributed graph neural net-

works to compute a set of edge features that will help to predict the existence (or not) of
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any given link. The letters of this acronym stand for the important parts of the proposed

methodology: local subgraph extraction to characterize each edge’s surroundings and

node embeddings as information about their attributes. Everything, then, is condensed

to achieve a link prediction task.

The essence of the proposed framework by Zhang and Chen (2018) relies on a node

labeling algorithm. This process would assign an integer label to every node to mark

their different roles within their local neighborhoods. The intuition behind this is that

labels characterize the different relative positions of each given pair of nodes, which im-

ply distinct structural roles. The algorithm presented by the authors (Double-Radius Node

Labeling) is inspired by the WL graph kernel algorithm (see Algorithm 2).

The previous feature construction approach has been designed to work well within a

deep learning architecture. Competitive arguments and results have made use of Zhang

et al. (2018)’s Deep Graph Convolutional Neural Network (DGCNN): a framework designed

to extract useful features for general graph classification and to sequentially process the

parts of a graph so that any other model could work with them. In particular, three

computation stages are proposed: a collection of graph convolutional layers to extract lo-

cal substructures, a SortPooling layer that sorts vertex features, and a combination of

convolutional and fully-connected layers that read the sorted representations. Indeed,

SortPooling is the previous work’s main contribution.

A graph’s order can be defined according to its application setting, regardless of the

usual node permutation invariance: for instance, a text graph could be sorted in word dic-

tionary order. For this thesis, we care about the structural role (i.e., the position) of each

node within its local neighborhood, which is a concept that DGCNN captures through

SortPooling. The idea is to pool information according to a graph labeling algorithm

implemented upon the graph’s topology. For such a goal, a version of the WL algorithm

is typically used to group nodes with similar roles.
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2.5 Misinformation Spread

Modern times correlate with faster times: news originates as quickly as ever as information

spreads more easily thanks to the Internet. News outlets have evolved along with tech-

nological innovations that connect humans in different ways. While physical distances

still separate communities and their culture, virtual links foster the need to acquire, pro-

cess, and digest novel information. Determining the process of misinformation production

is still an open question that could be addressed from different perspectives. An attempt

to frame it, for instance, has been shown by Ruths (2019), in which five key production

elements are identified: publishers, authors, articles, audience, and rumors.

In a densely connected society, malicious rumors spread faster than ever, as networks

are not guaranteed to preserve trustworthiness. This type of activity, often dubbed mis-

information spread, has been gaining popularity from different angles in the academic

community. Computationally speaking, its importance has risen as a byproduct of the

success of information technology, such as social media. While it can be argued that com-

puter science has provided an infrastructure for misinformation spread, it still constitutes

an active and essential area of research. Studying social media to learn about human

behavior has proven to be an important direction from which social scientists can draw

meaningful conclusions (Ruths and Pfeffer, 2014).

In this section, we attempt to disseminate some of the crucial parts of the misinfor-

mation phenomena that motivate the writing of this thesis. We first start with the items

that are spread (fake news), to slowly transition to who or where do they originate (fake

accounts, bots, and trolls). Finally, we land into a context where both of the mentioned

parts interact and can be modeled by graphs.

2.5.1 Fake News

As discussed by Zhou and Zafarani (2020), there are various ways to define fake news;

yet a broad definition must include any news articles that make false claims, regardless
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of publication outlet. Depending on a specific research the question, one can assume

whether several articles have been published by unreliable news outlets or not.

Popular social networks exhibit some weaknesses that enable automated trolls to spread

fake news. To model and decide the trustworthiness of a given claim implies having a

prior notion of ground truth: in particular, knowledge bases stand out as graph-based ap-

proaches, where fake news detection gets reduced to link prediction of verified truths

(Ciampaglia et al., 2015; Zhou and Zafarani, 2020). Nevertheless, the graph structure of a

given social media outlet has been part of recent work, thus, permitting to include prop-

agation patterns along with controversial claims to be verified; for instance, in Ma et al.

(2018), the authors perform a rumor classification task based on extracted news cascade

trees, using deep learning techniques, such as recurrent neural networks.

Thanks to the great variety of attributes predefined by a social medium like Twitter,

it is possible to customize many types of graphs as part of misinformation modeling and

propagation. In Zhou and Zafarani (2019), the authors utilize network attributes to char-

acterize spreading patterns of fake news: this is done by identifying news spreaders and

quantifying the proportion of users that further, propagate claims in terms of social media

distance and engagement with fake news.

Furthermore, Shu et al. (2019b) exploits social context to characterize fake news de-

tection by proposing a tri-relationship joint embedding between publishing outlets, news

articles, and users; link representation learning would characterize how each of the three

parts interacts with each other. As a more general use of a social network structure, Shu

et al. (2019a) construct hierarchical propagation networks that include news nodes, tweet and

retweet nodes (which include a common news article), and reply nodes (derived conver-

sations).

Fake Accounts

With the occurrence of important democratic events, such as elections, efforts have been

put towards visualizing how bots’ behavior trends over time (Yang et al., 2019). Among
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the practical solutions to visualize how certain tweets and accounts are polluting the Inter-

net, Hoaxy, a fact-checking interactive website, highlights the amount of features capable

of extracting from a given Twitter account. The existence of a retweet network dataset,

built from tweets spreading hoaxes, has also been reported (Hui et al., 2018).

2.6 Troll/Bot Detection

Exploring the vulnerabilities of social media to trolls and misinformation has drawn at-

tention recently (Stewart et al., 2018), making special evidence on how political polar-

ization allows trolling accounts to systematically take advantage of any scenario where

global opinion consensus becomes jeopardized. The phenomenon of information pollu-

tion spread has gained attention from the community, as well; Lou et al. (2019) presents a

multi-agent network model where bots interact with humans (both represented as nodes),

and the former would employ different manipulation strategies to reflect on the latter.

Characterizing whether a Twitter account is controlled, either automatically or by a

human, is a hard task; thus, recent related research utilizing machine learning techniques

has permeated novel findings about malicious users and their modus operandi. For in-

stance, in Mendoza et al. (2020), a bot detection framework is presented and benchmarked

on a large data set of tweets: by getting access to a sufficiently large subgraph of inter-

actions, the architecture first computes graph embeddings that will serve as features to

jointly social interactions which, intuitively, group every similar node type (human or

bot) together.

By investigating, formulating, and coming up with better ML models for tasks related

to malicious online actors, we benefit not only from detecting those that are fully auto-

mated (bots) but also for partial automation (cyborgs) and, of course, trolls. This fact is

also reflected extensively on Mendoza et al. (2020). With this kind of knowledge, we can

provide ubiquitous applications, such as giving evidence of coordinated misinformation

spread during the COVID-19 pandemic, as stated on Ferrara (2020).
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2.6.1 Understanding Verified Trolls

Few recent works are related explicitly to the Twitter Election Integrity (TEI) datasets. In

Zannettou et al. (2019c), the authors analyze 10M posts identified as Russian and Ira-

nian state-sponsored trolls. Attention is focused, especially during the 2016 US Elections,

where they distinguish each troll’s concrete political stand (e.g., Trump or anti-Trump

supporters). The authors can also present a cross-platform influence model that quanti-

fies, for instance, how likely events in a Twitter community influence subsequent ones

within a Reddit community. With the help of Hawkes Processes (Laub et al., 2015; Zannet-

tou et al., 2018), a stochastic type model that builds upon events that self-increase their

repeating likelihood over time, the authors identify the causal event that made a URL

propagate in different platforms.

Using a similar approach, in (Zannettou et al., 2019b), a comparison is presented be-

tween users with ties with the Russian Internet Research Agency and a random set of Twit-

ter users; the authors find differences in terms of the content each group disseminate.

Given the rich features provided within the TEI dataset (see Section 3.1 for further infor-

mation), some works looked beyond tweet text and metadata. Furthermore, experiments

that go beyond these attributes have been reported: Zannettou et al. (2019a) analyze 1.8M

images from Russian trolls in the TEI dataset to conclude their posting activity matches

that of real-world events. They further study how state-sponsored trolls select images

and curate their posts toward a target user group.

In (Sharma et al., 2021), a troll classification task is conducted on a dataset collected

from the Internet Research Agency (IRA) targeting US-related events. The authors use

temporal point processes within a mixture density network to capture user behavior char-

acteristics. This thesis differs from their work in the datasets and the learning framework

employed. Specifically, we utilize two datasets distinct from the IRA to support our find-

ings. Our non-troll control user crawling method is different, as we use available troll

hashtags and user mentions. In contrast, their crawling method relies on a manually
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specified list of keywords (see Section 2.7.1 for details). Additionally, their approach is

based on temporal point processes, whereas we use a graph-based method here.

2.7 Sampling Social Media Datasets

Sampling from social media is a common yet not straightforward task. Here we review

the related literature. Multiple works are concerned with efficiently capturing the under-

lying structure of a massive network while preserving large-scale observed properties,

such as degree centrality, betweenness, or keeping the number of shortest paths between

nodes (Leskovec and Faloutsos, 2006). The simplest sampling method for a graph can be

based on multiple graph traversals, where observations can be thought to traverse neigh-

bors from a starting root, i.e., implementing BFS or DFS. However, this can often induce

degree biases dependent on high-degree nodes. Kurant et al. (2011b) have proposed a

heuristic to un-bias BFS sampling methods, which is proved to work empirically on many

topologies. On the other hand, Leskovec and Faloutsos (2006) investigate the differences

between random walk and Monte Carlo methods for sampling real-world graphs. They

concluded that the former was more efficient than the latter ones; this was attributed

to their ability to capture certain measurements of huge real graphs (degree centrality,

beetweenness, number of shortest paths) in a smaller sample. In (Wang et al., 2011), the

aforementioned algorithms are applied to large-scale social media graphs while finding

no satisfying results as they fail to preserve specific properties of full-scale graphs. The

ability to compute good estimators of such graph properties, especially when it comes

to degree distributions are a fundamental step for many sampling approaches (Wang

et al., 2011; Zhang et al., 2015). More recently, Yousuf and Kim (2020) propose a sampling

method based on estimating the degree and clustering coefficients of a graph, to achieve

a sample size upper bound by 1% of nodes.

We don’t need access to or sample the entire graph in many applications. Here the

most commonly used method is Snowball sampling, which is a breadth-first search (BFS)

43



approach where samples are obtained by considering every sampled node’s acquain-

tances. Although commonly used, this method might result in a bias towards sampling

specific groups of nodes and become problematic in certain contexts (Browne, 2005). This

motivates employing alternative probabilistic approaches that attempt to control the bias

when choosing nodes and relations. For instance, Kurant et al. (2011a) develop a sub-

graph sampling approach where a graph’s topology is estimated from a set of observed

nodes along with some properties of themselves and their neighbors. These methods can

be extended to graphs with multiple types of relationships. For example, Gjoka et al.

(2011) combine multiple random walk runs, defined on every graph relation, to obtain a

representative sample of a given multigraph.

2.7.1 Sampling Data from Twitter

Twitter data comes with diverse components, from which several approaches can be

taken to reconstruct any interesting network. Retweet networks have been of special in-

terest throughout relevant work (Ma et al., 2018; Sharma et al., 2021). While retweets

give information on how user-to-user interactions occur, other features, like hashtags,

would provide a list of topics relevant to each account. Recent work shows how crawling

(and sampling) data leads to domain-specific methods (Addawood et al., 2019; Zannet-

tou et al., 2019b), which are defined depending on a given task’s requirements. Few prior

works employ sampling for the specific task of studying the activity of trolls. Zannet-

tou et al. (2019b)’s approach consists in sampling enough examples to match a given set

of troll tweets so that the former’s average distribution over time resembles the latter.

It is worth mentioning that these trolls come from the same sources this work gathers

its data for experimental purposes. See Section 3.1 for further information. Collecting

two distinct classes of users, such as trolls and non-trolls, possesses another challenge. In

the context of the 2016 U.S. Presidential election, Addawood et al. (2019); Badawy et al.

(2018a,b); Luceri et al. (2020) have based their troll data mining on a dataset collected by
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Crimson Hexagon, a former analytics company that provided paid access to such data5.

For non-trolls, the authors used a manual list of keywords and hashtags, which were as-

sociated with 2016 U.S. Presidential candidates, equally represented, e.g., #donaldtrump,

#trump2016, #hillaryclinton, #imwithher, and streamed related tweets for the same pe-

riod the trolls were active. Furthermore, they also considered tweets from the users of

these tweets, even when not including the election- related keywords, but only for those

users who did not retweet trolls. According to the authors, this strategy would help to

understand trolls vs. non-troll users better. While proper for content-based methods, this

sampling technique is incompatible with graph-based methods. As engineered, one likely

observes no interaction between the non-troll and troll accounts within this sampled data.

In troll detection, for example, this could result in overestimation in our datasets where

trolls interact and coordinate, whereas the control group users are disjointed.

In this thesis, we want to sample graphs from Twitter data. In particular, we take a

network-based approach by reconstructing several graphs over time, which would be de-

fined according to common user-to-user and user-to-hashtag relationships (Section 3.2).

As crawled data often contains unnecessary context, it is crucial to implement adequate

ways to sample graphs, which would (attempt to) resemble large-scale phenomena within

a smaller community.

5https://www.recode.net/2017/11/2/16598312/russia-twitter-trump-twitter-
deactivated-handle-list
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Chapter 3

Methodology

3.1 Modelling Troll Activity with Graphs

3.1.1 The Twitter Information Operations Dataset

The Twitter Information Operations database has been constantly updated since late 2018.

In line with their transparency objectives and intending to help the community to fight

against state-backed entities, the social platform has been inviting members of governments

and academia to further investigate, learn, and build technology using their archives.

In October 2018, a set of 4, 383 accounts were released to kick-start the program1. The

released activity was organized according to their alleged place of origin, in that case,

either from the Russian Internet Research Agency (IRA) or Iran.

In subsequent releases, the practice of ordering any released data by place of origin

was maintained: among other important implications, this allowed to get a better glimpse

of why and how those users are operating, and what they are targeting. Every release

1Twitter’s transparency website (Twitter, 2022) serves as the main source for every release’s information
and description. Most notably, every hashed archive can be easily accessed via the same website.
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includes most of the metadata that can be extracted from querying the Twitter Developer

API2, except for the userid and screen name, which are hashed for privacy issues3.

All released users have already been suspended. Moreover, all releases include both,

a list of users and their metadata accompanied by a list of tweets, also with metadata such

as the number of likes and retweets received, along with the list of mentioned users and

hashtags. Although their “lifetime” dates (from creation to suspension) are not specified,

they can be inferred from the dates of their earliest and latest tweets, which gives a good

approximation. For this project, we focus on the lists of mentioned users and hashtags,

which provide crucial cues to each troll’s interaction with their “outside world”. Never-

theless, it is worth noting that every release has come with a vast collection of media (such

as images and videos) that is part of the trolls’ activity.

Having established this data collection’s importance to understand inauthentic influ-

ence campaigns (Twitter, 2022), we now focus on automatically exploiting each release us-

ing ML models. According to Gadde and Roth (2018b); Roth (2020), no release has purely

relied solely on automated (bot) accounts. Hence this can be considered a ubiquitous trace

of activity generated directly by humans. In principle, to understand the behavior of these

trolls, one would like to find patterns that separate these trolls from what un-suspended,

normal users would ordinarily do. Hence, in this project, we provide the ingredients to

address this issue by taking advantage of the nearest neighbors interacting with every

troll.

3.2 Activity Collection Process and Data Augmentation

To work with the Twitter Election Integrity (TEI) data, we have built a set of scripts that

download and handle their preprocessing. The data only includes the activity of con-

firmed trolls; thus, we needed to augment it with activity related to non-troll users. The

2https://developer.twitter.com/en
3Yet it is possible to request a version of their unhashed data, by filling out a form on their previously

mentioned website.
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counterpart of these trolls are the user mentions they interact with, that is, their 1-hop

neighborhood, which is the starting point of our active user control group. Even though

some users do not exist anymore or have even been suspended, the number of currently

active ones is significant enough for our purposes.

Fortunately, we were able to make use of Twitter’s Academic API4, to crawl a signifi-

cant amount of activity and populate our datasets. These users provide examples of the

targeted online conversations the coordinated trolls are built to target. To build a more

diverse set of active users, we have considered the 2-hop user mentioned neighbors by

trolls, which is obtained by looking at this relationship from the perspective of the 1-hop

neighbors. We further detail the crawling process in Section 3.2.1. For simplicity, we

would refer to a troll’s set of active 1-hop neighbors as closer nodes; while distant nodes

would be a troll’s set of 2 (or further)-hop neighbors.

3.2.1 Sampling Active Users

In general, we would like that our trained models be able to leverage a troll’s social net-

work within its surroundings. Considering this, consider a list of troll activity (hashtags

and user mentions) indexed at a particular time interval. Our goal would be to expand

this list with more activity coming from non-suspended users.

We proceed by randomly sampling a proportion of mentioned users from the given

list of troll activity. It is important to note that, at this stage, every user u keeps matched

with the corresponding time interval ut where their interaction with trolls has occurred.

Observe that even trolls could be included in such a sample. Thus, we filter off all sus-

pended users to obtain a list of seed users from where to pull more activity. For each one of

these seed users u, we crawl any available data trace that falls inside ut. This procedure’s

output constitutes our closer active user set, our first control group.

As hashtags on Twitter help users to easily engage in any (possibly, trending) con-

versation (Dorney, 2021), any troll interaction (or influence) with whichever active user

4https://developer.twitter.com/en/products/twitter-api/academic-research

48

https://developer.twitter.com/en/products/twitter-api/academic-research


#senders #receivers #tweets #hashtags #user mentions

Russian
Trolls 129,877 1,428,207 1,581,542 455,853 972,354
Closer users 43,630 895,790 899,625 228,754 667,036
Distant users 4,738 972,041 985,591 545,773 426,268

IRA
Trolls 119,719 4,431,274 4,673,537 2 4,431,272
Closer users 46,551 1,237,105 1,386,494 396,117 840,988
Distant users 8,4058 6,910,592 6,999,959 2,993,350 3,917,242

Chinese
Trolls 38,698 448,298 613,496 211,013 237,285
Closer users 43,230 1,924,381 1,951,513 587,044 1,337,337
Distant users 2,590 215,274 218,177 102,448 112,826

Table 3.1 – Total number of nodes (senders, receivers), links (hashtags, user mentions), and

activity (tweets) found either within the Twitter troll releases and their extracted closer

and distant neighbors.

could occur without a direct mention. This fact is supported, especially, by events where

trolls act in a coordinated manner to push specific ideas through hashtags (Gadde and

Roth, 2018b; Roth, 2020). With this context in mind, we have added a second level of ac-

tive users who allegedly engage in similar topics as trolls. These accounts can be seen as

part of the distant neighborhood of trolls, which use identical common hashtags without

direct interaction with the trolls while engaging within the same topics.

Table 3.1 summarizes the total number of users and hashtags involved in the obtained

data. The number of senders corresponds to trolls reported originally inside TEI. Con-

versely, we compare such troll statistics to those from their crawled closer and distant

total active users. Moreover, the number of receivers combines hashtags and user men-

tions, while the number of tweets also considers their repetitions to give the exact activity

count. Given that we are retrieving data from the past, going back six years, the amount

of activity we can collect is limited by the Twitter API and how much of the data is not

removed by users over the years. However, we can still collect considerable activity for

our control groups. It is also interesting to note that the obtained IRA trolls only use two
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Figure 3.1 – Sample network visualization of the Russian (left), IRA (middle), and Chinese

(right) datasets, on February 2017. Orange links correspond to troll activity, blue ones

depict that from active users.

hashtags within their total activity. This impacts our active user crawling method in a

unique way that we explain in Section 4.1.

3.2.2 Constructing Mention-Hashtag Graphs

To study the activity of trolls and active users, we first transform the data into graph

snapshots. We provide visualizations across datasets and time to show how these datasets

capture troll activities within their surroundings and with other control user groups. In

particular, Figure 3.1 provides visualizations of mention-hashtag graphs constructed for

each of our datasets for one month of activity, whereas Figure 3.2 shows the network

evolution over one year for one of the datasets.

The accessibility to all closer neighbors within the trolls is not guaranteed, as they

might mention other suspended accounts. In each dataset, we analyze multiple years of

activity. For the moment, we focus on the technical challenges of using this data in a deep

learning setting; nonetheless, we emphasize the importance and relevance of interpreting

the diverse activity trends depicted in Figure 4.2, which will be discussed later in Section

3.3.3.

Constructing a single graph per dataset and processing it as a single training batch

results in very impractical: as implied from Table 3.1, doing so would require over 1.5M ,
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Figure 3.2 – Network development over 1 year in Chinese dataset. Every three visualiza-

tions correspond to four contiguous months, from left to right. Color coding is the same

as Figure 3.1.

4.5M , and 2M feature only to represent Russian, IRA, and Chinese nodes, respectively.

Therefore, we opt to work with individual chunks within contiguous timestamps so that

any temporal aspect is ignored per chunk, as we prefer to capture all interactions happen-

ing at predefined time intervals, which will be controlled during experiments. Breaking

a temporal graph into discrete time snapshots is a common practice Liben-Nowell and

Kleinberg (2003b). On the other hand, activity peeks over time present a problem, as a

set of few senders (Figure 3.1) are responsible for most activity (disconnected subgraphs,

centered around a small number of senders, arise). Hence, we employ careful prepro-

cessing to balance such activity, among other considerations explained in the following

paragraphs.

From the proposed Twitter troll data, we propose to construct a sequence of static snap-

shot networks extracted from a set of tweets. For each one of those, an undirected graph

G = (V,E,W ) is defined such that

V := {u | u is a user} ∪ {h | h is a hashtag} (3.1)

E := {(u, h) | user u uses hashtag h} ∪

{(u, v) | user u mentions user v} (3.2)
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Figure 3.3 – This is the way we define links within our structural representation. Trolls

(in red) are linked with the hashtags (in green) and other users they mention (in blue),

which could also be other trolls. Active users are treated the same way.

Furthermore, W : V → 2H is a weighting function that assigns attributes for ev-

ery node (Figure 3.3), where H denotes the dataset’s set of hashtags. For our mention-

hashtag network, W ’s role provides additional information to each user’s close relation-

ships, including neighboring hashtags, which are also abstracted as nodes. We, especially,

distinguish the set of senders S (users that emit a tweet) from the set of receiversR (union

of the set of mentioned users with the set of hashtags).

To accurately study the behavior of trolls using graph representation techniques, it

is crucial to balance the activity between trolls and our control groups. This is because

imbalanced activity can cause the model to overfit the majority class, which would hinder

our ability to learn about the behavior of trolls. Additionally, the main goal of our study is

not troll detection, which is a more complex task that requires addressing class imbalances

within the model to be accurate. Below we explain how to extract graph snapshots with

balanced activity from trolls and our control group. In Appendix B.1, we discuss this

more and show that the overall patterns still hold in the unbalanced settings, and the

conclusions remain the same.
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In order to build a snapshot graph, GD, for a time interval D = (tmin, tmax) we follow a

procedure that may include sampling the number of receivers or links if any such quantity

is out of balance with the number of senders:

1. We fix a time intervalD = (tmin, tmax) from which we extract all the tweets that were

created no earlier than tmin and no later than tmax.

2. To correct class imbalances within each time interval, we examine the number of re-

ceiver users in the result from the previous step.

• If |R| is significantly greater than |S|, we opt to randomly take a sample of men-

tioned users and hashtags, whose number roughly matches that of the senders.

• We, thus, downsample our chosen activity to balance the three types of nodes

we are working with. This process helps to avoid biased predictions on certain

classes.

3. To correct activity imbalances between time intervals, we examine the number of ex-

isting links between senders and receivers.

• If the number of links, regardless of repeated mentions, exceeds a limit param-

eter `E , we randomly select a subset of links. We perform this action to balance

the amount of activity in each snapshot.

• Once again, this process helps us to control any undesired learned correlation

on the final predictions.

4. Finally our (directed) adjacency matrix AD ∈ R(|S|+|R|)×(|S|+|R|) indicates whether a

sender account mentions a receiver account and uses a certain hashtag.

It is essential to guarantee specific attributes for any chosen user to be in our non-

suspended control group. We want to guarantee the validity of these accounts, which

intuitively would imply the existence of a human that fully manages and makes decisions

using the given username. On the other hand, we assume that in a 1-hop neighborhood
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of mentioned users, the main topics covered by the given trolls are ”kept alive,” thus,

depicting the intended influence targets to be enforced by coordinated organizations.

Among closer neighbors, we shortlist all those accounts that are suspended, as they

inherently, may intersect the actual set of given trolls. The remaining active accounts con-

stitute the complementary user behavior we want to distinguish. No further processing

involving any exploration of these accounts’ metadata is further involved. While these

accounts might include some verified users, the important aspect between each other is

that they have to be suspended but managed to remain on the Twitter network despite

being targeted by trolls, even sometimes having interacted with them5.

It is natural to observe that high sparsity levels will characterize smaller snapshots of

activity concerning a predefined time frame. This is the sense of the number of available

links, which might be orders of magnitude lower than the total number of possible links.

This is not a true phenomenon for all available small snapshots, as clearly Figure 4.2 shows

different peaks of activity happening at different times. Thus, we would like our model

to learn any important pattern and, in principle, be able to generalize under different

sparsity conditions.

An important aspect we shall observe is how the number of available tweets might

influence any prediction. In principle, this variable should not be significant, regardless

of how peaks of activities happen, as these events do not uniquely characterize any troll

behavior. In contrast, we would like to capture the diverse ways users decide to involve

and community within their close communities. For instance, consider a fixed set of ac-

counts, both trolls and active users defining a mention graph as in Figure 3.3. If we fix

the number of nodes for a given month while restricting the number of links to a shorter

interval, say for ten days, we will end up with a vast proportion of inactive users (with

degree zero) will be kept.

5https://help.twitter.com/en/managing-your-account/suspended-twitter-
accounts
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3.3 Analyzing Dynamic Mention-Hashtag Graphs

In this section, we first explain how to learn a representation for users based on their

activity in a given time frame, captured by GD. For this purpose, we extract both type

and neighborhood features for users to encode how similar users are based on how they

are located within the overall graph (type), as well as their local neighborhood. We then

explain how to use these representations for understanding troll activities. In particular,

we discuss applying link prediction and node classification to predict behavior and type

of users, respectively. This has implications for designing better troll detection applica-

tions. Finally, we discuss how clustering these representations help investigate the trolls’

involvement in different discussion topics.

3.3.1 Representation Learning of User Activity

Extracting Type Features

Since our proposed graph construction delivers heterogeneous graphs where multiple

types of nodes interact with each other; we utilize the metapath2vec algorithm which,

recalling Section 2.3.3, biases every random walk according to predefined node paths.

This algorithm is an extension of the very popular node2vec, which has been effective

for many downstream tasks where a random walk would, in theory, be able to capture

the most important features of a small neighborhood, as well as structural equivalence.

We consider four types of links defined by their incident nodes: troll-uses-hashtag,

troll-mentions-user, active-uses-hashtag, and active-mentions-user. Given

these links, we provide in Figure 3.4 a list of utilized (eight) metapaths between trolls and

active users, as well as hashtags; moreover, Figure 3.5 shows the steps to get from tweets

to type features using these metapaths.

Of particular interest is to capture and study interchanging activity between trolls

and active users. Thus, in this case, the direct link assumption is dismissed for all paths

connecting hashtags with any user. Such representation should also give a starting idea
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Figure 3.4 – Illustration of the chosen metapaths to bias our random walk-based node

embedding extraction. Note that we have made explicit different ways of getting from

trolls to active users, or vice versa, to be able to encode other (local) interactions.

of how users are naturally clustered into communities. We may find out sets of trolls

targeting an agenda or sets of active users reacting to misinformation-like behavior.

Extracting Neighborhood Features

We now have defined a heterogeneous directed graph representation GD for a time-

definite set of activities D; moreover, we have established how to construct its adjacency

matrix AD we augment with negatively-sampled links to produce a matrix ÃD. We now use

GD’s structure to encode initial link characteristics according to their surroundings. For

starters, we motivate the following process to account for various link prediction methods

that have traditionally worked well (discussed in Section 2.4).

Most of these popular link prediction methods can be unified into an enclosing sub-

graph extraction algorithm (Zhang and Chen, 2018). These methods can be classified on

the k-hop the neighborhood they use to compute a score. For instance, when k = 1, first-

order methods, such as preferential attachment, only require making sense of the immediate

56



Figure 3.5 – Three steps to take a collection of tweets and produce heterogeneous structural

representations. In this diagram, step 1 depicts our inputs, from which a mention-hashtag

graph will be built on step 2. At this stage, we combine true links with negatively-sampled

ones, displayed in blue and red, respectively. Finally, step 3 computes node embeddings

using the metapath2vec algorithm, given a set of predefined metapath templates.

neighborhood of every node to make a verdict on the existence of any link. For second-

order methods, such as the Adamic-Adar score (Adamic and Adar, 2003), a maximum of

2-hop information is used. This, in general, is extended to k-bounded neighborhoods, or

even to the whole graph, for algorithms such as PageRank.

These heuristic-based algorithms have strong assumptions on how links form within

a graph, such as the triadic closure phenomenon. However, they do not generalize to all

types of graphs since networks originating from different domains follow distinct rules

and patterns that determine the likelihood of every existing link. For this work, we take

benefit of the heuristics mentioned above by leveraging the information obtained from

different neighborhoods directly and allowing the model to find the most predictive pat-

terns. The effectiveness of this approach is previously shown in Zhang and Chen (2018)’s

SEAL (Subgraphs, Embeddings, and Attributes for Link Prediction) framework where

these three types of features are incorporated via a node labeling algorithm that, intuitively,

captures each node’s role within its k-hop neighborhood. This model is trained with a link

prediction objective, as explained below (see Section 2.4.1 for further information).
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3.3.2 Activity Prediction and User Classification

Here, we discuss how to utilize link prediction and node classification tasks to monitor

the similarity and differences in the activity of trolls and active users throughout time.

After computing node type representations with the metapath2vec algorithm (Figure

3.5), we proceed to optimize a link prediction model that would learn from the different

types of behavior given the original graphs and the learned type representations. The fi-

nal embeddings from this link prediction model capture type and neighborhood features,

and we use them directly to study how predictable the trolls behave. We also use the fea-

tures extracted by this model to classify each node into trolls or active accounts. We must,

as well, specify beforehand which metapaths to use (Figure 3.4) in case of using such an

algorithm; moreover, we should predefine the value for the chosen k-hop neighborhoods

as required to our link prediction model. These two hyper-parameters shape the perfor-

mance of any training run, as will be further explored in Chapter 4. For the link prediction

task, we essentially would like to predict the likelihood of the existence of a specific link

in a graph GD, regardless of its significance. To achieve this, we rely on a negative sam-

pling method that computes a random mask of false links, which does not depend on

inherent characteristics such as degree distributions or connected components.

Once the list of predefined metapaths (Figure 3.4) is used to compute the node fea-

tures FD from ÃD, we proceed with the SEAL link prediction pipeline (Zhang and Chen,

2018). This is the time when the node labeling algorithm takes place on the k-hop neigh-

borhood of a given link (u, v) ∈ ED; even further, such information is augmented with

each of u and v’s type embeddings from FD. We produce a tensor X̃D of locally-labeled

sub-neighbors, including negatively-sampled links. We are now ready to train a deep

neural network – a DGCNN (see Section 2.4.1 for further information). We optimize the

negative log-likelihood of the graph’s predicted and existing links at training time. Al-

gorithm 3 summarizes the link prediction process, including the loss computation, which

is performed using the original adjacency matrix AD and the one reconstructed from the
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predicted links, namely AZ̄D . From Line 4, DGCNN provides both the vector representa-

tion of links and the reconstructed matrix.

Algorithm 3: Link Prediction Overview
Input: GD = (VD, ED), AD, k
Output: Z̄D

1 ÃD ← negative sampling(AD);
2 FD ← metapath2vec(ÃD);
3 X̃D ← links2subgraphs(FD, ÃD, k);
4 Z̄D, AZ̄D ← DGCNN(X̃D, ÃD);
5 lp loss← neg log likelihood(AZ̄D , AD);

Algorithm 4: Node Classification Overview

Input: Z̃D, YD
Output: ȲD

1 H ← empty tensor(dim=(|VD|,));
2 for v ∈ VD do
3 for u ∈ N(v) do
4 H[v]← concat([H[v], Z̄D[(v, u)]]);
5 end
6 H[v]← mean pool(H[v]);
7 end
8 ȲD ← mlp(H, Y , out dim=2);
9 nc loss← neg log likelihood(ȲD, YD);

The previous process outputs a |ED| × j tensor of j-dimensional link embeddings Z̄D

which we hypothesize to be rich enough to provide better insights on the actual differ-

ences of each type of user, whether troll or not. To ensemble this information, we concate-

nate together, in a matrixH , all the embeddings corresponding to every neighbor incident

to any given node v. We then apply a mean pooling layer that squeezes down every ten-

sor to a unique vector, which encodes node activity within the timestamp D. With those

activities encoded, we then apply a multi-layer perceptron layer to classify them, i.e., to

obtain a binary output ȲD; this last step is also fully trainable as it is optimized on the

negative log-likelihood of true labels of nodes and their predictions. Algorithm 4 pro-

vides an overview of how this node classification works. This algorithm takes as input
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the matrix of link embeddings computed by Algorithm 3 and uses a list of labeled nodes

YD to define its corresponding loss.

3.3.3 Clustering User Activity

This section further explores the learned activity representations by clustering them. This

allows us to understand better how trolls and active users interacted on various topics.

This unsupervised analysis is practical in multiple domains, from natural language pro-

cessing to computer vision (Mikolov et al., 2013).

Finding group of users that interacted with each other. Our training pipeline is op-

timized for link prediction. Hence nodes that cluster together should reveal similar ac-

tivity traces. With this intuition, consider a mention-hashtag network GD (as defined in

Section 3.2.2), and its resulted embeddings Z̃D. This projection maps the input into a R`

space by taking model M’s penultimate layer’s output. To cluster Z̃D, we first apply t-

SNE (t-distributed Stochastic Neighbor Embedding) (van der Maaten and Hinton, 2008),

a powerful nonlinear dimensionality reduction technique to our link embeddings to ob-

tain embeddings ẐD. After applying t-SNE, we use the KMeans clustering algorithm (Jin

and Han, 2010) to identify an optimal number of clusters. The number of clusters was

chosen based on the elbow method to minimize the average distance to cluster centers.

Finding the topics discussed in each group. To understand the content of each clus-

tered activity, we look at the graph induced by the set of nodes in each cluster and re-

trieve the corresponding tweets. Recall that edges in our graph correspond to tweets

mentioning another user or using a specific hashtag. More formally, for any cluster c, we

restrict to only the tweets causing the corresponding links (>Gc). Then we use a language

model to create their sentence embeddings: >̂Gc . In particular, we have chosen to use

the RoBERTa-based language model (Barbieri et al., 2020; Wolf et al., 2019), which has

optimally been pretrained with around 58M tweets. We then cluster the obtained tweet
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Symbol Description

GD = (VD, ED) Any mention-hashtag network

XGD Node feature matrix of G

>GD Tweets associated to every edge in G

M A link prediction model

L A language model

Z̃D Link embeddings obtained fromM, given G as input

H̃>GL Text embeddings from model L, given >GD as input

Table 3.2 – A summary of all symbols used to represent any relevant quantity for our

clustering assessment.

embeddings using different algorithms: UMAP and HDBSCAN. UMAP (Uniform Mani-

fold Approximation and Projection) (McInnes and Healy, 2018) is a nonlinear dimension-

ality reduction algorithm that is particularly effective at preserving the global structure

of data, while HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications

with Noise) (McInnes et al., 2017) is a density-based clustering algorithm that can handle

noisy and high-dimensional data. This is a more accurate clustering method than the one

used to find interacting users. We have picked a method for clustering our embeddings so

that the cluster quality better corresponds with the embedding quality and could be used

as a proxy to evaluate the embedding itself. Given evaluation of the language model used

here is not within the goals of this thesis; we use the more complex clustering method in

this case.

Overall, this lets us zoom into the diverse topics that constitute each clustered activ-

ity. To represent the topics, we use tf-idf (term frequency-inverse document frequency)

(Havrlant and Kreinovich, 2017; Ramos, 2003) to obtain the essential words and phrases

for each topic. Table 3.2 summarizes our clustering notation. Having these topics, we

compare how trolls and our control users engaged in each topic when interacting, as re-

ported in Section 4.4.
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Chapter 4

Experiments

In this chapter, we first explain the datasets in Section 4.1, including how they are col-

lected and sampled, as well as basic statistics on the size of the sampled data and how it

changes through time. We continue, in Section 4.2 by reporting our representation learn-

ing results trained with a link prediction objective. We interpret the results of this section

to compare the predictability of trolls and active users. These embeddings are then used

to classify the users in Section 4.3. Finally, in Section 4.4, we take a deeper look at the em-

bedding space, use clustering methods to activities around different topics, and contrast

the engagement of troll and active users in those topics.

4.1 Experimental Data Preparation

We have collected some of the available tweet data from the Twitter Information Opera-

tions1 database (as explained on Section 3.1). We have omitted media files as we do not

use any of those in our methods. To automatize this collection process, we have built a

Python script that uses the Google Cloud API where this publicly available information is

stored2. Note that an authentication token from Twitter is needed to run this program

successfully.

1https://transparency.twitter.com/en/reports/information-operations.html
2Refer to https://github.com/alorozco53/deep-trolls to access the tweet downloader code.
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We have used Twitter’s Academic API3 to retrieve a portion of active users originally

mentioned by trolls (details in Section 3.1.1). Our goal is to collect data on how trolls

are engaging with non-troll users throughout a long period of time to be able to obtain

rich (and fixed) network representations, where troll activity is made evident along with

a set of non-troll users’ (see Figure 3.3 for reference). Moreover, we would like to choose

non-troll users involved with any of the three troll sources (Russia, IRA, and China) while

justifying their use as contrasting control sets. For our purposes, we have checked that

any chosen non-troll account remains active until its retrieval while having posted any

tweets at intersecting times to any of the given trolls.

Our non-troll retrieval strategy depends on the specifics of each of our sources. Table

3.1 shows that for the IRA trolls, sampling users using the same hashtags would give in-

complete information, given we only have 2 hashtags in this dataset. Overall, we have

followed a series of steps that are visualized in Figure 4.1 to be able to sample our ac-

tive users effectively. We split our non-troll sampling into three different strategies, from

which we want to build a mention-hashtag graph (Figure 3.3) using activity from either

closer (1-hop), or distant (2-hop, 3-hop) neighbors. For every dataset, it was possible to

sample 1-hop mentioned users, as they were explicitly included as part of the TEI’s meta-

data (4.1, top box).

Further analysis has been done to sample more distant users: we have sampled a

proportion of the Chinese and Russian hashtags while keeping the time intervals in which

they were utilized by trolls. This information gives us an indexed list of topic seeds where

we can query Twitter’s Academic API to find new active users. We follow this procedure

to achieve our sampling goal, as depicted by the box in the middle of Figure 4.1. For the

IRA trolls, a different procedure should be followed to overcome the scarcity of hashtags.

We utilize PageRank (Page et al., 1999a) in a given mention-hashtag graph to rank each

node and keep only the mentioned users whose score lies above the global average. Once

again, we keep track of the time intervals these users are mentioned in the source datasets.

3https://developer.twitter.com/en/products/twitter-api/academic-research
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Figure 4.1 – This diagram depicts the various steps we employ to acquire non-troll users.

At the beginning (leftmost box), a set of troll tweets is given as input. Then, the three

middle boxes define each sampling strategy employed under this work: closer active users

are sampled directly from the given tweets (top box); distant active users come after going

through hashtag sampling (middle box); finally, the IRA dataset requires an additional

non-troll PageRanking-sampling step (bottom box) to acquire 3-hop non-troll activity.

We then proceed by crawling tweets from these users, focusing on their used hashtags, to

follow the same sampling approach explained previously (Figure 4.1, bottom box). It is

worth mentioning that we have filtered out suspended users every time it was necessary

to crawl from the API.

Our distant user sampling approach is similar to the ones explained in Section 2.7.1.

For IRA sampling, instead of using a manual list of hashtags, as crawling seeds, we sim-

ply sample a set of hashtags without further restrictions to justify a more general ap-

proach to obtaining active users.

Figure 4.2 depicts how much tweet activity is produced by a troll and active users,

independently. It is natural to see different peaks and declines of activity due to the

different events the coordinated accounts were targeting. We have considered different

time frames per each dataset based on the availability of data for active users.

From Figure 4.2, we also see no explicit guarantees to always have a balanced and

dense dataset. Activity peaks from trolls may not coincide with those from active users,
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yet any correspondence would derive from interesting behavioral patterns that will be

discussed later. For practical purposes, this fact implies we shall look closely at the num-

ber of available nodes and links while performing any experiment, as degree imbalances

may bias our results to any unwanted confounder variable.

To be precise, we refer as senders to those nodes who are producing tweets (only users,

in this case), while we call receivers to those who have been mentioned by senders (the

union of users and hashtags). Within Table 4.1, we observe that the number of receiver

nodes is, on average, significantly dominant to the number of senders. Another impor-

tant observation relies on the fact that, given our method, the number of receivers is upper

bounded by the total number of links in every graph: for each (directed) link, every sender

points to a hashtag or another user.

Moreover, in Figure 4.3, we see that the distribution of sender size against receivers

varies across datasets – even further, across troll or non-troll sources. For instance, sam-

pled graphs from the Russian troll dataset would have a steadier growth, in nodes and

links, than the Chinese dataset, which in turn, would have a large number of 1-hop neigh-

bors for a few nodes. By combining the information given by Figure 4.3 with the data

statistics in Figure 4.2, we can see that

• the IRA is the dataset with the most mentioned users, while closer active links tend

to grow faster in size than nodes;

• the Russian dataset has a steady growth with respect to each type of sender, which

means that as the number of troll and active nodes grows, their activities increment

proportionally, as well;

• an arbitrary Chinese troll would tend to mention more hashtags and users than any

other user in the dataset.

We, henceforth, decide to take a similar-sized sub-sample of such groups under a pre-

defined threshold; for most of our experiments, we have found it convenient to restrict
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Figure 4.2 – Activity generated per time for the Russian (topmost), IRA (middle), and

Chinese (bottom) datasets. Such activity is measured by the number of unique tweets

generated per time unit. Troll tweets are depicted in blue, while active ones come in red.
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Troll Senders Receiver user mention hashtag

Russian 84.90% 67.48% 24.97%
IRA 84.12% 79.71% 12.35%
Chinese 91.90% 72.87% 23.08%

Closer Active Senders

Russian 98.97% 75.34% 24.69%
IRA 99.16% 72.46% 27.54%
Chinese 99.26% 76.87% 23.13%

Distant Active Senders

Russian 99.43% 61.48% 38.52%
IRA 95.68% 70.43% 29.57%
Chinese 97.42% 63.57% 36.43%

Table 4.1 – Out of the total nodes in our graphs, here we compute the percentage of them

that correspond to receivers (hashtags and mentioned users).

the number of total links to 5,000, with equal proportions of user mentions and hash-

tags. Moreover, we have truncated the number of receivers to roughly the same number

of senders. The formerly mentioned types of nodes are the critical centers of every net-

work, regardless of their troll nature. Thus, this process will not skip valuable information

for optimizing any model. Refer to Appendix A for other data statistics.

4.2 Predicting Behaviour through Link Prediction

We now focus on predicting the existence of links on a given graph, where we do not dis-

tinguish between those generated by trolls or active users. This is equivalent to modeling

the network’s structure as a whole, as predicting the set of links fully defines a graph.

To account for how any graph could be constructed over time, we perform experiments

using different time intervals: 5, 10, 30, and 60 days.

For starters, we look into our pipeline’s ability to predict the existence of links. Table

4.2 exposes our results averaged over five different training-testing splits: each row gives

macro-F1 scores on the link prediction task on graphs originating at the indicated place
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Figure 4.3 – Cumulative distribution functions (CDF) of receiver nodes, given the number

of sender nodes. We have normalized each axis to roughly compare how many links a

graph would have as its senders grow. These frequencies have been computed by count-

ing all activity in 5-day intervals, the minimum time we use for any experiment (see

Section 4.2) for further details. Hence, the x-axis represents the percentage of the number

of nodes for each graph, while the y-axis distributes the proportion of respective receiver

nodes.

of birth. Our results point out that including distant active users, slightly decreases over-

all performance in most settings while considering both sets of active users benefits the

experiments’ outcome.

Duration of the Time Interval

Sampling from ample time intervals means we could include troll-generated content that

spans multiple activity peaks in our static mention-hashtag graph. This fact is easily

observed from Figure 4.2 by considering sampling, for instance, 30-day tweets from the

IRA dataset, ranging from June to August 2015. Moreover, expanding the duration of a

time can also be seen as enriching any user’s set of features; hence, we have performed

multiple runs at different intervals to observe any benefits.

Table 4.2 shows a decreasing pattern for the Russian data, as F1 scores decrease from

90% to 82% when these trolls are contrasted with both closer and distant active users. This

falling pattern is also observed when training with the two other datasets. When going
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Link Prediction F1-Scores
Active set Dataset 5 days 10 days 30 days 60 days

closer
Russian 0.88 ± 0.027 0.86 ± 0.027 0.8 ± 0.029 0.77 ± 0.032
IRA 0.88 ± 0.039 0.88 ± 0.038 0.87 ± 0.035 0.85 ± 0.037
Chinese 0.94 ± 0.039 0.94 ± 0.037 0.93 ± 0.034 0.92 ± 0.036

distant
Russian 0.88 ± 0.040 0.88 ± 0.038 0.82 ± 0.027 0.77 ± 0.051
IRA 0.82 ± 0.087 0.80 ± 0.110 0.73 ± 0.150 0.70 ± 0.160
Chinese 0.89 ± 0.044 0.90 ± 0.050 0.87 ± 0.053 0.85 ± 0.050

both
Russian 0.90 ± 0.025 0.89 ± 0.022 0.84 ± 0.021 0.82 ± 0.023
IRA 0.84 ± 0.079 0.81 ± 0.096 0.78 ± 0.100 0.73 ± 0.130
Chinese 0.92 ± 0.034 0.92 ± 0.034 0.91 ± 0.036 0.88 ± 0.046

Table 4.2 – Link prediction performance scores. We report F1 scores for each experiment

performed over 5, 10, and 60-day intervals. Additionally, we compare two model config-

urations that vary only in their use of the node labeling technique outlined in (Zhang and

Chen, 2018).

from 5 to 10 days, only the Chinese dataset shows an improvement, only when experi-

menting with trolls against distant non-troll users. Therefore, our pipeline seems to work

better with 5-day time interval splits: this criterion will be used for further experimenta-

tion.

Effect of Node Labeling

When introducing, in Section 3.3.1, our training pipeline, we mentioned that the node la-

beling algorithm, which is part of the SEAL framework (Zhang and Chen, 2018), would

help us leverage each user’s role to justify the existence of a link (activity point). Hence-

forth, we provide some ablations to verify its utility. Table 4.3 provides an analogous set

of scores to those from Table 4.2, yet we have dismissed the node labeling algorithm for

the former mentioned.

The node labeling algorithm’s benefit is mainly seen in 5 and 10-day internal experi-

ments. Notably, the IRA experiments get increases in F1 scores, going from 77% to 84%,

when running on closer and distant active users. We also observe instances where this

algorithm proves beneficial over more extended periods. This suggests that even when
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Link Prediction Node Labeling Ablation
Active set Dataset 5 days 10 days 30 days 60 days

closer
Russian 0.87 ± 0.030 0.85 ± 0.029 0.80 ± 0.030 0.77 ± 0.024
IRA 0.83 ± 0.066 0.83 ± 0.059 0.82 ± 0.038 0.83 ± 0.034
Chinese 0.94 ± 0.060 0.92 ± 0.067 0.91 ± 0.057 0.92 ± 0.052

distant
Russian 0.86 ± 0.082 0.86 ± 0.061 0.81 ± 0.046 0.76 ± 0.046
Chinese 0.87 ± 0.055 0.90 ± 0.051 0.86 ± 0.056 0.84 ± 0.058
IRA 0.77 ± 0.096 0.75 ± 0.100 0.73 ± 0.110 0.71 ± 0.130

both
Russian 0.86 ± 0.069 0.86 ± 0.055 0.81 ± 0.045 0.76 ± 0.045
IRA 0.77 ± 0.091 0.75 ± 0.098 0.74 ± 0.099 0.72 ± 0.110
Chinese 0.88 ± 0.053 0.90 ± 0.050 0.86 ± 0.055 0.84 ± 0.058

Table 4.3 – Link prediction performance scores, on ablation without node labeling (Zhang

and Chen, 2018). We report F1 scores for each experiment performed over 5, 10, and 60-

day intervals.

the sampled link neighborhood becomes more complex, certain users still play a critical

role in our objectives.

Effect of Active Users Set

Our three datasets include various types of users, while links can also be categorized

according to where they originate. Active users, i.e., non-trolls, can be directly part of any

troll’s targets or be found on similar conversation topics (by crawling 2-hop users from

hashtags). We, therefore, have decided to control for the use of a closer, a distant, or a mix

of both neighborhoods, as depicted on Figure 4.5.

We have found that Russian experiments benefit from adding distant active users as,

for instance, in a 5-day interval, we see an increase from 88% to 90% F1 score. This is not

the case for both, IRA and Chinese experiments, in the majority of the results. Adding

distant users seems detrimental for the Chinese dataset, even though both sets of active

users imply an increase in F1 scores: within a 5-day interval, scores go from 94% to 89%

and finally increase again towards 92%.

Arguing about the optimal way to split the data according to a time interval is some-

what nuanced. For the Chinese-based dataset, F1 scores support taking a 10-day interval;
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Figure 4.4 – The proportion of correctly predicted links per each place of origin, further

divided by whether each activity was produced by a troll or by an active user. While

Chinese troll predictability exceeds that for their corresponding active users, there is a

vast amount of outliers which can explain the diversity of online coordinated strategies.

conversely, the Russian and IRA datasets perform best within a 5-day split. While larger

intervals may signify increased available data and better insights for a model to learn,

these results might suggest that excessive information does not always benefit our link

prediction task. We have mainly focused on F1 scores to make any conclusions about our

results, as we would like to dismiss all kinds of false positives.

Our task design would not directly say how likely it is to learn any information, par-

ticularly to every kind of user involved in the graph. Nevertheless, we can still measure

the proportion of correct prediction per user type to account for behavior predictability. We

report scores split by place of origin, indicating the proportion of accurate predictions by

either trolls or active users.

Figure 4.4 shows such results; in this case, we average all correct predictions for a 10-

day interval split using the metapath2vec and node tagging algorithms as optimal setup.

For the Russian and Chinese-based networks, troll activity seems to be more predictable;
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nevertheless, it is worth noting that the discrepancy with the active users is almost neg-

ligible, and these outcomes provide another insight into how well, does the proposed

pipeline performs in general. Finally, note that these LP scores can be further broken

down concerning the choice of closer, distant, or both active set. Figures B.2, B.3, and B.4,

in Appendix B, present these accuracies by comparing the distribution of correct classifi-

cations, which, once again, correspond to the information given in Table 4.2.

4.3 Classifying Users through Node Classification

As part of our link prediction pipeline, we have learned embeddings for the given datasets,

which can be seen as part of online behavior originating in two ways: either they come

from trolls or active users. Testing how good are these vector representations to distin-

guish the classes mentioned above is an effective way to evaluate the goals set for this

thesis. At this point, we would like to stress the fact that our studied environment con-

stitutes examples of information exchange between suspended and non-suspended ac-

counts: while active counterparts could be found within different types of niches online,

we only focus on immediate scenarios where explicitly coordinated actions take place to

change those from active users, potentially.

Figure 4.4 similarly shows our node classification scores as we did for link predic-

tion. Every single experiment would include training loops on both link prediction and

node classification: we first optimize the formerly mentioned task for a certain number of

epochs to later train the piece of our pipeline dedicated for user classification, as pointed

out in Algorithm 4.

Mainly focusing on F1 scores, we observe that the Russian and the IRA users benefit

from larger day interval splits this time. In this case, the amount of necessary informa-

tion for the model to succeed seems like a crucial confounder not solved by the sole link

behavior learning performed before.
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Figure 4.5 – Link prediction F1 scores per time, per data, according to the trolls’ indicated

place of origin.
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Node Classification F1 Scores
Active set Dataset 5 days 10 days 30 days 60 days

closer
Russian 0.52 ± 0.24 0.43 ± 0.10 0.46 ± 0.15 0.43 ± 0.04
IRA 0.43 ± 0.17 0.43 ± 0.14 0.40 ± 0.11 0.42 ± 0.08
Chinese 0.69 ± 0.34 0.61 ± 0.28 0.61 ± 0.26 0.58 ± 0.25

distant
Russian 0.48 ± 0.30 0.43 ± 0.19 0.41 ± 0.15 0.39 ± 0.07
IRA 0.45 ± 0.18 0.44 ± 0.14 0.43 ± 0.11 0.41 ± 0.02
Chinese 0.87 ± 0.29 0.64 ± 0.30 0.61 ± 0.26 0.50 ± 0.19

both
Russian 0.53 ± 0.22 0.47 ± 0.16 0.49 ± 0.16 0.43 ± 0.03
IRA 0.49 ± 0.19 0.48 ± 0.16 0.47 ± 0.12 0.44 ± 0.03
Chinese 0.72 ± 0.29 0.65 ± 0.27 0.65 ± 0.26 0.50 ± 0.08

Table 4.4 – Macro F1 Node classification performance scores.

Following on the official reports of the Chinese release4, these troll accounts would

rather take a ”spammy” approach in their operations; hence we would expect them to

follow certain clear patterns that should identify them, although their differences from

bots are still kept, as they also were suspended for diverse reasons, e.g., the sole fact of

pretending to be other people. In contrast to what the IRA and Russian trolls usually

target, these Chinese accounts were allegedly created to cause political discord in Hong

Kong, specifically, by amplifying some messages related to protests. On the other hand,

the Russian and IRA trolls were both targeting global events and had a large history of

coordinated activities, dating since 2019; hence, we expect to find differences between

them and the Chinese accounts.

The F1 scores we present in this thesis can be compared directly with other baselines.

However, we are unaware of actual work on the three datasets we are considering here.

Sharma et al. (2021)’s best approach reaches a 77% F1 score using a combined the IRA

dataset, with the active ground-truths presented in Luceri et al. (2020), on the supervised

classification task. In our case, we do not outperform these results for our IRA data;

nevertheless, we achieve a promising outcome by obtaining 87% F1 score in our Chinese

dataset.
4https://blog.twitter.com/en_us/topics/company/2019/information_operations_

directed_at_Hong_Kong
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As performances seem to vary between places of origin, even when not following a

concrete pattern across different time intervals, it comes down to exploring the nature

and reasons of the current dataset’s trolls to understand what is happening. Differently

from related literature, we repeat experiments over contiguous snapshots that allow us to

examine troll activity within information peaks. This is reflected in F1 scores, as there are

explicit situations where a lack of activity undermines performance. Furthermore, how

we evaluate our model against active accounts is very different from related work (Luceri

et al., 2020; Sharma et al., 2021), which distinguishes our IRA dataset from others. At the

bottom line, discrepancies between proposed troll-active datasets imply that there is still

no free lunch on the algorithm design for this task!

4.4 Experimental Interpretations

This section provides several mechanisms to interpret what happens inside our proposed

training pipeline. In particular, we are interested in exploring how posting tweets took

place at time intervals when relevant events occurred. Our pipeline freezes graphs that,

naturally, possess a temporal component to learn their features. This procedure (Section

3.2.1) gets rid of any signal that would indicate user activity dynamics at training time;

nevertheless, it is still possible to study the model’s sensitivity to various input sizes. We

measure this using Pearson’s correlations between the amount of data and given scores per

time.

Correlations with Graph Features

Table 4.5 presents the Pearson’s correlation coefficient between all link prediction accuracy

(over time) and three graphs (size) features: number of trolls (senders), number of active

users (senders), and number of receiver nodes. The latter quantity is proportional to the

number of links in any constructed graph, as our proposed method implies that the edge
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set forms a one-to-one mapping from senders to a group of receivers (recall Section 3.2 for

more details).

At this point, we focus on unveiling which network features influence the obtained

results most. To answer this question, we can look into the correlation coefficients closest

to -1 or 1. For the Russian experiments, we find the highest coefficients as we compare our

results to the number of active users; in particular, this is stressed especially for distant

users, which implies that this control group gives the most significant information for

the model to reconstruct the actual Twitter interaction graph, according to how we have

defined our link prediction task.

The latter conclusion can be similarly applied to other features: for Chinese experi-

ments, receiver nodes (mentioned users and hashtags) would have the most important for

the model’s success, especially when distant active users are in play. We have, therefore,

derived these implications by observing the coefficients above 0.3 (or below -0.3); further-

more, more interesting facts can be extracted from Table 4.5. For instance, the combined

use of both closer and distant active sets is more beneficial as non-troll control groups.

Providing the model with activity directly from troll interactions would include users not

necessarily engaging with such suspended accounts, which enriches the dataset. Even

further, the trolls’ correlations get better controlled under such scenarios for the Russian

and Chinese experiments.

Correlations Over Time

Among other things, Figure 4.4 shows that we can precisely predict troll activity regard-

less of restricting network sizes. On the other hand, unrestricted data experiments include

time intervals where high activity peaks occur. To analyze our results over time, we di-

rectly observe how the diverse graph link set grows or shrinks in parallel to LP and NC

scores. Figure 4.6 exposes these comparisons by adding a curve of link sizes, where every

graph has been normalized to the largest one of each dataset within 5-day experiments.
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Users Pearson’s Correlations
Trolls Actives Troll Sender Nodes Active Sender Nodes Receiver Nodes

Russia
closer -0.084 0.110 0.175
distant -0.083 0.430 0.090
both 0.007 0.270 0.044

IRA
closer 0.037 0.120 -0.495
distant -0.450 0.260 -0.136
both -0.220 0.030 -0.060

China
closer -0.400 0.077 0.092
distant 0.078 0.160 0.327
both 0.007 0.005 0.343

Table 4.5 – Given a whole run of experimental link prediction accuracy scores (over time),

we compute the Pearson’s correlation against the three major network features: number of

troll nodes, number of active nodes, and the number of receiver nodes. We further divide

each experiment setting according to trolls’ place of origin and active users’ distance from

trolls.

Furthermore, we have only considered the settings where we mix both closer and distant

active users.

The relationship between the red and blue curves in Figure 4.6 may also be under-

stood, in general, under the receiver column’s context, in Table 4.5. Nevertheless, while the

link size curve depicts activity highs and lows, we highlight that our proposed pipeline

can keep a stable performance at most times. Starting in August 2017, the IRA link pre-

diction scores suffered from a lack of stability, thus, making it the only situation where

abrupt changes in link sizes effectively correlate with the obtained results.

Despite having a high positive correlation with receiver nodes (as shown in Table 4.5),

Figure 4.6 exhibits that Chinese link prediction scores do not get significantly decre-

mented nor augmented as link sizes vary over time. In particular, within 2007, neither

February-April nor July-September’s size decrements nor September-November’s incre-

ments alter the almost-constant link prediction accuracies.
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Figure 4.6 – We compare our F1 scores per time for the two tasks of interest in this project:

link prediction (troll activity prediction) and node (troll) classification. We also add the

relative size of the graph used for each corresponding experiment for all available activ-

ities. We highlight the stability achieved, in most cases, for link prediction, regardless of

the number of available examples.
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A Case Study: What Are Users Talking About?

For the following sections, we will spot some remarkable events which motivated the

suspension of these Twitter accounts. This will help us to understand their characteristics

as part of coordinated attacks on specific events. Moreover, given the good performances

reported in Section 4.2, we consider showcasing our trained pipeline under an applied

setting important. As any of our constructed networks are induced directly by tweets, we

can derive a clustering procedure that is optimized from our LP loss yet agnostic to any

text signal. Moreover, in Section 4.4, we will see that activity originating from the same

type of users would tend to be clustered.

In December 2016, before Russia’s 2018 election, anti-corruption blogger Alexei Navalny

started his campaign. His movement style was unprecedented in modern-day Russia, as

multiple sources compared it with anything in American politics. By focusing mainly

on combating corruption and implementing macro-economic developments, Navalny

constituted an opposition figure to President Vladimir Putin and Prime Minister Dmitry

Medvedev (Harding, 2022; Nechepurenko, 2016). Within this context, the reported TEI

(Russian) data release (Twitter, 2022), which includes actively promoting the United Rus-

sia While attacking the opposition, the party acquires its importance to understand how

the tactics against Navalny’s campaign were developed (Roth, 2020).

Motivated by the 2016 U.S. Presidential Election’s role of social media, Twitter strength-

ened its strategies to detect coordinated accounts, especially those allegedly originating

from the IRA. Hence, diverse strategies have been implemented to keep automated tabs

out of Twitter. For our purposes, we considered November 2016, when the American

Election took place. As multiple reports point out, the role of social media in amplify-

ing false claims from unreliable sources highly made an impact on the election’s outcome

(Grinberg et al., 2019).

March 2017 was the month were several public debates took place en route to Hong

Kong’s Chief Executive Election (Haas, 2017). This month, the largest part of the cam-

paigns was held until March 26th, the final election date. Media platforms constituted
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an important part of this democratic process, as pro-Beijing interventions were claimed to

be happening in favor of some candidates (Wood et al., 2019). Furthermore, as reported

by Twitter’s Information Operations team, these Chinese state-backed operations used

diverse strategies to sow political discord in Hong Kong (Twitter, 2019).

We move forward with our analysis procedure on three significant months in our data:

December 2016 for Russia, November 2016 for the IRA, and March 2017 for China. In

Table 4.6, we present a set of word clouds which attempt to depict some of these trolls’

main ideas during the selected months. We further detail how such topics relate to our

LP embeddings in Section 4.4. The top words in the IRA datasets are the two leading

candidates of the 2016 U.S. presidential elections. To understand these trolls better, we

next study them more closely by looking at different topics of interest while contrasting

them with active user topics.

Clustering Link Embeddings from Important Events

In Section 3.3.3, we introduced a method to reveal and cluster tweet topics from our

learned link embeddings. To use such an idea in our context, we have taken one of Hug-

gingFace’s implementation of the RoBERTa language model (Barbieri et al., 2020; Wolf

et al., 2019), which was previously pretrained with around 58M tweets. This allows us

to embed each tweet into a (high-dimensional) vector space. Furthermore, we have used

UMAP (Campello et al., 2013) to compute equivalent embeddings on lower dimensions.

The final vectors, H̃>GM can be analyzed even further with the help of clustering tools.

In Figure 4.7, we show three link embeddings from the specified dates of interest, from

which we kick-start the tweet analysis mentioned before. The idea is, thus, to take any

of the optimal clusters, depicted in Figure 4.7’s lower row and recover the main topics in

which users were engaged. In this case, it is worth recalling that a single cluster of links

would bring together multiple social interactions. It is, therefore, not surprising to find

diversity in each cluster’s topics due to the language-agnostic nature of our DL pipeline.
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Dataset Dates Main Event Word Cloud of Troll’s Tweets

Russia December 2016 Russian presi-
dential elections

IRA November 2016 U.S. presidential
election

China March 2017
Hong Kong
Chief Executive
election

Table 4.6 – The event of interest studied around important elections in each dataset. The

word clouds summarize the topics of tweets posted by trolls around the corresponding

event.

In Tables 4.7, 4.8, and 4.9 we take three arbitrary clusters (from Figure 4.7) According

to the described text embedding process, to discover some of the topics of interest that

comprise these tweets. We divide these topics by user type, deriving into two columns

that correspond to trolls or active users. We have not distinguished between closer and

distant active users, as we did for past experiments.

We obtained multiple topics from the Russian dataset that do not necessarily fall into

political discourse. For instance, in Table 4.7 (first row), we have depicted a cluster of

trolls whose only intention is to announce their number of new followers from time to

time; note that this process is often automatized and constitutes a common practice in
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HDBSCAN Embedding Clusters
Russia: December 2016 IRA: November 2016 China: March 2017

Figure 4.7 – Here we compare the classification labels obtained by our proposed LP

pipeline (upper row) with the optimal clustering of embeddings (lower row) by KMeans

(Jin and Han, 2010). Our model’s ability to spatially group together Twitter activity can

be assessed by two criteria: firstly, in the upper row, we could seek to find clusters of –

mostly – exact colored embeddings; secondly, in the lower row, we could look at how

similar to the posted tweets within each cluster.

Twitter. Moreover, our active user topics justify the diversity of their nature itself, as we

can group topics like sports and Mexican politics in the same cluster, each other (Table

4.7, third row).

In the case of the explored IRA clusters, word clouds in Table 4.8 prioritize words and

phrases related to the U.S. political atmosphere. This tendency prevails, even for active

users, although topics do not necessarily concentrate on terms like realDonaldTrump,

MAGA, or Hillary Clinton. The first and third rows also show several phrases in Span-

ish and Portuguese. Nonetheless, essential topics seem to keep around politics and news.
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User Conversation Topics: Russia, December 2016
Troll User Topics Active User Topics

Table 4.7 – Within each row, two conversational word cloud cues are depicted, each clas-

sified according to its sender user’s type. They both come from the same cluster (Figure

4.7) while diverging in the type of user producing each content. The first row contrasts a

group of automated tweets programmed to display Twitter following statistics with users

mainly talking about European soccer. In the second row, trolls mainly seem to talk about

politics, while active ones prioritize European football. Finally, the third row roughly co-

incides with the trolls’ second one, while active user tweets mostly come in the Spanish

language; in particular, referring to Mexican news and politics.
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User Conversation Topics: IRA, December 2017
Troll User Topics Active User Topics

Table 4.8 – These word clouds were built following the same logic as in Table 4.7. Political

topics predominate here, regardless of any user.

Finally, we highlight that we have masked any non-Latin alphabet characters for the

Chinese topics. Recall that these trolls are targeting the political situation in Hong Kong.

Nevertheless, we have been able to highlight some essential phrases from automated ac-

counts (such as ONLYRPE or senpaibot). Active users, in this case, seem to be engaging

in popular American political themes, yet interest in American sports also rises in the

third row.

An important fact to highlight, within the context of the presented word clouds, relies

on the lack of tweet text used to achieve the proposed clustering. Even if hashtag relations

give information on topics of interest, we could show, in practice, that users with similar

discourse also engage together in our studied social graphs. Moreover, from Tables 4.7,
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User Conversation Topics: China, December 2017
Troll User Topics Active User Topics

Table 4.9 – Once again, we follow the same logic for these word clouds as presented in

Tables 4.8 and 4.7. Despite this dataset’s origin, no Chinese characters are present here, as

we focus on directly interpreting what users say. In this case, active users were the ones

who talked about worldwide known U.S. politics and sports themes.

4.8, and 4.9, we see that active users have a wider variety of topics of interest: this is not

surprising as the released set of trolls is, by definition, meant to be part of coordinated

attacks to concrete goals. Nonetheless, our contribution allows us to better understand

massive language communication patterns in social media by mainly focusing on user-

to-user interactions.
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Chapter 5

Conclusion

In this thesis, we have performed extensive experiments to investigate confirmed troll

activities over a long time in three different datasets, using recent graph representation

learning techniques. In particular, we show that learning an encoding of user activities,

over time, allows studying trolls. Below we summarize our work.

5.1 Summary of Work

The present work attempts to capture Twitter’s account suspension criteria for massively

coordinated accounts. Thus, we consider the availability of this data to raise the critical

question of investigating whether these trolls’ online behavior would have anything to

do with that from active users. In this sense, we acknowledge the existence of a wide

variety of communities within Twitter; hence have decided to focus only on the direct

interactions produced by released accounts (see Section 3.1).

We collected three troll account datasets, each one originating in Russia, China, and

Russian’s Internet Research Agency (IRA). These timestamped data comprise a list of tweets

accompanied by metadata, tweet text, and mentioned users and hashtags. All was made

public by Twitter’s Information Operations efforts, as detailed in Section 3.1.1. Further-

more, we used the available hashtags and user mentions to acquire sets of non-troll users
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as control samples for each troll dataset. Moreover, we have made sure these users re-

main active in Twitter to date, that is, they have not been suspended. Section 3.2.2 details

how we combined both datasets with building mention-hashtag graphs. These networks

connect three types of nodes, according to actual Twitter activity: trolls and non-trolls

mentioning hashtags, or any other user.

The controlled set sampling is explained in Figure 4.1; it is similar to what is expected

in the literature for sampling a random set of Twitter users (i.e., using a seed set of key-

words), as explained in Section 2.7. We refer to this control set as active users since we

only know, for sure, that they were non-suspended around the same time as trolls (go-

ing back to 2016) and remained active to date. More specifically, we have distinguished

a closer from a distant set of active users, depending on their distance from the original

collection of trolls.

Moreover, in Section 3.3.1, we went through our feature extraction process, in which

we defined a set of metapaths according to each node type. These abstractions helped us

compute necessary node features for our link prediction pipeline. The pipeline has been

described in Section 3.3.2: we learned an activity (link) prediction model by feeding the

node as mentioned earlier features, by training on the DGCNN model (as described in

Section 2.3.2). This training process provides a measure of predictability for user to user

and user to hashtag distributions. At the same time, we have described methods to train

user (node) classification and unsupervised clustering from the learned deep embeddings

(Section 3.3.3).

To implement our approach, we have designed an experimental pipeline to extract

activity from predefined granularities (time intervals), namely 5, 10, 30, or 60 days. Within

a window of time, in Section 4.1, we detail how we obtain networks of troll versus active

user interactions, as well as data balancing concerns (Table 4.2). Our activity prediction

results are presented in Section 4.2, in which we assess macro-F1 scores per time interval.

We have also shown an ablation study in which we skip the node labeling mechanism

proposed by Zhang and Chen (2018).
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Our link prediction assessment, then, moves forward to node classification, as de-

scribed in Section 4.3. We have presented F1 scores and time interval comparisons of how

these two tasks perform – and vary – concerning data availability. With this in mind, Sec-

tion 4.4 discusses how dataset size would affect our results regarding feature correlations.

Moreover, we reported and compared the results obtained for both balanced and imbal-

anced settings, as depicted in Figures B.2, B.3, and B.4. We observed similar patterns,

but the variance is lower in the balanced setting. Table 4.1 shows that most nodes in our

constructed graphs are mentioned users and hashtags. The balancing we are applying

mainly affects these two types of nodes and senders. We explained this process in Section

3.2.2.

To dig deeper into what the proposed pipeline was learning, we studied the effect of

node labeling (a key component of DGCNN) in our task, as reported in Table 4.3. Table B.2

provides further results, which confirm that this helps with performance. We also stud-

ied whether the performance of the method used is correlated with certain data features

in a particular size of data (which can be confounding factors). We did not have these

in the initial submission but included them in this version. In particular, we use Pear-

son’s correlations to quantify performance correlation with node sizes of different types

in Table 4.5, while Figure 4.6 shows performance correlates with the number of links over

time. We observed that overall link size is not a key factor as it stays in the same range.

Some significant correlations should be considered for the node sizes when interpreting

the results.

Finally, in Section 4.4 we have utilized three particular time intervals, that corre-

sponded to three important for each of the Russian, IRA, and Chinese datasets. In par-

ticular, we zoomed into activities around three major Elections in our three datasets. We

showed that the clustering procedure explained in Section 3.3.3 can help identify users

communicating on related topics, even though our method did not use any text signal.

Tables 4.6, 4.7, 4.8, 4.9, as well as, Figure 4.7 further expand our findings.
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5.2 Contributions

Our pipeline started with building heterogeneous graphs via trolls and non-trolls inter-

actions on Twitter. The presented data curation process has value in that while direct and

indirect user interactions are encoded by links, information about what users are talking

about is preserved without including text features. This fact comes in handy in the ways

our model can learn user activity; yet, firstly, we shall emphasize that our data catego-

rization, given three places of origin, brings up a way to analyze the TEI dataset, which is

unusual in previous work (Sharma et al., 2021; Zannettou et al., 2019a,c).

Furthermore, we have used active Twitter users to characterize non-trolls. This has al-

lowed us to use any of the given troll datasets to crawl corresponding control sets. More-

over, our data acquisition pipeline (Section 4.3) can work with multiple relationships. In

particular, non-troll data augmentation started from hashtag relations for the Russian and

Chinese datasets. On the other hand, the IRA one must take an extra crawling step, start-

ing from user mentions, due to the lack of available hashtags.

Our link prediction pipeline can achieve 83.75%, 76.25%, and 87.75% average F1 vali-

dation scores for the Russian, IRA, and Chinese datasets, respectively. These results have

been broken down into multiple experiments, whose settings depend mainly on data

sampling time intervals (Table 4.2). Due to the lack of significant related work, we have

opted to verify the proposed model’s node tagging component to argue its importance

for activity prediction. And indeed, Table 4.3 shows that doing such ablation decreases

performance overall. Furthermore, Figure B.2 shows that link prediction accuracy for ac-

tive users is higher than for troll users; however, the accuracy gap is more significant for

the distant users compared to closer ones.

Moreover, we have shown that for each type of user activity, the distribution of cor-

rectly predicted links mostly lies above 80% for all datasets. The Chinese dataset has its

troll user activity correctly classified more than its non-trolls, which is not what happens for

the other two datasets (Figure 4.4). With this notion, we could quantify how predictable
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users’ behaviors in each dataset are. In this sense, Russian and IRA active users are more

predictable than trolls. Our results also, not surprisingly, reflected the complexity of the

IRA dataset, as it was the most dispersed in terms of per-class accuracy proportions; this

outcome can be explained by its lack of hashtag nodes.

Regarding node classification, Table 4.4 showed low F1 scores, almost close to 50%

for most settings. Yet notably, the Chinese dataset reached 87% F1 score in experiments

sampling graphs at 5-day intervals. This number, nevertheless, exceeds the best F1 score

reported in related work by Sharma et al. (2021), in which results are only reported for the

IRA dataset. Once again, this work’s outcome would contribute to contrasting different

troll datasets, which form part of the same social network while designed for different

coordinated attack purposes. Furthermore, this thesis shows that the patterns observed

in other datasets are different.

One significant advantage of our approach arises from the lack of dependency be-

tween graph features and link prediction results. We measured this in terms of correla-

tions concerning the number of senders (trolls or active users) and receiver nodes (pro-

portional to the total number of links). Table 4.5 shows that experiments that included

distant (2-hop) active users tend to lower their correlations; and this happens for each of

the three datasets and at least one of the graphs mentioned above features. Moreover, our

LP scores over time were not affected by the availability of data (Figure 4.6).

The main takeaway of this thesis is that learning and encoding user activities over a

fixed time contributes to learning certain troll features that would help classify them from

non-troll users. These encodings are learned from the user activities when the learning

objective is to predict them. This learning ignores the user type; troll and active users are

combined and treated the same.

To conclude our result interpretations, we used some of our learned link embeddings,

resulting from the implemented DGCNN network, to show clusters of user activity and

to further discover how the model was able to sub-classify links by additional features

(Figure 4.7). We were able to compute optimal clusters; per each point in space, a tweet
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was sent, which means some text phrase was posted on Twitter. Hence, we extracted the

available text per such points and used a language model (Barbieri et al., 2020) to compute

their most important topics. We observed three important events per dataset to assess our

findings, mainly related to electoral processes.

In this thesis, we have also investigated if the learned user embeddings can be used for

troll detection (Section 4.3) and studied their engagement (Section 4.4). We showed that

while automatic detection is not achievable (the classification accuracy is close to random

in two of the three datasets, and only the third less sophisticated trolls in China dataset

are detectable: see Table 4.6); these embeddings are useful for investigating the activities

of trolls and their engagement with the other users. In particular, we can compare the dis-

cussion topics of trolls and active users using these encodings when zooming in around a

specific date. For example, in Table 4.8, we have shown the main topics around the 2016

US Election while contrasting them with the engagement of the IRA trolls in each topic

with that of the control group.

Our embeddings could then semantically cluster tweets together while agnostic to any

text feature. For instance, we obtained a Spanish language cluster and some sports-related

sports-related clusters from the Russian dataset (Table 4.7). A commonality for all datasets

is that we could always find clusters talking about American politics; yet, this coincides

only with Russian and IRA trolls, while Chinese active users were the counterpart who

was. Interested in such a topic.

5.3 Future Work

Many essential and relevant features available within the TEI dataset have remained un-

explored for the scope of this thesis. Thus, future work is crucial to enable new ways of

understanding coordinated accounts. For starters, how we have used the provided tweet

timestamps is irrelevant at neural training time, as our mentioned graphs do not acquire
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any abstraction from them. Hence, it is important to leverage these datasets’ temporal

nature, which affects their structural properties at different intervals.

Another important, and yet popular, area of opportunity relies on the realm of learn-

ing causal factors that directly affect the occurrence of large-scale events. For instance, sets

of coordinated accounts together usually perform the same action to give relevance to

specific content, such as retweeting misinformed posts, massively following other partic-

ular sources of fake news, or immediately canceling out diverse opinions about a political

event. We believe this behavior could be modeled as a function of “harmless events” such

as knowing a priori that a novel user is staying within its niche of accounts or is “attacking”

specific controversial hashtags.

The release of these state-backed accounts also comes with an extensive data collection

of media files that have been crucial for their purposes. Previous work and reports have

stressed the importance of visual details towards the process of viralizing ideas, regard-

less of their trustworthiness, within different Twitter communities. Evidence has been

brought on adopting these patterns, in the form of Internet memes, by various groups of

users to transmit their ideas. Hence, work shall be done to incorporate the transmission

and evolution of the provided image memes as an essential vehicle for misinformation

spreading.

5.4 Concluding Remarks

The Internet has become an essential part of daily life, and during the COVID-19 pan-

demic, social media has been a vital way for people to stay connected. However, this

ease of communication also makes it possible for organizations to spread false informa-

tion to influence public opinion. The rapid flow of data on the Internet does not ensure

truthfulness, which specific organizations have exploited to develop strategies of massive

opinion manipulation to shape the outcome of events in a predetermined manner.
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As machine learning practitioners, we believe providing the community with tools

to help uncover the true objectives of large-scale online events is essential. We view our

work as compared to what social science seeks to understand about human relationships,

but it also leverages the rapidly growing field of graph representation learning. We be-

lieve that discussions on best practices for online behavior and education in t his area are

necessary. We aim to empower the community with tools to unveil the true intentions

behind massive online events.

Finally, we recognize and embrace the tremendous technological advancements that

have kept people connected. We actively work on making this environment as safe and

friendly as the external world could be. And more importantly, in an openly designed

space like Twitter, we acknowledge, promote, and take action towards defending every

user’s freedom of speech.
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Appendix A

Further Dataset Descriptions

A.1 Monthly Statistics

In this section, we attempt to compare the distribution of obtained data varying with

time. Given the available Russian troll and active user data, Figure A.1 displays each

data source’s contribution while also giving the total amount of tweets per month on the

y-axis. Figures A.2 and A.3 present analogous plots for the IRA and Chinese datasets,

respectively. In any case, active users dominate the number of trolls per month; further-

more, the total percentage of users can be found in Table 3.1.

A.2 All Time Troll Activity

Figure 4.2 provides information on any activity peaks by trolls, closer, and distant active

users. Due to data availability restrictions, those numbers of tweets were truncated to

guarantee the existence of links for any experiment from any data source. Nonetheless,

it is worth noting that suspension trolls often occurred way before the considered dates

(such as the ones we have studied in Section 4.4). Hence, we depict all-time available troll

activity in Figure A.4. For our three datasets, it was possible to go even before 2010; yet it

is evident that activity considerably increases as major political events come by.
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Figure A.1 – The number of tweets per month for the Russian dataset. Troll activity is

compared with the one generated by closer and distant active users.

Figure A.2 – The number of tweets per month for the IRA dataset. Troll activity is com-

pared with the one generated by closer and distant active users.
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Figure A.3 – The number of tweets per month for the Chinese dataset. Troll activity is

compared with the one generated by closer and distant active users.

109



Figure A.4 – Activity generated per time for the Russian (topmost), IRA (middle), and

Chinese (bottom) datasets. Such activity is measured by the number of unique tweets

generated per time unit. Troll tweets are depicted in blue, while active ones come in red.
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Appendix B

Summary of Experiments

B.1 Experiment Settings

Throughout Chapter 4, we have run many experiments in which specific parameters must

be set up every time. Figure B.1 presents all those parameters in a tree where traversing

from the root to a leaf defines a complete parameter setup. Each experiment begins by

defining a data source to extract troll activity from (Russia, IRA, or China), as well as a

time interval to do so. Then, we can traverse the tree by setting up the desired parameters.

B.2 More on Link Prediction

In order to take a closer look at how our approach with respect to each experiment set-

ting (Figure B.1), we breakdown our link prediction accuracies per sender (troll of active

users), as well as, per source of active users. Figure B.2 shows these accuracy distribu-

tions via violin plots only for Russian-based experiments. For completeness, we have

included results for our data size balanced setting (upper plot), as well as for the setting

where we do not place any size restriction (lower plot). It is worth recalling that our

balanced setting consists of making the number of receivers proportional to senders and

taking a maximum of 5K links per experiment.

111



Experiment

1-hop active users

Unlimited Nodes

Unlimited Links

5K Links

Balanced Nodes

Unlimited Links

5K Links

2-hop active users

Unlimited Nodes

Unlimited Links

5K Links

Balanced Nodes

Unlimited Links

5K Links

1-2-hop active users

Unlimited Nodes

Unlimited Links

5K Links

Balanced Nodes

Unlimited Links

5K Links

Figure B.1 – This tree illustrates the variety of settings that define every experiment per-

formed in this thesis. Each node defines a parameter to be controlled.
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Russian Dataset

Figure B.2 – Link prediction accuracy breakdown for Russian-based experiments. The

top plot displays quantified accuracies for the balanced setting, described in Section 4.1,

while the bottom plot provides unbalanced setting’s accuracies.

Figures B.3 and B.4 display the same experiment results, as explained above, for the

IRA and the Chinese dataset, respectively. Overall, we see that higher non-troll pre-

dictability prevails for all Russian and IRA experiments, while Chinese trolls result slightly

more predictable otherwise. For the latter dataset, we see that balancing nodes and links

helps reduce per-class accuracies. Both classes’ scores tend to present higher variance

(especially trolls) if no restriction is imposed. This fact can be observed by looking at the

increase in a score distribution’s set of outliers. An opposite phenomenon is observed for

IRA distant active users; on the other hand, all troll accuracies tend to have less variance

for balanced settings.
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IRA Dataset

Figure B.3 – Link prediction accuracy breakdown for IRA-based experiments. The top

plot displays quantified accuracies for the balanced setting, described in Section 4.1, while

the bottom plot provides unbalanced setting’s accuracies.

B.3 More on Node Classification

To complement the user-type classification experiments discussed in Section 4.3, we now

present validation scores, yet measured by accuracies. The F1 scores in Table 4.4 are more

informative, as they leverage false positives, which may be significant in practice, espe-

cially in any situation where a platform has to decide on suspending certain accounts. Yet

for the sake of further contrasting what pipeline learns from any input, Table B.1 shows

that we can provide high validation scores. In fact, for any time interval, the Chinese

dataset results in the one with better scores, which are consistently above 80% accuracy.
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Chinese Dataset

Figure B.4 – Link prediction accuracy breakdown for Chinese-based experiments. The

top plot displays quantified accuracies for the balanced setting, described in Section 4.1,

while the bottom plot provides unbalanced setting’s accuracies.

It is unclear, otherwise, which time interval would be optimal, as maximum scores vary

per the choice of active user set.

Lastly, to complement the ablation discussed in Section 4.2, we present validation re-

sults with models that have ignored the SEAL framework’s node labeling algorithm (see

Section 2.4.1 for further details). Table B.2 indicates that the use of node labeling is bene-

ficial, in a small sense, for most experiments. This can be observed from the fact that F1

scores are higher in Table 4.4, which is also true for the link prediction experiments.
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Node Classification Accuracies
Active set Dataset 5 days 10 days 30 days 60 days

closer
Russian 0.77 ± 0.18 0.72 ± 0.16 0.73 ± 0.16 0.77 ± 0.12
IRA 0.67 ± 0.18 0.68 ± 0.16 0.64 ± 0.16 0.68 ± 0.13
Chinese 0.80 ± 0.27 0.81 ± 0.17 0.87 ± 0.13 0.83 ± 0.15

distant
Russian 0.64 ± 0.29 0.65 ± 0.20 0.65 ± 0.19 0.65 ± 0.17
IRA 0.70 ± 0.18 0.71 ± 0.17 0.71 ± 0.15 0.69 ± 0.07
Chinese 0.93 ± 0.18 0.83 ± 0.19 0.86 ± 0.14 0.81 ± 0.13

both
Russian 0.81 ± 0.14 0.78 ± 0.14 0.78 ± 0.12 0.77 ± 0.09
IRA 0.76 ± 0.15 0.79 ± 0.13 0.80 ± 0.12 0.80 ± 0.09
Chinese 0.87 ± 0.17 0.88 ± 0.12 0.92 ± 0.08 0.85 ± 0.11

Table B.1 – Accuracy Node classification performance scores. We have balanced the num-

ber of nodes and links for these experiments to agree with the results presented in Table

4.4.

Node Classification Node Labeling Ablation
Active set Dataset 5 days 10 days 30 days 60 days

closer
Russian 0.52 ± 0.23 0.44 ± 0.15 0.44 ± 0.11 0.47 ± 0.14
IRA 0.43 ± 0.17 0.44 ± 0.15 0.41 ± 0.08 0.41 ± 0.12
Chinese 0.69 ± 0.35 0.62 ± 0.29 0.66 ± 0.28 0.56 ± 0.21

distant
Russian 0.46 ± 0.26 0.42 ± 0.19 0.41 ± 0.13 0.45 ± 0.16
IRA 0.41 ± 0.16 0.41 ± 0.15 0.40 ± 0.09 0.40 ± 0.10
Chinese 0.81 ± 0.28 0.65 ± 0.29 0.68 ± 0.19 0.54 ± 0.20

both
Russian 0.54 ± 0.23 0.46 ± 0.13 0.45 ± 0.07 0.46 ± 0.08
IRA 0.49 ± 0.18 0.47 ± 0.15 0.45 ± 0.07 0.47 ± 0.08
Chinese 0.79 ± 0.28 0.67 ± 0.28 0.57 ± 0.20 0.50 ± 0.12

Table B.2 – Node classification F1 scores for the ablation setting, where the SEAL frame-

work’s node labeling algorithm is ignored.
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