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Abstract 

HALO3D (High-Altitude Low-Orbit, 3D) is a multidisciplinary all-Mach CFD system developed 

by the McGill CFD Lab to simulate flow fields around hypersonic aircraft whose flight path spans 

low (continuum) to high (rarefied) altitudes. HALO3D uses an unstructured edge-based finite-

element Navier-Stokes (NS) flow solver (HALO3D-NS) for the continuum regime that includes 

complex thermochemistry. This thesis extends the applicability of HALO3D to the rarefied regime 

through three significant efforts.  

First, a rarefied flow solver, HALO3D-DSMC (Direct Simulation Monte Carlo), is developed to 

tackle the high-altitude flow field. It is a 3D unstructured DSMC code capable of simulating 

thermochemical non-equilibrium and volume chemistry with sub-cell features for collision pair 

selection. Validation simulations for HALO3D-DSMC are presented.  

Second, a HALO3D-HYBRID infrastructure is developed to simulate moderate Knudsen number 

flows. In a domain consisting of continuum and rarefied patches, the hybrid routine transparently 

steps between NS and DSMC techniques to calculate a global solution with no user intervention. 

Delineating the DSMC and NS regions is accomplished by using the gradient length local Knudsen 

number (𝐾𝑛GLL) as a continuum breakdown detector. Cell and node masks based on the 𝐾𝑛GLL 

distribution are inputs for mesh population, particle insertion, buffer zone creation, and NS-DSMC 

boundary condition routines. Bird’s leading-edge and 2D cylinder cases are used to demonstrate 

that a finite-element NS-DSMC hybrid algorithm can be successfully built to address high-Mach 

flows. Consistent treatment of thermochemical non-equilibrium by both continuum and rarefied 

modules is found to be necessary to accurately simulate complex flows.  

Third, is the coupling of HALO3D-DSMC and HALO3D-HYBRID with a powerful in-house 

solution-driven automatic mesh optimizer, OptiGrid, heavily used in the NS context. A thorough 

investigation is carried out on scalars and constraints needed to optimize DSMC and hybrid meshes, 

an aspect that is currently lacking in the literature. Three optimization constraints: the minimum 

and maximum edge lengths, and a target number of node/cells are studied and applied to the 

leading-edge case and flows over 2D and 3D cylinder geometries for freestream Knudsen numbers 

ranging from 0.01 to 0.047. It is shown that an adaptation scalar combination of flow variables 

such as density, velocities, temperatures, pressure, and Mach number automatically converges to 
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a final optimized mesh through a series of mesh iterations. The adapted meshes gradually improve 

the solution’s quality without necessarily increasing the number of mesh points or cells, even 

reducing them sometimes. The solutions represented by the final adapted mesh are smooth and 

free of irregularities. The solutions and meshes of adapted full DSMC simulations and adapted 

hybrid simulations are seen to match, thus validating the hybrid solver and showcasing the solver-

independence aspect of OptiGrid. Further, the optimized hybrid mesh generates buffers with 

smooth boundaries and consists of coarse NS cells and refined DSMC cells. The cell sizes from 

NS to DSMC are seen to reduce organically in the shock and boundary layer. This coupled 

DSMC/hybrid-OptiGrid system can thus simulate complex 3D geometries and multiscale flow 

features while drastically reducing mesh preparation time as these are automatically adapted to the 

emerging physics during the iterative solutions.  

Taken altogether, the DSMC, hybrid NS-DSMC, and mesh optimization efforts form an advanced 

system to simulate hypersonic flows over complex geometries with controlled precision and at a 

much lower expense both in the pre-processing and solution phases. These contributions are the 

essential components of a seamless hybrid solution approach within HALO3D, upon which other 

functionalities could be easily built in the future. 

 

 

 

 

 

 

 

 



iv 

 

Résumé 

HALO3D (High-Altitude Low-Orbit, 3D) est un logiciel CFD développé par le Laboratoire CFD 

de McGill pour simuler les écoulements chevauchant les basses vitesses de Mach jusqu’aux 

vitesses hypersoniques, donc depuis les écoulements en milieux continus jusqu’aux gaz raréfiés. 

En régime continu HALO3D est un solveur Navier-Stokes (NS) à éléments finis basé sur les arêtes 

(HALO3D-NS) qui tient compte de la thermochimie complexe. Cette thèse étend l'applicabilité de 

HALO3D au régime raréfié à travers trois efforts principaux.  

En premier, un solveur d'écoulement raréfié, HALO3D-DSMC (Direct Simulation Monte Carlo), 

est développé pour simuler le champ d'écoulement à haute altitude. Il s'agit d'un code DSMC 3D 

à maillage non-structuré capable de simuler le non-équilibre thermochimique et la chimie de 

volume et possédant également des caractéristiques de sous-cellules pour la sélection de paires de 

collisions. Des simulations de validation pour HALO3D-DSMC sont présentées.  

Deuxièmement, l'infrastructure HALO3D-HYBRID est développée pour créer un algorithme de 

solution hybride pour simuler les écoulements à nombre de Knudsen modéré. Lorsque le domaine 

est constitué à la fois de zones continues et raréfiées, la routine hybride passe de manière 

transparente entre ces zones sans intervention de l'utilisateur, la délimitation se basant sur un 

nombre de Knudsen à gradient de longueur locale (𝐾𝑛GLL ) comme détecteur de rupture de 

continuum. Les masques de cellules et de nœuds basés sur la distribution 𝐾𝑛GLL  sont utilisés 

comme entrées pour la population de mailles, l'insertion de particules, la création de zones tampons 

et les routines de conditions limites NS-DSMC. Trois couches de tampon externe où les particules 

sont générées dans le domaine et trois couches de tampon interne où les particules sont libres 

d’évoluer sont employées pour toutes les simulations de cette étude. Les cas du bord d'attaque et 

du cylindre 2D démontrent les capabilités de ce code hybride pour traiter les écoulements à très 

haut nombres de Mach. Le traitement cohérent du non-équilibre thermochimique par les modules 

continuum et raréfié s'avère nécessaire pour simuler avec précision de tels écoulements complexes.  

Troisièmement, HALO3D-DSMC et HALO3D-HYBRID sont interfacés avec un puissant 

optimiseur de maillage automatique axé sur les solutions, OptiGrid, développé au CFD Lab et très 

utilisé dans le contexte NS. Une étude est entreprise sur les scalaires et les contraintes 

d'optimisation des maillages DSMC et hybrides, un aspect qui fait actuellement défaut dans la 
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littérature. Trois contraintes d'optimisation sont analysées soit les longueurs minimales et 

maximales des bords et le nombre cible de nœuds/cellules. L'adaptation du maillage est démontrée 

pour le cas du bord d'attaque de Bird et des géométries cylindriques 2D et 3D pour des nombres 

de Knudsen du flux libre allant de 0,01 à 0,047. On conclut qu'un ensemble de scalaires 

d'adaptation combinant des variables telles que la densité, les vitesses, les températures, la pression 

et le nombre de Mach produit un maillage d'échantillonnage collisionnel non-structuré améliorant 

considérablement la qualité de la solution sans pour autant augmenter le nombre de nœuds ou de 

cellules, parfois même les réduisant. Les solutions représentées par les maillages adaptés sont 

lisses et exemptes d'irrégularités et les caractéristiques saillantes de l'écoulement sont bien 

capturées sans aucune intervention de l’utilisateur. Les solutions et les maillages des simulations 

DSMC complètes adaptées et des simulations hybrides adaptées correspondent, ce qui valide le 

solveur hybride et met en évidence l'indépendance d'OptiGrid vis-à-vis du solveur. En outre, le 

maillage hybride optimisé génère des tampons aux frontières lisses et se compose de cellules NS 

grossières et de cellules DSMC raffinées. On constate que la taille des cellules de NS à DSMC 

diminue organiquement dans la couche de choc et la couche limite. Ce système couplé 

DSMC/hybride-OptiGrid peut donc simuler les caractéristiques d'écoulements à multi-échelles 

autour de géométries complexes tout en minimisant l’effort initial de maillage étant donné son 

adaptation automatique lors de la solution itérative du système.  

Dans leur ensemble, les développements de DSMC, de NS-DSMC hybride et d'optimisation du 

maillage permettent de simuler les écoulements hypersoniques sur des géométries complexes avec 

une précision contrôlée et à bien moindre coût tant dans les phases de prétraitement que de solution. 

Ces contributions forment les composantes essentielles d'une approche de solution hybride 

transparente dans HALO3D sur laquelle d'autres fonctionnalités pourraient être facilement 

ajoutées dans le futur.  
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Chapter 1 

Introduction 

 

1.1 Motivation 

 A several-fold increase in air-space transportation speed would enable a new ecosystem to 

develop around the idea that distance and time are no longer constraining factors for point-to-point 

travel. This is the prospect brought by the re-emergence of higher-speed technology programs with 

space agencies and companies strenuously pushing boundaries to be leaders in this billion-dollar 

market. Defined as travel at speeds greater than Mach 5 below the Kármán line, hypersonic flight 

benefits space exploration, tourism, and civilian and cargo transportation, whose economic 

sustainability heavily relies upon the pillars of reliability, operational efficiency, and re-usability 

[1]. These three pillars are now part of most planned launch vehicles and spaceplanes as 

exemplified by Space X’s Starship, Blue Origin’s New Glenn, Hermeus’ Quarterhorse Mach 5 jet, 

NASA-Lockheed Martin’s X-59 QueSST demonstrator, JAXA’s Sky Frontier hypersonic research 

program, and supersonic vehicles from Aerion, Boom Supersonic, Spike Aerospace, and Virgin 

Galactic, to name a few. Space X’s Falcon 9 rocket is the first of such transportation systems to be 

profitable – although being only partially reusable. 

 Hypersonic flows present complex aero-chemical-magneto dynamics such as finite-rate 

chemistry, non-equilibrium effects, flow, and magnetic field interactions, radiative effects, and 

ablation of the heat shield, as illustrated in Fig. 1.1 [2]. The development of computational methods 

for hypersonic vehicle analysis and design is rapidly growing since experimental campaigns are 

expensive, not always feasible, and only provide a limited amount of data compared to numerical 

solutions. This thesis documents the development of fundamental modules of a code to 

monolithically simulate the widely different stages of a hypersonic flight from take-off to ascent, 

cruise, descent and landing, covering the subsonic, supersonic, hypersonic, and rarefied flow 

regimes. Such a flight path spans a range of altitudes where the freestream density changes 

significantly. Design tools for hypersonic aircraft should account for these changes in density and 

apply the appropriate computational techniques to each flow regime. The Knudsen number, 

defined as the ratio of the local mean free path (mfp) to a characteristic length scale, is commonly 

used to categorize the flow regimes, as shown in Fig. 1.2. 
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Fig. 1.1 The complex physics of hypersonic flight 

 The Reynolds Averaged Navier-Stokes (RANS) equations are only applicable in the continuum 

regime and become increasingly invalid as the Knudsen number increases. Particle-based methods 

such as the Direct Simulation Monte Carlo (DSMC) method are more appropriate for the large 

Knudsen numbers typifying the rarefied regime. Another alternative for the simulation of high-

speed flows is the Unified Gas-Kinetic Wave-Particle (UGKWP) method [3] which derives from 

the Unified Gas-Kinetic Scheme (UGKS) [4] and the Unified Gas-Kinetic Particle (UGKP) [3] 

method. The UGKS considers the conservation of the flow field variables and the microscopic 

distribution functions, thus enabling a unified simulation of all Knudsen regimes. It proves less 

expensive than RANS in the continuum regime but more expensive than DSMC in the rarefied 

regime. The not insignificant extra cost for the rarefied regime and significant memory 

requirements are recovered in the UGKWP method, which has also seen development in photon 

transport [5], multispecies mixtures, and plasma transport [6], among other areas. 
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Fig. 1.2 Regimes of flow based on the freestream Knudsen number 

 The UGKS was first introduced in 2010 and extended to the UGKWP methods in 2020. The 

development of rarefied flow modules for the present work began in 2018 when a proper 

consideration of the UGKWP methods was not yet possible. The DSMC method, which has 

undergone development since 1963, and has since been extended to solve multispecies reacting 

flows, is considered in this thesis instead. Various DSMC implementations are available for study 

and comparison, making the development process less error-prone. Developed by Bird [7-9], 

DSMC is a stochastic method that uses mesoscale particles to model rarefied gas flows and is 

widely used to solve non-equilibrium problems from the nano- to the meter-scale [10-14]. Each 

particle in DSMC represents a large number of real molecules, with the dilute gas assumption 

allowing particle motion and collision to be decoupled. At each time step, particles are first moved 

deterministically throughout the domain based on their current velocities, and then binary collision 

pairs are selected through an acceptance-rejection routine. Following this, inter-particle collisions 

occur between the selected particle pairs, and their velocities and modal energies are updated. 

Finally, macroscopic quantities are sampled after the simulation reaches steady-state. 

 Despite its stochastic nature, it has been mathematically proven by Wagner [15] that the DSMC 

method converges to the solution of the Boltzmann transport equation if an infinite number of 

particles and infinitesimal cell sizes and time steps are used. Nevertheless, these conditions, similar 

to the Navier-Stokes (NS) equations for the continuum part of any hypersonic flow, cannot be 

satisfied for practical flows. Sensitivity to the time step size can be minimized by using 

automatically adaptive variable time steps [16,17], while the effect of the number of particles on 

solution accuracy can be controlled by using enough particles in the domain [8,18,19]. Also, the 

cell size should be smaller than the local mean free path (mfp) throughout the domain to avoid 

unphysical collisions [8,20]. Controlling cell size is not an easy task since the flow features and 

local mfp are not known a priori, and it is usually done through successive mesh refinements. For 
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static meshes, one would instead estimate the cell size based on known freestream information and 

predict the locations of non-equilibrium regions (e.g., singularities such as shocks, vacuum 

regions, boundary layers) to cluster the domain accordingly. However, these approaches are not 

accurate nor practical for arbitrary unstructured or structured meshes and complex geometries. 

Therefore, the application of automatic mesh refinement techniques is desired not only for 

resolving multiscale flow features while using the least number of particles but also for reducing 

the error in DSMC simulations. 

 At moderate Knudsen numbers, only certain regions of the domain can begin to exhibit 

continuum breakdown, and only these regions need to be solved using DSMC. The interest in 

solving only the rarefied portions of the domain using DSMC instead of a full DSMC simulation 

is because the DSMC method is by nature more expensive than continuum methods. Hybrid NS-

DSMC algorithms thus partition the domain into NS and DSMC regions and run the two solvers 

in their respective regions. By doing this, they reduce the overall cost of the simulation while 

preserving accuracy. 

1.2 Existing Hybrid NS-DSMC Approaches 

 Continuum breakdown can be best observed by comparing NS and DSMC results of the same 

test problems [21-24], where the DSMC solution acts as the benchmark since DSMC is accurate 

everywhere in the domain, albeit more expensive. For flows across 1D and 2D shocks [21], it was 

observed that the comparisons between NS and DSMC solutions deteriorate as the Mach number 

increases because an increase in Mach number comes with a slight increase in continuum 

breakdown [22]. Continuum breakdown is recorded inside the shock and boundary layer because 

of large gradients in the flow properties and the wake due to increased rarefaction. Comparisons 

of the predicted NS and DSMC surface heat flux, drag, and shear stress deteriorate when the 

freestream Knudsen number is increased [22,23]. The surface heat flux seems to depend on the 

continuum breakdown in the shock and the size of the thermal boundary layer. The drag is 

influenced by the continuum breakdown in the wake region, and the shear stress is the most 

sensitive wall quantity to changes in the degree of rarefaction. NS surface pressure agrees with 

DSMC computations until a Knudsen number of 0.25, after which the agreement deteriorates. The 

NS methods are also observed to predict much thinner shocks than DSMC, with DSMC methods 

agreeing with experimental results on shock thickness while the shock locations are seen to match 
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[21,23]. For the NS calculations, a single trans-rotational temperature [22] and separate 

translational and rotational temperatures [21] have been employed for modeling the rotational 

energy. Since DSMC generally employs separate translational, rotational, and vibrational 

temperatures, a DSMC trans-rotational temperature is calculated to compare against the NS trans-

rotational temperature. Good agreement is observed for both temperature representations at low 

Mach and Knudsen numbers, but that deteriorates as the Mach and Knudsen numbers increase. 

These comparisons illustrate the need to account for the deficiency of the NS equations at increased 

Knudsen numbers which is done through a hybrid coupling with the DSMC method.  

 A hybrid algorithm requires modules and functions apart from the NS and DSMC codes 

necessary for the hybrid coupling. Firstly, a means of distinguishing NS and DSMC regions on a 

mesh is required where the boundary between the two zones has to be positioned such that a 

globally physically accurate solution is obtained, and the computational time of the simulation is 

reduced. In the year following the introduction of the first DSMC code, DSMC94, a continuum 

breakdown detector, the gradient length local Knudsen number (𝐾𝑛GLL), was introduced by Boyd 

et al. [21] to delineate NS and DSMC regions. The definition of 𝐾𝑛GLL was slightly modified in 

[25], and this definition is 

𝐾𝑛GLL−𝑄 = 𝜆 |
∇𝑄

𝑄
| (1.1) 

where 𝑄 is any flow quantity such as density, temperature, and pressure and 𝜆 is the local mfp. 

The breakdown parameter 𝐾𝑛max  is obtained by calculating the maximum 𝐾𝑛GLL−𝑄  among 

different scalars as 

𝐾𝑛max = max(𝐾𝑛GLL−𝜌 , 𝐾𝑛GLL−𝑇tr
 , 𝐾𝑛GLL−𝑇v

 , 𝐾𝑛GLL−𝑼) (1.2) 

where the scalars used in the present study are listed here: density (𝜌), trans-rotational temperature 

(𝑇tr), vibrational temperature (𝑇v), and the velocity components (𝑼). Along with 𝐾𝑛max, a thermal 

non-equilibrium detector [26] given by 

𝐾𝑛ROT−NEQ = |
𝑇t − 𝑇r

2𝑇r
| (1.3) 
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is sometimes used to assign regions of the domain that exhibit rotational non-equilibrium as DSMC 

regions. Here 𝑇t  is the translational temperature and 𝑇r  is the rotational temperature. The 

denominator in Equation 1.3 is replaced in [27] with the translational temperature. 

 Secondly, particles should be generated in the outer buffer regions with properties consistent with 

the NS solution in this region. Once the outer buffer is populated, the particles have to be allowed 

to collide several times, which happens in the inner buffer regions where particles collide before 

entering the DSMC region (particles are refreshed at each time step in the outer buffer). For an 

equilibrium monoatomic gas, particles can be initialized with a Maxwellian distribution which also 

provides a reasonable approximation for an equilibrium polyatomic gas mixture. For weak non-

equilibrium conditions and equilibrium polyatomic gases, particles might require the Chapman-

Enskog distribution for initialization. For polyatomic gas mixtures and thermal non-equilibrium, 

the generalized Chapman-Enskog distribution may be required. 

 Thirdly, a means of transferring information between the NS and DSMC regions is needed. Two 

methods have been used in the literature to transfer such information: a flux-based coupling 

method [28,29,30] and a state-based coupling [27,31,32] method. For flux-based coupling, mass, 

momentum, and energy fluxes have to be computed at the interface, and since these fluxes are 

usually different between the NS and DSMC modules, a correction factor is required. For state-

based coupling, the NS and DSMC domains are extended into each other’s regions to form buffer 

zones where macroscopic solutions are imposed. The present study employs state-based coupling 

with the construction of buffer layers of cells described in Section 2.3. Some hybrid codes are 

described in the following paragraphs. 

 One of the earliest hybrid codes developed in 1996 by Hash and Hassan [28] is a decoupled NS-

DSMC hybrid code. First, an NS solution of the entire domain is computed based on which the NS 

and DSMC regions are distinguished using the 𝐾𝑛max  breakdown parameter, after which the 

interface is frozen. The NS-DSMC boundary is treated as an inflow patch with flux-based coupling 

for particles entering the DSMC domain. Gupta’s [33] model is used for transport property 

calculations, and Park’s [34] reaction rates are used for modeling chemical reactions in the NS 

solver. The NS solver also assumes a constant rotational relaxation number of 5 and employs the 

Millikan and White [35] model for vibrational relaxation. The DSMC solver uses the VHS 

collision model where the parameters for the model are obtained from curve fits to Gupta’s data. 
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The DSMC solver also uses Evans’s [36] reaction rates which are slightly different from Park’s 

coefficients. Parker’s model [37] is applied to model rotational and vibrational relaxation in the 

DSMC module instead of using constant collision numbers. Flows around a blunted cone are 

simulated and compared with experimental results where the wake and boundary layer regions are 

simulated using DSMC. The shock region is excluded from the DSMC zone in the interest of 

computational time. The hybrid solution is more accurate than the full NS solution in the forebody 

region. Results from the use of Maxwellian and Chapman-Enskog distributions to initialize 

particles at the hybrid interface are compared. While surface pressure and skin friction agree 

between the two cases, the surface heat flux compares best with experimental data when the 

Chapman-Enskog distribution is used. 

 Wu et al. report [27] the coupling between the unstructured mesh finite volume NS code, HYB3D 

[38], with the unstructured mesh variable time step DSMC code, PDSC [39], through simulations 

of the flow over a wedge geometry and two parallel jets flowing into near vacuum conditions. The 

findings indicate that the value of the breakdown parameter is high at the shock and near the wall 

due to large gradients in flow properties. HYB3D employs a single trans-rotational temperature, 

while PDSC uses a separate rotational temperature. This coupling, therefore, benefits from the 

rotational energy non-equilibrium detector from Equation 1.3, alongside the gradient length local 

Knudsen number, to delineate NS and DSMC zones. A constant rotational collision number of 5 

is employed in the DSMC code. The rotational energy non-equilibrium detector delineates a larger 

region around the shock as DSMC than is predicted by 𝐾𝑛max, thus validating their use of a 

thermal non-equilibrium detector. A Maxwellian distribution function is used to initialize particles 

at the buffer regions since using a Chapman-Enskog distribution was deemed to be 

computationally expensive. The buffer zone consists of two sets of cell layers that extend from the 

DSMC region into the NS region, where the number of layers in each set can be adjusted by the 

user. Both DSMC and NS calculations are performed in the buffers, and Dirichlet-type boundary 

conditions are imposed at the nodes of the buffers. A moving hybrid interface setup is used where 

the final converged interface locations are different from the initial locations predicted by the first 

NS simulation, with the DSMC regions expanding outwards from the initial interface locations 

until convergence. Further, it is stated that unstructured meshes are preferred for hybrid 

simulations since the hybrid interfaces are highly irregular and can be better represented by 

unstructured meshes.  
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 The LeMANS [40] finite volume NS code has been loosely coupled with the MONACO [41] 

DSMC code to produce the Modular Particle Continuum (MPC) hybrid algorithm and simulate 

1D shock waves, flows over 2D cylinders, and re-entry flows [42]. LeMANS started with a two-

temperature model and has since evolved to solve a separate rotational energy equation, with 

Parker’s model [37] being used for calculating the rotational collision number taken to be a 

function of the translational temperature. LeMANS uses the Millikan and White data [35] and 

Park’s correction [43] to account for translational-vibrational relaxation. The MPC algorithm uses 

𝐾𝑛max to delineate the NS and DSMC regions and is capable of accounting for rotational [26] and 

vibrational non-equilibrium [44] and can simulate multispecies flows [45] by consistently 

modeling the modal energy relaxation between NS and DSMC modules. Initial efforts involved 

the use of the same mesh for NS, DSMC, and hybrid simulations [46], but the approach has evolved 

to the use of two separate meshes for NS and DSMC regions [47]. Mesh refinement is conducted 

on the initial mesh with the local mean free path providing a size estimate for the refinement of 

the NS mesh to generate a DSMC mesh comprised of refined NS cells. The refined mesh results 

differ from coarse mesh results in the bow shock region. The use of two meshes reduces scatter 

since averaging is conducted over multiple DSMC cells found within a larger NS cell in the buffer 

regions for information transfer. The addition of buffer regions mitigates the error arising from 

mislocated NS-DSMC boundaries [48]. A moving hybrid interface setup is considered where 

gradients that evolve in the overlap regions as the DSMC computation progresses are accounted 

for by a change in the interface location. A smoothing algorithm is also employed to remove 

isolated patches of NS or DSMC regions. During a hybrid routine, if the NS computation results 

in a significant change in the boundary conditions supplied to DSMC, the hybrid cycle continues. 

Once the hybrid boundary conditions converge, the interfaces are frozen, and the simulation runs 

till acceptable results have been obtained. State-based coupling is utilized, and statistical scatter in 

the solution vectors of the DSMC region is further minimized by using a sub-relaxation technique 

that combines elements of spatial and temporal averaging [49]. The time average of a macroscopic 

variable 𝜙𝑛
̅̅̅̅  at iteration 𝑛 can be written as 

𝜙𝑛
̅̅̅̅ = (1 − 𝜃)𝜙𝑛−1

̅̅ ̅̅ ̅̅ ̅ + 𝜃𝜙𝑛 (1.4) 

where 𝜙𝑛 is the instantaneous value of the variable. This relaxation formula is said to be “sub-

relaxed” when 𝜃 is less than 1 and is “over-relaxed” when 𝜃 is larger than 1. 
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Verhoff et al. [45] extend this setup to accommodate gas mixtures where continuum methods 

without advanced chemistry models fail to accurately capture the species concentrations in the 

shock and boundary layer regions at increased Knudsen numbers. The hybrid code, however, 

compares well with the DSMC species concentrations throughout the stagnation line. While the 

NS module cannot capture species concentrations well by itself, it succeeds when accurate 

boundary conditions are supplied by the DSMC regions of the flow. The power law model [9] is 

used for calculating species viscosity in LeMANS with the Gupta mixing rule [33] utilized for 

computing mixture transport properties. Correspondingly, the parameters of the VHS model in 

DSMC are calculated to match the results of the viscosity from NS. A new parameter for rotational 

non-equilibrium given by 

𝐾𝑛rot = 𝑍r𝜆 |
∇𝑇r

𝑇r
| (1.5) 

is also introduced, and it is found that hybrid results obtained by using 𝐾𝑛ROT−NEQ deviate further 

from DSMC results than hybrid results obtained by using the 𝐾𝑛rot  parameter [50] along the 

stagnation line in the bow shock and boundary layer regions. 

 The DSMC Analysis Code (DAC) [51] and the Data Parallel Line Relaxation (DPLR) [52] finite 

volume NS solver have been employed to create a decoupled hybrid solver by Stephani et al. [30] 

to compute the solution over a patch of surface roughness used to trip the flow on the Orbiter 

vehicle for a 5-species air mixture [53]. A flux-based coupling between the NS and DSMC regions 

is employed alongside a Chapman-Enskog distribution function to initialize particles at the hybrid 

interface. Further, the Chapman-Enskog boundary condition is extended to accommodate mixtures 

and internal energies under the generalized Chapman-Enskog theory. The Variable Hard Sphere 

(VHS) [9] and the Variable Soft Sphere (VSS) [9] models are used to model binary collisions. 

Consistency in modeling transport properties, thermodynamics, and reaction models between the 

NS and DSMC solvers is discussed. Diffusion coefficients in DPLR are computed according to 

the self-consistent effective binary diffusion (SCEBD) model [54], and the viscosity and thermal 

conductivity are computed according to the Gupta mixing rules [33]. To fit the calculated DSMC 

transport coefficients with the NS solver, the Nelder-Mead Simplex Method [55] is used to find 

the set of VHS/VSS parameters that result in a good comparison of transport coefficients with NS 

values. The simplex method performs the fitting process by first starting with an initial guess of 
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the VHS/VSS parameters that are then perturbed. If the perturbation results in a better comparison 

of transport properties, the perturbation is extended in the same direction. Otherwise, the direction 

is reversed, and the search continues until an acceptable error level is reached in the transport 

property computations. The VSS model performs better than the VHS model during the fitting 

process by producing transport properties that compare well with NS models. When the parameters 

of the VHS/VSS models are specified for each collision pair rather than calculating an average set 

of parameters, the comparisons between the NS and DSMC transport properties improve. 

Rotational and vibrational conductivities in DPLR are calculated according to Eucken’s model 

[56]. For modeling thermal non-equilibrium, DAC uses a constant rotational collision number of 

5. For consistency with the NS solver, the vibrational collision number in DAC is modeled 

according to Gimelshein et al. [57]. DPLR uses a three-temperature model with separate 

translational, rotational, and vibrational temperatures for which the translational-rotational 

relaxation is modeled according to Parker [37] and the translational-vibrational relaxation is 

modeled according to the data of Millikan and White [35] with Park’s [43] high-temperature 

correction. 

 The open-source two-temperature finite volume NS solver hy2Foam [58] and DSMC solver 

dsmcFoam[59] have been coupled by Espinoza et al. [32], and the hybrid code tested through a 

heat transfer flow, a Couette flow for Argon and Nitrogen with and without vibrational energy 

modeling and the flow over a 2D cylinder [60]. The vibrationless Nitrogen flow shows a good 

comparison between the single trans-rotational temperature predicted by hy2Foam with the 

computed trans-rotational temperature from dsmcFoam. When vibrational energy is considered, it 

is found to compare well between the NS, DSMC, and hybrid results. 𝐾𝑛max and the rotational 

energy non-equilibrium detector are used for delineating DSMC and NS zones with state-based 

coupling employed for NS-DSMC communication at the hybrid interface. A Maxwellian 

distribution, the Chapman-Enskog distribution, and the generalized Chapman-Enskog distribution 

function have been used to initialize particles at the hybrid interface, and the results between the 

three are compared. The generalized Chapman-Enskog distribution produces the most accurate 

results in all the cases considered, especially for the vibrational Nitrogen flow. Translational-

vibrational relaxation in hy2Foam is modeled using the Landau-Teller [56,61] formula, wherein 

the relaxation time is evaluated with the Millikan and White data [35] along with Park’s high-

temperature correction factor [62]. In dsmcFoam, the rotational collision number is taken as a 
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constant of 5, and the vibrational collision number is modeled to have temperature dependence 

[63]. The power law model [9] is used to calculate species viscosity, and Wilke’s mixing rule [64] 

is used to model mixture transport properties in hy2Foam which is matched by the use of the VHS 

model in dsmcFoam. 

 Table 1.1 summarises the capabilities of the listed hybrid formulations. As shown, most of the 

NS solvers used in the hybrid algorithms are finite volume solvers. A loosely coupled strategy 

seems to be suitable for coupling the NS and DSMC solvers. Reliable results have been obtained 

with the use of a trans-rotational temperature for NS. However, it seems that temperature 

dependent vibrational collision numbers are necessary for the DSMC module to match the Landau-

Teller, Millikan and White model in the NS module. Several studies have obtained accurate results 

by employing 𝐾𝑛max to delineate NS and DSMC regions. For NS, the power law model along 

with mixing rules should provide a good approximation for viscosity that can be matched by the 

VHS model in DSMC. Importantly, there are few unstructured mesh hybrid codes and even fewer 

hybrid codes with mesh adaptation. 

Table 1.1 List of surveyed hybrid NS-DSMC codes 

Hybrid code NS solver Coupling NS Rotational energy Mesh / Adaptation? 

Hash and Hassan [28] - Decoupled 
Separate rotational 

temperature 
- / no 

Wu et al [27] finite volume Loosely coupled 
Trans-rotational 

temperature 
unstructured / no 

MPC [42] finite volume Loosely coupled 
Separate rotational 

temperature 
structured / no 

Stephani et al [30] finite volume Decoupled 
Separate rotational 

temperature 
structured / no 

Espinoza et al [32] finite volume Loosely coupled 
Trans-rotational 

temperature 
structured / no 

 

1.3 Existing DSMC Mesh Adaptation Work 

 The two ways of tessellating and refining the domain for DSMC methods are through structured 

meshes consisting of hexahedra [51,59,65-70] and unstructured meshes [41,71-73] consisting of a 

combination of tetrahedra, prisms, pyramids, and hexahedra. Structured mesh methods generally 

need a triangulated surface mesh [51,65-67] to represent surfaces where cut-cell algorithms 

manage the intersection of the surface mesh and the volume mesh. Such methods are grouped into 

hierarchical two/three level mesh [51,65,66,68] and hierarchical recursive any-level mesh 

[59,67,69,70] methods. Any-level mesh adaptation methods extend the mesh over several levels, 
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distributed in a tree-based data structure from root cells to leaf cells [67]. Mapping particles into 

leaf cells is a computationally expensive task that approaches a similar expense as ray tracing 

algorithms for unstructured meshes. In contrast, unstructured mesh approaches naturally 

accommodate the surface geometry and align better with singular flow features, yielding a higher 

resolution of gradients in regions of interest and higher flexibility [41,71] than structured mesh 

methods. Further, adapted unstructured meshes can rectify irregularities in the flow solutions from 

un-adapted meshes and produce globally smooth results. Refinement for structured and 

unstructured meshes requires an increase in particle count since refined volume patches and 

surface triangulations register lower particles and particle-surface interactions when compared 

against coarser meshes. 

 DSMC94 is the first DSMC solver developed by Bird using structured mesh technology and 

made freely available in 1994 [9]. It allows domain clustering by distributing node positions 

unevenly in the i, j, and k directions. Garcia et al. [29] developed the Adaptive Mesh and Algorithm 

Refinement (AMAR) method in 1999, which is the first use of mesh adaptation techniques in 

DSMC. In that study, a hybrid NS-DSMC algorithm is coupled to a mesh optimization routine that 

uses a structured hierarchical refinement strategy and an adaptive time step method. Since then, 

several DSMC solvers with unique features have been developed [41,51,59,68,70,74], and the few 

notable ones incorporating mesh adaptation are shortly discussed hereafter. 

 The Statistical Modeling In Low-Density Environment (SMILE) package [68, 74] provides tools 

to conduct the entire lifecycle of a DSMC simulation with the help of a graphical user interface: 

geometric modeling, preprocessing, running the DSMC algorithm, and post-processing. SMILE 

uses an adaptive two-layer structured mesh for collision modeling. The level-one cells store 

parameters required for the majorant collision frequency scheme, and the level-two cells are used 

to group collision candidates. The collisional mesh is adapted based on density gradients and local 

mfp. A separate mesh is used for the sampling routine, which may also be adapted. This multigrid 

approach allows SMILE to have an extremely fine mesh for collision selection and an appropriate 

resolution for macroscopic averaging. SMILE has been validated by analyzing the flow around the 

Progress spacecraft, a blunted cone, a wedge, and a space capsule [68].  
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 The DSMC Analysis Code (DAC) [51], developed by NASA, started with a target application 

for a space shuttle/station plume impingement problem and was later enhanced to serve as a 

general-purpose tool. It has been used to capture the aerodynamic loads on the Mir space station 

caused by the space shuttle, simulate the flow field over NASA’s X-38 re-entry vehicle, calculate 

the aerothermodynamics coefficients of the Mars Global Surveyor space probe and analyze the 

effects of the flow generated by an airlock vent on the Hubble Space Telescope. The DAC 

preprocessor creates an initial uniform structured mesh with cells sized to the freestream mfp on 

which an initial solution is computed. The gradients of the solution and the distribution of the mfp 

drive the adaptation of a two-level Cartesian mesh, and the body surface is captured with a 

triangulated surface mesh. Based on the flow field information from the previous solution, the 

preprocessor also sets appropriate time steps and particle weights for each cell of the adapted mesh 

at each iteration.  

 Bird’s DS2V/3V suite [75] discretizes the domain with rectangular divisions that are in turn 

divided into rectangular elements. The number of divisions controls the visual resolution of the 

flow field, and the number of elements approximates the number of particles. Irregular cells are 

built by grouping elements closest to the cell node. The cell node is initially placed at the center 

of the divisions, and the node distribution throughout the domain can be adapted based on the local 

number density. Separate collision and sampling cells are used where the cells are adapted to have 

8 particles per collision cell and 27 particles per sampling cell. 

 The open-source solver dsmcFoam [59] (now dsmcFoam+) can handle both structured and 

unstructured meshes. However, mesh adaptation is performed on structured meshes only. 

Gradients of density and mfp are used as adaptation scalars in an Adaptive Mesh Refinement 

(AMR) setup where any number of refinement levels can be created. Mesh adaptation for cube 

and wedge geometries has been conducted with this solver [59].  

 The open-source Stochastic PArallel Rarefied-gas Time-accurate Analyzer (SPARTA) DSMC 

code [70] built by the Sandia National Labs embeds triangulated surface geometries in a 

hierarchical any-level structured mesh. Here, the root level cell is the size of the domain, and each 

level can have as many lower-level cells in any direction as needed. SPARTA has been employed 

to study flows over a planetary probe geometry and a 25 – 55-degree biconic, among others.  
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 The MONACO code [41] is the first DSMC solver to use an unstructured mesh. It has been in 

development by Boyd’s research group since 1994 [76-78] and features several advanced 

techniques to accelerate a DSMC simulation. Unstructured mesh refinement is an important 

capability of MONACO since it allows mesh refinement based on flow features to ensure that 

collision cells are smaller than the local mfp and improves parallel communication. During a grid 

refinement cycle, cells that need to be refined are divided into smaller cells using new nodes 

inserted at their centroids. Then, an edge swapping operation is conducted to improve cell quality 

[17]. MONACO has been used for simulating various problems, including a diverging channel 

flow, a planetary probe, and a neutral contactor [41, 78].  

 Another DSMC solver that uses unstructured meshes is the unsteady, parallel DSMC code, 

PDSC, developed by Wu et al. [17, 71]. PDSC is equipped with a variable time step scheme, 

transient adaptive sub-cells (TAS), adaptive mesh refinement technology, and dynamic domain 

decomposition. During the mesh refinement procedure, adaptation scalars, such as a cell-based 

Knudsen number and non-dimensional density, ρ / ρ∞ , are computed and compared against 

threshold values. If the computed local Knudsen number is lower than the threshold value and the 

density ratio greater than the threshold value, the cell is marked for refinement. PDSC uses an h-

refinement technique where isotropic mesh refinement is first performed on marked cells creating 

hanging nodes, and anisotropic refinement is then carried out to remove these nodes. Isotropic 

refinement is also utilized to improve the quality of the mesh cells. Some of the applications of 

PDSC [17, 71] are a cavity flow, a flow over a cylinder and sphere, and the interaction of twin jets 

in near vacuum. 

 One of the key parameters of mesh adaptation methods, whether structured or unstructured, is 

the choice of the adaptation scalar(s). A suitable adaptation scalar is generally selected, and mesh 

manipulation is performed based on the distribution of this scalar over the domain. Local mfp is a 

common choice [41,65,68,73], where the cell is refined if its characteristic dimension is greater 

than the local mfp. Both structured and unstructured methods advocate gradients of flow variables 

[59,68,69,72], such as density and velocity. Density is a natural choice since local mfp is inversely 

proportional to the local number density [71]. Moreover, density gradients effectively capture 

shocks, while the velocity gradient captures boundary layers and flow separation regions with less 

statistical fluctuations [72]. Some methods introduce additional criteria to disable the refinement 
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of cells presenting a low number of simulated particles [67,72]. From this summary of mesh 

adaptation techniques for DSMC, few unstructured mesh methods exist even though they present 

several advantages over structured mesh methods. For the choice of adaptation scalars, other flow 

variables such as temperatures, pressure, and Mach number have not been considered. 

Convergence studies involving different initial meshes that converge to the same final mesh have 

also not been presented in the literature. A mesh adaptation algorithm that showcases such mesh-

independence capabilities will not stall when encountering poorly discretized regions (over-

refined/over-coarsened) and can recover the mesh and solution quality in these regions. The 

present work conducts such studies. 

1.4 Thesis Objectives 

 The CFD Lab at McGill University, in collaboration with Ansys and Lockheed Martin, is 

developing a monolithic software system – HALO3D (High-Altitude Low-Orbit 3D) – capable of 

simulating flow regimes around hypersonic aircraft from subsonic take-off speeds, acceleration to 

supersonic speeds, high-velocity entry into low-Earth-orbit, atmospheric re-entry at hypersonic 

speeds, aerobraking and landing [2,79-81]. This thesis focuses on the development and testing of 

the infrastructure necessary to generate the high-altitude solution in the flight path of a hypersonic 

transport vehicle. Along with the developments of the rarefied flow modules, the present work 

aims to showcase the benefits of automatic mesh optimization for rarefied flow solvers. The thesis 

presents computationally efficient, accurate, and robust techniques through test cases of varying 

complexity. Developments on adaptive hybrid interfaces, consistent hybrid thermal non-

equilibrium modeling, generalized Chapman-Enskog distribution functions for particle 

initialization, and collision-specific collisional model parameterization are not considered and 

instead allocated for parallel efforts at the CFD Lab. 

1.5 Thesis Contributions 

 The current work produces a series of Fortran modules within the HALO3D ensemble to extend 

its reach into the rarefied regime. After having been reviewed by experts from Ansys and Lockheed 

Martin, these modules have been committed into the repositories of these organizations for use in 

the design of hypersonic transport aircraft. The author’s contributions are summarized below: 
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1. Development of an unstructured mesh DSMC solver – HALO3D-DSMC – to simulate high 

Knudsen number flows. 

2. Development of a hybrid finite-element NS-DSMC architecture – HALO3D-HYBRID – 

to account for moderate Knudsen number flows. 

3. Study of automatic mesh optimization for DSMC and hybrid NS-DSMC methods. 

The thesis consists of a few novel features, which are listed below: 

1. There are few works on finite element NS-DSMC solvers for hypersonic flows. This thesis 

employs a Finite Element NS solver in the continuum regions of the hybrid simulations. 

(Section 2.1, Page 17)  

2. The thesis contributes to the limited body of unstructured mesh hybrid NS-DSMC and 

DSMC literature by investigating the generation of optimized unstructured meshes for 

these solvers. (Section 3.3, Page 129) 

3. HALO3D-DSMC features a novel technique to generate particles in an unstructured mesh 

through finite element shape functions. (Section 2.2.3, Page 32) 

4. An error estimate based on the Hessian of flow variables is used for the first time to 

evaluate both DSMC and hybrid NS-DSMC solution quality. (Section 2.4, Page 54) 

5. The thesis illustrates the effect of different adaption scalars and constraints in the 

generation of the adapted mesh. A scalar set that has not been considered previously in the 

literature is used for DSMC and hybrid NS-DSMC simulations. (Section 3.3.1, Page 130) 

6. Mesh convergence studies examining the effect of different initial meshes have not been 

seen in the literature. This thesis presents convergence studies for coarse, refined, and 

arbitrarily refined initial meshes. (Section 3.3.1, Page 133,134) 

1.6 Thesis Outline 

 The thesis is organized as follows: Chapter 2 provides the methodologies employed in the 

HALO3D-NS, HALO3D-DSMC, and HALO3D-HYBRID routines. Governing equations, 

thermochemical non-equilibrium models, numerical techniques, and solution algorithms are 

presented. Chapter 3 discusses validation results and mesh optimization simulations for HALO3D-

DSMC and HALO3D-HYBRID through hypersonic flow test cases. Chapter 4 discusses the 

conclusions of the study and provides directions for future work. 
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Chapter 2 

Methodologies 
 

 This section provides details on the mathematical formulations and methodologies employed by 

the NS, DSMC, and hybrid modules of HALO3D and the mesh optimizer, OptiGrid. Fig. 2.1 shows 

the various functionalities available within HALO3D: a compressible Navier-Stokes flow solver, 

a magnetohydrodynamics solver, ablation and surface reaction solvers, rarefied regime DSMC, 

and hybrid solvers, and all of these can be coupled with OptiGrid. 

 

Fig. 2.1 Main modules of HALO3D 

2.1 HALO3D-NS 

 The continuum regime thermo-chemical non-equilibrium hypersonic flow algorithm in 

HALO3D is composed of a compressible RANS solver, a finite-rate chemistry solver, and a two-

temperature thermal non-equilibrium solver. An edge-based Finite Element formulation is 

employed for spatial discretization, and the Roe scheme contributes to flow stabilization due to a 

numerical dissipation term. In edge-based methods, the global stiffness matrix is constructed using 

a loop over the edges of the mesh, in contrast with element-based methods where a loop over the 

elements is used. The van Albada slope limiter is used to prevent oscillations near shock regions. 

The steady-state solution is computed by using an implicit time integration scheme. The flow 

equations for the conservation of mixture mass, momentum, and total energy, along with the mass 

conservation equations for chemical species and the conservation of vibrational energy, are solved 
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in a loosely coupled manner, as shown in Fig. 2.2. This Section provides details on some of the 

key aspects of HALO3D-NS. 

 

Fig. 2.2 Loosely coupled strategy of HALO3D-NS 

2.1.1 Governing Equations 

 HALO3D-NS solves the governing equations for hypersonic flows in thermo-chemical non-

equilibrium given in [61]. To account for thermal non-equilibrium, a two-temperature model is 

used with the translational and rotational modes represented by one temperature and the vibrational 

energy mode represented by another temperature. The governing equations can be written as 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑽) =  0  (2.1) 

𝜕𝜌𝑌s

𝜕𝑡
+ ∇ ∙ (𝜌𝑌s𝑽) = −∇ ∙ 𝑱s + 𝑆S

c  (2.2) 

𝜕𝜌𝑽

𝜕𝑡
+ ∇ ∙ (𝜌𝑽𝑽) = −∇𝑃 + ∇ ∙ 𝝉  (2.3) 

𝜕𝜌𝐸

𝜕𝑡
+ ∇ ∙ (𝜌𝐻𝑽) = −∇ ∙ 𝒒 + ∇ ∙ (𝝉𝑽)  (2.4) 

𝜕𝜌𝑒v

𝜕𝑡
+ ∇ ∙ (𝜌𝑒v𝑽) = −∇ ∙ (𝒒v + 𝒒D,v) + 𝑆v  (2.5) 
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where 𝑡 is time, 𝜌 is mixture density, 𝑽 is the velocity vector, 𝑌s is the mass fraction of species s, 

𝑱s is the mass diffusion vector of species s, 𝑃 is pressure, 𝐸 is the total energy per unit mass, 𝐻 is 

the total enthalpy per unit mass, 𝝉 is the shear stress vector, 𝒒 is the heat flux vector, 𝑆S
c and 𝑆v are 

source terms that will be elaborated in the following Sections, and 𝑒v is the vibrational energy per 

unit mass. The total energy per unit volume is calculated as a sum of the kinetic and internal 

energies and is expressed by  

𝐸 =
1

2
(𝑽 ∙ 𝑽) + ∑ 𝑌s𝑒s

Ns

s=1

  (2.6) 

where 𝑒s is the internal energy of species s. The gas is treated as a Newtonian fluid, and, along 

with the Stokes hypothesis, the viscous stress tensor is defined as 

𝝉 = 𝜇(∇𝑽 + ∇𝑽𝑇) −
2

3
𝜇(∇ ∙ 𝑽)𝑰  (2.7) 

where 𝜇 is the coefficient of viscosity. The mixture components are treated as ideal gases, and the 

mixture equation of state links the partial pressure, trans-rotational temperature, and partial 

densities. Mass diffusion is modeled after Fick’s law which ensures that species move from areas 

of higher concentration to areas of lower concentration, and the expression for the diffusion flux 

of species s,  𝑱s, is given by  

𝑱s = −𝜌𝐷∇𝑌s (2.8) 

where 𝐷 is the mass diffusion coefficient. This is expressed as 

𝐷 =  
𝐿𝑒𝜅tr

𝜌𝐶p
tr  (2.9) 

where the Lewis number, 𝐿𝑒, is generally set to 1.4, 𝜅tr is the mixture thermal conductivity, and 

𝐶p
tr is the mixture constant pressure specific heat of the trans-rotational mode. A single diffusion 

coefficient is assumed for all species, ensuring that the sum of the mass diffusion fluxes is zero in 

the domain. 

 The total heat flux 𝒒 from Equation 2.4 is calculated from the summation shown below  
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𝒒 = 𝒒tr + 𝒒v + 𝒒D,E (2.10) 

where the trans-rotational and vibrational contributions are calculated using Fourier’s law. The 

expressions for the contributions and the inter-diffusional vibrational heat flux 𝒒D,v are given by 

𝒒tr =  −𝜅tr𝛁𝑇tr  ;    𝒒v =  −𝜅v𝛁𝑇v (2.11) 

𝒒D,E =  ∑ 𝑱sℎs

Ns

s=1

  ;    𝒒D,v =  ∑ 𝑱s𝑒v,s

Ns

s=1

(2.12) 

where 𝜅tr and 𝜅v are the mixture’s thermal conductivities for the respective modes. 

2.1.2 Thermal Non-Equilibrium Modeling 

 The rigid-rotator-harmonic-oscillator model describes the rotational and vibrational energy 

modes where each energy mode is independent of the other. The internal energy is calculated as a 

sum of the energies in each mode and the zero-point energy 𝑒𝑠,𝑓
0  of the species 𝑠, which is simply 

the enthalpy of formation of the species, given in Appendix A. At 298.15 K, the enthalpy of 

formation of molecular species is taken to be zero [82]. The two-temperature model used in the 

present study assumes that the translational and rotational energies are in equilibrium and are 

described by the trans-rotational temperature 𝑇tr . The vibrational energy is described by the 

vibrational temperature 𝑇v and the expression for internal energy is given by 

𝑒s(𝑇tr, 𝑇v) = 𝑒s,tr(𝑇tr) + 𝑒s,v(𝑇v) + 𝑒s,f
0 (2.13) 

where 𝑒s,tr(𝑇tr) =  
5

2
𝑅s𝑇tr  for molecules and 𝑒s,tr(𝑇tr) =

3

2
𝑅s𝑇tr  for atoms, and 𝑅s  is the gas 

constant for species s. The vibrational energy’s contribution is expressed as 

𝑒s,v(𝑇v) =
𝑅s𝜃v,s

exp (
𝜃v,s

𝑇v
) − 1

(2.14)
 

where 𝜃v,s is the characteristic vibrational temperature provided in Appendix A. The vibrational 

source term 𝑆v  is comprised of the contributions from the translational-vibrational energy 

exchange and chemical reactions, as shown below, 

𝑆v = 𝜔T−V +  𝜔V−D (2.15) 
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where 𝜔T−V models the energy relaxation between the translational and vibrational modes [56,61] 

and 𝜔V−D is the vibrational energy produced or dissipated by chemical reactions assuming non-

preferential dissociation. 𝜔T−V  is modeled using the Landau-Teller relaxation time and the 

expressions for both components are given by 

𝜔T−V =  ∑ 𝜌s

𝑒s,v(𝑇tr) − 𝑒s,v(𝑇v)

𝜏s
LT

Ns

s=1

(2.16) 

𝜔V−D = ∑ 𝑆s
c𝑒s,v

Ns

s=1

(2.17) 

The Landau-Teller relaxation time, 𝜏s
LT, is calculated using the inter-species relaxation time 𝜏si as 

𝜏s
LT =  

∑ 𝑋i
Ns
i=1

∑ 𝑋i/𝜏si
Ns

i=1  
(2.18) 

𝜏si is calculated based on the curve fits of Millikan and White [35] for vibrational relaxation using 

the expressions below.  

𝜏si =
101325

𝑝
exp [𝐴si (𝑇tr

−
1
3 − 𝐵si) − 18.42] (2.19) 

𝐴si = (1.16 × 10−3)𝑚
si

1
2 𝜃vs

4
3 (2.20) 

𝐵si = 0.015𝑚
si

1
4 (2.21) 

𝑚si =
𝑚s𝑚i

𝑚s + 𝑚i

(2.22) 

 The curve fits of Millikan and White underpredict the vibrational relaxation time at high 

temperatures, which necessitates the addition of Park’s high-temperature correction term, 𝜏p,s, to 

𝜏si [62]. The expression for 𝜏p,s is 

𝜏p,s =
1

𝜎s𝑐s𝑁
(2.23) 

𝜎s = 10−21 (
50000

𝑇tr
)

2

(2.24) 
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𝑐s = √
8𝑅s𝑇tr

𝜋
(2.25) 

where 𝜎s is the limited collision cross-section, 𝑐s is the average molecular speed, and 𝑁 is the 

mixture number density. 

2.1.3 Chemical Non-Equilibrium Modeling 

 Chemical non-equilibrium is accounted for by a laminar finite-rate chemistry model [83], which 

uses the Arrhenius equation to describe the chemical kinetics. The equilibrium constant for a 

reaction is calculated from the following expression: 

𝐾r
eq(𝑇) = (

101325

𝑅u𝑇
)

𝜈r

exp (− ∑(𝜈s,r
′′ − 𝜈s,r

′ )(𝐻s − 𝑇𝑆s)

Ns

s=1

) (2.26) 

where 𝜈s,r
′  and  𝜈s,r

′′  are the stoichiometric coefficients of the reactant and product for species s and 

reaction r, 𝑅u is the universal gas constant, 𝐻s and 𝑆s are the enthalpy and entropy calculated from 

Boltzmannian theory. The forward reaction rate coefficient is calculated using the modified 

Arrhenius equation expressed by 

𝑘r
f(𝑇) = 𝐴r

f 𝑇
ηr

f

exp (−
𝐸a,r

𝑅u𝑇
) (2.27) 

where for a reaction r, 𝐴r
f is the pre-exponential factor, 𝜂r

f  is the temperature exponent and 𝐸a,r is 

the activation energy which can all be found in the literature. 𝑇 is the rate controlling temperature 

defined according to Park’s model as 

𝑇 = 𝑇tr
q

 𝑇v
q−1 (2.28) 

with the exponent q set to be 0.7. The backward reaction rate coefficient can be calculated from 

the forward rate coefficient and the equilibrium constant as shown below. 

𝑘r
b(𝑇) =

𝑘r
f(𝑇)

𝐾r
eq(𝑇)

(2.29) 
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The chemical source term in Equation 2.2 for a species s is given by  

𝑆S
c = 𝑚s ∑(𝜈s,r

′′ − 𝜈s,r
′ )(𝑅r

f − 𝑅r
b)

Nr

r=1

(2.30) 

where 𝑚s is the species molar mass, 𝑅r
f  is forward reaction rate and 𝑅r

b is the backward reaction 

rate of reaction r. The reaction rates are calculated from the rate coefficients, species mole fractions, 

and stoichiometric coefficients as shown below. 

𝑅r
f =  𝑘r

f  ∏[𝑋s]𝜈s,r
′

Ns

s=1

(2.31) 

𝑅r
b = 𝑘r

b ∏[𝑋p]
𝜈p,r

′′
Ns

p=1

(2.32) 

2.1.4 Viscosity and Thermal Conductivity 

 The species viscosities are calculated according to the Power law model, which is compatible 

with the use of the VHS collision model in the DSMC zones of the hybrid computation. The 

expression for the species viscosity is 

𝜇s = 𝜇s,ref (
𝑇

𝑇s,ref
)

𝜔

(2.33) 

𝜇s,ref =
15 √𝜋𝑚s𝑘𝑇s,ref

2𝜋𝑑s,ref
2 (5 − 2𝜔)(7 − 2𝜔)

(2.34) 

where 𝜇s,ref  is the reference viscosity, 𝑇s,ref  is the reference temperature, 𝜔  is the power law 

exponent, 𝑚s is the molecular/atomic mass and 𝑑s,ref is the reference diameter of species s.  

 The evaluation of the species thermal conductivities requires the separate calculation of the trans-

rotational and vibrational contributions from Eucken’s relation [56] using the following 

expressions 

𝜅s,tr = 𝜇s (
5

2
𝐶v,s

t + 𝐶v,s
r ) (2.35) 

𝜅s,v = 𝜇s𝐶v,s
v (2.36) 
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where 𝐶v,s
t  , 𝐶v,s

r , 𝐶v,s
v   are the species translational, rotational, and vibrational specific heats at 

constant volume. These specific heats are given by the following relations 

𝐶v,s
t =

3

2
𝑅s (2.37) 

𝐶v,s
r  = 𝑅s (2.38) 

𝐶v,s
v = 𝑅s

(
𝜃v,s

𝑇v,s
)

2

exp (
𝜃v,s

𝑇v,s
)

(exp (
𝜃v,s

𝑇v,s
) − 1)

2
(2.39) 

 The species constant pressure specific heats are calculated from the constant volume specific 

heats for the translational mode 𝐶p,s
t  and the trans-rotational mode 𝐶p,s

tr  as 

𝐶p,s
t = 𝐶v,s

t + 𝑅s (2.40) 

𝐶p,s
tr =  𝐶p,s

t +  𝐶v,s
r (2.41) 

 The mixture viscosity is calculated using Wilke’s mixing rule [64], and the mixture thermal 

conductivity is calculated using Mason’s mixing rule [84]. The expressions for the mixture 

viscosity and thermal conductivity are given by 

𝜇 = ∑
𝑋s𝜇s

𝜙s

Ns

s=1

(2.42) 

𝜅 = ∑
𝑋s𝜅s

𝜙s

Ns

s=1

(2.43) 

𝜙s = 𝑋s + ∑ 𝑋i [1 +  √
𝜇s

𝜇i
(

𝑀i

𝑀s
)

1
4

]

2

[√8 (1 +
𝑀s

𝑀i
)]

−1Ns

i=1

;   i ≠ s (2.44) 

where 𝜇s is the species viscosity, 𝜅s is the species conductivity, 𝑋𝑠 is the species mole fraction and 

𝜙𝑠 is a scaling factor. 

2.1.5 Slip and Jump Boundary Conditions 

 No-slip boundary conditions for temperature and velocity are no longer valid for Knudsen 

numbers (Kn) higher than 0.01 [9]. However, the domain of validity of the RANS equations can 
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be extended to Kn ~ 0.1 by using Maxwell’s velocity slip and Smoluchowski’s temperature jump 

boundary conditions [85] given by 

𝑽 = 𝑽w −
𝜆

𝜇

2 − 𝜎

𝜎
 𝛕slip −

3

4
 
(𝛾 − 1)𝑃𝑟

𝛾 𝑝 
 𝐪slip (2.45) 

𝑇 = 𝑇w +  
2 − 𝛼

𝛼
 

2𝛾

𝛾 + 1
 

𝜆

𝑃𝑟
 𝛁𝑇 ⋅ 𝐧 (2.46) 

where 𝑽w  and 𝑇w  are the prescribed wall velocity and temperature, 𝛕slip  and 𝐪slip  are the 

tangential components of the shear stress and heat flux vectors, respectively, 𝐧 is wall normal 

vector, 𝛾  is the specific heat ratio, 𝛼  and 𝜎  are the thermal and tangential momentum 

accommodation coefficients, respectively, with 𝜆 denoting the mean free path and 𝑃𝑟 the Prandtl 

number. 

2.1.6 Numerical Modeling 

 The governing equations can be rewritten in flux-divergence form as 

𝜕𝑸

𝜕𝑡
+ 𝜵 ∙ (𝑭A(𝑸) − 𝑭V(𝑸, 𝜵𝑸)) = 𝑺 (2.47) 

where 𝑸 is the vector of conservative variables, and 𝑭A and 𝑭V are the inviscid and viscous fluxes, 

respectively. The weak-Galerkin formulation of these equations can be obtained by multiplying 

both sides with a linear test function 𝑊𝑖 (chosen as the shape function) at node 𝑖 and integrating 

by parts [86]. This is expressed as  

∫ 𝑊i
𝛺

𝜕𝑸

𝜕𝑡
− ∫ 𝜵𝑊i ∙ (𝑭A − 𝑭V)

𝛺

+ ∫ 𝑊i𝒏 ∙ (𝑭A − 𝑭V)

𝜕𝛺

=  ∫ 𝑊i𝑺

𝛺

(2.48) 

where 𝛺 represents integration over the volume of the domain and 𝜕𝛺 represents integration over 

the boundary surface. Linear finite element shape functions are used in this work since higher-

order shape functions perform poorly when capturing discontinuities such as shocks, and 

anisotropic mesh adaptation is much simpler, more efficient, and easier to implement than higher-

order implementations. The shape functions are constructed by first choosing an interpolation 

polynomial of a certain order. While a polynomial of infinite order returns the exact solution, for 

practical reasons, a finite order must be chosen. Then the solution within an element is expressed 
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as the sum of the products of the nodal solutions and purely geometric quantities, namely the shape 

functions. 𝑸 and 𝑺 are interpolated using a linear shape function 𝑁j at node j and the inviscid flux 

𝑭A is discretized by the group representation [87]. The relation between the 𝑸, 𝑭A, 𝑺 fields, their 

nodal values, and shape functions 𝑁j is given by  

𝑸(𝑥, 𝑡) = ∑ 𝑁j(𝑥)𝑸j(𝑡)

NN

j=1

(2.49) 

𝑭A(𝑥, 𝑡) = ∑ 𝑁j(𝑥)𝑭j
A(𝑡)

NN

j=1

(2.50) 

𝑺(𝑥, 𝑡)  = ∑ 𝑁j(𝑥)𝑺j(𝑡)

NN

j=1

(2.51) 

where the summations are over all the nodes in the mesh. 

 Using Equations 2.49-2.51, the governing equations can be rewritten as 

∑ ∑ ∫ 𝑊i𝑁j

𝑑𝑄j

𝜕𝑡
𝑑𝑉

𝑉e j∈Kee∈Ei

− ∑ ∑ ∫ 𝑁j𝜵𝑊i ⋅ 𝑭j
A𝑑𝑉

𝑉e
j∈Kee∈Ei

+ ∑ ∫ 𝛁𝑊i ⋅ 𝑭V𝑑𝑉
𝑉e∈Ei

+ ∑ ∫ 𝑊i𝐧 ⋅ (𝑭A − 𝑭V)
𝐴

𝑑𝐴

e∈Fi

= ∑ ∑ ∫ 𝑊i𝑁j𝑆j𝑑𝑉
𝑉e j∈Kee∈Ei

(2.52)

 

where Ei and Fi are the sets of cells and facets connected to node i, Ke is the set of nodes of cell e, 

𝑉 is the volume of the domain, and 𝑉e is the volume of the cell e. 

 The viscous and inviscid fluxes are discretized with an edge-based finite element formulation 

that is less expensive than element-based formulations [88]. Gauss-Legendre quadrature is used to 

evaluate volume and surface integrals. The second and third terms in Equation 2.52 can be recast 

in an edge-based manner [89,90] as 

− ∑ ∑ ∫ 𝑁j𝜵𝑊i ⋅ 𝑭j
A𝑑𝑉

𝑉e
j∈Kee∈Ei

= ∑ 𝜼ij ⋅
𝑭i

A + 𝑭j
A

2
j∈Ki

− ∑ 𝝌ij

j∈Ki

⋅
𝑭j

A − 𝑭i
A

2
(2.53) 

𝜼ij = ∑ ∫ (𝑊i𝛁𝑁j − 𝑁j𝛁𝑊i) 𝑑𝑉
𝑉e

e∈Ei

(2.54) 
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𝝌ij = ∑ ∫ 𝑊i𝑁j𝐧 𝑑𝐴
𝐴e∈Ei

(2.55) 

where Ki  is the set of nodes connected to node i  through a cell, and 𝜼ij  and 𝝌ij  are edge 

coefficients that have to only be computed once rather than at each iteration. 

 The numerical discretization of the viscous fluxes requires the formulation of the inter-diffusional 

mass flux, inter-diffusional heat flux in both the total energy equation and the vibrational energy 

equation, heat fluxes of the trans-rotational and vibrational modes, stress tensor, and the inner 

product of the stress tensor and velocity. The edge-based assembly of the stress tensor is given by  

∑ ∫ 𝛁𝑊i ⋅ 𝝉𝑑𝑉
𝑉

= ∑[(𝜇ijtr(𝐝ij)𝐈 + (𝜇ij + 𝜆ij)𝐝ij
s + (𝜆ij − 𝜇ij)𝐝ij

A)(𝑽j − 𝑽i)]

j∈Kie∈Ei

(2.56) 

𝐝ij = ∑ ∫ (𝛁𝑊i𝛁𝑁j)𝑑𝑉
𝑉e

e∈Ei

(2.57) 

where the edge center quantities, 𝜇ij and 𝜆ij, are the averages of the node values, tr() is the trace 

operator, 𝐝ij
s  and 𝐝ij

A are the symmetric and anti-symmetric components of the edge coefficient 𝐝ij. 

The edge-based assembly of the other components of the viscous fluxes is performed similarly and 

these formulations, along with further details on the numerical modeling of HALO3D-NS can be 

found in [91]. 

2.1.7 Dirichlet Boundary Conditions 

 Using Dirichlet boundary conditions, flow variables such as pressure, temperatures, velocities, 

and mass fractions are imposed at the domain boundaries. For enforcing Dirichlet boundary 

conditions on conservative variables, the rows in the system matrix and the RHS that belong to the 

variable are zeroed, and the diagonal element takes a value of one. To enforce Dirichlet boundary 

conditions for primitive variables such as temperature, constraints expressed for temperature 

should be rewritten in terms of equivalent conservative variables. The system matrix for hybrid 

NS-DSMC simulations consists of entries from the entire mesh, where entries for the DSMC 

regions of the mesh are the imposed Dirichlet boundary conditions for flow variables discussed in 

the following Sections. Imposing a constant pressure at any boundary or DSMC node is equivalent 

to imposing ∆𝑝 = 0. In conservative variables form, this can be written as 
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𝑽 ∙ 𝑽

2
∆𝜌 − 𝑽 ∙ ∆(𝜌𝑽) + ∆𝑒 = 0 (2.58) 

and is imposed by placing this expression in the system matrix as 

[

𝑽 ∙ 𝑽

2
−𝑽 1

. . .

. . .

] [
∆𝜌

∆(𝜌𝑽)
∆𝑒

] = [
0
.
.
] (2.59) 

 A given trans-rotational temperature can be imposed at any node by imposing ∆𝑇tr  = 0 which 

in conservative variables form is given by 

(
𝑽 ∙ 𝑽

2
− 𝑒int) ∆𝜌 − 𝑽 ∙ ∆(𝜌𝑽) + ∆𝑒 = 0 (2.60) 

 Imposing the vibrational temperature is done similarly. Imposing constant mass fractions is done 

by imposing ∆𝑌s  = 0. 

(1 − 𝑌s)∆(𝜌𝑌s) − 𝑌s ∑ ∆(𝜌𝑌i)

i≠s

 = 0 (2.61) 

2.2 HALO3D-DSMC 

 This Section highlights the mathematical expressions used and key functionalities present in 

HALO3D-DSMC, which is an unstructured mesh DSMC code capable of accounting for 

thermochemical non-equilibrium and employing advanced sub-cell methods. Parallelization is 

achieved by conducting the sampling stage over a user-defined number of independent ensembles. 

The code is written in a modular fashion within the HALO3D ensemble, making it possible to 

share several existing features such as the data read/write routines, data structures, graphical user 

interface, convergence monitors, solution visualizers, and mesh editors. These functionalities have 

been developed by former CFD Lab students and experts and thanks to their efforts, the present 

work was accelerated. A description of a single DSMC iteration has been provided in Chapter 1, 

and this has been illustrated in Fig. 2.3. While this Section covers most DSMC methodologies, 

some DSMC features function differently during hybrid simulations, and these are also discussed 

here. 
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Fig. 2.3 Algorithm of HALO3D-DSMC 

2.2.1 Data Structure 

 A combination of static and object-oriented data is chosen in such a way as to facilitate further 

code extensions and minimize computational cost. The DSMC particle information is stored in 

dynamic arrays, while each module composing the collision routine is defined as a derived type. 

Boundary conditions, macroscopic property estimation, mesh populators, and element occupancy 

are implemented like the collision routine, alongside the use of a holder as described in [92]. 

2.2.2 Background NS-DSMC Mesh 

 The grid module used by HALO3D-NS is preserved for HALO3D-DSMC and HALO3D-

HYBRID, with the addition of cell-facet-node connectivity to the existing cell-node connectivity. 

A single unstructured background mesh is utilized in the computation for both the continuum and 

rarefied regions in hybrid and full DSMC simulations. The cell-facet-node connectivity 

information is used in particle tracking, computations at the boundaries, file output, various sub-

cell methods, and buffer creation. These connectivity arrays are illustrated in Fig. 2.4 for a generic 

unstructured mesh where each connectivity array has an associated array of pointers. Each pointer 
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array element points to the initial position of the segment of nodes/cells/facets (colored differently) 

that are connected to the mesh object of the connectivity array. A zero in the facet-cell connectivity 

array implies that one out of the two cells connected to the facet does not exist, i.e., the facet is a 

boundary facet. 

 

Fig. 2.4 Mesh connectivity information required by DSMC and hybrid solvers  

2.2.3 Mesh Population 

 Particles are created in the mesh at the beginning of a DSMC simulation and are inserted into the 

domain at every time step through the inlet patches. During the initialization of the DSMC 

calculation for the first hybrid cycle, particles are created once in the DSMC and inner buffer 

regions. Particles in the outer buffer are created anew at every DSMC inner iteration. The particle 

velocities are calculated from a Maxwellian velocity distribution, shown below, offset by the local 

NS velocity. 

𝑓o(𝑐) = √(
𝑚

2𝜋𝑘𝑇t
)

3

exp (−
𝑚𝑐2

2𝑘𝑇t
)  (2.62) 
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 While it is not considered in the present work, the Chapman-Enskog distribution, 𝑓CE(𝑐) ,  

provided below may prove useful in initializing particles for complex flows [53,60]. 

𝑓CE(𝑐) = 𝑓o(𝑐) [
1 + (�̂�t ∙ 𝛽𝒄) (

2

5
𝛽2𝑐2 − 1)

−𝛽2 (2(�̂�xy𝑐x𝑐y + �̂�xz𝑐x𝑐𝑧 + �̂�zy𝑐𝑧𝑐y) + (�̂�xx𝑐x
2 + �̂�yy𝑐y

2 + �̂�zz𝑐z
2))

] (2.63) 

The expressions for 𝛽, the non-dimensional heat flux �̂�t, and the non-dimensional shear stress �̂�ij 

are 

𝛽 = √
𝑚

2𝑘𝑇t
           �̂�t =

2𝒒t𝛽

𝑝
          �̂�ij =

𝜏ij

𝑝
(2.64) 

 The rotational and vibrational energies of newly created particles are assigned based on the 

following expressions [75]. 

𝑒r = − ln(𝑅) 𝑘𝑇r  (2.65) 

𝑖v = ⌊−
ln(𝑅) 𝑇v

𝜃v
⌋  (2.66) 

𝑒v = 𝑖v𝑘𝜃v  (2.67) 

Equations 2.66 and 2.67 state the vibrational energy level and vibrational energy for a given 

vibrational mode at a characteristic vibrational temperature 𝜃v , and 𝑅  is a random number 

distributed between 0 and 1. The degeneracy 𝑔v and modal vibrational energies 𝑒v are needed to 

calculate the total vibrational energy 𝑒v
tot as shown below. 

𝑒v
tot = ∑ 𝑔v(𝑚) 𝑒v

Nm

m=1

(𝑚) (2.68) 

To initialize particles in full DSMC simulations, the velocities and modal temperatures used are 

those of the freestream or obtained from a restart file. 

  For generating the particle positions, HALO3D-DSMC leverages the finite element 

functionalities of HALO3D to seed particles in primitive space and then transform their 
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coordinates to physical space using shape functions. The expression for the particle coordinates in 

physical space is 

𝒙 = ∑  𝒙ĵ𝑁j(𝝃)

j

  (2.69) 

where 𝒙 and 𝝃 represent the position of a particle in physical and primitive spaces, respectively, 

𝒙ĵ denotes the nodal coordinates of the cell in physical space, and 𝑁j is the nodal shape function 

for node j at a position 𝝃. 

2.2.4 Particle Tracking 

 Unlike Cartesian meshes, where particle tracking is trivial, unstructured mesh methods require a 

facet-intersection algorithm. Macpherson et al. proposed a robust 3D algorithm valid for arbitrary 

polyhedral meshes [93] that has been found to be suitable for this work after a battery of tests 

ensuring watertightness. Here, two non-dimensional parameters called “move-fractions” that are 

given by the following expressions 

𝜆𝑎 =
(𝑪f − 𝒂 ) ∙ 𝑺

(𝒃 − 𝒂 ) ∙ 𝑺
 (2.70) 

𝜆𝑐 =
(𝑪f − 𝑪c ) ∙ 𝑺

(𝒃 − 𝑪c ) ∙ 𝑺
 (2.71) 

are used to evaluate facets as potential intersection candidates with the particle trajectory, where 

𝑪f is the face center, 𝑺 is the face normal, 𝑪c is the cell center, 𝒂 is the initial position and 𝒃 is the 

final position of the particle. Snapshots of the particle cloud are presented in Fig. 2.5, where a 

million particles are seeded in four geometries: a hexahedron, a hexahedron with a slightly warped 

facet, a structured mesh of a cube geometry and an unstructured mesh of a star shaped geometry. 

DSMC computations are performed for 100,000 time steps, and no particle loss events are recorded 

in any of the cases, surprisingly, even for the slightly warped hexahedron. 
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(a) Generic hexahedron (b) Hexahedron with a warped facet 

 

 

 

(c) Hexahedral discretization (d) Tetrahedral discretization 

Fig. 2.5 Particles tracked in different meshes and colored based on their x-velocity 

2.2.5 Collision Routine 

 Bird’s No-Time-Counter (NTC) scheme [75,94], requiring a minimum of 20 particles per cell for 

statistical accuracy, is employed to evaluate an a priori number of collision candidates (𝑁coll) in 

each cell. This number can be calculated as 
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𝑁coll =
𝑁�̅�𝑊f(𝜎T𝑐r)maxΔ𝑡

2 𝑉el

 (2.72) 

where 𝑁 is the number of particles in an element, �̅� is the time averaged value of the number 

of particles in an element, 𝑊f is the weight of each computational particle, 𝜎T is the total collision 

cross-section, 𝑐r is the relative velocity of the particle pair, (𝜎T𝑐r)max is the maximum value of 

their products, Δ𝑡 is the time step, and 𝑉el is the volume of the collision cell. The total collision 

cross-section is calculated from the following expression 

𝜎T = 𝜋𝑑ref
2 (

2𝑘𝑇ref

𝑚r𝑐r
2

)
𝜔−

1
2

÷ Γ (
5

2
− 𝜔) (2.73) 

where 𝑑ref is the average reference diameter of the species pair, 𝑇ref is the average of the reference 

temperatures of the two species, 𝑚r is the reduced mass of the species pair and 𝜔 is the average 

temperature exponent of viscosity. Once the number of particle pairs to be tested for collisions is 

established, particles are selected based on the sub-cell methods being employed [95] and are 

evaluated for elastic collisions (addressed in this Section) and inelastic collisions (explained in the 

following Sections). For each selected particle pair, a probability ratio given by  

𝑃

𝑃max
=

𝜎T𝑐r

(𝜎T𝑐r)max
 (2.74) 

is calculated and evaluated against a random number in an acceptance-rejection routine to 

determine if the particle pair is to undergo a collision or not. 

 Binary collision dynamics are handled by the VHS model [9] to calculate post-collision scattering 

angles and relative velocities. The cross-section in the VHS model is taken to be a function of the 

relative translational energy. First, the magnitude of the post-collision relative velocity 𝐶R
post

 is 

calculated based on the pre-collision velocities of the particles using the expression below.  

𝐶R
post

= |𝑪1
post

− 𝑪2
post

| = |𝑪1
pre

− 𝑪2
pre

| = 𝐶R
pre (2.75) 

 Following this, the three components of the velocity of the center of mass (which, along with the 

relative velocity, is unchanged post-collision) of the two particles, 𝐶CM, is calculated from the pre-

collision velocities 𝐶1
pre

 and 𝐶2
pre

 and species masses 𝑚1 and 𝑚2 as 
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𝐶CM,x,y,z =
𝑚1𝐶1,x,y,z

pre
+ 𝑚2𝐶2,x,y,z

pre

𝑚1 + 𝑚2

 (2.76) 

 The scattering angles 𝛼 and 𝛽 are obtained using two different random numbers denoted by 𝑅 in 

the following relations  

cos(𝛽) = 2𝑅 − 1 (2.77) 

𝛼 = 2𝜋𝑅 (2.78) 

These angles, along with the magnitude of the post-collision relative velocity can be used to 

calculate the post-collision relative velocity vector, 𝑪R
post

, given by 

𝑪R
post

= 𝐶R
post

cos(𝛽) �̂� + 𝐶R
post

sin(𝛽) cos(𝛼) �̂� + 𝐶R
post

sin(𝛽) sin(𝛼) �̂� (2.79) 

Finally, the post-collision velocities 𝐶1
𝑝𝑜𝑠𝑡

 and 𝐶2
𝑝𝑜𝑠𝑡

 can be calculated and assigned to the particle 

pair using the equations below. 

𝐶1,x,y,z
post

= 𝐶CM,x,y,z +
𝑚2

𝑚1 + 𝑚2
𝐶R,x,y,z

post
 (2.80) 

𝐶2,x,y,z
post

= 𝐶CM,x,y,z −
𝑚1

𝑚1 + 𝑚2
𝐶R,x,y,z

post
 (2.81) 

2.2.6 Sampling Routine 

 Cell-based macroscopic averages are calculated for each sampling cell by utilizing the 

microscopic particle information of all particles within the sampling cell. Expressions for the cell-

based density, velocity, pressure, shear, temperature, and heat flux as obtained from [9,96] are 

discussed in this Section. The cell-based quantities presented here are for one sampling time step. 

The quantities should then be averaged either in time or through independent ensembles. The 

number density 𝑛 can be obtained from the number of particles 𝑁P within a cell of volume 𝑉cell 

and the number of real molecules 𝑊f  approximated by one computational particle using the 

following expression. 

𝑛 =
𝑊f 𝑁P

𝑉cell
 (2.82) 
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The density is then computed by multiplying the number density with the molecular mass 𝑚 as 

shown below. For a multispecies gas, each species' molecular mass is used to evaluate the mixture 

density. 

𝜌 = 𝑛𝑚 (2.83) 

 The macroscopic velocity vector 𝒄0 is obtained by averaging the instantaneous particle velocities 

𝒄i of all particles found within the cell. The velocity 𝒄′ of a computational particle relative to the 

macroscopic velocity is called the “thermal / peculiar / random” velocity. The expressions for these 

velocities can be written as 

𝒄0 =
∑ 𝒄i

NP
p=1

𝑁P

 (2.84) 

𝒄′ = 𝒄i − 𝒄0 (2.85) 

 The components of the pressure tensor are defined based on the peculiar velocity components 

and the scalar pressure, 𝑝, is the average of the three normal components of the pressure tensor as 

shown in the following equations. 

𝒑ij = 𝜌𝒄i
′𝒄j

′̅̅ ̅̅ ̅ (2.86) 

𝑝 =
𝜌( 𝑐1

′2̅̅ ̅̅ + 𝑐2
′2̅̅ ̅̅ + 𝑐3

′2̅̅ ̅̅ )

3
 (2.87) 

 The components of the viscous stress tensor are defined by 

𝜏ij = −(𝜌𝒄i
′𝒄j

′̅̅ ̅̅ ̅ − 𝛿ij𝑝) (2.88) 

where 𝛿ij is the Kronecker delta which has a value of 1 if i = j and a value of 0 if i ≠ j.  

 The average specific kinetic energy of the thermal velocity of a computational particle is given 

by 

𝑒t =
𝑐1

′2̅̅ ̅̅ + 𝑐2
′2̅̅ ̅̅ + 𝑐3

′2̅̅ ̅̅

2
 (2.89) 

Equation 2.89 can be substituted into Equation 2.87 to give the relation between pressure and the 

translational energy. This relation can be compared to the ideal gas law shown below. 

𝑝 =
2𝜌𝑒t

3
 (2.90) 
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𝑝 = 𝑛𝑘𝑇t (2.91) 

 When the pressure in the ideal gas law employing the translational temperature presented in 

Equation 2.91 is substituted into Equation 2.87, the translational temperature can be defined in 

terms of the other quantities through the following expression. 

𝑇t =
𝑚(𝑐1

′2̅̅ ̅̅ + 𝑐2
′2̅̅ ̅̅ + 𝑐3

′2̅̅ ̅̅ )

3𝑘
 (2.92) 

 Among the gases considered in this thesis, monoatomic species such as Argon possess only 

translational and electronic energy modes, while diatomic molecules such as N2, O2, and NO can 

store energy in rotational and vibrational modes as well. The electronic energy mode is not 

considered in this thesis. To calculate the rotational temperature at any cell, the relation used is 

𝑇r =
2 ∑ 𝑒r,i

Np

i=1

𝑘 ∑ 𝜁r,i
Np

i=1

 (2.93) 

where the microscopic rotational energies, 𝑒r,i and the degrees of freedom 𝜁r,i are required in the 

calculation. 

 The vibrational energy of any species is distributed across different vibrational energy modes, as 

will be discussed in the following Section on thermal non-equilibrium. Estimating the cell-based 

vibrational temperature requires summations over the vibrational modes and the number of species. 

First, a mean vibrational energy level 𝑖v̅,s,m is computed from the relation below by calculating a 

sum of the vibrational energies 𝑒v,m,i for a given vibrational mode where 𝑁p is the number of 

particles of the species s found in the cell while computing the summation. 

𝑖v̅,s,m =
∑ 𝑒v,m,i

𝑁p

i=1

𝑘𝜃v𝑁p
  (2.94) 

Following this, the modal vibrational degrees of freedom, 𝜁v,s,m for species s are calculated. The 

modal vibrational temperatures, 𝑇v,s,m, are also calculated using the mean vibrational energy level 

as 

𝜁v,s,m = 2𝑖v̅,s,m ln (1 +
1

𝑖v̅,s,m
) (2.95) 
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𝑇v,s,m =
𝜃v,s

ln (1 +
1

𝑖v̅,s,m
)

 (2.96) 

 The species-based vibrational degrees of freedom, 𝜁v,s , and the species-based vibrational 

temperature, 𝑇v,s, can now be calculated by 

𝜁v,s = ∑ 𝜁v,s,m

𝑁m

m=1

(2.97) 

𝑇v,s =
∑ 𝜁v,s,m𝑇v,s,m

𝑁m
m=1

𝜁v,s

 (2.98) 

 Finally, the vibrational degrees of freedom, 𝜁v, and vibrational temperature of the mixture, 𝑇v, 

can be calculated as 

𝜁v =
∑ 𝑛s𝜁v,s

𝑁s
s=1

∑ 𝑛s
𝑁s
s=1

(2.99) 

𝑇v =
∑ 𝑛s𝑇v,s

𝑁s
s=1

∑ 𝑛s
𝑁s
s=1

(2.100) 

where 𝑛s is the number density of species s. The overall temperature can also be calculated from 

the mixture translational, rotational, vibrational temperatures and degrees of freedom as 

𝑇overall =
3𝑇t + 𝜁r𝑇r + 𝜁v𝑇v

3 + 𝜁r + 𝜁v
 (2.101) 

 The heat flux and shear stress at the wall are calculated from microscopic information of the 

particles striking the wall. The total energy a particle possesses is the sum of its translational and 

internal energies as given below. 

𝑒tot = 𝑒t + 𝑒r + 𝑒v
tot (2.102) 

This quantity is evaluated pre- and post-collision and is summed over all particles striking the 

boundary to determine the heat flux to the boundary facet of area 𝐴el  using the following 

expression. 

𝑞el = ∑
𝑊f(𝑒tot,i

pre
− 𝑒tot,i

post
)

𝐴el∆𝑡

𝑁p

i=1

 (2.103) 
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 The particle's momentum, 𝒑mom, is computed as a product of the mass and velocity of the particle 

and the pre- and post-collision values of the momentum are used to determine the shear stress 𝝉 as 

𝒑mom = 𝑚𝒄 (2.104) 

𝝉 = (∑
𝑊f(𝒑mom

pre
− 𝒑mom

post
)

𝐴el∆𝑡

𝑁p

i=1

) ∙ �̂� (2.105) 

In the above equation, �̂� is a unit vector tangential to the surface. If the facet normal vector were 

used instead of the tangential vector, the resulting computation would yield pressure at the surface.  

 HALO3D-NS and OptiGrid operate on nodal solution vectors, in contrast with the cell-based 

macroscopic data calculated by DSMC. To convert the cell-based DSMC data to a node-based 

format for information coupling between the NS and DSMC zones, an inverse distance-weighted 

interpolation method is used, as illustrated in Fig. 2.6. The expression for a scalar 𝜙 at node i is 

given by 

𝜙i =
∑ ( 𝜙j𝛼ij ) 

𝑁c
j=1

∑ 𝛼ij 
𝑁c

j=1

 (2.106) 

in which 𝛼ij is a weight related to the reciprocal of the distance between node i and the cell-center 

of cell j, where j represents any of the 𝑁c cells surrounding node i, and 𝜙j is the cell-center value 

of that scalar. 

 

Fig. 2.6 Illustration of the inverse distance-weighted interpolation in HALO3D-DSMC’s 

sampling routine 
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2.2.7 Thermal Non-Equilibrium Modeling 

 Post-collision rotational and vibrational energies are sampled from equilibrium distribution 

functions parameterized on the collision energy [9] according to the standard (rotational mode) 

and quantum (vibrational mode) [75] applications of the Larsen-Borgnakke (LB) procedure [97]. 

This thesis employs a constant rotational collision number 𝑍r = 5  and a constant vibrational 

collision number 𝑍v = 50  in all the DSMC and hybrid simulations involving thermal non-

equilibrium. This means that a particle is accepted for internal energy relaxation once every 5/50 

collisions on average for the rotational/vibrational modes, respectively. That is, rotational and 

vibrational relaxation occur if 

1

𝑍r
> 𝑅   ;    

1

𝑍v
> 𝑅 (2.107) 

where 𝑅 represents the random numbers that are generated for this evaluation. If a particle is 

accepted for rotational or vibrational relaxation during a collisional event, it is assigned a new 

rotational or vibrational energy. Then, the translational energy of the pair is decreased to 

accommodate this change in internal energy, thus conserving energy. From this corrected 

translational energy, a new post-collision relative velocity is computed as 

𝐶R
post

= √
2𝑒t

𝑚r

 (2.108) 

This relative velocity is used to determine the post-collision velocity vectors of the two colliding 

species.  

 To calculate the post-collision rotational energy of the particle, first, the relative translational 

energy is calculated as  

𝑒t =
𝑚r(𝑪R ∙ 𝑪R)

2
 (2.109) 

Then the collision energy is calculated as a sum of the relative translational and pre-collision 

rotational energies. 

𝑒coll = 𝑒t + 𝑒r (2.110) 



41 

 

The post-collision rotational energy can be calculated next by generating a random number 𝑅 and 

using the following expression. 

𝑒r
post

= 𝑒coll (1 − 𝑅
1

2.5−𝜔) (2.111) 

 The vibrational levels of each particle are stored rather than the vibrational energy, and the total 

vibrational temperature of the gas is calculated during the sampling step, as discussed before. The 

levels are distributed according to the harmonic oscillator model, where the levels possess equal 

energy steps equal to 𝑘𝜃v. Calculation of the post-collision vibrational energy level of each mode 

of a particle requires the estimation of the collision energy firstly as a sum of the relative 

translational and pre-collision modal vibrational energies as  

𝑒coll = 𝑒t + 𝑖v𝑘𝜃v (2.112) 

Next, the post-collision vibrational energy level is calculated by generating a random number 𝑅, 

distributed between 0 and the maximum possible energy level, 𝑖max given by 

𝑖v
post

= 𝑅 (2.113) 

𝑖max = ⌊
𝑒coll

𝑘𝜃v
⌋  (2.114) 

The Larsen-Borgnakke probability ratio is then calculated as  

𝑃

𝑃max
= (1 −  

𝑖v
post

𝑘𝜃v

𝑒coll
)

1.5−𝜔

(2.115) 

An acceptance-rejection procedure is executed with this ratio against a random number while 

recalculating both the ratio and 𝑖v
post

 until acceptance. 

2.2.8 Chemical Non-Equilibrium Modeling 

 The current work models dissociation and exchange reactions with the Quantum-Kinetic (QK) 

method [75], which relies on microscopic information such as the collision energy, vibrational 

levels, and molecular reaction energies to model chemical reactions. The QK model assumes that 

the gas is vibrationally excited. Two particles accepted for a collision are first tested to determine 

if any reactions could occur between them. If this fails, they are evaluated for any possible internal 
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energy exchange. If this too fails, they undergo an elastic collision. A generic dissociation reaction 

can be written as 

𝐴𝐵 + 𝐶 → 𝐴 + 𝐵 + 𝐶 (2.116) 

where 𝐴 and 𝐵 are atomic species, 𝐴𝐵 is a molecular species and 𝐶 is either an atom or a molecule. 

To test a particle for dissociation, the collision energy is first computed from Equation 2.112 along 

with a maximum possible energy level from Equation 2.114. If any vibrational mode satisfies the 

following condition for dissociation, 

𝑖max >
𝜃d

𝜃v
  (2.117) 

𝜃d =
ℎr

𝑘
  (2.118) 

then the reaction probability is set to 1 (dissociation is guaranteed to occur), and if none of the 

vibrational modes satisfy the condition, then no dissociation reaction is conducted. 𝜃d  is the 

characteristic dissociation temperature and ℎr is the heat of reaction. 

 Once a dissociation reaction has been selected to occur, the heat of the reaction is subtracted from 

the collision energy to produce an updated collision energy 𝑒coll
∗  from which a post-collision 

relative velocity for the reactants can be determined as 

𝐶R,R
post

= √
2𝑒coll

∗

𝑚r.R

 (2.119) 

where 𝑚r.R is the reduced mass of the reactants. The post-collision velocities of the reactants are 

determined with this relative velocity, in the same manner described previously. 

 Following this, a new particle representing one newly created product species is added to the 

particle cloud. The remainder of the internal energy, 𝑒left, of the particle undergoing dissociation 

is used to calculate the post-reaction relative velocity of the products as 

𝐶R,P
post

= √
2𝑒left

𝑚r.P

 (2.120) 
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where 𝑚r.P is the reduced mass of the products, thus ensuring energy conservation. Generating the 

other product species does not require the creation of another new particle since the particle 

properties of one of the reactants can be overwritten. Finally, the post-collision velocities of the 

new product species are calculated as discussed in Section 2.2.5 using the post-reaction relative 

velocities of the products and setting the center of mass velocity to be equal to the velocity of the 

dissociating molecule. 

 A generic exchange reaction can be written as 

𝐴𝐵 + 𝐶 → 𝐴𝐶 + 𝐵 (2.121) 

where 𝐴𝐵 and 𝐴𝐶 are molecular species and 𝐴, 𝐵 and 𝐶 are atomic species. To test a particle pair 

for an exchange reaction, the “collision temperature”, 𝑇coll, is first calculated using the relative 

velocity of the colliding pair as 

𝑇coll =
𝑚r𝐶R

2

2𝑘 (
5
2 − 𝜔)

 (2.122) 

 Following this, the collision energy is calculated as in Equation 2.112, employing the modal 

vibrational energies as before. A constant, 𝑎′, is required to evaluate the activation energy and is 

computed as 

𝑎′ = 𝑎 [
(

5
2 − 𝜔)

𝑏

Γ (
5
2 − 𝜔)

Γ (
5
2 − 𝜔 + 𝑏)

] (2.123) 

where the two constants 𝑎 and 𝑏 are obtained from [63]. The modified activation energy for the 

exchange reaction [63] is given by 

𝑒act = 𝑎′|ℎr|  (
𝑇coll

𝑇ref
)

𝑏

 (2.124) 

where ℎr is the heat of the reaction and if 𝑒coll > 𝑒act, the activation energy is used to calculate 

the DSMC reaction probability for an exchange reaction as 
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𝑃exch =
(1 −

𝑒act

𝑒coll
)

3
2

−𝜔

∑ (1 −
𝑖v𝑘𝜃v

𝑒coll
)

3
2

−𝜔
𝑖max

𝑖v=0

 (2.125) 

𝑖max in the above expression is computed in the same manner as before, from Equation 2.114. 

 Once the reaction probabilities have been determined, they are evaluated against a random 

number to determine which reaction is accepted. When an exchange reaction is selected to occur, 

the heat of the reaction is subtracted from the collision energy to produce the updated collision 

energy, 𝑒coll
∗ . Following this, the two reactant particles are overwritten by the product species and 

initialized to have zero internal energies. Then, the internal energies of the molecular product are 

redistributed in the same manner described in Section 2.2.7 while using 𝑒coll
∗  as the available 

collision energy. The post-collision relative velocity is then calculated as  

𝐶R
post

= √
2𝑒coll

∗

𝑚r.P

 (2.126) 

where 𝑚r.P is the reduced mass of the products. The center of mass velocity is calculated as before, 

from Equation 2.76. These two velocities are then finally used to determine the post-collision 

velocities of the products in the same way as discussed in Section 2.2.5. 

2.2.9 Boundaries 

 There are three main types of boundaries for DSMC: the inlet, wall, and outlet patches, which 

are usually discretized with quadrilateral or triangular facets. At inlets, particles are first generated 

with random positions in the primitive space of the quadrilateral or triangle. The positions are then 

transformed to real space using 2D finite element shape functions similar to the mesh population 

routine. The number of particles to be inserted is derived from the equilibrium number flux of 

particles passing through the inlet facet and is given by 

𝑁 =
𝑛

2𝛽√𝜋
[exp(−𝐶in

2 𝛽2 cos2 𝜃) + √𝜋𝐶in𝛽 cos 𝜃(1 + 𝑒𝑟𝑓(𝐶in𝛽 𝑐𝑜𝑠 𝜃))]  (2.127) 

𝛽 = √
𝑚

2𝑘𝑇in
  (2.128) 
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where the subscript “in” refers to the values at the inlet. 𝜃 is the angle between the inlet velocity 

vector, 𝐶in, and the inlet facet normal. Each particle inserted into the domain is assigned a velocity 

based on a Maxwellian velocity distribution function. The rotational and vibrational energies of 

the particle are set from Equations 2.65-2.67. Particles that intersect outlet facets are removed from 

the particle cloud. 

 The two types of walls available in HALO3D-DSMC are specular and diffuse walls. Specular 

walls reflect incoming particles at an angle of reflection equal to the angle of incidence; that is, the 

particle velocity component normal to the surface is reversed. For diffuse walls, all directions of 

reflection have an equal probability. The particle post-collision velocity magnitude is assigned 

from a Maxwellian velocity distribution function parameterized by the wall temperature. The 

rotational and vibrational energies of the particle are assigned from Equations 2.65-2.67, where 

the temperatures used are that of the wall. It is discussed in [96] that materials possess a complex 

surface structure at the micro to the nanoscale, much smaller than a DSMC surface cell, where 

particles undergo several collisions with the microstructure surface before returning to the bulk 

flow. Therefore, the assumptions of diffuse reflections of a random post-collision scattering angle 

and thermal accommodation to the surface temperature should be physically valid.  

 As the Knudsen number increases, the gas need not be equilibrated with the diffuse wall, and 

velocity slip and temperature jump occur. Velocity slip at a diffuse wall is given by [75] 

𝑉slip =
∑ (

𝑚𝑣
|𝑢|

)

∑
𝑚
|𝑢|

  (2.129) 

where 𝑣 is the velocity component tangential to the wall and 𝑢 is the velocity component normal 

to the wall. The temperature jump can be calculated as [75] 

𝑇t,jump =
∑ (

𝑚‖𝑪‖
|𝑢|

) − ∑ (
𝑚
|𝑢|

) 𝑉slip
2

3𝑘 ∑
1

|𝑢|

− 𝑇t,wall (2.130) 

where the slip velocity is used in the computations. The summations in the velocity slip and 

temperature jump expressions are taken over the incident and reflected particles. 
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2.2.10 Sub-cells 

 Conceptually, sub-cells are divisions of collision cells into smaller volumes to further localize 

particles. Unless otherwise specified, the present work employs the Transient Adaptive Sub-cell 

(TAS) [98] technique and the Nearest Neighbour (NN) [95] method (with a switch to TAS when 

there are more than 30 particles in a collision cell) to accommodate cells larger than the local mfp. 

Various sub-cell methods have been implemented within HALO3D-DSMC and illustrations of the 

ones used in this thesis have been presented in Fig. 2.7. In each of the four methods illustrated, a 

representative pair of particles that have been accepted for a collision are also shown in green. Fig. 

2.7a shows a schematic when no sub-cell methods are used, where there is a possibility of choosing 

two particles from opposite ends of the collision cell. As expected, this method is the least accurate. 

Fig. 2.7b illustrates the fixed sub-cell method with two sub-cells in each direction where the 

number of sub-cells in each direction can be specified by the user. All cells in the mesh are then 

divided into the same number of sub-cells. For this method, particle pairs are chosen from within 

the same sub-cell, which is more accurate than not using any sub-cells. Fig. 2.7c shows the 

Transient Adaptive Sub-cell method where an automatic discretization of the collision cell is 

performed in such a way as to guarantee a user-specified number of particles in each sub-cell. The 

number of sub-cells can vary from collision cell to collision cell depending on the cell volume and 

number of particles within the cell. This method is more sophisticated than setting a fixed number 

of sub-cells to every cell while being computationally more expensive. Fig. 2.7d shows the Nearest 

Neighbour method that scans each particle in the current collision cell and surrounding collision 

cells to find the nearest neighbor to a chosen collision candidate. One of the ill-effects of 

consistently choosing nearby particles as collision candidates is that the chances of a fast-moving, 

farther away particle colliding with a collision candidate are nullified, whereas in reality, these 

probabilities are nonzero. 
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(a) No Sub-cell (b) Fixed Sub-cell (2 × 2) 

  

(c) Transient Adaptive Sub-cell (d) Nearest Neighbour 

Fig. 2.7 Sub-cell methods employed in the current work 

2.3 HALO3D-HYBRID 

 In the present study, the coupling of the HALO3D-NS and HALO3D-DSMC solvers is 

performed by treating each solver as an independent module and making minor modifications to 

the solution algorithm of the HALO3D ensemble. The NS and DSMC solvers share some aspects 

of code within HALO3D, such as the same mesh modules, boundary objects, and solution 

assembly routines which greatly simplifies the generation of buffer regions, intercommunication 

between the NS and DSMC solvers, solution representation, and file input-output. The algorithm 

of HALO3D-HYBRID has been provided in Fig. 2.8, where a hybrid simulation begins with the 

calculation of a full NS solution, using which regions of continuum breakdown are identified and 

assigned as DSMC zones. Once particles are seeded in the buffer and DSMC regions at the 

beginning of the first DSMC step, they are advected for a fixed time step. Any particles that flow 

into the NS regions and in the outer buffer are deleted after the tracking step. The collision routine 

and sampling routines are then performed for DSMC cells only. The DSMC and NS solvers are 

then run one after the other. Each solver provides boundary conditions for the other until a 
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converged solution is obtained, or a user-specified number of hybrid iterations has been reached. 

The parameters monitored for the establishment of a statistically steady-state in DSMC 

computations are the total number of particles, and the total kinetic, rotational and vibrational 

energies. Once all these parameters reach constant values with each successive iteration, the 

sampling stage begins. For NS computations, the solution is considered to be converged once the 

residuals reach threshold values. This loosely coupled approach uses independent time steps for 

the NS and DSMC modules and allows the two modules to be run sequentially through multiple 

coupling cycles. The HALO3D-NS solver uses an implicit time integration scheme allowing much 

larger NS time steps than the DSMC solver. It also has less sensitivity to the statistical scatter in 

the DSMC regions of hybrid simulations; therefore, the statistical scatter does not affect the hybrid 

solution stability. Furthermore, the number of solution exchanges between the DSMC and NS 

solvers at the interface is significantly lesser than a fully coupled strategy. These procedures result 

in a hybrid framework that is faster than full DSMC simulations for flows of varying degrees of 

thermochemical complexity. In the following paragraphs, the main functionalities of HALO3D-

HYBRID are described. 

                

Fig. 2.8 Algorithm of HALO3D-HYBRID 
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2.3.1 Masks 

 Masks for two mesh elements: cells and nodes, are built by flagging them in Boolean arrays to 

demarcate DSMC, NS, and buffer regions. The breakdown parameter (𝐾𝑛max) is computed from 

the distribution of 𝐾𝑛GLL−Q for different scalars as explained in Section 1.2. After the initial CFD 

solution is computed and the breakdown parameter field is obtained, a cell mask is built based on 

the threshold value of the breakdown parameter. If a cell has a breakdown parameter value less 

than the threshold, it is flagged as an NS cell, and otherwise, it is flagged as a DSMC cell.  A 

threshold value of 0.05 is usually selected as recommended in [21].  

 The cell mask is used to create other masks, buffers and during file write operations. Two other 

cell-based masks are computed: a mesh population mask that is true in the DSMC and inner buffer 

regions and an outer buffer mask that is true in the outer buffer region. The mesh population mask 

is supplied as an input to the particle creation routine to populate corresponding regions once at 

the beginning of the DSMC loop. The outer buffer mask is supplied as an input to the same particle 

creation routine to populate only the outer buffer region at every DSMC iteration. Node masks are 

built using the cell mask by flagging all the nodes of DSMC cells as DSMC nodes. The nodes that 

comprise the NS and DSMC interface are also flagged as DSMC nodes. These node masks are 

required during the assembly of the NS and DSMC solutions on global solution vectors. 

2.3.2 Buffers 

 The inner and outer buffer regions can contain as many layers of cells as specified by the user. 

For all the simulations presented in this paper, both regions contain three layers unless otherwise 

specified. To build each layer of the buffer, “seed” locations from the previous layer are required, 

which can be cells/facets/nodes. Then, mesh connectivity information is used to form a layer 

around these seed locations. Since the buffer layers are supposed to expand outwards from the NS-

DSMC boundary, this boundary can be used as the seed for the first layer. In practice, for complex 

2D and 3D flows, patches of inner buffer layers might arise that are not connected to any cells 

belonging to the outer buffer since the patches are not big enough. These patches can have 

detrimental effects on the flow solution vectors and require treatment. The algorithm followed to 

build the buffers, and a method that cleans patches of isolated inner buffer cells is presented below. 
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1. Build the NS-DSMC interface 

a. Scan all facets through the facet-cell connectivity array. 

b. Use the cell mask to collect those facets that possess a DSMC cell on one side and 

an NS cell on the other. 

2. Build the first layer 

a. Scan the list of facets in the NS-DSMC interface. 

b. Use facet-node connectivity, node-cell connectivity, and the cell mask to build the 

first layer of cells that surround the NS-DSMC interface on the NS side. This is the 

first layer of the inner buffer. 

c. Store the first layer of cells in a hashmap for easy retrieval. 

3. Build the remaining layers: Loop over 2 to N layers 

a. Scan the list of cells in the layer lower than the present layer. 

b. Use cell-node and node-cell connectivity along with the information stored in the 

hashmap to build the current layer of cells surrounding the previous layer on the 

NS side. 

c. Store all cells in the current layer in the hashmap. 

4. Clean the buffers: Loop over all layers in descending order 

a. Scan the list of cells in the current layer. 

b. For each cell, use cell-node and node-cell connectivity to build a list of cells 

surrounding the current cell. 

c. Determine if at least one of these cells belongs to the upper layer of the current 

layer. 

d. If no cells belong to the upper layer, the current layer loses one cell, and the lower 

layer gains the current cell. 

 An example of the buffer cleaning algorithm is presented in Fig. 2.9 for the leading-edge test 

case. The NS, buffer, and DSMC regions are shown where an extended inner buffer region can be 

observed when no cleaning algorithm is used. When the buffers are cleaned, these inner buffer 

cells are converted to DSMC cells.  
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Fig. 2.9 Hybrid masks for the leading-edge case without cleaning (left) and with cleaning 

(right) 

2.3.3 NS-DSMC Communication 

 As previously mentioned, the information transfer from the NS to the DSMC regions is 

accomplished in three regions of the mesh: during the mesh population of the DSMC and inner 

buffer regions (at the first DSMC step) and the mesh population of the outer buffer regions (at 

every DSMC inner iteration). Particle properties in these regions are initialized according to the 

NS solution. The node-based NS solution is interpolated at the cell centers using finite element 

shape functions to obtain cell-centered values that are input into the DSMC initialization routines. 

Information transfer from the DSMC to the NS regions first needs the cell-centered DSMC 

solution to be converted to a node-based solution required by HALO3D-NS. This is accomplished 

by the inverse distance-weighted interpolation method, as discussed before. These node-based 

DSMC fields are obtained for density, velocities, mass fractions of chemical species, heat flux, 

shear stress, and translational, rotational, and vibrational temperatures. The DSMC nodal density, 

velocity, mass fraction, and wall quantities are used to overwrite the NS/previous cycle solutions 

in the DSMC region of the global solution vectors. A DSMC trans-rotational temperature is 

calculated as explained in Section 3.2.1.2 from the translational and rotational temperature fields 

and is used to overwrite the trans-rotational temperature from the NS/previous cycles in the global 

solution vectors. The DSMC pressure is discarded since it follows the ideal gas law using the 

translational temperature instead of the trans-rotational temperature as is done for NS. A new 

pressure field is computed by employing the ideal gas law with the DSMC density and DSMC 

trans-rotational temperature. This pressure overwrites the solution in the global solution vector. 
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Once the DSMC solution is patched alongside the NS solution, all the DSMC region nodes are 

flagged as Dirichlet boundary condition nodes to be imposed on the NS solver. 

2.4 OptiGrid 

 The present work contributes to the body of DSMC literature on unstructured mesh adaptation 

techniques by coupling a DSMC solver with a mesh optimizer, OptiGrid, to automatically yield a 

solution-driven, not just adapted, but “optimal” mesh. The hybrid algorithm can also be coupled 

with OptiGrid, and the benefits of an unstructured mesh hybrid solver are discussed in Chapter 3. 

The coupling of either the DSMC or the hybrid solvers with OptiGrid is illustrated in Fig. 2.10. A 

solution is first obtained on an initial mesh, which is then used to adapt the mesh, and a new 

solution is computed on the new mesh, and this is repeated until a converged mesh is obtained.  

 

Fig. 2.10 Algorithm for the coupling of either DSMC or hybrid solvers with OptiGrid 

 The initial solution can be computed on a reasonably coarse mesh whose cells can be sized 

according to the freestream mfp [65]. The initial solution also provides useful information such as 

the minimum and maximum mfp values, the separation of free paths, and the minimum mean 

collision time to tune the optimization constraints. The target cell number decides the particle count 

for the simulation and is set based on computational feasibility. For the cases presented in this 

paper, the minimum edge lengths have been set to be a multiple of either the minimum or 

freestream mfp (whose approximate value is determined using the initial solution), while the 

maximum edge length is a case-specific input that can be equal to a fraction of the size of the 

computational domain. When used alongside continuum solvers, OptiGrid interpolates the solution 
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from the previous iteration onto the new mesh, and this interpolated solution is used as an initial 

condition for the computation on the new mesh. For DSMC, initializing a simulation by either 

populating the grid based on an interpolated macroscopic solution or loading the converged 

particle data from a previous mesh reduced the transient time. 

 OptiGrid [99], developed by the authors’ group, was first introduced for the 2D continuum 

problems of an inviscid hypersonic flow past a double ellipse geometry, viscous transonic and 

supersonic flows around an airfoil, and flows over a ramp [100]. Since then, it has been shown to 

excel in 3D as best portrayed through the mesh adaptation for flows over complete aircraft. Mesh 

adaptation via OptiGrid has been shown to converge to the same final mesh irrespective of the 

initial mesh and often of the solver, thus demonstrating mesh- and user-independence [100]. These 

two features of OptiGrid enable the automatic optimization of successive meshes with no user 

intervention necessary between mesh iterations and only very little user input required in the 

creation of the initial mesh, which can be of any quality, as illustrated in Section 3.3.1. In addition, 

it is able, because of its directionality, to generate a final adapted mesh more accurate than any 

refined structured mesh and with a lesser number of nodes as demonstrated for a hypersonic 

continuum flow over a sphere [80]. Multiscale fluid structures and geometric features can be finely 

captured as exemplified by the hypersonic flow past a waverider geometry [80] exhibiting a sharp 

nose and leading edges. In this case, OptiGrid effectively captures a crisp shock and an extended 

wake region. Its capability to accommodate any new solution variable as an adaptation scalar is 

best highlighted by its use in magnetohydrodynamics [2], where the hypersonic continuum flow 

over a hemisphere is adapted based on the electric potential and flow variables to simultaneously 

capture steep shocks and well-resolved flow and electromagnetic quantities. Optimization 

constraints in the form of target node or cell count and minimum and maximum edge lengths allow 

for fine control of the local mesh size, and it is thus anticipated that these benefits demonstrated 

for the continuum regime will translate to the rarefied regime.  

 During an optimization cycle, OptiGrid first calculates the Hessian 𝑯 of a set of optimization 

scalars that drive the mesh adaptation. The Hessian is then decomposed into its right eigenvectors 

𝑹 and eigenvalues 𝜦, as 

𝑯 = 𝑹𝜦𝑹𝑻 (2.131) 
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The Hessian is then modified by using the absolute values of the eigenvalues.  

𝑴 = 𝑹|𝜦|𝑹𝑻 (2.132) 

This modified Hessian is then used to construct the edge-based error estimator, 𝑒, of nodes i and j 

of an edge as 

𝑒(𝒙i − 𝒙j) =  ∫ √(𝒙i − 𝒙j)𝑻𝑴(𝒍)(𝒙i − 𝒙j) 𝑑𝑙
1

0

(2.133) 

where 𝒙i denotes the position of node i. The eigenvalues of 𝑯 provide the relative length of an 

edge, and the eigenvectors provide the orientation of the edge. The expression to obtain a 

piecewise-linear Hessian, ℎij, from the piecewise-linear approximation, 𝑢h, and shape function, 

𝑁I, is [100] 

ℎij(I) = − (∫
𝜕𝑢h

𝜕𝑥i

𝜕𝑁I

𝜕𝑥j
𝑑𝑥

EI

) (∫ 𝑁I𝑑𝑥
EI

)

−1

(2.134) 

where EI  is the set of elements surrounding vertex I . In a second stage, OptiGrid utilizes a 

combination of four basic mesh operations to homogenize the error estimate 𝑒 throughout the 

domain: edge refinement, edge coarsening, edge swapping, and node movement, as illustrated in 

Fig. 2.11.  

  

(a) Edge refinement (b) Edge coarsening 

 

 

 

 

(c) Edge swapping (d) Node movement 

Fig. 2.11 Basic mesh operations in OptiGrid 
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 Refinement, coarsening, and swapping are binary “on-off” or toggle operations, while node 

movement is a continuous operation where the edges connected to a node are modeled as springs 

with a stiffness proportional to the error estimate. The ideal positions of a collection of nodes to 

be moved are obtained by minimizing the energy of the group of edges. The sequence of mesh 

operations is given below [100]. 

1. Compute the error estimate 

2. Smooth the mesh 

a. Swap all edges until convergence 

b. Move all nodes iteratively 

3. Iterate over the following loop: 

a. Refine all edges above a threshold error estimate 

b. Swap edges until convergence, then apply node movement 

c. Remove all nodes whose connecting edges have an error estimate below a threshold 

value 

d. Repeat Step 3b 

4. Repeat Step 2 

 A mesh generated using this algorithm and optimization constraints can progressively capture 

flow features at any level of accuracy. These adapted meshes can be stretched in physical space 

but are uniform Delaunay meshes in Riemannian space. OptiGrid’s capabilities in resolving 

continuum regime solutions are well documented [2,80,99-101]. One of its applications with 

HALO3D-NS at a Knudsen number of 2.4 × 10-5 is shown in Fig. 2.12 for a flow over a re-entry 

capsule [101]. Here, OptiGrid generates an adapted mesh with a thin, densely populated shock 

region, refined boundary layer, and coarse wake region. The accuracy and degree of refinement in 

these regions can be controlled by increasing the target node/cell count and decreasing the 

minimum edge length. This is illustrated for DSMC simulations in Fig. 2.13 for a 2D hypersonic 

flow over a cylinder at a Knudsen number of 0.01, where two refinement levels are presented: the 

adapted mesh in case A has 60% more cells and half the minimum edge length than case B, 

resulting in refinement in the bow shock and boundary layer. Importantly, the maximum edge 

length is preserved between these two cases, and regions that do not require refinement, such as 

the freestream, and the region between the bow shock and the boundary layer, are not refined. It is 
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possible to force refinement in these regions by decreasing the maximum edge length, however 

these two meshes indicate that the freestream discretization is either over refined or adequately 

refined. Fig. 2.12 and 2.13 are thus a proof of concept that OptiGrid can effectively capture thin 

shocks as encountered in the continuum regime and the relatively thicker shocks found in the 

rarefied regime. This will be further demonstrated in the Chapter 3. 

 In prevailing DSMC literature, constraints for the sizing of collisional cells are well researched, 

while good definitions for the sizing and positioning of sampling cells are somewhat lacking. This 

study leverages OptiGrid to offer a new definition for a DSMC sampling mesh: one where the 

nodes of the mesh are positioned such that an error estimate of the flow field is equi-distributed 

throughout the domain. Any further refinement would only bring the error estimate down globally. 

Such a discretization of a solution positions OptiGrid in hypersonics as an additional field of 

research benefiting from this automatic solution-driven mesh optimization strategy. 

 

Fig. 2.12 Mesh adaptation for a re-entry capsule in the continuum regime 
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(a) Case A: 1st adapted mesh (b) Case B: 2nd adapted mesh 

Fig. 2.13 Proof of concept for the coupling of DSMC and OptiGrid for a hypersonic flow 

over a 2D cylinder at two different levels of refinement 
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Chapter 3 

Results 

 

 This Section presents several simulations to illustrate the capabilities of HALO3D-DSMC and 

HALO3D-HYBRID and validates the results through comparisons with literature. First, three 

simulations are conducted with HALO3D-DSMC and results from DS3V, MONACO, DAC, 

dsmcFoam, and experiment are used for validation. Next, several simulations employing all three 

(NS, DSMC, and hybrid) solvers are performed, and the results are compared. In all NS cases, 

laminar flow is assumed. Finally, the power of mesh adaptation is explored through the mesh 

optimization of DSMC and hybrid simulations. VHS parameters for each species modeled in the 

following test cases are provided in Appendix A. 

3.1 DSMC Validation Simulations 

 This Section presents three simulations: A 3D corner flow problem with Argon, a 2D flat plate 

with Nitrogen, and a 2D cylinder test case with Air modeled using five chemical species. Contours 

of flow field quantities on slices of the domain and surface quantities are compared against results 

obtained from literature and discussed. These three cases test all the capabilities of HALO3D-

DSMC, and through these results, HALO3D-DSMC is established as the standard for comparisons 

with HALO3D-HYBRID. Comparisons with literature are also made in Sections 3.2 and 3.3 and 

provide further strength to the validation of the hybrid and DSMC codes. 

3.1.1 Bird’s Corner Case (Mach 6, Knudsen 0.043) 

 Bird’s Mach 6 corner case [9] is a 3D flow of VHS Argon gas over two perpendicular 0.25 m × 

0.18 m diffuse walls maintained at a temperature of 1000 K. The freestream Knudsen number is 

0.043. The domain dimensions and uniform structured mesh considered for this case are the same 

as in Bird's DS3V code, that is 0.3 m × 0.18 m × 0.18 m for a total of 9720 cells. Two perpendicular 

symmetry planes are placed upstream of the corner, and the inlet boundary extends until x = 0.3 

m. The domain and boundary conditions are illustrated in Fig. 3.1. No sub-celling technique is 

used for this simulation, and the freestream number density, temperature, and velocity are set to 1 

× 1020 m3, 300 K, and 1936 m/s, respectively. The ratio of real to simulated particles is equal to 2 
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× 1013, the constant time step is 2 × 10-6 s and a total of 200,000 samples are recorded after steady-

state. 

 

 

Fig. 3.1 Domain and boundary conditions for Bird’s corner case 

 Contours of normalized density are shown in Fig. 3.2, with the solid black lines referring to 

HALO3D-DSMC and the solid pink lines given by DS3V. There is an excellent agreement 

between both solvers, and a similar observation can be made for the contours of temperature and 

Mach number given in Bird’s book but not reproduced here for brevity. Figs. 3.3-3.5 present the 

skin friction and heat transfer coefficients, and a good concordance is again found between 

HALO3D-DSMC and DS3V. 
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(a) x = 0.10 m (b) x = 0.15 m 

  

(c) x = 0.20 m (d) x = 0.25 m 

Fig. 3.2 Normalized density contours at various x-locations for Bird’s corner case  

(HALO3D-DSMC: solid black lines, DS3V: solid pink lines) (Mach 6, Knudsen 0.043) 
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Fig. 3.3 x-component of the skin friction coefficient for Bird’s corner case  

(HALO3D-DSMC: solid black lines, DS3V: solid pink lines) (Mach 6, Knudsen 0.043) 

 

 

Fig. 3.4 y- and z-components of the skin friction coefficient for Bird’s corner case  

(HALO3D-DSMC: solid black lines, DS3V: solid pink lines) (Mach 6, Knudsen 0.043) 
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Fig. 3.5 Heat transfer coefficient for Bird’s corner case  

(HALO3D-DSMC: solid black lines, DS3V: solid pink lines) (Mach 6, Knudsen 0.043) 

3.1.2 Nitrogen Flow over a 2D Flat Plate: DSMC and Experiment (Mach 20, Knudsen 

0.017) 

 Allegre et al (1992) conducted [102] experiments on the hypersonic flow of Nitrogen over a flat 

plate at angles of attack of zero and ten degrees. The results from these experiments have been 

widely used to validate DSMC codes such as MONACO, DAC, and SPARTA. The domain, with 

its boundary conditions, are illustrated in Fig. 3.6 where the length of the plate is 0.1 m, and the 

thickness is 0.005 m. A uniformly spaced cubic mesh consisting of cells with edge lengths of 5 × 

10-4 m has been used in the present work. The two z-symmetry planes (specular walls) are spaced 

two-cell widths apart. The flow consists of molecular Nitrogen with the following freestream 

conditions for pressure, temperature, x-velocity, Mach number, and Knudsen number (based on 

the length of the plate), respectively: 0.06834 Pa, 13.32 K, 1503 m/s, 20, 0.017. The diffuse wall 

temperature is kept at 290 K in the DSMC simulation, which corresponds to the experimental 

conditions where a cooling system within the wind tunnel model keeps the wall temperature 

constant. The time step is 3.102 × 10-7 s, and 16,000 iterations are used for sampling. TAS and NN 

methods are used for collision pair selection with a switch from TAS to NN when the cell contains 

fewer than 30 particles. At steady-state, the total number of particles in the domain is ~6 million. 

The VHS parameters for Nitrogen are provided in Appendix A. Padilla [103] compared the 
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performance of MONACO and DAC for this test case and found rotational energy modeling to be 

crucial for a good comparison with experimental results. Hence, a rotational collision number of 

5 is used for the simulation, same as DAC, while MONACO uses a variable rotational collision 

number model. 

 

Fig. 3.6 Domain and boundary conditions for the hypersonic flow of Nitrogen over a flat 

plate 

 Contours of Mach numbers, rotational temperatures, particle counts and mfp are illustrated in 

Figs. 3.7 and 3.8. The Mach contours showcase a prominent bow shock upstream of the flat plate 

and the flow near the wall is subsonic. The rotational temperature contours indicate the presence 

of rotational nonequilibrium in the flow with a maximum rotational temperature of ~500 K at the 

stagnation point. The contours of particles/cell show large particle counts at the stagnation point, 

with a maximum of ~240 particles/cell, and with the wake region exhibiting lower particle counts 

as expected. The mfp contours show that mfp is low at the stagnation point and higher in the wake 

region. Surface quantities such as heat flux and surface pressure are compared in Fig. 3.9 between 

MONACO, DAC, HALO3D, and the experiment. The results for DAC and MONACO are 

obtained from [103]. All three DSMC solvers show good agreement with each other for the heat 
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flux and compare well with experiment. MONACO compares slightly better with experiment for 

the surface pressure, while DAC and HALO3D pressures are seen to match. The uncertainty in 

experimental measurements is ±0.1 Pa and ±0.05q W/m2 where q is the heat flux [103]. 

      

Fig. 3.7 Mach number (left) and rotational temperature (right) for the flow of Nitrogen 

over a flat plate (Mach 20, Knudsen 0.017) 

      

Fig. 3.8 Number of particles per cell (left) and mean free path (right) for the flow of 

Nitrogen over a flat plate (Mach 20, Knudsen 0.017) 
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(a) Surface heat flux (b) Surface pressure 

Fig. 3.9 Surface heat flux and pressure for the flow of Nitrogen over a flat plate           

(Mach 20, Knudsen 0.017) 

3.1.3 Air Mixture Flow over 2D Cylinder (Mach 24.85, Knudsen 0.004) 

 Adiabatic heat bath simulations are presented in this Section to verify the reaction rate and post-

reaction velocity, and energy computations in the Quantum-Kinetics (QK) chemistry model in 

HALO3D-DSMC. The set of parameters a and b used to adjust the activation energy of exchange 

reactions [104] is that of Bird [75] (see Appendix B), and all activation energies are taken from 

[63]. The heat bath is a single cell with a characteristic length equal to 1 × 10-5 m and symmetry 

boundaries. The mixture number density is fixed to 1 × 1023 m3, evenly split among the 2 reactant 

species, and the temperature is varied between 1000 K and 40,000 K. The time step equals 1 × 10-

9 s, the initial number of simulated particles is 1 M, and all collision numbers are equal to 1. In the 

first stage, particles are not allowed to split should they react to keep the same gas composition as 

time is advanced. The forward reaction rate is averaged over 100 iterations, and results for two 

dissociation reactions and four exchange reactions are given in Fig. 3.10a-f. The analytical QK 

solutions are obtained from Bird’s DS0V code [75], and the dissociation reaction results given by 

NASA’s DAC DSMC solver are taken from [105]. There is an excellent agreement for all reactions. 

 In a second stage, particles are allowed to split upon impact. All initial modal temperatures are 

set to 30,000 K, and pressure equals 6383 Pa, with a gas composition of 0.79% N2 and 0.21% O2 

in volume. Fig. 3.11 shows the evolution of the temperature and species number density versus 

time for dsmcFoam and HALO3D-DSMC, and a good match can be observed. 
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(a) Molecule-molecule dissociation (b) Molecule-atom dissociation 

  

(c) First endothermic exchange reaction (d) Second endothermic exchange reaction 

  

(e) First exothermic exchange reaction (f) Second exothermic exchange reaction 

Fig. 3.10 Dissociation and exchange reaction rates using the QK model in HALO3D-DSMC 
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(a) Temperature (b) Species number density 

Fig. 3.11 5-species air heat bath results versus time                                                

(HALO3D-DSMC: solid lines, dsmcFoam: symbols) 

 A Mach 24.85 2-D air mixture flow past a 1-meter radius cylinder is now investigated. The 

domain and boundary conditions are presented in Fig. 3.12. Studied by Scanlon et al. [63] with 

simulation results provided for both non-reacting and reacting 5-species air, this continuum-

transition case (overall Knudsen number 0.004) has freestream conditions corresponding to an 

altitude of 84 km: the freestream temperature is equal to 187 K, the freestream velocity is 6813 

m/s, and the species number densities of N2 and O2 are set to 1.13 × 1021 m-3 and 3.03 × 1020 m-3, 

respectively. The diffuse cylinder wall temperature is set to 1000 K, and the ratio of real to 

simulated particles equals 2 × 1012. The time step and cell size match those given in [63]. The time 

step is prescribed to be 1 × 10-7 s, and the structured and uniform mesh is composed of 304 cells 

radially and 402 cells longitudinally, for a total of 122,208 cells. The collision scheme is NTC, 

and the collision partner selection technique is TAS with a target of 4 particles per sub-cell. The 

resulting collision grid is updated every 1000 time steps before steady-state and frozen after. 

Furthermore, coefficients for the VHS particles are that of Bird [9], and the constant rotational and 

vibrational collision numbers are set to 5 and 50, respectively. The results presented in this Section 

use the QK model with the same a and b coefficients and activation energies determined by 

Scanlon et al. [63]. 
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Fig. 3.12 Domain and boundary conditions for the hypersonic air mixture flow past a 

cylinder 

 Serial simulations are conducted until steady-state and ensemble averaging is then leveraged 

using a total of 20 statistically independent simulations for a cumulative number of 260,000 

samples. There are 35.8 M particles at steady-state for the non-reacting run and 42.9 M for the 

reacting simulation. HALO3D-DSMC results are compared against dsmcFoam (now dsmcFoam+), 

which uses the QK model, and MONACO, which implements the TCE chemistry model. Figs. 

3.13-3.15 show stagnation line profiles of modal temperatures, velocity magnitude, and species 

number densities for all three solvers. A good concordance is observed for both non-reacting and 

reacting simulations. Figs. 3.16-3.19 present surface quantities of surface pressure, heat flux, 

temperature jump, and velocity slip, and there is once more a reasonable agreement between 

HALO3D-DSMC, MONACO, and dsmcFoam.  
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(a) Non-reacting (b) Reacting 

Fig. 3.13 Modal temperatures profiles along the stagnation line for the air mixture flow 

past a cylinder (Mach 24.85, Knudsen 0.004) 

 

  

(a) Non-reacting (b) Reacting 

Fig. 3.14 Velocity magnitude profile along the stagnation line for the air mixture flow 

past a cylinder (Mach 24.85, Knudsen 0.004) 
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(a) Non-reacting (b) Reacting 

Fig. 3.15 Species number density profiles along the stagnation line for the air mixture 

flow past a cylinder (dsmcFoam: dotted lines, MONACO: dashed lines, HALO3D-

DSMC: solid lines) (Mach 24.85, Knudsen 0.004) 

 

  

(a) Non-reacting (b) Reacting 

Fig. 3.16 Surface pressure for the air mixture flow past a cylinder case (Mach 24.85, 

Knudsen 0.004) 

 



71 

 

  

(a) Non-reacting (b) Reacting 

Fig. 3.17 Wall heat flux for the air mixture flow past a cylinder case (Mach 24.85, 

Knudsen 0.004) 

 

  

(a) Non-reacting (b) Reacting 

Fig. 3.18 Velocity slip for the air mixture flow past a cylinder case (Mach 24.85, Knudsen 

0.004) 
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(a) Non-reacting (b) Reacting 

Fig. 3.19 Translational temperature jump for the air mixture flow past a cylinder case 

(Mach 24.85, Knudsen 0.004) 

 Contours of translational, rotational, and vibrational temperatures are presented in Fig. 3.20 and 

3.21 for HALO3D and dsmcFoam for the reacting case. A good agreement can be observed 

between these two codes for all three temperature contours. These verification results provide 

sufficient evidence of the correct implementation of the various modules in HALO3D-DSMC, and 

thus it can reliably be used to predict of thermo-chemical non-equilibrium flow fields at high 

altitudes and serve as the standard for hybrid NS-DSMC verification. 
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Fig. 3.20 Translational (left) and rotational (right) temperatures for the reacting air 

mixture flow past a cylinder. HALO3D results are presented on the top half and 

dsmcFoam results are on the bottom half. (Mach 24.85, Knudsen 0.004) 
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Fig. 3.21 Vibrational temperature for the reacting air mixture flow past a cylinder. 

HALO3D results are presented on the top half and dsmcFoam results are on the bottom 

half. (Mach 24.85, Knudsen 0.004) 

3.2 Hybrid NS-DSMC Results 

 This Section presents results for the validation of HALO3D-HYBRID through comparisons with 

HALO3D-DSMC, HALO3D-NS, and literature. In hybrid simulations, the statistical scatter of 

DSMC was controlled by using a sufficient number of particles so as to not poison the NS solution. 

Flows over a leading-edge and a 2D cylinder are studied, and results from all three solvers are 

presented for each test case. Contours of the flow variables and data extracted along a line in the 

domain are shown for comparison. The distributions of 𝐾𝑛max and 𝐾𝑛ROT−NEQ are also presented 

to illustrate the degree of continuum breakdown and thermal non-equilibrium where applicable. It 
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should be noted that 𝐾𝑛ROT−NEQ is shown as an indicator of thermal non-equilibrium only and is 

not used to delineate the NS and DSMC zones. The NS and DSMC regions in the hybrid solution 

are demarcated with vertical lines and labeled in the line plots. In this Section, structured meshes 

are employed for the hybrid, DSMC, and NS computations, and unstructured mesh simulations are 

handled in Section 3.3. 

3.2.1 Leading-Edge Flows 

 Bird’s leading-edge flow [9] is a canonical 2D analog of the 3D hypersonic corner flow where 

the corner effects are removed. This computationally inexpensive problem has been widely used 

to verify DSMC codes. In this Section, four configurations of the leading-edge problem in 

increasing complexity are studied to validate the HALO3D-HYBRID infrastructure. The domain 

and boundary conditions are shown in Fig. 3.22. The following flow conditions are kept the same 

for all four test cases: the freestream velocity, pressure, and temperature are 1412.5 m/s, 0.4142 

Pa, and 300 K, respectively. The wall temperature is 500 K, and the DSMC time step is 2 × 10-6 s. 

A structured 99 × 60 × 1 mesh with some mesh clustering at the stagnation point is used in all the 

simulations in this Section.  

 

Fig. 3.22 Domain and boundary conditions for the leading-edge hypersonic flow 

 All the leading-edge hybrid simulations are initialized with an NS solution with no-slip boundary 

conditions, which performs better than initialization with a slip solution. When slip NS solutions 

are used to initialize the hybrid simulations, the predicted NS-DSMC boundaries are ~0.1m 
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downstream of the no-slip NS predictions consistently for all four leading-edge test cases. This 

places the upstream NS-DSMC boundary in a zone of greater non-equilibrium, which necessitates 

a Chapman-Enskog distribution function to generate particle velocities in the outer buffer region. 

Since this present study considers a Maxwellian distribution to initialize particles, the no-slip NS 

initial solution is ideal since it provides an upstream NS-DSMC boundary located in a zone of 

equilibrium. Nevertheless, for the full NS results, the slip computations compare better with 

DSMC, and these are presented in the contours and line plots. 

3.2.1.1 Argon Flow Over Leading-Edge (Mach 4.3, Knudsen 0.013) 

 This first leading-edge test case considers the flow of Argon, which does not possess rotational 

nor vibrational modes of energy, and the VHS parameters for Argon are taken from Bird [9]. The 

freestream Knudsen number is 0.013, and the Mach number is 4.3. The distribution of 𝐾𝑛max from 

the no-slip NS solution is presented in Fig. 3.23, with a maximum of ~1 at the stagnation point. 

The shock and boundary layer are both encompassed within a zone of 𝐾𝑛max greater than 0.05, 

indicating that these are regions of continuum breakdown. 

 

Fig. 3.23 Knmax distribution for the flow of Argon over a leading-edge  

(Mach 4.3, Knudsen 0.013) 
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Fig. 3.24 Hybrid masks for the flow of Argon over a leading-edge  

(Mach 4.3, Knudsen 0.013) 

 The hybrid masks are shown in Fig. 3.24, where a minimum of 3 cell layers can be observed for 

the inner and outer buffers. The shock and boundary layer are assigned to be DSMC regions, and 

the freestream and a small region downstream of the shock are assigned to be NS regions. Contours 

of density, pressure and Mach number for the NS, DSMC, and hybrid simulations are presented in 

Fig. 3.25-3.27. The NS density and pressure solutions differ from the DSMC solutions, and the 

NS Mach number compares well with DSMC in most of the domain except near the trailing edge 

of the wall. The hybrid solutions for density, pressure and Mach number all agree well with DSMC 

contours throughout the domain. 
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Fig. 3.25 Density contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of Argon over a leading-edge  

(Mach 4.3, Knudsen 0.013) 

 

  

 

Fig. 3.26 Pressure contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of Argon over a leading-edge  

(Mach 4.3, Knudsen 0.013) 
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Fig. 3.27 Mach contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of Argon over a leading-edge  

(Mach 4.3, Knudsen 0.013) 

 Plots of density, pressure and translational temperature along a horizontal line at mid-height (y = 

0.3 m) are shown in Fig. 3.28-3.30 for NS, DSMC, and hybrid simulations. In all three plots, the 

upstream NS-DSMC boundaries are located at a 𝐾𝑛max of 0.05. However, the downstream NS-

DSMC boundary is not. This is because of the smoothing algorithm used to remove disconnected 

patches of buffer cells. As can be seen, the algorithm tends to expand the DSMC region, which 

results in an NS-DSMC boundary location that is slightly farther downstream. The plots show that 

the full NS solution disagrees with the DSMC solution within the region of continuum breakdown 

for density, pressure, and temperature and downstream of this region for density and pressure. 

𝐾𝑛max is found to be greatest within the DSMC region of the hybrid solution, and correspondingly, 

a deviation of the NS solution from the DSMC solution can be observed here. The hybrid solutions 

all compare well against the DSMC solutions, with a maximum error of 1.63% for the translational 

temperature. These line plots illustrate that a full NS simulation cannot capture the flow field 

accurately. However, when augmented with a DSMC solution in the correct regions, the NS 

computations in this hybrid system can seamlessly reproduce full DSMC results. 
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Fig. 3.28 Density along y = 0.3 m for the flow of Argon over a leading-edge  

(Mach 4.3, Knudsen 0.013) 

 

 

Fig. 3.29 Pressure along y = 0.3 m for the flow of Argon over a leading-edge  

(Mach 4.3, Knudsen 0.013) 
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Fig. 3.30 Translational temperature along y = 0.3 m for the flow of Argon over a 

leading-edge (Mach 4.3, Knudsen 0.013) 

 The surface heat flux and shear stress for the three solvers are shown in Fig. 3.31 and 3.32. The 

NS computation shows a sharp increase near the stagnation point for the two surface quantities. 

This result is consistent with the literature [106], which mentions the presence of a leading-edge 

singularity in NS solutions for this problem. The peak NS heat flux is 1,372 W/m2 and the peak 

NS shear stress is 2.01 N/m2. 𝐾𝑛max along the entire surface is greater than 0.05, ensuring that the 

surface is completely in a DSMC zone. The hybrid surface quantities compare well against DSMC, 

illustrating that while this problem is difficult for NS solvers, it can easily be tackled by hybrid 

and DSMC solvers. Finally, the hybrid algorithm provides significant cost benefits over the full 

DSMC simulation: the full DSMC solution takes 1.71 hours to compute while the hybrid solution 

takes only 0.73 hours. 
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Fig. 3.31 Surface heat flux for the flow of Argon over a leading-edge  

(Mach 4.3, Knudsen 0.013) 

 

 Fig. 3.32 Shear stress for the flow of Argon over a leading-edge    

  (Mach 4.3, Knudsen 0.013) 

3.2.1.2 Vibrationless N2 Flow Over Leading-Edge (Mach 4, Knudsen 0.013) 

 Next, a vibrationless molecular Nitrogen flow over the diffuse wall is considered to evaluate the 

performance of the hybrid algorithm with the addition of rotational energy modeling. The 

freestream Knudsen number is 0.013, and the Mach number is 4, and this test case is identical to 

the leading-edge setup discussed by Bird [9]. Comparisons of HALO3D-DSMC with Bird’s results 

are presented in Section 3.3.1. As discussed previously, the NS solver uses a single trans-rotational 
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temperature to describe the translational and rotational modes of energy. The DSMC solver uses a 

constant rotational collision number equal to 5 and calculates separate translational and rotational 

temperatures. To compare NS and DSMC results, a DSMC trans-rotational temperature, 𝑇tr DSMC, 

is calculated as 

𝑇tr DSMC =
3𝑇t + 𝜁r𝑇r

3 + 𝜁r
 (3.1) 

𝜁r = ∑ 𝜁r,s 𝑋s

Ns

s=1

 (3.2) 

where 𝑇t is the translational temperature, 𝑇r is the rotational temperature, and 𝜁r is the mixture 

rotational degrees of freedom. 𝜁r is evaluated from the species rotational degrees of freedom 𝜁r,s 

and the species mole fractions 𝑋s. 

 The contours of 𝐾𝑛max obtained from the NS solution are presented in Fig. 3.33 where the shock 

and boundary layer are in a state of continuum breakdown. A maximum 𝐾𝑛max of 0.91 is recorded 

at the stagnation point. Contours of 𝐾𝑛ROT−NEQ shown in Fig. 3.34 indicate that, for this test case, 

most of the region above a 𝐾𝑛ROT−NEQ of 0.05 is already encompassed by the DSMC region 

prediction of 𝐾𝑛max. A 𝐾𝑛ROT−NEQ of 0.05 corresponds to a difference between translational and 

rotational temperatures that is 10% of the rotational temperature. Thermal non-equilibrium is 

observed in the shock, near the wall, and at the stagnation point where the 𝐾𝑛ROT−NEQ reaches a 

maximum of ~0.6. The hybrid masks and line for data extraction are presented in Fig. 3.35 where 

the line passes through NS and DSMC zones. 
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Fig. 3.33 Contours of Knmax for the flow of vibrationless Nitrogen over a leading-edge. 

(Mach 4, Knudsen 0.013) 

 

 

 Fig. 3.34 Contours of KnROT-NEQ for the flow of vibrationless Nitrogen over a leading-

edge. (Mach 4, Knudsen 0.013) 
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Fig. 3.35 Hybrid masks for the flow of vibrationless Nitrogen over a leading edge  

(Mach 4, Knudsen 0.013) 

 Contours of density, pressure, and Mach number for the NS, DSMC, and hybrid simulations are 

presented in Fig. 3.36-3.38, where the NS solutions can be seen to disagree with DSMC for the 

density and pressure contours. Mach number contours for NS and DSMC show better agreement, 

but, similar to the Argon case, discrepancies can be noted at the trailing edge. The hybrid contours 

all show better agreement than the NS, especially for the contours of Mach number. For the 

contours of the Mach number of the hybrid simulation to be smooth and continuous, the trans-

rotational temperature (used to calculate the speed of sound) in the NS and DSMC regions must 

match each other. As can be seen, the hybrid algorithm produces seamless flow contours that match 

DSMC results. 
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Fig. 3.36 Density contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of vibrationless Nitrogen over a leading-edge. 

(Mach 4, Knudsen 0.013) 

 

  

 

Fig. 3.37 Pressure contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of vibrationless Nitrogen over a leading-edge. 

(Mach 4, Knudsen 0.013) 
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Fig. 3.38 Mach contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of vibrationless Nitrogen over a leading-edge. 

(Mach 4, Knudsen 0.013) 

 Plots of density, pressure and trans-rotational temperature along the data extraction line (y = 0.24 

m) are shown in Fig. 3.39-3.41. Again, the upstream NS-DSMC boundary is located at a 𝐾𝑛max 

of 0.05, while the downstream boundary is moved further downstream because of the mask 

smoothing algorithm. The NS solutions disagree with the DSMC solutions in the shock region and 

downstream of the shock. The disagreement is pronounced for the density and pressure fields, 

while the temperature field shows some agreement in the region downstream of the shock. The 

hybrid results compare better than the NS results against the full DSMC simulations for all three 

quantities plotted. Minor deviations for the hybrid results can be noted in the post-shock NS region 

for the density line plots. Similar deviations can be seen in the DSMC zone of the hybrid simulation 

for pressure. Indeed, pressure shows the maximum error among the three quantities, equalling 

4.9%. The computed DSMC trans-rotational temperature shows good agreement with the hybrid 

solution despite the downstream NS-DSMC boundary not fully accommodating a small region of 

thermal non-equilibrium, as shown by the distribution of 𝐾𝑛ROT−NEQ in Fig. 3.41. 
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Fig. 3.39 Density along y = 0.24 m for the flow of vibrationless Nitrogen over a leading-

edge. (Mach 4, Knudsen 0.013) 

 

 

Fig. 3.40 Pressure along y = 0.24 m for the flow of vibrationless Nitrogen over a leading-

edge. (Mach 4, Knudsen 0.013) 
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Fig. 3.41 Trans-rotational temperature along y = 0.24 m for the flow of vibrationless 

Nitrogen over a leading-edge. (Mach 4, Knudsen 0.013) 

 Plots of the surface heat flux and shear stress are provided in Fig. 3.42 and 3.43 where again, the 

leading-edge singularity is visible for the NS solutions. The peak heat flux predicted by the NS 

simulation is 909.7 W/m2, and the peak NS shear stress is found to be 1.41 N/m2. Again, the entire 

wall possesses a 𝐾𝑛max greater than 0.05, which makes the wall a DSMC zone. Peak 𝐾𝑛max is 

observed at the stagnation point, similar to the Argon flow. The hybrid results for both surface heat 

flux and shear stress agree well with full DSMC results, illustrating that the additional rotational 

energy is correctly modeled by the hybrid algorithm to produce accurate surface quantities. Cost 

benefits from the hybrid simulation can be seen again in this test case, with the full DSMC solution 

taking 1.79 hours and the hybrid computation taking only 0.73 hours. 
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Fig. 3.42 Surface heat flux for the flow of vibrationless Nitrogen over a leading-edge.  

(Mach 4, Knudsen 0.013) 

 

 

Fig. 3.43 Shear stress magnitude for the flow of vibrationless Nitrogen over a leading-edge. 

(Mach 4, Knudsen 0.013) 

3.2.1.3 Vibrational N2 Flow Over Leading-Edge (Mach 4, Knudsen 0.013) 

 This test case considers the flow of molecular Nitrogen with rotational and vibrational energy 

modes over a diffuse wall. The vibrational energy modeling of the hybrid algorithm is tested, 

where the degree of vibrational excitation is kept low. The freestream Knudsen number is 0.013, 
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and the Mach number is 4. The contours of 𝐾𝑛max are presented in Fig. 3.44, which are nearly 

identical to the distribution from Section 3.2.1.2. The maximum 𝐾𝑛max occurs at the stagnation 

point and is equal to ~0.91. Contours of 𝐾𝑛ROT−NEQ are presented in Fig. 3.45 where again, most 

of the DSMC region predicted by 𝐾𝑛ROT−NEQ is already covered within the larger region predicted 

by 𝐾𝑛max. The shock and boundary layer are predicted to experience continuum breakdown and 

thermal non-equilibrium, with a maximum 𝐾𝑛ROT−NEQ of 0.6 at the stagnation point. The hybrid 

zones and line for data extraction are presented in Fig. 3.46. 

 

Fig. 3.44 Contours of Knmax for the flow of vibrational Nitrogen over a leading-edge.  

(Mach 4, Knudsen 0.013) 

 

Fig. 3.45 Contours of KnROT-NEQ for the flow of vibrational Nitrogen over a leading-edge. 

(Mach 4, Knudsen 0.013) 
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Fig. 3.46 Hybrid masks for the flow of vibrational Nitrogen over a leading-edge.  

(Mach 4, Knudsen 0.013)  

 Flowfield contours of density, pressure, Mach number, and vibrational temperature are presented 

in Fig. 3.47-3.50 where the NS density, pressure, and vibrational temperature all show significant 

differences from the DSMC solutions. The NS Mach number shows some improvement with some 

disagreement at the trailing edge. These differences are recovered by the hybrid simulation and the 

contours of all four flow variables for the hybrid simulation match the DSMC results well. 

  

 

Fig. 3.47 Density contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of vibrational Nitrogen over a leading-edge. 

(Mach 4, Knudsen 0.013) 
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Fig. 3.48 Pressure contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of vibrational Nitrogen over a leading-edge. 

(Mach 4, Knudsen 0.013) 

 

  

 

Fig. 3.49 Mach number contours of the NS (bottom-left) and hybrid (bottom-right) 

simulations compared against DSMC (top) for the flow of vibrational Nitrogen over a 

leading-edge. (Mach 4, Knudsen 0.013) 
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Fig. 3.50 Vibrational temperature contours of the NS (bottom-left) and hybrid (bottom-

right) simulations compared against DSMC (top) for the flow of vibrational Nitrogen over 

a leading-edge. (Mach 4, Knudsen 0.013) 

 Plots of density, pressure, trans-rotational and vibrational temperatures along y = 0.243 m are 

provided in Fig. 3.51-3.54. The NS solutions for density, pressure and trans-rotational temperature 

deviate from DSMC results in the shock and post-shock regions, with the deviation starting a little 

upstream of the shock. For vibrational temperature, the full NS solution predicts the freestream 

value well into the shock, and the temperature begins to increase farther downstream of the shock. 

The distribution of 𝐾𝑛ROT−NEQ  in Fig. 3.53 shows that had 𝐾𝑛ROT−NEQ  been considered for 

establishing the NS-DSMC boundary, the DSMC region would have expanded slightly 

downstream. The hybrid results for density, pressure, and trans-rotational temperature all follow 

the DSMC solutions, with the maximum error among these three variables being 2% for the density 

plots. The results for vibrational temperature in Fig. 3.54 show that the hybrid algorithm predicts 

a vibrational temperature that agrees with DSMC better than the NS prediction while being noisy 

in the upstream NS and DSMC regions of the hybrid solution. The cause of this noise is attributed 

to the freestream temperature being cold at 300 K, due to which the probability of having a 

vibrationally excited particle is low. Therefore, few particles are involved in the macroscopic 

average calculations of vibrational temperature and employing significantly larger particle counts 

should rectify this issue.  
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Fig. 3.51 Density along y = 0.243 m for the flow of vibrational Nitrogen over a leading-edge. 

(Mach 4, Knudsen 0.013) 

 

Fig. 3.52 Pressure along y = 0.243 m for the flow of vibrational Nitrogen over a leading-

edge. (Mach 4, Knudsen 0.013) 
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Fig. 3.53 Trans-rotational temperature along y = 0.243 m for the flow of vibrational 

Nitrogen over a leading-edge. (Mach 4, Knudsen 0.013) 

 

Fig. 3.54 Vibrational temperature along y = 0.243 m for the flow of vibrational Nitrogen 

over a leading-edge. (Mach 4, Knudsen 0.013) 

 Line plots of the heat flux and shear stress over the diffuse wall are provided in Fig. 3.55 and 

3.56, where the leading-edge singularity in the full NS simulation presents itself through a peak 

surface heat flux equalling 909.4 W/m2 and a peak shear stress of 1.41 N/m2. The entire surface is 

a DSMC zone in the hybrid simulation. The hybrid heat flux and shear stress agree well with 

DSMC results, illustrating that the added complexity of vibrational energy is modeled accurately 

enough by the hybrid algorithm during the computation of surface quantities. The hybrid solution 
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takes 0.77 hours to compute, which is at a much lower computational cost than the full DSMC 

simulation, which takes 1.86 hours to compute. 

 

Fig. 3.55 Surface heat flux for the flow of vibrational Nitrogen over a leading-edge.  

(Mach 4, Knudsen 0.013) 

 

 

Fig. 3.56 Shear stress for the flow of vibrational Nitrogen over a leading-edge.  

(Mach 4, Knudsen 0.013) 
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3.2.1.4 Vibrationless Nitrogen Mixture Flow Over Leading-Edge (Mach 3.34, Knudsen 

0.018) 

 This fourth leading-edge test case considers the flow of molecular and atomic Nitrogen in equal 

molar proportions over a diffuse wall. The mixture is non-reacting, and Fick’s law of diffusion 

with a Lewis number of 1.4 is employed in the NS simulations and the NS regions of the hybrid 

simulation. The rotational energy mode is considered, and the vibrational energy mode is 

deactivated. The freestream Knudsen number is 0.018, and the Mach number is 3.34. Contours of 

𝐾𝑛max are presented in Fig. 3.57 where the area with a value greater than 0.05 is much larger than 

the previous leading-edge simulations. The maximum 𝐾𝑛max of 2.13 at the stagnation point is 

larger than the previous test cases as well. Contours of 𝐾𝑛ROT−NEQ are presented in Fig. 3.58 

where the maximum 𝐾𝑛ROT−NEQ of 0.44 is lower than the previous two test cases. Hybrid masks 

and the line for data extraction for this problem are shown in Fig. 3.59 where nearly the entire 

domain is flagged as DSMC. 

 

Fig. 3.57 Contours of Knmax for the flow of an N2 and N mixture over a leading-edge.  

(Mach 3.34, Knudsen 0.018) 
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Fig. 3.58 Contours of KnROT-NEQ for the flow of an N2 and N mixture over a leading-edge. 

(Mach 3.34, Knudsen 0.018) 

 

 

Fig. 3.59 Hybrid masks for the flow of an N2 and N mixture over a leading-edge.  

(Mach 3.34, Knudsen 0.018) 

 Contour plots of density, pressure, Mach number, and mass fractions of N2 and N are provided 

in Figs. 3.60-3.64, where the NS density and pressure continue to disagree with the DSMC 

contours. Again, the NS Mach field compares well in most of the domain except near the trailing 

edge. The hybrid density, pressure, and Mach number agree with DSMC well. The NS simulation 

predicts the freestream mass fractions of N2 and N throughout the domain, while the hybrid and 

DSMC predictions agree and clearly outline the shock through the mass fraction contours. 
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Fig. 3.60 Density contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of an N2 and N mixture over a leading-edge. 

(Mach 3.34, Knudsen 0.018) 

  

 

Fig. 3.61 Pressure contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of an N2 and N mixture over a leading-edge. 

(Mach 3.34, Knudsen 0.018) 
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Fig. 3.62 Mach number contours of the NS (bottom-left) and hybrid (bottom-right) 

simulations compared against DSMC (top) for the flow of an N2 and N mixture over a 

leading-edge. (Mach 3.34, Knudsen 0.018) 

  

 

Fig. 3.63 N2 mass fraction contours of the NS (bottom-left) and hybrid (bottom-right) 

simulations compared against DSMC (top) for the flow of an N2 and N mixture over a 

leading-edge. (Mach 3.34, Knudsen 0.018) 
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Fig. 3.64 N mass fraction contours of the NS (bottom-left) and hybrid (bottom-right) 

simulations compared against DSMC (top) for the flow of an N2 and N mixture over a 

leading-edge. (Mach 3.34, Knudsen 0.018) 

 Line plots of density, pressure, trans-rotational temperature, and N2 and N mass fractions 

extracted along y = 0.3 m are presented in Fig. 3.65-3.69. Differences can be observed between 

the NS and DSMC computations for the density, pressure, and trans-rotational temperature fields. 

The hybrid computation shows a good agreement for all three fields, with a maximum error of 3.0% 

recorded for the hybrid pressure plot. For the plots of mass fractions, as noted earlier, the full NS 

computation predicts the freestream values throughout the domain, while the hybrid computations 

agree well with DSMC, albeit with some scatter. Since most of the domain is DSMC, this case 

tests the ability of the hybrid mesh population routines and the ability of the NS solver to generate 

accurate pre-shock predictions of the flow variables when non-reacting gas mixtures are 

considered and, in both instances, the hybrid algorithm performs accurately. 



103 

 

 

Fig. 3.65 Density along y = 0.3 m for the flow of an N2 and N mixture over a leading-edge. 

(Mach 3.34, Knudsen 0.018) 

 

 

Fig. 3.66 Pressure along y = 0.3 m for the flow of an N2 and N mixture over a leading-edge. 

(Mach 3.34, Knudsen 0.018) 
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Fig. 3.67 Trans-rotational temperature along y = 0.3 m for the flow of an N2 and N mixture 

over a leading-edge. (Mach 3.34, Knudsen 0.018) 

 

 

Fig. 3.68 N2 mass fraction along y = 0.3 m for the flow of an N2 and N mixture over a 

leading-edge. (Mach 3.34, Knudsen 0.018) 
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Fig. 3.69 N mass fraction along y = 0.3 m for the flow of an N2 and N mixture over a 

leading-edge. (Mach 3.34, Knudsen 0.018) 

 Plots of surface heat flux and shear stress are presented in Fig. 3.70 and 3.71, where the peak NS 

heat flux is 770.24 W/m2, and shear stress is 1.305 N/m2. The entire surface is a DSMC region in 

the hybrid computation, and the hybrid predictions for both surface quantities agree well with 

DSMC predictions. This shows that the hybrid algorithm can successfully deal with multiple non-

reacting species to generate accurate surface quantities. Again, cost benefits can be observed here, 

with the hybrid algorithm taking 0.9 hours to solve this problem and the full DSMC taking 1.87 

hours. 
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Fig. 3.70 Surface heat flux for the flow of an N2 and N mixture over a leading-edge.  

(Mach 3.34, Knudsen 0.018) 

 

 

Fig. 3.71 Shear stress magnitude for the flow of an N2 and N mixture over a leading-edge. 

(Mach 3.34, Knudsen 0.018) 

3.2.2 Flows Over 2D Cylinders 

 This Section deals with three test cases of hypersonic flows over 2D cylinders with increasing 

thermochemical complexity. The domain and boundary conditions for all three cases is presented 

in Fig. 3.72. These test cases present a detached bow shock and a rarefied wake region in contrast 
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with the oblique shock encountered in the leading-edge case, as bow shocks form around bluff 

bodies while oblique shocks form at sharp leading edges. In the case of the flow over a cone, an 

initially attached oblique shock evolves into a detached bow shock when the cone angle is 

increased. From a hypersonic vehicle design standpoint, bow shocks and bluff bodies are required 

in re-entry vehicles such as capsules to maximize the drag, while oblique shocks and a sharp nose 

and leading edges are required in hypersonic aircraft to minimize the drag. In the following test 

cases, the cylinder diameter is the same (0.3048 m), and the angle used in the surface plots is 0˚ at 

the stagnation point. Focus is placed on estimating surface quantities in the absence of consistent 

thermodynamic modeling between the NS and DSMC modules.  

 

Fig. 3.72 Domain and boundary conditions for the hypersonic flow over a cylinder 

3.2.2.1 Argon Flow Over 2D Cylinder (Mach 10, Knudsen 0.01) 

 This benchmark test case has been used to validate DSMC codes [75,107] and is a suitable 

candidate to test the NS, DSMC and hybrid modules of HALO3D. This test case considers a Mach 

10, Knudsen 0.01 (based on the cylinder diameter) flow of Argon to evaluate the performance of 

the hybrid algorithm in the absence of rotational and vibrational energies and multiple reacting 

species. The freestream conditions for pressure, temperature, and velocity are 1.1727 Pa, 200 K, 

and 2624 m/s, respectively, the diffuse wall temperature is set to be 500 K, and the time step for 

full DSMC and the DSMC module of the hybrid computations is 1 × 10-7 seconds. An NS 

computation with slip boundary conditions initializes the hybrid simulation. Contours of 𝐾𝑛max 

are shown in Fig. 3.73, where the maximum value of ~1.35 occurs in the bow shock region and 
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𝐾𝑛max is also large in the rarefied wake. The hybrid masks are shown in Fig. 3.74, where the shock, 

boundary layer, and wake regions are in a state of continuum breakdown and are hence designated 

as DSMC regions. 

 

Fig. 3.73 Knmax contours for the flow of Argon over a 2D cylinder. (Mach 10, Knudsen 0.01) 

 

Fig. 3.74 Hybrid masks for the flow of Argon over a 2D cylinder. (Mach 10, Knudsen 0.01) 

 Contours of density, pressure, and Mach number of the DSMC, NS, and hybrid simulations are 

presented in Fig. 3.75-3.77. The NS contours show better agreement with DSMC than in the 

leading-edge cases, indicating that full NS calculations are unsuitable for studying the leading-

edge problem. As observed in the literature [107], the NS solution predicts a thinner shock than 

DSMC, which is visible in the Mach contours of Fig. 3.77. While the hybrid contours all show 

good agreement with DSMC in most of the domain, the bow shock region in the Mach contours 



109 

 

seems to be replicating the NS solution and predicting a thinner shock than DSMC. The cause for 

this is the frozen hybrid interface method currently employed, which prevents the hybrid interface 

from naturally evolving to a more upstream location [45]. 

 

  

 

Fig. 3.75 Density contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of Argon over a 2D cylinder.  

(Mach 10, Knudsen 0.01) 

 

 

 



110 

 

  

 

Fig. 3.76 Pressure contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of Argon over a 2D cylinder.  

(Mach 10, Knudsen 0.01) 

 

  

 

Fig. 3.77 Mach number contours of the NS (bottom-left) and hybrid (bottom-right) 

simulations compared against DSMC (top) for the flow of Argon over a 2D cylinder.  

(Mach 10, Knudsen 0.01) 
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 Next, stagnation line plots of translational temperature and surface plots of density, pressure, heat 

flux, and shear stress are presented in Fig. 3.78-3.82. The NS solution for temperature in Fig. 3.78 

shows deviations from the DSMC solution in areas of large 𝐾𝑛max such as the shock and good 

agreement downstream of the shock. The hybrid prediction for temperature is better than the NS 

predictions within the shock, which is also a DSMC zone. The DSMC solution for temperature 

agrees well with MONACO, validating the hybrid and DSMC modules. Good agreement is 

observed for the surface plots of density, with the NS solution presenting a 4.7% error and the 

hybrid solution presenting a 3% error from DSMC results at the stagnation point. The DSMC, 

hybrid, and NS surface pressures all agree with MONACO, where the NS solution at the stagnation 

point shows an error of 0.31% and the hybrid solution an error of 3.48% when compared to DSMC 

results. The heat flux plots show good agreement between HALO3D-DSMC and MONACO, 

further validating the DSMC solver. The NS and hybrid simulations slightly underpredict the heat 

flux compared to the DSMC solver, which can be attributed [50] to the width of the DSMC zone 

next to the wall at the stagnation point. This issue is easily remedied by using evolving hybrid 

interfaces, which is the subject of a future study. Nevertheless, a range of peak heat fluxes is 

available for this problem, as shown in Table 3.1, and the error for the hybrid peak heat flux against 

the DS2G results is 5.3%. When the threshold 𝐾𝑛max is set to 0.025 to make the DSMC region 

adjacent to the wall thicker, the heat flux prediction compares better with DSMC by presenting 

only a 0.73% error at the stagnation point, thus illustrating the need for an evolving hybrid interface 

setup. The shear stress plots show good agreement between the NS, DSMC, and hybrid codes and 

MONACO. The NS solution is known [107] to slightly overpredict the shear stress in the wake 

region, where 𝐾𝑛max  can be seen to increase. 𝐾𝑛max  is greater than 0.05 everywhere on the 

surface, ensuring that the entire surface is a DSMC zone. Cost benefits from the hybrid simulation 

are again observed, with the full DSMC computation taking 53.46 hours, whereas the hybrid 

simulation takes 26.92 hours. 



112 

 

 

Fig. 3.78 Translational temperature along the stagnation line for the flow of Argon over a 

2D cylinder. (Mach 10, Knudsen 0.01) 

 

Fig. 3.79 Density along the surface for the flow of Argon over a 2D cylinder.  

(Mach 10, Knudsen 0.01) 
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Fig. 3.80 Pressure along the surface for the flow of Argon over a 2D cylinder.  

(Mach 10, Knudsen 0.01) 

 

 

Fig. 3.81 Heat flux along the surface for the flow of Argon over a 2D cylinder.  

(Mach 10, Knudsen 0.01) 
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Fig. 3.82 Shear stress along the surface for the flow of Argon over a 2D cylinder.  

(Mach 10, Knudsen 0.01) 

Table 3.1 Peak heat flux predicted by different DSMC codes for the flow of Argon over a 

2D cylinder. (Mach 10, Knudsen 0.01) 

DSMC solver Peak heat flux (W/m2) 

DS2G [75] 38,300 

DAC [75] 38,500 

SMILE [75] 39,000 

MONACO [107] 39,319 

PDSC (with TAS) [98] 40,888 

HALO3D-DSMC 39,168 

dsmcFoam [108] 45,556 

 

3.2.2.2 Vibrational N2 Flow Over 2D Cylinder (Mach 10, Knudsen 0.006) 

 This test case simulates the flow of vibrational molecular Nitrogen over a 2D cylinder with the 

freestream Mach and Knudsen (based on the cylinder diameter) numbers being 10 and 0.006, 

respectively. The freestream x-velocity, pressure, and temperatures are 2883 m/s, 1.74602 N/m2, 

and 200 K, respectively. The diffuse wall is set to be at 500 K, and the time step for the DSMC 

simulation and the DSMC module of the hybrid simulation is 6.25 × 10-8 seconds. A threshold 

𝐾𝑛max value of 0.025 is employed to increase the thickness of the DSMC zone adjacent to the 
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wall in a hybrid simulation. The initial NS computation applies slip boundary conditions for this 

problem. The prediction of surface quantities by the hybrid solver in the absence of consistent 

thermal non-equilibrium modeling between NS and DSMC modules is evaluated. Indeed, the 

rotational and vibrational temperature fields for the hybrid simulation show discrepancies such 

that comparisons with DSMC solutions become illogical. Hence these fields are not presented here 

nor in the next test case. Contours of 𝐾𝑛max are provided in Fig. 3.83, where a maximum of ~5 is 

observed in the shock, which is greater than encountered in the previous test cases. Consistent with 

the Argon simulation, 𝐾𝑛max is found to be large in the wake region. 𝐾𝑛ROT−NEQ is shown in Fig. 

3.84, which delineates the shock as a region of rotational non-equilibrium. Since the shock is well 

accommodated within the 𝐾𝑛max  predictions, only minor deviations from the 𝐾𝑛ROT−NEQ 

predictions are expected. The hybrid masks resulting from a threshold 𝐾𝑛max of 0.025 are shown 

in Fig. 3.85 where the shock, boundary layer and wake are all marked as DSMC zones. 

 

Fig. 3.83 Knmax contours for the flow of vibrational Nitrogen over a 2D cylinder.  

(Mach 10, Knudsen 0.006) 
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Fig. 3.84 KnROT-NEQ contours for the flow of vibrational Nitrogen over a 2D cylinder.  

(Mach 10, Knudsen 0.006) 

 

 

Fig. 3.85 Hybrid masks for the flow of vibrational Nitrogen over a 2D cylinder.  

(Mach 10, Knudsen 0.006) 

 Contours of density and pressure for the NS, DSMC, and hybrid simulations are shown in Fig. 

3.86 and 3.87. The NS solutions again show a better comparison with DSMC than for the leading-

edge simulations. The hybrid solutions also compare well against DSMC solutions. Minor 

discrepancies exist downstream of the bow shock, near the stagnation line for both the density and 

pressure contours for both NS and hybrid simulations. This is attributed to the lack of a moving 
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hybrid interface setup, with the help of which the NS-DSMC interfaces can be appropriately 

located for predicting accurate flow field results. 

 

  

 

Fig. 3.86 Density contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of vibrational Nitrogen over a 2D cylinder. 

(Mach 10, Knudsen 0.006) 
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Fig. 3.87 Pressure contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of vibrational Nitrogen over a 2D cylinder. 

(Mach 10, Knudsen 0.006) 

 Surface plots of the density, pressure, heat flux and shear stress are presented in Fig. 3.88-3.91, 

where again, increased 𝐾𝑛max is observed in the wake. Density along the surface shows good 

agreement between the NS, DSMC, and hybrid solvers, with the NS solution slightly 

overpredicting the density at the stagnation point, resulting in a 3.9% error. The hybrid solution 

compares better with a 0.95% error against DSMC. The surface pressures also show good 

agreement among the NS, DSMC, and hybrid solvers, with the NS solution presenting a 1% error 

and the hybrid solution presenting a 1.6% error against DSMC. The surface heat flux results also 

show NS slightly overpredicting the heat flux with an error of 4.15% compared to the hybrid 

prediction, which shows an error of 1.59%. The shear stress plots also show a reasonably good 

comparison between the three solvers where the NS solution continues to overpredict the shear 

stress in the wake. The hybrid solution for this problem took 27.65 hours, while the DSMC solution 

took 64.48 hours to compute, thus illustrating the cost benefits of the hybrid algorithm again. 
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Fig. 3.88 Density along the surface for the flow of vibrational Nitrogen over a 2D cylinder. 

(Mach 10, Knudsen 0.006) 

 

 

Fig. 3.89 Pressure along the surface for the flow of vibrational Nitrogen over a 2D cylinder. 

(Mach 10, Knudsen 0.006) 
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Fig. 3.90 Surface heat flux for the flow of vibrational Nitrogen over a 2D cylinder.  

(Mach 10, Knudsen 0.006) 

 

 

Fig. 3.91 Shear stress along the surface for the flow of vibrational Nitrogen over a 2D 

cylinder. (Mach 10, Knudsen 0.006) 

3.2.2.3 Reacting Oxygen Mixture Flow Over 2D Cylinder (Mach 10, Knudsen 0.009) 

 This test case considers the flow of a mixture of chemically reacting atomic and molecular 

Oxygen over a 2D cylinder with the vibrational energy modeling turned on. Again, the focus is on 

estimating wall quantities with the addition of volume chemistry and the distribution of mass 
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fractions along the stagnation line. The freestream pressure, temperatures, and x-velocities are 

1.746 N/m2, 200 K, and 2883 m/s, respectively. The temperature of the diffuse wall is set to be 

500 K. The freestream molar fractions of atomic and molecular Oxygen are 0.5 for both. The 

freestream Mach number is 10, and the Knudsen number based on the cylinder diameter is 0.009. 

The time step employed in the full DSMC simulation and the DSMC portion of the hybrid 

algorithm is 6.25 × 10-8 seconds. The reactions and parameters used for this problem are given in 

Appendix B. Initialization of the hybrid simulation is performed with an NS solution with no-slip 

boundary conditions, which results in the correct prediction of the shock location. Initialization of 

the hybrid algorithm with a slip NS solution results in a shock location that is slightly upstream of 

the full DSMC shock location. Contours of 𝐾𝑛max for this problem are given in Fig. 3.92, where 

the maximum value of ~11 in the shock is the largest encountered among all the hybrid test cases. 

Contours of 𝐾𝑛ROT−NEQ are shown in Fig. 3.93, where rotational non-equilibrium can be observed 

primarily in the shock. Hybrid masks obtained with a threshold 𝐾𝑛max of 0.05 are shown in Fig. 

3.94, where similar to the other cylinder cases, the shock, wake, and boundary layer regions are 

designated as DSMC. 

 

Fig. 3.92 Knmax contours for the flow of an Oxygen mixture over a 2D cylinder.  

(Mach 10, Knudsen 0.009) 
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Fig. 3.93 KnROT-NEQ contours for the flow of an Oxygen mixture over a 2D cylinder.  

(Mach 10, Knudsen 0.009) 

 

 

Fig. 3.94 Hybrid masks for the flow of an Oxygen mixture over a 2D cylinder. 

 (Mach 10, Knudsen 0.009) 

 Contours of density, pressure, and O2 and O mass fractions are presented in Fig. 3.95-3.98. While 

the NS solutions for density and pressure agree with DSMC results, the mass fractions of both O2 

and O for the NS simulations are globally the same as the freestream values. This result was 

previously observed in the leading-edge simulations and has also been observed in the literature 

[45]. The hybrid results for all four variables present smooth contours and show good agreement 

with the DSMC simulation. For the mass fraction contours, the hybrid algorithm successfully 
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recovers from the constant mass fractions initially predicted by NS, and the shock region is clearly 

demarcated in the final hybrid mass fractions. O2 can be observed to be dissociating primarily in 

the shock region and wake. 

 

  

 

Fig. 3.95 Density contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of an Oxygen mixture over a 2D cylinder. 

(Mach 10, Knudsen 0.009) 
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Fig. 3.96 Pressure contours of the NS (bottom-left) and hybrid (bottom-right) simulations 

compared against DSMC (top) for the flow of an Oxygen mixture over a 2D cylinder. 

(Mach 10, Knudsen 0.009) 

  

 

Fig. 3.97 O2 mass fraction contours of the NS (bottom-left) and hybrid (bottom-right) 

simulations compared against DSMC (top) for the flow of an Oxygen mixture over a 2D 

cylinder. (Mach 10, Knudsen 0.009) 
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Fig. 3.98 O mass fraction contours of the NS (bottom-left) and hybrid (bottom-right) 

simulations compared against DSMC (top) for the flow of an Oxygen mixture over a 2D 

cylinder. (Mach 10, Knudsen 0.009) 

 Surface plots of density, pressure, heat flux and shear stress are presented in Fig. 3.99-3.102, 

where the NS, DSMC, and hybrid solutions compare well. The error in the hybrid solution for 

stagnation point density is 2.8% compared to DSMC and 7.05% for NS. NS compares better than 

the hybrid for the stagnation point pressure, with the hybrid solution predicting an error of 2.44% 

and the NS solution an error of 0.68%. The stagnation point heat flux is nearly identical between 

the NS, DSMC, and hybrid solutions, with the NS error being 0.51% and the hybrid solution error 

being 0.37%. Good agreement is found for the shear stress between the DSMC and hybrid 

solutions, with the NS solution again overpredicting the shear stress slightly in the wake. 
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Fig. 3.99 Density along the surface for the flow of an Oxygen mixture over a 2D cylinder. 

(Mach 10, Knudsen 0.009) 

 

Fig. 3.100 Pressure along the surface for the flow of an Oxygen mixture over a 2D cylinder. 

(Mach 10, Knudsen 0.009) 
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Fig. 3.101 Surface heat flux for the flow of an Oxygen mixture over a 2D cylinder.  

(Mach 10, Knudsen 0.009) 

 

Fig. 3.102 Shear stress along the surface for the flow of an Oxygen mixture over a 2D 

cylinder. (Mach 10, Knudsen 0.009) 

 Plots of the mass fractions of O2 and O along the stagnation line are presented in Fig. 3.103 and 

3.104 where the NS and DSMC zones are demarcated. A dip in the O2 mass fractions in the DSMC 

shock region (with a corresponding peak in the O mass fractions) can be observed, and the DSMC 

portion of the hybrid algorithm matches the full DSMC mass fractions well. Some discrepancy 

between the hybrid and DSMC results can be observed in the NS region downstream of the shock, 

and the hybrid solutions match the DSMC results again, adjacent to the wall. Smaller cost benefits 
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can be observed for this test case, where the time taken by the hybrid computation is 56 hours 

while the time taken by the DSMC computation is 61.8 hours. Better cost benefits are expected in 

future versions of HALO3D-HYBRID that will incorporate sophisticated hybrid procedures. 

 

Fig. 3.103 O2 mass fraction along the stagnation line for the flow of an Oxygen mixture 

over a 2D cylinder. (Mach 10, Knudsen 0.009) 

 

 

Fig. 3.104 O mass fraction along the stagnation line for the flow of an Oxygen mixture over 

a 2D cylinder. (Mach 10, Knudsen 0.009) 
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3.3 Mesh Optimization Results 

 This Section presents the results of mesh optimization for HALO3D-DSMC and HALO3D-

HYBRID through leading-edge test cases and flows over 2D and 3D cylinders. Hybrid simulations 

with mesh optimization are conducted for two cases: the flow of vibrationless Nitrogen over a 

leading-edge and the flow of Argon over a 2D cylinder. The leading-edge runs are used to explore 

the parameters and initial conditions for mesh adaptation which are then applied to the cylinder 

simulations. Solution and mesh quality are tested with the edge-based error estimator and the 

separation of free paths. Comparisons with the literature are also made to validate the optimization 

approach. 

3.3.1 Leading-Edge Flows (Mach 4, Knudsen 0.013) 

 The leading-edge problem is a suitable candidate for investigating the effects of OptiGrid’s 

optimization constraints and adaptation scalars. Bird’s original leading-edge setup of a Mach 4 

flow of vibrationless VHS Nitrogen is considered here as in Section 3.2.1.2, with the flow 

conditions repeated here for convenience. The freestream Knudsen number is 0.013, and the 

freestream velocity, pressure, and temperature are 1412.5 m/s, 0.4142 Pa, and 300 K, respectively. 

The wall temperature is set to 500 K, and the time step is 2 × 10-6 s. The VHS parameters used for 

Nitrogen are obtained from Bird [9]. The domain and boundary conditions have been illustrated in 

Fig. 3.22. The dimensions of the domain are 1.1 m × 0.6 m, and a 99 × 60 × 1 uniform structured 

mesh is employed for code verification. The collision grid for the structured mesh employs 2 sub-

cells in each direction. Around 300,000 simulated particles are present in the domain at steady-

state, and 20,000 samples are subsequently accumulated. A comparison of skin friction and heat 

flux coefficients is shown in Fig. 3.105, and an excellent agreement exists between the HALO3D-

DSMC and DS2V solvers. This non-adapted structured mesh will now serve as a reference in the 

remainder of this Section dealing with automatic mesh adaptation. 
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(a) Skin friction coefficient (b) Heat flux coefficient 

Fig. 3.105 Comparison of surface coefficients given by HALO3D-DSMC and DS2V 

for the leading-edge simulation. (Mach 4, Knudsen 0.013) 

 Unstructured adapted mesh simulations share the same case setup but for the sub-celling method 

that is discarded in this first test case to evaluate the optimized grid quality in its absence. The sets 

of multiphysics adaptation scalars explored are shown in Table 3.2, where 𝜌 is the mixture density, 

𝑈x and 𝑈y are the x- and y-components of the velocity vector, 𝑇t and 𝑇r are the translational and 

rotational temperatures, respectively, 𝑇tr  is the trans-rotational temperature, 𝑀𝑎  is the Mach 

number, and 𝑝 is the pressure. Case C is split into three test cases: C1, C2, and C3, with three 

different initial meshes and the same optimization constraints and adaptation scalar set to test the 

convergence of the optimization algorithm further. To explore unstructured mesh hybrid 

simulations and confirm the solver-independence of OptiGrid in the rarefied regime, mesh 

optimization of HALO3D-HYBRID is performed for case D where the optimization constraints 

and adaptation scalar set are kept the same as for cases C1, C2, and C3. 

Table 3.2 Sets of adaptation scalars retained for the leading-edge problem 

Test case Adaptation scalar set 

Case A { 𝜌 } 

Case B { 𝜌, 𝑈𝑥 , 𝑈𝑦 } 

Cases C1, C2, C3 { 𝜌, 𝑈𝑥 , 𝑈𝑦, 𝑇𝑡, 𝑇𝑟 , 𝑝, 𝑀𝑎 } 

Case D { 𝜌, 𝑈𝑥 , 𝑈𝑦, 𝑇𝑡𝑟, 𝑝, 𝑀𝑎 } 
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 The optimization constraints given to OptiGrid are as follows: (i) a minimum edge length of 0.01 

m (i.e., slightly greater than the minimum mfp of 0.0089 m), (ii) a maximum edge length of 0.2 

m, and (iii) a target node count equal to 4,000. The coarse initial mesh used for cases A, B, and C1 

and the adapted meshes are presented in Fig. 3.106. Each final adapted mesh contains 

approximately 12,000 cells with cell, facet, and node counts reaching a plateau after 30 

optimization cycles. The convergence of the mesh adaptation algorithm is shown in Table 3.3 for 

case C1 for the first 10 cycles and the last cycle. The coarse initial mesh causes the adaptation 

algorithm to converge to the final mesh at a much slower rate than in cases C2 and C3, where the 

initial meshes are more refined, and mesh counts reach a plateau after only 10 cycles. While case 

C1 is allowed to run to cycle 67 to compare with C2 and C3 to prove convergence, all cases begin 

producing successive meshes with nearly identical solutions after only the 4th cycle. This will 

become evident in the edge distribution plot for case C1 that follows. 

Table 3.3 Convergence of the mesh adaptation algorithm for case C1 of the leading-edge 

flow 

 Node count Facet count Cell count 

Structured mesh (with sub-cells) 12,200 12,198 5,940 

Adapted mesh case C1    

cycle 1 (initial mesh) 598 1,192 1,584 

cycle 2 3,937 6,998 12,423 

cycle 3 3,983 7,304 12,482 

cycle 4 3,959 7,374 12,323 

cycle 5  3,949 7,400 12,254 

cycle 6 3,955 7,442 12,225 

cycle 7 3,970 7,522 12,184 

cycle 8 3,965 7,554 12,134 

cycle 9 3,965 7,560 12,087 

cycle 10 3,962 7,574 12,058 

cycle 67 (Fig. 3.106d) 4,194 8,250 12,466 

Adapted mesh case C2 (Fig. 3.106f) 4,254 8,496 12,407 

Adapted mesh case C3 (Fig. 3.106h) 4,204 8,346 12,311 
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Table 3.4 Convergence of the mesh adaptation algorithm for case D of the leading-edge 

flow 

 Node count Facet count Cell count 

Adapted mesh case D    

cycle 1 (initial mesh) 8,684 17,364 25,218 

cycle 2 3,726 7,370 10,975 

cycle 3 4,112 8,158 12,126 

cycle 4 4,207 8,288 12,419 

cycle 5  4,158 8,170 12,279 

cycle 6 4,161 8,192 12,272 

cycle 7 4,160 8,202 12,285 

cycle 8 4,184 8,250 12,350 

cycle 9 4,169 8,244 12,272 

cycle 10 4,171 8,248 12,290 

cycle 14 (Fig. 3.106i) 4,209 8,336 12,391 

 

 Density as the sole adaptation scalar is sufficient to discern the shock (case A, Fig. 3.106b) but 

also results in an ill-distributed mesh in the boundary layer. Thus, the adapted mesh fails to capture 

the surface skin friction and heat flux coefficients compared to the baseline structured grid 

simulation in Fig. 3.107. To alleviate this issue, velocity components are added to the set of 

adaptation scalars in case B, and a more refined mesh distribution near the wall is achieved as a 

result in Fig. 3.106c, with skin friction and heat flux coefficients now showing only minor 

discrepancies in Fig. 3.107. Previous applications of OptiGrid with the HALO3D-NS flow solver 

for various re-entry bodies [80,100,101] highlighted the necessity of considering pressure, modal 

temperatures, and Mach number in conjunction with the aforementioned adaptation scalars. They 

are thus added to the set of case C1 to generate an optimized mesh shown in Fig. 3.106d that best 

represents all these flow field and surface quantities. The resulting mesh is similar to that of case 

B except for a smaller coarse region downstream of the shock, and it is anticipated that these 

additional scalars could be helpful for detached bow shock problems with steep gradients. 

 The capability of OptiGrid to generate the same final mesh irrespective of the initial mesh has 

been documented [99] for continuum regime simulations. To verify this for the rarefied regime, 

mesh adaptation is performed on two other initial meshes with the same optimization constraints 
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and scalar set as case C1. The initial meshes for these two cases (C2 and C3) are shown in Fig. 

3.106e,g, where the initial mesh for case C2 is refined globally and for C3 is refined arbitrarily. 

Both initial meshes converge to the final meshes shown in Fig. 3.106f,h. These adapted meshes 

are statistically identical to the optimized mesh of case C1 shown in Fig. 3.106d, which began with 

the globally coarse initial mesh shown in Fig. 3.106a. The node, facet, and cell counts of all three 

adapted meshes of cases C1, C2 and C3 are similar, with a maximum error of 2.98% between these 

meshes occurring for the facet counts. The convergence of the mesh optimizer for case D, starting 

with the initial mesh of case C3, is presented in Table 3.4, where the mesh counts of the converged 

mesh are similar to the adapted DSMC meshes of cases C1, C2, and C3, with a maximum error of 

1.88% for the facet counts between the adapted meshes of case D and C2. The optimized mesh for 

case D in Fig. 3.106i is indeed statistically identical to the adapted meshes of cases C1, C2, and 

C3. The skin friction and heat flux coefficients for case D agree well with the structured mesh 

results in Fig. 3.107, thus validating the hybrid mesh optimization approach. 

  

(a) Initial mesh for cases A, B, C1 (b) Optimized mesh for case A 

  

(c) Optimized mesh for case B (d) Optimized mesh for case C1 

Fig. 3.106 Automatic mesh optimization for the leading-edge flow. 

(Mach 4, Knudsen 0.013) 
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(e) Initial mesh for case C2 (f) Optimized mesh for case C2 

  

(g) Initial mesh for cases C3 and D (h) Optimized mesh for case C3 

 

(i) Optimized mesh for case D 

Fig. 3.106 Automatic mesh optimization for the leading-edge flow.  

(Mach 4, Knudsen 0.013) 
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(a) Skin friction coefficient 

 

(b) Heat flux coefficient 

Fig. 3.107 Comparison of surface coefficients given by HALO3D-DSMC and HALO3D-

HYBRID for the structured and adapted grids for the leading-edge simulation.  

(Mach 4, Knudsen 0.013) 
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Fig. 3.108 Hybrid masks for the structured (left) and unstructured optimized (right) 

meshes for the leading-edge flow. (Mach 4, Knudsen 0.013) 

 A comparison of the hybrid masks between the structured mesh (from Section 3.2.1.2) and the 

optimized unstructured mesh (case D) is presented in Fig. 3.108. The structured mesh simulation 

employs three inner and outer buffer levels, while case D employs three inner and one outer buffer 

level to account for the large cells in the freestream. The structured mesh results show a castellated 

pattern along the shock since the hexahedra are not aligned with the shock, while the masks for 

case D are smoother since the optimizer comfortably aligns the tetrahedra with the shock. A 

comparison between the adapted mesh of case D in Fig. 3.106i and the hybrid masks from Fig. 

3.108 outlines the allocation of larger cells in the adapted mesh as NS zones and smaller cells as 

DSMC zones. This is further discussed and illustrated for bow shocks in Section 3.3.2. 

 Figure. 3.109 shows the Mach number and non-dimensionalized number density contours for 

structured and adapted (case C1) meshes. A good agreement is found between the two meshes, 

proving that the unstructured adapted sampling meshes can represent the flow field with the same 

level of accuracy as a near-optimal structured mesh using sub-cells. In addition, the minimum edge 

lengths occurring in the structured and adapted meshes are similar, and while the uniform 

structured mesh is globally refined, the mesh adaptation algorithm can generate edges of this 

dimension only in areas where it is needed, as dictated by the adaptation scalars. Mach number 

and density contours for the structured mesh DSMC simulation and adapted mesh hybrid 

simulation of case D are presented in Fig. 3.110, where a good agreement between both 

meshes/solvers can be observed. This provides further validation to the hybrid mesh optimization 

approach. 
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 Abbreviating mean collision separation as mcs, the mcs/mfp ratio (also called separation of free 

paths) is provided in Fig. 3.111 for the structured and adapted meshes C1 and D. A maximum cut-

off value equal to 1 is chosen to highlight the shock and boundary layer regions better. The NS 

region mcs/mfp for case D is assigned to be zero. The maximum mcs/mfp value for the structured 

mesh is 0.4 (clearly benefiting from the sub-cell method) and is 3 for case C1. Some advantages 

of unstructured mesh optimization are visible in that the mcs/mfp ratio for the adapted meshes is 

lower than 1 in the shock, stagnation point, and boundary layer, with these regions being sharply 

defined. It is possible to further lower the mcs/mfp in these regions by changing the minimum edge 

length. The regions of case C1 with mcs/mfp greater than 1 in the freestream and downstream of 

the shock can be treated using sub-cell methods or by decreasing the maximum edge length 

constraint as is done in Sections 3.3.2-3.3.4. In contrast, the relatively low mcs/mfp in the 

freestream for the structured mesh indicates that the freestream is unnecessarily refined.  

  

Fig. 3.109 Mach number (left) and non-dimensionalized number density (right) for the 

structured (top) and adapted (case C1, bottom) meshes of the leading-edge flow.  

(Mach 4, Knudsen 0.013) 
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Fig. 3.110 Mach number (left) and density (right) for the structured (top) and adapted 

(case D, bottom) meshes of the leading-edge flow. (Mach 4, Knudsen 0.013) 

 

  

(a) Structured mesh (b) Adapted mesh (case C1) 

 

(c) Adapted mesh (case D) 

Fig. 3.111 mcs/mfp ratio for the structured and adapted meshes of the leading-edge 

flow. (Mach 4, Knudsen 0.013) 
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 The distribution of the mcs/mfp ratio provides information on the degree of physical accuracy of 

the solution and is also used to evaluate the quality of the mesh as a collisional mesh. In contrast, 

the distribution of the error estimate defined in Equation 2.133 provides a way to evaluate the 

quality of the solution that is represented on a given sampling mesh. For continuum regime mesh 

adaptation, the error estimate represents the discretization error of the PDE being solved, and for 

DSMC, it is expected that the error estimate represents the amount of deviation from a solution 

obtained on vanishingly small sampling cells. The distribution of the error estimate for the initial 

and adapted meshes of the full DSMC simulations of cases C1, C2, and C3 are shown in Fig. 

3.112. All three initial meshes present their maximum errors at the stagnation point, and the error 

estimate distribution of initial mesh C2 is generally lower than initial meshes C1 and C3. All three 

adapted meshes display low error in the freestream, again showing that the flow field variables are 

well captured in the freestream despite the large cell size. Plots of the percentage of edges 

possessing different error estimate values for cases C1, C2, and C3 are shown in Fig. 3.113. For 

case C1, the coarse initial mesh has a much larger maximum error than the adapted mesh and the 

edge distribution converges within the first few iterations to a similar profile as that of the final 

mesh, as shown in Fig. 3.113a. The refined initial mesh of case C2 displays two peaks in the 

percentage of edges in Fig. 3.113b that are consolidated into a single peak around a similar error 

level through mesh adaptation. The peaks in the percentage of edges at very low error for the initial 

mesh of case C2 are due to the over-refined freestream. The distribution for case C3 plotted in Fig. 

3.113c indicates that the few edges with high errors at the stagnation point in the initial mesh are 

refined to produce lower error regions. For cases C1, C2, and C3, multiple peaks can be observed 

in the plots for the initial meshes that change to a single peak for the adapted mesh. This shows 

that the error is getting equi-distributed across the domain. Fig 3.113e plots the edge distributions 

for the adapted meshes from cases C1, C2, and C3 on the same graph. The degree of similarity 

between these three plots is a testament to the ability of OptiGrid to converge to the same final 

mesh irrespective of the initial mesh or solver. Similar conclusions can be drawn from the error 

estimate contours for hybrid simulations from case D shown in Fig. 3.112g,h where the error is 

high at the stagnation point in the initial mesh and the adapted mesh results show the error being 

equi-distributed among the NS and DSMC regions. Edges with large error estimates in the initial 

mesh are treated as shown in Fig. 3.113d, and the edge distribution for the adapted mesh of case 

D is similar to that of the adapted meshes of cases C1, C2 and C3 in Fig. 3.113e. 
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(a) Initial mesh of case C1 (b) Optimized mesh of case C1 

  

(c) Initial mesh of case C2 (d) Optimized mesh of case C2 

  

(e) Initial mesh of case C3 (f) Optimized mesh of case C3 

  

(g) Initial mesh of case D (h) Optimized mesh of case D 

Fig. 3.112 Error estimate contours for cases C1, C2, C3 and D. (Mach 4, Knudsen 0.013) 
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(a) Edge distribution for case C1 (b) Edge distribution for case C2 

  

(c) Edge distribution for case C3 (d) Edge distribution for case D 

 

(e) Edge distribution for the adapted meshes 

Fig. 3.113 Edge distributions for cases C1, C2, C3 and D. (Mach 4, Knudsen 0.013) 

 In summary, the leading-edge tests indicate that a suitable DSMC mesh that produces results of 

similar accuracy as a refined tetrahedralized uniform structured initial mesh (that has 13,542 nodes, 

27,200 facets and 39,600 cells) while employing fewer node, cell and facet counts can be created 
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through OptiGrid for attached shock problems. They also indicate that a single error estimator built 

from the Hessian of the adaptation scalars can be used to examine the quality of both the NS and 

DSMC solutions in a hybrid algorithm. The following three cylinder cases will aim to demonstrate 

similar conclusions for 2D and 3D flows exhibiting a strong detached bow shock and a wake 

region. 

3.3.2 Argon Flow over 2D Cylinder (Mach 10, Knudsen 0.01) 

 Lofthouse [107] and Bird [75] have used this benchmark Mach 10 Knudsen 0.01 flow of Argon 

over a 0.3048 m-diameter 2D cylinder to perform mesh adaptation with the MONACO and DS2V 

codes. This test case is the same as in Section 3.2.2.1 except for a bigger domain to accommodate 

the shock to a larger extent. The domain and boundary conditions are illustrated in Fig. 3.114. Two 

cases are considered: case A is for the mesh adaptation of a full DSMC solution, and case B is for 

the mesh adaptation of a hybrid solution. The freestream conditions, repeated here for convenience, 

for pressure, temperature, and velocity are 1.1727 Pa, 200 K, and 2634.1 m/s, respectively, the 

diffuse wall temperature is set to 500 K, and the time step is 1 × 10-7 s in the full DSMC and DSMC 

portions of the hybrid simulation. The threshold 𝐾𝑛max for the hybrid simulations of case B is set 

to be 0.05. The findings of the leading-edge case led to the consideration of { 𝜌, 𝑈𝑥, 𝑈𝑦, 𝑇𝑡, 𝑝, 𝑀𝑎 } 

as the set of multiphysics adaptation scalars for both case A and B as well.  

 

Fig. 3.114 Domain and boundary conditions for the hypersonic flow over a cylinder 
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 The optimization constraints given to OptiGrid for both cases are as follows: (i) a minimum edge 

length of 0.0025 m (equal to 0.87 times the freestream mfp), (ii) a maximum edge length of 0.07 

m (equal to 5 times the maximum mfp, as found from the first iteration of the adaptation 

algorithm), and (iii) a target cell count equal to 85,000. The convergence of the mesh adaptation 

algorithm for both cases is provided in Table 3.5 and 3.6, and the adapted meshes are shown in 

Fig. 3.115. The two adapted meshes look similar, and the maximum error for the mesh counts 

between the two meshes occurs for the cell count and is equal to 0.48%. This result confirms the 

solver-independence of OptiGrid and validates the hybrid algorithm since it has to produce the 

same solution as full DSMC for the two meshes to be the same. The same initial mesh is used for 

both cases, which is sized such that the edge length at the wall is 0.0025 m and gradually increases 

outward to a maximum of 0.01 m, to accelerate the convergence of the mesh adaptation algorithm. 

Such a large cell size is used primarily to test the capability of the background mesh to function as 

a sampling mesh first and as a collisional mesh second (indeed, more sub-cells are created as a 

result).  

 Preliminary mesh adaptation studies for varying minimum edge length and particle count have 

been conducted for this problem, as shown in Fig. 2.13. These studies highlighted the sensitivity 

of the surface heat flux to the cell size and particle count at the wall and the tendency of refined 

meshes to over-predict the peak heat flux when the particle count is insufficient. Following these 

studies, the minimum edge length is set to be 0.0025 m since it resulted in the least surface heat 

flux for the same particle cost among all the minimum edge lengths considered. The adaptation 

target from this case onward is changed from a node count to a cell count approach since an 

estimate for the total number of particles can be derived, and we can employ at least 20 particles 

per cell, on average, for the intermediate mesh iterations.  
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Table 3.5 Convergence of the mesh adaptation algorithm for the flow of Argon over a 2D 

cylinder (case A) 

 Node count Facet count Cell count 

Unstructured adapted mesh    

cycle 1 (initial mesh) 25,732 51,460 75,630 

cycle 2 24,252 38,878 83,749 

cycle 3 24,095 38,070 84,876 

cycle 4 23,846 37,756 84,400 

cycle 5  23,874 37,796 84,565 

cycle 6 (Fig. 3.115) 23,801 37,698 84,487 

 

Table 3.6 Convergence of the mesh adaptation algorithm for the flow of Argon over a 2D 

cylinder (case B) 

 Node count Facet count Cell count 

Unstructured adapted mesh    

cycle 1 (initial mesh) 25,732 51,460 75,630 

cycle 2 24,568 39,726 84,576 

cycle 3 24,081 38,052 84,805 

cycle 4 23,834 37,678 84,170 

cycle 5  23,767 37,530 84,166 

cycle 6 (Fig. 3.115) 23,768 37,634 84,080 

 

 Hybrid masks for the structured mesh simulations from Fig. 3.74 are presented again, along with 

the masks for the unstructured mesh simulations of case B in Fig. 3.116. The structured mesh 

masks in Fig. 3.116a show a castellated pattern along the shock and the wake, and these boundaries 

are smoother in the adapted unstructured mesh results in Fig. 3.116b due to mesh adaptation. The 

masks for the initial unstructured mesh in Fig. 3.116a are of poor quality and are handled robustly 

by the hybrid solver. Similar to the leading-edge results, when the adapted mesh in Fig. 3.115 is 

compared against the hybrid masks in Fig. 3.116b, it would seem that refined cells occur in DSMC 

regions, and the cell sizes in the NS regions are coarser around the shock and boundary layer. The 

shock region delineated by both the Hessian of the set of multiphysics adaptation scalars and by 

𝐾𝑛max is of similar thickness. This becomes more evident when an enlarged section of the shock 
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is examined in Fig. 3.116b. In the literature, multigrid setups employing separate structured DSMC 

and NS meshes [47] have been built where the DSMC mesh is generated by refining selected cells 

of the coarser NS mesh and ensuring that the resulting DSMC cells have a characteristic length 

smaller than the local mfp. In contrast, the unstructured mesh of case B shows cell sizes reducing 

from NS to DSMC zones organically, indicating that a single adapted unstructured mesh can 

perform the functions of two structured meshes while guaranteeing good collision cell size in the 

DSMC regions. Better alignment of the masks and the mesh is possible by employing an evolving 

interface setup. 

 Contours of Mach number, temperature, and density from the adapted meshes of Fig. 3.115 are 

presented in Fig. 3.117-3.119. These contours, along with those of velocity and pressure are better 

captured on the adapted meshes than on the initial mesh, with a good representation of the steep 

gradients. The adapted hybrid contours compare well against the adapted DSMC contours. 

Contours of mcs/mfp for the initial and adapted meshes of cases A and B are shown in Fig. 3.120, 

and maximum cut-off values are chosen for better visualization. The NS region in case B is 

assigned an mcs/mfp of zero. The maximum mcs/mfp for the initial and adapted case A meshes is 

around 7 at the stagnation point, and this is due to the choice of a large minimum edge length. 

Overall, both the adapted meshes reduce the mcs/mfp ratio in the stagnation region due to a better 

distribution of cells, and a well-defined shock region is obtained (with an mcs/mfp ratio lower than 

that of the initial mesh). The freestream mcs/mfp for the adapted DSMC mesh (case A) is around 

1, which indicates that the sub-cell method is working effectively. The larger mcs/mfp values in 

the wake region for the adapted meshes indicate that the mesh optimization methodology is 

coarsening this lower-density region as needed to balance the error across the domain. The 

mcs/mfp distribution of the adapted hybrid simulation in Fig. 3.120c is similar to the adapted full 

DSMC result in Fig. 3.120b since both the hybrid and DSMC adaptations use the same min/max 

edge length constraints and adaptation scalars. This shows that the DSMC region mesh of the 

adapted hybrid simulation is of good quality. 
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Fig. 3.115 Final adapted meshes for case A (top) and case B (bottom) after 6 optimization 

cycles for the flow of Argon over a 2D cylinder. (Mach 10, Knudsen 0.01) 
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(a) Structured mesh (left) initial unstructured mesh (case B) (right) 

 

 

(b) Adapted unstructured mesh (case B) 

Fig. 3.116 Hybrid masks for the flow of Argon over a 2D cylinder. (Mach 10, Knudsen 0.01) 
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Fig. 3.117 Mach contours of the adapted meshes of case A (left) and case B (right) for the 

flow of Argon over a 2D cylinder. (Mach 10, Knudsen 0.01) 

 

 

    

Fig. 3.118 Contours of translational temperature of the adapted meshes of case A (left) and 

case B (right) for the flow of Argon over a 2D cylinder. (Mach 10, Knudsen 0.01) 
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Fig. 3.119 Contours of density of the adapted meshes of case A (left) and case B (right) for 

the flow of Argon over a 2D cylinder. (Mach 10, Knudsen 0.01) 

 

 

 

 

 

 

 

 

 

 



150 

 

  

(a) Initial mesh (b) Adapted mesh (case A) 

 

(c) Adapted mesh (case B) 

 Fig. 3.120 Contours of mcs/mfp for the flow of Argon over a 2D cylinder on the 

initial and adapted meshes. (Mach 10, Knudsen 0.01) 

Figure. 3.121 presents the surface heat flux and shear stress distributions along the cylinder for the 

full DSMC solutions on the structured mesh, case A, and hybrid solutions from case B. The hybrid 

heat flux compares well against both DSMC simulations but underpredicts the value with an error 

of 5% at the stagnation point. As discussed, this is because the NS-DSMC interface near the wall 

is located too close to the wall, and an evolving hybrid interface setup will remedy this easily. To 

confirm, the threshold 𝐾𝑛max is set to 0.025, and a hybrid simulation is run on the adapted mesh. 

The resulting stagnation point heat flux presents a 1.3% error when compared to the structured 

mesh results. The adapted full DSMC heat flux (case A) presents a 4.75% error against the 
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structured mesh and shows some scatter, and the shear stress compares well for all three 

simulations. The scatter in the heat flux and shear stress plots shown in cases A and B is due to an 

insufficient number of particles used by both solvers. Fig. 3.122 shows the temperature along the 

stagnation line for the structured mesh, case A, and case B. Good agreement is observed between 

all three solvers, validating the mesh optimization approach for both DSMC and hybrid NS-DSMC. 

      

Fig. 3.121 Surface heat flux (left) and shear stress (right) for the flow of Argon over a 2D 

cylinder. (Mach 10, Knudsen 0.01)  

  

 

Fig. 3.122 Translational temperature along the stagnation line for the flow of Argon over a 

2D cylinder. (Mach 10, Knudsen 0.01)  
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 Contours of the error estimate for the initial and adapted meshes of cases A and B are illustrated 

in Fig. 3.123 and 3.124, where the error on the initial meshes is large in the shock and boundary 

layer regions, and the error in the shock region is maximum near the top of the domain where the 

irregularities in the solution fields are the greatest. The adapted meshes display a lower error 

distribution in the shock and boundary layer, indicating that the sampling mesh generated by 

OptiGrid captures the solution better than the initial mesh. Along with the leading-edge 

simulations, these results indicate that using a single error estimator to quantify solution error in 

both NS and DSMC regions is possible. This ensures that the standards for evaluating solution 

quality are the same, irrespective of the source of the solutions and that the conditions for mesh 

deformation are preserved between NS and DSMC regions. The distribution of the percentage of 

edges in Fig. 3.125 shows that a considerable number of edges at higher error in the initial mesh 

are treated to produce a lower maximum error for the adapted mesh for cases A and B. The adapted 

meshes collect most of the edges under a single peak, thus indicating that the error estimate is 

being equi-distributed. 

       

Fig. 3.123 Contours of the error estimate for the initial (left) and adapted (right) meshes for 

the flow of Argon over a 2D cylinder (case A). (Mach 10, Knudsen 0.01) 
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Fig. 3.124 Contours of the error estimate for the initial (left) and adapted (right) meshes for 

the flow of Argon over a 2D cylinder (case B). (Mach 10, Knudsen 0.01) 

 

Fig. 3.125 Edge distributions for the initial and adapted meshes of case A (left) and case B 

(right) for the flow of Argon over a 2D cylinder. (Mach 10, Knudsen 0.01) 

3.3.3 Reacting Nitrogen Mixture Flow over 2D Cylinder (Mach 8.34, Knudsen 0.026) 

 This test case considers the full DSMC flow of a reacting mixture of N2 and N over a 0.3048 m 

diameter cylinder to explore the use of species mass fractions as adaptation scalars. The domain 

geometry and boundary conditions are similar to the illustration in Fig. 3.114. Hybrid simulations 

are not considered here due to the lack of consistent thermal non-equilibrium models. The 

freestream pressure, temperature, and x-velocity are 0.58635 N/m2, 200 K, and 2883 m/s. The 

freestream mole fractions are 0.5 for both N2 and N, and the diffuse wall temperature is 500 K. 

The freestream Mach and Knudsen (based on the cylinder diameter) numbers are 8.34 and 0.026, 
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respectively, and the time step is 1 × 10-7 seconds. The reactions and reaction parameters are 

provided in Appendix B. Two adapted meshes are generated with these two adaptation scalar sets: 

case A with { 𝑋N, 𝑋N2
 } and case B with { 𝜌, 𝑈x, 𝑈y, 𝑇t, 𝑇r, 𝑝, 𝑀𝑎, 𝑋N, 𝑋N2

} where 𝑋 is the species 

mole fraction. Vibrational temperature is not considered as an adaptation scalar because it causes 

an extraneous refinement of the freestream, as will become clear in the flow field contours that 

follow. The mesh adaptation constraints for both case A and B are: (i) a minimum edge length of 

0.002 m (equal to ~6 times the minimum mfp) (ii) a maximum edge length of 0.0467 m (equal to 

~6 times the freestream mfp) and (iii) a target cell count of 113000. Around 3.3 million particles 

are present at steady-state for each mesh iteration for both adaptation scalar sets. The convergence 

of the mesh adaptation algorithm for case B is given in Table 3.7, and the two adapted meshes are 

shown in Fig. 3.126 and 3.127. When mole fractions are used as adaptation scalars, the shock, 

boundary layer, and wake regions undergo refinement. The refined shock and boundary layer 

regions are thinner for case A than for case B. For case A, the mesh is refined only in those areas 

of the shock and boundary layer where a change in either species' concentration occurs. In case B, 

the thicker shock region is attributed to multiple adaptation scalars that reinforce the shock and 

boundary layer regions to capture these flow features fully. None of the adaptation scalars in 

Section 3.3.2 caused the refinement of the wake, rather, some coarsening of the wake was seen, 

which along with Fig. 3.126, leads to the conclusion that any refinement of the wake region in Fig. 

3.127 is solely due to the addition of mole fractions as adaptation scalars. When Fig. 3.126 and 

3.127 are compared, it can be deduced that the use of multiple scalars that reinforce the same 

region, in this case the shock, causes the optimization algorithm to preferentially refine the shock 

region over lesser reinforced regions such as the wake.  
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Fig. 3.126 Final adapted mesh for case A, where { 𝑿𝐍, 𝑿𝐍𝟐
 } is the adaptation scalar set for 

the flow of a Nitrogen mixture over a 2D cylinder. (Mach 8.34, Knudsen 0.026) 

 

 

 

Fig. 3.127 Final adapted mesh for case B, where { 𝝆, 𝑼𝐱, 𝑼𝐲, 𝑻𝐭, 𝑻𝐫, 𝒑, 𝑴𝒂, 𝑿𝐍, 𝑿𝐍𝟐
} is the 

adaptation scalar set for the flow of a Nitrogen mixture over a 2D cylinder.  

(Mach 8.34, Knudsen 0.026) 
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Table 3.7 Convergence of the mesh adaptation algorithm for case B involving the flow of a 

Nitrogen mixture over a 2D cylinder 

 Node count Facet count Cell count 

Unstructured adapted mesh    

cycle 1 (initial mesh) 38,462 76,920 113,646 

cycle 2 35,965 70,982 108,104 

cycle 3 37,666 74,554 112,843 

cycle 4 38,518 76,426 115,213 

cycle 5  38,898 77,150 116,438 

cycle 6  39,167 77,710 117,198 

cycle 7 39,232 77,880 117,380 

cycle 8 (Fig. 3.127) 39,330 77,994 117,724 

 Contours of Mach number, vibrational temperature, and species mass fractions of case B are 

provided in Fig. 3.128 and 3.129. The Mach contours feature a shock thicker than for Section. 

3.3.2 due to the larger freestream Knudsen number. Flow field variables such as density, pressure, 

velocities, and temperatures are better captured on the adapted mesh, with smooth contours being 

visualized for these variables. Some statistical scatter is found in the wake region, and this is 

attributed to the low particle counts in this region coupled with a refined mesh in the wake that 

generally demands more particles. The vibrational temperature field also shows statistical scatter 

in the freestream, which has been noted before in the literature [107]. This scatter, like the one in 

the wake, registers as increased error and prompts the mesh optimizer to refine these regions. For 

this reason, the vibrational temperature is not used as an adaptation scalar. Contours of mcs/mfp 

for the initial and adapted meshes of case B are presented in Fig. 3.130 where refinement in the 

shock results in a decreased mcs/mfp in this region. Again, the freestream mcs/mfp for adapted 

mesh is ~1, while that at the stagnation point is ~5.6. Plots of heat flux and shear stress obtained 

on the adapted mesh of case B are shown in Fig. 3.131 where lesser scatter than in Section 3.3.2 

can be observed thanks to the freestream Knudsen number being larger, which is less punishing in 

terms of particle count. 
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Fig. 3.128 Mach number (left) and vibrational temperature (right) contours of the adapted 

mesh (case B) for the flow of a Nitrogen mixture over a 2D cylinder.  

(Mach 8.34, Knudsen 0.026) 

 

 

      

Fig. 3.129 N2 (left) and N (right) mass fraction contours of the adapted mesh (case B) for 

the flow of a Nitrogen mixture over a 2D cylinder. (Mach 8.34, Knudsen 0.026) 
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Fig. 3.130 mcs/mfp for the initial (left) and adapted (right) meshes (case B) for the flow of a 

Nitrogen mixture over a 2D cylinder. (Mach 8.34, Knudsen 0.026) 

  

Fig. 3.131 Surface heat flux (left) and shear stress (right) of the adapted mesh (case B) for 

the flow of a Nitrogen mixture over a 2D cylinder. (Mach 8.34, Knudsen 0.026) 

 Contour plots of the error estimate for both cases A and B are presented in Fig. 3.132 and 3.133 

In both cases, the initial mesh displays large errors in the shock region, which are rectified through 

mesh adaptation. The error estimate contours also showcase the equi-distribution of the error 

estimate throughout the domain. This is also seen in the line plots of edge distribution shown in 

Fig. 3.134, where a sharp singular peak exists for the adapted meshes of both cases A and B. Some 

noise exists in the error contours for the adapted meshes in the wake regions. This is because of 

the wake’s refinement and the already low particle count usually found in this region. While a 

better resolution of the wake is possible by employing much larger particle counts for each mesh 

iteration, the goal of the present study is to employ as few particles as possible for the intermediate 

mesh iterations. The final adapted mesh is reserved for large particle count runs as necessary. 
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Therefore, it is advocated to use the several adaptation scalars already established instead of the 

mass fractions. Since the mass fractions bring about the refinement of the shock and wake region, 

and there already exist several other variables that reinforce the shock, and the refinement of the 

wake is not wanted, the mass fractions need not be considered as adaptation scalars. 

  

Fig. 3.132 Error estimate on the initial (left) and adapted (right) meshes for the flow of a 

Nitrogen mixture over a 2D cylinder (case A). (Mach 8.34, Knudsen 0.026) 

 

  

Fig. 3.133 Error estimate on the initial (left) and adapted (right) meshes for the flow of a 

Nitrogen mixture over a 2D cylinder (case B). (Mach 8.34, Knudsen 0.026) 
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Fig. 3.134 Edge distributions for the initial and adapted meshes for case A (left) and case B 

(right) for the flow of a Nitrogen mixture over a 2D cylinder. (Mach 8.34, Knudsen 0.026) 

3.3.4 Argon Flow over 3D Flat-Nosed Cylinder (Mach 5.37, Knudsen 0.047) 

 A 2D axisymmetric flow of Argon over a 0.02 m diameter flat-nosed cylinder has been simulated 

by Bird [9] and later modeled in the form of a 3D quarter-symmetry problem by Scanlon et al. 

[108]. This quarter-symmetry domain is used in this test case and is shown along with the boundary 

conditions in Fig. 3.135. The freestream conditions for Mach number, Knudsen number, pressure, 

temperature, and the x-component of velocity equal 5.37, 0.047, 1.381 Pa, 100 K, and 1000 m/s, 

respectively. Full DSMC mesh optimization is performed here since the Knudsen number is quite 

large for hybrid simulations. The diffuse wall temperature is 300 K, and the initial uniform mesh 

shown in Fig. 3.136a has cells sized to the freestream mfp. The equivalent number of simulated 

particles is 1.24 × 1010, and the time step is 1.87 × 10-7 s. The set of adaptation scalars used for 

this problem is { 𝜌, 𝑇t, 𝑝, 𝑈x, 𝑈y, 𝑈z, 𝑀𝑎 }, and the optimization constraints given to OptiGrid are 

as follows: (i) a minimum edge length of 3.6 × 10-4 m (equal to 3 times the minimum mfp), (ii) a 

maximum edge length of 0.01 (equal to 3 times the maximum mfp), and (iii) a target cell count 

equal to 250,000. Fig. 3.136b shows the final adapted mesh, while the contours of Mach number 

for that mesh are presented in Fig. 3.137.  Since the minimum edge length constraint is set based 

on the minimum mfp, the background mesh acts more as a collisional-sampling mesh with fewer 

sub-cells created per collision cell on average compared with the approach of Section 3.3.2. The 

convergence of the mesh adaptation algorithm is provided in Table 3.8. 
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Fig. 3.135 Domain and boundary conditions for the hypersonic flow over a 3D flat-nosed 

cylinder 

Table 3.8 Convergence of the mesh adaptation algorithm for the flow of Argon over a 3D 

flat-nosed cylinder 

 Node count Facet count Cell count 

Bird’s 2D axisymmetric mesh [9]   4,800 

Scanlon et al. [108]    275,000 

Unstructured adapted mesh    

cycle 1 (initial mesh) 31,363 18,248 156,216 

cycle 2 47,130 13,550 253,239 

cycle 3 44,935 11,938 246,050 

cycle 4 45,857 11,890 251,111 

cycle 5  45,947 11,888 251,805 

cycle 6 (Fig. 3.136b) 46,002 11,908 252,061 

 OptiGrid captures the relatively weaker gradients characteristic of larger Knudsen number flows, 

with mesh nodes in the near-wall region being better distributed when compared to the initial mesh, 

while the freestream region and area downstream near the outflow boundary are coarsened 

accordingly. Contours of non-dimensional density and temperature are presented in Fig. 3.138 and 

3.139. Optimized mesh results show that fields are better resolved in the vicinity of the front face 

of the cylinder and in the shock layer, compared to initial mesh results. In addition, the final 
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adapted mesh contours are in good agreement with Bird’s 2D axisymmetric results, whether that 

is in the stagnation region or around the corner. 

  

(a) Initial mesh 
(b) Final adapted mesh after 6 

optimization cycles 

Fig. 3.136 Automatic mesh optimization for the flow of Argon over a 3D flat-nosed 

cylinder. (Mach 5.37, Knudsen 0.047) 

 

Fig. 3.137 Contours of Mach number for the flow of Argon over a 3D flat-nosed cylinder. 

(Mach 5.37, Knudsen 0.047) 
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Fig. 3.138 Non-dimensional density contours for the initial (bottom-left) and optimized 

(bottom-right) meshes compared to Bird’s solution (top) for the flow of Argon over a 3D 

flat-nosed cylinder. (Mach 5.37, Knudsen 0.047) 
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Fig. 3.139 Non-dimensional translational temperature contours for the initial (bottom-left) 

and optimized (bottom-right) meshes compared to Bird’s solution (top) for the flow of 

Argon over a 3D flat-nosed cylinder. (Mach 5.37, Knudsen 0.047) 

 Fig. 3.140 illustrates the ratio of mcs to mfp for the initial mesh and the final adapted mesh. The 

maximum value of this ratio is 1.4 for the initial mesh and 0.6 for the adapted mesh, indicating 

that the mesh adaptation process generates a mesh better suited for DSMC. The region of large 

mcs/mfp at the front face of the cylinder seen in the results for the initial mesh is treated by mesh 

adaptation to produce a region of smoothly varying mcs/mfp. Also, the low mcs/mfp region in the 

bow shock is expanded and the shock is delineated because of the difference in cell size between 

the freestream and the rest of the domain. 
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Fig. 3.140 Contours of mcs/mfp for the initial (left) and optimized (right) meshes for the 

flow of Argon over a 3D flat-nosed cylinder. (Mach 5.37, Knudsen 0.047) 

 The contours of the error estimate for the initial and adapted mesh are illustrated in Fig. 3.141. 

A thick, diffuse shock region can be discerned in the contours of the initial mesh indicating that 

errors are high in the shock. Since regions of the domain with a higher error are refined while 

regions with a lower error are coarsened, the resulting adapted mesh is refined near the front face, 

bow shock, and wall regions and coarsened in the freestream and wake regions. The contours of 

error for the adapted mesh are starkly different from those of the initial mesh and showcase 

OptiGrid’s method of equi-distributing the error estimate well. This can also be observed in the 

plots of edge distribution shown in Fig. 3.142 where edges are collected under a single peak, 

irrespective of their size. Further, the plots indicate that a significant fraction of edges at higher 

error levels in the initial mesh have been treated through mesh adaptation. 

      

Fig. 3.141 Contours of error estimate for initial (left) and adapted (right) meshes for the 

flow of Argon over a 3D flat-nosed cylinder. (Mach 5.37, Knudsen 0.047) 
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Fig. 3.142 Edge distributions of the initial and adapted meshes for the flow of Argon over a 

3D flat-nosed cylinder. (Mach 5.37, Knudsen 0.047) 
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Chapter 4 

Conclusions and Future Work 

 

 As part of the HALO3D project to build a multidisciplinary simulation tool for the design of 

hypersonic aircraft, rarefied flow modules and mesh optimization strategies are required to account 

for high altitude flow conditions, capture multiscale flow features, and better represent the flow 

solution. The HALO3D ensemble consists of an edge-based Finite Element NS hypersonic flow 

solver, HALO3D-NS, ablation and surface chemistry modules, magnetohydrodynamics modules, 

and the in-house solution-driven mesh optimizer, OptiGrid. The current work extends the domain 

of applicability of HALO3D to the rarefied regime through the development of a DSMC solver, 

HALO3D-DSMC, and a hybrid NS-DSMC framework, HALO3D-HYBRID. The thesis 

showcases the development and testing of the DSMC and hybrid solvers and their coupling with 

OptiGrid through several 2D/3D flow problems of varying thermochemical complexity. 

 Verification simulations conducted for the hypersonic corner, leading-edge, flat-plate and a 

reacting five-species air mixture flow over a 2D cylinder show that the modules comprising 

HALO3D-DSMC function effectively and produce accurate results. Surface quantities such as the 

heat transfer and shear stress coefficients and flow field contours are used for verification purposes 

where good agreement is observed between HALO3D-DSMC and reference solutions from DS2V, 

DS3V, MONACO, DAC, and dsmcFoam. The inverse distance-weighted interpolation is found to 

work well for converting the cell-based DSMC macroscopic data to a set of node-based fields for 

use in the hybrid algorithm and coupling with OptiGrid. The use of Finite Element shape functions 

to generate random positions for particles during initialization and at inlets is found to produce a 

good quality freestream in the full DSMC simulations and a good quality DSMC region in the 

hybrid simulations.  

 HALO3D-HYBRID employs HALO3D-NS and HALO3D-DSMC in appropriate areas of the 

domain, and full solutions from all three solvers are compared where the DSMC solution is taken 

as the reference. Verification simulations conducted for the leading-edge flows and 2D cylinders 

with Knudsen numbers ranging from 0.006 to 0.018 confirm the accuracy of HALO3D-HYBRID 
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and showcase the cost benefits obtained from the use of hybrid solvers as compared to full DSMC 

solvers. This loosely coupled approach is robust and can handle poor quality meshes and hybrid 

masks that are usually found in the initial stages of mesh adaptation. It is also less expensive than 

tightly coupled formulations. Consistent modeling of thermal non-equilibrium between the NS and 

DSMC solvers is necessary to obtain continuous and smooth temperature fields when strong 

vibrational non-equilibrium is present in the flow. Surface quantities such as shear stress, heat flux, 

surface density, and pressure agree well between the hybrid and DSMC codes, even in the presence 

of inconsistent thermal non-equilibrium modeling. Flow field contour plots also compare well 

between hybrid and DSMC solvers. These results show that the Finite Element Method can be 

effectively coupled with DSMC to tackle hypersonic flow problems at varying degrees of 

rarefaction. 

 The applications of OptiGrid with matrix-equation-based continuum flow solvers have been well 

documented, and this thesis provides, for the first time, an extension of its use to the rarefied 

regime. As such, the present work 

• Contributes to the scarce body of unstructured mesh hybrid NS-DSMC and DSMC 

literature by investigating the generation of an unstructured not only adapted but optimized 

mesh obtained by the equi-distribution of the error estimate of a solution scalar throughout 

the domain. 

• Shows the effects of different initial meshes, adaptation scalars, and optimization 

constraints on the final adapted mesh. 

• Evaluates the effectiveness of OptiGrid in manipulating a collisional-sampling mesh to 

provide a good quality background mesh for DSMC. 

• Showcases the merits of a single unstructured optimized mesh for hybrid NS-DSMC 

simulations. 

 Mesh adaptation computations have been carried out for flows with freestream Knudsen numbers 

ranging from 0.01 to 0.047. The leading-edge flow is used to investigate the effects of different 

adaptation scalars on the final adapted mesh. It is shown that density alone as an adaptation scalar 

generates a mesh that does not capture surface quantities such as heat flux and shear stress. The 

addition of velocity components in the scalar set greatly improves surface quantity predictions and 

mesh node distribution in the boundary layer, while a scalar set consisting of density, velocity 
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components, modal temperatures, pressure, and Mach number shines best for detached bow shock 

problems. Indeed, they are found to each reinforce salient flow features such as the shock, wake, 

and boundary layer, thus yielding a mesh that is better defined in these regions. Adapted meshes 

represent flow field variables better than the initial meshes for the 2D/3D cylinder simulations. 

OptiGrid’s capability to capture the relatively weaker gradients in the rarefied regime is best 

portrayed at the largest Knudsen number for the 𝐾𝑛  0.047 Argon flow over a 3D flat-nosed 

cylinder. Observables such as surface heat flux, non-dimensional density, and temperature 

compare well against the literature. The adapted hybrid meshes are very similar to the adapted 

DSMC meshes, hence showcasing the solver-independence aspect of OptiGrid and indicating that 

the hybrid solver produces the same solution as the DSMC solver. The hybrid masks are very 

smooth for the adapted unstructured meshes in contrast with the structured mesh hybrid 

simulations where castellated patterns can be observed in the masks. It was also found that through 

mesh adaptation, a single unstructured mesh can be used to optimally discretize both NS and 

DSMC solutions where the NS region is composed of larger cells near the shock and boundary 

layer. 

 For the optimization constraints, different rules have been used to define the minimum and 

maximum edge lengths as a function of the mean free path. The best compromise is found when 

they are directly proportional to the minimum and maximum local mean free paths obtained on 

the initial grid, respectively. Two metrics are used to evaluate the mesh adaptation: the mcs/mfp 

(mean collision separation over the mean free path) and an edge-based error estimate computed 

from the Hessian of the adaptation scalars. Regions of high mcs/mfp did not affect the surface 

quantity measurements nor the flowfield comparisons for the leading-edge case, and when 

combined with a sub-celling technique, all three cylinder cases produced meshes that conform to 

good DSMC practice as indicated by the mcs/mfp field. The meshes in the DSMC regions of the 

hybrid mesh adaptation simulations are also of good quality since the mcs/mfp in these regions is 

lower than 1. Plots of the error estimate showed that adapted meshes can be generated with a global 

error equi-distributed over the domain, and the local error in salient flow features considerably 

lowered. The equi-distribution of error is observed for NS and DSMC regions as well during hybrid 

mesh adaptation. Consequently, these results show that OptiGrid is a user-independent, mesh-

independent, solver-independent, and now, regime-independent mesh optimization tool.  
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 Future work on the hybrid solver should focus on the development of adaptive hybrid interfaces, 

particle initialization routines that employ generalized Chapman-Enskog distribution functions, 

consistent thermal non-equilibrium modeling between the NS and DSMC solvers, tuned collision-

specific collisional parameters, and code parallelization. Additionally, acceleration techniques for 

NS solver such as LU-SGS can be accommodated within the hybrid framework thanks to the loose 

coupling of the NS and DSMC modules.  

 For parallel computations, the hybrid masks can be used to ensure that the inter-processor 

boundaries overlay the NS-DSMC boundaries. In this manner, all hired processors can be made to 

work on the NS and DSMC zones sequentially with low idle times. Currently there is limited 

information on the principles to follow to distribute mesh elements between NS and DSMC zones 

for efficient parallel computations. The DSMC simulation time heavily depends on the number of 

particles, while the NS solution time depends on the mesh count. Nevertheless, minimizing the 

number of elements leads to a faster computation for both NS and DSMC solvers. With a 

sequential parallel strategy, the NS and DSMC region meshes could be decomposed for 

parallelization independently, according to separate criteria. The present work offers a way to 

distribute nodes/cells between NS and DSMC regions for a single unstructured mesh by equi-

distributing an error estimate, thus ensuring accuracy. Code parallelization with such a mesh can 

be investigated since the NS and DSMC region meshes are already distinct from each other.  

 The use of multiple meshes is not uncommon in the DSMC and hybrid literature. Hence, future 

work for meshing could investigate the benefits of multiple unstructured meshes compared to a 

single unstructured adapted mesh. Independent meshes for the collision and sampling routines of 

DSMC as well as for NS can be considered because such a setup presents the most freedom for 

the mesh adaptation of hybrid simulations since the three meshes can be adapted with independent 

constraints and even adaptation scalars. These benefits come with increased computational and 

memory costs when compared to a method employing a single adapted mesh. 

 Development of the hybrid algorithm for unsteady flow simulations can also be considered. There 

exists an unsteady version of the NS solver within HALO3D that obtains time-accuracy with an 

implicit Euler scheme. The DSMC solver is already time-accurate but would require the 

construction of an ensemble-averaging setup similar to the one used to parallelize the sampling 

stage. Several ensembles would need to be run with the resulting transient hybrid solver expected 
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to be much more expensive than the steady-state algorithm. The NS-DSMC interface could be 

recalculated based on the new 𝐾𝑛max distribution at every outer step. 
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Appendix A: Species Data 

 This Section provides data concerning the different chemical species modeled in the present work. 

Table A.1 lists the species molecular weight, heat of formation and characteristic vibrational 

temperatures common to all the test cases. Table A.2 provides the VHS parameters for the different 

species used in the test cases. 

Table A.1 Species parameters 

Species 𝒎 (𝐠/𝐦𝐨𝐥) 𝒆f
𝟎 (𝐉/𝐤𝐠) 𝜽𝐯 (𝐊) 

N2 28.01348 0 3395 

O2 31.99880 0 2239 

NO 30.00614 3.00E+06 2817 

N 14.00674 3.36E+07 0 

O 15.99940 1.54E+07 0 

 

 

Table A.2 VHS parameters for all species considered 

Species ω Tref (K) dref (m) 

Ar (Sections 3.1.1 / 

3.2.1.1 / 3.3.4) 
0.81 273 4.17 × 10-10 

N2 (Sections 3.1.2 / 3.1.3 / 

3.2.1.2 / 3.2.1.3 / 3.2.1.4 / 

3.2.2.2 / 3.3.1 / 3.3.3) 

0.74 273 4.17 × 10-10 

O2 (Section 3.1.3) 0.77 273 4.07 × 10-10 

NO (Section 3.1.3) 0.79 273 4.20 × 10-10 

N (Sections 3.1.3 / 3.2.1.4 

/ 3.3.3) 
0.8 273 3.00 × 10-10 

O (Section 3.1.3) 0.8 273 3.00 × 10-10 

Ar (Sections 3.2.2.1 / 

3.3.2) 
0.734 1000 3.595 × 10-10 

O2 (Section 3.2.2.3) 0.7 288 3.96 × 10-10 

O (Section 3.2.2.3) 0.7 288 3.00 × 10-10 
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Appendix B: Reaction Coefficients 

 This Section details the chemical reactions and provides reaction data for the test cases simulated 

in the present work. Tables are presented for each Section considering reacting mixtures and 

parameters for exchange reactions are provided as well. 

Table B.1 Reactions and reaction coefficients for Section 3.1.3 

Reactions 𝑨f 𝜼f Ea x10-19 J 𝒉r x10-19 J 

N2 + N → 3N 1.0 × 10-11 -0.68 15.67 15.67 

N2 + N2 → 2N + N2 4.1 × 10-12 -0.62 15.67 15.67 

N2 + NO → 2N + NO 1.5 × 10-11 -0.68 15.67 15.67 

N2 + O2 → 2N + O2 1.5 × 10-11 -0.68 15.67 15.67 

N2 + O → 2N + O 4.0 × 10-12 -0.54 15.67 15.67 

O2 + O → 3O 1.5 × 10-10 -1.05 8.197 8.197 

O2 + O2 → 2O + O2 5.33 × 10-11 -1.0 8.197 8.197 

O2 + N2 → 2O + N2 1.3 × 10-10 -1.0 8.197 8.197 

O2 + NO → 2O + NO 1.1 × 10-10 -1.0 8.197 8.197 

O2 + N → 2O + N 1.1 × 10-10 -1.0 8.197 8.197 

NO + N2 → N + O + N2 2.1 × 10-10 -1.0 10.43 10.43 

NO + O2 → N + O + O2 2.0 × 10-10 -1.0 10.43 10.43 

NO + NO → N + O + NO 1.0 × 10-10 -1.0 10.43 10.43 

NO + O → N + O + O 4.0 × 10-10 -1.1 10.43 10.43 

NO + N → N + O + N 4.0 × 10-10 -1.1 10.43 10.43 

N2 + O → NO + N 0.8 × 10-16 0.0 5.175 5.175 

NO + O → O2 + N 2.3 × 10-19 0.5 2.719 2.719 

NO + N → N2 + O 5.0 × 10-16 -0.35 0.2 -5.175 

O2 + N → NO + O 4.0 × 10-15 -0.39 0.2 -2.719 
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Table B.2 Parameters a and b used to the adjust activation energies of exchange reactions 

in Section 3.1.3 

Exchange reactions 

a b 

Bird 2013 
Scanlon et al.  

2015 
Bird 2013 

Scanlon et al.  

2015 

N2 + O → NO + N 0.15 0.15 0 0.15 

NO + O → O2 + N 0.1 0.085 0.68 0.65 

NO + N → N2 + O 0.033 0.033 0.8 0.8 

O2 + N → NO + O 0.1 0.1 0.48 0.1 

 

 

Table B.3 Reactions and reaction coefficients for Section 3.2.2.3 

Reactions 𝑨f 𝜼f Ea x10-19 J 𝒉r x10-19 J 

O2 + O2 → 2O + O2 4.58 × 10-11 -1.0 8.197 8.197 

O2 + O → 3O 1.375 × 10-10 -1.0 8.197 8.197 

 

Table B.4 Reactions and reaction coefficients for Section 3.3.3 

Reactions 𝑨f 𝜼f Ea x10-19 J 𝒉r x10-19 J 

N2 + N → 3N 1.0 × 10-11 -1.6 15.67 15.67 

N2 + N2 → 2N + N2 4.1 × 10-12 -1.6 15.67 15.67 

 

 

 

 


