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1. Abstract  

Several studies support that alpha-synuclein (aSyn) pathology transfers in a prion-like 

behavior via axonal projections. However, the mechanism that translates aSyn pathology 

spread to disease progression in Parkinson’s disease (PD) remains unknown. Here, we 

investigated the atrophy progression pattern in a longitudinal dataset of PD patients seen 

at baseline, one, two, and four years of follow-up. Then, we applied the agent-based 

Susceptible-Infected-Removed (SIR) dynamic model to simulate the spread of misfolded 

aSyn. We demonstrate three main findings. First, atrophy was significantly progressed 

over four years in subcortical and cortical regions based on deformation-based 

morphometry maps extracted from T1-weighted MRI data. Second, the SIR model 

recapitulated in silico the spatiotemporal distribution of atrophy observed in the PD 

longitudinal dataset. Third, SIR rewired, repositioned and genetic null models revealed 

the significant role of connectome topology, geometry, and regional gene expression of 

both SNCA and GBA in shaping disease spread longitudinally in PD. Altogether, these 

results demonstrated that the SIR model is a promising tool for modeling multifactorial 

neurodegenerative diseases over time.   
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2. Resume 

Plusieurs études supportent l'hypothèse que l'alpha-synucléine pathologique se propage à travers 

le cerveau par l'entremise des fibres axonales à la manière d'un prion. Cependant, les mécanismes 

qui expliquent la propagation de l'alpha-synucléine pathologique dans la maladie de Parkinson 

demeurent encore mal compris. Dans cette étude, nous avons premièrement étudié la progression 

de l'atrophie cérébrale dans une cohorte longitudinale de patients avec une maladie de Parkinson 

suivis sur quatre ans. Nous avons ensuite utilisé un modèle compartimental Susceptible-Infecté-

Rétabli/Retiré (SIR), implémenté comme un modèle computationnel basé sur l'agent, pour simuler 

la propagation de l'alpha-synucléine pathologique dans le cerveau. Ce faisant, trois observations 

majeures ont pu être faites. Premièrement, l'atrophie mesurée dans le cerveau des participants grâce 

à la morphométrie basée sur la déformation progresse significativement dans les régions corticales 

et sous-corticales sur une période de 4 ans. Deuxièmement, le modèle computationnel SIR 

réplique in silico le patron de distribution spatiotemporel d'atrophie observé dans la cohorte 

longitudinale. Troisièmement, la génération de modèles nuls dans lesquels ont été randomisées 

soit la connectivité cérébrale soit l'expression génétique révèle qu'autant la topologie et la 

géométrie du connectome que l'expression régionale de SNCA et de GBA façonnent la 

propagation de la maladie de Parkinson dans le temps. Ces résultats démontrent que le modèle 

computationnel SIR s'avère un outil prometteur pour modéliser la progression des maladies 

neurodégénératives selon une perspective multifactorielle. 
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5. INTRODUCTION 

5.1.   Parkinson’s disease progression  

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease following 

Alzheimer’s disease. As PD progresses over time, different motor and non-motor symptoms 

develop which vary in occurrence, onset, severity, and rate of progression. The major motor 

symptoms in PD are tremor, rigidity, bradykinesia, and postural instability (Hughes et al.  1992; 

Postuma et al.  2015), while non-motor symptoms include but are not limited to sleep disturbances, 

autonomic dysfunction, depression, and dementia. The abovementioned symptoms are expected 

to manifest and progress in PD patients during their course of the disease (Poewe et al., 2017).  

Therefore, there is an unmet need for a tool that can assess PD progression efficiently and 

accurately. Currently, two main hypotheses can facilitate the development of such a tool: the Braak 

staging hypothesis and local selective vulnerability.  

 

PD is characterized by the pathological intracellular aggregation of misfolded alpha-synuclein 

(aSyn) into Lewy bodies and neurites (Dickson et al., 2009; Spillantini et al., 1997). In the brain, 

these deposits appear in a stereotypical fashion, emerging in the olfactory bulb and caudal 

brainstem and then ascending towards the midbrain, limbic areas, and cerebral cortex (Braak et 

al., 2003; Braak et al., 2004). This spatiotemporal distribution patterns of pathology have led to 

the hypothesis that misfolded aSyn may harbor prion-like properties (Brundin and Melki, 2017), 

allowing it to spread between cells and impose its misfolded conformation onto native endogenous, 

otherwise normal aSyn proteins from the recipient cell (Peng et al., 2020). Several studies have 

investigated the prion-like behavior of pathological aSyn in animal models and have provided 

direct evidence for pathological templating and between-cell dissemination of pathology (Peng et 
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al., 2020). Indeed, the injection of synthetic aSyn preformed fibrils or brain lysates from patients 

with a synucleinopathy has demonstrated the local formation of aSyn pathology and its 

propagation through brain networks in wild-type and transgenic mice, rats, and non-human 

primates (Henrich et al., 2020; Luk et al., 2012a; Luk et al., 2012b; Masuda-Suzukake et al., 2013; 

Rey et al., 2018; Rey et al., 2016; Watts et al., 2013). In humans, the evidence for a prion-like 

behavior of pathological aSyn has so far been indirect. For instance, in patients who received fetal 

mesencephalic neuronal transplants, Lewy-related pathology could be observed inside cells that 

were grafted a decade earlier (Kordower et al., 2008; Li et al., 2008), suggesting that pathology 

spread to the grafts from the surrounding milieu. Some other findings, not always replicated, also 

reported that patients who underwent vagotomy had a lower risk of developing PD, possibly due 

to the interruption of the transmission of pathology from the gut to the brain (Liu et al., 2017; 

Svensson et al., 2015). Also, using MRI-derived volume deformation and cortical thinning as 

proxy measures of tissue atrophy, the pattern of brain changes observed in de novo PD patients 

was shown to significantly overlap with the brain’s connectivity pattern (Yau et al., 2018; 

Zeighami et al., 2015). 

 

Although important, other studies have also demonstrated that the distribution of aSyn pathology 

was not solely explainable by the brain’s synaptic connectivity pattern and that other cell-

autonomous factors appear to play a key role in driving the generation of aSyn pathology in the 

brain (Gonzalez-Rodriguez et al., 2020; Henrich et al., 2020; Surmeier et al., 2017). This was 

supported by findings in mice of certain cell types being more vulnerable to the disease process 

and by the dose-dependent accumulation of pathology occurring in patients with duplications and 

triplications of the SNCA gene (Chartier-Harlin et al., 2004; Ibanez et al., 2004). In addition, 
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mutation in the GBA gene which encodes for the lysosomal enzyme glucocerenrosidase was found 

to be involved in SNCA accumulation and development of PD and other Lewy body disorders (Du 

et al.,2015). Nonetheless, the mechanisms underlying the propagation of pathological aSyn in PD 

remain unclear.  

 

 

5.2. Network-based modeling of neurodegeneration  

One way to better understand the mechanisms underlying aSyn spread in PD is through Network-

based modeling, which can be categorized into diffusion models and epidemic models. Both 

categories are based on the current evidence of prion-like misfolded proteins propagating through 

neurons via synaptic transmission. In diffusion models, the spreading of misfolded proteins is 

deterministic and modeled with series of partial differential equations (Raj et al., 2012; Henderson 

et al., 2019). Such models are relatively simple mathematically and solved either by finite element 

method on the whole brain or by graph Laplacian on brain network (Weickenmeier et al,2018a; 

Raj et al., 2012). Diffusion models are limited in their applications due to the assumption that 

disease spread follows concentration gradient, which is not biologically true. Moreover, diffusion 

models do not consider the dynamic synthesis and clearance of infection and selective vulnerability 

of regions.  

 

Epidemic models have shown promising potential in recapitulating the accumulation and 

propagation of neurodegenerative disease spread. Several epidemic models have been suggested. 

The standard epidemic approach is the full-mixed model, in which contact is possible at some level 

with the entire population given a transmission rate. However, this is an unrealistic assumption 
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since sufficient contact between two individuals in the entire population is small enough to be 

negligible. With advanced epidemic models such as SI, SIR, and SIS (S for susceptible, I for 

infected, R for recovered), stochasticity is introduced considering model parameters and network 

of the disease (Newman et al, 2010). The inherent randomness with stochastic models allows for 

the interaction between various parameters resulting in better outcomes. Epidemic methods 

consider nodes (e.g., vertices, regions) on the graph as hosts where disease is initiated in one node 

(epicenter) and develops into a large outbreak on the network (Britton et al, 2020). Throughout the 

epidemic process, the hosts adapt to different states: infected, susceptible, or recovered- in the case 

of the SIR model. Although these classic epidemic models have been of great success in modeling 

different epidemics, they failed to effectively model spatial aspects as well as explicit individual 

behavior among others in the system. Therefore, the agent-based model has the advantage in such 

cases (Di Stefano et al 2000, Frias-Martinez et al 2011). For neurodegeneration modeling, an agent 

represents protein which can get affected if encounters misfolded protein, and if so, the misfolded 

protein serves as a template to infect other susceptible agents throughout brain connectome. 

 

In this study, we extended the use of a recently developed agent-based SIR model (Zheng et al, 

2019) on a longitudinal PD dataset that incorporated volumetric information extracted from T1-

weighted MRI images. The Next section will discuss neuroimaging techniques used in PD 

studies to extract related morphometric changes.   

 

5.3. Neuroimaging in PD 

The major roles of neuroimaging include providing accurate and timely diagnosis, evaluating 

treatments designed to mitigate symptoms, and monitoring disease progression (Mohammed et al, 
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2019). Neuroimaging studies using magnetic resonance imaging (MRI), single-photon emission 

computed tomography (SPECT), and positron emission tomography (PET) have provided a deep 

understanding of PD-related changes. PET and SPECT report brain changes at the molecular level 

using ionizing radioactive, while MRI detects directly or indirectly structural and functional brain 

alterations using magnetic fields and radio waves (Politis et al 2014). Here, we used T1-weighted 

MRI brain images to study structural changes longitudinally in PD patients. Morphometric MRI 

analysis (e.g., regional shape, volume, and thickness) has demonstrated potential for diagnostic 

purposes in neurodegenerative disorders. Morphometric methods include volumetric-based (e.g., 

voxel-based morphometry (VBM) and deformation-based morphometry (DBM)) and surface-

based (e.g., cortical thickness) approaches (Ad-Dab’bagah et al, 2005; McCarthy et al, 2018).  

 

Here, we studied the longitudinal changes in cortical and subcortical regions. Since Cortical 

thickness analysis does not detect subcortical changes (Pereira et al., 2014), a volumetric-based 

approach was used in specific DBM, which has more sensitivity than VBM. For VBM, T1-

weighted images are linearly registered to a template (Lin, C et al 2013). The template can be 

either an average image of the study population or a standard unbiased template of normal 

individuals such as the Montreal Neurological Institute brain templates (e.g., MNI-ICBM-152) 

(Fonov et al., 2009, 2011). The Next step includes automated segmentation of the registered image 

into gray and white matter and cerebrospinal fluid (CSF), followed by spatial normalization on the 

gray matter maps to quantify gray matter density across subjects. Similarly, DBM registers the T1-

weighted MRI to the template but non-linearly, matching brain distribution of gray and white 

matter and CSF based on similarities of intensities and contrast. Unlike VBM, the non-linear 

registration of DBM requires no previous knowledge of brain segmentation allowing for better and 
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more sensitive detection of subtle differences (Borghammer et al 2012). After registration, DBM 

estimates the displacement value at each voxel generating a field of vectors that measure the 

amount each voxel moved from the template to match the individual subject’s image. The Jacobian 

determinant of displacement matrix is calculated to estimate the local volumetric change whether 

it is atrophy or expansion (Zeighami et al., 2015).  

 

In addition, image preprocessing in structural MRI is necessary proceeding any further analysis 

such as registration or morphometric analysis. Preprocessing steps are important for better 

detection and increasing the signal-to-noise ratio of T1-weighted MRI images. The common 

preprocessing steps include motion and intensity non-uniformity correction, intensity 

normalization, and noise reduction. Motion correction aims towards correcting image distortion 

due to the movement of the subject in the scanner, while intensity non-uniformity correction 

measures the bias resulting from the scanner’s non-uniform static magnetic field. Noise reduction 

minimizes noise while keeping relevant information about brain structure and anatomical 

alterations intact (Park et al, 2019). Finally, intensity normalization is commonly used to handle 

biases in multi-center studies where images have a large range of intensities; histogram-based 

normalization is the general technique used on MRI images collected with different acquisitions 

(Madabhushi et al, 2006). 

 

5.4. Review of PD studies using morphometric approaches 

This section briefly summarizes related findings in the literature that used morphometric 

approaches to study PD-related changes. Several studies applied morphometric analysis besides 

other imaging and clinical measures to investigate disease classification and subtypes. Using DBM 
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along with other data modalities, a recent study by (Markello et al. 2020) characterized 

heterogeneity in PD by integrating multimodal data of morphometric, molecular, and clinical 

measures. They used similarity network fusion, an unsupervised learning method, to derive 

patients’ subgroups from integrated data maps. Data used was obtained from 183 de novo PD 

patients from the Parkinson’s Progression Markers Initiative (PPMI). Another recent study by 

(Martins et al. 2021) aimed for developing an automated classification system comparing three 

classes: control, idiopathic Parkinson's disease, and atypical Parkinsonian. Their classification 

algorithm was based on a linear support vector machine classifier using imaging-extracted 

features. The classifier combined grey matter volumetric data with distribution volume ratio 

(DVR) of PET data, which quantifies tracer binding to D2/D3 receptors in subcortical regions. 

They reported higher classification accuracy (79.9%) combining gray matter morphometry and 

DVR together.  

 

Other studies focused on morphometric methods to investigate disease pathology progression in 

PD.  (Zeighemi et al. 2019) has reported that PD-network atrophy pattern, based on DBM, is a 

better predictor of progression than biomarkers that measures dopaminergic deficit. They showed 

that the MRI-biomarker of atrophy had a higher accuracy score (AUC=0.63) than more specific 

biomarkers such as DAT SPECT and MRI-measure of substantial nigra. This study considered 

362 drug-naiive early-stage PD patients from PPMI. Investigating structural changes, 

(Borghammer et al. 2010) observed a significant reduction in the left cerebellum in early-stage PD 

as to Control using DBM. In line with another VBM study, PD patients showed significant atrophy 

in the cerebellum bilaterally compared to controls (Camicioli et al. 2009). In addition, they 

observed an association between grey matter atrophy in limbic areas and deficits in memory and 
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executive functions. Reduction in grey matter volume in the putamen, prefrontal cortex, 

parahippocampal gyrus, and the bilateral caudate nucleus has also been observed in PD patients 

(Nagano-Saito et al 2005; Cui et al, 2020). 

 

5.5. Thesis overview  

In this study, we measured the progression of atrophy in PD patients over one, two, and four years 

and applied the agent-based SIR Model to assess if SNCA and GBA gene expression and structural 

features of the connectome significantly contributed to recreating the atrophy patterns. Additional 

analyses were performed to assess if the patterns generated in silico overlapped with the Braak 

staging scheme. We found that the agent-based SIR Model accurately recreated the atrophy 

observed longitudinally in PD and that both gene and connectivity are significant contributors to 

atrophy. 

 

6. METHODS 

6.1.  Participants 

A total of 631 patients with de novo PD and 157 healthy controls were included from the PPMI 

database (www.ppmi-info.org). The PPMI is a longitudinal observational international study 

aimed at assessing progression markers of PD and includes a comprehensive set of clinical and 

MRI measures acquired in patients with de novo PD and healthy controls (Marek et al., 2018). To 

be included in the PPMI, PD patients: 1) had at least two features among resting tremor, 

bradykinesia, and rigidity or either asymmetric resting tremor or asymmetric bradykinesia, 2) had 

a diagnosis of PD for less than two years, 3) had a baseline Hoehn and Yahr stage of I or II, 4) had 

http://www.ppmi-info.org/


 15 

a dopamine transporter binding deficit confirmed using SPECT scan, 5) were not expected to 

require medications for PD within six months from the baseline assessment, 6) were at least 30 

years old, and 7) did not have dementia. For healthy controls, a Montreal Cognitive Assessment 

(MoCA) score below 27 or a first-degree relative with a clinical diagnosis of idiopathic PD led to 

exclusion. The longitudinal follow-up of PPMI now extends to around 5 years; for this study, only 

the participants with MRI acquisition performed at baseline and either one, two, and/or four years 

were considered for analysis due to the limited number of scans acquired 3 (i.e., 3 participants) 

and 5 years (i.e., 2 participants) after baseline. 

 

6.2. MRI 

6.2.1.  MRI acquisition 

T1-weighted MRI brain images were acquired at different sites across the United States, Canada, 

and Europe. The acquisition protocols are available on the PPMI study (http://www.ppmi-

info.org/study-design/research-documents-and-sops/) with the following parameters: repetition 

time (TR) = 2,300 ms; echo time (TE) = 2.98 ms; field of view (FOV) = 256 mm; flip angle = 9; 

and voxel size = 1 mm3. 

 

6.2.2.  Deformation-based morphometry 

Deformation-based morphometry (DBM) was performed on the baseline and longitudinal T1-

weighted scans of PD patients and controls to derive whole-brain individual maps representing the 

deformation needed for a voxel to be normalized to the template space. DBM was done using the 

default parameters available in the CAT12 toolbox in SPM12 (www.neuro.uni-jena.de/cat). This 

resulted in a set of processed image files for each participant that included a voxel-wise whole-

http://www.ppmi-info.org/study-design/research-documents-and-sops/
http://www.ppmi-info.org/study-design/research-documents-and-sops/
https://www.neuro.uni-jena.de/cat
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brain map of Jacobian determinants, which was used as the measure of local brain tissue atrophy 

after the application of a 4 mm full width at half maximum isotropic smoothing kernel. Images 

were visually inspected at each step and excluded if abnormal or if the automated quality rating 

was below 80%. 

 

6.2.3.  Brain parcellation 

The normalized smoothed Jacobian determinants maps were next parcellated using a previously 

used atlas made of 42 cortical and subcortical brain regions for which regional SNCA and GBA, as 

well as structural connectome features were available (Zheng et al., 2019). This atlas included 34 

cortical regions derived from the Desikan-Killiany atlas and 7 subcortical regions, namely the 

putamen, caudate, pallidum, thalamus, hippocampus, amygdala, and accumbens, available as part 

of the FreeSurfer processing stream (http://surfer.nmr.mgh.harvard.edu) (Desikan et al., 2006). 

Due to its importance in PD, the substantia nigra was additionally included based on the 

segmentation available from the 7-tesla MRI “Atlasing of the basal ganglia” Atlas 

(https://www.nitrc.org/projects/atag) (Keuken et al., 2014). Using FLIRT 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT), the 42-region atlas was then linearly registered to 

the individual deformation maps and a set of 42 regional deformation values were extracted for 

each image using the MarsBaR region of interest toolbox for SPM 

(https://marsbar.sourceforge.net). Note that the atlas only included regions from the left 

hemisphere due to the SNCA and GBA gene expression for the right hemisphere being available 

for only 2 of the 6 post-mortem brains included in the Allen Human Brain Atlas (AHBA) 

(Hawrylycz et al., 2012) and also due to possible errors associated with the detection of 

http://surfer.nmr.mgh.harvard.edu/
https://www.nitrc.org/projects/atag
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
https://marsbar.sourceforge.net/
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interhemispheric connections during the deterministic streamline tractography protocol (see 

below). 

6.2.4. Regional atrophy standardization 

A W-scoring approach was then performed to correct for the normal effects of age and sex on the 

brain (La Joie et al., 2012; Tremblay et al., 2021). The regional deformation values from each PD 

patient’s image were converted into age- and sex-corrected W-scores based on the values observed 

in the 157 controls available at baseline. There was no significant difference in age and sex 

between the controls (age: 60.1± 11.9; 66% male) at baseline and the PD group (BL age: 60.9± 

10; 63% male – Y1 age: 60.9 ± 9.3; 63% male – Y2 age: 60.9 ± 9.3; 63% male – Y4 age: 64.4 ± 

9.9; 69% male) at each time point. Only the values from controls seen at baseline were used for 

standardization due to the limited number of controls who underwent MRI during follow-up. The 

standardization formula was: 

 

𝑊𝑠𝑐𝑜𝑟𝑒 =
𝑃𝐷𝑟𝑎𝑤 𝑣𝑎𝑙𝑢𝑒 − 𝑃𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐻𝐶

𝑆𝐷𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝐻𝐶 
 

 

where the predicted value for a PD patient based on control data was given by (β1*age + β2*sex + 

β3). In other words, this yielded regional deformation values that represented the difference in W 

scores between a PD patient’s deformation value and the deformation value that is expected for 

the patient’s age and sex. The individual W-scores were next averaged between patients for a given 

region, resulting in a set of 42 regional W-scores for baseline and each of the three follow-up time 

points. The average W-scores seen at each follow-up time point was then subtracted from those 

observed at baseline to yield a W-score difference over time (i.e., atrophy progression over one, 

two, and four years). A negative W-score difference represented atrophy progression in PD 
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patients, whereas a positive W-score indicated volume expansion in patients during follow-up. The 

three sets of 42 atrophy difference values, one for the difference between baseline and every 

follow-up time point, were the observed patterns of atrophy progression to which was compared 

the pattern of simulated atrophy generated in silico by the agent-based SIR Model. 

 

6.3. Agent-based SIR Model 

6.3.1.  Overview of the model 

The agent-based SIR Model simulates the brain spread of aSyn based on SNCA and GBA gene 

expression and structural features of the connectome (Zheng et al., 2019). In this model, the 

synthesis and degradation of aSyn agents are modulated by the local expression of SNCA and GBA, 

respectively. Every agent can belong to one of three compartments: “Susceptible” when 

representing the normal protein, “Infected” when representing the misfolded protein, and 

“Removed” when the protein gets degraded or spreads to another region. Every Susceptible agent 

can turn into an Infected agent when it encounters an Infected agent in a region. Both Susceptible 

and Infected agents have a probability of either being degraded inside a region or spread to a 

connected area. whereas the probability of spreading to another region is based on the strength of 

the connectivity between the source and the target regions. 

 

The model is run by first initiating pathology inside a seed region, here the substantia nigra, and 

simulating the spread over a total of 10,000 iterations. At each iteration, a simulated atrophy value 

is generated for every region that is based on the local accumulation of infected agents (i.e., toxic 

event) and the effect of deafferentation (i.e., cell loss). To investigate how well the parameters of 

the spreading model replicated the progression of atrophy in PD, the spread was simulated with 
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the same 42-region atlas used for the MRI-derived observed patterns of atrophy. This allowed 

comparing the pattern of regional values of simulated atrophy to the patterns of atrophy 

progression observed between baseline and one, two, and four years. In other words, following the 

initiation site/epicenter of pathology into the substantia nigra, the model used local information 

about the connectome’s architecture and the regional gene expression to modulate the behavior of 

aSyn in the brain and to simulate local accumulation of aSyn pathology and atrophy. The model 

was implemented into five different modules, namely the production of normal aSyn, the clearance 

of normal and misfolded aSyn, the misfolding of normal aSyn, the propagation of normal and 

misfolded aSyn, and the accrual of atrophy (see below for details about each module). 

 

6.3.2.  Production of normal aSyn 

In the model, the synthesis of aSyn inside every region was modulated based on the regional gene 

expression of SNCA, which was extracted for the 42 regions based on six post-mortem brains 

available as part of the AHBA (Hawrylycz et al., 2012). The values were averaged across samples 

to yield an expression vector of synthesis that was inserted back into the model (see Zheng et al., 

2019). The synthesis rate in a region i per unit time occurred with probability αi: 

 

αi = Φ0,1(SNCAexpressioni) 

 

where Φ0,1(·) was the normal cumulative distribution function of SNCA expression in region I, 

with a higher value representing a higher regional aSyn synthesis rate. The increment of normal 

agents in region i was given by αiSiΔt, where Δt was the total time and Si was the region size. The 
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time increment used for the main analyses was set at Δt = 0.1, but peak correlation fits were robust 

with values from 0.1 to 0.9 (Figure 6). 

 

6.3.3. Clearance of normal and misfolded aSyn 

Likewise, the degradation of aSyn inside every region was modulated based on the regional gene 

expression of GBA, which was also extracted from the AHBA. The clearance rate of both normal 

and misfolded agents in region i per unit time occurred with probability βi: 

 

βi = Φ0,1(GBAexpressioni) 

 

where Φ0,1(·) was the normal cumulative distribution function of GBA expression in region i. The 

probability of an agent still being active after total time Δt was given by 𝑙𝑖𝑚𝛿𝜏→0(1 − 𝛽𝛿𝜏)∆𝑡/𝛿𝜏 = 

𝑒−𝛽∆𝑡. In other words, as the degradation rate increased, the probability of an agent remaining 

active in the region decreased. Accordingly, the proportion of cleared agents within timestep Δt 

was 1 – 𝑒−𝛽∆𝑡 . 

 

6.3.4.  Misfolding of normal aSyn (infection transmission) 

Infected agents had the ability to impose their abnormal template onto susceptible agents and turn 

them into infected agents. The probability of a susceptible agent that survived clearance of not 

being infected corresponded to (1 − 𝛾𝑖
0)𝑀𝑖, where Mi was the population of infected agents in 

region i and 𝛾𝑖
0 was the baseline likelihood that a single misfolded agent turned a susceptible agent 

into an infected agent. The baseline likelihood 𝛾𝑖
0 was given by 1/Si, where Si was the region size. 

Accordingly, the probability per unit of time that a susceptible agent surviving clearance in region 
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i turned into an infected agent due to the action of at least one of the Mi infected agents present in 

region i was given by γi = 1 – 𝑒𝑀𝑖 𝑙𝑛(1 − 𝛾𝑖
0). Like the previous module, the probability that a 

susceptible agent remained susceptible after total time Δt was given by 𝑙𝑖𝑚𝛿𝜏→0(1 − 𝛾𝑖
0𝛿𝜏)𝑀𝑖∆𝑡/𝛿𝜏 

= 𝑒−𝛾𝑖
0𝑀𝑖∆𝑡, whereas the probability that a susceptible agent became infected after total time Δt was 

given by 1 − 𝑒−𝛾𝑖
0𝑀𝑖∆𝑡. As a result, the increment of the population of normal proteins Ni  in region 

i occurred with: 

 

∆𝑁𝑖 =  𝛼𝑖𝑆𝑖∆𝑡 – (1 – 𝑒−𝛽𝑖∆𝑡)𝑁𝑖 

 

Once the system reached the stable point, the populations of susceptible (Ni) and infected agents 

(Mi) were respectively updated as followed: 

 

∆𝑁𝑖 =  𝛼𝑖𝑆𝑖∆𝑡 − (1 − 𝑒−𝛽𝑖∆𝑡)𝑁𝑖 − (𝑒−𝛽𝑖∆𝑡)(1 −  𝑒−𝛾𝑖
0𝑀𝑖∆𝑡)𝑁𝑖 

∆𝑀𝑖 = (𝑒−𝛽𝑖∆𝑡)(1 −  𝑒−𝛾𝑖
0𝑀𝑖∆𝑡)𝑁𝑖 − (1 − 𝑒−𝛽𝑖∆𝑡)𝑀𝑖 

 

6.3.5.  Propagation of normal and misfolded aSyn 

 

Every susceptible and infected agent had a probability to spread outside the region to other brain 

regions. To implement this, the structural connectivity matrix created previously for the 42-region 

atlas was used (see Zheng et al., 2019). Briefly, the structural connectivity matrix was created 

using 1,027 preprocessed diffusion-weighted and T1-weighted MRI images from the Human 

Connectome Project (2017 Q4; 1,200-subject release). The diffusion data were reconstructed onto 

the individual T1-weighted images using generalized q-sampling imaging. Voxel-wise 
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quantitative anisotropy and the spin distribution function were measured to assess the density of 

water diffused in different directions. Deterministic streamline tractography was then performed 

for each region using DSI Studio (www.nitrc.org/projects/dsistudio), resulting in 100,000 

streamlines per region with the following parameters: angular cut-off of 55, step size of 0.5 mm, 

minimum length of 20 mm, and a maximum length of 400 mm. The density of streamlines between 

every two regions represented the connectivity strength between the seed and target region 

normalized by the target region voxel size and mean length of streamlines, compensating for the 

biases induced by differences in region size and by longer fibers. 

 

To account for the mobility pattern of an agent between regions, we used a distance matrix and a 

structural connectivity matrix. The distance matrix was constructed by calculating the Euclidean 

distance of corresponding streamlines. For the structural connectivity matrix, a connection profile 

based on the density of streamlines was created for each region with self-connection set to 0; then 

concatenated to form a 42x42 structural connectivity matrix for each subject. Finally, a group-

consensus approach was adopted by averaging 35 % of the most commonly occurring edges across 

all subjects to generate one group-level structural connectivity matrix. To test the robustness, the 

analyses were also performed using different matrix densities, namely using the 30% and 40% of 

most occurring edges (Table 3). 

 

Using the matrix of structural connectivity, every agent could either remain in region i or enter the 

edges via fiber tracts with probabilities: 

 

𝑃𝑟𝑒𝑔𝑖𝑜𝑛𝑖→𝑟𝑒𝑔𝑖𝑜𝑛𝑖
=  𝜌𝑖 

http://www.nitrc.org/projects/dsistudio
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𝑃𝑟𝑒𝑔𝑖𝑜𝑛𝑖→𝑒𝑑𝑔𝑒𝑖𝑗
= (1 − 𝜌𝑖)

𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑗
 

 

where 𝑤𝑖𝑗  was the undirected connection weight between region i and region j and 𝜌𝑖  was the 

probability of an agent to remain in region i. This probability was set to 0.5 for every region. The 

variations in 𝜌𝑖  led to a negligible difference when recreating atrophy (Figure 6). Likewise, both 

susceptible and infected agents could exist in an edge (i,j) per unit time with binary probabilities: 

 

𝑃𝑒𝑑𝑔𝑒𝑖,𝑗→𝑟𝑒𝑔𝑖𝑜𝑛𝑗
=  

1

𝑙𝑖,𝑗
 

𝑃𝑒𝑑𝑔𝑒𝑖,𝑗→𝑒𝑑𝑔𝑒𝑖,𝑗
= 1 −  

1

𝑙𝑖,𝑗
 

 

where 𝑙𝑖𝑗 was the length of the edge between regions i and j. The increments in 𝑁𝑖 and 𝑀𝑖 in region 

i after a total time ∆𝑡 occurred as follows: 

 

∆𝑁𝑖 =  ∑
1

𝑙𝑗,𝑖
𝑁𝑗,𝑖∆𝑡 − (1 − 𝜌𝑖)𝑁𝑖∆𝑡

𝑗
 

∆𝑀𝑖 =  ∑
1

𝑙𝑗,𝑖
𝑀𝑗,𝑖∆𝑡 − (1 − 𝜌𝑖)𝑀𝑖∆𝑡

𝑗
 

 

where 𝑁𝑖,𝑗 and 𝑀𝑖,𝑗 represented the populations of normal and infected agents in the edge between 

regions i and j respectively. 𝑁𝑖,𝑗 and 𝑀𝑖,𝑗 were updated as follows: 
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∆𝑁𝑖,𝑗 = (1 − 𝜌𝑖)
𝑤𝑖𝑗

∑ 𝑤𝑖,𝑗𝑗
𝑁𝑖∆𝑡 −

1

𝑙𝑖,𝑗
𝑁𝑖,𝑗∆𝑡 

∆𝑀𝑖,𝑗 = (1 − 𝜌𝑖)
𝑤𝑖,𝑗

∑ 𝑤𝑖,𝑗𝑗
𝑀𝑖∆𝑡 −

1

𝑙𝑖,𝑗
𝑀𝑖,𝑗∆𝑡 

6.3.6.  Accrual of atrophy 

 

Tissue loss was modeled as the result of two processes: the direct toxicity from the accumulation 

of infected agents in region i and the deafferentation occurring due to neuronal death in 

neighboring regions connected with region i. The atrophy accrual at time t within Δt in region i 

was given by: 

 

∆𝐿𝑖 = 𝑘1(1 − 𝑒−𝑟𝑖(𝑡)∆𝑡) + 𝑘2 ∑
𝑤𝑖,𝑗

∑ 𝑤𝑖,𝑗𝑗𝑗
(1 − 𝑒−𝑟𝑗(𝑡−1)∆𝑡) 

 

where 𝑟𝑖(𝑡) represented the proportion of misfolded agents in region i at time t, 𝑘1 was the weight 

(impact) of aSyn accumulation on modeling tissue loss, and 𝑘2 was the weight (impact) of 

deafferentation from neighboring regions on tissue loss. Both k1 and k2 were set to 0.5 such that 

accumulation of infected agents and deafferentation had an equal effect on the growth of the 

atrophy simulated by the model.  

 

6.4. Statistical analyses 
 

6.4.1. Longitudinal progression of atrophy 

 

To examine the progression of brain atrophy in PD patients, we performed linear mixed-effect 

modeling to investigate if the effect of time was significant over the regional deformation values 

at each time point, namely at baseline and after one, two, and four years of follow-up. This resulted 

in a set of 42 separate models, one for each brain region. The random intercept was assigned at the 
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patient level, while the fixed effect was the interaction of time with the age-and-sex corrected w-

score DBM maps. The Benjamini-Hochberg procedure was used to control the false discovery rate 

(Benjamini et al., 2001) and a regional deformation change was considered significant when the 

p-value was below 0.05.  

 

6.4.2. Fit between observed and modeled pathology 

 

The spread of aSyn was run for a total of 10,000 iterations after injecting pathology into the 

substantia nigra. The propagation speed v, which models the protein spreading rate, was set to 1. 

To check for robustness, variation in propagation speed (v) values ranging from 0.1 to 10 resulted 

in negligible difference on the model fit (Figure 6).  The Model fit between simulated and observed 

atrophy was measured using Spearman’s rank coefficient correlations. First, we investigated if the 

atrophy simulated in every region was significantly associated with the deformation value 

observed at baseline. At every time point (i.e., after one, two, and four years of follow-up), the 

regional simulated data was correlated with the regional observed atrophy difference, which is 

calculated by subtracting the baseline w-score DBM value from that of the follow-up time point. 

The peak fit between simulated and atrophy difference patterns observed between baseline and 

each time point corresponding to the highest correlation coefficient between the two metrics. 

 

Next, we classified each region as either overestimated or underestimated based on the residual 

sign of the linear fit between empirical and simulated data. Overestimated regions tend to have 

less atrophy than what is predicted by the SIR model, while underestimated regions have more 

atrophy than what is simulated by the SIR model given the dynamics between connectivity and 

gene expression level. We explored the relationship between model estimation and regional 
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features such as network characteristics: node degree and node strength, in addition to SNCA and 

GBA level. Using the Brain Connectivity Toolbox (sites.google.com/site/bctnet) implemented in 

MATLAB, we calculated the node degree and strength for each region. Fundamentally, brain 

networks are composed of two basic components: nodes, distinct neural elements/regions, and 

edges, the pairwise connection between nodes, (Stanley et al., 2013). The node degree is the 

number of edges on a node in a binary network, while node strength quantifies the strength/weight 

of connectivity between pairs of nodes in a weighted network. Both are used to identify hubs, 

nodes with greater degree connectivity or centrality. The SNCA and GBA levels were determined 

from the AHBA atlas described earlier.  

  

We also assessed the association of simulated data in every region to its assigned Braak stage using 

Spearman’s rank coefficient correlations. For every PD group, the 42 regions were split into stages 

and each stage was correlated separately with the simulated data. The Braak hypothesis predicts 

that the progression of aSyn in PD occurs in a caudo-rostral fashion that can be described in six 

distinct stages. Regions in the revised DK-atlas used here ranges from Braak stage 3 to 6. We 

investigated if the regional simulated data predicted by the Agent-Based SIR Model reflect this 

hypothesis. 

 

6.4.3. Null models 

 

To investigate the impact of gene expression and the connectome’s architecture on the pathology 

spread, we generated the peak fits between observed and simulated atrophy for every region in sets 

of 500 null models in which either one of these parameters was randomized. We then benchmarked 

the empirical peak fits to the average simulated peak fits obtained from the null models. For the 

https://sites.google.com/site/bctnet/
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connectome null models, the impact of topology and/or geometry was investigated using rewired 

and repositioned null models. In rewired null networks, using the Maslov-Sneppen algorithm in 

the Brain Connectivity Toolbox (sites.google.com/site/bctnet), pairs of brain regions were 

randomly shuffled inside the structural matrix connectivity while preserving the network’s original 

degree sequence and density; the rewiring per edge parameter was set to 100.  In repositioned null 

networks, the spatial position of regions was randomly shuffled while preserving the network’s 

original degree sequence and connection profile. In both cases, the shuffled matrix was inserted 

back into the model and used to generate a null peak fit between observed and simulated atrophy. 

For gene expression null models, each of SNCA and GBA regional expression values were shuffled 

separately. The empirical peak fit was then compared to the average of the simulated null peak fits 

using one-sample t-tests. 

 

7. RESULTS 
 

7.1.    Participants  
 

A total of 1,068 T1-weighted scans, from 790 PD patients and 278 healthy controls, were obtained 

from the PPMI cohort. Of these, 199 scans were rejected: 193 failed quality control and 6 scans at 

PD year 3 and 5 were excluded due to the small sample size. This yields a total of 869 scans from 

238 HC and 631 PD patients: 318 at baseline, 120 at one year, 108 at two years and 85 at four 

years. Only patients with a scan acquired at baseline and at least one follow-up time point were 

kept for further analysis, leaving samples of 113 patients between baseline and one year, 104 

patients between baseline and two years, and 79 patients between baseline and four years. The 157 

HC subjects at baseline were only selected for further statistical analysis due to the very small 

sample size of HC at follow-up years. 

https://sites.google.com/site/bctnet/
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There were no significant age, sex, and education differences at baseline between patients and 

controls. However, PD patients had higher scores on the Geriatric Depression Scale (p<0.001) and 

lower scores on the following: Montreal Cognitive Assessment (p<0.01), the Symbol-Digit 

Modalities Test (p<0.001), and the Hopkins Verbal Learning Test-Revised (p<0.01). In PD 

patients, scores significantly worsened in comparison to baseline on the MDS-UPDRS-I, MDS-

UPDRS-II, MDS-UPDRS-III, and the Scales for Outcomes in PD-Autonomic over the 4-year 

follow-up period (p<0.01). Also, phonemic fluency was significantly increased in patients between 

baseline and four years. Similarly, motor symptoms such as MDS-UPDRS III, II, and I, which are 

related to disease severity, have been shown to progress significantly in PD patients across the 4 

years (p < 0.001) (Table 1). 

 

7.2. Brain atrophy progresses over 4 years in PD 
 

Using linear mixed-effects models, 23 of the 42 brain regions showed significant deformation in 

PD over four years (Figure 1 and Table 2). Specifically, between baseline and year one, the 

progression was present in 14 regions, namely the putamen, caudate, middle temporal cortex, 

inferior temporal cortex, isthmus of the cingulate gyrus, precuneus, lateral occipital cortex, inferior 

parietal cortex, entorhinal cortex, banks of the superior temporal sulcus, parahippocampal gyrus, 

lingual and fusiform gyri, and lateral orbitofrontal cortex. Four additional regions became 

significantly deformed between baseline and year two, namely the rostral anterior cingulate cortex, 

supramarginal cortex, temporal pole, and insula. Unlike the other regions, the insula showed 

significant volume expansion at year 2, which is in line with the expansion of the sulcus due to 

perisylvian atrophy. After four years of follow-up, 5 other regions also became significantly 
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atrophied compared to baseline, namely the posterior cingulate cortex, superior parietal cortex, 

superior temporal cortex, accumbens area, and amygdala. 

 

7.3. The agent-based SIR Model recreates atrophy progression 
 

Next, we used the agent-based SIR Model to simulate the spread of aSyn in the 42 regions and 

compared the simulated pattern of atrophy to the atrophy difference patterns observed between 

baseline and one year, two years, and four years of follow-up in PD. We found that the atrophy 

simulated by the model recreated the atrophy progression patterns observed at each time point 

(Figure 2). Specifically, the peak correlation between the simulated and observed atrophy at 

baseline was r=0.58 (p<0.0001) and occurred early during the simulated spread of aSyn (500th 

timestep). The peak correlation with the progression of atrophy between baseline and one year was 

r=0.34 (p=0.03, timestep 8533) at one year and r=0.33 (p=0.03, timestep 7182) at two years. In 

contrast, the simulated atrophy did not recreate the pattern of atrophy progression seen between 

baseline and four years, with the model underestimating atrophy overall. Given the network 

analysis on model estimation for every region, overestimated regions across all years appeared to 

have high node degree and strength in comparison to underestimated regions. Hence, 

overestimated regions had higher connections that would allow more misfolded aSyn to spread 

and eventually predicting more atrophy than what actually exists. We also found that 

overestimated regions tend to have less gene expression of SNCA and GBA overall across all 

years, which indicates that the SIR model may be augmenting the influence of connectivity over 

genetic expression for these regions Figure 3.   

To Further evaluate how well the model’s simulated data matches the empirical data across all the 

time points, cost function was measured for each of the 10,000 simulated time step. This was 
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quantified by calculating the Normalized Root Mean Square Error (NRMSE), which normalize the 

mean of observed data allowing for comparing model fits for different response variables (Otto et 

al., 2018): simulated atrophy based on quantification of asyn in region i, and empirical atrophy 

measure based on deformational changes. A drastic decrease in NRMSE was observed for all time 

points at early time steps (~1000th), followed by slight increase of less than -0.7 for the rest of the 

spreading process. Overall, NRMSE supports the goodness of model fit to empirical data Figure 

7.  

 

To confirm these findings, we repeated the analyses with structural connectivity matrices 

containing instead 25%, 30%, and 40% of the most occurring edges. Results were highly similar 

(Table 3). Taken together, this demonstrates that the agent-based SIR Model recreates the 

progression of brain atrophy occurring over two years in PD and that other factors than the ones 

accounted for in our model may account for the atrophy observed after 4 years. Additionally, we 

investigated whether the simulated pattern of atrophy overlapped with the Braak staging scheme. 

Overall, all 4 Braak stages at BL were significantly correlated with the SIR simulated data 

(𝑠𝑡𝑎𝑔𝑒3𝐵𝐿: 𝑟 = 0.54,  𝑠𝑡𝑎𝑔𝑒4𝐵𝐿: 𝑟 = 0.52,  𝑠𝑡𝑎𝑔𝑒5𝐵𝐿: 𝑟 = 0.69,  𝑠𝑡𝑎𝑔𝑒6𝐵𝐿: 𝑟 = 0.91). For year 

1 and 2 of follow-up, only later Braak stages were significantly correlated (𝑠𝑡𝑎𝑔𝑒3𝑦1: 𝑟 =

0.14,  𝑠𝑡𝑎𝑔𝑒4𝑦1: 𝑟 = 0.3,  𝑠𝑡𝑎𝑔𝑒5𝑦1: 𝑟 = 0.5,  𝑠𝑡𝑎𝑔𝑒6𝑦1: 𝑟 = 0.54; 𝑠𝑡𝑎𝑔𝑒3𝑦2: 𝑟 =

0.02,  𝑠𝑡𝑎𝑔𝑒4𝑦2: 𝑟 = 0.22,  𝑠𝑡𝑎𝑔𝑒5𝑦2: 𝑟 = 0.37,  𝑠𝑡𝑎𝑔𝑒6𝑦2: 𝑟 = 0.32)  suggesting the disease 

severity later in the course of the disease after one year. This supports that the SIR model follows 

Braak staging hypothesis in recreating pathology of PD longitudinally (Figure 5).  
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7.4. The connectome’s architecture shapes atrophy progression 
 

To investigate if the connectome’s architecture was central to shaping the spread of aSyn 

pathology, we generated 500 rewired and repositioned null models in which the connectome 

topology and/or geometry were randomized. Using rewired models to shuffle the connectivity 

pattern between regions, we found that null correlations at the peak fit were always significantly 

lower than when using the real between-region connectivity profile (rnull ~ 0.12, p<0.0001 at all 

time points; Figure 4), demonstrating that the progression of brain atrophy in PD is determined by 

how brain regions are connected with each other. Using repositioned models to shuffle the spatial 

embedding of brain regions, we also observed that the peak fit was significantly disrupted at 

baseline and the one- and two-year time points (rnull ~0.29, p<0.0001 at all time points; Figure 4). 

 

7.5. SNCA and GBA expression shapes atrophy progression 
 

To investigate the role of regional gene expression in how the spread of aSyn shapes the 

progression of atrophy over time, the local expression levels of SNCA or GBA region were 

separately randomized between brain regions. This systematically resulted in disrupted fits 

between the simulated and observed patterns of atrophy at baseline and during the following time 

points (SNCA: rnull=0.33 at baseline, rnull=0.31 at one year, and rnull=0.31 at two years with 

p<0.0001; GBA: rnull=0.23 at baseline, rnull=0.09 at one year, and rnull=0.17 at two years with 

p<0.0001; Figure 4). Altogether, these findings support that both the architecture of the 

connectome and the local expression of SNCA and GBA shape significantly the progression of 

brain atrophy in PD. 
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8. DISCUSSION 
 

In this study, we evaluated the progression of atrophy in PD patients over 4 years and extended 

the use of the agent-based SIR Model in recapitulating the observed longitudinal spatiotemporal 

pattern of atrophy in PD patients to understand the underlying mechanism. Our findings showed 

three main insights: first, we found atrophy significantly progressed along four years of follow-up 

starting at caudate and putamen and spreading towards cortical regions. Second, the SIR model 

which introduces aSyn as an agent replicated in silico the pathology spread observed in PD patients 

longitudinally. Third, the SIR model demonstrated that cell-autonomous factors such as SNCA 

and GBA gene expression level, in addition to brain connectivity significantly contributed to 

shaping the spatiotemporal distribution of atrophy progression.  

 

Investigating the evolution of brain atrophy in PD patients, we found that 50% ROIs showed 

atrophy progression in PD over 4 years. The regions with the strongest progression of atrophy over 

4 years were the putamen and caudate, involved in motor and cognitive changes associated with 

PD, in addition to the middle and inferior temporal cortices. Atrophy in cortical regions such as 

the rostral anterior cingulate cortex and supramarginal cortex appeared after two years, whereas 

the posterior cingulate cortex and superior temporal cortex had atrophy only after year 4. This 

recapitulates other findings showing similar progression patterns such as ENIGMA study 

(Laansma et al., 2020).  Interestingly, the substantia nigra, in which cell loss has been associated 

with the parkinsonian motor signs and symptoms leading to the clinical diagnosis of PD, was 

atrophied at baseline but did not show any atrophy progression during the follow-up years, 

suggesting that this region has already reached a floor effect, at least in terms of structural atrophy, 

at the time of clinical diagnosis. This finding provides a complementary insight into the 
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longitudinal posterior cortical pattern of brain atrophy presented recently by (Tremblay et al., 

2021). 

 

There are two theories of PD pathogenesis that may explain the mechanism underlying the 

observed pattern of atrophy: protein propagation and regional vulnerability (Brundin & Melki, 

2017; Surmeier et al., 2017) . PD is characterized by the accumulation of misfolded aSyn in form 

of Lewy bodies. Several studies, especially in animal models, now support that aSyn pathology 

may spread in a prion-like fashion through brain networks. This has been postulated by the seminal 

model proposed by Braak, whereby the propagation would start inside the olfactory bulb or the 

enteric plexus and propagates ascendingly towards the midbrain and cortical areas (Braak et al., 

2003). This has been supported by other post-mortem and neuroimaging investigations in humans. 

However, other evidence has also demonstrated that the brain’s synaptic connectivity pattern does 

not completely explain the way by which aSyn pathology spread in the brain and that other cell-

autonomous factors may explain some level of local selective vulnerability to the pathology 

spread. Indeed, some cell types appear more vulnerable to showing aSyn pathology, and aSyn 

expression levels may be one factor (Luna et al., 2018). Therefore, consistent with this, the higher 

the regional expression level of normal α-synuclein agents, the greater the likelihood of region 

vulnerability to the accumulation of misfolded proteins. These two theories were incorporated into 

the dynamic SIR model to recreate and understand the atrophy progression pattern. 

 

Next, we used an agent-based framework to simulate in silico the spread of aSyn considering 

information from gene expression and connectivity simultaneously. Then, we compared the 

simulated pattern to the deformation-based tissue atrophy progression patterns observed in a large 
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cohort of de novo PD patients followed over 1, 2, and 4 years. Previous computational models that 

simulated the spread of aSyn mostly relied on a connectivity-based diffusion mechanism (Pandya 

et al., 2019) that may have overlooked the importance of cell-autonomous factors in shaping the 

progression of atrophy in PD or other neurodegenerative diseases (Weickenmeier et al., 2018). 

The advantage of the agent-based SIR model is to integrate several non-cell-autonomous and cell-

autonomous factors all at once to test humans’ hypotheses related to the prion-like spread of 

pathology and the selective vulnerability to pathology. This model has been shown to accurately 

recreate the atrophy pattern observed at baseline in de novo PD patients (Zheng et al., 2019), but 

the ability of the model to predict the progression of atrophy remains unknown. In this study, we 

show that the simulated atrophy pattern generated by the agent-based SIR model significantly 

recreates the tissue deformational changes observed in PD over one and two years. More 

specifically, the model, particularly at the earlier time steps, replicated the atrophy found at 

baseline in early PD patients, with a peak at around (T= 400). The model fit drops at later timesteps 

because simulated data predicts more atrophy than found at baseline, consistent with (Zheng et al., 

2019) findings when DBM was calculated using FSL. At one and two years of follow-up, the peak 

fit was found at later time steps during the spreading process (T=~3000). In contrast, the model 

did not recreate the atrophy difference observed after 4 years. One reason for this may be due to 

underestimation of the model to atrophy observed at year4. The underestimated regions by the 

model were found to have low degree node and strength, hence fewer connections for the agent to 

spread. Another possibility is that the smaller sample size of PD patients who were available for a 

4-year MRI acquisition in addition to other factors that might affect the model such as incremental 

cell loss during the spreading process.   
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The regional aSyn concentration was modulated in the SIR model to assess regions’ vulnerability 

to pathology accumulation. Shuffling the expression level of either SNCA or GBA resulted in 

significantly disrupted fit between observed and simulated data across all time points, suggesting 

the importance of genetic expression of both genes in shaping the spatial pattern of disease spread 

longitudinally. In other words, the regional transcription profiles of SNCA and GBA, which 

influence the asyn concentration: synthesis and clearance respectively, contribute to PD atrophy 

progression pattern. In line with other studies, GBA mutation which is responsible for autosomal 

recessive disorders turned out to be the most common genetic risk of PD (Riboldi & Di Fonzo, 

2019) ; SNCA variants and mutations are also found to be risk factors for PD and contribute to the 

pathogenesis of the disease (Aharon-Peretz et al., 2004; Campêlo & Silva, 2017). Similarly, the 

randomization of the connectome topology (rewired null models) and the spatial positions of 

regions (spatial null models) resulted in a disrupted fit between observed and simulated data, 

supporting the significant role of the brain’s connectivity pattern and geometric topology in 

shaping disease progression across all years. Consistent with other findings in animal studies, the 

neuronal spread of asyn follows a prion-like cascade that underlies the spatiotemporal distribution 

of Lewy bodies (Luk et al., 2012).  

 

Although the agent-based SIR model recreated the spatiotemporal distribution of atrophy in PD 

over time, there are a few study limitations to be mentioned. First, PPMI dataset might not be 

reflective of the general PD population as it is based on recruiting younger and less cognitively 

patients at baseline. However, it is the largest longitudinal dataset of PD with imaging, genetics, 

clinical and demographic data. Second, the model did not account for other factors that may be 

relevant to the spread in general such as incremental cell loss or the impact of gene expression on 
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cellular dynamics such as the protein folding, post-translational modification, and subcellular 

localization (Miraglia et al., 2018). It is worth considering that adding features increases the 

complexity of the model and can lead to overfitting especially with small sample size datasets 

(Kaul and Ventikos, 2015). One of the future directions is to extend the application of the SIR 

model to predict disease trajectory in other groups/datasets related to PD or syncleiopathies in 

general.  

 

In conclusion, this study shows regional deformational changes in PD longitudinally. Subcortical 

atrophy affecting caudate and striatium are found to progress early while cortical regions seem to 

progress later at year 2 of follow-up and above. The mechanism behind these changes over 4 years, 

which was investigated using the SIR model, is dependent on connectivity and geometric topology 

of brain network in addition to SNCA and GBA genetic expression level. The SNCA and GBA 

are used in the model to set the concentration of asyn, which implies that asyn expression and 

connectivity shape atrophy progression.  This further demonstrates that the agent-based SIR model 

is a promising tool for testing hypotheses regarding the mechanical underpinnings of aSyn spread 

in the human brain.  
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9. List of Tables & Figures  
 

Figure1: Regional deformational changes in PD over 4 years  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Regional Longitudinal changes in PD over 4 years. (A) Brain maps showing 

the regions that were significantly deformed at each time point compared to baseline. Only 

the left hemisphere is shown due to limitations regarding the gene expression scores and 

the structural connectivity measures. (B) The dot chart represents DBM maps observed at 

baseline and during follow-up time points (i.e., one, two, and four years) in patients with 

PD for the 42 regions. 
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Figure2: SIR model fit with observed data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The agent-based SIR Model recreates the progression of brain atrophy. (A) 

The peak fit was assessed using Spearman’s rank correlation coefficient at each of the 10,000 

simulation timestep between simulated pattern of atrophy to the patterns of atrophy observed at 

BL: r =0.6,P<0.0001 

Y1: r =0.3,P=0.03 

Y4: r =0.2, P=0.1 

Y2: r =0.3,P=0.03 

(A) 

(B) 

(C) 
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baseline and (B) atrophy difference at each follow-up time point (i.e., one, two, and four years). 

(C) Scatterplots showing the observed and simulated atrophy for each region at each simulation 

peak correlation fit. 

 

 

Figure3: Model’s regional estimation  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Model features of overestimated and underestimated regions. Regions were 

classified based on the residual sign of the linear fit between observed and simulated data (A) node 

degree (B) node strength (C) SNCA z-score expression level (D) GBA z-score expression level of 

overestimated vs. underestimated regions for each time point (Bl, 1, 2, 4 years of  follow-up). 

 

 

(A) (B) 

(C) (D) 
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Figure4: Null models  
 

 

 

Figure 4. The architecture of the connectome and the local expression of SNCA 

and GBA shape brain atrophy progression in PD. the distribution of null peak 

correlation fits generated when shuffling randomly the (A) connectivity weights between regions, 

(B) the local expression of GBA, (C) the spatial embedding of regions, or (D) the local expression 

of SNCA compared to when the peak fit is generated using the original parameter. The comparisons 

are made at baseline and for the one- and two-year time points. The black circle refers to the value 

of the peak correlation fit between the observed pattern of atrophy and the simulated pattern with 

the original non-shuffled parameter. All null models represent a significant difference between the 

original fit and the shuffled fits at p<0.0001 using one-tailed t test. 

 

 

 

(A) (B) 
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Figure5: SIR model overlaps with the Braak staging scheme  
 

 

 

Figure 5. The SIR model replicates the development of parkinson’s pathology following 

braak staging hypothesis. (A) braak staging map for each of the 42 ROIs in the DK-revised 

atlas used in this study. (B) Peak fit between simulated and atrophy patterns at each time 

point(BL, 1, 2 years of follow-up) at each braak stage. Peak fit is the highest Spearmen’s rank 

correlation between simulated and empirical measures.   
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Figure6: Model robustness to changes in free parameters 

 

Figure 6. Testing model robustness to changes in free parameters. The model fit 

measured using Spearman’s rank correlation coefficients is robust to variations in (A) the propagation 

speed (v), tested using values ranging from 0.1 to 10 (v=1 in the main text), (B) the timestep increment 

(∆𝑡), tested using values ranging from 0.001 to 1 (∆𝑡 = 0.01 in the main text), and (C) the 

probability of an agent staying in region i (𝜌), tested using values ranging from 0.1 to 0.9 (𝜌 = 

0.5 in the main text) at the connection density of 35% used for main results. All parameters were 

tested at each time point, with distinct lines indicating peak correlation fits at baseline, at 

baseline versus one year, at baseline versus two years, and at baseline versus four years of 

follow-up. 
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Figure7: Cost function assessing SIR model performance   

Figure 7: Cost function of the model fit between simulated and empirical atrophy was assessed 

using Normalized Root Mean Squared Error (NRMSE). NRMSE was calculated across all the 

10,000 simulated time steps for every time point (BL: baseline, Y1: difference in atrophy at 

year1, Y2: difference in atrophy at year2, Y4: difference in atrophy at year4).  

 

 

 

 

 

 

 

 

 
 

 

Table1: The demographics and clinical characteristics of participants  
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Variables 

 

Baseline 

  

1-year follow up 

 

2-year follow-up 

 

4-year follow-up 

PD HC p PD p PD p PD p 

Sample 

size 

318 157  120  108  85  

Age  60.9  

(10.0) 

60.1 

(11.9) 

0.41a 60.9  

(10.7) 

0.98 a 62.6  

(9.3) 

0.13 a 

 

64.4 

 (9.9) 

0.005 

a 

 

Sex (% 

male)  

201 (63%) 103 (66%) 0.68b 75 (63%) 0.98b 68 (63%) 0.94b 58 (69%) 0.46b 

Education, 

years  

15.77 

 (2.94) 

16.06 

(2.94) 

0.31 a 

 

15.20 

(2.93) 

0.07 a 

 

15.14 

(2.66) 

0.05 a 

 

15.36 

 (2.75) 

0.2 a 

 

MDS- 

UPDRS-III 

18.52 

 (7.82) 

1.14 

(2.19) 

<0.001 a 21.63 

(10.48) 

0.001 a 23.33 

(11.80) 

<0.001 a 23.6 

  (10.1) 

<0.0

01 a 

MDS- 

UPDRS-II 

5.20  

(4.06) 

0.41 

(0.97) 

<0.001 c 7.14 

(4.71) 

<0.001 c 7.29 (4.94) <0.001 c 9.03  

(5.66) 

<0.0

01 c 

MDS-

UPDRS-I 

3.51 

 (2.70) 

2.44 

(2.64) 

<0.001 c 4.84 

(2.42) 

<0.001 c 4.97 (3.13) <0.001 c 6.35 

 (3.89) 

<0.0

01 c 

GDS 2.27  

(2.40) 

1.13 

(2.24) 

<0.001c 2.53 

(2.82) 

0.11 c 2.39 (2.68) 0.32 c 2.3  

(2.2) 

0.46 c 

STAI 93.52  

(7.90) 

94.31 

(7.14) 

0.29 a 91.85 

(7.70) 

0.053 a 92.10 

(7.21) 

0.10 a 92.51  

(7.75) 

0.29 
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SCOPA-

AUT 

9.27  

(5.94) 

3.78 

(3.92) 

<0.001c 10.27 

(2.19) 

0.02 c 10.77 

(5.53) 

<0.001c 12.23 

 (6.25) 

<0.0

01c 

Probable 

RBD, % 

cases 

120  

(38%) 

33  

(21%) 

<0.001b 35  

(29%) 

0.008 b 38  

(35%) 

0.08 b 36  

(42%) 

0.6 b 

MoCA 27.4                 

(2.1) 

28.3 (1.1) <0.001c 27.0(0.9) 0.29 c 27.0 (2.4) 0.12 c 27.5 (2.6) 0.10 c 

SDMT 41.52 

 (9.34) 

46.9 

(11.1) 

<0.001 a 41.22 

(10.7) 

0.77 a 

 

40.96 

(10.03) 

0.59 a 40.2 

 (10.9) 

0.27 a 

LNS 10.73 

 (2.72) 

10.93 

(2.64) 

0.46 a 10.63 

(2.68) 

0.73 a 10.73 

(2.78) 

0.9 a 10.55 

 (3.19) 

0.6 a 

BJLO 25.68  

(4.18) 

26.36 

(3.75) 

0.06 c 25.15 

(4.45) 

0.12 c 25.70 

(4.07) 

0.47 c 26.29 

 (3.54) 

0.29 c 

Semantic 

fluency 

14.52  

(4.59) 

14.96 

(4.15) 

0.12 c 14.28 

(4.14) 

0.13 c 14.64 

(4.15) 

0.47 c 14.16 

 (4.66) 

0.21 c 

Phonemic 

fluency 

13.27  

(4.73) 

14.04 

(4.45) 

0.09 a 13.71 

(4.56) 

0.4 a 13.98 

(4.62) 

0.18 a 14.75 

 (4.59) 

0.01 a 

HVLT-R, 

total recall 

24.8 

(5.0) 

26.0 

(4.5) 

0.01 a 24.5 (5.6) 0.6 a 24.3 (5.7) 0.4 a 24.8  

(5.8) 

0.9 a 
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Table 1: Demographic and clinical characteristics of patients up to 4 years of follow-up 

included from the Parkinson’s Progression Markers Initiative. Data are shown as mean 

(standard deviation). P-value of followup year is calculated in respect to baseline of PD using: a 

student t-test, b chi-square test, c Mann-Whitney U test. 

BJLO = Benton Judgment of Line Orientation; GDS = Geriatric Depression Scale; HC = healthy 

controls; HVLT-R = Hopkins Verbal Learning Test-Revised; LNS = Letter-Number Sequencing; 

MDS-UPDRS = Movement Disorders Society-Unified Parkinson’s Disease Rating Scale; MoCA 

= Montreal Cognitive Assessment; PD = Parkinson’s disease; RBD = REM sleep behavior 

disorder; SCOPA-AUT = Scales for Outcomes in Parkinson’s Disease-Autonomic; SDMT = 

Symbol-Digit Modalities Test; STAI = State-Trait Anxiety Inventory.  

 

 

 

 

 

 

HVLT-R, 

delayed 

recall 

8.57 

 (2.48) 

9.27 

(2.26) 

0.002 c 8.50 

(2.76) 

0.5 c 8.50   

(2.97) 

0.4 c 8.49  

(3.12) 

0.3 c 

HVLT-R, 

recognition 

11.24  

(1.19) 

11.51 

(0.82) 

0.006 c 11.24 

(1.48) 

0.2 c 11.35 

(1.71) 

0.006 c 11.31 

 (0.90) 

0.5 c 
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Table2: Result of Linear mixed effects models 

Regions Year 1  Year 2  Year 4  

Coeff, 

SE 

p 95% CI Coeff, 

SE 

p 95% CI Coeff, 

SE 

p 95% 

CI 

Lateral orbitofrontal 

-0.052, 

0.023 

0.049 [-0.096  

-0.008] 

-0.073, 

0.023 

0.006 [-0.119  

-0.028] 

-0.103, 

0.026 

0.00036 [-0.154     

-0.053] 

Pars orbitalis 

-0.035, 

0.021 

0.17 [-0.076 

0.006] 

-0.031, 

0.021 

0.24 [-0.073  

0.011] 

-0.048, 

0.024 

0.087 [-0.094 

-0.002] 

Frontal pole 

0.014,   

0.034 

0.76 

 

[-0.052 

0.081] 

-0.051, 

0.035 

0.24 

 

[-0.120   

0.018] 

-0.039, 

0.039 

0.43 

 

[-0.115  

0.037] 

Medial orbitofrontal 

-0.019, 

0.021 

0.47 

 

[-0.06  

0.022] 

-0.024, 

0.021 

0.37 

 

[-0.066 

0.018] 

-0.049, 

0.024 

0.081 

 

[-0.095  

-0.003] 

Pars triangularis 

0.002,   

0.017 

0.94 

 

[-0.031 

0.035] 

0.026, 

0.017 

0.22 

 

[-0.008  

0.06] 

0.016, 

0.019 

0.52 

 

[-0.022 

0.053] 

Pars opercularis 

0.011,   

0.013 

0.52 

 

[-0.015 

0.037] 

0.013, 

0.014 

0.44 

 

[-0.014  

0.04] 

0.026, 

0.015 

0.17 

 

[-0.004  

0.055] 

Rostral middle frontal 

-0.037,  

0.022 

0.19 

 

[-0.08  

0.007] 

-0.022, 

0.023 

0.44 

 

[-0.067  

0.023] 

-0.046, 

0.025 

0.14 

 

[-0.095  

0.004] 
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Superior frontal 

-0.008, 

0.018 

0.76 

 

[-0.043  

0.027] 

0.00, 

0.018 

0.99 

 

[-0.036  

0.036] 

-0.028, 

0.02 

0.26 

 

[-0.068 

0.011] 

Caudal middle frontal 

0.009,   

0.014 

0.63 

 

[-0.018 

0.036] 

-0.002, 

0.014 

0.94 

 

[-0.029 

0.026] 

-0.009, 

0.016 

0.69 

 

[-0.039  

0.022] 

Precentral 

0.017,   

0.016 

0.43 

 

[-0.016   

0.049] 

-0.002, 

0.017 

0.94 

 

[-0.035 

0.032] 

0.004, 

0.019 

0.89 

 

[-0.032  

0.041] 

Paracentral 

0.001,   

0.014 

0.94 

 

[-0.025  

0.028] 

-0.006, 

0.014 

0.76 

 

[-0.034  

0.22] 

-0.02, 

0.016 

0.30 

 

[-0.051  

0.01] 

Rostral anterior 

cingulate 

-0.03,   

0.015 

0.103 

 

[-0.059 

0] 

-0.036, 

0.016 

0.048 

 

[-0.067  

-0.006] 

-0.075, 

0.017 

0.00011 

 

[-0.109  

-0.042] 

Caudal anterior 

cingulate 

-0.012, 

 0.01 

0.33 

 

[-0.032  

0.008] 

0.00, 

0.01 

0.98 

 

[-0.02  

0.021] 

0.006, 

0.12 

0.703 

 

[-0.017  

0.029] 

Posterior cingulate 

-0.017, 

0.017 

0.44 

 

[-0.051 

0.017] 

-0.019, 

0.018 

0.410 

 

[-0.054  

0.016] 

-0.054, 

0.02 

0.017 

 

[-0.093  

-0.016] 

Isthmus of cingulate 

-0.057, 

0.016 

0.001 

 

[-0.088  

-0.025] 

-0.051, 

0.017 

0.0075 

 

[-0.083  

-0.018] 

-0.119, 

0.018 

<0.0001 

 

[-0.155  

-0.083] 

Postcentral 

0.013,  

0.016 

0.53 

 

[-0.019  

0.045] 

-0.009, 

0.017 

0.70 

 

[-0.042  

0.024] 

-0.036, 

0.019 

0.109 

 

[-0.073  

0.001] 
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Supramarginal 

-0.035, 

0.017 

0.080 

 

[-0.067  

-0.002] 

-0.044, 

0.017 

0.029 

 

[-0.077  

-0.01] 

-0.077, 

0.019 

0.00032 

 

[-0.114  

-0.04] 

Superior parietal 

-0.20,  

0.016 

0.33 

 

[-0.052 

0.012] 

-0.027, 

0.017 

0.19 

 

[-0.061  

0.006] 

-0.72, 

0.019 

0.0007 

 

[-0.109  

-0.035] 

Inferior parietal 

-0.049, 

0.017 

0.010 

 

[-0.082  

-0.016] 

-0.065, 

0.017 

0.00087 

 

[-0.098  

-0.031] 

-0.142, 

0.019 

<0.0001 

 

[-0.18  

-0.105] 

Precuneus 

-0.047, 

0.014 

0.002 

 

[-0.074  

-0.021] 

-0.047, 

0.014 

0.0028 

 

[-0.075  

-0.02] 

-0.134, 

0.015 

<0.0001 

 

[-0.164  

-0.103] 

Cuneus 

-0.022, 

0.013 

0.163 

 

[-0.083 

0.151] 

-0.013, 

0.013 

0.440 

 

[-0.046 

0.013] 

-0.022, 

0.014 

0.202 

 

[-0.051 

0.006] 

Pericalcarine 

-0.012, 

0.017 

0.59 

 

[-0.047  

0.022] 

0.007, 

0.018 

0.79 

 

[-0.029  

0.042] 

0.022, 

0.02 

0.39 

 

[-0.017  

0.061] 

Lateral occipital 

-0.044, 

0.014 

0.007 

 

[-0.071  

-0.016] 

0.015 0.021 

 

[-0.067  

-0.01] 

0.016 <0.0001 

 

[-0.126  

-0.063] 

Lingual 

-0.036, 

0.015 

0.042 

 

[-0.066 -

0.006] 

-0.030, 

0.016 

0.11 

 

[-0.061  

0.001] 

-0.085, 

0.017 

<0.0001 

 

[-0.119  

-0.051] 

Fusiform 

-0.06, 

0.022 

0.018 

 

[-0.104  

-0.017] 

-0.083, 

0.023 

0.0013 

 

[-0.128  

-0.038] 

-0.179, 

0.025 

<0.0001 

 

[-0.229  

-0.130] 

Parahippocampal 

-0.077, 

0.029 

0.02 

 

[-0.133  

-0.02] 

-0.089, 

0.03 

0.0084 

 

[-0.147  

-0.031] 

-0.159, 

0.33 

<0.0001 

 

[-0.223  

-0.095] 
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Entorhinal 

-0.074, 

0.025 

0.011 

 

[-0.124 -

0.024] 

-0.108, 

0.026 

0.00032 

 

[-0.159  

-0.056] 

-0.120, 

0.029 

<0.0001 

 

[-0.177  

-0.063] 

Temporal pole 

-0.068, 

0.03 

0.051 

 

[-0.126  

-0.01] 

-0.073, 

0.031 

0.043 

 

[-0.133  

-0.013] 

-0.130, 

0.034 

0.0007 

 

[-0.196  

-0.064] 

Inferior temporal 

-0.074, 

0.02 

0.001 

 

[-0.113  

-0.036] 

-0.065, 

0.02 

0.0051 

 

[-0.105  

-0.025] 

-0.168, 

0.022 

<0.0001 

 

[-0.212  

-0.124] 

Middle temporal 

-0.065, 

0.017 

0.001 

 

[-0.099 -

0.031] 

-0.081, 

0.018 

<0.0001 

 

[-0.116  

-0.046] 

-0.179, 

0.02 

<0.0001 

 

[-0.218  

-0.141 

Banks of superior 

temporal sulcus 

-0.031, 

0.012 

0.018 

 

[-0.054 -

0.009] 

-0.039, 

0.012 

0.0037 

 

[-0.063  

-0.016] 

-0.041, 

0.013 

0.0057 

 

[-0.067  

-0.016] 

Superior temporal 

-0.027, 

0.017 

0.19 

 

[-0.06  

0.006] 

-0.026, 

0.017 

0.22 

 

[-0.06  

0.008] 

-0.065, 

0.019 

0.0026 

 

[-0.102  

-0.028] 

Transverse temporal 

0.009,   

0.009 

0.44 [-0.009  

0.027] 

0.013, 

0.009 

0.29 

 

[-0.006  

0.031] 

0.007, 

0.01 

0.64 

 

[-0.014  

0.027] 

Insula 

0.039,   

0.027 

0.25 

 

[-0.041 

0.092] 

0.077, 

0.028 

0.018 

 

[0.022  

0.132] 

0.116, 

0.031 

<0.0001 

 

[0.056  

0.177] 

Thalamus 

0.010,   

0.023 

0.76 

 

[-0.036  

0.056] 

0.009, 

0.024 

0.80 

 

[-0.039 

0.056] 

0.060, 

0.027 

0.057 

 

[0.007  

0.112] 

Caudate 

-0.061, 

0.017 

0.002 

 

[-0.095  

-0.027] 

-0.095, 

0.018 

<0.0001 

 

[-0.131 -

0.06] 

-0.097, 

0.02 

<0.0001 

 

[-0.136  

-0.058] 
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Table 2. Progression of brain atrophy in PD. Results of the 42 linear mixed effect models 

showing progression of each region at year 1,2, and 4 of follow-up in comparison to baseline. The 

significance threshold reported here is presented after FDR correction for multiple comparisons. 

Coeff = coefficient; FDR = false discovery rate; SE = standard error; CI = 95 % confidence 

interval. 

 

 

 

Putamen 

-0.089, 

0.021 

0.001 

 

[-0.131 -

0.048] 

-0.089, 

0.022 

0.00032 

 

[-0.132  

-0.046] 

-0.092, 

0.024 

0.0008 

 

[-0.139  

-0.044] 

Pallidum 

-0.004, 

0.029 

0.94 

 

[-0.06  

0.052] 

-0.039, 

0.03 

0.29 

 

[-0.098 

0.019] 

0.003, 

0.033 

0.95 

 

[-0.061  

0.067] 

Accumbens 

-0.036, 

0.029 

0.32 

 

[-0.093  

0.021] 

-0.066, 

0.03 

0.06 

 

[-0.125  

-0.007] 

-0.104, 

0.033 

0.0058 

 

[-0.169  

-0.039] 

Hippocampus 

-0.038, 

0.023 

0.18 

 

[-0.084 

0.008] 

-0.004, 

0.024 

0.93 

 

[-0.052  

0.043] 

-0.032, 

0.027 

0.34 

 

[-0.084  

0.020] 

Amygdala 

-0.006, 

0.034 

0.93 

 

[-0.072  

0.06] 

-0.057, 

0.035 

0.19 

 

[-0.125 

0.012] 

-0.161, 

0.038 

0.0002 

 

[-0.236 

-0.086] 

Substantia Nigra 

0.005,     

0.35 

0.94 

 

[-0.064  

0.073] 

0.045, 

0.036 

0.33 

 

[-0.026 

0.116] 

-0.024, 

0.04 

0.66 

 

[-0.101  

0.054] 
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Table3: Testing model fit aganist different network density  

   

Time point 40% density 35% density 30% density 

r timestep P-value r timeste

p 

P-value r timeste

p 

P-value 

BL 0.58 457 6.39e-5 0.58 500 1.24e-5 0.53 260 3.2e-4 

BL versus 

Y1 

0.31 6417 0.04 0.34 8533 0.03 0.33 9354 0.03 

BL versus 

Y2 

0.31 6417 0.04 0.33 7182 0.03 0.33 3252 0.03 

 

Table 3. The findings remain similar when using different network densities. 

The peak Spearman’s correlations between the simulated pattern of atrophy and the 

patterns of atrophy observed at baseline and at the one- and two-year time points 

remain insignificantly similar when simulating the spread using network densities 

representing the 30%, 35%, and 40% of the strongest connections of the structural 

connectivity matrix. 
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