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MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE: 
EXISTENTIAL GRAPHS AND COMPLEX SYMBOLS

Dirk Schlimm & David Waszek

Abstract

Since Sun-Joo Shin’s groundbreaking study (2002), Peirce’s existential graphs 
have attracted much attention as a way of writing logic that seems profoundly dif-
ferent from our usual logical calculi. In particular, Shin argued that existential 
graphs enjoy a distinctive property that marks them out as “diagrammatic”: they 
are “multiply readable,” in the sense that there are several different, equally legitimate 
ways to translate one and the same graph into a standard logical language. Stenning 
(2000) and Bellucci and Pietarinen (2016) have retorted that similar phenomena of 
multiple readability can arise for sentential notations as well. Focusing on the sim-
plest kinds of existential graphs, called alpha graphs (AGs), this paper argues that 
multiple readability does point to important features of AGs, but that both Shin and 
her critics have misdiagnosed its source.

As a preliminary, and because the existing literature often glosses over such 
issues, we show that despite their non-linearity, AGs are uniquely parsable and allow 
for inductive definitions. Extending earlier discussions, we then show that that in prin-
ciple, all propositional calculi are multiply readable, just like AGs: contrary to what 
has been suggested in the literature, multiple readability is linked neither to non-
linearity nor to AGs’ dearth of connectives. However, we argue that in practice, 
AGs are more amenable to multiple readability than our usual notations, because 
the patterns that one needs to recognize to multiply translate an AG form what we 
call complex symbols, whose structural properties make it easy to perceive and 
process them as units. Nevertheless, we show that such complex symbols, though 
largely absent from our usual notations, are not inherently diagrammatic and can be 
found in seemingly sentential languages. Hence, while ultimately vindicating Shin’s 
idea of multiple readability, our analysis traces it to a different source and thus severs 
its link with diagrammaticity.
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Introduction

It is well known that different notations can be used to represent the same 
subject matter. For example, Leibniz and Newton developed different nota-
tions for analysis, and propositional and first-order logic can be represented 
by strings of symbols or by trees, but also by more graphical notations, such 
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as Frege’s Begriffsschrift or Peirce’s existential graphs, which Sun-Joo 
Shin’s study (2002) brought to a wider audience. The question of how 
exactly these notational systems differ from each other has led to various 
attempts at classifying them. In particular, the distinction between “sen-
tential” (or linear) and “diagrammatic” notations has been the focus of 
much attention.1 Using Peirce’s existential graphs as paradigmatic example, 
Shin (2002, 2011, 2015) has argued that “multiple readability” is a charac-
teristic feature of diagrammatic representations. Roughly, her idea is that 
a typical existential graph admits several, equally legitimate translations 
(or “readings”) into our standard logical notation: her “Multiple-Readings 
Algorithm,” she writes, “allows us to translate one and the same graph into 
more than one sentence,”2 while “a symbolic system is very careful to pre-
vent multiple readings of a formula.”3 In the debate that ensued, Shin’s 
thesis has been criticized on the grounds that similar phenomena of multiple 
readability can also arise for linear notations (Stenning 2000, Bellucci and 
Pietarinen 2016).

We believe that several distinct issues have been conflated in this debate, 
and that, as a result, the specificity of existential graphs has been misdiag-
nosed. Our goal is to disentangle these issues, and to show that, while 
Shin’s “multiple readability” does indeed point to interesting features of 
existential graphs, these are independent of the properties usually invoked 
to explain it, such as non-linearity or “diagrammaticity.” In our account, 
what lies behind Shin’s remark is that AGs allow for the definition of what 
we shall call complex symbols, namely patterns of basic symbols with struc-
tural properties permitting their treatment as a unit. But complex symbols 
are not inherently “diagrammatic,” in the sense that they can also be defined 
within notations usually seen as sentential or linear.

Let us begin by briefly introducing existential graphs.4 For the sake of 
simplicity, we shall concentrate on the simplest kind of graphs, “alpha graphs” 
(henceforth AGs), which can be translated into what we now call classical 
propositional logic. AGs are composed of letters – corresponding to our 
propositional variables – and of closed, non-intersecting curves, called “cuts”

1 See for instance Shimojima (1999) and Stenning (2000) for reviews.
2 Shin (2002, 76).
3 Shin (2002, 79).
4 Peirce’s writings on existential graphs, which were hard to access for a long time, are 

currently being edited and published in full (Peirce 2020–2021). (Among the smattering of 
manuscripts that were available before, good starting points are Peirce 1931–1958, §4.394–417 
and Peirce 1902 reprinted as Peirce 1931–1958, §4.372–392 – as well as the manuscripts 
presented in Peirce 1976, vol. III/1, 405–446.) Roberts (1973) provides a thorough historical 
presentation; for short introductions from the perspective of modern logic, see Hammer 
(1996) or Shin (2002, chap. 3). For a discussion of Peirce’s own goals in devising existential 
graphs, see Bellucci and Pietarinen (2016).
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Figure 1. Two examples of alpha graphs (AGs).

(see Fig. 1 for examples); they are two-dimensional: letters can be placed 
anywhere on the page (within a specified area called “sheet of assertion” 
by Peirce) as long as they do not overlap cuts. AGs can be straightforwardly 
translated into our familiar propositional calculus by proceeding system-
atically from the outside in, translating cuts (curves) as negations and 
juxtapositions as conjunctions: for Fig. 1(a) and Fig. 1(b) this yields

¬ (P ∧ ¬Q)  and  ¬ (¬ (P ∧ ¬Q) ∧ ¬R).

Let us call this the basic translation method.
As it turns out, the basic translation method is not well-defined, because 

it allows for multiple translations of one and the same AG into our standard 
notation for propositional logic. This is due to the following two features 
of AGs. First, the order in which the letters of an AG are inscribed on the 
sheet of assertion is irrelevant (AGs are not linear). Thus, in addition to the 
above translations, the AGs in Fig. 1(a) and Fig. 1(b) could equally well be 
translated as

¬ (¬Q ∧ P )  and  ¬ (¬R ∧ (¬Q ∧ P )),

respectively. Second, because any number of subgraphs can be juxtaposed 
simultaneously (i.e., the arity of conjunction in AGs is variable), they can 
be arranged in multiple ways in a target language that has only a binary 
connective for conjunction. For example, the AG ‘PQR’ can be translated, 
among others, as (P ∧ Q) ∧ R or P ∧ (Q ∧ R) or as formulas that result 
from these by switching the conjuncts. These two peculiar features, non-
linearity and the variable arity of juxtaposition, make it challenging to treat 
AGs with the standard tools of formal logic. For this reason, as we shall 
see, they have tended to be glossed over in previous efforts to describe AGs 
as formal expressions constructed by formation rules and susceptible of a 
unique parsing. Section 1 revisits the issue and argues that, with suitable care, 
one can in fact define a unique parsing of AGs.
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However, Shin’s notion of multiple readability, which we analyze in 
Section 2, is different. When translating AGs into our standard propositional 
calculus, one quickly recognizes that certain patterns of cuts correspond 
to formulas that are shorter than, but logically equivalent to, those obtained 
by the basic translation method.5 For example, the AGs in Fig. 1(a) and  
Fig. 1(b) can also be translated as

P → Q  and  (P → Q) → R.

The possibility of admitting additional translations like these on top 
of the basic one is, in a nutshell, what Shin calls “multiple readability.” 
She ascribes this phenomenon to the non-linearity of AGs: in contrast, 
she writes that “linear representations cannot afford more than one reading 
for a given formula, since that could cause ambiguity” (Shin 2015, 57), 
referring to the fact that sentences of our usual propositional calculi are 
ascribed a unique parsing (a property that, confusingly, is often called 
“unique readability”). We argue that non-linearity cannot be the cause of 
multiple readability: not only can AGs be given a unique parsing, as shown 
in our first section, but insofar as they can also be given alternative pars-
ings, so can sentences. Moreover, following Stenning (2000) and Bellucci 
and Pietarinen (2016), we show that multiple readings analogous to Shin’s 
can be defined for sentential languages as well. We then argue that the 
alternate explanations these earlier works give of the phenomenon are not 
the full story either: Stenning (2000, 143) sees it as a “feature of translation 
from connectiveless to connectiveful calculi rather than of 2-D notation” 
and Bellucci and Pietarinen (2016, 230) claim that “in order to generate 
multiple readings the target-language must have a richer logical vocabulary 
than the source-language,” but our systematic analysis shows that multiple 
readings can be defined for essentially any language, even when these con-
ditions are not met. Our first conclusion is thus negative: multiple readings 
are extremely widespread and related neither to non-linearity nor to the 
various other explanations of it that have been proposed.

Nevertheless, we believe that Shin’s notion of multiple readability does 
point to interesting phenomena, which we discuss in Section 3. While any 
notation can be given multiple readings, some do seem to be better suited 
to it than others. To explain this, we note that multiple readings, in general, 
rely on certain “translation patterns” present in the source formulas. We 
claim that it is in the specific properties of these patterns that notations differ. 
Building on earlier work by Schlimm (2018), we identify two such proper-
ties, namely contiguity and context-freedom, and call patterns that have 

5 Following Shin, we are restricting ourselves to classical logic, here and throughout the 
paper.
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them complex symbols. We go on to tentatively suggest a psychological 
explanation, based on the literature on perception, for why complex symbols 
in this sense are valuable: they can be perceived and processed as units. 
This is the case, in particular, of the patterns underlying the multiple readings 
of AGs, but not those of our usual sentential languages. Our analysis thus 
supports Shin’s intuition that AGs are more amenable to multiple readabil-
ity than our standard propositional calculus.

1. Non-linearity and unique parsing of AGs

The most obvious distinctive feature of AGs is that they are non-linear. 
This raises an immediate challenge for a formal treatment of AGs: our 
usual logical notions (such as the type-token distinction, formation rules, and 
parsing trees) often seem to presuppose linear notations.6 In this section, 
we clarify how these notions apply to AGs. In particular, we show how to 
define a unique parsing tree for every AG – a slightly troublesome matter 
that is frequently glossed over (e.g., in Roberts 1973, Hammer 1996, Shin 
2002). We then build on this discussion to show how AGs’ non-linearity 
gives them a first kind of “multiple readability.”

1.1. The type-token distinction for AGs

It is a crucial feature of our usual formal systems that they presuppose a 
type-token distinction: their users must be able to recognize whether two 
individual symbols – and thus also two strings of symbols – are “the same,” 
that is, are two tokens of the same type. For example, we usually regard the 
formulas

A ∧ B  and  A ∧ B.

as two tokens of the same type, because we recognize the symbols and their 
order, and we have learned that the size of the letters plays no role in logic. 
But, because we have also learned that the order of the symbols makes a 
difference, we notice that the following are not tokens of the same formula 
type:

A ∧ B  and  B ∧ A.

6 This only applies to standard treatments in the logical literature; Peirce himself, who 
introduced the type-token distinction, did not consider it to be limited to strings of symbols.
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The type-token distinction is essential for the very idea of a formal sys-
tem (understood here as consisting of inscriptions that can be manipulated 
without regard of their meanings)7, because it allows one to claim that dif-
ferent people, working with different physical inscriptions at different times 
and places, are doing the same thing – working with the same formula (that 
is, with tokens of the same type), following the same rules (again at the 
level of types).

If we want to treat AGs formally, then, we also need a type-token distinc-
tion, which includes a way of specifying which figures are tokens of the same 
type. For Figures 1(a) and 1(b) the case is straightforward, because they 
contain different sets of letters, so they are tokens of different types. But, 
let us look at the AGs of Figure 2. At first sight, they are clearly different: 
in 2(a), the letters are aligned vertically; in 2(b), Q is to the right of P and 
in 2(c), to its left; while in 2(d), the letters are not properly aligned at all. 
Nevertheless, the only consistent way of drawing a type-token distinction 
here is to regard them as tokens of the same type: indeed, because the letters 
of an AG can be placed anywhere save on cuts, one can pass from one figure 
to the other through a continuous transformation made of well-formed AGs, 
along which one would be unable to draw a clear line separating two dif-
ferent types. To consider them as tokens of different types, we would need 
to add restrictions on the position of letters, for instance by requiring them 
to be aligned on successive lines, so as to forbid graphs like 2(d); this, 
however, goes against the usual definition of AGs and would thus amount 
to a different system. So, in general, we shall consider two AG tokens as 
being of the same type if they can be transformed into one another by moving 
letters (and cuts) around, without crossing cuts.

Another route to the same result would be, like Hammer (1996, 133), to 
start by defining formation rules for AGs, then say that two graph-tokens are 
of the same type if they can be constructed in the same way (i.e., by apply-
ing the same rules in the same order). There is a subtlety there, however: 
in this formulation, the modal language (can be constructed) is crucial. 
Indeed, as we shall see presently, the rules stated by most authors do not 
guarantee that any AG can be constructed in only one way, so that two 
tokens with different construction histories can still be of the same type 
as long as they could have been produced by the same rules. But since the 
whole question of whether different construction histories can produce graphs 
of the same type presupposes an understanding of the type-token distinction 
for graphs, we feel it is more logical to introduce it before turning to forma-
tion rules.

7 This is what MacFarlane (2000, 32–36), in his study of the formality of logic, calls 
“syntactic” formality.



 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE  237

Q

P

(a)

QP

(b)

Q P

(c)

QP

(d)

Figure 2. Four tokens of the same AG.

1.2. Formation rules and uniqueness of parsing trees

To continue our exploration of the system of AGs as a formal system, 
recall that formal languages are usually set up by stipulating a list of forma-
tion rules, such that any well-formed expression of the language can be 
constructed in only one way. This property is sometimes called “unique 
readability,” but to avoid ambiguity, we shall refer to it as unique parsa-
bility instead. Our goal here is to show how AGs can be seen as uniquely 
parsable in this sense. Because of the already-noted peculiarities of AGs 
(non-linearity and the variable arity of juxtaposition), this will require us to 
alter the formation rules for AGs that are most commonly used in the 
literature.

Before we turn to AGs, some clarifications are needed about what it is, 
exactly, that is usually said to be “unique” in unique parsability and why it 
matters. Take a simple propositional calculus with connectives ∧ and ¬. 
The following (in which Greek letters stand for arbitrary expressions) would 
be standard formation rules for well-formed formulas:

1. A propositional variable is a well-formed formula (wff), as are  and ⊥.
2. If α is a wff, then so is ¬α.
3. If α and β are wffs, then so is (α ∧ β).

Note that the abstract process of constructing a formula according to such 
rules is unrelated to the material process of writing it down, which need not 
(and usually does not) follow the same order. Now, the formula

 ¬ (¬A ∧ ¬B) (1)

(where Latin letters are propositional variables) can be constructed by 
applying rules 1 and 2 to get ¬A, then rules 1 and 2 again to get ¬B, then 
rule 3 to combine the previous formulas into (¬A ∧ ¬B), and then finally 
rule 2 to add the outer negation symbol. However, this sequence of applica-
tions of rules is not the only one that yields this particular formula; in other 
words, this construction sequence is not unique. One could also construct 
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¬B before ¬A, or start by applying rule 1 twice to get A and B, use rule 2 
only then to get ¬A and ¬B, and continue from there. Thus, different 
sequences of formation rules can yield the same formula. These sequences, 
however, only differ by their ordering: they are all made up of the same 
formation rules applied to the same subformulas. This defines, for any well-
formed formula, a certain unique abstract structure, which we usually rep-
resent as a parsing tree.8 For instance, the parsing tree of the formula (1) is 
represented in Fig. 3.

¬

∧

¬

B

¬

A

Figure 3. The parsing tree of the sentential formula ¬(¬A ∧ ¬B).

The great advantage of having unique abstract structures (usually repre-
sented by parsing trees) is that they allow for inductive definitions of prop-
erties of formulas. A good example of an inductive definition is that of the 
semantics of propositional logic: one first gives a semantics to propositional 
variables, and for each formation rule, one then defines how the semantics 
of the resulting formula depends on that of its constituents (usually in terms 
of truth tables). At first sight, this definition makes the semantics of a for-
mula dependent, not just on the formula itself, but also on the formation 
rules used to construct it. This is where unique parsability comes in: the 
uniqueness of the abstract structure of a formula guarantees that inductive 
definitions yield properties of formulas that are intrinsic to them (i.e., 
belong to the formula independently of a specific construction history). 
Without unique parsability, inductive definitions would be much more 
cumbersome to work with, as one would have to survey all possible con-
structions of every formula and prove that the definition leads to the same 
result for each construction.

Now, with this understanding of unique parsability in place, let us exam-
ine whether we can define unique abstract structures (analogous to those 
of propositional formulas that we usually represent with parsing trees) for 

8 It should be kept in mind that, rigorously speaking, the abstract structure of a formula 
is not identical with its graphical representation in the form of a tree, but could be defined 
independently (for instance using set theory). For ease of expression, however, we shall 
sometimes speak of the parsing tree as if it was the abstract structure itself and not merely 
a representation of it.
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AGs as well. To do this, we first need to lay out inductive formation rules 
for AGs. (The non-linearity of AGs is not an intrinsic obstacle to this: as 
remarked above, the process of constructing a formula according to forma-
tion rules is unrelated to that of writing the formula down; while the latter 
may – but need not! – follow a linear left-to-right order, the former is not 
based on any such order, so is not limited to linear languages.) Let us start 
from the following formation rules, which are usual in the literature:9

1. An empty space is an AG and any letter is an AG.
2. The juxtaposition of two or more non-empty AGs is an AG.
3. The cut (i.e., the enclosing in a closed curve) of an AG is an AG.

Notice that we already relied on these rules, albeit implicitly, to define the 
basic translation method inductively: we explained how to give translations 
for juxtapositions and for cuts. (The empty graph, not yet mentioned, is 
translated as ; an empty cut is thus translated as ⊥.) As remarked above, 
however, this translation method is not well-defined. The reason for this is 
that parsing trees are not unique in the case of AGs, because of two difficul-
ties: (1) AGs are non-linear and (2) they can contain juxtapositions of an 
arbitrary number of subgraphs at the same time.

First, consider Figure 2 again: as Figures 2(b) and 2(c) are tokens of the 
same AG, both trees shown in Figure 4 could be taken as its parsing tree. 
Incidentally, these trees lead to different formulas of propositional logic, 
namely

P ∧ ¬Q  and  ¬Q ∧ P.

In general, since AGs are non-linear, there is no prescribed order among 
juxtaposed sub-graphs, and each choice of order leads to a different tree.

jux

cut

Q

P

(a)

jux

Pcut

Q

(b)

Figure 4. Parsing trees for the AG of Fig. 2.

9 See for instance Shin (2002, 38), with the difference that we are restricting juxtaposi-
tion to non-empty graphs (following her approach on p. 65 – see also note 13 pp. 186-187), 
which is required for unique parsability. Similar rules are offered by Hammer (1996, 31) and 
(implicitly, as he describes the conventions stated by Peirce without isolating formation rules 
in particular) by Roberts (1973).
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The second difficulty arises because an AG can contain juxtapositions of 
arbitrary numbers of subgraphs, while standard binary juxtaposition rules 
make juxtapositions of three graphs or more constructible in multiple ways. 
We shall start from the juxtaposition rule we listed above, which can be 
applied to any number (“two or more”) of graphs at the same time, but there 
would be a similar issue if we only permitted the juxtaposition of two 
graphs at the same time (as Shin does in some contexts).10 To understand 
the difficulty, consider the AG of Figure 5(a), where three graphs are jux-
taposed. Keeping the order of subgraphs fixed (to separate the issues), this 
AG can be constructed by applying juxtaposition in different ways: we can 
apply it to the three subgraphs at once, yielding Figure 5(b), or we can limit 
ourselves to juxtaposing two subgraphs at the same time, which leads to 
two possible trees, Figures 5(c) and 5(d). In the latter cases, we can straight-
forwardly apply the basic translation method to the resulting trees and get 
the formulas

((¬P ∧ Q) ∧ ¬R)  and  (¬P ∧ (Q ∧ ¬R)),

respectively. In the former case, the basic translation method is not imme-
diately applicable at all, unless we decide to use a target language with a 
conjunction of variable arity.

P Q

R

(a)

jux

cut

R

Qcut

P

(b)

jux

cut

R

jux

Qcut

P

(c)

jux

jux

cut

R

Q

cut

P

(d)

Figure 5. An AG with three possible parsing trees.

Surprisingly, these problems are rarely addressed in the literature on 
AGs. Shin claims that the formation rules she initially gives (essentially the 
same as those we started from) “guarant[ee] a unique building tree for each 
graph,”11 glossing over the problems just mentioned. Other sources, like Ham-
mer (1996) and Roberts (1973), tend to ignore unique parsability altogether. 
Curiously, the only thorough discussion we found is also the earliest, that 

10 See for instance Shin (2002, 74).
11 See Shin (2002, 74–75), where she refers to the set of graphs defined inductively by the 

rules she gives on p. 38.
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given in Jay Zeman’s PhD thesis (Zeman 1964, unpublished but now avail-
able on the internet). But as we shall see, his treatment of the ordering issue 
is needlessly complicated, which may be why his careful formulation was 
ignored in later works.

At any rate, both difficulties (non-linearity and multiple juxtapositions) 
can be circumvented. To avoid the second one, we only need to alter the 
juxtaposition rule to preclude the juxtaposition of graphs that have them-
selves been obtained by juxtaposition; this amounts to prohibiting trees 
from having consecutive “jux” nodes (“jux” nodes with another “jux” node 
as a direct child). In other words, when constructing a specific AG, we 
always have to apply the juxtaposition rule to the greatest possible number 
of subgraphs at the same time, which rules out the parsing trees shown in 
Figures 5(c) and 5(d). Technically, one could make this explicit in the for-
mation rules for AGs by adopting the following in place of Rule 2, as does 
Zeman (1964):

2.  The juxtaposition of two or more AGs that were obtained by rules 1 
or 3 is an AG.

To resolve the first difficulty, Zeman (1964, §I.1) noted that, given an 
ordering of propositional symbols (letters), it is in principle possible to order 
all AGs. This suffices to guarantee that any AG admits a canonical parsing 
(in which juxtaposed subgraphs are always listed in order), but without exhib-
iting this parsing. While it is possible to explicitly construct a numbering of 
AGs (and thus explicitly specify a canonical parsing for every graph), doing 
so would be, in Zeman’s own words, “long, tedious, and irrelevant.” We 
suggest, instead, to change the kind of abstract structure (and thus the kind 
of parsing tree) that we use. Recall our discussion above: at bottom, the pur-
pose of having a unique abstract structure (encoding the construction history 
of a formula in a unique way and representable as a tree) is to allow inductive 
definitions. It simply turns out that, in the case of AGs, the structures 
adequate for this task should not come with an ordering among juxtaposed 
subgraphs; in other words, to represent AGs’ abstract structure, we need to 
use parsing trees not equipped with any ordering among sibling nodes. (Math-
ematically, one could describe them as trees without a planar embedding; 
at the level of the graphical representation of trees, it amounts to treating 
tree diagrams that only differ by the ordering of sibling nodes as tokens of 
the same type.) As discussed above, the main role of parsing trees is to permit 
inductive definitions. The slight change just described in the nature of parsing 
trees means that inductive definitions, too, should be slightly different for 
AGs: when defining a property inductively for the juxtaposition of several 
AGs, one should be careful not to rely on any ordering among the juxtaposed 
subgraphs. The “basic translation method” sketched in the introduction (using 
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an implicit inductive definition) violates this restriction: as its output is in 
a linear language that requires an ordering among conjuncts, it has to rely 
on some choice of ordering among juxtaposed subgraphs.

In summary, AGs can be given unique abstract structures (representable as 
parsing trees) just like propositional formulas, despite the fact that they are 
non-linear and allow for simultaneous juxtapositions of an arbitrary number 
of subgraphs. Thus, one can use inductive definitions for AGs (as long as one 
is careful not to rely on any particular ordering among juxtaposed graphs). 
Nevertheless, the abstract structures of AGs are not exactly the same as those 
of linear languages. This has an important consequence: any translation of 
AGs into a notation that is linear and whose conjunction is binary (rather than 
of variable arity) is underdetermined. In other words, multiple translations of 
an AG into such a notation are in general possible. As we shall see presently, 
however, Shin’s notion of “multiple readability” is altogether different.

2. Multiple readings for AGs and sentential notations

We now turn to what Shin calls the “multiple readability” of AGs. We first 
present her idea, distinguishing it from the phenomena discussed above and 
devoting some effort to clarifying the way she uses “linearized” AGs to bracket 
order issues (Section 2.1). We then argue that multiple readability can be 
replicated for any language of classical propositional logic, and thus that 
the various explanations of it advanced in the literature (be it by Shin or by 
her critics) are insufficient (Section 2.2). Finally, in addition to just refuting 
Shin’s conclusion, as previous commentators have done, we also show what 
is wrong with Shin’s argument that the multiple readability of AGs is due 
to the fact that their non-linearity allows for multiple parsings of them, 
while linear notations cannot be parsed in more than one way (Section 2.3).

2.1. Shin’s multiple readings

Let us revisit the AGs shown in Fig. 1(a) of the introduction. The basic 
translation method yields ¬(P ∧ ¬Q) and ¬(¬Q ∧ P ) as possible transla-
tions. Now, notice that these formulas are logically equivalent to P → Q: 
Shin’s idea is that we can directly translate similar graphs, where one cut 
is enclosed in another, as implications.12 (Historically, Peirce regarded 
implication as the most fundamental connective and thus considered this 
pattern, where one cut is enclosed in another, as primitive; he called it a 
“scroll” and often drew it as a unit by connecting the inner and the outer 

12 See Shin (2002, 72–74).
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cut.13) This leads to alternative translations for the AG in Fig. 1(b): in addition 
to the basic ones given above, we can get (P → Q) → R, or ¬((P → Q) ∧ 
¬R), or ¬R → (P ∧ ¬Q), depending on which of the various scrolls we 
choose to consider; since ¬(P ∧ ¬Q) is logically equivalent to P → Q, all 
of these translations are logically equivalent as well.

In the same spirit, the basic reading of the AG in Fig. 6 is ¬ (¬P ∧¬Q), 
which is logically equivalent to P ∨ Q; Shin thus suggests that the pattern 
exhibited here – in which several cuts are enclosed in a bigger one – can be 
directly translated as a disjunction.14 (Here again, Peirce himself sometimes 
emphasized this disjunction pattern by drawing the inner cuts connected to 
the outer cut.15)

P Q

Figure 6.

Shin codifies this flexibility with regard to alternative translations by for-
mulating a list of “reading” rules (which are translation rules from AGs into 
our propositional calculus with connectives ¬, ∧, ∨, →), shown in Table 1.16 
To understand this table, a few preliminaries are in order. First, it is important 
to note that Shin phrases her rules in terms of linearized AGs: she relies on 
the observation, already made by Peirce,17 that any AG can be reorganized 
so that all letters lie on a line, and can then be rewritten as a string of symbols, 
with square brackets [,] instead of cuts – for example, the AG in Fig. 1(a) then 
becomes [P[Q]].18 (This device allows Shin to hide the problems raised by 
the non-linearity of AGs discussed in the previous section, but, as we shall 
see below, it is somewhat ambiguous.) Furthermore, the following conven-
tions are used in Table 1: Greek letters stand for arbitrary AGs; the translation 
of α by any of the rules is written as α; and propositional variables, denoted 
by capital Latin letters, are always left invariant by the translations. To illus-
trate the translation rules, here is how Rule 1 from Table 1 (which can be read 

13 See for instance Peirce (1976, III/1, 409–416) or Peirce (1931–1958, §4.564); for discus-
sion, see Roberts (1973, 34–35) or Bellucci and Pietarinen (2016, 218–220).

14 See Shin (2002, 64–66).
15 See Peirce (1931–1958, §4.457).
16 See Shin (2002, 75) for her list of rules.
17 Peirce (1902) indeed starts by writing AGs on a line with brackets, braces and paren-

theses instead of cuts, before moving on to his usual notation in more complicated cases. 
The reasons may have been typographical.

18 When using this linear notation, one should keep in mind that, as discussed above, AGs 
do not come equipped with any ordering among their letters: [P[Q]] and [[Q]P] are the same 
AG, namely that of Fig. 1(a). See our discussion below as well as Hammer (1996, 133–134).
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as “If α is a translation of α, then ¬α is a translation of [α]”) is applied to 
the AG [B]: After parsing this graph as [α], where α is the AG B, the rule 
yields ¬α, where α is the result of applying the rules to B. Since proposi-
tional variables are not affected by a translation,we finally get the formula ¬B 
as translation of the AG [B].

The crucial feature of Shin’s rules is that they are deliberately redundant: 
when translating (or in Shin’s terminology, “reading”) an AG, it will often hap-
pen that several rules are applicable. The idea is that a user of AGs can choose 
to apply one or the other, depending on their goals or on which translation 
patterns happen to strike their eye.19 Notice that the first two rules correspond 
to what we earlier referred to as the basic translation method, the third to 
Peirce’s scrolls (read as implications), the fourth and fifth to two ways of 
recognizing disjunctions. To see how this leads to multiple translations for a 
single AG, let us walk through the example given in Table 1 just below the 
second horizontal line.20 Starting from [[A][B]], the basic reading method 
amounts to applying rule 1 to the full graph (so α = [A][B]), rule 2 to [A][B] 
(so α = [A] and β = [B]), and rule 1 twice to [A] and [B] (so α = A and 
α = B, respectively); this leads to the first reading, ¬(¬A ∧ ¬B). The second 
reading comes from applying rule 3 to the full graph (with α = [A] and 
β = B) and rule 1 to [A]. The third also comes from applying rule 3, but this 
time with α = [B] and β = A, followed by rule 1. We get the fourth reading 
by applying rule 4 with α = [A] and β = [B] and rule 1 twice. Finally, the 
fifth reading comes from applying rule 5 with α = A and β = B.

Ex. 1 AGs Prop. calc. with ¬, ∧, ∨, →
Rules 1. [α] ¬α

2. α β α ∧ β 
3. [α[β]] α → β 
4. [α β] ¬α ∨ ¬β 
5. [[α] [β]] α ∨ β 

Example ¬(¬A ∧ ¬B)
of MR: [[A] [B]] ¬A → B

¬B → A
¬¬A ∨ ¬¬B

A ∨ B

Table 1. Shin’s reading rules for AGs, with an  
example of multiple readability.

19 See Shin (2002, 76–80) for her discussion of this.
20 Note that when presenting the results of a translation, we omit outer parentheses for 

easier readability.
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Upon closer inspection, Shin’s use of linearized AGs reveals some ambi-
guities. Remember that Figures 2(b) and 2(c) ought to be seen as tokens of 
the same type; now what about, say, the linearized AGs [P [Q]] and [[Q] P]? 
There, both options are open: we can take them either as tokens of the same 
type – as if they were AGs whose letters just happened to lie on a line, which 
was Peirce’s own approach21 – or as tokens of different types – treating them 
as we would treat expressions of a standard formal language. Depending on 
which option we choose, we get alternative interpretations of Shin’s rule to 
translate the graph [α β] as α ∧ β  . On the one hand, if the linearized AGs 
[α β  ] and [β α] are tokens of the same type, then the translation of the under-
lying AG could be β   ∧ α just as well as α ∧ β  , and the rule would be under-
specified: one would be free to choose the order when translating, which yields 
multiple possible translations from applications of the same rule. If, on the 
other hand, linearized graphs are treated like a standard symbolic language, this 
problem does not arise, as the ordering of the linearized AG determines the 
ordering of the translation; this is probably what Shin intended. However, the 
indeterminacy of the ordering is pushed back to an implicit first step: before 
translating an AG, one would need to choose one linearization among several.22

Regardless of the previous considerations, it is clear that Shin’s rules can 
be interpreted as providing multiple readings for a linear language, that of 
linearized AGs (in which the order of the symbols matters). Thus, it follows 
from Shin’s own translation rules that the phenomenon of multiple readabil-
ity has nothing to do with non-linearity in and of itself, as she sometimes 
seems to suggest. We can ask further: is multiple readability specific to AGs 
at all, and if so, what features of AGs does it depend on? Our goal in the 
remainder of this paper is to answer this question.

2.2. Multiple readings of propositional calculi

At first sight, Shin’s “readings” that we just discussed are nothing more 
than translations that can be produced by a set of rules. (As we shall see in 
the next subsection, there is more to her idea, which explains why she 
speaks of “readings” rather than just of translations; but let us provisionally 
stick with this simple interpretation.) As pointed out by Bellucci and 
Pietarinen (2016, 230), this seems to make the multiple readability of a 
notation like AGs relative to a certain target language – in Shin’s case, a 
propositional calculus with connectives ¬, ∧, ∨, →. Her thesis would then 
boil down to the following: what makes AGs special is that there exists a 

21 See Peirce (1902, 645).
22 Note that this implicit first step would play an important role for scroll patterns: under 

this interpretation, [α  [β ]] and [[β ] α] are different inputs as far as Shin’s rules are concerned, 
but there is no rule covering the second; so, before translating a scroll pattern as an implica-
tion, one (implicitly) has to choose a linearization in which the cut destined to become the 
consequent appears at the end of the formula.
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set of rules yielding multiple possible translations of at least some AGs into 
our usual propositional calculus.

Thus interpreted, Shin’s thesis is not true, as we shall see by discussing 
the examples of Table 2. Each of these examples gives a set of translation 
rules from a source language into a target language, followed by an example 
of multiple readability obtained from them; we use the same conventions 
as for Shin’s rules above: Greek letters stand for arbitrary expressions in 
the source language; α stands for any translation of obtained from the rules; 
and propositional variables, denoted by capital Latin letters, are unchanged 
by any translation.

First, as has already been pointed out by Bellucci and Pietarinen (2016, 
230 sq.), we seem to have multiple readability whenever translating from a 
language with fewer connectives into a language with more connectives. Take 
Ex. 2: to translate a sentence with ∧, ∨ into a sentence with ∧, ∨, →, a 
trivial method is simply to copy it without change (rules 1 and 2); but if we 
also learn to read the pattern α ∨ ¬β as β → α, as anyone with some experi-
ence in propositional logic probably does, then we start getting multiple trans-
lations for the same sentence (rules 3 and 4). Ex. 3 is analogous, with ∧ in 
the place of ∨; the patterns we need to recognize to apply the given rules are 
a little bit more complicated, but it is a matter of degree rather than principle.

Source language Target language

Ex. 2 Prop. calculus with ¬, ∨ Prop. calculus with ¬, ∨, →
Rules 1. ¬α ¬α  

2. α ∨ β α   ∨ β  
3. ¬α ∨ β α   → β  
4. α ∨ ¬β β   → α  

Example ¬A ∨ ¬B
of MR: ¬A ∨ ¬B A → ¬B

B → ¬A

Ex. 3 Prop. calculus with ¬, ∨ Prop. calculus with ¬, ∧, →
Rules 1. ¬α ¬α  

2. α ∧ β α   ∧ β  
3. ¬(α ∧ ¬β ) α   → β  
4. ¬(¬α ∧ β ) β   → α  

Example ¬(¬A ∧ ¬B)
of MR: ¬(¬A ∧ ¬B) ¬A → B

¬B → A
Table 2. Examples of multiple readability: embedding a language 

into a richer target language.



 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE  247

Source language Target language

Ex. 4 Prop. calculus with ¬, ∧ Prop. calculus with ¬, ∨
Rules 1. ¬α ¬α  

2. α ∧ β ¬(¬ α   ∨ ¬ β   )
3. ¬(α ∧ β ) ¬ α   ∨ ¬ β  
4. ¬(¬ α ∧ ¬ β ) α   ∨ β  

Example ¬¬(¬¬ A ∨ ¬¬B)
of MR: ¬(¬A ∧ ¬B) ¬¬ A ∨ ¬¬B

A ∨ B

Ex. 5 Prop. calculus with ¬, ∨ Prop. calculus with |
Rules 1. ¬α α   | α  

2. α ∨ β (α   | α  ) | (β   | β  )
3. ¬α ∨ β α     | (β   | β  )
4. ¬α ∨ ¬β α   | β  

Example ((A | A) | (A | A)) | ((B | B) | (B | B))
of MR: ¬A ∨ ¬B A | ((B | B) | (B | B))

A | B

Table 3. Examples of multiple readability, where the target language has the 
same number or fewer connectives.

However, the multiple readability phenomenon is not limited to translations 
into richer languages, as suggested in previous studies. First, it also arises when 
changing the connectives without increasing their number, as shown in Ex. 4, 
where we replace ∧ with ∨. Here again, the patterns one needs to notice in order 
to apply the rules are not exotic; experienced users of propositional logic already 
recognize them because of De Morgan’s laws. Second, one can even have mul-
tiple translations when reducing the number of connectives: translating from 
some usual propositional calculus into one with a single connective, the so-
called Sheffer stroke, also yields multiple translations, as is illustrated in Ex. 5.

In fact, it turns out that Shin’s reading rules for AGs (see Ex. 1) closely 
parallel Ex. 3 and 4, above. To see this, remember that the basic reading 
method allows one to straightforwardly translate an AG into a sentence with 
∧ and ¬ only (in fact, starting from an AG in linear notation, this translation 
can be done almost symbol for symbol: one just has to insert ¬’s in front 
of all opening brackets, which correspond to cuts, then add ∧’s in between 
juxtapositions23). Under this correspondence, the [α[β]] pattern of Shin’s 

23 More precisely, a ∧ should be added wherever there is either a letter or a ] followed by 
either a letter or a [, assuming a language with a conjunction of variable arity or with priorities 
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rule 3 (see Ex. 1) becomes the ¬(α ∧ ¬β) pattern of rule 3 from Ex. 3 – 
both yielding the same translation. Similarly, the [α β] and [[α][β]] patterns 
of Shin’s rules 4 and 5 correspond to the patterns ¬(α ∧ β) and ¬(¬α ∧ 
¬β) of the last two rules of Ex. 4, again with the same translation. So one 
could argue that the multiple readability of AGs is precisely the same as 
that obtained by combining the rules of examples Ex. 3 and 4. 

All of our examples so far have a sentential language as target; while they 
prove that multiple readability is not limited to AGs, they leave open the 
possibility that there is an asymmetry between AGs and sentential languages. 
This is what Shin seems to suggest: after explaining the multiple readability 
of AGs, she proceeds to offer “inverse” rules to translate sentences of our 
usual propositional calculus into AGs, but those always produce a unique 
translation24 – thus (implicitly) reinforcing the impression that each AG cor-
responds to a set of sentences, but that, conversely, each sentence corre-
sponds to no more than one AG. Ex. 6 refutes this: in addition to the inverse 
rules given by Shin (which are the first four of the example), one can add 
further ones and get multiple translations of sentences into AGs, as well. 
These extra reading rules serve the same purpose as Shin’s original multiple 
readability rules, in that they allow us to exploit patterns in the source lan-
guage to directly produce shorter translations in the target language.

Shin, however, argues that multiple readings like those of AGs should 
not be possible for sentential languages. To conclude this section, we dis-
cuss her argument, which clarifies why she uses the word “reading” and 

instead of parentheses. This translation process is not strictly symbol for symbol, but is not far 
from it; from the point of view of parsing trees, it amounts to a mere relabeling of the nodes.

24 See Shin (2002, 93–94).

Source language Target language

Ex. 6 Prop. calculus with ¬, ∨, ∧, → Alpha graphs

Rules 1. ¬α [α  ]
2. α ∧ β α   β  
3. α ∨ β [[α   ][β  ]]
4. α → β [α   [β  ]]
5. ¬α ∨ β [α   [β  ]]
6. ¬α ∨ ¬β [α   β  ]

Example [[[A]][[B]]]
of MR: ¬A ∨ ¬B [A[[B]]]

[A B]

Table 4. Example of multiple readability from 
propositional calculi to AGs.
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will help us better understand the status of the translation rules just given. 
Although we conclude that her argument is not sufficient as it stands, it will 
ultimately help us pinpoint the specificities of AGs.

2.3. Multiple translations and redundant formation rules

Up to now, we have treated Shin’s multiple readings as mere translations 
into a particular target language (our usual propositional calculus). In fact, 
however, Shin sees them as more than that: for her, they are made possible 
by multiple parsings of AGs, which are intrinsic to the specific notation of 
AGs rather than relative to a target language. This is why she speaks of 
multiple “readings” and sometimes also of multiple “carvings.”

Shin’s argument for the difference between AGs and linear languages is that 
one should countenance a variety of formation rules for AGs in addition to cut 
and juxtaposition: for instance, to the formation rules listed on p. 8 above, she 
adds what we can call a “scroll rule” to directly construct [α[β]] from two AGs 
α and β, and similarly, rules to form [α β] and [[α][β]].25 This profusion of 
rules yields many new parsing trees, on which Shin’s translation rules can be 
defined inductively. Consider again the AG of Fig. 1(b). In addition to the 
parsing tree shown in Fig. 7(a), we can parse the AG using Shin’s scroll rule to 
get Fig. 7(b); this parsing allows for a straightforward inductive translation as 
(P → Q) → R. In this setting, of course, a typical AG will have several parsing 
trees, not just one; each of those will correspond to a different translation 
(and even to several if we take order and multi-juxtapositions into account).

Such multiple parsings, Shin argues, are not possible for sentential lan-
guages:

It is interesting to notice that this issue of flexibility does not arise in a linear 
symbolic language. On the contrary, a symbolic system is very careful to prevent 
multiple readings of a formula, since it would yield ambiguity. Sentential 
languages are defined so that each sentence may have one and only one way of 
being read off, and the semantics is built on this unique readability.26

Here, Shin refers to what we called “unique parsability” in Section 1.2; 
her view is that, while it is a requirement for our usual sentential languages, 
“there is no need to keep the unique-readability principle in the Alpha system,”27 
and that it should be abandoned to be faithful to AGs’ flexibility.28 

25 See Shin (2002, 74) for the full list.
26 Shin (2002, 79).
27 Shin (2002, 79).
28 Although Shin leaves implicit the subtleties related to the variable arity of juxtaposition 

and the non-linearity of AGs that we discussed in section 1.2, she does claim incidentally 
that one can impose unique parsability upon AGs (see Shin 2002, 74–75); her argument is 
not that AGs cannot be made uniquely parsable, but rather that it is better to treat them as 
multiply parsable.
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Figure 7. Parsing trees for the AG of Fig. 2; the red and blue scroll nodes of (b) 
can be seen as collapsed versions of the tree fragments of (a) of the 

corresponding color.

But why could the same not be done for sentential notations? In a sense, 
Shin’s new formation rules are simply condensed versions of sequences of 
cuts and juxtapositions: as shown by the dashed lines of Fig. 7, her scroll 
rule corresponds to a tree fragment composed of three successive rule appli-
cations. Such condensed rules, however, can be introduced for propositional 
calculi as well. Take Ex. 3 from Section 2. The sentence ¬(¬A ∧¬B) would 
usually be parsed as in Fig. 8(a), but if we add a new “left-implication” rule 
(“from formulas α and β, construct ¬(α ∧ ¬β)”), then the same formula 
can be parsed as in Fig. 8(b). The third translation rule of Ex. 3, which maps 
¬(α ∧ ¬β ) to α → β , can then be rephrased as a mapping from left-
implication(α, β ) to α → β .

¬

∧

¬

B

¬

A

(a)

left-implication

B¬

A

(b)

Figure 8. Parsing trees for the formula ¬(¬A ∧ ¬B): (a) with the usual 
formation rules; (b) with a new “left-implication” rule, 

corresponding to the subtree highlighted in (a).
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In fact, most of the translation rules defined above may be seen to rely 
on what we could call “translation patterns” (or “reading patterns”): they 
allow for direct translations for complex combinations of basic symbols 
that correspond to particular fragments of parsing trees (and could be 
introduced by a tailor-made, additional formation rule). This, then, is the 
negative part of our argument: if there is a difference between AGs 
and our usual propositional calculi, it cannot be in the possibility of mul-
tiple translations; it can only reside in the kinds of patterns that underlie 
these translations. In the next section, we turn to such differences among 
patterns.

3. Contiguous and context-free translation patterns: Complex symbols

While in principle, both AGs and sentential languages admit of multiple 
translations, we believe that Shin’s intuition is essentially correct: it is “natu-
ral” (as she phrases it)29 to treat AGs as multiply readable in a way it is not 
for sentential languages. We have shown above that in both cases, multiple 
readability relies on translation patterns. The difference that underlies this 
“naturalness,” we believe, can only lie in the particular properties of the 
translation patterns of each notation.

To investigate this issue, our strategy in Section 3.1 is to systematically 
compare, for various notations, patterns that can be translated as implication. 
Building on earlier work by Schlimm (2018) about Frege’s logical notation, 
we identify two structural features that the translation patterns of AGs have 
but those of standard propositional calculi do not, namely contiguity and 
context-freedom. As we shall see, however, these properties are not intrinsi-
cally “diagrammatic”: they are shared by patterns in various notations, 
some of which would doubtlessly be classified as “sentential” whichever 
way the distinction is drawn (if it can be drawn at all).

Section 3.2 then offers a tentative explanation, based on the psychology 
of perception, of why patterns that are contiguous and context-free are 
valuable: they form visual-semantic units that can be perceived and treated 
as single “complex symbols”; in this way, they facilitate multiple readings 
of the notations that have them.

3.1. Translation patterns for implication in various notations

To understand what makes AGs’ translation patterns special, let us start 
with a series of examples. To facilitate the comparison, we focus on patterns 

29 See Shin (2002, 76–80).
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that can be translated as implication in our usual sentential language and 
we limit ourselves to languages that are based on conjunction and nega-
tion.30 For each language, Table 5 shows a simple expression that can be 
translated as the implication α → β, using the same convention as for the 
translation rules of the previous section, namely that Greek letters are 
placeholders for arbitrary subexpressions. The pattern that needs to be rec-
ognized in each case consists of all symbols other than α and β.

Let us note from the outset that our comparison shall leave aside an 
important advantage that the complex symbols of AGs discussed above 
(namely the scroll and the pattern for disjunctions) have over the correspond-
ing patterns for propositional calculi, namely that they apply uniformly to 
a wider range of cases. To clarify this idea, let us concentrate on the scroll. 
In the table above, we compared it to

¬ (α ∧ ¬β).

This, however, glosses over some other features of AGs. First, the scroll 
pattern does not change when one adds further conjuncts, whereas the 

30 In a way, AGs can be understood as such a language, with cuts corresponding to nega-
tions and juxtapositions to conjunctions (of variable arity). At the level of parsing trees, 
translating into a sentential language with negation and conjunction (of variable arity) is as 
simple as replacing every cut node by a negation and every juxtaposition node by a conjunc-
tion (and fixing an ordering among sibling nodes).

Language Sample pattern for α → β

1. Prop. calc. with ∧ and ¬ ¬(α ∧ ¬β)
2. Linearized AGs [α[β]]
3. Prop. calc. with ∧ and ¬, Polish notation ¬ ∧ α ¬ β
4. (same language) ¬ ∧ ¬ β α
5. Prop. calc. with ∧ and overlines for ¬ α ∧ β

6. Linearized AGs with overlines for cuts αβ

7. AGs
βα

Table 5. Examples of patterns, in various languages, that can be 
translated as implications in our usual propositional calculus.
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additional parentheses would make the sentential pattern much more involved 
(unless we agree to drop parentheses when several successive conjunctions 
are involved, thus de facto switching to a language with a conjunction of 
variable arity). Second, the scroll pattern is also independent of order, 
whereas in the sentential case, one should technically consider not just one, 
but at least two different patterns (and more if more conjuncts are involved), 
including also

¬ (¬β ∧ α).

These advantages are related to the peculiarities of AGs’ syntax discussed 
in Section 1 (non-linearity and the variable arity of juxtaposition), but are 
orthogonal to the main thrust of our argument, and we shall not discuss 
them further.

Returning to Table 5, the first feature to note is that, in examples 1 to 3, 
the patterns one needs to recognize are not contiguous: they are composed 
of several symbols that, in complex formulas, can end up separated from 
each other by many other symbols. This can be seen more clearly if we 
replace the place-holders for arbitrary subexpressions by dots:

 ¬( . . . ∧ ¬ . . . ) [ . . . [ . . . ]] ¬ ∧ . . . ¬ . . .

We see here how the basic symbols that constitute these patterns do not 
form a contiguous whole, but are separated by dots, which can stand for 
very long subexpressions. This makes it more difficult to recognize at a 
glance the patterns in question.

In examples 4 to 7, on the other hand, the components of the respective 
translation patterns do not have anything between them but white space. 
If we represent the subexpressions in these patterns by dots, as we have 
done above, we can see how the symbols that constitute the patterns are 
contiguous; in other words, one can draw a line connecting these symbols 
without having to “jump over” some dots:

¬ ∧ ¬ . . . . . . . . . ∧ . . . . . . . . . . . .. . .

AGs (example 7) are something of a limit case here: while, in a sense, the 
inner cut need not be directly next to the outer cut, it remains the case that 
there must be a path going from the inner to the outer cut without crossing 
any other curve, otherwise we would not have a correct instance of the pattern 
at all. As mentioned above, Peirce himself considered our implication pattern 
(which he called a “scroll”) as primitive and often drew it by connecting the 
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inner and the outer cut, thus literally turning the two cuts into a single 
primitive symbol.31

A second feature, which is related but not identical to contiguity, is that 
the patterns in examples 4 to 7 are context-free, in the following sense: 
whenever one sees the particular arrangement of symbols that form the 
patterns, one can be sure that it is an actual instance of the pattern, that is, 
that the expressions corresponding to α and β are indeed subformulas 
(provided, of course, that the formula as  a whole is well-formed). In exam-
ples 1 to 3, on the other hand, the visual pattern alone is not enough: on top 
of recognizing the pattern, one also needs to check that the expressions 
corresponding to α and β are actually subformulas. The following pur-
ported instance of pattern number 1, for example, is not actually an instance 
of it:

 Formula: ¬ ( A ∨ ( B ∧ ¬ C ) )
 (Purported) pattern 1: ¬ (  . . .  ∧ ¬ . . . )

Indeed, the parentheses and the conjunction symbol picked out here do not 
belong together (remember that the formation rules of our usual propositional 
calculus only introduce parentheses in tandem with a binary connective; in 
the formula above, for instance, the first opening parenthesis would have 
been introduced together with the disjunction). Thus, the first dots would 
match A ∨ (B, which is not a subformula. To ascertain whether a “visual” 
instance of patterns 1 through 3, like the one above, is an actual instance 
of them, one therefore needs to take the context of the symbols into account; 
in fact, one needs to fully parse the subformulas, even though the formula 
as a whole is well-formed. In examples 4 to 7, on the other hand, this is not 
needed: whenever one recognizes a scroll pattern in a (well-formed) AG, for 
instance, one can be sure that it can be translated as an implication, without 
attending to what is actually contained within the cuts.

Note that, against what our previous examples might suggest, contiguity 
and context-freedom are independent. The first is a property of the appear-
ance of patterns, while the second depends on whether mere appearance is 
enough to recognize genuine instances of the pattern. Accordingly, one can 
have contiguity without context-freedom and context-freedom without con-
tiguity, as the following examples show.

To get context-freedom without contiguity, start from the pattern

¬ ( . . . ∧ ¬ . . . )

discussed above. Remember that it is not context-free because one might 
see spurious instances of it by picking out parentheses and a conjunction 

31 See our discussion in Section 2.1 above.
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symbol that do not belong together. To avoid this, one can change the for-
mation rules of the language so as to tag parentheses and connectives, for 
instance replacing formation rule 3 from p. 7 by the following:

3.  If α and β are wffs all of whose tags are different, and n is a tag that 
does not appear in α and β, then (nα ∧n β)n is a wff.

With formation rules like the preceding, our pattern would become

¬ (n . . . ∧n ¬ . . . )n

(where n stands for an arbitrary tag) and the formula that gave us a spurious 
match above would become, say,

¬(2 A ∨2 (1B ∧1 ¬C )1)2

to which the new pattern does not apply. More generally, the new pattern 
– though no more contiguous than before – is now context-free, as the 
formation rules introducing tags guarantee that the dots will always match 
subformulas.

One can also get contiguity without context-freedom. Take a proposi-
tional calculus with three connectives (¬, ∧ and ∨) that uses priorities 
instead of parentheses, with ¬ binding stronger than ∧, which binds stronger 
than ∨. Then the pattern

β ∨ ¬ α,

which can be translated as α → β, is contiguous but not context-free. Indeed,

A ∨ ¬ B ∧ C

is not an instance of it, as it is equivalent (in a notation with parentheses) to

A ∨ ((¬ B) ∧ C).

This rewriting makes it clear that the negation symbol does not negate the 
full subformula following the disjunction, and so that the pattern does not 
actually apply.

Finally, note that contiguity and context-freedom do not straightforwardly 
map to simpler properties of notations, such as two-dimensionality, the 
number of symbols, the use of explicit connectives, or the use of explicit 
grouping devices like parentheses.

First, one can have contiguity and context-freedom in linear notations, as 
Example 4 demonstrates. Conversely, one can find patterns in two-dimen-
sional notations that are not contiguous nor context-free. Indeed, think of a 
variant of Example 6 in which one can place the lines that correspond to 
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cuts not just above the letters, but also below the letters: in the following 
formula

ABCD

the topmost and bottommost lines (highlighted in red) form a pattern that 
can be translated as an implication, but they are not contiguous.

Second, the contiguity of AGs’ translation patterns is not merely due to 
the fact that AGs use very few explicit signs (basically, there is only one: 
the cut). As an extreme example, consider a propositional calculus based 
on a single connective, the Sheffer stroke, but written using the Polish 
(prefix) notation so that no parentheses are needed. This language would 
use a single sign beyond the propositional symbols, but the translation of

| α | ββ

as α → β corresponds to a pattern that is not contiguous.
Third, Example 4 again shows that one can have contiguous and context-

free patterns even when using explicit symbols for connectives (rather than 
merely using juxtaposition for conjunction and combining negation with a 
grouping device, as AGs arguably do).

Fourth, one might suspect from our examples that the use of “punctuation” 
signs that only serve for grouping and do not express connectives – like 
parentheses – is what makes patterns non-contiguous or non-context-free. 
But while patterns involving parentheses will indeed always be non-contig-
uous (but can be made context-free using labeling, as discussed above), this 
is not true for punctuation signs in general, as the overlines of Examples 5 
and 6 show.

More generally, contiguity and context-freedom cut across any purported 
sentential–diagrammatic contrast. Examples 2 and 6 look like two ways of 
linearizing AGs, yet the scroll pattern is contiguous and context-free in one 
case and not in the other. Examples 3 and 4, using Polish notation, strikingly 
show that one can have translation patterns with different properties even 
in one and the same language.

3.2. The value of complex symbols: multiple readings and visual efficiency

Tentatively, we propose that patterns that are both contiguous and 
context-free are particularly valuable for the following reasons: contiguity 
makes them visually salient by allowing them to be perceived as a unit; 
context-freedom guarantees that one can trust their (salient) visual appear-
ance without further parsing. This means that in practice, such patterns can 
be perceived and manipulated as a single unit. Analogously, meaningful 
units made from simpler elements are called “chunks” in the psychological 
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literature on expert reasoning,32 in which they are conceived as reducing 
the cognitive difficulty of operating with complex structures.

We therefore follow Schlimm (2018) in calling contiguous and context-
free patterns complex symbols, since for most purposes, they behave as if they 
were a single atomic symbol. Starting from the contrast between AGs and 
propositional calculi, the remainder of this section explores the advantages 
for a notation to have such complex symbols, in particular how they can 
make a notation amenable to multiple readability in Shin’s sense.

From this point of view, it may ultimately turn out that contiguity is too 
rough a notion to cover the whole range of differences in visual salience 
among patterns, which is largely a psychological matter. The psychology 
of perception recognizes so-called “Gestalt principles” that tend to determine 
whether individual elements are perceived as a whole.33 Our notion of con-
tiguity is closely related to two of them, namely the principles of “proximity” 
and “connectedness” (the latter ties in with Peirce’s way of drawing scrolls 
and disjunction patterns as connected). This supports our claim that conti-
guity is an important factor in the visual salience of various patterns, or in 
other words, that contiguous patterns are easier to perceive as units. But it 
also means that the other Gestalt principles, which we are leaving aside here, 
might play an important role in some other cases.

In the case of AGs, one can easily see that Shin’s multiple readability 
rules (presented in Table 1 above) are based on translation patterns for impli-
cations and disjunctions that are, in fact, complex symbols:

. . .. . . and . . . . . . .

In other words, because they are contiguous, these translation patterns can 
be easily recognized as a group, and because they are context-free, they allow 
us to rely on their visual appearance without having to fully parse the AG. 
This agrees well with Shin’s own terminology, as she refers to certain trans-
lation patterns of AGs, such as that of the scroll, as “visual features” (Shin 
2002, 71).

The multiple readability rules we suggested for propositional calculi (see 
Tables 2 and 3), on the other hand, largely rely on translation patterns that 
are not complex symbols: recognizing these patterns is harder and requires 
a full parsing. It seems plausible to argue on these grounds that Shin’s 
multiple readability rules are indeed more natural, as she claims.

32 See, for example, Miller (1956) and Chase and Simon (1973).
33 For an introduction, see Rock and Palmer (1990) or Palmer (2002).
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So far, we discussed AGs’ complex symbols in the context of translation 
patterns; but their advantages are not limited to multiple readability. Indeed, 
the very same pattern (or complex symbol) that can be used to recognize 
that a translation rule is applicable can also serve to recognize premisses 
for any kind of inference rule. In her book, Shin discusses at length how 
Peirce’s transformation rules for AGs can be made more “visually efficient” 
or “intuitive.”34 For instance, she simplifies one case of a particularly com-
plex rule by formulating it in terms of scroll patterns: roughly, her version 
states that whenever you have a scroll pattern, you can add any letter 
located in the outer part of the scroll to the inner part of the scroll.35 In this 
case, a certain pattern, the scroll, that turns out to be what we call a com-
plex symbol, allows for a visually effective transformation rule rather than 
for an efficient parsing or translation.

The previous observations are not restricted to AGs: similar considerations 
apply to any notation that allows for the definition of complex symbols, 
such as the propositional calculus that uses lines (vincula) to denote nega-
tion (Example 5 in Table 5). It is also worth pointing out that other nota-
tional systems for which the authors themselves claim multiple readability, 
do so on the basis of complex symbols. Frege’s Begriffsschrift notation, 
for example, whose propositional fragment is based on the connectives of 
negation and implication allows for contiguous and context-free patterns,

· · · · · ·

· · ·

and · · · · · ·

· · ·

which can be interpreted as complex symbols for conjunction and disjunc-
tion (Schlimm 2018, 58–60). These complex symbols could also be used to 
define inference rules whose conditions of application would be particularly 
easy to recognize.

Conclusion

In this paper, we first showed that linear languages for propositional 
logic and Peirce’s Alpha Graphs are more similar than initially appears. On 
the one hand, despite AGs’ peculiarities (non-linearity and the variable arity 
of juxtaposition), we showed that they are uniquely parsable and thus allow 
for inductive definitions of properties or translations, just like propositional 
calculi (Section 1). On the other hand, we argued that in principle, proposi-
tional calculi are multiply readable, just like AGs (Section 2).

34 See Shin (2002, 80–93).
35 See Shin (2002, 89).



 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE  259

We then compared the patterns that underlie the multiple readings of 
AGs and of our usual sentential notations, and argued AGs are indeed 
more amenable to multiple readability because of structural features of 
their translation patterns: they are contiguous and context-free (Section 3). 
We believe that the presence of such patterns, which we call “complex 
symbols,” is what underlies Shin’s intuition that AGs are multiply readable 
while our usual propositional calculi are not. Yet, against Shin, there does 
not seem to be anything intrinsically “diagrammatic” about these properties: 
languages that we would not usually consider diagrammatic (like a propo-
sitional calculus with an overhead line as negation) can have patterns that 
are contiguous and context-free, too.
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