
Logique & Analyse 251 (2020), 231-260

doi: 10.2143/LEA.251.0.3288640 © 2020 by Peeters Publishers. All rights reserved.

MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE:
EXISTENTIAL GRAPHS AND COMPLEX SYMBOLS

Dirk Schlimm & David Waszek

Abstract

Since Sun-Joo Shin’s groundbreaking study (2002), Peirce’s existential graphs
have attracted much attention as a way of writing logic that seems profoundly dif-
ferent from our usual logical calculi. In particular, Shin argued that existential
graphs enjoy a distinctive property that marks them out as “diagrammatic”: they
are “multiply readable,” in the sense that there are several different, equally legitimate
ways to translate one and the same graph into a standard logical language. Stenning
(2000) and Bellucci and Pietarinen (2016) have retorted that similar phenomena of
multiple readability can arise for sentential notations as well. Focusing on the sim-
plest kinds of existential graphs, called alpha graphs (AGs), this paper argues that
multiple readability does point to important features of AGs, but that both Shin and
her critics have misdiagnosed its source.

As a preliminary, and because the existing literature often glosses over such
issues, we show that despite their non-linearity, AGs are uniquely parsable and allow
for inductive definitions. Extending earlier discussions, we then show that that in prin-
ciple, all propositional calculi are multiply readable, just like AGs: contrary to what
has been suggested in the literature, multiple readability is linked neither to non-
linearity nor to AGs’ dearth of connectives. However, we argue that in practice,
AGs are more amenable to multiple readability than our usual notations, because
the patterns that one needs to recognize to multiply translate an AG form what we
call complex symbols, whose structural properties make it easy to perceive and
process them as units. Nevertheless, we show that such complex symbols, though
largely absent from our usual notations, are not inherently diagrammatic and can be
found in seemingly sentential languages. Hence, while ultimately vindicating Shin’s
idea of multiple readability, our analysis traces it to a different source and thus severs
its link with diagrammaticity.

Keywords: Logic, Notations, Existential Graphs, Diagrams, Multiple Readability

Introduction

It is well known that different notations can be used to represent the same
subject matter. For example, Leibniz and Newton developed different nota-
tions for analysis, and propositional and first-order logic can be represented
by strings of symbols or by trees, but also by more graphical notations, such

232 DIRK SCHLIMM & DAVID WASZEK

as Frege’s Begriffsschrift or Peirce’s existential graphs, which Sun-Joo
Shin’s study (2002) brought to a wider audience. The question of how
exactly these notational systems differ from each other has led to various
attempts at classifying them. In particular, the distinction between “sen-
tential” (or linear) and “diagrammatic” notations has been the focus of
much attention.1 Using Peirce’s existential graphs as paradigmatic example,
Shin (2002, 2011, 2015) has argued that “multiple readability” is a charac-
teristic feature of diagrammatic representations. Roughly, her idea is that
a typical existential graph admits several, equally legitimate translations
(or “readings”) into our standard logical notation: her “Multiple-Readings
Algorithm,” she writes, “allows us to translate one and the same graph into
more than one sentence,”2 while “a symbolic system is very careful to pre-
vent multiple readings of a formula.”3 In the debate that ensued, Shin’s
thesis has been criticized on the grounds that similar phenomena of multiple
readability can also arise for linear notations (Stenning 2000, Bellucci and
Pietarinen 2016).

We believe that several distinct issues have been conflated in this debate,
and that, as a result, the specificity of existential graphs has been misdiag-
nosed. Our goal is to disentangle these issues, and to show that, while
Shin’s “multiple readability” does indeed point to interesting features of
existential graphs, these are independent of the properties usually invoked
to explain it, such as non-linearity or “diagrammaticity.” In our account,
what lies behind Shin’s remark is that AGs allow for the definition of what
we shall call complex symbols, namely patterns of basic symbols with struc-
tural properties permitting their treatment as a unit. But complex symbols
are not inherently “diagrammatic,” in the sense that they can also be defined
within notations usually seen as sentential or linear.

Let us begin by briefly introducing existential graphs.4 For the sake of
simplicity, we shall concentrate on the simplest kind of graphs, “alpha graphs”
(henceforth AGs), which can be translated into what we now call classical
propositional logic. AGs are composed of letters – corresponding to our
propositional variables – and of closed, non-intersecting curves, called “cuts”

1 See for instance Shimojima (1999) and Stenning (2000) for reviews.
2 Shin (2002, 76).
3 Shin (2002, 79).
4 Peirce’s writings on existential graphs, which were hard to access for a long time, are

currently being edited and published in full (Peirce 2020–2021). (Among the smattering of
manuscripts that were available before, good starting points are Peirce 1931–1958, §4.394–417
and Peirce 1902 reprinted as Peirce 1931–1958, §4.372–392 – as well as the manuscripts
presented in Peirce 1976, vol. III/1, 405–446.) Roberts (1973) provides a thorough historical
presentation; for short introductions from the perspective of modern logic, see Hammer
(1996) or Shin (2002, chap. 3). For a discussion of Peirce’s own goals in devising existential
graphs, see Bellucci and Pietarinen (2016).

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 233

Q

P

(a)

QP

R

(b)

Figure 1. Two examples of alpha graphs (AGs).

(see Fig. 1 for examples); they are two-dimensional: letters can be placed
anywhere on the page (within a specified area called “sheet of assertion”
by Peirce) as long as they do not overlap cuts. AGs can be straightforwardly
translated into our familiar propositional calculus by proceeding system-
atically from the outside in, translating cuts (curves) as negations and
juxtapositions as conjunctions: for Fig. 1(a) and Fig. 1(b) this yields

¬ (P ∧ ¬Q) and ¬ (¬ (P ∧ ¬Q) ∧ ¬R).

Let us call this the basic translation method.
As it turns out, the basic translation method is not well-defined, because

it allows for multiple translations of one and the same AG into our standard
notation for propositional logic. This is due to the following two features
of AGs. First, the order in which the letters of an AG are inscribed on the
sheet of assertion is irrelevant (AGs are not linear). Thus, in addition to the
above translations, the AGs in Fig. 1(a) and Fig. 1(b) could equally well be
translated as

¬ (¬Q ∧ P) and ¬ (¬R ∧ (¬Q ∧ P)),

respectively. Second, because any number of subgraphs can be juxtaposed
simultaneously (i.e., the arity of conjunction in AGs is variable), they can
be arranged in multiple ways in a target language that has only a binary
connective for conjunction. For example, the AG ‘PQR’ can be translated,
among others, as (P ∧ Q) ∧ R or P ∧ (Q ∧ R) or as formulas that result
from these by switching the conjuncts. These two peculiar features, non-
linearity and the variable arity of juxtaposition, make it challenging to treat
AGs with the standard tools of formal logic. For this reason, as we shall
see, they have tended to be glossed over in previous efforts to describe AGs
as formal expressions constructed by formation rules and susceptible of a
unique parsing. Section 1 revisits the issue and argues that, with suitable care,
one can in fact define a unique parsing of AGs.

234 DIRK SCHLIMM & DAVID WASZEK

However, Shin’s notion of multiple readability, which we analyze in
Section 2, is different. When translating AGs into our standard propositional
calculus, one quickly recognizes that certain patterns of cuts correspond
to formulas that are shorter than, but logically equivalent to, those obtained
by the basic translation method.5 For example, the AGs in Fig. 1(a) and
Fig. 1(b) can also be translated as

P → Q and (P → Q) → R.

The possibility of admitting additional translations like these on top
of the basic one is, in a nutshell, what Shin calls “multiple readability.”
She ascribes this phenomenon to the non-linearity of AGs: in contrast,
she writes that “linear representations cannot afford more than one reading
for a given formula, since that could cause ambiguity” (Shin 2015, 57),
referring to the fact that sentences of our usual propositional calculi are
ascribed a unique parsing (a property that, confusingly, is often called
“unique readability”). We argue that non-linearity cannot be the cause of
multiple readability: not only can AGs be given a unique parsing, as shown
in our first section, but insofar as they can also be given alternative pars-
ings, so can sentences. Moreover, following Stenning (2000) and Bellucci
and Pietarinen (2016), we show that multiple readings analogous to Shin’s
can be defined for sentential languages as well. We then argue that the
alternate explanations these earlier works give of the phenomenon are not
the full story either: Stenning (2000, 143) sees it as a “feature of translation
from connectiveless to connectiveful calculi rather than of 2-D notation”
and Bellucci and Pietarinen (2016, 230) claim that “in order to generate
multiple readings the target-language must have a richer logical vocabulary
than the source-language,” but our systematic analysis shows that multiple
readings can be defined for essentially any language, even when these con-
ditions are not met. Our first conclusion is thus negative: multiple readings
are extremely widespread and related neither to non-linearity nor to the
various other explanations of it that have been proposed.

Nevertheless, we believe that Shin’s notion of multiple readability does
point to interesting phenomena, which we discuss in Section 3. While any
notation can be given multiple readings, some do seem to be better suited
to it than others. To explain this, we note that multiple readings, in general,
rely on certain “translation patterns” present in the source formulas. We
claim that it is in the specific properties of these patterns that notations differ.
Building on earlier work by Schlimm (2018), we identify two such proper-
ties, namely contiguity and context-freedom, and call patterns that have

5 Following Shin, we are restricting ourselves to classical logic, here and throughout the
paper.

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 235

them complex symbols. We go on to tentatively suggest a psychological
explanation, based on the literature on perception, for why complex symbols
in this sense are valuable: they can be perceived and processed as units.
This is the case, in particular, of the patterns underlying the multiple readings
of AGs, but not those of our usual sentential languages. Our analysis thus
supports Shin’s intuition that AGs are more amenable to multiple readabil-
ity than our standard propositional calculus.

1. Non-linearity and unique parsing of AGs

The most obvious distinctive feature of AGs is that they are non-linear.
This raises an immediate challenge for a formal treatment of AGs: our
usual logical notions (such as the type-token distinction, formation rules, and
parsing trees) often seem to presuppose linear notations.6 In this section,
we clarify how these notions apply to AGs. In particular, we show how to
define a unique parsing tree for every AG – a slightly troublesome matter
that is frequently glossed over (e.g., in Roberts 1973, Hammer 1996, Shin
2002). We then build on this discussion to show how AGs’ non-linearity
gives them a first kind of “multiple readability.”

1.1. The type-token distinction for AGs

It is a crucial feature of our usual formal systems that they presuppose a
type-token distinction: their users must be able to recognize whether two
individual symbols – and thus also two strings of symbols – are “the same,”
that is, are two tokens of the same type. For example, we usually regard the
formulas

A ∧ B and A ∧ B.

as two tokens of the same type, because we recognize the symbols and their
order, and we have learned that the size of the letters plays no role in logic.
But, because we have also learned that the order of the symbols makes a
difference, we notice that the following are not tokens of the same formula
type:

A ∧ B and B ∧ A.

6 This only applies to standard treatments in the logical literature; Peirce himself, who
introduced the type-token distinction, did not consider it to be limited to strings of symbols.

236 DIRK SCHLIMM & DAVID WASZEK

The type-token distinction is essential for the very idea of a formal sys-
tem (understood here as consisting of inscriptions that can be manipulated
without regard of their meanings)7, because it allows one to claim that dif-
ferent people, working with different physical inscriptions at different times
and places, are doing the same thing – working with the same formula (that
is, with tokens of the same type), following the same rules (again at the
level of types).

If we want to treat AGs formally, then, we also need a type-token distinc-
tion, which includes a way of specifying which figures are tokens of the same
type. For Figures 1(a) and 1(b) the case is straightforward, because they
contain different sets of letters, so they are tokens of different types. But,
let us look at the AGs of Figure 2. At first sight, they are clearly different:
in 2(a), the letters are aligned vertically; in 2(b), Q is to the right of P and
in 2(c), to its left; while in 2(d), the letters are not properly aligned at all.
Nevertheless, the only consistent way of drawing a type-token distinction
here is to regard them as tokens of the same type: indeed, because the letters
of an AG can be placed anywhere save on cuts, one can pass from one figure
to the other through a continuous transformation made of well-formed AGs,
along which one would be unable to draw a clear line separating two dif-
ferent types. To consider them as tokens of different types, we would need
to add restrictions on the position of letters, for instance by requiring them
to be aligned on successive lines, so as to forbid graphs like 2(d); this,
however, goes against the usual definition of AGs and would thus amount
to a different system. So, in general, we shall consider two AG tokens as
being of the same type if they can be transformed into one another by moving
letters (and cuts) around, without crossing cuts.

Another route to the same result would be, like Hammer (1996, 133), to
start by defining formation rules for AGs, then say that two graph-tokens are
of the same type if they can be constructed in the same way (i.e., by apply-
ing the same rules in the same order). There is a subtlety there, however:
in this formulation, the modal language (can be constructed) is crucial.
Indeed, as we shall see presently, the rules stated by most authors do not
guarantee that any AG can be constructed in only one way, so that two
tokens with different construction histories can still be of the same type
as long as they could have been produced by the same rules. But since the
whole question of whether different construction histories can produce graphs
of the same type presupposes an understanding of the type-token distinction
for graphs, we feel it is more logical to introduce it before turning to forma-
tion rules.

7 This is what MacFarlane (2000, 32–36), in his study of the formality of logic, calls
“syntactic” formality.

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 237

Q

P

(a)

QP

(b)

Q P

(c)

QP

(d)

Figure 2. Four tokens of the same AG.

1.2. Formation rules and uniqueness of parsing trees

To continue our exploration of the system of AGs as a formal system,
recall that formal languages are usually set up by stipulating a list of forma-
tion rules, such that any well-formed expression of the language can be
constructed in only one way. This property is sometimes called “unique
readability,” but to avoid ambiguity, we shall refer to it as unique parsa-
bility instead. Our goal here is to show how AGs can be seen as uniquely
parsable in this sense. Because of the already-noted peculiarities of AGs
(non-linearity and the variable arity of juxtaposition), this will require us to
alter the formation rules for AGs that are most commonly used in the
literature.

Before we turn to AGs, some clarifications are needed about what it is,
exactly, that is usually said to be “unique” in unique parsability and why it
matters. Take a simple propositional calculus with connectives ∧ and ¬.
The following (in which Greek letters stand for arbitrary expressions) would
be standard formation rules for well-formed formulas:

1. A propositional variable is a well-formed formula (wff), as are  and ⊥.
2. If α is a wff, then so is ¬α.
3. If α and β are wffs, then so is (α ∧ β).

Note that the abstract process of constructing a formula according to such
rules is unrelated to the material process of writing it down, which need not
(and usually does not) follow the same order. Now, the formula

 ¬ (¬A ∧ ¬B) (1)

(where Latin letters are propositional variables) can be constructed by
applying rules 1 and 2 to get ¬A, then rules 1 and 2 again to get ¬B, then
rule 3 to combine the previous formulas into (¬A ∧ ¬B), and then finally
rule 2 to add the outer negation symbol. However, this sequence of applica-
tions of rules is not the only one that yields this particular formula; in other
words, this construction sequence is not unique. One could also construct

238 DIRK SCHLIMM & DAVID WASZEK

¬B before ¬A, or start by applying rule 1 twice to get A and B, use rule 2
only then to get ¬A and ¬B, and continue from there. Thus, different
sequences of formation rules can yield the same formula. These sequences,
however, only differ by their ordering: they are all made up of the same
formation rules applied to the same subformulas. This defines, for any well-
formed formula, a certain unique abstract structure, which we usually rep-
resent as a parsing tree.8 For instance, the parsing tree of the formula (1) is
represented in Fig. 3.

¬

∧

¬

B

¬

A

Figure 3. The parsing tree of the sentential formula ¬(¬A ∧ ¬B).

The great advantage of having unique abstract structures (usually repre-
sented by parsing trees) is that they allow for inductive definitions of prop-
erties of formulas. A good example of an inductive definition is that of the
semantics of propositional logic: one first gives a semantics to propositional
variables, and for each formation rule, one then defines how the semantics
of the resulting formula depends on that of its constituents (usually in terms
of truth tables). At first sight, this definition makes the semantics of a for-
mula dependent, not just on the formula itself, but also on the formation
rules used to construct it. This is where unique parsability comes in: the
uniqueness of the abstract structure of a formula guarantees that inductive
definitions yield properties of formulas that are intrinsic to them (i.e.,
belong to the formula independently of a specific construction history).
Without unique parsability, inductive definitions would be much more
cumbersome to work with, as one would have to survey all possible con-
structions of every formula and prove that the definition leads to the same
result for each construction.

Now, with this understanding of unique parsability in place, let us exam-
ine whether we can define unique abstract structures (analogous to those
of propositional formulas that we usually represent with parsing trees) for

8 It should be kept in mind that, rigorously speaking, the abstract structure of a formula
is not identical with its graphical representation in the form of a tree, but could be defined
independently (for instance using set theory). For ease of expression, however, we shall
sometimes speak of the parsing tree as if it was the abstract structure itself and not merely
a representation of it.

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 239

AGs as well. To do this, we first need to lay out inductive formation rules
for AGs. (The non-linearity of AGs is not an intrinsic obstacle to this: as
remarked above, the process of constructing a formula according to forma-
tion rules is unrelated to that of writing the formula down; while the latter
may – but need not! – follow a linear left-to-right order, the former is not
based on any such order, so is not limited to linear languages.) Let us start
from the following formation rules, which are usual in the literature:9

1. An empty space is an AG and any letter is an AG.
2. The juxtaposition of two or more non-empty AGs is an AG.
3. The cut (i.e., the enclosing in a closed curve) of an AG is an AG.

Notice that we already relied on these rules, albeit implicitly, to define the
basic translation method inductively: we explained how to give translations
for juxtapositions and for cuts. (The empty graph, not yet mentioned, is
translated as ; an empty cut is thus translated as ⊥.) As remarked above,
however, this translation method is not well-defined. The reason for this is
that parsing trees are not unique in the case of AGs, because of two difficul-
ties: (1) AGs are non-linear and (2) they can contain juxtapositions of an
arbitrary number of subgraphs at the same time.

First, consider Figure 2 again: as Figures 2(b) and 2(c) are tokens of the
same AG, both trees shown in Figure 4 could be taken as its parsing tree.
Incidentally, these trees lead to different formulas of propositional logic,
namely

P ∧ ¬Q and ¬Q ∧ P.

In general, since AGs are non-linear, there is no prescribed order among
juxtaposed sub-graphs, and each choice of order leads to a different tree.

jux

cut

Q

P

(a)

jux

Pcut

Q

(b)

Figure 4. Parsing trees for the AG of Fig. 2.

9 See for instance Shin (2002, 38), with the difference that we are restricting juxtaposi-
tion to non-empty graphs (following her approach on p. 65 – see also note 13 pp. 186-187),
which is required for unique parsability. Similar rules are offered by Hammer (1996, 31) and
(implicitly, as he describes the conventions stated by Peirce without isolating formation rules
in particular) by Roberts (1973).

240 DIRK SCHLIMM & DAVID WASZEK

The second difficulty arises because an AG can contain juxtapositions of
arbitrary numbers of subgraphs, while standard binary juxtaposition rules
make juxtapositions of three graphs or more constructible in multiple ways.
We shall start from the juxtaposition rule we listed above, which can be
applied to any number (“two or more”) of graphs at the same time, but there
would be a similar issue if we only permitted the juxtaposition of two
graphs at the same time (as Shin does in some contexts).10 To understand
the difficulty, consider the AG of Figure 5(a), where three graphs are jux-
taposed. Keeping the order of subgraphs fixed (to separate the issues), this
AG can be constructed by applying juxtaposition in different ways: we can
apply it to the three subgraphs at once, yielding Figure 5(b), or we can limit
ourselves to juxtaposing two subgraphs at the same time, which leads to
two possible trees, Figures 5(c) and 5(d). In the latter cases, we can straight-
forwardly apply the basic translation method to the resulting trees and get
the formulas

((¬P ∧ Q) ∧ ¬R) and (¬P ∧ (Q ∧ ¬R)),

respectively. In the former case, the basic translation method is not imme-
diately applicable at all, unless we decide to use a target language with a
conjunction of variable arity.

P Q

R

(a)

jux

cut

R

Qcut

P

(b)

jux

cut

R

jux

Qcut

P

(c)

jux

jux

cut

R

Q

cut

P

(d)

Figure 5. An AG with three possible parsing trees.

Surprisingly, these problems are rarely addressed in the literature on
AGs. Shin claims that the formation rules she initially gives (essentially the
same as those we started from) “guarant[ee] a unique building tree for each
graph,”11 glossing over the problems just mentioned. Other sources, like Ham-
mer (1996) and Roberts (1973), tend to ignore unique parsability altogether.
Curiously, the only thorough discussion we found is also the earliest, that

10 See for instance Shin (2002, 74).
11 See Shin (2002, 74–75), where she refers to the set of graphs defined inductively by the

rules she gives on p. 38.

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 241

given in Jay Zeman’s PhD thesis (Zeman 1964, unpublished but now avail-
able on the internet). But as we shall see, his treatment of the ordering issue
is needlessly complicated, which may be why his careful formulation was
ignored in later works.

At any rate, both difficulties (non-linearity and multiple juxtapositions)
can be circumvented. To avoid the second one, we only need to alter the
juxtaposition rule to preclude the juxtaposition of graphs that have them-
selves been obtained by juxtaposition; this amounts to prohibiting trees
from having consecutive “jux” nodes (“jux” nodes with another “jux” node
as a direct child). In other words, when constructing a specific AG, we
always have to apply the juxtaposition rule to the greatest possible number
of subgraphs at the same time, which rules out the parsing trees shown in
Figures 5(c) and 5(d). Technically, one could make this explicit in the for-
mation rules for AGs by adopting the following in place of Rule 2, as does
Zeman (1964):

2. The juxtaposition of two or more AGs that were obtained by rules 1
or 3 is an AG.

To resolve the first difficulty, Zeman (1964, §I.1) noted that, given an
ordering of propositional symbols (letters), it is in principle possible to order
all AGs. This suffices to guarantee that any AG admits a canonical parsing
(in which juxtaposed subgraphs are always listed in order), but without exhib-
iting this parsing. While it is possible to explicitly construct a numbering of
AGs (and thus explicitly specify a canonical parsing for every graph), doing
so would be, in Zeman’s own words, “long, tedious, and irrelevant.” We
suggest, instead, to change the kind of abstract structure (and thus the kind
of parsing tree) that we use. Recall our discussion above: at bottom, the pur-
pose of having a unique abstract structure (encoding the construction history
of a formula in a unique way and representable as a tree) is to allow inductive
definitions. It simply turns out that, in the case of AGs, the structures
adequate for this task should not come with an ordering among juxtaposed
subgraphs; in other words, to represent AGs’ abstract structure, we need to
use parsing trees not equipped with any ordering among sibling nodes. (Math-
ematically, one could describe them as trees without a planar embedding;
at the level of the graphical representation of trees, it amounts to treating
tree diagrams that only differ by the ordering of sibling nodes as tokens of
the same type.) As discussed above, the main role of parsing trees is to permit
inductive definitions. The slight change just described in the nature of parsing
trees means that inductive definitions, too, should be slightly different for
AGs: when defining a property inductively for the juxtaposition of several
AGs, one should be careful not to rely on any ordering among the juxtaposed
subgraphs. The “basic translation method” sketched in the introduction (using

242 DIRK SCHLIMM & DAVID WASZEK

an implicit inductive definition) violates this restriction: as its output is in
a linear language that requires an ordering among conjuncts, it has to rely
on some choice of ordering among juxtaposed subgraphs.

In summary, AGs can be given unique abstract structures (representable as
parsing trees) just like propositional formulas, despite the fact that they are
non-linear and allow for simultaneous juxtapositions of an arbitrary number
of subgraphs. Thus, one can use inductive definitions for AGs (as long as one
is careful not to rely on any particular ordering among juxtaposed graphs).
Nevertheless, the abstract structures of AGs are not exactly the same as those
of linear languages. This has an important consequence: any translation of
AGs into a notation that is linear and whose conjunction is binary (rather than
of variable arity) is underdetermined. In other words, multiple translations of
an AG into such a notation are in general possible. As we shall see presently,
however, Shin’s notion of “multiple readability” is altogether different.

2. Multiple readings for AGs and sentential notations

We now turn to what Shin calls the “multiple readability” of AGs. We first
present her idea, distinguishing it from the phenomena discussed above and
devoting some effort to clarifying the way she uses “linearized” AGs to bracket
order issues (Section 2.1). We then argue that multiple readability can be
replicated for any language of classical propositional logic, and thus that
the various explanations of it advanced in the literature (be it by Shin or by
her critics) are insufficient (Section 2.2). Finally, in addition to just refuting
Shin’s conclusion, as previous commentators have done, we also show what
is wrong with Shin’s argument that the multiple readability of AGs is due
to the fact that their non-linearity allows for multiple parsings of them,
while linear notations cannot be parsed in more than one way (Section 2.3).

2.1. Shin’s multiple readings

Let us revisit the AGs shown in Fig. 1(a) of the introduction. The basic
translation method yields ¬(P ∧ ¬Q) and ¬(¬Q ∧ P) as possible transla-
tions. Now, notice that these formulas are logically equivalent to P → Q:
Shin’s idea is that we can directly translate similar graphs, where one cut
is enclosed in another, as implications.12 (Historically, Peirce regarded
implication as the most fundamental connective and thus considered this
pattern, where one cut is enclosed in another, as primitive; he called it a
“scroll” and often drew it as a unit by connecting the inner and the outer

12 See Shin (2002, 72–74).

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 243

cut.13) This leads to alternative translations for the AG in Fig. 1(b): in addition
to the basic ones given above, we can get (P → Q) → R, or ¬((P → Q) ∧
¬R), or ¬R → (P ∧ ¬Q), depending on which of the various scrolls we
choose to consider; since ¬(P ∧ ¬Q) is logically equivalent to P → Q, all
of these translations are logically equivalent as well.

In the same spirit, the basic reading of the AG in Fig. 6 is ¬ (¬P ∧¬Q),
which is logically equivalent to P ∨ Q; Shin thus suggests that the pattern
exhibited here – in which several cuts are enclosed in a bigger one – can be
directly translated as a disjunction.14 (Here again, Peirce himself sometimes
emphasized this disjunction pattern by drawing the inner cuts connected to
the outer cut.15)

P Q

Figure 6.

Shin codifies this flexibility with regard to alternative translations by for-
mulating a list of “reading” rules (which are translation rules from AGs into
our propositional calculus with connectives ¬, ∧, ∨, →), shown in Table 1.16
To understand this table, a few preliminaries are in order. First, it is important
to note that Shin phrases her rules in terms of linearized AGs: she relies on
the observation, already made by Peirce,17 that any AG can be reorganized
so that all letters lie on a line, and can then be rewritten as a string of symbols,
with square brackets [,] instead of cuts – for example, the AG in Fig. 1(a) then
becomes [P[Q]].18 (This device allows Shin to hide the problems raised by
the non-linearity of AGs discussed in the previous section, but, as we shall
see below, it is somewhat ambiguous.) Furthermore, the following conven-
tions are used in Table 1: Greek letters stand for arbitrary AGs; the translation
of α by any of the rules is written as α; and propositional variables, denoted
by capital Latin letters, are always left invariant by the translations. To illus-
trate the translation rules, here is how Rule 1 from Table 1 (which can be read

13 See for instance Peirce (1976, III/1, 409–416) or Peirce (1931–1958, §4.564); for discus-
sion, see Roberts (1973, 34–35) or Bellucci and Pietarinen (2016, 218–220).

14 See Shin (2002, 64–66).
15 See Peirce (1931–1958, §4.457).
16 See Shin (2002, 75) for her list of rules.
17 Peirce (1902) indeed starts by writing AGs on a line with brackets, braces and paren-

theses instead of cuts, before moving on to his usual notation in more complicated cases.
The reasons may have been typographical.

18 When using this linear notation, one should keep in mind that, as discussed above, AGs
do not come equipped with any ordering among their letters: [P[Q]] and [[Q]P] are the same
AG, namely that of Fig. 1(a). See our discussion below as well as Hammer (1996, 133–134).

244 DIRK SCHLIMM & DAVID WASZEK

as “If α is a translation of α, then ¬α is a translation of [α]”) is applied to
the AG [B]: After parsing this graph as [α], where α is the AG B, the rule
yields ¬α, where α is the result of applying the rules to B. Since proposi-
tional variables are not affected by a translation,we finally get the formula ¬B
as translation of the AG [B].

The crucial feature of Shin’s rules is that they are deliberately redundant:
when translating (or in Shin’s terminology, “reading”) an AG, it will often hap-
pen that several rules are applicable. The idea is that a user of AGs can choose
to apply one or the other, depending on their goals or on which translation
patterns happen to strike their eye.19 Notice that the first two rules correspond
to what we earlier referred to as the basic translation method, the third to
Peirce’s scrolls (read as implications), the fourth and fifth to two ways of
recognizing disjunctions. To see how this leads to multiple translations for a
single AG, let us walk through the example given in Table 1 just below the
second horizontal line.20 Starting from [[A][B]], the basic reading method
amounts to applying rule 1 to the full graph (so α = [A][B]), rule 2 to [A][B]
(so α = [A] and β = [B]), and rule 1 twice to [A] and [B] (so α = A and
α = B, respectively); this leads to the first reading, ¬(¬A ∧ ¬B). The second
reading comes from applying rule 3 to the full graph (with α = [A] and
β = B) and rule 1 to [A]. The third also comes from applying rule 3, but this
time with α = [B] and β = A, followed by rule 1. We get the fourth reading
by applying rule 4 with α = [A] and β = [B] and rule 1 twice. Finally, the
fifth reading comes from applying rule 5 with α = A and β = B.

Ex. 1 AGs Prop. calc. with ¬, ∧, ∨, →
Rules 1. [α] ¬α

2. α β α ∧ β 
3. [α[β]] α → β 
4. [α β] ¬α ∨ ¬β 
5. [[α] [β]] α ∨ β 

Example ¬(¬A ∧ ¬B)
of MR: [[A] [B]] ¬A → B

¬B → A
¬¬A ∨ ¬¬B

A ∨ B

Table 1. Shin’s reading rules for AGs, with an
example of multiple readability.

19 See Shin (2002, 76–80) for her discussion of this.
20 Note that when presenting the results of a translation, we omit outer parentheses for

easier readability.

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 245

Upon closer inspection, Shin’s use of linearized AGs reveals some ambi-
guities. Remember that Figures 2(b) and 2(c) ought to be seen as tokens of
the same type; now what about, say, the linearized AGs [P [Q]] and [[Q] P]?
There, both options are open: we can take them either as tokens of the same
type – as if they were AGs whose letters just happened to lie on a line, which
was Peirce’s own approach21 – or as tokens of different types – treating them
as we would treat expressions of a standard formal language. Depending on
which option we choose, we get alternative interpretations of Shin’s rule to
translate the graph [α β] as α ∧ β . On the one hand, if the linearized AGs
[α β] and [β α] are tokens of the same type, then the translation of the under-
lying AG could be β  ∧ α just as well as α ∧ β , and the rule would be under-
specified: one would be free to choose the order when translating, which yields
multiple possible translations from applications of the same rule. If, on the
other hand, linearized graphs are treated like a standard symbolic language, this
problem does not arise, as the ordering of the linearized AG determines the
ordering of the translation; this is probably what Shin intended. However, the
indeterminacy of the ordering is pushed back to an implicit first step: before
translating an AG, one would need to choose one linearization among several.22

Regardless of the previous considerations, it is clear that Shin’s rules can
be interpreted as providing multiple readings for a linear language, that of
linearized AGs (in which the order of the symbols matters). Thus, it follows
from Shin’s own translation rules that the phenomenon of multiple readabil-
ity has nothing to do with non-linearity in and of itself, as she sometimes
seems to suggest. We can ask further: is multiple readability specific to AGs
at all, and if so, what features of AGs does it depend on? Our goal in the
remainder of this paper is to answer this question.

2.2. Multiple readings of propositional calculi

At first sight, Shin’s “readings” that we just discussed are nothing more
than translations that can be produced by a set of rules. (As we shall see in
the next subsection, there is more to her idea, which explains why she
speaks of “readings” rather than just of translations; but let us provisionally
stick with this simple interpretation.) As pointed out by Bellucci and
Pietarinen (2016, 230), this seems to make the multiple readability of a
notation like AGs relative to a certain target language – in Shin’s case, a
propositional calculus with connectives ¬, ∧, ∨, →. Her thesis would then
boil down to the following: what makes AGs special is that there exists a

21 See Peirce (1902, 645).
22 Note that this implicit first step would play an important role for scroll patterns: under

this interpretation, [α [β]] and [[β] α] are different inputs as far as Shin’s rules are concerned,
but there is no rule covering the second; so, before translating a scroll pattern as an implica-
tion, one (implicitly) has to choose a linearization in which the cut destined to become the
consequent appears at the end of the formula.

246 DIRK SCHLIMM & DAVID WASZEK

set of rules yielding multiple possible translations of at least some AGs into
our usual propositional calculus.

Thus interpreted, Shin’s thesis is not true, as we shall see by discussing
the examples of Table 2. Each of these examples gives a set of translation
rules from a source language into a target language, followed by an example
of multiple readability obtained from them; we use the same conventions
as for Shin’s rules above: Greek letters stand for arbitrary expressions in
the source language; α stands for any translation of obtained from the rules;
and propositional variables, denoted by capital Latin letters, are unchanged
by any translation.

First, as has already been pointed out by Bellucci and Pietarinen (2016,
230 sq.), we seem to have multiple readability whenever translating from a
language with fewer connectives into a language with more connectives. Take
Ex. 2: to translate a sentence with ∧, ∨ into a sentence with ∧, ∨, →, a
trivial method is simply to copy it without change (rules 1 and 2); but if we
also learn to read the pattern α ∨ ¬β as β → α, as anyone with some experi-
ence in propositional logic probably does, then we start getting multiple trans-
lations for the same sentence (rules 3 and 4). Ex. 3 is analogous, with ∧ in
the place of ∨; the patterns we need to recognize to apply the given rules are
a little bit more complicated, but it is a matter of degree rather than principle.

Source language Target language

Ex. 2 Prop. calculus with ¬, ∨ Prop. calculus with ¬, ∨, →
Rules 1. ¬α ¬α 

2. α ∨ β α  ∨ β 
3. ¬α ∨ β α  → β 
4. α ∨ ¬β β  → α 

Example ¬A ∨ ¬B
of MR: ¬A ∨ ¬B A → ¬B

B → ¬A

Ex. 3 Prop. calculus with ¬, ∨ Prop. calculus with ¬, ∧, →
Rules 1. ¬α ¬α 

2. α ∧ β α  ∧ β 
3. ¬(α ∧ ¬β) α  → β 
4. ¬(¬α ∧ β) β  → α 

Example ¬(¬A ∧ ¬B)
of MR: ¬(¬A ∧ ¬B) ¬A → B

¬B → A
Table 2. Examples of multiple readability: embedding a language

into a richer target language.

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 247

Source language Target language

Ex. 4 Prop. calculus with ¬, ∧ Prop. calculus with ¬, ∨
Rules 1. ¬α ¬α 

2. α ∧ β ¬(¬ α  ∨ ¬ β )
3. ¬(α ∧ β) ¬ α  ∨ ¬ β 
4. ¬(¬ α ∧ ¬ β) α  ∨ β 

Example ¬¬(¬¬ A ∨ ¬¬B)
of MR: ¬(¬A ∧ ¬B) ¬¬ A ∨ ¬¬B

A ∨ B

Ex. 5 Prop. calculus with ¬, ∨ Prop. calculus with |
Rules 1. ¬α α  | α 

2. α ∨ β (α  | α ) | (β  | β )
3. ¬α ∨ β α  | (β  | β )
4. ¬α ∨ ¬β α  | β 

Example ((A | A) | (A | A)) | ((B | B) | (B | B))
of MR: ¬A ∨ ¬B A | ((B | B) | (B | B))

A | B

Table 3. Examples of multiple readability, where the target language has the
same number or fewer connectives.

However, the multiple readability phenomenon is not limited to translations
into richer languages, as suggested in previous studies. First, it also arises when
changing the connectives without increasing their number, as shown in Ex. 4,
where we replace ∧ with ∨. Here again, the patterns one needs to notice in order
to apply the rules are not exotic; experienced users of propositional logic already
recognize them because of De Morgan’s laws. Second, one can even have mul-
tiple translations when reducing the number of connectives: translating from
some usual propositional calculus into one with a single connective, the so-
called Sheffer stroke, also yields multiple translations, as is illustrated in Ex. 5.

In fact, it turns out that Shin’s reading rules for AGs (see Ex. 1) closely
parallel Ex. 3 and 4, above. To see this, remember that the basic reading
method allows one to straightforwardly translate an AG into a sentence with
∧ and ¬ only (in fact, starting from an AG in linear notation, this translation
can be done almost symbol for symbol: one just has to insert ¬’s in front
of all opening brackets, which correspond to cuts, then add ∧’s in between
juxtapositions23). Under this correspondence, the [α[β]] pattern of Shin’s

23 More precisely, a ∧ should be added wherever there is either a letter or a] followed by
either a letter or a [, assuming a language with a conjunction of variable arity or with priorities

248 DIRK SCHLIMM & DAVID WASZEK

rule 3 (see Ex. 1) becomes the ¬(α ∧ ¬β) pattern of rule 3 from Ex. 3 –
both yielding the same translation. Similarly, the [α β] and [[α][β]] patterns
of Shin’s rules 4 and 5 correspond to the patterns ¬(α ∧ β) and ¬(¬α ∧
¬β) of the last two rules of Ex. 4, again with the same translation. So one
could argue that the multiple readability of AGs is precisely the same as
that obtained by combining the rules of examples Ex. 3 and 4.

All of our examples so far have a sentential language as target; while they
prove that multiple readability is not limited to AGs, they leave open the
possibility that there is an asymmetry between AGs and sentential languages.
This is what Shin seems to suggest: after explaining the multiple readability
of AGs, she proceeds to offer “inverse” rules to translate sentences of our
usual propositional calculus into AGs, but those always produce a unique
translation24 – thus (implicitly) reinforcing the impression that each AG cor-
responds to a set of sentences, but that, conversely, each sentence corre-
sponds to no more than one AG. Ex. 6 refutes this: in addition to the inverse
rules given by Shin (which are the first four of the example), one can add
further ones and get multiple translations of sentences into AGs, as well.
These extra reading rules serve the same purpose as Shin’s original multiple
readability rules, in that they allow us to exploit patterns in the source lan-
guage to directly produce shorter translations in the target language.

Shin, however, argues that multiple readings like those of AGs should
not be possible for sentential languages. To conclude this section, we dis-
cuss her argument, which clarifies why she uses the word “reading” and

instead of parentheses. This translation process is not strictly symbol for symbol, but is not far
from it; from the point of view of parsing trees, it amounts to a mere relabeling of the nodes.

24 See Shin (2002, 93–94).

Source language Target language

Ex. 6 Prop. calculus with ¬, ∨, ∧, → Alpha graphs

Rules 1. ¬α [α ]
2. α ∧ β α  β 
3. α ∨ β [[α ][β ]]
4. α → β [α  [β ]]
5. ¬α ∨ β [α  [β ]]
6. ¬α ∨ ¬β [α  β ]

Example [[[A]][[B]]]
of MR: ¬A ∨ ¬B [A[[B]]]

[A B]

Table 4. Example of multiple readability from
propositional calculi to AGs.

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 249

will help us better understand the status of the translation rules just given.
Although we conclude that her argument is not sufficient as it stands, it will
ultimately help us pinpoint the specificities of AGs.

2.3. Multiple translations and redundant formation rules

Up to now, we have treated Shin’s multiple readings as mere translations
into a particular target language (our usual propositional calculus). In fact,
however, Shin sees them as more than that: for her, they are made possible
by multiple parsings of AGs, which are intrinsic to the specific notation of
AGs rather than relative to a target language. This is why she speaks of
multiple “readings” and sometimes also of multiple “carvings.”

Shin’s argument for the difference between AGs and linear languages is that
one should countenance a variety of formation rules for AGs in addition to cut
and juxtaposition: for instance, to the formation rules listed on p. 8 above, she
adds what we can call a “scroll rule” to directly construct [α[β]] from two AGs
α and β, and similarly, rules to form [α β] and [[α][β]].25 This profusion of
rules yields many new parsing trees, on which Shin’s translation rules can be
defined inductively. Consider again the AG of Fig. 1(b). In addition to the
parsing tree shown in Fig. 7(a), we can parse the AG using Shin’s scroll rule to
get Fig. 7(b); this parsing allows for a straightforward inductive translation as
(P → Q) → R. In this setting, of course, a typical AG will have several parsing
trees, not just one; each of those will correspond to a different translation
(and even to several if we take order and multi-juxtapositions into account).

Such multiple parsings, Shin argues, are not possible for sentential lan-
guages:

It is interesting to notice that this issue of flexibility does not arise in a linear
symbolic language. On the contrary, a symbolic system is very careful to prevent
multiple readings of a formula, since it would yield ambiguity. Sentential
languages are defined so that each sentence may have one and only one way of
being read off, and the semantics is built on this unique readability.26

Here, Shin refers to what we called “unique parsability” in Section 1.2;
her view is that, while it is a requirement for our usual sentential languages,
“there is no need to keep the unique-readability principle in the Alpha system,”27
and that it should be abandoned to be faithful to AGs’ flexibility.28

25 See Shin (2002, 74) for the full list.
26 Shin (2002, 79).
27 Shin (2002, 79).
28 Although Shin leaves implicit the subtleties related to the variable arity of juxtaposition

and the non-linearity of AGs that we discussed in section 1.2, she does claim incidentally
that one can impose unique parsability upon AGs (see Shin 2002, 74–75); her argument is
not that AGs cannot be made uniquely parsable, but rather that it is better to treat them as
multiply parsable.

250 DIRK SCHLIMM & DAVID WASZEK

cut

jux

cut

R

cut

cut

jux

cut

Q

P

(a)

scroll

Rscroll

QP

(b)

Figure 7. Parsing trees for the AG of Fig. 2; the red and blue scroll nodes of (b)
can be seen as collapsed versions of the tree fragments of (a) of the

corresponding color.

But why could the same not be done for sentential notations? In a sense,
Shin’s new formation rules are simply condensed versions of sequences of
cuts and juxtapositions: as shown by the dashed lines of Fig. 7, her scroll
rule corresponds to a tree fragment composed of three successive rule appli-
cations. Such condensed rules, however, can be introduced for propositional
calculi as well. Take Ex. 3 from Section 2. The sentence ¬(¬A ∧¬B) would
usually be parsed as in Fig. 8(a), but if we add a new “left-implication” rule
(“from formulas α and β, construct ¬(α ∧ ¬β)”), then the same formula
can be parsed as in Fig. 8(b). The third translation rule of Ex. 3, which maps
¬(α ∧ ¬β) to α → β , can then be rephrased as a mapping from left-
implication(α, β) to α → β .

¬

∧

¬

B

¬

A

(a)

left-implication

B¬

A

(b)

Figure 8. Parsing trees for the formula ¬(¬A ∧ ¬B): (a) with the usual
formation rules; (b) with a new “left-implication” rule,

corresponding to the subtree highlighted in (a).

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 251

In fact, most of the translation rules defined above may be seen to rely
on what we could call “translation patterns” (or “reading patterns”): they
allow for direct translations for complex combinations of basic symbols
that correspond to particular fragments of parsing trees (and could be
introduced by a tailor-made, additional formation rule). This, then, is the
negative part of our argument: if there is a difference between AGs
and our usual propositional calculi, it cannot be in the possibility of mul-
tiple translations; it can only reside in the kinds of patterns that underlie
these translations. In the next section, we turn to such differences among
patterns.

3. Contiguous and context-free translation patterns: Complex symbols

While in principle, both AGs and sentential languages admit of multiple
translations, we believe that Shin’s intuition is essentially correct: it is “natu-
ral” (as she phrases it)29 to treat AGs as multiply readable in a way it is not
for sentential languages. We have shown above that in both cases, multiple
readability relies on translation patterns. The difference that underlies this
“naturalness,” we believe, can only lie in the particular properties of the
translation patterns of each notation.

To investigate this issue, our strategy in Section 3.1 is to systematically
compare, for various notations, patterns that can be translated as implication.
Building on earlier work by Schlimm (2018) about Frege’s logical notation,
we identify two structural features that the translation patterns of AGs have
but those of standard propositional calculi do not, namely contiguity and
context-freedom. As we shall see, however, these properties are not intrinsi-
cally “diagrammatic”: they are shared by patterns in various notations,
some of which would doubtlessly be classified as “sentential” whichever
way the distinction is drawn (if it can be drawn at all).

Section 3.2 then offers a tentative explanation, based on the psychology
of perception, of why patterns that are contiguous and context-free are
valuable: they form visual-semantic units that can be perceived and treated
as single “complex symbols”; in this way, they facilitate multiple readings
of the notations that have them.

3.1. Translation patterns for implication in various notations

To understand what makes AGs’ translation patterns special, let us start
with a series of examples. To facilitate the comparison, we focus on patterns

29 See Shin (2002, 76–80).

252 DIRK SCHLIMM & DAVID WASZEK

that can be translated as implication in our usual sentential language and
we limit ourselves to languages that are based on conjunction and nega-
tion.30 For each language, Table 5 shows a simple expression that can be
translated as the implication α → β, using the same convention as for the
translation rules of the previous section, namely that Greek letters are
placeholders for arbitrary subexpressions. The pattern that needs to be rec-
ognized in each case consists of all symbols other than α and β.

Let us note from the outset that our comparison shall leave aside an
important advantage that the complex symbols of AGs discussed above
(namely the scroll and the pattern for disjunctions) have over the correspond-
ing patterns for propositional calculi, namely that they apply uniformly to
a wider range of cases. To clarify this idea, let us concentrate on the scroll.
In the table above, we compared it to

¬ (α ∧ ¬β).

This, however, glosses over some other features of AGs. First, the scroll
pattern does not change when one adds further conjuncts, whereas the

30 In a way, AGs can be understood as such a language, with cuts corresponding to nega-
tions and juxtapositions to conjunctions (of variable arity). At the level of parsing trees,
translating into a sentential language with negation and conjunction (of variable arity) is as
simple as replacing every cut node by a negation and every juxtaposition node by a conjunc-
tion (and fixing an ordering among sibling nodes).

Language Sample pattern for α → β

1. Prop. calc. with ∧ and ¬ ¬(α ∧ ¬β)
2. Linearized AGs [α[β]]
3. Prop. calc. with ∧ and ¬, Polish notation ¬ ∧ α ¬ β
4. (same language) ¬ ∧ ¬ β α
5. Prop. calc. with ∧ and overlines for ¬ α ∧ β

6. Linearized AGs with overlines for cuts αβ

7. AGs
βα

Table 5. Examples of patterns, in various languages, that can be
translated as implications in our usual propositional calculus.

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 253

additional parentheses would make the sentential pattern much more involved
(unless we agree to drop parentheses when several successive conjunctions
are involved, thus de facto switching to a language with a conjunction of
variable arity). Second, the scroll pattern is also independent of order,
whereas in the sentential case, one should technically consider not just one,
but at least two different patterns (and more if more conjuncts are involved),
including also

¬ (¬β ∧ α).

These advantages are related to the peculiarities of AGs’ syntax discussed
in Section 1 (non-linearity and the variable arity of juxtaposition), but are
orthogonal to the main thrust of our argument, and we shall not discuss
them further.

Returning to Table 5, the first feature to note is that, in examples 1 to 3,
the patterns one needs to recognize are not contiguous: they are composed
of several symbols that, in complex formulas, can end up separated from
each other by many other symbols. This can be seen more clearly if we
replace the place-holders for arbitrary subexpressions by dots:

 ¬(. . . ∧ ¬ . . .) [. . . [. . .]] ¬ ∧ . . . ¬ . . .

We see here how the basic symbols that constitute these patterns do not
form a contiguous whole, but are separated by dots, which can stand for
very long subexpressions. This makes it more difficult to recognize at a
glance the patterns in question.

In examples 4 to 7, on the other hand, the components of the respective
translation patterns do not have anything between them but white space.
If we represent the subexpressions in these patterns by dots, as we have
done above, we can see how the symbols that constitute the patterns are
contiguous; in other words, one can draw a line connecting these symbols
without having to “jump over” some dots:

¬ ∧ ¬ ∧

AGs (example 7) are something of a limit case here: while, in a sense, the
inner cut need not be directly next to the outer cut, it remains the case that
there must be a path going from the inner to the outer cut without crossing
any other curve, otherwise we would not have a correct instance of the pattern
at all. As mentioned above, Peirce himself considered our implication pattern
(which he called a “scroll”) as primitive and often drew it by connecting the

254 DIRK SCHLIMM & DAVID WASZEK

inner and the outer cut, thus literally turning the two cuts into a single
primitive symbol.31

A second feature, which is related but not identical to contiguity, is that
the patterns in examples 4 to 7 are context-free, in the following sense:
whenever one sees the particular arrangement of symbols that form the
patterns, one can be sure that it is an actual instance of the pattern, that is,
that the expressions corresponding to α and β are indeed subformulas
(provided, of course, that the formula as a whole is well-formed). In exam-
ples 1 to 3, on the other hand, the visual pattern alone is not enough: on top
of recognizing the pattern, one also needs to check that the expressions
corresponding to α and β are actually subformulas. The following pur-
ported instance of pattern number 1, for example, is not actually an instance
of it:

 Formula: ¬ (A ∨ (B ∧ ¬ C))
 (Purported) pattern 1: ¬ (. . . ∧ ¬ . . .)

Indeed, the parentheses and the conjunction symbol picked out here do not
belong together (remember that the formation rules of our usual propositional
calculus only introduce parentheses in tandem with a binary connective; in
the formula above, for instance, the first opening parenthesis would have
been introduced together with the disjunction). Thus, the first dots would
match A ∨ (B, which is not a subformula. To ascertain whether a “visual”
instance of patterns 1 through 3, like the one above, is an actual instance
of them, one therefore needs to take the context of the symbols into account;
in fact, one needs to fully parse the subformulas, even though the formula
as a whole is well-formed. In examples 4 to 7, on the other hand, this is not
needed: whenever one recognizes a scroll pattern in a (well-formed) AG, for
instance, one can be sure that it can be translated as an implication, without
attending to what is actually contained within the cuts.

Note that, against what our previous examples might suggest, contiguity
and context-freedom are independent. The first is a property of the appear-
ance of patterns, while the second depends on whether mere appearance is
enough to recognize genuine instances of the pattern. Accordingly, one can
have contiguity without context-freedom and context-freedom without con-
tiguity, as the following examples show.

To get context-freedom without contiguity, start from the pattern

¬ (. . . ∧ ¬ . . .)

discussed above. Remember that it is not context-free because one might
see spurious instances of it by picking out parentheses and a conjunction

31 See our discussion in Section 2.1 above.

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 255

symbol that do not belong together. To avoid this, one can change the for-
mation rules of the language so as to tag parentheses and connectives, for
instance replacing formation rule 3 from p. 7 by the following:

3. If α and β are wffs all of whose tags are different, and n is a tag that
does not appear in α and β, then (nα ∧n β)n is a wff.

With formation rules like the preceding, our pattern would become

¬ (n . . . ∧n ¬ . . .)n

(where n stands for an arbitrary tag) and the formula that gave us a spurious
match above would become, say,

¬(2 A ∨2 (1B ∧1 ¬C )1)2

to which the new pattern does not apply. More generally, the new pattern
– though no more contiguous than before – is now context-free, as the
formation rules introducing tags guarantee that the dots will always match
subformulas.

One can also get contiguity without context-freedom. Take a proposi-
tional calculus with three connectives (¬, ∧ and ∨) that uses priorities
instead of parentheses, with ¬ binding stronger than ∧, which binds stronger
than ∨. Then the pattern

β ∨ ¬ α,

which can be translated as α → β, is contiguous but not context-free. Indeed,

A ∨ ¬ B ∧ C

is not an instance of it, as it is equivalent (in a notation with parentheses) to

A ∨ ((¬ B) ∧ C).

This rewriting makes it clear that the negation symbol does not negate the
full subformula following the disjunction, and so that the pattern does not
actually apply.

Finally, note that contiguity and context-freedom do not straightforwardly
map to simpler properties of notations, such as two-dimensionality, the
number of symbols, the use of explicit connectives, or the use of explicit
grouping devices like parentheses.

First, one can have contiguity and context-freedom in linear notations, as
Example 4 demonstrates. Conversely, one can find patterns in two-dimen-
sional notations that are not contiguous nor context-free. Indeed, think of a
variant of Example 6 in which one can place the lines that correspond to

256 DIRK SCHLIMM & DAVID WASZEK

cuts not just above the letters, but also below the letters: in the following
formula

ABCD

the topmost and bottommost lines (highlighted in red) form a pattern that
can be translated as an implication, but they are not contiguous.

Second, the contiguity of AGs’ translation patterns is not merely due to
the fact that AGs use very few explicit signs (basically, there is only one:
the cut). As an extreme example, consider a propositional calculus based
on a single connective, the Sheffer stroke, but written using the Polish
(prefix) notation so that no parentheses are needed. This language would
use a single sign beyond the propositional symbols, but the translation of

| α | ββ

as α → β corresponds to a pattern that is not contiguous.
Third, Example 4 again shows that one can have contiguous and context-

free patterns even when using explicit symbols for connectives (rather than
merely using juxtaposition for conjunction and combining negation with a
grouping device, as AGs arguably do).

Fourth, one might suspect from our examples that the use of “punctuation”
signs that only serve for grouping and do not express connectives – like
parentheses – is what makes patterns non-contiguous or non-context-free.
But while patterns involving parentheses will indeed always be non-contig-
uous (but can be made context-free using labeling, as discussed above), this
is not true for punctuation signs in general, as the overlines of Examples 5
and 6 show.

More generally, contiguity and context-freedom cut across any purported
sentential–diagrammatic contrast. Examples 2 and 6 look like two ways of
linearizing AGs, yet the scroll pattern is contiguous and context-free in one
case and not in the other. Examples 3 and 4, using Polish notation, strikingly
show that one can have translation patterns with different properties even
in one and the same language.

3.2. The value of complex symbols: multiple readings and visual efficiency

Tentatively, we propose that patterns that are both contiguous and
context-free are particularly valuable for the following reasons: contiguity
makes them visually salient by allowing them to be perceived as a unit;
context-freedom guarantees that one can trust their (salient) visual appear-
ance without further parsing. This means that in practice, such patterns can
be perceived and manipulated as a single unit. Analogously, meaningful
units made from simpler elements are called “chunks” in the psychological

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 257

literature on expert reasoning,32 in which they are conceived as reducing
the cognitive difficulty of operating with complex structures.

We therefore follow Schlimm (2018) in calling contiguous and context-
free patterns complex symbols, since for most purposes, they behave as if they
were a single atomic symbol. Starting from the contrast between AGs and
propositional calculi, the remainder of this section explores the advantages
for a notation to have such complex symbols, in particular how they can
make a notation amenable to multiple readability in Shin’s sense.

From this point of view, it may ultimately turn out that contiguity is too
rough a notion to cover the whole range of differences in visual salience
among patterns, which is largely a psychological matter. The psychology
of perception recognizes so-called “Gestalt principles” that tend to determine
whether individual elements are perceived as a whole.33 Our notion of con-
tiguity is closely related to two of them, namely the principles of “proximity”
and “connectedness” (the latter ties in with Peirce’s way of drawing scrolls
and disjunction patterns as connected). This supports our claim that conti-
guity is an important factor in the visual salience of various patterns, or in
other words, that contiguous patterns are easier to perceive as units. But it
also means that the other Gestalt principles, which we are leaving aside here,
might play an important role in some other cases.

In the case of AGs, one can easily see that Shin’s multiple readability
rules (presented in Table 1 above) are based on translation patterns for impli-
cations and disjunctions that are, in fact, complex symbols:

. and

In other words, because they are contiguous, these translation patterns can
be easily recognized as a group, and because they are context-free, they allow
us to rely on their visual appearance without having to fully parse the AG.
This agrees well with Shin’s own terminology, as she refers to certain trans-
lation patterns of AGs, such as that of the scroll, as “visual features” (Shin
2002, 71).

The multiple readability rules we suggested for propositional calculi (see
Tables 2 and 3), on the other hand, largely rely on translation patterns that
are not complex symbols: recognizing these patterns is harder and requires
a full parsing. It seems plausible to argue on these grounds that Shin’s
multiple readability rules are indeed more natural, as she claims.

32 See, for example, Miller (1956) and Chase and Simon (1973).
33 For an introduction, see Rock and Palmer (1990) or Palmer (2002).

258 DIRK SCHLIMM & DAVID WASZEK

So far, we discussed AGs’ complex symbols in the context of translation
patterns; but their advantages are not limited to multiple readability. Indeed,
the very same pattern (or complex symbol) that can be used to recognize
that a translation rule is applicable can also serve to recognize premisses
for any kind of inference rule. In her book, Shin discusses at length how
Peirce’s transformation rules for AGs can be made more “visually efficient”
or “intuitive.”34 For instance, she simplifies one case of a particularly com-
plex rule by formulating it in terms of scroll patterns: roughly, her version
states that whenever you have a scroll pattern, you can add any letter
located in the outer part of the scroll to the inner part of the scroll.35 In this
case, a certain pattern, the scroll, that turns out to be what we call a com-
plex symbol, allows for a visually effective transformation rule rather than
for an efficient parsing or translation.

The previous observations are not restricted to AGs: similar considerations
apply to any notation that allows for the definition of complex symbols,
such as the propositional calculus that uses lines (vincula) to denote nega-
tion (Example 5 in Table 5). It is also worth pointing out that other nota-
tional systems for which the authors themselves claim multiple readability,
do so on the basis of complex symbols. Frege’s Begriffsschrift notation,
for example, whose propositional fragment is based on the connectives of
negation and implication allows for contiguous and context-free patterns,

· · · · · ·

· · ·

and · · · · · ·

· · ·

which can be interpreted as complex symbols for conjunction and disjunc-
tion (Schlimm 2018, 58–60). These complex symbols could also be used to
define inference rules whose conditions of application would be particularly
easy to recognize.

Conclusion

In this paper, we first showed that linear languages for propositional
logic and Peirce’s Alpha Graphs are more similar than initially appears. On
the one hand, despite AGs’ peculiarities (non-linearity and the variable arity
of juxtaposition), we showed that they are uniquely parsable and thus allow
for inductive definitions of properties or translations, just like propositional
calculi (Section 1). On the other hand, we argued that in principle, proposi-
tional calculi are multiply readable, just like AGs (Section 2).

34 See Shin (2002, 80–93).
35 See Shin (2002, 89).

 MULTIPLE READABILITY IN PRINCIPLE AND PRACTICE 259

We then compared the patterns that underlie the multiple readings of
AGs and of our usual sentential notations, and argued AGs are indeed
more amenable to multiple readability because of structural features of
their translation patterns: they are contiguous and context-free (Section 3).
We believe that the presence of such patterns, which we call “complex
symbols,” is what underlies Shin’s intuition that AGs are multiply readable
while our usual propositional calculi are not. Yet, against Shin, there does
not seem to be anything intrinsically “diagrammatic” about these properties:
languages that we would not usually consider diagrammatic (like a propo-
sitional calculus with an overhead line as negation) can have patterns that
are contiguous and context-free, too.

Acknowledgments

We wish to thank Moritz Bodner, Jessica Carter, Silvia De Toffoli, Valeria
Giardino, John Mumma, Julien Ouellette-Michaud, and two anonymous
reviewers for discussion and comments on an earlier draft of this paper.
This research was supported by the Social Sciences and Humanities Research
Council, Canada.

References

 [1] Bellucci, F. and Pietarinen, A.-V. (2016), ‘Existential graphs as an instrument
of logical analysis: Part I. Alpha’, The Review of Symbolic Logic 9(2), 209–237.

 [2] Chase, W. G. and Simon, H. A. (1973), ‘Perception in chess’, Cognitive
Psychology 4, 55–81.

 [3] Hammer, E. (1996), Peircean graphs for propositional logic, in G. Allwein
and J. Barwise, eds, ‘Logical Reasoning with Diagrams’, number 6 in ‘Studies
in Logic and Computation’, Oxford University Press, New York and Oxford,
pp. 129–147.

 [4] MacFarlane, J. G. (2000), What Does It Mean to Say That Logic Is Formal?,
PhD thesis, University of Pittsburgh, Pittsburgh.

 URL: https://www.johnmacfarlane.net/dissertation.pdf
 [5] Miller, G. A. (1956), ‘The magical number seven, plus or minus two: Some

limits on our capacity for processing information’, Psychological Review 63,
81–97.

 [6] Palmer, S. E. (2002), Visual perception of objects, in A. F. Healy and
R. W. Proctor, eds, ‘Experimental Psychology’, number 4 in I. B. Weiner,
ed, ‘Handbook of Psychology’, Wiley, New York, pp. 179–211.

 [7] Peirce, C. S. (1902), Symbolic logic or algebra of logic [passage on existential
graphs], in J. M. Baldwin, ed., ‘Dictionary of Philosophy and Psychology’,
Vol. II, Macmillan, New York and London, pp. 645–650. Reprinted as Peirce
(1931–1958, §4.372–392).

260 DIRK SCHLIMM & DAVID WASZEK

 [8] Peirce, C. S. (1931–1958), Collected Papers, ed. by C. Hartshorne, P. Weiss,
and A.W. Burks, The Belknap Press of Harvard University Press, Cambridge,
MA.

 [9] Peirce, C. S. (1976), The New Elements of Mathematics, Mouton Publishers,
The Hague, and Humanities Press, Atlantic Highlands, N.J.

[10] Peirce, C. S. (2020–2021), Logic of the Future: Writings on Existential Graphs,
ed. by A.-V. Pietarinen, numbers 1–3 in ‘Peirceana’, De Gruyter, Berlin.

[11] Roberts, D. D. (1973), The Existential Graphs of Charles S. Peirce, number 27
in ‘Approaches to Semiotics’, Mouton, The Hague and Paris.

[12] Rock, I. and Palmer, S. (1990), ‘The legacy of Gestalt Psychology’, Scientific
American 263(6), 84–90.

[13] Schlimm, D. (2018), ‘On Frege’s Begriffsschrift notation for propositional
logic: Design principles and trade-offs’, History and Philosophy of Logic 39(1),
53–79.

[14] Shimojima, A. (1999), ‘The Linguistic-Graphic Distinction: Exploring
Alternatives’, Artificial Intelligence Review 13(4), 313–335.

[15] Shin, S.-J. (2002), The Iconic Logic of Peirce’s Graphs, Bradford Books—MIT
Press, Cambridge, Mass. and London.

[16] Shin, S.-J. (2011), ‘Peirce’s alpha graphs and propositional languages’, Semiotica
186, 333–346.

[17] Shin, S.-J. (2015), ‘The mystery of deduction and diagrammatic aspects of
representation’, Review of Philosophy and Psychology 6(1), 49–67.

[18] Stenning, K. (2000), Distinctions with differences: Comparing criteria for
distinguishing diagrammatic from sentential systems, in M. Anderson, P. Cheng
and V. Haarslev, eds, ‘Theory and Application of Diagrams (First International
Conference, Diagrams 2000)’, number 1889 in ‘Lecture Notes in Artificial
Intelligence’, Springer, Berlin and Heidelberg, pp. 132–148.

[19] Zeman, J. J. (1964), The Graphical Logic of C. S. Peirce, PhD thesis, University
of Chicago, Chicago.

 URL: https://users.clas.ufl.edu/jzeman/graphicallogic/

Dirk Schlimm
Department of Philosophy, McGill University

dirk.schlimm@mcgill.edu
https://www.cs.mcgill.ca/~dirk/

David Waszek
Department of Philosophy, McGill University

david.waszek@mcgill.ca
https://www.normalesup.org/~waszek

