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ABSTRACT

Agriculture industries call upon autonomous tractors to speed up the process of
farming tasks. Although there has been a lot of research on autonomous vehicles,
this research mostly concerns road vehicles, which operate in a controlled road envi-
ronment.

This thesis is a part of the ongoing Arion project, from Institut du Véhicule
Innovant (IVI). The ultimate goal of the Arion project is to develop an autonomous
farming vehicle, which can operate independently and safely. This research is dedi-
cated to designing a robust controller to maintain the accuracy of the autonomous
farming vehicle path on different types of soil.

The autonomous farming vehicle designed at IVI is an electrical four-wheel-drive
vehicle. In this study, the dynamics equations of the vehicle are derived. The model
used here is a four-wheel model, with two steerable wheels in the front. Moreover,
realistic terramechanics equations, regarding the interaction between the soil and
the wheels, are established. The equations of terramechanics are then solved offline,
to be used as a lookup table online. This method will increase the efficiency, as
the equations need to be solved numerically, and are computationally expensive.
The lookup tables are created for four different soil types: Clay, Loam, Sand, and
Sandyloam.

We introduce a novel scheme for the control of the vehicle. The system contains
two controllers: a PID controller for longitudinal speed, and a Model Predictive

Controller (MPC) for steering angle. In this scheme, a neural network is used to
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classify the soil type, and to act as a switch to adapt the MPC controller to the new
soil type. The neural network is trained on physical features that can be measured
with inexpensive sensors on the vehicle, such as velocity, slip angle, slip ratio, and
wheel’s sinkage in the soil.

The performance of the controller for each soil type is evaluated independently,
as well as the performance of the vehicle operating on a field with various soil types.
The results show a considerable improvement in accuracy when the proposed con-

troller is used.



RESUME

L’industrie agricole réclame des tracteurs autonomes pour accélérer le processus des
taches agricoles. Bien que de nombreuses recherches aient été menées sur les véhicules
autonomes, ces recherches concernent principalement les véhicules routiers, qui fonc-
tionnent dans un environnement routier controlé.

Cette these fait partie du projet Arion en cours de I'Institut du véhicule innovant
(IVI). Le but ultime du projet Arion est de développer un véhicule agricole autonome,
capable de fonctionner de maniere autonome et en toute sécurité. Cette recherche
est dédiée a la conception d’un controleur robuste pour maintenir la précision de la
trajectoire du véhicule agricole autonome sur différents types de sol.

Le véhicule agricole autonome concu par 'IVI est un véhicule électrique a qua-
tre roues motrices. Dans cette étude, les équations dynamiques du véhicule sont
établis. Le modele dynamique utilisé est le modele a quatre roues, avec deux roues
directrices orientables a ’avant. De plus, les équations de la mécanique des sols, con-
cernant l'interaction entre le sol et les roues, sont développées. Les équations de la
mécanique des sols sont alors résolues hors ligne, pour servir de table de recherche en
ligne. Cette méthode augmentera l'efficacité, car les équations doivent étre résolues
numériquement et sont cotiteuses en calculs. Les tables de recherche sont créées pour
quatre types de sol, I'argile, le terreau, le sable et le terreau sablonneux.

L’auteur propose une nouvelle architecture pour le controle du véhicule. Le
systeme contient deux controleurs: Un PID pour le controle de la vitesse longitudinale

et un controleur a modele prédictif pour le controle de la direction. Dans cette
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architecture, un réseau de neurones est utilisé pour classifier le type de sol et pour
servir de commutateur pour adapter le controleur MPC au nouveau type de sol. Le
réseau de neurones est entraine en utilisant des variables physiques, qui peuvent étre
mesurées avec des capteurs peu cotiteux sur le véhicule, tels que la vitesse, ’angle
de glissement et le taux de glissement, ainsi que I’enfoncement des roues dans le sol.

Par la suite, la performance du controleur est évaluée indépendamment pour
chaque type de sol, aussi que la performance du véhicule dans une ferme avec un sol
mixte. Les résultats montrent une amélioration considérable de la précision lorsque

le controleur proposé est utilisé.
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Chapter 1
Introduction

1.1 Motivation

Autonomous agriculture has many benefits, especially for the developing world,
where many countries have to deal with hunger over food shortage. Autonomous
tractors and automatic planting systems have high accuracy, which may result in a
substantially improved return on investment for farmers, making food planting more
economical. Moreover, the tractors can collect information on soil conditions, which
can lead to improved maintenance of the crops, prevent blights, and achieve higher
efficiency and higher food quality. Autonomous tractors can increase farming hours
per day, as they can work even after dark, which will speed up the process of farming
tasks. Autonomous farming vehicles can disrupt agriculture, and provide a solution
to world hunger.

Although there has been a lot of research and work on autonomous vehicles,
this research mostly concerns road vehicles. Autonomous cars, designed to operate
in the controlled environment of the road, are now starting to penetrate the market.
However, autonomous farming vehicles need to operate in a largely unpredictable
and very different environment. Looking at the developments of farming autonomous
vehicles, we are still a long way to a completely independent autonomous vehicle as

many challenges need more research to overcome.



Companies such as John Deere, Autonomous Tractor Corporation, Fendt, and
Case [H, are currently developing autonomous farming vehicles. John Deere has de-
veloped an autonomous tractor that follows a path, defined by the farmer, although
an operator should always be present inside the cabin. Autonomous Tractor Corpo-
ration (ATC) developed an electric autonomous vehicle, which initially was designed
to follow another tractor, driven by an operator. Fendt applied the same idea for its
autonomous vehicle, to follow a leader tractor. Case IH also developed its tractors
based on the same idea; however, in 2016, they presented a concept of a completely
independent autonomous vehicle, which is still under research and development.

The ultimate goal of the Arion project is to develop an autonomous farming
vehicle, which can operate independently and safely. For this purpose, A robust
controller is required to maintain the accuracy of the vehicle path on different types
of soil and condition. The first step to achieve this goal is for the vehicle to understand
the soil and soil reaction to the wheel movement. Computational efficiency is key
factor in solving the interaction equations, as the operations are occurring mostly in

real time.

1.2 Objectives

One of the challenges for autonomous farming vehicles is the variety of terrains
the vehicle should be able to drive on. This fact leads us to one of the most important
challenges in the control of these systems, which is the estimation of the soil type,
and the interaction forces between the soil and the tires. The type of soil, the

humidity of the soil, and the condition of terrain (e.g., snow-covered) will greatly



affect the controller performance. Moreover, the vehicle should also be able to drive
on asphalt. The mechanics of the interaction between the tires and terrain are
completely different on soil and asphalt. Therefore, finding the terrain type enables
us to adapt the vehicle and/or the controller to different situations of the soil. This
can be done through the estimation of tire forces, in the controller system, or using
machine learning methods to find the soil type and humidity. The objectives of this
project are to use machine learning methods to predict the soil type and to develop
a speed and steering controller for the vehicle to follow a predefined trajectory with
high accuracy, and adapt the controller to a different type of soil.

This thesis is organized as follows. In Chapter 2, Dynamics, the dynamics equa-
tions of the vehicle are derived, then the terramechanics equations of the soil-wheel
interaction are formulated. The terramechanics equations are solved numerically for
four different types of soil, and the solutions are stored in four lookup tables to be
used in the simulation. The simulation of the system is built in Simulink™.

Chapter 3 is dedicated to the design process of the control strategy. In this
chapter, the vehicle’s longitudinal and steering controllers are developed. Moreover,
the process of data acquisition for the neural network and the architecture of the
network are covered. The performance of the neural network is evaluated for noisy
and clean datasets.

In Chapter 4, the results of the simulations are explored. In this chapter, the
advantages of the designed control scheme are evaluated over the typical Model

Predictive Control (MPC).



1.3 Literature Review

There are many challenges associated with autonomous farming vehicles. An
autonomous vehicle should be able to understand and interpret its environment,
make decisions based on that, and execute the decisions. Compared to road vehicles,
farming vehicles have different challenges at each step. The environment in fields,
where farming vehicles are mostly working in, is highly uncertain. There are different
types of objects that the vehicle should avoid, including the plant rows. The soil
characteristics in one area might be different from another one in the same field.
Moreover, wheel slippage could not be ignored. The vehicle should be able to work
in different conditions of soil and weather. The surface of the terrain could be uneven
and bumpy.

Two main different fields of research can be defined on an autonomous vehicle
project.

Environment Perception: Use deep learning and other Al tools to interpret
and understand the environment based on the data received from the sensors, in-
cluding cameras, radar, etc. The vehicle should understand the obstacles and their
positions, and regarding the dynamic obstacles, their speed and the direction of
their movement. Moreover, in the agriculture fields, the vehicle should understand
the type of plant and/or the condition of the soil. There is a big scope for research in
this field, as the understanding of the vehicles of their surroundings is still far from
perfect, and there is a huge variety of scenarios that a vehicle can encounter.

Control: Use the knowledge of the environment acquired from the previous

step to decide (control) future actions of the vehicle. These actions include: move



straight, change direction, accelerate, decelerate, stop, use tools, etc. Furthermore,
in case of any change in the environment including changes in the type of crop, the
type and condition of the soil, the weather, the vehicle should be able to adapt itself
to the new environment.

The control problem consists of two tasks. The first task is path planning, in
which the path that the vehicle should follow considering the obstacles and their
predicted movement should be determined. Many other constraints can contribute
to the planned path such as the fact that the vehicle should not cross the plant rows
or time minimization.

The second task is path tracking. Path tracking is the act of lateral and longi-
tudinal control of the vehicle to follow the planned path in real time. In the case of
agriculture vehicles, this is not an easy job, since these vehicles work in a complex
environment. Agricultural vehicles often work on different types of terrain, even
and uneven, or changing and unpredictable terrain ranging from asphalt to spongy
topsoil in the field. Even the condition of the soil, such as humidity, can be very
different which affects the dynamics of the vehicle. Add to all these the fact that
the weight of the vehicle can be largely changing based on the tools it has been
given for a specific task. Path tracking control in autonomous vehicles covers speed
(longitudinal) control and steering (lateral) control. The steering controller is aimed
to provide sufficient steering input to control the direction of the vehicle, and the
speed controller provides throttle and braking input (in case of an electrical vehicle,
torque) to control the speed of the vehicle and to guide the vehicle along a predefined

path in the desired time.



1.3.1 Types of Controllers for Autonomous Vehicles
Researchers have developed different steering and speed control methods in the
past decades for autonomous vehicles. The controllers can be divided into six cate-

gories based on the exercised tools.

Geometric and Kinematic Controller

This type of controller is developed based on the geometric and kinematic ve-
hicle models. It is one of the most popular types of controllers used in autonomous
steering control due to its simplicity and stability. However, this type of controller
is not robust to the changes the tractor may encounter in the field. The most basic
type of this controller, ”Follow the Carrot”, has been reviewed and applied by Arturo
L. Rankin et al. [1] and Barton [2], and was improved by Wit [3] for a smoother con-
troller, “Pure Pursuit”. Stanley, Stanford University’s autonomous vehicle that won
the second DARPA Grand Challenge in 2005 [4], exerted a steering controller, named
Stanley method, detailed by Hoffmann [5]. Lenain et al. [6] designed an extended
kinematic model accounting for sliding effects for high accuracy path tracking of the

vehicle in the presence of sliding.

Dynamic Controllers

Dynamic controllers include the dynamic model of the vehicles in their control
law. Rossetter [7] in his work proposed a lane keeping strategy using the virtual force
concept, using Kalman Filters to process position and yaw rate data for the controller

to determine sufficient virtual forces. Fierro [8] modified the standard kinematic



controller to include a dynamic backstepping extension to the control structure.
A dynamic controller requires dynamic feedbacks such as force and torque, which
require expensive sensors, or alternatively, should be done with a great computational

cost.

Optimal Controller

LQR is one of the most popular optimal control theories where the controller
gain was determined using the linear quadratic optimization approach. Osinenko [9],
developed an optimal traction control, in order to improve the efficiency of the farm-

ing vehicles, with feedback of the drive torque.

Adaptive Controller

The adaptive controller is used when the controller needs to be highly robust to
changes in dynamics in certain ranges. Lucet [10] developed an extended kinematic
model of the robot considering the effects of wheel-ground skidding. Based on the
extended kinematic model, an adaptive and predictive controller for path tracking
is developed to drive the front and rear steering angles. In the study of Fang et
al. [11] the kinematic model of the vehicle was modified to account for the time-
varying sliding effects in the lateral deviation, and a robust adaptive control law was

designed. Other notable studies can be found in [12], and [13].



Model-Based Controller

The Model Predictive Controller (MPC) typically uses a linear or nonlinear
plant model to predict the required control input for the plant. This method usually
involves an optimization procedure in order to get the optimal value for the plant
input. MPC is the most common controller used for autonomous vehicles. Kong [14]
presents a study in which, a simplified bicycle kinematic and dynamic model was
used in an MPC controller, to reduce the computational cost. Gao [15] used MPC
to control the autonomous vehicle with obstacle avoidance explicitly considered in
the control design, represented by a cost in the optimization problem. In a similar
work, Yoon [16] developed an optimal tracking problem while avoiding collision with
obstacles is formulated in terms of cost minimization under constraints. Information
on obstacles is incorporated online in the nonlinear model-predictive framework as

they are sensed within a limited sensing range.

Neural Network Controller

Intelligent controllers are used to make the vehicle even more robust to a wide
range of disturbances and uncertainty in the system. However, the training of such
a controller is still a challenge. NN predictive controller uses a neural network model
of a nonlinear plant to predict future plant performance. The first step in this
model predictive control is to determine the neural network plant model (system
identification). Next, the plant model is used by the controller to predict future per-
formance [17]. NARMA-L2 Control is another type of NN controller that transforms

nonlinear system dynamics into linear dynamics by canceling the nonlinearities [18].



Model Reference Control uses two neural networks: a controller network and a plant
model network. First, the plant model is identified by the first neural network, and
then the second neural network is trained as a controller such that the plant out-
put follows the reference model output [19]. Zhang [20] used the MPC controller to
train a NN controller, to reduce the computational cost of MPC in realtime, while
achieving the same accuracy as MPC.

Other than the controller, machine learning methods can be used for other
goals. Zhu [21] used a neural network to model the vehicle behavior on sloping
terrains, and then used a fuzzy logic controller based on the constructed NN vehicle
model to guide the tractor along the path. Matusko [22] used the neural network
to estimate tire/road friction force, which can be used to adapt the controller to
different conditions of the soil. In this study, we aim to use a neural network to
predict the soil type that the vehicle is traversing, and use this information to adapt
the controller to different types of soils.

1.3.2 Terrain Classification

There have been many research studies towards terrain classification for au-
tonomous ground vehicle or exploratory rovers. Most previous researchers used vi-
sion data to predict the soil type of the terrain that the vehicle is traversing. Bellutta
from CalTech classified the terrain into classes of ”green vegetation, dry vegetation,
soil/rock, and outliers” based on color [23]. Later on, they performed the classifica-
tion using other visual features such as texture and shape beside color [24].

Howard and Seraji [25] presented a technique for realtime terrain characteriza-

tion for a field mobile robot using a vision system and artificial neural networks.



The terrain characteristics including roughness, slope, discontinuity, and hardness
are extracted from image data and are represented in a fuzzy logic framework.

Kim [26] used vision data to classify the terrains into four groups and estimated
the friction coefficient.

Methods involving vision and image will have a problem identifying soil type in
bad situations; for example, when the weather is foggy, or when a layer of snow has
covered the ground, the images are not sufficient for an accurate prediction.

Another widely used method to estimate the terrain type is based on the vi-
bration of the vehicle caused by soil-wheel interaction. In Brooks and Iagnemma’s
method [27], vibrations are measured using an accelerometer mounted on the vehicle.
The classifier identifies the terrain class to be sand, gravel, or clay [28].

In related work, Valada [29] used a microphone as a sensor to measure the
acoustic sounds of a mobile robot on different terrains, and used a deep convolutional
neural network to classify the terrain.

However, methods based on only vibrations have their own difficulties. In the
case of bumpy grounds, the vibrations caused by bumps and holes could be mistaken
by the vibration caused by the nature of the soil. Moreover, these methods could be
applied to a limited number of classes.

Combining different methods will help us overcome the limitations of each
method. In another work by lagnemma [30], a combination of vision and audi-

tory sensors was used. First, the upcoming terrain was predicted based on image

10



data. Then, the terrain parameters were estimated online based on wheel-soil inter-
action analysis. In the end, based on the auditory data from the wheel-soil contact
signature, the current terrain could be classified.

Weiss [31] presented a terrain classification method which fuses predictions based
on vision data with predictions made by a vibration-based method. Based on colors
in the image data, the robot can predict the terrain in front of it, and then it will
verify the prediction using the vibration data of the soil-wheel interaction when the
robot is traversing the classified area.

Wang [32] used Laser Measurement System (LMS) to observe anomalies in
surface reflection properties of terrains. The data were classified using the Support
Vector Machine (SVM) classifier.

In a more recent work done by Gonzalez and lagnemma [33], first, the slip was
estimated using physical features including wheel torque and velocities. Then, a
deep network was trained on images from NASA’s Planetary Data System, MSL
Curiosity rover to classify the terrain into asphalt, sand, grass, gravel, mars ground
and pavement.

Inspired by the research done on this matter, we propose a new method for
terrain classification. In this method, the physical data such as car velocity, wheel
angular velocities, and slip ratios, measured with inexpensive sensors, are used to
classify the terrain. Then, the information is used to adapt the MPC controller for

steering control.
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Chapter 2
Dynamics and Terramechanics

2.1 Dynamics
To design a control system and to simulate the behavior of the system, dynamic

models of the vehicle and the wheels are essential.

2.1.1 Vehicle Dynamics

In this thesis, we use a double-track model to account for differences in the
wheels’ forces. In Figure 2—1 the forces acting on each wheel and the velocities are
specified. Fj represents the longitudinal force and F; represents the lateral force act-
ing on the wheel. L; and L, are the longitudinal distances from the center of gravity
to front and rear wheels, respectively. W is the width of the vehicle. vy, vo, v3, v4 are
the total velocities of the centers of the wheels, v,, v, are the velocities of the vehicle
in body-fixed coordinates x — y — z, w, is the angular velocity of the vehicle around
the z-axis, and 1 is the vehicle heading. Note that w, = w We assume that only
the front wheels are steerable. d; and d5 represent the steering angles of the front
wheels.

Total forces and the moment acting on the vehicle are calculated in Equations

2.1.

12



Figure 2-1: Vehicle Schematic Diagram

thotal = Fh COS (51 + EZ COS (52 + F1l3 + E4 - Fsl sin 51 — F82 sin 52 (21&)

Fyiotar = Fs1 €08 01 + Fypcos 0y + Fog 4 Foq + Fyysin oy + Fio sin o, (2.1b)
w

M, = (—Fs sindy + Fjy cosdy — Figcosdy + Fyosindy + fi3 — fg4)7+

(Fj1sindy + Fy1co801 + Flosindg + Fyocos o)Ly — (Fy3 + Faq) Lo (2.1c)
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By applying the Euler-Newton Equations, the dynamic model of the system is

obtained. The effect of the road bank and slope is considered.

m(a; — vyw,) = Friotar — Mgsin® (2.2a)
m(ay + vew,) = Fyiora + mgsin®cosO© (2.2b)
I.a, =M, (2.2¢)

where m is the vehicle mass, I, is the inertia, © is the road slope, ® is the road bank,
a, is the longitudinal acceleration, a, is the lateral acceleration, c, is the vehicle’s
angular acceleration around the z-axis, and g is the acceleration of gravity. Since the
farming vehicle does not have any suspension system, we ignore the pitch and roll
dynamics of the vehicle. Having v,, v, and w,, the velocities of each wheel, v; = Hjﬂ

for i = 1,2, 3,4 are computed, which will be used in terramechanics, to calculate the

slip ratio and slip angle.

Vgl = Uy + wz7 = U3 (2.3a)
Vg = Vg — wzg = Uy (2.3b)
U1 = Uy + W, L1 = vy (2.3c)
Uys = Uy — Wy Lo = vy (2.3d)

In the next step, the interaction forces between the wheels and the soil should be
determined to simulate the dynamic model. The interaction forces are dependent on
the load on the wheels, F,; for i = 1,2,3,4. The load on the wheels is calculated by

solving the equilibrium equations of the moments and forces on the center of gravity.
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The tractor does not have high speed and acceleration, therefore the effect of load

transfer can be ignored. We assume F,; = F,5 and F.,3 = F,4. From equilibrium,

Solve the Equations 2.4a and 2.4b,

Ly
Foae M —F 9.5
s I, T A (2:5)

L,
= /w _— = FZ
e 2

F,

This model for computing the load on the wheels is simplified, since it does not
consider the effect of cornering, road bank and slope. A more complete model can
be formulated solving Equations 2.6a-2.6f. See Figure 2-2. In this model, consid-
ering that the vehicle has little or no acceleration mostly, we ignore the effects of

acceleration and load transfer.

Fo 4+ Foo+ Fos+ Fry = mgsin®© (2.6a)
Fy + Fyo + Fys + Fyu = mgcos©sin® (2.6b)
Fo+ Fo+ F.3+4 F.y = mgcos©cosP (2.6¢)
(Foo+ F.3—F,y — F, )% +(Fp+Fp+Fs+Fuh=0 (2.6d)
(For + Foo) Ly — (Flg — Fog) Lo + (For + Fag + Foz + Foy)h = 0 (2.6¢)
Foo—Fa=Fs3—Fu (2.6f)
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Fa + Fz

Figure 2-2: Left: Side view ; Right: Front view of the car and normal forces

where, h is the height of C.G. We obtain,

1 L h
F, = 3 [(mgcos@cos@)L1 +2L2 - mgsin@Ll T + mgsm@cos@w] (2.7a)
1 h
F= 5 [(mgcos@cosCI))L1 +2L2 - mgsin@L1 T mgsin@cos@w} (2.7b)
OcosP
ﬁg::ﬁﬁﬂﬁjfgi-—zgl (2.7¢)
o
F%::ﬁggé?gg———Fb (2.7d)

2.1.2 Wheel Dynamics
For the simulation of the vehicle, the wheel dynamics are also important. Having
the force and torque acting on the wheel, one can obtain the angular velocity of the

wheel, which is used in the computation of slip ratio. Based on Figure 2-3 we have,

Iyowy =T — FR (2.8)
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where, T' is the wheel torque, «,, is the wheel angular acceleration, and I, is the
2

wheel inertia, which is . In this formula, m,, is the mass of the wheel, and R

is the radius.

F,

F

Figure 2-3: Wheel Dynamics

2.1.3 Defining Trajectory and Error calculation
The desired trajectory is defined by the desired longitudinal vehicle velocity,
Vges, and the desired heading rate, 1/}des. The trajectory in X —Y — Z coordinate is

formulated as,

Xdes = COSwdes UVdes

Ydes = Sinwdesvdes

The trajectory that the vehicle is traversing, based on computed v,, v, and wy

is as follows:
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X = cosppv, — 51Ny

Y = siniv, + cosuy,

The longitudinal, lateral and heading errors, ey, €;, and ey in —y— 2z coordinate

is computed.

€y = Yaes — U
€ = ViesCOS(Vaes — ) — Vs (2.9)
€y = VdesSIN(Vdes — V) — vy

The lateral deviation, e,, the lateral velocity deviation ey, and heading deviation,

ey are used as the feedback for the MPC controller, and e; is used as the feedback

for PID controller.

2.1.4 Vehicle Specifications

In the Arion project, the farming vehicle is designed, and a prototype has been
built. The vehicle specifications used in the dynamics model, are listed in Table 2—1.
Note that, all wheels have the same radius. In this study, we assume the road slope

and bank angles are zero.
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Parameter ‘ Symbol ‘ Value ‘ Unit ‘

Distance from front wheels to C.G.

I 1.15 m

Distance from rear wheels to C.G. Lo 1.28 m

Vehicle Width |44 1 m

Height of C.G. h 0.8613 m

Wheels Radius R 0.43 m

Mass of the vehicle m 1000 Kg

Mass of the Wheels m 29 Kg
Inertia of the vehicle around 7 axis I, 1100 | K g.m2
Standard gravity g 9.8 m/s*

Table 2—1: Vehicle Specifications

2.2 Terramechanics

The main objective of terramechanics is to calculate forces and moments inter-
acting between the wheel and the terrain. Modeling this interaction is a key factor for
evaluating vehicle performance, thus simulation and controller design. Pacejka [34]
developed a formulation named Magic Formula which can model interaction forces
between wheel and hard terrain. However, we cannot use this model directly for the
vehicle on soft soil. Deformation of the soil, different characteristics of different soil
types and conditions, and uncertainties that exist in its parameterization make the
modeling of tire-soil interaction a very complex problem.

Researchers have developed a variety of models to formulate the interactions.
The models can be categorized into three groups: 1) empirical models, 2) physics-
based models, and 3) semi-empirical models. These models will result in different
accuracy and computational cost; therefore, based on the application, one of the

methods should be chosen.
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The empirical models are completely based on laboratory or field experiments.
A function is fitted to the data gathered for a soil type, and a look-up table is created.
In the WSE VCI model developed by Army Engineer Waterways Experiment Sta-
tion [35], Cone Index was used as a measure for terrain interaction forces. In a similar
approach, Wismer and Luth [36] proposed a model to correlate wheel torque, motion
resistance, tractive and net pull efficiency to wheel load, soil strength, tire geome-
try, and tire deflection. This model introduced the effect of wheel slip on tire force.
STIREMODE [37] was developed by Systems Technology Inc. for on-road vehicles
and then extended to off-road condition by applying Metz [38] shaping functions. In
this model, longitudinal and lateral force function vs slip was introduced.

The empirical models are simple tools to evaluate wheel behavior on the soil in
a similar condition to the experiment. However, outside the scope of the tests, these
models are not accurate, and thus not appropriate to use in real world applications.

Physics-based models use physical principles and analytical methods to model
tire-soil interaction and structure. VTIM (Vehicle Terrain Interaction Model) pro-
posed by Madsen [39], considers the deformation of both the tire and the soil. The
model combines the 3D tire model that consists of a lumped mass, spring, and
damper system with analytical soil mechanics. The model was developed for use in
realtime.

Another method for physics-based modeling is DEM (Discrete Element Method)
The main concept of DEM is to consider the soil as a system of discrete particles

and model the interaction of each particle individually. [40, 41]
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One alternative numerical model to capture more details of vehicle soil inter-
action is the Finite Element Method (FEM). Past advancements in computational
resources made FEM a practical tool to analyze complex systems. Many researchers
utilized FEM to model soil-tire interactions [42-47]. Physics-based models are very
accurate, but also have high computational cost.

Semi-empirical models are the most commonly used models to use in a full-
vehicle simulation and control design. These models combine experimental measure-
ments, empirical formulation, and analytical methods, to have accurate and compu-
tationally efficient modeling of the interaction.

In this thesis, we use Chan and Sandu’s [48] revised model for wheel-soil longi-
tudinal and lateral interaction. The following assumptions have been made in this
study considering the application.

1. The soil is deformed.

2. The tire is rigid.

3. The tire inflation pressure and the temperature remain constant during the
entire simulation.

4. The tire remains in contact with the ground at all times.

Figure 2-4 shows a schematic of the wheel and the variables used in this model-
ing. The interaction between a wheel and soil will result in the normal and tangential
stress field under the wheel. The forces and moments acting on the wheel are the
integral of these stresses over the contact patch. The variables in the figure, are as
follows: R is the radius of the wheel, w, is the angular velocity, v,, is the longitu-

dinal velocity, 6, is the exit angle, 6, is the entry angle, 6, is the angle where the
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maximum normal stress will happen, z is the sinkage of the wheel into the soil, o,

is the normal stress and 7 is the shear stress.

Figure 2-4: Wheel stresses and variables

2.2.1 Longitudinal Force Generation
Janosi and Hanamoto [49] provided a formulation to calculate the shear stress

using the Mohr-Coulomb failure criterion and the Janosi-Hanamoto relation:

Jz(9)

72(0) = (c+ 0, (0)tang) (1 — e %o ) (2.10)

where o, is the normal stress, c is the soil cohesion, ¢ is the internal friction angle, j
is the shear displacement, K, is the shear deformation modulus. To use this relation,
we need to calculate the shear displacement of the soil underneath the wheel and the
normal stress. A key variable for analysis of the interaction is the wheel slip ratio,

which has a direct effect on the traction. The slip ratio is defined as:

Rwr — Ugr
= 2.11
s max(Rw,, vy) ( )
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In this definition, during acceleration, the slip ratio is positive, and during braking,
it is negative.

Wong [50, 51] demonstrated that the shear displacement for any arbitrary angle
0 on the wheel can be calculated using the tangential interface velocity of the wheel.

The absolute velocity of each point on the contact patch can be expressed as:

Vi = Rw, — vg.c088 = Rw, (1 — (1 — s)cosb) (2.12)

”10 =

Figure 2-5: Velocity at angle ¢

Therefore, the shear displacement can be calculated by integrating the surface

velocity over time.

/ / R(1 = (1 = s)cost)w,dt = R/:e (1= (1— s)cost)dd

= R[(0. — 0) — (1 — s)(sinb, — sinh)] (2.13)

Bekker [52] developed a formulation to express the pressure as a function of soil

empirical parameters and tire sinkage.
ke "
P = ? -+ k¢ z (2.14)
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where k. is the soil cohesion related parameter, k4 is the friction angle related pa-
rameter, n is the sinkage index, and these three parameter will be obtained with
sinkage plate tests. b is the contact patch width, and z is the sinkage.

Later, Wong and Reece [51] presented a revised and more accurate version of

the normal stress-sinkage relation.
/ n
p=(ck.+ @) <%) (2.15)
where k. is the soil cohesion related parameter, k;ﬁ is the friction angle related pa-
rameter, v is the unit weight of the soil, and c¢ is the soil cohesion. In this equation,
k. and k, are non-dimensional parameters.

Computation of radial tire stresses by Wong and Reece also shows that the
maximum normal stress does not happen directly under the center of the wheel. It is
shifted forward and will move further with the increase in slip ratio. The distribution
of normal stress under the wheel is shown in Figure 2-6. 6y is the point where the
maximum normal stress happens. As seen in the figure, the distribution of normal
stress has different curves in the ranges 6, to 0y and 0y to 0..

Wong developed a piece-wise formulation to calculate normal stress in the two
regions. By substituting the sinkage z in Equation 2.14 and Equation 2.15 with the

following term, the normal stress is obtained as a function of 6.

z = R(cos — cosb,) (2.16)
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Figure 2-6: Normal Stress as a function of 6
onf = Cy(cosh — cosh,)" Oy <0<40,
on = 0—0
0 = Cy(cos (e — ( — (0. —0n))) — cos@e)n 0, <0<0y
On — 0,
where,
k. "
i +ky | R Bekker
C. =
o bk/ R n
(k. + %) (z) Wong

(2.17)

(2.18)

In terramechanics, Equations 2.19-2.21 provide a framework to calculate Draw-

bar Pull (DP), Vertical Force (VF) and the angular Torque (T), by integrating the

normal and tangential stresses over the contact patch.
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95 98
DP = Rb[/ 0)cosfdl — / 0, (6)sinfdo) (2.19)

—0,
Oe e
VF:Rb[/ oo ( sm@d@—i—/ 0, (6)cosOdb] (2.20)
0, o,
O
T = R%[/ 7.(0)d0)] (2.21)
—0,

These equations are complex, and need to be solved numerically. In order to

solve the equations efficiently, the following assumptions are made:

1.
2.

The tire is rigid, that means R is constant.
0, is usually small and does not vary. Therefore, we assume a constant value
for 6,. 6, = —0.09 rad (—5°), is a reasonable assumption.
. Oy is directly in between of 6, and 6..
0.+ 0,
Oy — ; (2.22)

. The normal stress can be approximated with a parabolic curve. This will allow

us to use the Simpson’s rule to simplify the integrals. Based on Simpson’s rule,

we can approximate the integral of a parabola using Equation 2.23.

b—a

[ s = 120 [0+ 45 (52) + ) (2.23)

After numerical computations, the accuracy of this estimation was deemed

acceptable.
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Figure 2-7: Left: Front view ; Right: Top view of the wheel

For all sets of #, and 6, the vertical force should be balanced with the wheel

load. That means:
F,=VF (2.24)

Given the assumptions, we can solve the Equation 2.24 for .. Then, solve the

Equation 2.19 to find the drawbar pull, which is equal to F.

2.2.2 Lateral Force Generation
The lateral force is the summation of the forces caused by the lateral shear

stress, F)p, and the bulldozing effect of the soil, Fq.
F,=Fyp + Fypa (2.25)

Figure 2-7 shows the variables used for lateral shear modelling.
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The variables in the figure are as follows: vy, is the lateral velocity, v, is the
total velocity, b is the width of the wheel, 5 is the slip angle, o, is lateral bulldozing
pressure acting on the side of the wheel and 7., is the shear stress in the lateral
direction. Similarly, for the lateral shear deformation, we need to define the slip
angle.

8 = tan"! (%) (2.26)

Hence, the lateral velocity v, is defined as:
Vyr = Ugrtanf (2.27)

Similar to Equation 2.13 the lateral shear displacement can be calculated.

t t Oec
Jay = / Vyrdt = / VgptanBdt = tanﬁ/ Yer g — R0, — 0)(1 — s)tan  (2.28)
0 0 0

W
Using Janosi and Hanamoto relation with lateral shear displacement,

Jy(0)

Tyep(0) = (c+ 04 (0)tang) (1 — e ")

(2.29)

where £, is the shear deformation module in the lateral direction, the force acting
on the wheel that is caused by the lateral shear stress can be computed.
Be
Fyp = Rb /9 Tyepdl (2.30)
For analysis of the soil bulldozing effect during cornering, Schwanghart [53]
proposed using the Fundamental EarthMoving Equation to calculate the resultant

force. Based on Reece’s [54] Fundamental EarthMoving Equation, the passive ground
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resistance for a wall moving into a body of soil is composed of four terms, which
represent the effects of soil density, cohesion, the surcharge on the soil surface, and
adhesion between the blade and soil. The force of the bulldozing effect is computed by
integrating over the soil and wall contact patch. In this approach, it is assumed that
the sidewall of the wheel acts similar to the cutting blade of a bulldozer. McKyes [55]

proposed the following equation to calculate the bulldozing effect using N-factors.
F= 7522]\]7 + czN, + qzNy + co 2N, (2.31)

where the N-factors are: NN,, the soil specific weight coefficient, N,, the soil cohesion
coefficient, IV,, the soil surcharge load coefficient, and N,, the coefficient of adhesion
between soil and blade. ¢ is the soil cohesion, ¢ is the surcharge load from accu-
mulated bulldozed soil, ¢, is the soil-blade adhesion, z is the sinkage, and v is the
unit weight of soil. In this study, we ignore the effect of surcharge load and soil-
blade adhesion. From the static equilibrium of soil and blade, the N-factors can be

determined.

N — (cotpy + cotX.)sin(¢ + X.)
T 2sin(pw + X+ @)
B cos¢p
— sinX.sin(py + X, + @)

(2.32a)

(2.32D)

where p,, is the blade-soil angle, which is 90° most of the time, X, is the soil failure

angle, and ¢ is the soil friction angle. X, can be approximated as, [55]

—z (2.33)
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Using the assumed values, we can rewrite Equations 2.31 and 2.32 as follows
with a different notation.
52
F(0) = Dy(cz + Dﬂ;) (2.34)

where

D) = cotX, + tan(X. + @)

cot’ X,
coto

Dy = cot X, +

z = R(cosh — cosb.)

Finally, Fsq is calculated by integrating the bulldozing effect over the submerged
portion of the wheel.
Oe
Fypa = R/—e,« F(0)cosfsinpdo (2.35)
The slip angle is introduced into the equation, as in the real world, there is no
bulldozing effect when there is no lateral movement. It should be mentioned that in
pure cornering situation, 6. and 6, are equal to #, which is the sinkage of the wheel

in the static condition.

2.2.3 Combined lateral and longitudinal
During combined manoeuvres caused by soil shear stresses in lateral and longi-
tudinal directions, the limits of total traction generated by soil shear stress should be

taken into account. The shear strength of the soil is defined by the Mohr-Coulomb
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failure criterion,

Tmaz = C + optang (2.36)

Therefore, the total shear stress is bounded by the inequality in Equation 2.37.

() (22)* <1 (2.37)

Tmaa: Tmax

After some simplification, the boundary curve of the inequality 2.37 is,

(1—e®) +(1—e ™) =1 (2.38)
or
(1 C e R[(Ge—Oa)—(1—;9)6(sin0€—sin6a)] )2 n (1 B 6_ R(eefealt){(ylfs)mnﬂ)Q 1 (2'39)

where 6, is the point where the combination of lateral and longitudinal shear stresses
are equal to the maximum shear stress allowed, and after this point, the wheels will
slide. By solving Equation 2.39 numerically, 6, is found. The new expressions for

lateral and longitudinal shear stresses can be defined as,

Tmar(1— € %5) 0, <0 <6,
Ty = (2.40)

Tmazx _07“ S 0 < ‘9,1

31



rran(l—¢ %) 6,<0<6,
Tyep = (2.41)

Tmaz _97‘ < 0 < Qa
Equations 2.40 and 2.41 ensure that the tangential stresses will satisfy the soil

failure criterion.

2.2.4 Parameters

The aforementioned equations are complex, and need to be solved numerically.
This will make this approach inefficient, as solving the equation at each timestep
in realtime will add delay to the system, which is not efficient. One solution to
this problem is to solve the equations offline for different soil types and ranges of
possible values of load on the wheel, slip ratio and slip angle, and create lookup
tables. Therefore, in real time the system will only use the look up table to find the
interaction forces, base on the type of the soil, current load, slip ratio and slip angle,
which is more efficient.

Four types of soil are considered in this study; Clay, Loam, Sandy Loam, and

Sand. The empirical parameters of these soils are listed in Table 2-2.
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Terrain Type Clay | Loam | Sandy Loam | Sand Unit
Parameters

Cohesion C 7.58 0.8 2.2 1.3 kPa

Internal Friction Angle ¢ 14 37.2 39.4 31.1 degree
Shear Deformation Parameter K 2.5 3.6 6.1 1.2 mm

Sinkage index n 0.85 1 1.1 0.79 -
Soil cohesion related parameter k. | 43.08 | 1.37 74.6 102 | kPa/m™!
Friction angle related parameter kg | 499.7 | 814 2082 5301 | kPa/m"

Table 2-2: Soils Parameters [50]
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Chapter 3
Controller Design

3.1 Longitudinal Control

For the control of the longitudinal movement, we use a Proportional-Integral-
Derivative (PID) controller, with the feedback of measured longitudinal velocity of
the vehicle. Having an integral term (I-term) is important in this controller since the
speed error will accumulate during the simulation, and the vehicle will fall behind
the desired trajectory, along the x — azis. The I-term will help eliminate this accu-
mulated error, and achieve better accuracy on the trajectory tracking. It is worth
mentioning that the longitudinal and lateral dynamics are related to each other, and
the performance of one will impact the performance of the other. For example, one
of the feedback errors for the lateral controller is the lateral deviation from the path.
If the error along the x — axis of the vehicle is large, the computed lateral error
will not represent the shortest distance between the vehicle and the path. Instead,
it represents the distance between the vehicle and where the vehicle is supposed to
be on the path, which means \/m This will affect the performance of the

lateral controller.
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3.2 Lateral Control

The most common method for steering control of a vehicle is MPC, which is
a powerful tool that can deal with difficult situations. The behavior of the system,
considering the equations of terramechanics, is highly nonlinear. Some simplification
is possible. However, if we use a more accurate model of terramechanics instead
of simplified linear relations, the system will remain nonlinear. In this study, we
approximate the behavior of the system at a stable point and in different soil types
with linear systems, to use as the models in the MPC controller. Therefore, we have
different estimations for different types of soil. Based on each linearized system,
the MPC controller is designed and tuned to have the best performance on that
specific soil type. Therefore, in real time, we need to identify the soil type in order
to choose the appropriate MPC controller. In the proposed structure, the neural
network block’s purpose is to identify the soil and act as a switch. Figure 3—1 shows

a schematic block diagram of the proposed system.

MPC Configuration

Model Predictive Control (MPC) uses a model of the plant to predict the future
inputs and outputs of the system. Considering this prediction for future inputs, at
each time step ¢, the current plant state is sampled and a cost minimizing control
strategy is computed under operating constraints for a specified time horizon in the
future: ¢ 4+ T, in order to best follow a given trajectory.

The computed optimal move is the control action applied to the plant at time

t. At the time ¢ 4+ 1, a new optimization is solved over a shifted prediction horizon.
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Figure 3-1: The scheme of the control system

In other words, MPC is based on iterative, finite-horizon optimization of a plant
model. MPC allows the current timeslot to be optimized while taking future timeslots
into account. MPC needs the dynamic model of the system to predict the future.
The model should first be validated, meaning that the model should be close to the
real system considering disturbance and uncertainty in the system.

The dynamic model of the system is developed in Chapter 2. The states of the

system and the input are,

¢ = v, Uyl/}xywwl Wy ws wy)T, u = 0. (3.1)
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In this application, we assume 03 and d, are zero, and s is related to §; with

Ackermann’s relation. This means:

w
Ly + Lo

5y = cot *(cotd, —

). (3.2)
Consider the system,

$ = foou(C,u)
n = h(()

(3.3)

where fi,; is a nonlinear function which is different for each soil type, and the
output n = [ey, €y, €] is the vector of heading deviation, lateral deviation, and lateral
velocity deviation from the desired path, obtained from Equation 2.9. In order to
obtain a finite dimensional optimization problem, the discrete version of the system

is defined for timestep k.

Cd(k + 1) = fsoil,d(Cd(k)v ud(k))

na(k) = ha(Ca(k))

(3.4)

The optimization problem at timestep k is defined as,
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H:.—1

min J(Cry Auy,) = Z [ 9he+4, kHQ + Z | Aty j, kHR
AuieRHe
SU_bjGCt to: 51,min S Uj S 51,ma$ (35)

A0 min < Auj < Adypge for j=k,...k+H.—1
uj = uj_1 + Au,
In this formulation, 79y, is the output of the system at timestep k¢, calculated
at timestep k, Auyy, i is the difference between the input of the system at timestep
k + j calculated at time k and the reference input at the same timestep, H, is the

prediction horizon, H, is the control horizon, and Ad; is the rate of steering. Note

that:

g = ()7Q()
1% = ()TR()

Linearization is a linear approximation of the system around an operating
point. Different methods of linearization have been developed by researchers. In our
application, because of the complexity of the model, we use numerical perturbation
to linearize the MPC internal plant. In the perturbation method, a small perturba-
tion is introduced into the nonlinear model and the response to this perturbation is
measured. Looking back at the continuous-time system in Equation 3.3, we define

a new set of the perturbed states, inputs, and outputs centered about the operating

point, [CO? Uo, T]O]:
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Au(t) == u(t) — ug (3.6)
An(t) :=n(t) — o

Therefore, the linearized state-space equations in terms of these new variables

are obtained.

AC() = ANC(t) + BAu(t)

(3.7)
An(t) = CAC(t) + DAu(t)
The state-space matrices are computed as follows:
AG.g) = 2L Bli,m) = 2
8Cj Cosu (9um Cosu
oh o oh I (38)
C(p7.]):_p D(pvm): £
8Cj €o,u0 i Co,uo0

for 7,5 =1,2,..., N with N the number of states, m = 1,2,..., M with M the num-
ber of control inputs, and p = 1,2,..., P with P the number of outputs. In this
formulation, &; = f;((, ), and n; = h;({,w). In this study, matrix D is zero.

Using this method, we need to find a point where the system is nearly at steady
state and linearize the plant around that point. Each soil has different characteristics,

that means the operating point and the linearized plant are different for each soil

type.
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The operation points for linearization are selected at specific times in the sim-
ulations, which are listed in Table 3-1. The best value of linearization time was

obtained by trial and error, to find the best model that minimizes the error.

| Soil | Linearization time(s) |
Clay 1.5
Loam 1
Sand 1.6
Sandyloam 1.1

Table 3—1: Linearization Times

In the next step, we tune the MPC controllers’ parameters for linearized plants of
each soil type. The tuned values of Prediction Horizon, H,, (steps), Control Horizon,

H, (steps), and sampling period, ¢s (seconds) are listed in Table 3-2.

Sl B, A4 ]
Clay 15 | 10 | 0.1
Loam 151 6 |0.1
Sand 121 7 101

Sandyloam | 12 | 7 | 0.1

Table 3-2: MPC Parameters

Furthermore, the weight matrices (), are tuned as in Equation 3.9.
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0.1 0 0 1 0 0

QClay - 0 g8 0 QLoam = {0 40 O
0O 0 3 0 0 4
(3.9)
01 0 O 1 0 0
QSand = 0 30 0 QSandyloam =10 30 O
0O 0 2 0O 0 3

For all soil types the input weight matrix, R = [1]
The constraints of the optimization problem are defined based on the physical
properties and limits of the system. In this application, the wheels cannot steer more

than 45°, and the steer rate is not more than 0.2 rad/s that means

51,min = —45°= —0.8 rad 61,max = +4+45°=0.8 rad
(3.10)

A1 min = —0.02 rad/timestep A1 mar = 0.02 rad/timestep

41



3.3 Neural Network

A neural network consists of units called perceptron or neuron. The concept of
a perceptron is inspired by human brain neurons, which receive the information from
one terminal and produce output from the other terminal. Figure 3-2 compares the

functionality of a neuron and a perceptron [56].

Input Output

I b
w1
\ Output
Input ZUQ—L Z . f _ y
et

Figure 3-2: Neuron and Perceptron

The input vector x = [z1,,...,2,] is multiplied by the weight vector w =
[wy, wa, ..., w,]. The bias term b will be added to the result. This weighted sum will
then pass through an activation function f, to produce the output y. Note that w
and b are the learnable parameters, which are determined with a learning algorithm,
such that the output reaches a goal. A neural network is built up of many neurons
interacting with each other. A neural network consists of an input layer, which does
not modify the input and only transfers the input to the network, the output layer,
which is the last layer and the output of this layer is the output of the neural network,

and hidden layers, which are layers between input and output layers. The output of
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each layer is the input to the next layer. Figure 3-3 shows an example of a network
with two hidden layers. In this structure, the first hidden layer has five and the

second hidden layer has three neurons.

Figure 3-3: Neural Network

The activation function is chosen based on the application. Different perceptrons
can have different activation functions. Three common choices for f are the sigmoid,

tanh, and relu functions, shown in Figure 34, and defined in Eq 3.11.

Sigmoid(z) tanh(x) Relu(x)
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Figure 3-4: Common activation functions
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1
sigmoid(z) = tanh(z) :=

= A1
T Relu(x) := max(0,z)  (3.11)

The goal of the neural network in this study is to predict the soil type, based on
the input data. The first step is to define the input vector features of the system. As
mentioned in Chapter 2 on terramechanics, there is a nonlinear relation between the
soil type and physical variables in the system. Inspired by terramechanics relations,
we consider the physical parameters listed in Table 3-3 as features of the input vector

to the system.

parameter ‘ symbol H parameter ‘ symbol ‘
Angular velocity wheel 1 w1 Slip ratio wheel 1 S1
Angular velocity wheel 2 Wa Slip ratio wheel 2 59
Angular velocity wheel 3 w3 Slip ratio wheel 3 S3
Angular velocity wheel 4 Wy Slip ratio wheel 4 S4
Vehicle longitudinal velocity Vg Slip angle wheel 1 ot
Vehicle lateral velocity Uy Slip angle wheel 2 Ba
Vehicle angular velocity around z-axis W, Slip angle wheel 3 B3
Wheel torque T Slip angle wheel 4 Ba

average of front wheels sinkage z

Table 3-3: Features of the input vector

The parameters should be easy to measure in the real application. The angu-
lar velocity of the wheels will be measured using encoders on the wheels. Vehicle
longitudinal, lateral and angular velocity will be measured using GPS, or an IMU.
Since the vehicle is electrical, we have access to torque data using the voltage of

the motors in the wheels. Slip Ratios and Slip Angles are estimated using measured
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velocities. For measuring the sinkage of the wheels inside the soil, we use two wide
range ultra-sonic sensors mounted on a structure above the front wheels. Since the
surface of the ground is not even, we need to get the average of sensor data over
its range to reduce noise. As the vehicle moves on the ground, the front wheels will
compact the soil, and the sinkage of the rear wheels can be misleading. Therefore,
we only include the front wheels sinkage in the data.

We also use the information from four previous time-steps for more accurate
classification. Therefore each input sample is a vector consists of parameters listed

in Table 3-3, stacked with the same features from previous timesteps:

Taxss) =[xt 2* 2° 2

where x is the current timestep feature vector,

T(1x17) = [Wr1 Wro W3 Wra 51 S2 83 54 1 P2 B3 By vp vy w, T 2]

and 2" is the feature vector from 4, previous timestep. The target of the classification
problem is the soil type; Clay (class 1), Loam (class 2), Sand (class 3) and Sandy-
loam(class 4). For each type of soil, we collect data, in different situations, to make
sure the network is generalized.

First Approach: The input layer of the network has 85 neurons (number
of features) and the output layer has 4 neurons (number of classes). The tuned
network architecture consists of three hidden layers with 10, 5, and 10 neurons in each
layer, and the activation functions for hidden layers are tanh, Relu, and softmax

respectively, as in Figure 3-5.
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Figure 3-5: The architecture of the neural network

The network uses scaled conjugate gradient backpropagation as the training
algorithm, with regularization parameter A = 0.1, and Cross-Entropy as a measure-

ment for loss. Cross entropy is calculated as

M
L==> gilog(y)
=1

where M is the number of classes, in this case, 4, g, is the true probability of class
7, and y; is the predicted probability of class i.

Moreover, the data is standardized before training in order to have the same scale
for all features. This will assure that all the features have the same contribution,
regardless of their mean and variance. In this process, the values of a row are mapped

between —1 and 1 range.
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The dataset is split into three randomly-selected partitions to be used for train-

ing (75% of the dataset), validation (15% of the dataset) and test (10% of the

dataset).

Using 5-fold Cross-Validation, the average accuracy obtained for train and val-

idation sets are listed in Table 3-4.

accuracy

Train set 99.94%
Validation set | 99.98%

Table 3-4: Average Accuracy for Train and Validation sets

Figure 3-6 shows the performance (loss) of the network during the training
process, and Figure 3-7 and 3-8 show the confusion matrices of the network. As

seen in the confusion matrix, the accuracy of the network on the test set is 99.6%.

Best Validation Performance is 0.0011476 at epoch 339

100 ¢
L —Train

—— Validation| |
—Test
Best

Cross-Entropy (crossentropy)

0 50 100 150 200 250 300
345 Epochs

Figure 3-6: Cross-Entropy Loss per epoch during the training for Train, Validation
and Test sets
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Figure 3-7: Confusion Matrix for train and validation sets
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Figure 3-8: Confusion Matrix test and overall sets
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Second Approach: The measured data for the previous approach comes from
the simulation. However, the real data cannot be as perfect as the simulation data,
due to the measurement noises. In the second approach, to have more realistic data,
we induce noise with about 20dB Signal Noise Ratio (SNR), into the input data,
then train the network with the imperfect data. In this case, the network needs to
be more complex in order to handle the noise.

The new network architecture consists of four hidden layers with 12 | 15, 10
and 8 neurons in each layer, and the activation functions for hidden layers are tanh,

Relu, Relu, and softmax respectively, as in Figure 3-9.

Input Layer |
ER®

tanh Relu Relu tanh ~ softmax

Figure 3-9: The architecture of the neural network

The network uses scaled conjugate gradient backpropagation as the training
algorithm, without regularization, and Cross-Entropy as a measurement for loss.

The data is standardized before training.
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The dataset is split into three randomly-selected partitions to be used for train-

ing (75% of the dataset), validation (15% of the dataset) and test (10% of the

dataset).

Using 5-fold Cross-Validation, the average accuracy obtained for train and val-

idation sets are listed in Table 3-5.

accuracy

Train set 99.88%
Validation set | 99.85%

Table 3-5: Average Accuracy for Train and Validation sets

Figure 3-10 shows the performance (loss) of the network during the training
process, and Figure 3—11 and 3-12 show the confusion matrices of the network. As

seen in the confusion matrix, the accuracy of the network on the test set is 99.7%.

Best Validation Performance is 0.011367 at epoch 112

——Train
— Validation| |
0 —Test i
10 1
: Best

Cross-Entropy (crossentropy)

0 20 40 60 80 100
117 Epochs

Figure 3—10: Cross-Entropy Loss per epoch during the training for Train, Validation
and Test sets
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Figure 3-11: Confusion Matrix for train and validation sets
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Figure 3-12: Confusion Matrix test and overall sets
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Chapter 4
Results

In this chapter, we present the results obtained from the simulation. First, the
behavior of the system and controllers are evaluated in a field of one soil, for Clay,
Loam, Sand, and Sandyloam, independently. Then, the system is evaluated in a
field of mixed soils. All simulation results are gathered at a constant speed of 4.5%,
or 16kTm. It is assumed that the vehicle is moving on the XY plane, and has no
movement along the 7 axis.

4.1 Clay

Figures 4-1 to 4-7 show the simulation results for the vehicle moving on Clay
soil. Figure 4-1 demonstrates the path of the vehicle, and the desired path, in
global fixed coordinates X —Y — Z. This path is designed based on the fact that
the farming vehicle needs to move between crops rows, and perform tasks such as
seeding or harvesting. This path consists of two U-turns and 65-meter straight line
in between.

Figure 4-2 represents the MPC controller’s input command to the system, which
is the steering of the left front wheel(d;). The step between t=17 s and t=32 s
represents the steering angle input needed for the first U-turn, and the step between

t=48 s and t=63 s is the steering angle input needed for the second U-turn.
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Figure 4-1: Vehicle path on Clay
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Figure 4-2: MPC controller output: Steering angle of the front wheel

The errors used as the feedback signal for the MPC controller are shown in

Figure 4-4. The errors are defined in Chapter 2, Equation 2.9. The maximum value

of the heading deviation is less than 0.1 rad, which happens at the beginning and at
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the end of a turn, when the heading reference, Figure 4-3, changes from zero to 0.2

rad.
0.5
3
S |
S O
3
\8)
T
_0.5 | | |
20 40 60 80
Time (sec)

Figure 4-3: Heading reference for the S-shape path

As can be seen in Figure 44, the maximum value of the lateral deviation is 0.1
m, which comparing to the common width of the crop rows and the width of the
vehicle itself, which is around 2 m, is 5% error.

Figure 4-5 displays the PID controller’s input command to the system, which is
the torque of a wheel. At the beginning of the maneuver, the torque is generated to
accelerate the vehicle and increase the velocity of the vehicle from zero to the desired
value. In the turn, the vehicle will have a drop in speed, as the forces caused by the
normal and shear stress of soil is divided into two motions, longitudinal and lateral.
This will cause an increase in the torque at the beginning of each turn.

The longitudinal speed is shown in Figure 4-6, in which the difference between
the desired and actual speed of the vehicle along its x axis can also be observed. The
red dashed line represents the desired constant speed. The longitudinal speed error

is 2% of the given reference speed.
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Figure 4-5: PID controller output: wheel torque
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Figure 4-6: Longitudinal speed
Figure 4-7 shows the decision made by the Neural Network block on the soil

type. In this figure, there is a misclassification in the first second of the simulation,

which provides 99% accuracy.
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0 | | |
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Figure 4-7: Class prediction

56



4.2 Loam
Similar to Clay, Figures 4-8 to 4-13 demonstrate the simulation results for the
vehicle moving on Loam soil. Figure 4-8 shows the path of the vehicle, and the

desired path, in the global fixed coordinates X —Y — Z.

100 ‘ ‘
gl — Vehicle's path| |
- - ‘Desired Path

80 1

30 1

20 - 1

10} 1

-40 -20 0 20 40 60 80 100
Figure 4-8: Vehicle Path on Loam

Figure 4-9 shows the MPC controller’s input to the system.

The errors used as the feedback signal for the MPC controller are shown in
Figure 4-10. As can be seen, the maximum values of the heading deviation and
lateral deviation are 0.2 rad and 0.08 m (0.02% error), respectively.

The deviation of the longitudinal speed from its desired value is shown in Figure

4-12. Apart from the transient portion of the result, the longitudinal speed error
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Figure 4-10: Errors as feedback to the MPC controller
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Figure 4-9: MPC controller output: Steering angle of the front wheel
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Figure 4-11: PID controller output: wheel torque

is 1% of the reference value. In this case, the speed overshoot acts in our favor. It
compensates for the distance the vehicle falls behind, along the X axis, because of
the difference in the desired speed and the actual speed. In other words, the ideal
vehicle on the desired path starts its movement with the velocity of 4.5?, but the

vehicle, in reality, will start from 0 velocity.
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Figure 4-12: Longitudinal speed
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Figure 4-13 shows the decision made by the Neural Network block on the soil
type. In this figure, there is a misclassification for 0.5 second in the simulation, which

provides 99.4% accuracy.
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Figure 4-13: Class prediction
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4.3 Sand
Similarly, Figures 4-14 to 4-19 show the simulation results for the vehicle moving

on Sand soil.
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Figure 4-14: Vehicle Path on Sand
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Figure 4-15: MPC controller output: Steering angle of the front wheels
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The peak value of the heading deviation is 0.2 rad, which happens at the begin-
ning and the end of a turn when the heading reference- the S-shape path- changes
from zero to 0.2 rad. As can be seen in 4-16, lateral deviation peaks at 0.09m, which

leads to 0.02% error.
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Figure 4-16: Errors as feedback to the MPC controller

The longitudinal speed error is 1% of the reference speed.
Figure 4-19 shows the decision made by the Neural Network block on the soil
type. In this figure, there is a misclassification for 0.6 second of the simulation, which

provides 99.3% accuracy.
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Figure 4-17: PID controller output: wheel torque
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Figure 4-19: Class Prediction
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4.4 Sandyloam
Figures 4-20 to 4-25 shows the simulation results for the vehicle moving on

Sandyloam soil.
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Figure 4-20: Vehicle Path on Sandyloam
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Figure 4-21: MPC controller output: Steering angle of the front wheels
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The peak of the heading deviation is 0.2 rad. As can be seen in Figure 4-22,
lateral deviation peaks at 0.15 m, which leads to 0.04% error.

Heading Deviation
\ \ \ \

e

-0.21

rad
o

0 10 20 30 40 50 60 70 80

Lateral Deviation

I I I

0.2 i

g 0 / \ , /

-0.2 - .

| | | | | | |
0 10 20 30 40 50 60 70 80
Lateral Speed Deviation
I I I I
0.2+

\>\

) N

-0.2 .

| | | | | | |
0 10 20 30 40 50 60 70 80
Time(S)

m/s

Figure 4-22: Errors as feedback to the MPC controller

The longitudinal speed error is 3% of the reference speed. Figure 4-25 shows
the decision made by the neural network block on the soil type. In this figure, there

is a misclassification for 1 second of the simulation, which provides 99% accuracy.
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Figure 4-25: Class Prediction
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4.5 Mixed Soil

In this section, the field consists of four different types of soils: Clay, Loam,
Sand, and SandyLoam, as shown in Figure 4-26. Figures 4-26 to 4-31 demonstrate
the results, in this case, using the neural network controller for smart adaptation to
the soil type. As can be seen in Figure 4-26, the effect of changes in soil type on
the vehicle path is not considerable, as the controller can handle the situation well.
However, the small changes in the control inputs, steering angle and torque, as well
as errors, can be seen in Figures 4-27 to 4-31, at ¢t = 20, ¢t = 40, t = 60 second, when

the soil type changes.
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Figure 4-26: Vehicle Path on Mixed Soil
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Figure 4-27: MPC controller output: Steering angle of the front wheels
Heading Deviation
02 h I I I I h7
0 A \/\,-J\ v’\, vf\ A/\/\ V
0.2 i
| | | | | | |
0 10 20 30 40 50 60 70 80
Lateral Deviation
02 B I I I ]
02 i | | | | | | | ]
0 10 20 30 40 50 60 70 80
Lateral Speed Deviation
I I I I
0.2 /{
o b N V.I\, \
0.2 i
| | | | | | |
0 10 20 30 40 50 60 70 80

Time(S)

Figure 4-28: Errors as feedback to the MPC controller
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Figure 4-29: PID controller output: wheel torque
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Figure 4-30: Longitudinal speed

Figure 4-31 shows the predicted soil type and the true soil type during the

simulation. The prediction accuracy, in this case, is 99%.
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Figure 4-31: Class prediction
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Figure 4-32: Left: Path of the vehicle with and without NN Controller; Right:
Zoomed view of the part of the path in the Rectangle

Figures 4-32 compares the performance of the controller with the neural network
block and a single MPC controller (loam) in the mixed soil field. Figure 4-33 shows
the deviation of the vehicle with two controllers along the S-shape path of Figure
4-32. The error of the single MPC is at some points 2.5 times more than the error

of the smart controller with neural network block.
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Figure 4-33: Lateral deviation of the vehicle along the path

Figure 4-34 is an example of the performance of the two controllers at the start
of the motion, where the vehicle is in an unstable condition. In this situation, torque

is applied on the wheels to reach the desired velocity, and the wheels tend to slip.
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Figure 4-34: MPC feedback errors at the beginning of the simulation
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Chapter 5
Conclusion and Future Work

5.1 Conclusion

In this thesis, we provided a novel scheme for steering control of an autonomous
farming vehicle, to adapt to different and difficult terrain situations. This study
contains two sections:

First, the design of a Neural Network that can classify the current soil the
vehicle is driving on, based on physical features such as vehicle velocity, wheel torques
and angular velocities, wheel sinkage, slip ratios and slip angles. In this study, we
designed a neural network that can classify the soil type with at least 99% accuracy.
The Neural Network is trained offline and used in real time, to classify the soil. The
soil types defined in Chapter 2 are Clay, Loam, Sandyloam, and Sand.

Second, the structure of the vehicle controller of the system is designed. This
structure contains one PID to control the longitudinal speed, and four MPCs to
control the steering of the vehicle, one for each type of soil. In this structure, the
neural network makes the decision to switch between the MPCs, based on the soil
type, to have the most suitable MPC.

The implementation of this system on an autonomous vehicle is evaluated. The
variables needed for feedback to the system, and features of the neural network

input can be measured using cheap and easily accessible sensors. The encoders are
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needed for measuring angular velocities of the wheels. We can use IMU or GPS to
measure the vehicle’s longitudinal, lateral and angular speed. The torque applied
to the wheels can be calculated knowing the input current to the wheel’s electric
motors. The average sinkage of the front wheels is measured using two wide range
ultra-sonic sensors, mounted on a structure on front wheels. Slip ratio and slip angle
are estimated using measured velocities.

The results demonstrate the performance of the designed controller and its ad-
vantages over a simple MPC controller. The smart controller is more accurate in
terms of lateral deviation, and more stable in case of difficult situations where wheel
slippage is high.

5.2 Future Work

For future studies, this scheme can be expanded to a variety of different situa-
tions. The Neural Network can be generalized to a wider variety of situations, such
as more classes of soil types, a wider range of speed, and slippage. Moreover, as
the neural network is designed for a specific vehicle, the effect of the weight is not
considered in the Neural Network. This feature could be used in training the neural
network, to make it compatible with other vehicles, and also to consider the effect
of load transfer in high-acceleration situations, and harsh maneuvers.

We also propose that the neural network can be used to adapt the PID to
different soil types. Since the dynamics of the vehicle and soil terramechanics are
nonlinear with respect to slippage, adapting the PID controller to slippage and soil
type will have a considerable effect on stability and accuracy of trajectory tracking,

especially in high slip condition.
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