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ABSTRACT

Agriculture industries call upon autonomous tractors to speed up the process of

farming tasks. Although there has been a lot of research on autonomous vehicles,

this research mostly concerns road vehicles, which operate in a controlled road envi-

ronment.

This thesis is a part of the ongoing Arion project, from Institut du Véhicule

Innovant (IVI). The ultimate goal of the Arion project is to develop an autonomous

farming vehicle, which can operate independently and safely. This research is dedi-

cated to designing a robust controller to maintain the accuracy of the autonomous

farming vehicle path on different types of soil.

The autonomous farming vehicle designed at IVI is an electrical four-wheel-drive

vehicle. In this study, the dynamics equations of the vehicle are derived. The model

used here is a four-wheel model, with two steerable wheels in the front. Moreover,

realistic terramechanics equations, regarding the interaction between the soil and

the wheels, are established. The equations of terramechanics are then solved offline,

to be used as a lookup table online. This method will increase the efficiency, as

the equations need to be solved numerically, and are computationally expensive.

The lookup tables are created for four different soil types: Clay, Loam, Sand, and

Sandyloam.

We introduce a novel scheme for the control of the vehicle. The system contains

two controllers: a PID controller for longitudinal speed, and a Model Predictive

Controller (MPC) for steering angle. In this scheme, a neural network is used to
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classify the soil type, and to act as a switch to adapt the MPC controller to the new

soil type. The neural network is trained on physical features that can be measured

with inexpensive sensors on the vehicle, such as velocity, slip angle, slip ratio, and

wheel’s sinkage in the soil.

The performance of the controller for each soil type is evaluated independently,

as well as the performance of the vehicle operating on a field with various soil types.

The results show a considerable improvement in accuracy when the proposed con-

troller is used.
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RÉSUMÉ

L’industrie agricole réclame des tracteurs autonomes pour accélérer le processus des

tâches agricoles. Bien que de nombreuses recherches aient été menées sur les véhicules

autonomes, ces recherches concernent principalement les véhicules routiers, qui fonc-

tionnent dans un environnement routier contrôlé.

Cette thèse fait partie du projet Arion en cours de l’Institut du véhicule innovant

(IVI). Le but ultime du projet Arion est de développer un véhicule agricole autonome,

capable de fonctionner de manière autonome et en toute sécurité. Cette recherche

est dédiée à la conception d’un contrôleur robuste pour maintenir la précision de la

trajectoire du véhicule agricole autonome sur différents types de sol.

Le véhicule agricole autonome conçu par l’IVI est un véhicule électrique à qua-

tre roues motrices. Dans cette étude, les équations dynamiques du véhicule sont

établis. Le modèle dynamique utilisé est le modèle à quatre roues, avec deux roues

directrices orientables à l’avant. De plus, les équations de la mécanique des sols, con-

cernant l’interaction entre le sol et les roues, sont développées. Les équations de la

mécanique des sols sont alors résolues hors ligne, pour servir de table de recherche en

ligne. Cette méthode augmentera l’efficacité, car les équations doivent être résolues

numériquement et sont coûteuses en calculs. Les tables de recherche sont créées pour

quatre types de sol, l’argile, le terreau, le sable et le terreau sablonneux.

L’auteur propose une nouvelle architecture pour le contrôle du véhicule. Le

système contient deux contrôleurs: Un PID pour le contrôle de la vitesse longitudinale

et un contrôleur à modèle prédictif pour le contrôle de la direction. Dans cette
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architecture, un réseau de neurones est utilisé pour classifier le type de sol et pour

servir de commutateur pour adapter le contrôleur MPC au nouveau type de sol. Le

réseau de neurones est entrâıne en utilisant des variables physiques, qui peuvent être

mesurées avec des capteurs peu coûteux sur le véhicule, tels que la vitesse, l’angle

de glissement et le taux de glissement, ainsi que l’enfoncement des roues dans le sol.

Par la suite, la performance du contrôleur est évaluée indépendamment pour

chaque type de sol, aussi que la performance du véhicule dans une ferme avec un sol

mixte. Les résultats montrent une amélioration considérable de la précision lorsque

le contrôleur proposé est utilisé.
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Chapter 1
Introduction

1.1 Motivation

Autonomous agriculture has many benefits, especially for the developing world,

where many countries have to deal with hunger over food shortage. Autonomous

tractors and automatic planting systems have high accuracy, which may result in a

substantially improved return on investment for farmers, making food planting more

economical. Moreover, the tractors can collect information on soil conditions, which

can lead to improved maintenance of the crops, prevent blights, and achieve higher

efficiency and higher food quality. Autonomous tractors can increase farming hours

per day, as they can work even after dark, which will speed up the process of farming

tasks. Autonomous farming vehicles can disrupt agriculture, and provide a solution

to world hunger.

Although there has been a lot of research and work on autonomous vehicles,

this research mostly concerns road vehicles. Autonomous cars, designed to operate

in the controlled environment of the road, are now starting to penetrate the market.

However, autonomous farming vehicles need to operate in a largely unpredictable

and very different environment. Looking at the developments of farming autonomous

vehicles, we are still a long way to a completely independent autonomous vehicle as

many challenges need more research to overcome.
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Companies such as John Deere, Autonomous Tractor Corporation, Fendt, and

Case IH, are currently developing autonomous farming vehicles. John Deere has de-

veloped an autonomous tractor that follows a path, defined by the farmer, although

an operator should always be present inside the cabin. Autonomous Tractor Corpo-

ration (ATC) developed an electric autonomous vehicle, which initially was designed

to follow another tractor, driven by an operator. Fendt applied the same idea for its

autonomous vehicle, to follow a leader tractor. Case IH also developed its tractors

based on the same idea; however, in 2016, they presented a concept of a completely

independent autonomous vehicle, which is still under research and development.

The ultimate goal of the Arion project is to develop an autonomous farming

vehicle, which can operate independently and safely. For this purpose, A robust

controller is required to maintain the accuracy of the vehicle path on different types

of soil and condition. The first step to achieve this goal is for the vehicle to understand

the soil and soil reaction to the wheel movement. Computational efficiency is key

factor in solving the interaction equations, as the operations are occurring mostly in

real time.

1.2 Objectives

One of the challenges for autonomous farming vehicles is the variety of terrains

the vehicle should be able to drive on. This fact leads us to one of the most important

challenges in the control of these systems, which is the estimation of the soil type,

and the interaction forces between the soil and the tires. The type of soil, the

humidity of the soil, and the condition of terrain (e.g., snow-covered) will greatly
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affect the controller performance. Moreover, the vehicle should also be able to drive

on asphalt. The mechanics of the interaction between the tires and terrain are

completely different on soil and asphalt. Therefore, finding the terrain type enables

us to adapt the vehicle and/or the controller to different situations of the soil. This

can be done through the estimation of tire forces, in the controller system, or using

machine learning methods to find the soil type and humidity. The objectives of this

project are to use machine learning methods to predict the soil type and to develop

a speed and steering controller for the vehicle to follow a predefined trajectory with

high accuracy, and adapt the controller to a different type of soil.

This thesis is organized as follows. In Chapter 2, Dynamics, the dynamics equa-

tions of the vehicle are derived, then the terramechanics equations of the soil-wheel

interaction are formulated. The terramechanics equations are solved numerically for

four different types of soil, and the solutions are stored in four lookup tables to be

used in the simulation. The simulation of the system is built in Simulink™.

Chapter 3 is dedicated to the design process of the control strategy. In this

chapter, the vehicle’s longitudinal and steering controllers are developed. Moreover,

the process of data acquisition for the neural network and the architecture of the

network are covered. The performance of the neural network is evaluated for noisy

and clean datasets.

In Chapter 4, the results of the simulations are explored. In this chapter, the

advantages of the designed control scheme are evaluated over the typical Model

Predictive Control (MPC).
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1.3 Literature Review

There are many challenges associated with autonomous farming vehicles. An

autonomous vehicle should be able to understand and interpret its environment,

make decisions based on that, and execute the decisions. Compared to road vehicles,

farming vehicles have different challenges at each step. The environment in fields,

where farming vehicles are mostly working in, is highly uncertain. There are different

types of objects that the vehicle should avoid, including the plant rows. The soil

characteristics in one area might be different from another one in the same field.

Moreover, wheel slippage could not be ignored. The vehicle should be able to work

in different conditions of soil and weather. The surface of the terrain could be uneven

and bumpy.

Two main different fields of research can be defined on an autonomous vehicle

project.

Environment Perception: Use deep learning and other AI tools to interpret

and understand the environment based on the data received from the sensors, in-

cluding cameras, radar, etc. The vehicle should understand the obstacles and their

positions, and regarding the dynamic obstacles, their speed and the direction of

their movement. Moreover, in the agriculture fields, the vehicle should understand

the type of plant and/or the condition of the soil. There is a big scope for research in

this field, as the understanding of the vehicles of their surroundings is still far from

perfect, and there is a huge variety of scenarios that a vehicle can encounter.

Control: Use the knowledge of the environment acquired from the previous

step to decide (control) future actions of the vehicle. These actions include: move
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straight, change direction, accelerate, decelerate, stop, use tools, etc. Furthermore,

in case of any change in the environment including changes in the type of crop, the

type and condition of the soil, the weather, the vehicle should be able to adapt itself

to the new environment.

The control problem consists of two tasks. The first task is path planning, in

which the path that the vehicle should follow considering the obstacles and their

predicted movement should be determined. Many other constraints can contribute

to the planned path such as the fact that the vehicle should not cross the plant rows

or time minimization.

The second task is path tracking. Path tracking is the act of lateral and longi-

tudinal control of the vehicle to follow the planned path in real time. In the case of

agriculture vehicles, this is not an easy job, since these vehicles work in a complex

environment. Agricultural vehicles often work on different types of terrain, even

and uneven, or changing and unpredictable terrain ranging from asphalt to spongy

topsoil in the field. Even the condition of the soil, such as humidity, can be very

different which affects the dynamics of the vehicle. Add to all these the fact that

the weight of the vehicle can be largely changing based on the tools it has been

given for a specific task. Path tracking control in autonomous vehicles covers speed

(longitudinal) control and steering (lateral) control. The steering controller is aimed

to provide sufficient steering input to control the direction of the vehicle, and the

speed controller provides throttle and braking input (in case of an electrical vehicle,

torque) to control the speed of the vehicle and to guide the vehicle along a predefined

path in the desired time.
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1.3.1 Types of Controllers for Autonomous Vehicles

Researchers have developed different steering and speed control methods in the

past decades for autonomous vehicles. The controllers can be divided into six cate-

gories based on the exercised tools.

Geometric and Kinematic Controller

This type of controller is developed based on the geometric and kinematic ve-

hicle models. It is one of the most popular types of controllers used in autonomous

steering control due to its simplicity and stability. However, this type of controller

is not robust to the changes the tractor may encounter in the field. The most basic

type of this controller, ”Follow the Carrot”, has been reviewed and applied by Arturo

L. Rankin et al. [1] and Barton [2], and was improved by Wit [3] for a smoother con-

troller, “Pure Pursuit”. Stanley, Stanford University’s autonomous vehicle that won

the second DARPA Grand Challenge in 2005 [4], exerted a steering controller, named

Stanley method, detailed by Hoffmann [5]. Lenain et al. [6] designed an extended

kinematic model accounting for sliding effects for high accuracy path tracking of the

vehicle in the presence of sliding.

Dynamic Controllers

Dynamic controllers include the dynamic model of the vehicles in their control

law. Rossetter [7] in his work proposed a lane keeping strategy using the virtual force

concept, using Kalman Filters to process position and yaw rate data for the controller

to determine sufficient virtual forces. Fierro [8] modified the standard kinematic
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controller to include a dynamic backstepping extension to the control structure.

A dynamic controller requires dynamic feedbacks such as force and torque, which

require expensive sensors, or alternatively, should be done with a great computational

cost.

Optimal Controller

LQR is one of the most popular optimal control theories where the controller

gain was determined using the linear quadratic optimization approach. Osinenko [9],

developed an optimal traction control, in order to improve the efficiency of the farm-

ing vehicles, with feedback of the drive torque.

Adaptive Controller

The adaptive controller is used when the controller needs to be highly robust to

changes in dynamics in certain ranges. Lucet [10] developed an extended kinematic

model of the robot considering the effects of wheel-ground skidding. Based on the

extended kinematic model, an adaptive and predictive controller for path tracking

is developed to drive the front and rear steering angles. In the study of Fang et

al. [11] the kinematic model of the vehicle was modified to account for the time-

varying sliding effects in the lateral deviation, and a robust adaptive control law was

designed. Other notable studies can be found in [12], and [13].
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Model-Based Controller

The Model Predictive Controller (MPC) typically uses a linear or nonlinear

plant model to predict the required control input for the plant. This method usually

involves an optimization procedure in order to get the optimal value for the plant

input. MPC is the most common controller used for autonomous vehicles. Kong [14]

presents a study in which, a simplified bicycle kinematic and dynamic model was

used in an MPC controller, to reduce the computational cost. Gao [15] used MPC

to control the autonomous vehicle with obstacle avoidance explicitly considered in

the control design, represented by a cost in the optimization problem. In a similar

work, Yoon [16] developed an optimal tracking problem while avoiding collision with

obstacles is formulated in terms of cost minimization under constraints. Information

on obstacles is incorporated online in the nonlinear model-predictive framework as

they are sensed within a limited sensing range.

Neural Network Controller

Intelligent controllers are used to make the vehicle even more robust to a wide

range of disturbances and uncertainty in the system. However, the training of such

a controller is still a challenge. NN predictive controller uses a neural network model

of a nonlinear plant to predict future plant performance. The first step in this

model predictive control is to determine the neural network plant model (system

identification). Next, the plant model is used by the controller to predict future per-

formance [17]. NARMA-L2 Control is another type of NN controller that transforms

nonlinear system dynamics into linear dynamics by canceling the nonlinearities [18].
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Model Reference Control uses two neural networks: a controller network and a plant

model network. First, the plant model is identified by the first neural network, and

then the second neural network is trained as a controller such that the plant out-

put follows the reference model output [19]. Zhang [20] used the MPC controller to

train a NN controller, to reduce the computational cost of MPC in realtime, while

achieving the same accuracy as MPC.

Other than the controller, machine learning methods can be used for other

goals. Zhu [21] used a neural network to model the vehicle behavior on sloping

terrains, and then used a fuzzy logic controller based on the constructed NN vehicle

model to guide the tractor along the path. Matusko [22] used the neural network

to estimate tire/road friction force, which can be used to adapt the controller to

different conditions of the soil. In this study, we aim to use a neural network to

predict the soil type that the vehicle is traversing, and use this information to adapt

the controller to different types of soils.

1.3.2 Terrain Classification

There have been many research studies towards terrain classification for au-

tonomous ground vehicle or exploratory rovers. Most previous researchers used vi-

sion data to predict the soil type of the terrain that the vehicle is traversing. Bellutta

from CalTech classified the terrain into classes of ”green vegetation, dry vegetation,

soil/rock, and outliers” based on color [23]. Later on, they performed the classifica-

tion using other visual features such as texture and shape beside color [24].

Howard and Seraji [25] presented a technique for realtime terrain characteriza-

tion for a field mobile robot using a vision system and artificial neural networks.
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The terrain characteristics including roughness, slope, discontinuity, and hardness

are extracted from image data and are represented in a fuzzy logic framework.

Kim [26] used vision data to classify the terrains into four groups and estimated

the friction coefficient.

Methods involving vision and image will have a problem identifying soil type in

bad situations; for example, when the weather is foggy, or when a layer of snow has

covered the ground, the images are not sufficient for an accurate prediction.

Another widely used method to estimate the terrain type is based on the vi-

bration of the vehicle caused by soil-wheel interaction. In Brooks and Iagnemma’s

method [27], vibrations are measured using an accelerometer mounted on the vehicle.

The classifier identifies the terrain class to be sand, gravel, or clay [28].

In related work, Valada [29] used a microphone as a sensor to measure the

acoustic sounds of a mobile robot on different terrains, and used a deep convolutional

neural network to classify the terrain.

However, methods based on only vibrations have their own difficulties. In the

case of bumpy grounds, the vibrations caused by bumps and holes could be mistaken

by the vibration caused by the nature of the soil. Moreover, these methods could be

applied to a limited number of classes.

Combining different methods will help us overcome the limitations of each

method. In another work by Iagnemma [30], a combination of vision and audi-

tory sensors was used. First, the upcoming terrain was predicted based on image
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data. Then, the terrain parameters were estimated online based on wheel-soil inter-

action analysis. In the end, based on the auditory data from the wheel-soil contact

signature, the current terrain could be classified.

Weiss [31] presented a terrain classification method which fuses predictions based

on vision data with predictions made by a vibration-based method. Based on colors

in the image data, the robot can predict the terrain in front of it, and then it will

verify the prediction using the vibration data of the soil-wheel interaction when the

robot is traversing the classified area.

Wang [32] used Laser Measurement System (LMS) to observe anomalies in

surface reflection properties of terrains. The data were classified using the Support

Vector Machine (SVM) classifier.

In a more recent work done by Gonzalez and Iagnemma [33], first, the slip was

estimated using physical features including wheel torque and velocities. Then, a

deep network was trained on images from NASA’s Planetary Data System, MSL

Curiosity rover to classify the terrain into asphalt, sand, grass, gravel, mars ground

and pavement.

Inspired by the research done on this matter, we propose a new method for

terrain classification. In this method, the physical data such as car velocity, wheel

angular velocities, and slip ratios, measured with inexpensive sensors, are used to

classify the terrain. Then, the information is used to adapt the MPC controller for

steering control.
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Chapter 2
Dynamics and Terramechanics

2.1 Dynamics

To design a control system and to simulate the behavior of the system, dynamic

models of the vehicle and the wheels are essential.

2.1.1 Vehicle Dynamics

In this thesis, we use a double-track model to account for differences in the

wheels’ forces. In Figure 2–1 the forces acting on each wheel and the velocities are

specified. Fl represents the longitudinal force and Fs represents the lateral force act-

ing on the wheel. L1 and L2 are the longitudinal distances from the center of gravity

to front and rear wheels, respectively. W is the width of the vehicle. v1, v2, v3, v4 are

the total velocities of the centers of the wheels, vx, vy are the velocities of the vehicle

in body-fixed coordinates x− y − z, ωz is the angular velocity of the vehicle around

the z-axis, and ψ is the vehicle heading. Note that ωz = ψ̇. We assume that only

the front wheels are steerable. δ1 and δ2 represent the steering angles of the front

wheels.

Total forces and the moment acting on the vehicle are calculated in Equations

2.1.
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Figure 2–1: Vehicle Schematic Diagram

Fxtotal = Fl1 cos δ1 + Fl2 cos δ2 + Fl3 + Fl4 − Fs1 sin δ1 − Fs2 sin δ2 (2.1a)

Fytotal = Fs1 cos δ1 + Fs2 cos δ2 + Fs3 + Fs4 + Fl1 sin δ1 + Fl2 sin δ2 (2.1b)

Mz = (−Fs1 sin δ1 + Fl1 cos δ1 − Fl2 cos δ2 + Fs2 sin δ2 + fl3 − fl4)
W

2
+

(Fl1 sin δ1 + Fs1 cos δ1 + Fl2 sin δ2 + Fs2 cos δ2)L1 − (Fs3 + Fs4)L2 (2.1c)
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By applying the Euler-Newton Equations, the dynamic model of the system is

obtained. The effect of the road bank and slope is considered.

m(ax − vyωz) = Fxtotal −mgsinΘ (2.2a)

m(ay + vxωz) = Fytotal +mgsinΦcosΘ (2.2b)

Izzαz = Mz (2.2c)

where m is the vehicle mass, Izz is the inertia, Θ is the road slope, Φ is the road bank,

ax is the longitudinal acceleration, ay is the lateral acceleration, αz is the vehicle’s

angular acceleration around the z-axis, and g is the acceleration of gravity. Since the

farming vehicle does not have any suspension system, we ignore the pitch and roll

dynamics of the vehicle. Having vx, vy and ωz, the velocities of each wheel, vi =
[ vxi
vyi

]
for i = 1, 2, 3, 4 are computed, which will be used in terramechanics, to calculate the

slip ratio and slip angle.

vx1 = vx + ωz
W

2
= vx3 (2.3a)

vx2 = vx − ωz
W

2
= vx4 (2.3b)

vy1 = vy + ωzL1 = vy2 (2.3c)

vy3 = vy − ωzL2 = vy4 (2.3d)

In the next step, the interaction forces between the wheels and the soil should be

determined to simulate the dynamic model. The interaction forces are dependent on

the load on the wheels, Fzi for i = 1, 2, 3, 4. The load on the wheels is calculated by

solving the equilibrium equations of the moments and forces on the center of gravity.
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The tractor does not have high speed and acceleration, therefore the effect of load

transfer can be ignored. We assume Fz1 = Fz2 and Fz3 = Fz4. From equilibrium,

(Fz1 + Fz2)L1 = (Fz3 + Fz4)L2 (2.4a)

mg = Fz1 + Fz2 + Fz3 + Fz4 (2.4b)

Solve the Equations 2.4a and 2.4b,

Fz1 = Mg
L2

L1 + L2

= Fz2 Fz3 = Mg
L1

L1 + L2

= Fz4 (2.5)

This model for computing the load on the wheels is simplified, since it does not

consider the effect of cornering, road bank and slope. A more complete model can

be formulated solving Equations 2.6a-2.6f. See Figure 2–2. In this model, consid-

ering that the vehicle has little or no acceleration mostly, we ignore the effects of

acceleration and load transfer.

Fx1 + Fx2 + Fx3 + Fx4 = mgsinΘ (2.6a)

Fy1 + Fy2 + Fy3 + Fy4 = mgcosΘsinΦ (2.6b)

Fz1 + Fz2 + Fz3 + Fz4 = mgcosΘcosΦ (2.6c)

(Fz2 + Fz3 − Fz4 − Fz1)
W

2
+ (Fy1 + Fy2 + Fy3 + Fy4)h = 0 (2.6d)

(Fz1 + Fz2)L1 − (Fz3 − Fz4)L2 + (Fx1 + Fx2 + Fx3 + Fx4)h = 0 (2.6e)

Fz2 − Fz1 = Fz3 − Fz4 (2.6f)
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Figure 2–2: Left: Side view ; Right: Front view of the car and normal forces

where, h is the height of C.G. We obtain,

Fz1 =
1

2

[
(mgcosΘcosΦ)

L2

L1 + L2

−mgsinΘ
h

L1 + L2

+mgsinΦcosΘ
h

W

]
(2.7a)

Fz2 =
1

2

[
(mgcosΘcosΦ)

L2

L1 + L2

−mgsinΘ
h

L1 + L2

−mgsinΦcosΘ
h

W

]
(2.7b)

Fz3 =
mgcosΘcosΦ

2
− Fz1 (2.7c)

Fz4 =
mgcosΘcosΦ

2
− Fz2 (2.7d)

2.1.2 Wheel Dynamics

For the simulation of the vehicle, the wheel dynamics are also important. Having

the force and torque acting on the wheel, one can obtain the angular velocity of the

wheel, which is used in the computation of slip ratio. Based on Figure 2–3 we have,

Iwαw = T − FlR (2.8)
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where, T is the wheel torque, αw is the wheel angular acceleration, and Iw is the

wheel inertia, which is
mwR

2

2
. In this formula, mw is the mass of the wheel, and R

is the radius.

Figure 2–3: Wheel Dynamics

2.1.3 Defining Trajectory and Error calculation

The desired trajectory is defined by the desired longitudinal vehicle velocity,

vdes, and the desired heading rate, ψ̇des. The trajectory in X − Y − Z coordinate is

formulated as,

Ẋdes = cosψdesvdes

Ẏdes = sinψdesvdes

The trajectory that the vehicle is traversing, based on computed vx, vy and ωZ

is as follows:
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Ẋ = cosψvx − sinψvy

Ẏ = sinψvx + cosψvy

The longitudinal, lateral and heading errors, eψ, eẋ, and eẏ in x−y−z coordinate

is computed.

eψ = ψdes − ψ

eẋ = vdescos(ψdes − ψ)− vx

eẏ = vdessin(ψdes − ψ)− vy

(2.9)

The lateral deviation, ey, the lateral velocity deviation eẏ, and heading deviation,

eψ are used as the feedback for the MPC controller, and eẋ is used as the feedback

for PID controller.

2.1.4 Vehicle Specifications

In the Arion project, the farming vehicle is designed, and a prototype has been

built. The vehicle specifications used in the dynamics model, are listed in Table 2–1.

Note that, all wheels have the same radius. In this study, we assume the road slope

and bank angles are zero.
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Parameter Symbol Value Unit

Distance from front wheels to C.G. L1 1.15 m
Distance from rear wheels to C.G. L2 1.28 m

Vehicle Width W 1 m
Height of C.G. h 0.8613 m
Wheels Radius R 0.43 m

Mass of the vehicle m 1000 Kg
Mass of the Wheels mw 29 Kg

Inertia of the vehicle around Z axis Izz 1100 Kg.m2

Standard gravity g 9.8 m/s2

Table 2–1: Vehicle Specifications

2.2 Terramechanics

The main objective of terramechanics is to calculate forces and moments inter-

acting between the wheel and the terrain. Modeling this interaction is a key factor for

evaluating vehicle performance, thus simulation and controller design. Pacejka [34]

developed a formulation named Magic Formula which can model interaction forces

between wheel and hard terrain. However, we cannot use this model directly for the

vehicle on soft soil. Deformation of the soil, different characteristics of different soil

types and conditions, and uncertainties that exist in its parameterization make the

modeling of tire-soil interaction a very complex problem.

Researchers have developed a variety of models to formulate the interactions.

The models can be categorized into three groups: 1) empirical models, 2) physics-

based models, and 3) semi-empirical models. These models will result in different

accuracy and computational cost; therefore, based on the application, one of the

methods should be chosen.
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The empirical models are completely based on laboratory or field experiments.

A function is fitted to the data gathered for a soil type, and a look-up table is created.

In the WSE VCI model developed by Army Engineer Waterways Experiment Sta-

tion [35], Cone Index was used as a measure for terrain interaction forces. In a similar

approach, Wismer and Luth [36] proposed a model to correlate wheel torque, motion

resistance, tractive and net pull efficiency to wheel load, soil strength, tire geome-

try, and tire deflection. This model introduced the effect of wheel slip on tire force.

STIREMODE [37] was developed by Systems Technology Inc. for on-road vehicles

and then extended to off-road condition by applying Metz [38] shaping functions. In

this model, longitudinal and lateral force function vs slip was introduced.

The empirical models are simple tools to evaluate wheel behavior on the soil in

a similar condition to the experiment. However, outside the scope of the tests, these

models are not accurate, and thus not appropriate to use in real world applications.

Physics-based models use physical principles and analytical methods to model

tire-soil interaction and structure. VTIM (Vehicle Terrain Interaction Model) pro-

posed by Madsen [39], considers the deformation of both the tire and the soil. The

model combines the 3D tire model that consists of a lumped mass, spring, and

damper system with analytical soil mechanics. The model was developed for use in

realtime.

Another method for physics-based modeling is DEM (Discrete Element Method)

The main concept of DEM is to consider the soil as a system of discrete particles

and model the interaction of each particle individually. [40, 41]
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One alternative numerical model to capture more details of vehicle soil inter-

action is the Finite Element Method (FEM). Past advancements in computational

resources made FEM a practical tool to analyze complex systems. Many researchers

utilized FEM to model soil-tire interactions [42–47]. Physics-based models are very

accurate, but also have high computational cost.

Semi-empirical models are the most commonly used models to use in a full-

vehicle simulation and control design. These models combine experimental measure-

ments, empirical formulation, and analytical methods, to have accurate and compu-

tationally efficient modeling of the interaction.

In this thesis, we use Chan and Sandu’s [48] revised model for wheel-soil longi-

tudinal and lateral interaction. The following assumptions have been made in this

study considering the application.

1. The soil is deformed.

2. The tire is rigid.

3. The tire inflation pressure and the temperature remain constant during the

entire simulation.

4. The tire remains in contact with the ground at all times.

Figure 2–4 shows a schematic of the wheel and the variables used in this model-

ing. The interaction between a wheel and soil will result in the normal and tangential

stress field under the wheel. The forces and moments acting on the wheel are the

integral of these stresses over the contact patch. The variables in the figure, are as

follows: R is the radius of the wheel, ωr is the angular velocity, vxr is the longitu-

dinal velocity, θr is the exit angle, θe is the entry angle, θm is the angle where the
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maximum normal stress will happen, z is the sinkage of the wheel into the soil, σn

is the normal stress and τ is the shear stress.

Figure 2–4: Wheel stresses and variables

2.2.1 Longitudinal Force Generation

Janosi and Hanamoto [49] provided a formulation to calculate the shear stress

using the Mohr-Coulomb failure criterion and the Janosi-Hanamoto relation:

τx(θ) = (c+ σn(θ)tanφ)
(
1− e−

jx(θ)
Kx

)
(2.10)

where σn is the normal stress, c is the soil cohesion, φ is the internal friction angle, j

is the shear displacement, Kx is the shear deformation modulus. To use this relation,

we need to calculate the shear displacement of the soil underneath the wheel and the

normal stress. A key variable for analysis of the interaction is the wheel slip ratio,

which has a direct effect on the traction. The slip ratio is defined as:

s =
Rωr − vxr

max(Rωr, vxr)
(2.11)
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In this definition, during acceleration, the slip ratio is positive, and during braking,

it is negative.

Wong [50, 51] demonstrated that the shear displacement for any arbitrary angle

θ on the wheel can be calculated using the tangential interface velocity of the wheel.

The absolute velocity of each point on the contact patch can be expressed as:

Vx = Rωr − vxrcosθ = Rωr
(
1− (1− s)cosθ

)
(2.12)

Figure 2–5: Velocity at angle θ

Therefore, the shear displacement can be calculated by integrating the surface

velocity over time.

jdx =

∫ t

0

Vxdt =

∫ t

0

R
(
1− (1− s)cosθ

)
ωrdt = R

∫ θe

θ

(
1− (1− s)cosθ

)
dθ

= R[(θe − θ)− (1− s)(sinθe − sinθ)] (2.13)

Bekker [52] developed a formulation to express the pressure as a function of soil

empirical parameters and tire sinkage.

p =

(
kc
b

+ kφ

)
zn (2.14)
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where kc is the soil cohesion related parameter, kφ is the friction angle related pa-

rameter, n is the sinkage index, and these three parameter will be obtained with

sinkage plate tests. b is the contact patch width, and z is the sinkage.

Later, Wong and Reece [51] presented a revised and more accurate version of

the normal stress-sinkage relation.

p = (ck′c +
γbk′φ

2
)

(
z

b

)n
(2.15)

where k′c is the soil cohesion related parameter, k′φ is the friction angle related pa-

rameter, γ is the unit weight of the soil, and c is the soil cohesion. In this equation,

k′c and k′φ are non-dimensional parameters.

Computation of radial tire stresses by Wong and Reece also shows that the

maximum normal stress does not happen directly under the center of the wheel. It is

shifted forward and will move further with the increase in slip ratio. The distribution

of normal stress under the wheel is shown in Figure 2–6. θN is the point where the

maximum normal stress happens. As seen in the figure, the distribution of normal

stress has different curves in the ranges θr to θN and θN to θe.

Wong developed a piece-wise formulation to calculate normal stress in the two

regions. By substituting the sinkage z in Equation 2.14 and Equation 2.15 with the

following term, the normal stress is obtained as a function of θ.

z = R(cosθ − cosθe) (2.16)

24



-0.1 0 0.1 0.2 0.3 0.4 0.5

0

200

400

600

800

1000

1200

Figure 2–6: Normal Stress as a function of θ

σn =


σnf = Cσ(cosθ − cosθe)n θN ≤ θ ≤ θe

σnr = Cσ
(
cos
(
θe −

( θ − θr
θN − θr

.(θe − θN)
))
− cosθe

)n
θr ≤ θ ≤ θN

(2.17)

where,

Cσ =


(
kc
b

+ kφ

)
Rn Bekker(

ck′c +
γbk′φ

2

)(R
b

)n
Wong

(2.18)

In terramechanics, Equations 2.19-2.21 provide a framework to calculate Draw-

bar Pull (DP), Vertical Force (VF) and the angular Torque (T), by integrating the

normal and tangential stresses over the contact patch.
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DP = Rb
[ ∫ θe

−θr
τx(θ)cosθdθ −

∫ θe

−θr
σn(θ)sinθdθ

]
(2.19)

V F = Rb
[ ∫ θe

−θr
τx(θ)sinθdθ +

∫ θe

−θr
σn(θ)cosθdθ

]
(2.20)

T = R2b
[ ∫ θe

−θr
τx(θ)dθ

]
(2.21)

These equations are complex, and need to be solved numerically. In order to

solve the equations efficiently, the following assumptions are made:

1. The tire is rigid, that means R is constant.

2. θr is usually small and does not vary. Therefore, we assume a constant value

for θr. θr = −0.09 rad (−5°), is a reasonable assumption.

3. θN is directly in between of θr and θe.

θN =
θe + θr

2
(2.22)

4. The normal stress can be approximated with a parabolic curve. This will allow

us to use the Simpson’s rule to simplify the integrals. Based on Simpson’s rule,

we can approximate the integral of a parabola using Equation 2.23.∫ b

a

F (x)dx =
b− a

6

[
f(a) + 4f

(
a+b

2

)
+ f(b)

]
(2.23)

After numerical computations, the accuracy of this estimation was deemed

acceptable.

26



Figure 2–7: Left: Front view ; Right: Top view of the wheel

For all sets of θe and θr, the vertical force should be balanced with the wheel

load. That means:

Fz = V F (2.24)

Given the assumptions, we can solve the Equation 2.24 for θe. Then, solve the

Equation 2.19 to find the drawbar pull, which is equal to Fx.

2.2.2 Lateral Force Generation

The lateral force is the summation of the forces caused by the lateral shear

stress, Fycp, and the bulldozing effect of the soil, Fybd.

Fy = Fycp + Fybd (2.25)

Figure 2–7 shows the variables used for lateral shear modelling.
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The variables in the figure are as follows: vyr is the lateral velocity, vr is the

total velocity, b is the width of the wheel, β is the slip angle, σp is lateral bulldozing

pressure acting on the side of the wheel and τycp is the shear stress in the lateral

direction. Similarly, for the lateral shear deformation, we need to define the slip

angle.

β = tan−1

(
vyr
vxr

)
(2.26)

Hence, the lateral velocity vy is defined as:

vyr = vxrtanβ (2.27)

Similar to Equation 2.13 the lateral shear displacement can be calculated.

jdy =

∫ t

0

vyrdt =

∫ t

0

vxrtanβdt = tanβ

∫ θe

θ

vxr
ωr
dθ = R(θe − θ)(1− s)tanβ (2.28)

Using Janosi and Hanamoto relation with lateral shear displacement,

τycp(θ) = (c+ σn(θ)tanφ)
(
1− e−

jy(θ)

Ky
)

(2.29)

where ky is the shear deformation module in the lateral direction, the force acting

on the wheel that is caused by the lateral shear stress can be computed.

Fycp = Rb

∫ θe

−θr
τycpdθ (2.30)

For analysis of the soil bulldozing effect during cornering, Schwanghart [53]

proposed using the Fundamental EarthMoving Equation to calculate the resultant

force. Based on Reece’s [54] Fundamental EarthMoving Equation, the passive ground
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resistance for a wall moving into a body of soil is composed of four terms, which

represent the effects of soil density, cohesion, the surcharge on the soil surface, and

adhesion between the blade and soil. The force of the bulldozing effect is computed by

integrating over the soil and wall contact patch. In this approach, it is assumed that

the sidewall of the wheel acts similar to the cutting blade of a bulldozer. McKyes [55]

proposed the following equation to calculate the bulldozing effect using N -factors.

F = γsz
2Nγ + czNc + qzNq + cazNa (2.31)

where the N -factors are: Nγ, the soil specific weight coefficient, Nc, the soil cohesion

coefficient, Nq, the soil surcharge load coefficient, and Na, the coefficient of adhesion

between soil and blade. c is the soil cohesion, q is the surcharge load from accu-

mulated bulldozed soil, ca is the soil-blade adhesion, z is the sinkage, and γ is the

unit weight of soil. In this study, we ignore the effect of surcharge load and soil-

blade adhesion. From the static equilibrium of soil and blade, the N -factors can be

determined.

Nγ =
(cotρw + cotXc)sin(φ+Xc)

2sin(ρw +Xc + φ)
(2.32a)

Nc =
cosφ

sinXcsin(ρw +Xc + φ)
(2.32b)

where ρw is the blade-soil angle, which is 90° most of the time, Xc is the soil failure

angle, and φ is the soil friction angle. Xc can be approximated as, [55]

Xc =
π

4
− φ

2
(2.33)
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Using the assumed values, we can rewrite Equations 2.31 and 2.32 as follows

with a different notation.

F (θ) = D1(cz +D2γ
z2

2
) (2.34)

where

D1 = cotXc + tan(Xc + φ)

D2 = cotXc +
cot2Xc

cotφ

z = R(cosθ − cosθe)

Finally, Fybd is calculated by integrating the bulldozing effect over the submerged

portion of the wheel.

Fybd = R

∫ θe

−θr
F (θ)cosθsinβdθ (2.35)

The slip angle is introduced into the equation, as in the real world, there is no

bulldozing effect when there is no lateral movement. It should be mentioned that in

pure cornering situation, θe and θr are equal to θs which is the sinkage of the wheel

in the static condition.

2.2.3 Combined lateral and longitudinal

During combined manoeuvres caused by soil shear stresses in lateral and longi-

tudinal directions, the limits of total traction generated by soil shear stress should be

taken into account. The shear strength of the soil is defined by the Mohr-Coulomb
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failure criterion,

τmax = c+ σntanφ (2.36)

Therefore, the total shear stress is bounded by the inequality in Equation 2.37.

( τx
τmax

)2
+
( τycp
τmax

)2 ≤ 1 (2.37)

After some simplification, the boundary curve of the inequality 2.37 is,

(
1− e−

jx
Kx

)2
+
(
1− e−

jy
Ky
)2

= 1 (2.38)

or

(
1− e−

R[(θe−θa)−(1−s)(sinθe−sinθa)]
Kx

)2
+
(
1− e−

R(θe−θa)(1−s)tanβ
Ky

)2
= 1 (2.39)

where θa is the point where the combination of lateral and longitudinal shear stresses

are equal to the maximum shear stress allowed, and after this point, the wheels will

slide. By solving Equation 2.39 numerically, θa is found. The new expressions for

lateral and longitudinal shear stresses can be defined as,

τx =


τmax

(
1− e−

jx
Kx

)
θa ≤ θ < θe

τmax −θr ≤ θ < θa

(2.40)
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τycp =


τmax

(
1− e−

jy
Ky
)

θa ≤ θ < θe

τmax −θr ≤ θ < θa

(2.41)

Equations 2.40 and 2.41 ensure that the tangential stresses will satisfy the soil

failure criterion.

2.2.4 Parameters

The aforementioned equations are complex, and need to be solved numerically.

This will make this approach inefficient, as solving the equation at each timestep

in realtime will add delay to the system, which is not efficient. One solution to

this problem is to solve the equations offline for different soil types and ranges of

possible values of load on the wheel, slip ratio and slip angle, and create lookup

tables. Therefore, in real time the system will only use the look up table to find the

interaction forces, base on the type of the soil, current load, slip ratio and slip angle,

which is more efficient.

Four types of soil are considered in this study; Clay, Loam, Sandy Loam, and

Sand. The empirical parameters of these soils are listed in Table 2–2.
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Parameters
Terrain Type

Clay Loam Sandy Loam Sand Unit

Cohesion C 7.58 0.8 2.2 1.3 kPa
Internal Friction Angle φ 14 37.2 39.4 31.1 degree

Shear Deformation Parameter K 2.5 3.6 6.1 1.2 mm
Sinkage index n 0.85 1 1.1 0.79 -

Soil cohesion related parameter kc 43.08 1.37 74.6 102 kPa/mn−1

Friction angle related parameter kφ 499.7 814 2082 5301 kPa/mn

Table 2–2: Soils Parameters [50]
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Chapter 3
Controller Design

3.1 Longitudinal Control

For the control of the longitudinal movement, we use a Proportional-Integral-

Derivative (PID) controller, with the feedback of measured longitudinal velocity of

the vehicle. Having an integral term (I-term) is important in this controller since the

speed error will accumulate during the simulation, and the vehicle will fall behind

the desired trajectory, along the x− axis. The I-term will help eliminate this accu-

mulated error, and achieve better accuracy on the trajectory tracking. It is worth

mentioning that the longitudinal and lateral dynamics are related to each other, and

the performance of one will impact the performance of the other. For example, one

of the feedback errors for the lateral controller is the lateral deviation from the path.

If the error along the x − axis of the vehicle is large, the computed lateral error

will not represent the shortest distance between the vehicle and the path. Instead,

it represents the distance between the vehicle and where the vehicle is supposed to

be on the path, which means
√
dx2 + dy2. This will affect the performance of the

lateral controller.
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3.2 Lateral Control

The most common method for steering control of a vehicle is MPC, which is

a powerful tool that can deal with difficult situations. The behavior of the system,

considering the equations of terramechanics, is highly nonlinear. Some simplification

is possible. However, if we use a more accurate model of terramechanics instead

of simplified linear relations, the system will remain nonlinear. In this study, we

approximate the behavior of the system at a stable point and in different soil types

with linear systems, to use as the models in the MPC controller. Therefore, we have

different estimations for different types of soil. Based on each linearized system,

the MPC controller is designed and tuned to have the best performance on that

specific soil type. Therefore, in real time, we need to identify the soil type in order

to choose the appropriate MPC controller. In the proposed structure, the neural

network block’s purpose is to identify the soil and act as a switch. Figure 3–1 shows

a schematic block diagram of the proposed system.

MPC Configuration

Model Predictive Control (MPC) uses a model of the plant to predict the future

inputs and outputs of the system. Considering this prediction for future inputs, at

each time step t, the current plant state is sampled and a cost minimizing control

strategy is computed under operating constraints for a specified time horizon in the

future: t+ T , in order to best follow a given trajectory.

The computed optimal move is the control action applied to the plant at time

t. At the time t+ 1, a new optimization is solved over a shifted prediction horizon.
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Figure 3–1: The scheme of the control system

In other words, MPC is based on iterative, finite-horizon optimization of a plant

model. MPC allows the current timeslot to be optimized while taking future timeslots

into account. MPC needs the dynamic model of the system to predict the future.

The model should first be validated, meaning that the model should be close to the

real system considering disturbance and uncertainty in the system.

The dynamic model of the system is developed in Chapter 2. The states of the

system and the input are,

ζ = [vx vy ψ̇ x y ψ ω1 ω2 ω3 ω4]T , u = δ1. (3.1)
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In this application, we assume δ3 and δ4 are zero, and δ2 is related to δ1 with

Ackermann’s relation. This means:

δ2 = cot−1(cotδ1 −
W

L1 + L2

). (3.2)

Consider the system,

ζ̇ = fsoil(ζ, u)

η = h(ζ)

(3.3)

where fsoil is a nonlinear function which is different for each soil type, and the

output η = [eψ, ey, eẏ] is the vector of heading deviation, lateral deviation, and lateral

velocity deviation from the desired path, obtained from Equation 2.9. In order to

obtain a finite dimensional optimization problem, the discrete version of the system

is defined for timestep k.

ζd(k + 1) = fsoil,d(ζd(k), ud(k))

ηd(k) = hd(ζd(k))

(3.4)

The optimization problem at timestep k is defined as,
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min
∆uk∈RHc

J(ζk,∆uk) =

Hp∑
i=1

‖η̂k+i,k‖2
Q +

Hc−1∑
j=0

‖∆uk+j,k‖2
R

Subject to: δ1,min ≤ uj ≤ δ1,max

∆δ1,min ≤ ∆uj ≤ ∆δ1,max for j = k, . . . , k +Hc − 1

uj = uj−1 + ∆uj

(3.5)

In this formulation, η̂k+i,k is the output of the system at timestep k+i, calculated

at timestep k, ∆uk+j,k is the difference between the input of the system at timestep

k + j calculated at time k and the reference input at the same timestep, Hp is the

prediction horizon, Hc is the control horizon, and ∆δ1 is the rate of steering. Note

that:

‖.‖2
Q := (.)TQ(.)

‖.‖2
R := (.)TR(.)

Linearization is a linear approximation of the system around an operating

point. Different methods of linearization have been developed by researchers. In our

application, because of the complexity of the model, we use numerical perturbation

to linearize the MPC internal plant. In the perturbation method, a small perturba-

tion is introduced into the nonlinear model and the response to this perturbation is

measured. Looking back at the continuous-time system in Equation 3.3, we define

a new set of the perturbed states, inputs, and outputs centered about the operating

point, [ζ0, u0, η0]:
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∆ζ(t) := ζ(t)− ζ0

∆u(t) := u(t)− u0

∆η(t) := η(t)− η0

(3.6)

Therefore, the linearized state-space equations in terms of these new variables

are obtained.

∆ζ̇(t) = A∆ζ(t) +B∆u(t)

∆η(t) = C∆ζ(t) +D∆u(t)

(3.7)

The state-space matrices are computed as follows:

A(i, j) =
∂fi
∂ζj

∣∣∣∣
ζ0,u0

B(i,m) =
∂fi
∂um

∣∣∣∣
ζ0,u0

C(p, j) =
∂hp
∂ζj

∣∣∣∣
ζ0,u0

D(p,m) =
∂hp
∂um

∣∣∣∣
ζ0,u0

(3.8)

for i, j = 1, 2, ..., N with N the number of states, m = 1, 2, ...,M with M the num-

ber of control inputs, and p = 1, 2, ..., P with P the number of outputs. In this

formulation, ẋi = fi(ζ, u), and ηi = hi(ζ, u). In this study, matrix D is zero.

Using this method, we need to find a point where the system is nearly at steady

state and linearize the plant around that point. Each soil has different characteristics,

that means the operating point and the linearized plant are different for each soil

type.
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The operation points for linearization are selected at specific times in the sim-

ulations, which are listed in Table 3–1. The best value of linearization time was

obtained by trial and error, to find the best model that minimizes the error.

Soil Linearization time(s)

Clay 1.5
Loam 1
Sand 1.6

Sandyloam 1.1

Table 3–1: Linearization Times

In the next step, we tune the MPC controllers’ parameters for linearized plants of

each soil type. The tuned values of Prediction Horizon, Hp (steps), Control Horizon,

Hc (steps), and sampling period, ts (seconds) are listed in Table 3–2.

Soil Hp Hc ts

Clay 15 10 0.1
Loam 15 6 0.1
Sand 12 7 0.1

Sandyloam 12 7 0.1

Table 3–2: MPC Parameters

Furthermore, the weight matrices Q, are tuned as in Equation 3.9.
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QClay =


0.1 0 0

0 8 0

0 0 3

 QLoam =


1 0 0

0 40 0

0 0 4



QSand =


0.1 0 0

0 30 0

0 0 2

 QSandyloam =


1 0 0

0 30 0

0 0 3


(3.9)

For all soil types the input weight matrix,R = [1]

The constraints of the optimization problem are defined based on the physical

properties and limits of the system. In this application, the wheels cannot steer more

than 45°, and the steer rate is not more than 0.2 rad/s that means

δ1,min = −45° = −0.8 rad δ1,max = +45° = 0.8 rad

∆δ1,min = −0.02 rad/timestep ∆δ1,max = 0.02 rad/timestep

(3.10)
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3.3 Neural Network

A neural network consists of units called perceptron or neuron. The concept of

a perceptron is inspired by human brain neurons, which receive the information from

one terminal and produce output from the other terminal. Figure 3–2 compares the

functionality of a neuron and a perceptron [56].

Input Output

Figure 3–2: Neuron and Perceptron

The input vector x = [x1, x2, ..., xn] is multiplied by the weight vector w =

[w1, w2, ..., wn]. The bias term b will be added to the result. This weighted sum will

then pass through an activation function f , to produce the output y. Note that w

and b are the learnable parameters, which are determined with a learning algorithm,

such that the output reaches a goal. A neural network is built up of many neurons

interacting with each other. A neural network consists of an input layer, which does

not modify the input and only transfers the input to the network, the output layer,

which is the last layer and the output of this layer is the output of the neural network,

and hidden layers, which are layers between input and output layers. The output of
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each layer is the input to the next layer. Figure 3–3 shows an example of a network

with two hidden layers. In this structure, the first hidden layer has five and the

second hidden layer has three neurons.

Figure 3–3: Neural Network

The activation function is chosen based on the application. Different perceptrons

can have different activation functions. Three common choices for f are the sigmoid,

tanh, and relu functions, shown in Figure 3–4, and defined in Eq 3.11.

Figure 3–4: Common activation functions
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sigmoid(x) :=
1

1 + e−x
tanh(x) :=

ex − e−x

ex + e−x
Relu(x) := max(0, x) (3.11)

The goal of the neural network in this study is to predict the soil type, based on

the input data. The first step is to define the input vector features of the system. As

mentioned in Chapter 2 on terramechanics, there is a nonlinear relation between the

soil type and physical variables in the system. Inspired by terramechanics relations,

we consider the physical parameters listed in Table 3–3 as features of the input vector

to the system.

parameter symbol parameter symbol

Angular velocity wheel 1 ω1 Slip ratio wheel 1 s1

Angular velocity wheel 2 ω2 Slip ratio wheel 2 s2

Angular velocity wheel 3 ω3 Slip ratio wheel 3 s3

Angular velocity wheel 4 ω4 Slip ratio wheel 4 s4

Vehicle longitudinal velocity vx Slip angle wheel 1 β1

Vehicle lateral velocity vy Slip angle wheel 2 β2

Vehicle angular velocity around z-axis ωz Slip angle wheel 3 β3

Wheel torque T Slip angle wheel 4 β4

average of front wheels sinkage z

Table 3–3: Features of the input vector

The parameters should be easy to measure in the real application. The angu-

lar velocity of the wheels will be measured using encoders on the wheels. Vehicle

longitudinal, lateral and angular velocity will be measured using GPS, or an IMU.

Since the vehicle is electrical, we have access to torque data using the voltage of

the motors in the wheels. Slip Ratios and Slip Angles are estimated using measured
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velocities. For measuring the sinkage of the wheels inside the soil, we use two wide

range ultra-sonic sensors mounted on a structure above the front wheels. Since the

surface of the ground is not even, we need to get the average of sensor data over

its range to reduce noise. As the vehicle moves on the ground, the front wheels will

compact the soil, and the sinkage of the rear wheels can be misleading. Therefore,

we only include the front wheels sinkage in the data.

We also use the information from four previous time-steps for more accurate

classification. Therefore each input sample is a vector consists of parameters listed

in Table 3–3, stacked with the same features from previous timesteps:

x(1×85) = [x x1 x2 x3 x4]

where x is the current timestep feature vector,

x(1×17) = [ωr1 ωr2 ωr3 ωr4 s1 s2 s3 s4 β1 β2 β3 β4 vx vy ωz T z]

and xi is the feature vector from ith previous timestep. The target of the classification

problem is the soil type; Clay (class 1), Loam (class 2), Sand (class 3) and Sandy-

loam(class 4). For each type of soil, we collect data, in different situations, to make

sure the network is generalized.

First Approach: The input layer of the network has 85 neurons (number

of features) and the output layer has 4 neurons (number of classes). The tuned

network architecture consists of three hidden layers with 10, 5, and 10 neurons in each

layer, and the activation functions for hidden layers are tanh, Relu, and softmax

respectively, as in Figure 3–5.
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Input Layer

Figure 3–5: The architecture of the neural network

The network uses scaled conjugate gradient backpropagation as the training

algorithm, with regularization parameter λ = 0.1, and Cross-Entropy as a measure-

ment for loss. Cross entropy is calculated as

L = −
M∑
i=1

ŷi log(yi)

where M is the number of classes, in this case, 4, ŷi is the true probability of class

i, and yi is the predicted probability of class i.

Moreover, the data is standardized before training in order to have the same scale

for all features. This will assure that all the features have the same contribution,

regardless of their mean and variance. In this process, the values of a row are mapped

between −1 and 1 range.
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The dataset is split into three randomly-selected partitions to be used for train-

ing (75% of the dataset), validation (15% of the dataset) and test (10% of the

dataset).

Using 5-fold Cross-Validation, the average accuracy obtained for train and val-

idation sets are listed in Table 3–4.

accuracy

Train set 99.94%
Validation set 99.98%

Table 3–4: Average Accuracy for Train and Validation sets

Figure 3–6 shows the performance (loss) of the network during the training

process, and Figure 3–7 and 3–8 show the confusion matrices of the network. As

seen in the confusion matrix, the accuracy of the network on the test set is 99.6%.
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Figure 3–6: Cross-Entropy Loss per epoch during the training for Train, Validation
and Test sets
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Figure 3–7: Confusion Matrix for train and validation sets

Figure 3–8: Confusion Matrix test and overall sets
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Second Approach: The measured data for the previous approach comes from

the simulation. However, the real data cannot be as perfect as the simulation data,

due to the measurement noises. In the second approach, to have more realistic data,

we induce noise with about 20dB Signal Noise Ratio (SNR), into the input data,

then train the network with the imperfect data. In this case, the network needs to

be more complex in order to handle the noise.

The new network architecture consists of four hidden layers with 12 , 15, 10

and 8 neurons in each layer, and the activation functions for hidden layers are tanh,

Relu, Relu, and softmax respectively, as in Figure 3–9.

Input Layer

Figure 3–9: The architecture of the neural network

The network uses scaled conjugate gradient backpropagation as the training

algorithm, without regularization, and Cross-Entropy as a measurement for loss.

The data is standardized before training.
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The dataset is split into three randomly-selected partitions to be used for train-

ing (75% of the dataset), validation (15% of the dataset) and test (10% of the

dataset).

Using 5-fold Cross-Validation, the average accuracy obtained for train and val-

idation sets are listed in Table 3–5.

accuracy

Train set 99.88%
Validation set 99.85%

Table 3–5: Average Accuracy for Train and Validation sets

Figure 3–10 shows the performance (loss) of the network during the training

process, and Figure 3–11 and 3–12 show the confusion matrices of the network. As

seen in the confusion matrix, the accuracy of the network on the test set is 99.7%.
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Figure 3–10: Cross-Entropy Loss per epoch during the training for Train, Validation
and Test sets
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Figure 3–11: Confusion Matrix for train and validation sets

Figure 3–12: Confusion Matrix test and overall sets

51



Chapter 4
Results

In this chapter, we present the results obtained from the simulation. First, the

behavior of the system and controllers are evaluated in a field of one soil, for Clay,

Loam, Sand, and Sandyloam, independently. Then, the system is evaluated in a

field of mixed soils. All simulation results are gathered at a constant speed of 4.5
m

s
,

or 16
km

h
. It is assumed that the vehicle is moving on the XY plane, and has no

movement along the Z axis.

4.1 Clay

Figures 4–1 to 4–7 show the simulation results for the vehicle moving on Clay

soil. Figure 4–1 demonstrates the path of the vehicle, and the desired path, in

global fixed coordinates X − Y − Z. This path is designed based on the fact that

the farming vehicle needs to move between crops rows, and perform tasks such as

seeding or harvesting. This path consists of two U-turns and 65-meter straight line

in between.

Figure 4–2 represents the MPC controller’s input command to the system, which

is the steering of the left front wheel(δ1). The step between t=17 s and t=32 s

represents the steering angle input needed for the first U-turn, and the step between

t=48 s and t=63 s is the steering angle input needed for the second U-turn.
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Figure 4–1: Vehicle path on Clay
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Figure 4–2: MPC controller output: Steering angle of the front wheel

The errors used as the feedback signal for the MPC controller are shown in

Figure 4–4. The errors are defined in Chapter 2, Equation 2.9. The maximum value

of the heading deviation is less than 0.1 rad, which happens at the beginning and at
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the end of a turn, when the heading reference, Figure 4–3, changes from zero to 0.2

rad.

20 40 60 80

-0.5

0

0.5

Figure 4–3: Heading reference for the S-shape path

As can be seen in Figure 4–4, the maximum value of the lateral deviation is 0.1

m, which comparing to the common width of the crop rows and the width of the

vehicle itself, which is around 2 m, is 5% error.

Figure 4–5 displays the PID controller’s input command to the system, which is

the torque of a wheel. At the beginning of the maneuver, the torque is generated to

accelerate the vehicle and increase the velocity of the vehicle from zero to the desired

value. In the turn, the vehicle will have a drop in speed, as the forces caused by the

normal and shear stress of soil is divided into two motions, longitudinal and lateral.

This will cause an increase in the torque at the beginning of each turn.

The longitudinal speed is shown in Figure 4–6, in which the difference between

the desired and actual speed of the vehicle along its x axis can also be observed. The

red dashed line represents the desired constant speed. The longitudinal speed error

is 2% of the given reference speed.
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Figure 4–4: Errors as feedback to the MPC controller
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Figure 4–5: PID controller output: wheel torque
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Figure 4–6: Longitudinal speed

Figure 4–7 shows the decision made by the Neural Network block on the soil

type. In this figure, there is a misclassification in the first second of the simulation,

which provides 99% accuracy.
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Sandyloam

Figure 4–7: Class prediction
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4.2 Loam

Similar to Clay, Figures 4–8 to 4–13 demonstrate the simulation results for the

vehicle moving on Loam soil. Figure 4–8 shows the path of the vehicle, and the

desired path, in the global fixed coordinates X − Y − Z.
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Figure 4–8: Vehicle Path on Loam

Figure 4–9 shows the MPC controller’s input to the system.

The errors used as the feedback signal for the MPC controller are shown in

Figure 4–10. As can be seen, the maximum values of the heading deviation and

lateral deviation are 0.2 rad and 0.08 m (0.02% error), respectively.

The deviation of the longitudinal speed from its desired value is shown in Figure

4–12. Apart from the transient portion of the result, the longitudinal speed error
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Figure 4–9: MPC controller output: Steering angle of the front wheel
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Figure 4–10: Errors as feedback to the MPC controller
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Figure 4–11: PID controller output: wheel torque

is 1% of the reference value. In this case, the speed overshoot acts in our favor. It

compensates for the distance the vehicle falls behind, along the X axis, because of

the difference in the desired speed and the actual speed. In other words, the ideal

vehicle on the desired path starts its movement with the velocity of 4.5
m

s
, but the

vehicle, in reality, will start from 0 velocity.
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Figure 4–12: Longitudinal speed
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Figure 4–13 shows the decision made by the Neural Network block on the soil

type. In this figure, there is a misclassification for 0.5 second in the simulation, which

provides 99.4% accuracy.
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Figure 4–13: Class prediction
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4.3 Sand

Similarly, Figures 4–14 to 4–19 show the simulation results for the vehicle moving

on Sand soil.
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Figure 4–14: Vehicle Path on Sand
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Figure 4–15: MPC controller output: Steering angle of the front wheels
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The peak value of the heading deviation is 0.2 rad, which happens at the begin-

ning and the end of a turn when the heading reference- the S-shape path- changes

from zero to 0.2 rad. As can be seen in 4–16, lateral deviation peaks at 0.09m, which

leads to 0.02% error.
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Figure 4–16: Errors as feedback to the MPC controller

The longitudinal speed error is 1% of the reference speed.

Figure 4–19 shows the decision made by the Neural Network block on the soil

type. In this figure, there is a misclassification for 0.6 second of the simulation, which

provides 99.3% accuracy.
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Figure 4–17: PID controller output: wheel torque
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Figure 4–18: Longitudinal speed
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Figure 4–19: Class Prediction
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4.4 Sandyloam

Figures 4–20 to 4–25 shows the simulation results for the vehicle moving on

Sandyloam soil.
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Figure 4–20: Vehicle Path on Sandyloam
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Figure 4–21: MPC controller output: Steering angle of the front wheels
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The peak of the heading deviation is 0.2 rad. As can be seen in Figure 4–22,

lateral deviation peaks at 0.15 m, which leads to 0.04% error.
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Figure 4–22: Errors as feedback to the MPC controller

The longitudinal speed error is 3% of the reference speed. Figure 4–25 shows

the decision made by the neural network block on the soil type. In this figure, there

is a misclassification for 1 second of the simulation, which provides 99% accuracy.
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Figure 4–23: PID controller output: torque of each wheel
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Figure 4–24: Longitudinal speed
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Figure 4–25: Class Prediction
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4.5 Mixed Soil

In this section, the field consists of four different types of soils: Clay, Loam,

Sand, and SandyLoam, as shown in Figure 4–26. Figures 4–26 to 4–31 demonstrate

the results, in this case, using the neural network controller for smart adaptation to

the soil type. As can be seen in Figure 4–26, the effect of changes in soil type on

the vehicle path is not considerable, as the controller can handle the situation well.

However, the small changes in the control inputs, steering angle and torque, as well

as errors, can be seen in Figures 4–27 to 4–31, at t = 20, t = 40, t = 60 second, when

the soil type changes.

Figure 4–26: Vehicle Path on Mixed Soil
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Figure 4–27: MPC controller output: Steering angle of the front wheels
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Figure 4–28: Errors as feedback to the MPC controller
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Figure 4–29: PID controller output: wheel torque
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Figure 4–30: Longitudinal speed

Figure 4–31 shows the predicted soil type and the true soil type during the

simulation. The prediction accuracy, in this case, is 99%.
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Figure 4–32: Left: Path of the vehicle with and without NN Controller; Right:
Zoomed view of the part of the path in the Rectangle

Figures 4–32 compares the performance of the controller with the neural network

block and a single MPC controller (loam) in the mixed soil field. Figure 4–33 shows

the deviation of the vehicle with two controllers along the S-shape path of Figure

4–32. The error of the single MPC is at some points 2.5 times more than the error

of the smart controller with neural network block.
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Figure 4–33: Lateral deviation of the vehicle along the path

Figure 4–34 is an example of the performance of the two controllers at the start

of the motion, where the vehicle is in an unstable condition. In this situation, torque

is applied on the wheels to reach the desired velocity, and the wheels tend to slip.
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Figure 4–34: MPC feedback errors at the beginning of the simulation
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Chapter 5
Conclusion and Future Work

5.1 Conclusion

In this thesis, we provided a novel scheme for steering control of an autonomous

farming vehicle, to adapt to different and difficult terrain situations. This study

contains two sections:

First, the design of a Neural Network that can classify the current soil the

vehicle is driving on, based on physical features such as vehicle velocity, wheel torques

and angular velocities, wheel sinkage, slip ratios and slip angles. In this study, we

designed a neural network that can classify the soil type with at least 99% accuracy.

The Neural Network is trained offline and used in real time, to classify the soil. The

soil types defined in Chapter 2 are Clay, Loam, Sandyloam, and Sand.

Second, the structure of the vehicle controller of the system is designed. This

structure contains one PID to control the longitudinal speed, and four MPCs to

control the steering of the vehicle, one for each type of soil. In this structure, the

neural network makes the decision to switch between the MPCs, based on the soil

type, to have the most suitable MPC.

The implementation of this system on an autonomous vehicle is evaluated. The

variables needed for feedback to the system, and features of the neural network

input can be measured using cheap and easily accessible sensors. The encoders are
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needed for measuring angular velocities of the wheels. We can use IMU or GPS to

measure the vehicle’s longitudinal, lateral and angular speed. The torque applied

to the wheels can be calculated knowing the input current to the wheel’s electric

motors. The average sinkage of the front wheels is measured using two wide range

ultra-sonic sensors, mounted on a structure on front wheels. Slip ratio and slip angle

are estimated using measured velocities.

The results demonstrate the performance of the designed controller and its ad-

vantages over a simple MPC controller. The smart controller is more accurate in

terms of lateral deviation, and more stable in case of difficult situations where wheel

slippage is high.

5.2 Future Work

For future studies, this scheme can be expanded to a variety of different situa-

tions. The Neural Network can be generalized to a wider variety of situations, such

as more classes of soil types, a wider range of speed, and slippage. Moreover, as

the neural network is designed for a specific vehicle, the effect of the weight is not

considered in the Neural Network. This feature could be used in training the neural

network, to make it compatible with other vehicles, and also to consider the effect

of load transfer in high-acceleration situations, and harsh maneuvers.

We also propose that the neural network can be used to adapt the PID to

different soil types. Since the dynamics of the vehicle and soil terramechanics are

nonlinear with respect to slippage, adapting the PID controller to slippage and soil

type will have a considerable effect on stability and accuracy of trajectory tracking,

especially in high slip condition.
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