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• Dr. Pierrick Coupé, Dr. Vladimir Fonov, and Dr. Hassan Rivaz: For all

manners of insightful and pedagogical discussions.

• Former and present members the Image Processing Laboratory, the Brain

Imaging Centre, and the Montreal Neurological Institute; Dr. Berengere Aubert-

Broche, Lara Bailey, Jennifer Chew, Simon Drouin, Dr. Simon Eskildsen, Dr.

Daniel Garcia-Lorenzo, Anka Kochanowska, Kelvin Mok, Ellie Tobman, Yim-

ing Xiao, Dr. Charles X. B. Yan, and Dr. Rina Zelman: For their invaluable

help, be it directly or indirectly related to this work.

• Nicolas Guizard and Marta Kersten: For their help in editing the manuscript,

among many other things.

• : For all their patience and unending

support in my endeavours.

iii



ABSTRACT

The effectiveness of image guided neurosurgery (IGNS) depends on the presen-

tation of accurate image data to a neurosurgeon for surgical planning and guidance.

The blood vessels supplying the brain are of particular importance in IGNS, because

they densely surround brain lesions and tumours, may themselves be the sites of

pathologies, and need to be carefully considered during surgery.

Given the importance of visualizing and identifying vasculature for diagnosis,

planning, and guidance, there is a strong need for automated vessel enhancement

and registration techniques. Furthermore, tools for the characterization and valida-

tion of developed image processing methods are needed. This thesis presents the

development of three separate techniques to address the above stated needs: (1)

a vessel-based intraoperative image registration technique, (2) a technique for pro-

ducing anatomically realistic multimodality imaging phantoms, and (3) a non-local

estimator based vessel structure enhancement technique.

For intraoperative registration, where preoperative images are aligned to the

patient on the operating room table, we developed a hybrid non-linear vessel-based

registration algorithm. Our technique combines the benefits of feature-based and

intensity-based vessel registration methods. Raw volumetric images are processed

through feature enhancement to produce a set of image intensity maps for registra-

tion using cross-correlation. By not explicitly extracting discrete vessel features, we

can be assured that removal of important registration information is minimized. We

extensively validated our registration method for robustness and accuracy using a
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large number of synthetic images, real physical phantom images, and real clinical

patient images.

In validating our registration technique we realized a need for improved physical

phantoms. As such, we developed a multimodal anthropomorphic brain phantom

for inter-modality image processing validation. The brain phantom (1) has the me-

chanical properties and anatomical structures found in live human brain and (2) was

made from polyvinyl alcohol cryogel. Marker spheres and inflatable catheters were

also implanted to enable good registration comparisons and to simulate tissue defor-

mation, respectively. Multiple sets of multimodal data were then acquired from this

phantom and made freely available to the image processing community.

Based on our vessel registration work, we also found a need for improved vessel

enhancement methods. Therefore, we developed a technique that extends Frangi’s

vessel enhancement method to improve background suppression. To do this, we ac-

count for larger vessel geometries over an extended area rather than solely using

information from a small local region. Validation of the technique was performed

on 3D synthetic images, and 2D and 3D clinical images. The results revealed that

by analyzing larger image regions to improve background suppression and identify

vessel-like structures, our method can effectively enhance and improve retention of

thin and lower contrast vessels in comparison to Frangi’s method.

The automated vessel enhancement and vessel-based image registration tech-

niques developed in this thesis can be used to improve the effectiveness of surgical

work-flows in IGNS. Our anthropomorphic phantom can be used to validate and

characterize novel image processing methods.
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ABRÉGÉ

L’efficacitée de la neurochirurgie guidée par l’image (IGNS) dépend de la pré-

sentation au neurochirurgien d’images précises pour la planification chirurgicale et

l’orientation. Les vaisseaux sanguins cérébraux sont d’une importance particulière

en IGNS, parce qu’ils entourent densément les lésions céreb́rales et les tumeurs, et

peuvent eux-mêmes être le siège de pathologies, et doivent être soigneusement ex-

aminés durant la chirurgie.

Compte tenu de l’importance de la visualisation et de l’identification des vais-

seaux cérébraux pour la planification du diagnostique et de l’orientation, il est im-

portant de développer des techniques automatisées pour augmenter les contrastes des

vaisseaux, ainsi que des méthodes de recalage des images préopératoires. De plus, des

outils pour la caractérisation et la validation des méthodes de recalage et de segmen-

tation sont nécessaires. Cette thèse présente le développement de trois techniques

différentes pour prendre en comptes ces besoins: (1) une technique qui utilise les in-

formations des vaisseaux sanguins pour le recalage des images préopératoires, (2) une

technique pour produire des fantômes multimodaux avec des structures anatomique-

ment réalistes, et (3) une technique pour augmentater les contrastes des vaisseaux

sanguins avec un estimateur non-local.

Pour le recalage d’images préopératoires, où les images sont alignées par rap-

port au patient sur la table de la salle d’opération, nous avons développé une ap-

proche hybride de recalage avec transformation non-linéaire. Notre technique com-

bine les avantages des techniques de recalage basées sur l’intensité et les attributs
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géométriques. La segmentation des vaisseaux sanguins est appliquée aux images

volumétriques natives pour produire un ensemble de cartes d’intensité afin d’utiliser

la corrélation croisée pour le recalage. En maintenant les structures sanguines comme

cartes d’intensité, au lieu de l’extraction comme les caractéristiques discrètes, nous

pouvons être sûr que d’importantes informations de l’image ne sont pas supprimées

pour le recalage. Nous avons validé en détail la robustesse et la précision de notre

recalage par vaisseaux sanguins en utilisant un grand nombre d’images de synthèse,

de véritables images de fantômes physiques et de vraies images cliniques de patients.

En validant notre technique de recalage d’image, nous avons réalisé le besoin

d’améliorer les fantômes multimodaux. Pour cela, nous avons développé un fantôme

anthropomorphique du cerveau qui peut être efficacement utilisé pour la validation

intermodalité du traitement des images. Le fantôme cérébral, qui a les proprietés

mécaniques et une anatomie similaire; au cerveau humain in vivo, a été fait à partir

d’alcool de polyvinyle cryogel. Des marqueurs sphériques et des cathéters gonflables

ont également été implantés pour permettre de simuler la déformation des tissus et

de comparer la qualité des recalages. Plusieurs ensembles de données multimodaux

ont été acquis avec ce fantôme et ont été mis à la disposition de la communauté qui

travaille sur le traitement des images.

Notre travail sur le recalage des vaisseaux sanguins nous a également révélé la

nécessité d’améliorer les méthodes numérique des vaisseaux. En conséquence, nous

avons développé une technique qui pousse la méthode de Frangi en augmentant le

contraste et en supprimant les éléments de fond. Ainsi, pour détecter des géométries

des vaisseaux sanguins plus grandes, nous considérons une zone de recherche plus
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grande plutôt qu’une petite zone locale. La validation de la technique a été réalisée

avec des images synthétiques 3D, et des images cliniques 2D et 3D. Les résultats ont

révélé que notre approche pour augmenter le contraste en supprimant les éléments

de fond pour identifier des structures comme les vaisseaux sanguins, améliore la

rétention des vaisseaux sanguins fins avec des contrastes faibles par rapport à la

méthode classique de Frangi.

Les techniques automatisées pour le recalage et l’augmentation des contrastes

des vaisseaux sanguins développés dans cette thèse peuvent être utilisées pour améliorer

l’efficacité des processus chirurgicaux en IGNS. Notre fantôme anthropomorphique

peut être quant à lui utilisé pour valider et caractériser de nouvelles méthodes de

traitement d’image.
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CHAPTER 1
Introduction

1.1 Motivation for Vascular Image Processing for Image Guided Neuro-
surgery

Computer assisted planning and image guidance is a critical and integral part

of modern neurosurgery. Image guided neurosurgery (IGNS) involves acquiring the

preoperative images of a patient’s brain and evaluating the images to build a sur-

gical plan. These images are then used by a neurosurgeon for navigation during

a procedure to properly implement the treatment determined by the surgical plan

[30, 202, 201, 264].

IGNS effectively augments a neurosurgical procedure by aligning pre-operative

patient images with the surgical field, properly visualizing the patient’s image data,

and allowing fuller interaction with the images using tracked surgical instruments.

These functionalities provide a neurosurgeon with important information regarding

the locations and orientations of their surgical instruments in relation to the patient’s

anatomical structures. By using IGNS, a neurosurgeon may more confidently target

pathologies while avoiding and sparing healthy tissues during a surgical procedure.

IGNS can improve the precision and accuracy of the procedure, thus helping the

surgeon effectively deliver treatment. This in turn can improve a patient’s surgical

outcome and shorten the time needed for their postoperative recovery. [30, 32, 178,

201, 264].
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Along with the brain and nerve tissues, the cerebrovasculature is also of particu-

lar importance in neurosurgery. Cerebrovasculature consists of the dense network of

vessels that provide tissues of the brain with a steady supply of blood to ensure their

continued function. These blood vessels, both arteries and veins, must be handled

with great care due to their fragility and their important physiological role of irrigat-

ing and draining brain tissue. Any unintentional disruption of healthy vasculature

can result in complications to blood supply in different regions of the brain. In the

worst case, such a disruption can result in the death of brain tissue.

At the same time, blood vessels may themselves be the site of abnormalities or

lesions that require precise targeting for treatment. Great care must be taken with

abnormal vessels as they often have weakened walls or are unstable and may rupture

during surgical treatment. In general, due to its low tolerance for error, inaccuracies

in neurovascular and neurosurgery could result in brain damage and neurological

deficits. Such damage may worsen a patient’s surgical outcome and impair also

impair their physical, intellectual, and psychological function.

On the other hand, cerebral neurovasculature can also aid in neurosurgical guid-

ance. Vascular networks and vessels may provide key distinct visual landmarks that

can be used by neurosurgeons for localization and orientation within the surgical field

of view. By identifying vessels directly during a neurosurgical procedure, a surgeon

can mentally visualize the location of their resection and make adjustments to the

path of the procedure should the need arise. Neurovascular anatomy is also taken
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into consideration when determining an optimal resection corridor to deep brain le-

sion. Therefore, proper imaging, localization, and identification of vessels in patient

medical images are of great importance in IGNS.

Various imaging modalities exist that capture neurovascular data in the form

of angiographic images. However, the images themselves are often not usable in

their raw and unprocessed forms for IGNS. For instance, neurovasculature from cer-

tain magnetic resonance (MR) angiographic images may not have enough contrast

against the parenchymal tissue to be used directly for vessel visualization. These

angiographic images require at least some degree of image processing and/or manual

labelling before they can be used for surgical navigation. Preoperative and intra-

operative images of various medical imaging modalities may also not be aligned, or

registered, well enough for guidance. Effective vessel registration in turn relies on

having well segmented or enhanced vessel datasets to correctly align medical images

for surgical planning and guidance. Therefore, improving the efficacy of angiographic

image enhancement and image registration methods could potentially also help im-

prove the efficiency and accuracy of IGNS.

In this thesis, we developed, tested, and validated a set of tools to process

neurovascular data for use in IGNS. First, we developed an intraoperative vessel reg-

istration method to update the position of the preoperative images and account for

any changes in brain shape. Based on these experiences, we proceeded to prototype

an imaging phantom to validate registration and segmentation algorithms. Finally,

we developed a vessel enhancement algorithm to enhance vessel structures in preop-

erative angiographic medical images from their parenchymal tissue backgrounds.
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1.2 Outline of Thesis

This thesis is organized as follows:

In Chapter 2, we provide a literature review on the integration of angiographic

images into IGNS, the construction of physical vessel phantoms for validation, vessel-

based registration, vessel feature enhancement, and related background materials

relevant to this work.

In Chapter 3, we describe an image registration technique that uses segmented or

enhanced vessel images for intraoperative registration of Gadolinium-enhanced T1-

weighted MR images and Doppler ultrasound images. Vessel structures are highly

salient in the aforementioned imaging modalities, and due to their anatomy and

physical characteristics, they make for reliable features for intraoperative brain image

registration. The method is a hybrid of feature and intensity-based registration

that uses minimal processing to extract the vessel structures and then recovers any

distortion present between the images by using non-linear registration.

In Chapter 4, we present a physical multimodal, anthropomorphic phantom that

can be used to validate medical image processing methods developed for imaging

using MR, computed tomography (CT), and ultrasound imaging modalities. The

phantom is built from polyvinyl alcohol cryogel, a stable, rupture resistant material

that can be formulated to simulate soft-tissue deformations. Due to its multimodal

imaging characteristics the phantom can be used to validate multimodal registration

and segmentation methods.

In Chapter 5, we present a method developed for enhancing vascular structures

from 2D retinal angiographic data and 3D phase-contrast MR angiographic images
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such that the resulting vessel maps can then be use for radiological diagnosis or

guidance and planning in IGNS. The method uses a combination of Hessian eigen-

value analysis and non-local means weightmap PCA eigenvalue analysis to enhance

vessel-like structures in angiographic images.

We conclude in Chapter 6 with a discussions of possible avenues for future work

in neurovascular image processing.

1.3 Author Contributions

I am the first author of all three manuscripts included in this thesis and have

performed all of the methodological developments, software implementation, experi-

mental design, data processing, and results analysis for all experiments. The contri-

butions of all co-authors include supervision, data acquisition, experimental setup,

technical discussions, and the review of manuscripts. The following list summarizes

the contributions of each author by manuscript:

Chapter 3 - Validation of a Hybrid Doppler Ultrasound Vessel-based Reg-

istration Algorithm for Neurosurgery

• Authors: Sean Jy-Shyang Chen, Ingerid Reinertsen, Pierrick Coupé, Charles

X. B. Yan, Laurence Mercier, D. Rolando Del Maestro, D. Louis Collins

• Contributions: Guarantors of the study: all authors; Study concepts and de-

sign: S.J.S.C., I.R., P.C., C.X.B.Y., D.L.C.; Algorithm and implementation:

S.J.S.C; Data Acquisition: S.J.S.C, I.R., L.M.; Experiments and analysis:

S.J.S.C.; Guidance and supervision: D.L.C.; Manuscript preparation: S.J.S.C;

Manuscript revision: all authors; Editing and final approval: S.J.S.C, D.L.C.;
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Chapter 4 - An Anthropomorphic Polyvinyl Alcohol Brain Phantom Based

on Colin27 for Use in Multimodal Imaging

• Authors: Sean Jy-Shyang Chen, Pierre Hellier, Maud Marchal, Jean-Yves Gau-

vrit, Romain Carpentier, D. Louis Collins

• Contributions: Guarantors of the study: all authors; Study concepts and de-

sign: S.J.S.C., D.L.C.; Data Acquisition: S.J.S.C, P.H., M.M., J.Y.G; Data

preparation and processing: S.J.S.C, R.C.; Experiments and analysis: S.J.S.C. ;

Guidance and supervision: D.L.C.; Manuscript preparation: S.J.S.C; Manuscript

revision: all authors; Editing and final approval: S.J.S.C, D.L.C.;

Chapter 5 - Blood Vessel Enhancement Through Principle Component

Analysis of Non-local Means Weightmaps

• Authors: Sean Jy-Shyang Chen, Pierrick Coupé, D. Louis Collins

• Contributions: Guarantors of the study: all authors; Study concepts and de-

sign: S.J.S.C., P.C.; Algorithm and implementation: S.J.S.C; Experiments and

analysis: S.J.S.C.; Guidance and supervision: D.L.C.; Manuscript preparation:

S.J.S.C; Manuscript revision: all authors; Editing and final approval: S.J.S.C,

D.L.C.;

1.4 Original Contributions

The following are the main original contributions of this work:

1. Developed and implemented a novel image registration technique that uses

hybrid feature-based and intensity-based intermodality registration methods

to align MRA to Doppler ultrasound intermodality registration;
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2. Designed and implemented a digital phantom that simulates US vessel volumes

from extracted MR vessel structures to validate intermodality registration;

3. Extensively validated the new registration method using the digital phantom,

a physical phantom, and real clinical data;

4. Developed and fabricated a physical deformable multimodal anthropomorphic

phantom that can be used for validation of medical image processing methods;

5. Developed phantom material formulas for realistic rheological properties to

simulate brain shift and are easily imagable in MR, computed tomography

(CT), and ultrasound imaging modalities;

6. Acquired images of the phantom in ultrasound, CT, and numerous MR imaging

modalities and made them available to researchers and the general public.

7. Developed and implemented a novel 2D and 3D vessel enhancement method us-

ing the non-local means (NLM) method to modify the background suppression

term in Frangi’s vesselness method [81];

8. Developed a method for eigenvalue analysis of the NLM weightmap to detect

large regional vessel features;

9. Extensively validated the new segmentation method using synthetic data as

well as real clinical 2D retinal angiographic images and 3D phase-contrast MR

images;
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CHAPTER 2
Background

2.1 Vessels in Image Guided Neurosurgery

Modern neurosurgery is a specialized area in surgery concerned with the treat-

ment of the affected portions of the human nervous system, which may include the

brain, spinal cord, the cranial nerves, and the peripheral nerves. Modern neuro-

surgery relies heavily on computer assistance to provide information to surgeons

regarding the location of their instruments. This allows for more accurate and pre-

cise procedures, thus reducing morbidity and improving patient outcome. Known

as image guided neurosurgery, these computer assisted techniques typically use the

preoperative images of the patient’s brain for (1) surgical planning and (2) surgical

navigation to help in the execution of the procedure [30, 201, 264].

Neurosurgical planning often involves the identification and examination of key

cerebral vasculature by the neurosurgeon in the preoperative images. This allows

a surgeon to see the vessels that will be in their resection corridor, which not only

helps in mentally visualizing the location and orientation of a patient’s anatomy, but

also allows the surgeon to avoid damaging key vessels during a procedure. Due to

the benefits of the additional information provided by angiographic images, there

has been increasing interest in further integrating them and other types of vessel

data into IGNS for a variety of neurosurgical procedures. For example, using angio-

graphic images in IGNS for tumour surgery can help a surgeon avoid vessels that

8



surround the lesion while identifying and ligating those that irrigate it. The vessel

information can also be used for planning trajectories in deep brain stimulation to

allow electrodes to be inserted in such a manner that critical blood vessels are not

disturbed or damaged [30]. Angiographic images are also increasingly integrated into

IGNS for intervention in the case of neurovascular pathologies such as in aneurysms

and arteriovenous malformations (AVM). For instance, angiographic images provide

general information regarding the position and orientation of the cerebral vascula-

ture, which can help surgeon in planning for aneurysms and AVM of complex forms.

Integrating angiographic information into IGNS is particularly beneficial for

locating aneurysms on smaller distal branches of cerebral arteries [117]. These lesions

are typically more difficult to surgically locate due to the lack of large vascular

structures combined with the high anatomical variance of these vessels in patient

populations. Angiographic data enabled IGNS systems are also used to help surgeons

precisely locate the necks of aneurysms and isolate vessels that may be adjacent to

or surround the dome of the aneurysm. Such images were also found to be crucial

when the aneurysm was embedded in a hematoma since it allowed the surgeon to

remove the surrounding lesion and affected tissues without disturbing the unstable

dome of the aneurysm[117, 40].

Use of angiographic images in IGNS can also aid surgeons in AVM resection

by understanding the complex topology of the feeding and draining vasculature con-

nected to the nidus. Proper integration of vascular information in IGNS helps a

neurosurgeon determine which vessels to clip first and which regions to dissect for

the best surgical outcome [157]. IGNS integrated with angiographic data can even
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help locate and identify residual pathologies after an initial round of lesion resection,

which enables removal of a residual pathologies without the need for subsequent

surgery [157, 249].

Different modalities of 3D angiographic images have been used for IGNS. They

include x-ray imaging modalities such as computed tomographic angiography (CTA)

and rotational x-ray angiography (XA). Other common angiographic imaging modal-

ities include magnetic resonance angiography (MRA) and ultrasound angiography

using Doppler ultrasound. These techniques image neurovasculature with relatively

high contrast and have been directly used for surgical guidance with limited pre-

processing. However, the preoperative images can also be manually labelled by a

technician for use as “vessel images”, assuming that the vessels in the image are of

sufficient saliency and labour is available for this intensive and tedious process. In

the following subsections, we review clinical studies that examine the use of angio-

graphic images in IGNS and the benefits that this addition information brings to the

surgical procedure.

2.1.1 X-ray Modalities

Computed Tomography Angiography

Computed tomography angiography (CTA) is acquired using modern 3D heli-

cal computed tomographic imaging devices. A patient is scanned with intravenous

contrast injection which effectively highlights the patient’s neurovasculature that

are larger than the acquired images’ resolution. Modern CT scanners can achieve

isotropic voxel resolutions of 0.3mm. The patient can be scanned with skin-based

fiducials which can then be used to aid registration with a preoperative anatomical

10



image. As well, landmarks on the patient’s skin can be acquired directly using a

tracked pointer to identify their corresponding chosen points on the preoperatively

scanned image. CTA is sometimes used in conjunction with MR images since the

latter provide more detailed anatomical information for soft tissues. Registration

can also be performed directly between the anatomical MR and the CTA image if

sufficient corresponding anatomical landmarks such as sulcal and skin features, are

visible on both angiographic and anatomical images. The neurovasculature in the

CTA image can also be used as features for registration without the use of fiducials.

Due to the quality of the vascular images acquired using CTA, numerous groups

have used this type of angiographic images for surgical planning and navigation in

IGNS. For instance, Coenen et al. [46] reported their early results using 3D CTA

images for IGNS on four patients with small AVMs in large hematomas. Their initial

experience with this technique revealed that when the CTA was viewed with the

2D angiograms, feeding and draining vasculature to the AVM can be distinguished

despite the presence of large blood clots. This allows the surgeon to accurately

localize and isolate the AVM nidus from surrounding lesions and tissue, thereby

decreasing surgical morbidity. Kim et al. [117] registered the CTA image directly

to the patient using commercial neuronavigation systems to help to locate and clip

aneurysms on the distal branches of the anterior cerebral artery in 12 patients. The

use of IGNS with angiographic data can also ease the localization of difficult-to-find

aneurysms in a hematoma cavity, thus helping to prevent premature rupture during

surgery. They concluded that the use of angiographic data for IGNS enabled their

neurosurgeons to identify the aneurysms and facilitated their exposure for clipping.
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Their use of CTA in surgical guidance also allowed for smaller craniotomies and

precise navigation enabling the surgeons to reduce the invasiveness of the surgery.

IGNS has also been performed with CTA images which have been registered

and visually merged with other image modalities, such as anatomical MR images.

Chibbaro and Tacconi [40] reported their surgical findings in merging CTA data

with a preoperative MR guidance image for IGNS. From their experience, the use of

angiographic data with MR in guidance was key in allowing their surgeons to gain a

better understanding of the aneurysm or AVM’s position in the patient in the context

of other critical anatomical structures in the brain. This improved understanding

allowed for reductions in the size of craniotomy and helped avoid surgical issues such

as premature AVM bleeding or ischemic complications.

Rohde et al. [210] merged CTA images with brain images from other imaging

modalities and segmented brain structures for an even more comprehensive data

visualization for IGNS. For their cases, they merged anatomical gadolinium-enhanced

T1 weighted MR images, diffusion weighted MR images, CTA images, and manually

segmented structures of surgical importance, which included blood vessels, nerves,

and various forms of brain tumours. Through sixteen patients in which their methods

were employed, they found that the methods facilitated the surgical approach in four

of the cases and allowed them to devise a tailored approach for patients in two of

the cases. The neurosurgeons indicated that the IGNS with vessel visualizations also

allowed them to identify crucial but hidden neurovasculature in eleven of the sixteen

cases.
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Rotational X-ray Angiography

Rotational digital-subtraction X-ray angiography (XA), also known as conven-

tional catheter angiography (CCA), can also be used for IGNS. Modern 3D XA can

produce high quality vascular images due to their small isotropic voxel sizes, less

than 0.3mm in width. Thin vessels are more easily visualized in XA compared to

CTA since the contrast agent is injected directly into the arterial branch of interest

instead of intravenously, respectively. The XA imaging modality, therefore allows

the fine vascular branching around an aneurysm or AVM to be clearly visualize and

evaluated intraoperatively. The highly selective nature of 3D XA also highlights only

vessel branches where contrast is injected, thus enabling visualization of an anatomi-

cal region of interest without possibly confounding a surgeon with the sheer quantity

of information from a complete cerebrovascular network. However, the XA images

do not sufficiently visualize other brain structures nor patient skin surface features

that are usually used for registration in surgical guidance.

Raabe et al. [198] uses a three-point stereotactic head frame to register their

acquired 3D XA images to the patient for IGNS in 16 aneurysm cases. They found

that although the XA images did not show other vessel branches to allow surgeons

to fully orient themselves in relation to the patient, there was generally sufficient

correspondence of the vascular structures in the XA image to the patient’s vessels.

The use of XA was also useful in helping predict the location of the aneurysm during

surgery, especially when the aneurysm and the branching vessels were occluded by

brain paranchyma or covered by blood clots. This helped minimize the exposure of

patient and the additional information improved the quality of aneurysm surgery.
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An alternate way of registering XA to the patient using fiducial markers was

used by Willems et al. [258]. In their work, the authors acquired XA images for

IGNS and measured the position of physical registration fiducials on the patient

using a tracked pointer. This process registered the XA image to the patient’s head

for visualization in the view orientation of a surgical microscope. The method was

tested on a physical phantom and two clinical cases, which showed that surgical

display of XA for IGNS is feasible and helped in the surgeon’s understanding of

the surgical scene. With further development, 3D XA can be used in IGNS to aid

neurosurgeons in their intraoperative spatial understanding of vascular pathologies.

2.1.2 MR Modalities

MR angiography can also be used in IGNS. The methods for its acquisition are

much less invasive than conventional catheter contrast imaging. As well, unlike CTA

and other X-ray based imaging modalities, MR does not expose a patient to ionizing

radiation. This allows more images to be acquired at reasonably frequent intervals

for surgical planning and guidance [123]. MRA can also match conventional CTA

and XA vessel images in showing the location and flow of vascular lesions. However

it has been noted that MRA vessel contrasts are less than XA or CTA and it does not

always allow for the same level of time and spatial resolution. This may result in the

underestimation of the sizes of vessel pathologies for procedure planning and possibly

overlook small early-draining veins or simple arteriovenous shunts [254, 125]. As well,

MRA imaging is less selective in vessel contrast enhancement than XA, which may

make surgical visualization more challenging to interpret.
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Warren et al. [254] reported their experience comparing time-of-flight MRA

and contrast enhanced MRA with XA for guidance on 40 patients. They reported

that MRA provided similar information to XA for AVM surgery in terms of lesion

size and blood flow but the size determination for XA was more accurate for larger

vessel lesions. MRA also did not detect as many small and slow blood flow vessels

compared with XA. However, MRA enabled formatting of different guidance views

that were not available with their conventional XA imaging methods. The authors

indicated that less-invasive MRA should be more thoroughly investigated for use in

surgical planning and IGNS.

Konig et al. [125] described their results of using surface rendered 3D time-of-

flight MRA images with T1, T2, and diffusion weighted MR images for guidance

in aneurysm surgery on four patients. The authors noted that the MRA aneurysm

images were of sufficient quality for guidance in three out of the four patients, while

the forth did not properly highlight the lesion due to slow blood flow. They also found

that the use of MRA images with information from other MR imaging modalities

was useful in indicating the size and configuration of aneurysms. However, they also

noted that surgical planning using MRA could be significantly improved with better

vessel segmentation.

MRA has also been applied for endovascular INGS treatment of aneurysms

by Kocer et al. [123]. They proposed the real-time merging of 2D fluoroscopic

interventional images to preoperative 3D MRA images to gain an understanding

of the anatomical relationships of a lesion. They found that using MRA in IGNS

helped reduce the patient exposure to ionizing radiation. As well, they found that
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the addition of MRA information allowed them to reduce the amount of radiographic

contrast agents needed for intraoperative fluoroscopic imaging on patients with renal

insufficiency. As well, the merging of the two modalities for guidance helps overcome

the lower spatial resolution of MRA.

2.1.3 Ultrasound Modalities

The use of ultrasound Doppler imaging in IGNS allows intraoperative acquisition

of vessel data. The benefits of the modality are that it acquires high resolution

3D vessel images with the direction and magnitude of blood flow. The images are

acquired after craniotomy using a tracked 2D or 3D ultrasound probe either on the

dura, or on the cortical surface of the brain, or in fluid inside a resection cavity. In

the case of 2D ultrasound images, each tracked image plane is reformatted into a 3D

image slab that can then be used for surgical planning, guidance, or visualization.

The ultrasound angiographic data provides the surgeon with additional information

during a neurosurgical procedure for localization and helped improve treatment of

vessel lesions.[249, 157]

Using information from 3D MRA and Doppler ultrasound angiography, Un-

sgaard et al. [249] evaluated the benefits of combining ultrasound vascular imaging

with IGNS for AVM surgery in nine patients. The feeding arteries were visualized

using stereoscopic displays which enabled the surgeons to locate and clip most of the

vessels early in the procedures. The use of intraoperative ultrasound angiography

proved to be highly beneficial in one instance when a residual nidus was identified

in the ultrasound image and was able to be removed immediately. They concluded
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that using angiographic images in IGNS with stereoscopic displays can help a sur-

geon quickly and successfully plan, locate, and facilitate the clipping of AVM feeders

in the initial phases of surgical intervention.

Mathiesen et al. [157] also combined 3D ultrasound angiography in IGNS for

the treatment of nine patients with AVMs. The author used stereoscopic displays

along with volume rendering to help the surgeons plan their approach and locate

the feeding and draining vessels for the AVM nidus. The surgeons believed that the

AVM resection was aided by ultrasound; the preoperative MRA provided the config-

uration and topology of the greater vasculature, while the intraoperative ultrasound

angiography helped determine blood flow rates in the vessels. The ultrasound angio-

graphic images not only corresponded to the intraoperative findings by the surgeon

but similar to [249] also helped in the identification of a residual nidus, allowing

for its immediate removal. The authors concluded that use of the ultrasound angio-

graphic imaging allowed the surgeons to have a better understanding of the form and

configuration of AVMs leading to the success of all nine patients undergoing their

treatments.

2.1.4 Challenges

The direct use of angiographic images in IGNS can provide benefits to the sur-

geon in terms of localizing vessel lesions and understanding their topology and spatial

relationship with other surrounding vessels and paranchymal tissues. This improved

understanding can help reduce the procedure’s invasiveness, limit patient exposure

to ionizing radiation or contrast agents, and lessen patient complications in neurovas-

cular surgery.
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However, the angiographic and anatomical guidance images may not always ac-

curately represent the state of the patient due to errors in navigation tracking and

fiducial registration. The preoperatively acquired guidance images may also not ac-

curately represent the actual state and positions of the patients vessels and brain

during the procedure due to brain shift and other soft-tissue deformations. Finally,

although the angiographic images can effectively show a patient’s larger vessel struc-

tures, finer vessels with widths less than the voxel size may not be sufficiently well

enhanced for use in IGNS.

These challenges necessitate the development of novel algorithms to help enhance

smaller or lower contrast vessel structures, and better image registration methods,

such that angiographic data can be effectively used in surgical guidance.

2.2 Vessel-based Image Registration

Image registration involves bringing an individual patient or a group’s medical

image data into the same coordinate frame. The images are properly registered when

their corresponding anatomies are spatially aligned. It is through proper registration

that medical images can then be used for radiological diagnosis, quantitative disease

progression monitoring, post-surgical follow-up, and also surgical planning or guid-

ance for IGNS. Medical image registration, as such, is an important and an active

area of research in the field of medical image processing and intervention.

Image registration methods can be roughly classified as belonging to one of three

different strategies, namely: feature-based, intensity-based, and hybrid techniques.

Feature-based registration methods explicitly extract specific features from a set of
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medical images through pattern recognition methods, and then matches these ho-

mologous features to recover the geometric transforms that align them. The benefit

of feature-based methods is that they separate relevant structures in the image from

the background thus reducing the number of local minima and the chances that the

registration process would be stuck in one. The identification of key anatomical

features, such as tissue folds, vessel bifurcations, or point-like structures, also al-

lows highly specific alignments which improves accuracy. Finally, feature extraction

reduces the large amount of information contained in image data to a smaller set

of parametrized feature information. This greatly reduces the amount of computa-

tion needed for registration and can thus increase the speed at which the method

converges to a solution. By deceasing the complexity in the image scene and reduc-

ing the possible local minima, feature-based registration methods can be used for

intraoperative or realtime registration, where fast and accurate results are essential.

Intensity-based registration methods rely on finding image intensity correspon-

dences that are intrinsically present in image and use similarity measures such as

cross-correlation and mutual information to drive registration optimization. As-

sumptions regarding any features present or encoded in the image’s intensities are

implicit, with no intensity-based structures explicitly defined and parametrized. For

this reason, intensity-based method are robust to feature detection errors and the

creation of artifacts that may arise due to feature-based preprocessing. This also

allows it use intrinsic image features that otherwise may be removed or “overlooked”

by the preprocessing, thus possibly improving registration success.
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Hybrid registrations methods combine aspects of both intensity and feature-

based registration strategies; anatomical features are extracted to a limited extent

on either one or both target and source images. This class of methods seeks to

negotiate aspects of both (1) computation speed-ups and (2) feature quality. For

example, by performing registration on extracted features the computational load

can be greatly reduced. However the process of feature extraction also requires ad-

ditional computation and this overhead can be high. Sub-optimal feature extraction

can introduce artifacts or remove key information that can cause registration to fail.

As such, hybrid registration often seeks to complete the necessary feature extraction

when results are not urgent (e.g preoperative processing) to reduce computation

overhead when registration results are needed promptly. The extent of feature ex-

traction might also be adjusted to balance the robustness of extracted info with the

speed of feature extraction.

Vessel-based image registration uses commonly found vascular anatomical fea-

tures in medical images to spatially align medical images. Vascular structures are

good candidates for registration since they are well distributed throughout the hu-

man anatomy and easily imagable with imaging devices of various modalities thus

ensuring that they will be present in most regions of interest. As well, the branched

structures of vascular networks are topologically unique to a subject, which enables

less ambiguous image alignments than registration methods reliant on tissue borders

or more topologically simple structures.

As with other registration methods, vessel-based registration can be intensity-

based, where high contrast angiographic medical images allow vessels to be directly
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registered based on their intensity information. More commonly, vessel registration

methods are either feature-based or a hybrid, where a vessel lumen is first extracted

from the raw image through thresholding or via vessel segmentation, and then mod-

elled as a set of parameters including vessel center-points, diameters, or bifurcation

points. In feature-based vessel registration, the corresponding extracted features are

matched directly and registered. In hybrid vessel registration methods, the extracted

features can be used directly to register with a raw intensity images, or the extracted

features can be reconstructed back to an intensity image to register with a raw inten-

sity image. In some cases, a limited amount of vessel feature extraction is applied to

both images to produce simplified vessel intensity maps, which are then registered.

2.2.1 Feature-based registration

Alperin et al. [6] described one of the first techniques for registration of 2D

XA images to 3D MRA images. The angiographic images from the two modalities

were registered by choosing which vessel segments to use for registration, finding the

vessel centerpoints in the XA, manually identifying MRA vessel points, and then

interatively finding the transform that matched the two point sets. The registration

results were validated on a physical phantom and on 2 sets of clinical data using

image fiducials. They found that sub-millimetre error registration can be attained

on the patient data and that the registered and merged images can help a radiologist

attain better understanding of patient anatomy.

Liu et al. [142] also proposed a 2D XA image to 3D MRA registration method.

The algorithm is based on projective invariance, where the projection of 3D tubular
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object’s skeleton matched to that of the 2D line skeleton. The method first prepro-

cesses the skeletons of both 2D and 3D images then quantifies the 2D projection

disparity as a numerical model before optimizing the cost with Newton’s method to

recover the rigid registration transform. The method achieved submillimetre registra-

tion errors with good capture radii and performed better when more vessel segments

were available for calculating the transformation. The registration method was found

to compare well with images that were manually registered by an expert, in terms of

accuracy and time. Bullitt et al. [28] performed further clinical tests using the regis-

tration method of Liu et al. [142] to compare registration time and quantitative and

qualitative registration accuracy in patient cerebral angiographic images. In their

tests, they found that there was no statistically significant difference between regis-

tration results achieved by experts and those by the method. However the method

was shown to be significantly faster than manual registration methods even though

the method requires initial manual alignment for images with further initial starting

positions.

Nakajima et al. [172] describe a method for registration of cortical surface ves-

sel models segmented from preoperative PC MRA images to vessel images taken

from video images of the surgical field. The MR images were preprocessed to reduce

noise, correct for spatial non-uniformity, the vessel structures were thresholded, fil-

tered for connectivity, and extracted using the marching cubes algorithm. The 3D

vessel models were then registered manually to the captured video images. In com-

parisons of the vessel to vessel registration with skin to skin landmark registration
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on seventeen patients and a physical phantom, the authors found that the use of

vessels significantly reduced the registration errors measured on artificial landmarks.

Kita et al. [122] proposed a real time 2D to 3D vessel registration algorithms

based on matching the projected image vessel centerpoints using the iterative closest

point method. Both the 2D and 3D images are surface modelled and skeletonized

for centerpoints. The local region of each point on the 2D image was then searched

to find their corresponding point on the 3D image, and the rigid transform was than

calculated. The method was tested using nine cerebral 2D XA images on two 3D

MRA surface models and found to successfully align the images except in the cases

where the initial centerpoints extracted by skeletonization was poor. The method

was able to correctly compute the rigid transforms in under 6 seconds.

Slomka et al. [228] described their rigid registration algorithm to align 3D

B-mode and power Doppler ultrasound images to 3D MRA images of the carotid bi-

furcation of six patients. The images were first thresholded to eliminate non-vascular

background and noise and then rigidly registered using the simplex algorithm with

mutual information. The method was tested on data from 5 patients and was able

to register their images with millimetre translation errors and rotational errors of

around 2 degrees from initial errors up to 10 mm and 40 degrees, respectively. The

author found that the method was also robust to errors when vessel segments more

than 8 mm long were available for registration. However, the method was also reliant

on the aortic bifurcation for registration success.

Porter et al. [193] also described an algorithm that rigidly registered recon-

structed 3D colour Doppler ultrasound vessels images with 3D MRI vasculature.
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The vessel volumes were first segmented by thresholding the image using the mean

of the local intensity and then applying morphological operations to clean the image

of isolated non-vessel voxels. The voxels from the processed MR and US images were

then converted to point clouds and used for registration. Optimization was done

by iteratively translating or rotating the point sets against one another, choosing

the transformation that gives the highest correlation between the points of the two

images and repeating the iteration. The algorithm was tested on segmented forearm

vasculature, liver vasculature, and on a prostate phantom and errors were found to

be 4–8mm, 2–4mm and 2mm, respectively.

Aylward et al. [13] have proposed a CT-to-CT rigid body registration algorithm

that uses the vessel model generated by the vessel enhancement algorithm of Ayl-

ward and Bullitt [14]. The authors first created an accurate tubular vessel model

from a source image applying their segmentation algorithm, and then registered this

model directly with the target images acquired from the same patient. The method

was tested on CT images of the liver and on pre and post-operative brain MRA

images, and was capable of registering the vessel images with sub-voxel consistency,

converging in approximately six seconds. Through their validation they found that

their method was robust to ambiguous and poorly corresponding vessel segments and

also to non-rigid deformations in the vessels themselves. This method was further

applied by the authors [15] for registration of CT vessel images with intra-operative

B-mode Doppler images acquired for guidance in liver tumour ablation. The center-

points of the CT vessels, extracted through pre-operative processing, were registered

to the bright vessel structures in the ultrasound image. The mean error for their
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CT to ultrasound registration was 2.3 mm with a maximum of 2.8mm. The authors

indicated that there errors were well within their margin of accuracy.

Jomier and Aylward [114] extended the rigid registration method of Aylward et

al. [13] to correct for non-linear tissue deformations. The method first completes a

round of rigid registration to place the vessels in their relative positions, then each

branch in the vessel tree was rigidly registered in a piece-wise manner according to

the extracted morphological information of the vessel tree. Finally all points along

the vessel branches were non-linearly registered to each other, constrained by user

selected elasticity and rigidity parameters. The authors tested their method on a

vessel phantom and on pre and post-operative cerebral MRA images and found that

it is highly robust to image noise and that 87% of vessel centerline points in their

source vessel model were within two voxels of target image centerlines.

Lange et al. [131] described a method for registration of vasculature from CT

or MR image to power Doppler ultrasound images. The method first segmented the

vessels from pre-operative CT or MR images through region growing with manual

processing and then skeletonized them to get a set of vessel centerlines. The 2D

ultrasound images were reconstructed into 3D volumes and the vessels were pro-

cessed in a similar fashion to the pre-operative images. The vessel centerlines were

then aligned using the iterative closest point (ICP) algorithm and the match point

pairs were used to compute the non-linear transform using multilevel B-splines. The

authors validated their registration method on images from 3 patients put in 50 dif-

ferent starting positions and found that the resulting registration errors were almost

always under one millimetre with only 4% failure in all the trials.
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Turgeon et al. [248] presented a fully automatic technique to rigidly register

a preoperatively generated 3D coronary artery vessel model with images that can

be intraoperatively acquired using 2D fluoroscopic angiograms. Vessels from the 2D

and 3D images are enhanced using the algorithms of [124] and [216], then thresh-

olded and filtered for connectedness. Registration is performed with the downhill

simplex optimization method using single entropy correlation coefficient as the sim-

ilarity measure. The method can use either one or dual-plane image 2D angiograms

for registration and takes into account mismatches in cardiac phase. The authors

validate their algorithm using semi-synthetic 2D and 3D datasets that were created

from 4D clinical images. They found that the background, timing offset, and typical

errors in the vascular tree reconstruction of the dual-plane version of the method had

a success rate of 94% with an average accuracy of 2.19 mm.

Tashiro et al. [243] proposed a 3D registration method for tracking the move-

ment of lung anatomy in a sequence of 3D CT images by matching stable vessel

topological features such as junctions and bifurcations. Lung CT vasculature was

extracted by thresholding and skeletonized to provide the vessel center voxels. Bi-

furcations at a vessel center voxel were detected if it also had 3 vessel center voxels

as neighbours in its local 26-neighbourhood. These voxels were then converted to

points in 3D space, matched using a probabilistic relaxation method, and tracked

across successive 3D CT images. By examining the displacement vectors of the point

pairs lung displacement measures can be obtained. The authors tested this technique

using a clinical CT image that had been artificially deformed and also on a displaced
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rigid bifurcation phantom. From their tests, they estimated that displacement er-

ror is within 1 voxel, which realistically quantify 3D organ motion and made the

technique suitable for application in radiation therapy.

Reinertsen et al. [200, 202] also proposed a non-linear registration algorithm for

correction of registration of MR and Doppler ultrasound brain vascular images. The

method extracted the vessel structures from preoperative Gadolinium enhanced MR

angiographic images and the intraoperatively reconstructed Doppler ultrasound ves-

sel images and skeletonized them to recover their respective vessel centerpoints. The

two sets of centerpoints were then linearly registered using ICP modified with a least

trimmed squared robust estimator to reduce the possibility of incorrect point pair-

ings. When the linear registration has converged, matching vessel point pairs were

used to drive a thin-plate spline transform to compute the non-linear transformation

between the images. The method was then validated by using digitally simulated

and physical brain phantom images [199]. The author also validated the technique

on clinical datasets in [202, 201]. In their test, they found their registration method

was able to accurately and robustly correct non-linear deformation between MR and

ultrasound images with a high degree of accuracy.

Groher et al. [91] introduced a graph-based algorithm for rigidly registering ab-

dominal 3D CT angiographic (CTA) to 2D digital subtraction angiographic (DSA)

images. The method first preprocessed the 3D CT vessel features by first regularizing

the intensities and 2D images by vesselness enhancement using [81]. Both 2D and

3D were extracted by region growing from a user selected seed point. The extracted

features were then skeletonized and the resulting centerpoints organized into graph
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structures by representing the detected bifurcations as nodes and their joining cen-

terpoints as graph edges. Registration is done using the downhill simplex algorithm

matching the graph generated from the DSA to the 2D projection of the graph gen-

erated from the 3D CT vessel image. The method was tested on a digital simulation,

a physical head phantom, and the abdominal images of 4 patients. It successfully

registered images in under 2 seconds. In over 200 simulated displacements, they

showed that it robustly reduced registration errors.

Zikic et al. [272] introduced a graph-based registration method using a priori

knowledge for realistic non-linear alignment of 3D CTA or MRA images to singular

2D DSA images. The method extracts vessel centerpoints and converts the vessel

paths into graph models. The models are then rigidly registered to initially iden-

tify the corresponding points between the two graphs. The 3D graph is deformed to

match its 2D projection to the graph of the 2D DSA, all the while with length preser-

vation and smoothness constraints. The a priori knowledge from the constraints

provided meaningful non-linear 3D deformations of 2D projections. Without the

additional constraint, bending a 3D vessel and projecting the profile to a 2D image

may result in an incorrect interpretation that the 3D vessel had been compressed

and shortened. The method was tested on synthetic models and 2 liver angiographic

images and showed improvements in position and shape error after registration. The

method was further extended in Groher et al. [92] such that initially unknown point

correspondence can be resolved while the registration undergoes optimization. Val-

idation of the extended algorithm showed that it was able to converge to the right
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solution from initial displacements up to 3.8cm. The registration also had submil-

limetre in-plane accuracy, though the accuracy was less in cases where the 3D vessel

displacement was in the projection direction.

Ding et al. [65] proposed to track vessel features in microscope video images

that were recording during tumour resection surgery. Starting and ending points

of vessel segments in the images were first chosen and extracted using a minimum

cost path algorithm. Points on the path were automatically chosen and the pixel

intensities and other vessel features located perpendicular to the path at the points

were recorded. These feature points were then matched to points in the following

image frame by searching in the perpendicular direction to the curve. The matched

point sets from the two image frames were then used to computed a thin-plate spline

transform for image alignment. Validation was performed on 14 image sequences

with only two failures. Processing of each image frame takes approximately one

second. The method only requires manual input on the first frame, and is able to

robustly track images even when the paths are obscured in certain image frames.

A 4D graph-based registration method was presented by Zhang et al. [271]

for coronary artery motion tracking using CT angiograms. The authors’ approach

consists of first extracting vessel centerlines of the heart at end-diastole, extracting

the start and end of the vessel and using a B-spline to model the vessel. The B-

spline model was successively and non-rigidly registered to each cardiac image frame

throughout the cardiac cycle using a free-form B-spline transformation model with

normalized mutual information. Tracking of the vessels in all other phases of the

cardiac cycle was done by using the motion fields acquired in the previous frame’s
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registration step and refining the accuracy of tracking using vessel templates. The

authors then validated the method on eight cardiac CTA sequences. The test results

showed that the proposed method was more robust than other non-rigid registration

methods and that the models built from the registration tracking information were

comparable to semi-manually created models.

A graph-based vessel registration method was also developed by Deng et al. [61],

but in this case for the registration of retinal fundus images. The method operates

by extracting vessel centerlines, detecting the bifurcation features, and forming a

graph from the bifurcations by centerline connectedness. Graph matching was first

performed to find general global correspondences between each image’s bifurcation

features. Incorrect matches were eliminated using a structure-based sample consen-

sus method based on the RANSAC algorithm [78]. Finally the bifurcations were

aligned using the previously found correspondences, ICP was used to finely register

the images’ vessel centerlines, and the registration transformation was computed.

Tests on forty-eight clinical retinal image pairs demonstrated that optimum registra-

tion can be achieved using their method. The tests also showed that the method was

invariant to linear images transformations and rapidly converged using only simple

distance measures without additional feature descriptors.

Chen et al. [37] presented a retinal image registration method that detected and

matched robust bifurcation features. Vessel centerpoints were extracted by ridge-

based vessel extraction and their bifurcations were detected by filtering for vessel

center pixels with three vessel center neighbours. Each robust bifurcation feature

consists of the lengths of the 3 vessel segments that make up a bifurcation as well
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as the angles of each of the vessel segments at the bifurcations and its adjoined

neighbouring bifurcations. These extended features were robust to translation, ro-

tation, scaling, and modest distortion. In their tests, the registration method was

able to match corresponding vessel centerpoints with only a few isolated one-pixel

registration offsets.

Huang et al. [105] described a technique to non-linearly register MR liver images

deformed through different patient positions or respiratory phases. The method

employed elastic solid mechanics to recover large motion deformations for soft tissues

in high intensity focused ultrasound (HIFU) treatment. Liver tissue was segmented

and vessel centerlines were extracted from MR images through skeletonization. The

reference and target centerlines were used as matching features with a numerical liver

organ mechanical model used to constrain the magnitude of deformation. When

validated on clinical MR liver images, the vessel centerlines were well fitted with

target registration errors below 2.3mm, with registration converging quickly and

robustly. The authors noted that constraining tissue strain mechanics prevented

the optimization from being trapped in a local minima, prevented over-fitting, and

provided physically realistic non-linear registration results.

2.2.2 Intensity-based

Imamura et al. [106] proposed an image intensity-based intraoperative 2D fluo-

roscopic to 3D CT angiography registration method for assisting aortic stent grafting.

The registration method generated 2D digitally reconstructed radiographs (DRR) by

projecting 3D CTA to a 2D plane at multiple orientations and angulations, and found

the one that most closely matched the fluoroscopic image to use its transform as for
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registration between the two images. The authors’ method extended upon the work

of Penney et al.[182], to further allow for registration of images acquired both with

and without contrast agents. This was done by detecting for contrast enhancement

in the fluoroscopic images using vessel segmentation and then adding or subtracting

the segmented vessel’s intensity from the image to generate the appropriate DRR for

image registration. The authors tested the method on 12 fluoroscopic images and

found that cross-correlation worked well on low resolution data while M-estimator

worked well on higher resolution data.

Hipwell et al. [99] adapted the the DRR method for registration of 3D PC-MRA

images to 2D XA images. The author explored several strategies for producing a

DRR from the MRA data with several similarity measures to match the produced

MR-based DRR with the XA image. The search strategy for finding the rigid-body

registration transform was done using gradient descent, adjusting the parameters

for the DRR projection until a maximal value was found. The method required

user input to specify a spherical volume of interest in the MRA data which was then

mapped to a region of interest in the XA image. The method was tested on a physical

phantom and on clinical images from three patients. The authors’ results showed that

using both vessel probability maps and explicitly segmented MRA images produced

good DRR projections, and that using either gradient measures or pattern intensity

measures produced good registration results.

2.2.3 Hybrid Registration

Penney et al. [181] proposed a technique to rigidly register liver MR with B-

mode ultrasound images using vessel probability maps calculated from the images.
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This method allowed preoperative MR images to be registered to intra-operative

free-hand 3D ultrasound images to update changes in liver anatomy. The vessel

probability maps for MR were generated by using a lookup-table. Each ultrasound

probability map was created by examining the intensity of the 2D ultrasound image

voxels and the magnitude of intensity dips along the ultrasound beam direction. Reg-

istration optimization was accomplished by iteratively changing all the rigid body

transform parameters and selecting those that improve the similarity measure be-

tween the two modalities’ probability maps. The authors tested their method on five

subjects against “bronze standard” ground-truths created by manually point picking,

and found that it was accurate to within 2.3 and 5.5mm which is sufficient for most

liver procedures.

Chanwimalung et al.[35] proposed a method that registered overlapping small

field 2D retinal angiographic images from the same patient by combining intensity

registration and feature registration strategies. The method first extracted the retinal

vessel tree to produce a binary image of the vessel. The image was then skeletonized

to produce a set of vessel centerlines that could be further analyzed to detect vessel

bifurcations. The binary images were then roughly registered using mutual infor-

mation and translated for initial alignment. Corresponding bifurcation features and

sampled vessel points were then found using the iterative closest point algorithm to

produce a final registration by image translation. Affine linear transformation can

be optionally estimated to determine it is necessary for image alignment, since the

low image deformation in the small field images were usually not significant enough

to require it. The method was tested on 504 pairs of retinal images and showed high
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registration success, with 95% of the image pair registrations validated manually

as being acceptable. The method was also robust to poor image quality and small

image overlaps.

Barber et al. [16] proposed a vessel registration algorithm that effectively

matched a reference vessel mesh model to the vessel structure in the angiographic

image of a patient. This registration provided patient specific vessel lumen meshes

for the computation of blood fluid dynamics and vessel shape in different cardiac

phases. A binary vessel volume image was first generated from the reference mesh

model and the patient’s vessel image registered to it by optical flow. The inverse of

the mapping generated through registration was then applied to the reference mesh

model to produce the patient specific mesh model. The method was validated using

the laser surface profiles of physical aorta and carotid phantoms as well as on clinical

aortic images. The accuracy of their method was submillimetre with accuracies 2–3

times better than that of compared standard methods. The method is also 18 times

faster compared to standard methods.

Mollus et al. [170] proposed a method to rigidly register liver 3D rotational

XA data to a 2D DSA image. The 3D XA vessel features were first extracted

and skeletonized to build a centerline model of the vessel tree, while the 2D image

was left unprocessed. The 3D centerpoints were matched to vessel candidates in

the 2D image by their in-plane orientations and then expected intensity profiles for

typical liver vessel radii were used to locate a set of matching target points. The

registration optimization between the projected 3D centerpoints and their 2D target

points were done through the Levenberg-Marquardt least squares fitting algorithm
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[139]. Experiments were performed on synthetic angiograms and 2 clinical data sets,

which showed that the proposed approach was accurate, robust to preprocessing

error, and has a large capture range.

Maeda et al. [149] proposed a 3D non-linear vessel registration method for align-

ing intrapatient thoracic CT images for temporal subtraction diagnostic procedures.

The method registers vessel structures using a cost function that measures the reg-

istration overlap, using normalized cross correlation of image intensities and a vessel

likelihood function that uses the structure’s orientations and the eigenvalue vesselness

measure of [140]. A smoothness measure assures that the author’s multiscan free-

form deformation was well behaved. Optimization was done using a Quasi-Newton

method at multiple resolutions to enhance efficiency and robustness. The authors ap-

plied their method on 13 sets of thoracic CT images, evaluating the cross-correlation

of the registered image, and found that their method improved registration accuracy

by 8% compared to a non-vessel based conventional non-rigid method [214]. Us-

ing the vessel registration method also produced less registration caused subtraction

artifacts at vessel structures.

Mitrovic et al. [169] introduced a robust 3D-2D rigid registration method for

use in merging of intraoperatively acquired 2D cerebral C-arm image to 3D preoper-

ative angiographic images for endovascular image-guided interventions. The method

precomputes the 3D vascular model which consists of its detected centerline, local

orientation, and radii, and matches them to the intensity and gradient orientations

of the 2D image. The authors validated their method on ten clinical image sets and

determined their registration accuracy by measuring the alignment error of fiducial
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markers with their centroid coinciding with the centroid of the cerebral vessel tree.

They determined that the method had a mean registration errors below 0.65mm with

execution times below one second. The method also has the highest rate of success

and largest capture range when compare with state-of-the-art methods.

2.2.4 Challenges

Vessel images and their vascular structures can be used for aligning medical

images through image registration by vessel features, intensities, or by hybrid tech-

niques.

Vessel registration methods can operate using explicitly extracted vessel features

from the image. Vessel feature registration can be fast, robust to local minima, and

highly accurate. However, the effectiveness of these registration methods can be

heavily dependent on the quality of the extracted data. Feature extraction methods

that miss too many vessel features or contribute too many artifacts and non vessel

features, dramatically reduce the effectiveness of vessel feature registration. As well,

depending on the vessel feature extraction method used, the total processing time

needed to complete both feature extraction and feature registration may be quite

high. Improvements can be made in feature-based vessel registration by improving

vessel extraction, improving homologous feature matching, and reducing ambiguity

of features by including more vessel parameters.

Vessel image intensities can also be quite effectively used for image registration.

Such methods using vessel intensities have the benefit of not requiring feature extrac-

tion, which contributes overall processing time savings especially when the extraction

method is computationally expensive. The fact that intensity based registration does
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not involve feature extraction, also eliminates any of the extraction based issues of

feature based registration. However, using image intensity for registration can be

slow due to the amount of information that needs to be processed for image align-

ment. As well, the presence of other image structures can create local minima in the

registration parameter space that causes a vessel-based intensity registration method

to not properly converge to the expected solution. Improvements can be made to

vessel intensity-based registration through the acquisition of better quality vessel im-

ages, through the tuning of imaging parameters, or improving of registration image

similarity measures.

Hybrid vessel registration seeks to balance the benefits and reduce the short-

comings of feature and intensity based vessel registration. For instance in IGNS, the

computationally intense phase of high quality feature extraction is often allocated

to the preoperative stage. Doing this allows intraoperative registration involving

intensity to feature alignment to be more efficiently completed and more robustly

completed. As well, the extent of intra-operative feature extraction can also be

controlled, such that the extraction process does not completely remove all image

intensity information. This strategy can reduce computation time and the possibility

that the extraction method removed too much vessel information or misidentified

vascular features. Such balancing and reallocation of aspects of improved feature and

intensity based vessel registration method can be used to create novel and improved

hybrid registration methods.
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2.3 Cerebral and Vascular Imaging Phantoms

The accuracy and measurement reliability of medical imaging devices and the

results produced from image processing are highly important if diagnostic decisions

and surgical guidance are to be based on the data. To assure these criterion are

met and also to understand the specific characteristics and limitations of an imaging

device that acquired them, medical images need to be compared against objects of

known dimensions with defined and reproducible imaging parameters. These objects

are known as medical imaging phantoms.

Medical imaging phantoms are used in situations where verification of an imag-

ing device or an image processing algorithm is required. Such verification is required

if image data are acquired or processed using novel techniques, and particularly so if

the different modality images are to be compared and their information merged for

further processing. The creation of anthropomorphic cerebral phantoms can help in

such verification, especially if they contain anatomical structures that are important

for validating specific imaging modalities or image processing techniques. Develop-

ing anthropomorphic phantoms can thus enable more control and confidence in the

reliability of one’s imaging work-flow results.

The focus of creating more anthropomorphic cerebral phantoms for validation for

image processing and medical imaging is a relatively recent trend in the development

of medical imaging phantoms. While there was early development of phantoms and

phantom tissue mimicking materials for characterization of brain imaging modalities,

[212, 102, 148, 215, 147, 154, 19, 89], the constructed head and brain phantoms were

typically non-anthropomorphic until the late 1990’s.
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One of the first truly anthropomorphic cerebral phantoms was created by Mc-

Cullough [159]. The author developed the head phantom for CT geometry validation

that simulated the bone and soft tissue, with different imaging validation inserts that

can be placed into the brain space. A custom cast version of a commercial skull model

was cut open and modified with an acrylic plate to be able to hold water, as the soft-

tissue mimicking material, along with geometric size, high imaging contrast, and low

imaging contrast inserts. The phantom was used to evaluate reconstruction software

for the EMI CT scanners at normal and lower radiation dose imaging, and demon-

strated that such phantoms can be useful for evaluation of CT scanner performance

and to enable effective quality control procedures.

To validate positron emission tomography (PET) imaging accuracy, Hoffman et

al. [101] created a realistic brain phantom that simulated emission activity distribu-

tions found in the human brain in cerebral blood flow and metabolism studies. The

phantom was fabricated from thin acrylic sheets with sections cut out to represent

and allow differentiation of cerebral spinal fluid, grey matter, and white matter in

the final PET images. Multiple sheets of acrylic were cut, each representing the

tissues that would be visible in a certain axial slice. All the sheets were then aligned,

stacked, placed in a container with radioactive tracers and imaged. The result from

the phantom showed sufficient brain anatomy to be able to estimate the limits of

accuracy of PET brain imaging.

Rice et al. [205] created an anthropomorphic multi-tissue MR head phantom to

test MR structure localization and for spectral analysis of the MR signal. The phan-

tom consisted a subcutaneous fat layer simulated using safflower oil which surrounded
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a cylinder of brain tissue mimicking material made of gelatin and agar containing

brain metabolites. Cavities for the nasal sinus and the ventricles were also created,

with the latter holding a simulated cerebrospinal fluid made of water and copper

chloride solution. The T1 and T2 magnetic relaxation times of the phantom tissue

were very close to that of in vivo brain tissues and the different levels of metabo-

lites are detectable via MR spectroscopic analysis. The author believed that the

well-characterized tissue mimicking properties of the phantom made it useful and a

clinical reference and in testing MR spectroscopic methods.

Fahrig et al. [75] was the first to create a full polyester cerebrovascular arterial

flow phantom for use in XA, MRA, and CTA, extending the casting methods of [229]

using low-melting temperature alloys. The cerebral arteries were cast as four large

vessel core components consisting of the circle of Willis arteries, the internal carotid

arteries and the basillar artery using the aforementioned alloy. Each component

was then bent to the required 3D shape and connected together using small wooden

plugs that can be removed after casting. An aneurysm made of the same alloy were

glued to the vessels. The entire vessel core setup is placed in polyethylene housing

and a polyester resin is poured around the alloy components to cure. After curing,

the phantom was placed in a hot water bath to melt out the metal alloy. Any

residual metal was removed using a dilute nitric acid solution. The phantom was

then connected to a computer controlled pump for testing using iodinated contrast

agents for the x-ray imaging modalities and water for MR imaging. The phantom

was found to be geometrically accurate, and its flow dynamics mimicked that seen

in vivo. The authors stated that images of the phantom in XA, CTA, and MRA
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were consistent with those image using the same modalities under real physiological

conditions.

The development of poly-vinyl alcohol cryogel (PVAc) material was an impor-

tant step in producing ultrasound imagable multimodal brain phantoms. The ma-

terial was first described by Peppas [183] and used first used for developing MR

phantoms by Mano et al. [154] who recognized its long-term stability, mechanical

resistance to rupture, and similarity to human tissue in both texture, water content,

and relaxometry times. Due to its elasticity and toughness Chu and Rutt [41] rec-

ommended its use in validating MRA measurements under pulsatile flow. Comeau

et al. [48] used PVAc to create a semi-realistic brain phantom that can be imaged in

MR and ultrasound modalities. The phantom consisted of a cast flat disk of PVAc

embedded with a ridged brain-hemisphere simulation made of different concentra-

tions of PVAc that contained fluid filled spaces to simulate vessels and ventricles.

The phantom could be precisely deformed and the tissue movements tracked with

ultrasound and MR images using the phantom’s vessels and ventricle features. The

tracked features allow the deformations to be subsequently corrected through image

processing and validated using the known phantom geometries and applied defor-

mation parameters. The tests with the phantom showed that good ultrasound and

MR imaging can be performed and that it can be used for validation of non-linear

registration algorithm for image processing. The phantom was used by Gobbi and

Peters [88] to demonstrate and validate their multimodal registration methods and

the general nonlinear software package they also created.
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Surry et al.[240] further characterized the ultrasound, MR, and physical proper-

ties of PVAc and exploring its application to phantom fabrication. The authors built

a dual hemisphere anthropomorphic brain phantom using stereolithography to create

the mold to cast the PVAc. The digital model of the phantom was based on [103]

and was edited to remove all tissues below the canthomeatal plane to also reduce the

brain’s sulcal depth to enable effective casting and phantom removal. The authors

also built a PVAc blood vessel phantom containing two branched vessels. The brain

phantom can be easily imaged in ultrasound and in MR, showing the central sulcus

and the shallow sulci in both imaging modalities. The authors demonstrated that

PVAc can be used in multimodal imaging, for tissue biopsy accuracy studies, and

provided guidelines on how to best handle and use PVAc for phantom construction.

Reinertsen et al. [199] extended the work of Comeau et al. [48] and created

a realistic ultrasound and MR imageable brain phantom. The brain component of

the phantom was constructed by filling a commercially available brain mold with

PVA solution and inserting two loops of plastic tubing to act as brain vasculature.

The brain component was then cured and placed with a circular disk of PVAc into a

cylindrical container with an inflatable catheter. The catheter allowed the finished

phantom to be precisely deformed by inflating it with precise quantities of fluid. All

the contents in the cylindrical container were then immersed in PVA solution which

was then cured to create the final phantom. The phantom’s deformations were found

to be reproducible with millimetre accuracy and imaged well under MR as well as

b-mode and Doppler ultrasound imaging modalities. The phantom was later used
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by the authors to validate the vessel-based registration method that they developed

[202, 201].

A large amount of development for anthropomorphic phantoms and innovation

on multimodal tissue mimicking materials have occurred through the design of vascu-

lar flow phantoms. With the development of flow imaging in MR, CT, and ultrasound

modalities, the measurements and unique artifacts from these modalities had to be

characterized. This necessitated the creation of vessel structures in these phantoms

that realistically simulated the more complex anatomical form of blood vessels, as

well as the creation and inclusion of vascular pathologies and lesions. Multimodal

tissue mimicking materials that closely match the biological imaging characteristics

of in vivo tissues in MR, CT, ultrasound, and optical modalities had also been de-

veloped for vascular phantom due to the need for inter-modal flow rate validation.

As well, the necessity of good image alignment between multimodal images of the

phantom for comparison has also spurred the exploration of multimodal imagable

fiducials in vascular phantom.

Due to the accuracy needed to manufacture them and their complex structures,

designers of vessel phantoms were also early adopters of computer aided manufac-

turing and other rapid prototyping technologies in mold production. They have also

introduced more sophisticated casting techniques for phantom fabrication including

lost material and multi-layered casting methods.

Based on this research and development, vessel flow phantoms with complex

structures, containing multiple pathologies, built from multimodality tissue mimick-

ing materials can be constructed. Many of the sophisticated production methods
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and advanced materials developed from vascular imaging phantoms can be applied

to improve anthropomorphic cerebral phantoms.

It should be noted that many earlier imaging phantoms, including vessel phan-

toms, are now available from commercial vendors. However, the aim of this section

is not to exhaustively summarize all present vascular phantoms. Rather, we seek

to provide a brief overview of the serial development of vascular imaging phantoms

fabrication methodology over the last three decades.

Vascular imaging phantoms are indispensable for evaluating and characterizing

angiographic imaging devices and vessel image processing algorithms. Accordingly,

these vascular phantom have evolved in conjunction with the testing needs of devel-

oped imaging devices and processing methods. Some of the earliest vessel phantoms

were primarily static and used for the imaging sharpness and geometric verification

of x-ray angiographic imaging modalities [212, 102, 215]. However with the advent

of vascular imaging centred on blood flow, more sophisticated phantom were built

to allow quantification of flow velocities and observe potential flow imaging artifacts.

Multimodal vascular phantoms were eventually developed due to the need of cross-

modality imaging verification and to test multimodal image processing methods.

Vascular phantoms vary in structural complexity and anthropomorphic similar-

ity. In the simplest cases, a vascular imaging phantom may just consist of a set

of tubes and catheters to act as the vessel mimicking material. They may or may

not circulate a blood mimicking fluid to simulate either steady or pulsatile blood

flow. The tissue mimicking materials used may be simply solid plastic or plain wa-

ter to more advanced mixtures or layered emulsions. These simple phantoms fulfil
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the most basic imaging requirement of a specific modality and due to their ease of

fabrication are still commonly used for verification. However, more sophisticated

vascular phantoms have been developed to and constructed to evaluate more specific

characteristics of different imaging modalities and as such will in addition contain

bifurcations [82, 229], different vessel tortuosities [75, 5], varying degrees of stenosis

[262, 31, 231], and may have multiple layers of vessel mimicking tissue to simulate

different vascular tissues (i.e. the intima, media, and adventitia) [60, 22, 24] and

pathologies (e.g. sclerotic plaques, calcifications) [57, 56, 24]. Fiducial markers are

also commonly embedded in the phantom to assure proper image alignment over

multiple images and various imaging modalities [82, 118, 45]. For more realistic

phantoms with greater similarity to biological tissues, ex vivo vessels and organs are

sometimes used to produce vascular phantoms [57, 118].

In the rest of the section, we provide a brief overview of vascular phantoms

that have been developed over the last few decades for validation and verification of

various medical imaging modalities. We organize the review of vascular phantoms

according to their imaging modality; for x-ray, MR, ultrasound, and optical imag-

ing, with an emphasis on the development anthropomorphic multimodality vascular

phantoms.

2.3.1 X-ray and CT Imaging

X-ray modality vessel phantoms were first developed for measuring the size of

vessel pathologies in contrast-enhanced x-ray imaging. Wise et al. [262] created

a carotid aorta phantom specially designed to study the scanning parameters for

CTA imaging on conventional versus spiral CT imaging devices. The phantom was
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constructed of a solid polymer cylinder that had the density of soft tissue. Holes

with different percentages of stenosis, stenosis length, and angles of stenosis relative

to the CT scanning axis were drilled into the cylinder to form vessel lumens. The

drilled holes were plugged and filled with a non-ionic contrast solution that has a

CT density of 240 Hounsfield units. By scanning this phantom and analyzing the

image with its known physical measurements, the authors noted that while there is

little difference between conventional and spiral CT imagers, a thinner and longer

stenosis was imaged with higher accuracy in CTA imaging. Vessel angles also caused

degradation in image quality with increased halo and edge artifacts.

Later x-ray modality vascular phantoms were improved in anatomical realism

to enable actual implantation of stents and used for the in vitro visualization of

these implants. For instance, Winder et al. [260] built an aortic phantom containing

a stent graft for testing CTA scanning and visualization of the scanned data. CT

data from a patient was manually segmented and thresholded and a mesh model

was built using the marching cubes algorithm. The mesh model was then physically

constructed using stereo lithography in two parts which allow a commercial aortic

stent graft to be seated or removed. The vessel phantom was filled with a contrast

solution and scanned at various slice thicknesses, pitches and reconstruction inter-

vals. The phantom image was visualized using virtual intravascular endoscopy (VIE)

to validate stent placement. The phantom can be used to find optimum scanning

parameters for aortic stents and also allowed the authors to notice potential pitfalls

of virtual endoscopic visualization in overestimating stent wire diameter and vessel

wall indentation caused by the stent’s wires. This work was later extended by Sun
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and Ferris [239] to study the effects of CT collimation and found that higher section

thickness can distort aortic vessel ostiums in VIE. The authors noted that acquiring

CT scans of optimal section thickness for proper visualization must be balanced with

the patient’s radiation exposure.

More recently, Thakur et al. [245] designed and constructed a multipath acrylic

phantom for the training of neurovascular catheter insertion and manipulation guided

by 2D fluoroscopy. The phantom contains vessels of different diameters, angulations,

and changes in diameter transitions. To create the phantom, two acrylic sheets were

milled in mirror image using a numerically controlled machine with a hemispheric

bit to ensure cylindrical vessels when the two sheets are aligned and fastened. Fluid

connectors were attached to the inlets and outlets of the phantom to allow a pump

to be connect to fluid circulation. A connector is attach to the inlet to the phantom

to allow the catheter to be introduced to the phantom. The phantom imaged with

good contrast in 2D fluoroscopy and radiographs, and functions well with inserted

catheters. The authors believe that it can be used for training safe catheter handling

and for the assessment of new catheter guidance techniques. As well, the materials

of the phantom are stable to temperature other environmental factors thus giving a

long usage lifetime.

2.3.2 MR Imaging

Vascular flow phantoms for MR imaging have been developed for determining

the accuracy of the flow rates and characterization of artefacts arising from the

imaging modality. Meier et al. [162] introduced a vessel phantom for their tests to

quantitatively determine blood flow rates in MR in real-time over an entire heartbeat
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interval. The phantom was constructed from a round, water-filled cylinder embedded

with 4 interconnected acrylic tubes of two different internal/lumen diameters. The

blood mimicking fluid was a solution of water and CuSO4 which was fed through the

phantom’s acrylic tubes by either pulsatile or continuous flow. The phantom accu-

rately determined the flow rates, which matches that of in vivo MR and ultrasound

measurements done on the abdominal aortas of healthy human subjects.

To verify the accuracy and quality of novel MRA techniques, in 1999, Smith

et al. [231] developed an anthropomorphic carotid bifurcation phantom with vessel

stenosis. Different MRA imaging modalities were tested and their geometric accuracy

and imaging appearances were characterized. This work extended upon the technique

for producing multimodal phantom in [229]. An aluminium mold was precision

milled using computer assisted manufacturing (CAM) to first cast the lumen of

the vessel phantom. The casting material used is a low temperature melting metal

alloy. This metal cast was then itself encased in a polymer resin. By heating the

polymer encased cast, the low-melting point alloy cast is removed, leaving an accurate

hollow polymer vascular phantom. A blood mimicking fluid of water and glycerol

was pumped through the phantoms and imaged using 3D TOF, 2D TOF, and 3D PC

MRA. Using of the phantom allowed the authors to identify imaging artifact in each

MRA technique and shows its usefulness for the assessment and characterization of

newly developed MRA techniques.

To produce an MR compatible phantom that behaves like biological tissues when

heated using high intensity focused ultrasound (HIFU), Payne et al. [180] created a ex

vivo kidney vessel phantom for MRA to identify significant blood vessels in planning
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HIFU treatments. A specially prepared alcohol fixed canine kidney was cannulated

at the artery, vein and ureter and then suspended in an alginate filled plastic holder

inside a large vat of water. A focused ultrasound heating element was place in the

vat of water and the phantom was sonicated near the kidney vessel as required. The

kidney phantom was perfused at different flow rates with distilled water while being

imaged using 3D TOF MRA. The authors indicated that the kidney vessel phantom

can used to evaluate, test, and plan MR guided HIFU therapy. Using the phantom,

MR protocols and be tested and tuned to improve organ tissue or vessel imaging.

The heating and cooling effects of HIFU and the flow rates of close-by vessels can

also be quantified. However, perfusion rates must be controlled to prevent damage

to the vessel in the phantom, which can result in poor imaging.

2.3.3 Ultrasound Imaging

The used of phantoms for validating Doppler ultrasound is an important and

ongoing research topic that extended from early research in medical ultrasonograhy.

Law et al. [133] discussed the important aspects of designing ultrasound compatible

flow phantoms. Their review delved into the phantoms from preexisting literature

going back to the 1970s regarding the types of blood mimicking fluid, tubing used for

the vessels, the types of pump used for circulation and the specific use of the phantom.

The authors proposed their own phantom for validating Doppler ultrasound under

steady blood flow using a vessel phantom built from thin-walled polyethylene tubes

connected to peristaltic pumps under gravity feed that circulate a fluid suspension

of chemically-fixed red blood cells. The authors indicated that the phantom setup

appears to be useful for Doppler ultrasound studies in pulsed and continuous blood
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flow, for use in stenosed vessel phantoms to aid in diagnostic quantification, and to

study the scatter of ultrasound by red blood cells.

To overcome the limitations of vessel mimicking materials in vascular phantoms

produced, Rickey et al. [206] introduced a wall-less vessel phantom consisting of only

tissue mimicking material for studying Doppler ultrasound flow. While rubber tub-

ing can be used to mimic blood vessels, the material has high ultrasound attenuation,

which may introduce measurement errors and artifacts. By removing the tubing and

using the paranchymal tissue mimic directly as the vessel, the acoustic impedance

between the vessel and the lumen can be reduced. The phantom was constructed by

pouring their formulated dissolved tissue mimic, consisting of agar, cellulose parti-

cles, and glycerol into a prepared container with a cylindrical aluminium bar. The

vessel was formed when the agar was set and the mandrel was removed. The blood

mimicking fluid was a mixture of metal machining fluid, water, and nylon particles

for ultrasound scattering. The proposed vessel phantom did not cause shadowing and

also does not distort the ultrasound’s beam power spectra. Due to this, the phantom

can be used to precisely measure Doppler signal sensitively and validate flow rates

in small and thin vessels. The work also showed the importance of choosing low

attenuating materials for use as vessel mimic. The tissue mimicking materials and

methods for producing this phantom was eventually widely adapted and used as a

basis for the development of many modern vascular phantoms.

De Korte et al. [60] improved upon the the wall-less phantom by introducing

a technique to produce multiple vessel tissue layers using different tissue mimick-

ing materials. The phantom was created for the purposed of validating elasticity
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measurements in intravascular ultrasound (IVUS). Vessel tissue mimics of different

densities were formulated using different quantities of agar in a gelatine solution,

with silicon carbide powder added for scattering. The phantom was constructed by

pouring the vessel mimic into a syringe and agitating it until the fluid has almost

set. A “lumen tube” is then inserted down the centre of the syringe, the tissue

was allowed to set completely, and the tube was finally removed to create a vessel

lumen. Layered vessels with lesions of different echogenicity and hardness were cre-

ated through the same technique by repeated casting of the lesion material before

introducing the lumen tube. To measure the vessel elasticity and hardness, the IVUS

probe was inserted into the phantom which was pressurized with fluid from the other

end of the phantom. Compression was applied to the phantom and scans were made

to produce the strain image of the vessel phantom. The strain images were able to

map the hard and soft legion tissue mimics despite the same being not always visible

in the echogram images.

Brunette et al. [22] developed a three-layer vascular phantom with different

vessel tissues and wall thicknesses for use in IVUS. An aluminium mold was ma-

chined with two female components and a male vessel lumen component. The mould

was designed to have four different vessel lumen diameters and a slight offset on

the mandrel to allow for different vessel wall thickness. The outside and innermost

layer of the vessel mimicking material used is an agar gel solution with cellulose

particles while the middle echolucent materials lacked the cellulose but contained

glycerol. The layers were applied by dipping the mandrel in layers of the different

agar solutions once each layer have sufficiently cooled. When imaged using IVUS,
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the phantom was able to robustly reproduced the characteristic different layers of

the large arteries and is more realistic in geometry and ultrasonic properties than

phantom made from different materials and can be used to validate automatic seg-

mentation or tissue characterization methods. Potter et al. [194] used this method

to construct a similar single material agar artery phantom in order to quantify how

adjustments to ultrasound parameters and probe distances changes vessel lumen and

wall thickness. The lumen diameter appears to significantly reduce with increases in

gain and probe distance while vessel wall thickness increased with gain and varied

inconsistently with probe distance. The study showed how reported clinical mea-

surements using ultrasound needs to specify or document the dynamic range and

probe distance for their studies.

Landry and Fenster [129] introduced a wall-less agar phantom embedded with

different carotid plaque lesion bodies to determine the accuracy of reconstructed 3D

B-mode ultrasound images in measuring plaque volume. A tissue mimicking material

consisting of agar solution, glycerol, and cellulose powder was cast in a container

around an acrylic mandrel and cooled to create the vessel lumen and surrounding

tissues. Plaques were created from the same tissue mimic but with only one sixth of

the cellulose and measured to determine its weight, which relates to its volume by

the material’s density. Twelve plaques of different heights and lengths were created,

and then glued inside each phantom’s vessel lumen. The phantom were then filled

with a glycerol solution, plugged, and placed in water for storage. When imaged, the

authors found that the phantom produced ultrasound volume measurements that

were within 3.1% of the actual volume.
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To create more wear resistant vascular phantoms using newly available ultra-

sound compatible materials, Poepping et al. [191] fabricated a thin-walled silicone

rubber vessel flow phantom for Doppler-flow studies based on anatomically accu-

rate digital geometric models derived from the work of [230]. Although wall-less

phantoms have less mismatch problem to the tissue mimicking material they are

vulnerable to damage from usage, environmental changes, and have incompatibility

to certain blood mimicking fluids. The authors constructed the vessel mimicking ma-

terial using a two-part cured silicone rubber with varying concentrations of cellulose

powder to allow for enough ultrasound scattering without increasing the attenua-

tion of the vessel. The methods for casting the vessel is similar to [229] in which a

low-melting-point alloy vessel core is cast. However for this phantom, a additional

mold is used to cast the vessel mimic around the lumen core before being placed into

the tissue mimic before the core is melted out. The authors found that the vessel

phantom is stable over time, environment and usage stresses. The elastic modulus

of the vessel wall also mimicked that of human arteries.

To enable study of ultrasound guided HIFU, Greaky et al. [90] designed a pul-

satile flow phantom made of a real carotid artery for HIFU transcutaneous hemostasis

of injured blood vessels. The vessel flow phantom is similar to [56] was built from an

ex vivo porcine carotid artery that was imbedded in agarose gel to stabilize it and the

setup was connected to a pulsatile pump system. Heparinized blood was circulated

in the phantom and needle was used to puncture the artery. The ultrasound imaging

probe and HIFU transducer were then used to guide the focus of the transducer

and the seal the arterial puncture, respectively. The entire process of pulsatile flow,
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arterial puncture, and puncture sealing can be visually confirm as well as through

Doppler ultrasound imaging from the ultrasound probe. The authors believe that

the designed phantom can provide a controlled and repeatable setup for studying the

application of HIFU for hemostasis in a variety of vessel injuries.

Less anatomically accurate ultrasound vascular phantoms were also built to

charaterize newer imaging modalities and to study effect of imaging parameters on

ultrasound measurement accuracy. Hammer et al. [95] developed arterial wall mo-

tion phantom to validate software that measure such motion using tissue Doppler

ultrasound image (TDI). The phantom consists of a two slabs of agar tissue mim-

icking material, with one attached to a static ultrasound probe and another on a

mechanically controlled moving paddle. The setup simulates ultrasound imaging

done in the lateral cross-section parallel to the arterial vessel axis. By adjusting

the paddle’s motion different wall displacement, velocities, and accelerations can be

simulated. In experiments, the paddle’s motion is controlled using a stepper motor

controller which when validated with a laser, yielded a positional accuracy of around

36 micrometers. Testing the software with, the phantom the authors found that

TDI methods of resolving displacement was highly accurate. However, the software

became less accurate with decreased wall displacement and increased wall movement

velocity.

As well, Schulten-Wijman et al. [218] developed a phantommade of polyurethane

tubing to determine the influence of ultrasound settings on Power Doppler ultrasound

measurements. Plastic tubing was immersed in a mixture of water and ultrasound

coupling gel. The tubing was set at an angle of 45 degree to the liquid surface and
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a commercial blood mimicking fluid was circulated through the phantom. Using the

phantom the author found that power Doppler can significantly overestimate vascu-

larization index within a region of interest depending on vessel size, and that clinical

interpretation of the index should take this fact into account.

2.3.4 Optical Imaging

Optical imaging modalities can be used to accurately determine the blood flow

rate and characterize the turbulant flow dynamics inside stenosed arteries. Vascular

phantoms built for optical modalities need to be transparent to visible light in order

allow the proper acquisition of camera footage for tracking the flow dynamics of

particles in stenosed vessels.

Cao and Rittgers [31] created a optically transparent silicone rubber stenosed

phantom to study platelet adhesion in vessel pathology. The vessel was cast by

creating a vessel lumen core out of wax, carving the wax to produce the “negative”

of a stenosis plaque, and then coating sufficient silicone polymer on the carved wax

core to fill the plaque negative and coated it with approximately 2mm of the material.

The silicone was than cured and the wax is melted out to form the phantom. The

phantom was then embedded in a viewing box with heavy mineral oil to reduce

optical refraction. The blood mimicking substance used was a solution of distilled

water and dextran circulated by a pulsatile pump to simulate cardiac cycles. Resin

particle approximately the size of platelets were injected into the phantom slightly

upstream of the stenosis and the flow of the particles are recorded using a video

camera for analysis. Through their experiments, the found that with that 75% and
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95% stenosis created enough particle resting time downstream from the stenosis that

may be enough to initiate blood clot formation under physiological resting conditions.

Improving on the realism of the previous phantom, Brunette et al. [24] described

a multi-layer silicone rubber coronary artery phantom for particle image velocimetry

(PIV) to experimentally observe flow over atherosclerotic formation. The phantom

extended upon the multilayered ultrasound vascular phantom of [22], substituting

the tissue speed-of-sound matched agar mixture for optically transparent silicone

rubber. The vessel phantom was made by injection casting silicone polymer into

precision machined aluminium molds. Five two-pieced female mold components were

created to mold the sclerotic occlusion for the stenosis and layers of arterial tissue

around a male mold component representing the vessel lumen. The finished vessel

phantom was embedded in a transparent polycarbonate container filled with a similar

refractive indexed water and glycerol solution. The blood mimic is the same water

and glycerol mixture with titanium dioxide powder included for laser tracking. The

multilayer phantom was tested in a PIV flow analysis system and was able to supply

usable experimental data. The authors believe that this data can be used to validate

computational fluid dynamics algorithms and hypotheses. This phantom was later

adapted for used by Brunette et al. [23] to study 3D blood flow characteristics

by scaling the phantom up by 6.35 times while keeping the blood mimic, circulation

setup, and data acquisition the same as in the previous experiments. Particle velocity

was calculated and used to derived vessel shear stress distribution and secondary

flows with the flow volume. Results from their experiments showed that abnormal
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shear stresses are initiated even at early stages of sclerotic formation are important

contributors of disease progression and also plaque rupture.

Cimalla et al. [44] proposed a method for determining blood flow velocity using

intraoperatively injected fluorescence dyes for neurosurgery. The vessel phantom

consisted of silicone tubes circulated with water a the blood mimic, the fluorescence

dye bolus is injected as a suspension of water, whey protein, and dye compound.

The bolus injection is recorded as a digital IR fluorescence video and the data is

analyzed. From their experiments, the author found that the fluorescence can be

used to determine the accuracy of flow velocity by ±20% which is comparable to

clinical Doppler ultrasound measurements.

2.3.5 Multimodal Imaging

Balancing the desired material properties for multimodal imaging is important

such that a phantom constructed with these material can be effectively used in

its prescribed imaging modalities. Frayne et al. [82] constructed one of the first

multimodal anatomically realistic carotid artery vessel phantoms. A digital model

averaged from multiple human carotid bifurcations was numerically machined onto

acrylic slabs to create a two halves of the artery phantom. Water soluble wax was

cast in the mold, allowed to solidify, removed, and then thinly coated with a polyester

resin. By dissolving the wax in water a thin polyester plastic phantom is left. This

plastic component was then mounted into a plastic housing and embedded in a tissue

mimicking material consisting of agar, propanol and cellulose powder. A blood-

mimicking fluid made of cellulose powder, machine cutting fluid, and water can

be circulated through the phantom. The phantom was surround by lead wire as
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a fiducial material which can be used for multimodal image alignment. Both the

blood and tissue mimicking materials can be successfully images in x-ray, ultrasound

and MR modalities, with the latter seeing dark wires in contrast with the tissue

mimicking material. The physical phantom was geometrically accurate, with flow

images and flow measures acquired on the phantom with Doppler ultrasound and

phase contrast MRA agree with previously published data.

Renaudin et al. [204] designed a hard plastic 3D anthropomorphic coronary

artery phantom capable of being imaged using contrast enhanced 3D MR and CT.

Computer modelled coronary arteries were extracted and a digital model with empty

vessel models were printed using stereolithographic methods to create the physical

phantom. The empty vessel lumen of the rigid printed plastic phantom can be filled

with gadolinium or iodine based contrast agents for 3D T1 gradient echo MR or 2D

and 3D XA imaging. By using computer aided design, a physical phantom of highly

accurate and realistic branching vessels can be consistently fabricated. The authors,

indicated that the phantom’s accuracy and ease of production allows it to be widely

used for radiological validation, imaging quality control, and used in clinical field for

training in angiographic interventions.

A highly influential set of methods for the creation of wall-less anthropomorphic

triple multimodality vascular phantoms 3D and 2D XA, 3D MR, and 2D Doppler

ultrasound was described by Smith et al., 1994 [229]. The author’s vascular flow

phantoms can be built to emulated healthy carotid vessels or stenosed vessels. The

phantom was fabricated by casting formaldehyde agar gel around a vessel core for
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lost material casting. The core was in turn constructed using a low melting tempera-

ture alloy (Cerrolow 117) that was cast in a numerically machined aluminium mold.

Melting away the alloy vessel core after the agar mixture had set leaves an agar gel

with an evacuated lumen that can be fitted with tubing for used as the multimodal

vascular phantom. Three carotid bifurcation phantoms were created with different

anatomies; a normal, a 70% concentric stenosis, and a 70% eccentric stenosis in the

internal carotid artery. The phantom were tested on x-ray based systems for DSA

and CTA, magnetic resonance scanners for MRA and ultrasound imaging devices for

Doppler angiography and showed promising similarities to images acquired from real

tissue.

In order to create a highly realistic flow capable vascular phantom compatible

with x-ray and ultrasound imaging, Dabrowski et al. [57] used a real human abdom-

inal aorta. An abdominal aortic artery was harvested through autopsy, cleaned, and

preserved in a low formaldehyde solution. The prepared artery was then mounted

into a box, cannulated to acrylic tubes, tested for leaks, and box was filled with the

tissue mimicking mixture specified by [206]. Stainless steel balls were embedded into

the agar to act as registration fiducials. The lumen of the vessel was not perfused,

but rather, filled with a water and glycerol solution, chosen for its low refraction

index. The phantom was then evaluated using 2D XA, 3D CT, and 3D B-mode ul-

trasound imaging, which showed good overall correlation between the imaged lumen

shape, plaques, and calcification features within the phantom. The anatomically

realistic imaging properties of the phantom makes it attractive for evaluating imag-

ing techniques in x-ray and ultrasound modalities. As a follow up to this work,
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Dabrowski et. al [56] extended the testing of this real aorta phantom for use in flow

imaging in 3D power and 3D colour Doppler ultrasound. The authors found that

the phantom can be imaged well under Doppler ultrasound imaging modalities and

generated more realistic flow patterns than purely artificial test phantoms. By using

real human vessels with atherosclerotic plaques, the blood flow around these lesions

can be better studied and characterized.

Using novel materials, Cloutier et al. [45] created a thin-walled multimodal ves-

sel phantom with a longer shelf-life than wall-less phantom that contained imagable

fiducial markers capable of being clearly imaged in XA, CTA, MRA and ultrasound

angiography. The phantom was constructed using a agar and oil emulsion as the

tissue mimicking material that was embedded with small glass sphere fiducials. The

spheres were places in precisely known locations in the phantom to aid in viewing

and in inter-modality registration. The phantom contained a thin latex walled vessel

cast from a vessel core made from a low-melting point alloy using methods similar

to [229]. In verification tests, the fiducials were highly visible and did not produce

artifacts or distortion in all imaging modalities. The use of a thin walled vessel iso-

lated the tissue mimic and prevented from desiccation while preventing gadolinium

MR contrast-agents from leaking into it. The authors verified that the manufactur-

ing process did not alter the phantom’s precise geometry. For this reason, it can

be used for imaging calibration, multimodal image registration validation, and other

intra and intermodality comparative studies of medical imaging systems. Using this

phantom, Boussion et al. [21] published a study that determine the accuracy of CTA,
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MRA, b-mode ultrasound angiography, and IVUS in estimating of the phantoms ves-

sel size and for cross-modality vessel registration. Using the phantom’s images their

compiled results indicated that CTA and IVUS were better for geometric accuracy,

while CTA to MRA-based image alignments had the best accuracy and robustness

for multimodal lumen border registration.

Sulaiman et al. [238] developed an x-ray and MR compatible non-rigid aortic

arch aneurysm phantom for in vitro evaluation of new stent designs. The vessel

phantom’s mold was made by first producing a digital model of a patient’s aor-

tic arch, and then using it to create molds through stereolithography for the vessel

phantom’s lumen and for the vessel’s outer wall. A wax lumen core was cast from

the lumen mold and then used with the mold from the other wall to cast the vessel

phantom using silicone rubber. Melting away the wax core produces the final sili-

cone phantom. The completed silicone aortic arch phantom was attached to a pump

that circulated a blood mimic consisting of water and a red-coloured radio-opaque

dye. Stents were deployed at the phantoms aneurysm and found to attach snugly

without perceivable leakage. The authors believe that such phantoms can be used

for training stent placement and can help in presurgical patient-specific stent selec-

tion. They also found that the presence of a physical phantom helped the surgeon

and radiologist become more familiar with the vessel and its pathology to optimize

treatment approach and anticipate problems.

Allard et al. [5] proposed a new casting material for use in producing multimodal

vascular flow phantoms that can be used in x-ray, MR, and ultrasound modalities.
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The authors extend upon the work of [45] and introduced the used of isomalt, a com-

mercially available sugar alcohol, for replacing a low-melting-point metal alloy for

lost-material casting processes. Liquid isomalt was cast in a silicone mold fabricated

using stereolithographic methods and the resulting cast was coated in a polyurethane

membrane to create a thin wall to isolate the blood mimic from the tissue mimic

in the completed phantom. The coated cast was then encased in an agar and oil

tissue mimicking material and the isomalt was dissolve in water. The authors com-

pared vessel phantoms built using isomalt to that built with previous method using

low-melting-point alloys and found that isomalt did not leave residuals that caused

imaging artifacts in MR and x-ray modality imaging methods. The geometric ac-

curacy of phantom made using isomalt was comparable to that manufactured with

the alloy. The authors indicate that using isomalt allows complex vessels with mul-

tiple stenoses and other lumen irregularities to be easily manufactured with leaving

residuals.

Jiang [112] created a bifurcated vessel phantom to that can be used to inves-

tigate heating and thermodosage of vessel tissue in HIFU treatment. The vessel

mimicking material used is a silicone polymer mixed with a thermosensitive pow-

ders that changes colour when heated. The vessel phantom was itself manufactured

through lost-wax casting of a digitally modelled vessel lumen core. The authors

tested the phantom with perfused with water under HIFU sonification and found

that the physical properties of the phantom agree well with those of human tissue,

and can be used to display thermal dosage profile for HIFU experiments.
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King et al. [118] constructed a set multimodal renal artery phantoms using

the fiducials and low-melting-point alloys casting methods described by [45] and the

tissue mimicking materials proposed by [244]. Renal artery vessel phantoms with

stenosis of 0% to 85% were created and imaged with ultrasound, MR, CT, and XA.

The phantom was imaged in water for ultrasound and in air for all other modalities.

The authors reported that the images acquired from the phantom in all modalities

were distortion free and with good contrast between the background tissue, fiducials,

and vessel lumen. Discrepancies in the estimation of stenosis in the higher-stenosed

phantoms between the imaging modalities were evident. From their tests, the authors

believe that their artery phantoms can be useful in evaluating current and emerging

imaging technologies.

Allard et al. [4] created a multimodal aortic aneurysm vessel phantom with an

visible thrombus to be used in x-ray, MR, and ultrasound imaging modalities. To

create this phantom, molds was fabricated for the vessel lumen as well as the throm-

bus using method similar to that described by [5]. A novel formula for abdominal

tissue mimicking materials was developed consisting of agar, glucosamine, oil, sodium

azide and water. The tissue mimicking material used for the thrombus consisted of

agar, glycerol, cellulose powder, sodium azide, and water. The thrombus material

was clearly visible in MR and CT imaging modalities as a hypointense feature, while

being hyperintense when imaged using ultrasound. The tissue mimicking materials

developed in the phantom matched the in vivo CNR and SNR values of T1 and T2

MR sequences. As well, the materials’ x-ray absorption and ultrasound propagation

speeds matched that of ex vivo biological tissue. The phantom is not only useful for
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validating imaging methods and processing techniques, it can also be used to train

for planning and training fluoroscopic-guided stent graft deployment.

2.3.6 Challenges

Imaging phantoms of each modality have their own unique constraints and com-

plexity since the materials used for their construction should act in a similar manner

to real tissue in a specific imaging modality. For phantoms in x-ray based modalities

such as CTA and XA, x-ray absorption and transmission properties must be matched,

just as in optical imaging modalities the tissue mimicking material must allow for

sufficient light transmission. In MR modalities, the magnetic relaxation times of

the vessel and tissues should be similar. And for ultrasound imaging modalities,

the material must have similar speed of sound, ultrasound scattering qualities, and

ideally similar rheological properties to biological tissues. Furthermore, any fiducial

markers in a phantom should show up with high contrast in respect to the rest of the

phantom tissue and their location should be able to be unambiguously identified.

Multimodality anthropomorphic imaging phantoms are challenging to build.

The tissue mimicking materials that are compatible in one imaging modality may

not be optimal for another. This is also challenging for multimodal fiducials, since

it must be able to be imaged in each imaging modality without causing significant

image distortion or artifacts and still be unambiguous in each modality. As well, the

complex anatomical forms in a real biological tissue are often difficult to properly

fabricate in anthropomorphic phantoms.
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We believe that the methods developed in multimodal anthropomorphic vessel

phantoms can be used to improve cerebral imaging phantoms. This includes apply-

ing the developed multimodal materials and also extending the techniques used to

fabricate anthropomorphic vessel phantoms. Through this, more sophisticated cere-

bral anatomical phantoms with multiple tissue and anthropomorphic structures may

be constructed.

2.4 Vessel Enhancement

The enhancement or segmentation of vascular structures is particularly impor-

tant for medical diagnosis, surgery planning, and surgical guidance. In fact, vessel

segmentation is usually a prerequisite step for the accurate visualization of vascular

features from complex vessel containing medical images.

Although automatic vessel segmentation methods are more widely used, man-

ual vessel segmentation is still routine in many clinical settings despite being time-

consuming, subjective and error-prone. With the amount of medical image data

now being acquired and more commonly used in IGNS, the corresponding amount of

processing and labour needed for manual segmentation can quickly add up in time

and cost. On top of this, the use of manual segmentation can also inject interrater

variability into the segmentation results. As such, automated vessel enhancement

and segmentation tools are important not only because they improve operator effi-

ciency for preparing vessel data, but they produce vessel segmentation results that

are more consistent. This allows angiographic data to applied more routinely in sur-

gical guidance and visualization, thus improving a surgeon’s understanding of the
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configuration of vessels around a lesion. In this manner, improved vessel enhance-

ment and extraction can help improve surgical results, which altogether translates

to better patient outcomes.

Vessel enhancement and segmentation is a challenging problem due to both the

anatomy of the vessels and the characteristics of their acquisition modality. Healthy

blood vessels vary greatly in their anatomical characteristics such as their cross-

sectional size, length, curvature, and branching. The vessels themselves may be

embedded in organs or different tissues that may also change their appearance when

imaged. Furthermore, the dense vessel networks found in different organs can also

differ greatly in their form and topology. These variations in forms are greatly

increased should we consider vessels pathologies such as stenoses and aneurysms, or

medical implants such as stents or embolizations. The type of imaging modality for

blood vessels also contributes additional complexities to the creation of automated

vessel enhancement and segmentation methods. Each medical imaging modality

produces data of different effective resolutions and contrasts. They also contribute

their own types of noise and unique imaging artifacts. These challenges have resulted

in the development of a wide variety of vessel enhancement and segmentation image

processing techniques for different and often dedicated applications.

A vessel segmentation algorithm may be be developed to process images of a

target organ (e.g. liver, lung, brain) often in combination with a specific medical

imaging modality (e.g. CTA, MRA, ultrasound). Vessel segmentation can in general

be divided into three specific processing stages:
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• Preprocessing: Processing the raw medical image data to enhance image

structures, improve the image’s quality, or reduce the effects of noise and im-

age artefacts. Effective vascular image preprocessing can thus potentially im-

prove the quality of any subsequently performed vessel structure extraction

and postprocessing. Vessel enhancement methods belong in this category.

• Extraction: The optimization process in which the boundaries or the path

of vessel structures in the raw or preprocessed image are explicitly located

and delineated. This gives a defined boundary in image space between what

are vessels and what are background parenchymal tissue. Commonly used ex-

traction methods include voxel region growing [156, 20, 164], wave propagation

[197, 119, 120], level-set front propagation [1, 220, 151], the popular active con-

tours methods such as parametric snakes [160, 246, 267, 167] or curve evolution

[144, 251, 63, 209, 265, 104], and centerline extraction methods [14, 62, 261].

• Postprocessing: The processing of extracted vessel structure information to

refine and correct their results. Example of this are the vessel reconnection,

hole-filling, or topology correcting methods. Alternatively, post-processing can

also be use to further extract vessel structures to derive additional structural

or morphological information on the vessel network. This includes extracting

centerlines from extracted contours [177, 196, 227], detecting vessel boundaries

and bifurcations from extracted centerlines [175, 80, 267, 167], detecting branch

or vessel tree hierarchy [128], and reconnection disconnected vessel segments

[268, 134].
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A review of the entire field of vessel segmentation for preprocessing, extraction,

and post processing is out of the the scope of this thesis. For further details on vessel

extraction and postprocessing vessel segmentation algorithms, we direct the reader

to the vessel extraction and segmentation review papers of Kirbas and Quek [121]

and Lesage et al. [136]. In this section, we will provide a review of the work in the

literature concerning solely the preprocessing algorithms used for vessel structure en-

hancement. They include methods based on first and second-order image derivatives,

image intensity statistics, anisotropic diffusion, prior-knowledge image registration,

and other detection models such as mathematical morphology and multidimensional

filtering.

2.4.1 First Derivative Methods

Some of the first vessel feature filters were based on image first-derivatives.

Koller et al. [124] proposed a general multiscale filter through the non-linear combi-

nation of first derivative Gaussian edge detectors to produce a feature detector that

was insensitive to edges but sensitive to line image structures. Their feature detec-

tor was steerable and scalable over an image and could thus determine local image

orientations and detect line features of different scales. By combining the maximum

filter responses of the feature detectors over a set of orientation and varying the de-

tector scales in that orientation, a line-structure enhanced image was produced. The

author successfully applied the method on 2D natural images and extended it for

use in 3D volumetric MRA images by incorporating vessel orientation information

found by obtaining the principle vectors of the image Hessian.
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Poli and Valli [192] proposed a real-time vessel enhancement method that used

a set of line filters sensitive to different line orientations and thicknesses. The sets

of filters were made by linearly combining spatially shifted Gaussian first-derivatives

kernels of different widths that were then stretched “longitudinally” to be more

directionally selective. These filters were note by the authors to be similar to the

receptive fields of cells in the visual cortex and also filters designed by Zucker [273] for

texture tangent field estimation. Outputs of each filter direction were then integrated

together by finding their maximum intensity at each pixel to produce the resulting

enhanced vessel image. The authors tested their methods and found that it could

process images at a rate of 13 per second on a 300 MHz computer. As well, the

enhanced images processed from real 2D coronary angiograms and synthetic phantom

images that showed promising results.

2.4.2 Second Derivative Methods

A popular class of vessel feature filters are the Hessian-based filters. While some

methods used solely the second derivative information for enhancement, others used

it in combination with first derivative information for improved vessel enhancement

at vessel lumen boundaries.

Although early vessel enhancement methods used the image Hessian to find the

local principle orientation in the image [124], Aylward et al. [12] was the first to an-

alyze the image Hessian to enhance the image intensity ridge for vessel segmentation

at user specified scales. The ridges were found by comparison of the Hessian eigen-

values. A ridge exists at a 3D voxel with eigenvalues λi such that λ1 < λ2 < 0 < λ3.
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The diameter of the vessels at the detected image ridge could be found by convo-

lution of the image with a Laplacian of Gaussian at a user estimated scale for a

ridge point. By traversal along an image ridge from a user selected initial point, a

vessel structure centered at the image ridge can be extracted. The authors tested

the method on 3D MRA and CT bone data and found that it allowed vessels and

bone structures to be quickly and successfully segmented by the user.

One of the first to describe a multiscale vessel feature filter that used second

derivative Hessian eigenvalues extensively for vessel enhancement was Lorenz et al.

[143]. In their filter, the image Hessian was decomposed to find the eigenvectors and

eigenvalues at multiple filter scales optimized for vessel enhancement. The eigenval-

ues at the each scale were then analyzed by finding their ratios and combing them

with the local image gradients to enhance vessel-like structures. They also showed

that using the orientation information from the principle Hessian eigenvector, along

with their detected vessel-like structures can be used to improve vessel skeletoniza-

tion and surface meshing. The method enhanced the vessel lumen strongly on both

2D digital subtraction angiographic (DSA) images and 3D MRA images.

Frangi et al. [81] proposed a multiscale filter based solely on Hessian eigenvalue

analysis greatly extending the eigenvalue ratio analysis of [143]. The analysis consists

of 3 eigenvalue ratio terms repeated at each filter scale and then integrated to create

the final filter vessel map. The method analyzes the eigenvalues at multiple scales
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(s) through 3D vesselness filtering defined for dark-field images as:

V (s) =
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where RA = |λ2|/|λ3| in the first term assures that that the vessel cross-section is

relatively circular and RB = |λ1|/
√

|λ2λ3| in the second term assures that vessel

is more elongated in one axis. These two first terms describe the geometry of a

vessel segment. The last term with S =
√

λ2
1 + λ2

2 + λ2
3 weighs the intensity of all

the eigenvalues, making sure that only pixels with higher eigenvalues are enhanced

(“structureness”). The method was tested on 2D DSA and 3D MRA images and

showed the effective enhancement of different sized vessel structures. Sato et al.

[216] developed another filter using different terms for Hessian eigenvalue analysis

to enhance vessel-like structures. The formulation of the terms also suppresses non-

vessel image features while being relatively robust to changes in vessel intensity. To

do this, the authors made a thorough study of the effects of intensity and morpholog-

ical changes along a vessel segment on the derived Hessian eigenvalues. The method

also introduced a technique to combine filter outputs of each scale, by equalizing the

results of each scale to the background noise, thus balancing noise suppression with

vessel enhancement intensity.

Shikata et al. [225] used Hessian eigenvalues to first enhance the tubular vessel

structures and then estimate the vessel centre as an initial step for processing. Their

method then grew paths from seeds along the vessel centres using the eigenvalue

corresponding to the principle vessel orientation eigenvector at each location as the
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termination criterion. Spheres with sizes estimated from the image’s gradient are

then drawn onto the grown path to extract the vessel structure. The algorithm

was applied to clinical CTA scans of five healthy human subjects and validated on

manually identified vessel centerpoints. The results obtained were visually promising

and were able to correctly label on average 98% of the manually identified vessel

centerpoints.

Vessel enhancement methods can also be used to suppress or remove vessel struc-

tures from an image. Li et al. [140] described a vessel enhancement method to remove

CT liver vasculature in order to enable improved identification and detection of liver

nodules. The filters used for enhancement were tunable to selectively suppress tissue

feature types according to their size and shape. Terms were developed using Hes-

sian eigenvalues ratios for the sole enhancement of dot, line, and plane-like objects.

The filters were tested on synthetic images and clinical 2D and 3D CT images and

showed qualitative effectiveness in selectively enhancing specific shaped objects. The

authors indicated that this may be useful in computer assisted diagnosis of tumours

and other pathologies.

As with the work of Aylward et al. [12], certain methods used the second-

derivative information to specifically enhance image ridges and vessel centerlines

that can be used to further enhance vessel structures. Krissian et al. [127] proposed

a multiscale filter using Hessian eigenvalues to enhance vessel center-ridges for use as

initial vessel centerpoints in vessel extraction. The authors quantified the effects of

filter scale and vessel sizes on filter responses and used them to create their cylindri-

cal vessel detection model. Like [12], the authors used the information of the initial
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vessel center-ridges and their principle direction. However they used the multiscale

eigenvalues for vessel size detection, the image first-order derivatives to refine vessel

boundaries and centers detection, and combined them together to develop an im-

proved model for vessel enhancement. The technique was tested on 3D synthetic

images, physical phantom images and clinical images, showing that the method was

able to properly enhance closely space or highly curved vessels, vessel bifurcations,

and low intensity vessels.

Staal et al. [235] presented a method for enhancing retinal angiographic images

by using information from second order derivatives to enhance vessel image ridges

for use as approximate vessel centerlines. The ridge points are grouped into convex

sets according to the orientations of the image intensity ridge. Once grouped, the

convex sets were then used to partition the image into convex regions, with the pixels

closest in Euclidean distance to a convex set belonging to that set’s region. Feature

vectors are computed for each pixel in each convex region, which are then used to

classify pixels as vessels or background features using a trained kNN-classifier. The

method was tested on 40 manually labelled retinal angiographic images and was able

to enhance the vessels with accuracy bordering that of a human observer.

2.4.3 Anisotropic Diffusion Methods

The challenge of extracting thin and lower contrast vessel structures while sup-

pressing noise has been tackled by a different class of methods using anisotropic

diffusion. Stemming from the diffusion scheme of Perona and Malik [186] and its

reformulations [33, 7], the technique diffuses, or spreads the values of an image tak-

ing into consideration the boundaries of local image features. Through this process,
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image noise can be average out while the contrast of image features or oriented struc-

tures could be preserved and enhanced. This led to the development of anisotropic

diffusion methods specifically for regularization of medical images [86], with nu-

merous subsequent applications to angiographic images for enhancement of vascular

features [176, 163].

Meijering et al. [163] proposed an edge enhancing diffusion technique for the

specific purpose of vascular feature enhancement, using the Perona and Malik diffu-

sion scheme regularized by the method of Catte et al. [33]. Although the original

method produces overall smoothing that appeared anisotropic, the core of the diffu-

sion method was actually isotropic and dependant on the image intensity gradient

to scale local diffusion [33]. To create their anisotropic diffusion method, they used

the diffusion tensors of [255] and created a method that not only smooths in regions

with low gradients, but also gives preference to smoothing along edges instead of over

them. The method was tested on digital simulations and on physical phantoms and

showed improved smoothing results over the previous methods while maintaining

oriented structures.

Instead of using matrix-based diffusion, information from intensity gradient flux

can also be analyzed and used for anisotropic diffusion vessel enhancement. Krissian

[126] proposed a enhancement method based on decomposing the image gradient flux

locally in an orthogonal basis, which allows image voxels with higher local intensity

curvatures at specific orientation to be enhanced. Orientations with the smallest
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image intensity curvatures undergo anisotropic diffusion to regularize vessel struc-

tures. The method was demonstrated on a liver CTA and shown to be successful at

preserving thin, low-contrast and stenotic vessels.

Tankyevych et al. [242] proposed a different diffusion scheme relying on anisotropic

mathematical morphological operators. They used the image Hessian eigenvalues to

initially isolate linear vessel segments and then applied opening morphological oper-

ators with orientation variable structuring elements. These filters were guided by the

orientation information derived from the Hessian eigenvectors, which allowed them

to track, extend, and connect linear vessel segments. The method was tested on 2D

neurite images and shown to connect and homogenize linear vessel segments.

Although not technically an anisotropic diffusion method, Orkisz et al. [176]

described a conceptually similar anisotropic smoothing scheme. This method was

based on detection of regional orientation using a discrete directional kernel similar

to anisotropic Laplacian kernels. The direction filter with the highest response and

homogeneity is chosen and the median value of the pixels under the kernel is used as

the intensity. They tested their method on lower limb as well as abdominal artery

MRA images and found that their anisotropic filtering method not only resulted in

lower image noise, it also enhanced of vascular structures in the processed images.

Several anisotropic diffusion vessel enhancement methods were based on modi-

fying Frangi’s [81] multiscale vesselness measure to provide smoothing to the original

method’s geometrically based structure enhancement. Canero and Redeva [34] pro-

posed the construction of diffusion tensors based on the crease enhancement diffusion

method of Solé et al. [234] but reformulated it for Frangi’s [81] multiscale Hessian
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based vesselness measure. A pixel’s participation in image vascular structures was

determined via the thresholding, and its value was then smoothed based on a diffu-

sion tensor constructed from the Hessian eigenvectors, eigenvalues and the scale of

the convolution. The method was tested on 2D synthetic digital images with different

noise levels or structure types, and on 2D X-ray angiographic images. The authors

found that the diffusion scheme suppressed the image background while improving

the image’s vessel structure coherence.

Manniesing et al. [152] also proposed a multiscale diffusion-based vessel enhance-

ment method that modifies Frangi’s [81] vesselness measure by affixing a smoothing

term to Frangi’s vesselness measure. The method undergoes iterated rounds of dif-

fusion that computes the images’ vesselness while smoothing the result using tensors

constructed from the Hessian eigenvectors and eigenvalues. The tensors are con-

structed such that they isotropically smooth non-vessel background structures while

anisotropically smoothing vessel structures along their principle orientations. Vessel

segments at bifurcations are smoothed into one another according to their respec-

tive diffusion tensions, resulting in no disjunctions. Their method was applied to

low-dose 3D CTA and shown to preserve thin vessels and maintain the diameters of

vessel structures of all scales.

More recently, Yuan et. al [269] proposed the use of local line integrals to

average values along the principal axis of a vessel segment to provide smoothness to

the measured vesselness map. An orientated line at a certain pixel which gives highest

local orientation similarity with respect to curvature is used to integrate and average

the Hessian eigenvalues of pixel along that line. Frangi’s [81] vesselness measure was
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then applied onto the average values to find the local vesselness. In addition, the

authors evolved a curve to track the vessel segment’s centre, which improve the line

integration, resulting in improved smoothing. Vessel segments at bifurcations were

treated as special cases which were detected and the Hessian integration line length

was adjusted to reduce the intensity suppression at these junctions. When tested on

2D angiographic image databases and on 2D synthetic images, this curve directed

smoothing reduces noise and preserves thin vessel structures.

2.4.4 Statistical Methods

Several groups have used image intensity statistics in order to highlight vessel

regions and enhance vessel structures. Wilson and Noble [259] were one of the first

to propose a statistical method for the probabilistic classification and hierarchical

enhancement of vessels in angiographic images. The authors modelled the intensity

distribution of each image tissue type using a Gaussian mixture model, and found

the parameters for the model through expectation maximization (EM). By fitting the

model to an image’s intensity, each voxel can be statistically labelled as a vessel or a

background class. The statistical labelling is then performed recursively on smaller

sub-regions in the image to improve the model fitting process. The method was

tested on 3D time-of-flight (TOF) MRA and was found to correctly classify vessels

and estimate their sizes well enough for the needs of surgical intervention.

Hassouna et al. [96] described another statistical vessel enhancement method

by modelling MRA vessel lumen intensities and background tissues using mixture

models of Rayleigh and Gaussian distributions and then estimating the parameters
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using EM. They showed that their proposed mixture model can represent the inten-

sity distributions of vessel in the clinical images better than methods using purely

Gaussian mixtures, and that it helped in vessel enhancement. As well, their proposed

model initialization parameter estimation, based on histogram analysis, helped pre-

vent parameter initialization dependent EM techniques from converging to any local

maxima. The authors tested their algorithm on twenty 3D TOF MRA data sets

and a geometric phantom and showed that it can accurately enhanced surgically and

radiologically relevant vasculature in these images.

Gan et al. [85] proposed a 3D vessel enhancement algorithm based on 2D max-

imum intensity projections (MIP) of the original 3D image. The method uses a

maximum a priori estimator on a mixed Gaussian models to identify voxels above

certain intensity thresholds as vessel voxels and remove them from the processed

image. This estimation process was repeated until the model showed that all vessel

voxels have been identified. The MIP processing was repeated once for each axis

and the combined information allows isolated misclassified voxels to be iteratively

removed. The method was able to enhance major vascular structures in 3D ro-

tational angiography and produced less false positives than maximum a posteriori

based statistical methods.

Instead of only using statistical image intensity modelling for vessel enhance-

ment, additional information can also be incorporated into for improved enhancement

results. For instance, Chung et al. [42] combined statistical modelling with image

coherence measurements to enhance vessels in phase-contrast MRA. The authors

proposed a method to automatically select between different image-fitted mixture
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models and found the optimal values to threshold foreground structures. A coher-

ence map was then generated using local phase coherence and combined with the

intensity mixture models to create a probabilistic framework for separating vessel

structures, paranchymal tissues, and the background. The authors applied their

technique on synthetic, phantom, and clinical images and found that it segments

vessels of relatively low intensities and high SNR values with higher accuracy than

statistical modelling methods without coherence information.

A different approach combined statistical vessel enhancement with anisotropic

smoothing was described by Yang et al. [266]. This is done by first roughly cluster-

ing the image intensities into different tissue classes using k-nearest neighbour and

then modelling the intensity of each cluster with a Gaussian distribution for use as

probabilistic a priori knowledge. This information is introduction into Bayes’ rule,

which can then be use for maximum a posteriori estimation. The probabilistic maps

from the estimation were then anisotropically smoothed in the direction of the in-

ward normal vector of the local image maximum intensity curvature to produce a

set of regularized tissue posterior probability maps. These smoothed maps can then

be used for vessel extraction. The algorithm was tested on a 3D contrast-enhanced

CT cardiac image and was found to successfully segment blood and the lumen of

coronary arteries to help achieve more accurate clinical diagnoses.

Instead of creating statistical models based on global voxel intensity, Agam and

Wu [3] and Agam et al. [2] instead created probabilistic shape models for detect-

ing vessel features. Agam and Wu [3] proposed a probabilistic vessel enhancement

filter based on analysis of structure tensor eigenvalues using a probabilistic model
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that accounted for vessel bifurcations. Since the method was based on structure ten-

sors constructed from image first-derivatives, the method was more robust to noise

than second-derivatives based methods. Their probabilistic model had also higher

degrees of freedom which allowed it to distinguish between non-vessel nodule struc-

tures ash vessel bifurcations. Similarly, Agam et al. [2] introduced a vessel tree

enhancement and nodule detector using correlation-based enhancement filters and

fuzzy shape representation. The correlation-based enhancement filters operate on

first-order derivatives and the fuzzy shape representation was based on regulated

morphological operations. Together, this made the method less sensitive to noise

compared to Hessian based second-derivative methods and standard morphological

operators, respectively. The probabilistic methods of both Agam and Wu [3] and

Agam et al. [2] were tested on thoracic CT scans and found to properly distinguish

between lung nodules and vessel bifurcations, thus allowing the selective enhancing

or suppressing each type of structure as required.

2.4.5 Registration-based Methods

Vessels can also be segmented by registering a vessel image with another image

that has been pre-labeled or associated with prior knowledge models. Passat et al.

[179] proposed a registration-based probabilistic vessel enhancement method based

on a priori knowledge of neurovascular anatomy. A cerebral vascular atlas was first

created by extracting the vessel size information, non-linearly registering them to a

reference image, and calculating a probability map of possible vessels at a location

by the average of registered vessel images. Segmentation is performed by registering

the reference image to a vessel image, eliminating the locations where vessels are
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not likely found, and adding likely vessel points using the author’s “hit-or-miss”

morphological structuring element. The enhancement method performed well on

enhancing vessel voxels in phase contrast MRA data and was shown to be robust to

high-intensity imaging artifacts.

Isgum et. al [108] described an atlas-based heart and aorta vessel segmentation

method that operated through registration of multiple manual atlases. The target im-

age undergoing segmentation was registered to multiple atlases and their labels were

propagated based to the target image based on their absolute intensity differences

of the registered images. The labels were fused in a manner similar to label-fusion

techniques, by weighting the pixel intensity differences between the target and at-

las image. The authors also introduced an atlas selection method based on pattern

recognition to speed up the segmentation process. The method was compared against

single and average-shape atlas-based segmentation method and validated using heart

and aortic images from thoracic CT scans. Results show that the method was more

accurate than other atlas-based methods based on a single atlas, an average-shape

atlas, or multi-atlas method with fusion by total average. The author noted that the

results produced were very similar to those of an independent human observer.

Another registration-based vessel enhancement method involving alignment of

prior knowledge models with the subject image was introduced by Biesdorf et al.

[18]. This method provided patient specific aortic arch segmentation through non-

rigid registration of an aorta parametric intensity model. A 3D parametric cylindrical

aortic model was Gaussian blurred to match the intensity profile of aorta image fea-

tures and then rigidly registered to a 3D CTA aorta image. The model was then
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deformed through elastic non-rigid registration to improve fit of the model’s intensi-

ties to that of the image and thus improving the segmentation result. This method

combines the benefits of robust model-based segmentation with the accurate delin-

eation of elastic registration, and can cope with different healthy and pathological

vessel shapes. The method was validated on synthetic images, phantom data, and

five clinical CTA images and found that the computation speed and segmentation

accuracy of the approach is superior to pure model-based approaches that do not

incorporate non-rigid registration refinement.

2.4.6 Other Methods

On top of vessel filters based on derivatives, vessel probability, diffusion, and

prior-knowledge registration, techniques have also been developed, taking advantage

of other detection models. Wilkinson and Westenberg [257] described a method using

mathematical morphology filters with top-hat transforms to suppress noise and non-

vessel features in CT angiographic images. They proposed two filters which either

performed size distribution morphological openings of a “filamentous” vessel feature

at different scales or applied scale independent shape criteria filters at different image

intensity thresholds. Zana and Klein [270] also proposed the use of mathematical

morphological operators supplemented with the analysis of image curvature to re-

move non-vessel features from angiographic images. The authors used linear opening

operators to detect vessel segments, and used structure connectivity with image cur-

vature analysis to improve image contrast to finally highlight vessel structures. The

method was tested on 2D retinal angiographic data sets and found to enhance the

vessel structures without suppressing vessels at junctions and bifurcations.
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A multidimensional approach for vessel filtering in the Fourier domain was pro-

posed by Westin et al. [256] as a feasible approach to reduce a angiographic image

noise while improving vessel enhancement. The direction of local image features was

first estimated using quadrature filters. With the direction information, the method

performed locally adaptive highpass or lowpass filtering to eliminate high frequency

noise while preserving thin vessel-like structures. The implemented Fourier domain

filters greatly simplified filter rescaling, which were linearly combined to extract dif-

ferent image features. The method was validated on synthetic images and clinical

3D phase-contrast MRA cerebral data and 2D TOF renal MRA data, which showed

that the method was effective at suppressing noise while preserving and enhancing

thin vessels.

Local image thresholding can also be used to enhance vessel structures from

the background. Jiang and Mojon [113] proposed a multiple adaptive local image

thresholding method for retinal angiography vessel enhancement. The method per-

formed adaptive local thresholding to a test image and then accepted or rejected

the thresholds through an automatic verification procedure. A raw vessel image is

thresholded at various intensities and the pixels in each binary threshold image were

verified to be part of a curvilinear structure using a contrast and vessel thinness

criteria. Pixels filtered at each threshold were recombined to produce an enhanced

vessel map. The authors validated their method on 20 retinal angiographic images

and reported that their method had high specificity and was significantly better than

global thresholding methods. The method is also shown to be general enough to be

useful for a wide range of other image feature enhancement applications.
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Law and Chung [132] introduced a vessel filter based on image gradient flux on a

vessel segment. The flux entering a local sphere was determined and the orientation

with the minimal flux was computed, producing a set of eigenvectors and eigenvalues.

The eigenvalues were then analyzed to produce a measure for vessel-like elongated

structures. The method analyzed only the local flux on a local sphere surface and

thus the results were less sensitive to corruption by the presence of adjacent vessel

structures. The method was validated on closely spaced synthetic vessel images and

on phase-contrast MRA images, which demonstrated that it was robust to image

noise, extracted vessels of lower intensity, and could enhance closely located vessel

structures without degradation of enhancement compared to Hessian-based methods.

Truc et. al [247] proposed the use of directional filter banks to enhance 2D vessel

structures. Filters of different orientations were applied to the raw image, then each

filter output was then corrected for non-uniformity in image intensity. The intensity

corrected images then undergo multiscale Hessian eigenvalue analysis to enhance

vessel like structures. The enhanced directional images are then recombined by

summing to obtain the final filtered vessel map. The authors tested the method on

synthetic images and clinical 2D retinal and cardiac angiographic data, which showed

that the directional image filters avoids suppression of vessels bifurcations and thin

vessel structures which allow for the enhancement of more complete vessel trees.

The methods is also quantitatively less sensitive to image noise when compared to

Hessian-based approaches.
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2.4.7 Challenges

Most vessel enhancement and segmentation algorithms are adept at isolating

higher contrast vessel structures. However, the primary challenge of vessel segmen-

tation still lies with the proper enhancement of thinner or lower contrast vessel

structures in moderately noisy images.

Image first derivatives method are able to accurately detect and enhance large

vessel structures with fewer model shape constraints and less noise sensitivity than

second derivative methods. However, they are sensitive to intensity edges, and some

methods require filter steering or special model constraints to effectively segment

thinner vessels. Second derivative vessel enhancement methods are popular and

have been effectively used for multiscale vessel enhancement but are more sensitive

to noise. As well, due to their filter models, many of them suppress vessel bifur-

cations unless this is compensated by information from other methods. Statistical

vessel enhancement methods can help effectively highlight regions where vessels exist

for further segmentation processing, but they may not be as effective for enhancing

long segments of thin vessels. This is similar for prior-knowledge registration-based

enhancement methods, which can be applied to robustly enhance large spatially sta-

ble vessel structure but are less effective at enhancing smaller vessels at variable

locations. Finally, the use of anisotropic diffusion methods can greatly reduce noise

and help regularize vascular structures for enhancement. But balancing diffusion im-

age smoothing with proper retention of details, such as tortuosity in smaller vessels,

is not trivial.
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Vessel enhancement can be improved by being able to better determine whether

a pixel or voxel has local features that correspond to vessel structures. However,

not all vessel structures can be effectively detected by using only local features, such

as low contrast-to-noise or thin vessels. By taking into account information from a

larger image region surrounding a point, beyond that of its local support, a developed

method can better determine if the point is indeed part of a greater vessel structure.

2.5 Conclusion of Review

The use of angiographic data in IGNS can be greatly enhanced through improved

vessel-based image registration and vessel image enhancement to help visualize blood

vessel structures. As well, imaging phantoms should be used to validate such seg-

mentation and registration methods.

In the following chapters, we explore methods for vessel-based registration, con-

struction of physical phantoms, and vessel enhancement. We saw the need for a

effective intraoperative vessel registration method and recognized the benefits of hy-

brid vessel image based enhancement. As such we extended the feature-based vessel

registration methods of Reinertsen et al. [202, 201] by reducing the extent of feature

extraction to retain more image intensity information, thus preventing the removal

of image information needed for registration and improving the rate of registration

success. To improve our image registration validation, and more generally, medical

image processing validation, we extended the phantom development work of Surry et

al. [240] and Reinertsen et al.[199] to develop an anthropomorphic multimodal PVAc

based brain phantom that contains multiple anatomical features as well as inflatable
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catheters and fiducials to allow precise control of non-linear deformations and vali-

dation of distortion correction. As well, we found during our registration work that

there needs to be an improved vessel enhancement method. As such, we developed

a vessel enhancement method that improves upon Frangi’s second derivative-based

vessel enhancement filter [81] by incorporating local eigenvalue analysis with regional

structure information through non-local means weightmaps analysis as proposed by

Buades et al. [26].
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CHAPTER 3
Multimodal Volumetric Vessel-based Registration

Forward

In this chapter we present a novel non-linear hybrid vessel registration technique

that combines aspects of both feature-based and intensity-based vessel registration

methods for aligning magnetic resonance (MR) angiographic images to intraoper-

ative Doppler ultrasound (US) angiographic images. As mentioned in Chapter 2,

the correct merging of medical images used for neurosurgical guidance is of great

importance for precise surgical targeting in IGNS. To allow for greater accuracy

and robustness in registration, our hybrid technique retains as much of the original

vessel intensity information as possible, with limited filtering to remove non-vessel

background paranchyma. This non-linear registration technique is practical for intra-

operative image alignment, using US images directly acquired on the patient’s dura

in the surgical region of interest. Our registration technique corrects for skin-surface

registration inaccuracies and for brain-shift which occurs after craniotomy.

This chapter has been published in the International Journal of Computer As-

sisted Radiology and Surgery as [39]:

• S.J-S. Chen, I. Reinertsen, P.Coupé, C. Yan, L. Mercier, D. Del Maestro, and

D. L. Collins. Validation of a hybrid Doppler ultrasound vessel-based registra-

tion algorithm for neurosurgery. International Journal of Computer Assisted

Radiology and Surgery, 7(5):667–685, 2012.
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Abstract

We describe and validate a novel hybrid non-linear vessel registration algorithm

for intraoperative updating of preoperative magnetic resonance (MR) images using

Doppler ultrasound (US) images acquired on the dura for the correction of brain-shift

and registration inaccuracies. We also introduce an US vessel appearance simulator

that generates vessel images similar in appearance to that acquired with US from

MR angiography data.

Our registration uses the minimum amount of preprocessing to extract vessels

from the raw volumetric images. This prevents the removal of important registration

information and minimizes the introduction of artifacts that may affect robustness,

while reducing the amount of extraneous information in the image to be processed,

thus improving the convergence speed of the algorithm. We then completed 3 rounds

of validation for our vessel registration method for robustness and accuracy using (i)a

large number of synthetic trials generated with our US vessel simulator, (ii)US images
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acquired from a real physical phantom made from polyvinyl alcohol cryogel (PVAc),

and (iii)real clinical data gathered intraoperatively from 3 patients.

Resulting target registration errors (TRE) of less than 2.5mm are achieved in

more than 90% of the synthetic trials when the initial TREs are less than 20mm.

TREs of less than 2mm were achieved when the technique was applied to the physical

phantom, and TREs of less than 3mm were achieved on clinical data. These test

trials show that the proposed algorithm is not only accurate but also highly robust

to noise and missing vessel segments when working with US images acquired in real-

world conditions.

3.1 Introduction

Modern neurosurgery relies heavily on computer assistance and image guidance

to provide topological and locational information to surgeons, enabling them to ac-

curately navigate within the patient’s brain. Known as image guided neurosurgery

(IGNS), these techniques typically use the preoperative image of the patient’s head

acquired through magnetic resonance imaging (MRI) for surgical planning and navi-

gation. Significant errors may be introduced into surgical navigation from image mis-

registration or through intraoperative deformation of brain tissues in neurosurgery,

also known as brain-shift. Displacements from brain-shift can vary greatly between 5–

50mm on the cortical surface [27, 66, 98, 116, 158, 166, 171, 203, 202, 207]. However,

even prior to dural opening, displacements caused by brain-shift can nevertheless be

quite significant. Hill et al. (1998) [98] have shown that even with the dura intact,

the magnitude of brain-shifts observed was as large as 3.4 mm pushing outwards and

8.1 mm collapsing inwards.
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These tissue displacements, both before and after dural opening, are quite signifi-

cant and enough to render guidance using the preoperative magnetic resonance (MR)

image useless for surgical use, even after accurate initial patient to image registration.

In order to compensate for such displacements in the soft tissue, the preoperative MR

image can be corrected by registering it to an intraoperative image, which could be

acquired using either intraoperative computed tomography (CT) [94], intraoperative

MR [97, 174, 208], or intraoperative ultrasound (US) imaging [130, 202].

US is a good candidate for intraoperative imaging. However, images acquired

using US may be difficult to interpret by untrained users. This is due in part to its

relatively small imaging field-of-view, its non-standard anatomical views, speckling

in its acquired images, and the need for a craniotomy in order to do intraoperative

brain imaging. Nevertheless, US imaging has many advantages that overcome these

shortcomings. For instance, US imagers have the benefit of being significantly less

expensive, capable of real-time imaging, and more portable than either MR and CT

imaging devices. As well, US imaging gives good resolution and contrast in soft tis-

sues without the need to compromise surgical ergonomics or exposing the patient to

ionizing radiation when compared to intraoperative MR and CT, respectively. Intra-

operative US images can be used effectively to correct and update the preoperative

MR images to the intraoperative state of the imaged tissues.

The challenge of registering images between US and MR modalities is that they

have different image contrasts, noise patterns, and artifacts. This is due to the fact

that the two imaging modalities are acquired using very different physical principles,

with MR images depending on proton spin interaction and US images depending on
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the material’s acoustic properties. Two types of strategies are used in the literature

to overcome the challenge of registering the images:

1. Feature-based: Salient anatomical features that can be imaged on both MR

and US such as sulci [51], tumour outlines [138], or blood vessels [114, 130, 172,

181, 201] are used as alignment cues. These anatomical features are extracted

and parameterized prior to their use in registration.

2. Intensity-based: This strategy typically employs image processing methods

to relate the intensities of MR to US. For instance, gradient information in

the MR image [208] may be used directly for registration, or the preoperative

MR image may be segmented and processed to generate a set of “pseudo-

ultrasound” images, which allows for better image correspondence and regis-

tration [8]. Mutual information could also be used to relate the intensities

found in MR and US [110].

Blood vessels are important and useful features for the registration of deforming soft

tissues due to several of their properties. First, vessels are easily identifiable and also

usually well distributed in most surgical regions-of-interest (ROI). Second, many

image processing methods exist to extract vessels from the acquired images. For

instance, the moving blood in a blood vessel is easily imaged using Doppler US and

can be implicitly segmented from the image background based on colour saturation

alone. As well, vasculature from different types of MR angiography can be extracted

preoperatively using segmentation algorithms such as that of Descoteaux et al. [64]

and Frangi [81]. Finally, the vessel’s unique branching and stable relative paths and

positions to surrounding tissues allow for high specificity in registration. Therefore
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as vessels move and change shape with deforming tissues undergoing brain-shift,

the correction of these vessel movements enable the detection and correction of the

corresponding tissue deformations.

To date, blood vessels have been successfully used for linear and non-linear

registration of deforming soft tissues such as the cerebral cortex [172, 201] and the

liver [130]. From previous work in our lab, brain shift compensation using vascular

images from Doppler US and MR was characterized and shown to be highly accurate

[201].

Purely feature-based registration algorithms are fast and accurate techniques

that typically rely on image preprocessing to parameterize and reduce the complexity

in the raw data. For vessel registration, this preprocessing is typically done through

skeletonization, which reduces and parameterizes the vessel image into a set of vessel

centerpoints. This process dramatically reduces computation time for registration

since the amount of data that needs to be processed is often greatly reduced.

However, such methods can remove important information for registration, such

as vessel lumen diameter or voxel intensity differences in the vessels images them-

selves. As well, thin, low contrast vessels and important vascular features such as

branching and continuity can be eliminated altogether. Removal of this information

introduces ambiguities that allows skeletonized branches of thick vessels to be in-

correctly matched with thin vessels. Likewise, centerpoint fragments from different

vessels can be incorrectly matched to a single vessel. As well, the extracted center-

points of densely situated vessels can be reduced to featureless point clouds, making

purely iterative closest point (ICP) algorithms [17] fail and rendering the registration
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process impossible. For these reasons, purely feature-based registration can produce

poor results on clinical data.

Indeed our previous experience using ICP-based techniques yielded good results

using vessel traces that were relatively sparse [202], with distances between the vas-

cular branches being greater than the magnitude of misregistration. However our

recent experience with more complex anatomies containing many more blood vessels

resulted in failed registrations.

Intensity-based registration methods are very accurate and quite robust to noise

due to the amount of information available for use in alignment. As such, they are

widely used for atlas, inter-subject, and various inter-modality registration tasks.

Although more sophisticated intensity-based methods may be developed to improve

processing time, intensity-based registration methods capable of correcting free-

formed non-linear deformations required to properly register cerebral vasculature

are quite computationally intensive and can take several minutes for images of mod-

est size. For this reason, their use is limited to offline registration tasks since they

are not suitable for intraoperative registration, which should ideally complete in at

most 2-3 minutes during the time needed to prepare for tissue dissection.

These issues inherent to feature or intensity-based registration methods, neces-

sitate the investigation and creation of a robust vessel registration method capable

of overcoming the reliance on extensive preprocessing to allow for the registration of

MR and US vessels with a high degree of accuracy in clinically acceptable time.
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3.1.1 Motivation for Hybrid Registration

In this paper, we describe an algorithm for a hybrid feature and intensity-based

non-linear registration of MR to US images through cerebral blood vessels using

ANIMAL [47]. Previous non-linear feature-based vessel registration algorithms by

Reinertsen et al. [201] and Lange et al. [130] preprocess their acquired images by

segmenting the vessels and skeletonizing them to a set of discrete vessel centerpoints

for registration. In contrast, our registration method attempts to eliminate the back-

ground by extracting only the vessel information while at the same time minimizing

other forms of preprocessing to retain as much of the original vessel information as

possible. To this extent, we use the whole volumetric vessels from the angiographic

intensity images instead of relying on discrete points or lines produced through skele-

tonization of vessel data. In the following sections, we present our hybrid non-linear

volumetric registration technique developed for the registration of US vessels ac-

quired on the dura with MR vessels. Our goal for hybrid registration was to be able

to automatically and robustly correct tissue displacements up to 20mm; a threshold

that is more than twice the maximum recorded brain-shift tissue displacement of

8.1mm prior to dura opening[98].

3.1.2 Validation data types

Our registration method was then validated using three types of data with in-

creasing realism:

Synthetic data generated from a digital phantom: Multiple synthetic US data

sets were generated numerically from a clinical MR image. This enables us to

evaluate the behaviour under controlled conditions where the ground truth is
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known. However, the simulated data are not completely realistic and do not

account for all possible imaging situations.

Real data acquired from a physical phantom: Real MRI and US data were

acquired from a PVA phantom. This set of experiments permits evaluation

of the algorithm with an object having a known gold standard, which produces

images that are more realistic. However, the spatial distribution of the image

signal is quite simplistic and does not accurately replicate data gathered in

clinical scenarios.

Real clinical data acquired from 3 patients: Real preoperative MRI and intra-

operative US data were acquired from 3 patients. This is the most realistic set

of data and represents real surgery and clinical imaging. However the image

registration results are difficult to evaluate since the ground truth is not known

exactly.

3.1.3 Overview

We will describe in detail our hybrid registration algorithm in Section 3.2. We

will then describe the tool we created and images we acquired to validate the ro-

bustness and accuracy of our registration algorithm, including the digital phantom

(Section 3.3.1), the physical PVA-based phantom (Section 3.3.2), and clinical data

from 3 patients (Section 3.3.3). The methodology for validating our registration al-

gorithm is detailed in Section 3.3.5 followed by the result of the validation in Section

3.4. We then conclude with a discussion of our test results and future work in Section

3.5.
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3.2 Hybrid Registration

Our hybrid registration method takes the raw MR and US clinical images and

preprocesses them to extract vascular features while retaining the intensities of the

vessels in volumetric form. This combination of intensity and feature-based cues are

used for hybrid registration. The source image for registration consists of a 3D con-

trast enhanced MR vascular imaging processed with Frangi’s vesselness filtering[81],

while the target image consists of an intraoperatively acquired and reconstructed

3D Doppler US volume with the volumetric vessels extracted from the background

tissues by using a colour saturation threshold. Detailed descriptions of the prepro-

cessing done to the target and source images can be found in Sections 3.2.1.

Using the minimally processed vessel data, registration proceeds in two phases,

with multiscale linear registration prior to non-linear registration. We noticed that

although a large amount of registration error can be corrected with rigid-body trans-

formations, the 6 degrees of freedom of the transform do not allow for an adequate

correction of all the non-rigid displacements observed between the preoperative and

intraoperative images. It is for this reason that we register the images using full

affine transformations after an initial round of rigid- body registration for a first

alignment, and then subsequently using non-linear transformations to correct the

remaining brain-shift not captured by the affine linear transformation.

3.2.1 Preprocessing

The first step in our registration method is to preprocess our source and target

images to extract their vasculature. Our source images were T1 weighted Gadolin-

ium MR images that were processed using Frangi’s vesselness method [81], which

97



effectively enhances tube and vessel-like structures in the image. The parameters

used for the filtering are α, β and γ at 0.5, 0.5, and 0.5×max(HessianNorm) and

five filter scales with values 0.4, 0.74, 1.1, 1.64, and 2.5mm.

Our target images were 2D power Doppler US images, which were fused with

the raw B-mode US images. The latter were filtered by removing all pixels under

a colour saturation threshold. The filtered 2D images were then reconstructed in a

3D volume using the tracking information contained in each image. This was done

by nearest-neighbour regridding of each pixel in the ultrasound image slices to a

3D volume with the same resolution as the MR image in a similar fashion as that

of [224]. Although other interpolation methods could have been used rather than

the basic nearest-neighbour regridding method, we found that the other methods

increased the 3D reconstruction time and did not perceptibly improve registration

accuracy. A thorough review of 2D ultrasound image reconstruction techniques and

their considerations can be found in [233].

3.2.2 Linear Registration Phase

The linear registration algorithm takes as input the aforementioned source and

target intensity volumes which have been preprocessed for vessel features, then blurs

them with a Gaussian kernel prior to each round of linear registration, using a smaller

kernel for each subsequent round. We used the reconstructed US vessel volume as

the registration target image and the MR vessel volume as the source image.

The starting estimates for registration depend on the method used for data ac-

quisition. For our clinical cases (Section 3.3.3), the starting estimates are based on

the transforms acquired from the facial skin landmark registration performed by a
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surgeon. In the case of the physical phantom data (Section 3.3.2), the initial regis-

tration is done by point-based registration on the container of the physical phantom.

In any case, the transforms puts the acquired US images into the same coordinate

system as the MR image and provides the initial position for registration.

Table 3–1: Parameters used in multiscale linear registration (Top) and multiscale
non-linear registration with ANIMAL (Bottom)

Round Blur FWHM Sampling grid Crop margin Transform
1st 3.3mm 2.5mm 50mm Rigid-body
2nd 2.2mm 1.8mm 16mm Affine w/ Isotropic Shear
3rd 1.5mm 1mm 10mm Affine w/ Anisotropic Shear

Round Lattice Diameter Sampling grid Rigidity
1st 15mm 5mm 0.9
2nd 10mm 2.5mm 0.8

Our linear registration is optimized using a downhill simplex algorithm [173] with

cross-correlation as the objective function. We found that it performed effectively

and quickly for registering our images of similar image contrast: both processed MR

and US images have bright vessels on dark backgrounds. Although other objective

functions such as mutual information may be used, we found in our preliminary

tests that these methods were significantly slower and did not perform better than

cross-correlation on our pre-processed vessel images. In fact, observations from our

preliminary test are in line with that of [190], who suggested that registration with

mutual information does not perform well in images with (1) thin structures such

as the vessels in retinal images or (2) for cross-modality registration of MR to US

images.

We performed a total of three rounds of optimization with sequentially smaller

blurring kernels and sampling grids with successively refined linear transforms. Due
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to the size difference between the US target and the MR source volume, cropping was

automatically performed on the MR volume around the location of the US target to

improve and speed up the calculation of registration transforms. Cropping for the

first round of registration is set to 50mm, since this is the largest value of brain shift

recorded in the literature. Parameters defining the full-width-half-max (FWHM) of

the blur (where the FWHM relates to standard deviation by σ = FWHM

2
√
2 ln 2

)[135], the

sampling grid used, the crop margin, and the type of linear transform used in each

round are described in more detail in Table 3–1.

3.2.3 Non-Linear Registration Phase

Following the linear registration, which provides a robust global alignment, we

used the ANIMAL registration algorithm [47] to compute a set of non-linear transfor-

mations that corrects for any local vessel deformations that cannot be accounted for

by the linear transformations. ANIMAL hierarchically estimates 3D vector field at

different scales, mapping deformations progressively from larger to smaller scales and

produces a globally non-linear deformation field with point-to-point correspondence

between the two volumes.

The affine linear registration transforms recovered from the previous linear reg-

istration phase are applied to the preprocessed volumetric intensity source image,

which is then used as the source image for this non-linear registration phase of

our hybrid registration method. We performed two rounds non-linear registration,

once at lower resolution, and once at higher resolution using ANIMAL with cross-

correlation objective function, and relatively high stiffness to maintain smoothness

in the deformation (See Table 3–1). The resulting transformation is applied in each
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round of non-linear registration only if the final value of the objective function is

reduced from the starting value.

Through the iterations of non-linear registration, we are able to attain corre-

spondence between the US and the MR vessel images based on their grey scale voxel

values. Even though the vessels are not sparse, there exists a significant amount

of tissue in between each vessel where the ANIMAL algorithm must interpolate or

extrapolate the deformations. This is due to the fact that the algorithm performs

registration and regularizes using only the non-zero vessel voxels of the images, and

ignores the zero-valued voxels where the non-vascular tissues have been removed. To

address the limits of the local elastic regularization used in ANIMAL and to ensure a

continuous smooth deformation throughout the tissue, we apply the thin-plate spline

(TPS) transform [68] on points extracted from the aligned US and MR vessels to

regularize the transformation over the entire image.

One thousand points are randomly sampled from overlaps of the vessels from the

two non-linearly registered volumes and inversely transformed using the deformations

recovered by ANIMAL. This produces 1000 pairs of homologous points, which are

then used as the control points to define the displacements on an interpolating TPS.

3.3 Validation Methods

3.3.1 Digital Phantom

As part of the work to validate our hybrid registration algorithm, we developed

a non physics-based digital phantom to synthesize images that simulate the appear-

ance of Doppler US vessel images acquired from a brain distorted by brain shift.

Qualitative visual observations were made between the vessels acquired using power
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MR image Actual US Simulated US

Figure 3–1: Three different cross-section views of the actual T1 Gado-enhanced MR
image (MR image), the actual ultrasound volume (Actual US), and the simulated
ultrasound volume (Simulated US) imaged in the same brain region.
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Doppler US and MR imaging to enable and successfully imitate real power Doppler

US images from MR vessel data. We found that the US vessels in comparison to MR

vessels tend to be:

1. Thick: This is likely due to the fact that the US operator increases signal gain

when acquiring the Doppler US image. This is done to allow smaller and more

distant vessels to be captured in the image.

2. Uneven: The surfaces of the acquired US vessels are uneven due, in part,

to speckling in US images and artifacts arising from flash artifacts caused by

sudden probe movements.

3. Noisy and containing artifacts: Both noise and US image artifacts can

be due to the random scattering and reflection of US pulses in the different

tissue being imaged, as well as the noise introduced by the electronics of the

US imaging equipment.

4. Presence: Some vessels are dimmer or entirely not present in volumes of one

modality versus the other (See Fig. 3–1). This could be due to imaging artifacts

such as occlusion, shadowing, and the angle of the US probe in respect to the

imaged blood flow.

Our digital phantom simulates the appearance of a Doppler US vessel image by

taking an MR vessel image as input. The workflow of the digital phantom is shown

in Figure 3–2. The first step to producing the synthetic US vessel involves extracting

and processing an MR angiographic image to act as the ground truth image. The

second step is to generate a set of random linear and non-linear transforms to act

as the registration ground truth and then applying the transform to an MR vessel
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Figure 3–2: Workflow of the Digital Phantom showing each step of the Doppler US
appearance simulation process. Images used and outputted in each processing step
are also shown.
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image. The third step involves altering the transformed MR vessel image to exhibit

the observed characteristic appearance of the US vessels listed above. Finally, noise

and speckling is added, and the simulated US volume is masked into the shape of an

US sweep. These steps are explained in detail below.

To show that the simulated US vessel volume behaves similarly to a real US

vessel volume in MR vessel registration, we also compared the similarity of the cross-

correlation objective function curves to each other.

The first step in creating the simulated US vessels involves extracting the vessel

from a T1 weighted Gadolinium MR image in the manner described in Section 3.2.1.

The extracted MR vessel image is then thresholded at a low intensity to capture

anything that may be a vessel and then cropped down to a ROI.

Random Transformations

Parameters for the linear transforms are chosen randomly within translations

from -30 to 30mm, rotations from -5 to 5 degrees, scalings from 0.9 to 1.1, and shears

from 0.9 to 1.1, with the fixed transformation point located in the center of the ROI

bounding box. The non-linear transforms are generated using a TPS since this

method produces realistic deformations that are smooth and regularized. Nine pairs

of control points are used to define the TPS transform, with the two points of each

pair randomly located in relation to each other at distances between 0–5mm. The

first 8 point pairs are located on the corners of the bounding box around the ROI that

has been scaled down by 50% to be inside the ROI. The last point pair is positioned in

the center of the ROI bounding box (See Fig. 3–3). The rationale for this placement

scheme is to localize the control points of the thin-plate spline in the center of the
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Figure 3–3: The placement of TPS control point pairs in relation to a region-of-
interest (blue dashed box) for the creation of non-linear distortion. Eight control
point pairs (gray) are located at the corners of the 50% scaled (red box) version of
the bounding box (black box) surrounding the region of interest. The ninth point
pair (gray) is positioned in the center of the bounding box.
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ROI where the anatomical structures are located, thereby increasing the local non-

linear deformations there. These sets of linear and non-linear transformations were

used as the gold-standards for validating our registration method, and also applied

to the processed MR vessel image to simulate tissue displacement from brain shift.

Simulation of Characteristics

Once the MR vessels have been deformed using the set of random transforms,

they are used to simulate the appearance of Doppler images. The simulation occurs

in two steps. First, the thick uneven surface and variable presence of the US vessels

are simulated through the extensive use of Perlin noise [185]. Afterwards noise and

speckle are added onto the simulated vessels.

Perlin noise is a procedural texturing method commonly used in computer graph-

ics to generate many types of continuously varying pseudo-random textures with

specific spatial frequencies. Random gradients are first defined at regularly spaced

intervals in a 3D lattice. These gradients are used to determine the intensity of the

field between the nodes of lattice through linear or cubic interpolation. This simple

technique allows us to generate random appearing textures of different scales and

spatial frequencies that can easily be used as parameters for varying the appear-

ance of generated US vessels. A more detailed explanation of Perlin noise and the

technique for generating it can be obtained in [185].

We used the intensity values of a Perlin noise texture with low spatial frequency

as the parameter for determining whether the vessel is present in the image (vessel

presence) by varying the contrast of a vessel to the background. The noise texture

has a value between 0 and 1, which makes the vessel completely invisible and fully
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visible, respectively. This roughly simulates artifacts from shadowing or from angle

dependant modulation of the US signal. Although power Doppler US (signal power)

is not as sensitive to probe angle as colour Doppler US (blood flow rate) the probe

angle to a vessel may nevertheless alter the intensity of the power signal.

Perlin noise of high spatial frequency is used to determine the radius of a par-

ticular voxel’s dilation on a visible vessel. The dilation is performed using a 3D

isotropic Gaussian point spread function with a FWHM of between 3–5mm. This

higher spatial frequency Perlin noise, which has a value between 0 and 1, is used

to determine extent of the vessel dilation. The value of 0 indicates that the voxel

will be dilated to 3mm and 1 indicates that the voxel will be dilated to 5mm. The

combined uneven dilation of the original vessels produced a set of resulting vessels

that are thick and bumpy. When the resulting dilated vessel volume is thresholded

and windowed for intensity, a set of disjoint vessels with uneven surfaces are created,

which simulates appearance-wise the increased gain of the power Doppler US imaged

vessels and any amplified noise.

Accumulating Noise and Speckling

Various types of artifacts and noise commonly seen in US images and volumes

are applied to the generated vessel volume as the final step to simulate the US

vessel volume. Speckle artifacts generated via the methods of Pizurica et al. [189]

and grainy Perlin noise are multiplied to the expanded vessels. Gaussian noise and

high intensity voxels from Perlin noise of high frequency are added to the vessel

volume. The volume is then masked with a mask generated from the coordinates

and orientation of a real US sweep to produce a wedge shape volume similar to a
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reconstructed US vessel volume. The resulting simulated US vessels qualitatively

resemble the real US vessels in their thickness, uneven surfaces, noise, artifacts, and

their variable presence (see Fig. 3–1).

Behavior of Simulated Vessels in Registration

To ensure that the simulated US vessels from our digital phantom performed

similarly to real Doppler US reconstructed vessels in registration, we measured their

cross-correlation values through translations, rotations, and scaling. The simulated

US vessels and their corresponding real US vessels, were all registered and aligned

to the MR angiography data. The gold-standard transform for aligning the real US

image to the MR image was found by first calculating the affine linear transform

between manually picked homologous anatomical landmarks between the US and

MR image in the manner described in Section 3.3.3.

All the data sets were blurred with Gaussian kernels of 5 voxel FWHM and the

two sets of US vessels were translated, rotated and scaled around their registered

position on the MR vessel image. From the test results in Figure 3–4, we see similar

profiles for the cross-correlation objective function for both sets of US data. The

correlation of the objective function curves was greater than 0.9 for translation and

more than 0.8 for rotation and scaling.

This indicates that there is high similarity between the registration performance

of our simulated US vessels compared to that of the real US vessels. As well, the gen-

erated transforms and distortions from our digital phantom also vary smoothly and

are of similar magnitude as that found in clinical cases in the literature. From this,
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Figure 3–4: Graphed curves of showing correlation values of the simulated US (red)
versus that of the real US (blue) when the vessels are translated (top row), rotated
(middle row), or scaled (bottom row). The horizontal axes of the translation graphs,
rotational graphs and the scaling graph are labelled in millimetres of translational
displacement, radians of rotation, and magnitude of scaling about the center of
gravity of the US vessel volume, respectively. All vertical axes of the graphs are
show 1−CrossCorrelation. Cross-correlation between the translation curves in the
x, y, and z directions are 0.91, 0.98, and 0.99, respectively. Cross-correlation between
the rotation curves in the x, y, and z directions are 0.95, 0.82, and 0.88, respectively.
Cross-correlation between the scale curves is 0.86. The offset of the two graphs show
that the simulated US vessels has a slightly higher resemblance to the MR vessels
since the former is simulated from the latter.
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we can conclude that simulated US vessel volumes model the appearance of clinical

US vessel images sufficiently well for testing our MR to US registration algorithm.

3.3.2 PVAc Physical Phantom

MRI and Doppler US vessel data of a polyvinyl alcohol cryogel (PVAc) physical

brain phantom described and acquired by Reinertsen et al. [202] were used to validate

our algorithm. The phantom is made of 3 types of PVAc of different hardnesses,

containing 3 coils of plastic tubing with inner lumens of 1.57, 2.36, and 3.18mm,

capable of circulating fluids for simulating blood vessels. The phantom also has

an inflatable catheter located near its bottom center to simulate brain deformation

[199]. The T1 MRI data set from this phantom consists of two image volumes for

each catheter inflation of 0, 5, and 10ml of water, giving a total of 6 volumes (See

Fig. 3–5) for improved validation. Three sets of 2 Doppler US images for phantom

inflations of 0, 5, and 10ml were also acquired.

The MR images were acquired with a Siemens SonataVision 3T using T1 weighted

MR imaging at a voxel resolution of 1mm x 1mm x 1mm. The tubes in the phantom

were manually segmented from the MR images.

The phantom US images are acquired with an ATL HDI 5000CV US imager

using a ATL P7-4 phased-array probe on power Doppler mode. A passive target

with marker spheres was attached to the US probe and optically tracked by a Polaris

tracker (Northern Digital Incorporated, Waterloo, Ontario, Canada). The ultra-

sound probe was calibrated with a z-fiducial phantom described in [87]. The US

probe is swept smoothly and steadily by hand over the water-immersed phantom

to minimize gaps in the reconstructed volume. The 2D Doppler images are filtered
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0ml

5ml

10ml

Figure 3–5: T1 MR images of the PVAc Phantom inflated with 0, 5, and 10ml of
water in the implanted catheter, which can be seen at the bottom center of each
image.
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using a colour saturation threshold and reconstructed using the same methods as

described in Section 3.2.1.

Manually labelled homologous landmark points, consisting of 21 fluid filled bub-

bles, located and distributed evenly throughout the phantom tissue material, were

found in each of the 6 physical phantom MR volumes. These landmarks were used

to validate the transformation of our algorithm. In 2 separate point picking trials

to determine intra-rater variability, the mean difference between the points around

each landmark was approximately 0.7mm with a maximum distance of 1.1mm.

3.3.3 Clinical Data Acquisition and Vessel Extraction

Vessel structures in preoperative MR and intraoperative US images must be

properly acquired and extracted prior to registration. To acquire the preoperative

image, the patient can be scanned using MR angiographic techniques, such as time-

of-flight, T1-weighted MPR [237], or contrast enhanced MR angiography.

In our institute, open cranial surgery involving such procedures as tumour re-

section almost always involve Gadolinium (Gd) contrast enhanced MR imaging for

enhancement of the pathology, usually within a week prior to their procedure. This

also provides us with a contrast enhanced MR vascular image for use in computer

assisted neurosurgical guidance. The images were acquired using a GE Signa Excite

1.5T with double-dose Gd enhanced T1 weighted MR imaging at an in-plane reso-

lution of 0.5 x 0.5mm and a slice thickness of 1mm. The MR vessels are extracted

by filtering the angiographic MR images using Frangi’s vesselness method with the

same parameters as those described in Section 3.2.1.
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We note that although MR angiographic or contrast enhanced MR imaging

may not be routinely performed in all institutes for tumour surgery, we nevertheless

believe that the development of improved image processing methods may allow blood

vessels to be extracted from standard T1-weighted images thus allowing for the use

of a technique such as ours.

During the stabilization of the patient’s head for operation, the pre-operative

MR image was rigidly registered to the patient’s head by the surgeon through manu-

ally picking nine facial landmark point pairs. These point pairs were chosen between

the skin surfaces of the actual patient and the segmented patient MR image iden-

tified using optically tracked pointer and a mouse pointer, respectively. The point

pairs consist of the patient’s lateral and medial canthus on the left and right eye,

the tragus and tragus valley on the left and right ear, as well and the most posterior

part of the nasal bridge.

The clinical intraoperative US images and their tracking data were acquired and

processed in the same manner as the physical phantom data to build the US volume

from 2-dimensional slices and extract its vessels (see Section 3.2.1). The probe was

swept in a free-handed manner over the dura of the patient after the craniotomy in

a smooth and steady manner to minimize gaps in the reconstructed volume.

Table 3–2: Patient information and US scanning parameters for our 4 sets of clinical
data

US Scan Patient
# Hz Focus Age Sex Pathology Location

1 4 8cm 70 Male Glioblastoma Left Frontal
2 4 8cm

40 Female Glioblastoma Right Parietal
3 4 8cm
4 6 8cm 49 Male Oligodendrocytoma Left Frontal
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Manually labelled landmarks for anatomical features found between the MR

volume and the US volume were used as a silver-standard to evaluate registration

success. These landmarks consist of blood vessel bifurcations, conjunctions of sulci,

and unambiguous distal portions of ventricles located throughout the volume from 4

sets of real clinical data acquired from 3 patients (See Table 3–2). Depending on the

size of the volumes and the availability of landmarks, between 7 and 18 unambiguous

points were labelled by an expert. Four separate point picking trials were done to

determine intra-rater variability. The mean difference between the points at each

landmark was 1.3mm with the maximum distance of 2.1mm.

Given the clinical nature of these images and their acquisition conditions, it was

difficult and took significant amounts of time to accurately identify unambiguous

landmark points in both the US and MRI images. This process involves cross-

checking between the preoperative and intraoperative images, re-verifying the land-

marks, and correcting any inaccuracies, which can take around 15–30 minutes per

case or around 2–4 minutes per landmark point. This was especially true for US

acquisition 3, where the sweep amounted to a thin slab less than 2 cm in width and

only 7 unambiguous landmark points could be identified.

3.3.4 TRE Calculations

We use the target registration errors (TRE) as a quantitative measure to test and

validate our registration methods on our digital phantom trials, physical phantom

trials and also our clinical trials.

Digital phantom trials: The TRE were calculated using an initial set of points,

which were evenly sampled from throughout the ROI delimited sweep cone of
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the US images. The initial points were then transformed using both the gold-

standard transformations and the recovered transformations from our tech-

nique. The root mean square (RMS) errors between the latter two sets of

points were then calculated to give us our TRE.

Physical phantom: The TRE were calculated using the labelled homologous fluid

filled bubbles in the physical phantom images of each catheter inflation. The

transformations recovered through registration of the source MR vessel image

to the target US vessel image of a different inflation was applied onto the points

picked from the source MR image. The RMS errors between transformed source

points and the set of points picked from the target inflation image was then

calculated, giving us our TRE.

Clinical trials: The TRE were calculated through a set of silver-standard point

pairs, which were manually picked from homologous intra-cranial anatomical

landmarks in the source MR image and the target US image. The transforma-

tions recovered using our registration technique were applied onto the source

points and compared with the locations of the target points through computa-

tion of the RMS error as TRE.

3.3.5 Registration Validation

The hybrid registration algorithm was evaluated with the digital phantom (Sec-

tion 3.3.1), the PVAc Phantom (Section 3.3.2), and 4 sets of real clinical data (Section

3.3.3). Although it is common in the literature to report translation and angular er-

rors, we elected to use TRE for validation of our registration method since it can

effectively encompass the displacements incurred from the full affine transformation
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(12 degrees-of-freedom) used in our linear registration phase. This includes scaling

and shear transformation on top of the translational and rotational transforms used

in rigid-body registrations.

The TRE measure is also useful since it allows us effectively compare the quan-

tities of error corrected between our linear and non-linear registration phases. Vali-

dation of the registration were done in the following manner for the digital phantom,

the physical phantom, and the clinical trials datasets:

Digital phantom: Using the digital phantom, we created 2100 registration trials,

each with a randomly generated vessel instantiation, transform, and deforma-

tions which were used as the gold standard. TREs greater than 2.5mm are

considered as failed registration attempts.

Physical phantom: Validation using the physical phantom was performed by reg-

istering each of the 6 MR volumes with each of the 3 US volumes to estimate the

non-linear transforms. This was done to account for deformations generated

from inflating with 0, 5, or 10ml of water.

Clinical trials: Registration validation of the clinical trial was accomplished using

manually defined landmark points used as the silver-standards that were chosen

from homologous intra-cranial anatomical landmarks in the source MR image

and the target US image.

3.4 Results

3.4.1 Digital Phantom

We found that our registration method was quite robust and accurate in correct-

ing the simulated brain-shift of our digital phantom, with a high success rate given
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Figure 3–6: Digital phantom registration percent success on test cases of different
initial misalignment RMS errors using the linear and non-linear phases of our regis-
tration algorithm. Registration trials with RMS errors of less than 2.5mm are defined
as successful.

the 2.5mm threshold criteria. In applying our full registration method (linear and

non-linear phases) to the digital phantom we found that our method was successful

for 99%, 94%, 92%, and 90% of the digital phantom trials at 5, 10, 15 and 20mm

initial misregistration, respectively (see Fig. 3–6, Non-Linear).

It is interesting to note that the linear step completed in the first phase of

registration can significantly reduce the initial TRE. In the same trials as above,

when initial misalignment RMS error is less than 5mm, 10mm, 15mm, and 20mm,

the linear registration results in TREs less than 2.5mm for 87%, 68%, 65%, and 64%

of the trials, respectively (see Fig. 3–6, Linear). These lower values are expected since

linear transforms cannot completely correct for the local non-linear deformations we

generated for our digital phantom. Furthermore, if the linear registration completed

with a TRE of less than 6mm in these trials, the non-linear registration was successful

more than 96% of the time, correcting the TRE to below 2.5mm.
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Figure 3–7: Digital phantom registration results showing the TRE for all the trials
after the non-linear phase of the registration process. The horizontal axis indicates
the initial TRE prior to correction while the vertical axis indicates the final TRE after
non-linear registration. The blue circles are the results after non-linear registration
and the pink X’s are the results after linear registration. The black diagonal line
shows where a registration trial resulted in the reduction in TRE (point is below the
line) or whether it increased the TRE (point is above the line). The green horizontal
line shows our cutoff for success (2.5mm). The mean reduction of 0.62mm TRE from
linear to non-linear phases of registration is highly significant, with p < 2× 10−64 in
a two-tailed t-test.
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Given the initial design criteria of 20mm maximum displacement on the dura,

only 10% of the trials failed with TREs greater than 2.5mm. We found that only

3% of the registration trials attained a greater TRE than the initial alignment (see

Fig. 3–7). The mean reduction in TRE through non-linear registration from the

linear registration results is 0.62mm and quite significant, with p = 1.73 × 10−64

in a two-tailed t-test. This significant reduction in TRE can also be seen in that

the mean TRE after linear registration was 2.29 ± 0.62mm with the first and third

quartile being 1.84mm and 2.66mm, respectively, which reduced after non-linear

registration to 1.64 ± 0.47mm with the first and third quartile being 1.32mm and

1.82mm, respectively. In general, we found that the regions of the US volume with

the least blood vessels had the highest TREs while regions surrounded by vascular

structures had consistently low TREs.

We also tried to examine the behaviour of the vessel registration algorithm when

we push it beyond the 20mm operating range. We see that in this case the success

in the non-linear registration was only 84%, 76%, and 70% for 25mm, 30mm, and

35mm initial misregistration.

3.4.2 PVAc Phantom

In our tests with the physical PVAc phantom, our non-linear registration algo-

rithm was able to correct the deformations in all our trials to TREs 2mm or under

(See Table 3–3). This correction corresponds to a reduction of 8% to 45% in TRE re-

maining from the linear registration step after non-linear registration, with the TREs

decreasing in all cases in these tests on the physical phantom. This demonstrates

that the algorithm is likely converging towards the correct solution.
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Table 3–3: TREs resulting from applying the non-linear registration algorithm on 6
linearly registered physical phantom MR images (Fin) and the initial TREs (Init).
The MR images were acquired by inflating the physical phantoms twice (1, 2 ) with 3
different volumes of water (0, 5, 10ml). The transforms are computed by registering
each physical phantom MR source image with the remaining phantom US target
images of dissimilar inflation volumes. Source images are listed as rows while target
images are listed as columns in the table.

0ml 5ml 10ml
1 2 1 2 1 2

Volume # Init Fin Init Fin Init Fin Init Fin Init Fin Init Fin

0ml
1 × × × × 1.8 → 1.1 2.6 → 1.9 1.7 → 1.1 2.7 → 2.0
2 × × × × 1.8 → 1.6 1.4 → 1.3 1.7 → 1.4 1.9 → 1.7

5ml
1 2.6 → 2.0 1.4 → 1.3 × × × × 1.4 → 1.2 2.6 → 2.0
2 1.7 → 1.5 1.4 → 1.1 × × × × 1.6 → 1.3 1.8 → 1.6

10ml
1 2.7 → 1.8 1.8 → 1.1 1.6 → 1.1 2.6 → 1.8 × × × ×
2 1.9 → 1.0 2.6 → 1.9 1.8 → 1.0 2.6 → 2.0 × × × ×

5ml MR Image Deformation Magnitude (mm)

Figure 3–8: PVAc Phantom with 5ml inflation (Left) and its corresponding mag-
nitude of deformation when non-linearly registered to the 0ml inflation phantom
(Right). The magnitude of non-linear deformation is highest around the center of
the phantom where the inflation catheter resides with the maximum recovered de-
formation of 3.01mm and the minimum of 0.008mm.
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It should be noted that since the chosen landmarks on the PVAc phantom are

spread out evenly over the entire volume of the phantom, the actual amount of non-

linear displacement an their corresponding correction through registration has been

diluted in calculation of the TRE. To illustrate this, we used the results of the 0ml

to 5ml registration trial and calculated the TRE from 5 landmark points located in a

region of the phantom closer to the catheter balloon. From this, we noted a reduction

of TRE from 2.4mm to 1.3mm, which equals to a 46% reduction in the TRE of this

region from our non-linear registration alone. The differences in the magnitude of

non-linear deformations throughout the image can be seen in Figure 3–8. The degree

of non-linear deformation was as high as 3.01 mm, in the region close to the center

of the imaged volume where the deformation inducing catheter resides.

Images showing a 5ml inflated phantom corrected with the recovered transfor-

mations from registration with a 0ml inflated phantom can be seen in Figure 3–9.

Note that there is almost a complete overlap of the vascularized cerebral region of

the phantom images, including the more highly deformed parts of the phantom near

the catheter.

3.4.3 Clinical Data

The initial registration of the MR to the patient’s head attained from the facial

landmarks for the clinical data was achieved with the standard homologous landmark

point-pair method described in Section 3.3.3. Only one starting point was evaluated

for each clinical case, since experiments using the synthetic phantom data have indi-

cated the algorithm’s robustness to the starting location. These initial mean TREs

from facial registration using the manually identified silver standard landmarks on
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Linear

Non-Linear

Figure 3–9: PVAc Phantom with 5ml inflation image (red) being registered to its 0ml
inflation image (green). The image initial alignments shows considerable misalign-
ment. After linear registration, alignment is greatly improved but a large amount of
misregistration can be seen in the left side of the image and close to the inflatable
catheter. Following non-linear registration, most of the phantom is well aligned.
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Figure 3–10: Registration results showing improved alignment of the preoperative
MR vessels (Green) with the intraoperative US vessels (Red). The images show a
transverse slice plane of the US volume and the same slice plane through the mis-
aligned MR volume before (Left) and after (Right) applying the transformations
recovered using our hybrid registration method. Notice that the MR vessels previ-
ously misaligned and out of plane to the US vessels are now well registered. The
images are from Patient 1 in Table 3–4.

Table 3–4: Full registration TREs for our 4 sets of clinical data. The first row shows
the TRE from intra-operative patient facial registration, the second row shows the
results of our method after the linear registration phase, the third row shows the
final results of our method after the linear and non-linear registration phases, the
forth and fifth rows show the percent reduction of TRE from the facial registration
to the linear and both linear and non-linear registration phases, respectively. The
sixth row shows the additional percentage of TRE reduction following the non-linear
registration after linear registration. The last row indicate the number of landmarks
used to determine TRE on each patient dataset.

Data sets # 1 2 3 4

Facial Registration TRE 7.25mm 3.51mm 4.61mm 3.74mm
Linear Registration TRE 3.48mm 1.32mm 3.50mm 2.12mm

Non-linear Registration TRE 2.38mm 1.23mm 3.38mm 1.70mm

Linear % Reduction 52.0% 62.3% 24.2% 43.3%
Non-linear % Reduction 67.2% 64.9% 26.7% 54.5%

% Difference 15.2% 2.6% 2.5% 11.2%

# of Target Landmarks 18 7 15 8
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Figure 3–11: Registration results using clinical data, with overlays of the dual-mode
US (Red) on the Gadolinium-enhanced T1 MR images (Green). The images show a
coronal slice plane of the US volume and the same slice plane through the misaligned
MR volume prior to (Left) and after registration (Right). The TREs for this subject
(Patient 1 in Table 3–4) before registration is 7.46mm and 2.88mm afterwards. Note
the improved alignment of the sulci and ventricle borders.
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Prior Registration After Registration

Figure 3–12: Registration results using clinical data from Patient 4 (see Table 3–
4), with the non-overlayed Gadolinium-enhanced T1 MR images (Left) and overlays
of the hot-metal toned dual-mode US on the MR images (Right) in both coronal
(Top) and sagittal planes (Bottom) prior to and after registration. The TRE before
registration is 3.75mm and 1.7mm afterwards. The arrows on the non-overlayed
registered MR image indicate areas of improved alignment at the vessels, sulci, and
ventricular borders through the use of our registration method.

126



B-mode Image Doppler Image Deformation Magnitude (mm)

Figure 3–13: Images from Patient 4 (see Table 3–4) showing a coronal slice from
the reconstructed US image (Left), the Doppler US vessel image (Middle), and the
magnitude of non-linear deformation recovered after the linear registration phase
(Right). This reveals that significant non-linear deformation occurs even prior to
dural opening. The magnitude of non-linear deformation recovered from MR to US
registration was very high close to the Doppler vessels with the maximum recovered
deformation of 2.5mm and the minimum of 0.006mm. Note that the deformation field
can be high in the borders of the image where there are no vessels to “lock-down”
the amount of deformation in these regions.
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the four datasets were 7.25mm, 3.51mm, 4.61mm, 3.742mm. It is important to note

that although our surgeons sought to keep the root mean square errors of their facial

landmark fiducial registration errors (FRE) lower than 1.5mm, the resulting TREs

from the initial skin-based registration are nevertheless quite large. The magnitude

of the TREs is likely due to the configuration of skin landmarks in relation to the

surgical target. If the geometric center of gravity of the fiducials is not close to the

surgical target, the landmark configuration may lead to a lever effect, accentuating

the TRE. Such a decorrelation between the measured FRE from the measured TRE

has been noted in the past [59, 221, 222].

After the US to MR registration process consisting of the linear and nonlinear

registration steps, the TREs were reduced to 2.38mm, 1.23mm, 3.38mm, and 1.70mm

on these clinical datasets with improvements of TRE by 67.2%, 64.9%, 26.7%, and

54.5%, respectively. Resulting images from registration of Patient 1 (See Table 3–

2) can be seen in Fig. 3–10 and 3–11, which are respectively the registered vessel

images and the T1 MR image corrected with the recovered transformation. Result-

ing registered images for Patient 4 in Fig. 3–12 show the T1 MR image corrected

with the recovered transformation. It can be seen that the amount of non-linear

deformations from datasets 1 and 4 are not negligible, with 15.2% and 11.2% of the

TRE uncorrected by affine-linear registration (See Table 3–4). The magnitude of

non-linear deformations in Patient 4 was as high as 2.5 mm in some local regions of

the brain, and can be seen in Fig. 3–13. Note that this deformation was recovered

from our vessel based registration after completion of our linear registration phase,

from images acquired prior to dural opening. This indicates that full affine-linear
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registration alone is insufficient to capture and recover all the brain-shift induced

deformations even prior to dural opening.

The average execution time for vessel registration is roughly 6–8 minutes on a

2.4 GHz Intel Q6600 processor. In this time span, the multiscale linear registration

takes approximately 3-4 minutes and non-linear registration takes approximately

3-5 minutes, with the rest of the time taken up by US preprocessing and volume

reconstruction, which takes less than a minute.

3.5 Discussion

The validation results indicate that the hybrid registration algorithm outlined in

this paper can be applied to correct for registration errors due to inaccurate fiducial

registration and to update preoperative images to account for brain shift.

3.5.1 Validation

Our method can successfully correct for brain shifts with displacements as large

as 20mm in more than 90% of the cases (See Fig. 3–6 and 3–7) in our digital

simulations. As well, we have found in our clinical cases that we can significantly

reduce the registration TRE with either only linear registration or both linear and

non-linear registration (See Table 3–4). However, we note that these results need to

be interpreted with care given that our digital simulation is not entirely physically

realistic and that we have evaluated the technique only on 3 patients in our clinical

trials. We plan to apply the method to a larger cohort of patient data in the future

to further validate and determine the generalisability of the results. We also intend

to improve our methods for simulation of US blood vessels to make them more

physically realistic. We also note that while our clinical cases used specified facial
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landmarks for initial registration, it is also possible to use a random iterative closest

point method such as that of [76] for initial rigid body registration, before applying

our hybrid method for non-linear soft tissue registration.

Our digital phantom occasionally removes large regions of vessel segments in

its random vessel presence simulation. On some of these simulated US images, our

hybrid registration algorithm fails catastrophically, with the resulting TREs signif-

icantly higher than 2.5mm even when the initial TREs are less than 20mm. We

realized that the removed vessel segments was the cause of the failure when we qual-

itatively examined several of the generated US digital vessel phantom images that

resulted in registration failures. The simulated US volumes were indeed significantly

sparser due to vessel removal and as such they aligned themselves to the wrong ves-

sels in the larger sized MR vessel volume image. When the same images were not

processed with the random presence portion of the simulation and ran with the same

initial misalignments, registration of these same images converge and succeed even

with the added noise, artifacts, and large vessel dilations.

The reason for the catastrophic failure in registration is clear. Since the initial

vessel images used in digital simulation is already quite sparse, masking and vessel

removal can further weaken the global minimum to the point as to cause the algo-

rithm to be trapped at one of the many local minima. This introduced ambiguity in

effect increased the possible alignments of the smaller and sparser US image with the

large amount of vasculature in the MR vessel image. The problem was further exac-

erbated when the misalignment distance of the images was greater, which required

the algorithm to traverse across more local minima and increased the chances that
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it would settle into any one of them before reaching the global minimum. Should

the vessel removal be extensive enough, the global minimum for registration could

be eliminated, causing the registration algorithm to never converge to the correct

solution. Although these large failures in alignments are not favourable, there are

nevertheless benefits to such a behaviour since it allows technicians and surgeons to

easily recognize registration failure through visual inspection, which limits the chance

that a wrongly registered image is accepted by the surgeon and used for guidance.

We noticed a reduction in the TRE in all the physical phantom registration trials,

and although the values were not below 1mm, visual inspection of the registration

results show marked improvements in the alignment of the blood vessel tubes in the

phantom (See Fig. 3–9). This is similarly true with the registration results using

clinical data, where the corrections showed good alignment not only in vessels (see

Fig. 3–10) but also in anatomical structures such as the ventricles and sulci (see

Fig. 3–11 and 3–12). Although anatomical structures like ventricles can be useful

in registration, they are not as topologically distinct as branching vessels and are

not well distributed throughout the brain tissue. Nevertheless, structures such as

ventricles and sulci can be used as additional registration features in conjunction

with vessels in registration. While we realize we cannot generalize with 4 clinical

data sets, these tests do demonstrate that our algorithm can be successfully used to

register real clinical images acquired intraoperatively during an operation.

3.5.2 Hybrid Vessel Registration

Ideally, we would have liked to compare our techniques to other US to MR regis-

tration techniques such as of [110] and [208], however these techniques are dissimilar
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to our own in that (1) they recover linear transformations only and do not recover

non-linear deformations in their registration, (2) nor do they take advantage of the

vessel information in their images for image registration. As well, these techniques

are not publicly available and trying to both implement and run them ourselves

might introduce bias. Nevertheless, we have run several tests against Reinertsen et

al.[201], which show that our technique, although slower, is more accurate, more ro-

bust, and has a higher probability of converging to the correct solution when run on

real clinical data and image data from our digital phantom. We intend to continue

investigating the use of our technique after and during tumour resection since these

situations will likely be more challenging due to the higher tissue distortion and tis-

sue removal. In both cases, the amount of resected tissues will be quite large, but

since our registration technique relies on blood vessels for registration and not the

removed tissue and can deal with missing vessels segments we believe that it should

work well in such situations.

While the total time of 6–8 minutes required for hybrid registration is perhaps

pushing the limits of clinical acceptance, this work was done with the intention of

evaluating a technique to first determine its functionality and robustness on clinical

data prior to further optimization. We believe that optimizing the code for the algo-

rithm as well as adapting it to use hardware acceleration can reduce the registration

time required. However, since the present algorithm is highly robust for misalign-

ments up to 20mm (more than 90% success, See Fig. 3–6), it should be possible to

account for large absolute displacements by progressively estimating smaller relative

displacements during the procedure. For example, the deformation estimated using
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the algorithm before dural opening will be used as the starting transformation for the

subsequent deformation estimations during or after a surgical procedure. While this

method remains to be tested with additional clinical data, we believe the registration

algorithm, when used continuously, could correct for deformations of 10-15mm that

occur throughout a procedure.

In this work, we concern ourselves solely with the problem of registering US data

acquired on the dura. We believe that by being able to correct brain-shift first on

the dura, we can subsequently evaluate our registration algorithm in surgery before

proceeding to tackle the potentially more difficult problems of image registration

after dural opening and tissue resection. We realize that the characteristics of brain

shift and the performance of the algorithm may be altered depending on the size and

location of the craniotomy or the presence of tumour tissues, but this is outside the

scope of our paper and will be addressed in future research.

3.5.3 Conclusion

We have presented a new method for correction of preoperative MR images us-

ing intraoperative US for non-linear hybrid vessel registration. Since our vessel reg-

istration algorithm does not depend heavily on image preprocessing for robust and

accurate results, it is able to avoid the pitfalls of feature-based registration meth-

ods that rely on their preprocessing methods such as vessel centerline registration

algorithms. The minimum processing to extract the vessels allows us to complete

registration in less time than purely intensity-based registration techniques.

In this work, we also developed a digital phantom capable of synthetically gen-

erating volumes with the appearance of Doppler US vessel images. These images are
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processed from a MR vessel image and have known ground truths for testing the reg-

istration robustness and accuracy of various non-linear MR to US vessel registration

algorithms.

Our registration algorithm was then validated for robustness and accuracy through

multiple trials using synthetic US vessel images generated from our digital phantom,

along with US and MR images scanned from a real physical phantom, and finally 4

sets of real clinical data from 3 patients consisting of preoperative MR vessel images

and intraoperative Power Doppler US images. Results from these tests show that

the estimated transforms recovered by our novel registration algorithm are not only

accurate but also robust when processing images that contain large quantities of

noise, artifacts and missing vessels commonly seen in clinical vessel images.
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CHAPTER 4
Brain Phantom for the Validation of Medical Image Processing

Forward

In Chapter 3 we presented our methods for vessel-based intraoperative registra-

tion, and demonstrated their robustness and accuracy in image alignment. However

through our registration work, we noticed that the available physical phantom used

in the study did not deform realistically in the manner of live human brain and

lacked imageable anatomical features and landmarks for validation. Newly devel-

oped medical image processing techniques, such as those for image segmentation and

registration, need realistic physical imaging phantoms with distinct geometries and

known imaging behaviours to properly characterize and validate their accuracy.

In this chapter we describe the design and construction of a multimodal anthro-

pomorphic medical imaging phantom that can be imaged using ultrasound, com-

puted tomography, and several magnetic resonance imaging modalities. We present

the chemical formulation of the brain phantom’s polyvinyl alcohol cryogel tissue

mimicking material. This material has been formulated for contrast in MR, CT, and

ultrasound and also to have mechanical properties similar to a live human brain. The

phantom’s mold was created from a digital model based on the left hemisphere of

Holmes et al. [103] and contained deep sulci, a full left ventricle, and a complete in-

sular region. As well, multimodal fiducial spheres were implanted to allow for image

alignment validation of registration algorithms. Inflatable catheters were also cast
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into the phantom to simulate realistic non-rigid soft tissue deformation. Finally, we

also present the multiple sets of MR, CT and US data acquired from this phantom,

which were made freely available to the public and the medical image processing

community.

Using this multimodal imaging phantom, it is possible to validate image seg-

mentation, reconstruction, registration, and denoising techniques. We believe that

our phantom can be used to aid in the future development of novel medical image

processing techniques.

This chapter has been published in Medical Physics [38]:

• S. J.-S. Chen, P. Hellier, M. Marchal, J.-Y. Gauvrit, R. Carpentier, X. Morandi,

and D. L. Collins. An anthropomorphic polyvinyl alcohol brain phantom based

on Colin27 for use in multimodal imaging. Medical Physics, 39(1):554–561,

2012.
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Abstract

In this paper, the method for the creation of an anatomically and mechani-

cally realistic brain phantom from polyvinyl alcohol cryogel (PVA-C) is proposed for

validation of image processing methods such as segmentation, reconstruction, reg-

istration, and denoising. PVA-C is material widely used in medical imaging phan-

toms because of its mechanical similarities to soft tissues. The phantom was cast

in a mold designed using the left hemisphere of the Colin27 brain dataset [103].

Marker spheres and inflatable catheters were also implanted to enable good regis-

tration comparisons and to simulate tissue deformation, respectively. The phantom

contained deep sulci, a complete insular region, and an anatomically accurate left

ventricle. It was found to provide good contrast in triple modality imaging, consist-

ing of computed tomography, ultrasound, and magnetic resonance imaging. Multiple

sets of multimodal data were acquired from this phantom. The methods for build-

ing the anatomically accurate, multimodality phantom were described in this work.

All multimodal data is made available freely to the image processing community

(http://pvabrain.inria.fr). We believe the phantom images could allow for the
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validation and further aid in the development of novel medical image processing

techniques.

4.1 Introduction

The human cerebrum is a topologically complex organ with deep fissures and

sulci over its lateral and medial surfaces, as well as fluid filled ventricles of complex

shape and form in its interior. The creation of a physical model capable of depicting

the form of the cerebrum is not trivial due in part to these deep structures. Previous

works in creating brain phantoms have either reduced the depth of the sulci [240], or

only recreated the form of the brain superficially with dessert gelatin molds [200, 199].

Although these phantoms bear a cursory resemblance to the human cerebrum, they

do not accurately depict the gross anatomy of the brain. Registering these phantoms

to their acquired multimodality images may also not be straightforward since the

landmarks on the phantom are not easy to find or image. This may be due to

the structures being smaller than the imaging resolution or because of insufficient

contrast of the markers with respect to its surroundings. For instance, [199] relied on

the presence of bubbles in their phantom to act as landmarks for validation of their

phantom. While trapped bubbles can be useful as landmarks in phantom validation,

their locations cannot be controlled. Even when the bubbles are present, they may

also be difficult to identify uniquely. To address these issues, multimodal landmarks

need to be placed in the phantom.

The objective of this study is to create a triple modality human brain phantom

with anatomically realistic structures and mechanical properties such as approaching

that of a live human brain. Henceforth, we will collectively refer to these properties as
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“texture”. The material selected for constructing this phantom is polyvinyl alcohol

(PVA), which is a polymer synthesized from polyvinyl acetate by hydrolysis of their

acetate groups [240].PVA is commonly used in industrial products such as adhesives,

strengtheners for fibre products, thickeners for paints and other liquids, as well as

in for the creation of films, emulsions, and coatings for various engineering purposes

[219, 199]. When liquid PVA solutions undergo a specified period of freezing at a set

temperature and are then allowed to thaw slowly to room temperature, this freeze-

thaw cycle (FTC) transforms the liquid PVA solution into a elastic semi-opaque gel

know as polyvinyl alcohol cryogel (PVA-C) [183, 236, 184, 41].

In previous studies, soft tissue phantoms made from PVA-C have been used to

develop, characterize, and refine different imaging or image processing methods [67,

161, 155]. PVA-C is a good material for such studies since it has similar mechanical

properties such as compressibility and water content to many soft tissues [67, 161,

155, 84, 115, 199, 240]. PVA-C has many other desirable characteristics for building

phantoms. For example, can be stretched 5 to 6 times its original dimensions without

tearing or rupturing, while its high degree of elasticity lets it return to its original

shape with little permanent deformation [184, 115]. With cold storage and the

addition of biocides, PVA is also relatively tough and long-lasting when compared

with other similarly textured materials such as gelatin or agar [84, 115]. PVA-C is

also safe for normal handling in that it is biocompatible and nontoxic [84]. Finally,

the gelling and setting of PVA into PVA-C is relatively uninvolved, requiring only

the freezing and thawing of the molded PVA solution.
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For these reasons, PVA-C has been used in the construction of soft tissue phan-

toms and to study a wide variety of tissues including those of the heart [137, 111],

breast [161, 155, 241], prostate [115], arterial vasculature [69, 41, 240], and brain

[199, 240], in addition to lesions and tumours within these tissues [161, 155, 115]. In

the following sections, we describe the methods we used to create our brain phantom.

We seek to contribute to the literature a phantom that has:

Anatomical accuracy Deep cortical structures of the Colin27 cerebrum, such as

the sulci, the insular region and the ventricles are realistically represented in

the cast phantom.

Realistic texture Recipes of PVA-C with textures approaching that of live human

cerebral tissues were determined through the feedback of a neurosurgeon who

knows the texture of the human brain and tumour tissues.

Multimodal imaging A single phantom that can be imaged effectively in com-

puted tomography (CT), ultrasound (US) and magnetic resonance (MR) modal-

ities with good contrast between phantom and water as well as between the

phantom and its implants.

Freely available data Images acquired using the US, MR, and CT scanners are

made available through our website to researchers and the general public. Im-

ages for this phantom were acquired using magnetic resonance imaging (T1

and T2 weighted, PD, FLAIR, and DTI), ultrasound imaging, and computed

tomography, to ensure that the phantom exhibits similar contrast to images of

the live cerebrum acquired using these imaging modalities.
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We also embedded inflatable catheters in the manner of [200] to simulate deformation

from brain-shift, which is caused by the non-linear distortion of brain tissue due to

gravity and brain swelling from various physiological factors.

Potentially any PVA-C formula can be used to cast the brain phantom pro-

vided that it can be easily removed from the mold and that it holds its form once

unmolded. However, we have noticed in past experiments that attaining the right

phantom texture is important in getting realistic deformation through catheter in-

flation. As such, we believe that a PVA-C formulation that approximates live brain

texture is desirable for the construction of our anatomically accurate phantom in

order to validate non-linear image registration algorithms and other image process-

ing methods. Furthermore, the PVA-C formulation must be able to suspend the

contrast agents used in the phantom (i.e., without settling out) during the casting

of the phantom.

As such, although an imaging phantom will not necessarily need to have both

anatomical accuracy and a realistic texture, in this work we strove to incorporate

both of these requirements into our phantom.

In following sections we describe the methods for preparing the PVA-C material,

the added contrast agents, the creation of the phantom mold, and our multimodal

image acquisition of the phantom. We conclude the paper with a listing of our

Results followed by a Discussion of the work.
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4.2 Material & Methods

4.2.1 Preparing PVA-C

The PVA solutions used to cast the PVA-C brain phantom and its various

components were prepared using 99-100% hydrolysed PVA with an average molecular

weight of 86 kilodaltons from Acros Organics (Geel, Belgium; Code:418120010).

Master PVA solutions were prepared in large quantities by combining heated

distilled water of a certain mass with PVA solute of another mass. The final mass of

PVA solute will make up a specific percentage of final solution’s mass. This is known

as mass percentage, and is commonly abbreviated as w/w. In our experiments,

master PVA solutions of 5% (w/w) and 8% (w/w) were prepared.

The mixture was constantly stirred until the PVA particles are well hydrated

upon which the holding vessel of PVA and water mixture was placed in an oven of 93-

95◦C for several hours. This ensures temperature homogeneity in the liquid and that

the PVA granules dissolve properly. We were also careful to keep the temperature

of the holding vessels below 100◦C to minimize water loss and the formation of

polymer films on the liquid surface. These parameters were taken from the solution

preparation guidelines of Celvol PVA of a similar grade to what we were using [219].

The finished master solutions were checked visually to ensure that all PVA

granules had been dissolved. Small quantities of distilled water were added back into

the solutions according to the amounts lost during preparation of the PVA solution.

From these PVA master solutions, base solutions of lower mass percentages could be

produced by heating the master solution and mixing in additional water.
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PVA-C was polymerized from a PVA solution by completely freezing and thaw-

ing the solutions, which results into semitransparent flexible gel. The PVA solutions

were placed in a room temperature (25◦C) chest freezer and cooled to between -25◦

to -20◦C. After 12 hours of freezing at the aforementioned temperatures, the freezer

was stopped and its interior was allowed to rise back to room temperature over an-

other 12 hour period. The cycles were varied from 1 to 3 FTCs to produce a range

of different PVA-C texture consistencies.

4.2.2 Choosing a PVA-C Formula

Figure 4–1: Samples of PVA-C from 4-8% (left to right) and 1-3 freeze-thaw-cycles
(top to bottom). Note that the samples that have undergone 1 freeze-thaw-cycle
(FTC) samples are more translucent than higher FTC samples. Note that the 4% 1
FTC sample is deforms significantly under its own weight.

In order to select a PVA-C formula (PVA solution concentration and FTC) that

would provide a texture similar to that of a live human brain in our deformable brain

phantom, we employed the subjective assessment of a neurosurgeon with 21 years

of experience in vascular and skull base surgery, who was familiar with the texture

of the human brain and its pathologies. The surgeon was asked to palpate an array

143



of PVA-C samples that had been prepared with either 1, 2, or 3 FTCs and 4%,

5%, 6%, or 8% PVA solutions (12 PVA-C samples in total; See Fig. 4–1). During

this exercise, the samples were palpated at room temperature by the neurosurgeon

while gloved and blindfolded. The neurosurgeon was asked rate the similarity of each

sample to human brain tissue on a scale of 0 (least similar) to 10 (most similar). The

aforementioned procedure was then repeated to choose the samples which felt most

like low grade gliomas.

We note that this strategy for selecting a PVA-C formula is subjective and

cannot be used to draw conclusions about the quantitative rheological properties

of live human brain tissue beyond the needs our tests. These properties should be

measured and quantified using elastography or more directly through intraoperative

mechanical tests. Along with additional information from the formal characterization

of the rheological parameters of our PVA-C samples, we should be able to better

select a PVA formula that is quantitatively similar to the mechanical properties of

human brain.

4.2.3 Triple Modality Contrast Agents

Commonly available chemicals were used to change the contrast between the

phantom and water for all modalities (US, MR, and CT). A PVA-C with the PVA

concentration and FTC resembling textures similar to a living human cerebrum was

chosen to be the base solution for dissolving the contrast enhancing chemicals. We

list all quantities of contrast medium added to the PVA solution as mass percentages

(w/w) of the chosen PVA solution.
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To increase backscattering of sound waves in US imaging, solutions containing

talcum powder at 4%, 2%, 1%, and 0.5% weight of the base solution were mixed.

Other materials such as thin-layer chromatography grade silica gel [115] and cellulose

[84], along with enamel paint [111] have also been used as acoustic backscatterers

but we found that commercial grade talcum powder also performs well. Each of the

samples were immersed in water, imaged, and then visually examined for contrast

with the surrounding water and implanted PVA markers spheres.

For increasing phantom contrast in CT imaging, a powdered barium sulphate

(BaSO4) preparation used for colon enema (Guerbet Micropaque Colon, Guerbet,

Villepinte, Île-de-France, France) was mixed into our PVA solutions. Although

BaSO4 at concentrations greater than 60% can drastically alter MR relaxation time,

lower concentrations of around 1-8% do not appear to significantly alter MR relax-

ation times or interfere with image signal [141]. Solutions were prepared with 8%,

6%, 3%, and 1% w/w BaSO4 of the initial base solution.

To enhance the signal in T1 weighted images, copper sulphate (CuSO4) was

added to the PVA mixture in small quantities. CuSO4 has been widely used as

a MR contrast agent since the late 1970s in phantoms used for MR performance

validation such as the recently developed ADNI phantom [93]. Minute quantities of

CuSO4 dramatically increase the contrast of the PVA sample in T1 and T2 weighted

images. To find an optimal concentration of CuSO4, we prepared 0.2%, 0.1%, 0.05%,

and 0.025% (w/w) anhydrous CuSO4 PVA-C samples and imaged them with T1 and

T2 imaging sequences.
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The appropriate concentrations of talcum, BaSO4, and CuSO4 were determined

by choosing the PVA-C samples that had the least amount of contrast agent but still

gave qualitatively good MR, CT, and US contrast when the PVA-C samples were

imaged when submerged in water in a closed container.

4.2.4 Phantom Construction

A B

Figure 4–2: Two views of the flexible phantom mold from (A) the inside and (B) the
outside.

Brain Mold

The mold for our brain phantom was based on the left hemisphere of the Colin-

27 MR data set [103]. The cortical surface of the left hemisphere was segmented

using Freesurfer [77] to produce a polygonal surface mesh, which was then processed

using the butterfly subdivision module in MeshLab [43] to refine the cortical surface

represented by the mesh and also reduce the number of facets in the mesh.

We then subtracted this processed cortical surface mesh from a rectangular prism

mesh using the boolean operator in Blender3D (www.blender.org), in order to create

146



a “negative” of the cortical surface for fabricating our brain mold. After manually

correcting the polygonal mesh model for holes, unconnected mesh fragments, and

inverse surface normals, the model was then saved in the STL file format, which is

commonly used for stereolithographic printing.

We utilized the services of RedEye On Demand (Eden Prairie, MN, USA) for the

fabrication of our brain phantom mold using the TangoPlus Polyjet Resin (FC-930)

as the material. This clear photopolymer was deposited layer by layer in order to

produce a finished three dimensional object (See Fig. 4–2). We found that the mold

made using this rubbery material was able to accurately model the sulci and insular

region of the cerebral hemisphere while having enough flexibility to allow the PVA-C

to be unmolded without damaging the phantom or the mold itself. The mold reverts

itself to its original shape when deformed.

The bottom of a plastic tub was cut out and glued around the opening of the

flexible rubber mold. This allowed us to cast a base for our phantom when unmolded

and also limited its relative movement when placed and imaged in another plastic

tub of the same size and format.

The mold component for the left ventricle of the phantom was constructed sep-

arately using silicone bathroom caulk. Layers of caulk approximately 2 mm thick

were applied to vellum traces from life-size printouts of segmented 2 mm sagittal

sections of the left ventricle. These layers were then assembled medially to laterally

and aligned using crosshairs on the printout traces to maintain placement accuracy

of the sagittal sections and then covered with additional silicone rubber caulk to

smooth the mold component surface (See Fig. 4–3).
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A B

Figure 4–3: The silicone rubber and cellulose composite mold component used to
cast the fluid filled left ventricle in our phantom (A) before and (B) after being
covered with additional silicone caulking to smooth the surface.

Implants

To make our phantom useful for tests in image guidance and registration, various

structures created from various grades of PVA-C were included into the phantom.

To create spherical registration targets/landmarks, we used a harder PVA-C

made from 8% PVA solution that has undergone 2 FTC containing high quantities

of contrast agents described in Section II.C for a strong contrast. We found this

PVA-C formula to be suitable since it is relatively firm and will not change its shape

significantly with phantom deformation. These were molded using the containers

for reflective passive spheres used in optical tracking. By using a firmer PVA-C,

we limited the amount of distortion that the structure can undergo while enabling

the targets to be imaged by US, MR, and CT. These spheres are approximately

11–12 mm in diameter. Together with the phantom cortex landmarks, these internal

targets can be used as gold standard markers to verify registration accuracy in the 3
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Figure 4–4: The 11–12 mm diameter multimodal spherical markers implanted into
our phantom

imaging modalities. (See Fig. 4–4). The spheres can be imaged well with ultrasound

since they do not have strong specular reflection due to its similar texture to the

surrounding PVA-C tissue. This allowed them to be imaged with relatively even

contrast from the edge of the sphere to the center. Furthermore, it prevents the

heavy US shadowing of the tissues located “behind” the sphere.

A PVA-C “tumour” was also created using 4% PVA solution with 1 FTC and

then embedded into the phantom. The tumour was molded using the ovoid plastic

case from inside a Kinder surprise egg (Ferrero, Pino Torinese, Italy). A small hole

was drilled on one of the poles of the case to allow for expansion during the FTC.

The tumour was then placed in the phantom in order to test guidance accuracy in

surgical procedures and also to provide another tissue in the phantom of different

texture and contrast.
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Phantom Casting

The main brain phantom tissue was cast using the optimal liquid PVA-C iden-

tified in the experiments described in Section II.B combined with the contrast agent

concentrations selected in Section II.C. The mixture was poured into the brain mold

and any air or bubbles trapped in the sulci are removed such that cavities do not

form in the sulcal or gyral surfaces of the phantom.

Figure 4–5: The setup for casting the hemispheric portion of the phantom. After
the hemispheric part is well frozen, the clamps are removed and PVA solution for
casting the base is poured into the mold.

The PVA-C landmark spheres and tumour implants were skewered and sus-

pended using 0.45 mm monofilament fishing lines inside the filled phantom mold at

their desired location. The left ventricle mold component was clamped and also sus-

pended with fishing lines in a similar fashion. We found that this technique allowed

good positioning of the structures and prevented them from sinking to the bottom

of the mold. (See Fig. 4–5).
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Finally, we placed the inflatable head of a urinary catheter into the frontal lobe

of the phantom and another in the medial portion of the phantom in the cast base of

the mold. Each urinary catheter could be inflated with up to 10 millilitres of water

using a syringe in the manner described by [199]. This allowed us to vary the extent

of deformation on the phantom and conduct experiments on the accuracy of various

nonlinear registration algorithms.

Figure 4–6: The PVA-C phantom cast from our Colin27 based brain phantom mold
being prepared for scanning. Note the deep sulci and insular regions of the phantom
and the ends of the catheters used to inflate the phantom on the right. For most of
our scans, the plastic tub was filled with just enough water to cover the top of the
brain phantom.

The entire phantom casting setup was then frozen solid. A thick base for the

phantom was cast by pouring an approximately 3 cm thick layer of clear 8% PVA

solution over the frozen phantom, which produces a thick layer of PVA-C in the

completed phantom of the same thickness. Everything was then allowed to freeze

completely and slowed thawed over the course of 48 hours. Once thawed, the brain
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phantom readily detaches from the sides of the mold and recovered its original form.

An example of the completed phantom can be seen in Fig. 4–6.

4.2.5 Imaging

Modalities and Parameters

Our triple modality imaging includes acquisition of phantom images in MR,

CT, and US. All our MR images were acquired on a Siemens Verio 3T MR scanner

(Siemens Healthcare, Erlangen, Germany) using the imaging parameters listed in

Table 4–1.

Table 4–1: The MR modalities used to image the phantom with deformation and
their imaging parameters. The modalities used are: T1-weighted spin-echo (T1-SE),
T1-weighted gradient-echo (T1-GE), T2-weighted gradient-echo (T2-GE), proton
density (PD), fluid attenuated inversion recovery (FLAIR), and diffusion weighted
imaging (DWI). The sequences each have their own repetition times (TR) and echo
times (TE), as well as an additional inversion time (TI) for FLAIR imaging. Follow-
ing the acquisition of the DWI 30 directions, the fractional anisotropy (FA), apparent
diffusion coefficient (ADC), and trace weighted images (TWI) were computed.

MR Modality TR TE Flip Angle Voxel size
T1-SE 668 ms 8.9 ms 70◦ 1×1×3 mm3

T1-GE 1900 ms 3 ms 9◦ 1 mm3 isotropic
T2-GE 6530 ms 840 ms 150◦ 1×1×3 mm3

PD 6530 ms 9.4 ms 150◦ 1×1×3 mm3

FLAIR (TI=1800 ms) 5000 ms 273 ms 120◦ 1 mm3 isotropic
DWI 9300 ms 94 ms 90◦ 1×1×2 mm3

CT images of the phantom were acquired for the phantom in 491 axial slices at

1.25 mm thickness using a GE LightSpeed 16 VCT scanner (GE Healthcare, Little

Chalfont, Buckinghamshire, UK).

US images were acquired with a Sonosite 180 Plus (Sonosite, Bothell, WA,

USA) diagnostic ultrasound system tracked using a Medtronic Stealth neurosurgical
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station (Medtronic, Minneapolis, MN, USA). Images for the phantom were acquired

as a series of tracked B-mode US images of 44 images in 4-6 sweeps at either 5.2 cm

or 7.1 cm depth.

Table 4–2: The inflation volumes on Catheter 1 and 2 used to deform the brain
phantom on the 5 multimodality imaging series.

Series Catheter 1 Catheter 2
1 0 ml 0 ml
2 5 ml 0 ml
3 5 ml 5 ml
4 5 ml 10 ml
5 10 ml 10 ml

Acquisition Methodology

The images of the deformed phantom were acquired in the following manner. A

series of images were first acquired for each of the CT, US, multiple MR modalities

mentioned. After the image acquisition, the phantom was deformed and then a

series of acquisitions with the same imaging parameters was repeated. Deformation

is done by inflating each of the two implanted urinary catheters in the phantom

(See Fig. 4–6) with 0 ml, 5 ml or 10 ml of water through 5 rounds of inflations

in the manner described in Table 4–2. For each given amount of deformation, the

phantom was scanned in all the modalities without changing the inflation of the

catheters. This ensures that exactly the same physical deformations was scanned

in each modality. It is only after the whole series of the multimodal images were

acquired for a deformation, that the catheter inflations were changed.
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Images for testing super-resolution image processing and scan-rescan reliability

testing, were acquired by scanning the phantom without catheter inflation using MP-

RAGE T1 weighted gradient echo sequence (TR=1900 ms, TE=3 ms, Flip Angle=9◦,

1 mm isotropic). This acquisition was repeated 10 times with water and 10 times

without water. Each of these scans were acquired at an isotropic resolution of 0.5

mm, with the phantom displaced slightly (<1 cm) between each of the acquisitions.

Post-Processing

Following the data acquisition, the US images were reconstructed into an US

volume using distance weighted interpolation and denoised using the nonlocal means

method described in [54]. Transformation from the tracked US probe given by the

neuronavigation system were used to reslice all the MR and CT volumes to match

each reconstructed 3D US volume.

The MR T1 and T2 times of tissues in our phantom were determined using

software available from our institute.

4.3 Results

Table 4–3: PVA sample texture ratings for similarity to live human cerebral tissue by
the neurosurgeon who specializes in neurovascular surgery with 21 years experience
The samples were rated from 0 to 10 with the former being dissimilar to brain tissue
and the latter being exactly like brain tissue. The star (*) indicates a sample that
the surgeon believed felt like a low grade gliomas.

4% PVA 5% PVA 6% PVA 8% PVA
1 FTC 0 4 7 4 *
2 FTC 8 5 0 0
3 FTC 6 * 0 0 0
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4.3.1 PVA-C Formula Choice

Based on the neurosurgeon’s PVA-C scoring (See Table 4–3), we selected two

samples for further analysis:

• 6% PVA with 1 FTC

• 4% PVA with 2 FTC

We found that a large quantity of the contrast agents tended to settle to the bottom

of the large brain mold while freezing the 4% PVA mixture. We therefore choose to

build the normal brain phantom tissue with 6% PVA with 1 FTC. The low-grade

glioma tissue was made using 4% PVA with 3 FTCs, as it was determined to be

the best representative sample by the surgeon. In order to further justify our choice

for the PVA-C formula used for the normal phantom tissue, a PVA-C sample of 6%

PVA 1 FTC was submitted for rheological testing on a 3369 Dual Column system

(Instron, Norwood, MA, USA). While only one PVA-C sample was tested, we found

that the Young’s modulus for the sample was 4.6kPa±0.5%, which is in the range of

Young’s modulus measured for human brain. [165]

4.3.2 Triple Modality Contrast

We used the 6% 1 FTC PVA-C formula as the base material to test different

concentrations of BaSO4, CuSO4, and talcum powder contrast agent. These different

PVA-C samples were then scanned using MR, CT, and US imaging. We found that

for the phantom brain tissue, concentrations of 2% BaSO4, 0.025% CuSO4, and 1%

talcum as contrast agents worked well for CT, MR, and US, respectively. Through

only palpation tests done by the neurosurgeon and the authors, we determined that
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the texture of the PVA-C did not change perceivably with the addition of these

quantities of contrast agents.

For our triple modality image markers, we found that 5% BaSO4, 0.2% CuSO4,

and 5% talcum as contrast agents in 8% PVA with 2 FTC provided adequate contrast

for CT, MR, and US, respectively. These contrast concentrations were chosen to

provide the markers with sufficient contrast from the surrounding normal tissue PVA-

C as to be easily visible on the images of each modality.

4.3.3 Imaging results

A sample of the multimodal images and the result of the inflations can be seen

in Figs. 4–7 and 4–8, respectively.

The MR and CT Images aligned and resliced to the US using tracking infor-

mation given by the neuronavigation system can be seen in Figs. 4–9-I and II,

respectively. The corresponding 2D US image can be seen in Fig. 4–9-III.

The MR T1 and T2 times of tissues in our phantom were determined using

software available from our institute. T1 and T2 times for the phantom tissue were

1004-1213 ms and 163-182 ms, respectively, while T1 and T2 times for the casted

tumour were 1900-2600 ms and 1100-1665 ms respectively.

4.4 Discussion

4.4.1 Image Processing Validation

We believe that the acquired multimodal images with different deformations can

be used for validation of many image processing techniques such as segmentation,
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Figure 4–7: A selection of PVA-C brain phantom images acquired using MR T1-
weighted gradient-echo(A), MR T1-weighted spin-echo (B), MR T2-weighted (C),
MR PD (D), MR FLAIR (E), MR DTI colour map (F), CT (G), a reconstructed US
image (H), and a picture of the PVA-C Phantom (I).
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I II

III IV

Figure 4–8: Images I–IV shows the same coronal slice of the phantom imaged with
T1-weighted gradient-echo at different inflations (Series 1, 2, 3, and 5, of Table 4–2,
respectively). The arrows in Image I show the location of the catheters in that slice
of the phantom.

image reconstruction, linear or nonlinear registration, and denoising algorithms, us-

ing images acquired from one modality to act as the ground truth of another. The

deformation images can also be used to validate physical simulation.

As well, the multiple displacement MR images can be used to validate the ac-

curacy of super-resolution algorithm, which can use the information from image

redundancies and sub-pixel shifts in low resolution images to recreate a higher reso-

lution image of the original imaged object. Further information on super-resolution

methods can be found in [150].

In addition, the phantom may be used for testing and training of stereotatic

procedures. such as biopsy needle insertions or deep-brain stimulator placement.

Together with the phantom’s accurate gross cortical anatomy, its similarity to the
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I II III

Figure 4–9: Images I–III show a cropped section of the phantom MR and CT images
aligned with the US image.

texture of live brain, and its low cost, the phantom can be useful educational tool in

training medical professionals.

4.4.2 Limitations and Future Work

There are several limitations in the current phantom that could be addressed in

future work. Notably, our method for selecting the PVA solution concentration and

the number of FTCs relies on a subjective assessment. A better approach may be to

measure the rheological characteristics of live human brain tissue using MR or US

elastography or through direct intraoperative mechanical characterization, and use

these results to guide the choice of PVA concentration and number of FTCs. This

would allow for the ability to select the PVA concentration and FTC as a function of

the desired physical and imaging properties of the material. Experiments quantifying

the rheological properties of human brain will have to account for the physiological

state of the individual patient since different factors such as blood pressure, the

administration of pharmaceuticals (e.g. mannitol), or other physiological conditions

[253] can dramatically change the rheological properties of the human brain.
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Nevertheless, the concentration and number of freeze-thaw cycles chosen in this

study resulted in a texture that was qualitatively comparable to live brain tissue

when palpated by an experienced neurosurgeon. Moreover, the phantom created

here had rheological characteristics that were similar to those found in the literature

in terms of Young’s modulus for live human brain and it deforms more realistically

than previously proposed deformable brain phantoms in the literature.

The phantom proposed in this study could also be improved by devising a

method of simulating heterogeneous tissue, since the current version only allows for

homogeneous simulated tissue with discrete punctate insertions. Doing this would

make it possible to simulate different brain tissues (e.g. white matter, cortical grey

matter, deep grey matter). More sophisticated phantom casting techniques would

also make it possible to simulate white matter tracts and blood vessels.

Finally, it was found that over time the CuSO4 MR contrast agents tended to

diffuse or leak from the landmark spheres into the surrounding tissue. This difficulty

could be resolved either by sealing the landmark spheres to eliminate leaking, or find

MR contrast agents that will not diffuse out of the spheres.

4.5 Conclusion

We have presented a method for creating an anthropomorphic human brain

phantom that is anatomically and mechanically realistic, which can also be effectively

imaged in the multiple modalities of MR, CT, and US imaging.

We have also made all the images acquired from the phantom publicly available

to the larger image processing community at: http://pvabrain.inria.fr. The
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phantom and data will enable validation of image processing methods and facilitate

the development of new interventional methods.
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CHAPTER 5
Enhancement of Vascular Structures in Medical Images

Forward

Our work in vessel-based intraoperative registration in Chapter 3 also demon-

strated the need for an improved vessel enhancement algorithm that can more ef-

fectively suppress the non-vessel background paranchymal tissues while enhancing

dim vessel structures from angiographic images. By having a better vessel enhance-

ment algorithm, we could also potentially improve the performance of vessel-based

registration methods or data preprocessing for other angiographic image processing

techniques such as vessel structure extraction. Finally, these enhanced images can be

used directly in the clinical setting to aid surgical planning and navigation in IGNS.

In this chapter, we present a novel modification of an existing technique for

the enhancement of vessel structures in angiographic medical images. Our enhance-

ment analyzes a larger image region surrounding a pixel or voxel to better identify

whether it is actually part of a vessel structure in comparison to techniques which

use only local support information from the image Hessian. We present our mod-

ifications to the the popular vessel enhancement filter of Frangi et al. [81], based

on Hessian eigenvalue analysis, by replacing its simple background suppression term

(“structureness term”) with a more sophisticated term that accounts for a voxel’s

participation in vessel like features in a larger neighbourhood region. The analysis
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of the larger pixel or voxel region is done by using the non-local means (NLM) esti-

mator of Buades et al. [25], which identifies image voxels in a neighbourhood that

have similar local patches to a certain voxel. By performing image shape analysis on

the NLM generated weightmap, a pixel or voxel can be identified as either belonging

or not belonging to a vessel structure.

To show that our method is general enough to work on 2D and 3D images

and for angiographies of different imaging modalities, we validated our technique

on clinical 2D retinal angiographic images, synthetic 3D helical spiral images, and

clinical 3D phase-contrast MRA images. We found that by using our structureness

term based on analysis of the NLM weightmap, we could significantly improve the

original method’s ability to identify lower contrast and thinner vessel structures while

better suppressing non-vessel background structures. Tests were also performed to

find the theoretical best result for structureness substitution techniques such as our

NLM enhancement technique.

This chapter has been submitted to International Journal of Computer Assisted

Radiology and Surgery.

• S. J-S. Chen, P. Coupé, and D. L. Collins. Blood Vessel Enhancement Through

Principal Component Analysis of Non-local Means Weightmaps International

Journal of Computer Assisted Radiology and Surgery, Nov 14 2013, Submission

Number:JCARS-D-13-00259
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Manuscript: Blood Vessel Enhancement Through Principal Component
Analysis of Non-local Means Weightmaps

Sean Jy-Shyang Chen 1, Pierrick Coupé 2, D. Louis Collins 1

1 McConnell Brain Imaging Centre, Montreal Neurological Institute,

McGill University, Montreal, Canada
2 CNRS, UMR 5800, Université Bordeaux, 33405 Talence Cedex, France

Abstract

Purpose: Frangi’s vesselness filter is one of the most commonly used vessel en-

hancement methods in medical image processing and many modifications have been

proposed to improve it. We wanted to determine if the structureness term in the

original technique limits vessel detection and whether replacing it by another term

can produce improvements.

Methods : We propose substituting it with one based on analysis of non-local means

(NLM) weightmaps using principal component analysis. Our method was validated

using synthetic 3D spiral images, 3D clinical magnetic resonance angiographic im-

ages, and 2D clinical retinal angiographic images.

Results : Our novel structureness term can identify greater regional vessel features

that may be suppressed by Frangi’s method due to low image Hessian eigenvalues.

Substitution of the original structureness term with our NLM-based term improves

vessel enhancement and suppression of background in our validation tests.

Conclusions : These experiments revealed that replacing the structureness term with

our NLM structureness term can improve the performance of the original method

and allow it to enhance and retain more thin and low contrast vessels.
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5.1 Introduction

Angiographic images are highly important in surgical navigation and for the

clinical diagnosis of diseases. To improve the quality and contrast of the vessels in

these images, vessel enhancement methods are typically used for image preprocessing.

There are vast numbers of work in the literature regarding vessel segmentation and

enhancement methods, with many of them based on Hessian eigenvalue analysis.

The process involves finding the images’ Hessian eigenvalues at various scales and

analyzing them to determine whether a voxel contains the image characteristics of a

vascular structure [81, 143, 216].

One of the most commonly used method of this class is that of Frangi et al.

[81], which enhances voxels with eigenvalues ratios conforming to the tubular shape

of vessel. The eigenvalues of bright vessels in dark backgrounds (dark-field) are

ordered such that λ1 ≤ λ2 ≤ λ3 while dark vessels in bright backgrounds (bright-

field) are ordered λ1 ≥ λ2 ≥ λ3. The method analyzes the eigenvalues at multiple

scales (s) through 3D vesselness filtering defined for dark-field images as:

V (s) =




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0 if λ2 > 0 or λ3 > 0

(1− exp
(
− R2

A

2α2

)
) exp

(
− R2

B

2β2

)
(1− exp

(
− S2

2c2

)
) otherwise

(5.1)

where RA = |λ2|/|λ3| in the first term assures that that the vessel cross-section is

relatively circular (“circularity”), RB = |λ1|/
√

|λ2λ3| in the second term assures that

vessel is more elongated in one axis (“blobness”) and S =
√

λ2
1 + λ2

2 + λ2
3 in the third

term weighs the intensity of all the eigenvalues making sure that only pixels with

higher eigenvalues are enhanced (“structureness”). The α, β, and c terms are set

165



to 0.5, 0.5, and 0.5max(S), respectively, as per the recommendations in [81]. This

function effectively enhances dark-field vessel lumen structures that have eigenvalue

relationships |λ1| ≈ 0 ≪ |λ2| ≈ |λ3|. To adapt Eq. 5.1 for enhancing light-field vessel

structures, the vesselness should instead be 0 if λ2 < 0 or λ3 < 0. The 2D version of

the algorithm retains only the latter two terms and is defined for dark-field images

as:

V (s) =







0 if λ2 > 0

exp
(
− R2

B

2β2

)
(1− exp

(
− S2

2c2

)
) otherwise

(5.2)

To adapt eq. 5.2 for enhancing 2D light-field vessel structures, the vesselness should

instead be 0 if λ2 < 0.

Integration of vesselness filtering at all performed scales is done by:

V (γ) = max
smin≤s≤smax

V (s, γ) (5.3)

where smin and smax are the minimum and maximum scales where at which the

vesselness filtering through Eq. 5.1 is performed. Eq. 5.1, 5.2, and 5.3 effectively

define Frangi’s multiscale vesselness method and were published by Frangi et al. [81].

Although it is effective at enhancing higher contrast and relatively large diam-

eter vessels, Frangi’s filter and similar methods employing Hessian eigenvalue ratio

analysis do not effectively enhance vessel structures that are low in contrast intensity,

thin, and embedded in a noisy background. These vessels may have diameters smaller

than the voxel size and would be missed by larger filter scales but also difficult to

differentiate from noise when analyzed locally at a smaller scale. Vessel features that
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are relatively small to the filter scale, lower in local signal-to-noise ratio (SNR), and

have lower regional contrast may not be optimally enhanced with Frangi’s filter.

Indeed, the final second order “structureness” parameter in Frangi’s vesselness

is essentially the Hessian Frobenium norm. Thus, if a voxel’s norm is low, it will be

suppressed as noise, regardless of whether the voxel is part of a larger discernible

regional structure. Therefore, performing eigenvalue analysis-based vascular filter on

low SNR data at the minimal scales often results in poorly enhanced or broken vessel

segments and much lower responses at vascular bifurcations [153].

Even with these issues, vessel enhancement based on Hessian eigenvalues are

used extensively as an initial preprocessing method in many vessel segmentation

methods [34, 152, 64, 269]. The vesselness maps are even used as the actual vessel

image in various end applications, such as in image registration techniques [202, 91,

39].

There have been several works in the literature that sought to overcome the

issues arising from local intensity dependant Hessian based vesselness measures. For

instance, methods of Canero and Radeva [34] and Manniesing et al. [153] used dif-

fusion tensors constructed from the Hessian eigenvalues and eigenvectors to enhance

and smooth-out the intensities of the vessel segments filtered using Frangi’s vessel-

ness measure. Shikata et al. [226] had redefined a Hessian based vesselness filter that

is resilient to fluctuations of the eigenvalues in the principle orientation of the vessel

axes by incorporating information from gradient features in a larger neighbourhood

region. Tankyevych et al. [242] proposed a morphological operators-based diffu-

sion scheme, using Hessian eigenvalues to isolate linear vessel segments and apply

167



structuring elements guided by the orientation of the principle Hessian eigenvectors.

More recently, Yuan et al. [269] proposed the use of local line integrals to average

the image Hessian eigenvalue values along the Hessian eigenvector principal axis of

a vessel segment to provide smoothness to the measured vesselness map.

These methods are important contributions for the effective segmentation of

smooth vessel structures and their bifurcations. However, we wanted to see if we

could improve Frangi’s method by making adjustments to the original method. In

this case we have chosen to look more closely at the “second order structureness” term

of the method. Depending on how this term was tuned, the method will either be

unable to enhance vessels with lower intensities or SNR, or be unable to differentiate

actual vascular structures and artifacts caused by background noise. One reason may

be that the assumption that the foreground and background can be distinguished

based primarily on highly local information from the Hessian, which is computed

from a relatively small image region. In low contrast to noise (CNR) image regions,

local information alone may not be sufficient to determine whether a voxel is part of

a thin or low contrast vessel.

In this work, we wish to characterize Frangi’s filter output to evaluate if its

Hessian norm structureness term is limiting the enhancement of vessels, and if so

can this be resolved through the substitution of another term. Therefore, we propose

to replace Frangi’s structureness term with a term that evaluates information from

larger regional features. We believe that when this information is analyzed, it can

help better determine whether a voxel indeed participates in a vessel-like structure.

We believe that by modifying the structureness term to account for larger regional
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image features, we should subsequently improve Frangi’s vesselness measure in its

ability to enhance dim and thinner vessel features while suppressing background

noise.

5.1.1 Non-Local Means Weightmap

To determine a voxel’s participation in larger regional structure, we used the

non-local means (NLM) algorithm first introduced by Buades et al. [25]. In its

original form, it was used to identify redundant information in an image for the

purpose of noise removal. The algorithm restores u(x), the intensity of a voxel of

interest x, by finding the weighted average of the voxels x′ in the surrounding image

region Ω with a size (2M +1)3 for a 3D data set, where M is the radius of region Ω.

NLM(u(x)) = v̂(x) =

∑

x′∈Ω w(x, x′)u(x′)
∑

x′∈Ω w(x, x′)
(5.4)

The NLM(u(x)) is the estimated value v̂(x) of the original value v(x), where u(x)

is the noised corrupted value, u(x) = v(x) + noise. The method works through

weighting of the intensity u(x′) using the function w(x, x′), where local neighbour-

hood patch P (x) of x was compared to that of local patch at P (x′). In 3D, each

patch can be set to a size of (2d + 1)3 surrounding the central voxel, where d is the

radius of each patch. We maintain d < M such that each patch used in NLM analysis

is smaller than the region where the patch centre voxel exists. The comparison to

determine similarity between x and x′, is done through finding the average Euclidean

distance ‖ − ‖2 between two local patches and weighting by the function:

w(x, x′) = e−
‖P (x)−P (x′)‖2

h2 (5.5)
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Figure 5–1: A 2D illustration of how the NLM algorithm functions. The local “patch”
(in blue overlay) of the red central voxel (P (x)) is compared against the local patches
of each green central voxels (P (x′)) in the surrounding region Ω. The resulting
pairwise comparisons with generates the weightmap (w(x, x′)) for voxel x.

where h is the parameter for tuning the filtering bandwidth which is set to h =
√

min(‖P (x)− P (x′)‖2). By weighting each x′ǫΩ by w(x, x′) (See Fig. 5–1) we can

generate a NLM weightmap uniquely for the region around x (See Fig. 5–2b).

Although initially used for image denoising, the NLM algorithm has since been

used for other image processing methods including super-resolution [150] and image

segmentation [53]. Here, we process the weightmap directly as its own image to

determine whether x is part of larger structural features in the image (See Fig. 5–

2). When the local neighbourhoods of each patch are measured for similarities and

mapped, similar voxels in the larger region are enhanced and can then themselves

be analyzed to determine their contribution to regional “structureness” in the larger

image sub-region. (See Fig. 5–2b).
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(a) (b) (c)

Figure 5–2: A region surrounding a central pixel (a) and the resulting weightmap
produced through the NLM algorithm (b). Note that the pixels with similar local
patches are assigned higher values on the weightmap. The voxel coordinates of
weightmap voxels greater than a weightmap mean-based threshold were used to
construct a point set for PCA (c).

5.1.2 Contributions

In this work we developed a modification to Frangi’s vesselness measure, by

replacing the method’s locally based structureness map with our alternate NLM-

based structureness map. We also found the best possible results for this type of

substitution method, to have a basis of which to compare our methods results above

that of Frangi’s method.

5.2 Methods

We propose a modification to Frangi’s vesselness measure, by replacing the lo-

cally based structureness map with an alternate NLM-based structureness map cre-

ated from Frangi’s structureness map. This structureness map can identify lower

contrast but large non-local vessel features in the image. Our method creates the

NLM weightmap unique to each image voxel then processes each weightmap using

principal component analysis (PCA), resulting in a set of principal eigenvalues that

were processed similarly to the circularity and blobness terms in Frangi’s algorithm
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(See Eq. 5.1). Analyzing the larger NLM weightmap allows us to determine if a cur-

rent voxel is part of a low CNR elongated structure in the image, something which

cannot be determined simply by analyzing small-scaled Hessian with small local ker-

nel support. The strategy of incorporating information from the larger image region

to improve Hessian-based vesselness enhancement has been explicitly used by Shikata

et al. [226] using the larger regional gradient features around a pixel of interest and

by Yuan et al. [269] using the larger region pixels’ Hessian along an oriented line

from a pixel of interest. Here, we use the NLM technique to identify similar pixels

in a larger neighbourhood to detect larger vessel structures.

We account for the fact that a voxel that is part of a longer tubular structure with

a certain orientation, as determined by the larger neighbourhood NLM weightmap,

should have a similar orientation to that detected from Hessian eigendecomposition,

which uses a smaller local support. By comparing the geometric form and structure

orientation from both the larger neighbourhood and smaller local support, we can

determine if a voxel should be considered part of a vessel. The workflow for our

method can be seen in Fig. 5–3.

To begin the processing, the raw image was initially processed at the small-

est scale to find its Hessian eigenvalues and eigenvectors. The Hessian eigenvalues

were used for Frangi’s eigenvalue analysis, calculating the geometric circularity and

blobness terms as well as Frangi’s structureness term, which we use as a starting

image generating the NLM structureness. The eigenvector of the vessel orientation

from Hessian analysis (ΘFrangi) was retained for a later phase in our analysis. Both
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Frangi’s structureness and the orientation ΘFrangi are used for our NLM processing

(See. Fig. 5–3)

The NLM algorithm was used to process Frangi’s structureness to generate a

set of weightmaps. The NLM method of Buades et al. [25] was applied with the

region radius set to M = 5 and the patch radius for 2D images set to d = 2 and

3D images set to d = 1. We found that larger patch radii lowered the sensitivity of

NLM to voxels in thinner vascular structures. Region radii that were too small can

cause our method be more sensitive to noise in the background, while larger region

radii tended to include voxels from nearby vessel structures, which can cause the

method to not identify a vessel structure correctly. We found through our trials that

the described parameters work sufficiently well to balance vessel enhancement with

background suppression.

The values of each generated weightmap were intensity normalized to values

between 0–1 as suggested by Coupé et al. [53]. The point coordinates of all

weightmap voxels with values greater than 2 standard deviations from the mean

value of the weightmap were used (See Fig. 5–2c). The point-set derived from high

value weightmap voxels have high self-similarity to the central voxel and analyzing

them can reveal the shape of the feature in which the central voxel participates. Al-

though it was possible to run PCA directly on the weightmap, from our experience we

found that thresholding provided a point-set that greatly improved vessel structure

identification. This may be because our threshold discards noise and values that do

not contain relevant structural information. This point-set was processed with PCA

to acquire a set of eigenvectors and eigenvalues describing the shape of the point-set.
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Table 5–1: Structural features detected in 2D and 3D depending on the magnitude of
the PCA derived NLM eigenvalues λknlm

(H=high, L=low), which are ordered such
that λ1nlm

≥ λ2nlm
≥ λ3nlm

. All eigenvalues from PCA are positive.

Structural features 2D 3D

λ1nlm
λ2nlm

λ1nlm
λ2nlm

λ3nlm

Small blob-like structure L L L L L
Line-like structure H L H L L
Plane-like structure - - H H L
Large blob-like structure H H H H H

The eigenvalues from the NLM weightmaps, which we will now refer to as “NLM

eigenvalues”, were sorted from the largest to the smallest such that λknlm
represents

the eigenvalue with the k-th smallest magnitude, where in a 3D image |λ1nlm
| ≥

|λ2nlm
| ≥ |λ3nlm

|. The principle NLM weightmap derived PCA eigenvector Θnlm,

which corresponds to λ1nlm
, was recorded since it is the principle direction of the

structure in the NLM weightmap image. Different relations in magnitude between

the NLM eigenvalues allows for the detection of different structural features (See

Table 5–1). Inspired by the filter strategy of Frangi, we seek out eigenvalue relations

where λ1nlm
≫ λ2nlm

≈ λ3nlm
to find voxels with regional structure conforming to

elongated structural features using:

Sr = exp
(
−

√
λ2nlm

λ3nlm

λ1nlm
βnlm

)
(5.6)

which is similar to Frangi’s “blobness” term, and determines whether the structure is

elongated more on one one axis in relation to its cross-section, which was controlled

in the equation using βnlm. This rough NLM map can be seen in Fig. 5–3a.

Voxels that participate in long structures were well identified by Eq. 5.6, how-

ever background noise may sometimes also be misidentified as tubular structures.
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Additional filtering is performed through the analysis of the principle eigenvectors

from Hessian analysis and NLM weightmap PCA. A voxel with an orientation from

its larger NLM weightmap should be similar to its orientation from the smaller-

support local Hessian analysis. Voxels with different orientations between its longer

structures and small features are less likely to contain vessel structures. Curved ves-

sels will change the mean in PCA but maintain the same principle orientation. To

achieve this, we added a third term to Eq. 5.6 that performs eigenvector analysis

by finding the absolute value of the dot-product of the principle eigenvectors from

Hessian analysis (ΘFrangi) and NLM weightmap PCA (Θnlm). This term was tuned

with value cnlm such that orientations similar to one another are given a weight closer

to 1. This orientation similarity map can be seen in Fig. 5–3d. Although this term

may mistakenly identify short and noisy tubular structures as noise, we find that

the vessel filtering was improved with the term. The NLM weightmap terms of each

voxel were then multiplied and their values added to produce the output, which gives

us Eq. 5.7:

Sr = exp
(
−

√
λ2nlm

λ3nlm

λ1nlm
βnlm

)

︸ ︷︷ ︸

NLM elongation

exp
(
− |〈ΘFrangi,Θnlm〉|

cnlm

)

︸ ︷︷ ︸

Orientation similarity

(5.7)

The Sr value of each voxel was then multiplied with the voxel’s NLM weightmaps then

added to a blank image. Essentially, this operation distributes the Sr value at voxel

to all voxels that contribute to its participating structure in the image; effectively

increasing the intensity values of voxels that participate in a larger elongated vessel

structures and decreasing the intensities of those that do not. This intensity map

was then normalized with an intensity map created simply through the addition of
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voxel NLM weightmaps to produce the NLM structureness map. This operation is

defined as:

Snlm(j) =

∑

i Wi(j)Sr(i)
∑

i Wi(j)
(5.8)

where i and j are voxel coordinates of the input and output image, respectively, Wi

is an image of the same size as Sr containing non-zero NLM weightmap values in a

region radius centred at i. Thus, the value at voxel j of the output image Snlm(j) is

the weighted means of all the values at voxels i in the input image Sr(i), where the

weights come from the voxel at coordinate j of each NLM weightmap generated for

voxel i (Wi(j)).

This structureness map may contain discontinuities in areas of sharp vessel bends

and bifurcations, which needs to be regularized and smoothed prior to being used.

Although, the NLM method is able to find similar voxels in lower vessel curvatures,

the method will not find long vessels structures in areas with sharper bends or bifur-

cations, thus resulting in “enhancement gaps” in the structureness map. We found

that these gaps are small enough that with anisotropic blurring the surrounding high

NLM structureness values will cover over these discontinuities. This allows discon-

nected segments caused by sharp vessel curvature or bifurcations to be smoothed and

joined together, thus creating a regularized map which can be used to correctly mask

out non-vessel structures. This oriented anisotropic blurring was accomplished by

using the PCA eigenvectors and Snlm to control the orientation and shape of a Gaus-

sian blurring kernel. This is done by creating a co-variance transformation matrix,

A = V ΛV −1 from a 3× 3 square matrix V formed from the set of PCA eigenvectors

v1, v2, v3 arranged in columns such that V = [v1v2v3] and a 3 × 3 diagonal matrix
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Λ whose diagonal elements have the values λ1 = Snlm, and λ2 = λ3 = 1/r, where r

is the radius of the kernel support. The transformed Gaussian blurring kernel pro-

cessed from each voxel is then multiplied by Snlm and added to a blank image and its

intensity range normalized to between 0 and 1. This produces our smoothed “NLM

structureness” map SSnlm as seen in Fig. 5–3e.

We substitute Frangi’s second-order structureness term in Eq. 5.1 with our

smoothed NLM structureness term SSnlm:

V (smin) =







0 if λ2 > 0 or λ3 > 0

(1− exp
(
− R2

A

2α2

)
)

︸ ︷︷ ︸

Frangi’s circularity

exp
(
− R2

B

2β2

)

︸ ︷︷ ︸

Frangi’s blobness

exp(−SSnlm)
︸ ︷︷ ︸

NLM structureness

otherwise

(5.9)

where all terms of the equation corresponds exactly to Eq. 5.1 except Frangi’s

second-order structureness term (1 − exp
(
− −S2

2c2

)
) is replaced by our NLM PCA

structureness term SSnlm. Although our methods can be used to replace the Frangi

vesselness filter at each scale by increasing the patch size d, we find that our method

complemented Frangi’s filter quite well when applied solely at the minimal filter scale

V (smin). This is because there is often significant noise present at the smaller scales

that hide the thin and low contrast vessel structures then at the larger filter scales.

We apply our NLM structureness only to the smallest scale filters in our test.

Our algorithm was completely implemented in Matlab (2012a, The MathWorks,

Natick, Massachusetts, U.S.A.) with the algorithm for NLM weightmap processing

implemented as a C++ MEX-file.
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5.3 Experiments

In order to compare our proposed NLM vessel enhancement algorithm against

Frangi’s vessel enhancement algorithm, we performed a set of quantitative tests.

First, we characterized the algorithm through quantitative testing of the two algo-

rithms on synthetic vessel images with different levels of contrast and noise. We then

tested the algorithm on real clinical 2D retinal and 3D MR data.

We also tested our method against a publicly available ITK implementation of

the anisotropic diffusion vessel enhancement filter [72] of Manniesing et al. [153]

on our 3D MR data. This filter modified upon Frangi’s vesselness and incorporates

diffusion, which is similar to oriented blurring used by our method.

5.3.1 Purpose

The purpose of the experiments is to determine the efficacy of our method

on smaller diameter and lower contrast vessels. In medical angiographic images,

the smallest vessels that can be imaged is relative to the size of the image voxel,

the contrast between the vessel structure and its background, and any image noise

present. In this paper, we refer to vessel structures in the image that have diameters

of one or less one voxel as “small” or “thin vessels”, and vessels that have less than

50% contrast in respect to its regional background as “low contrast vessels”.

5.3.2 Parameters

Similar to the parameters of Frangi’s vesselness filter method (Eq. 5.1) described

in Section 5.1, we set our parameters of the modified vesselness filter Eq. 5.9 were set

to α = 0.5, β = 0.5 and c = 0.5max(S), where max(S) was calculated for each filter

scale. For the parameters in our NLM structureness term, we set the parameters to

178



βnlm = 0.12 and cnlm = 0.1, which we found to produce good structureness maps

though our own experimentation.

The sigmas of 2, 1.5, 1, 0.5 pixels were chosen for 2D retinal angiographic image

test and 2, 1.5, 0.8 voxels for the 3D MRA image test. These sigmas scales were

chosen since their full-width-half-max (FWHM = 2
√
2lnσ) approximately match

the voxel (or pixel) radii of the vessel in the image being processed. Through our

preliminary tests, we found that using 4 filter scales for the retinal angiographic

images produced qualitatively better results than using less than this number of

filter scales, while 3 filter scales were used for the 3D images for the same reason.

For our images, using more filter scales did not appear to improve the filtering and

increased processing time. The smallest scale sigmas for 2D angiographic and 3D

MRA images were set to 0.5 pixel and 0.8 voxel, respectively. Although some of

the sigmas are less than the voxel size, we find that the slight smoothing provided

by Gaussian kernels at these sigmas help regularize the background while retaining

these smaller vessels.

For the anisotropic diffusion vessel enhancement of Manniesing [153], we spec-

ified the same range between 0.8 and 2 sigmas at 3 scales with 12 rounds of vessel

diffusion. We did not have direct control of the which sigmas were used and found

that the implementation generated sigmas of 2, 1.3, and 0.8. These value are similar

to our 3D MRA tests sigmas of 2, 1.5, and 0.8. We chose the 12 rounds of diffusion

since it smooths vessels without appearing to remove the finer vessels in our MRA

image. The values for sensitivity (S), w-strength (w), and epsilon (ǫ), were left at
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the default values of 4, 24, 0.01, respectively. We refer the reader to [153] for detailed

information regarding these parameters.

5.3.3 Validation data

We evaluated our NLM vessel enhancement method on three different data sets:

a set of 3D synthetic spiral data, a set of 2D clinical retinal angiography data, and

a set of 3D clinical MRA data.

To compare our NLM enhancement against other methods, we ran our method

against images from the DRIVE retinal image database of Staal et al. [235], which

have publicly available results of other methods that also ran on this database. This

is a good comparison since, these methods have been tuned by their developers. A

comparison of our NLM vessel enhancement method against other technique can be

found in Section 5.4.2. All experiments were performed on a Intel Core2 Quad CPU

Q6600 2.40GHz machine.

Synthetic spiral data

We created a set of synthetic spiral images of varying image noise and contrast

with either (1) the same image contrast but at different regional noise levels and

(2) the same noise level but at different regional contrasts. These tests allowed us

to characterize the performance of our vessel enhancement method on images with

multiple noise or contrast levels. For such images, it is not possible to simply find

a global threshold to isolate the vessel structures from the image background since

both noise and contrast alters the intensity of the Hessian norm.

The images were created by combining five 100×100×100 voxels images contain-

ing a 1 voxel diameter spiralling conical helix curve decreasing in curve diameter with
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each turn. Each of these spiral images were generated by tracing a partial volume

conical helix into a 100×100×100 isotropic volume using a curve to voxel distance

based spatial domain antialiasing method similar to [263]. The intensities of the im-

age were then normalized to [0, 1] and used as the ground truth helical vessel. Each

spiral image was than combined with 5 different structure to background contrasts at

10, 20, 40, 80, 100% and 5 different Gaussian noise levels with ∞, 1, 0.5, 0.2, 0.1 SNR

to produce 25 images with all possible permutations of contrast and noise. The con-

trast level was defined as (Iv − Ib)/Ib), where Iv is the intensity of the spiral vessel

and Ib is the mean background value.

The final synthetic spiral images were made by concatenating together 5 of afore-

mentioned 100×100×100 images of the same noise or contrast levels, thus creating

multiple 100×100×500 images. Four sets of spiral images with 5 varying contrast

and 5 varying noise levels were generated for our tests, giving us a total of 40 spiral

test images. These generated test synthetic spiral image volumes can been seen in

Fig. 5–4, which consist of a “stack” of 5 different concatenated 100×100×100 spiral

images.

Clinical retinal angiography data

We used the twenty 2D retinal angiographic blood vessel data sets and ground-

truths from the DRIVE retinal image database of Staal et al. [235]. The images

were captured digitally using a Canon CR5 nonmydriatic 3CCD camera at 45◦ field

of view. The images are 768×584 pixels, 8 bits colour channel with a 540 pixel

diameter field of view. The 20 ground truth images were segmented by two observers

by labelling image pixels when they were at least “70% certain” that the pixels were
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vessel structures. The database is commonly used for validation and comparison of

general vessel enhancement algorithms. For more details on the test database, we

refer the reader to Staal et al.[235].

Clinical MRA data

We used the twenty real clinical 3D phase-contrast MRA (PC MRA) images

from Aubert-Broche et al. [11, 10] as test images. Vessel bronze standard images

were created through manual segmentation by the first author to label the visible

blood vessels in each of the twenty PC MRA images as described below.

Our strategy for creating higher quality bronze standards involved manually

segmenting the MRA at the original resolution, and then resampling them to the

lower resolution of the test images. Using the original high resolution images for

labelling allowed us to confidently identify large and high contrast vessel structures,

thus producing higher quality bronze standard images. Our test images were gener-

ated by resampling the original higher resolution image to half its resolution. These

lower resolution test images have smaller and lower contrast vessels that have been

confidently identified in the bronze standard. Using these bronze standards and test

images allows us to better evaluate the efficacy of our vessel enhancement methods.

The following is the detail of how the processing for the test images of bronze

standard images were performed:

1. The clinical PC MRA test images of 20 young normal subjects were origi-

nally acquired at 384×512×176 voxels, with voxel dimensions of 0.47×0.47×0.9

mm at TR=71ms, TE=8.2ms, angle=15 ◦. The images were linearly regis-

tered to the International Consortium for Brain Mapping average brain space
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(ICBM)[74] and were then resampled with linear interpolation to 181×217×181

1mm3 voxels to make the voxels isotropic and reduce the image resolution. The

images were then masked to remove all non-brain tissue using an implementa-

tion of the brain extraction algorithm of Smith [232]. These images were used

as the test images for our vessel enhancement validation.

2. The bronze standard segmentations of the 20 PC MRA images were gener-

ated by first linearly registering and resampling the original 384×512×176

anisotropic voxel image to ICBM stereotaxic space at 362×434×362 isotropic

voxels and manually labelling them with voxels of label values {0.0, 1.0}. We

then convolved these manually segmented images with a 3D isotropic Gaussian

kernel of σ = 1 voxel. This is similar to Gaussian spatial pre-filtering used

in anti-aliasing to smooth and assign partial volumes to a structure’s voxel

surroundings [58]. The images were then down-sampled to half the resolution

with trilinear interpolation to create our 181×217×181 1mm isotropic bronze

standard clinical vessel images. In relabelling two of the MRA images, we cal-

culated a Dice’s kappa of 0.77 for intrarater variability, which is comparable to

that reported for the retinal database [235].

5.3.4 Evaluation metrics

3D data

In our 3D synthetic spiral and clinical MRA data, both our ground truth images

and filter output consisted of continuous-valued labels. In order to accurately mea-

sure the differences between two partial volume label classes (either vessel or back-

ground) we used the Generalized Tanimoto Coefficient fractional differences measure
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by Crum et al. [55] defined as:

GTC =

∑

i MIN(Ai, Bi)
∑

i MAX(Ai, Bi)

where GTC is the General Tanimoto Coefficient defined for continuous label values,

and Ai and Bi for each voxel i and where Ai, Bi ∈ [0, 1].

We validated our technique on the 3D synthetic spiral and clinical PD MRA

data by measuring the GTC metric from the NLM filter and Frangi filter for each of

the test images.

The GTC metric measures the absolute intensity differences between test and

bronze standard images. Therefore, unlike a binary measure such as Dice’s Kappa,

which measures the proportion of overlap in discrete label class, slight differences

in intensities would be reflected in a lower GTC scores. We take advantage of this

aspect of the GTC measure since it allows us to measure how effectively a method

enhances a vessel structure, and how closely this enhancement approaches intensities

of the ground truth labels. This is particularly important for comparing blood vessels

with small diameters in relation to the image’s resolution or voxel size, which often

have much lower enhancement intensities than the same vessels manually identified

in a ground truth.

2D data

Since our NLM and Frangi’s vessel enhancement method operates on grey-

scale images, we first convert the RGB colour retinal angiography images to grey-

scale by applying the luminosity-based digital colour to grey-scale conversion stan-

dards the International Telecommunications Union [107]. This standard conversion
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scheme is based on the coefficients for human perception of colour, and converts

the red (R), green (G), and blue (B) components of the images to grey-scale (V)

by: V = 0.21R + 0.72G + 0.07B. The resulting grey-scale image were then used in

our 2D validation tests. While some groups used only the green component in their

test, luminosity colour desaturation incorporates information from all three colour

channels in a manner similar to the human eye, which we believe should be used for

proper image analysis.

For all our clinical 2D retinal angiographic test sets, we evaluate our enhance-

ment algorithm also using GTC metric as with the case of our 3D tests. Since the

provided ground truths were labelled with discrete binary values we calculated the

receiver operating characteristic (ROC) curve by varying the threshold on the filter

output images. By taking the area under the curve (AUC) of the ROC curve, we

were thus able to compare our NLM enhancement method against other published

vessel enhancement methods.

On top of our tests between Frangi’s original method and our NLM modified

enhancement method, we also attempted to find the best possible theoretical result

(ROC, AUC, and GTC) for our type of class of technique. Namely, what are the

best results obtainable for Frangi’s method if we had the optimal structureness term,

while keeping the first two geometric terms the same. To achieve this we replaced

the structureness term with the ground truth, which provided us the best possible

results for second-order structureness replacement techniques.
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5.4 Results

5.4.1 Synthetic spiral data

In the our helical spiral image tests, the NLM filter had a mean GTC of 0.136

versus 0.07 with Frangi’s filter in noise varied images and a mean GTC differences

of 0.24 versus 0.10 for contrast varied images. The mean percent improvements of

the NLM filter over Frangi’s filter were 93% and 234% for noise and contrast varied

images, respectively. The p-values from the paired t-tests for our 40 test images

for noise and contrast were 2.12 × 10−3 and 1.52 × 10−4 indicating a significant

improvement of the NLM method in vessel enhancement. The enhancement results

for the noise and contrast images can be seen in Fig. 5–5 and Fig 5–6.

We found that the NLM filter performed significantly better than Frangi’s filter

at all contrast varied images. Frangi’s filter monotonically improved in performance

with the increase of image contrast (See Fig. 5–6). On images with varied noise levels,

the NLM filter also performs significantly better than Frangi’s filter. Both Frangi’s

and the NLM filter decreases monotonically in performance with an increase in noise,

but both relatively insensitive to noise except NLM at at infinite SNR. In fact, the

NLM filter experiences a sharper decrease in performance when there is noise in the

image compared to the noiseless image (SNR = ∞). This can be seen in Fig 5–5

when the SNR is ∞ versus at 1.0, 0.5, 0.2, or 0.1.

5.4.2 Clinical retinal angiography data

Measuring our results in GTC, our NLM vesselness filter was able to enhance

at worse 24% more and at best 77% more of the retinal vessels compared to Frangi’s
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filter (See Table 5–2). From these tests, the NLM filter yields mean enhancement

improvement of 41% over Frangi’s filter.

Through our tests, we saw that Frangi’s enhancement method is limited by

the structureness term. If the structureness does not highlight a vessel due to low

Hessian eigenvalues then it will not be properly enhanced. As such, replacing the

structureness term with the ground truth, enables us to see how well the first two

terms enhance vessels and what is the best possible enhancement of a structureness

replacement enhancement method such as ours. The mean GTC for Frangi’s results,

our NLM results, and the best possible structureness replacement filter is 0.13, 0.22,

and 0.30, respectively. The mean performance of NLM filter was 73% of the best

possible replacement filter versus Frangi’s filter which 43%. The reason why on 73%

is because (1) we could not get ALL the fine vessels in the ground truth and (2)

some of the detected Hessian features were actually not vessels but other structures.

We calculated the ROC curves and the AUC of our NLM vesselness filter tech-

nique to that of Frangi’s filter and found the mean AUC of all 20 retinal angiography

images to be 0.83±0.025 and 0.78±0.022 for NLM and Frangi’s filter, respectively.

The AUC and standard deviation for the best possible structureness replacement re-

sult is 0.89 and 0.020, respectively. These AUC values and their standard deviations

are reported in Table 5–3 along with the reported AUC of other published retinal

angiography vessel enhancement methods.

The average ROC curves for NLM, Frangi, and the best for structureness re-

placement can be seen in Fig. 5–7. It should be noted that the ROC curve for the

best result, exceeded the sensitivity and specificity of a human observer since the
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Table 5–2: GTC results of the clinical retinal angiography data on Frangi’s filter and
our NLM vessel enhancement filter on MR angiography images of 20 subjects. The
GTC between each subject’s manually segmented vessel ground truth image and the
compared techniques (Frangi and NLM) are shown and well as the percentage (%
Improvement) of vessels enhanced by NLM above Frangi’s algorithm. The GTC of
the best possible structureness replacement type filter (Best) and the percentage of
our NLM GTC to Best GTC (NLM % Best) are also shown.

Subjects 1 2 3 4 5 6 7 8 9 10
Frangi 0.19 0.18 0.07 0.13 0.15 0.03 0.15 0.09 0.05 0.18
NLM 0.30 0.27 0.18 0.22 0.20 0.14 0.21 0.20 0.14 0.24

% Improvement 37% 33% 62% 41% 27% 77% 31% 57% 61% 25%
NLM % Best 78% 80% 80% 70% 74% 68% 69% 78% 70% 72%

Best 0.38 0.33 0.22 0.32 0.27 0.21 0.31 0.26 0.20 0.34

Subjects 11 12 13 14 15 16 17 18 19 20
Frangi 0.23 0.12 0.13 0.10 0.28 0.14 0.04 0.10 0.11 0.12
NLM 0.30 0.19 0.20 0.23 0.35 0.22 0.16 0.17 0.23 0.20

% Improvement 24% 39% 38% 58% 19% 37% 76% 42% 53% 42%
NLM % Best 70% 69% 68% 76% 71% 70% 73% 67% 72% 67%

Best 0.42 0.28 0.30 0.30 0.49 0.31 0.22 0.26 0.32 0.30

human observer specificity is determined through a separate set of manual segmen-

tations by a different human observer. In our best enhancement, we used the same

manual ground truth as the structureness replacement thus exceeding the results of

a human observer results.

Sample results from the retinal angiography clinical tests can be seen in Fig.

5–8 and Fig. 5–9. In Fig. 5–8, note that Frangi’s filter, using only the Hessian norm

as “structureness measure”, identifies more background artifacts as vessels, while the

NLM filter has better background suppression while still enhancing relatively dim

vessels (See Fig. 5–8h and 5–8i). As well, as expected, the best result reveals the

finest vessels that are not enhanced by the NLM and Frangi’s methods (See Fig.

5–8g). The close ups and effect of adjusting thresholds on the filter results can be

seen in Fig. 5–9.
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Table 5–3: Average AUC (AUC Mean) and standard deviation (AUC SD) for images
from the DRIVE database for Frangi’s filter (Frangi), the NLM filter (NLM), the best
possible result for second-order structureness replacement (Best), and the published
results from other retinal vessel enhancement methods.

AUC Mean AUC SD

Frangi 0.784 0.0291
NLM 0.832 0.0255
Best 0.891 0.0202

Jiang[113] 0.911 -
Staal[235] 0.952 -
Zana[270] 0.898 -

Chauduri[36] 0.788 -

Processing each retinal image on our Matlab-based NLM enhancement imple-

mentation takes approximately 10 minutes, compared with around 1 minute required

by Frangi’s method.

5.4.3 Clinical MRA data

In our clinical 3D MRA data tests, we found that the proposed NLM vesselness

filter was able to effectively suppress the background structures while preserving

the lower contrast and thinner vessel structures. The NLM vesselness filter at was

able to enhance vessel structures 36–44% more effectively than Frangi’s algorithm

(See Table 5–4). From these tests with the 20 real clinical images, we saw a mean

enhancement improvement of 39% by the NLM filter over Frangi’s filter with a t-test

p-value of 7.15× 10−21 and a mean enhancement improvement of 36% by the NLM

filter over the anisotropic vessel enhancement diffusion filter with a t-test p-value of

7.01 × 10−15 (See Fig. 5–10). Example results from the clinical MRA tests can be

seen in Fig. 5–11, Fig. 5–12, and Fig. 5–13.

We found that Frangi’s method did not effectively enhance many of the thin-

ner and lower contrast vessels compared to the bronze standard. Although, the
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Table 5–4: Results of standard Frangi and our NLM vessel enhancement algorithm
on MR angiography images of 20 subjects. The results are shown as the GTC [55]
between each subject’s manually segmented vessel bronze standard image and Frangi
the Anisotropic Vessel Enhancement Diffusion (Aniso) and NLM. The percentage of
vessel enhanced by NLM above Frangi’s (%F ) and the Aniso filter (%A) results are
also shown.

Subjects 1 2 3 4 5 6 7 8 9 10
Frangi 0.12 0.11 0.12 0.12 0.11 0.11 0.11 0.13 0.11 0.12
Aniso 0.14 0.11 0.12 0.12 0.12 0.13 0.14 0.13 0.13 0.12
NLM 0.22 0.19 0.19 0.20 0.19 0.18 0.18 0.21 0.19 0.18
%F 44% 42% 39% 38% 40% 40% 39% 37% 40% 36%
%A 37% 42% 40% 40% 35% 27% 26% 38% 31% 33

Subjects 11 12 13 14 15 16 17 18 19 20
Frangi 0.12 0.12 0.11 0.12 0.11 0.12 0.11 0.11 0.13 0.13
Aniso 0.12 0.14 0.12 0.12 0.11 0.14 0.13 0.10 0.13 0.15
NLM 0.20 0.19 0.19 0.20 0.18 0.19 0.18 0.19 0.21 0.21
%F 42% 37% 42% 42% 37% 36% 36% 42% 36% 40%
%A 40% 29% 35% 40% 41% 28% 28% 50% 41% 29

anisotropic vessel enhancement diffusion filter enhances more of these lower contrast

vessel though the oriented diffusion, we found that it also enhanced artifacts and

noise from the raw MRA data sets (see Fig. 5–11). We also found that the NLM

enhancement method was able to suppress much of the noise and artifacts. Although

the NLM filter enhanced specks of noise that do not appear to be vessel structures,

it also enhanced many low contrast vessels that were not identified in the bronze

standard.

We see that Frangi’s structureness term itself removes the thinner and lower in-

tensity vessels with the default c=0.5×max(S), but tuning this parameter to be more

sensitive resulted in enhanced background artifacts in addition to the extra vessels

(see Fig. 5–12). When c was set to the default value, Frangi’s vessel enhancement

algorithm fails to enhance the fine and low contrast vessels (see Fig. 5–12 “c=0.5”),
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however the NLM filter is able to enhance these vessels while suppressing the back-

ground. When c is tuned to c=0.01×max(S) large amounts of the background struc-

tures are enhanced along with the vessels (see Fig. 5–12 “c=0.01”). Note however,

the NLM method does misidentify vessels as seen in some of the disconnected specks.

Frangi’s structureness, unlike our NLM structureness term, suppresses background

noise based only on the eigenvalue magnitudes and does not explicitly account for

whether a voxel is part of a strong and elongated region structure (see Fig. 5–13).

Processing each 181×217×181 MRA image on our Matlab-based implementa-

tion takes approximately 46 minutes. The less computationally intensive Frangi’s

vesselness method takes approximately 2 minutes on the same machine.

5.5 Discussion and Conclusion

Background structures arising from image noise or textures of the paranchymal

tissue, which are caused by their enhancement through Frangi’s geometric ratio terms

(circularity and blobness), must be removed before the filtered vessel image can

be properly interpreted. While the Hessian norm structureness measure used by

Frangi’s original algorithm removes these background structures quite effectively, it

also suppresses large amounts of vessels correctly highlighted by the geometric terms.

For instance, entire vascular branches may be eliminated due to image noise, vessel

thinness, or their relatively low contrast with the background.

In this work, we have shown that:

1. In examining a voxel in context to a greater image region, we can better de-

termine a voxel’s participation in angiographic vessel structures angiographic.
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2. Improving structureness at the lowest scale of Frangi’s method can significantly

improve the original algorithm.

3. The NLM weightmap can reveal structural features in a image that may be

used in subsequent image processing steps.

Our NLM structureness-replacement based filter effectively suppressed back-

ground artifacts while preserving thinner and lower contrast vessels in comparison

to Frangi. By using PCA to analyze the NLM weightmap, we can perform geomet-

ric shape analysis to identify whether a voxel is part of a larger vessel structure.

This prevents lower intensity vessel structures from being suppressed due to its low

Hessian norm, which is determined only through local convolution (Fig. 5–13). By

detecting and taking into account the structures in a large region, our method can

improve vessel enhancement by preserving vessels suppressed by the original struc-

tureness term while properly suppressing background noise and artifacts. This is

important since a voxel’s participation in fine or dim vessel structures can be better

determined by analyzing a larger region than that covered by the image Hessian.

Through our NLM structureness filter, even larger vessel structures that were dimly

enhanced at the smallest filter scales were also correctly identified as vessel structures

and enhanced (Fig. 5–13). Comparisons to our manually labelled bronze standards

also showed that the method was able to identify vessels that were not seen by the

manual labeller. (Fig. 5–11)

From our results, we can see that the NLM method improves upon Frangi by

providing a more effective structureness term. However, we also saw that improving

the structureness term alone cannot conclusively resolve the issues of enhancing
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thin and low-contrast vessel. In this case, our NLM method still under-enhances

many vessels. Even the best structureness term, which uses the ground truth as

structureness, cannot optimally enhance all the thinner vessel structures (Fig. 5–9).

Indeed, we see this through the low GTC values throughout our tests. The sensitivity

of the GTC measure to intensity differences allows us to see that the filter output

intensities of our methods and even that using the best structureness term is still far

from the optimum intensities of the manually labelled standards. This leads us to

conclude that perhaps the formulation of the Frangi’s first two filter terms are also

not ideal and could be improved through future work.

This may also be why our method and even our ground-truth based best struc-

tureness term, did not perform better compared to some existing techniques that are

not based on Hessian eigenvalue ratio analysis. Rather these techniques used either

0th-order information [270, 113], or applying feature detection on regions around

minima ridges [235]. We believe that these methods either use information that is

less susceptible to noise (0th-order data) or take advantage of different image in-

formation not used in our methods, such as vessel centerline approximating ridges.

This indicates that additional topological and non-derived raw image data may be

essential for better vessel enhancement, and incorporating them may help improve

our vessel enhancement method for retinal images.

It should be noted that we are not proposing a method that completely replaces

Frangi’s filter. For the most part, the original filter is quite effective in geometrically

identifying vessel-like structures using Hessian eigenvalue ratios alone, especially in

193



structures of higher contrasts and larger image scales. However, dim and thin vessels

that are less visible will likely be suppressed by the original structureness term.

For our future work we intend to further improve upon our method using NLM

weightmaps or exploring the possibility of using other self-similarity based tech-

niques. Other types of image data, such as the original image data, gradient infor-

mation, and topological data such as vessel centerlines can also be integrated into

the NLM weightmap analysis to improve vessel enhancement. Our proposed method

illustrates how the NLM weightmap can be used for vessels feature identification.

We believe that further exploration of the feature enhancement characteristics of

NLM weightmap may reveal other applications in image analysis. The speed of the

algorithm can also be greatly improve by optimizing the code or reimplementing it

in a lower level language such as C or C++.
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Figure 5–3: The workflow for the modified vesselness measure using NLM structure-
ness and the intermediate maps used for processing. The Original image was pro-
cessed through Hessian Eigen-Decomposition to get the Hessian eigenvalues, which
was used to calculate Frangi’s Structureness as the raw image to calculate the NLM
weightmaps. Each voxel’s NLM weightmap is then processed using PCA to find the
“NLM eigenvalues” for filtering using Equation (5.6) giving us a NLM elongation
map (a). Hessian Eigen-Decomposition and NLM weightmaps PCA also give us
their principle orientations (b and c; −π

2
to π

2
with the spectral colours of red to

blue, respectively.), and comparing them gives us the orientation similarity map (d).
The combined NLM elongation and orientation similarity map is then processed
through anisotropic blurring guided by the principle NLM eigenvector to smooth
over discontinuities in the image. This produces our Smoothed NLM Structureness
term (e) that is combined with Frangi’s circular and blobness terms (see Equation
5.9) to produce the Filtered image.
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Figure 5–4: A synthetic spiral image with all five noise levels at 100% contrast (top)
and a contrast varied spiral image with all five contrasts and ∞ SNR (bottom) visu-
alized in oblique view using 3D ray-casted volume rendering. The transfer function
used in visualizing the noise varied spiral image had been adjusted to clearly show
the noise. The noise varied images have different noise levels in each part of the
image while the contrast are kept the same. Contrast varied images have different
contrast levels in each part of the image while the noise levels are kept the same.
This allows us to evaluate how a vessel enhancement algorithm performs on images
with different noise or contrast levels.
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Figure 5–5: Enhancement results on the noise varied synthetic helical vessel images
for the NLM filter compared with Frangi’s filter. The error bars indicate one standard
deviation for each tests at each noise level. The mean improvement of the NLM filter
over Frangi’s filter is 93%.

10% 20% 40% 80% 100%

Contrast

0

0.05

0.1

0.15

0.2

0.25

0.3

G
T
C

NLM
Frangi

Figure 5–6: Enhancement results on the contrast varied synthetic helical vessel im-
ages for the NLM filter compared with Frangi’s filter. The error bars indicate one
standard deviation for each tests at each contrast level. The mean improvement of
the NLM filter over Frangi’s filter is 234%.
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Figure 5–7: Average ROC curves for the results of the NLM filter (blue), Frangi’s
filter (red) and the best possible result (green) for the test images from the DRIVE
database, generated by varying the threshold of the filter results from its minimum
to maximum value. The black box indicates the sensitivity (true positive) and the
specificity (1-false positive) of a human observer in [235].
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Figure 5–8: An example vessel enhancement result from the DRIVE retinal angiog-
raphy database [235], with the original image (a), the desaturated image (b), and
the provided segmentation ground truth (c), The best possible enhancement result
(d), the result from Frangi’s method (e), and the results from NLM modified filter
(f) are shown next to their respective close-up in (g), (h), and (i), with the area of
close-up from the green box in (b).
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Best Frangi NLM

Best Thresh Frangi Thresh NLM Thresh

Frangi High Thresh

Figure 5–9: Close-ups of an example vessel enhancement results from the DRIVE
retinal angiography database [235] Showing the histogram matched best possible fil-
ter result (Best), Frangi’s vesselness filter result (Frangi), and our NLM modified
filter (NLM). When the above images were thresholded to an intensity value corre-
sponding to Frangi’s result at 95% specificity, we get (Best Thresh), (Frangi Thresh),
and (NLM Thresh). The green arrows show dim vessels structures that were well
enhanced by the NLM method. In (Frangi High Thresh), we see Frangi’s result
thresholded at 99.5% specificity, which reduces background artifacts but also the
dimmer vessels.
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Figure 5–10: The mean and standard deviation of results from Frangi’s vesselness
filter (Frangi), the anisotropic vessel enhancement diffusion filter (Aniso), and the
NLM vessel filter on the clinical 3D phase contrast MRA data sets.
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Figure 5–11: The results from one of our twenty 3D MRA enhancement tests. The
vessel enhancement results (red) were overlayed over the bronze standard image
(green) in transverse (left), coronal (middle), and sagittal (right) views in 31 voxel-
thick slabs using maximum intensity projection. The yellow voxels show the complete
intersection of the vessel enhancement results with the bronze standard image. Re-
sults of Frangi’s vesselness (Frangi), the anisotropic diffusion vessel enhancement
(Aniso), and the proposed NLM vessel enhancement filter (NLM) are shown. The
bronze standard, which consist of manually segmented vessels (Bronze), and the
original PC-MRA image without skull masking are also shown.
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Figure 5–12: Vessel enhancements using our NLMmodified filter (green) and Frangi’s
filter (red) in the same views as Fig 5–11. The yellow voxels show the complete
intersection of Frangi’s results with the NLM filter results. The NLM filter and
Frangi’s filter results with c tuned to the default setting of c = 0.5×max(S) (top)
and an increase sensitivity setting c = 0.01×max(S) (bottom) are shown overlayed.
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Figure 5–13: The smallest filter scale structureness map from our NLM filter (green)
and Frangi’s structureness (red) in the same views as Fig 5–11. Yellow voxels indicate
the complete intersection of Frangi’s and the NLM structureness. The images show
the results with c equals to either 0.5×max(S) (c=0.5) or 0.01×max(S) (c=0.01).
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CHAPTER 6
Discussion and Conclusions

The overall goal of this thesis was to create a set of techniques that would con-

tribute to several areas of IGNS, addressing specific issues that pose challenges in

the deployment and practice of computer assistance or image guidance in neuro-

surgery. We focused on the use of cerebrovascular information in neurosurgery and

its effective integration into the image guidance framework for improved guidance

and visualization. Accordingly, we developed techniques in this thesis to effectively

process raw angiographic medical images and tools to validate their efficacy for use

in IGNS.

6.1 Summary of Original Contributions

In observing that vessel information can be useful in intraoperative registration,

we began by developing a registration method using angiographic images to robustly

align a patient’s pre-operative images to their intraoperative state. A successfully

performed registration could correctly update the position, orientation, and defor-

mations of the pre-operatively acquired anatomical guidance images such that they

accurately represent the location and state of the patient’s brain in the surgical field.

Through intraoperative registration, more accurate guidance can be provided to help

a surgeon during a procedure. This in turn can help reduce surgical time and the

possibility of post-operative complications.
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6.1.1 Vessel-based Registration

In Chapter 3, we described and validated our hybrid non-linear vessel regis-

tration algorithm for intraoperative registration of magnetic resonance (MR) and

Doppler ultrasound images. The vessel structures from the MR images were en-

hanced using Frangi’s vesselness filter [81] and vessels found in the Doppler ultra-

sound images were extracted using colour saturation thresholds. The vessel images

then undergo multiple rounds of linear alignment and non-linear registration using

the ANIMAL algorithm [47]. The recovered transforms were then modelled using

thin-plate spline (TPS) transforms [68], assuring a continuous smooth deformation

even with relatively sparse vessel data. The method was then validated using images

from our digital US vessel simulator, a real physical phantom created by [199], and

four sets of real clinical data gathered intraoperatively from patients.

One contribution in the thesis was this vessel-based registration method that is

accurate and robust in presence of noise and missing vessel segments and can be used

effectively under real-world clinical conditions. We also developed a technique that

can simulate Doppler ultrasound vessel images from MR vessels data for the valida-

tion of inter-modality registration methods. As well, our validation work confirmed

the clinical observation of Hill et al. [98] that significant non-linear brain-shifts do

occur before dura opening.

6.1.2 Brain Phantom

Through our work in vessel-based registration and enhancement, we discovered

the need for a more anatomically realistic brain phantom and thus introduced tech-

niques to produce a physical anthropomorphic phantom for validating novel medical
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image processing techniques. In Chapter 4, we described an anthropomorphic triple

modality medical imaging phantom with realistic brain structures that can be effec-

tively imaged in ultrasound, MR, and computed tomography (CT) for inter-modality

validation of image processing techniques. This phantom was cast in a mold based

on the digital geometric model of Holmes et al. [103]. It contains deep cortical

features found in a human brain, and has the mechanical similarities of live brain

tissue. Multiple sets of multimodality data were then acquired from this phantom.

With our novel phantommethod we introduced a technique for producing anatom-

ically accurate brain phantoms by using elastic 3D printed molds that can deform

to accommodate the unmolding of topologically complex casts without damaging

either the mold or casting. We also contributed a formula for phantom brain tissue

that has similar mechanical properties to live human brain and also contains deter-

mined quantities of contrast agents for effective multimodal imaging. Furthermore,

all our acquired phantom image data was made freely available for download by the

medical image processing community. Since making this database available, we have

been contacted by several research groups about using this data set for their own

algorithm validations.

6.1.3 Vessel Enhancement

Our experiences from our registration work, made evident the need for an im-

proved vessel enhancement method. The vessel enhancement results can not only be

used for image preprocessing, but also they may be used by a neurosurgeon to visual-

ize the blood vessels for surgical planning and guidance. In Chapter 5, we developed
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a vessel enhancement method, which modified the Hessian eigenvalue analysis meth-

ods of Frangi [81] to improve its performance in enhancing thinner and lower contrast

2D and 3D vessel structures. We kept the two first geometric terms of the original

filter method but substituted the third “structureness” term with a novel term that

uses the non-local means (NLM) estimator [25] for patch-based region analysis. The

NLM-based method produces a weightmap isolating voxels with similar local patches

in the neighbourhood that can then be analyzed using principle component analy-

sis (PCA) to determine if they form part of an elongated vascular structure. This

analysis produces our NLM structureness map which we substituted into Frangi’s

method.

Our vessel enhancement work showed that by examining information from larger

neighbourhood regions around a voxel we can effectively determine whether it par-

ticipates in a vessel feature. We also contributed a novel method analyzing the NLM

weightmap using PCA for region shape analysis. Our results showed that substi-

tuting our NLM structureness map for Frangi’s structureness at the smallest scale

can greatly improve the original method’s ability to enhance fine and lower contrast

vessel structures.

6.2 Discussion

Medical image processing using registration or enhancement and segmentation

methods is necessary for many diagnostic, planning, and navigation procedures in

IGNS. Due to the importance of these methods in modern neurosurgery, the devel-

opment of accurate and robust image registration and enhancement methods is an

208



ongoing and highly active area of research. In this thesis, we presented our vessel-

based image registration method, our vessel enhancement method, as well as a phan-

tom built for validation of medical image processing methods. Although the subjects

of registration, structure enhancement, and phantom development may appear re-

lated only by their common use in IGNS, the methods themselves are intimately

interconnected by function.

This is particularly true for structure enhancement or segmentation methods and

image registration methods. Registration and enhancement/segmentation methods

both rely on slightly different aspects of the same image information, with the former

aligning images based on their feature similarities, and the latter labelling features

in the image based on their similarity according to a given model. The link between

these two techniques has been noted in the literature, and there have been approaches

proposing to combine, or “unify” registration with segmentation [9, 70, 145]. In this

approach, information acquired from image segmentation provides structural features

to guide accurate image registration, while a set of properly registered images in turn

provides robust image information through redundancy to enhance image features

for improved image segmentation. Using this strategy, the performance of each type

of method may be improved.

In our work, information from image registration for image enhancement, and

vice versa, was only used in a superficial manner. However even the interchange of

information was important for the function of the image processing methods devel-

oped. In our multimodal registration method, the input images first undergo vessel
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enhancement and extraction, detecting the vessel structures needed for image align-

ment. Our vessel enhancement method uses a non-local estimator to identify voxels

with similar image regions through a registration-based similarity metric. In some

ways, one can see this as using information derived from image registration to drive

vessel enhancement. Ultimately, this link between both image processing schemes

indicates the possibility that techniques for improving one method can be translated

for improving the other and as such, warrants further exploration. More general

improvements, such as computational optimizations, can also be adapted to both

registration and structure enhancement methods to improve computational speeds.

The development of medical image enhancement and registration methods also

necessitates the creation of devices that can be used to validate the methods’ accuracy

and characterize their behaviours. This led us to develop a physical anthropomorphic

multimodal phantom for evaluating and testing medical image processing methods

including registration, segmentation, denoising, and super-resolution methods. How-

ever, the phantom could be modified with more anatomical structures and tissues

or constructed using different materials in order to improve its multimodal imaging

capabilities or further extend it to other imaging modalities.

While the physical phantom is highly useful in certain applications, it may

nevertheless have its limitations when very fine brain structures are needed or when

one needs to rapidly include anatomical variations or tissue deformations in the

phantom. We believe these challenges could be more easily addressed using digital

phantoms such as that developed in our vessel registration project.
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6.3 Future Work

6.3.1 Expert priors/atlases for vessel enhancement

Using the patch-based similarity matching of NLM, it may be possible to perform

vessel enhancement by matching individual voxels through atlas-based label fusion.

This approach of matching voxel similarities to atlas-based expert-priors for the

purpose of image segmentation has been previously used by Coupé et al. [53] for

segmentation of the human hippocampus in MR images and Eskildsen et al. [73] to

roughly segment the human brain for skull-stripping in MR head images.

A registration based vessel structure enhancement method that uses a whole-

brain probabilistic vessel atlas was proposed by Passat et al. [179]. This method

globally registers a subject image to a probabilistic atlas through maximization of

image similarity measure, and then transfers the labels to the subject voxels ac-

cording to their local structures and relative locations on the atlas. Such a method

depends significantly on a vessel’s global position, potentially limiting the method’s

ability to account for variations in vessel anatomy. However, by using an atlas with

NLM patches, it may be possible to find similar patches with vessels structures from

different regions of the brain and transfer their labels over to properly enhance image

vessels. Such a method would allow for improved enhancement in anatomies with

vessel variations and provide more information redundancy to reduce the chances of

mislabelling a voxel.

6.3.2 Combining vessel features

To help improve the accuracy and robustness of hybrid vessel-registration, other

vessel features can be extracted and introduced on top of image intensity information
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to. Vessel centerpoints, bifurcation points, or bifurcation graphs [91] can be processed

and used to help align vessel structures in a non-ambiguous manner. This may be

useful especially when vessel structures in the acquired images show up with different

diameters due to their tuned imaging parameters. This is true in the case between

MR and Doppler ultrasound angiographic images [201] where higher ultrasound gain

settings may results in imaged vessels being 2-3 times the size of the same vessel

acquired in MR. In our work in Chapter 3, we handled this by relying on cross-

sectional intensities of the vessels in both MR and US images to assure registration

success. Nevertheless, even in our method the use of other vessel features may help

assure higher registration success and improve rates of registration convergence.

This strategy of using a combination of different vessel structure information

can also be applied to help improve vessel enhancement. One of the ways in which

sets of different vessel information can be combined is through the use of adaptive

boosting methods [83] or multiple classifiers systems [100]. For instance, the use of

multiple classifiers has been applied to brain segmentation by combining the output

of different atlases and differently tuned atlas registration parameters [211]. In the

case of vessel enhancement, different vessel information could be obtained by using

kernel-based filters or extracted via skeletonization and then combined via multiple

classifier techniques. If implemented correctly, a vessel enhancement method that

uses several classifiers may be able to overcome the limitations of any one of its

classifiers and be able to obtain more accurate and robust results.
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6.3.3 Weightmap image feature analysis

The vessel-based registration and vessel enhancement methods developed here

both utilize shape-based filtering to accomplish their purpose in medical image pro-

cessing. However, the application of more sophisticated feature analysis methods

could be used to improve the efficacy of both types of methods.

In our vessel enhancement work, we introduced and demonstrated the appli-

cation of feature analysis on NLM weightmaps for the enhancement of vessel-like

features. We believe that NLM weightmaps, which highlight regional voxel image

structures, can be used for feature analysis and be extended to detect other types

of image structures beyond simple cylindrical and line-like geometries. For instance,

eigenvalues from the PCA of NLM weightmaps can be used to enhance plane-like or

nodule-like geometries by taking into account different eigenvalue ratios [143, 81]. By

examining the voxel’s larger neighbourhood regions together with its smaller Hessian

support, we may also be able to effectively enhance lower contrast sulcal or nodule

features in medical images.

The voxel self-similarity information from the NLM weightmaps used in our ves-

sel enhancement method may also be analyzed with other techniques beyond PCA.

For instance, active shape models [50] could be used by training models to detect

elongated line-like structures and effectively find the sometimes noisy line structures

in the NLM weightmap. Similarly, one can also use regulated morphological opera-

tions to produce fuzzy sphere representations of structures in the weightmap [2], thus

identifying line-like structures. It may also be possible to apply 2D curve consistency

filters [273] or 3D curve inference filters [217] to NLM weightmaps to determine if
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a voxel is part of an oriented curved line. When combined with our method, these

sophisticated shape analysis techniques may be able to more effectively and robustly

determine if given a voxel is participating in a vessel structure. For instance, prelim-

inary results of applying 2D curve consistency filters to our method appears to help

in connecting and enhancing thin and broken vessel segments in 2D angiographic

images.

It may also be possible to extend weightmap feature analysis through the use

of other self-similarity estimation techniques. One option is through the use of the

rotation-invariant histogram earth-mover distance (EMD) technique [213]. Instead

of comparing voxel patches, histograms of the local area of each voxel would be

generated and the histograms’ similarities used to create the voxel’s weightmap.

Preliminary results of applying such a technique seems to help effectively identify

image features with parts in different orientations, such as a curving vessel or an

organ surface.

The output of an improved vessel or sulcal feature enhancement method can

perhaps also be applied to help improve the performance of image registration. While

vessel structures alone are quite useful for registration due to their unique topology

and features, using vessel information on its own can prove problematic in certain

cases. For instance, if insufficient vessel structures are acquired in the image or if

the vessels themselves cannot be properly extracted, the accuracy of a vessel-based

registration method could be adversely affected. In many cases, it may be useful to

also extract other image features together with vessels from the raw medical images

to help improve image registration. In neurosurgery for example, sulci are readily
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acquired and are highly visible features in B-mode ultrasound and MR images. Sulcal

features have been shown to be feasible for use in intra-modality non-rigid registration

[250] and multimodality intraoperative rigid registration [52]. Combining vascular,

sulcal, or even nodule-like pathological structures for use as registration feature, can

all help produce more accurate and robust algorithms for medical image registration.

6.3.4 Parallel computation

Parallel computation, either on multiple processor cores or on the graphics pro-

cessing units (GPU) of modern graphics cards could be used to enhance the process-

ing speeds of our vessel enhancement and vessel-based registration methods.

Our hybrid registration method performs in an intraoperatively feasible time

of typically less than 6 minutes. Although this speed is acceptable for most surgi-

cal cases, it would be ideal if registration was done at speeds approaching real-time

(around a second). Although code optimization can improve registration time, we be-

lieve that the hybrid registration algorithm should be reimplemented to use the GPU

to accelerate the computational processes. GPU based rigid, affine linear, and non-

linear registration methods using image feature and image intensities strategies have

been previously implemented [223, 79]. The linear portions of our method should

be straightforward for reimplemented for the GPU since image Gaussian blurring

is implemented for all modern graphics processes, the downhill simplex algorithm

used in our technique is partially parallelizable, and the cross-correlation objective

function is simple to implement as single instructions on most GPU architectures

[223]. The non-linear portion of our registration technique will require more involved
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development, but the piece-wise linear ANIMAL algorithm appears in theory to also

be parallelizable.

Our NLM-based vessel enhancement algorithm is computationally expensive.

Its current implementation in MATLAB also lengthens its run-time. By optimizing

the code or implementing it in a lower level language such as C or C++, the speed

of this algorithm can be greatly improved. We do believe, however, that the NLM-

based vessel enhancement algorithm should be implemented for parallel computing,

more specifically for computation on modern GPUs. The NLM algorithm performs a

large number of relatively simple image block sum-squared difference computations

for an even larger number of image voxels. While this requires significant compu-

tational power, this algorithmic structure is also well suited for adaptation to GPU

processing. The fact that medical image segmentation and other blocks-wise com-

putational methods have been successfully implemented on the GPU [195] indicates

that a block-wise NLM-based vessel enhancement method may be feasibly imple-

mented for GPU processing. While it is difficult to determine exactly what speed

enhancements can be expected of a GPU NLM vessel enhancement algorithm, our

preliminary results using parallel for-loops in MATLAB suggests that implementing

the algorithm as 4 separate parallel processing threads can improve the execution

speed by more than 3 times. This suggests that the more than 100 parallel threads

available from even a low-end modern GPU would provide drastic improvements to

the original speed.
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6.3.5 Phantom contrast agents

Although the contrast agents used for our multimodal imaging phantom can

be effectively imaged, future work should be done to find better contrast agents for

phantom construction. For instance, we found that our CuSO4 MR contrast agents

tended to diffuse out from our phantom tissue mimicking material and landmark

spheres over time. This reduced the MR intensity of the cortical surface and the

contrast of the spherical landmarks with the surrounding tissue material. Finding

an effective non-diffusing MR contrast agent could be beneficial to MR phantom

designs that use gel-like materials as tissue mimicking materials. Alternatively, dif-

fusion can be greatly reduced or eliminated by sealing the landmark spheres with an

impermeable coating. However, possible materials for such coatings would need to

be explored and characterized.

In our study, we used separate contrast agents for CT and ultrasound in our

phantoms. We have noticed however, through separate tests, that it may be pos-

sible to also use the CT contrast agent, BaSO4, as an ultrasound back-scattering

contrast agent, something that has also been observed by [49] for photoacoustic

imaging. Proper evaluation and characterization of BaSO4 for ultrasound imaging

could provide a multimodal contrast agent for phantom fabrication, reducing the

number of contrast agents and the complexity of phantom construction. If possible

a non-diffusing contrast agent effective in MR, CT, and ultrasound should be found

to create medical imaging phantoms for these three ubiquitous imaging modalities.

While we have not seen examples of this in the literature, it may also be possible to
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use BaSO4 as a clinical contrast agent for ultrasound imaging of the gastrointestinal

tract instead of limiting its clinical use in x-ray modalities.

6.3.6 Phantom tissue-types

The phantom proposed in this work can be improved by simulating heteroge-

neous brain tissues such as white matter, cortical grey matter and deep grey matter.

This would allow validation of tissue segmentation methods and testing of newly de-

veloped imaging modalities. The casting of these multiple tissue layers can be done

through methods similar to that of [22, 24] developed for producing multi-layered

arterial flow phantoms. For instance, one could cast the white matter tissue type

in a white matter mold and then place the finished cast into a grey matter mold to

cast on a grey matter tissue layer. An anatomically accurate brain phantom with

realistically produced tissues can be used for cortical segmentation and registration

studies.

More anatomically realistic flow enabled vessel structure can also be introduced

into the brain phantom by employing the lost material casting methods of [45, 5],

which would allow highly accurate vessel lumen cavities to be cast into the brain

phantom’s tissue mimicking materials. Although the phantom of [199] included vessel

structures for Doppler ultrasound registration validation, these vessels consisted of

plastic tubing that were not anatomically realistic and when imaged, produced thick

and high-contrast vessel walls not found in real clinical images. While the larger

veins and arteries of the brain can be fabricated, the capillary bed would be more

difficult to mimic.
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It is also possible to simulate white matter tracts in an anthropomorphic brain

phantom. This can be done by including tightly bunched synthetic fibres [188] into

the tissue mimicking materials, causing water diffusion within the space between the

fibres to become anisotropic and allow imaging for diffusion tensor imaging.

An area that has not been thoroughly explored for anthropomorphic brain phan-

toms is the inclusion of tissues for validating capillary blood perfusion. Older blood

perfusion phantoms have used dialysis cartridges [252] while more recent perfusion

devices have used micro-fabrication techniques to create the device’s microchannels

[71, 168]. If the materials, contrast agents, and fabrication techniques used to pro-

duce perfusion phantoms can be incorporated into an anthropomorphic multimodal

brain phantom, the resulting brain phantom can then be used for the quantitative

simulation of cerebral blood perfusion. Such a phantom could be used for the veri-

fication of cross-modality perfusion metrics and for the validation of cerebral blood

perfusion based image processing techniques such as hydrodynamic segmentation

[146].

6.3.7 Graphics digital phantoms

In developing our registration method, we also concurrently developed a com-

puter graphics based Doppler ultrasound simulation phantom for registration vali-

dation, which we believe can be further improved. The phantom can be enhanced

to simulate more realistic shadowing, contain better depth dependant image speckle,

and allow for tunable Doppler intensity gains. Although there are first-principle

physics-based methods for the simulation of Doppler ultrasound [109], these pro-

grams and algorithms are difficult to use for individuals who are not familiar with
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ultrasound RF signal processing and typically take significant computational time to

simulate a full 3D Doppler ultrasound image.

Computer graphics techniques described in this work can be used to create dif-

ferent ultrasound simulating phantoms that fulfil specific image processing validation

needs. For instance, a digital phantom can be designed to produce images similar

in appearance to real B-mode, Doppler, or contrast-enhanced ultrasound images for

use in validating ultrasound image segmentation, denoising, or registration, with the

latter being the case of our work. By using modern computer graphics hardware,

computer-based phantoms could be fast enough for the simulation of realistic ultra-

sound images in real-time [29], and can potentially be used for validating real-time

ultrasound image processing methods.

The challenge and potential issue of using non-physics-based digital phantoms

is that they may not generate sufficiently accurate images to model real clinical im-

ages. If the simulated images from the digital phantom does not behave similarly

to real images, the validation results of an image processing method would be inac-

curate or even erroneous. Therefore, it is important to validate non-physics-based

digital phantoms to demonstrate the synthetic images it generates are sufficiently

similar to real ultrasound images for its intended test application. For instance, in

our digital Doppler ultrasound vessel phantom, we demonstrated that the gener-

ated synthetic vessel images had highly similar registration cross-correlation curves

compared to real vessel images such that it can be used for validating ultrasound to

MR vessel-registration methods. Digital ultrasound phantoms based on both physics

and computer graphics have been created in order to validate ultrasound denoising
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methods [187]. As such, partially computer graphics-based phantoms could also be

created as tools to aid evaluation of novel segmentation or registration techniques.

6.4 Conclusions

The goal of this thesis was to develop vascular image processing techniques for

IGNS that are accurate and robust, as well as a device for validating the efficacy of

medical image processing techniques. The vessel enhancement and vessel-based reg-

istration method described in this thesis have been extensively validated to demon-

strate that they are accurate, robust, and provided improvements over previous tech-

niques. The resulting multimodal imaging phantom realistically reproduces cerebral

anatomical structures, their mechanical properties, and also provides improvements

over previous brain phantoms.

We believe that the novel vessel-based image processing methods and validation

devices presented in this thesis can help streamline present medical image process-

ing workflows in surgical preparation and improve the overall accuracy and clinical

outcomes of surgical procedures in IGNS. These contributions are a step towards

achieving the promises of IGNS to allow precision in neurosurgery, to aid the neu-

rosurgeon in delivering treatment, and ultimately to improve patient recovery from

the prescribed surgical treatment.
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