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ABSTRACT

Positron emission tomography (PET) images often require segmentation

for analysis. In practice, segmentation is performed manually by an expert on

the PET images, or regions of interest (ROIs) are delineated on co-registered

anatomical images. However, manual methods are operator dependent and time-

consuming, and registration between anatomical and functional images of the

same subject can be inaccurate. To overcome these limitations, we propose an

automated segmentation scheme based on a PET-to-PET image registration.

Image segmentation is achieved by registration to a labeled three dimensional

(3D) radio-tracer specific brain template; dynamic PET data can be segmented by

registering the sum image of all dynamic PET frames to the template. Crucially,

the template image is a mean shape and mean intensity brain image formed from

multiple subjects, making it an ideal image for registration and for labeling. Image

segmentations can then be used to extract regional time-activity curves (TACs)

to enable robust and fully automated regional binding potential (BP) estimation

using a reference tissue model. We validate our approach with a comprehensive

simulated dynamic [11C]raclopride phantom study, and assess its performance

on real dynamic PET [11C]raclopride data from the high resolution research

tomograph (HRRT).

Using simulated data, we found that our atlas-based segmentation achieved a

mean Dice similarity coefficient greater than or equal to 0.881 over all regions of

interest, and that binding potential estimates using the segmented regions differed
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from the binding potential estimates using the true regions by a maximum of

%Abs.Error = 3.423, comparing favourably with the “gold standard” conventional

segmentation method of manual delineation. Applied to real data, the atlas

segmentations agreed with manual delineations in terms of the linear correlation

coefficient on binding potential estimates (r = 0.979 when considering all regions

of interests). These findings suggest that atlas-based segmentation for fully

automated kinetic analysis of dynamic [11C]raclopride images performs at a level

which at least matches, and in many cases outperforms, manual segmentation.
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ABRÉGÉ

Les images de la tomographie par émission de positrons (TEP) ont souvent

besoin de segmentation pour l’analyse. En pratique, la segmentation est effectuée

manuellement par un expert sur les images, où des régions d’intérêt sont délimitées

sur les images anatomiques co-enregistrés. Cependant, les méthodes manuelles

dépendent de l’opérateur et prennent beaucoup de temps, et le recalage entre les

images anatomique et fonctionnelles du même sujet peu être inexact. Pour sur-

monter ces limitations, nous proposons un système de segmentation automatique

base sur un enregistrement TEP-à-TEP optimisé. La segmentation des images

est réalisée par alignement avec un atlas spécifiques au traceur-radio du cerveau.

Plus important encore, l’atlas est une d’image de moyenne forme et moyenne

intensité formé à partir de plusieurs images, ce qui en fait une image optimale pour

l’enregistrement et l’étiquetage manuel. Les segmentations des images peuvent

être utilisé pour extraire des courbes régionales temps-activité pour permettre

l’estimation automatique de BP régionale en utilisant un modèle de tissu de

référence. Nous validons notre approche avec des images simules, et evaluons

sa performance sur de vraies images TEP de [11C]raclopride du tomographe de

recherche à haute résolution.

En utilisant des images simulées, nous avons constaté que notre segmentation

basée sur l’atlas était exact (moyen coefficient Dice de similarité supérieur ou

égal à 0,881 pour toutes les régions d’intérêt) et que estimation BP en utilisant

les régions segmentées différer de l’estimation de BP en utilisant les véritables
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régions par un maximum de %Abs.Error = 3.423, se compare favorablement avec

la référence de la méthode de segmentation classique de délimitation manuelle.

Appliquée à des images réelles, la segmentation est d’accord avec les délimitations

manuelles en termes de coefficient de corrélation linéaire sur des estimations de

BP (r = 0.979 lorsque l’on considère toutes les régions d’intérêt). Ces résultats

suggèrent que la segmentation d’images par atlas fonctionnelles effectue à un

niveau qui correspond au moins, et dans de nombreux cas surpasse, segmentation

manuelle.
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CHAPTER 1
Positron Emission Tomography

1.1 Positron emission and annihilation

Positron emission describes the radioactive process by which a proton (p) of

an unstable proton-rich nucleus is converted into a neutron (n) while releasing a

positron (e+) and a neutrino (ν):

1
1p→1

0 n+0
1 e

+ + ν (1.1)

In general, therefore, the equation for positron decay is:

A
ZX →A

Z−1 Y +0
1 e

+ + ν +Q (1.2)

where Q is the kinetic energy that is shared between the positron and neutrino.

Positrons are thus emitted with a range of energies, from zero to a maximum

energy determined by the difference in mass between the parent atom X and the

daughter atom Y . The positron that is ejected following positron decay has a

very short lifetime in electron-dense materials, such as biological tissue. It rapidly

loses kinetic energy via inelastic interactions with atomic electrons, and once most

of the energy is dissipated (typically with a range of a few mm at FWHM [1],

depending on the initial kinetic energy of the positron), it combines with an

electron (both being approximately at rest) and both annihilate, giving off energy

in the form of two photons (the emission of a single photon is strictly prohibited
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1.1. POSITRON EMISSION AND ANNIHILATION

because of conservation of momentum considerations). The two photons are each

of 511 keV energy and are emitted at approximately 180 degrees to each other (in

rare cases, three photons may be emitted following positron-electron annihilation).

Figure 1–1: Positron annihilation. An unstable proton-rich nucleus decays into a
neutron, a positron and a a neutrino. The positron loses kinetic energy rapidly via
inelastic iteractions with atomic electrons and annihilates with an electron, giving
off energy in the form of two approximately co-linear 511 keV photons.

Radionuclides (atoms with unstable nuclei) that undergo radioactive decay

(with sufficiently short half-lives) through positron emission can be used to label

molecules with biologically interesting functions. Such a labeled molecule is

called a radiotracer, since it it is radioactive, and since it’s path can be traced

through the body (once injected, swallowed or inhaled) by detection of photon-

pair emissions. Generally, radionuclides are incorporated either into compounds

normally used by the body (i.e. glucose or glucose analogues), or into molecules

that bind to receptors (i.e. [11C]raclopride, a D2/D3 dopamine antagonist). In

table 1–1, several widely used radionuclides are characterized.
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1.2. PHOTON-PAIR DETECTION

Radionuclide T1/2 Emax R Example
(mins) (MeV) (mm at FWHM) Radiotracer

11C 20.4 0.96 1.1 [11C]raclopride
13N 10.0 1.19 1.4 Nitrogen-13-ammonia
15O 2.0 1.70 1.5 Oxygen-15-water
18F 109.7 0.64 1.0 Fluorodeoxyglucose (FDG)

Table 1–1: Widely used radionuclides for PET imaging. T1/2 is the halflife of the
radionuclide. Emax is the maximum energy of the positron, R is the range of the
positron in water.

1.2 Photon-pair detection

A PET scanner consists of a ring of photon detectors that surround the

photon-pair-emitting subject. The goal of the physical PET system is to detect

and characterize “lines of response” (LORs), or lines in space connecting pairs of

photon-activated detectors. A convenient way of representing these LORs (in 2

dimensions) is to adopt the co-ordinate scheme described in figure 1–2, enabling

one to characterize a given LOR with two parameters: the radial offset from

the center of the scanner, s, and the angle φ. Event detection in PET relies on

electronic collimation; a “detection event” is regarded as valid if:

• two photons are detected within a predefined time window, known as the

“coincidence window”

• the subsequent line-of-response (LOR) formed between the detected photons

is within a valid range

• the energy deposited by both photons is within the selected energy window

Detection events which satisfy the above criteria are known as prompt events (or

“prompts”). These criteria are important in order to preferentially detect photon

3



1.2. PHOTON-PAIR DETECTION

Figure 1–2: Scanner geometry. The “line of response” that connects a pair of acti-
vated photon detectors is characterized by the radial offset from the center of the
scanner, s, and the angle φ.

pairs which originate from a tractable point in the subject. However, many prompt

events satisfying the above criteria are, in fact, not due to an ideal emission of

a photon pair originating from a single positron annihilation event. In other

words, many registered prompt events are spatially uncorrelated with the spatial

distribution of the tracer. The simplest reasons for this are due to the non-zero

positron range and to photon-pair colinearity (photon pairs are not emitted at

exactly 180 degrees with respect to each other, creating LORs which do not cross

the actual point of annihilation). There are three additional categories of events

which lead to unwanted prompts: random, scattered and multiple coincidences.

Each of these effects have a degrading effect on the measurement, and need to be
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1.2. PHOTON-PAIR DETECTION

corrected for to produce an image that resembles, as closely as possible, the true

radiotracer distribution. The categories are depicted in figure 1–3.

Figure 1–3: Prompt events do not always give useful information about the origin
of the detected photon pair, due to scattered, random and multiple coincidence
events. The (inaccurate) LOR as seen by the scanner is depicted by a dashed line.

Random coincidences are the result of two unrelated single annihilation

photons being registered as a valid prompt. Because these events are produced by

photons emitted from spatially unrelated annihilations, they carry no information

about the tracer distribution. Scattered coincidences occur when one or both of

the annihilation photons, originating from a single annihilation event, undergo

inelastic Compton scattering and change direction prior to reaching the detector

pair. Although it is true that scattered photons (undergoing a change in direction)

have an associated energy loss, many scatter photons cannot be discriminated
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1.3. DATA STORAGE AND SINOGRAMS

due to the limited energy resolution of the ring detector. At high count rates,

it is possible that three or more detectors are activated within the allowed time

window. In this case, it is ambiguous where the event should be positioned. These

events are called multiple coincidences, and are usually discarded.

1.3 Data Storage and Sinograms

As mentioned previously, PET scanners detect and record coincidence events.

There are two formats for storing such emission data: list mode and sinograms.

Storing emission data in list mode is, as the name implies, a simple list of recorded

events. Such events can be characterized by time of detection and detected photon

energy [2]. On the other hand, a sinogram is a vector containing indices that each

represent the counts detected along a given LOR. We will focus on the case of a

two dimensional sinogram for simplicity. Referring back to figure 1–2, we note that

a detected event corresponds to a given LOR, which can be parametrized by s and

φ. A sinogram mφ(s) is simply a 2D array populated by pixels corresponding to

the number of events detected along a given LOR. From figure 1–2, we can relate

the spatial radioactivity distribution n(l, s) to the sinogram count for a given LOR

by the follow integral equation, also known as the Radon or x-ray transform:

mφ(s) =

∫
n(l, r)dl (1.3)

where l is the distance along the LOR. The reason for the name “sinogram” is that

if the radioactivity distribution is a simple point source emitter, then the 2D array

resembles a sine wave. By way of example, consider a single radioactive point

source emitting photon pairs (figures 1–4).
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1.4. FROM SINOGRAMS TO IMAGES

Figure 1–4: Construction of a sinogram. Top left: colinear photon-pair emitted
from point source along an LOR characterized by two parameters, s and φ. Top
right: This LOR can be represented as a single point on a sinogram (value = 1
count). Bottom row: the same point source continues emitting colinear photon
pairs isotropically, which creates a sinogram resembling a sine wave.

Equation 1.3 allows us to predict what a given sinogram looks like for a given

spatial radioactivity distribution. This knowledge is necessary to tackle the image

reconstruction problem, which will now be discussed.

1.4 From Sinograms to Images

The essential problem in PET image reconstruction is to estimate the radioac-

tive distribution nj (the average number of emissions from each pixel j within the

subject) given the noisy measured data mi (the noisy sinogram data containing

7



1.4. FROM SINOGRAMS TO IMAGES

values that represent the number of counts per projection bin i). Several algo-

rithms can be used to reconstruct PET images; filtered back projection (FBP) [3],

least squares techniques [4] and the Maximum Likelihood Expectation Maximiza-

tion (MLEM) algorithm [5] are among the most popular choices. In this section,

a brief overview of FBP and MLEM will be given, with a greater emphasis on the

latter; the MLEM algorithm is used for the HRRT [6] [7] at the Brain Imaging

Center (BIC).

1.4.1 Filtered Back Projection

Rewriting the Radon transform equation (equation 1.3) in terms of Cartesian

coordinates x and y, we have

mφ(s) =

∫ ∫
n(x, y)δ(xcosφ+ ysinφ− s)dxdy (1.4)

The image n(x, y) can then be reconstructed from the sinogram data m using

the inverse Radon transform, which is usually performed using the filtered back

projection (FBP) algorithm [8]. Note that the inverse Radon transform assumes

that there is no attenuating medium, and that detectors are perfect.

A key theorem in analytic image reconstruction is the central slice theorem,

which says that the one dimensional (1D) Fourier transform of a projection of an

image n(x, y) at an angle φ is equivalent to a slice through the center of the two

dimensional (2D) Fourier transform N(u, v) at the same angle. In other words, we

have

Mφ(w) = N(u, v) (1.5)

8



1.4. FROM SINOGRAMS TO IMAGES

where Mφ(w) is the 1D FT of the projection mφ(s), and u = wcosφ, v = wsinφ.

Taking the inverse 2D Fourier transform allows for the recovery of the object:

n(x, y) =

∫ ∫
N(u, v)ej2π(ux+vy)dudv (1.6)

and, by exchanging the Cartesian coordinate system in the frequency domain for a

polar coordinate system, one can show that

n(x, y) =

∫ π

0

λφ(xcosφ+ ysinφ)dφ (1.7)

where

λφ(s) =

∫
Mφ(w)|w|ej2πwsdw (1.8)

Explicitly, equation 1.8 is a simple ramp filtering operation applied to the 1D

Fourier transform of a projection at angle φ. λφ(s) is the filtered projection, and

equation (1.7) is the backprojection operation. The steps of the FBP algorithm are

outlined below

for each projection angle φ do

Take the 1D Fourier transform of the parallel projection;

Apply the ramp filter in Fourier space;

Take the inverse 1D Fourier transform;

Backproject;

end

Algorithm 1: The FBP algorithm
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1.4. FROM SINOGRAMS TO IMAGES

Often, the ramp filter |w| is modified to improve the signal-to-noise ratio

(SNR) of the resulting image by introducing a cut-off frequency; however, this has

the unwanted effect of reducing spatial resolution. Therefore, choosing a suitable

filter is akin to finding an optimal trade-off between SNR and spatial resolution [9].

1.4.2 MLEM: Derivation Using Gradient Ascent

While analytic reconstruction methods (e.g. FBP) are fast, however, they

are limited by their reliance on the approximation inherent in the line-integral

equation (equation 1.4). The advantage of using an iterative reconstruction

algorithms (such as MLEM), by contrast, is that they allow for more complex and

therefore more realistic models of the acquired PET data [10]. In the following

derivation1 , nj denotes the mean number of emissions from pixel j, mi denotes

the noisy measured sinogram data in bin i, and qi denotes the “mean sinogram”

that could theoretically be obtained by repeating a particular experiment an

infinite number of times. One way to estimate qi is to make use of equation 1.3;

given a discrete image n representing the mean number of emissions per pixel, we

can determine q by “ray-tracing”. We can discretize the integral operation into a

summation, such that:

qi =
J∑
j=1

aijnj (1.9)

where aij can be thought of as the discretized equivalent of the Radon transform

equation; aij represents the probability that an annihilation event taking place at

1 This derivation is largely based on Dr. Andrew Reader’s MDPH607 class
notes, Medical Physics Unit, McGill University.
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1.4. FROM SINOGRAMS TO IMAGES

voxel j is detected at sinogram bin i. For any given scan, the actual obtained sino-

gram data mi is a random vector distributed according to the Poisson distribution:

p(mi|qi) =
qmii exp(−qi)

mi!
(1.10)

Equation (1.10) gives the probability of obtaining mi counts in bin i given that the

mean counts is qi. We seek to maximize the Poisson likelihood O(n;m) = p(m|n)

of obtaining a noisy sinogram vector m given an image n. We start by writing the

Poisson likelihood for the entire noisy measured sinogram:

OML(n;m) =
I∏
i=1

(qi)
miexp(−qi)
mi!

(1.11)

Taking the log of equation (1.11) simplifies the derivation considerably without

affecting the value of n that maximizes the likelihood:

LML(n;m) =
I∑
i=1

miln(qi)−
I∑
i=1

qi =
∑
i=1

miln(
J∑
b=1

aibnb)−
I∑
i=1

J∑
b=1

aibnb (1.12)

where LML is the Poisson log-likelihood. Because the log-likelihood function is

concave [5], a gradient ascent approach can be used. In other words, given that we

evaluate the log-likelihood equation with some image nk, we can move closer to the

optimal value nML by independently updating the value of each image pixel nj as

follows:

nk+1
j = nkj + τ

∂LML

∂nj
(1.13)

where τ is a step size to be determined and k is the iteration number. Taking

the partial derivative of equation 1.12 with respect to an image pixel nj, and

11



1.4. FROM SINOGRAMS TO IMAGES

substituting it into equation 1.13, we obtain:

nk+1
j = nkj + τ

 I∑
i=1

akijmi∑J
b=1 aibn

k
b

−
I∑
i=1

aij

 (1.14)

And choosing the step size2 to be equal to the current image value (nj) nor-

malized by the sensitivity of the scanner at that point (
∑I

i=1 aij), we obtain the

MLEM algorithm:

nk+1
j =

nkj∑I
i=1 aij

I∑
i=1

aij
mi∑J

b=1 aibn
k
b

(1.15)

or, in compact matrix notation,

nk+1 =
nk

AT1
AT

(
m

Ank

)
(1.16)

where n (size J × 1) and m (size I × 1) are column vectors containing the image

values and sinogram counts, respectively, A is an I × J matrix with elements

aij, and 1 is simply a column vector of size I × 1 with each entry equal to 1.

Note that the division is carried out element by element. Convergence towards

an image estimate n is therefore accomplished iteratively: explicitly, a set of

correction values between the measured sinogram data and the forward projected

image estimate is formed. The correction values are backprojected into image

space via the transpose of the system matrix, and applied multiplicatively to the

image estimate, voxel-by-voxel. The corrected image estimate is normalized by the

2 An alternative and elegant derivation of MLEM making use of hidden com-
plete data avoids this potential ambiguity, but the derivation is more involved. It
is presented in the next section.
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sensitivity image (again, voxel-by-voxel), yielding the image estimate for the next

iteration.

1.4.3 MLEM: Derivation From General EM Framework

Given a statistical model consisting of a set x of observed data, a vector of

unknown parameters θ, and a likelihood function L(θ;x) = p(x|θ), the maximum

likelihood estimate of the unknown parameters θ can be found by likelihood of

the observed data, L(θ;x). For some models, a maximum likelihood estimation of

the parameters θ can be found as an explicit function of the observed data. For

many other models, however, no explicit and closed-form solution is available, and

optimization techniques must be used.

The goal of the MLEM algorithm is to facilitate maximum likelihood estima-

tions by introducing a hidden random vector z. The intuition behind the algorithm

is that we can calculate the expected value of the log-likelihood function with

respect to the conditional distribution of z given x and under the current estimate

of the parameters θk:

Q(θ|θk) = Ez|x,θk [log L(θ;x, z)] (1.17)

Then we can maximize (more easily, often analytically) the expected log likelihood

function with respect to the unknown parameters θ:

θk+1 = arg max
θ

Q(θ|θk) (1.18)

and repeat until convergence. It can be shown that by increasing Q(θ|θk), we also

increase the likelihood of the observed data [11].
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1.4. FROM SINOGRAMS TO IMAGES

Applied to PET imaging, we have a set of observed sinogram data m, a set

of unknown parameters n to estimate, and a statistical model relating the two

(Poisson distribution). As we have seen, however, maximizing the log-likelihood

function is not trivial, but can be made more tractable by introducting a complete

data random hidden vector zij which represents the number of sinogram counts

in bin i originating from emissions in pixel j, and we have z̄ij = aijnj and∑J
j=1 zij = mi by definition. Then we can write down the Poisson log-likelihood,

log p(z|z̄) = logL(n; z):

logL(n; z) = log
J∏
j=1

I∏
i=1

exp(−aijnj)aijn
zij
j

zij!
(1.19)

and then the expected value of the log-likelihood with respect to the conditional

distribution of z:

Ez|m,nk [log L(n; z)] = Ez,nk
J∑
b=1

I∑
i=1

(
zibln(aibnb)− aibnb − ln(zib!)

)
(1.20)

And because of the linearity of expectation, we have:

Q(n|nk) =
J∑
b=1

I∑
i=1

(
E[zib|m,nk]ln(aibnb)− aibnb − ln(E[zib|m,nk]!)

)
(1.21)

For a given sinogram bin i, the hidden complete data zij is a Poisson random

vector conditioned on it’s sum, mi, and as such forms a multinomial distribution3 ,

3 See appendix for proof.
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with expectation value:

E[zij|m,nk] = NP = mi

aijn
k
j∑J

b=1 aibn
k
b

(1.22)

where NP is the mean of the binomial distribution. Substituting equation (1.22)

into equation (1.21), we have:

Q(n|nk) =
J∑
b=1

I∑
i=1

(
mi

aibn
k
b∑J

c=1 aicn
k
c

ln(aibnb)− aibnb − C

)
(1.23)

where C is a constant and can be disregarded. Note that this equation can be

easily maximized with respect to a single pixel value nj. Taking the partial

derivative with respect to nj and setting to zero, we obtain the MLEM algorithm:

nk+1
j = arg max

n
Q(n|nk) =

nkj∑I
i=1 aij

I∑
i=1

aij
mi∑J

b=1 aibn
k
b

(1.24)

1.5 MLEM: Limitations and Solutions

Despite the advantages of the MLEM algorithm compared to FBP, the

algorithm can be slow, partly due to its use the entire measured data set m

at each iteration. One solution is the so-called “Ordered Subsets Expectation

Maximization” (OSEM) algorithm, which addresses the problem by using only a

subset of the measured data when computing an image update:

nk,l+1
j =

nk,lj∑
i∈Sl aij

∑
i∈Sl

mi

qk,li
(1.25)

where the backprojection sums only over a subset Sl (l = 1...L) of the measured

sinogram data, and the image is updated each subiteration (i.e. L subiterations for

each iteration k). There are a variety of approaches for dividing the sinogram data
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into subsets. Most approaches use non-overlapping subsets, commonly dividing

the sinogram data into balanced subsets containing data from different azimuthal

angles. With regard to subset ordering, it is recommended that substantial

new information is introduced into the image estimate as fast as possible [12];

for instance, the order can be chosen such that there is a maximum separation

angle between successive subsets. Because the computational cost of MLEM

is proportional to the number of sinogram projections, one iteration of OSEM

will have require roughly the same as one iteration of MLEM. However, a single

iteration of OSEM consists of a number of subiterations, each of which converges

similarly to one MLEM iteration. OSEM therefore accelerates convergence by a

factor proportional to the number of chosen subsets [12]. Another approach for

accelerating the MLEM algorithm is to use an over-relaxation parameter, which

effectively increases the influence of the correction image applied to the image

estimate at each iteration. Re-writing the MLEM algorithm (equation (1.24)) in

the following form

nk+1
j = nkj + (ckj − 1)nkj (1.26)

shows that the MLEM algorithm can be interpreted as applying an additive,

rather than multiplicative, correction to the image estimate at each iteration. The

influence of the additive correction term can be amplified using a scalar parameter

λ:

nk+1
j = nkj + λ(ckj − 1)nkj (1.27)

where a choice of λ > 1 will accelerate the iterative process.
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Maximum likelihood estimators are advantageous in the sense that they offer

unbiased, minimum variance image estimates. Nonetheless, due to the inherent

noise in photon counting, maximum likelihood estimate images are still almost

always unacceptably noisy: as the ML estimate is approached with increasing

iterations, higher frequency definition is introduced in the image at the cost of a

lack of low frequency definition. In practice, therefore, image reconstructions are

often terminated prior to reaching the ML solution [13], resulting in an image with

less variance but increased bias. Alternatively, the algorithm is permitted to run

more iterations, and the resulting image is smoothed [14].

Another approach to image reconstruction regularization are the so-called

“Bayesian methods.” These methods seek to enforce conditions on the image

estimate during the reconstruction process by the addition of a priori information

in a Bayesian formulation. Conventionally, this is done within a maximum a

posteriori (MAP) framework [15], where the goal of optimization is to maximize

the posterior probability of the image estimate n given the measured data m.

Using Baye’s rule, we have

p(n|m) =
p(m|n)p(n)

p(m)
(1.28)

where p(n|m) is the posterior probability, p(m|n) is the likelihood and p(n) is the

prior probability on the image estimate. Taking the logarithm and dropping the

constants, image reconstruction becomes the following optimization problem

n = arg max
n
{log p(m|n) + log p(n)} (1.29)
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The function of the prior p(n) is to regurarize the image estimate. Conventionally,

the prior is assumed to be in the form of a Gibb’s distribution [16]:

p(n) =
1

Z
exp−βU(n) (1.30)

where U(n) is the Gibbs energy function. A number of energy functions have

been proposed in the literature; most commonly, the energy function attempts

to produce local smoothing while not blurring boundaries in the image [17] [16].

Recently, information-theoretic energy functions have been proposed to encourage

correspondence between the reconstructed image and co-registered MR anatomical

images [18]. With the Gibb’s prior defined, the reconstruction problem described

in equation (1.29) can be rewritten as

n = arg max
n
{log p(m|n)− βU(n)} (1.31)

The parameter β controls the degree of regularisation, and we can note that as

β approaches zero, optimization of equation (1.31) reduces to typical MLEM

reconstruction. Because of the addition of the regulariser term, optimization of

equation (1.31) is more involved, and the reader is referred to [19] for more details

on this topic. Mainstream clinical acceptance of Bayesian image reconstructions is

challenged by the added complexity in implementation, and due to the challenge

of choosing an appropriate β parameter for controlling the influence of the

regularising term.
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1.6. DATA CORRECTIONS

1.6 Data Corrections

As discussed previously, reconstruction must take into account that many

sinogram counts are due to randoms and scatters, and therefore are not repre-

sentative of the underlying radioactivity distribution. In addition, it is important

to correct for attenuation and normalization effects. The following section will

offer a brief description of these correction factors, and how they are normally

implemented into analytic and iterative reconstruction approaches.

1.6.1 Attenutation Correction

Referring back to figure 1–2, and assuming that Io(s, φ) is the number of

coincidence events detected along a given LOR in the absence of attenuation, then

the number of events detected on that line in the presence of attenutation, Ia(s, φ),

can be expressed as:

Ia(s, φ) = Io(s, φ)× e−
∫
µ(l,s)dl (1.32)

where l is the distance along the LOR, and µ is the attenuation coefficient, and we

now define Ia(s,φ)
Io(s,φ)

as the “attenuation correction factor” (ACF) for a given LOR or

projection bin. This equation is the basis for attenuation correction methods. In

practice, attenuation correction factors are physically measured or calculated.

As equation (1.32) shows, the number of detected events along a given LOR

in the presence of attenuation does not depend on the locations along the LOR

where the actual annihilations occur. Exploiting this convenience, a radioactive

source placed outside the body can be used to measure attenutation factors [20].

This method places a radioactive source outside the object, then performs a

transmission scan. Secondly, the object is removed, and a black scan is performed.
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The ACFs can then be calculated as the ratio of the counts of the blank scan to

the transmission scan. This method is hampered by significant noise levels since it

can be difficult to obtain enough counts per projection bin.

Alternatively, attenuation factors can be calculated if the shape of the object

and the attenutations coefficients are known; the ACFs can be directly computed

from equation (1.32). With the advent of PET/CT scanners, ACFs can be directly

computed from computed tomography (CT) images since attenuation coefficients

can be directly determined from the CT image. As a result, these approaches have

the potential to yield more accurate ACFs [21].

1.6.2 Random Coincidences

Recall that in a random coincidence event the two deteted annihilation

photons come from different decay sites, and therefore contribute no useful

information for the image reconstruction. To correct for the influence of random

coincidences, two main approaches are usually considered. The first is to estimate

the random count rate from the ‘singles’ count rate using:

Nr = 2τN1N2 (1.33)

where Nr is the count rate of the random coincidences, τ is the coincidence timing

window (the amount of time below which the difference in detection times between

two detected photons are considered as a single coincidence event) and N1 and

N2 are the count rates of single events in each of two detectors forming a single

LOR. This method has the advantage that both N1 and N2 are both large in

comparison to Nr, so that the statistical quality of the random count rate Nr is
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good. However, the method can be biased in the case that the coincidence timing

window is not know accurately for each detector.

The second method based on direct measurement is the delayed coincidence

method. In this method, the logic pulse from one of two detectors forming a

LOR is delayed such that the detector pair cannot produce true coincidences;

therefore, any measured coindences can only be caused by random events (in

practice, a parallel coincidence circuit is implemented in the electronics to enable

measurement of random events during the scan). While free from systematic bias,

this method is hindered by poor statistical quality.

1.6.3 Scatter Coincidences

Many schemes have been proposed for scatter correction, including convolution-

subtraction [22], direct measurement methods [23], dual energy window meth-

ods [24], simulation-based algorithms [25] [26] and “Gaussian fit” techniques [27].

The latter two, being the most widely used, are briefly considered here.

This Gaussian fit approach to scatter correction is based on the insight that

(i) events in the sinogram outside of the source object are due to scatter, and

(ii) the scatter distribution is a low frequency function that is insensitive to the

activity distribution. The Gaussian fit method estimates the scatter component

of each sinogram projection by fitting the activity outside of the source object

with a Gaussian distribution. While this method is fast and gives a smooth scatter

distribution, it may fail on whole body scans where the scatter tails are short

(since the body occupies a large portion of the field of view). In addition, the
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accuracy of the scatter component estimate is highly dependent on the parameters

chosen for the Gaussian function fit.

Simulation-based algorithms use a reconstructed image and attenuation

map, and then simulates the scatter contribution based on the reconstructed

images. In practice, the simulation is done using a simple single-scatter model

or a Monte-Carlo simulation. These methods are accurate, but computationally

expensive.

1.6.4 Normalization

Non-uniformities in detector efficiency, electrons and geometrical variations

in different LORs can cause different sensitivies; “normalization” is the process

of correcting such non-uniformities. Normalization coefficents for each LOR

can be estimated most easily by direct measurement [28]. In this approach, a

source of uniform radioactivity is scanned, and normalization coefficients are then

proportional to the inverse of the events recorded in any given LOR. This accuracy

of this method is mainly hindered by the requirement that enough counts be

collected per LOR, so as to attain a sufficient statistical quality on the estimate.

An attractive alternative to the direct measurement approach is the so called

“component-based” method [29], which models the normalization coefficient for

each LOR as the product of an intrinsic crystal efficiency and a set of geometric

factors. Because the normalization coefficients for each LOR are not independent

(since a single crystal efficiency is a factor of many normaliztion coefficients)

the number of unknowns is reduced from the number of LORs to the number of

crystals, and so the statistical noise is largely reduced.
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1.6.5 Data Corrections: Implementation

Unlike iterative reconstruction methods, analytic methods require that the

raw sinogram data be corrected prior to reconstruction. Firstly, scatter and

random sinograms are subtracted from the raw measured sinogram. Secondly,

the attenuation correction factors are applied to the corrected sinogram. Lastly,

the normalization correction factors (NCFs) are applied. The resulting sinogram

(equation 1.34) is then suitable for analytic reconstruction.

mcorrected = NCF × ACF × (mraw − r − s) (1.34)

Iterative reconstruction algorithms (such as MLEM) have the advantage that

corrective effects can be incorporated directly into the reconstruction algorithm.

This avoids possible negative sinogram values, and retains the Poisson nature of

the raw acquired data (which is required for the Poisson statistical model in the

MLEM algorithm to be correct). The corrections can be implemented into the

MLEM framework by modeling the mean sinogram, as q = An + r + s where r

are the sinogram counts due to the random events and s are the sinogram counts

due to scatter events. Furthermore, attenuation, normalization and positron range

can be modeled by the system matrix. The system matrix A can be modeled by

A = NLXH. N is a matrix containing normalization factors which account for

differences in detector response. L is a matrix containing attenuation factors,

accounting for the reduced sinogram counts in bins which correspond to LORs

which traverse through more attenuating tissue. X is the line transform, and H is

a blurring matrix which approximates for positional uncertainties in positron range
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and crystal resolution [30]. The MLEM algorithm then has the form, using matrix

notation:

nk+1 =
nkHTXTLTNT

HTXTLTNT1

(
m

NLXHnk + r + s

)
(1.35)

where n (size J × 1) is the image values, and m, r and s (all size I × 1) are column

vectors containing the raw measured sinogram counts, the random counts and the

scatter counts, respectively, and the X (size I × J) is line transform matrix, L and

N (each size I × I) are the attenuation and normalization matrices respectively

and H (size J × J) is the blurring matrix
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CHAPTER 2
Kinetic Analysis and Conventional Segmentation

PET imaging produces quantitative images representing the spatial distri-

bution of radioactivity within the subject. A single image (static image) may be

reconstructed, or the full time-course of the spatial distribution of the radioac-

tivity can be measured by reconstructing images as a function of time of scan

(figure 2–1). If an appropriate radio-tracer is used, the time dependent activity

values measured in an ROI should correlate to physiologically relevant parameters.

Kinetic models attempt to describe the relationship between the time-course

evolution of measured activity and these physiological parameters of interest.

It is common practice to correct dynamic images for both frame length and

isotope decay. For instance, a typical dynamic [11C]raclopride scan usually lasts

1 hour, and the reconstruction produces a sequence of 26 images. Each image

represents the spatial distribution of detected emissions during a particular time

frame. Due to the decay of the radiotracer within the body, earlier time frames

are short (30 seconds) and later time frames are longer (300 seconds), since more

time is required to detect a comparable number of coincidence events during the

later part of the scan. Frame length corrections normalize the effect of the varying

length of the time frames, such that the activity distribution of a single time frame

is representative of the activity at a single time located in the middle of the frame.

On the other hand, correcting for isotope decay takes into account the fact that
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Figure 2–1: Example of a time-activity curve extracted from a real dynamic
[11C]raclopride image. Here, the mean activity concentration of the left putamen is
calculated for every frame and plotted.

the activity of the radiotracer within the body decreases naturally with a known

half-life, resulting in relatively lower counts for the later time frames.

The time-course evolution of the (corrected) measured activity depends on

two factors. Firstly, it depends on tissue physiology (for example, the D2/D3

receptor density in the case of [11C]raclopride). Secondly, it depends on the input

function; the time-course evolution of the tracer radioactivity within the blood,

which defines the actual availability of the tracer for uptake by the target organ.

A kinetic model is a mathematical description of the relationship between these

factors; a model can predict the time-course evolution of tissue radioactivity given
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knowledge of the underlying physiology and the input function. The usefulness of

such a model lies in the fact that we can fit the measured time-activity data to

the model, and estimate physiologically relevant parameters. Though many types

of kinetic models exist [31], we will focus on the most commonly used method for

modeling tracer pharmacokinetics: compartmental models. These models assume

that tracer molecules exist, at any given time, in one of many compartments.

Each compartment defines a specific physical location of the tracer (i.e. blood,

extracellular space, intracellular space) and the molecule’s physical state (i.e.

bound or unbound). Emphatically, compartmental models also specify how the

tracer “moves” between compartments; for instance, a receptor-binding tracer

that is free may become bound to a receptor. This “movement” is described by

a so-called rate constant “k” which specifies the fractional rate of change of the

tracer concentration in one compartment, and has units of inverse time.

2.1 Compartmental Models: Two-tissue Model

In a two-tissue model, the tracer is taken up (K1) by the plasma (concentra-

tion Ca) into a second compartment (brain tissue; non-specifically bound receptor

with concentration C2). A fraction diffuses back (k2) into the plasma, and another

fraction (k3) moves further into a third compartment (brain tissue, specifically

bound receptor with concentration C3). Finally, the tracer is allowed to return

from the specifically bound chemical state to the non-specifically bound state (k4).

See figure 2.11 .

1 Compartmental model images from Marie Bieth, used with permission.
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Figure 2–2: Two-tissue, three-comparment kinetic model. The ligand is free to dif-
fuse between the blood and the free and bound states in the brain. The diffusion
rates are described by the constants K1, k2, k3 and k4.

The parameter of interest is the binding potential (BP) defined as BP = K1k3
k2k4

.

The two-tissue, three compartment model is governed by the following set of

differential equations:

dC2

dt
= K1Ca − (k2 + k3)C2 + k4C3

dC3

dt
= k3C2 −K4C3

(2.1)

In practice, C2 and C3 cannot be differentiated on the image, and we only have

knowledge of CT = C2 + C3. Solving for (equation 2.1) yields:

CT (t) = α1Ca(t)⊗ exp (α2t) + α3Ca(t)⊗ exp (α4t) (2.2)

where the αi are functions of the rate constants K1, k2, k3 and k4. To compute

the parameters of interest, equation (2.2) can be fitted to a given time-activity

curve (TAC), yielding estimates of the rate constants and there of BP. Note that
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TACs can be extracted voxel-wise from the reconstructed images, or from regions

as a whole. The two-tissue compartmental model is of limited practical use since

this method requires a measurement of Ca, the plasma tracer concentration as a

function of time. In practice, this is done by arterial blood sampling through the

length of the scan, which is uncomfortable and subject to error due to the compli-

cated analysis required of the blood sample. Still, the two-tissue compartmental

model is well established in the literature and is therefore a suitable benchmark

when developing simpler or more practical kinetic models.

2.2 Compartmental Models: One-tissue Model

Recall that in the two-tissue/three-compartment model, the tracer could exist

in two compartments corresponding to two chemical states: specifically bound

or non-specifically bound. When these two tissue compartments are practically

indistinguishable, (i.e. when the exchange between these two compartments are

sufficiently fast) the one-tissue model simplifies the two tissue model (see figure

2–3) to the following single differential equation:

dCT
dt

= K1Ca − k2CT (2.3)

which can be solved to obtain the following model of the time-activity curve:

CT (t) = K1Ca(t)⊗ exp (k2t) (2.4)

which can again be fitted to a given TAC to characterize it’s physiologically

relevant parameters. In this case, the binding potential BP is defined as K1

k2
. As
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with the two-tissue model, the one-tissue model suffers from the need to perform

arterial sampling for the length of the scan.

Figure 2–3: Two-tissue, two-comparment kinetic model. The ligand is free to dif-
fuse between the blood and the brain. The diffusion rates are described by the
constants K1 and k2.

2.3 Reference Tissue Models

Reference tissue models were proposed to overcome the need for arterial

blood sampling. The strategy here is to consider compartments corresponding to

functional or anatomical regions with useful physiological properties; a reference

region is defined as a region in which no specific binding occurs. In the reference

tissue model, the time course uptake of a radiotracer in a tissue of interest is

modeled in terms of its uptake in the reference tissue, assuming that the level of

nonspecific binding is the same in both tissues. The model is depicted in figure 2–4

(a).
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Figure 2–4: Reference tissue models. (a) The classic reference tissue model is
comprised of three tissue types and four compartments. The reference region is
assumed to be a region where no specific binding occurs. In contrast, both non-
specific and specific binding can occur in the brain compartment. (b) The sim-
plified reference tissue model (SRTM) is comprised of three tissue types and only
three comparments. It simplifies the former model by allowing the non-specific and
specific binding states to be indistinguishable.

The original reference tissue model is governed by the following differential

equations:

dCR
dt

= K ′1Ca − k′2CR
dC2

dt
= K1Ca − (k2 + k3)C2 + k4C3

dC3

dt
= k3C2 − k4C3

(2.5)

After sufficient time, the net tracer flux between the arterial blood and the non-

specific tissue compartment will be zero. The volume of distribution is defined as

the ratio between the equilibrium concentrations of a given tissue and the arterial

blood. By letting R1 = K1

K′1
and assuming that the volume of distribution is the

same in the reference region and in the non-specific compartment of the tissue of
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interest:

K ′1
k′2

=
K1

k2
(2.6)

equations (2.5) can be solved and an expression for CT can be derived in terms of

R1, k2, k3 and k4. Fitting a TAC to the model of CT allows for the estimation of

the non-displaceable binding potential:

BPND =
k3
k4

(2.7)

However, the reference model can be significantly simplified again assuming that

the free and non-specifically bound compartments are indistinguishable. This

model, known as the simplified reference tissue model (SRTM) is widely used to

model radiotracers that bind to brain receptors, such as [11C]raclopride binding

to D2/D3 dopamine receptors. The model is depicted in figure 2–4 (b) and is

governed by the following set of differential equations:

dCR
dt

= K ′1Ca − k′2CR
dC2

dt
= K1Ca − k2aCT

(2.8)

The key simplification is that the volume of distribution of the simplified and

non-simplified tissues of interest remain unchanged:

K1

k2a
=
K1

k2
(1 +BPND) (2.9)
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allowing a solution of equation (2.8) where CT depends on only three paramters:

R1, k2 and BPND:

CT (t) = R1CR(t) + k2

(
1− R1

1 +BPND

)
CR(t)⊗ exp

(
k2

1 +BPND
t

)
(2.10)

2.4 Implementation of SRTM: Basis Function Method

The goal in kinetic analysis is to fit a relevant mathematical model to a TAC

extracted from a relevant tissue of interest (normally, TACs are extracted from

voxels or homogeneous regions consisting in many voxels). Re-writing equation

(2.10) in a more tractable form, we have:

CT (t) = θ1CR(t) + θ2CR(t)⊗ exp (θ3t) (2.11)

where the θi are functions of the parameters R1, k2 and BPND. While equation

(2.11) is non-linear in the unknowns, given a fixed θ3, θ1 and θ2 can be estimated

using standard least squares. Gunn et al. [32] proposed the “basis function

method” (BFM) and defined a set of basis functions Bi(t) = CR(t) ⊗ exp(θ3it) in

order to re-write equation (2.11) into a linear equation for each basis function:

CT (t) = θ1CR(t) + θ2Bi(t) (2.12)

Equation (2.12) can then be solved using standard linear least squares for each ba-

sis function; the index i which minimizes the residual sum of squares is determined

by a direct search, and the associated parameters for this index (θ1, θ2 and θ3) are

obtained. A fast algorithm for the basis function method is described by Gunn et

al. which computes weighted least squares solutions by QR decomposition.
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2.5 Segmentation

A natural problem associated with kinetic fitting is that of segmentation.

Voxel-wise kinetic fitting using a reference tissue model requires a reference

region, and delineation of the reference region from a PET image is not a straight-

forward task. ROI-based kinetic fitting requires, in addition to the delineation

of the reference region, the delination of relevant ROIs. As discussed before,

conventional segmentation techniques rely on manual drawing of the ROIs on the

PET image itself or on co-registered anatomical images, or applying an automatic

segmentation strategy to the co-registered anatomical image. Both options suffer

from limitations; manually drawn ROIs are prone to user-dependency and poor

reproducibility, and co-registration with anatomical images is costly. For these

reasons, there has been an increased interest in automatic segmentation of PET

images using purely functional information. In this section we will outline several

popular segmentation algorithms for brain PET, and address their limitations.

2.5.1 k-means

The k-means is one of the simplest unsupervised clustering algorithms [33].

Given a set of observations (x1, x2, ..., xN), where each observation xi is a finite-

dimensional vector, the k-means algorithm seeks to partition the N observations

into K clusters, so as to minimize the objection function:

J =
K∑
j=1

N∑
i=1

∥∥∥x(j)i − µj∥∥∥2 (2.13)
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where
∥∥∥x(j)i − µj∥∥∥2 is the distance between a data point belonging to cluster

j and the cluster mean (also called the cluster “centroid”), µj. The objective

function is therefore often referred to as the “within-cluster sum of squares.” The

k-means algorithm is performed as follows:

while not converged do

Initialize the cluster centroids µj;

Assign each data point xi to the cluster j with the closest centroid µj;

Determine the new cluster centroids µj;

Iterate between steps 2 and 3 until the centroids no longer move;

end

Algorithm 2: k-means algorithm

Wong et al. [34] applied the k-means algorithm to dynamic PET and clustered

voxels based on TAC similarity (i.e. xi is a single voxel TAC). The application

showed only limited success: the algorithm was found to be highly sensitive to

initial cluster centroids, and the optimum number of clusters for cluster analysis is

not known a priori. In addition, “false kinetics” created by partial volume effects

and motion were wrongly assumed to belong to a single cluster. Lastly, no spatial

contextual information is used (for instance, neighbouring voxels have correlated

TACs) and, like other crude cluster analysis algorithms, it is highly sensitive to

noise.
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2.5.2 Fuzzy c-means

The fuzzy c-means (FCM) algorithm extends and improves the k-means

method by allowing a single data point to belong to more than one cluster;

associated with each data point is a set of membership levels. The membership

levels indicate the strength of association between the data point and each cluster;

the FCM algorithm is a means of determining these optimal membership levels.

The FCM algorithm seeks to minimize the objective function:

J =
K∑
j=1

N∑
i=1

umij
∥∥xi − µj∥∥2 (2.14)

where m is a real number greater than 1, uij is a matrix which contains the degree

of membership of xi in the cluster j, and µj is the centroid of cluster j. The

membership matrix uij has the additional properties that:

uij ∈ [0, 1], ∀i, j
K∑
j=1

uij = 1

0 ≤
N∑
i=1

uij ≤ N, ∀j

(2.15)

The objective function therefore differs from the k-means objective function

by the addition of the membership matrix uij and the m term. The m term is

called the “fuzzifier” and determines the level of cluster fuzziness: large values of

m result in smaller memberships uij and vice versa. It can be shown [35] that the

objective function can be optimized by iterative updates of the membership matrix

uij and the cluster centroids cj. The FCM algorithm has inherent advantages
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over the k-means algorithm for the segmentation of PET images [36]. Due to

motion and partial volume effects, single voxels often have contributions from

several tissue types. Using “fuzzy”’ techniques, which allow voxels to belong

to several groups, enables a more realistic model and therefore delivers more

meaningful clusters. However, FCM suffers from largely the same problems as the

k-means algorithm. Due to a disregard of spatial contextual information, the FCM

algorithm generally fails to segment images corrupted by noise. A comprehensive

study of PET brain image clustering methods found that the FCM algorithm

failed to satisfactorily segment dynamic [11C]raclopride data [37]. In particular, the

FCM algorithm failed to separate the striatum from the surrounding white matter,

and could not differentiate the cerebellum (the reference region for kinetic analysis

of [11C]raclopride data using the SRTM) from grey matter.

2.5.3 Gaussian Mixture Model

Gaussian mixture models (GMMs) model the observed data (x1, x2, ..., xN)

as independent realizations of a random vector distributed with a probability

density function given by a weighted sum of K component probability distribution

functions [38]. The relative probability of observing a value xi with respect to the

kth component probability distribution function is (assuming 1-dimensional data

for convenience):

fk
(
xi|θk

)
=

1√
2πσ2

k

exp
(xi − µk)2

2σ2
k

θk = (µk, σk)

(2.16)
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where µk and σk are the mean and standard deviations of the kth Gaussian

component probability distribution, respectively. Summing the component

distributions to obtain the complete model probability distribution function of the

observed data, we have:

f
(
xi|Φ

)
=

K∑
k=1

πkfk
(
xi|θk

)
(2.17)

where Φ = (π1, π2, ..., πK , θ1, θ2, ..., θK) are the model parameters to be estimated,

and the πk’s are called the “mixing proportions,” satisfying the conditions:

0 ≤ πk ≤ 1

K∑
k=1

πk = 1
(2.18)

GMM seeks to optimize the fit between the observed data and the complete model

by seeking the model parameters Φ that minimize the likelihood function:

L (Φ) =
N∏
i=1

f
(
xi|Φ

)
=

N∏
i=1

πk√
2πθ2k

exp
(xi − µk)2

2θ2k
(2.19)

It can be shown [38] that minimizing the ML estimate of the parameters can be

done in the Expectation-Maximization (EM) framework. Koivistoinen et al. [37]

found that EM clustering of real dynamic [11C]raclopride PET brain images based

on TACs performed better than FCM, successfully segmenting the striatum,

but was unable to distinguish the cerebellum and grey matter. Chen et al. [39]

applied a modified EM segmentation scheme to dynamic PET images with the

goal of automatic extracting of reference tissue TACs for kinetic modeling. They

included a Markov random field model (MRF) to provide a way to incorporate

38



2.5. SEGMENTATION

spatial contextual information between voxels, demonstrating increased robustness

to the intrinsic noise of dynamic PET. However, the number of clusters and the

parameters that control the spatial correlation imposed by the MRF model are

often somewhat ad hoc.
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CHAPTER 3
Image Registration

Medical image registration is the process of determining the correspondence

of features between images collected at different times or using different imaging

modalities [40]. These correspondences can be used to change the appearance of

one image so that it better resembles another, so that the pair can be combined,

compared and/or analyzed directly. In the following sections, we will review

several popular intra-modality registration algorithms (to be used for inter-subject

image registration), with particular emphasis on the demons algorithm, which is

used in this work.

3.1 Affine Registration

An affine registration is the simplest non-linear registration technique.

An affine transformation is any transformation such that parallel lines remain

parallel after being transformed. Affine transformations can therefore consist of

any combinations of scaling, rotation, shearing and translation. In practice, an

affine registration offers a global aligment between images. This may suffice for

some applications, such as monomodal intra-subject registration of different time

frames. For other applications, such as monomodal intersubject registration, affine

registrations are not sufficient, since they are incapable of accounting for local

differences between the images. In these cases, an affine registration is normally

done prior to deformable registration to ensure an adequate initialization. For
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3.1. AFFINE REGISTRATION

each point (x1, x2, x3) in an image, and affine mapping can be defined into the

coordinates of another space (x′1, x
′
2, x
′
3). This can be expressed in matrix notation

as x′ = S · x: 

x′1

x′2

x′3

1


=



s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

0 0 0 1


·



x1

x2

x3

1


(3.1)

The moving image M(p) is transformed to the image M ′(p) via the matrix S, such

that

M ′(p) = M(S · p) (3.2)

The matrix parameters sij can be estimated by optimizing a cost function. A

popular choice of cost function is the mean squared difference between images,

defined as:

E(F,M,S) =
∑
p

bi(S) =
∑
p

(M(S · p)− F (p))2 (3.3)

A simple choice for the minimization of the cost function E is the Gauss-Newton

algorithm [41]: starting with an initial estimate of the matrix s, it is iteratively

updated:

St+1 = St + δ (3.4)

with δ = −(JTJ)−1JTb, b being the vector of functions bi, and J the Jacobian

of b with respect to S and evaluated at St. An example of affine transformations

applied to a real time-summed [11C]raclopride image is shown in figure 3–1.

41



3.2. DEMONS ALGORITHM

Figure 3–1: Examples of different affine transformations applied to a real time-
summed [11C]raclopride image. (a) Original image, (b) translation, (c) rotation,
(d) scale, (e) shear, (f) combination of all previous transformations.

3.2 Demons Algorithm

The goal of the classical demons algorithm is to minimize the distance

between two images F (p) and M(s ◦ p), where F is a fixed image, M is a moving

image, p is the voxel and s is a spatial transformation. The distance is defined as:

Sim(F,M, s) =
1

2
‖F −M ◦ s‖2 =

1

2

∑
p

‖F (p)−M(s(p))‖2 (3.5)

In order to register the fixed and moving images, the distance needs to be opti-

mized over a given space of spatial transformations. However, a simple optimiza-

tion of Sim(F,M, s) over the space of non-parametric transformations leads to
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3.2. DEMONS ALGORITHM

an ill-posed problem with unstable solutions. The classical demons algorithm,

re-interpreted by Vercauteren et al. [42], aims to minimize instead the distance

S(F,M, s) by minimizing the global energy E defined by:

E(c, s) =
1

σ2
i

Sim(F,M, c) +
1

σ2
x

dist(s, c)2 +
1

σ2
T

Reg(s) (3.6)

where σi accounts for the uncertainty on the image intensity, σx accounts for the

uncertainty on point correspondences c, σT controls the amount of regularization

on the transformation, and c is a hidden variable called the ‘correspondence’.

Classically, we have Sim(c) = ‖F −M ◦ c‖2, dist(s, c) = ‖c − s‖ and Reg(s) =

‖∇s‖. The inclusion of the hidden variable c allows for an alternating iterative

optimization, between s and c, of the energy E: the first step solves for the

correspondences by optimizing 1
σ2
i
Sim(F,M, c) + 1

σ2
x
dist(s, c)2 with respect to

c, and with s given, by making a step from c = s. The second steps solves for

the regularization by optimizing 1
σ2
x
dist(s, c)2 + 1

σ2
T
Reg(s) with respect to s, and

with c being given. The solution of the second step, with Reg(s) = ‖∇s‖2, is a

simple convolution of the correspondence field c by a Gaussian kernel. The energy

E can be modified to include a fluid regularization term whose solution is also a

convolution with a Gaussian kernel, but applied directly to the update field u. The

classical demons algorithm is as follows:
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while E is not stationary do

Given s, compute update field u by minimizing

Ecorr(u) = ‖F −M ◦ (s+ u)‖2 +
σ2
i

σ2
x
‖u‖2 with respect to u ;

If using fluid-like registration, let u← Kfluid ? u ;

Let c← s+ u;

If using diffusion-like registration, let s← Kdiff ? c;

end

Algorithm 3: Demons Algorithm

To minimize Ecorr(u) we start with the approximation F (p)−M ◦ (s+ u)(p) ≈

F (p) −M ◦ s(p) + Jp.u(p) where Jp is the Jacobian of F (p) −M ◦ s(p), evaluated

at pixel p, and must be approximated. The energy Ecorr can then be rewritten in

matrix form:

Ecorr ≈ 1

2

∑
p

‖[ F (p)−M◦s(p)
0

] + [
Jp
σi(p)

σx
].u(p)‖2 (3.7)

Taking the gradient of Ecorr and setting it to zero, we need to solve at each pixel p

the following normal equations:

[ JpT σi(p)

σx
I ].[

Jp
σi(p)

σx
I ].u(p) = −[ JpT σi(p)

σx
I ].[ F (p)−M◦s(p)

0
] (3.8)

(Jp
T

.Jp +
σ2
i (p)

σ2
x

I).u(p) = −(F (p)−M ◦ s(p)).JpT (3.9)

44



3.2. DEMONS ALGORITHM

Applying the Sherman-Morrison formula1 to find the inverse matrix, we have:

u(p) = −F (p)−M ◦ s(p)
‖Jp‖2 +

σ2
i (p)

σ2
x

Jp
T

(3.10)

An example transformation s is shown in figure 3–2.

Figure 3–2: Example of a demons transformation applied to a uniform grid.

1 The Sherman-Morrison formula computes the inverse of a matrix A perturbed
by an outer product, uvT , of vectors u ad v. If A is an inveritble square matrix
then (A+ uvT )−1 = A−1 − A−1uvTA−1

1+vTA−1u
.
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3.3 Log-Domain Diffeomorphic Demons Algorithm

The algorithm discussed in the previous section returns a smooth displace-

ment, but it is not always diffeomorphic. However, for many applications the

inverted transformation is necessary. Like most spatial transformation spaces,

the space of diffeomorphisms do not form a vector space with respect to addi-

tion; i.e. adding two diffeomorphisms may result in non-invertibility. However,

diffeomorphisms can be smoothly composed and inverted.

An efficient computational framework for diffeomorphisms was proposed

in [43], using a Lie group structure that defines an exponential mapping from

the vector space of smooth stationary velocity fields to diffeomorphisms. The

main idea of the diffeomorphic log-demons is to represent the current spatial

transformation s as an exponential of a smooth velocity field v, i.e. s = exp(v)

and to search for an update field u on the Lie algebra (the vector space of velocity

fields). Then, the update step has the form s ◦ exp(u), i.e. exp(v) ◦ exp(u).

If a log-domain optimization is to be carried out, one needs to know whether

for any velocity fields v and u, there exists another velocity field w such that

exp(w) = exp(v) ◦ exp(u).

Making the assumption that the update velocity field u is small, a smooth

velocity field Z(v, εu) is desired such that

exp(Z(v, εu)) ≈ exp(v) ◦ exp(εu) (3.11)

where ε is used to emphasize that we are looking for an approximation valid for

small update fields εu but for arbitrary velocoty field v. By using the first terms
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of the Baker-Campbell-Hausdorff (BCH) formula, the authors in [44] showed that

there exists a valid approximation for small εu of the form

Z(v, εu) = v + εu+
1

2
[v, εu] + ... (3.12)

where the lie bracket [v, u] provides a velocity field defined at each pixel p by:

[v, u](p) = Jac(v)(p).u(p)− Jac(u)(p).v(p) (3.13)

The BCH approximation allows the update step s ← s ◦ exp(u) to be re-written

into a log-domain update v ← Z(v, u). To keep the same alternate optimization

approach as in the classical demon algorithm, the Gaussian smoothing is per-

formed directly on the velocity fields in the log-domain, and the diffeomorphic

log-demons algorithm is as follows:

while E is not stationary do

Given s = exp(v), compute update field u using equation (3.10);

If using fluid-like registration, let u← Kfluid ? u;

Let v ← v + u+ 1
2
[v, u];

If using diffusion-like registration, let v ← Kdiff ? v;

end

Algorithm 4: Diffeomorphic log-demons algorithm

An example of a diffeomorphic log-domains registration of two real [11C]raclopride

images is shown in figure 3–3.
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Figure 3–3: Example of log-domain diffeomorphic demons registration. An image
registered via affine registration (a) to the target (c) is non-linearly registered to
the target using the demons algorithm (b).
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CHAPTER 4
Atlas-Based Segmentation of HRRT Brain PET

The following chapter is largely based on a manuscript entitled “Radiotracer-

Specific Atlases for Automated Segmentation and Kinetic Analysis of [11C]raclopride

High Resolution Brain PET” authored by Philip Novosad, Paul Gravel and An-

drew J. Reader, submitted to Physics, Medicine and Biology (article reference

PMB-101213)

4.1 Introduction

Positron emission tomography can generate functional and quantitative dy-

namic images of tracer uptake in vivo. By segmenting the dynamic image into

regions of interest, regional time-activity curves can be extracted to estimate

kinetic parameters, which correlate to physiologically relevant parameters [45].

Despite the intrinsic noise and limited spatial resolution of PET, the accuracy of

ROI delineation is essential to ensure the extraction of relevant TACs. In practice,

segmentation of functional ROIs is performed manually by an expert on the PET

images, or structural ROIs are obtained by co-registration to segmented anatomi-

cal images [46]. Manually defined ROIs are prone to operator error and poor repro-

ducibility, whereas co-registration to segmented anatomical images necessitates the

use of a second imaging system, which is costly and time-consuming. In addition,

if the PET tracer uptake is limited to a small number of discrete regions (as in the

case of [11C]raclopride images), registration between PET and anatomical images
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may be inaccurate [47]. As a result, there has been an increased interest in unsu-

pervised segmentation of PET images, without anatomical knowledge, into regions

with homogeneous functional behaviour. Clustering algorithms, for instance, have

been applied with some success to dynamic PET images [34] [48] but still suffer

from the need for a priori information such as initialization and the optimal num-

ber of clusters. In addition, clustering techniques are often insensitive to spatial

information, such as the strong correlation between neighbouring voxels, making

them highly sensitive to noise. Conventional clustering techniques are mostly

unable to distinguish between regions with subtely different functional behaviour,

such as the grey matter and cerebellum of [11C]raclopride images [37], limiting

their usefulness to specific applications. Recently, segmentation approaches based

on radiotracer-specific PET atlases have been explored [47] [49] in which segmen-

tation is achieved by co-registration of the atlas with a source image (the image

to be segmented). These approaches have shown promising results compared to

conventional methods relying on co-registered anatomical images, while overcoming

the aforementioned limitations associated with clustering methods. These recent

efforts construct a template by voxel-wise averaging of PET images in a common

space. In contrast, the work presented here proposes the use of mean intensity and

mean shape three-dimensional (3D) radiotracer-specific brain atlases, constructed

using diffeomorphic (one-to-one and invertible) transformations. The term mean

shape is to be understood as an image that minimizes the distance between itself

and the individual images in the set, where distances are expressed in the space of

diffeomorphic transformations [50]. This approach has the distinct advantage of
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exploiting a highly appropriate PET-to-PET registration to the template, rather

than an MR-to-PET or other inter-modality registration. Dynamic PET images

can be segmented by registration of the summed image, obtained by summing

the dynamic PET frames, to the radiotracer-specific atlas. The segmented regions

can then be used to enable robust and fully automated regional kinetic analysis

using a reference tissue kinetic model. Because PET images are characterized by

functional contrasts, it is important to emphasize that our segmentation scheme

works by delineating functional regions; functional and anatomical regions cor-

respond only when the anatomical region shows homogeneous tracer kinetics.

Together with the proposed method, we present its validation by performing a

comprehensive simulation of a whole brain [11C]raclopride study, consisting of

twenty functionally and anatomically unique subject images, and assess its perfor-

mance on real dynamic [11C]raclopride images from the high resolution research

tomograph (HRRT) [6].

4.2 Methods

4.2.1 Atlas-Based Segmentation and Kinetic Analysis

The method for automated atlas-based segmentation and kinetic analysis,

given an image to be segmented (the source image) and a labeled template (the

atlas), is described below. Construction of the template and corresponding atlas is

described later in section 4.2.4.

Intensity Normalization As a pre-registration step, the source and template

images are normalized to account for differences in injected tracer uptake. Both

the affine and non-linear registration algorithms used in this work are based on a
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sum of squared differences (SSD) optimization, making this step crucial for high

quality registration and segmentation results. In this work, histogram matching

between the source and template images is performed (256 histogram bins), with

only voxels contained within the brain considered when forming the histograms.

Brain voxels were masked by thresholding the image at the mean intensity level

of all voxels of the image (background voxels included). Dynamic images are time

summed prior to intensity normalization.

Atlas Registration The (moving) atlas is then co-registered to the (fixed)

source image using an initial affine registration followed by a non-linear log-

domain diffeomorphic demons (LDDD) registration (detailed in section 2.3). The

affine registration is based on the optimization of a 12-parameter transform (3

translations, 3 rotations, 3 scales and 3 shears) with respect to an SSD objective

function. A multiresolution strategy (down-sampling factors of 4, 2 and 1) is

used for both the affine and LDDD registrations. After registration, the atlas

label set is spatially transformed with the found deformation field, completing the

segmentation of the source image. A nearest neighbour interpolation scheme is

used to preserve the integer label values.

Kinetic Analysis For quantitative kinetic analysis of dynamic [11C]raclopride,

a reference tissue model has been shown to be valid and is widely used to avoid

arterial sampling [51]. From the image segmentation, a set of average regional

TACs are extracted by voxel-wise averaging of TACs in each segmented region

of the dynamic image. Subsequently, regional binding potential estimates are

calculated using the simplified reference tissue model with the basis function
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method (SRTM-BFM) [32] with 100 basis functions, (0.001s−1 < θ3 < 0.01s−1) and

with the cerebellum as the reference region.

4.2.2 Simulations

To evaluate the performance of the proposed method, we simulated a 3D

[11C]raclopride PET study by generating a total of twenty realistic dynamic brain

images. The construction of each simulated image required an anatomical model

of the brain (a realistic labeled 3D brain image) and a unique set of regional

TACs (each set describing the dynamic behaviour of the radiotracer in specific

anatomical structures) for each brain, as shown in figure 4–1. Twenty unique sets

of regional TACs were extracted from twenty segmented dynamic [11C]raclopride

images (image acquisition details given in the following section) by computing

the mean TAC in each region; regions were defined by co-registration of the time-

summed dynamic PET images to subject-specific T1-weighted magnetic resonance

(MR) images. The MR images were automatically segmented via the CIVET

pipeline [52] [53] [54] [55] into structural regions corresponding to grey matter,

white matter, the cerebellum, and the left and right caudate and putamen.

The anatomical model is based on the numerical phantom from Rahmim et

al. [56]. The phantom is a 256×256×207 3D brain image containing integer-valued

labels representing the cerebellum, white matter, grey matter, and the left and

right putamen and caudate. The twenty sets of tissue TACs were each incorpo-

rated homogeneously into the corresponding regions defined on the numerical

phantom to yield twenty dynamic brain phantoms, each with twenty-six time

frames.
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Figure 4–1: The original numerical phantom (anatomical model) and a sample set
of regional TACs extracted from a real dynamic [11C]raclopride image. Left: orig-
inal numerical phantom with seven labeled regions of interest. Right: example of
a typical set of regional TACs extracted from real dynamic [11C]raclopride images
from the HRRT scanner (GM: grey matter, WM: white matter, Cer: cerbellum,
LP: left putamen, RP: right putamen, LC: left caudate, RC: right caudate).

Simulating Variation in Anatomy and Position To simulate realistic variability

among brain scans, each of the twenty dynamic brain phantoms were time summed

and co-registered with a different time-summed [11C]raclopride image of a healthy

subject. A global nine-parameter rigid registration (3 scales, 3 rotations and 3

translations) followed by a non-linear registration using the ANIMAL methodology

[55] were used, both based on a cross-correlation objective function. The resulting

transformations were then applied (i) to each frame of the dynamic phantom, and

(ii) to the original numerical phantom, yielding (i) a unique deformed dynamic

phantom, and (ii) the labels corresponding to that dynamic phantom (see figure

2). A nearest-neighbor interpolation scheme was used to preserve the integer
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label values of the anatomical model. It is important to emphasize that we

used different registration methods (and objective functions) for (i) creating

the phantom images and for (ii) atlas-based segmentation (LDDD, based on

optimization of an SSD objective function), in order to perform a more realistic

validation study.

Dynamic Phantom Reconstruction Dynamic sequences of sinograms were

generated by forward projecting each image of the dynamic sequence into a

fully 3D set of 2209 sinograms (each of 256×288 bins, radial bin size of 1.21875

mm). Noise was introduced in each sinogram by drawing counts from the Poisson

distribution with the mean as the float value in the sinogram bin. The sum of the

mean sinogram counts was chosen to be the same as a typical one hour 370 MBq

[11C]raclopride scan on the HRRT (a mean total sinogram count of 450×106).

Attenuation effects were simulated by generating attenuation factor sinograms

from a forward projection of a 3D linear-attenuation coefficient distribution,

assuming the brain to be equivalent to water for attenuation of 511 keV photons.

Resolution modeling [57] [30] was simulated by first degrading the resolution

prior to forward projecting and introducing noise. The kernel used for resolution

recovery was slightly sharper than the kernel used for resolution degradation

to avoid creating Gibbs’ artifacts in the reconstructed images. Both kernels are

defined by:

h(r) = N

[
exp

(
r2

2σ21

)
+ p× exp

(
r2

2σ22

)]
(4.1)

where r2 = x2 + y2 + z2. The values for both kernels are shown in table 4–1.
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Kernel σ1 (mm) σ2 (mm) ρ FWHM (mm)
Resolution Degradation 1.05 2.7 0.07 2.2
Resolution Recovery 0.9 2.5 0.05 1.7

Table 4–1: Parameters used for resolution modeling simulation. The parameters
used for resolution recovery are the same as those used on the HRRT scanner.

Twenty different noisy sinogram datasets were then reconstructed using 10

iterations of the Ordinary Poisson Ordered Subset Expectation Maximization

(OP-OSEM) algorithm with 16 subsets to obtain twenty simulated [11C]raclopride

dynamic brain images, each with 26 time frames (see figure 4–2).

Ground Truth Binding Potential Due to the protocol used to simulate and

reconstruct the dynamic phantoms, regional BP estimates obtained by fitting the

dynamic phantoms (figure 4–2(b)), using the ground truth regions, differ from

the regional BP estimates obtained by fitting the corresponding reconstructed

dynamic phantoms (figure 4–2(c)) using the same ground truth regions. To

assess the performance of our proposed work independently of any particular

reconstruction protocol, we define the ground truth BP as those obtained by fitting

the reconstructed dynamic phantoms using the ground truth regions, with BP

calculations performed as described in section 4.2.1. Some key characteristics of

the twenty simulated images are detailed in table 4–2.

4.2.3 Real Images

A set of twenty real dynamic [11C]raclopride images were used. The dynamic

images were acquired on the HRRT scanner over 60 minutes with typical frame
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BP
ROI Min Max Mean SD
Grey Matter 0.173 0.327 0.257 0.046
White Matter 0.366 0.616 0.469 0.076
Cerebellum — — — —
Left Putamen 2.627 5.001 3.940 0.576
Right Putamen 2.660 4.809 3.847 0.504
Left Caudate 1.493 4.021 3.055 0.623
Right Caudate 1.792 3.839 3.140 0.556

Volume (cc)
ROI Min Max Mean SD
Grey Matter 573.723 867.758 697.793 68.161
White Matter 366.276 538.700 443.456 41.172
Cerebellum 115.148 176.692 141.361 15.246
Left Putamen 3.213 4.661 3.883 0.413
Right Putamen 2.748 4.452 3.495 0.455
Left Caudate 4.622 7.210 5.661 0.693
Right Caudate 3.785 5.491 4.597 0.459

Table 4–2: Characteristics of the twenty simulated [11C]raclopride images used
for validation. BP estimates are obtained by fitting regional TACs extracted from
the reconstructed PET images using the corresponding ground truth regions. Vol-
umes are reported in cubic centimeters (cc). Min: minimum, Max: maximum, SD:
standard deviation.
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Figure 4–2: Representative sample of two simulated 3D [11C]raclopride images (one
transverse slice shown from each image). (a) Spatially transformed ground truth
numerical phantom defining true regions. (b) Three time-frames (5, 10 and 15)
of the spatially transformed dynamic phantom corresponding to ground truth im-
age. (c) Corresponding reconstructed time-frames. (d) Timesummed reconstructed
dynamic image of all twenty-six time-frames.

lengths (6×30s, 7×60s, 5×120s and 8×300s). The images were reconstructed using

10 iterations of the OP-OSEM algorithm [58] with 16 subsets.
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4.2.4 Atlas Construction

Templates are constructed using the methodology described by Lombaert et

al. [59] and based on the work of Guimond et al. [60], using the LDDD algorithm.

In this method, an arbitrary initial reference image iteratively converges towards

the mean intensity and mean shape of all the images in the dataset; a “mean shape

image” is to be understood as an image that minimizes the differences between

itself and the images in the set, where differences are expressed in the space of

diffeomorphic transformations. For a set of 3D brain images (or time-summed

dynamic images) I1, . . . , IN in the affine space of an arbitrary reference image,

the atlas template R can be expressed as:

R(t+1) =

 1

N

N∑
i=1

Ii ◦ exp vi

 ◦
− 1

N

N∑
i=1

vi

 (4.2)

where vi is the stationary velocity field of the warping from Ii to the current

reference volume, and ◦ is the composition function. Explicitly, for a set of N

brain images in the affine space of the reference brain image R(t), a non-linear

LDDD registration between each (moving) image and the (fixed) reference image

is performed. The registered brain images are then intensity-averaged in the

shape of the reference image, and the transformation updating the reference image

towards the mean shape of all the images is computed (using the negated velocity

fields) and applied to yield the reference image for the next iteration, R(t+1) (see

figure 4–3). The method produces practically unbiased (independent of the initial

reference image) templates and only a few iterations are required to converge to

a stable average image. It should be emphasized that all steps and iterations of
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the algorithm are fully automated and require no user interaction. In practice,

four iterations were sufficient to ensure that the average image converged to a

stable estimate. Since the LDDD algorithm is based on the optimization of an

SSD-based energy function, and applied to PET images which may have different

injected dose, histogram matching between the images and the reference image

(256 histogram bins) was performed prior to the estimation of each transformation.

The transformations were then applied to the original images, to preserve the

original intensity values. Finally, the constructed template is manually labeled (as

described in section 4.2.5) into functional regions corresponding to the left and

right caudate and putamen, and the cerebellum.

4.2.5 Manual Segmentation

Manual segmentations were performed using the MNI Display software (Mon-

treal Neurological Institute, Canada, www.bic.mni.mcgill.ca/ServicesSoftware) that

allows for manual painting of individual image slices from three orthogonal views.

Dynamic images were segmented on time summed images, obtained by summation

of all dynamic PET frames. The quality of the manual segmentations was verified

by an experienced nuclear medicine physician.

4.2.6 Segmentation Quality Metrics

Letting A and B denote two image segmentations, the Dice similarity co-

efficient (DSC), which quantifies the similarity of the two segmentations for a

particular segmented region is defined as:

DSC = 2× n(A ∩B)

n(A) + n(B)
(4.3)
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Figure 4–3: Construction of average 3D brain template (simulated data shown). A
set of images (column 1) in the affine space ofan arbitrary reference image are non-
linearly transformed into the shape of the reference image (column 2) using the
LDDD registration algorithm (dashed blue arrows). The registered images (column
3) are intensity averaged in the shape of the reference image (grey arrows, column
4) and the transformation updating the image towards the mean of all images is
computed and applied (black arrow). Finally, the resulting image is used as the
reference image for the next iteration (green arrow).

where ∩ is the intersection of the two regions, and n() returns the number of

voxels in a region. The second and third metrics are the percentage error (%Error)

and the percentage absolute error (%Abs.Error) on regional BP estimates using an

image segmentation:

%Error = 100%× BPs −BPt
BPt

(4.4)

%Abs.Error = 100%×|BPs −BPt|
BPt

(4.5)
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where BPt is the true BP of a region and BPs is the estimated BP using the

image segmentation. As for the DSC metrics, the (%Error) and (%Abs.Error)

metrics are defined for each region and image; each image has distinct ground

truth regions and ground truth regional BP values.

4.3 Experiments

4.3.1 Simulation Validation

For the simulation study, we compared our atlas-based method to a suitable

conventional method. The conventional method for segmentation is defined by

manual segmentation of the summed PET images, obtained by summing the

dynamic PET images over all time frames. We compared manual segmentation

with our atlas-based method using the segmentation quality metrics described

in section 4.2.6. The manual segmentation of each simulated image involved

identifying the left and right caudate and putamen, and the cerebellum, on the

time-summed image.

From the set of twenty simulated dynamic images, an atlas was generated (as

described in section 4.2.4) from ten randomly selected “training subjects”, using

the time-summed images . The atlas (labeled template) was then co-registered to

each of the remaining ten “test subjects” for segmentation and kinetic analysis.

The experiment was repeated five times (each time randomly selecting the training

and test subjects, and manually labeling the resulting template), resulting in five

sets of ten segmented images, each image with four regional BP estimates.
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4.3.2 Real Data

Without a ground truth image defined, we assessed the performance of

atlas-based segmentation visually. Secondly, we assessed the correlation between

(i) regional BP estimates from TACs obtained by functional ROIs using atlas-

based segmentation, and (ii) regional BP estimates from TACs obtained by

functional ROIs using manual segmentation. From the set of twenty real dynamic

[11C]raclopride images, fifteen training subjects were selected to build a template.

Functional ROIs corresponding to the left and right putamen and caudate, and the

cerebellum, were manually labeled on the template. The atlas was co-registered to

each of the remaining five test subjects for segmentation and kinetic analysis.

4.4 Results

4.4.1 Simulation Validation

Figure 4–4 depicts a typical atlas derived from 10 simulated training subjects

with manually defined labels.

Figure 4–4: (a) Transverse slice of a [11C]raclopride atlas with corresponding
manually-defined labels (b), generated from simulated data. (c) Sagittal slice of
the same [11C]raclopride atlas with corresponding labels (d).
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Figure 4–5 compares typical segmentation results on a single simulated test

subject. Visually, both the atlas-based and manualy segmentations are satisfactory.

Figure 4–5: Segmentation of a typical simulated image. (a) Typical simulated
image, (b) truel labels from the ground truth, (c) atlas-based segmentation, (d)
manual segmentation.

The segmentation results were compared to the ground truth regions using the

DSC metric. The distributions of DSCs over all ROIs (cerebellum, left and right

caudate and putamen) are shown in the top panel of figure 6, for each experiment

and for both segmentation methods: atlas-based segmentation and manual

segmentation. To enrich the statistics for our analysis, we combined the data

from the five experiments in order to assess the performance of each segmentation

method at the ROI level. This step is justified because the distributions of DSCs

vary only insignificantly between experiments. The bottom panel of figure 4–6

depicts the distributions of DSCs for each ROI and each segmentation method
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when considering all five experiments together. The data are summarized in table

4–3.

Figure 4–6: Top: distributions of DSCs over all ROIs for each of the five exper-
iments and for two image segmentation methods: atlas-based segmentation and
manual segmentation. Each distribution consists of fifty DSCs (ten segmentation
images, each image with five ROIs). The upper and lower bounds of the boxes
represent the 25th and 75th percentiles of the distribution. The whiskers extend
to the most extreme data points, and the black circle represents the mean DSC
of the distribution. Bottom: distributions of DSCs when all five experiments are
considered together for each ROI (L: left, R: right). Each distribution contains
fifty DSCs.
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For each experiment, atlas-based segmentation yielded superior mean DSCs

across all ROIs when compared to manual segmentation. At the ROI level, mean

DSCs from atlas-based segmentations were superior for the left and right caudate

and putamen (mean DSC ≥ 0.881 for all ROIs) compared to manual segmentation

(mean DSC ≥ 0.869 for all ROIs). Manual segmentation of the cerebellum (mean

DSC = 0.931 ± 0.007) performed comparably to atlas-based segmentation (mean

DSC of 0.930± 0.003).

For each segmented image, the regional BP of the left and right caudate and

putamen were calculated using TACs extracted from the image segmentations. Re-

gional BP values were compared to the ground truth BP values using the %Error

and %Abs.Error metrics. The top panel of figure 4–7 depicts the distributions of

%Error values on BP estimates over all ROIs for each experiment. To assess the

%Error at the ROI level, we again combined the data from the five experiments.

The bottom panel of figure 4–7 depicts the distributions of %Error on BP esti-

mates for each ROI when all five experiments are considered together. The data

are summarized in table 4–3.

For each experiment, atlas-based segmentation achieved both lower %Error

and lower%Abs.Error values across all ROIs when compared to manual segmen-

tation (%Abs.Error ≤ 3.364 for all experiments using atlas-based segmentation,

%Abs.Error ≤ 5.532 for all experiments using manual segmentation). At the ROI

level, %Error values on regional BP estimates were less negatively biased when us-

ing atlas-based segmentation compared to manual segmentation. Using atlas-based

segmentation for regional BP calculations also achieved reduced %Abs.Error values
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Figure 4–7: Top: distributions of %Error values over all ROIs for each of the five
experiments. Each distribution consists of forty %Error (ten segmented images
each with four regional BP estimates). The upper and lower bounds of the boxes
represent the 25th and 75th percentiles of the distribution. The whiskers extend
to the most extreme data points, and the black circle represents the mean %Error
of the distribution. The mean %Abs.Error of each distribution is plotted with the
black cross. Bottom: distributions of %Error values over all five experiments for
each ROI (L: left, R: right). Each distribution contains forty %Error values.

for all ROIs with the exception of the left putamen, where manual segmentation

(%Abs.Error = 2.714 ± 1.770) performed comparably to atlas-based segmentation

(%Abs.Error = 2.608 ± 1.157). Table 4–3 summarizes the results of the ROI level
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Mean DSC Mean %Error Mean %Abs.Error

Cerebellum Atlas 0.930 (0.007) — —
Cerebellum Manual 0.931 (0.003) — —
L Putamen Atlas 0.891 (0.009) -2.493 (2.073) 2.714 (1.770)
L Putamen Manual 0.884 (0.010) -2.583 (1.214) 2.603 (1.157)
R Putamen Atlas 0.881 (0.010) -2.993 (3.339) 3.222 (2.006)
R Putamen Manual 0.869 (0.014) -6.976 (1.982) 6.976 (1.982)
L Caudate Atlas 0.892 (0.014) 0.022 (3.018) 2.334 (1.884)
L Caudate Manual 0.891 (0.013) -3.069 (2.830) 3.452 (2.337)
R Caudate Atlas 0.887 (0.020) -0.872 (4.043) 3.423 (2.273)
R Caudate Manual 0.877 (0.015) -7.655 (2.411) 7.655 (2.411)

Table 4–3: Summary of results from ROI level analysis. Mean DSC, %Error and
%Abs.Error are reported over fifty images segmentations for each image segmenta-
tion method. Standard deviation is shown in parentheses.

Atlas Segmentation Manual
Mean DSC 0.896 (0.022) 0.890 (0.024)
Mean %Error -1.584 (3.189) -5.071 (3.144)
Mean %Abs.Error 2.923 (2.022) 5.173 (2.972)

Table 4–4: Overall performance of each image segmentation method. Mean DSC,
%Error and %Abs.Error are reported over fifty images segmentations and all ROIs
for each image segmentation method. Standard deviations are shown in parenthe-
ses.

analysis: the mean DSC, %Error and %Abs.Error is shown for each ROI and for

each image segmentation method, when considering all five experiments together.

To compare the overall performance of the three methods, we combined all the

data from each method (five experiments and all ROIs) to assess the overall mean

DSC, %Error and %Abs.Error. These data are shown in table 4–4.

Overall, atlas-based segmentation performed only slightly better than man-

ual segmentation in terms of regional DSC, but markedly better than manual
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segmentation in terms of regional BP calculations using TACs extracted from the

segmented regions. This apparent discrepancy can be explained by considering

that manual segmentation of the striatal regions (caudate and putamen) on aver-

age slightly overestimated the volume of interest (percentage volume difference of

4.9 ± 8.2), while atlas-based segmentation of the same regions on average slightly

underestimated the volume of interest (percentage volume difference of −2.7± 8.5).

Overestimating the volume leads to the inclusion of neighbouring low-intensity

voxels in the segmented regions, causing more negatively biased regional BP

values.

4.4.2 Real Data

Figure 4–8 depicts the atlas derived from the training set consisting of fifteen

real [11C]raclopride images, with manually defined labels corresponding to the left

and right putamen and caudate, and the cerebellum.

Figure 4–8: (a) Transverse slice of the [11C]raclopride atlas with corresponding
labels (b). (c) Sagittal slice of [11C]raclopride atlas with corresponding labels (d).

The atlas was registered to five real time-summed dynamic [11C]raclopride

images for segmentation and subsequent regional BP calculations. Segmentation
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of a real [11C]raclopride image is shown in figure 4–9, for visual comparison of

atlas-based and manual segmentation approaches.

Figure 4–9: Visual comparison of atlas-based segmentation (b) with manual seg-
mentation (c) of a typical real time-summed dynamic [11C]raclopride images into
(a) functional regions corresponding to the cerebellum, and left and right caudate
and putamen.

The correlation between regional BP values derived from (i) atlas-based

segmentations and (ii) manual segmentations is shown in figure 4–10. For refer-

ence, the correlation between regional BP estimates derived from the same two

segmentation approaches are also shown for the simulated data for each of the five

experiments.
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Figure 4–10: Correlation between regional BP values obtained using TACs derived
from manual segmentations and atlas-based segmentations, for both simulated and
real [11C]raclopride data. Plots from simulated data each contain forty BP values
(ten segmented images). The plot from real data contains twenty BP values (five
segmented images). The solid blue line is the reference line of zero intercept and
unity slope and the dashed black line is the linear line of best fit.

Correlations between regional BP values from manual segmentations and

atlas-based segmentations are excellent for both simulated and real [11C]raclopride

data, with linear correlation coefficients r greater than or equal to 0.973 in all

cases. Using real data, the linear correlation coefficient is comparable to that

obtained using simulated data and shows the same trend (regional BP values from

atlas-based segmentations tend to be greater than those obtained from manual

segmentation), corroborating the results of the simulation study.
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4.5 Discussion

This work proposes and validates the performance of a fully automated

radiotracer-specific atlas-based segmentation and kinetic analysis approach using

simulated and real [11C]raclopride PET image data from the HRRT scanner. In

this approach, segmentation is achieved by a fully automated one-step registration

of a radiotracer-specific atlas with a given image, and the segmented regions

are used to extract regional TACs for kinetic analysis using a reference tissue

model. Importantly, the atlas template is an unbiased mean shape image, derived

from diffeomorphic transformations, making it highly suitable for diffeomorphic

registration to any given PET image. As an initial validation of the atlas-based

image processing protocol, we applied it to a set of twenty simulated 3D dynamic

[11C]raclopride images, each with unique anatomy and unique dynamic functional

behaviour. Considering all ROIs and all five experiments, the overall performance

of atlas-based segmentation exceeded manual segmentation in terms of DSC (with

respect to the ground truth regions) and %Error (with respect to ground truth

regional BPs) on regional BP estimates derived from the image segmentations.

At the ROI level, atlas-based segmentation performed either comparably to,

or out-performed manual segmentation in terms of both the DSC and %Error

metrics. A preliminary study on real [11C]raclopride data using five dynamic

images corroborated the simulation validation study, showing excellent correlation

between regional BP values derived from TACs extracted from either manually

defined or atlas-segmented ROIs.
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These findings are consistent with our expectation that manual labeling of a

high contrast average template is prone to less ambiguity than manual labeling

of a single noisy image, and that the propagation of labels from the atlas to a

given noisy image via co-registration is therefore a more reliable approach for

image segmentation. Importantly, our proposed method overcomes two important

limitations associated with manual segmentation: (i) a significant inter- and

intra-operator dependency and (ii) significant time requirement. Concerning the

first limitation, given a labeled template, our proposed atlas-based method yields

fully deterministic segmentations and regional BP values. In addition, we expect

that manual segmentation of a high contrast average template is prone to less

user dependency than a noisy single image. Concerning the second limitation,

manual segmentation of a typical 3D [11C]raclopride image into functional regions

corresponding to the cerebellum and left and right caudate and putamen required

on average over an hour of time. On the other hand, our proposed method requires

only a single manual segmentation of the average template, and reliable and

accurate segmentation and kinetic analysis of a given image can then be performed

in minutes, offering a drastic reduction in required time.

We noted a particularly accurate atlas-based segmentation of the cerebellum

(mean DSC of 0.930 ± 0.007 using simulated data, compared to ground truth

regions). These results indicate that atlas-segmented cerebellar regions can be used

to automatically and reliably extract the reference region TAC of [11C]raclopride

images for a voxel-level parametric fit with a reference tissue kinetic model,

which makes no assumptions about homogeneity of the functional regions. This is
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particularly important since it has been shown that conventional cluster analysis

methods for segmentation perform poorly when segmenting subtlety different

functional regions (such as the grey matter and cerebellum for [11C]raclopride

images) [37]. In contrast, for cases in which the functional regions are known to be

adequately homogeneous, region-based kinetic analysis offers benefits in the form

of a reduced impact of noise, and atlas-based segmentation of these regions should

prove beneficial.

One limitation of the current work is that validation was performed on

images of healthy subjects. In the clinic, for instance, [11C]raclopride is routinely

used for the differentiation of Parkinsons disease from atypical parkinsonian

symptoms [61]. [11C]raclopride images of such patients are characterized by a

pronounced increase (as in early Parkinsons disease), decrease, or lack of change

in tracer uptake confined to the striatal regions [62]. We therefore expect that an

intensity normalization procedure prior to registration between the radiotracer-

specific atlas and a given image will suffice to ensure a reliable registration.

Indeed, recent work using radiotracer-specific has shown that a radiotracer-specific

template derived from healthy subjects is a suitable registration target for images

derived from patients with suspected parkinsonian syndrome [47].

Finally, the proposed method can in principle be extended to work with

PET images derived from other radiotracers; no assumptions about the specific

distribution of the tracer was made in this work.
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4.6 Conclusion

We have demonstrated that radiotracer-specific PET atlases can be used for

fully automated segmentation and regional BP estimation of of high resolution

dynamic [11C]raclopride PET brain images, offering comparable performance to

manual segmentation in terms of regional DSC, and improved performance in

terms of the error on regional BP estimates. Atlas-based segmentation of PET

brain images offers distinct advantages over conventional methods for image

segmentation (such as cluster analysis and manual segmentation) by non-linear

registration between a single PET image and a highly suitable PET atlas. Our

proposed method requires no user intervention or anatomical images, making it a

practical tool for automated analysis of PET images.
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Appendix

Proof that a Poisson random variable conditioned on its sum is a multinomial

distribution

Let Zi = Zi1, Zi2, ..., ZiJ be a hidden random vector from a Poisson distribu-

tion with parameters λi1, λi2, ..., λiJ . The joint probability mass function of the zij

(a noisy realization of the random vector Zi) is given by (via Poisson statistics):

pZi
(zi) =

J∏
j=1

e(−λij)
λ
zij
ij

zij!
= e−

∑
j λij

λ
∑
j zij

ij

zi1!zi2! ... ziJ !
(4.6)

Note that the sum mi, being a sum of independent Poisson random variables, is

itself a Poisson random variable. Let mi be a noisy realization of Poisson random

variable Mi with parameter m̄i =
∑

j λij such that P (Mi = mi) =
e
−

∑
j λij(

∑
j λij)

mi!
.

Now we have:

P [(Zi1 = zi2, ..., ZiJ = ziJ) ∩ (Mi = mi)] =

 pZi
(zi) if

∑
j zij = mi

0 if
∑

j zij 6= mi

(4.7)

therefore the conditional distribution of the zij for a given i can be written:

pZi
(zi|M = mi) = P [(Zi1=zi2,...,ZiJ=ziJ )∩(Mi=mi)]

P (M=mi)

= mi!
zi1!zi2! ... ziJ !

(
λij∑
j λij

)∑
j λij (4.8)

which is the multinomial distribution with N = mi and Pi =

(
λij∑
j λij

)
.
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