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Abstract

Computational neuroanatomy is an exciting new area where digital tools are used
with great advantage in the analysis of structure and function of the brain. One
major area of research in this field involves automatically creating computerized rep-
resentations of the brain which are in a form suitable for neuroanatomic analysis. The
principle drawback of contemporary methods of generating these digital models is the
incompleteness and ambiguity of the input data, which is typically under-sampled
relative to the features of interest. A method is presented here for creating surface-
based models of neuroanatomy that address the data incompleteness issue with an
integrated combination of two model-based approaches. The first approach involves
applyving proximity and self-intersection restrictions on surfaces in order to create a
plausible neuroanatomical model in the face of data with topologies inconsistent with
medical knowledge. The second approach involves identifving multiple surfaces si-
multaneously, with inter-surface constraints, in order to use general neuroanatomical
information to correct areas where the data is incomplete or ambiguous. The overall
method is one of deforming a set of polvhedral meshes. with the above constraints
and others incorporated into an objective function, which is minimized to find the
best fit of a model to the data. Validation of this method on simple phantoms as well
as in the task of segmentation of human cortical surfaces is demonstrated. Discussion

of limitations and future work is presented.



Resumeé

Le neuroanatomie informatique est une nouvelle sphere d’activité ot des outils infor-
matiques sont employés avantageusement dans l'analyse de la structure et du fonc-
tionnement du cerveau. Un domaine de recherche important de cette discipline se
consacre & la création automatique de représentations numeriques du cerveau sous une
forme qui couvient a 'analyse neuroanatomique. La lacune majeure des méthodes
contemporaines pour génerer de tels modeles numeriques est la nature incompleéte et
ambigué des données, qui sont typiquement sous-échantillonnées par rapport aux car-
actéristiques pertinentes. Une méthode neuroanatomique. servant a créer des modeles
basés sur des surfaces, et s’addressant a ce probleme d’inachévement des données
en intégrant deux techniques basés sur des modeéles, est présentée ici. La premiére
technique implique l'application de contraintes de proximité et d’auto-intersection
sur les surfaces en vue de créer un modeéle neuroanatomique plausible lorsque con-
fronté a4 des données dont la topologie est incompatible avec le savoir médical. La
deuxiéme technique implique la création simultanée des surfaces multiples, régies par
contraintes inter-surfaces, dans le but d’exploiter de I'information neuroanatomique
génerale pour corriger les régions ou les données sont incompletes ou ambigués. Glob-
alement la méthode consiste a déformer un ensemble de maillages polyhédriques, ou
les contraintes énumérées ci-haut et autres sont intégrées dans une fonction objective,
qui est minimisée en vue d’obtenir la meilleure approximation des données par les
modéles. La validation de cette méthode sur de simples mannequins (“phantoms”),

ainsi que la segmentation de surfaces corticales humaines sont démonstrées. Une



‘ discussion des limites de la méthode et du travail & venir est également présentée.
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Chapter 1

Introduction

Since the advent of digital processing methods, there has been an increasing number
of techniques for digital acquisition of measurements of physical objects, based on
such modalities as visible and invisible light, heat. magnetic fields, radio waves, and
many other methods covering almost the entire energy spectrum. The vast quantity
of information generated often precludes the use of all but automated methods for
processing this data. In general. the raw data from the various sensors must be trans-
formed into more convenient representations and structured in ways that facilitate
advanced digital processing and analysis. This general problem of information trans-
formation and representation manifests itself in many different applications, each with
its own specific variations. One particular case is a large set of applications which
requires the transformation of three dimensional density information into structural
representations of three dimensional objects.

Within the domain of medical imaging, magnetic resonance imaging, known
as MRI or MR imaging, is a prominent method of acquiring structural information
about organisms in a non-destructive way. However, the raw data acquired constitutes
a very low level representation of the information, with various sources of errors in the
signal. In order to perform advanced processing, the MR image must be transformed

into some digital representation that can be related to the wealth of anatomical



information that is available from other sources, notably textbooks and experienced
anatomists.

This document constitutes a doctoral dissertation in the field of computer science,
with specific application to the domain of computational neuroscience. The problem
being addressed is that of automatically generating digital models of neuroanatomical
structures from three dimensional images such as MRI. One of the outstanding prob-
lems in this large research area is the question of how to respond to the non-optimality
of the input data. which is noisy. under-sampled, and incomplete. Some contempo-
rary methods of creating digital models are predominantly data driven, which is
insufficient for automatic use due to the inaccuracy of the input data. Other more
successful methods attempt to use model-based constraints to fill in the information
missing in the data, but the facilities provided for incorporating model information
are rather limited. A new method is presented here which is shown to provide im-
proved neuroanatomical modeling of medical images. principally by integration of two
model-based approaches.

The first approach addresses topological errors due to noise. under-sampling, and
other imaging artifacts. Due to these factors, the image data from magnetic resonance
imaging typically does not have a topology consistent with the knowledge gleaned
from studies of actual human brains. As a result, purely data driven methods, as well
as many model-based approaches. can be confounded by the incorrect topology in
the data. Furthermore, most contemporary model-based methods are susceptible to
producing models which are not correct relative to medical knowledge, in particular,
objects which intersect themselves or other objects. In response to these limitations,
the first approach presented here is that of intersection avoidance in the process
of creating digital models. The resulting models are guaranteed not to intersect
themselves or each other, making them more consistent with the real world objects
which they are meant to represent. Although intersection avoidance is explored here

within the context of neuroanatomical modeling, the idea can be generally applied to



a broad array of image recognition tasks. It is shown here that the addition of such
constraints to the construction of digital models can improve the correctness of the
resulting solution, without adding a prohibitive computational cost.

The second approach addresses an aspect of imaging errors in the data which is
particularly problematic in the domain of neuroanatomy. The human brain contains
large surfaces which are very tightly folded. resulting in highly convoluted areas where
under-sampling and noise degrade or remove the appearance of boundaries between
two touching surfaces. The approach chosen to reduce the effects of such edge degra-
dation uses anatomical knowledge about the relative position of different types of
tissues in the human brain. The identification of one surface boundary is improved
by constraining it with the position of another boundary and « priori knowledge of
the relationship between the two. A general method of creating multiple component
models with inter-component constraints is shown to improve the identification of
cortical surfaces in the face of sub-optimal data. Again, this idea can be carried over
into other domains. where sets of inter-connected objects provide a better model of
the data than single objects.

The following chapter details the problem being addressed and provides a com-
putational neuroanatomical context for dealing with the problem and its particular
challenges. Relevant techniques from the literature are presented with a discussion
of the advantages and disadvantages of each as it relates to the problem domain.
A separate short chapter is devoted to a survey of general edge detection methods,
concluding with a description of established feature-based tissue classification algo-
rithms which can be successfully used to provide edge detection in medicai images.
After laying this groundwork, the proposed solution is presented. Description of the
object representation, the objective function with its various components, as well as
the method of minimizing to find a solution is presented in detail. A separate chapter
investigates the effect of each of the objective function constraints on very simple

phantom data. The following chapter discusses relevant implementation details of



the surface deformation method. The discussion of the validation of this method is
divided into two chapters. The first of these chapters presents results of tests con-
structed on simulated data and small phantoms, so that the correct answer is in some
way known or assumed. with the result that quantifiable error estimates can be found.
The second validation chapter demonstrates results on real data where the true answer
is not readily available, but validation consists of showing that the method produces
results qualitatively and quantitatively consistent with other neuroanatomical anal-
ysis. Figure 1.1 shows a photograph of a human brain and a computer generated
image of a brain surface created by the algorithm described in this dissertation. The
final chapter summarizes the results of this work. the weaknesses of the method, and

presents some ideas for further work.

Figure 1.1: a) Photo of human brain. b) Computer generated model.



Chapter 2

Problem Definition

2.1 Motivation

Science can be defined as the process of measuring the world in which we live, fol-
lowed by attempts at discerning higher level meaning from this data. Methods of
measurement have progressed far beyond the simple but useful yardstick to provide
much more detailed and accurate data. Lately, digital information processing tech-
nology has enabled the sampling of large amounts of real world data, through such
methods as photo-digitization. sonar. radar. and a host of other sensing modalities.
The growing number of these types of datasets, combined with the increasing amount
of information present in a given instance, points to the necessity for automated
techniques for processing this data.

The type of processing which is required is quite naturally linked to the particular
application domain. However, in general, the processing step is essentially a task of
interpretation. Mimicking the techniques of centuries of scientific investigations, the
computer must combine and correlate the data measurements to produce a model
of the underlying process. This model not only represents a high-level form of the
measured data, but also constitutes a more powerful mechanism for dealing with the

associated real world phenomenon.
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One example of where this computerized interpretation can be advantageously
applied is in the area of neuroscience, the study of the anatomy and physiology of
the brain. By far, the brain, and the human brain in particular, remains as the most
complicated and intriguing organ. A multitude of researchers are perplexed by the
mysteries of how it works, why it is shaped as it is, how it evolved, how it is affected
by injury and disease, and how to diagnose and treat disorders of the brain.

Neuroanatomy, the study of the functional and physical nature of the brain, forms
an integral part of the foundation of neuroscience research. It is readily evident
that in order to attack the mysteries of the brain, one of the first steps is simply
to understand the various parts that comprise the organ. Over the years, this has
resulted in considerable effort applied to dissecting animals of all types, in attempts
to discern both the physical and functional workings of the brain. Often this work
is distilled into a neuroanatomical atlas. such as the characterizations of cerebral
sulci described by Ono et al [OKA90], or the atlas of the human brain defined in a
standardized coordinate system by Schaltenbrand et al [SB59] The labeled drawings
and descriptions in such atlases can be thought of as a higher level physical model
of the underlying anatomy. which is used both as a detailed reference by students of
neuroanatomy and by researchers interested in relating data from their investigations
to established neuroanatomical knowledge.

A quick surveyv of typical neuroanatomical research illustrates the need for meth-
ods of creating highly structured and detailed models as tools for understanding the
physical nature of the brain. Neuroanatomists are constantly looking for ways to go
beyond qualitative assessments of brain structure and function, and provide quan-
titative methods to analyze the brain. Steinmetz et al [SRJ*90] manually identify
regions on ten cadaver brains to determine if the surface area differs significantly
between the left and right areas of the brain. Similarly, James [Jam92| investigates
the unfolded shape of the human cerebral cortical surface and attempts to measure

its surface area. Such use of real brain specimens is invaluable in the analysis of



brain shape, but the evaluation of digitally acquired information is rapidly achieving
importance in this pursuit. An area of considerable ongoing neuroscience research
is multi-modality registration. which involves combining and reconciling infor-
mation from two or more different types of imaging study. Evans et al [EMN*92]
provide methods of mapping functional images to anatomical images of the brain, in
attempts to determine which parts of the brain respond to certain stimuli. Similarly,
Steinmetz and Seitz [SS91] investigate the functional anatomy of language processing.
One of the main hurdles encountered is the inherent anatomical variability across the
many subjects involved and the difficulty of identifving and relating the correspond-
ing neuroanatomical structures across individuals. These and many other examples of
neuroscience research [GKVPF89. DF92. OSTG89. SRH*89, SFF89] provide a strong
motivation for developing computational tools for modeling the anatomical structure
of the brain.

The problem addressed by this dissertation is one of creating digital representa-
tions of the human brain from one particular tyvpe of medical imaging data. Before
defining the problem completely. it will be helpful to provide a brief overview of
the structure of the human brain and related terminology, and a description of MR

imaging, which provides the input for the problem at hand.

2.2 Neuroanatomical Domain

Structurally, the human brain is a very complex organ consisting of many components
with widely varving shapes and sizes. Brain tissue is often classified into two types,
gray matter and white matter. The gray matter consists mostly of neuron cell
bodies, whereas the white matter is predominantly the axons or other processes of the
neuron. The brain is divided into two roughly symmetric hemispheres. The cerebral
cortex, depicted in Fig. 2.1, is the external layer of gray matter. The surface of the
cerebral cortex (cortical surface) is highly convoluted, consisting of deep crevices

which are termed fissures or sulci, the singular of the latter being sulcus. The
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Figure 2.1: Photographs of a human brain specimen
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Figure 2.2: Normal sulcal topology.

folds themselves are termed gyri. the singular being gyrus. Several major sulci
are presented in Fig. 2.2. Each hemisphere is divided into four main regions: the
frontal lobe, the parietal lobe. the occipital lobe, and the temporal lobe.
The boundaries of these lobes are defined in part by three major sulci: the central
sulcus, the parieto-occipital sulcus, and the sylvian fissure. The hemispheres
themselves are separated by the inter-hemispheric fissure. Although the primary
emphasis here is on the outer surface of the cerebral cortex, it is important to note
that the cortical gray matter is actually made up of several layered surfaces, totaling
about 5 millimetres in thickness. The brain is bathed in a liquid called cerebral-
spinal fluid or CSF. The ventricles are a set of CSF-filled cavities within each
hemisphere that are quite prominent and distinct in shape and appearance. Other
relevant structures in the brain are the cerebellum, a highly convoluted mass of gray

matter, white matter, and deep nuclei at the rear of the brain, and the brain stem,



a set of several small structures at the base of the brain which provides the link to the
spinal cord. Neuroanatomists often view planar cross sections of the brain, usually
classified into one of three orientations, each loosely defined by anatomical features.
A sagittal section is approximately perpendicular to the line segment joining the
ears. A coronal section is roughly perpendicular to the line segment from the nose
to the back of the head. A transverse section is approximately perpendicular to
the line defined by the neck. Photographic images of these three orthogonal cross

sections through a human brain specimen are presented in Fig. 2.3.

2.3 Input Data — Magnetic Resonance Images

During the last two decades. neuroanatomists have begun investigating the structure
of the human brain using a method called Magnetic Resonance Imaging, com-
monly referred to as MRI or MR imaging. MR imaging is a non-invasive technique
for measuring the response of certain types of objects, usually organic tissue, to mag-
netic stimuli. An MR image of an object provides a three dimensional view of an
object, where areas of similar composition appear as regions of common image value,
and borders between different structures often appear as gradients in the image. A
brief description of the MR imaging process is presented here, followed by a discussion
of the nature of the signal being measured and sources of noise and other errors.
Within an MR scanner, there is a static magnetic field maintained by a super-
conducting magnet. When a target object is placed in this field, its molecules undergo
what is termed bulk magnetization, where nuclear spins are oriented along the
direction of the magnetic field. Then a series of radio frequency pulses are applied
to induce local perturbations of the magnetic field within the target object, which
causes the object to emit radio energy. The energy emission is measured by a Radio
Frequency coil (or RF coil) placed around the object. The energy emitted depends
on the strength, frequency, and timing of the pulses, as well as the intrinsic magnetic

characteristics of the tissue in the object, and is often characterized by two time
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Figure 2.3a: Sagittal section through human brain specimen.

constants, T1 and T2. Many pulse sequences have been devised which are optimized
to favour either the T1 or T2 time constant, and the resulting images are termed
T1-weighted and T2-weighted images, respectively. In addition, pulse sequences
can generate values related to the number of protons in local regions of the target
and hence produce proton-density-weighted or PD-weighted images. Each of

these types of MR image provides different contrast characteristics between tissue
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Figure 2.3b: Coronal section through human brain specimen.

types, and each is therefore more suited than the others at imaging particular tissue
combinations.

An MR system uses Fourier analysis of the radio frequency data to produce a
two or three dimensional regular grid sampling of the target object. The separations
between samples are usually on the order of 1 millimetre and the number of samples
is on the order of 256 in each of the three coordinate directions. A three-dimensional
image is often referred to as a volume or image volume, in order to emphasize

its three dimensional nature. Consequently, the three dimensional box centred at a
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Figure 2.3c: Transverse section through human brain specimen.

Figure 2.3:

sample point with axial sizes equal to the sampling interval is termed a voxel. which
is a contraction of the term volume element based on the two dimensional analog,
the picture element or pixel. For convenience, the samples are often treated as
having been generated with a perfect box filter over each voxel, or as a point sample
at the centre of each voxel. Figure 2.4 depicts a set of parallel slices through T1-
weighted, T2-weighted, and PD-weighted MR volumes of the same normal human
subject. In this example, each volume is sampled on a grid of 172 by 256 by 256 with
an isotropic sampling interval of one millimetre, resulting in 11 million sample points.

Mathematically, we can treat the data as an array of n; by n; by ni values:
{Ii,j,k : [iJ,ke.ffi, 1<:1<n,, ].Sjsnj, ISkSTLk}
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2.4a) T1-Weighted Images
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2.4b) T2-Weighted Images

Any of the many methods of interpolation and approximation [BBB87] such as B-
splines, Hermite splines, or simple trilinear interpolation may also be used to create
a continuous differentiable function which can be evaluated anywhere in the domain
of the image:

F(z,y,z), VF(z,y,z), VzF(x,y,z),
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2.4c) Proton-Density-Weighted Images
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2.4d) Position of MR slices in a), b), and c).

Figure 2.4: T1-, T2-, and PD-weighted MR images.

Tmin < T < Zmaz
Ymin S Y _<. Ymaz:

Zrmin S 4 _<. Zmaz-
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2.3.1 Partial Volume Effects

An MR image has certain characteristics deriving from the nature of the imaging
system involved. Each sample value is actually a convolution of a point spread
function with the target object over a finite subspace. The point spread function is
simply the weighting function that defines how the tissue at a particular geometric
location contributes to samples in the surrounding region. The point spread function
in MR systems is characterized as a sinc function (*32£), where the distance between
the two central zero crossings is twice the width of a voxel, as depicted in Fig. 2.5.
Because of the finite width nature of the point spread function, as well as the finite
number of samples, MR images are subject to what is called the partial volume
effect. The partial volume effect occurs in regions which are not of homogeneous
composition, where the value of a particular sample includes weighted contributions
from varying tissue types, thus causing information loss. In addition, the finite spac-
ing between samples introduces the standard limitation from fundamental sampling
theory, the Nyquist limit. The Nyquist equation dictates that details higher in
frequency than the Nyquist limit, which is half the sampling rate, will not, in gen-
eral, be captured in the final image. This, combined with the blurring nature of
the finite width point spread function, results in the partial volume effect, which is
most evident near the boundaries between different structures. Edges are either less
apparent in the image or not visible at all. The tightly folded configuration of the
cortical surface makes the partial volume effect particularly problematic. There are
many places in the brain where the cortex on one side of a sulcus is very close to
or actually touches the cortex on the opposite side, as depicted in Fig. 2.6a. Figure
2.6b illustrates how the MR image would incorrectly portray the touching parts of
the cortex as connected.

Examining a typical T1-weighted MR image illustrates some of the consequences
of partial volume effects. Figure 2.7 shows a magnified view of the temporal lobe

region. Near the centre of the figure, the concave indentation in the white matter
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Figure 2.5: The typical point spread function of an MR imaging system.

Figure 2.6: a) True data with touching gyri. b) resulting image data, where gyri are

no longer distinct.

clearly indicates sulcal folding based on the anatomical assumption that the gray mat-
ter follows the shape of the white matter. However, the image in this area does not
show any clear boundaries corresponding to the sulcus. No conventional image pro-
cessing algorithms have been found to satisfactorily detect edges in such a situation.

Due to the prevalence of these types of close proximity configurations in the typical
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Figure 2.7: Partial volume effect of blurring a sulcus, pointed to by the < symbol, in

a Tl-weighted MR image.

human brain, even an order of magnitude improvement in resolution of MR imaging
systems would probably still not correct these problems, and it is not evident that
partial volume errors will be reduced in MR images for quite some time. Therefore,
incorporating a priori knowledge from the neuroanatomical domain into the image

recognition task represents a promising alternative to purely data-driven methods.

2.3.2 RF inhomogeneity

An imaging artifact peculiar to MR imaging systems is the problem of RF inho-
mogeneity or RF non-uniformity. Like any antenna, the RF coil system has a
non-uniform spatial sensitivity. As a result, the measured value of a given tissue type
will vary depending on the pesition of the tissue relative to the RF coil. This typi-
cally results in an image whose mean intensity increases slowly along some direction
in three dimensions. Figure 2.8a shows a simulated MR slice with an exaggerated
RF inhomogeneity (about three times normal), where the image grows brighter di-
agonally from bottom left to top right. Figure 2.8b shows the same simulated image

without RF inhomogeneity. The maximum difference in scaling across a single MR
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Figure 2.8: a) RF image inhomogeneity. b) no RF image inhomogeneity.

image due to RF inhomogeneity is typically on the order of 20 % of the image value.

2.3.3 Image Noise

As in most sensor equipment, noise due to many sources may influence the resulting
image. The use of gradient magnetic fields makes the system susceptible to errors
due to eddy currents around metallic objects in the vicinity of the scanner, such
as its own components or articles in the subject’s clothing or body. The image
noise inherent in an MR image is often modeled as a Gaussian noise distribution in
the complex number system, where the mean of the real and imaginary parts are
independent. The resulting noise distribution is termed Rician [Nis95], which is
similar to a Gaussian distribution in areas of high signal. However, in areas of low
signal value, the distribution is more complex because the final signal is computed
from the magnitude of its real and imaginary components, which effectively maps
negative values to positive ones. Noise processes that decrease a signal value below
zero therefore can result in an increase in the final signal value. The intensity of the

noise is typically on the order of 3 % of the signal intensity.
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2.3.4 Movement Artifacts

The length of time required to perform an MR scan introduces the possibility of errors
in the image due to dynamic changes in the subject. For living specimeuns, it is often
difficult to remain absolutely still for the duration of the scan, which is typically on the
order of half an hour. Even a subtle movement such as a swallowing motion can have
a pronounced effect on the accuracy of an MR image with one millimeter sampling.
In general, living organisms being scanned are subject to dynamic changes such as
movement of voluntary and involuntary muscles, blood flow, and other changes in
organ shape and size due to normal bodily processes. Large movement artifacts often
show up as sharp discontinuities across a plane of the image volume, and are difficult
to correct. In general, the movement artifacts in cooperative subjects are more subtle
and no correction is attempted. A good introduction to the use of magnetic resonance
in medical imaging may be found in [CDM84]. A more detailed description of MR
characteristics such as noise. RF inhomogeneity. and the point spread function may

be found in [Nis95].

2.4 Problem Definition

Having examined the nature of MR imaging data, the problem addressed by this

dissertation is proposed:

Problem : Given three dimensional magnetic resonance images, create
digital representations of the entire cerebral cortical surface that are geo-

metrically simple and corrected for partial volume effects.



The basic requirements of a solution are:

Robust segmentation

Geometrically simple

Partial-volume

corrected

Many datasets

Arbitrary resolution

Fullv Automatic

General

The cerebral cortical surface of normal human in-
dividuals must be reliably segmented, as measured
against one or more experienced neuroanatomists,
the models created must be geometrically simple,
that is. they must not self-intersect,

the method must correct for the ambiguity of par-
tial volume effects in areas where neighbouring gyri
are in close proximity or touching, by correctly lo-
cating the entire sulcus between the gyri,

the method must be applicable to a large number
of datasets,

the solution must be extensible to an arbitrarily
high level of detail,

no user intervention must be required, and

the method must be applicable to images produced

by a variety of MR imaging protocols.

2.4.1 Segmentation

The essential task is that of object recognition or segmentation. In a typical MR
volume of a human head. there are hundreds of neuroanatomical components visible.
The cerebral cortical surface is a relatively large and highly convoluted neuroanatom-
ical structure that is very difficult to segment by hand. Using interactive tools, an
experienced observer may take several days to label the cortex in a high resolution MR
volume. This dissertation will be concerned primarily with automatically segment-
ing the outer layer of the cortical surface, although application to other components
will not be excluded. Due to the typically high cost of manual intervention in neu-

roanatomical segmentation, the method must be fully automatic, with no user input
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required. The technique should be applicable to T'1-weighted, T2-weighted, and PD-
weighted MR images, and be insensitive to the various imaging parameters of these
protocols.

In order to validate an automatic method of segmentation, there are two general
methods that may be used. The first is to create data for which the correct answer is
somehow known or assumed, and to test the results of a solution against this “gold
standard”. The sccond method is to use real data, for which the answer cannot
be reasonably known, and create reasonable qualitative and quantitative estimates of
error. In the case of segmentation of the cortical surface of the human brain, a manual
segmentation of a single normal MR volume has been performed by a neuroanatomist,
and this can be used as a gold standard to test segmentation methods. [t has been
established that intra-observer errors in manual labeling can be significant (as high as
12 % of structure volume in the case of small structures such as the caudate [CEHP95,
CHPE96]). which represents a flaw in the purity of the gold standard. However, due to
the large amount of effort involved. it is not feasible to achieve a better gold standard,
such as, for instance, a composite of labelings by several experts. The form of this data
is a labeling of voxels into distinct anatomical components. Assuming this dataset as
the correct answer. the number of voxels mislabeled by an automatic segmentation
procedure can be determined. In addition, validation must be performed on a number
of MR volumes to determine if the results are qualitatively reasonable and consistent

with a neuroanatomical understanding of the cortical surface.

2.4.2 Geometrically Simple

The term simple is generally used to describe a set of objects (line segments or
triangles, for example) where no pair of objects share points, except on the boundaries
between objects. Less formally, the term non-self-intersecting is also used. In the
case of a polygon, which is defined as the set of line segments connecting successive

points, as well as the first and last points, of an ordered list of three of more points
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in the plane, the term simple means that adjacent edges share only one point, and
no other pair of edges share a point. A simple polyhedron is a connected set of
polygons in three space where the intersection between any two polygons is either the
empty set or an edge of both polygons, and each edge is a member of exactly two
polygons. Contrary to conventional research, the constraint that the models created
be geometrically simple is one of the principal requirements of a solution, rather
than merely a desirable feature. This constraint is important in order tu increase
the confidence that the modeled surface is a faithful reproduction of the real cortical
surface, each layer of which is known not to intersect itself. Assuming that noise and
partial volume effects will continue to plague MR images. it is therefore desirable
to make algorithms as insensitive to these effects as possible. One of the central
postulations of this dissertation is that restricting the output of the segmentation

process to simple surfaces avoids many incorrect solutions.

2.4.3 Partial Volume Correction

In addition to constraining the modeled objects to be simple, an additional criterion is
that the method should be more insensitive to partial volume effects than conventional
methods, which typically either ignore partial volume effects, or use simple image
processing operators for an intuitive. but limited. solution. In particular, areas of
neighbouring gyri that appear in the image as connected tissue should be correctly
identified with a boundary between them. [t is very important that the method locate
the complete depth of each sulcus. in order to most accurately represent the cortical
surface. One of the difficulties with adding this criterion to the problem definition is
that it is very hard to determine if a particular solution is correct. However, simple
test cases can be devised where the answer is known, and application to real MR
data can be qualitatively evaluated by experienced neuroanatomists. In effect, one
hopes to duplicate the high level information used by an experienced neuroanatomist

who factors out partial volume effects using a comprehensive understanding of brain
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anatomy.

2.4.4 Automatic Operation

The segmentation method must be applicable to a large number of datasets, as even
a single neuroanatomical study may consist of several hundreds of individual scans.
Therefore the operation of the segmentation process must involve no user intervention
on individual datasets. In addition, as the required resolution of the digital models
increases over time due to higher resolution data and more ambitious studies, the seg-
mentation process must be extensible to an arbitrarily high resolution. This criterion
also precludes the practical use of human intervention in the process, reinforcing the

need for fully automatic methods.

2.4.5 Representation

The problem statement stipulates that the digital models representing the solution are
surface representations of anatomical structures. The choice of surface representation,
as opposed to a volume representation. for instance, arises from the types of post-
processing typically applied to digital brain models. In order to assist analysis of the
anatomical structures by experienced neuroanatomists, it is advantageous to be able
to provide various types of visual depictions of a segmented structure, in particular,
as a three dimensional object which looks similar to a photograph of the actual
anatomical structure. However, it is more important to provide a representation that
facilitates quantitative analysis. The segmented object representation must allow
such rudimentary operations as measurement of distances, surface areas, and volumes
of anatomical structures and their subcomponents. In addition, more sophisticated
quantitative characterizations of geometric shape are currently being investigated by
neuroanatomists. A surface representation can generally satisfy these requirements,
and therefore has been chosen as the form of the output for the problem. Which type

of surface representation to choose remains to be discussed in a subsequent chapter.

24



Chapter 3

Previous Work

There continues to be considerable research relating to processing of MR images.
Consequently, there are many techniques that address some or all of the various
aspects of the segmentation problem described in chapter 1. The following is a dis-
cussion of various techniques which are relevant to the problem at hand. Rather
than being competing methods. many of these methods complement each other and
typically, several techniques are used in combination to provide an overall solution.
The methods discussed are divided into two classes. The following section describes
those methods that can be classified as volumetric pre-processing, and the sub-
sequent sections deal with techniques for image segmentation. The applicability of

each method as well as its relative advantages and disadvantages are explored.

3.1 Volumetric Pre-Processing

Many general image processing techniques are relevant to the three dimensional im-
ages produced by MR scanners. Three methods of pre-processing the MR images for
subsequent image analysis are described here: image registration, tissue classification,

and RF inhomogeneity correction.
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3.1.1 MR Image Registration

There are a multitude of methods proposed to handle the task of image registra-
tion or spatial normalization, which is the process of spatially transforming an
image to be aligned within some target coordinate system. The goal of MR regis-
tration is to provide a standardized frame of reference for subsequent analysis. For
processing of human brain MR images, the initial step is typically to apply a sim-
ple rigid geometric transformation consisting of three dimensional scaling, rotation,
and translation, to align the dataset into a standard coordinate system, often termed
a stereotaxic coordinate system. This can aid analysis by introducing a certain
amount of predictability into the positions of various anatomical structures. This
image registration task is addressed by both manual and automatic methods. Man-
ual methods [LHH*91, EMN*92]| involve locating corresponding coordinates (either
based on anatomy or on artificially introduced objects (fiducials)) in both the given
image and a standard target image to which all images are mapped. The set of pairs
of three-dimensional coordinates is used to define a transformation between positions
in the two images. The given image is transformed by this mapping to produce an
image that is in registration with the target.

The reliance on human observers for the definition of corresponding points moti-
vates a quest for more automatic methods of image registration. As a result, there are
several automated methods which attempt to match image features, such as inten-
sity values or gradients, across a pair of images [Bcc89, CNPE94, KGC+89, RTL+93,
TJP*93]. An initial guess for the transformation is given, either by manual inter-
vention, or by an automated procedure such as principal axes analysis [RTL*93].
The similarity between the image to be transformed and the target image is measured
and the parameters of the transformation are adjusted to attempt to maximize this
measure. The measure used is typically a function such as the cross-correlation of
intensity values in the original image with the values in the transformed position in

the target image. These methods are being used successfully to factor out the gross
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position, orientation, and size differences of various individual brains, and can be
thought of as a very coarse means of segmentation.

The work of Talairach and Tournoux [TT88] in manually defining a standardized
coordinate system based on identifiable anatomical landmarks is adapted into a dig-
ital framework by various methods. The method of Collins et al [CNPE94] involves
the definition of a stereotaxic coordinate system, based on the atlas of Talairach and
Tournoux. Using manual methods of landmark identification, the reference model
image is placed into stereotaxic space. An automatic three dimensional image reg-
istration algorithm can then be applied to register any target image with the model
image. Figure 3.1 depicts the registration of an image into stereotaxic space from
native space, the intrinsic coordinate system of the MR scanner. Subsequent neu-
roanatomical analysis of the target image is greatly facilitated by its standardized
orientation and positioning within the frame of reference defined by the stereotaxic

coordinate system.

3.1.2 Tissue Classification

As described in chapter 1. the human brain has several different tissue compositions,
the principal ones being gray matter, white matter, and cerebral spinal fluid (CSF).
Depending on the imaging parameters of the MR acquisition, these different tissue
types give varying signal responses. which are used to discern tissue type distribution
in the image. By using several MR images of a single brain, including the T1-, T2-,
and PD-weighted images, a three dimensional feature vector is derived for each voxel,
consisting of the intensity values for the voxel in the three images. Pattern classifiers
such as neural networks, nearest neighbour methods, and Gaussian-modeled linear
discriminants ! are invoked on training data where the tissue types are known, in
attempts to create an accurate classifier for arbitrary datasets which are acquired

with similar imaging parameters to the training data {ZDM93, CCR*93, KCS*92,

1[Nil90] provides a good introduction to these and other pattern classifiers
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Figure 3.1: Transformation from native space to stereotaxic space.

LHH*91, RLW93]. This constitutes a low-level segmentation of the brain, which
does not necessarily correspond to an anatomical segmentation of the brain, since
different anatomical structures may have the same tissue type.

Figure 3.2 illustrates the results of a typical tissue classification algorithm gener-
ating an image with four classes: gray matter, white matter, CSF, and background.
Although tissue classification methods by themselves are not sufficient for segmen-
tation of anatomical objects, it may be possible to use the tissue class information
to assist other methods of segmentation. In particular, tissue classification will be

revisited as an edge detection step for MR images in the next chapter.
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Figure 3.2: One slice through a {-class volume (white matter is white, gray matter is

gray, CSF is black, background is off-white).

3.1.3 RF Correction

The unique nature of the RF image inhomogeneity distortion that plagues MR imag-
ing invites specialized methods to reduce or remove this artifact from images (Fig.
3.3). These methods can be loosely classified into two categories, where the principal
difference is whether or not the RF correction is performed in conjunction with tis-
sue classification. When used with tissue classification, the typical method attempts
to estimate two unknowns: the tissue classes of the voxels and the spatially vary-
ing RF field over the volume. This is accomplished by fixing the estimate of one
of the unknowns in order to compute an estimate for the second unknown, which
is then used to estimate the first unknown. These two steps are repeated until the
sequence converges. A popular method which uses this methodology is called the
Expectation-Maximization algorithm [WIGKJ94].

The other general class of RF correction methods does not explicitly involve tissue
classification, but instead uses the intensity histogram to achieve a similar result. By

comparing local histograms of image intensity in different spatial locations, the shift
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RF Correction

before correction after correction

Figure 3.3: RF image inhomogeneity correction reduces the slow-varying intensity

gradient across the image.

in the histogram is identified, and thus an estimate of the RF inhomogeneity field
can be derived. One example of this method [SZE97] will be revisited in the next
chapter.

Having examined various methods of pre-processing images. a survey of image
segmentation algorithms is presented. Any method which divides images into distinct
regions or extracts models of specific regions of the image may be considered an image
segmentation algorithm. Some important differences among the various methods
described in the following sections are the representation of the segmented objects,
the level of user intervention required. and the level of model information used to

constrain the process.

3.2 Contours

Many methods of image segmentation are based upon choosing a threshold which
corresponds to the image intensity at the boundaries between objects in the image,
or using gradient-based edge detectors to label particular regions of the image as
boundary. Boundary points detected on two-dimensional slices of the image are then
connected together into a curve or contour. This partitions the image into a set of
connected components (Fig. 3.4), thereby achieving a segmentation of the image.

The advantage of contours is that the problem of three-dimensional segmentation is
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initially converted to a more tractable two-dimensional problem. Often two objects
which are connected in the three-dimensional space are not connected on many of
the slices through the volume. Even if they are connected, manual segmentation
techniques and morphological operators are simpler and more successful when ap-
plied independently to each slice, due to the ability of conventional two-dimensional
technology to more easily display image slices than entire volumes. Two dimen-
sional image contouring methods applied to three dimensional images are prevalent
[CL88, EPO91, FKU77. GD82. MSS92| and generally attempt to construct a three di-
mensional surface from stacks of contours extracted from parallel slices. The essence
of the task is find correspondences between positions on contours of neighbouring
slices. The difficulty is that when these methods are applied to complex shaped
objects, it may be very difficult or impossible to decide how to connect points on
contours to those on neighbouring slices. Because this often occurs when a contour
splits into two on the next slice. this is usually called the branching problem, and
is a significant factor in limiting the use of contour methods in higher dimensional
applications. Methods that attempt to solve these problems can involve very com-
plex algorithms [EPQO91}]. In actuality. the initial advantage of reducing the problem
from three to two dimensions is offset by the fact that the complexity of the higher
dimensionality problem has not been eliminated, but rather delayed until the final
connection phase. However, because of the wealth of published experience in manual
and automatic methods of contouring datasets, contouring is a segmentation tool that
should not be ignored, and can prove useful for various aspects of the segmentation
problem, including preprocessing data and building models for other segmentation

methods.

3.3 Isosurfaces (3D Contours)

The inefficiency of contours in dealing with three dimensional data has led many

researchers to explicitly extend the idea of contouring to three dimensions. The ob-
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Contour Algorithm|

contours

Figure 3.4: 2D image contouring.

vious approach is to construct surfaces of the boundaries of the objects, again using
an image threshold. Since the surfaces correspond to sets of points which are of equal
values, they are called isosurfaces. Isosurface algorithms [Blo88, BW90, CLL*88,
HW90. KCHN91. LC87. WMWS8G| are the three dimensional analog of two dimen-
sional contouring and most isosurface methods are implemented in a very similar
fashion. Typically. the volume is tessellated into small, simple geometric objects,
and the thresholded surface is approximated in each, building up a set of connected
polygons. The most cited example is the method of Lorensen and Cline [LC87] which
uses rectilinear boxes as the tessellating object, leading them to term the method
marching cubes. in reference to the algorithm'’s processing of the cubes one by one.
By examining the sign of the difference between the desired threshold and each of the
eight corner nodes of a single box. a set of one to six triangles is created to approx-
imate the surface through the box. Figure 3.5 illustrates one situation where four
nodes are below the threshold and four are above. In this case, the approximation
to the surface is a set of four triangles, whose vertices are found by linear interpola-
tion along the relevant box edges. The algorithm simply examines the eight vertices
of each box in the dataset, constructing a small number of triangles for each one,
and results in a connected surface for each connected object in the volume, a simple

example of which appears in Fig. 3.6. Interestingly, although the marching cubes
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method is by far the most commonly referenced method, it has the serious problem
of generating surfaces that may have holes, where the triangle edges do not join well
across adjacent voxels in some cases. A similar method published one year earlier
by Wyvill et al [WMW86] avoids this problem and produces a correct surface. More
recent methods usually do not suffer from this problem either, such as the method of
using tetrahedral tessellations by Hall and Warren [HW90] or a similar one by Payne
and Toga [PTI0]. However, despite the limitations of the method of Lorensen and
Cline, the term marching cubes has become synonymous with isosurface construction

algorithms.

Figure 3.5: Example of marching cubes algorithm approximating the isosurface of

value 80.

Although the simplicity and speed of contouring and isosurface algorithms is quite
attractive, their use for surface segmentation is limited by the implicit assumption
that objects that are distinct in reality appear as disconnected regions within the
image. However, this assumption is often invalid, such as when objects are close
together, similar in intensity, or affected by noise in the image. In these cases, an
isosurface algorithm may create a single geometric object which corresponds to several
distinct objects, or several distinct geometric objects which correspond to a single
object, both of which may be considered incorrect segmentations of the image data.

Thus, isosurface algorithms are generally used in conjunction with other manual and
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Figure 3.6: Triangulated surface generated by the marching cubes algorithm.

automatic segmentation algorithms to produce a surface representation of a previously
segmented image. [n addition, the lack of topological constraints in these algorithms
means that holes in the data due to partial volume and other effects result in surfaces

with similar potentially incorrect topological characteristics.

3.4 Morphological Operators

One method to partition the volume into separate objects is to use morphological
operators. Morphological operators consist of simple transformations on the vol-
ume which affect the local connectivity of voxels. A good introduction is presented
in [Ser82]. An image is first thresholded or classified in some way to create a binary
image, where each voxel indicates whether or not an object may exist at that loca-
tion. A fill operation labels each voxel within a homologous region in the image. An
erode operation on a binary image changes all object voxels which have a non-object
voxel in its neighbourhood (within a certain small number of voxels, defined by a
specific kernel) to non-object status. This results in shrinking object regions in the

image. A dilate operation performs the opposite operation and results in expanding
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object regions. A close operation consists of a dilate operation, followed by an erode
operation, and effectively smoothes the boundaries of objects, filling in small holes.
An open operation consists of an erode operation, followed by a dilate operation,
and results in disconnecting regions which started out as very tenuously connected.
Results of these operations on two dimensional images are presented in Fig. 3.7. Al-
though the most obvious effects accur in loosely connected regions, it is important to
note that all boundaries in the image may potentially be perturbed. Application of
these types of operations on a thresholded volume can be used effectively in segmen-
tation to break up an image into meaningful subregions. However, the choice of the
sequence of operations and the relevant neighbourhood size will vary depending on
the application and the particular characteristics of the dataset and the object being
segmented. Morphological operators are thus best applied when the input data is
sufficiently close to being disconnected into the desired segmentation. Unfortunately,
this is not usually the case in the realm of MRI, and morphological operators have
had only limited success for automated neuroanatomical segmentation, often because
the sequence of morphological operations has to be empirically determined for each
particular dataset. The limitations of morphological operators for automatic MRI
segmentation are expressed by Hohne and Hanson: “Application of morphology op-
erators depends strongly on intuition (at least in the case of complicated objects),
which suggests that they would be used most effectively in an interactive mode”
[HH92].

Morphological operators can be used to fill in holes due to partial volume effects
and noise. The method of Dale and Sereno [DS93] uses a tissue classifier to define
the volume of white matter voxels in an MRI volume. Then a sequence of three
dimensional fill operations is performed to remove holes from the white matter. This
guarantees that the surface of the resulting white matter volume is isomorphic to a
sphere. However, the addition of non-white matter voxels to the list of white matter

voxels calls into question the accuracy of the resulting surface.
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Figure 3.7: Results of five different morphological operators on an image.
3.5 Data-Driven Methods Versus
Model-Driven Methods

While the methods described have been used successfully in a semi-automatic con-
text, none of them are powerful enough to provide automatic segmentation of the
cortical surface from MR images. The essential weakness of most of these algorithms
is that they are almost purely data-driven: the only information available to the
process is the data itself. Higher levels of information are available only indirectly,
usually as input from an experienced human observer. As a result, researchers are
investigating methods of incorporating « priori knowledge (application-specific infor-
mation), into the process of image segmentation, in hopes to develop general-purpose
fully automatic algorithms. Many of these latter techniques share the concept of a
model which is matched to the image, providing a constraint on the segmentation

process in a model-driven fashion.
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3.5.1 Three Dimensional Image Registration as

Model-Based Segmentation

Image registration methods that involve local transformations, in addition to global
affine ones, provide more of a one-to-one correspondence between positions in im-
ages being registered, which makes them applicable to the domain of model-based
segmentation. Using higher order transformations, image registration methods can
achieve image segmentation and matching [CPDE92, Bcc89]. The essential idea is to
register an arbitrary MR image to a standard MR image, the model, which has been
labeled in some fashion. The registration provides a mapping from each position and
associated classification label in the model to one in a target image, thereby attach-
ing a label to each position in the target image, and effectively segmenting it. This
provides a very flexible method of segmentation, in that any individual image may
be used as the model image. Furthermore, for each model, several sets of segmented
labels may be used, so one registration of an image to the model may provide a suite
of several complementary segmentations of the image. Critical to the effectiveness of
these methods is the accuracy of the matching between similar structures. In general,
these methods work well for large objects such as the four major lobes of the cerebral
cortex and some of the regularly shaped anatomical structures such as the thalamus
and putamen, but fail to robustly match many of the other structures of the brain,
particularly cortical features, due to their inherent variability in size, shape, and
topology across subjects. In addition, these methods generally restrict the allowable
transformations to continuous deformations of three dimensional space, which limits
the ability to represent discontinuities or topological changes between two anatomical

images.

3.5.2 Deformable Models

A very promising method of model-based image analysis involves the use of de-

formable models. A curve, surface, or volume that approximates the target object is
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deformed to fit an image volume. One of the earliest and most referenced deformable
model techniques applied to image segmentation is the Snakes method of Kass et
al [KWTS88]. A snake is a spline curve which changes its configuration to minimize
its energy, composed of two opposing terms: an attraction to image features such as
edges, and a set of internal forces which constrain shape and position. An initial con-
figuration is subjected to the forces and deformed until it reaches equilibrium where
its energy is minimized. A simple formulation of the energy equation to be minimized
is
Evate = [ a(u) + (6)oal)? + 1) (0(s));

where the spline curve is defined by
v(s) = (x(s).4(s)), 0 < r < 1,

with first and second derivatives. v,(s) and vy(s), respectively, and the image data
is represented by the function I(r,y). The functions, «(s), i3(s), and ~(s), represent
weights that control the relative effects of each of the three terms. A snake subjected
to this equation attempts to move itself to areas of minimum or maximum image
intensity, depending on the sign of v(s), subject to the constraints imposed by the
first two terms. The first term. involving the gradient of the spline curve, v,(s), makes
the snake act like an infinitely thin membrane preferring not to stretch or compress
in length. The second term, involving the second derivative, v,,, makes it act like
a thin plate, preferring not to bend from the model configuration. The weighting
functions, «(s) and 3(s), control the relative strengths of these two constraints. The
ultimate effect of these two terms is to control the amount of stretching/compression
and bending of the curve away from a model curve shape. The essential idea is
that in areas where the data is ambiguous or ill-defined, the model shape will be
imposed upon the snake. In other areas where the image edges are less ambiguous,
the snake will be driven by the data. The choice of the weighting functions must be
chosen interactively or empirically by the user, a drawback shared with most of the

deformable methods. Figure 3.8 portrays a simple image and resulting deformation
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of a snake. The stretching and bending energy cost of the snake has prevented it from
attaching to the small noise-like dot in the upper right of the image. The sensitivity
of the snake to noise and small features is dependent on the choice of weights for the

regularization terms of stretching and bending.
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Figure 3.8: Active contour algorithm with snake initialized to be a circle (grey).

Kass et al describe several methods of representing the energy term, including
alternate formulations of the image term. [(v(s)). involving first and second order
edge detection terms, as well as additional constraints such as geometrical proximity
forces. A multi-scale approach is suggested. to lessen the sensitivity of the minimiza-
tion process to local minima. starting with a blurred image and slowly decreasing the
blur while the energy of the snake is being minimized. The use of a blurred image
is important to increase the range of attraction of the spline to image edges, by in-
creasing the effective width of edges. The actual implementation involves using finite
differences to approximate derivatives on a piecewise spline, and the minimization is
achieved using implicit and explicit Euler steps in an iterative technique, with order
O(n) computations per step, where n is the number of parameters in the spline. Later
work by the authors and others have extended these concepts to three dimensions by
deforming surfaces to fit two and three dimensional images. The computational com-
plexity of the original Snakes method can be considerable in three dimensions at
high resolutions, as a large matrix inverse must be computed at each step. This
can be quite expensive, especially when the image forces are quite strong, in which

case Kass et al indicate that “the explicit Euler steps of the external forces will re-
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quire much smaller step sizes” [KWT88]. The many related methods inspired by the
ground-breaking Snakes paper use a wide variety of cost functions and minimization
techniques, in attempts to optimize the use of active contour models to particular
tasks [TWK88, TWK87, CC93, SMG*93b, CHTH93, GA93, HEM92].

The success of the Snakes method as a general purpose model-based image seg-
mentation tool has resulted in its application to a wide variety of domains. The
complexity of segmenting neurcanatomical structures from high resolution medical
images has motivated creation of many algorithms which can be conceived of as vari-
ations on the Snakes method. A survey of some of these most relevant to medical
image analysis are presented here, with strengths and weaknesses outlined. A more

comprehensive survey may be found in [MT96].

3.5.3 Cohen, Cohen, and Ayache

The authors Cohen, Cohen. and Avache have several papers describing variations
of the Snakes method for segmentation of medical images [CAC91, CCA91, CCA92,
CC90, CC93]. The early work of Cohen and Cohen explores the use of a finite element
implementation of the Snakes algorithm for curves on slices of MR. Later work adapts
the Snakes techniques to three dimensional image segmentation [CCA92]. Again a
finite element approach is substituted for the finite difference approach of the original
Snakes method, resulting in an improved coverage of the domain of the surface without
increasing the number of node points. Their method involves user input of a fairly
low resolution initial guess. and produces low resolution surface representations. Use
of an automatically generated initial guess would presumably work equally well, and
eliminate the need for user intervention. However, its use in an automatic context
and applicability to recognizing the highly convoluted and detailed surfaces of the

human cortex has not been explored.
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3.5.4 Dale and Sereno

Dale and Sereno [DS93] use a simpler, geometric approach to segmenting the human
cerebral cortex. MRI data is initially classified into gray and white matter, using a
tissue classification algorithm. Using some simple morphological operations, a white
matter volume is created which has no topological holes, and whose boundary consists
of a two dimensional manifold (isomorphic to a sphere). The boundary of this volume
represents the interface between the gray and white matter, and is therefore a good
initial guess for locating the gray-CSF boundary, which is the objective of the method.
The polyhedral surface of the white matter is then expanded by moving vertices
towards the gray-CSF boundary. while also constraining each vertex to be attracted
to the centroid of its neighbours. The result is a polyhedral mesh approximating the
cerebral cortical surface. While this provides a very high resolution description of
the cortical surface with efficient use of computer resources, it has the problem of
potentially creating non-simple (self-intersecting surfaces), and does not address the
partial volume problem. However, the idea of using the gray-white boundary to guide
the search for the cortical surface boundary is an important one that will be revisited

later in this dissertation.

3.5.5 Davatzikos and Bryan

Davatzikos and Bryan [DB95| present an active contour method which models the
cortical gray matter as a finite thickness sheet. The sheet has a two dimensional
parameterization, making it suitable for subsequent morphometric analysis. Rather
than parameterizing the complete folded cortical surface, the method parameterizes
the outer boundary of the cortex, only entering the upper portion of each sulcus.
Location of the depths of the sulcus is performed as a second step, where a curve is
initialized at the top of each sulcus and pushed down into the depths by a method
similar to the Snakes algorithm. While this method is novel in its attempts to locate

the depths of the sulci, the total surface of the cortex is not contained in a single
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model. Coordinating the two models used, that is, the outer surface model and the
set of deep curves, into a single model which faithfully represents the true folded

cortex is a nontrivial task.

3.5.6 Sandor and Leahy

Sandor and Leahy [SL97] propose a method to automatically locate the cerebral
cortical surface from MR images. and to impose a labeling on the resulting sulci. The
authors rely on an edge detection method to define boundaries, followed by a series
of morphological operations to create both a smooth voxel representation of the outer
limits of the cortex, and a set of voxels corresponding to holes in the volume inside
this hull. The assumption is that the holes represent either sulci, noise, or interior
brain structures. By choosing the holes that are connected to the outside of the
brain. the set of sulci are distinguished from the other two types of holes. A smooth
atlas of the cerebral cortex, labeled with points on the extremities of sulci, is warped
by a three dimensional Snake method to fit the smooth brain. The labels are then
transferred to the smooth brain and to the set of voxels previously labeled as sulci.
This method has been demonstrated to label the principal sulci almost completely
automatically. but has a few disadvantages in the context of the problem addressed in
this thesis. The surface representation does not go very deep into the sulcus, because
the authors have chosen to model only the exterior portion of the cortex, stating that
“without user interaction deformable models can not be guaranteed to converge to
complex and convoluted image features”. There are several morphological operators
involved in smoothing the volume, which raises the question of how much error is
introduced into local boundary positions. Finally, only the parts of sulci that are
connected to the exterior are actually labeled as sulci, thus relying on the success of
the morphological operator in opening up the entire depths of each sulcus, without

modifying the data so much in other areas as to make the results incorrect.



3.5.7 Staib

The work of Staib et al [SD92b. SL, SD92a] uses deformable Fourier surface models
composed of sinusoidal basis functions. Different topologies of surface can be mod-
eled with a variable number of parameters, depending upon the resolution desired.
Similar to the previous methods. a cost function is devised that is integrated over
the two dimensional parameter space of the surface. The data is preprocessed with
Gaussian smoothing to reduce the effects of noise. and filtered with a 3 x 3 x 3 Zucker-
Hummel operator to create a smooth boundary. Gradient ascent is used to optimize
the solution, starting with a rough initial guess. While this method produces models
which facilitate shape analysis by encapsulating gross shape into a few parameters,
application to the verv complex problem of capturing the total cortical surface and
deep sulci has not been demonstrated. Correcting deep sulci for partial volume effects

and preventing non-simple surfaces is not addressed.

3.5.8 Level Sets

Mallaidi. Sethian, and Vemuri [MSV95] present a novel version of the active contours
deformable method. The principal contribution is the re-parameterization of the
deforming curve or surface as a level set of a higher dimensionality function. Whereas
the original snakes formulation consisted of the points on a parametrically defined
curve, (z(u), y(u)). the level set method represents the curve by the set of zero points
of a two dimensional function. F(x.y) = 0. An initial function F is defined, and
evolved over time by solving a partial differential equation. The advantage of this
formulation is its ability to handle unknown image topologies. The evolving surface
automatically splits into multiple components or combines several components into
one, depending on the topology of the objects in the image. This provides an efficient
solution to the problem of self-intersection avoidance, since level set curves cannot
cross, although they can touch. This ability of the algorithm to change the models

topology depending on the image data can be an attractive feature in some image
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segmentation tasks. However. in cases where a specific topology of the object is
desired, such as with the cortical surface, this method suffers from the lack of a

mechanism to force the algorithmn to maintain a particular topology.

3.5.9 Modal Analysis Methods

A considerable amount of work by Pentland has broad application to many vision
problems [PHS93, PHI1. PS91. PW89. Pen90, Pen89, Pen88. WP92|. These meth-
ods generally use a simple object such as a superquadric surface to provide con-
cise three dimensional representations derived from typically two dimensional image
components. Superquadrics are essentially ellipsoids with a few extra parameters
to provide pinched and tapered shapes. Local shape differences are provided by the
augmenting of the superquadric models with local offset deformations. Although gen-
erally applicable to a wide range of vision problems, the method is suited best for
identifving smooth part models from two dimensional images or three dimensional
range data. and the segmentation of complex shapes in three dimensional medical
images has not been demonstrated. However. related work by Pentland and col-
leagues [PW89. SP93] in parameterizing shape and measuring shape differences using
modal analysis has been applied in a medical imaging context. The work of Nastar
and Ayache [NA93a. NA93b|. uses modal analysis to represent and track two and
three dimensional objects that deform over time. Modal analysis uses traditional me-
chanical engineering techniques to break down shapes into sequences of successively
finer modes of vibration. The non-rigid lower order modes can be used to perform
matching of similar structures with a very succinct parameter space. Modal analysis
can be a powerful tool for subsequent analysis of surfaces segmented from MR images,
as well as a technique for matching. However, its applicability to segmenting highly

convoluted cortical structures requires more investigation.
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3.6 Why Conventional Deformable Surfaces are
Insufficient

The current methods of deforming surfaces to fit three dimensional images just de-
scribed fail to adequately address the problem of creating topologically consistent,

simple cortical surfaces with partial-volume corrected deep sulci in three respects,

e possibility of self intersection.
e sensitivity to partial volume effects, and

e inability to accurately represent the total cortical surface.

Firstly. these methods rely on the model shape constraints (stretching and bend-
ing) for a -“regularization” effect. That is, by keeping the surface more resistant
to bending and stretching, it is less likely to wrap over on itself and become self-
intersecting. There are two problems with this, one being the fact that this is only
an encouragement not to self-intersect. not a guarantee. The second problem is that,
as more regularization is imposed. the surface is less likely to deform to fit the partic-
ular dataset. A second problem with the existing active methods is that the partial
volume effect is not fully addressed. A single surface is used to try to connect to-
gether detected edge features essentially using a simple connectivity constraint, based
on a continuous surface whose stretching and bending is constrained. However, in
order to account for places in the image where gyral boundaries are blurred by under-
sampling, it would seem that more sophisticated models of the possible configurations
of human cerebral cortex are required, in order to infer folded gyral configurations in
these areas. A lesser, but not insignificant, problem is the computational tractabil-
ity of applying existing methods to a surface as complicated as the human cortical
surface. Of the methods surveyed, only that of Dale and Sereno makes an attempt
to find the entire cortical surface in a high-resolution representation. However, this
method provides no enforcement of self-intersection avoidance or explicit strategy to

circumvent partial volume effects.
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3.7 Numerical Minimization Methods

Many of the algorithms covered so far rely in one form or another on minimization of
a multi-dimensional function. Minimization is simply the process of finding a point in
the parameter space for which the function value is less than or equal to the function
value for all other points in the parameter space. The ability to efficiently find a
minimum is critical to many of the methods, and therefore, a survey of some numerical
techniques for minimization of functions is presented. A reasonable starting point for
practical implementation of standard numerical algorithms is the book, Numerical
Recipes [PFTV88]. The practical differences between the various algorithms involve
whether or not derivatives of the function must be calculated, the amount of storage

involved, and the sensitivity of the algorithm to local minima.

3.7.1 Gradient Descent

The most basic method of function minimization consists of simply walking downhill
from the current position. This is usually termed gradient descent because it
involves evaluating the first derivative of the objective function, and stepping in the
negative direction until the directional minimum (minimum along a line) is found.
Performing this in an iterative fashion will eventually terminate at a point in the
domain where the gradient is zero. However, this point may not necessarily be the
global minimum, but might be a local minimum, or some other feature, such as a
saddle point. It is difficult for any algorithm to avoid local minima, but the feature of
being trapped in saddle points and other singularities is a significant disadvantage of
the gradient descent method. In addition, depending on the curvature of the function
being minimized. the gradient descent method can have a slower convergence rate

than other methods.
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3.7.2 Conjugate Gradients

The method of conjugate gradients addresses the main problem of more naive ap-
proaches that simply follow gradients, that of slow convergence and getting trapped
in singularities such as saddle points. Conjugate gradient methods rely on a simple
formula to compute search directions based on linear combinations of gradients, but
in such a way that the successive search directions are roughly mutually orthogonal.
This means that minimizing in a particular conjugate direction does not “undo” the
minimization achieved in the previously searched directions. In the case of a quadratic
function, this method is guaranteed to find the single global minimum in a number
of iterations equal to the size of the parameter space. For more complex functions, it
has been found to behave very well, although it can still be trapped in local minima.
One particularly attractive feature of many conjugate gradient methods is that the
storage involved is linear in the dimensionality of the function. A practical conjugate

gradient algorithm may be found in [PFTV88|.

3.7.3 Golden Section Search

The Golden section algorithm [PFTV88] is a straightforward method of finding a
minimum of a one-dimensional function. and therefore, a method of finding the min-
imum of a multi-dimensional function along a line. The Golden section search is
an iterative algorithm involving shrinking the interval of search until a minimum is
found to within some specified tolerance. It is essentially the optimization analog of
the binary search method of root finding. The Golden section search is initialized
with three points along the line. where the the function value at the inner point is
less than that of the outer two. The outer two points define the interval of search
for the minimum. An iteration consists of computing the function value at a fourth
point within the interval, and replacing one of the two outer points with the fourth
point, thus producing a new set of three points with a smaller interval. A method

of computing the fourth point based on the outer two and the Golden ratio (the
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value 0.618034), results in a method where the size of each successive interval is the
Golden ratio times the previous. The advantages of this method are that is does not
require computation of function derivatives and has a predictable convergence rate,
exponentially decreasing the size of the interval. The golden section search is often
used as the line minimization component of gradient descent and conjugate gradient

methods.

3.7.4 Simplex

The simplex [PFTV88| method of function minimization (not to be confused with
the simplex method of linear programming) is a geometric approach to finding the
minimum of a function. The most attractive feature of the algorithm is that no
function derivatives are required to be computed. A simplex is the convex hull of
d + 1 points in d dimensions. where d is the number of dimensions of the domain
of the function to be minimized. An iteration of the simplex involves trying one of
several different geometric contortions on the simplex to reduce the cost of its maximal
vertex. These contortions involve contracting and expanding edges. and the resulting
behaviour of the simplex has inspired the algorithm to be referred to as amoeba.
However, the requirement of quadratic storage space (d + 1 points of d values each)

is prohibitive when dealing with functions where d is very large.

3.7.5 Simulated Annealing

All the numerical minimization techniques described thus far have the trait of search-
ing locally from an initial position, and typically find a local minimum which is very
dependent on the initial position. The method of simulated annealing introduces
randomness into the search, in an attempt to step over local minima and increase the
chance of finding the global minimum. Kirkpatrick et al [KGV83] present simulated
annealing as an approximation to the process of cooling a physical material from a

liquid to a solid. They apply the method to several optimization tasks, including the
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Traveling Salesman problem. An initial parameter configuration is randomly modified
in an iterative fashion. At first the perturbations of the parameters are quite random,
but as the iterations progress, the likelihood of a particular change in configuration is
increasingly forced to be proportional to the decrease in function value attributable
to the change. The function being minimized is analogous to the energy state of a
physical substance. and the increasing preference of the parameters to move towards
lower function values is analogous to the increase in probability of the substance to
move to a lower energy state as the temperature is lowered. This effectively results
in a random search at first. smoothly changing into an approximate local gradient-
following search near the end. Although the method of simulated annealing has been
used successfully on a number of problems, it has the drawback that the temperature
reduction “schedule” must be empirically determined for each problem, so that the
temperature is reduced slowly enough to ensure a good chance of finding the global
minimum, but fast enough to provide a tractable solution. As the authors say, the
choice of this schedule requires “insight into the problem being solved and may not

be obvious”.

3.7.6 Genetic Algorithms

Another more recently proposed class of optimization methods are termed genetic
algorithms, whose stochastic nature is closely related to simulated annealing, and
likewise has an analogy to a real world process. The principal distinction from sim-
ulated annealing methods is the method of generating randomized positions in pa-
rameter space from previous ones. Genetic algorithms emulate biological evolution,
which attempts to optimize the performance of a species using genetic combinations
of existing members to create new ones. A “population” of configurations of the pa-
rameters is created as a set of initial guesses to the optimum value of the function.
The parameters of the objective function are treated as a sequence of genes, and

pairs of members of a population breed by combining their genes into a new sequence
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using simple rules of gene splicing. Borrowing from nature’s rule of survival of the
fittest, members of the population which have a lower function value are more likely
to thrive and enter into reproductive liaisons with other members. The result is that
the population evolves into a set of members which optimize the objective function,
and careful selection of the reproductive process increases the likelihood of finding
the global minimum. Similar to simulated annealing, this method has the drawback
of requiring a reproduction strategy for combining estimates into new estimates, the

formulation of which may not be obvious.

3.8 Self-intersection and Proximity

One of the main limitations of contemporary surface segmentation research is that
creation of non-simple configurations is not precluded: there is no guarantee that
the resulting object does not intersect itself. Detection and prevention of non-simple
surfaces is directly related to intersection and proximity testing, an area of extensive
interest in computational geometry. Applications include collision detection and path
planning in robot movement, VLSI circuit design. and animation. An introduction to
many of the data structures and overall strategies for solving these types of problems
can be found in [PS85].

One ubiquitous class of algorithms for solving geometric queries is termed plane-
sweep. Originally formulated for problems in the plane, it involves a vertical line
that sweeps across the plane from left to right, encountering various “event” points,
which cause a sweep line status to be updated. Hinrichs et al [HNS88| use this method
to provide a simple and optimal worst case (©(nlogn)) algorithm to find the closest
pair in a set of n points in the plane. As the vertical line sweeps across the plane, an
ordered list of a subset of the points that are to the left of the plane is maintained.
When the vertical line encounters a new point in the set, this point is tested with a
subset of the points in the ordered list, to see if a new closest pair has been found.

The plane-sweep technique can also be generalized to higher dimensions, and has been
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applied to problems such as detecting intersection of line segments or rectangles.

The method of bucketing or fixed grid techniques generally have a poor worst
case time complexity, but perform very well in terms of expected time, under non-
pathological conditions. Bucketing methods impose a uniformly spaced grid over the
space of the problem, and partition geometric data into distinct buckets. Solving
problems such as the nearest neighbour to a point in space is a simple matter of
finding the relevant bucket and testing against the small number of data points in the
bucket [Knu73|. Bucketing methods are simple to implement and generalize easily to
higher dimensions.

In addition to these methods, there is a plethora of hierarchical data structures
applicable to geometric proximity queries. Some of the more common ones include
the multidimensional binary tree (kd-tree) [PS85], the quadree, and variants thereof
[SW, Sam], as well as binary splitting plane (BSP) trees [FKN8(], the segment
tree, and the range tree [Ben79)].

A brief survey of published methods of solving proximity problems demonstrates
the wealth of methods available for assisting in solving the problem of creating ge-
ometrically simple surfaces in the context of segmentation. Dickerson et al [DE96]
use Delaunay triangulations to solve various inter-point distances in two or more
dimensions. Gupta et al [G.JS96] use plane sweep techniques to detect collisions
and determine minimum inter-object separation within sets of points, line segments,
and axes-parallel hyper-rectangles which are moving along linear trajectories. Canny
[Can86a] presents algebraic formulae for detecting collision between moving polyhe-
dra, whereas efficient algorithms for determining minimum distance between circles
and line segments in 3-space are presented by Neff [Nef90] and Lumelsky [Lum85], re-
spectively. Gilbert et al [GJK88, GF90| provide a mathematical programming method
to find the distance between arbitrary convex sets in any dimensional space. These
methods and others may be advantageously applied to the task of surface segmenta-

tion of geometrically simple surfaces.
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Chapter 4

Edge Detection Algorithms

The formulation of a high level geometric representation of an object in an image relies
on the identification of low level salient features. These features may be contours,
image gradients, or the result of some image processing algorithm which defines edges
or boundaries of objects in an image. The issue of locating boundaries in images,
or edge detection is dealt with in this chapter. Edge detection is the process of
locating positions in an image which are likely to be houndaries between different
objects in the scene being imaged. This is an important step in that it generally
represents a reduction of the data from a large number of samples to a much smaller
number of candidate edges. This process is generally hampered by noise. which
may create false edges or change the apparent spatial position of an edge. In the
realm of neuroanatomical segmentation, edge detection is often used for the data-
driven portion of the segmentation process, in order to provide the higher level model-
based method with usable estimates of localized image edges. There is a wealth of
published research presenting methods to locate edges in multidimensional images
of all types. Here an overview of the methods applicable to three dimensional MR
images is presented, followed by a detailed description of one particular method of
tissue classification which is chosen for the preprocessing edge detection step in the

solution to the MR segmentation task.



4.1 Marr-Hildreth Edge Detection

The work of Marr and Hildreth [MH80] is an often-referenced method of edge detec-
tion that is generally applicable to many image processing situations. The basis of
their method is that an image should be subjected to a smoothing filter to reduce
the effects of noise on the edge detection process. Since edges are effectively areas
of change in the image intensity. noise detection algorithms often involve computing
image derivatives. which are sensitive to intensity noise. The optimal filter is defined
by two conflicting constraints. the requirement of smoothing the image to reduce
noise and the desire to minimize the resulting error in the spatial position of reported
edges. Marr et al observe that under certain reasonable assumptions about the noise

in the image. the use of a Gaussian blurring function,
1 2

flz) = — -
Viro

provides an optimal tradeoff between these two factors. An edge occurs where there

is a peak in the first directional derivative of the smoothed image. This corresponds
to positions where the second directional derivative changes from positive to negative,
which is a subset of what are termed zero-crossings, where the second directional
derivative changes sign. The second directional derivative of a Gaussian function is
convolved with the image, and zero values in the resulting image are used to de-
fine edges. This procedure is applied to an image several times, using different filter
widths. to capture sets of edges that occur at various spatial scales. The results are
combined by choosing edges that occur at two or more neighbouring scales. This
method, commonly referred to as M-H edge detection, has become a widely refer-

enced technique in medical imaging, and in image processing literature in general.

4.2 Canny Edge Detection

The method of edge detection by Canny [Can86b] is similar to that of Marr-Hildreth

and has also been applied to a variety of image processing tasks. The two M-H
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criteria for an optimal filter are augmented with a third constraint. Similar to the
M-H criteria, there must be a low probability of false positives and false negatives
with respect to the reporting of edges, and the positions of edges reported by the
algorithm must be as close as possible to the true edge. As a third constraint, there
must be only one response from each edge. The mathematical expression of these
three criteria results in a numerical optimization problem that attempts to maximum
the signal-to-noise ratio, while minimizing the estimated error between reported and
actual edge positions, and minimizing the likelihood of multiple responses from single
edges. For a given expected type of edge, a filter can be found which optimizes
the three criteria. An image is convolved with this filter, which effectively produces a
smoothed gradient image. where local maxima are assumed to be edges. For detection
of sharp edges. or step edges. Canny found that the optimal filter is very similar to
the first derivative of a Gaussian. Therefore, for practical edge detection in images of
two or more dimensions. Canny. like Marr and Hildreth. also convolves the image with
a Gaussian function, then computes directional second derivative zeros in order to
mark the edges. The magnitude of the gradient is used to estimate the edge strength.
This method is therefore quite similar to that of Marr and Hildreth, but Canny has
extended his method to handle variable signal-to-noise ratios throughout the image,
by locally adapting the filter. The sensitivity and generality of the method has made

Canny edge detection a popular choice for multidimensional image processing.

4.3 Monga, Deriche, and Rocchisani

The Canny edge detection method was originally applied mostly to two dimensional
images, and the complexity of the algorithm limited its applicability to high resolu-
tion three dimensional images. Monga, Deriche, and Rocchisani [MDR91] present a
variation of Canny edge detection optimized for the case of three dimensional images,
in an attempt to produce a more computationally tractable method for processing

of medical images. Their method changes the boundary conditions of Canny’s filters
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and results in a different filter type. Application in three dimensions starts by cre-
ating the gradient image with three passes of one dimensional filters. Local gradient
extrema are identified by approximating gradients at a voxel using the neighbouring
voxel values in a finite difference fashion. Finally, a method of choosing the subset
of the extrema which correspond to edges is applied, based on locating areas of high
gradient magnitude, subject to connectivity constraints with other areas of high gra-
dient magnitude. The authors have demonstrated implementation of their algorithm
on three dimensional MR images of the human heart. which suggests the amenability

of this method to edge detection of MR images of the human brain.

4.4 Anisotropic Diffusion Filters

The method of anisotropic diffusion filtering [PM90, GKKJ92] differs from other
edge detection methods in that it varies the smoothing of the image depending on
proximity to edges. The essential idea is to smooth within homogeneous regions,
rather than across them. This is achieved by diffusion algorithms which blur local
regions by a variable amount. related to the magnitude of the gradient. Areas of high
gradient magnitude are assumed to be near edges, and the amount of smoothing per-
formed is minimal, whereas near weaker edges or interior to objects, higher amounts
of smoothing are performed. Application of anisotropic diffusion filters involves iter-
atively diffusing the entire image, until convergence is achieved, where the amount
of change between iterations is below some tolerance. The effect of the adaptive
smoothing is similar to that of the previously described methods, in that it attempts
to preserve the spatial location of edges, while applying some amount of smoothing

to them.



4.5 Tissue Classification as Edge Detection

The methods of edge detection just discussed have wide applicability and have been
used successfully in medical imaging contexts. However, magnetic resonance imaging
has the relatively unique characteristic of being able to generate multiple images of a
single object with different tissue contrasts. In chapter 3, a brief overview of methods
which take advantage of this feature was presented. Tissue classification algorithms
use T1-weighted, T2-weighted, and PD-weighted MR images to classify voxels into a
small set of neuroanatomically based types, including gray matter, white matter, and
CSF'. In effect, this is a type of implicit edge detection that is optimally tuned for mag-
netic resonance imaging. Edge features can be considered to exist on the boundaries
between any two adjacent voxels which have differing tissue classes. An advantage
of this over more general edge detection methods is that edges are not only identi-
fied, but also classified into different types, such as gray-CSF and gray-white edges.
Based on the success of existing MR tissue classification algorithms, the remainder
of this dissertation will assume that the input images have been preprocessed with
an established tissue classification algorithm. This convenient assumption is actually
not a very limiting restriction. as it can be shown that any of the general methods of
edge detection may be quite easily incorporated into the overall method of MR image
segmentation presented here.

The actual method of tissue classification is an implementation of the work of
Zijdenbos et al [ZDM93, ZER*96]. This method approaches tissue classification as a
feature matching process using a training set, with no user intervention required. Be-
fore classification, MR volumes are registered into a standard stereotaxic coordinate
system using an affine image registration algorithm described in chapter 3 [CNPE94].
A volume containing the probability of each voxel being each of the various tissue
classes has been generated from a sample of several hundred MR volumes which have
been classified by a semi-automatic method. The training set is defined as a set of

voxel positions in this composite image (probabilistic volume) with high probabil-
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ities of particular tissue types. These voxel positions are then used to derive a sample
of image values from the T1-, T2-, and PD-weighted MR images of a particular target
individual. The image values from the three target volumes and the corresponding
tissue classes from the probabilistic volume are used to initialize an artificial neural
network. Each voxel in the target image is then independently classified by the neural
network into one of the defined tissue types, resulting in a discrete three dimensional
volume, where cach voxel has one of a small number of integer labels. Figure 4.1

depicts the results of this tissue classification algorithm on a typical MR volume set.

Figure 4.1: One slice through a tissue-classified volume. Areas of changes in class
type are considered to be edges (white matter is white, gray matter is gray, CSF is

black, background is off-white).
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This tissue classification method relies on a preprocessing step that reduces the
effects of RF inhomogeneities in the three dimensional volume. The method of Sled
et al [SZE97] assumes that the effect of RF is an intensity scaling that is spatially
slowly varying. Consequently, the RF can be estimated from localized histograms
and modeled as a smooth spline function. The resulting estimate is subtracted from
the MR image to produce an image with markedly reduced inhomogeneity. Sled et
al perform experiments to test the cffect of RF correction on tissue classification,
image registration, and surface extraction. In all three cases, the sensitivity of the
algorithms to RF inhomogeneity is greatly reduced when the data is first preprocessed

with the RF inhomogeneity reduction algorithm.



Chapter 5

Solution: Non-intersecting Object

Deformation Environment

(NODE)

5.1 Overview

A novel method for creating geometrically simple representations of cortical surfaces
from MR images is presented here. The foundation of the technique is a surface defor-
mation approach similar to the Snakes algorithm of Kass et al. The method proposed
is novel in that it allows simultaneous identification of multiple inter-related surfaces
combined with constraints which guarantee geometrically simple surfaces. Homology
between model points and deformed points can be constrained through the use of
curvature-based shape matching. The use of multiple surfaces will be shown to pro-
vide some correction for partial volume effects by incorporating more neuroanatomical
a priori information into the model constraints. Specifically, inter-surface proximity
constraints are used to specify relationships among multiple surfaces of the segmen-
tation process and to prevent two surfaces from intersecting each other. Intra-surface

proximity constraints prevent individual surfaces from becoming non-simple. An ob-
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jective function with intuitive user-chosen weighting parameters is devised to measure
how closely a particular surface or set of surfaces simultaneously approximates the
image data and adheres to a set of model constraints. The parameter space imposed
by the surfaces involved is searched to find a minimum of the objective function,
and the corresponding surface is output. Because this technique provides a frame-
work for deformation of objects with intersection constraints, it is referred to as the

Non-intersecting Object Deformation Environment (NODE) algorithm.

5.2 Representation

The choice of surface representation for the solution presented in this dissertation is a
very straightforward decision. All surfaces are represented here as arbitrary polyhe-
dra, for many reasons. Most computationally tractable surface proximity algorithms
are polyhedron-based. Using more complex representations, even such prevalent ones
as piecewise spline patches. would greatly increase the complexity of computing prox-
imities between parts of surfaces. Similarly there is a wealth of algorithms for dealing
with polyhedra, although this is of lesser importance, as many other surface repre-
sentations also have an extensive historv of practical use. More software supports
polygon and polyhedron formats than any other type. so this choice of format is
practical from the point of view of data interchange and flexibility of analysis. In
addition, the choice of polyhedral surface representation is not very limiting because
algorithms exist to convert to many other representations, including piecewise spline
patches, superquadrics, and spherical harmonics. Finally, most implementations of
deformable non-polyhedral surface representations approximate the integral of the
image component of the cost function as a set of discrete points, because closed form
solutions of surface integrals of functions of MR images are generally not feasible.
Evaluating at discrete points on the surface is essentially the same as using a poly-
hedral representation and evaluating at vertices, so in this respect, nothing is gained

in using a more sophisticated representation.
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. 5.3 Objective Function

The objective function is simply a scalar goodness-of-fit measure for a given configura-
tion of surfaces. Its domain is therefore the set of parameters of the surfaces involved,
and its range is the set of real numbers. The objective function is a weighted sum
of various model and data components, each of which is described in a subsequent
section. The objective function, O(S), may be defined generally as a weighted sum

of N, terms, each of which may be thought of as a data or model term:

N,
O(S) =Y w T,
k=1
where S is a set of .V, polyhedral surfaces:
S ={S; : S;is a polyhedral surface, 1 <i < N,},

wy is a weighting factor, and T} represents one of the terms defined in the following

sections. Before describing each of the possible objective terms, some definitions are

. presented:
Iy = (Lus Yu. =) . the 3D position of vertex v in a deforming polyhedral mesh,
Iy = (&9, 9u, 35) . the 3D position of vertex v in a static model polyhedral
mesh.
Ny , the number of vertices in a polyhedral mesh.
np . the number of polygons in a polyhedral mesh. and
My , the number of neighbours of vertex v,
Ny,j the j'th neighbour of vertex v, and
N, , the surface normal at vertex v, defined as the unit normal

to the polygon consisting of the counterclockwise ordered

neighbours of the vertex.

5.3.1 Image Value

The image value term represents the proximity of the surface to edges in a particular

image dataset. This term decreases as the surface approaches the edges in the image,
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which are defined as the contours of a user-defined threshold:

Ty

Timage = 3 (V(Z,) - 1)°,

v=1
where ¢ is the threshold denoting the image value that best defines the image edges,
and V(z,y, z) is the continuous function representing the three dimensional image
volume. As suggested in the original Snakes paper, and subsequent research [Bcc89,
VRLY3], image blurring may be performed in order to reduce the effects of local
minima by smoothing the cost function. Rather than fitting the surface to a particular
contour, it is also possible to have the surface attracted to the lowest values in its
vicinity, by setting the threshold. t. to a value less than or equal to the lowest value
in the volume. Similarly, one could set the value of ¢ to a very large value and use a
gradient magnitude volume to define |". in order to fit the surface to the edge defined

as the maximum local gradient magnitude.

5.3.2 Image Boundary Distance

In order to increase the power of locating image boundaries that are relatively far
from the current surface position. an alternate image term is introduced. This term
is based on the distance of a vertex from the nearest image boundary in the direction
of the surface normal, and is defined as

y

bTboundnry_dist = Z dp (fva j\’-rvv t)2

v=1
where dg(Z,,V,, t) is the distance to the nearest image contour of the threshold, ¢,
from the vertex, v, along the line defined by the surface normal, V,. The search is
performed along the surface normal in both directions from each vertex. In prac-
tice, this term also requires a value for the maximum search distance, after which
unsuccessful searches are truncated and the value of dg is set to the maximum dis-
tance. The choice of the maximum search distance controls the range of attraction

that image edges will have on surface vertices. The intention of this term is to reduce
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a) b) c) d)

Figure 5.1: a) Result using image value term. b) Result using simple boundary
distance. c¢) Intermediate step where objective function value has increased. d) Result

using modified boundary distance term.

the frequency of local minima in the cost function, by increasing the distance across
which a surface may be attracted to an edge.

Comparison of Figs. 5.1a with 5.1b illustrates how the Tyoundary_sise t€rm represents
an improvement over the Ti,,,. term. However, the method as described is still
insufficient for accurately locating the depths of sulci. The reason is that Fig. 5.1b
corresponds to a local minimum in the objective term, Thoundary_dist- For the surface
to pass from this configuration to the final configuration in Fig. 5.1d, it would have
to pass through a configuration similar to Fig. 3.1c, which has a higher objective
function cost because more vertices are far away from the image boundaries. The
correct result presented in Fig. 3.1d is achieved through modifying the boundary
search mechanism.

The modification of the search mechanism involves performing the search for im-
age boundaries at fixed intervals during the deformation, rather than every time
the objective function is evaluated during minimization. Each iteration consists of
computing the nearest image boundary point for each vertex, then taking a few min-
imization steps of the resulting objective function while holding the image boundary
points constant. While this will cause the surface to follow convoluted sulci all the
way into the depths, it introduces a new problem. The successive states of the objec-

tive function are no longer monotonically decreasing, as it is possible for the function

63



to temporarily increase, before decreasing again. This means that termination cri-
teria for the minimization can not depend solely on changes in function value, but
must also include some other criterion, such as distance moved per iteration, or max-
imum distance of a vertex from the boundary. The disadvantage of an objective
function that does not monotonically decrease is far outweighed by the advantage of

this algorithm to accurately locate deep and convoluted sulci.

5.3.3 Stretch

One of the terms that imposes model constraints is the stretch term, which increases as
lengths between vertices are stretched or compressed relative to a user-defined model
surface representing the ideal lengths. The term represents a normalized deviation

from this ideal:

2

AL (g = Ln, )2 + (.l/v = Un,. )2 + (20 = Zny, )2 - Lu,j
Tstretch = Z Z (\/ . T - ’
v,

o=t j=1
where L, ;, the ideal length of an edge. is defined as the corresponding length in the

model polyhedron:

Lyj = /(& = £u, )2 + (B0 = ., )2 + (30 = 2n,, )%
The intention of this term is to make distances between corresponding pairs of vertices
on the model and deformed surface roughly equivalent. This term is analogous to the
term involving the magnitude of the first derivative of the spline in the original Snakes
formulation, which makes the snake act like a membrane which constrains stretching

and compression.

5.3.4 Curvature

The other term that provides a model-based shape constraint is the curvature term,

which controls the amount of bending of the surface away from the model shape. On
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curves, curvature is defined as the reciprocal of the radius of an inscribed circle at
a point on the curve. The curvature at a point on a surface is usually represented
by two numbers, the mean curvature and the Gaussian curvature, which are based
on the minimum and maximum curvatures defined by cross sections on osculating
planes through the surface at that point. For the purposes of controlling surface
shape, a more easily computed scalar measure of deviation from flatness is sufficient
for representing the curvature at a vertex of a polyhedral surface. The measure of
curvature is based on the ratio of height to base length of the pyramid-type structure
defined by a vertex and its neighbours. The signed perpendicular height of the vertex
above the plane of best fit through its neighbours is divided by the average distance
between the neighbours and their centroid to produce a curvature estimate. Vertices
in flat areas have a value near zero, convex vertices have positive values, and concave
vertices have negative values. Similar to the stretch term, the curvature term measures
deviation of surface vertices from the curvature, C,, at the corresponding vertices of

a model surface:

- v 2
Ny _'f,‘" —_ 'I'.L' Py "VU R
T;:urvulurcf = Z (( B ) - Cv)
v=l v

where £, is the centroid of the neighbours of vertex v, B, is the average distance
from the centroid to each of the neighbours, e is the vector dot product operator,
and C, is the curvature computed similarly from the model surface. This term is
analogous to the term involving the second derivative of the spline in the original
Snakes formulation which causes the spline to function like a thin plate, constraining
the bending of the spline.

The curvature term is relatively easy to compute, but assumes that the surface
consists of a mesh isomorphic to a sphere. In order to handle other cases, such as
deforming sheets or more complicated topologies, one could devise other measures
of curvature. One simple possibility is to measure the angle between every pair of

triangles that share an edge. Similar to the curvature term, the bending term would



assign a higher penalty to angles which deviate further from the model configuration.
For the application to cortical surface segmentation, closed surface models are used,

and alternate forms of the bending term are not explored further.

5.3.5 Vertex-to-Point Constraints

Another method of guiding the deformation is to constrain a particular vertex to
remain close to a specified distance from a fixed point:

')

T:mchm' = (\/(ju - -E.-l) e (-'Z'u - -'1'..»\) - di)

where r 4 is a user specified anchor point. and d, is the preferred distance that vertex
v should be from the anchor point. A value of zero for d4 results in a vertex being
attracted to the point. In practice. this term may be used to guide a specified portion
of a deforming surface towards a particular neuroanatomical landmark of interest, or

to allow a user to interact with a surface.

5.3.6 Vertex-to-Vertex Constraints

A similar constraint to anchoring a vertex to a fixed point is to constrain two vertices

to be a preferred distance apart:

Tvertez—verter = (\/(-z'u - iw) L (-'Eu - fw) - dB)-

where dp is the preferred distance between vertex v and vertex w. Again, this can be
used either to keep two vertices close together or far apart. In the case where vertex
v and w correspond to neighbouring vertices in a polyhedron, this term becomes
equivalent to the stretching term, Tyreecn. A more interesting situation occurs where
the pair of vertices belong to two distinct surfaces, in which case the Tyerter—vertez

termn may be used to maintain a specified distance between two surfaces.
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5.3.7 Self-Intersection Constraints

In order to maintain a well-behaved surface during the deformation process, it is
critical to define self-intersection constraints on each surface. Prevention of self-
intersection is achieved by associating a high cost with non-simple topologies and
configurations where non-adjacent polygons are in close proximity. This maintains a
smooth objective function that increases in cost as parts of the surface move closer to
intersection. The formulation of this term therefore measures the distance between

every pair of polyvgons in a polyvhedral mesh,

ftp—1 Tty (d (PI,P)_d')‘z# ifd (PtyP.) <d’iy
Tself—mtersect = Z g ! " ’ : ’

i=t j=i+1 | 0, otherwise,

where d,(T;, T;) is the smallest Euclidean distance between the i'th polygon, £, and
the j’th polygon. P;, and d,; is a distance threshold. In practice, pairs of adjacent
polygons are not included in the above equation. as their d,(P;, P;) and d; ; must both
be zero. Figure 5.2 illustrates the value of the self-intersection term as a function of
the distance between two polygons. The function is zero whenever the two polygons
are greater than d;; = 5 millimetres apart. but increases to a prohibitive cost as the
distance closes to zero. If this term has a sufficiently high weight associated with it
and all values of d; ; for non-adjacent polygons are positive, then geometric simplicity
of the surface is maintained throughout the deformation. This term could also have
been based on the more easily computed distance between vertices or between a vertex
and a polygon. but the distance between polygons was chosen because the former two

distance constraints cannot, in general, prevent self-intersecting topologies.

5.3.8 Surface-to-Surface Intersection Constraints

Similarly to the self-intersection constraints, the distance between any pair of surfaces
may be constrained:

2

o | (dp(PiyQs) —dig) s ifdp(P:Qj) < dij
Tself-interscct = Z Z ! d ) I ]
i=1j=1 | 0, otherwise,
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Figure 5.2: The contribution to the self-intersection objective term as a function of

distance between two polygons in a polyhedron.

where n, and n, are the number of polygons in the two surfaces, d,(F;, @;) is the
distance between a polygon on one surface and a polygon on the second surface, and
d;; is the threshold distance below which two polygons contribute positive values
to the objective function being minimized. With an appropriate weight and values

of d;;, this term may be used to prevent inter-surface intersection or to maintain a

specified minimum inter-surface distance.

5.4 Elaboration on Objective Terms

For reasons of clarity, the definitions of objective terms have been presented in a
somewhat simplified form. However, in practice, it is possible to involve more than
one data volume in the objective function, as well as multiple distinct surfaces, and
even many stretch and curvature models for each surface, each with its own set of
weights and other parameters. In addition, the formulation of some of these objective

terms is developed further in the following sections.
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5.4.1 Directional Edges

Examination of human neuroanatomy and three dimension MR images reveals that
there are often several candidate boundaries near any given point in the image. In
order to increase the likelihood of the minimization procedure choosing the correct
edge, the boundary search term is refined to include a directional constraint based on
the orientation of local image gradients. In addition to choosing a threshold for each
desired edge, a direction parameter, g, either positive or negative, can also be specified
to constrain the search to areas where the dot product of the image gradient and the
outward surface normal is less than or greater than 90 degrees, respectively. This
requires a modification of the distance calculation in the boundary distance term,

ny

Thoundaryaist = 3 dp(Zv. Ny, 9. 1),

v=1
where dg now finds the distance to the nearest image contour along the search di-
rection, V,, ignoring those points where the gradient is facing the wrong way with
respect to :V,, as defined by the sign of g. This refined boundary search constraint
is useful in differentiating cerebral cortex edges in T1-weighted images, which have
inward facing image gradients, from the inside skin edges, which are relatively close

to the cortex in places. but have outward facing image gradients.

5.4.2 Differential Weights

Until now, the weights have been specified on a per-term basis, but it is also pos-
sible to vary the weight of a term depending on various criteria. For instance, the
image boundary distance term may have a different weight depending on whether the
boundary was found inside or outside the surface, to allow a preference for the surface
to be just outside the image edges. In the case of cortical surface extraction, it may
also be appropriate to allow a surface to bend in the concave direction more easily
than in the convex direction, in order to better interpolate deep sulci. One other way

to apply differential weights is to effectively impose a maximum deviation from ideal,
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by attaching a higher weight once the deviation increases past some point, similar to
the formulation of the self-intersection term described previously. This allows impo-
sition of such constraints as maximum stretch or curvature deviation from a model
surface. The general form of such a term is:

2
E

(mactuul — Mideal — ""-am—diff) if Myctuat — Mideal > max“diff
. . ') . g . -
Tez = (Mactual = Mideat — MINALf f)7,  if Mocryal — Mideat < Min_dif f
0. otherwise.
where mgeiuar and mygeq are the appropriate actual and ideal measures from one of
the previously described objective terms. Terms of this type contribute nothing to

the objective function unless the difference between the actual and ideal is outside

the range [min_dif f, mazx dif f).

5.4.3 Choice of Weights

A typical objective function may consist of several different weights and parameters,
each of which must be chosen in some way. Due to the generality of the objective
function terms and the dependence on the specific segmentation task and data, there
is no theoretically grounded method to choose good weights. However, the weighting
parameters provide direct control on the tradeoffs between the various objective terms
and therefore represent an intuitive mechanism for constructing surface deformation
tasks. Experimentation with the various parameters is performed in a subsequent
chapter. In order to make the weights independent of surface sampling and volume
data scaling, each weight may be normalized by the number of vertices or polygons,

or volume data range, as appropriate.

5.4.4 Continuity of Objective Function

The objective terms presented have generally taken the form of a squared residual, not

only for reasons of computational efficiency, but also to provide a smooth objective
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function. The large number of parameters involved in each surface, combined with
the complexity of the image data, introduce the possibility of many local minima
in the objective function. Using squared residuals as the basic components of the
objective function helps keep the objective function C' continuous, that is, both
function value and gradient are continuous. However, it must be noted that the
boundary search term is potentially discontinuous, because an infinitesimal change
in the surface normal may cause the distance to a boundary to have a discontinuous

change in value.

5.4.5 Oversampling

The objective terms described thus far have typically been evaluated on a per-vertex
basis. which effectively samples the objective function at the resolution of the sur-
faces involved. However, most of the terms, particularly the image terms, admit the
possibility of being sampled other than at the vertices, in general, on an arbitrary
sampling over the surface. This can prove useful in preventing the deforming sur-
face from missing data small relative to the spacing of vertices, while not increasing
the number of surface parameters over which minimization is performed. In partic-
ular, oversampling the image value term and the boundary search term over all the

triangles in the surface can be an advantage in fitting a surface to an image.

5.5 Minimization

A typical MR volume consists of over 10 million voxels, and the surface required to
represent an anatomical object spanning most of the volume requires a large number of
parameters. For the cortical surfaces represented by polyhedral surfaces, the number
of vertices is on the order of 100 000, resulting in 300 000 or so parameters over
which minimization occurs. It is computationally intractable to perform an exhaustive

search of this parameter space, so minimization is achieved by starting with a good
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initial guess, performing a multi-scale search, and using a minimization method that
searches locally from the current position in parameter space. The initial guess is a
surface that is expected to be close to the correct answer, and the method of choosing
the initial guess depends highly on the application context. The multi-scale concept
is widely prevalent in the literature of objective function minimization and in this
case, involves starting with a coarse under-sampled set of surfaces, and iteratively

minimizing the objective function, while increasing the sampling of the surfaces.

5.5.1 Conjugate Gradient Minimization

The conjugate gradient method of function minimization is a robust and efficient
algorithm based on using the first derivative of the objective function to direct the
search. It is chosen in this case because it is usually not compromised by singularities
such as saddle points. In addition. its storage requirement is linear in the number of
dimensions of the objective function. which is important when dealing with hundreds
of thousands of dimensions. There are multiple variations of the conjugate gradi-
ent method, but the one chosen here is the straightforward algorithm described in

[PFTVSS].

5.5.2 Termination Criteria

As mentioned in section 5.3.2, the termination criterion can not be simply to stop
when the objective function stops decreasing by a threshold amount. Since the ob-
jective function can increase and decrease somewhat while the surface is far from the
image boundaries, it is necessary to devise other termination criteria. One obvious
method that is often used in dynamic systems where no explicit objective function
exists is to stop when the movement of the parameters decreases below some level.
In this case, one could use the average or maximum distance moved by the vertices
to decide when to stop the minimization. Another termination criterion is to stop

when all vertices (or oversampled points) on the deforming surface are within a spec-

72



ified distance from an image boundary. This criterion is best applied when there is
little chance of holes in the image where it is impossible for a single closed surface to
conform exactly to the image. For instance, deforming a sphere to fit an image of a
torus could never bring all points on the surface close to the image boundaries, due
to a mismatch of topologies between the data and the model. Therefore, it is better
to use a combination of two termination criteria where the algorithm stops when the
motion of the surface vertices decreases below some level, or all points are within

some specified distance of image boundaries.

5.5.3 Multi-scale Approach

In order to speed up convergence of deformation problems, a multi-scale approach
is often employed [MH80. Can86b. CEHP95. Bee89. VRLI3]. The intended effect is
that the initial stages generate a rough overall fit to highly blurred data for relatively
little computational effort, with the effects of noise and small image features being
ignored by the low resolution surfaces. As the iterative decrease in scale progresses,
the surfaces interpolate smaller features in the data, until the desired amount of detail
is achieved, modulated by the amount of computation time allowed. In implementing
the multi-scale approach for the surface deformation described herein, it was found
more expedient not to blur the target volume. If blurring is performed, narrow sulei
may only show up at relatively high resolutions, at which point the computational
cost of deforming the surface into a deep sulcus is much higher than if the sulcus can
be located when the surface has fewer parameters. The use of oversampling of the
boundary function on the deforming surface provides a similar averaging advantage
to that arising from using blurred volumes, which effectively compensates for the lack

of blurring.
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5.6 Creation of the Cortical Surface Model

Critical to the success of a deformable surface is the model used to constrain the
segmentation process. Here, the model may be used as both the initial guess and as
the shape model during the deformation. The model should capture the shape and
position of the typical object being segmented. In the case of the human cerebral
cortical surface, a model was created as follows. A set of 53 normal individual MR
volumes were registered into a stereotaxic coordinate system, by an automatically
computed, linear transform. This factors out rotations and translations, as well as
scaling in each of the three coordinate dimensions. A voxel-by-voxel average was
performed in Talairach space to create an average MR volume, depicted in Fig. 5.3a.
This volume was then thresholded using an empirically chosen threshold to create
a binary volume, shown in Fig. 5.3b. The binary volume was then segmented by
hand on a voxel-by-voxel basis. to remove the cerebellum, brain stem, skin, and
other non-cortical features. with the result depicted in Fig. 5.3c. The surface of
this segmented, binary volume was then assumed to be representative of the size and
shape of the typical cortical surface in Talairach space. The final step was to create
an explicit surface model from the segmented volume. This was accomplished by
creating an ellipsoid that had the rough size and shape of the cortex (Fig. 5.4a),
then applying the surface fitting method described previously to deform the ellipsoid
to fit the boundaries in the segmented volume. The resulting model is shown in
Fig. 5.4b, and is used as the initial model for much of the validation discussed
in subsequent chapters. This model encapsulates the gross shape, orientation, and
position of all normal brains mapped into stereotaxic space. Accordingly, it represents
a good starting model for deforming to capture any individual brain, as well as a frame

of reference for investigating local anatomical variations.
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2) b) c)

Figure 5.3: a) Cross section of average of 53 normal individual MR volumes. b) Cross

section of thresholded average. c¢) Cross section of segmented thresholded average.

Figure 5.4: a) Ellipsoid before deformation to the segmented average MR volume. b)

Ellipsoid after deformation.
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Chapter 6

Basic Tests of Deformation

As a prelude to exploring the application of the deformation method to realistic data,
a series of short examples are used to test and demonstrate some of the features of the
NODE algorithm. The datasets used are fabricated to be small and simple, in order to
focus on one aspect of the deformation process. The effect of each of the components
of the cost function is dealt with separately. followed by demonstrations of how several
components are used together to achieve specific results. It is important to note that
all tests are performed with closed polyhedral surfaces and three dimensional volumes,
but that the results are often presented visually in the form of two dimensional cross-

sections in order to minimize confusion caused by three dimensional image complexity.

6.1 Boundary Interpolation using Image Value

The essential task is to fit a deformable surface to the boundary of an object appar-
ent in an image. One of the cost function components that can be used to locate
boundaries is the image value term, Timqage, Where the difference between a constant
and the image value at each vertex is to be minimized. As with other deformable
methods, the use of this term in practice requires that the image be smoothed some-

how. Discontinuities and sharp edges in the image decrease the likelihood that a
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vertex will be able to follow the gradient to reach the desired threshold. Figure 6.1
illustrates a cross section of the initial configuration of a surface and volume, and the
final position after deformation using the image value component. The final position
has not changed the surface at all, because the vertices are positioned so far from the
boundary that thev are on an image value plateau, and local gradient information is
insufficient to indicate the direction to the boundary. Most methods of deformable
surface involve blurring the image to avoid such image plateaus. Figure 6.2 depicts
the same situation as the previous figure, except that the image has been blurred
with a three dimensional box filter, thart is, each filtered voxel value is the average of
the original values within a rectilinear box centred at the voxel. The result on the
surface deformation is that all vertices are successfully moved to the desired bound-
ary position. In effect, the blurring of the data increases the distance of attraction
of vertices to edges. This need for increasing the region of attraction around edges
by blurring or other types of transformations is observed in much of the deformable

model research, notably the seminal Snakes paper [KWTS88].

Figure 6.1: Cross sections of initial and final surfaces using image value term on

non-blurred data.

6.2 Boundary Interpolation using
One Dimensional Search

The failure of the image value term to locate edges relatively far from the surface

vertices without blurring is addressed by the other cost function term that deals with
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Figure 6.2: Cross sections of initial and final surfaces using image value term on

blurred data.

boundary location, Thyundary_dise- The boundary search term involves searching inward
and outward along the surface normal to locate an image value equal to the desired
threshold. In order to compare its behaviour to that of the image value term, it has
been applied to the same two datasets as in the previous section. Figure 6.3 illustrates
that the boundary distance term correctly locates boundaries that are a significant
distance from the initial position of the vertices, where the Tjnqeqe term failed to do so.
Figure 6.4 shows that in the case of blurred data, the result is equivalent to the image
value method, as would be expected. This indicates that the use of the Tyoundary_dist
term obviates the need for image blurring to increase the distance of attraction of

edges.

Figure 6.3: Cross sections of initial and final surfaces using boundary search term on

non-blurred data.
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Figure 6.4: Cross sections of initial and final surfaces using boundary search term on

blurred data.

6.3 Boundary Direction Constraints

The refinement of the boundary search term, Tyoundary_dgise t0 include gradient direc-
tion information is useful to distinguish between neighbouring edges. Figure 6.5a
illustrates the cross section of an initial model and an image volume, which has
two concentric sets of edges. Figure 6.5b shows that if no directional constraint on
the boundary search is used, the model is incorrectly deformed to fit parts of both
concentric boundaries. Figure 6.5¢ shows how including an inward-facing gradient
directional constraint allows the desired object boundary to be identified. Using an
outward-facing gradient constraint results in location of the other boundary, as shown

in Fig. 6.5d.

Figure 6.5: Cross sections of boundary search: a) initial configuration. b) final config-
uration without directional boundaries (symbol > shows area of confusion). c) final
configuration searching for inward-facing gradient. d) final configuration searching

for outward-facing gradient.
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6.4 Stretching Constraints

One method of imposing regularization on the deforming object is to control the
amount of stretching and compression of the surface with the term, Tiyireron. The
same initial configuration as Fig. 6.1 is used. The surface was deformed to fit the
image with a cost function including both a boundary search term and a stretch
term. Figure 6.6 presents the results of several such fits, each with a different weight
assigned to the stretch term. This demonstrates that the amount of regularization
imposed by the stretch term can be selected from a smooth continuum to achieve the
desired effect. How to choose appropriate values will be dealt with in a subsequent

chapter.

a) b) ¢) d)

Figure 6.6: Cross sections of deformed surfaces with stretch weights decreasing from

a) through d).

6.5 Curvature Constraints

The second method of imposing regularization on the deforming object is to control
the amount of bending of the surface. through the use of the curvature term. The
usual initial configuration is used (Fig. 6.1), and the deformation involves minimizing
the boundary search term and curvature term. The results of various values for the
curvature weights are shown in Fig. 6.7. The results are very similar to that of
the stretch term, again demonstrating a smooth continuum of tradeoff between the

amount of surface deformation and boundary interpolation. Although the stretch and
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curvature term provide similar effects, there is a distinction and one may be more
appropriate than another in a given context, depending on whether an application is
more concerned with distances on a deforming surface, or the shape of the surface

using curvature measurements.

s

Figure 6.7: Cross sections of deformed surfaces with curvature weights decreasing

from a) through d).

6.6 Oversampling

The effect of oversampling the boundary search term is to make the surface more
likely to detect features small relative to the size of the polygons comprising the
deforming model. Figure 6.8 illustrates a uniform grid superimposed upon a single
triangle where the boundary search term is evaluated at each grid point in addition
to the three vertices. Figures 6.9a and 6.9b show the results of two deformations of a
low resolution surface where the objective function is sampled only at the vertices in
the first case, and oversampled at 39 extra positions per triangle in the second case.
As would be expected, the oversampled surface more closely interpolates the image
data, whereas without oversampling, only the vertices of the deforming object are

deformed to be near the boundaries.
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Figure 6.8: Grid depicting oversampling. Vertices are black, oversample points are

gray.

Figure 6.9: a) boundary sampling only at vertices. b) oversampling between vertices

results in a better fit.
6.7 Vertex-to-Point Constraints

Any vertex in the deforming surface may be assigned an attractive or repulsive force
with respect to a given three dimensional position, using the T ucnor term. Fig.
6.10 illustrates the results of several surface deformations, where the same vertex is
attracted to a given point (illustrated by a small sphere) with different weights in
each case. Again. a smooth continuum of tradeoff between interpolation of the image
and proximity of the vertex to the fixed point is possible. Fig. 6.11 illustrates the
results of similar deformations, when the vertex-to-point term is used to repel the

vertex from the given point.
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Figure 6.10: Cross sections showing vertex-to-point attraction with increasing weight

from a) to d).

b)

Figure 6.11: Cross sections showing vertex-to-point repulsion with increasing weight

from a) to d).
6.8 Self-Intersection Constraints

One example of where self-intersection constraints impose a pronounced effect on the
outcome of surface deformation is in cases where the image data has a topological
hole. Fig. 6.12 shows a three dimensional view and a cross-section view of an image
volume containing a torus. Fig. 6.13 shows a cross section part way through the
deformation process as an ellipsoid is being deformed to fit the image volume with no
self-intersection constraints. The deformation process causes the surface to intersect
itself as it attempts to wrap the surface around the hole. Imposing self-intersection
constraints causes the deformation to stop when the two parts of the surface on either
side of the hole meet each other, as depicted in Fig. 6.14, where non-adjacent points
on the surface are prevented from coming within one millimetre of each other. While it
may be argued that neither solution is actually correct due to a mismatch of topology

between the model and the data, this provides a good test of using self-intersection
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constraints to force the model topology onto the data.

Figure 6.12: a) Three dimensional view of torus surface. b) Cross section of torus

image and surface.

Figure 6.13: a) Three dimensional view of surface deformed with no self-intersection

constraints. b) Cross section of image and surface from a).

Figure 6.14: a) Three dimensional view of surface deformed with self-intersection

constraints. b) Cross section of surface and volume.

Self-intersection constraints are also very important in data which has convoluted
geometry, in particular, medical images of the human brain. Figure 6.15a illustrates

an initial configuration of surface and image volume which can lead to a problem
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of self-intersection. Figure 6.15b depicts the cross section of the surface part way
through the deformation of the surface without self-intersection constraints. The
surface doubles over on itself, and eventually tries to wrap around the image object
several times, never actually achieving it, which is clearly an incorrect solution. In-
corporating self-intersection constraints into the process prevents this behaviour and
allows the deformation process to correctly locate the image object, (Fig. 6.15¢). It
is interesting to note that. even in this case where the topology of the model matches
that of the image, deformation to image boundaries can result in a non-simple surface
due to the position of the model relative to the image volume, unless self-intersection
constraints are applied. With highly convoluted geometry, such as in MR brain vol-

umes, it appears very important to impose self-intersection avoidance on the process.

,a)

Figure 6.15: a) Cross section of initial configuration that can lead to self-intersection
problems. b) Cross section of surface deformed without self-intersection constraints.

¢) Cross section of surface deformed with self-intersection constraints.

6.9 Circumventing Partial Volume Effects

The primary objective of assembling the various objective terms presented in chapter
5 into a single surface deformation technique is to locate the total cortical surface from
MR images, which are confounded by partial volume effects. A test is performed on
a very simple constructed dataset. Fig. 6.16a shows a cross section of an image
of a single sulcus, where CSF is coloured light gray, gray matter is dark gray, and

white matter is white. A worst-case scenario partial volume effect is demonstrated
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by having no CSF within the sulcus, and thus no apparent sulcus, from the point of
view of the boundary between the gray and CSF regions. Figures 6.16b and 6.16¢
show the deformation of a sphere to fit the gray-CSF and gray-white boundaries,
respectively. The observation that the gray-white surface contains a well formed
sulcus, even though the gray-CSF does not, motivates methods of improving the
gray-CSFE surface using the extra information provided by the gray-white interface.

Two such techniques are presented here.

6.9.1 One Surface — Two Boundaries

To force the gray-CSF boundary deeper into the sulcus, an assumption is introduced
that the cortical surface boundary should be a certain distance from the gray-white
boundary, based on neuroanatomical knowledge. The corresponding cost function in-
cludes both a boundary search term for the gray-CSF boundary and a second bound-
ary search term for the gray-white boundary. where the latter term, incorporating an
offset distance of five millimetres. is weighted higher than the first. In terms of the
objective function components described in a chapter 5, the overall function being

minimized is of the form:

wy Tyereten +

w2 Teurvature +

w3 Thoundary_dist(1.5,0) + -
Wy Thoundary_dist(2.5,5) +

Wws Tqulj—intersect(0~25)

The Tyoundary.dist(1.3,0) term measures the distance along the surface normal to an
image contour of 1.5, which corresponds to the gray-CSF boundary in a classified
image. Similarly, the Thoundary_aist(2.5,5) term measures distance to a point 5 mil-
limetres away from the gray-white image boundary, defined by the value 2.5 in a
classified image. The self-intersect term is non-zero whenever two non-adjacent trian-

gles of the deforming surface come within 0.25 millimetres of each other. The stretch
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‘ and curvature terms are used to keep the polyhedron relatively smooth.

Fig. 6.17 shows the result of deformation of this two-boundary model, where
a reasonable approximation to the sulcus is attained. This ability to infer sulcal
boundaries that are not evident in the data is of critical importance in the generation
of models of the entire cortical surface. The use of self-intersection constraints en-
sures that while the two sides of the sulcus may be very close, they never touch and
the resulting surface represents a realistic approximation to the real-world, tightly
folded cortical surface. It would be difficult to achieve this complete cortical surface
model in a general way with conventional methods of boundary detection, even using

morphological operators.

Figure 6.16: a) Cross section of image representing sulcus obscured by partial volume.
b) Cross section of apparent gray-CSF boundary. c¢) Cross section of apparent gray-

white boundary.

Figure 6.17: a) Partial-volume corrected surface deformed to simultaneously fit two

boundaries. b) Cross section of surface and volume.
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6.9.2 Two Surfaces - Two Boundaries

The previous section describes the use of a single surface simultaneously attracted
to two concentric boundaries as a method to solve the partial volume problem with
respect to deep sulci. A slight variation is presented here, which involves two surfaces
attracted to the same two image boundaries defined in the previous solution. The
outer surface is attracted to the gray-CSF boundary and the inner surface is attracted
to the gray-white boundary. The two surfaces are constrained to be about five mil-
limetres apart as they deform. Similar to the previous example, the inner surface has
a higher weight attracting it to its image boundaries.

The function being minimized now consists of terms operating on two surfaces,

S[ and S'_zi

wlTstretch(Sl) + 1wy curvalure(Sl) + w:!Tboundary_dist(Sh L3, 0}
+w5T¢elf—mtersect(Sla 025) + wﬁrvtretch(s'.!} + w7Tcurvamre(S‘z_)
+w8Tboundary_dist(SZs 2.5. 0) + wﬂﬂelf—mtersect(s'h 025)

+lUlOTuerteI—vertez(Sl : S‘_’- 3.5. 7) + wllnur_face»—surface(sh 527 2)

There is a Tyretchs Leurvatures Lboundary_dists aNd Tyreeen for each of the two surfaces. In
addition, the Tyertez—verter(Si-S2.3.5,7) term constrains each pair of corresponding
vertices in the two surfaces to prefer to be five millimetres from each other, with a
prohibitively high cost preventing the distance from decreasing to less than three or
greater than seven millimetres apart. Constraining the vertices of the two surfaces in
this way does not, in general, guarantee that the two surfaces do not come into closer
proximity. Therefore the final term, Tyurface-surface(S1,S2,2), is used as a backup
to prevent any triangle on one surface from coming within two millimetres of any
triangle on the other surface.

The result of this deformation is presented in Fig. 6.18, where the inner surface
represents the gray-white boundary and the outer surface represents the gray-CSF
boundary and is similar to the result presented in the previous single surface example.

The advantage of this method of partial volume correction over the one surface-two
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boundary technique is that there are two explicit surfaces which may be used for

quantitative analysis, such as measuring the thickness of cortical gray matter.

a) Outer surface b) Inner surface

Figure 6.18: Two-surface solution to partial-volume problem.

The previous two examples illustrate how the deformation framework proposed
can be used to solve a particular problem. Other solutions for this problem are also
possible. One could first find the gray-white boundary, then let it expand outwards
to the gray-CSF boundary, with constraints keeping it within a fixed distance of its
original position. One could also design a one-surface two-boundary model where the
surface stays within a couple of millimetres of the gray-CSF boundary, while being
attracted towards the gray-white boundary. These suggestions and the two examples
presented illustrate that the deformation framework proposed provides the flexibility
to try different methods of achieving model-based segmentation.

Having examined the behaviour of the deformation process with respect to the var-
ious objective function terms, the next chapter investigates some of the implementa-
tion details, and the following two chapters deal with quantitatively and qualitatively

evaluating the method on realistic data.
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Chapter 7

Implementation

The implementation of NODE as described in chapters 5 and 6 is fairly straightfor-
ward. However, experience has shown that there are some aspects of the implemen-
tation that should be examined in more detail, in order to achieve the best results.
A description of the computational methods of evaluating and optimizing the objec-
tive function is presented. Relevant polvhedral topologies are examined. The time
complexity of the algorithm is analyzed empirically, and the areas of computation

representing the largest bottlenecks are identified.

7.1 System Implementation

The deformation method is implemented in the C programming language and has
been developed and tested on Silicon Graphics processors running Unix, versions
IRIX 5.3 and IRIX 6.4. All timing statistics presented in this document have been
generated on Silicon Graphics Origin 200 computers with R10000 processors running
at a clock speed of 180 megahertz. Each computer has four processors sharing 128

megabytes of memory.
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7.2 Deformation Algorithm

The essence of the deformation process is the minimization of an objective function.
A conjugate gradient method has been found to provide efficient minimization of the
function. The basic algorithm consists of repeating iterations of minimizations along
lines in the parameter space of the surfaces until achieving the termination criteria

as defined in section 5.5.2. The overall structure of the algorithm is

e Initialize positions of deforming surfaces.
e While termination criteria is not achieved.
o Conipute derivative of objective function.
e Compute conjugate direction from derivative and
previous conjugate direction.
e Find minimum of objective function along conjugate direction.

e Update vertex positions of deforming surfaces to this minimum.

A one dimensional Golden section search algorithm is performed to find the line
minimum much like a binary search finds the root of a function. The primary efficiency
arising from the conjugate gradient method is due to the restriction to one dimensional
searches, rather than more fully searching around the current location in a very high
dimensional space, which could require a large number of function evaluations. The
Golden section search algorithm typically involves evaluating the objective function
at about 20 to 60 points on a line in the function’s parameter space. This repetition
of function evaluations on a line provides at least two opportunities for making the
computation more efficient, one related to the boundary search and the second related
to self-intersection avoidance, both of which are now described.

In implementing the objective function as described, the most computationally ex-
pensive operation is the search for a boundary position along the surface normal. As
mentioned in chapter 5, the boundary search term requires that the search for bound-

ary points from a given configuration only be performed at the beginning of each set
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of line minimization iterations. This holding constant of the boundary points for the
line minimization provides one of the opportunities for implementation efficiencies. In
this case, the boundary search term of the objective function can now be reformulated
as a trivially computed univariate quadratic function of distance along a line, rather
than a much more complicated quadratic function of thousands of variables. Another
significant increase in computational speed is gained by only performing the search
for the boundary points in the image at the beginning of every n-th iteration, where
n is a value of about five or more. thus reducing the computational cost of boundary
searching to one fifth. The drawback is that by the end of the n line minimizations, if
the vertices have moved considerably, the particular boundary points that the surface
were pushed toward may no longer be close to the correct ones. However, in practice,
this does not appear to be a problem, as one may modify the procedure to recompute
the boundary points whenever the vertices have moved greater than a fixed distance,
allowing a tradeoff between computation speed and accuracy of boundary points used

in the objective function.

7.3 Intersection Avoidance

Another way the restriction to one dimensional searches allows efficient implemen-
tation is in the computation of polygon proximities. As will be seen in the time-
complexity analysis, self-intersection and inter-surface intersection avoidance accounts
for a significant portion of the computational cost. Since intra-surface proximity test-
ing is a special case of inter-surface proximity testing, the discussion will be restricted
to the intra-surface case for simplicity. However generalization to inter-surface prox-
imity testing is straightforward. In order to evaluate the self-intersection objective
terms at a given position in the parameter space, a list of all pairs of polygons that
are within a certain distance d of each other must be generated. (Pairs that are
adjacent in a polyhedron will be ignored by the objective function calculation). The

current implementation has been restricted to triangles for simplicity, so the follow-
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ing discussions of the inter-surface proximity query will consider all polyhedra to be
triangulations. Knowing that this query will be repeated at several dozen points on
a line in parameter space provides the opportunity for more efficient algorithms for
answering this set of queries.

Here the problem is posed more formally, as a new open problem in computational
geometry. A set of n, vertices moving at constant velocities is defined in 3-space by
sextuples,

V= {Vi = (2. g 20 dey dysy dzi), 1 <8 <ng}.

The position of vertex V; is a function of a time parameter, ¢, such that
Vi) = (e +tdey. yi+tdy, =+ tdz).

A set of n, triangles constituting a triangulation of these vertices is defined by triplets

of integers,
T ={T; = (a;.b;,¢;) .1<a;.bjc;i<n,, 1<j<m}.

The position of triangle T, at a time, ¢, is thus defined as the positions of its three
vertices,
Ti(t) = (Va,(8), Vi, (8). Ve (t)).
Given this configuration of triangles and vertices, a distance, d, and a value of
the time parameter, ¢, one can define a list of pairs of triangles that are within the

distance d at the specified time-point:
L(V\T,d,t) = {(m, n): D(T(t),Ta(t)) <d, m#n, 1 <m,n<n},

where the function D(T;,(t), T,(¢)) is the minimum three dimensional Euclidean dis-
tance between any point of triangle T,,(¢) and any point of triangle T,(t).

At this point, the problem of computing L(V,T,d, t) is quite similar to the types
of problems encountered in motion planning, dynamic simulation, and computational

geometry. However, there are several further refinements based on the use of this
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query in a surface deformation context which create a unique proximity query prob-
lem. Most importantly, due to the nature of the Golden Section search of parameter
space along a line, the query is actually repeated at several values of £, and the
problem is actually to generate a set of lists at n; unordered time points. The open

problem can now be defined as computing the following set of lists of triangle pairs,
{L("- T- d. tk) o1 S k S ng . tmm. S tk S tma::} .

However, the value of each successive time point. ¢, is not known in advance, as it
can only be computed after the lists from L, up to L;_; have been generated. Other
important features of this query within the context of surface deformation include the
fact that the sets of triangles constitute non-convex polyhedra which are isomorphic
to triangulations of a sphere. and the sizes of all the triangles are roughly the same.
The value of d used is typically quite small relative to the domain of the triangles,
usually under one millimetre. whereas the polyhedra being deformed are around 120
millimetres in diameter. In addition, the amount of movement of the vertices, as
defined by the parameters, t,,, and t,,... is also quite small, usually such that no
vertex moves more than a couple of millimetres over this range.

Having defined this problem of generating a set of lists of triangles pairs, it should
be noted that some of the computational geometry methods presented in chapter
3 could be adapted to solving this problem. A simple method would be to use
an existing proximity testing algorithm to solve the query of each time point, 2,
independently. However, for ease of implementation, the problem is transformed
from a query at a large number of time points to a smaller number of queries, by
capitalizing on two observations. Firstly, it can be observed that the query is allowed
to return a superset of the correct answer without adversely affecting the deformation
algorithm. In addition, it is observed that the query is repeated many times on a
fairly small interval of ¢, and the motion of the triangles is also small relative to the
space in which they reside. The transformation to a smaller number of queries is

performed by dividing the range, [t;in,tmaz]| into uniform intervals of width, w. A
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single list of potential triangle pairs is created for each interval which contains one
or more values of £, rather than for each value of t. The list computed for a given
interval centred at f., [t. — §,t. + 5] must therefore be the union of all possible lists

computed on this interval:

w 1y . w w
E,tﬁ-?w) =U{L(I~,T,d,t); te — 3 gtgth.;}_

Lu(tc -

The essential simplifying step can now be applied. The union of all possible lists over
a continuum is itself a subset of a list computed at the centre of the interval but with
an increased distance range:

Lo(te = 5-te+ 5. w) € LV T.d + a(w), t),

for an appropriate value of o(w). The value of o(w) may be computed as

o(w)==s

I

where s is the maximum distance two vertices can move relative to each other, per
unit of ¢. The value of s is bounded by the diameter ! of the set of three dimensional

line directions of the vertices.
s = diameter({(dz;. dy;,dz;) : 1 < i< ny}).

Thus a tradeoff has been performed, a smaller number of time points to query, in
return for computing lists for larger values of d and returning supersets of the correct
answer. The potential inefficiency of this method arises if the interval width, w, is
too large, in which case a much larger number of triangles will be compared by the
surface deformation objective function than if the list is computed for each evaluation
point on the line. In practice, the intervals can be chosen small enough to avoid this
problem, yet still large enough to be efficient, by satisfying several queries per interval.

Now a method to compute the list, L(V,T,d,t;), is presented. Several of the

published techniques discussed in chapter 3 are applicable to the solution of this

'the largest magnitude of difference between vectors in the set
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query, including plane sweep algorithms, bucketing methods, and hierarchical data
structures such as bin-trees. The divide-and-conquer strategy is chosen here, due to
its simplicity of implementation. The method is derived from the divide-and-conquer
method of finding the closest pair of points in a set by Preparata and Shamos [PS85],
combined with the box intersection testing of Gupta et al [GJS96]. The problem is
first transformed into solving the query for three dimensional rectangular boxes, by
fitcting a bounding box around each triangle. The set of boxes is recursively split
into small subsets, where proximity testing is only performed within subsets. The
recursive partition of a set of boxes is performed on one of the three coordinate axes,
(z, y, or z) at a time. Assuming that splitting is being performed along the z axis, the
midpoint, m, of the r domain of the boxes is found, and two subsets are generated.
The first subset is the list of all boxes in the set which intersect the half space defined
by r <m+ % The second subset is the list of all boxes in the set which intersect the
half space defined by £ > m— % The two half spaces are not disjoint and the resulting
two subsets of boxes are also not necessarily disjoint. In order to avoid multiple testing
of particular pairs, the boxes in the second subset that are also in the first subset are
flagged. Each subset is recursively subdivided into smaller subsets until they contain
a small number of boxes. or correspond to a small enough region of space (no smaller
than twice the distance ). At this point. the distance between all pairs of boxes
in the subset is tested, except those pairs corresponding to boxes that are flagged
in such a way as to prevent duplicate tests of the same pairs. If a pair of boxes is
found to be within the distance d. then the corresponding triangles are tested. In this
way, the trivial computation of box proximities reduces the number of more costly
triangle proximity computations. This algorithm is used for both inter-surface and
intra-surface proximity testing. The only difference is that for intra-surface proximity
testing, pairs of adjacent triangles are discarded, and whereas for the inter-surface
case, two disjoint sets of triangles are compared and adjacency is not relevant.

Although this method has been found to be relatively efficient in practice, it has a
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worst case complexity of O(n?), where n is the number of triangles involved, and it is
therefore an interesting problem to try to reduce the worst case complexity. However,
it can be easily seen that this algorithm is already optimal, since a large enough value
of d can be chosen to require returning all pairs of triangles in the set, which is of
quadratic size. Therefore. it is more interesting to characterize the complexity as a
function of the size of the output. Because the distance parameter, d, is usually a
small fraction of the domain of the polyhedra being deformed, the size of the output,
though quadratic in the number of triangles, is usually quite small. This motivates
one to speculate on whether there is an algorithm which always solves the triangle

pairs query in time linear in the output size.

7.4 Surface Tessellation

The surface deformation algorithm as currently implemented can be applied to any
triangular mesh isomorphic to a sphere. Generally. the starting point for a deforma-
tion is a sphere or ellipsoid, or an object that is a deformation of one of these. The
tessellation method used is to start with an icosahedron, the platonic solid of 20 trian-
gular faces, and repetitively subdivide each triangle into four similar triangles, until
the desired number of triangles are reached. The new vertices created by triangular
subdivision are projected out to the sphere or ellipsoid. For many of the experiments
where brain models are represented, there are five successive sizes used: 320, 1280,
5120, 20480, and 81920 triangles. The number of vertices in any triangulation of a
sphere is n,;/2 + 2, where n, is the number of triangles in the polyhedron. Therefore
the numbers of parameters, three per vertex, defining these five surfaces are: 486,
1926, 7686, 30726, and 122886. These polyhedra were chosen over other tessellations
because they are simple to compute, yet have a fairly uniform distribution of ver-
tices over the surface. Many of the surfaces discussed here will have one of these five
configurations.

It is also possible to use adaptively subdivided triangulations, in order to allow
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regions of the model to stretch as much as needed to match the image, but maintain a
more uniform sampling interval by adding vertices where needed. The simple method
used here is to subdivide all edges in a polyhedron which are greater than a certain
length, and re-triangulate. By decreasing the length threshold and subdividing the
surfaces during deformation, the polyhedral surface automatically adds vertices and
increases the number of triangles as needed to match the image more closely. In a
subsequent chapter, adaptive refinement of polyhedra is used for the segmentation of

the total cortical surface using a two-surface model.

7.5 Time Complexity

Due to the complexity of the objective function and MR image data, it is difficult
to derive a theoretical measure of the time complexity of the deformation algorithm.
However, some theoretical observations are made, before resorting to empirical mea-
surement of computational cost as a function of the number of parameters in the
surfaces being deformed. The conjugate gradient method is guaranteed to find the
minimum of a quadratic function in a number of steps no greater than the number
of parameters. When applied to more complicated functions, it is difficult to predict
the rate of convergence. but it seems reasonable to assume that it is at least of linear
order in the worst case. Each iteration involves computing the objective function a
few dozen times. All components of the objective function can be computed in linear
time, except for one. The algorithm described in the previous section for computing
triangle proximities is, in the worst case, of quadratic complexity. Multiplying the
O(n) number of steps by the O(n?) cost per step results in an expected worst-case
time complexity of O(n?).

In addition to this brief theoretical analysis, some empirical analysis can provide
more information on the running time of the surface deformation algorithm in prac-
tice. Empirical estimates of time complexity are generated by two different surface

fitting tasks. The first task is the deformation of a spherical model to a differently-
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sized spherical image. The second task is to fit an ellipsoid to the average brain image
described in section 5.6. The deformations were performed at five surface resolutions,
320, 1280, 5120, 20480, and 81920 triangles, using Thoundary_dist, Lstretchs Teurvature, and
Tsetf-intersect terms. The termination criteria was that no vertex moves more than .01
millimetres over 10 consecutive iterations. Cross sections of the results of the two
sets of deformations are presented in Fig. 7.1. The plot of computational time versus
the number of parameters defining the surface is presented in Fig. 7.2, and in log-log
formin Fig. 7.3. With only five sample points, it is difficult to characterize the nature
of the time-complexity functions, but it is certainly a super-linear function and not

inconsistent with an order O(n*) function.

n=1926 n=7686 n=30726 n=122886

Fitting sphere model to sphere image.

n=486 n=1926 n=7686  n=30726  n=122886

Fitting ellipsoid model to average cortex.

Figure 7.1: Cross sections of fitting to sphere and average image, with number of

parameters, n.

7.5.1 Fitting Using a Multi-Scale Approach

From the previous set of experiments, it can be seen that the higher resolution surfaces

require considerably more computational effort, and the computation time increases
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Figure 7.2: Plot of computation time versus number of parameters. Solid line =

fitting to sphere, dotted line = fitting to average image.
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Figure 7.3: Log-log plot of computation time versus number of parameters. Solid line

= fitting to sphere, dotted line = fitting to average image.

in a quadratic or cubic nature as the number of parameters increases. It is therefore
desirable to perform the deformation in a multi-scale approach, so as to quickly
achieve a coarse fit using a small number parameters, thus reducing the number of
iterations required for the higher resolutions. The experiments of fitting a sphere
surface to a spherical image and an ellipsoid to the average brain image are repeated,
where the deformed polyhedron at each resolution of surface is subdivided into four

times as many triangles, to be used as the initial configuration of the next finer
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resolution deformation. Accordingly, the time required for the smallest size, 320
triangles, is the same as in the previous experiments. However, the time required for
the higher resolutions has been reduced by a factor of 70 for the highest resolution of
the sphere-fitting experiment, and a factor of four in the case of fitting to the average
cortex image. In addition the time complexity has become more linear in nature,
as can be seen from the corresponding plot of time complexity, Fig. 7.4, and the
log-log plot of Fig. 7.5. The segmentation results (Fig. 7.6) are as good or better
as compared to the non-multi-scale experiments. This is a strong indication that the

multi-scale approach represents a major gain in efficiency.
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Figure 7.4: Plot of computation time versus number of parameters in a multi-scale

deformation. Solid line = fitting to sphere, dotted line = fitting to average image.

7.6 Computational Bottlenecks

The computational cost of the current implementation of the surface deformation in
typical applications with surfaces of 81 920 triangles can be broken down into six

main components:
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Figure 7.5: Log-log plot of computation time versus number of parameters in a multi-

scale deformation. Solid line = fitting to sphere. dotted line = fitting to average image.

n=1926 n=7686 n=30726 n=122886

Fitting sphere model to sphere image.

T n=30726  n=122886

Multi-scale fitting ellipsoid model to average cortex.

Figure 7.6: Cross sections of multi-scale fitting to sphere and average image, with

number of parameters, n.
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20 % Generating pairs of triangles within distance d,

15 % Measuring distance between triangle pairs in objective func-
tion calculation,

20 % Searching image volume for boundaries along surface normals,

5 % Evaluating stretch component.

20 % Evaluating curvature component.

20 % Remainder of program.
The first component above, the triangle set proximity query, takes one fifth of the

time, and could conceivably be reduced through use of a more efficient algorithm. The
second component represents the time spent by the objective function calculation to
measure the distance between pairs of triangles. Those pairs for which the distance is
less than some threshold. d, contribute a value to the function, based on the distance
found. The number of calls to this inter-triangle distance function cannot be reduced
significantly because measurements of the current implementation have shown that
94 percent of the triangle pair distance computations resuit in a value less than the
distance d, and therefore must be computed in order to evaluate the self-intersection
term. The final 20 percent of the time is not broken down further, as it is involves
many different parts of the program. The present implementation is well optimized
at present, but as the size of problems addressed by this algorithm increases, the
relative computational times may change, and more efficient algorithms may provide
significant improvements. In particular, the solution to the all-pairs triangle proxim-
ity problem may well become the most significant computational aspect due to its
quadratic worst case complexity. Another possible improvement in computation time
may result from removing the stretch or curvature term from the objective function.
The usefulness of these two terms in the segmentation of total cortical surface is

investigated in the next chapter.
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Chapter 8

Validation on Simulated Data

The first step in validating the NODE deformation algorithm is to apply it in con-
trolled situations. where the factors influencing the procedure are well understood.
The method can be subjected to a variety of tests, where the correct answer is known
or assumed, and measures of error devised. This chapter outlines a set of experiments
where MR-derived phantom data were constructed in order to test specific features of
the algorithm. Each section outlines what features of the algorithm are being tested,
describes how the experiment was constructed. and presents numerical, graphical,

and visual summaries of the results.

8.1 Rigid Surface-to-Image Matching Validation

A necessary feature of any deformation procedure is that it be robust in the face of
intensity noise and geometric distortions. In particular, it is desirable that the final
position of any deformation be relatively independent of the spatial position of the
initial guess, as well as insensitive to noise and sampling artifacts which may distort
the apparent boundaries. In order to test this, a simple task was formulated. A
low resolution model of the cortex, consisting of 320 triangles, is fit to a target MR

dataset to locate the cortical surface. By keeping the stretching and curvature weights
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relatively high, the cortex model is rigidly transformed to fit the global shape of an
individual brain. In effect, this is performing a surface-to-image linear registration
task. The MR dataset is first blurred slightly with a square filter of width three
millimetres to smooth the objective function slightly. The consistency of this process

is tested in the face of the following four confounds:

slice thickness.
image noise,
RF inhomogeneity, and

linear misregistration.

This experiment measures consistency, not accuracy, since there is no inherently
correct surface. The correct answer is arbitrarily defined as the surface resulting
from deformation to a particular gold standard image volume. In order to analyze
the effects of each of the four confounds independently, the gold standard used in
each case is the volume which has the lowest value of the confound parameter varied,
or, in the case of varving the initial misregistration, an identity transform. The
measurement of error in the final result is defined as the RMS error over the pairs of
corresponding vertices in the deformed cortex model and the gold standard surface:

o JE (2 = )" + (i = 3)° + (2 = &)

n

where (z;, yi, ;) is the i-th vertex in the test surface and (Z;, §;, ;) is its counterpart
in the gold standard surface. This measure assumes that the two polyhedra are
isomorphic to each other, which is the case in the context of the deformation-based
segmentation discussed here.

A magnetic resonance simulator, called (MRISIM) [KEP96] is used to model
the first three confounds. MRISIM is a program designed to model most of the
characteristics of an MR imaging system, in order to create volumes that simulate
MR images. Three sets of simulated images have been previously computed. The

first set varies the noise level from 0 % to 10 % of the image intensity. The second
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set varies the slice thickness from one to 10 millimetres, and the third set varies the
RF inhomogeneity from 0 % to 60 %. The fourth confound, linear misregistration, is
simulated with random linear transforms, which have randomized three dimensional
scalings, translations, and rotations. The degree of misregistration, oy, is defined as
the RMS error over pairs of vertices in an initial model and the linearly transformed
coordinates of the model. One hundred linear transforms have been created with a

roughly uniform distribution of ¢;, from zero to 100 millimetres.

Figure 8.1: Deformation fitting cortex model to individual MR dataset. a) initial

configuration b) final configuration (only small differences from initial).

Figure 8.1 shows the configuration of the surface before and after fitting the cortex
model to a typical classified image volume. In the absence of a large initial misreg-
istration error or other confounds, there is little change in the surface during this
deformation, since the model derived from the average brain image already matches
any individual brain in the stereotaxic space reasonably well at a resolution of 320
triangles. This procedure was tested against each of the four confounds, and the

results presented in graphical form, Figs. 8.2, 8.3, 8.4, and 8.5.
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Figure 8.3: RMS error, o, versus slice thickness.

The graph of o versus percent noise shows a roughly linear increase to o = .47mm
at the highest noise level of 10 %. Given that the image data is sampled at one
millimetre, this is a satisfactory value. The graph of the effects of RF inhomogeneity
also show a linear trend to less than one millimetre at the highest RF level of 60 %.
However, the graph of ¢ versus slice thickness shows a much steeper increase in o,
with a maximum value of almost five millimetres. This is due in part to the partial
volume effect of large slice thicknesses causing the cortex and skin to be blurred

together, which results in the cortex deformation incorrectly locking on to the outer
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Figure 8.5: RMS error, o, versus initial spatial error, o;,.

skin surface. There are a few points in each graph where the value either drops or
rises more sharply than would be expected, such as can be seen at the eight millimetre
value on the slice thickness plot. Further investigation is required to determine if this
is due to instability in the algorithm or can be explained by the particular interaction

characteristics of the imaging confound and the deformation procedure.
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Confound Range of Confound | Maximum RMS Error (o)
noise <353% 0.19 mm
RF <30 % 0.64 mm
slice thickness <3 mm 0.54 mm
misregistration Tin < 20 mm 0.60 mm

Table 8.1: Maximum RMS error, o. in mm?, as a function of imaging confounds.

The plot of RMS error. o. versus initial misregistration, o;, shows a very interest-
ing result (Fig. 8.5). The registration process either produces an answer very close
to the correct answer or very far away. Any surface with an initial RMS below 90
millimetres (g;, < 90mm) is deformed to within 0.8 millimetres of the gold standard
(0 < 0.8mm), two examples of which are depicted in Fig. 8.6. Any surface with a
value of oy, greater than 90 millimetres causes the deformation process to fail, with
an error of ¢ > 50mm, two examples being shown in Fig. 8.7. This behaviour can be
explained by using an analogy to fitting a two dimensional ellipsoid model to an image
of an ellipsoid with only a single rotation parameter. If the initial rotation is greater
than 90 degrees from the orientation of the image. it is easy to imagine that the best
fit found is actually 180 degrees out of alignment. Fitting a three dimensional cortex
to an image is more complex than this simple analogy, but examination of the cases
where the procedure fails illustrates that a rotation of 90 degrees around an axis is
usually involved.

Table 8.1 summarizes the results for the range of the confounds expected in typical
MR images that have undergone an image registration into stereotaxic space. With
respect to the task of segmenting the entire cortical surface, the effects of the four
confounds mentioned can be minimized by using this rigid deformation procedure
as a pre-processing step to define the position of a model to be deformed to fit
the total cortical surface. In addition, the good results in the case of large initial

misregistrations indicate that this method may be useful as a stand-alone image
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o =10.54

[nitial Final

Figure 8.6: Initial and final configurations of two examples of successful image defor-
mation (top view of example 1 and left view of example 2) (black = surface position,

gray = gold standard).

registration method. It would be interesting to compare this method to established
surface-based registration methods. such as that of Pelizzari et al [PCS*89], and to
investigate whether the use of multiple models, e.g., cortex, cerebellum, and skin, can

improve the image registration procedure.

8.2 Partial Volume Solution Using
Two-Surface Model

Having examined the consistency of the deformation in the simple case of rigid trans-
formation, the more interesting problem of locating the complete extent of sulci in
complex MR images is now addressed. A small brain phantom which contains sulci
characteristic of full brain MR images is created by scooping a small spherical piece

of gray and white matter out of a classified image of a normal individual. Three cross
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Initial Final

Figure 8.7: Initial and final configurations of two examples of failed image deformation
(top view of example 1 and left view of example 2) (black = surface position, gray =

gold standard).

sections of this phantom are presented in Fig. 8.8. The method used to locate the
boundary is to start with two concentric spheres five millimetres apart. The inner
surface is deformed to fit the gray-white boundary in the image while the outer sur-
face is fitted to the gray-CSF boundary. Corresponding vertices of the two surfaces
are constrained to be within three and seven millimetres apart, with the optimal
value at five millimetres, using a Tyertez—vertez Objective term. A Tiurface—surface t€rm
is used to prevent any pair of points on the two surfaces from coming within one
millimetre of each other. In order to allow the surface to stretch as much as required,
adaptive subdivision of the polyhedral mesh is performed during the deformation, so
as to increase the number of vertices in areas that are highly stretched, such as deep
sulci. The initial model consists of 320 triangles, and the maximum allowable length

is decreased from 20 millimetres to three millimetres during the deformation, causing
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the surface to be repetitively subdivided, with the final surface consisting of about

4500 triangles.

Figure 8.8: Parallel cross sections through small brain phantom.

The initial and final states of the deformation are presented in Fig. 8.9. For pur-
poses of comparison, two other methods of locating the gray-CSF boundary are per-
formed. One method simply repeats the deformation using a one-surface model, and
the second uses the Marching Cubes algorithm to triangulate the gray-CSF boundary.
Cross sections of all three methods are presented in sagittal orientation in Fig. 8.10,
coronal orientation in Fig. 8.11, and transverse orientation in Fig. 8.12, for compar-
ison purposes. There are some cross sections where small pockets of CSF on a slice
have been identified by the Marching Cubes algorithm, but not by the two-surface
model. However, these features, such as the ones visible on the X=-41 mm slice of
the Marching Cubes algorithm as tiny circular regions, correspond to the deepest ex-
tremity of sulci, and three dimensional investigation in the vicinity (Fig. 8.13) reveals
that the two-surface model comes within a millimetre or so of these features. There-
fore, the differences between the two techniques is not really as large as would be
inferred from looking at the single slice alone. Table 8.2 lists the number of triangles
created by each of the three methods and the surface area of the gray-CSF surface
found. The two-surface deformation produces a higher surface area than the one-
surface method, indicating that it is achieving greater sulcal depth. However, even
though the two-surface deformation achieves greater sulcal depth than the Marching
Cubes method in places, the surface areas are about the same, and there are places

where the Marching Cubes method provides a better approximation to the gray-CSF
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Method Number of Triangles | Surface Area, in mm?
one-surface deformation 3310 10339
two-surface deformation 4514 12537
Marching Cubes 34472 12465

Table 8.2: Results of gray-CSF segmentation on small phantom.

boundary. This is most likely due to two factors. Firstly, the deformation method has
smoothing constraints in the form of T,ireren a0d Toyryature terms, whereas the March-
ing Cubes method has no smoothing and responds to every edge feature, makiug a
more crumpled surface and thus inflating the surface area. The effects of changing
the stretch and curvature weights on the two-surface deformation are examined in the
next section. A second factor is that the marching cubes surface contains more than
seven times as many triangles as the two-surface deformation result, and therefore
can more closely interpolate the image boundaries.

The importance of using a two-surface model is especially evident in areas where
there are topological holes in the image data. For instance, the hole in the centre of
the Y=-11 mm slices is not located by either the single-surface deformation or the
Marching Cubes algorithm ' because it is not connected to the rest of the gray-CSF
boundary. However, the two-surface method produces a neuroanatomically reasonable
surface that includes the hole, circumventing the partial volume effect. Given that the
phantom is representative of typical sulcal and gyral topology in classifed MR images,

the application of this method to the total cortical surface should be straightforward.

8.3 Choosing Weights

A significant problem with the NODE algorithm and with deformation algorithms

in general is the need to provide weighting factors for the various components of the

!The version of Marching Cubes used does not exhaustively search all voxels, but instead finds a

single connected component.
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Figure 8.9: a) Initial gray-CSF surface. b) initial gray-white surface. c) cross section
of volume and the two surfaces. d) Final gray-CSF surface. ¢) final gray-white surface.

f) cross section of volume and the two surfaces.

objective function, for which there is no theoretical basis upon which to draw. The
procedure used to choose weights for the NODE algorithm is to vary one weight at a
time, usually starting with a very high value and reducing it until the desired effect
has been achieved. The following terms are used in the formulation of the objective

function for simultaneous deformation of two surfaces:

Tstretchv
Tcuruature:
Tbcmndary_dish
Tself——intersect:
Tuertez‘— verter,
Tsurface—surface-
One of the critical terms is Tyerf—intersect; Which is used to keep each surface from
intersecting itself. The obvious method is to assign a weight to this term that is many

orders of magnitude higher than the other weights, in order to make Tyeif—intersect
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X=-531 mm
X=-41 mm
X=-31 mm

a) l-surface b) 2-surface  c¢) Marching Cubes

Figure 8.10: Sagittal slices through phantom volume and gray-CSF surface produced
by a) one-surface deformation b) two-surface deformation ¢) Marching Cubes algo-

rithm.

dominate when two portions of a surface come into close proximity. However, in
practice, setting the weight too high causes the minimization procedure to take smaller
steps, due to the high curvature in the objective function. This slowing down is
analagous to what Kass et al observe about their Snakes algorithm, “(if) the external
forces become large, however, the explicit Euler steps of the external forces will require

much smaller step sizes” [KWT88|. Within the NODE framework, a solution to this
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Y=-11 mm
Y=-1 mm
Y=9 mm

a) l-surface b) 2-surface  c¢) Marching Cubes

Figure 8.11: Coronal slices through phantom volume and gray-CSF surface produced

by a) one-surface deformation b) two-surface deformation ¢) Marching Cubes algo-

rithm.

problem is to use several Tyeis_intersect terms, with increasing weights:
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Z=19 mm

Z=29 mm

Z=39 mm

Z=49 mm

a) 1-surface b) 2-surface  ¢) Marching Cubes

Figure 8.12: Transverse slices through phantom volume and gray-CSF surface pro-
duced by a) one-surface deformation b) two-surface deformation ¢) Marching Cubes

algorithm.
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X =-41 mm Y =13 mm Z = 41 mm

Figure 8.13: Three orthogonal slices through sulcal extremity and gray-CSF surface

produced by the two-surface deformation.

0.1 Tietg-intersect(0.30) +

1 Tietf—intersect(0.45) +

10 Toetf—intersect(0.40) +

100 Te1-intersect(0.35) +

1000 Terf—intersect(0.30) +

10000 Tietf—intersect (0.25) +

100000 Tyt f—intersect (0.20) +

1000000 Tyetf-intersect(0.13) +

10000000 Tierf-intersect(0.10),
where Tyeif—intersect(d) refers to a self-intersection term that is non-zero whenever two
triangles are less than d millimetres apart. The effect of this is to gradually increase
the dominance of the self-intersection term as needed to prevent self-intersections.
Another way to achieve the same effect is to replace the quadratic function inter-
triangle distance in the Tyef_intersece term with higher order functions. However,
the method of using multiple quadratic terms is already available in the current
framework and still provides an objective term that is C! continuous. In addition,
several self-intersection terms require only slightly more computation time than one
term. The multiple term method is also used for the Ty, face—sur face component. This

method has been used with an identical set of termms to avoid intersections in almost
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all of the examples presented in this dissertation, ranging from objects of diameter
20 millimetres to around 200 millimetres. Thus, one choice of weights for the terms,
Toetf—intersect A0 Tgur face—sur face. Will generally suffice for a wide range of deformation
tasks, minimizing the user specification required.

Having defined the intersection term weights, one can now devise weights for
the remaining terms. The process starts with the one-surface case, using the set of
Tysetf—intersect terms defined above, the Tyoundary With a weight of one, and the Typreren
term with an arbitrarily high weight. Deformations are repeated with decreasing
values of the Ty reicn Weight until the desired closeness to the boundary is achieved.
Optionally, a weight for the curvature term may be found in a similar fashion, or
depending on the segmentation task, one or both of the Tyyeren and Toyryarure terms
may be removed from the objective function. Having defined weights for all the single
surface terms, the weight for the T,.riec—yere: term is computed similarly, starting
with an arbitrarily high value.

The efficiency with which one chooses weights by this method depends on how
precise a weight must be in order to achieve a desired deformation, and on whether
the resulting surfaces respond smoothly to the choice of weights. The task of fitting
a small phantom brain from section 8.2 is revisited here with a view towards under-
standing the effects of varving the objective term weights. The set of weights used in
the deformation problem was selected by the trial-and-error method described. The
weight values are now used as the starting point for another set of experiments. For
each class of objective term, the deformation is repeated with the relevant weights
scaled by a different factor each time, holding the weights of the other terms constant.

The scale values used are
0, 0.01, 0.1, 1, 10, and 100,

where a zero value indicates removal of the term from the objective function. Cross
sections of the results for each of the six classes of objective term are presented in

Figs. 8.14, 8.15, 8.16, 8.17, 8.18, and 8.19. The number of triangles and surface areas
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for each case are presented in Table 8.3.

The effect of changing the weights of the Tyerr_intersect OF Tsur face—sur face t€IMS is
minimal, in terms of the number of triangles, surface area, and visual appearance of
the surface. This indicates that the use of sets of increasing weights may alleviate the
need to choose weights for inter-surface intersection and self-intersection constraints.

The behaviour of the weighting of the Tyerter—vertex term is interesting, because the
implementation actually consists of two separate terms. The first Terter—verter t€rm
encourages the two surfaces to be five millimetres apart. The second Tyerter—uvertex
term constrains the inter-surface distance to stay within the range of three to seven
millimetres by using a much higher weight. When the T,ertez—verter term is removed
from the objective function, each surface is effectively deformed independently, and
the resulting outer surface of the two-surface deformation is equivalent to that pro-
duced by the one-surface deformation. However. for the weight scales of 0.1 and 0.01,
it appears that the first Tyerter—verter is not weighted high enough to make the surfaces
stay near five millimetres apart. but the high value of the second T,urtez—verter t€rm
causes areas of high curvature in the objective function. preventing the minimiza-
tion from proceeding deep into the sulci. Then, at the highest three values, the first
Tyerter—verter 18 NOW strong enough to keep the two surface close to five millimetres
apart, and the second T\erter—verter term rarely comes into play. Further investigation
is required to fully understand this behaviour, but it is possible that the use of sets
of increasing weights such as those involved in the self-interection term may alleviate
this problem. Notwithstanding this perplexing behaviour, it is encouraging to note
that the results for the weight scales of 1, 10, and 100 are relatively stable.

The behaviour of the segmentation with respect to the Tipundary_dist term appears
to have two distinct states. Below a scale value of 1, the term is too small to have
any effect on the deformation, and the surface does not change from its initial state
of a sphere. For weight scales of 1, 10, and 100, the results are relatively consistent.

The effects of the weights of the Typpcn and Toyrvarure terms are almost identical to

120



each other. For the weight scales of 0, 0.01, 0.1, and 1, good segmentation results are
achieved. Above the scale value of 1, a relatively poor interpolation of the boundary
is achieved, due to the smoothing effects of the highly-weighted stretch or curvature
term. The relatively good performance of the algorithm when either component is
removed completely indicates one or both terms may be unnecessary in the defor-
mation procedure. This observation resulted in a secondary experiment, to view the
effects of leaving both the stretch and curvature terms out of the objective function.
The resulting surface of 6682 triangles and a surface area of 13,983 square millimetres
is presented in Fig. 8.20. Although this result appears to provide similar or better
results, as compared to the previous deformations, there are regions where the surface
contains several tight folds not corresponding to object boundaries. It appears that

either the stretch or curvature term must be left in the objective function in order to

prevent this type of irregularity.
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Figure 8.14: Effect of scaling Tyetcn Weights.
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Figure 8.15: Effect of scaling Teurvature Weights.
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Figure 8.16: Effect of scaling Thoundary_dist Weights.
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Figure 8.17: Effect of scaling Tse;f—intersect Weights.
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Figure 8.18: Effect of scaling Teurface—sur face Weights.
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Figure 8.19: Effect of scaling Tyertez—verter Weights.
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Term Weight Scale Factor

0| 0.01 0.1 1 10 100
Tytretch 11900 | 11400 | 11800 | 11200 | 10200 | 8900
Teurvature 13700 | 13700 | 12500 | 11200 | 9800 | 7700

Thoundarydise | 11100 | 11100 | 11100 | 11200 | 11300 | 11500
Tyetf—mtersece | 11200 | 11200 | 11200 | 11200 | 11200 | 11200
Tyur face-sur face | 10800 | 10800 | 10800 | 11200 | 11200 | 11300
Tyertes—vertez | 10300 | 7800 | 7800 | 11200 | 11200 | 11200

Surface area, in mm?, as a function of scaling of objective term weights.

Term Weight Scale Factor
0| 0.01| 0.1 I 10| 100

Tutretch 6498 | 4944 | 5160 | 3422 | 2434 | 1282
Teurvature 3822 | 4058 | 3548 | 3422 | 3486 | 2360
Thoundaryise | 1280 | 1280 | 1280 | 3422 | 3950 | 3894
Ttf—intersect | 3422 | 3422 | 3422 | 3422 | 3422 | 3422
Tour face—sur face | 3508 | 3508 | 3508 | 3422 | 3444 | 3570
Tyertez—verter | 3310 | 2376 | 2376 | 3422 | 3532 | 3546

Table 8.3: Number of triangles as a function of scaling of objective term weights.
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Figure 8.20: Cross sections of surface deformed without Tyiretcn OF Teurvature-
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Chapter 9

Experiments on Real

Neuroanatomical Data

Having performed validation of various aspects of the NODE deformation technique,
the method is now applied to real neuroanatomical problems. The ultimate goal of
this dissertation is to provide a method which can provide quantitative answers to
basic neuroanatomical questions about the human cortical surface. The problem is to
create a surface representation of the human cortical surface that localizes the depths
of the cerebral sulci even in those places where partial volume effects confound the
identification of gray matter boundaries. Although it is more difficult to accurately
measure the performance of the algorithm in this context, it is possible to realize
quantitative and qualitative assurances of the utility of the surface deformation. We

begin by describing the data and method used.

9.1 Data

The data used for these experiments come from a pool of MR scans of 102 normal
volunteers. T1-, T2-, and PD-weighted images at one millimetre isotropic resolu-

tion are acquired for each subject. The T1-weighted volumes are acquired using a
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sagittal volumetric 3D RF-spoiled gradient echo sequence with TR/TE=18ms/10ms,
flip angle = 30 degrees, and 1 signal average. The PD- and T2-weighted data are
acquired as two 2D multiple slice, dual-echo, fast spin-echo (FSE) datasets with
TR/TE1/TE2=3300ms/35ms/120ms. The total scanning time is about 30 minutes.
Post-processing on these datasets consists of RF inhomogeneity-correction, linear reg-

istration into stereotaxic space, and tissue classification.

9.2 Method

The method consists of the following two sequential steps. The first step involves
locating the cerebral white matter voxels similar to the method of Dale and Sereno
[DS93]. This is achieved by fitting a pair of low resolution (5120 triangles) average
surfaces to the gray-CSF boundary and gray-white boundary using the two-surface
method described in section 8.2, with the modification that larger weights are assigned
to the terms, Tyretcn aNd Tryrparure- Lhese two terms provide a strong constraint on
the shape of the deforming model, so that it maintains the global shape features of
the average cortex. finding the best fit of this shape to the image volume. All white
matter voxels outside the resulting gray-CSF surface are then labeled as gray matter

as shown in Fig. 9.1.

Figure 9.1: Step 1 in segmentation of gray-CSF boundary: masking out non-cerebral

white matter voxels.

The second and final step fits a pair of average surface models to the masked
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volume produced by the first step. The absence of white matter voxels outside the
cerebral cortex allows the procedure to be guided by the gray-white boundary, using
the two-surface deformation parameters devised in section 8.2. A multi-scale ap-
proach is used, where initial surfaces of 320 triangles are adaptively subdivided as
the deformation progresses. The initial maximum edge length is 40 millimetres, and
the final maximum edge length is four millimetres, resulting in surfaces of almost 100
000 triangles. This process requires about 100 hours of computer time on a Silicon

Graphics Origin 200 R10000 processor running at a clock-rate of 180 megahertz.

Figure 9.2: Step 2 in segmentation of gray-CSF boundary: simultaneous deformation

of two surfaces to fit volume with non-cerebral white matter masked out.

9.3 Validation Against Manual Segmentation

In order to test the segmentation aspect of this technique, a realistic segmented
dataset is required. Since it can take up to several days to segment the entire cere-
bral cortex manually at the voxel level, a large number of datasets is not available.
However, one excellent dataset is available for use in validating the segmentation. An
experienced neuroanatomist in the McConnell Brain Imaging Centre, Dr. Noor Ka-
bani, has previously spent several months creating a detailed voxel-by-voxel labeling
of a normal human MR volume into more than 70 distinct anatomical regions, consti-
tuting a detailed atlas of human neuroanatomy. There are several choices of methods

for relating a cortical surface model to this atlas. One possibility is to compare points
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on the surface with voxels in the atlas which are on gray-CSF boundaries. A more
straightforward way is to compare the set of voxels between the two deformed sur-
faces to the set of cortical gray voxels in the atlas. Ideally, both sets of voxels should
correspond to the entire cortical gray matter.

Slices combining the cortical gray matter voxels labelings created by the neu-
roanatomist with the two-surface deformation method are presented in Fig. 9.3. A
voxel can be classified into one of four classes, true-positives, true-negatives, false-
positives, and false-negatives, depending on whether the voxel was labeled as cortical
gray by each of the two methods. Table 9.1 shows the number of voxels corresponding
to each of the four classes. [t is evident that the set of voxels between the two deform-
ing surfaces does not contain the full set of true cortical gray voxels; only 67 % ! of
the true gray voxels were correctly identified. The reason for this is that the choice of
five millimetres for the distance between the gray-CSF and gray-white surfaces is not
optimal. An indication of this arises from the observation that the average distance
hetween the two deformed surfaces, 5.34 millimetres, is greater than the five millime-
tres constraint chosen. The data is tryving to pull the two surfaces further apart, but
the inter-surface Tyertec—vertez term keeps this from happening. Based on the results of
this preliminary experiment, a method of creating an improved inter-surface distance
constraint is investigated in a subsequent section on cortical thickness maps.

It is also informative to look at the set of false-positive voxels, which are voxels that
were incorrectly labeled as cortical gray by the two-surface deformation. The number
of false-positive voxels is 127,004, which is 15 % 2 of the total number of cortical gray
voxels in the manual segmentation. About two thirds of the false-positive voxels are
in the problematic region of the inferior surface of the cortex. The manual labeling
of the cortical gray voxels leaves a large hole in the inferior portion of the cortex,

whereas the closed topology of the deforming surface crosses over this hole. The Y=-

1557454 / (557454 + 270585) x 100 % = 67 %
2127004 / (557454 + 270585) x 100 % = 15 %
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30 mm slice of Fig. 9.3 shows this crossing over as the light gray false-negative region
spanning the two hemispheres. Whether the cortical surface should be represented
as with or without this hole is a subject of neuroanatomical debate, but investigation
into choosing a deforming model with an appropriate neuroanatomical topology is
required. If the false-positive voxels arising from the closing of the inferior hole in the
cortex are ignored, the remaining set of false-positive voxels corresponds to about 5

percent of the total number of cortical gray voxels.

X=50 mm

Z=10 mm Z=30 mm Z=60 mm

Figure 9.3: Comparison of manual labeling to automatic labeling. (dark gray =

true-positives, light gray = false-positives, and black = false-negatives)
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True Gray | True Non-Gray
NODE Gray 557454 127004
NODE Non-Gray 270585 6154094

Table 9.1: Number of voxels labeled as cortical gray and non-cortical gray by NODE

algorithm and manual labeling (assumed to be the “truth”).

9.4 Comparison to Other Methods

The result of the two-surface deformation is compared with that of the one-surface
deformation and the Marching Cubes algorithm. In the latter two cases, the surface
mask computed as the first step of the procedure in section 9.2 is used to mask voxels
exterior to the cortex, in order to create a volume that does not contain cerebellum
or skin voxels which would confuse the algorithms. The surface models created by
the three algorithms are shown in Figs. 9.4, 9.5, and 9.6. Slices through the volume
and gray-CSF surface produced by each of the three algorithms are shown in sagittal
orientation in Fig. 9.7, coronal orientation in Fig. 9.8, and transverse slices in Fig.
9.9. The number of triangles produced and the surface area of the gray-CSF surface
for each algorithm is presented in Table 9.2. [t is readily apparent that the single
surface model fails to interpolate the depths of the sulci. The dual surface method
produces a cerebral cortex model with about the same surface area as that of the
Marching Cubes, but the single surface method produces a much lower surface area.
There are many places where the Marching Cubes algorithm seems to produce better
results It would be informative to compute the dual surface model at a resolution
similar to that of the Marching Cubes, in order to better relate the two methods,
but it is encouraging that the dual surface model provides a partial volume corrected
surface with about the same surface area as that of the Marching Cubes algorithm,

using only a tenth the number of triangles.
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Gray-White Surface

Figure 9.4: Top, left, and bottom views of gray-CSF and gray-white surfaces produced

by the two-surface deformation model.

Figure 9.5: Top, left, and bottom views of gray-CSF surface produced by the one-

surface deformation model.
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Figure 9.6: Top, left, and bottom views of gray-CSF surface produced by the conven-

tional Marching Cubes algorithm.

Method Number of Triangles | Surface Area, in mm?
one:;urface deformation 34352 121928
two-surface deformation 66176 226272
Marching Cubes 677880 240397

Table 9.2: Results of gray-CSF segmentation on individual MR image.
9.5 Surface Averaging and Flattening

An interesting characteristic of polvhedra that have been deformed by perturbing the
vertices, such as in the NODE algorithm, is that there is a direct mapping between
points on the initial polyhedron and the deformed polyhedra. The position of any
vertex, I, on one surface maps directly to the position of the corresponding vertex,
Z,, on the other surface. Non-vertex points of a polyhedron are mapped by linear
interpolation of the mappings of the three vertices defining the triangle in which the
point resides.

The ability to map three dimensional positions between polyhedra has several
practical uses. One application is the creation of an average surface from a set of
surfaces. This is done by taking the centroid of each set of corresponding vertices

across the surfaces. This implicitly assumes that the vertices of the surfaces are
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a) l-surface b) 2-surface ¢) Marching Cubes

Figure 9.7: Sagittal slices through volume and gray-CSF surface produced by: a)

one-surface deformation. b) two-surface deformation c) Marching Cubes algorithm.

homologous, that is, the i’th vertex of any cortical surface corresponds to a particular
anatomical position. Although this is not actually true for the surfaces created by
the NODE algorithm, in practice, there is some correlation of vertices, and the mean
surface can have a practical use. Figure 9.10 depicts three views of the average of 102
surfaces created by the 1-surface NODE algorithm at a resolution of 81,920 triangles.
This surface encapsulates the main features of any individual brain and thus it may

be useful as a model for the cortical surface deformation.
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a) l-surface b) 2-surface c) Marching Cubes

Figure 9.8: Coronal slices through volume and gray-CSF surface produced by: a)

one-surface deformation. b) two-surface deformation ¢} Marching Cubes algorithm.
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a) l-surface b) 2-surface c¢) Marching Cubes

Figure 9.9: Transverse slices through volume and gray-CSF surface produced by: a)

one-surface deformation. b) two-surface deformation ¢) Marching Cubes algorithm.
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Figure 9.10: Top, left, and bottom views of average of 102 cortical surfaces produced

by the one-surface NODE algorithm.

Another use of inter-polvhedral mapping is in the conversion of complex surfaces
into smoother representations in order facilitate subsequent neuroanatomical analysis.
Figure 9.11 shows the results of mapping an individual cortex to the average surface
and an ellipsoid of the approximate shape of the brain. The surfaces are coloured
with gray-scale values based on the local curvature, where dark areas correspond
to the depths of sulci and lighter areas correspond to gyri. Figure 9.12 shows the
average curvature of the 102 cortical surfaces mapped on to the average surface and
on to an ellipsoid. [t is interesting to note that even without any explicit homology
constraints, the positions of several sulci are consistent enough to show up on the
average of 102 surface curvatures. The flattened representations of individual or
mean surfaces presented here provide an alternate coordinate system, which may
prove useful for neuroanatomical analysis such as examining sulcal topology.

The averaging of vertex positions and curvature across surfaces relies on the topol-
ogy of the triangulations being exactly the same. However, the gray-CSF surfaces
created by the NODE algorithm have different triangulations, because the adaptive
triangulation of the polyhedra results in different numbers of triangles for different
sets of image data. However, the inter-polyhedral mapping can be used to convert
each of the individual triangulations to a common triangulation topology. Whenever

a surface is subdivided during the deformation, a copy of the initial model is sub-
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Figure 9.11: Curvature of individual cortex a) on the cortex. b) mapped to the average

of 102 surfaces, and ¢) mapped to an ellipsoid.
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a) b)

Figure 9.12: Average vertex curvature across 102 surfaces mapped to a) the average

of 102 surfaces, and b) an ellipsoid.

divided in the same fashion. The resulting triangulation of the model matches the
triangulation of the deformed surface, but is geometrically the same set of points as
the initial model, and is referred to here as a re-parameterized model. The deformed
surface can be re-triangulated to match the initial model by mapping vertices in two
steps. The first step takes the coordinates of a vertex on the initial model and finds
the triangle on the re-parameterized model which contains this point. Using the ver-

tex indices of this triangle, the second step interpolates a geometric position within
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the corresponding triangle on the deformed surface. The resulting re-triangulated
surface thus has the triangulation topology of the initial model, but the vertex posi-
tions define an object geometrically similar to the deformed surface. This method is

used in the next section to create an average of several different sized surfaces.

9.6 Cortical Thickness Maps

The two-surface NODE algorithm has been used to automatically create 10 sets of
gray-CSF and gray-white surface models from 10 normal human MR datasets. Each
gray-CSF surface was re-triangulated to a resolution of 81,920 triangles, and the
resulting average surface was computed (Fig. 9.13). A preliminary version of a
cortical thickness map can then be produced by taking the mean distance of the
surface at each vertex, shown superimposed on the average surface and on an ellipsoid
in Fig. 9.14. The average cortical thickness of the 10 pairs of surfaces ranges from
5.78 to 6.53 millimetres. Although this data suffers from insufficient sample points
(N = 10) and from the fact that there is little enforcement of homology across
the surfaces. the resulting cortical thickness map demonstrates the applicability of
the NODE algorithm to neuroanatomic analysis. In addition, the thickness map
may also be used to define the constraining model for subsequent application of
the two-surface deformation. This process of iteratively applying the model-based
deformation, then using the output to improve the model, may result in increasingly

sophisticated methods of cortical surface segmentation.
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Figure 9.14: Top and bottom views of average cortical gray thickness (N = 10)
mapped onto a) average surface, and b) an ellipsoid. The thickness ranges from 5.78

mm in the black regions to 6.53 mm in the white regions.
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Chapter 10

Conclusion

10.1 Summary

The task of segmenting human cortical surfaces from three dimensional magnetic
resonance images has been addressed. A method of deforming a polyhedral model by
minimizing an objective function has been presented. The technique, referred to as the
NODE algorithm, has been shown to provide a solution to locating the cortical surface
in the face of partial volume artifacts. This has been achieved through the unique
combination of self-intersection testing and inter-surface constraints on a multiple

surface deformation model. The major contributions of this work to date include:

e a method of automatically locating the cortical surface from MR images
has been presented and evaluated,

e inter-surface and intra-surface constraints have been shown to avoid non-
simple topologies in deforming models,

e the use of multiple surface models has been shown to improve the local-

ization of sulei occluded by partial volume effects, and
e a preliminary mean cortical thickness map has been produced, which can

be refined and used to improve the segmentation process.
Although this solution represents a major step forward, it is by no means a final

solution, and further work is required.
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10.2 Further Work

The NODE method of two-surface deformation has been shown to achieve good results
on a small brain phantom and on individual brain datasets. However, ways to improve
the localization of the cerebral cortex should be investigated, as well as explorations of
the deformation method at higher resolutions. The most obvious short-coming with
the NODE technique is the necessity to choose ohjective terms and weights to achieve
a particular image segmentation task. Although the objective function has been
formulated to consist of components that have intuitive notions, such as stretching
and bending, it is still necessary to investigate a range of weight combinations for
each of the objective terms. For more complicated tasks involving several surface
models, the number of weighting factors that must be chosen can be 10 or more,
and the combinatorics of trial-and-error determination of optimum values requires
considerable investigation. Some simple exploration of the sensitivity of results to
the choice of weights has been presented in section 8.3, but further research into

methods of automating the choice of weights is warranted.

10.2.1 Better Models of Gray and White Matter

The two-surface model with a preferred iuter-surface distance has been shown to be
sufficient for improving the segmentation of cortical surfaces. However, it is by no
means the most sophisticated model one could devise. As mentioned in section 9.6,
one could use the results of this model deformed to a large number of normal datasets
to create a model of the gray matter thickness that varies across the domain of the
cortex. In addition, adding models of the skin surface, brain stem, cerebellum, and

dura to the multiple surface deformation process may also improve the localization

of the cortical surface.
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10.2.2 Triangle Proximity Query

One open problem that has arisen from this work is the surface proximity query
required to avoid self-intersection and inter-surface intersection, described in section
7.3. Given a set of triangles, their three dimensional vertex coordinates and movement
vectors, and a distance along the movement vectors, compute the list of triangles
within a certain distance of each other. The fact that this query will be asked at
various (initially unknown) positions along the movement vector makes this a unique
problem that has not been fully addressed in the computational literature, but is

potentially a critical problem for surface based deformation methods.

10.2.3 Homology and Shape Matching

One of the limitations of creating average surfaces by taking the mean of correspond-
ing vertices is that the enforcement of homology of vertices is minimal at present.
Exploration of ways to increase the homology of the deformed surfaces should be
pursued. One possibility is to use curvature and stretch constraints to force the de-
forming model to remain similar to the shape of the average cortex model, which
can result in matching regions of the model with similarly shaped regions of the im-
age. Other possibilities include adding constraints based on features extracted from
the image volumes, such as sulcal positions or anatomical landmarks. It would also
be interesting to investigate whether multiple surface models and self-intersection

avoidance can improve the results in this area.

10.2.4 Surface Flattening

Another area of considerable interest is that of mapping complex surfaces, such as
convoluted cortical surfaces, into visually and mathematically simpler representa-
tions, such as flat sheets and spheres. Many such methods start with a complex three

dimensional surface and attempt to deform it to become smoother, with constraints
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on distance and angular changes. It has been observed that these methods can result
in flattened surfaces that have areas of overlap where the surface has folded over on
itself [CDVEY5], and it would therefore be interesting to use self-intersection avoid-
ance to attempt to circumvent this behaviour. The surface deformation as currently
described has all the components necessary to perform this type of surface flatten-
ing. Setting the desired curvature to zero would provide a flattening force for an
arbitrary three dimensional surface. Stretch constraints can be used to help preserve
distances between the three dimensional and flattened configurations of the surface.
Self-intersection constraints can be used to prevent the problem of the surface folding
over on itself during the flattening process. Comparison of this method to conven-
tional techniques is therefore warranted.

As introduced in section 9.5. flattening a surface can also be achieved by inverting
the process. The use of the NODE algorithm to deform ellipsoidal models to complex
MR images results in a mapping of the resulting polyhedra to the original ellipsoidal
models and averages of sets of surfaces. Investigations are warranted to determine

how to encourage preservation of distances. angles, and areas in the mapping.

10.3 Conclusion

In conclusion, the goal of this dissertation to solve a particular image understanding
problem has been achieved, through a novel combination of techniques. The method is
sufficiently general to have a much wider base of application than the specific problem

addressed, and investigation into other areas promises equally interesting results.
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