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Abstract

Computational neuroanatOITlY is an exciting new area where digital tools are used

with great advantage in the analysis of structure and function of the brain. One

rnajor area of research in this field involves automatically creating computerized rep­

resentations of the brain which are in a farm suitable for neuroanatomic analysis. The

principle drawback of contemporary methods of generating these digital models is the

incompleteness and aITlbiguity of the input data, which is typical1y under-sampled

relative ta the features of interest. .-\ method is presented here for creating surface­

hased rnodels of neuroanatomy that address the data incompleteness issue with an

integratecl combination of two rllodel-based approaches. The first approach involves

applying proximity and self-intersection restrictions on surfaces in order ta create a

plausible neuroanatomicaI nlodel in the face of data with topologies inconsistent with

medical knowledge. The second approach involves identifying ITlultiple surfaces si­

multaneously, \Vith inter-surface constraints, in order ta use general neuroanatomical

information to correct areas where the data is incomplete or ambiguous. The overall

method is one of deforming a set of polyhedral meshes. with the above constraints

and others incorporated inta an objective function, which is minimized ta find the

best fit of a model ta the data. Validation of this method on simple phantoms as well

as in the task of segmentation of human cortical surfaces is demonstrated. Discussion

of limitations and future work is presented.
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Resumé

Le neuroanatonlie informatique est UIle nouvelle sphère d!activité où des outils infor­

matiques sont employés avantageusement dans l'analyse de la structure et du fonc­

tionnement du cerveau. Cn dornaine de recherche important de cette discipline se

consacre à la création autonlatique de représentations numeriques du cerveau sous une

forme qui convient il. l'analyse nellroanatonLÏque. La lacune ulajeure des méthodes

contemporaines ponr génerer de tels rnodèles nUIIleriql1es est la nature incomplète et

anlbiguë des données. qui sont typiqueruent sous-échantillonnées par rapport aux car­

actéristiques pertinentes. ljne méthode neuroanatomique. servant à créer des modèles

basés sur des surfaces! et s\tddressant à ce probleme d'inachèvement des données

en intégrant deux techniques basés sur des modèles, est présentée ici. La première

technique implique rapplication de contraintes de proximité et d'auto-intersection

sur les surfaces en vue de créer nn rnodèle neuroanatomique plausible lorsque con­

fronté à des données dont la topologie est incompatible avec le savoir médical. La

deuxième technique inlplique la. création simultanée des surfaces multiples, régies par

contraintes inter-surfaces! dans le but d!exploiter de l'information neuroanatomique

génerale pour corriger les régions oliles données sont incomplètes ou ambiguës. Glob­

alement la méthode consiste à déformer un ensemble de maillages polyhédriques, où

les contraintes énunlérées ci-haut et autres sont intégrées dans une fonction objective,

qui est minimisée en vue d'obtenir la meilleure approximation des données par les

modèles. La validation de cette méthode sur de simples mannequins ("phantoms"),

ainsi que la segmentation de surfaces corticales humaines sont démonstrées. Une

xii
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discussion des limites de la méthode et du travail à venir est également présentée.
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Chapter 1

Introduction

Since the advent of digital processing Inethods, there has been an increasing number

of techniques for digital acquisition of measurements of physical abjects. based on

sueh modalities èll'i visible and invisible light. heat. magnetic fields, radio waves, and

many other methods covering almost the entire energy spectrum. The vast quantity

of information generated often precludes the use of aIl but automated methods for

processing this data. In general. the raw data fronl the various sensors must be trans­

formed inta more eonvenient representations and structured in ways that facilitate

advanced digital processing and analysis. This general problem of information trans­

formation and representatian manifests itself in many different applications, each with

its own specifie variations. One particular case is a large set of applications which

requires the transformation of three dinlensianal density information into structural

representations of three dimensional abjects.

Within the damain of medical imaging, magnetic resonance imaging, known

as MRI or MR imaging, is a prominent method of acquiring structural information

about organisms in a non-destructive way. However, the raw data acquired constitutes

a very low level representation of the information, with various sources of errors in the

signal. In order to perform advanced processing, the NIR image must he transformed

into sorne digital representation that can he related to the wealth of anatomical

1
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information that is available from other sources, notably textbooks and experienced

anatomists.

This document constitutes a doctoral dissertation in the field of computer science,

with specifie application to the domain of computational neuroscience. The problem

being addressed is that of automatically generating digital models of neuroanatomical

structures from three dimensional images such as NIRI. One of the outstanding proh­

lems in this large research area is the question of how ta respond to thfl non-optimality

of the input data. which is noisy~ Ilnder-sampled, and incomplete. Some contempo­

rary methods of creating digital rnodels are predominantly data driven, which is

insllfficient for automatie use due to the inaccuracy of the input data. Other more

successful methods attempt ta use model-based constraints ta fill in the information

rnissing in the da.ta~ but the facilities provided for incorporating model information

are rather linlitecl. .\ llew nlethod is presented here which is shawn ta provide im­

proved neuroanatornical rnodeIing; of nledical iIllages. principally by integration of two

Illodel-based approaches.

The first approach addresses topological errors due ta noise. under-sampling, and

other imaging artifacts. Due ta these factors~ the image data from magnetic resonance

inlaging typically does oot have a topology consistent \Vith the knowledge gleaned

from studies of actllal human brains. As a result~ purely data driven methods~ as weIl

as nlany model-based approaches. can he confounded by the incorrect topology in

the data. Furthermore, ITIOSt contenlporary model-based methods are susceptible to

producing models which are oot correct relative ta medical knowledge, in particular,

objects which intersect themselves or other abjects. In response to these limitations,

the first approach presented here is that of intersection avoidance in the process

of creating digital nlodeIs. The rcsulting models are guaranteed not to intersect

themselves or each other, making them more consistent with the real world abjects

which they are meant ta represent. Although intersection avoidance is explored here

within the context of neuroanatomical modeling, the idea can he generally applied to

2
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a broad array of image recognition tasks. It is shown here that the addition of snch

constraints ta the construction of digital models can improve the correctness of the

resulting solution, without adding a prohibitive computational cost.

The second approach addresses an aspect of imaging errors in the data which is

particularly problematic in the domain of neuroanatomy. The human brain contains

large surfaces which are very tightly folded. resulting in highly convoluted areas where

nnopr-sampling and noise degrade or remove the appearancc of boundaries between

two touching surfaces. The approach chosen to reduce the effects of such edge degra­

dation uses anatornical knowled~e about the relative position of different types of

tissues in the hurnan brain. The identification of one surface boundary is improved

by constraining it with the position of another boundary and a priori knowledge of

the relatianship between the two. A general method of creating multiple component

models with inter-camponent constraints is shawn to improve the identification of

cortical surfaces in the face of sub-optimal data. Again~ this idea can be carried over

into other dornains. where sets of inter-connected abjects proviùe a better model of

the data than single abjects.

The following chapter details the problenl being addressed and provides a com­

putational neuroanatornical context for clealing \Vith the prablem and its particular

challenges. Relevant techniques from the literature are presented with a discussion

of the advantages and disadvantages of each as it relates ta the problem domain.

A separate short chapter is devoted to a survey of general edge detection methods,

concluding \Vith a description of established feature-based tissue classification algo­

rithms which can be successfully used to provide edge detection in medical images.

After laying this groundwork, the proposed solution is presented. Description of the

abject representation, the objective function with its various components, as weIl as

the method of minimizing to find a solution is presented in detail. A separate chapter

investigates the effect of each of the objective function constraints on very simple

phantom data. The following chapter discusses relevant implementation details of

3



• the surface deformation method. The discussion of the validation of this method is

divided ioto two chapters. The first of these chapters presents results of tests con­

structed on simulated data and small phantoms, 50 that the correct answer is in sorne

way known or assumed~ with the result that quantifiable error estimates can be found.

The second validation chapter demonstrates results on real data where the true answer

is not readily available. but validation consists of showing that the method produces

results qualitatively and quantitatively consistent \Vith ùther neuroauatornical anal­

ysis. Figure 1.1 shows a photograph of a human brain and a computer generated

image of a brain surface created by the algorithrn described in this dissertation. The

final chaptel sumnlarizes the results of this work. the weaknesses of the method! and

presents sorne ideas for further work.

•
a) b)

•

Figure 1.1: a) Photo of human brain. b) Computer generated mode!.
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Chapter 2

Problem Definition

2.1 Motivation

Science can be defined as the process of nleasuring the world in which we live~ fol­

lowed by attempts at discerning higher level meaning from this data. Nlethads of

measurement have progressed far beyond the simple but useful yardstick ta provide

much more detailed and accura.te data. Lately~ digital information processing tech­

nology has enabled the sanlpling of large amounts of real world data, through such

methods as photo-digitization. sonar. radar. and a host of other sensing modalities.

The growing number of these types of datasets. combined with the increasing amount

of information present in a given instance~ points to the necessity for automated

techniques for processing this data.

The type of processing which is required is quite naturally linked to the particular

application domain. However. in general, the processing step is essentially a task of

interpretation. Nlirnicking the techniques of centuries of scientific investigations, the

computer must combine and correIate the data measurements to produce a model

of the underlying process. This model not only represents a high-Ievel form of the

measured data, but also constitutes a more powerful mechanism for dealing with the

associated real worId phenomenon.

5
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One example of where this computerized interpretation can be advantageously

applied is in the area of neuroscience, the study of the anatomy and physiology of

the brain. By far, the brain, and the human brain in particular, remains as the most

cornplicated and intriguing organ. A multitude of researchers are perplexed by the

mysteries of how it works, why it is shaped as it is, how it evolved, how it is affected

by injury and disease, and how to diagnose and treat disorders of the brain.

Npuroanatomy, thf' st.ndy of thp fnnetional and physical nature of the brain, forms

an integTal part of the foundation of neuroscience research. It is readily evident

that in order to attack the rnysteries of the brain. one of the first steps is si!1lply

to understand the various parts that conlprise the organ. Over the years, this has

resulted in considerable effort applied to dissecting animaIs of aIl types, in a.ttempts

to discern both the physical and fUIlctional workings of the brain. Orten this work

is distilled into a neuroanatomical atlas. such as the characterizations of cerebral

sulci described by Ono et al [01\:.\90]. or the atlas of the human brain defined in a

standardized coorclinate systeul hy SchaItenbrand et al [SB59] The labeled drawings

and descriptions in such atlases can be thought of as a higher level physical modei

of the underlying anatomy. \vhich is llsed bath as a detailed reference by students of

neuroanatomy and by researchers interested in relating data from their investigations

ta established neuroanatomicai knowleclge.

A quick survey of typical neuroanatomicai research illustrates the need for meth­

ods of creating highly structured and detailed moclels as toois for understanding the

physical nature of the brain. Neuroanatamists are constantly looking for ways to go

beyond qualitative assessments of brain structure and function, and provide quan­

titative methods to analyze the brain. Steinmetz et al (SRJ+90] manually identify

regions on ten cadaver brains ta determine if the surface area differs significantly

between the left and right areas of the brain. Similarly! .James [Jam92] investigates

the unfolded shape of the human cerebral cortical surface and attempts ta measure

its surface area. Such use of real brain specimens is invaluable in the analysis of
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brain shape, but the evaluation of digitally acquired information is rapidly achieving

importance in this pursuit. An area of considerable ongoing neuroscience research

is multi-modality registration. which involves conlbining and reconciling infor­

mation from two or Dlore different types of imaging study. Evans et al [ErvrN+92]

provide methods of mapping functional images to anatomical images of the brain, in

attempts to determine which parts of the brain respond ta certain stimuli. Similarly,

Steinmetz and Seitz [8891] investigate the functional anatomy of language processing.

One of the main hurelles encountered is the inherent anatomical variabilityacross the

many subjects involved and the difficulty of identifying and relating the correspond­

ing neuroanatomical structures across individuals. These and many other examples of

neuroscience research [GK'lPF89. DF92. OSTG89. SRH+89, SFF89] provide a strong

motivation for developing cornputational tuols for modeling the anatomical structure

of the brain.

The problem addressed by this dissertation is one of creating digital representa­

tions of the human brain frorIl one particular type of uledical imaging data. Befare

clefining the problenl conlpletely. it will be helpful to provide a brief overview of

the structure of the humall brain a.nd rela.ted terminology, and a description of J\;IR

imaging, which provides the input for the problem at hand.

2.2 Neuroanatomical Domain

Structurally, the human brain is a very complex organ consisting of many components

with widely varying shapes and sizes. Brain tissue is often classified inta two types,

gray matter and white matter. The gray matter consists mostly of neuron cell

bodies, whereas the white matter is predominantly the a.xons or other processes of the

neuron. The brain is divided into two roughly symmetric hemispheres. The cerebral

cortex, depicted in Fig. 2.1, is the externallayer of gray matter. The surface of the

cerebral cortex (cortical surface) is highly convoluted, consisting of deep crevices

which are termed fissures or sulci, the singular of the latter being sulcus. The
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Figure 2.1: Photographs of a human brain specimen
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Figure :2.:2: :'\fannal sulcal topology.

faids themselves are termed gyri. the singular being gyrus. Several major sulci

are presented in Fig. 2.2. Each hemisphere is divided inta four main regions: the

frontal lobe. the parietal lobe. the occipital lobe, and the temporal lobe.

The boundaries of these lobes are defined in part by three major sulei: the central

sulcus, the parieto-occipital sulcus. and the sylvian fissure. The hemispheres

thenlselves are separated by the inter-hemispheric fissure. Although the primary

emphasis here is on the outer surface of the cerebral cortex, it is important to note

that the cortical gray [natter is actually made up of several layered surfaces, totaling

about 5 millimetres in thickness. The brain is bathed in a liquid called cerebral­

spinal fluid or CSF. The ventricles are a set of CSF-filled cavities within each

hemisphere that are quite prominent and distinct in shape and appearance. Other

relevant structures in the brain are the cerebellum, a highly convoluted rnass of gray

matter, white matter, and deep nuclei at the rear of the brain, and the brain stem,
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a set of several small structures at the base of the brain which provides the link to the

spinal cord. Neuroanatomists often view planar cross sections of the brain, usually

classified into one of three orientations, each loosely defined by anatomical features.

A sagittal section is approximately perpendicular to the Une segment joining the

ears. A coronal section is roughly perpendicular to the tine segment from the nose

to the back of the head. A transverse section is approximately perpendicular to

the Hne defined by the neck. Photographie images of these three orthogonal cross

sections through a human brain specimen are presented in Fig. 2.3.

2.3 Input Data - Magnetic Resonance Images

During the last two decades. ueuroê:l.nutornists have begun investigating the structure

of the hllman brain using a nlethod called Magnetic Resonance Imaging, com­

monly referred to as lVIRI or MR imaging. NIR imaging is a non-invasive technique

for measuring the response of certain types of objects, usually organic tissue, to mag­

netic stimuli. An ~IR image of an object provides a three dimensional view of an

abject, where areas of similar composition appear as regions of cornmon image value,

and borders between different structures often appear as gradients in the image. A

brief description of the ~rR imaging process is presented here. followed by a discussion

of the nature of the signal being measured and sources of noise and other errors.

vVithin an iVrR scanner, there is a static magnetic field maintained by a super­

conducting magnet. \Vhen a target object is placed in this field, its molecules undergo

what is termed bulk magnetization, where nuclear spins are oriented along the

direction of the magnetic field. Then a series of radio frequency pulses are applied

to induce local perturbations of the magnetic field within the target object, which

causes the object to emit radio energy. The energy emission is measured by a Radio

Frequency coU (or RF coi!) placed around the abject. The energy emitted depends

on the strength, frequency, and timing of the pulses, as weIl as the intrinsic magnetic

characteristics of the tissue in the object, and is often characterized by two time
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Figure 2.3a: Sagittal section through human brain specimen.

constants, Tl and T2. Nlany pulse sequences have been devised which are optimized

ta favour either the Tl or T2 time constant, and the resulting images are termed

Tl-weighted and T2-weighted images, respectively. In addition, pulse sequences

can generate values related ta the number of protons in local regions of the target

and hence produce proton-density-weighted or PD-weighted images. Each of

these types of wlR image provides different contrast characteristics between tissue
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Figure 2.3b: Coronal section through human brain specimen.

types, and each is therefore more suited than the others at imaging particular tissue

combinations.

An rvIR system uses Fourier analysis of the radio frequency data to produce a

two or three dimensional regular grid sampling of the target object. The separations

between samples are usually on the arder of 1 millimetre and the number of samples

is on the arder of 256 in each of the three coordinate directions. A three-dimensional

image is often referred to as a volume or image volume, in arder to emphasize

its three dimensional nature. Consequently, the three dimensional box centred at a
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Figure 2.3c: Transverse section through human brain specimen.

Figure 2.3:

sample point with a..xial sizes equal to the sampling interval is termed a voxet which

is a contraction of the tenn volume element based on the two dimensional analog,

the picture element or pixel. For convenience, the samples are often treated as

having been generated with a perfect box filter over each voxel, or as a point sample

at the centre of each voxel. Figure 2.4 depicts a set of parallel slices through T1­

weighted, T2-weighted, and PD-weighted NIR volumes of the same normal human

subject. In this example, each volume is sampled on a grid of 172 by 256 by 256 with

an isotropie sampling interval of one millimetre, resulting in Il million sample points.

NIathematically, we can treat the data as an array of ni by nj by nk values:
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2.4a) T1-vVeighted Images
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2.4b) T2-vVeighted Images

z=60 mm
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Any of the many methods of interpolation and approxinlation [B8B87] snch as 8­

splines, Hermite splines, or simple trilinear interpolation may also be used ta create

a continuous differentiahle function which can be evaluated anywhere in the domain

of the image:

F(x, y, z), 'VF(x, y, z), ':;;72 F(x, y, z), ...
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2Ac) Proton-Density-vVeighted Images
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2.-ld) Position of NIR slices in a), b), and c).

Figure 2.4: T1-~ T2-, and PD-weighted NIR images.

Xmin ~ X ~ X max ,

Ymin ~ y ~ Ymax,

Zmin ~ z ~ Zmax·
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2.3.1 Partial Volume Effects

A.n NIR image has certain characteristics deriving from the nature of the imaging

system involved. Each sample value is actually a convolution of a point spread

function with the target object over a finite subspace. The point spread function is

simply the weighting function that defines how the tissue at a particular geometric

location contributes to samples in the surrounding region. The point spread function

in NIR systems is eharacterized as a. sine function (Sl~:r), where the distance between

the t,vo central zero crossings is twiee the width of a voxel, as depicted in Fig. 2.5.

Because of the finite width nature of the point spread function, as well as the finite

number of samples! ~rR images are subject ta what is called the partial volume

effect. The partial volurne effect occllrs in regions which are nat of homogeneous

composition. where the value of a particular sample includes weighted contributions

from varying tissue type~, thus tausing information loss. In addition, the finite spac­

ing between si:1rnples introduces the ~tandard lirnitatioll from fundamental sampling

theory, the Nyquist limit. The ~yquist equation dictates that details higher in

frequency than the Nyquist linlÎt. which is half the sampling rate, will not, in gen­

eral, be captured in the final image. This, combined with the blurring nature of

the finite width point spread function. results in the partial volume effect~ which is

most evident near the boundaries between different stnlctures. Edges are either less

apparent in the image or not visible at aU. The tightly folded configuration of the

cortical surface makes the partial volume effect particularly problematic. There are

many places in the brain where the cortex on one side of a sulcus is very close to

or actually touches the cortex on the opposite side, as depicted in Fig. 2.6a. Figure

2.6b illustrates haw the ~IR image would incorrectly portray the touching parts of

the cortex as connected.

Examining a typical Tl-weighted iYIR image illustrates sorne of the consequences

of partial volume effects. Figure 2.ï shows a magnified view of the temporal lobe

region. Near the centre of the figure, the concave indentation in the white matter
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Figure 2.5: The typical point spread function of an NIR imaging system.

•
a) b)

Figure 2.6: a) True data with touching gyri. b) resulting image data, where gyri are

no longer distinct.

•

dearly indicates sulcal folding based on the anatomical assumption that the gray mat­

ter follows the shape of the white matter. However, the image in this area does not

show any clear boundaries corresponding ta the sulcus. No conventional image pro­

cessing algorithms have been found to satisfactorily detect edges in such a situation.

Due to the prevalence of these types of close proximity configurations in the typical
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Figure 2.7: Partial volume effect of hlurring a sulcus, painted ta by the < symbol, in

a Tl-weighted ~IR image.

human brain, even an order of rnagnitude improvement in resolution of ~IR inlaging

systems would probably still Ilot correct these problems, and it is nat evident that

partial volume errors will be reduced in ivIR images for quite sorne time. Therefore,

incarparating a prio'ri knowledge froIn the neuroanatomical domain into the image

recognition task represents a pronlising alternative ta purely data-driven methods.

2.3.2 RF inhomogeneity

An imaging artifact peculiar to ~IR imaging systems is the problem of RF inho­

mogeneity or RF non-uniformity. Like any antenna, the RF coii system has a

non-uniform spatial sensitivity. As a result, the measured value of a gÏven tissue type

will vary depending on the position of the tissue relative to the RF coiI. This typi­

cally results in an image whose mean intensity increases slowly along sorne direction

in three dimensions. Figure 2.8a shows a simulated wIR slice with an exaggerated

RF inhomogeneity (about three times normal), where the image grows brighter di­

agonally from bottom left ta top right. Figure 2.8b shows the same simulated image

without RF inhomogeneity. The maximum difference in scaIing across a single NIR
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Figure 2.8: a) RF image inhomogeneity. b) no RF image inhomogeneity.

image due ta RF inhomogeneity is typically on the order of 20 % of the image value.

2.3.3 Image Noise

As in most sensor equipment, noise due ta many sources may influence the resulting

image. The use of gradient magnetic fields makes the system susceptible to errors

due ta eddy currents around nletallic abjects in the vicinity of the scanner! such

as its own components or articles in the subject's clothing or body. The image

noise inherent in an ~'lR image is often modeled as a Gaussian noise distribution in

the complex number system~ where the mean of the real and imaginary parts are

independent. The resulting noise distribution is termed Rician [Nis95), which is

similar ta a Gaussian distribution in areas of high signal. However, in areas of low

signal value, the distribution is more complex because the final signal is computed

from the magnitude of its real and imaginary components, which effectively maps

negative values to positive ones. Noise processes that decrease a signal value below

zero therefore can result in an increase in the final signal value. The intensity of the

noise is typically on the order of 3 % of the signal intensity.

19



•

•

•

2.3.4 Movement Artifacts

The Iength of time required to perform an NIR scan introduces the possibility of errors

in the image due to dynamic changes in the subject. For living specimens, it is often

difficult to remain absolutely still for the duration of the scan, which is typically on the

order of half an hour. Even a subtle rnovement such as a swallowing motion can have

a pronounced effect on the accuracy of an ;\IR image with one millimeter sampling.

In general, living organisms being scanned are subject to dynamic changes such as

movement of voluntary and iovoluntary nluscles. blood fiow, and other changes in

organ shape and size clue to normal bodily processes. Large movement artifacts often

show up as sharp discontinuities across a plane of the image volume, and are difficult

to correct. In general, the nlovernent artifacts in cooperative subjects are more subtle

and no correction is attenlpted. A good introduction to the use of magnetic resonance

in medical inlaging rnay be found in [CD~I84]. A rnore detailed description of NIR

characteristics such as noise. RF inhonlogeneity. and the point spread function may

be found in [Nis95J .

2.4 Problem Definition

Having examined the nature of ~IR imaging data, the problem addressed by this

dissertation is proposed:

Problem: Given three dimensional magnetic resonance images, create

digital representations of the entire cerebral cortical surface that are geo­

metrically simple and corrected for partial volume effects.
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• The basic requirements of a solution are:

•

Robust segmentation

Geometrically simple

Partial-volume

correcteci

Nlany datasets

Arbitrary resolution

Fully Automatic

General

The cerebral cortical surface of normal human in­

clividuals must be reliably segmented, as measured

against one or more experienceci neuroanatomists,

the models created must be geometrically simple,

that is~ they must not self-intersect,

the method Illust correct for the arnbiguity of par­

tial volurue effects in areas where neighbouring gyri

are in dose proximity or touching, by correctly 10­

cating the entire sulcus between the gyri,

the Iuethod nlust be applicable to a large number

of datasets.

the solution nlust be extensible to an arbitrarily

high level of detail.

no user intervention must be required, and

the rnethod must be applicable to images produced

by a variety of :VIR imaging protocols.

•

2.4.1 Segmentation

The essential task is that of abject recognition or segmentation. In a typical NIR

volume of a human head. there are hundreds of neuroanatomical components visible.

The cerebral cortical surface is a relatively large and highly convoluted neuroanatom­

ieal structure that is very difficult to segment by hand. Using interactive tools, an

experienced observer may take several days to label the cortex in a high resolution NIR

volume. This dissertation will be concerned primarily with automatically segment­

ing the outer layer of the cortical surface, although application to other components

will not he excluded. Due ta the typical1y high cost of manual intervention in neu­

roanatomical segmentation, the method must he fully automatic, with no user input
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required. The technique should be applicable to Tl-weighted, T2-weighted, and PD­

weighted NIR images, and be insensitive ta the varions imaging parameters of these

protocols.

In arder to validate an automatic methocl of segmentation, there are two general

methods that may he used. The first is to create data for which the correct answer is

somehow known or assumecl, and to test the results of a solution against this '~gold

standard". The second mcthod is ta use real data, for which the answer cannat

he reasonably known. and create reasonable qualitative and quantitative estimates of

error. In the case of segmentation of the cortical surface uf th~ human brain, a manual

segmentation of a single normal ;\IR volume has been performed by a neuroanatomist,

and this tan he used as a gold standard ta test segmentation methods. It has been

established that intra-observer errors in rnuuualiabeling can be significant (as high as

12 %of structure volume in the case of small structures such as the cauclate [CEHP95,

CHPE96]), which represents a flaw in the purity of the gold standard. However, due to

the large amount of effort involveel. it is not feasible ta achieve a better gold standard,

such as, for instance. a conlposite of labelings by several experts. The form of this data

is a labeling of voxels into distinct anatomical components. :\ssuming this dataset ~~

the correct answer. the nunlber of voxels mislabeled by an automatic segmentation

procedure can be determined. In addition. validation must be performed on a number

of NIR volumes ta determine if the results are qualitatively reasonable and consistent

with a neuroanatomical understanding of the cortical surface.

2.4.2 Geometrically Simple

The term simple is generally used ta describe a set of abjects (line segments or

triangles, for example) where no pair of objects share points, except on the boundaries

between objects. Less formal1y, the term non-self-intersecting is also used. In the

case of a polygon, which is defined as the set of Hne segments connecting successive

points, as weIl as the first and last points, of an ordered list of three of more points
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in the plane, the term simple means that adjacent edges share only one point, and

no other pair of edges share a point. A simple polybedron is a connected set of

polygons in three space where the intersection hetween any two polygons is either the

empty set or an edge of both polygons, and each edge is a member of exactly two

polygons. Contrary to conventional research, the constraint that the models created

he geonletrically simple is one of the principal requirements of a solution, rather

than mercly a desirablc feature. This constraint is iUlportant in anler tu int:rease

the confidence that the nlodeled surface is a faithful reproduction of the l'eal cortical

surface, each layer of which is known nat to intersect itself. Assuming that noise and

partial volume effects will l.:ontinue ta plague :NIR images. it is therefore desirable

to make algorithms as insensitive to these effects as possible. One of the central

postulations of this dissertation is that restricting the output of the segmentation

process ta sinlple surfaces avoids rllé.l.ny incorrect solutions.

2.4.3 Partial Volume Correction

In addition to constraining the modeled objects to be sinlple, an additional criterion is

that the method should be more insensitive to partial volume effects than conventional

methods, which typically either ignore partial volume effects. or use simple image

processing operators for an intuitive. but limited. solution. In particular, areas of

neighbouring gyri that appear in the image as connected tissue should be correctly

identified with il. boundary between thenl. It is very important that the method locate

the complete depth of each sulcus. in arder ta most accurately represent the cortical

surface. One of the difficulties with adding this criterion ta the problem definition is

that it is very hard ta determine if a particular solution is correct. However, simple

test cases can be devised where the answer is known, and application to real rvIR

data can be qualitatively evaluated by experienced neuroanatomists. In effect, one

hopes to duplicate the high level information used byan experienced neuroanatomist

who factors out partial volume effects using a comprehensive understanding of brain
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anatomy.

2.4.4 Automatic Operation

The segmentation method must be applicable to a large number of datasets 1 as even

a single neuroanatomical study may consist of several hundreds of individual scans.

Therefore the operation of the segmentation process must involve no user intervention

on individual datasets. In addition, as the required resolution of the digital models

increases over time due to higher resolution data and more ambitious studies, the seg­

mentation process must be extensible to an arbitrarily high resolution. This criterion

also precludes the practical use of hunlan intervention in the process. reinforcing the

need for fully automatic methods.

2.4.5 Representation

The problem statement stiplliates that the digital models representing the solution are

surface representations of anatomical structures. The choice of surface representation,

as opposed to a volume representation. for instance, arises from the types of post­

processing typically applied to digital brain models. In order to assist analysis of the

anatomical structures by experienced neuroanatomists, it is advantageous to be able

to provide various types of visual depictions of a segmented structure, in particular,

as a three dimensional object which looks similar to a photograph of the actual

anatomical structure. However, it is more important to provide a representation that

facilitates quantitative analysis. The segmented object representation must allow

such rudimentary operations as measurement of distances, surface areas, and volumes

of anatomical structures and their subcomponents. In addition, more sophisticated

quantitative characterizations of geometric shape are currently being investigated by

neuroanatomists. A surface representation can generally satisfy these requirements,

and therefore has been chosen as the form of the output for the problem. Which type

of surface representation ta choose remains to he discussed in a subsequent chapter.
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Chapter 3

Previous Work

There continues ta be considerable research relating ta processing of NIR images.

Consequently, there are rnany techniques that address sorne or all of the variaus

aspects of the segillentation problem described in chapter 1. The following is a dis­

cussion of variolls techniques which are relevant ta the problem at hand. Rather

than being competing methods. nlany of these methods cornplement each other and

typically, several techniques are tlsed in combination ta provide an overall solution.

The rnethods discussed are divided ioto two classes. The following section describes

those nlethods that can be dassified as volumetrie pre-proeessing, and the sub­

sequent sections cleal with techniques for image segmentation. The applicability of

each method as well as its relative advantages and disadvantages are explored.

3.1 Volumetrie Pre-Processing

wlany general image processing techniques are relevant to the three dimensional im­

ages produced by wIR scanners. Three methods of pre-processing the NIR images for

subsequent image analysis are described here: image registration, tissue classification,

and RF inhomogeneity correction.
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3.1.1 MR Image Registration

There are a multitude of methods proposed to handle the task of image registra­

tion or spatial normalization! which is the process of spatially transforming an

image to be aligned within sorne target coordinate system. The goal of J\JIR regis­

tration is to provide a standardized frame of reference for subsequent analysis. For

processing of human brain :\IR inlages~ the initial step is typically ta apply a sim­

ple rigid geometric transformation consisting of three dimensional scaIing, rotation~

and translation~ to align the data.set into a standard coordinate system. often termed

a stereotaxie coordinate system. This can aid analysis by introducing a certain

amount of predictability into the positions of various anatomical structures. This

image registration task is addressed by both ffianllal and automatic methocls. iVlan­

uaI methods [LHH+91. E~iIN+92] involve locating corresponding coordinates (either

based on anatotny or on artificial1y introduced abjects (fiducials)) in both the gÏven

image and a standard target inlage to which aIl images are mapped. The set of pairs

of three-dimensionaI coordinates is used to define a transformation between positions

in the two images. The given inlage is transformed by this mapping ta produce an

image that is in regÏstration with the target.

The reliancc on hunlan observers for the definition of corresponding points moti­

vates a quest for more automatic nlethods of image registration. As a result, there are

severaI automated methods which attempt ta match image features, such as inten­

sity values or gradients, across a pair of images [Bcc89, CNPE94, KGC+89, RTL+93~

TJP+93]. An initial guess for the transformation is given, either by manuaI inter­

vention, or by an automated procedure such as principal axes analysis [RTL+93].

The similarity between the image ta be transformed and the target image is measured

and the parameters of the transformation are adjusted to attempt to maw'Ximize this

measure. The measure used is typically a function such as the cross-correlation of

intensity values in the original image with the values in the transformed position in

the target image. These methods are being used successfully to factor out the gross
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position, orientation, and size differences of various individual brains, and can be

thought of as a very coarse means of segmentation.

The work of Talairach and Tournoll.x (TT88] in manually defining a standardized

coordinate system based on identifiable anatomicallandmarks is adapted into a dig­

ital framework by varions methods. The method of Collins et al (CNPE94] involves

the definition of a stereota.xie coordinate system, based on the atlas of Talairach and

Tournoux. Using manual methods of landmark identification, the reference model

image is placed into stereotaxie space. An autonlatic three dimensional image reg­

istration algorithnl can then be applied ta register any target image with the model

image. Figure 3.1 depicts the registration of an image into stereotaxie space from

native space, the intrinsic coordinate system of the NIR scanner. Subsequent neu­

roanatomical analysis of the target irnage is greatly facilitated by its standardized

orientation and positioning within the frame of reference defined by the stereota."'<ic

coordinate system.

3.1.2 Tissue Classification

.-\.S described in chapter 1. the hnnlan brain has several different tissue compositions,

the principal ones being gray matter, white matter, and cerebral spinal fluid (CSF).

Depending on the imaging parameters of the ;\JR acquisition, these different tissue

types give varying signal responses. which are used ta discern tissue type distribution

in the image. By using several ~-IR images of a single brain, including the Tl-, T2-,

and PD-weighted images, a three dimensional feature vector is derived far each vaxel,

cansisting of the intensity values for the voxel in the three images. Pattern c1assifiers

such as neural networks, nearest neighbour methods, and Gaussian-modeled Iinear

discriminants lare invoked on training data where the tissue types are known, in

attempts to create an accurate classifier for arbitrary datasets which are acquired

\Vith similar imaging parameters ta the training data (ZD~I93, CCR+93, KCS+92,

1[Nil90] provides a good introduction ta these and other pattern c1assifiers
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Figure 3.1: Transformation from native space to stereotaxie space.

LHH+91, RLvV93]. This COIlstitutes a law-Level segmentation of the brain~ which

does not necessarily correspond to an anatomical segmentation of the brain~ since

different anatornical structures may have the sanIe tissue type.

Figure 3.2 illustrates the results of a typical tissue classification algorithm gener­

ating an image with four classes: gray matter~ white matter, CSF, and background.

Although tissue classification methods by themselves are not sufficient for segmen­

tation of anatomical objects~ it may be possible to use the tissue class information

to assist other methods of segmentation. In particular, tissue classification will be

revisited as an edge detection step for lVIR images in the next chapter.
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Figure 3.2: One slice through a 4-class volume (white matter is white, gray matter is

gray, CSF is black, background is off-white).

3.1.3 RF Correction

The unique nature of the RF image inhornogeneity distortion that plagues i'vIR imag­

ing invites specialized methods ta reduce or remove this artifact from images (Fig.

3.3). These methods can be loosely classified into two categories, where the principal

difference is whether or not the RF correction is performed in conjunction with tis­

sue classification. \Vhen used \Vith tissue classification, the typical method attempts

ta estimate twa unknawns: the tissue classes of the voxels and the spatially vary­

ing RF field over the volume. This is accomplished by fL'(ing the estimate of one

of the unlmowns in order to compute an estimate for the second unknown, which

is then used to estimate the first unknown. These two steps are repeated until the

sequence converges. A popular method which uses this methodology is called the

Expectation-Maximization algorithm [WIGKJ94].

The other general class of RF correction methods does not explicitly involve tissue

classification, but instead uses the intensity histogram to achieve a similar result. By

comparing local histograms of image intensity in different spatial locations, the shift
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Figure 3.3: RF image inhornogpneity rorrpction rpduces the slow-varying intensity

gradient across the iniage.

in the histogram is identified, and thus an estimate of the RF inhomogeneity field

can be derived. One example of this method [SZE97) will be revisited in the next

chapter.

Having examined various methods of pre-proeessing images. a survey of iInage

segmentation algorithrns is presenteù. Any method which divides images into distinct

regions or extraets nlodels of specifie regions of the image may be considered an image

segmentation algarithnl. Sanie important differences among the various methods

described in the following sections are the representation of the segmented abjects,

the level of user intervention required. and the level of model information used to

eonstrain the process.

3.2 Contours

Nlany methods of image segmentation are based upon choosing a threshold which

corresponds ta the image intensity at the boundaries between abjects in the image,

or using gradient-based edge detectors to label particular regions of the image as

boundary. Boundary points detected on two-dimensional slices of the image are then

connected together into a curve or contour. This partitions the image into a set of

connected components (Fig. 3.4), thereby achieving a segmentation of the image.

The advantage of contours is that the problem of three-dimensional segmentation is
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initially converted ta a more tractable two-dimensional problem. Often two objects

which are connected in the three-dimensional space are not connected on many of

the slices through the volume. Even if they are connected, manual segmentation

techniques and morphological aperators are simpler and more successful when ap­

plied independently to each slice, due ta the ability of conventional two-dimensional

technology ta more easily ciisplay ilnage slices than entire volumes. Two dimen­

sional image contouring nlethods applied ta three dimensional images are prevalent

[CL88, EP091, FI{U77. GD82. .\15S92] and generally attempt to construct a three di­

mensional surface from stacks of contours extracted from parallel slices. The essence

of the task is fincL correspondences between positions on contours of neighbouring

slices. The difficulty is that when these methods are applied ta complex shaped

abjects, it may be very difficult or impossible ta decide how ta connect points on

contours ta those on neighbouring slices. Because this often occurs when a contour

splits into two on the next slice. this is llsually called the branching problem, and

is a significant factor in linli ting the use of contour methods in higher dimensional

applications. ~'lethods that attempt ta solve these problems can involve very com­

plex algorithms [EP091]. [n actuality. the initial advantage of reducing the problem

from three to two dinlemüons is offset by the fact that the conlplexity of the higher

dimensionality problem has not been elinünated, but rather delayed until the final

connection phase. However, because of the wealth of published experience in manual

and automatic methods of contouring datasets, contouring is a segmentation tool that

should not be ignored~ and can prove useful for various aspects of the segmentation

problem, induding preprocessing data and building models for other segmentation

methods.

3.3 Isosurfaces (3D Contours)

The inefficiency of contours in clealing with three dimensional data has led many

researchers ta explicitly extend the idea of contouring to three dimensions. The ob-
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Figure 3.4: 2D image contouring.

vious approach is ta construct surfaces of the boundaries of the abjects, again using

an image threshold. Since the surfaces correspond to sets of points which are of equal

values, they are called isosurfaces. Isosurface algorithms [Bl088, BvV90, CLL+88,

H"V90. KCHN91. LCS7. vVj\tPw'V86] are the three dimensional analog of two dimen­

sional contouring and nlOst isosurface rnethods are irnplemented in a very similar

fashion. Typically. the volume is tessellated into smalt simple geametric abjects,

and the thresholded surface is approximated in each, building up a set of connected

polygons. The mast cited example is the nlethod of Lorensen and Cline [LC87] which

uses rectilinear boxes as the tessellating abject, leading them ta term the method

marching cubes. in reference ta the algorithm's processing of the cubes one byone.

By examining the sign of the difference between the desired threshold and each of the

eight corner nodes of a single box. a set of one to six triangles is created to approx­

imate the surface through the box. Figure 3.5 illustrates one situation where four

nodes are below the threshold and four are above. In this case, the approximation

ta the surface is a set of four triangles, whose vertices are found by linear interpola­

tion along the relevant box edges. The algorithm simply examines the eight vertices

of each box in the dataset, constructing a small number of triangles for each one,

and results in a connected surface for each connected object in the volume, a simple

example of which appears in Fig. 3.6. Interestingly, although the marching cubes
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• method is by far the rnost commonly referenced rnethod, it has the serious problem

of generatïng surfaces that may have hales, where the triangle edges do not joïn weIl

across adjacent voxels in sorne cases. A similar method published one year earlier

by vVyvill et al [vVNIvV86] avoids this problem and praduces a correct surface. wlore

recent methods usually do nat suffer 1'ronl this problem either, such as the method of

using tetrahedral tessellations by Hall and vVarren [HvV90] or a similar one by Payne

and Toga [PT90] . Howflvpr, despitf:' the limitations of the method of Lorensen and

Cline, the term ntarching cubes has beconle synonymous \Vith isosllrface construction

aIgorithms.

•

o

60

•

Figure 3.5: Exanlple of nlarchillg cubes algorithm approximating the isosurface of

value 80.

Although the simplicity and speed of cantouring and isosurface algorithms is quite

attractive~ their use for sUlface segmentation is limited by the implicit assumption

that abjects that are distinct in reality appear as disconnected regions within the

image. Hawever, this assumption is often invalid, such as when abjects are close

together, similar in intensity, or affected by noise in the image. In these cases, an

isosurface algorithm may create a single geometric abject which corresponds ta several

distinct abjects, or several distinct geometric abjects which correspond to a single

abject, both of which may be considered incorrect segmentations of the image data.

Thus, isosurface algorithms are generally used in canjunction with other manual and
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Figure 3.6: Triangulated surface generated by the marching cubes algorithm.

automatic segmentation algorithms ta produce a surface representation of a previously

segrnented image. In addition, the la.ck of topological constraints in these algorithms

means that holes in the data due tu partial volume and other effects result in surfaces

\Vith similar potentially incorrect topological characteristics.

3.4 Morphological Operators

One rnethod to partition the volume inta separate abjects is to use morphological

operators. wlorphological operators cansist of simple transfornlations on the vol­

ume which affect the local connectivity of voxels. A good introduction is presented

in (Ser82]. An image is first thresholded or classified in sorne way to create a binary

image, where each voxel indicates whether or nat an abject mayexist at that loca­

tion. A fiU operation labels each voxel within a homologous regian in the image. An

erode operation on a binary image changes all object voxels which have a non-object

voxel in its neighbourhood (within a certain small number of voxels, defined by a

specifie kernel) to non-abject status. This results in shrinking abject regians in the

image. A dilate operation performs the opposite operation and results in expanding
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object regions. A close operation consists of a dilate operation, followed by an erode

operation! and effectively smoothes the boundaries of abjects, filling in small holes.

An open operation consists of an erode operation, followed by a dilate operation,

and results in disconnecting regions which started out as very tenuously connected.

Results of these operations on two dimensional images are presented in Fig. 3.7. Al­

though the most obvious effects occur in loosely connected regions, it is important to

note that aIl boundaries in the image muy potentiully be perturbed. Application of

these types of operations on a threshalded volume can be llsed effectively in segmen­

tation ta break up an image into meaningful subregions. However, the choice of the

sequence of operations and the relevant neighbollrhood size will vary depending on

the application and the particular characteristics of the dataset and the object being

segmented. '\Iorphological operators are thus best applied when the input data is

sufficiently close ta being disconnected iota the desired segnlentation. Unfortunately~

this is not usually the case in the realnl of j\[RI, and rnorphological operators have

had only lirnited success for automated neuroanatomical segmentation, often because

the sequence of nlorphological operations has to he empirically determined for each

particular dataset. The linlitations of morphological operators for automatic NIRl

segmentation are expressed by HahIle and Hanson: '".-\pplication of rnorphology op­

erators depends strongly on intuition (ut least in the case of cornplicated objects),

which suggests that they would be used rnost effectively in an interactive made17

(HH92).

wforphalogical aperators can be used ta fi11 in holes due to partial volume effects

and noise. The method of Dale and Serena (DS93) uses a tissue classifier to define

the volume of white matter voxels in an NIRI volume. Then a sequence of three

dimensional fill operations is performed to remove hales from the white matter. This

guarantees that the surface of the resulting white nlatter volume is isomorphic ta a

sphere. However, the addition of non-white matter voxels to the list of white matter

voxels calls into question the accuracy of the resulting surface.
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Figure 3. ï: Results of five different morphological operators on an image.

Data-Driven Methods Versus

Model-Driven Methods

•

\Vhile the nlethods clescribecl have been used successfully in a selni-automatic con­

text, none of them are powerful enough to provide automatic segmentation of the

cortical surface from ~IR images. The essential weakness of most of these algorithms

is that they are almost purely data-driven; the only information available to the

process is the data itself. Higher levels of information are available only indirectly,

usually as input from an experienced human observer. As a result, researchers are

investigating methods of incorporating a priori knowledge (application-specifie infor­

mation), into the process of image segmentation, in hopes to develop general-purpose

fully automatic algorithms. ~Iany of these latter techniques share the concept of a

model which is matched to the image, providing a constraint on the segmentation

process in a model-driven fashion .
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3.5.1 Three Dimensional Image Registration as

Model-Based Segmentation

Image registration ulethods that involve local transformations, in addition to global

affine ones, prcvide more of a one-ta-one correspondence between positions in im­

ages being registered. which makes them applicable to the domain of model-based

segmentation. Using higher arder transformations. image registration methods can

achieve image segmentation and matching (CPDE92, Bcc89I. The essential idea is ta

register an arbitrary )..tIR inm.ge ta a standard iVIR image, the model, which has been

labeled in sorne fashion. The registration provides a mapping from each position and

associated classification label in the model to one in a target image, thereby attach­

ing a label ta each position in the target inlage, and effectively segmenting it. This

provides a very flexible method of segmentation, in that any individual image may

he used as the model iOlage. Furthermore, for each ulodel, several sets of segmented

labels may be used, sa one registration of an image to the ruodel may provide a suite

of several cornplernentary segmentations of the image. Critical ta the effectiveness of

these methods is the accuracy of the matching between similar structures. In general,

these methods work weIl for large abjects such as the four major lobes of the cerebral

cortex and sorne of the regularly shaped anatomical structures such as the thalamus

and putanlen. but fail ta robustly match many of the other structures of the brain,

particularly cortical features, due to their inherent variability in size, shape, and

topolagy across subjects. In addition, these methods generally restrict the allowable

transformations to continuous deformations of three dimensional space, which limits

the ability to represent discontinuities or topological changes between t\VO anatomical

images.

3.5.2 Deformahle Models

A very promising method of model-based image analysis involves the use of de­

formable models. A curve, surface, or volume that approximates the target abject is
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deformed to fit an image volume. One of the earliest and most referenced defonnahle

model techniques applied to image segmentation is the Snakes method of Kass et

al [KvVT88]. A snake is a spline curve which changes its configuration te minimize

its energy, composed of two opposing terms: an attraction ta image features such as

edges, and a set of internaI forces which constrain shape and position. An initial con­

figuration is subjected to the forces and deformed until it reaches equilibrium where

its pnergy is minimized. :\ simple formulation of the energy equation ta he minimized

is

Emake = [ ü ( .<) 1Il, ( ••W+ d(s) 1Ilss (S W+ r (s) 1(t' (s) );

where the spline curve is defined by

u(s) = (~·(s).lJ(.'))), 0 ~.E ~ 1.

\Vith first and second derivatives. u.'i(s) and vss(s). respectively, and the image data

is represented by the function [(.E, y). The functions, n(sL 3(8), and "'((sL represent

weights that control the relative cffects of each of the three terms. A snake subjected

to this eqllation attempts ta [nove itself to areas of minimum or maximum image

intensity, depending on the sign of ,(.')), subject ta the constraints imposed by the

first two terms. The first ternl. involving the gradient of the spline curve, vs(s), makes

the snake act like an infinitely thin melnbrane preferring Ilot to stretch or compress

in length. The second tenu. involving the second derivative, U.'1:J' makes it act like

a thin plate, preferring not ta bend from the model configuration. The weighting

functions, a(s) and ,8(8), control the relative strengths of these two constraints. The

uLtimate effect of these twa term::; is to control the amount of stretching/compression

and bending of the curve away from a model curve shape. The essential idea is

that in areas where the data is ambiguous or ill-defined, the model shape will he

imposed upon the snake. In other areas where the image edges are less ambiguous,

the snake will he driven by the data. The choice of the weighting functions must he

chosen interactively or empiricaUy by the user, a drawback shared with most of the

defonnabLe methods. Figure 3.8 portrays a simple image and resulting deformation
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• of a snake. The stretching and bending energy cost of the snake has prevented it from

attaching to the small noise-like dot in the upper right of the image. The sensitivity

of the snake to noise and small features is dependent on the choice of weights for the

regularization terms of stretching and bending.

Deformed snake

•

•

Figure 3.8: Active contour algorithm with snake initialized to be a cirde (grey).

Kass et al describe several ITlethods of rcpresenting the energy term, induding

alternate formulations of the irnage term. [(u(s))~ involving first and second arder

edge detection terms, as well as additional constraints snch as geometrical proximity

forces. A multi-scale approach is suggested. ta lessen the sensitivity of the minimiza­

tion process ta local ruinima. starting with a blurred inlage and slowly decreasing the

blur while the energy of the snake is being minimized. The use of a blurred image

is important to increase the range of attraction of the spline to image edges, by in­

creasing the effective width of edges. The actual implementation involves using finite

differences to appraximate derivatives on a piecewise spline, and the minimization is

achieved using implicit and explicit Euler steps in an iterative technique~ with order

O(n) computations per step~ where n is the number of parameters in the spline. Later

work by the authors and others have extended these concepts to three dimensions by

deforming surfaces to fit two and three dimensional images. The computational com­

plexity of the original Snakes method can be considerable in three dimensions at

high resolutions, as a large matri..x inverse must be computed at each step. This

can be quite expensive, especially when the image forces are quite strong, in which

case Kass et al indicate that "the explicit Euler steps of the extemal forces will re-
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quire much srnaller step sizes~' [KvVT88]. The rnany related methods inspired by the

ground-breaking Snakes paper use a \Vide variety of cast functions and minimization

techniques, in attempts to optimize the use of active contour models to particular

tasks [TvVK88, TvVK87. CC93~ SJ\;IG+93b, CHTH93. GA93, HENI92].

The success of the Snakes methad as a general purpose model-based image seg­

mentation tool has resulted in its application to a wide variety of domains. The

complexity of segmenting neuroanatolnical structures from high resolution medical

images has motivated creation of many algorithms which can be conceived of as vari­

ations on the Snakes method. :\ survey of sorne of these most relevant to medical

image analysis are presented here. with strengths and weaknesses outlined. :\ more

comprehensive survey Inay be found in [~IT96J.

3.5.3 Cohen, Cohen, and Ayache

The uuthors Cohen. Cohen. and Ayache have several papers describing variations

of the Snakes rnethod for segnlentation of medical images [CAC91, CCA91, CCA92,

CC90, CC93]. The early work of Cohen and Cohen explores the use of a finite element

implementation of the Snakes algorithrn for curves on sUces of PiIR. Later work adapts

the Snakes techniques to three dimensional image segmentation [CCA92). Again a

firrite element approach is substituted for the finite difference approach of the original

Snakes method, resulting in an inlproved coverage of the domain of the surface without

increasing the number of node points. Their method involves user input of a fairly

low resolution initial guess, and produces low resolution surface representations. Use

of an automatically generated initial guess would presumably work equally weIl, and

eliminate the need for user intervention. However, its use in an automatic context

and applicability to recognizing the higWy convoluted and detailed surfaces of the

human cortex has not been explored.
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3.5.4 Dale and Sereno

Dale and Sereno [DS93] use a simpler, geometric approach to segmenting the human

cerebral cortex. NIRI data is initial1y classified into gray and white matter, using a

tissue classification algorithm. Using sorne simple morphological operations, a white

matter volume is created which has no topologîcal holes, and whose boundary consists

of a two dimensional manifold (isornorphic to a sphere). The boundary of this volume

represents the interface between the gray and white matter, and is therefore a good

initial guess for locating the gray-CSF boundary, which is the objective of the method.

The polyhedral surface of the white tnatter is then expanded by moving vertices

towards the gray-CSF bOllndary~ while also constraining each vertex to be attracted

to the centroid of its neighbours. The result is a polyhedral mesh approximating the

cerebral cortical surface. vVhile this provides a very high resolution description of

the cortical surface with efficient use of computer resources. it has the problem of

potentially creating non-simple (self-intersecting surfaces), and does not address the

partial volume problem. However. the idea of using the gray-white boundary to guide

the search for the cortical surface boundary is an important one that will be revisited

later in this dissertation.

3.5.5 Davatzikos and Bryan

Davatzikos and Bryan [D895] present an active contour method which models the

cortical gray matter as a fini te thickness sheet. The sheet has a two dimensional

parameterization, making it suitable for subsequent morphometric analysis. Rather

than parameterizing the complete folded cortical surface, the method parameterizes

the outer boundary of the cortex~ only entering the upper portion of each sulcus.

Location of the depths of the sulcus is performed as a second step, where a curve is

initialized at the top of each sulcus and pushed clown into the depths by a method

similar to the Snakes algorithm. vVhile this method is novel in its attempts to locate

the depths of the sulci, the total surface of the cortex is not contained in a single
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mode!. Coordinating the two models used, that is! the outer surface model and the

set of deep curves, into a single model which faithfully represents the true folded

cortex is a nontrivial task.

3.5.6 Sandor and Leahy

Sandor and Leahy (SL97] propose a lllethod to automatically locate the cerebral

cortical surface fronl yIR inlages, and to impose a labeling on the resulting sulci. The

authors rely on an edge detection lllethod ta define boundaries, followed by a series

of morphologîcal operations to creatc bath a smooth voxel representation of the outer

limits of the cortex, and a set of voxels corresponding to holes in the volume inside

this hull. The assumption is that the hales represent either sulci, noise! or interior

brain structures. By choosing the holes that are connected ta the outside of the

brain. the set of sulci are distinguished from the other two types of hales. A smooth

atlas of the cerebral cortex, labeled with points on the extremities of sulci, is warped

by a three dimensional Snake nlethod to fit the smooth brain. The labels are then

transferred to the smooth brain a.nd to the set of voxels previously labeled as sulci.

This method has been deUlonstrated to label the principal sulci almost completely

automatically. but has a. few disadvantages in the context of the problem addressed in

this thesis. The surface representation does not go very deep into the sulcus, because

the authors have chosen ta rnodel only the exterior portion of the cortex, stating that

"without user interaction deformable models can not be guaranteed to converge to

complex and convoluted image features". There are several morphological operators

involved in smoothing the volume~ which raises the question of how much error is

introduced into local boundary positions. Finally! only the parts of sulci that are

connected to the exterior are actually labeled as sulci, thus relying on the success of

the morphological operator in opening up the entire depths of each sulcus, without

modifying the data sa much in other areas as ta make the results incorrect.
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3.5.7 Staib

The work of Staib et al [SD92b. SL, SD92a] uses deformahle Fourier surface models

composed of sinusoidal basis functions. Different topologies of surface can be mod­

eled with a variable nurnber of parameters, depending upon the resolution desired.

Similar to the previous methods. a cost function is devised that is integrated over

the two dimensional parameter space of the surface. The data is preprocessed with

Gaussian smoothing to reduce the effects of noise! and filtered with a 3 x 3 x 3 Zucker­

Hummel operator ta create a snlooth boundary. Gradient ascent is used to optimize

the solution, starting with a rough initial guess. \Vhile this method produces models

which facilitate shape analysis by encapsulating gross shape into a few parameters,

application ta the very complex prohlern of capturing the total cortical surface and

deep sulci has not been demonstrated. Correcting deep sulci for partial volume effects

and preventing non-simple surfaces is not addressed.

3.5.8 Level Sets

NIaliaidi. Sethian, and Venluri [~vISV951 present a novel version of the active contours

deformahle method. The principal contribution is the re-parameterization of the

deforming curve or surface as a level set of a higher dinlensionality function. \Vhereas

the original snakes formulation consisted of the points on a parametrically defined

curve, (x('U),y(u)). the level set method represents the curve by the set of zero points

of a two dinlensional functioll. F(x. y) = O. An initial function F is defined, and

evolved over time by solving a partial differential equation. The advantage of this

formulation is its ability to handle unknown image topologies. The evolving surface

automatically splits into multiple components or combines several components into

one, depending on the topology of the abjects in the image. This provides an efficient

solution ta the problem of self-intersection avoidance, since level set curves cannat

cross, although they can touch. This ability of the algorithm to change the rnodels

topology depending on the image data can be an attractive feature in sorne image
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segmentation tasks. However. in cases where a specifie topology of the object is

desired, such as with the cortical surface, this method suffers from the lack of a

mechanism ta force the algorithm ta maintain a particular topology.

3.5.9 Modal Analysis Methods

A considerable anlount of work by Pentland has broad application to many vision

problems [PHS93, PH91. PS91. PvV89. Pen90, Pen89, Pen88. vVP92J. These meth­

ods generally use a sinlple abject such as a superquadric surface ta provide con­

cise three dimensional representations derived l'rom typically two dirnensional image

components. Superquadrics are essentially ellipsoids with a few extra paranleters

to provide pinched and tapered shapes. Local shape differences are provided by the

augmenting of the superquadric nlodels with local offset deformations. Although gen­

erally applicable ta a wide range of vision problems. the Inethod is suited best for

identifying snlooth part nlodels froIn two dirnensional inlages or three dimensional

range data. and the segmentation of Lonlplex shapes in three dirnensional medieal

images has not been demonstrated. However. related work by Pentland and col­

leagues [P\V89. SP93] in paranleterizing shape and measuring shape differences using

modal analysis has been applied in a Inedical imaging context. The work of Nastar

and Ayache [NA93a. ~A93bL llses IIlodal analysis ta represent and track two and

three dimensional abjects that deform over time. J\Iodal analysis uses traditional me­

chanical engineering techniques to break down shapes into sequences of successively

finer modes of vibration. The non-rigid lower order modes can be used ta perform

matching of similar structures with a very succinct parameter space. Nlodal analysis

can be a powerful tool for subsequent analysis of surfaces segmented from i\JIR images,

as weIl as a technique for matching. However, its applicability to segmenting highly

convoluted cortical structures requires more investigation.
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The current methods of deforming surfaces to fit three dimensional images just de­

scribed fail to adequately address the problem of creating topologically consistent 1

simple cortical surfaces \Vith partial-volume corrected deep sulci in three respects,

• possihility of spif intprspction.

• sensitivity to partial volume effects, and

• inability to accurately represent the total cortical surface.

Firstly, these rnethods rely on the nlodel shape constraints (stretching and bend­

ing) for a "regularization" effect. That is, by keeping the surface more resistant

ta bending and stretching, it is less likely to wrap over on itself and become self­

intersecting. There are two problems with this, one being the fact that this is only

an encouragement not to self-intersect. not a guarantee. The second prablem is that,

as more regularization lS inlposed. the surface is less likely to deform to fit the partic­

lliar dataset. :\ second problem with the existing active nlethods is that the partial

volume effect is not fully addressed. :\ single surface is used to try to connect ta­

gether detected edge features essentially using a simple connectivity constraint, based

on a continuous surface whose stretching and bending is constrained. However, in

order to account for places in the image where gyral boundaries are blurred by under­

sampling, it would seem that more sophisticated models of the possible configurations

of human cerebral cortex are required, in order ta infer folded gyral configurations in

these areas. A lesser, but not insignificant, problem is the computational tractabil­

ity of applying existing methods ta a surface as complicated as the human cortical

surface. Of the methods surveyed, only that of Dale and Sereno makes an attempt

to find the entire cortical surface in a high-resolution representation. However, this

method provides no enforcement of self-intersection avoidance or explicit strategy ta

circumvent partial volume effects.

45



• 3.7 N umerical Minimization Methods

•

•

~Iany of the algorithms covered so far rely in one t'orm or another on minimization of

a multi-dimensional function. ~Hnimization is simply the process of finding a point in

the parameter space for which the function value is less than or equal ta the function

value for aIl other points in the parameter space. The ability ta efficiently find a

minimum is critical to ulany of the methods, and therefore, a survey ofsorne numerical

techniques for mininlÎzation of functions is presented. :\. reasonable starting point for

practical implementation of standard numerical algorithms is the book, Numerical

Recipes [PFTV88]. The practical differences between the various algorithms involve

whether or not derivatives of the function must be calculated, the amount of storage

involved, and the sensitivity of the algorithm ta local minima.

3.7.1 Gradient Descent

The most basic rnethod of function nlinin1Ïzation consists of simply walking downhill

l'rom the enrrent position. This is usually termed gradient descent because it

involves evaluating the tirst derivative of the objective function, and stepping in the

negative direction until the directional rninimuul (mininlum along a Hne) is found.

Performing this in an iterative fashion will eventually terminate at a point in the

dornain where the gradient is zero. However. this point may not necessarily be the

global minimum, but might be a local minimum, or sorne other feature, such as a

saddle point. It is difficult for UllY algorithm ta avoid local minima, but the feature of

being trapped in saddle points and other singularities is a significant disadvantage of

the gradient descent method. In addition, depending on the curvature of the function

being minimized, the gradient descent method can have a slower convergence rate

than other methods.
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3.7.2 Conjugate Gradients

The method of conjugate gradients addresses the main problem of more naive ap­

proaches that simply follow gradients, that of slow convergence and getting trapped

in singularities such as saddle points. Conjugate gradient methods rely on a simple

formula ta compute seareh directions based on linear combinations of gradients, but

in such a way that the successive search directions are roughly mutually orthogonal.

This means that rninimizing in a particular conjugate direction does not ;~undo" the

minimization achieved in the previously searched directions. In the case of a quadratic

function~ this method is guaranteed to find the single global minimum in a nurnber

of iterations equal to the size of the parameter space. For more complex functions, it

has been found to behave very weIl, although it can still be trapped in local minima.

One particularly attractive feature of many conjugate gradient methods is that the

storage involved is linear in the diInensionality of the function. A practical conjugate

gradient algorithm may he found in [PFT"V88J .

3.7.3 Golden Section Search

The Golden section algorithm [PFTV'88J is a straightfonvard method of finding a

minimum of a one-dimensional function. and therefore. a method of finding the min­

imum of a multi-dimensional functioll along a line. The Golden section search is

an iterative algorithnl involving shrinking the interval of search until a minimum is

found to \vithin sorne specified tolerance. ft is essentially the optimization analog of

the binary search rnethod of root finding. The Golden section search is initialized

with three points along the Hne. where the the function value at the inner point is

less than that of the outer two. The outer two points define the interval of search

for the minimum. An iteration consists of computing the function value at a fourth

point within the interval, and replacing one of the two outer points with the fourth

point, thus producing a new set of three points with a smaller interva1. A method

of computing the fourth point based on the outer two and the Golden ratio (the

47



•

•

•

value 0.618034), results in a method where the size of each successive interval is the

Golden ratio times the previous. The advantages of this method are that is does not

require computation of function derivatives and has a predictable convergence rate,

exponentially decreasing the size of the intervaI. The golden section search is often

used as the Hne minimization cornponent of gradient descent and conjugate gradient

methods.

3.7.4 Simplex

The simplex [PFTV88] lllethod of function minimization (not to be confused with

the simplex rnethod of linear progranlming) is a geometric approach to finding the

minimum of a function. The nlost attractive feature of the algorithm is that no

function derivatives are required to be cOlnputed. .-\ sirnplex is the convex hull of

d + 1 points in cl dinlensions. where d is the number of dimensions of the domain

of the functioll to be minimized. An iteration of the simplex involves trying one of

several different geometric contortions on the simplex ta recluce the cost of its ma"cimal

vertex. These contortions involve contracting and expanding edges~ and the resulting

behaviour of the sinlplex has inspired the algorithm to be referred to as amoeba.

However~ the requirenlent of quadratic storage space (d + 1 points of d values each)

is prohibitive when clealing \Vith functions where d is very large.

3.7.5 Simulated Annealing

AIl the numerical minimization techniques described thus far have the trait of search­

ing locally from an initial position. and typically find a local minimum which is very

dependent on the initial position. The method of simulated annealing introduces

randomness iuto the search, in an attempt to step over local minima and increase the

chance of finding the global minimum. Kirkpatrick et al [KGV83] present simulated

annealing as an approximation to the process of cooling a physical materia1 from a

liquid ta a solid. They apply the method ta several optimization tasks, including the
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Traveling Salesman problem. An initial parameter configuration is randomly modified

in an iterative fashion. At first the perturbations of the parameters are quite random,

but as the iterations progress, the likelihood of a particular change in configuration is

increasingly forced to be proportional to the decrease in function value attributable

to the change. The function being minimized is analogous to the energy state of a

physical substance~ and the increasing preference of the parameters to move towards

lower functiou values iti aualuguus to the increase in probability of the substance to

move ta a lower energy state as the temperature is lowered. This effectively results

in a random search at first. smoothly changing iuto an approximate local gradient­

following search near the end. Although the method of simulated annealing has been

used successfully on a Humber of problems~ it has the drawback that the temperature

reduction "schedule~' Inust be ernpirically determined for each problem, so that the

temperature is reduced slowly enough to ensure a good chance of finding the global

minimum, but fast enough to provide a tractable solution. As the authors say, the

choice of thîs schedule requîres ooinsight into the problem being solved and may not

be obviaus" .

3.7.6 Genetic Algorithms

Another more recently proposed class of optirnization methods are termed genetic

algorithms, whose stochastic nature is c10sely related to simulated annealing, and

like\vise has an analogy to a real world process. The principal distinction from sim­

ulated annealing methods is the ITlethod of generating randomized positions in pa­

rameter space from previous ones. Genetic algorithms emulate biological evolution,

which attempts ta optimize the performance of a species using genetic combinations

of existing members ta create new ones. A. "'population" of configurations of the pa­

rameters is created as a set of initial guesses ta the optimum value of the function.

The parameters of the objective functioll are treated as a sequence of genes, and

pairs of members of a population breed by combining their genes ioto a new sequence
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using simple rules of gene splicing. Borrowing from nature's rule of survival of the

fittest, members of the population which have a lower function value are more likely

to thrive and enter into reproductive liaisons with other members. The result is that

the population evolves into a set of members which optimize the objective function,

and careful selection of the reproductive process increases the likelihood of finding

the global minimurn. Similar ta simulated annealing, this method has the drawback

of requiring a reproduction strategy for cUluLinlllg estilllates iutu new estïrnates, the

formulation of which rnay nat be obvious.

3.8 Self-intersection and Proximity

One of the main limitations of conternporary surface segmentation research is that

rreation of non-simple configurations is nnt precluded: there is no guarantee that

the resulting abject does Ilot intersect itself. Detection and prevention of non-simple

surfaces is directly related ta intersection and proximity testing, an area of extensive

interest in computational geornetry. Applications include collision detection and path

planning in robot rnovernent. VLSI circuit design. and animation. An introduction to

many of the data structures and overall strategies for solving these types of problems

can be found in [PS85).

One ubiquitous class of aIgorithms for solving geometric queries is termed plane­

sweep. Originally farnlulated for problems in the plane, it involves a vertical Hne

that sweeps across the plane from left to right, encountering various "event" points,

which cause a sweep line status ta he updated. Hinrichs et al [HNS88) use this method

to provide a simple and optimal worst case (8(n logn)) algorithm ta find the closest

pair in a set of n points in the plane. As the vertical Hne sweeps across the plane, an

ordered list of a subset of the points that are to the left of the plane is maintained.

\iVhen the verticalline encounters a new point in the set, this point is tested with a

subset of the points in the ordered list, to see if a new closest pair has been found.

The plane-sweep technique can also he generalized ta higher dimensions, and has been
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applied to problems such as detecting intersection of Hne segments or rectangles.

The method of bucketing or fixed grid techniques generally have a poor worst

case time complexity, but perform very weIl in terms of expected time, under non­

pathological conditions. Bucketing rnethods impose a uniformly spaced grid over the

space of the problem~ and partition geometric data into distinct buckets. Solving

problems such as the nearest neighbour to a point in space is a simple matter of

finding the relevant buckct and tcsting against the small number of data points in the

bucket [Knu73]. Bucketing methods are simple to implement and generalize easily to

higher dimensions.

In addition to these methods. there is ct plethora of hierarchical data structures

applicable ta geometric proxinlity queries. Sorne of the more cornmon ones include

the multidimensional binary tree (kd-tree) [PS85], the quadree, and variants thereof

[SvV, Sam], as well as binary splitting plane (BSP) trees [FKN80], the segment

tree~ and the range tree [Benï9J.

A brief survey of published methods of solving proximity problerns demonstrates

the wealth of nlethods available for assisting in solving the problem of creating ge­

ometrically simple sUlfaces in the context of segmentation. Dickerson et al [DE96]

use Delaunay triangulations to solve various inter-point distances in two or more

dimensions. Gupta et al [G.JS96] use plane sweep techniques to detect collisions

and determine minimum inter-abject separation within sets of points, line segments,

and a.'Ces-paralIel hyper-rectangles which are moving along linear trajectories. Canny

[Can86a] presents algebraic formulae for detecting collision between moving polyhe­

dra, whereas efficient algorithms for determining minimum distance between circles

and Hne segments in 3-space are presented by Neff [NeroO] and Lumelsky [Lum85], re­

spectively. Gilbert et al [GJK88, GF90} provide a rnathematical programming method

to find the distance between arbitrary convex sets in any dimensional space. These

methods and others may be advantageously applied to the task of surface segmenta­

tion of geometrically simple surfaces.
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Chapter 4

Edge Detection Aigorithms

The formulation of a high level geometric representation of an object in an image relies

on the identification of low level salient features. These features may be contours,

image gradients, or the result of sonle irnage processing algorithm which defines edges

or boundaries of abjects in an image. The issue of locating boundaries in images,

or edge detection is clealt with in this chapter. Edge detection is the process of

locating positions in an image which are likely to be boundaries between different

abjects in the scene being irnap;ed. This is an important step in that it generally

represents a reduction of the data fronl a large nunlber of samples to a much snlaller

number of candidate eclges. This process is generally hampered by noise. which

may create false edges or change the apparent spatial position of an edge. In the

realm of neuroanatomical segmentation, edge detection is often used for the data­

driven portion of the segmentation process, in arder to provide the higher level model­

based method with usable estimates of localized image edges. There is a wealth of

published research presenting methods to locate edges in multidimensional images

of aIl types. Here an averview of the methods applicable to three dimensional ~IR

images is presented, followed by a detailed description of one particular method of

tissue classification which is chosen for the preprocessing edge detection step in the

solution ta the ~IR segmentation task.
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The work of wIarr and Hildreth [~IH80] is an often-referenced method of edge detec­

tion that is generally applicable to many image processing situations. The basis of

their method is that an image should he subjected to a smoothing filter to reduce

the effects of noise on the edge detection process. Since edges are effectively areas

of change in the image intensity. noise detection algorithms often involve computing

image derivatives. which are sensitive to intensity noise. The optimal fUter is defined

by two confticting constraints. the requirement of smoothing the image to reduce

noise and the desire to rnininlize the resu!ting error in the spatial position of reported

edges. ~Ia.rr et al observe that under certain reëlSonable assunlptions about the noise

in the image! the use of a Ga.ussian blurring function,
l .,

f(x) =-- e-~ .
.j2;a

provides an optirnal tradeoff between these two factors . .-\n edge occurs where there

is a peak in the first directional derivative of the smoothed image. This corresponds

to positions where the second directional derivative changes from positive to negative,

which is a subset of what are ternled zero-crossings, where the second directional

derivative changes sign. The second directional derivative of a Gaussian function is

convolved with the inlage, and zero values in the resulting image are used to de­

fine edges. This procedure is applied to an image several times, using different filter

widths~ to capture sets of edges that occur at various spatial scales. The results are

combined by choosing edges that occur at two or more neighbouring scales. This

method, conlmonly referred to as M-H edge detection, has beconle a widely refer­

enced technique in medical imagingT and in image processing literature in general.

4.2 Canny Edge Detection

The method of edge detection by Canny (Can86b] is similar to that of NIarr-Hildreth

and has aIso been applied to a variety of image processing tasks. The two NI-H
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criteria for an optimal frIter are augmented with a third constraint. Similar to the

wI-H criteria, there must be a low probability of faIse positives and faise negatives

with respect to the reporting of edges, and the positions of edges reported by the

algorithm must be as close as possible to the true edge. As a third constraint, there

must be only one response frool each edge. The mathematical expression of these

three criteria results in a nunlerical optimization problem that attempts to maximum

the signal-ta-noise ratio~ whilc minimizing the estimated error betweell reported and

actual edge positions. and nünimizing the likelihood of multiple responses from single

edges. For a given expected type of edge, a filter can be found which optimizes

the three criteria. An image is convolved with this lilter, which effectively produces a

smoothed gradient image. where local rnaxinla are assumed to be edges. For detection

of sharp edges. or step edges. Canny found that the optimal filter is very similar to

the first derivative of a Gaussian. Therefore~ for practical edge detection in images of

two or nlore dinlellsions. Canny. like ~Iarr and Hildreth. also convolves the image with

é1 Gaussian function, then conlputes directional second derivative zeros in order ta

mark the edges. The magnitude of the gradient is used to estimate the edge strength.

This method is therefore quite similar ta that of NIarr and Hildreth, but Canny has

extended his ulethod ta handle variable signal-to-noise ra.tios throughout the image,

by locally adapting the filter. The sensitivity and generality of the method has made

Canny edge detection a. popular choice for multidiulensional image processing.

4.3 Monga, Deriche, and Rocchisani

The Canny edge detection method was originally applied mostly to two dimensionai

images, and the complexity of the algorithm limited its applicability ta high resolu­

tian three dimensional images. wIonga, Deriche, and Rocchisani [MDR91} present a

variation of Canny edge detection optimized for the case of three dimensional images,

in an attempt to produce a more computationally tractable method for processing

of medical images. Their method changes the boundary conditions of Canny's filters
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and results in a different filter type. Application in three dimensions starts by cre­

ating the gradient image with three passes of one dimensional filters. Local gradient

extrema are identified by approximating gradients at a voxel using the neighbouring

voxel values in a finite difference fashion. Finally, a method of choosing the subset

of the extrema which correspond to edges is applied, based on locating areas of high

gradient magnitude, sllbject ta connectivity constraints with other areas of high gra­

dient ma.gnitude. The authun) have <1ernuu.strated implementation of their algorithm

on three dimensional ;\IR images of the human heart. which suggests the amenability

of this method ta edge detection of ~IR inlages of the human brain.

4.4 Anisotropie Diffusion Filters

The method of anisotropie diffusion filtering [PlVI9D, GKKJ92] differs from other

edge detectioll rnethods in that it varies the srnoothing of the image depending on

proxinlity to edges. The es~eIltial idea is to snl00th within homogeneous regions,

rather than across then1. This is achieved by diffusion algorithms which blur local

regions by a variable amount. related to the magnitude of the gradient. Areas of high

gradient magnitude are assumed to be near edges, and the amount of smoothing per­

formed is minimal, whereas near weaker edges or interior to objects, higher amounts

of smoothing are performed. Application of anisotropie diffusion filters involves iter­

atively diffusing the entire înlage, uoti! convergence is achieved, where the amount

of change between iterations is below sorne tolerance. The effect of the adaptive

smoothing is similar ta that of the previously described methods, in that it attempts

to preserve the spatial location of edges, while applying sorne amount of smoothing

ta them.

55



• 4.5 Tissue Classification as Edge Detection

•

•

The methods of edge detection just discussed have wide applicability and have been

used successfully in medical imaging contexts. However, magnetic resonance imaging

has the relatively unique characteristic of being able to generate multiple images of a

single object with different tissue contrasts. In chapter 3, a brief overview of methods

which take advantage of this featllre \Vas presented. Tissue classification algorithms

use Tl-weighted, T2-weighted, and PD-weighted ~IR inlages to classify voxels into a

small set of neuroanatomically based types, induding gray matter, white matter, and

CSF. In effect. this is a type of implicit edge detection that is optimally tuned far mag­

netic resonance inlaging. Edge features can be considered ta exist on the boundaries

bet\veen any two adjacent voxels which have differing tissue classes. An advantage

of this over Inore general edge detection methods is that edges are not ooly identi­

fied, but also dassified into different types, such as gray-CSF and gray-white edges.

Based on the success of existin~ ~JR tissue classification algorithms. the remainder

of this dissertation will assume that the input images have been preprocessed with

an established tissue classification algorithm. This convenient assumption is actually

not Cl. very linliting restriction. as it can be shown that any of the general methods of

edge detection may be qui te easily incorporated inta the overall method of NIR image

segmentation presented here.

The actual methad of tissue classification is an implementation of the work of

Zijdenbos et al [ZDNI93, ZER+96]. This method approaches tissue classification as a

feature matching process using a training set, \Vith no user intervention required. Be­

fore classification, i\tIR volumes are registered into a standard stereotaxie coordinate

system using an affine image registration algorithm described in chapter 3 [CNPE94].

A volume containing the probability of each voxel being each of the various tissue

classes has been generated from a sample of severa! hundred NIR volumes which have

been classified by a semi-autamatic methad. The training set is defined as a set of

voxel positions in this composite image (probabilistic volume) with high probabil-
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ities of particular tissue types. These voxel positions are then used to derive a sample

of image values from the Tl-! T2-, and PD-weighted NIR images of a particular target

individual. The image values from the three target volumes and the corresponding

tissue classes from the probabilistic volume are used ta initialize an artificial neural

network. Each voxel in the target image is then independently classified by the neural

network into one of the defined tissue types, resulting in a discrete three dimensional

volume, whcre cach vaxel has one of a small number of integer labels. Figure ~.1

depicts the results of this tissue cla.ssification algorithm on a typical wIR volume set.

/
r

r

•,
~

1

Figure 4.1: One slice through a tissue-classified volume. Areas of changes in class

type are considered to he edges (white matter is white, gray matter is gray, CSF is

black, background is off-white) .
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This tissue classification method relies on a preprocessing step that reduces the

effects of RF inhomogeneities in the three dimensional volume. The method of SIed

et al (SZE97] assumes that the effect of RF is an intensity scaling that is spatially

slowly varying. Consequently! the RF can be estimated from localized histograms

and modeled as a smooth spline function. The resulting estimate is subtracted from

the NIR image to produce an image with markedly reduced inhomogeneity. SIed et

al perform cxpcrirncnts to test the effcct of RF correction on tissue classification,

image registration! and surface extraction. In aIl three cases, the sensitivity of the

algorithms to RF inhomogeneity is greatly reduced when the data is first preprocessed

with the RF inhomogeneity reduction algorithm.
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Solution: N on-intersecting Object

Deformation Environment

(NODE)

• 5.1 Overview

•

A novel method for creating geonletrically sinlple representations of cortical surfaces

from wIR images is presented here. The foundation of the technique is a surface defar­

mation approach similar to the Snakes algorithm of Kass et al. The method proposed

is novel in that it allows simultaneous identification of multiple inter-related surfaces

combined with constraints which guarantee geometrically simple surfaces. Homology

between model points and deformed points can be constrained through the use of

curvature-based shape matching. The use of multiple surfaces will be shown to pro­

vide sorne correction for partial volume effects by incarporating more neuroanatomical

a priori information into the model constraints. Specifically, inter-surface proximity

constraints are used to specify relationships arnong multiple surfaces of the segmen­

tation process and ta prevent two surfaces from intersecting each other. lntra-surface

proximity constraints prevent individual surfaces from becoming non-simple. An ob-
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jective function with intuitive user-chosen weighting parameters is devised ta measure

how clasely a particular surface or set of surfaces simultaneausly approximates the

image data and adheres ta a set of model constraints. The parameter space imposed

by the surfaces involved is searched to find a minimum of the objective functian,

and the corresponding surlace is output. Because this technique provides a frame­

work for deformation of abjects \Vith intersection constraints~ it is referred ta as the

Non-intersecting Object Deformation Environment (NODE) algorithm.

5.2 Representation

The choice of ~urface representation for the solution presented in this dissertation is a

very straightforward decisian. AH surfaces are represented here as arbitrary polyhe­

cira, for rnany reasons. ~Iost cOlnputationally tractable surface proximity algorithms

are polyhedron-based. L"sing Inure conlplex representations, even such prevalent ones

as piecewise spline patches. waulel greatly increase the conlplexity of computing prox­

imities between parts of surfaces. Similarly there is a wealth of algorithms for dealing

with polyhedra, although this is of lesser importance. as many other surface repre­

sentations also have a.n extensive history of practieal use. iVlore software supports

polygon and polyhedron formats than uny other type. 50 this choiee of format is

practical from the point of view of data interchange and flexibility of analysis. In

addition, the choiee of polyhedral surface representatian is not very limiting because

algorithms exist to convert ta many other representations, including piecewise spline

patches, superquadrics, and spherical harmonies. Finally, most implementations of

deformable non-polyhedral surface representations approximate the integral of the

image component of the cast function as a set of discrete points, because closed form

solutions of surface integrals of functions of NIR images are generally not feasible.

Evaluating at discrete points on the surface is essentially the same as using a poly­

hedral representation and evaluating at vertices, 50 in this respect, nothing is gained

in using a more sophisticated representation.
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• 5.3 Objective Function

the :3D position of vertex v in a deforming polyhedral mesh,

the 3D position of vertex v in a static nlodel polyhedral

ulesh.

•

•

The objective function is simply a scalar goodness-ot:'fit measure for a given configura­

tion of surfaces. Its domain is therefore the set of parameters of the surfaces involved,

and its range is the set of real numbers. The objective function is a weighted sum

of various model and data components, each of which is described in a subsequent

section. The objective functioIl, 0(5), may be defined generally as a weighted SUffi

of lVt terms, each of which may be thought of a.s a data or model term:

;Vt

0(5) = 2: WkTk,

k=L

where S is a set of :.v.~ polyhedral surfaces:

S = {Si : Si is Cl polyhedral surface, 1 ~ i ::; lVs } ,

Wk is a weighting factor, and Tk represents one of the terms defined in the following

sections. Before describing each of the possible objective terms. sorne definitions are

presented:

III = (x u, lJv~ ':11) •

nu ! the number of vertices in a polyhedral mesh.

np , the number of polygons in a polyhedral rnesh. and

'm,u , the number of neighbours of vertex v,

nv,j , the /th neighbour of vertex 'U, and

liu , the surface normal at vertex 'U, defined as the unit normal

to the polygon consisting of the counterc1ock,vise ordered

neighbours of the vertex.

5.3.1 Image Value

The image value term represents the proximity of the surface to edges in a particular

image dataset. This term decreases as the surface approaches the edges in the image,
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which are defined as the contours of a user-defined threshold:

nI!

Timage == L (1/(xv ) - t)2,
u=l

where t is the threshold denoting the image value that best defines the image edges,

and V(x, y, z) is the cantinuous function representing the three dimensional image

volume. As suggested in the original Snakes paper, and subsequent research [Bcc89,

\/RL93], image blurring may be performed in order to reduce the effects of local

minima by smaothing the cast function. Rather than fitting the surface to a particular

contour, it is also possible ta have the surface attracted ta the lowest values in its

vicinity, by setting the threshold. t. to a value less than or equal ta the lowest value

in the volume. Similarly, one could set the value of t ta a very large value and use a

gTadient magnitude volunle ta define V. in arder ta fit the surface ta the edge defined

as the max:inlum local gradient magnitude.

5.3.2 Image Boundary Distance

In arder ta increase the power of locating irnage boundaries that are relatively far

from the current surface position. an alternate image term is introduced. This term

is based on the distance of a vertex from the nearest image boundary in the direction

of the surface normaC and is defined as

nu

TbuundarY..dist = L dBCiv , l'Iv, t)2
v=L

where dB(xv , /ifv , t) is the distance to the nearest image contour of the threshold, t,

from the vertex, v, along the Hne defined by the surface normal, Nv. The search is

performed along the surface normal in both directions from each vertex. In prac­

tice, this term alsa requîres a value for the maximum search distance, after which

unsuccessful searches are truncated and the value of dB is set to the ma.ximum dis­

tance. The choice of the maximum search distance controis the range of attraction

that image edges will have on surface vertices. The intention of this term is to reduce
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Figure 5.1: a) Result using irnage value term. b) Result using simple boundary

distance. c) Intermediate step where objective function value has increasecl. cl) Result

using modified boundary distance term.

the frequency of local minima in the cast function. by increasing the distance across

which a surface may be attracted ta an edge.

Comparison ofFigs. 5.la with 5.lb illustrates how the TboundarY_dist term represents

an improvement over the IimlLge term. However, the method as described is still

insufficient for accurate[y locating the depths of sulci. The reason is that Fig. 5.lb

corresponds to a local minimunl in the objective term~ TbcJUndary-tlist. For the surface

ta pass from this configuration to the final configuration in Fig. 5.Id, it would have

to pass through a configuration sinlilar to Fig. 5.lc, which has a higher objective

function cost because more vertices are far away from the image boundaries. The

correct result presented in Fig. 5.1d is achieved through modifying the boundary

search mechanism.

The modification of the search mechanism involves performing the search for im­

age boundaries at fixed intervals during the deformation, rather than every time

the objective function is evaluated during minimization. Each iteration consists of

computing the nearest image boundary point for each vertex, then taking a few min­

imization steps of the resulting objective function while holding the image boundary

points constant. While this will cause the surface to follow convoluted sulci aIl the

way into the depths, it introduces a new problem. The successive states of the objec­

tive function are no longer monotonically decreasing, as it is possible for the function
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ta temporarily increase, before decreasing again. This means that termination cri­

teria for the minimization can Dot depend solely on changes in function value, but

must also include sorne other criterion, such as distance moved per iteration, or max­

imum distance of a vertex from the boundary. The disadvantage of an objective

function that does not monotonically decrease is far outweighed by the advantage of

this algorithm to accurately locate deep and convoluted sulci.

5.3.3 Stretch

One of the ternIS that inlposes nlodei constraints is the stretch term, which increases as

lengths between vertices are stretched or compressed relative to a user-defined model

surface representing the ideal lengths. The term represents a normalized deviation

from this ideal:

2
11,, TrL

v
( (x -x )1+(11 -l'J .. )2+(: -;: .)2-L ")_ ~~ rJ nu.) .'lU. uv.) v n l • .) V,)

Tstretch - L- L L
u=lj=l uJ

where Lv,j, the ideal length of an edge. is defined as the corresponding length in the

model polyhedron:

L ( A .~ )') ( A A )2 ( A A )2
u.j = X It - .Luv .) .. + Yv - Yn".) + Zv - znv.j .

The intention of this term is to nlake distances between corresponding pairs of vertices

on the model and deformed surface roughly equivalent. This term is analogous ta the

term involving the magnitude of the first derivative of the spline in the original Snakes

formulation, which makes the snake act like a membrane which constrains stretching

and compression.

5.3.4 Curvature

The other term that provides a Inodel-based shape constraint is the curvature term,

which contraIs the amount of bending of the surface away from the model shape. On

64



•

•

•

curves, curvature is defined as the reciprocal of the radius of an inscribed circle at

a point on the curve. The cllrvature at a point on a surface is usually represented

by two numbers, the mean curvature and the Gaussian curvature, which are based

on the minimunl and rna..ximum curvatures defined by cross sections on osculating

planes through the surface at that point. For the purposes of controlling surface

shape, a more easily compllted scalar measure of deviation from flatness is sufIicient

for representing the curvature at a. vertex ùf a polyhedral ~urface. The rne~ure of

curvature is based on the ratio of height to base length of the pyramid-type structure

defined by a vertex and its neighbours. The signed perpendicular height of the vertex

above the plane of best fit through its neighbours is divided by the average distance

between the neighbours and their centroid to produce a. curvature estimate. Vertices

in fiat areas have a value nea.r zero! convex vertices have positive values, and concave

vertices have negative values. Similar to the stretch term, the curvature term measures

deviation of surface vertices fronl the curvature, êv , at the corresponding vertices of

a model surface:

- '}

r~u ((X~ - ,;. )• IV ) -11 oL'V ··V ~

TeuT'UtltUT'! = L B - Cv
u=L v

where Xv is the centroid of the neighbours of vertex v! Bv is the average distance

from the centroid to each of the neighbours, • is the vectar dot product operator,

and ê v is the curvature computed similarly from the model surface. This term is

analogous to the term involving the second derivative of the spline in the original

Snakes formulation which causes the spline ta fllnction like a thin plate, constraining

the bending of the spline.

The curvature term is relatively easy to compute, but assumes that the surface

consists of a mesh isomorphic to a sphere. In order ta handle other cases, such as

deforming sheets or more complicated topologies, one could devise other measures

of curvature. One simple possibility is to measure the angle between every pair of

triangles that share an edge. Similar ta the curvature term, the bending term would
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assign a higher penalty ta angles which deviate further froID the model configuration.

For the application to cortical surface segmentation, closed surface models are used,

and alternate foruls of the bending term are not explored further.

5.3.5 Vertex-ta-Point Constraints

Another method of guiding the deformation is ta constrain a particular vertex to

remain close ta a specified distance [rom a fixed point:

T,mclwT = (j(x u - x ..d • (x u - :r..d - d..d'1

where X ..\ is a user specified anchor point. and d..\ is the preferred distance that vertex

v should be frorn the anchor point. A value of zero for dA results in a vertex being

attracted ta the point. In practice. this term may be used to guide a specified portion

of a deforming surface towards a particular neuroanatomicallandmark of interest, or

to allow a user to interact \Vith a surface.

5.3.6 Vertex-to-Vertex Constraints

A similar constraint ta anchoring a vertex to a fixed point is ta constrain two vertices

to be a preferred distance apart:

TVf!rtex-uertex = (j(x u - xw ) • (xu - xw ) - dB)
2

where dB is the preferred distance between vertex 'V and vertex w. Again, this can he

used either ta keep two vertices close together or far apart. In the case where vertex

'V and w correspond to neighbouring vertices in a polyhedron, this term becomes

equivalent ta the stretching term, Tstretch. A more interesting situation occurs where

the pair of vertices belong to two distinct surfaces, in which case the Tvertex-vertex

term may be used ta maintain a specified distance between two surfaces.
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5.3.7 Self-Intersection Canstraints

In order to nlaintain a well-behaved surface during the deformation process, it is

critical to define seU:'intersection constraints on each surface. Prevention of self­

intersection is achieved by associating a high cost with non-simple topologies and

configurations where non-adjacent polygons are in close proximity. This maintains a

smooth objective function that increases in cost as parts of the surface maye doser ta

intersectioIl. The funuulatiuu uf thi~ terru therefore measures the distance between

every pair of polygons in a polyhedral mesh,

where dp(Ti , Tj ) is the snw.llest Euclidean distance between the i'th polygon, Pi, and

the j'th polygon. Pj , and di,) is êl distance threshold. In practice, pairs of adjacent

polygons are not included in the above equation. as their dp(P;., Pj ) and di,j must bath

be zero. Figure 5.2 illustrates the value of the self-intersection term as Cl. function of

the distance between two polygons. The function is zero whenever the two polygons

are greater than di.) = 5 miUimetres apart. but increases to a prohibitive cost as the

distance closes to zero. If this term has a sufficiently high weight associated ,vith it

and aIl values of di,j for non-adjacent polygons are positive, then geometric simplicity

of the surface is nlaintained throughout the deformation. This term could aiso have

been based on the more easily computed distance between vertices or between a vertex

and a polygon. but the distance between polygons was chosen because the former two

distance constraints cannat, in general, prevent self-intersecting topologies.

5.3 ..8 Surface-ta-Surface Intersection Constraints

Similarly to the self-intersection constraints~ the distance between any pair of surfaces

may be constrained:

np n, { (dp(~, Qj) _ ch,j)2, if dp(Pi, Qj) < dt,j
Tself-intersect = L L .

i=l j=l 0, otherwtse~
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Self-Intersection Objective Tarrn

\

J~~-!~,-===
o 2 3 4 5 11 7 8 9 10

Distance BelWeen Two Polygons (in mm)

Figure 5.2: The contribution ta the self-intersection objective term as a function of

distance between two polygons in a polyhedron.

where np and nq are the number of polygons in the two surfaces, dp(Pi , Qj) is the

distance between a polygon on one surface and a polygon on the second surface, and

di,j is the threshold distance below which two polygons contribute positive values

to the objective function being rninirnized. \Vith an appropriate weight and values

of di,j, this term may be used ta prevent inter-surface intersection or to maintain a

specified minimum inter-surface distance.

5.4 Elaboration on Objective Terms

For reasons of clarity, the definitions of objective terms have been presented in a

somewhat simplified form. However, in practice, it is possible to involve more than

one data volume in the objective function, as weIl as multiple distinct surfaces, and

even many stretch and curvature models for each surface. each with its own set of

weights and other parameters. In addition, the formulation of sorne of these objective

terms is developed further in the following sections.
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5.4.1 Directional Edges

Examination of human neuroanatomy and three dimension wIR images reveals that

there are often several candidate boundaries near any given point in the image. In

arder to increase the likelihood of the minimization procedure choosing the correct

edge, the boundary search term is refined ta include a directional constraint based on

the orientation of local image gradients. In addition to choosing a threshold for each

desired edge, a direction parameter. g~ either positive or negative, can also be specified

to constrain the search to areas where the dot product of the image gradient and the

outward surface normal is less than or greater than 90 degrees, respectively. This

requires a modification of the distance calculation in the boundary distance term,

nI)

TbmmcLanl-dist = L dBUi v , ~Vv, g. t)2.
I!::(

where dB now finds the distance to the nearest image contour along the search di­

rection, JVv~ ignoring those points where the gradient is facing the wrong way with

respect to lVv , as defined by the sign of g. This refined boundary search constraint

is useful in differentiating cerebral cortex edges in Tl-weighted images, which have

inward facing image gradients. from the inside skin edges. which are relatively close

to the cortex in places. but have outward facing image gradients.

5.4.2 Differentiai Weights

Until now, the weights have been specified on a per-term basis, but it is also pos­

sible ta vary the weight of a term depending on various criteria. For instance, the

image boundary distance term may have a different weight depending on whether the

boundary was found inside or outside the surface, ta allow a preference for the surface

to be just outside the image edges. In the case of cortical surface extraction, it may

also be appropriate to allow a surface ta bend in the concave direction more easily

than in the convex direction, in arder to better interpolate deep sulci. One other way

to apply differential weights is to effectively impose a maximum deviation from ideal,
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by attaching a higher weight once the deviation increases past sorne point r similar to

the formulation of the self-intersection term described previously. This allows impo­

sition of such constraints as maximum stretch or curvature deviation from a model

surface. The general form of snch a term is:

!
(maclual - -rnitietll - -max-.dif f)'2, if maclual - mideal > max.Jiif f

Tmax = lmaclll.al - -rnideal - .,n'inJi.ij j)'2, if 'mactual - mideal < min_di!f

O. otherwise.

where mactual and nLitieal are the appropriate actual and ideal measures from one of

the previously described objective ternlS. Terms of this type contribute nothing to

the objective function llnless the difference between the actual and ideal is outside

the range [-min_di! f, rnax_di!Il.

5.4.3 Choice of Weights

A typicaI objective function may consist of several different weights and parameters,

each of which rrlllst be chosen in sonle way. Due to the generaIity of the objective

function terms and the dependence on the specifie segmentation task and data, there

is no theoretically grounded method to choose good weights. However, the weighting

parameters provide direct control on the tradeoffs between the various objective terms

and therefore represent an intuitive mechanism for constructing surface deformation

tasks. Experimentation with the various parameters is performed in a subsequent

chapter. In arder ta make the weights independent of surface sampling and volume

data scaling, each weight may be normalized by the number of vertices or polygons,

or volume data range, as appropriate.

5.4.4 Continuity of Objective Fonction

The objective terms presented have generally taken the form of a squared residualr not

only for reasons of computational efficiency, but also to provide a smooth objective
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function. The large number of parameters involved in each surface, combined with

the complexity of the image data, introduce the possibility of many local minima

in the objective function. Using squared residuals as the basic components of the

objective function helps keep the objective function Cl continuous, that is, both

function value and gradient are continuous. However, it must be noted that the

boundary search term is potentially discontinuous, because an infinitesimal change

in the surface nonnal may cause the distance to a boulldary tu have a discontinuous

change in value.

5.4.5 Oversampling

The objective ternlS described thus far have typicaUy been evaluated on a per-vertex

basis. which effectively samples the objective function at the resolution of the sur­

faces involved. However, rnost of the terms, particularly the image terms, admit the

possibility of being sanlpled other than at the vertices, in general, on an arbitrary

sampling over the surface. This can prove useful in preventing the deforming sur­

face from missing data SOUlU relative to the spacing of vertices, while not increasing

the number of surface parameters over which nlinimization is performed. In partic­

ular, oversampling the inli:lge value term and the boundary search term over aIl the

triangles in the surface can be an advantage in fitting a surface to an image.

5.5 Minimization

A typical NIR volunle consists of over 10 million voxels, and the surface required to

represent an anatomical abject spanning most of the volume requires a large number of

parameters. For the cortical surfaces represented by polyhedral surfaces, the number

of vertices is on the arder of 100 000, resulting in 300 000 or so parameters over

which minimization occurs. It is computationally intractable to perform an exhaustive

search of this parameter space, 50 minimization is achieved by starting with a good
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initial guess, performing a multi-scale search, and using a minimization method that

searches locally from the current position in parameter space. The initial guess is a

surface that is expected to be close to the correct answer, and the method of choosing

the initial guess depends highly on the application context. The multi-scale concept

is widely prevalent in the literature of objective function minimization and in this

case, involves starting with a coarse under-sampled set of surfaces, and iteratively

minimizing the objecti\'c function, while incrcasing the sampHng of the surfaces.

5.5.1 Conjugate Gradient Minimization

The conjugate gradient method of function minimization is a robust and efficient

algorithm based on using the first derivative of the objective function to direct the

search. It is chosen in this case because it is usually not conlpromised by singularities

such as saddle points. In addition. its storage requirement is Hnear in the number of

dimensions of the objective function. which is important when dealing with hundreds

of thousands of dimensions. There are rnultiple variations of the conjugate gradi­

ent method, but the one chosen here is the straightfonvard algorithm described in

[PFTV881·

5.5.2 Termination Criteria

As mentioned in section 5.3.2, the termination criterion can not be simply to stop

when the objective function stops decreasing by a threshold amount. Since the ob­

jective function can increase and decrease somewhat while the surface is far from the

image boundaries, it is necessary to devise other termination criteria. One obvious

method that is ofteIl used in dynamic systems where no explicit objective function

exists is to stop when the movement of the parameters decreases below sorne level.

In this case, one could use the average or maximum distance moved by the vertices

to decide when to stop the minimization. Another termination criterion is to stop

when aU vertices (or oversampled points) on the deforming surface are within a spec-
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ified distance from an image boundary. This criterion is best applied when there is

Httle chance of holes in the image where it is impossible for a single closed surface ta

confonn exactly ta the image. For instance, deforming a sphere ta fit an image of a

torus could never bring aIl points on the surface close to the image boundaries, due

to a mismatch of topologies between the data and the rnodel. Therefore, it is better

to use a combination of two termination criteria where the algorithm stops when the

motion of the surface vcrticcs decreases below SOUle level, or aIl points are within

sorne specified distance of image boundaries.

5.5.3 Multi-scale Approach

In arder to speed up convergence of deformation problems, a rnulti-scale approach

is often employed [YIH80. Can86b. CEHP95. Bcc89. VRL93). The intended effect is

that the initial stages generate a rough overall fit ta highly blurred data for relatively

little computational effort. \Vith the effects of noise and small image features being

ignored by the low resolution surfaces. .-\S the iterative decrease in scale progresses,

the surfaces interpolate smaIler features in the data. until the desired amount of detail

is achieved, modulated by the arnount of computation time allowed. In implenlenting

the multi-scale approaeh for the surface deformation described herein, it was found

more expedient nat to blur the target volume. ff blurring is performed, narrow sulci

may only show up at relatively high resolutions, at which point the computational

cost of deforming the surface into a deep sulcus is much higher than if the sulcus can

be located when the surface has fewer parameters. The use of oversampling of the

boundary function on the deforming surface provides a similar averaging advantage

to that arising from using blurred valumes~ which effectively compensates for the lack

of blurring.
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Critical ta the success of a deformahle surface is the model used ta constrain the

segmentation process. Here, the model may he used as bath the initial guess and as

the shape model during the deformation. The model should capture the shape and

position of the typical abject being segmented. In the case of the human cerebral

cortical surface, a model was created as follows. .-\ set of 53 normal individual NrR

volumes were registered inta a stereotaxie coordinate systenl, by an automatically

computed, linear transform. This factors out rotations and translations, as well as

scaling in each of the three coordinate dimensions. .-\ voxel-by-voxel average was

performed in Talairach space ta create an average NIR volume, depicted in Fig. 5.3a.

This volume \Vas then thresholded using an ernpirically chosen threshold to create

a binary volume. shown in Fig. 5.3b. The binary volume \Vas then segmented by

hand on a voxel-by-voxel basis. to renlove the cerebellum, brain stem! skin! and

other non-cortical features. \Vith the result depicted in Fig. 5.3e. The surface of

this segmented. binary volunle \Vas then assumed ta he representative of the size and

shape of the typical cortical surface in Talairach space. The final step was to create

an explicit surface model froni the segnlented volume. This was accomplished by

creating an ellipsoid that had the rough size and shape of the cortex (Fig. 5.4a),

then applying the surface fitting Inethod described previously to deform the ellipsoid

ta fit the boundaries in the segmented volume. The resulting model is shown in

Fig. 5.4b, and is used as the initial model for much of the validation discussed

in subsequent chapters. This model encapsulates the gross shape, orientation, and

position of aIl normal brains mapped iota stereotaxie space. Accordingly, it represents

a good starting model for deforming to capture any individual brain, as well as a frame

of reference for investigating local anatomical variations.
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Figure 5.3: a) Cross section of average of 53 normal individual J\tIR volumes. b) Cross

section of thresholded average. e) Cross section of segmented thresholded average.

•

a) b)

Figure 5.4: a) Ellipsoid before deformation ta the segmented average NIR volume. b)

Ellipsoid after deformation.
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Chapter 6

Basic Tests of Deformation

As a prelude to exploring the application of the deformation method to realistic data,

a series of short examples are used ta test and demonstrate sorne of the features of the

NODE algorithnl. The datasets used are fabricated to be srnall and simple, in arder ta

foeus on one aspeet of the defornuttioll proeess. The effeet of each of the eomponents

of the cost function is deaIt \Vith separately~ followed by demonstrations of how several

components are used together ta achieve specifie results. ft is important to note that

aIl tests are performed \Vith closed polyhedral surfaces and three dimensional volumes,

but that the results are often presented visually in the form of two dimensional cross­

sections in arder ta minimize confusion caused by three dimensional image complexity.

6.1 Boundary Interpolation using Image Value

The essential task is to fit a defonnable surface to the boundary of an abject appar­

ent in an image. One of the cost function components that can be used to locate

boundaries is the image value terro, limage, where the difference between a constant

and the image value at each vertex is to he minimized. As with other deformahle

methods, the use of this term in practice requires that the image he smoothed sorne­

how. Discontinuities and sharp edges in the image decrease the likelihood that a
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vertex will be able to follow the gradient to reach the desired threshold. Figure 6.1

illustrates a cross section of the initial configuration of a surface and volume, and the

final position after deformation using the image value component. The final position

has not changed the surface ut aIl, because the vertices are positioned so far from the

boundary that they are on an image value plateau, and local gradient information is

insufficient ta indicate the direction to the boundary. NIost methods of deformable

surface invoh-c blurring the image to avoid such image plateaus. Figure 0.2 depicts

the same situation as the previolls figure, except that the image has been blurred

with a three dimensional box fil ter, that is, each filtered voxel value is the average of

the original values within a rectilinear box centred ut the voxel. The result on the

surface deformation is that aIl vertices are successfully rnoved to the desired bound­

ary position. In effect, the blurring of the data increases the distance of attraction

of vertices to edges. This need for increasing the regian of attraction around edges

by blurring or other types of transfornw.tions is observed in much of the deformable

model research, notably the serninal Snakes paper [KvVT88] .

Figure 6.1: Cross sections of initial and final surfaces using image value term on

non-blurred data.

6.2 Boundary Interpolation using

One Dimensional Search

The failure of the image value term to locate edges relatively far from the surface

vertices without blurring is addressed by the other cost function term that deals with
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Figure 6.2: Cross sections of initial and final surfaces using image value term on

hlurred data.

boundary location, Tboundary-dist. The boundary search term involves searching inward

and outward along the surface normal to locate an inlage value equal to the desircd

threshold. In arder ta compare its behaviaur ta that of the image value term, it has

been applied ta the saUle two datasets as in the previous section. Figure 6.3 illustrates

that the boundary distance term correctly loeates boundaries that are a significant

distance from the initial position of the vertices. where the limage term failed ta do sa.

Figure 6.-1 shows that in the case of blurred data, the result is equivalent ta the image

value method~ as \Voulel be expected. This indicates that the use of the Tb01mdary-dist

term obvîates the need for image blurring ta increase the distance of attraction of

edges.

0·-'"

•

Figure 6.3: Cross sections of initial and final surfaces using boundary search term on

non-blurred data.
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Figure 6.4: Cross sections of initial and final surfaces using boundary search term on

blurred data.

6.3 Boundary Direction Constraints

The refinement of the boundary search term, Tboundary_düt to include gTadient direc­

tion information is userul to distinguish between neighbouring edges. Figure 6.5a

illustrates the cross section of an initial model and an image volume, which has

two concentric sets of edges. Figure 6.5b shows that if no directionaI constraint on

the boundary search is used. the ruodel is incorrectly deformed to fit parts of both

concentric boundaries. Figure 6.5c shows how including an inward-facing gradient

directional constraint allows the desired object boundary to he identified. Using an

outward-facing gradient constraint results in location of the other boundary, as shown

in Fig. 6.5d.

a) b) c) d)

•

Figure 6.5: Cross sections of boundary search: a) initial configuration. b) final config­

uration without directional boundaries (symbol > shows area of confusion). c) final

configuration searching for inward-facing gradient. d) final configuration searching

for outward-facing gradient.
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• 6.4 Stretching Constraints

One method of imposing regularization on the deforming abject is ta control the

amount of stretching and compression of the surface with the term, Tstretch' The

same initial configuration as Fig. 6.1 is userl. The surface was deformed to fit the

image with a cost function including both a boundary search term and a stretch

ternI. Figure 6.6 presents the results of several such fits. each with a different weight

assigned to the stretch terni. This demonstrates that the amount of regularization

inlposed by the stretch terrn can be selected from a smooth continuum to achieve the

desired effect. How to choose appropriate values will be dealt with in il subsequent

chapter.

• a) b) c) d)

•

Figure 6.6: Cross sections of deforrned surfaces with stretch weights decreasing from

a) through cl).

6.5 Curvature Constraints

The second method of imposing regularization on the deforming abject is ta control

the amount of bending of the surface. through the use of the curvature term. The

usual initial configuration is used (Fig. 6.1), and the deformation involves minimizing

the boundary search term and curvature term. The results of various values for the

curvature weights are shown in Fig. 6.7. The results are very similar to that of

the stretch term, again demonstrating a smooth continuum of tradeoff between the

amount of surface deformation and boundary interpolation. Although the stretch and
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• curvature term provide similar effects, there is a distinction and one may be more

appropriate than another in a given context, depending on whether an application is

more concerned with distances on a deforming surface, or the shape of the surface

using curvature measurements.

b)

•

•

Figure 6.7: Cross sections of deformed surfaces with curvature weights decreasing

from a) through cl).

6.6 Oversampling

The effect of oversampling the boundary search term is to make the surface more

likely to detect features srnaU rela.tive to the size of the polygons comprising the

deforming modeL Figure 6.8 illustrates a uniforul grid superimposed upon a single

triangle where the boundary search term is evaluated at each grid point in addition

ta the three vertices. Figures 6.9a and 6.9b show the results of two deformations of a

low resolution surface where the objective function is sampled only at the vertices in

the first case, and oversampled at 39 extra positions per triangle in the second case.

As wouid be expected, the oversanlpied surface more closely interpolates the image

data, whereas without oversampling, ouly the vertices of the deforming object are

deformed to be near the boundaries.
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Figure 6.8: Grid clepicting oversampling. Vertices are black1 oversample points are

gTay.

Figure 6.9: a) boundary sampling only at vertices. b) oversampling between vertices

results in a better fit.

6.7 Vertex-ta-Point Constraints

Any vertex in the deforming surface may be assigned an attractive or repulsive force

with respect to a given three dimensional position 1 using the Tanchor term. Fig.

6.10 illustrates the results of several surface deformations, where the same vertex is

attracted to a given point (illustrated by a small sphere) \Vith different weights in

each case. Again, a snlooth continuum of tradeoff between interpolation of the image

and proximity of the vertex to the fixed point is possible. Fig. 6.11 illustrates the

results of similar deformations, when the vertex-to-point term is used to repel the

vertex from the given point.
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Figure 6.10: Cross sections showing vertex-ta-point attraction with increasing weight

from a) ta dl.

a) b)

Figure 6.11: Cross sections showing vertex-ta-point repulsion \Vith increasing weight

from a) to d) .• 6.8 Self-Intersection Constraints

•

One example of where self-intersection constraints impose a pronollnced effect on the

outconle of surface deformation is in cases where the image data has a topological

hole. Fig. 6.12 shows a three dirnensional view and a cross-section view of an image

volume containing a torus. Fig. 6.13 shows a cross section part way through the

deformation process as a.n ellipsoid is being deformed to fit the image volume with no

self-intersection constraints. The deformation process causes the surface to intersect

itself as it attempts ta wrap the surface around the hole. Imposing self-intersection

constraints causes the deformation to stop when the two parts of the surface on either

sicle of the hole meet each other, as depicted in Fig. 6.14, where non-adjacent points

on the surface are prevented from coming within one millimetre of each other. While it

may he argued that neither solution is actually correct due to a mismatch of topology

hetween the model and the data, this provides a good test of using self-intersection
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constraints ta force the model topology onto the data.

Figure 6.12: a) Three climensional view of torus surface. b) Cross section of torus

image and surface.

• : -, ~ 1 ': C ;, •

.. :: :. .~., .-: ", ' .. , .. ~;' '..

Figure 6.13: a) Three dimensional view of surface deformed with no self-intersection

constraints. b) Cross section of image and surface from a).

•

Figure 6.14: a) Three dimensional view of surface defonned with self-intersection

constraints. b) Cross section of surface and volume.

Self-intersection constraints are also very important in data which has convoluted

geometry, in particular~ medical images of the human brain. Figure 6.15a illustrates

an initial configuration of surface and image volume which can lead ta a prablem
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• of self-intersection. Figure 6.l5b depicts the cross section of the surface part way

through the deformation of the surface without self-intersection constraints. The

surface doubles over on itself, and eventually tries to wrap around the image abject

severa! times, never actually achieving it, which is clearly an incorrect solution. 1n­

corporating self-intersection constraints into the process prevents this behaviour and

allows the deformation process to correctly locate the image object, (Fig. 6.l5c). It

is interesting to note that, even in this case where the topology of the model matches

that of the image, deformation to image boundaries can result in a non-simple surface

due to the position of the model relative to the irnage volume, unless self-intersection

constraints are applied. \Vith highly convoluted geometry, such as in LVIR brain vol­

umes, it appears very important to impose self-intersection avoidance on the process.

• o
a) . b)

•

Figure 6.15: a) Cross section of initial configuration that can lead to self-intersection

problems. b) Cross section of surface deformed without self-intersection constraints.

c) Cross section of surface deformed with self-intersection constraints.

6.9 Circumventing Partial Volume Effects

The primary objective of assembling the various objective terms presented in chapter

5 into a single surface deformation technique is to locate the total cortical surface from

NIR images, which are confounded by partial volume effects. A test is performed on

a very simple constructed dataset. Fig. 6.l6a shows a cross section of an image

of a single sulcus, where CSF is coloured light gray, gray matter is dark gray~ and

white matter is white. A worst-case scenario partial volume effect is demonstrated
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by having no CSF within the sulcus, and thus no apparent sulcus, from the point of

view of the boundary between the gray and CSF regions. Figures 6.16b and 6.16c

show the deformation of a sphere to fit the gray-CSF and gray-white boundaries,

respectively. The observation that the gray-white surface contains a weIl formed

sulcus, even though the gray-CSF does nat, motivates methods of improving the

gray-CSF surface using the extra information provided by the gray-white interface.

Two such techniques are presented here.

6.9.1 One Surface - Two Boundaries

To force the gray-CSf boundary deeper into the sulcus, an assumption is introduced

that the cortical surface boundary should be Cl. certain distance from the gray-white

boundary, based on neuroanatamical knowledge. The corresponding cost function in­

ciudes both a boundary search term for the gray-CSF boundary and a second bound­

ary search term for the gray-white boundary. where the latter term, incorporating an

offset distance of five millimetres. is weighted higher than the first. In terms of the

objective function components clescribed in a chapter 5, the overall function being

minimized is of the fornl:

tilt T'itretch +

W2 Tcurvature +
W:J Tboundary-dist(1.5, 0) + .

ill.l Tboundary-tiist(2.5, 5) +

lUs Tsell -intersect(O.25)

The TbOtLndary..clist(1.5,0) tenn measures the distance along the surface normal to an

image contour of 1.5, which corresponds ta the gray-CSF boundary in a classified

image. Similarly, the 1boundary-dist(2.5,5) term measures distance to a point 5 mil­

limetres away from the gray-white image boundary, defined by the value 2.5 in a

classified image. The self-întersect term is non-zero whenever two non-adjacent trian­

gles of the deforming surface come within 0.25 miliimetres of each other. The stretch
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• and curvature terms are used to keep the polyhedron relatively smooth.

Fig. 6.17 shows the result of deformation of this two-boundary model, where

a reasonable approximation ta the sulcus is attained. This ability to infer sulcal

boundaries that are nat evident in the data is of critical importance in the generation

of models of the entire cortical surface. The use of self-intersection constraints en­

sures that while the twa sides of the sulcus may be very close, they never touch and

the resulting surface represents a realistic approximation to the real-world, tightiy

folded cortical surface. lt would be difficult to achieve this complete cortical surface

model in a general way with conventianal methods of boundary detection, even using

morphological operators.

• a) b)

Figure 6.16: a) Cross section of inlél.ge representing sulcus obscured by partial volume.

b) Cross section of apparent gray-CSF boundary. c) Cross section of apparent gray­

white boundary.

•

Figure 6.17: a) Partial-volume corrected surface deformed to simultaneously fit two

boundaries. b) Cross section of surface and volume.
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6.9.2 Two Surfaces - Two Boundaries

The previous section describes the use of a single surface simllitaneously attracted

ta two concentric boundaries as a methad ta solve the partial volume problem with

respect ta deep sulci. A slight variation is presented here, which involves two surfaces

attracted to the saIne two inw.ge boundaries defined in the previous solution. The

outer surface is attracted to the gray-CSF boundary and the inner surface is attracted

to the gray-white boundary. The two surfaces are constrained ta be about five mil­

limetres apart as they deform. Similar to the previous example, the inner surface has

a higher weight attracting it ta its image boundaries.

The function being nlinimized now consists of terms operating on two surfaces,

SI and 52:

lUi Tstretch (5d + /V.!TCUTvature( Sd + W:jTboundary-dist(51 , 1.5,0)

+wsT.o;el/-mter"u:ct(SL, 0.25) + W6T.'ltretch(S'l) + WjTcurvature(S2)

+WSTbaunciarY_düt(S'l, 2.5. 0) + llJ9T~u~l/ -mtersect(S'}., 0.25)

+WlOTuertex-uertex(Sl! S'2! 3. 5. 7} + Wu T,suT/ace-sur/ace(5h 52, 2).

There is a Tstretchl T curuaturel TboWlilury...dist, and T.dretch for each of the two surfaces. In

addition, the Tvertex-vertex(Si! S'}., 3.5, 7) term constrains each pair of corresponding

vertices in the two surfaces ta prefer to be five millimetres from each other, with a

prohibitively high cost preventing the distance from decreasing to less than three or

greater than seven millimetres apart. Constraining the vertices of the two surfaces in

this way does nat, in general, guarantee that the two surfaces do nat come into closer

proximity. Therefore the final term, T,sur/ace-sur/ace(5t, 52, 2), is used as a backup

ta prevent any triangle on one surface fram coming within two millimetres of any

triangle on the other surface.

The result of this deformation is presented in Fig. 6.18, where the inner surface

represents the gray-white boundary and the outer surface represents the gray-CSF

boundary and is similar to the result presented in the previous single surface example.

The advantage of this method of partial volume correction over the one surface-two
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• houndary technique is that there are two explicit surfaces which may he used for

quantitative analysis, such as measuring the thickness of cortical gray matter.

a) Outer surface b) fnner surface

•

•

Figure 6.18: Two-surface solution to partial-volume problem.

The previous t'Wo exanlples illustrate how the deformation framework proposed

can he used to solve Cl. particular problem. Other solutions for this problem are also

possible. One could first find the gray-white boundary, then let it expand outwards

to the gray-CSF boundary, with constraints keeping it within a fi..xed distance of its

original position. One could also design a one-surface two-boundary model where the

surface stays within a couple of rnillirnetres of the gray-CSF boundary, while being

attracted towards the gray-white boundary. These suggestions and the two examples

presented illustrate that the deformation framework proposed provides the flexibility

to try different methods of achieving model-based segmentation.

Having examined the behaviour of the deformation process with respect to the var­

ious objective function tenns, the next chapter investigates sorne of the implementa­

tian details, and the fallowing two chapters cleal with quantitatively and qualitatively

evaluating the method on realistic data.
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Chapter 7

Implementation

The implementation of NODE as described in chapters 5 and 6 is fairly straightfor­

ward. However, experience has shown that there are some aspects of the implemen­

tation that should be exanlined in more detail, in order to achieve the best results.

.-\ description of the computational methods of evaluating and optimizing the objec­

tive function is presented. Relevant polyhedral topologies are examined. The time

complexity of the algorithm is analyzed empirically, and the areas of computation

representing the largest bottlenecks are identified.

7.1 System Implementation

The deformation method is impLemented in the C programming Language and has

been developed and tested on Silicon Graphies processors running UnLx, versions

IRL"X 5.3 and IRIX 6.4. AlI timing statistics presented in this document have been

generated on Silicon Graphies Origin 200 computers with RIOOOO processors running

at a dock speed of 180 megahertz. Each computer has four processors sharing 128

megabytes of memory.
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The essence of the deformation process is the minimization of an objective function.

A conjugate gradient method has been found to provide efficient minimization of the

function. The basic algorithnl consists of repeating iterations of minimizations along

lines in the parameter space of the surfaces until achieving the termination criteria

as defined in section 5.5.2. The overall structure of the algorithm is

• Initialize positions of deforming surfaces.

• vVhile termination criteria is not achieved.

• Conlpute derivative of objective function.

• Compute conjugate direction from derivative and

previous conjugate direction.

• Find minimum of objective function along conjugate direction.

• Update vertex positions of deforming surfaces to this mininlum.

A one dimensional Golden section search algorithm is performed to find the line

minimum luueh like a binary seareh finds the root of a function. The primary efficieney

arising from the conjllgate gradient rnethod is due ta the restriction to one dimensional

searehes: rather than more fully searching around the eurrent location in a very high

dimensional space. which could require a large number of function evaluations. The

Golden section search algorithm typically involves evaluating the objective function

at about 20 ta 60 points on a Hne in the function's parameter space. This repetition

of function evaluations on a line provides at least two opportunities for making the

computation more efficient. one related to the boundary search and the second related

to self-intersection avoidance, both of which are now described.

In implementing the objective function as described, the most computationally ex­

pensive operation is the search for a boundary position along the surface normal. As

mentioned in chapter 5, the boundary search term requires that the search for bound­

ary points from a given configuration only be performed at the beginning of each set
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of Une minimization iterations. This holding constant of the boundary points far the

!ine minimization provides one of the opportunities for implementation efficiencies. In

this case, the boundary search tcrm of the objective function can now be reformulated

as a triviaUy computed univariate quadratic function of distance along a Iille, rather

than a much more compIicated quadratic function of thousands of variables. Another

significant increase in computational speed is gained by anly perfarming the search

for the boundary points in the iruage at the beginning of every n-th iteration, where

n is a value of about five or nlore. thus reducing the camputational cast of boundary

searching to one fifth. The drawback is that by the end of the n Hne minimizatians, if

the vertices have moved considerabIy, the particular boundary points that the surface

were pushed toward ulay no longer be dose to the correct ones. However. in practice,

this does not appear ta be a problem, as one may modify the procedure to recompute

the boundary points whenever the vertices have moved greater than a fixed distance,

allowing a tradeoff between computation speed and accuracy of boundary points used

in the objective function .

7.3 Intersection Avoidance

Another way the restriction to one dimensional searches allows efficient implemen­

tation is in the computation of polygon proximities. As will be seen in the time­

complexity analysis, self-intersection and inter-surface intersection avoidance accounts

for a significant portion of the cornputationai cast. Since intra-surface proximity test­

ing is a special case of inter-surface proxinlÎty testing, the discussion will be restricted

to the intra-surface case for simplicity. However generalization to inter-surface prox­

imity testing is straightforward. In order to evaluate the self-intersection objective

terms at a given position in the parameter space, a list of aU pairs of polygons that

are within a certain distance d of each other must be generated. (Pairs that are

adjacent in a polyhedron will be ignored by the objective function calculation). The

current implementation has been restricted ta triangles for simplicity, sa the follaw-
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ing discussions of the inter-surface proximity query will consider aU polyhedra to be

triangulations. Knowing that this query will he repeated at several dozen points on

a Hne in parameter space provides the opportunity for more efficient algorithms for

answering this set of queries.

Here the problem is posed Inore formally! as a new open problem in computational

geometry. A set of nu vertices moving at constant velocities is defined in 3-space by

sextuples,

v = {~'i = (Xi! Yi, Zi, dXi, dyù dzd, 1 ~ i ~ nv } •

The position of vertex \'i is il function of a time parameter, t, such that

A set of nt triangles constituting a triangulation of these vertices is defined by triplets

of integers,

The position of triangle 1) at a. tinle, t! is thus defined as the positions of its three

vertices,

Given this configuration of triangles and vertices! a distance, d, and a value of

the time parameter, t, one can define a list of pairs of triangles that are within the

distance d at the specified time-point:

L(V·,T, d, t) = {(m, n) : D(Tm(t), Tn(t)) ~ d,rn i= n, 1 ~ 'm, n ~ ntJ ,

where the function D(Tm(t), Tn(t)) is the minimum three dimensional Euclidean dis­

tance between any point of triangle Tm (t) and any point of triangle Tn(t).

At this point, the problem of computing L(V, T, d, t) is quite similar to the types

of problems encountered in motion planning, dynamic simulation, and computational

geometry. However, there are several further refinements based on the use of this

93



•

•

•

query in a surface deformation context which create a unique proximity query prob­

lem. NIost importantly, due to the nature of the Golden Section search of parameter

space along a line, the query is actually repeated at several values of t, and the

problem is actually ta generate a set of lists ut ni unordered time points. The open

problem can now be defined as computing the following set of lists of triangle pairs,

However, the value of each sULce~sive tirne point, tb is not known in advance, as it

can only be cornputed after the lists frorn L[ up ta L k - l have been generated. Other

important features of this query within the context of surface deformation include the

fact that the sets of triangles constitute non-convex polyhedra which are isomorphic

to triangulations of a sphere. and the sizes of aIl the triangles are roughly the same.

The value of d used is typically qllite small relative to the domain of the triangles,

usually under one rnillimetre. whereas the polyhedra being deformed are around 120

millimetres in dianleter. In addition, the amount of rnavement of the vertices, as

defined by the pararneters. tmm and tmax~ is also quite small, usually such that no

vertex mayes more than a couple of nlÎllimetres over this range.

Having defined this problem of generating a set of lists of triangles pairs, it should

be noted that sorne of the cornputational geometry methods presented in chapter

3 cauld be adapted to solving this probleIn. A simple method would be to use

an existing proximity testing algorithm ta solve the query of each time point, tk,

independently. However, for ease of implernentation, the problern is transformed

frorn a query at a large llumber of time points ta a smaller number of queries, by

capitalizing on two observations. Firstly, it can be observed that the query is allowed

to return a superset of the correct answer without adversely affecting the deformation

algorithm. In addition, it is observed that the query is repeated many times on a

fairly small interval of t, and the motion of the triangles is also small relative to the

space in which they reside. The transformation to a smaller number of queries is

performed by dividing the range, [tmin , tmaxl into uniform intervals of width, w. A
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single list of potential triangle pairs is created for each interval which contains one

or more values of t, rather than for each value of t. The list computed for a given

interval centred at te, [te - ~, te + Il must therefore be the union of aIl possible lists

computed on this interval:

LU IV { W W}Lu(tc - 2' te + 2 ~ LU) = U L(V, T, d, t): te - 2 ~ t $ te + 2 .

The essential siIuplifying step cau nuw be applied. The union of aH possible Iists over

a continuum is itself a subset of a list computed at the centre of the interval but with

an increased distance range:

for an appropriate value of a(w). The value of a(w) nlay be conlputed as

w
a(w) =,'; 2'

where .'; is the rnaximurn distance two vertices can rnove relative ta each other, per

unit of t. The value of s is bounded by the diameter 1 of the set of three dimensional

tine directions of the vertices.

Thus a tradeoff has been perfonned, a smal1er number of time points to query, in

return for computing lists for larger values of d and returning supersets of the correct

ans\ver. The potential inefficiency of this method arises if the interval width, w, is

tao large, in which case a much larger number of triangles will be compared by the

surface defonnation objective function than if the list is computed for each evaluation

point on the line. In practice, the intervals can be chosen smaIl enough ta avoid this

problem, yet still large enough to be efficient, by satisfying several queries per interval.

Nowa method to cornpute the list, L(v~ T, d, tk), is presented. Several of the

published techniques discussed in chapter 3 are applicable ta the solution of this

l the largest magnitude of difference between vectors in the set

95



•

•

•

query, including plane sweep algorithms, bucketing methods, and hierarchical data

structures such as bin-trees. The divide-and-conquer strategy is chosen here, due to

its simplicity of implementation. The method is derived from the divide-and-conquer

method of finding the closest pair of points in a set by Preparata and Shamos [PS85],

combined with the box intersection testing of Gupta et al [GJS96]. The problem is

first transformed into solving the query for three dimensional rectangular boxes, by

fitting a bounding box around each triangle. The set of boxes is recursively split

into small subsets, where proximity testing is only performed within subsets. The

recursive partition of a set of boxes is performed on one of the three coordinate a..xes,

(x, y, or z) at a time. Assuming that splitting is being performed along the x axis, the

midpoint, 'Tn, of the x domain of the boxes is found. and two subsets are generated.

The first subset is the list of aU boxes in the set which intersect the half space defined

by x ~ m + ~. The second subset is the list of aIl boxes in the set which intersect the

half space defined by x 2: rn - ~. The [wo half spaces are not disjoint and the resulting

two subsets of boxes are also not necessarily disjoint. In order ta avoid multiple testing

of particular pairs, the boxes in the second subset that are also in the first subset are

flagged. Each subset is recursively subdivided into smaller subsets until they contain

a small number of boxes. or correspond ta a sUlaU enough region of space (no smaller

than twice the distance d). At this point. the distance between aIl pairs of boxes

in the subset is tested. except those pairs corresponding to boxes that are flagged

in such a way as to prevent duplicate tests of the same pairs. If a pair of boxes is

found to be within the distance d. then the corresponding triangles are tested. In this

way, the trivial computation of box proximities reduces the number of more costly

triangle proximity computations. This algorithm is used for both inter-surface and

intra-surface proximity testing. The only difference is that for intra-surface proximity

testing, pairs of adjacent triangles are discarded, and whereas for the inter-surface

case, two disjoint sets of triangles are compared and adjacency is not relevant.

Although this method has been found to be relatively efficient in practice, it has a
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worst case complexity of O(n:l)! where n is the number of triangles involved, and it is

therefare an interesting problem to try ta reduce the worst case complexity. However,

it can be easily seen that this algorithm is already optimal, since a large enough value

of d can be chosen ta require returning aIl pairs of triangles in the set, which is of

quadratic size. Therefore. it is more interesting to characterize the complexity as a

functian of the size of the output. Because the distance parameter, d, is usually a

snlall fraction of the dOlllétiU uf the polyhedra iJeillg defurmed, the size of the output,

though quadratic in the nllmber of triangles! is usually quite smal!. This motivates

one ta speculate on whether there !s an algorithm which always salves the triangle

pairs query in time linear in the output size.

7.4 Surface Tessellation

The surface deformation algorithnl as currently inlplemented can be applied to any

triangular mesh isonlorphic ta a sphere. Generally. the starting point for a deforma­

tion is a sphere or ellipsoid, or an abject that is a deformation of one of these. The

tessellation nlethod llsed is to start with an icosahedron. the platonic solid of 20 trian­

gular faces, and repetitively subdivide each triangle into four similar triangles, until

the desired number of triangles are reached. The new vertices created by triangular

subdivision are projected out ta the sphere or ellipsoid. For many of the experiments

where brain models are represented, there are five successive sizes used: 320, 1280,

5120, 20480, and 81920 triangles. The number of vertices in any triangulation of a

sphere is nt/2 + 2, where nt is the number of triangles in the polyhedron. Therefore

the numbers of parameters, three per vertex, defining these five surfaces are: 486,

1926, 7686, 30726, and 122886. These palyhedra were chosen over other tessellations

because they are simple ta compute, yet have a fairly uniform distribution of ver­

tices over the surlace. lVlany of the surfaces discussed here will have one of these five

configurations.

It is aIsa possible ta use adaptively subdivided triangulations, în order ta allow
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regions of the model to stretch as much as needed to match the image, but maintain a

more uniform sampling interval by adding vertices where needed. The simple rnethod

used here is to subdivide all edges in a polyhedron which are greater than a certain

length, and re-triangulate. By decreasing the length threshold and subdividing the

surfaces during deformation, the polyhedral surface automatically adds vertices and

increases the number of triangles as needed to match the image more closely. In a

subsequent chapter. a.daptive refiUèlllèllt uf pulyhe<1ra is used for the segnlentation of

the total cortical surface using il twa-surface lllodel.

7.5 Time Complexity

Due to the complexity of the objective function and ~IR image data, it is difficult

to derive a theoretical rneasure of the time complexity of the deformation algorithm.

However, SOllle theoretical observations are ruade, before resorting to empirical mea­

surement of conlputational cost as Cl. fUIlction of the number of parameters in the

surfaces being deformed. The conjugate gradient method is guaranteed to find the

minimum of a quadratic function in a number of steps no greater than the number

of parameters. vVhen applied to rnore complicated functions, it is difficult to predict

the rate of convergence. but it seems reasonable to assume that it is at least of linear

order in the worst case. Each iteration involves computing the objective function a

few dozen times. AlI components of the objective function can be computed in linear

time, except for one. The algorithm described in the previous section for computing

triangle proximities is~ in the worst case, of quadratic complexity. J\tlultiplying the

O(n) number of steps by the O(n2
) cost per step results in an expected worst-case

time complexity of O(n3 ).

In addition ta this brief theoretical analysis, sorne empiricaI analysis can provide

more information on the running time of the surface defonnation algorithm in prac­

tice. Empirical estimates of time complexity are generated by twa different surface

fitting tasks. The first task is the defarmation of a spherical model to a differently-
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• sized spherical image. The second task is to fit an ellipsoid to the average brain image

described in section 5.6. The defornlations were performed at five surface resolutions,

320, 12801 5120, 20480! and 81920 triangles, using Tboundary-dist, Tstretch, Tcurvature, and

Tsel/-intersect terms. The termination criteria was that no vertex moves more than .01

millimetres over 10 consecutive iterations. Cross sections of the results of the two

sets of deformations are presented in Fig. 7.1. The plot of computational time versus

the number of parUlueters defining the surface is presented in Fig. 7.2, and in log-log

forro in Fig. 7.3. vVith only five sample points, it is difficult to characterize the nature

of the time-conlplexity functions~ but it is certainly a super-linear function and oot

inconsistent with an order O(n:l) function.

Fitting sphere nlodel to sphere image.

n=122886n=30726n=7686n=1926n=486•••
•

n=486 n=1926 n=7686 n=30726 n=122886

Fitting ellipsoid model to average cortex.

Figure 7.1: Cross sections of fitting ta sphere and average image, with number of

parameters, n.

7.5.1 Fitting Using a Multi-Scale Approach

•
From the previous set of experiments! it can he seen that the higher resolution surfaces

require considerably more computational effort, and the computation time increases
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Figure 7.2: Plot of COITlputation time versus number of parameters. Solid Hne =

fitting to sphere, dotted line = fitting to average image.
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Figure 7.3: Log-log plot of computation time versus number of parameters. Solid line

= fitting to sphere, dotted line = fitting to average image.

in a quadratic or cubic nature as the number of parameters increases. It is therefore

desirable to perform the deformation in a multi-scale approach, 50 as to quickly

achieve a coarse fit using a small number parameters, thus reducing the number of

iterations required for the higher resolutions. The experiments of fitting a sphere

surface ta a spherical image and an ellipsoid ta the average brain image are repeated,

where the defonned polyhedron at each resolution of surface is subdivided into four

times as many triangles, to be used as the initial configuration of the next finer
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• resolution deformation. Accordingly, the time required for the smallest size, 320

triangles, is the same as in the previous experiments. However, the time required for

the higher resolutions has been reduced by a factor of 70 for the highest resolution of

the sphere-fitting experiment, and a factor of four in the case of fitting to the average

cortex image. In addition the time camplexity has became more linear in nature,

as can be seen fronl the carresponding plot of time complexity, Fig. 7.4, and the

log-log plot of Fig. 7.5. The segmentation results (Fig. 7.6) are as good or better

as compared to the non-multi-scale experiments. This is a strong indication that the

multi-scale approach represents a rnajor gain in efficiency.
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Figure 7.4: Plot of computation time versus number of parameters in a multi-scale

deformation. Solid line = fitting ta sphere, dotted Hne = fitting ta average image.

7.6 Computational Bottlenecks

The computational cast of the current implementation of the surface deformation in

typical applications \Vith surfaces of 81 920 triangles can be broken clown into six

main components:
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Figure 7.5: Log-log plot of computation time versus number of parameters in a multi­

scale deformation. Solid Hne = fitting ta sphere~ dotted Hne =fitting ta average image.
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n=486 n=1926 n=7686 n=3D726 n=122BB6

Fitting sphere model ta sphere image.

n=486 n=1926 n=7686 n=3D726 n=122BB6

•

wlulti-scale fitting ellipsoid model to average cortex.

Figure 7.6: Cross sections of multi-scale fitting ta sphere and average image, with

number of parameters, n.
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20 % Generating pairs of triangles \vithin distance d,

15 % J\tIeasuring distance between triangle pairs in objective func­

tion calculation,

20 % Searching image volume for boundaries along surface normals,

5 % Evaluating stretch component.

20 % Evaluating curvature component.

20 % ReIuainder of progranl.
The first component above, the triangle set proximity query, takes one fifth of the

time, and could conceivably be reduced through use of a more efficient algorithm. The

second component represents the time spent by the objective function calculation ta

measure the distance between pairs of triangles. Those pairs for which the distance is

less than sorne threshald. d, contribute a value ta the function, based on the distance

found. The number of caUs ta this inter-triangle distance function cannat he reduced

significantly becallse Iueasurenlents of the current inlplementation have shawn that

94 percent of the triangle pair distance coruputations result in a. value less than the

distance d, and therefore must be computed in arder ta evaluate the self-intersection

ternI. The final 20 percent of the time is not broken down further, as it is involves

many different parts of the prograrrl. The present implementation is weIl optimized

at present, but as the size of problems addressed by this algarithm increases, the

relative computational times may change, and more efficient algorithms may provide

significant improvements. In particular. the solution to the aIl-pairs triangle proxim­

ity problem may well become the most significant computational aspect due to its

quadratic \Vorst case complexity. Another possible improvement in computation time

may result from removing the stretch or curvature term from the objective function.

The usefulness of these two terms in the segmentation of total cortical surface is

investigated in the next chapter.
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Chapter 8

Validation on Simulated Data

The first step in validating the NODE deformation algorithrn is ta apply it in con­

trolled situations! where the factors influencing the procedure are weIl understood.

The method can be subjected to a variety of tests, where the correct answer is known

or assumed, and measures of error devised. This chapter outlines a set of experiments

where ~IR-derived phantonl data \Vere constructed in arder ta test specifie features of

the algorithm. Each section outlines what features of the algorithm are being tested,

describes how the experiment was constructed. and presents numerical, graphical,

and visual summaries of the results.

8.1 Rigid Surface-ta-Image Matching Validation

A necessary feature of any deformation procedure is that it be robust in the face of

intensity noise and geometric distortions. In particular, it is desirable that the final

position of any deformation be relatively independent of the spatial position of the

initial guess, as well as insensitive to noise and sampling artifacts which may distort

the apparent boundaries. In arder ta test this, a simple task was formulated. A

low resolution model of the cortex, consisting of 320 triangles, is fit to a target ~IR

dataset to locate the cortical surface. By keeping the stretching and curvature weights
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relatively high, the cortex model is rigidly transformed to fit the global shape of an

individual brain. In effect, this is perfonning a surface-to..image linear registration

task. The lVIR dataset is first blurred slightly with a square lilter of width three

millimetres to smooth the objective function slightly. The consistency of this process

is tested in the face of the following four confounds:

sUce thickness.

image noise,

RF inhomogeneity, and

!inear misregistration.

This experiment measures consistency, Dot accuracy, since there is no inherently

correct surface. The correct answer is arbitrarily defined as the surface resulting

frorn deformation ta a particular gold standard image volume. In order to analyze

the effects of each of the four canfounds independently, the gold standard used in

each case is the volume which has the lowest value of the confound parameter varied,

or, in the case of varying the initial misregistration, an identity transform. The

measurement of error in the final result is defined as the RlVIS error over the pairs of

corresponding vertices in the deformed cortex model and the gold standard surface:

Œ=
L:~l (Xi - id:! + (Yi - üd"2 + (Zi - zd2

TL

•

where (Xi, Yi, zd is the i-th vertex in the test surface and (Xi, Yi, Zi) is its counterpart

in the gold standard surface. This measure assumes that the two polyhedra are

isomorphic to each other, which is the case in the context of the deformation-based

segmentation discussed here.

A magnetic resonance simulator, called (MRI8IM) [KEP96] is used to model

the first three confounds. NIRlSIlVI is a program designed to model most of the

characteristics of an LVIR imaging system, in arder to create volumes that simulate

lVfR images. Three sets of simulated images have been previously computed. The

first set varies the noise level from 0 % to 10 % of the image intensity. The second
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• set varies the slice thiekness from one ta 10 millimetres, and the third set varies the

RF inhomogeneity from 0 % ta 60 %. The fourth confound, linear misregistration, is

simulated with random linear transforms, which have randomized three dimensional

scalings, translations, and rotations. The degTee of misregistration, (Jin, is defined as

the Rl\iIS error over pairs of vertices in an initial model and the linearly transformed

coordinates of the mode!. One hundred linear transforms have been created with a

roughly uniform distribution of (Jin from zero to 100 millimetres.

•
~

.~~ .. - \.

•

Figure 8.1: Deformation fitting cortex model ta individual l\iIR dataset. a) initial

configuration b) final configuration (only small differences from initial).

Figure 8.1 shows the configuration of the surface before and after fitting the cortex

model ta a typical classified image volume. In the absence of a large initial misreg­

istration error or other confounds, there is little change in the surface during this

deformation, sinee the model derived from the average brain image already matches

any individual brain in the stereotaxie spaee reasonably well at a resolution of 320

triangles. This procedure \Vas tested against each of the four confounds, and the

results presented in graphical form, Figs. 8.2, 8.3, 8.4, and 8.5.
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Figure 8.3: R~IS error. Œ! versus slice thickness.
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The graph of a versus percent noise shows a roughly linear increase to a = .47mm

at the highest noise level of 10 %. Given that the image data is sampled at one

millimetre, this is a satisfactory value. The graph of the effects of RF inhomogeneity

also show a !inear trend to less than one millimetre at the highest RF level of 60 %.

However, the graph of a versus slice thickness shows a much steeper increase in a,

with a maximum value of almost five millimetres. This is due in part to the partial

volume effect of large slice thicknesses causing the cortex and skin to be blurred

together, which results in the cortex deformation incorrectly locking on to the outer
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Figure 8.5: RNIS error, cr, versus initial spatial error, O"in'

skin surface. There are a few points in each graph where the value either drops or

rises more sharply than would he expected, such as can he seen at the eight millimetre

value on the slice thickness plot. Further investigation is required ta determine if this

is due ta instability in the algorithm or can he explained by the particular interaction

characteristics of the imaging confound and the deformation procedure.
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Confound Range of Confound Nlaximum RNIS Error ((J)

noise ~5% 0.19 mm

RF ~ 30 % 0.64 mm

slice thickness ::; 3 mm 0.54 mm

misregistration (Jin:::; 20 mm 0.60 mm

Table 8.1: ~Iaximum RNIS error, Œ. in mm2 , as a function of imawng confounds.

The plot of RNIS error. a. versus initial misregistration, (J'in shows a very interest­

ing result (Fig. 8.5). The registration proc~ss either produces an answer very close

to the correct answer or very far away. Any surface with an initial RNIS belo\v 90

millimetres ((J'in < 90mm) is defonned ta within 0.8 millimetres of the gold standard

((J < 0.8mm), twa exaruples of which are depicted in Fig. 8.6. Any surface with a

value of (Jin greater than 90 millimetres causes the deformation process to fail, with

an error of (J > 50mm, two examples being shown in Fig. 8.7. This behaviour can be

explained by using an analogy ta fitting a two dimensional ellipsoid model ta an image

of an ellipsoid with ouly a single rotation parameter. If the initial rotation is greater

than 90 degrees fronI the orientation of the inlage. it is easy ta imagine that the best

fit found is actually 180 degrees out of alignment. Fitting a three dimensional cortex

to an image is rnore complex than this simple analogy, but examination of the cases

where the procedure fails illustrates that a rotation of 90 degrees around an axis is

usually involved.

Table 8.1 summarizes the results for the range of the confounds expected in typical

NIR images that ha.ve undergone an image registration into stereotaxie space. vVith

respect to the task of segmenting the entire cortical surface, the effects of the four

confounds mentioned can be minimized by using this rigid deformation procedure

as a pre-processing step ta define the position of a model to be deformed to fit

the total cortical surface. In addition, the good results in the case of large initial

misregistrations indicate that this methad may be useful as a stand-alone image
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Figure 8.6: Initial and final configurations of two examples of successful image defor­

mation (top view of exarnple land left view of example 2) (black = surface position,

gray = gold standard) .

registration method. ft would he interesting to compare this rnethod to established

surface-based registration methods. such as that of Pelizzari et al [PCS+89], and to

investigate whether the use of multiple nlodels, e.g., cortex, cerebellum, and skin, can

improve the image registration procedure.

8.2 Partial Volume Solution Using

Two-Surface Model

Having examined the consistency of the deformation in the simple case of rigjd trans­

formation, the more interesting problem of locating the complete extent of sulci in

complex MR images is now addressed. A small brain phantom which contains sulci

characteristic of full brain J\iIR images is created by scooping a small spherical piece

of gray and white matter out of a classified image of a normal individual. Three cross
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Figure 8. ï: Initial and final configurations of two examples of failed image deformation

(top view of exanlple 1 and Left view of example 2) (black = surface position, gray =

gold standard).

sections of this phantom are presented in Fig. 8.8. The method used to locate the

boundary is to start \Vith two concentric spheres five millirnetres apart. The inner

surface is deformed to fit the gray-white boundary in the image while the outer sur­

face is fitted to the gray-CSF boundary. Corresponding vertices of the two surfaces

are constrained to be within three and seven millimetres apart, with the optimal

value at five millimetres, using a Tvertex-uertex objective term. A T,ur face-sur face term

is used ta prevent any pair of points on the two surfaces from coming within one

millimetre of each other. In order to allow the surface to stretch as much as required,

adaptive subdivision of the polyhedral mesh is performed during the deformation, sa

as ta increase the number of vertices in areas that are highly stretched, such as deep

sulcL The initial model consists of 320 triangles, and the maximum allowable length

is decreased from 20 millimetres to three millimetres during the deformation, causing
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• the surface to be repetitively subdivided, with the final surface consisting of about

4500 triangles.

......

\

•

•

Figure 8.8: ParalIel cross sections through small brain phantom.

The initial and final states of the deformation are presented in Fig. 8.9. For pur­

poses of comparison, two other methods of locating the gray-CSF boundary are per­

formed. One method simply repeats the deformation using a one-surface model, and

the second uses the wlarching Cubes algorithm ta triangulate the gray-CSF boundary.

Cross sections of aIl three methods are presented in sagittal orientation in Fig. 8.10,

coronal orientation in Fig. 8.11, and transverse orientation in Fig. 8.12, for compar­

ison purposes. There are sorne cross sections where small pockets of CSF on a slice

have been identified by the ~Iarching Cubes algorithnl, but not by the two-surface

model. However, these features, such as the ones visible on the X=-41 mm slice of

the wlarching Cubes algorithm as tiny circular regions, correspond to the deepest ex­

tremity of sulci, and three dimensional investigation in the vicinity (Fig. 8.13) reveals

that the two-surface model cornes within a millimetre or 50 of these features. There­

fore, the differences between the two techniques is not really as large as would be

inferred from looking at the single slice alone. Table 8.2 Lists the number of triangles

created by each of the three methods and the surface area of the gray-CSF surface

found. The two-surface deformation produces a higher surface area than the one­

surface method, indicating that it is achieving greater sulcal depth. However, even

though the two-surface deformation achieves greater sulcal depth than the ~[arching

Cubes method in places, the surface areas are about the same, and there are places

where the rYlarching Cubes method provides a better approximation to the gray-CSF
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iVlethod Number of Triangles Surface Area, in mm2

one-surface deformation 3310 10339

two-surface deformatioll 4514 12537

Nlarching Cubes 34472 12465

Table 8.2: Results of gray-CSF segmentation on snlall phantom.

boundary. This is rnost likely due to two factors. Firstly, the defonnation method has

smoothing constraints in the fornl of T'itretch and Tcurvature ternIS, whereas the ~Iarch­

ing Cuhes mcthod has no smoothing and responds ta every edge feature, makiug a

more crumpled surface and thus infiating the surface area. The effects of changing

the stretch and curvature weights on the two-surface deformation are examined in the

next section. .-\ second factor is that the marching cubes surface contains more than

seven times as many triangles as the two-surface deformation result, and therefore

can more closely interpolate the inlage boundaries.

The importance of using a two-surface model is especially evident in areas where

there are topological holes in the image data. For instance, the hole in the centre of

the Y=-11 mm slices is not located by either the single-surface deforulation or the

Nlarching Cubes algorithm l because it is not connected to the rest of the gray-CSF

boundary. However, the two-surface nlethod produces a neuroanatomically reasonable

surface that includes the hole, circumventing the partial volume effect. Given that the

phantom is representative of typical sulcal and gyral topology in classifed l\IIR images,

the application of this method to the total cortical surface should be straightforward.

8.3 Choosing Weights

A significant problem with the NODE algorithm and with deformation algorithms

in general is the need to provide weighting factors for the various components of the

IThe version of l'vlarching Cubes used does not exhaustively search all voxels, but instead finds a

single connected component.
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Figure 8.9: a) Initial gray-CSF surface. b) initial gray-white surface. c) cross section

of volume and the two surfaces. cl) Final gray-CSF surface. e) final gray-white surface.

f) cross section of volume and the two surfaces.

objective function, for which there is no theoretical basis upon which to draw. The

procedure used to choose weights for the NODE algorithm is to vary one weight at a

time, usually starting with a. very high value and reducing it until the desired effect

has been achieved. The following terms are used in the formulation of the objective

function for simultaneous defonnatioll of two surfaces:

Tstretch,

Tcurvature,

Tbaundary-tlist,

T...el/-intersect,

Tvertex- vertex,

TSIJT face-sur face'

One of the critical terms is T.'Jel/-intersect, which is used to keep each surface from

intersecting itself. The obvious method is to assign a weight to this term that is many

orders of magnitude higher than the other weights, in order to make Tsel/-intersed
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Figure 8.10: Sagittal slices through phantom volume and gray-CSF surface produced

by a) one-surface deformation b) two-surface deformation c) wlarching Cubes algo­

rithm.

dominate when t'vo portions of a surface come into close proximity. However, in

practice, setting the weight too high causes the minimization procedure to take smaller

steps, due to the high curvature in the objective function. This slowing down is

analagous to what Kass et al observe about their Snakes algorithm, "(if) the extemal

forces become large, however, the explicit Euler steps of the extemal forces will require

much smaller step sizes" (KvVT88]. Within the NODE framework, a solution to this
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Y=-21 mm

Y=-ll mm

Y=-l mm

Y=9 mm

a.) I-surface b) 2-surface c) Nlarching Cubes

•

Figure 8.11: Coronal slices through phantom volume and gray-CSF surface produced

by a) one-surface deformation b) two-surface defonnation c) Nlarching Cubes algo­

rithm.

problem is to use several T.'1el/-intersect terms, with increasing weights:
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2=19 mm

Z=29 mm

2=39 mm

Z=49 Ulm

a) l-surface b) 2-surface c) Nlarching Cubes

•

Figure 8.12: Transverse slices through phantom volume and gray-CSF surface pro­

duced bya) one-surface deformation b) two-surface defonnation c) Nlarching Cubes

algorithm.
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Figure 8.13: Three orthogonal slices through sulcal extremity and gray-CSF surface

produced by the two-surface defornlation.

0.1 r~elf-mtt'rsect(0.50) +

1 r~elf-intersect(OA5) +

10 T'ldf-iTltersect(0.40) +

100 r~elf-intersect(O.35) +

1000 T'lei f - intersect (0.30) +
10000 Tsel/-mtersect(0.25) +

100000 T'iel/-intersect(0.20) +

1000000 Tsel/-mtersect(0.15) +

10000000 T.'1el/ - mtersect ( 0.10) ,

where TSeif-intersect (d) reCers ta a self-intersection term that is non-zero whenever two

triangles are less than d millimetres apart. The effect of this is ta gradually increase

the dominance of the self-intersection term as needed ta prevent self-intersections.

Another way to achieve the same effect is ta replace the quadratic function inter­

triangle distance in the Tsel/ -intersect term with higher order functions. However,

the method of using multiple quadratic terms is already available in the CUITent

framework and still provides an objective term that is Cl continuous. In addition,

several self-intersection terms require only slightly more computation time than one

term. The multiple term method is also used for the Tsur/ace-sur/ace component. This

method has been used with an identical set of terms to avoid intersections in aImost
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aIl of the examples presented in this dissertation! ranging from objects of diameter

20 millimetres to around 200 millimetres. Thus, one choice of weights for the terms,

Tsel/-intersect and Tsurface-sur/ace, will generally suffice for a wide range of deformation

tasks, minimizing the user specification required.

Having defined the intersection term weights, one can now devise weights for

the remaining terms. The pracess starts with the one-surface case, using the set of

T.'idf -illtersect terms defined above, the Tbaundtlry with a weight of one, and the Tstretch

term with an arbitrarily high weight. Deformations are repeated with decreasing

values of the T...tretch weight until the desired closeness to the boundary is achieved.

OptionaIly, a weight for the curvature term may be found in a similar fashion, or

depending on the segmentation task~ one or both of the Tstretch and Teurvature terms

may be removed from the objective function. Having defined weights for aIl the single

surface terms, the weight for the T~erte:r-uerte:r term is computed similarly, starting

with an arbitrarily high value.

The efficiency with which one chaoses weights by this method depends on how

precise a weight rnust be in order to achieve a desired deformation, and on whether

the resulting surfaces respond smoothly to the choice of weights. The task of fitting

a small phantom brain from section 8.:2 is revisited here with a view towards under­

standing the effects of varying the objective term weights. The set of weights used in

the deformation problem was selected by the trial-and-errar method described. The

weight values are now used as the starting point for another set of experiments. For

each class of objective term. the deformation is repeated with the relevant weights

scaled by a different factor each tinle, holding the weights of the other terms constant.

The scale values used are

0, 0.01, 0.1, 1, 10, and 100,

where a zero value indicates removal of the term from the objective function. Cross

sections of the results for each of the sL~ classes of objective term are presented in

Figs. 8.14, 8.15, 8.16, 8.17, 8.18, and 8.19. The number of triangles and surface areas
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for each case are presented in Table 8.3.

The effect of changing the weights of the Tsel/-intersect or Tsur/ace-sur/ace terms is

minimal, in terms of the number of triangles, surface area, and visual appearance of

the surface. This indicates that the use of sets of increasing weights may alleviate the

need to choose weights for inter-surface intersection and self-intersection constraints.

The behaviour of the weighting of the Tvertex-vertex term is interesting, because the

implementation actually consists of two separate terms. The first Tuertex-vertex term

encourages the two surfaces to he five millimetres apart. The second Tuertex-vertex

term constrains the inter-surf~lce distance to stay within the range of three to seven

millimetres by using a much higher weight. \Vhen the Tuertex-vertex term is removed

frorn the objective function, ea.ch surface is effectively deformed independently, and

the resulting outer surface of the t'Wo-surface deformation is equivalent to that pro­

duced by the one-surface cleformation. However. for the weight scales of 0.1 and 0.01,

it appears that the first Tvertex-l1f'rtf'x is not weighted high enough ta make the surfaces

stay near five millinletres apart. but the high value of the second Tuertex-vertex terrn

causes areas of high curvature in the objective function. preventing the minimiza­

tian from proceeding deep into the suIci. Then, at the highest three values, the first

Tuertex-vertex is DOW strong enough ta keep the two surface close to five mil1imetres

apart, and the second Tuertex-uertex term rarely cornes into play. Further investigation

is required to fully understand this behaviour, but it is possible that the use of sets

of increasing weights such as those involved in the self-interection term may alleviate

this problem. Notwithstanding this perplexing behaviour, it is encouraging to note

that the results for the weight scales of l, 10, and 100 are relatively stable.

The behaviour of the segmentation with respect ta the Tboundary-dist term appears

to have two distinct states. Below a seale value of 1, the term is too smal1 to have

any effect on the deformation, and the surface does not change from its initial state

of a sphere. For weight scales of 1, 10, and 100, the results are relatively consistent.

The effects of the weights of the Tstretch and Tcurvature terms are almost identical to
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each other. For the weight scales of 0, 0.01, 0.1, and 1, good segmentation results are

achieved. Above the scale value of 1, a relatively poor interpolation of the boundary

is achieved, due to the smoothing effects of the highly-weighted stretch or curvature

term. The relatively good performance of the algorithm when either component is

removed completely indicates one or bath ternIS may be unnecessary in the defor­

mation procedure. This observation resulted in a secandary experiment, to view the

effects of leaving bath the stretch and curvature terms out of the objective function.

The resulting surface of 6682 triangles and a surface area of 13,983 square millimetres

is presentpd in Fig. 8.20. Although this result appears ta provide similar or better

results, as compared to the previous deformatians, there are regions where the surface

cantains several tight foids not corresponding to abject boundaries. 1t appears that

either the stretch or curvature term must be left in the objective function in arder to

prevent this type of irregularity.
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Figure 8.14: Effect of scaling Tstretch weights.
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Figure 8.15: Effeet of sealing Tcurvature weights.
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Figure 8.16: Effect of scaling Tboundary-dist weights.
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Figure 8.17: Effect of scaling Tsel/-intersect weights.
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Figure 8.18: Effect of scaling Tsurface-surface weights.
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Figure 8.19: Effect of scaling Tvertex-vertex weights.
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Term \Veight Scale Factor

01 0.01 1 0.1 1 1 1 10 1 100

T.'1tretch 11900 11400 11800 11200 10200 8900

Tcurvuture 13700 13700 12500 11200 9800 7700

TboUl1darY_dist 11100 11100 11100 11200 11300 11500

T'Id! -mtersect 11200 11200 11200 11200 11200 11200

T'iurluce-sur face 10800 10800 10800 11200 11200 11300

Tuertex- uertex 10300 7800 7800 11200 11200 11200

Surface area, in nlnl~, as a function of scaling of objective term weights.

Term \Veight Scale Factor

0 0.01 0.1 l 10 100

Tstretch 6498 4944 5160 3422 2434 1282

Tcurvature 3822 4058 3548 3422 3486 2360

Tbaundary _dist 1280 1280 1280 3422 3950 3894

T sel ! - inter.'1ect :3422 3422 3422 3422 3422 3422

T sur face-sur face 3508 3508 3508 3422 3444 3570

Tuertex-vertex 3310 2376 2376 3422 3532 3546

Table 8.3: Number of triangles as a function of scaling of objective term weights.

128



•

.-~ e 0
x = -61 mm X = -51 nlm X = -41 mm X = -31 mm

~ ~..

• y = -21 Innl Y = -11 mm Y = -1 mm Y = 9 mm

Q ~
Z = 19 mIn Z = 29 mm Z = 39 mm Z = 49 mm

Figure 8.20: Cross sections of surface deformed without Tstretch or Tcurvature'
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Chapter 9

Experiments on Real

Neuroanatomical Data

Having performed validation of various aspects of the NODE deformation technique,

the method is now applied ta real neuroanatomical problems. The ultimate goal of

this dissertation is ta provide a rnethad which can provide quantitative answers to

basic neuroanatomical questions about the human cortical surface. The problem is to

create a surface representation of the human cortical surface that localizes the depths

of the cerebral sulci even in thase places where partial volume effects confound the

identification of gray matter boundaries. Although it is more difficult to accurately

measure the performance of the algorithm in this context, it is possible ta realize

quantitative and qualitative assurances of the utility of the surface deformation. We

begin by describing the data and method used.

9.1 Data

The data used for these experiments come from a pool of NIR scans of 102 normal

volunteers. Tl-, T2-, and PD-weighted images at one millimetre isotropie resolu­

tian are acquired for each subject. The T1-weighted volumes are acquired using a
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sagittal volumetrie 3D RF-spoiled gradient echo sequence with TR/TE=lBms/lOms,

flip angle = 30 degrees, and 1 signal average. The PD- and T2-weighted data are

acquired as two 2D multiple slice, dual-echo, fast spin-echo (FSE) datasets with

TR/TE1/TE2=3300ms/35ms/120ms. The total scanning time is about 30 minutes.

Post-processing on these datasets consists of RF inhomogeneity-correction, linear reg­

istration into stereotaxÏc space. and tissue classification.

9.2 Method

The method consists of the following two sequential steps. The first step involves

locating the cerebral white matter voxels similar to the method of Dale and Sereno

[OS93]. This is achieved by fitting a pair of low resolution (5120 triangles) average

surfaces to the gray-CSF boundary and gray-white bounclary using the two-surface

method described in section 8.:2! with the modification that larger weights are assigned

to the terms, T.'1tretch a.nd TruTvature' These two ternlS provide a strong constraint on

the shape of the deforming rnodel, sa that it maintains the global shape [eatures of

the average cortex. finding the best fit of this shape to the image volume. AlI white

matter voxels outside the resulting gray-CSF surface are then labeled as gray matter

as shawn in Fig. 9.1.

•

Figure 9.1: Step 1 in segmentation of gray-CSF boundary: masking out non-cerebral

white matter voxels.

The second and final step fits a pair of average surface models ta the masked
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volume produced by the first step. The absence of white matter voxels outside the

cerebral cortex allows the procedure ta be guided by the gray-white boundary, using

the two-surface defarmation parameters devised in section 8.2. A multi-scale ap­

proach is used. where initial surfaces of 320 triangles are adaptively subdivided as

the deformation progresses. The initial maximum edge length is 40 millimetres, and

the final maximum edge length is four millimetres. resulting in surfaces of almost 100

000 triangles. This pracess requires about 100 hours of computer time on a Silicon

Graphies Origin 200 RlOOOO processor running at a dock-rate of 180 megahertz.

~
'.\ ....,...~ .~.~.'~,"',.' , ....., '. 'f .

'~..,~..;-:~è::f'•..
",:~,>~~, ','
,:r~, ..., .'
. ~~.;~

Figure 9.2: Step 2 in segmentation of gray-CSF boundary: simultaneous deformation

of two surfaces ta fit volume with non-cerebral white matter masked out.

9.3 Validation Against Manual Segmentation

In order ta test the segmentation aspect of this technique, a realistic segmented

dataset is required. Since it can take up to several days to segment the entire cere­

bral cortex manually at the voxel level, a large number of datasets is not available.

However, one excellent dataset is available for use in validating the segmentation. An

experienced neuroanatomist in the NlcConnell Brain Imaging Centre, Dr. Noor Ka­

bani, has previously spent several months creating a detailed voxel-by-voxellabeling

of a normal human NIR volume into more than 70 distinct anatomical regions, consti­

tuting a detailed atlas of human neuroanatomy. There are several choices of methods

for relating a cortical surface model to this atlas. One possibility is to compare points
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on the surface with voxels in the atlas which are on gray-CSF boundaries. ..L\. more

straightforward way is to compare the set of voxels between the two deformed sur­

faces to the set of cortical gray voxels in the atlas. Ideally, both sets of voxels should

correspond to the entire cortical gray matter.

Slices combining the cortical gray matter voxels labelings created by the neu­

roanatomist with the two-surface deformation method are presented in Fig. 9.3. A

voxel can be classified inta one of four classes, trne-positives, true-negatives, faIse­

positives, and false-negatives, depending on whether the voxel was labeled as cortical

gray by each of the two methods. Table 9.1 shows the number of voxels corresponding

ta each of the four classes. ft is evident that the set of voxels between the two deform­

ing surfaces does fiat contain the full set of true cortical gray voxels; only 67 % l of

the true gray voxels were correctly identified. The reasan for this is that the choice of

five millimetres for the distance between the gray-CSF and gray-white surfaces is not

optimal. An indication of this arises from the observation that the average distance

between the two deformed surfaces, 5.34 millimetres, is greater than the five millime­

tres constraint choseo. The data is trying ta pull the twa surfaces further apart, but

the inter-surface Tuertex-lJertex term keeps this fram happening. Based on the results of

this preliminary experiment, a method of creating an inlproved inter-surface distance

constraint is investigated in a subsequent section on cortical thickness maps.

It is aIsa informative ta look at the set of false-positive voxels, which are voxels that

were incorrectly labeled as cortical gray by the two-surface deformation. The number

of faIse-positive voxels is 127,004, which is 15 % 2 of the total number of cortical gray

voxels in the manual segmentation. About two thirds of the faise-positive voxels are

in the problematic region of the inferior surface of the cortex. The manual labeling

of the cortical gray voxels leaves a large hole in the ioferior portion of the cortex,

whereas the closed topology of the deforming surface crosses over this hale. The Y=-

1557454 / (557454 + 270585) x 100 % = 67 %

2127004/ (557454 + 270585) x 100 % =15 %
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• 30 mm slice of Fig. 9.3 shows this crossing over as the Iight gray false-negative region

spanning the two hemispheres. vVhether the cortical surface should be represented

as with or without this hole is a subject of neuroanatomical debate, but investigation

into choosing a deforming model with an appropriate neuroanatomical topology is

required. If the false-positive voxels arising from the closing of the inferior hole in the

cortex are ignored, the remaining set of false-positive vaxels corresponds ta about 5

percent of the total number of cortical gray voxels.

•
X=-50 mm

Y=-80 mm

Z=-20 mm

X=-lO mm

Y=-30 mm

Z=10 mm

X=lO mm

Y=20 mm

Z=30 mm

X=50 mm

Y=60 mm

Z=60 mm

•

Figure 9.3: Comparison of manual labeling ta automatic labeling. (dark gray =

true-positives, light gray = false-positives, and black = false-negatives)
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True Gray True Non-Gray

NODE Gray 557454 127004

NODE Non-Gray 2ï0585 6154094

Table 9.1: Number of voxels labeled as cortical gray and non-cortical gray by NODE

algorithm and manual labeling (assumed to be the 'truth").

9.4 Comparison ta Other lVIethods

The result of the two-surface defonnation is compared with that of the one-surface

deformation and the ~IarchiIlg Cubes algorithm. In the latter t.wo cases, the surface

mask computed as the first step of the procedure in section 9.2 is used ta mask voxels

exterior to the cortex. in arder ta create a volurne that cioes not contain cerebellum

or skin voxels which would confuse the algorithms. The surface models created by

the three algorithros are shown in Figs. 9.4, 9.5, and 9.6. Slices through the volume

and gray-CSF surface produced by each of the three algorithms are shawn in sagittal

orientation in Fig. 9.ï~ coronal orientation in Fig. 9.8~ and transverse slices in Fig.

9.9. The number of triangles produced and the surface area of the gray-CSF surface

for each algorithnl is presented in Table 9.2. It is readily apparent that the single

surface model rails ta interpolate the ciepths of the sulci. The dual surface method

produces a cerebral cortex model \Vith about the same surface area as that of the

Nlarching Cubes, but the single surface method produces a much lower surface area.

There are many places where the ~Iarching Cubes algorithm seems to produce better

results It would he informative ta compute the dual surface model at a resolution

similar ta that of the ~Iarching Cubes. in arder ta better relate the two methods,

but it is encouraging that the dual surface model provides a partial volume corrected

surface with about the same surface area as that of the J\'Iarching Cubes algorithm,

using ouly a tenth the number of triangles.
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Gray-CSF Surface

Gray-White Surface

Figure 9.4: Top, left, and bottom views of gray-CSF and gray-white surfaces produced

by the two-surface deformation model.

Figure 9.5: Top, left, and bottom views of gray-CSF surface produced by the one­

surface deformation model.
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Figure 9.6: Top, left, and bottom views of gray-CSF surface produced by the conven­

tional NIarching Cubes algorithm.

• 9.5

wIethod Number of Triangles Surface Area, in 'Tnm2

one-surface cleformation 34352 121928

two-surface deformation 66176 226272

Nlarching Cubes 677880 240397

Table 9.2: Results of gray-CSF segmentation on individuaI wIR image.

Surface Averaging and Flattening

•

An interesting characteristic of polyhedra that have been deformed by perturbing the

vertices, such as in the NODE algorithm, is that there is a direct mapping between

points on the initial polyhedron and the deformed polyhedra. The position of any

vertex, Xv on one surface maps directly to the position of the corresponding vertex,

Xv, on the other surface. Non-vertex points of a polyhedron are mapped by linear

interpolation of the mappings of the three vertices defining the triangle in which the

point resides.

The ability ta map three dimensional positions between polyhedra has several

practical uses. One application is the creation of an average surface from a set of

surfaces. This i5 done by taking the centroid of each set of corresponding vertices

across the surfaces. This implicit1y assumes that the vertices of the surfaces are
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X=-50

X=-lO

X=10

X=50

a) l-surface b) 2-surface c) NIarching Cubes

•

Figure 9.7: Sagittal slices through volume and gray-CSF surface produced by: a)

one-surface deformation. b) two-surface deformation c) NIarching Cubes algorithm.

homologous, that is, the ,eth vertex of any cortical surface corresponds to a particular

anatomical position. Although this is not actually true for the surfaces created by

the NODE algorithm, in practice, there is some correlation of vertices, and the mean

surface can have a practical use. Figure 9.10 depicts three views of the average of 102

surfaces created by the l-surface NODE aIgorithm at a resolution of 81,920 triangles.

This surface encapsulates the main features of any individuai brain and thus it may

be useful as a model for the cortical surface deformation.
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Y=-SO

Y=-30

• Y=20

Y=60

a) 1-surface b) 2-surface
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c) Nlarching Cubes

•

Figure 9.S: Coronal slices through volume and gray-CSF surface produced by: a)

one-surface deformation. b) two-surface defonnation c) Nlarching Cubes algorithm.
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2=-20

2=10

Z=30

Z=60

a) l-surface b) 2-surface c) Marching Cubes

•

Figure 9.9: Transverse slices through volume and gray-CSF surface produced by: a)

one-surface deformation. b) two-surface deformation c) Nlarching Cubes algorithm.
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Figure 9.10: Top~ left! and bottom views of average of 102 cortical surfaces produced

by the one-surface NODE algorithm.

Another use of inter-polyhedral rnapping is in the conversion of complex surfaces

ioto smoother representations in order facilitate subsequent neuroanatomical analysis.

Figure 9.11 shows the results of mapping an individual cortex to the average surface

a.nd an ellipsoid of the approximate shape of the brain. The surfaces are coloured

with gray-scale values based on the local curvature, where dark areas correspond

ta the depths of sulci and lighter areas correspond to gyri. Figure 9.12 shows the

average curvature of the 102 cortical surfaces mapped on to the average surface and

on to an ellipsoid. 1t is interesting to note that even without any explicit homology

constraints, the positions of several sulci are consistent enough to show up on the

average of 102 surface curvatures. The flattened representations of individual or

mean surfaces presented here provide an alternate coordinate system, which may

prove useful for neuroanatomical analysis such as examining sulcal topology.

The averaging of vertex positions and curvature across surfaces relies on the topol­

ogy of the triangulations being exactly the same. However, the gray-CSF surfaces

created by the NODE algorithm have different triangulations, because the adaptive

triangulation of the polyhedra results in different numbers of triangles for different

sets of image data. However, the inter-polyhedral mapping can he used to convert

each of the individual triangulations to a cornmon triangulation topology. Whenever

a surface is subdivided during the deformation, a copy of the initial model is sub-
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a) b) c)

•

Figure 9.11: Curvature of individual cortex a) on the cortex. b) mapped to the average

of 102 surfaces, and c) mapped to an ellipsoid.

a) b)

•

Figure 9.12: Average vertex curvature across 102 surfaces mapped to a) the average

of 102 surfaces, and b) an ellipsoid.

divided in the sarne fashion. The resulting triangulation of the model matches the

triangulation of the deformed surface, but is geometrically the same set of points as

the initial model, and is referred to here as a re-parameterized mode!. The deformed

surface can be re-triangulated ta match the initial model by mapping vertices in two

steps. The first step takes the coordinates of a vertex on the initial model and finds

the triangle on the re-parameterized model which contains this point. Using the ver­

tex indices of this triangle, the second step interpolates a geometric position within
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the corresponding triangle on the deformed surface. The resulting re-triangulated

surface thus has the triangulation topology of the initial model, but the vertex posi­

tions define an object geometrically similar to the deformed surface. This method is

used in the next section ta create an average of several different sized surfaces.

9.6 Cortical Thickness Maps

The two-surface NODE algorithm has been used to automatically create 10 sets of

gray-CSF and gray-white surface models from 10 normn.l hUInan ~IR datasets. Each

gray-CSF surface was re-triangulated to a resolution of 81,920 triangles, and the

resulting average surface was conlputed (Fig. 9.13). :\ preliminary version of a

cortical thickness map can then be produced by taking the mean distance of the

surface at each vertex~ shown superimposed on the average surface and on an ellipsoid

in Fig. 9.14. The average cortical thickness of the 10 pairs of surfaces ranges from

5.78 to 6.53 millimetres. Although this data suffers from insufficient sample points

(lV = 10) and from the fact that there is little enforcement of homology across

the surfaces. the resulting cortical thickness map demonstrates the applicability of

the NODE algorithm to neuroanatamic analysis. In addition, the thickness map

ITlay also be used to define the constraining model for subsequent application of

the twO-surface deformation. This process of iteratively applying the model-based

deformation, then using the output to improve the model, may result in increasingly

sophisticated methods of cortical surface segmentation.

143



•

•

•

Figure 9.13: Top, left, and bottom views of average of 10 gray-CSF surfaces.

a)

b)

Figure 9.14: Top and bottom views of average cortical gray thickness (N = 10)

mapped anto a) average surface, and b) an ellipsoid. The thickness ranges from 5.78

mm in the black regions ta 6.53 mm in the white regions.
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Chapter 10

Conclusion

10.1 Summary

•

•

The task of segmenting hurnan cortical surfaces from three dimensional magnetic

resonance images has been addressed. A method of deforming a polyhedral model by

minimizing an objective function has been presented. The technique! referred to as the

NODE algorithm, has been shown ta provide a solution to locating the cortical surface

in the face of partial volume artifacts. This has been achieved through the unique

combination of self-intersection testing and inter-surface constraints on a multiple

surface deformation mode!. The major contributions of this work ta date include:

• a method of automatically locating the cortical surface from NIR images

has been presented and evaluated,

• inter-surface and intra-surface constraints have been shawn ta avoid non-

simple topologies in deforming models,

• the use of multiple surface models has been shown to improve the local­

ization of sulci occluded by partial volume effects, and

• a preliminary mean cortical thickness map has been produced, which can

be refined and used to improve the segmentation process.
.Although this solution represents a major step forward, it is by no means a final

solution, and further work is required.
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• 10.2 Further Work

•

•

The NODE method oftwo-surface deformation has been shown to achieve good results

on a small brain phantom and on individual brain datasets. However, ways to improve

the localization of the cerebra.l cortex should be investigated, as weIl as explorations of

the deformation method at higher resolutions. The most obvious short-coming with

the NODE technique is the necpssity ta choose objective terms and weights ta achieve

a particular image segmentation task. Although the objective function has been

farmulated to consist of components that have intuitive notions, such as stretching

and bending, it is still necessary to investigate a range of weight combinations for

each of the objective terniS. For more complicated tasks involving several surface

models, the number of weighting factors that must be chosen can be 10 or more,

and the combinatorics of trial-and-errar determination of optimum values requires

considerable investigation. Sonle sirnple exploration of the sensitivity of results to

the choice of weights has been presented in section 8.3, but further research into

methods of automating the choice of weights is warranted.

10.2.1 Better lVlodels of Gray and White Matter

The two-surface rnodel with a preferred ihter-surface distance has been shawn to be

sufficient for improving the segnlentation of cortical surfaces. However, it is by no

means the most sophisticated model one could devise. As mentioned in section 9.6,

one could use the results of this nlodel deformed to a large number of normal datasets

ta create a model of the gray matter thickness that varies across the domain of the

cortex. In addition, adding models of the skin surface, brain stem, cerebellum, and

dura to the multiple surface deformation process may also improve the localization

of the cortical surface.
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10.2.2 Triangle Proximity Query

One open problem that has arisen from this work is the surface proximity query

required to avoid self-intersection and inter-surface intersection, described in section

ï.3. Given a set of triangles, their three dimensional vertex coordinates and movement

vectors, and a distance along the movement vectors, compute the list of triangles

within a certain distance of each other. The faet that this query will be asked at

various (initially unknown) positions along the movement vector makes this a unique

problem that has not been fully addressed in the computational literature, but is

potentially a critical problem for surface based deformation methods.

10.2.3 Homology and Shape Matching

One of the limitations of creating average surfaces by taking the mean of correspond­

ing vertices is that the enforcement of homology of vertiees is minimal at present.

Exploration of ways to increase the honlology of the deformed surfaces should be

pursued. One possibility is to use curvature and stretch eonstraints to force the de­

forming model to remain similar to the shape of the average cortex model, which

can result in rnatehing regions of the model with sirnilarly shaped regions of the im­

age. Other possibilities include adding constraints based on features extracted from

the image volumes, such as sulcal positions or anatomicallandmarks. It would also

be interesting to investigate whether multiple surface models and self-intersection

avoidance can improve the results in this area.

10.2.4 Surface Flattening

Another area of considerable iIlterest is that of mapping complex surfaces, such as

eonvoluted cortical surfaces, into visually and mathematically sinlpler representa­

tions, snch as fiat sheets and spheres. 1tlany such methods start with a complex three

dimensional surface and attempt ta deform it ta become smoother, with constraints
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on distance and angular changes. It has been observed that these methods can result

in flattened surfaces that have areas of overlap where the surface has folded over on

itself (CDVE95], and it would therefore be interesting to use self-intersection avoid­

ance to attempt to circumvent this behaviour. The surface deformation as currently

described has aIl the components necessary to perform this type of surface flatten­

ing. Setting the desired curvature to zero would provide a flattening force for an

arbitrary three dimensional surface. Stretch constraints can be used to help preserve

distances between the three diInensional and flattened configurations of the surface.

Self-intersection constraints can be used to prevent the problem of the surface folding

over on itself cluring the flattening process. Comparison of this method to conven­

tionai techniques is therefore warranted.

As introduced in section 9.5. fiattening a surface can aiso be achieved by inverting

the process. The use of the NODE aigorithnl ta deforrn ellipsoidal modeis to complex

wIR images resuIts in a mapping of the resulting polyhedra to the original ellipsoidal

models and averages of sets of surfaces. Investigations are warranted to determine

how to encourage preservation of distances. angles, and areas in the mapping.

10.3 Conclusion

•

In conclusion, the goal of this dissertation to solve a particular image understanding

problem has been achieved, through a novel cornbination of techniques. The method is

sufficiently general to have a much \Vider base of application than the specifie problem

addressed, and investigation into other areas promises equally interesting results .
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