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ABSTRACT

Planar optical waveguides fabricated by K'-Na* ion-
exchange in soda—limé glass substrates are invesiigafed.

Experimental chara;:terizations of planar wéveguide
with respect to a wide range of fabrication conditions have been
carried out, includin,g detailed measurements of the refractive
index anisgtrop){ resulting from the large induced surfaf:e
stresses,

Parallel to this, the non-linear ‘diffusion process of jon-
exchange was simulated numerically to provide, along with the
results of the characterizations, a complete description of the
refractive index profile from any set of fabrication conditions.

i*4

The magnitude of the maximum surface index change observed

‘was shown theoretically to be almost entirely due to the induced
stress at the surface of the substrate, arising from the
preserice of the larger potassium ions.

Finally, a novel class of single-mode channel waveguides,
made‘by a "two'-step™ {on-exchange was analyzed. A simple model
for these'waveguides{, was developed and used in the design of two
directio.nal coupler structures which were fabricated and.

measured.

o

The two-atep process was conceived because it relaxes
waveguides' dimensional control, yielding /s,ingle-mode guides of
larger size, better suited for low-loss /é,onnectlons tj, optical
fitbers. It also provides an additional degree of freedom to

adjust device properties. /



==

RESUME

La fabrication de guides optiques planaires par échange
d'ions potassium-sodium dans un substirat de verre soda-caicique
est étudife.

On a effectu€ une caractérisation expe’rtme—bﬂtale des guides
planaires dans une gamme de conditions de fabrication, incluant
des mesures détaillées de la birefringence causde par les
tenstons surfaciques induites par ce procé€dé.

Parallelement, les equations non-linédaires de diffusion
décrivant 1'échange d‘ions ont été resolues numériquement pour
fournir une description compléte du profile d'indice en fonction
des variables expérimentales.

Il a été de;montré que- l'augmentation maximale d’'indice
observée est die presque ‘explusivement aux te;sions induites en
surfacé par les différences de taille entre les ions échangés.

Finalement, une nouvelle classe de guides monomodes,
fabriqués par un échange a "deux~e’tapes.". a ete analysée. Un
modele simple pour ces guides a éte déve‘lopgé et utilisé pour le
design de deux structures de couplage directionnel qui ont éte
fabriquées et mesurées.

Les guides monomodes fabriqués par ce procédé “deux-&tapes”,
congu pour refaxer les tolérances dimensionnelles de
fabrication, pauvent avoir dé “plus grandes dimensions,
facilitant ainsi le couplage avec d'autres guides ou fibres.

Cela permet aussi I’ajustement des propriétés des éléments

construits zr%ce au degré de liberté additionne! introduit.

ot
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CHAPTER 1. INTRODUCTION

1.1 BRIEF HWISTORICAL OVERVIEW

With the arrival of low-loss optical fibers in the early
seventies [(Kapron 1970], a need has developed for optlcai
waveguiding circuits to perform several functions [Tien 1977,
Kogelnik 1983]. These functions can be separated into two broad
classes.

First, the active devices, in which an externally eewnirolled
parameter can modify the function. These include mainly
modulators and switches\J[H;ammer 1979, Schmidt 1983], and to some
extent, integrated sources and detectors [Garmire 1979]. Then,
the passive devices, whose function is fixed and cannot be
controlled. Power splitters, waveguide couplers, tapers.land
w’Evelength division (de-)multiplexers belong to that class

‘
[Auracher 1983, Tangonan 1983, Schmidt 1983].

In both of these ,claslses. a fl}rther distinction must be made
between multimode and-slngle-moée systems. Early optical fibers
had core areas much largﬁer than the wavelength of light used
(typically 50-100 um core diameters vs 0.5-1.5 ym waveiength).
Such waveguides can support many guided modes, each with its own
transverse modal field profile and propagation constant.
ﬁowe\;er. due to the llmnatlohs in their inforfation-carrying
capacity, these are gradually replaced by single-mode fibers, in

which only one mode can propagate. This property is achieved




/
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thrbugh much smaller core dimension (typically S-10 pm

diameter). ' ’hz

In this work, we will concentrate on single-mode passive
waveguiding circuits made by a planar technology in glass.
For reg,ent overviews on these topics, see the references

listed at the beginning of the References Section.

1.2 GENERAL GOAL

Glass provides an i{deal substra’te for waveguiding
components to b/(used in conjunction with optical fibers because
of the similaritylln material properties (the high transparency
of glass and its physical stability being the primary reason for
its use in the first place).

Fresnel losses can be minimized between the two types of
waveguides and matching _of the\r respective refractive index
profiles will eventually lead to very small input/output
coupling losses. This is a critical problem because of the small
sizes involved and because fibers are clrcpla.rly symmetric while
planar guiding structures are more or less rectangular.

In fact, some of the most successful single-n:rode devices in
recent years have been realized with all-fiber systems, without
couplln, the light in and out of a separate waveguiding circuit
(Berch/1980. Kawasaki 1977}, However, these approaches are not
easy to implement economically for large scale fabrication and

the .cost of tndi@ual devices remain high (20-200$ as of this

writing).
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On the other hand, the patterning of a|circuit on a flat
substrate by deposition, photolithography, and diffusion |s
easily amenable to economical batch production on & large scale,
all processes having been well developed for the micro-
electronics industry. One of the mo'.'.t successful methods of
waveguide fabricatior; on glass has been ion-exchange, which was
initially explored for that purpose by Izawa and Nakagome (n
1972 and Giallorenzi et al. {in 1973, sand recently reviewed in

Findakly 1985. A full description is provided in Chapter 2.

/
1.3 TON-EXCHANGE IN GLASS

The process of ion-exchange lends itself readily to both
multimode and singlejmode waveguide fabrication although the
specific methods differ slightly in each case. For muiltimode
eapplications, larger sizes (tens of microns) and large iIndex
change ( >5% ) are preferred to increase the numerical aperture
of the waveguides [Adams 1981]. & The fonic species that satisfy
those criterion are silver-sodium (Ag*-Na*) and thalllum'-
sodium (T1*-Na*) ([Findakly 1985], although they both suffer
from some disadvantages reiated to permanence (for silver) or
toxicity (for thallium). To achieve cl:eater thicknesses, an
electric field can be used to accelerate the ion-exchange (Izawa
1972, Chartier 1978, Forrest 1986).

On the other hand, for single-mode waveguides, it i3

preferable to have a slower process, which is more controllable




for layers of the order of a few microns at the most, and a

smaller index change. The exchange of potassium for sodium

(K*-Na*) is a better rocess {in this case although some'
P

efforts have been made to hdapt the Ag*-Na* process. In one
of these, a diluted melt of AgNO; in NaNO; was used to
reduce the amount of available silver ions [Stewart 1978], while
in another, the silver fons were released gradually in the melt
by electrolysis [Lagu 1984]. Both of these methods succeeded in
reducing the index change and the speed of the process, but they
introduce additional complexity ln' the fabrication, and the
question of increased losses with time (due to the formation of
atomic silver), has not been completely resolved [Findakly

1985]).
In spite of its fairly widespread use for experimental work
(Findakly 1982, Honda 1984, Haruna 1984, Yip 1984, Jackel {985,
- ~f

Okamura 1985, Garmire 1986], very little date has been

published on the exact waveguiding properties of waveguides made
with the K'-Na* process [Aksenov 1982, Finak 1982, Chartier
1983, Findakly 1985]. This is in contrast with the case of

Ag*-Na* exchange which has been the subject of at least two

very detailed characterizations of its planar waveguiding

properties (Stewart 1977, Griffiths 1981].

When this work was undertaken, such an exhaustive

characterization was needed for the K'-Na* exchange.

It constituted the starting point of this thesis.




1.4 PRESENTATION OF THE WORK

The goal of a planar waveguide characteri{ation is to
determine how waveguiding prope;ties are related to fabrication
conditions. The first step is to fabricate a series of %planar

ay

waveguides in different conditions of duration and tenmperature.
and to measure them (as explained in Chapter 3), using a
commonly available type of a substrate glass with a high sodium
content. This makes it possible to dete“rmine, with the greatest
'accurécy possible, the magnitude and depth of the refractive
index change as a function 7f the process parameters, in the
form of practical design form\;las (Chapter 4).

Parallel with this,r a theoretical investigation was needed
to determine the shape of the induced index change. This s
because it is very difffcult to measure this profile with the
required sub-micron resolution or to infer §t from mode index
measu;ementsifor these’ very shallow waveguic;\es supporting at
most only a few modes. One of the standard methods of profile
reconstruction from mode index measurements is only accurate
when many modes are measurable [White 1976}, and physical
measurement by interferometry [Martin 1974] or with ionic
concentration probes [Giallorenzi 1973, Ramaswamy 1986]), lack
the necessary resolution.

A study, t;ased’on the theory of the jon-exchange process,

has been made for the Ag*-Na* case [Wood 1976, Stewart

1977]), and demonstrated that a second-order polynomial function
’ * &
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provides a -good empirical fit to tﬁe profile. However, these
resuilts were taken by other aut.hors (Okamura 1985] as
representative of the potassium case also, while preliminary
results of our characterization indicated that a Gaussian
function provided an excellent fit of the profile. In order to
ﬁear this point, we set out to solve numerically the exact non-
linear diffusion equation of ion-exchange and established how
the shape of the In—dex change depehds on the substrate glass and
the fonic speclés involved (Chapter 2).

In addition to these results./(nother topic needed

clarification with respect to the mégnitude of the }ﬁdex change

resulting from, the K*-Na* exchange. A very accurate model
a
for the refractive index determination from glass composition
yielded an index change that was two orders of magnitude lower
than ’measured values [Gortych 1986a,b]. To explain the
discrepancy, the effect of induced stress [Kistler 1962],
already known to be responsible for the birefringence observed
in these waveguides [Zlenko 1979, Bradenburg 1986], was
calculated (Chapter 5). With th; addition of the stress
contribution, the experimental values of index change agree very
well with the model predictions. In fact, the index change is
shown to be almost entirely due to the presence of stréss. This

is -a very significant new development in the understanding of

the mechanical and thermal properties of these waveguides.
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Wilth the problem of planar waveguides taken cur\o of, the

0 next step is a study'éf the single-mode channel waveguides in
which light is conf\i’ned laterally as well as in the depth. Such
fon-exchanged channels have been used often for device work

[Findakly 1982, Walker 1983a, Cullen 1984, Honda 1984, Haruna

1§85]. but very few analyses of their exact shape and
propagation properties have been published [Walker 1983b, Cullen

© 1986]). All of these used the simple structure consisting of an

=isolated channel, defined by ion-exchange through a narrow

aperture. . (}
/

3

In this work, it was decided that a more 'novel structure
would be used, fabricated by & two-step ion-exchange met;zd (Yip
1984, and Hinkov 1982 or Chartier 1986 for yariants]. With this
O method, the channel waveguide is surrounde;! by a slightly

shallower planar guide resulting from a second exchange over the
whole substrate with the masl: removed. ‘

. ,/'/It has two distinct advantages over single-3tep guld:s
because the ‘,latefal indexrgradient can be.dtminiahed at will. »
Firstly, this allows the fabrication of single-mode guides of
much wider dimensions, thereby- relaxing fapr tion tolerances
ar;d facilitating input-output coupling to other waveguides orﬁ

fibers without the need ;or tapered matching sections. Secondl‘g'. _’

'the propagation constant and mode profile car: be adjusted by

changing the depth of -the surrounding pianar ¢uldi. This allows

o " for the fine tuning of the performance of waveguiding devices to

e
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compensste for design or fabrication inaccuracies. The main

o

‘ldvnntace) of this method of lateral .waveguiding control over the
\ . .
"alternative approach of depositing a planar cladding on top of

the/substirgate is that it does not require any additional high

vecuum -processing and s extremely precise.

In order to be able to understand the wgveguidlne properties

o 4

of these guides, theifr exact {ndex profile was calcdlated
numerically from the two-dlmenslonall fon-exchange diffusion

equation (Chgpter 2). Then, the problem of electromagnetic wave

propagation inside these structures could be solved. This is a

— -~ rather difffcult ta¥k which has no analytical solutions due—to——

the complicated shape of the index profile. However, various

c- approximate numerical or semi—anélytical methods are available.

#
\ . :
In Chapter 6, a semi-analytical me d is developed to allow
g

)

a full characterlr&tlon' of channel eydes from data derived

o~ o
S e Ng exclusively from planar euic}e measurements.ﬂ A comparison with a

a* matrix variational numerical method, whose pregision can be -
. N

lnéreased by using larger dlméﬁslons; confirms the fécurgc‘y of

-

the mode! developed. -

-5

4 But channel guides by themselves serve o'nly limited

P

‘.- purpsses. The goal ©f this whole endeavour is the realization of
; optl\cal‘ circuits using the cheannel’ guides. One particularly

useful basic struc;&ure is the directlonalucouplerf[Marcatiu

@ 1969  and for its uses: Cochrane 1986]. Besides its basic power




.

o
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splitting properties, it can be used as a wavelength

’

multi/demueltriplexer. or as a very narrow bandpass flilter
(Kogelnik 1983]. Furthermore, it has the potential to be used as

a switch when the substrate glass is doped with semiconductor

-

~

impurities [Cullen 1986]. Previous work in this area include

i

[Walker 1983c, Yip 1984, Schlaak 1986].
It was therefore decided that a directional coupler would be
designed and fabricated.l The purpose in doing so is two-fold:

first, to verify the accuracy and usefulness of the model

/
»

developed in chapter 6 for the design of more complcif

°

¢ _structures; and second, to Jjustify the claims that wers made

about the advantages of the two-step method for device

4

fabrication.

Chapter 7 presents the analysis of general directional
]

“ :
coupler stru?%ures as -éxtensions to the single¢-mode and single /

é

\t h -
waveguide case. The\fu probiem is discussed; tncluding

practical input and Qutput sections to the basic céuplinl
element. |

Finally, the actual design of two directional couplers |s
presented in Chapter 8, along with experimental measurements of _
the fabricated devices.

A brief review of the whole work and prospects for future.

developments are presented in the conclusion.
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1.5 OUTLINE OF ORIGINAL‘(,ZONTRIBUTIONS e

The original coniributions of this work to the advancement

" of knowledge in this fast moving field aere. summarized below:

- the detailed characterization of planar K'-ion
exchange in glass, including measurements of the refractive
index antgotropy fYip 1985, 1986)

- the quantitative demonstration of the relation between

the profile of index change and the individual ion species and

substrate glass [Albert 1985]

o
- the quantitative ex"planation of the magnitude of the

fndex change resulting from the substitution of potassium for
sodium in glass, highlighting the significant contribution of
surface induced stress [Albert 1987b])

3

- the analysis of wide single-mode channel waveguides made
by two-step ion-exchange in glass [Albert 1987c]

- the analysis (dispersion curves and modal fields),
design and fabrication of a_working directional coupler, with

adjustable power transfel characteristics [Albert 1987a, 1986].

G
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CHAPI»ER 2. THE ION EXCHANGE PROCESS.

2.1 BASIC PRINCIPLES

2.1.1 Glass composition <

A typical soda-lime glass i: composed of 71-75% silicon
dioxide (Si0;), 12-167 sodium oxide (Na,0), 5-157% calcium
oxide (Ca0), and smaller amounts of various other oxides
depending on the exact type of glass (K,0, Al;0;, MgoO,
etc..)[Pfaender 1983, Doremus 1973, Shand [95S]. It was found a
long time ago [Schulze 1913], that, under certain conditions, it

is possible to replace some of the {fons present in the glass by

other ions of equal valence. Sodium in particular has been found
to be easily displaced by other monovalent ions (Ag"*, K*,

L1%). The new {ons thus introduced in the glass occupy the
same sites as the ifons that they replaced since the exchange is
on a one-to-one basis. Of course, the properties of glass change
in the regions where such exchan/ge has taken place.

More specifically, different {fons have different
polarizabilities M?nd sizes. This leads, among‘\oth‘é‘r“;{.fects. to
a local change 1n the refractive index which can be used to

guide light by total internal reflection {f the exchanged layer

has the suitable dimensions and shape. Both the Ag'-Na*® and

K*-Na* exchanges have been used to make useful optical
waveguides in glass by an increase in the refractive {ndex
relative td0 the substrate index. The exact relation between the

index change and the concentration of new ions in the glass is
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feirly complex but it is generally believed that the two are
proportional (Walker 1983b]. This assumption will be used here
for the time being, but the derivation of an exact relationship
will be discussed in Chapteer 5, after the results of our
characterization of the K'-Na* process have been prgsented.

2.1.2 Explanation of the ion-exchange process

Qualitatively, ion-exchange proceeds as follows. A glass
substrate containing Na* ions is immersed in a molten salt
containing chemically similar ions, which will be K' here,
for example. At the glass-melt interface, both ion
concentrations initially drop suddenly from finite values to
zero. This is clearly a non-equilibrium situation since K' and
Na* fons are almost perfectly interchangeable in both the melt
and the glass. Therefore, thermal agitation 8t the i1nterface
produces random collisions in which one K* ifon replaces one
Na* lon, and this process gradually diffuses away from the
interface. Of course, in the melt, the Na* ions move much more

rapidly away from the surface (and ay’é “lost™ in what can be
J

considered an infinite reservoir éf K* fons) than the K'
lor;s in the glass, which slowly invade a very thin layer near
the surface of the substrate. The process accelerates at higher
temperatures because of stronger ﬂthermatl agitation and also
because the glass matrix, through which thesé¢ ionic motions take

place, is less rigid.




13

When the glass is lifted out of the melt, but kept at a high

temperature, the exchange continues without a supply of new K*
ions. The result is that the ions, which are already in the

.

glass, will tend to redistribute themselves i{n order to reach
equilibrium (i.e. uniform concentration of both K' and Na*
throughout the substrate) by moving in deeper but with
decreasing surface concentrations. The process only stops (or
rather becomes infinitely slow) when the source of heat is
removed and the substrate‘ allowed to cool towards room

temperature. Typical exchange temperatures range from 200°C to

550°C and generally do not lie too much above the melting
point of the salts used as sources of exchanging ions because
excessive heat may lead to damage of the surface of the
substrate due to nitrate decomposntoion and excessive thermal
motions (Bartholomew 1980). The resulting concentration profile
has a maximum at the surface and decreases monotonically inside
the substrate because of the configuration and nature of the
process..

For the specific case of fon-exchange in soda-lime glasses
from nitrate melts, \t has been established [Doremus 1973] that

the preferred ion-exchangers are silver (Ag*) and potassium

(K') Iin that otder. In fact, Ag*-Na* exchange occurs

significantly faster [Chartier 1983) and yilelds a larger index

v

change than K*-Na*, and is, therefore, more suitsbie for

deep and. highly muitimoded waveguides [(Stewart 1977]). On the
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other hand, for single-mode waveguides, the slower exchange rate
and lower index change provided by working with potassium allows
for easier control and greater repeatability (typical exchange

durations for single-mode planar guides: 5-15 minutes for Ag™*

[}

{Zlenko 1979]), 30 minutes to a few hours for K' [see Chapter
4].

Finally, the refractive index is not the only parameter of
the glass that is modified by the exchange of ions. Very large
stresses are induced near the surface due to the size difference
in the ions (Kistler 1962]. These stresses have been known and -
studied for some time by the glass industry specialists for the
purpose of strenghtening sheet glass. .Their effect on the

waveguiding properties of exchanged layers will be described in

Chapter 5.

2.2 MATHEMATICAL MODEL FOR THE ION-EXCHANGE PROCESS
The change i{n the concentration ¢ (number of ions per unit
volume) of a given lonic species can be related to the flux of

fons J by:

g . _y. -

For the cases of mixed non-interacting substances diffusing
freely and isotropically, the flux obeys Fick’s first law [Crank

1956, 1975]:
J = -DVc (2-2)

f

.

. Wwhere D, the diffusion coefficient, is a parameter related
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to the substances involved and the conditions under which the
diffusion {s taking place. It can actually depend on c.

Substituting (2-2) into (2-1), we get Fick’s second law:

9 - v.00v0) (2-3)
which can be solved for c, given suitableys initial and
boundary conditions if D is known.

In the ion-exchange process, diffusion is no longer free
but restricted by the condition that each incoming fon replaces
an outgoing ion in a one-to-one fashion to preser\;e the global
neutrality of the glass [Helfferich 1958]. Locally, however,
since the two types of ions have different mobilities within the
glass, one may tend to outrun the other. An electric field
results which has the effect of restoring neutrality by
equalizing the fluxes of the two fons. The contribution of this
electric field to the flux can be evaluated as follows
(Frederikse 1981]:

The ratio of the speed of the ions to the magnitude of the
driving electric field is given by the mobility u,

vg = iE m/sec (2-4)

and the mobility is related to the diffusion coefficient D by:

D m2/volt-sec (2-5)

B = XT

»x

where e is the elementary charge (1.6x10°19 Coul),
k is Boltzmann constant (1.38x10"% J/°K),

T is the temperature in °K.
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Then,
Jp = cvp = cf%{: (m?.sec)”! (2-6)

The total fluxes of {fons become (with the subscripts a and b

- denoting K' and Na* ions respectively):

J, = =D, (¢, - & c, E) (2-7)
Jb -~ -Db[VCb -~ 'k%-‘ Cb EJ [2'8)
Neutrality requires:
Jﬂ - "Jb (2‘9)
and
C, * Cp = Cg = constant «l2-10)

The constant cp is the concentration of Na* ions present in

the glass prior to the exchange. Since K fons replace Na*

jons on 8 one-to-one basis the total concentration of Na* =+

K;_/ remains cg.

\

Substituting (2-10) into (2-8) and using (2-9) we get:

¢ . Dy+ cyD
- - Callp b -
N *CbDb] Ve, (2-11)

From (2-11), we can define an effective diffusion coefficient
D' by:
' DD, (c, *+Cyp) D
' b ‘ta TCo) a 2
N TN 1—_—:,55;)? m?/sec
b a

D' - —2 (2-12)

with

" ¢ A ' A
cl'?ﬁ%:icbff'?f;'l'ca (2-13)

and

a-Al-g:-l-;: (2-14)

for the flux of K* ions from = KNO3 melt into a glass where
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they replace Na* ions. This leads to :

ac A D a
=2 = "0 VE,) = v-(l—_;‘-é:Vc,) (2-15)

3

as our partial differential equation (PDE) describing ion-
exchange.

: o
2.3 SOLUTION OF THE ION-EXCHANGE DIFFUSION EQUATIONS

2.3.1 Planar ion-exchange: analytical solutions.

For the case of R{anar. or siab.‘ waveguides, the exchange
is performed without masking the sub;trate “§o define channels or
deg'ired structures. Since the diffusion reaches only a few
microns’' depth in a substrate of at least a‘few square
millimeters, the process {s essentially one-dimensional along

the depth direction, labeled x. Setting the derivatives with

respect to y and z to zero in (2-15), we get:

aéa 3 Da aEa
Eall Ty (2-16)

This is a non-linear PDE of second order in x and first order (n
t. Therefore, we need two boundary conditions in x and an
initial condition in time. The spatial domain of integration |s
the substirate. At time zero, the concentration of new fons |3
zero. C,(x,0) = 0 (2-17)
For the boundary conditlons. (Frischat 1975], we used a zero
concentration at infinity and a fixed value /of concentration at
the surface since the mobility of the {fons in the melt |s

sufficient to maintain a homogeneous and constant supply of new



fons, in spite of the temporary presence of the outdiffusing

fons. I't was observed [Doremus 1969, Frischat 1975, Cullen

1986) that for the K'-Na* exchange, the maximum

concentration of exchanged ions (occurring at the surface) is

only a fraction h (around 0.9) of the total concentration of

available Na*:

€o(0,t) = h = constant (2-18)

) Coleot) = 0 (2-w9)

The constant "h* appearing in (2-18) represents the

fraction of acceptor sites (Na*) that are effectively
participéting in the exchange because of:

0,t
a0 (2-20)

» c,(0t) =
and
Cg = Cp(0,0) (2-21)
so that
ca(z),t) = hc,(0,0)
Note that the last equation is érrly valid for t > 0, since
c,(0,0) = 0. It takes a short time for c¢,(0,t) to reach its

equilibrium value, but it is negligible compared to the

\

This completes the formulation of the problem. In order to

4

diffusion times used.

begin its solution, we use a transformation, due to Boltzmann,
to reduce (_2-16)'to an “"ordinary differential equation” [Cr-':;nk
1956, p. 148]: 3

y = = (2-22)

then
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3_ .3 9y _ _1 3
ax ~ dy x 2.J0,t 37 (2-23)
3 3 9d¥ - % d
5 " i ¢ " = (2-24)
at oy dt a4 Dats ay
and (2-16) becomes:
g g 3 9
2% " Sl ) (2-25)
with
g,y = 0) = h (t>0) (2-26)
and
ea[" = @) = 0 (O<tcw) (2-27)

Furthermore, let us renormalize E‘ to have 2 more
convenient boundary condition at y = 0.

Putting

3 ’

c= R, cy=0) = 1 ; clyse) = O (2-28)

and (2-25) becomes: .

(<

_oydc (1 dc -
27(17 (1 - ahc dy (2-29)

where we see that (2-28) is equivalent to scaling a by h. In
“the following, & - = ah.

A parametric solution of equation (2-29) is preséented in
[Crank 1956, Ch.9] and detailed in Appendix A of this thesis.

The result of the solution i{s shown below so that it can be used

as a starting point for a more convenient power series
expression for c(y), originally proposed by [Wood 1976]. In
this solution, both ¢ and y are expressed as functions of a

common parameter 0:

i =1
v(0) = -lzl;@-(e’-ulnez)z) exp(f (62 - uinoH? ao) - (2-30)

2
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1

1 o - s
c®) - 1 - exp(-2[ te? - .nm?)"l de)) (2-31)
‘where g is found by solving: .
~ 1 2:21 »
Inl - &) = -2 [o (02 - ping?)? do (2-32)

Now since we are interested in a solution for c(v) in a
very shallow layer below the surface of the substrate, we will

seek for it in the form of a Taylor's series expansion near y =

0.

cty) = c0) + £ o 5—9—% 72+ gﬂ—% ¥ .. (2-33)

where the derivatives are evaluated with the help of (2-30) and

(2-31):
£ - ;,13 - de(X B v (2-34)
where
g% - &7 - mne’):’l exp(-2 o°(o2 - mms"):'*‘l do) (2-35)
and |
& . -g‘\[g(e’-mno’)i‘ exp(] o‘w’-mna?):fl do) (2-36)

<




= E

yielding finally: f\)

ﬂ% - (-21?) F"P(‘f’ I;W'NM’J? ds) (2-37)

A similar calculation gives:

d?c 2 2 i‘ e 3
5 - £ {o*-uine??) exp(-4 j’o\ (o»f-mm?)"L de) (2-38)

and

d’c 442y 2 295+ a2 2,3 2

w[(‘le -(0°-uin8€)£)((0“-pin0“) ~ 30) - (8°-n) - 3) L
BN ; 3 :
\ . exp(1S [ "(#2-uine?)? dg) (2-39) -
N

~

\




'“S The expressions (2-37) to (2-39) must be evaluated at y=0.

Therefore, the value of 6(y=0

is needed. This is foundgy

using formulae (A-33 and (A-40) in Appendix A,

yle'ldin‘g:

B(y~-0) — (2-40)

?

?J_g also by (2-32):

A}

j°='(2- 1 2):214 =2 e - & ‘ (2-41)
0 ¢“ - ping ¢ 5 In a ) ~

Using these results, we ’getx

S/

cty) = 1+ (3 2}5(1 a)’) v + (F0-8)7) ¥? ( (1 8P 4)) Y2 .. (242)
£

which, along ‘with the definition of i
§

X
- \ (2-43)
YT 2Ppa

’ L W
fixes c(x,t,D‘,&), the normalized .concentratton pyfile.
It {8 not necessary to know ¢; Wwhich would determine the
megnitude of ca(o,tg because An(x=0) is megsured
independently. This means that An(x) can be obtained as

An(0)=c(x) ;idce c(x) is normalized to 1. -

-

bl

This resuit will be used in section 2.3.2 when we compare\

the profiles obtained for K*-Na* ion-exchange with those
resulting from Ag*-Na* with the help of exact pumerical

solutions.
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2.3.2 glanar fon-exchange: numerica! solutions.
Starting again from (2-29) with conditions (2‘-28)' (N{:eated

here for convenience):

o - & (r:La—cﬂ%) (2-44)
"1 - ac d'y T -&c)’tdgg)

c(@) = 1 : c(co) -0 (2-45)
One way of salving (2-44) numerically is to transform it

into a system of first order equations [Conte 1980]:

gg— -8 . (2-46)
9‘ Eg_ .- oA _ a 2 )
3 - "2l - &) - s (2-47)
with c(0) =1 t c(o) =0 (2-48)

_This system is fully determined (although non-iinear) and
can.be solved. One problem‘ remains, that of the boundary
at i{nfinity. It i{s handled by a map’pl\ng which transforms the ¥y
= [0,o] domain into a bounded region lﬂp = [0,1]. The mapping

l;:

e A (2-49)

and the derivative with respect to “y* becomes:

¥

2
ool ..

so that (2-46)-(2-48) become: k . ‘

de . & ‘ (2-50)
d - . .
98 | o - & . - ag’ \ 2-51)
dp 9 8l &) a-9° «-a&t- 9)1“ (
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with c(0) - 1! i c(l) =0 (2-52)

The system (2-50)-(2-52) is solved using a comme“:ially
avallaﬂé“&ﬁﬁroutlne called DVCPR from the IMSL package on a

grid of 60 points in the interval p = [0,0.99] (corresponding

to y = 0 to 99). The program uses an implicit finite difference

ngorlthm which {3 unconditionally stable (regardiess of the
grid spacing Ap).

The only parameter'of the system\ is a&. For K'-Na*
fon-exchange in soda-lime glass, the ratio of the mobilities of
the two ifons and the fraction of sodium participating tn the

exchange are respectively [Doremus (969]: -

“‘PK.: %500 ; h = 09 (T=374%)

which gives & = 0.898. On the other hand, for Ag*-

Na* exchange,.the VBll;le of @a = 0.56 was found [Stewart

1977'].

The effect of va*’ryin,g @& on the solution for c(y) is
rather important, as can be seen in Figure 2-1. This sheds some
l'lght on the controversy which surrounds‘ the choice of an
approximate function to mode! the refractive-index profile
resulting frorh lon-exéhange. ‘In the case of Ag*-Na*, an
extensive study showed that the best fit is pr:vided by a
se’cond-order polynomial [Stewart 1977], prompting some people to
use the same function when dealing with potassium exchange

(Okamura 1985]. Others [Chartier 1980, Giallorenzi 1973, Gortych

1986a,bl have proposed and used Gaussian functions and “erfc”
/
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Figure 2-1. Effect of the value of & on the profile of the
exchanged jon cbncentration.(&:d—»er‘:c)
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functions (if.e. one minus the error funtion, or “complementary
error function”), for various types of exchange, usually basing
their arguments on classical diffusion theory, for which these
two functions fepresent standard solutions. It is no clear,
from Figure 2-1, that the’exact shape depends critically on
& which {n turn varies widely with the exchanging species

and substrate glass [Doremus 1969].

In order to clarify ‘the question between the siljver
and potassium cases, Fizurgs 2-2 and 2-3 show the numerical
solutions for the two previously cited values of @, along
with the best Gausslga fit to it and also with the analytical

3
power series solutlonlf derived in the previous section (taking

its first three terms, up to second order). On Figure 2-2

(K'), the Gaussian fit follows quite well the exact result

over its whole range while the power series does not remain

¢
accurate far away from the origin.

On the other hand, in Figure 2-3 (Ag®'), while the Gaussian
fit is relatively poor over the whole range, the power series is
very accurate over a domain that extends almost to the nominal
depth (y = 1) of the profile. This explains the good fit
obtained by [(Stewart 1977] since waveguides made from Ag*-
Na* “are much more strongly guiding ’\(their index cha?ge is ten
times larger) than those made with potassium, and most of the
optical power propagates in a very shallow layer near the
surface (y=0). In the K*'-Na* case however, the optical

<
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Figure 2-2. Variation of refractive index change with normalized

depth for K'-Na* exchange. Comparison of the
numerical result with the approximate solutions.
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Figure 2-3. Variation of refractive index change with normelized”
depth for Ag*-Na* exchange. Comparison of the
numerical result with the approximate solutions.
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power is less confined and good agreement of the model function
is necessary over the whole profile for it to be successful in
predicting waveguiding properties. As far as the erfc function
is concernped, its behaviour near the origin (a large negative

slope), 15 totally i1nconsistent with the numerical solutions

v

obtained for & values larger than 0.5, which are much more

rounded at y=0 (see Figure 2-1).

These conclusions are confirmed by our own characterization

of the K'-Na*:process in soda-lime glass (presented 4n

N

2

chapter 4), where we use a Gaussian function of the form:
- X

{
- D_t

on(x) = An_ e 9% An_e ° (2-53)

L

t(; model the i1ndex profile with very good accuracy, with "D,",

an effective diffusion coefficient, and "t", the duration of the

exchange. In Figure 2-2, the best Gaussian fit is obtained for

’ Y -
c(x) = e =e a with & = 1.17 (2-54)

which allows for the determination of D, (needed in th; next
section) frlodm a measurement of D,

2.3.3 Numerical solutions for channel waveguides, -

It is possible to obtain very accurate solutions to 3partial
differential equations by using numerical methods on a computer.
These solutions can be used to check the accuracy and the range
of vahidity of approximate methods (as was done in the previous

“
section) and are applicable to the more general case of two-
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dimensional diffusion through an aperture. It is from these

results that the waveguides obtained by ion-exchange will be

anslyzed in later chapters.

The 2-D implementation of the numerical solution is
described below, in more details than in the previous section
because no commercial subroutines were used.

Starting again from (2-15), in two dimensions:

D c D '
= — - -
%% g7 (1/-(1(; g;) * 9yM-ac gsi] (2-55)
where the normalizations (2-28) and & = ha have been used

again. To “standardize” somewhat the numerical procedure, the

following transformation is made [Helfferich 1958]}:

f = Inl - ac) (2-56)

af -a_ 3c -
3 " T-ac , (2-57)

and similarly for % and -g—{ to arrive at:

PN A S - A& & : -

(1-Gc)zy = e gT D.[;(% + ayz) (2-58)
\ » §_2L 2 ,

g{- - e D, ax? * g;% . ' (2-59)

The spatial domain of integration is shown on Figure 2-4 for
the case of ion-exchange through an opening of width D. This
allows for an explicit formulation of the other boundary

conditions:

cO.lyl<B) = 1 (2-60)

c@lyizl) - o (2-61)




3l

c(oy) = 0 (2-62)

c(x,t®) = 0 (2-63)

Note that condition (2-61) is dependent on the experimental
procedure [Wilkinson 1978]. In principle, nothing prevents
lateral diffusion to occur along x=0, just under the mask.
However, in the case of metal (aluminium) masks (as will be the
case here), the exchange along y is prevented because no
electric field can exist in that direction at the interface with
the conductor. Mathematically, this corresponds to setting

E, = 0 in (2-7) and (2-8). Then, when we impose conditions

(2-9) and (2-10), the result is that 3c/3y must be equal
to zero. Furthermore, no flux is possible in the x direction at
x = 0 because/of the mask, which means that 3c/dx = 0.
Since the net total fluxes are zero at x = 0, then the
concentration of new {ons remains at its {nitfal value there,
f.e. remains zero. When the mask is non-conducting, the first

restriction (Ey-O) does not apply and the appropriate boundary
condition 1s one of zero resultant normal flux (outward or

inward)®:

N

ac D -
8olyl>3) = 0 (2-64)
In terms of f the boundary conditions become:
fIyl<D) = In¢t - & (2-65)
foJylzd) = 0 (2-66)
f(o,y) = O (2-67)
f(x,20) = O ' (2-68)

The numerical solution of (2-59) is based on replacing

the derivatives by finite differences on a discrete space-time

= The above considerations are only approximative near the

mask edge because the electric fields and gradients are not

<

uni{form there

[ 2
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grid. The spacing of the grid points must be such‘that we have &
rca\sonably high resolution in the main region of interest. At
the same time, the grid must extend far enough in the spatial
domeain to allow the use of boundary conditions that should be at
infinity. All of this contributes to making computing time
extremely large {f steps are not taken to reduce the problem. in
some way.

First, we can halve the computing time by solving only one
half of the problem. As can be seen from Figure 2-4, and the
fact that ion-exchange in glass (s isotropic, it is obvious that
the concentration profile will be symmetric about y = 0.

Therefore, a new boundary can be used at y = 0 and calculations

The boundary condition is:

8¢/ x,0)= O -%(x. ) (2-69)

which follows from the| symmetry off{ ¢ with respect to y:

y) = clx,~y) (2-70)
Another time and spe&ce sqvlng measure consists of using a
variable grid on which fo calculate the finite differences, in
the same manner that was done in the previous section. This new
grid is obtained by mapping the semi-infinite x and y axes onto

finite intervals by the following change of variables:

i .
Eogly 1 x= ﬁ% (2-71)
. bn '
AT A < (2-72)

By this transformation, an evenly spaced grid in the E-n
coordinate system corresponds to an x-y grid which begins very

7
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7
fine near (0,0) and gradually becomes coarser away from the

¢’

origin, yielding the desired high resolution in the rectangle
e

ﬁ/,
defined by x = (0,a) and y = (0,b), and also coverage of the
I~
l
regions outside of it extending to infinity. Note that:

En— | as x,y— ®© (2-73)
Ead -
En—~ 0 as’ xy— 0 “o A (2-74)

P
The central part of the x-y gri¢ is shown on Fi re/2-4.

~~ A
The outermost points are left out because it would not be

possible to distinguish the central portion on the same scale.
The total grid consists of 11 equally spaced points in ¥

(located at 0.0, 0.4, 0.2,...,1.0) and 16 points in n (0.0,
7 \\

—

0.067, 0.133, 0.200,...,1.0). The corresponding values of x and

y are listed on the sample outputs from program DDFUS (Tables 2-

1 to 2-3), and they are shown graphically on Figure 2-4. ith
I

the new variables, equation (2-59) i{s transformed in the

following manner:

3 &3 0 -kr? [ oo
il Pl s %? \\(z 75)
\\
2 u-8° o0 L pd ,’) )
L. (g e u -l - (2-76)

and similarly for "y", to yield finally:

-’ ) - n)? 2
& -0, e [ (28 a - e)g—:f,) Lo (2« - mEl) -7

To solve the problem numerically, an explicit finite-
&=
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dllfet(?nce scheme was chosen because of its convenience andl
simplicity [Gerald .1970]. ‘Also the accuracy of -that method carux
be controlled relatively easily by changing the resolution of
, -

the time and spatial steps used in the finite differences, as
long as the time step is small enough to ensure the stability of
the computation ([(Gerald 1970]. Stability means that errors do
not grow exponentlally(ﬁwlth successive iterations in time (i.e.
do not start- to osclllat\e'\wlldly). A criterion for stability is
derived below. \”

The finite dlfferégg;) which correspond to the partial

derivatives are listed below. [,(I,J) is the value of f at

grid point (1,3 (¢ and n coordinate respectively), and time

tg, while f,(I,J) is the value at time t; + At.
fo(lI+1,J) - f4(I-1,J)

@%)u -2 SAE (2-78)
%]u - T (2-79)

g 1] (AE)

2 fo(IJ+1)+ Fo(1,J-1) =-2f,(1.J)
- -2 o i) -81
= @an? (2-81)
f,(IJ) - £o(1.J)

(g{.)u - AtJ (2-82)

The set of equations (2-78)-(2-82), when replaced in (2-77),
determines uniquely the values of f, in terms of those of
fg. The calculation proceeds as follows: first the matrix

fo(I,J) is initialized with zeros, except at the unmasked sur-
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face (I=1,J depends on the mask aperture) where the values are”

~

fixed at In(l - a). Then, the finite-difference equation i{s
‘ . )
calculated for the wvalues of f, at all the "interior"™ grid
points (remember that on the boundaries I=il and J=16 the values
remain constant, equal to zero). On the boundary y = 0, J=1 and
formulae (2-79) and (2-81) contain terms for which J=0, which
are outside the calculation domain. Fortunately, we know that
the value of f(I,0) must be ‘equal to the value of f(I,2) because
of th;a symm;etry of the problem about y = 0. Therefore we use:
fo(1,0) = f4(1,2) (2-83)
in (2-79) and (2-81). Once f; is known everywhere, it replaces
fg and the process is repeated for another time step.
Before proceeding with the results of these calculations,

¢+

the parameters a, b, D @, and At must be chosen. The

a®
spatial scale of the problem is fixed by a and b since, by
equations (2\—71) and (2-72), x=a and y=b correspond to E,ne
0.5 and. separate the region where the grid is " finest from the
outside, where {t is cofrser. In this work, masks with apertures
of 10 ym were used, so thﬁat Igwas fixed at S pm to correspond
to the edge of the mask. The depth of the waveguides would vary

from 0 to 2 ym and the.value of a was fixed at | um.
The diffusion parameters, & and D, were calculated as
mentioned in the last section. For K*-Na* exchange in soda-

lime glass, they are:

& = 0.898

rd
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D

D, = —L— = .95 x 107'*m?%/sec
* 4047) )
The value of D, for T=385°C was used (see Chapter 4). f

Finally, the time step At must be small enough to ensure
stability. For parasbolic differential equations in two
dimensions, similar to (2-59) without the exponential factor,

the criterion is [(Geraid [970]:

2, a2
o (ax) +(ay)

As an hypothesis, we assume that the presence of the
exponential factor can be accounted for by considering it
"locally constant” around each grid point and including it in

(2-84) as such: ,

At g (Ax)?+(AyAH0 - Gc)

To find a lower bound for Aty ... Wwe take the largest ' ‘

value of ¢ (i.e. <c¢=!), which occurs where the grid {s finest

(i.e. smallest Ax and Ay, equal to 0.1 pym and 0.35 - pm), and |
the numerical values of D, and & for K", giving finally:

~14 -13 2 -1 '
(1 % 1077+ x 10 m A x 10 ) x g gec. 2-86)
8(2 x 10""m</sec)

) At <

The final choice for At is 4.2 seconds, but other valyéds have
been tried to verify thy stability of the result.

An example of “the conce/ntration profile .obtalne for an
cxck{lnce of 1 hour at 38515 tiirough a 10 pm wide opening is
shown on Figure 2-5 (with the cc‘rresponding data in Table 2-1).
Also, Tables 2-2 and 2-3 show the results of the same °

calculation but executed with time steps of 2.1 and 8.4 seconds,

3
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{4= 3600.0 Ate 4.20 D, 0.195D-15 and &= 0.8
yil xx0.000 0.111 0.250 0.429 0.667 1.000 1.500 2.333 4.000
0.000 1.000 0.986 0.96S 0.934 0.882 0.787 0.590 0.199 0.010
0.357 1.000 0.986 0.965 0.934 0.882 0.787 0.590 0.199 0.010
0.763 1.000 0.‘986 0.965 0.933 0.882 (0,787 0.590 0.199 0.010
1.250 1.000 0.986 0.965 0.933 0.881 0.786 (@.589 0.199 0.010
1.818 1.000 0.985 0.965 0.933 0.881 0.785 0.587 0.198 0.010
2.500 1.000 0.985 0.964 0.931 0878 0.780 0.580 0.194 0.010
3.333 1.000 0.984 0.961 0.926 0.868 0.764 0.558 0.183 0.009
4 375 1.000 0.976 0.942 0.893 0817 0.692 0475 0.145 0.007
5.714 0.000 0.054 0.10f{ 0.138 0.158 0.152 0.107 0.03! 0.002
7 500 0.000 0.002, 0.004 0 007 0.009 0.009 0.007 O 002 0.000
10.000 0.000 0.000 0.000 0.000 0.000.0.000 0.000 0.000 0.000O
13.750 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.000O
20.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32 500 0.000 0 OO0 0.000 0 QOO0 0.000 O OOO 0.000 0.000 0.000
70.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 2-1 Output of program to calculate the concentration
profile of exchanged ions T=385°C , D=10um

t,= 3600 0 at- 2 10 D,» O 195D-15 and a=- 0.8
yl/ xa0 600 0.111 0.250 0.429 0.667 1.000 1.500 2.333 4.000
0 000 1.000 0.986 0.965 0.934 0.882 Q’.?,G? /0.590 0.199 0.010
0O 357 1.000 0.986 0.965 0.9349 0.882 0\.787 0 590 0.199 0.01}10
0.769 1.000 0.986 0.965 0.933 0.882 0.787 9.58619° 0.199 0.010
1 250 1.000 0.986 D.965 0.933 0.881 0 786 0 5839 0.199 0.010
1.818 1.000 0.985 0.965 0.933 0.88! 0.785 0.58- 0.198 0.010
2.500 1.000 0.985 0.964 093] 0878 0.780 0.580 0.194 0.010
3.333 1.000 0.984 0.96% 0.926 0.868 0.764 0.558 0.{83 0.009
4.375 1.000 0 976 0.942 0.893 0.817 0.692 0.475 0.145 0.007
5.714 1.000 0.127 0.101 0.138 0.{158 0.152 0.107 0.031 0.002
7.500 1.000 0.075 0.004 0.007 0.009 0.009 0.007 0.002 0.000
10.000 1.000 0.073 0.000 0.000 0.000 0.000 O OOO 0.000 O0.000
13.750 1.000 0.073 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20.000 1.000 0.073 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32.500 1.000 0.073 0.000 0.000 0.000 -0.000 0.000 0.000 0.000
70.000 1.000 0.073 0.000 0;290 0.000 0.000 0.000 0.000 0.000

Table 2-2. Same

conditions as Table 2-1, except '4t=2.1 sec.
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tt= 3600.0 At= 8.40 D, = O.IQSD—ISJQnd &= 0.898

yl,/ xs 0.000 O0.111 0.250 0.429 0.667 1.000 1.500 2.333 4.000 9.000
. 0.000 1.000 0.887 0.937 0.874 0.827 0.733 0.545 0.186 0.010 0.000
0.357 1.000 0.991 0.890 0.887 0.829 0.734 0.546 0.186 0.010 0.000
0.769 1.000 0.910 0.944 0.884 0.834 0.738 0.548 0.187 0.0l0 0.000
1.250 1.000 0.994 0.907 0.898 0.839 0.743 0.552 0.188 0.010 0.000
1.818 1.000 0.925 0.952 0.896 0.8645 0.747 0.555 0.189 0.010 0.000
2.500 1.000 0.996 0.918 0.906 0.847 0.749 0.554 0.1867 0.009 0.000
3.333 1.000 0.935 0.955 0.899 0.844 0.740 0.539 0.178 0.009 0.000
4.375 1.000 0.987 0.923 0.884 0.805 0.680 0.466 0.143 0.007 0.000
5.714 0.000 0.053 0.099 0.136 0.156 0.150 0.105 0.031 0.002 0.000
7.500 0.000 0.002 0.004 0.007 0.009 0.009 0.007 0.002 0.000 0.000
10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13.750 0.000 0.000 0.000 0.000 0.000 0 000 0.000 0.000 0.000 0.000
20.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ©0.000
32.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
70.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 2-3 Output of program to calculate the concentration
profile of exchanged ions.
Same conditions as Table 2-1, except At-8B 4 sec

Numerical Instability its seen as oscillations in’

the results, especially In columns x=0.111 and
x=-0 250.

N




40

showing no change in the first case and instability in the

second (evidenced by oscillations i1n the results, particularly

<

at x=0.25um).

2.3.4 Two-step fon-exchange

Another possibility, which is studied more specifically, in
this work, is to perform a do;Jble exchange by removing the mask
at some point and allowing the e;change to resume over the whole
plane of the substrate. Mathematically, it meéns changing the

v

boundary condition (2-61) to:
Dy . -

after a given time ¢t

The Apurpose of doing this is to control the lateral
waveguiding properties of the channels defined by the first
exchange, As we will see in later chapters, a wide range of
possibilities is offer;d by adjusting the relative durations of

the masked (t) and unmasked (t;) exchanges.

To have a point of reference in the study, the total time

A\
t,+t, weas kept constant at | hour, the temperature was .

always 385°C, and the magsk opening always 10 um. This way,
all the channels have the same depth (1.97um) in the central
part (which was unmasked during both t and t;) and it is
the depth variation outside of the channel (in its lateral
"claddihig") that provides control over the optical modes and

their propagation constants. The 10 ym width was chosen to

demonstrate the possibility of making wide single-mode channel

»

o
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waveguides by this method so tpat fabrication tolerances would
be reduced and that dimensional compatibility with single-mode
fibers would be increased (at least in one dimension). For
comparison, single-mode channel waveguides in LINbO, are
limited to lateral dimensions on the order of 2-3 ym and many
single-mode fibers have diameters between 5 and 10 uym. Finally,
by fine-tuning t, (and t;), it is possible to compensate
design or fabrication inaccuracies with a given mask layoux
without having to re-design it.

Some results of two-step fon-exchange are {llustrated in
Figures 2-6 and 2-7. The fabrication of such structures wiil be
discussed in chapter 3, and their waveguiding properties
analyzed in chapter 6 and 7.

As a final note for this chapter, the computer program
described is fairly general and can be adapted easily to other
types of boundary conditions, parameter values, etc... Its

usefulness has yet to be exploited fully to explore new t};pcs of

waveguide fabrication by jon-exchange. o
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wo-step exchange at 385°C. t,=17 min., D=10pm.

"L

Al mask e 1 Al mask N
V772777774 anlo)
— e — - ——-—10.8
Ep—-— -——-—0.6
] e p—_
2 Lo
- €
23 \_ - - _/ .
‘v—
1 A ol 1 ) 1 ] | Fi.ao nin'

8 -6 -4 -2 0 2 4 6 8
WIDTH y (um)

Figure 2-7. Constant concentration contours Tesulting from a
two-step exchange at 385°C. t,-30 mi'n.,‘D-IOum.

'



. 43

CHAPTER 3. FABRICATION AND MEASUREMENT TECHNIQUES.

3.1 INTRODUCTION

In this chapter, the fabrication and measurement of optical
waveguides made by ion-exchange in gilass are described. The
procedures are adapted from those used in other laboratories,

with minor adjustments made to satisfy the particular needs of

this study.

3.2 FABRICATION

3.2.! General considerations

The substrate used in the experiments is an ordinary
mfcroscope slide (Fisher Scientific Co.) made oF—soda-lime
.glgss. It has a high sodium content and a good surface quality
resulting from a flame polish [Zernike 1979]. Of course, the
main advantage 1n using such a substrate 1s the fact that it can
be bought in large quantities at very' low cost (compared with
specially prepared optical glasses such as BK-7, or with single
crystals such as LiNbO,). This is ideal for use in exploratory
research where many waveguides need to be fabricated and
evaluated, such as is the case here.

The microscope slides are shipped “"pre-cleaned”™ |n
hermetically sealed boxes. Careful handling with gloves helps in
preventing additional contamination (especially organic) but a
very thorough cleaning is necessary for their use as optical

waveguides. This is because the substrate must be free from
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defects even as small as 8 fraction of the wavelength of the
light used (tenths of microns) over the whole propagation path
(tens of millimeters).

The cleaning steps are as follows!/

First of all, the sliide is inspected for any visible
damage, rinsed in flowing deionized water, blown dry with
nitrogen, and inspected again. Imperfect slides are eliminated
at this point. The good ones gare then. placed in a substrate
holder made of aluminium so that they will not be touched again
until the end of the whole process. The remainder of the
cleaning steps are:

a- A 5 minutes’ wash in an ultrasonic bath where a few grains of
Sparklieen (Flsher'Sci. Co.) detergent have been dissolved (too

v
much detergent will scratch the surface).

b- Rinse in flowing del;nlzed (D.I.) water.

c- 5 minutes ultrasonic rlnslng?in D.I. water.

%4 Repeat steps b and c.

e- 30 minutes in a “degreaser"”. This is a closed vessel
containing a small quantity of isopropyl alcohol, placed on a
heating plate so that much of the alcohol is vaporized. When the
cool substrate |{s inserted in the vessel, rapid condensation
occurs on its surfaces, resulting in a very active“ rinsing
effect and removal of any organjc contamination.

f- Rinse in flowing D.I. water, biow-dry with nitrogen.

To evaluate the cleanliness of the slide, a small amount of
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1

D.I.  water is spread over it. The water spreads eveniy on a
clean surface and evaporates away gradually, sh-owing
interference fringes (and highlighting defects) as it gets

thinner and thinner.

As a final step, the slides\}u blown dry and placed in an
oven kept at about 80°C to meke sure that all the water is
gone before either ion—exc.hange (for planar guides) or high-
vacuum Aluminium deposition and photolithography (for channel
guides).

Other cleaning steps have beer tried (such aes rinses and
ultrasonic cleaning with methano! and/or acids) but they did not
lead to better results and were abandoned. In fact, a cleaning
process that 1s too aggressive may do more harm than good by
damaging the surface polish on a scale too small to be observed.

3.2.2 Description of the ion-exchange environment

v

The furnace (Lindberg Crucible Furnace) has a vertical core
and can be used in the 20 to 1200°C range. The temperature f{s

fixed by a temperature controller to within 1°cC. The
patassium nitrate (KNOj) cryata'ls are placed in & steel
crucible inside the furnace which is closed at the top with an
asbestaos cover. A small hole in the cover allows the insertion
of a brass rod terminating in & steel clip, which is used to
hold t;vo substrates and to lower them‘ into the melt wlthouﬁt

opening the cover.
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!

The fact that the process takes place in a liquid
(spproximately 150 ml of it) smoothes out any temperature
gradient along the length of the substrate (because of
convection currents arising from slightly non-uniform heating)
and also any temporal temperature filuctuations. (Note: there is:
a certain debate in the ion-exchange litterature over the use of
stirred melts to ensure a constant concentration of exchanging

fons at the surface of the substrate by remo"{/al of the outgoing

lons from that area. This stirring may occur naturally because

of convection in the melt and comparisons between the two
methods become difficult to establish with certainty).

3.2.3 Planar waveguide fabrication
Using gloves, or small metallic tweezers, the substrate is

taken frbm the drying oven and placed in the steel clip that is
to hold 1~t in the furnace. The whole assembly is suspended over
the melt for a heating period of 10 minutes to bring the entire
substrate to the exchange temperature and then lowered in the
KNO; melt, Th_e heating ensures that the exchange begins
immediately at the right temperature. After the desired period
of time, the substrate is removed from the melt, and also from
the furnace, the whole process lasting about (5 seconds until
the residual KNO, rectystallizes on the glass, indicating that
the exchange has “"practically” ended (the exchange diffusion

coefficient is an exponentially decaying function of the inverse

of the temperat&Q\d drops rapidly to negligible vasiues once
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the heating stops). Care must be taken in handling the siide at
this point because it is still extremely hot and susceptible to
breakage when in contact with a cool object. It is better to
leave it in the clip until well cooled.

Finally, the slide is washed clean of the crystallized sait
in running D.I. water and the waveguide is ready to be measured.

3.2.4 Fabrication of channe! waveguides (and other
patterned circuits).

The procedure used in this work involves a two-step ion-
exchange in which the channels are defined first by masking
selected areas of the substrate, followed by an exchange over
the whole area «of the substrate, after removal of the mask, to
mojdify the v;ravegu!dlng properties of the channels in a

controlled fashion. The fabrication steps are {llustrated iIn

Figure 3-1.

The aluminium (Al) deposition is performed in a vacuum
station at a pressure of 2 X 10® Torr by heating a
tungsten wire on which th,:our one centimeter long Al hooks (formed
from a high purity (Marz grade) wire furnished by MRC Corp.)
have been suspended. Upon heating the tungsten wire (by passing
a high current through (t), the Al evaporates in the vacuum
enclosure. A part of it condenses on the glass slide as a very

uniform film of 100-150 nanometers (the exact thickness is not

critical as long as it {s larger than about 100 nm (Tsutsumi
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FABRICATION STEPS
)

i

-Cleaning ,
-Al deposition

. -Photoresist coating ask
-Exposure ~ to UV light _
) hotoresist

luminium
\$lass
-Development of photoresist
Aluminium
__G1ass

-Ion-exchange
——— ¥ o~ Aluminium
Teeet |__Glass

-Al removal
-Ion-exchange

......... \\_‘/‘"-..--~--‘ _Blass

Filgure 3-1. Diagram of fabrication procedure for two-step
fon-exchanged channels.

~
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1986]).

To remove the Al film from the areas where the oxc;ange is
to take piace, photolithography is used. First, a Ll mixture of
photoresist (Shipleyr 1450J) and thinner (Shipley AZ) is
deposited on the Al surface by spinning the substrate at 4000
RPM for 20 seconds and baking the resulting film for 30 minutes
at 80°C. Then, a master mask is brought in contact with the
photoresist layer and a U.V. lamp i{s used to expose the resist
through the mask openings for 5-10 seconds. Development of the
resist is done in a 1l:l nﬁxture of Microposit developer
(Shipley) and D.I. water for 30-45 seconds and results in

removal of the resist from the exposed areas. -

After that, the substrate is baked for | hour at 120°C to

harden the resist pattern. Finally, th‘g Al is etched away from

the areas where the resist has been removed by immersion in a
solution of 32:2:6 parts ‘of phosphoric acid, nitric acid; and
D.I. water for 1-3 minutes. The exact‘tlmes of development and
etching are deteknlned by inspecting the process until the
c‘.hannels become visually clear of réslst or Al. Then, the
sub\sﬁ*g_t,e,_ls,d-ipped in a D.I. water bath and blown dry gently.
The ‘patterns are observed\ under s micr;;scope to make sure that
they are free 'of residual garticles and well defined. After the’
completion of the etching and before proceedlng‘ to the .lon-
exchange, the.phot’oreslst which was used as a mask for the

etchant is removed by dissolution in acetone.

-
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'Thc first step of {fon-exchange, to define the waveguiding
channels, is carried out in the same manner as was described in
3.2.3, except that the glass substirate is now partially masked.
Af ter the first step, the Al mask rls removed with the etching
solution and the substrate cleaned in D.I. water.

The second step of exchange is also done as in 3.2.3
except for one thing: the heating time of the substrate prior to
the insertion in the melt is reduced to 5 minutes.r This
represents a compromise between the need to bring the substrate
in thermal equilibrium Wwith the melt and that to prevent th:
index profile obtained in the first exchange from being modified

by this heating in the absence of a source of fons (thereby

increasi'ng the difficuliy of modelling the profile theoretically
' ,
&

for design purposgs).
3.3 ME‘SUREMENT PROCEDURES ’ /’

3.3.1 Introduction

- The method chosen to characterize the planar waveguide
properties is called modal spectroscopy. In this method, the
measured propagation constants of all the modes that can be
excited i;x a given guide are used to determine its ‘refractive-

index profile,.

The way to measure the propagation constant of caj:h mode is

nto selc7ively excite them with a prism-coupler. The theory of




51

operation of (his couﬁler has been described often (see [Tamir
ﬁ?S] and [Zernike 1975]» for instance), and only its mnrln
features are presented here (in sectlo}\ 3.3.2) for brevity. The
actual measurémeni set-up is described in 3.3.3 along with the
methods 1\Jsed to enhance the ﬂ:curacy of ‘the measured propagation
const‘ants. ‘ :

A prism-coupler is also used to launch light into channel
waveguides. ”In that case, tr{imethodoloe‘y (described in 3.3.4)
is diff;srent because the goal is no longer a hlg‘h sensitivity in
mode selection but rather to get as much power as possible in
the single-mode guide and as little as possible {n the planar'
guide which surjroundks it.

Output coupling is also drastically different for the two

cases, again because of their different purposes.

3.3.2 Opejation of the,prism-coulpler'

A right-angle prism of refractive index hi;Qer than Lha; of
the w;veguide is brought in close contact with it as shown i{n
Figure 3-2. A beam of llg\!ﬁ enters the prism and is totally

reflected at the prism-air interface. The evanescent fileld

caused by‘fhe reflection prop;gatés along the base of the prism
with the same wavev}ector component k, (parallel to both the ~
plane of incidence and the plane of - the su.bstrate) as that of
the incoming lightwave for continuity of the fields at the

interface. -Also, in the plane of incidence, but perpendicular

to the guide surface (i.e. direction %), the fields decey
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exponentially. When the waveguide is sufficiently close to the
prism, the evanescenf field acts as a source of electromagnetic

radiation in the guyiding layer (i.e. polarization source term

in the wave equation). And when the k, component of the

incident beam matches the propagation constant B (which is also

a k, component) of a mode, this mode is excited efficiently.

Therefore, by gradually changing the anglemc‘o\( incidence of ;e
beam at the entrance face of the prism, the values of k,-dTe
scanned continuously, allowing the launching of each mode

separately. This concludes the explanation of the principle of

<
operation. In practice however, several factors have to be

considered.
N
A right-angle prism s used to prevent the coupling of
energy back from the waveguide to the prism by bringing the
P g
input beam as close as possible to the edge of the prism.
Therefore, just after the excitation point, the evanescent wave
/ .
of the wave?,bide mode "sees” nothing but an infinite cladding of

4 mir, instead of a high index layer separated from the guide by a
thin low index layer through which it could t@}el energy., In
fact, we can use a prism as a very efficient output coupler at
the other end of the waveguide.

The refractive index of the prism should be at least as
high, preferablthixher than the maximum index of the guide

(ng). This is because in the prism, k, = kg sin 8,
9 .

“ =
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< nkg while in the guide k, is smaller t&an but almost

equal to ngkg; (for the fundamental mode). Therefore, to have

.

ep reasonably smaller than 90 degrees (grazing lncldenceﬁ at

the prism base, we need n, > n,.
3.3.3 Measurement set-up for planar guides
To measure fp with the greatest accuracy, the coupling sngle
6, must be very precisely known. A few precautions must be

taken to that effect. First, the pressure holding the prism and

waveguide together must be light so that the propagation

,constants of the guide are not significantly changed by the

presence of this additional superstrate of high index. Second,
as little focusing as possible must beé used on the entrance
beam. This is because a focused beam has significant energy

entering the prism at ma large spread of sngles, making it

difficult to determine the angle for which the coupling i3

1

maximum.

To determine this angle for a given mode, light exited at
the end of the waveguide is observed on a viewing -screen. To get
a better radiation pattern the “waveguides are cut near the end
to expose their cross-section. This is because at the end of the
uncut substrate.“on—exchange has aiso taken place on the sides
of the glass slide, thereby ending the planar guide in an.abrupt
horn as the exchanged layer “"turns™ around the inside faces -of

the substrate as shown on Figure 3-3.

[

The far-field radiation pattern of a mode is well"

¥
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n,k Air

mabccccccacaaa

_— Waveguide
f=ke

Figure 3-2. Geometry of prism coupler.

w

- -

Cut plane

¢}
Exchanged area '

o

S N\ ~ -

‘-----'

Figure 3-3. Location of the cut plane to expose the waveguide
c cross-saction.
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identiffable (see Figure 3-4) and, once su‘ch an f{dentification
has been made, the output of the guide is refocused and imaged
onto a detector (an avalanche photodiode) to help in accurately
finding the angle of entry yielding the maximum {input power in
the mode.

To facilitate input coupling, the prism-waveguide holder i{s
mounted on a 3-axis micropositioner, which {s itself mounted on
a precise goniometer (accuracy of 5 arc-seconds). A polarizer is
used to select T.E and TM modes and the output of the
photodetector is connected to an analog voltmeter to facilitate
the visual {dentification of the point of maximum power. The
lens system used to image the waveguide end onto the detector is
to de-magnify so that when the angle is scanned, and the end of
the guide moves laterally, its smaller image stays within the
area of the detector! The light source used is a 5 mW He-Ne
laser (Spectra-Physics) operating at 632.8 nm. The whole system
is shown on Figure 3-5.

To get the propagation constants from the angle of
incidence of the incoming beam, the following formula (derived

using geometrical optics) is used [(Zerntke 1979):

B -y(3in 6 _
N, - kg " np( sin [ap + sin —H;—L))) (3-1)
where n, = refractive index of the prism

a, = base angle of prism




J\

Figure 3-4. Photographs of the far field of the radiated power

from the output of a planar guide.

TM-0

TM-1

TM-2

TM-3
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6, = angl‘e of the incoming Seam relative
to the normal to the face of the prism.

In practice, the reference angle ( 6, = 0), is measured
by rotating th“e prism until the incomihg beam is reflected back
on itself. Series of measurements are made for each individual
mode of one waveguide, until the value found for 6, becomes
certain to within | arc-minute (i.e. 30 arc-’second; each for
6, itself and the reference angle which is remeasured for

\ .
each set of modes). The prism angle a, was measured on the

P'
goniometer by successively reflecting a beam off two of its

faces. The result is «, - 50°00°20" ¢ 1'. Finally, the

Y -index of the prism, made of SFll glass has been interpolated

from the Schott catalogue (p.82) as n, = 1.7786 for the

wavelength of the light that is used (632.8 nm).

The uncertainty in 6, leads to a measurement error of
+2 x 107 on .the normalized propasgation constant
(also calied N, the “effective index” of the mode). The

errors in the values of ap and np have the same effect on

all the measurements and lead to an additional uncertainty of

about 3 x 1074,
Another variable that needs to be determined is n,, the
index of the glass substrate prior to the exchange. Since the

' slides that we used were not made specifically to optical

standards, their refractive index is not catalogued and has to

]
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“

be measured in-house. The simplept method to do this is to use

o

the set-up described above and Ao find the angle of incidence at
which the waveguide beeQmes C’uj-off by observing th.e end of the
substrate. It ts easy to see the point where the light is no
longer confined and starts leaking into the substrate. At this
point, N, = n,, the cut-off condition. The result of many
such measurements on different slides yielded a value of ny =
1.513 with a standard deviation of 2 2 x 10°% |

Results of the effective index measurements are presented
in the next chapter.

3.3.4 Measurement set-up for channe! guides and circuits

Here, the main problem is to get as much power as possible
into the input channel and as little as possible in the planar
guide which surrounds {t. This {s not an easy task because the
channels are at the same time small (2 by 10 microns) and very

weakly defined (the lateral index-change gradient is very small

in the slqg!e mode regime, as will be seen in chapter 6)°.

A prism-coupler {3 used again at input, but this time it is
strongly pressed against théx guide and the input beam is focused
(with a lens of 10 cm focalglength). Th; lens is placed on a 3-
axis micgoposi_tioning stage to adjust the position of the input
beam relative to the 10 micron wid’e channel. Furthermore, the
prism-guide assembly is mounted on the same goniometer as before
but with an additional rotational axis perpendicular to the

plane of the guide so that the axes of the entrance beam and of

L.

.

» Note: It {s not possible to measure the individual
propagation constants of the modes of channel guides with an
output prism because the small value of Ang (in this S’ase)

leads to very small angular differences between the “m-lines”.
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the channel can be aligned in that plane.

‘)

At the output, what is needed is a measure of the amount of
light power in the output channels and also to see {f there |i»
any power that has radiated out in the planar guide. A prism fis
used to couple out the light, but, instead of observing the far
field pattern, a microscope is used to image the base of the
prism, where the light is coupled out of the channels, onto a
screen. The image thus formed is shown in Figure 3-6 for the
case of output from two adjacent channels. The abrupt edge of
the light traces corresponds to the position of the right angle
corner of the prism, where the coupling out begins. Evanescent
coupling is gradual and takes place over a finite length as the
light wave moves rightward in the picture. The vertical axis of
the picture represents a direction parallel to the plane of the
substrate but perpendicular to the channels, allowing the
observation of the lateral distribution of power in the whole
waveg uide.

Quantitatively, we are not concerned with absolute values,
but with the relative distribution of power in the\ cutput
channels and with the power scattered (lost) laterally in the
planar surrounding guide. Most of the unwanted scattering
induced by the bends and {rregularities in the devices will

ocgur laterally because the confinement is much weaker in that

direction (AN, = S5 x 10™* while An, & 1 x 1072)

In practice, the quantitative measurements were obtained
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by- replacing the viewing screen (or photographic camera) by a
power meter (United Detector Technology model UDT-21A) with a
large aperture but masked by a fine slit aligned parallel to the
i

horizontal axis of Figure 3-6. By scanning the detector
vertlcally‘wh!le directing its analog output to a graphic
plotting device, a lateral output profile was’ob‘tained where the
total power escaping from the prism at any position was
intfgrated by the specially configured detector. A typical scan
is shown in Figure 3-6, and more will be presented in (éhapter 8.

As a final note on this measurement procedure, we must
consider how meaningful numbers can be obtained from these scan

traces. The channels are presumably identical and they are

single-moded or very nearly so. Therefore, we can assume that

s
iy

their lateral power profile is identical, except for an
arbitrary amplitude factor:
Py) = A P(y) : Py = A2 P(y) (3-2)
Furthermore, the slit through which the measurement is done
has a finite width. This means that the scanning of the silt
across a channel ("a” for instance) yields the convolution of
the mode profile with the slit function S(y) (a square “pulse:'
in y)

P.mon.(y) - A.Z I-Q’WP.[y,)s(y,_y) dy. - Alz Q (3_3)
J

A similar result holds for the other channe¢l and\, we see

that the maximum height of the traces is a direct measyrement of
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I;hodfo—
i0de .
Wavegquide
2 He-Ne
/ Laser
Prism
Lenses
A Polarizer
Analog
Voltmeter
Figure 3-5. Experimental set-up to measure the effective indices
of planar guides. o
LATERAL MODE POWER MEASUREMENT
Substrate
BN IR
Prism .

Microscope (iiiijjjijjjjj}
=

N

Figure 3-6.

Diagram of measurement procedure for the lateral
distribution of power in a multichannel device made
by two-step ion-exchange. The camera snd photodetector
can be used interchangeably.
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output power, except for a constant factor, which is the same
for both cl:lannels and cancels out of any relative measurements.
This is true regardless of the actual shape of the mpde profile
function or the slit width!

This compiletes the description of the exp\ﬂ‘lmental

facilities and methods usecf in this work. Results, along with

their reduction and analysis, &re presented in the following

chapters.

=
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CHAPTER 4. CHARACTERIZATION OF PLANAR WAVEGUIDES. °
4.1 INTRODUCTION '

This extensive ch'aracterizauon was undertaken in order to
establish the process parameters that correspond to given
waveguide properties, Similar studies have been carried out for
the case of Ag*-Na* ion-exchange (both thermal and electric
field assisted) in glassp, but, for K'-Na*, only very sparse
ar;d fragmented data were available before our publication of
these results. Since then, our work hps been extended to other
types of glass by another group [Gorté:h 1'986a,b).

The parameters that can be varied for thermal fon-exchange
are the temperature of the process and its duration. Additional
refractive-index profile modifications, such as heating an
already exchanged layer outside a source of fons, have not been
considered. .

The melting point of KNO; being 337°C (Bartholomew
1980]), the lowest exchange temperature should be. significantly
higher to have a rea‘sonably strong thermal agitation ‘i'n the melt
to avoid stagnation of the outgoing ions near the interface.
This stagnation effect restricts fon-exchange by limiting the
supply of new ions at the boundary. The other end of the
temperature range is chosen to be high enough to have &
significantly faster rate of exchange but not:so high as to lfad

to surface damage by excessive thermal amltatlonf/of the ions

near the interface. The following temperatures were used: 370,
) (
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385, 400, 425°C, for various time durations. Additionally, one

waveguide was made 'at both 360 and 440°C to extend the range

-
Al

of the characterization. ! .
/

B

4.2 RESULTS AND DATA REDUCTION

The normalized propagation constants N, (also called
Yeffective indices”) which have| been measured are presented in
Tables 4-1a and 4-1b.

From these, the refractive-index profile giving .rise to the
waveguiding can be obtained. Tthere are two approaches to do

this. In the so-called Inverse WKB method [(White {976], the

.profile is reconstructed by using straight line segments to

connect discrete values of index caiculated at various depths
from' the modal measurements. The usefulness and accuracy of
this method diminish rapidly with the numlber of modes supported
by the guide. The other approach is statistical and involves
finding a refractive index -profile for which a solution to the
dispérsion equatlo.n yields effective indices that fit as closely
as possible the measured ones. The ‘disadvantage of this method
is that the shape of the ‘proflle must be chosen a priori to
reduce the nu;nber of variables in the best fit searuch (for it to
become a tractable problem with reasonable effort). The choice
can be based on physical al\?nments.l and then justi’fied‘by'the

aptitude of (the chosen profile shape in successfully reproducing
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4

the measured data. In this work_. akGauss‘l(an function is used to
mode! the index profile of plan;r waveguides for the reasons
which have been developed in chapter 2. The depth coordinate “x"
lncxea?es from O at the surface t:nvards the interior of the

substrate:

P
2
&

An, = n, - n, (4-2)

n(x) = n, + 4n, e (4-1)

\ where n;, = the index at the surface

“

-

n = the index of the ‘substrate

d = an effective depth (depth at which n(x) = An, e
For this graded-index‘_’i—}p waveguiding problem, the effective
indices .N, are calculated from the well-known, WKB d*iripcrsion

relation [Hocker 1975]:
2{1-‘1]0".]:12(&) “ N, dk - (m '+ o, (4-3)

o0 - iRl N,)* ° (4-4)

. P = 2 (TM)
0 (TE) -
"m = 0,1,2,3,... the mode order
A

= free-space wavele’ngth of the light

- x/d ' ‘

s »

X, = the "turning point“.deflned by n(.x‘) = N,

V)
>

f.e.

f - () - (ol (4-5)
Assuming that n, is known, n(x) contains two ‘unknowns,

.
s

\\ (An, and d). Therefore, putting two values of N, with their
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mode order_ m for a given guide in equation (4-3), y]elds a fhlly
determined probiem of two equations and two unknowns, These
equations are transcendental and do not form a linear system. To
solve them, one o'f the ufsknowns is eliminated by using the
normalized coordinate ¥ and taking the ratio of a pair of
equations (4-3) corresponging to a given pair. of modes. The
resulting equation can be ‘root-searched numerically for(Ans.

After this is completed, d is found by rei;lacing Ang in
one equation from the pair. When a waveguide supports more than
two modes of a given polarlz‘ation.'th‘e problem 1s over-
determined and the values of d and An, that are retained are
the average of the values obtained from all the posslblé
pairings of modes. For single-mode guides, the fact that Ang
does not depend on the duration of exchange is used and c\i is
calculated from (4-3) by taking the An, found for the other
waveguides fabricated at the same temperature. The values ‘found
for each waveguide are also lis'ted on Tebles 4-1a, 4-1b and the

korrespond»lng dispersion curves plotted on Figures 4-1 to 4-4

along with the measured N,.

4.3 FINDING MODELS FOR (&Ang, d) vs (T, t)

The results of the previous section show that the individual

o

profiles found for each waveguide can model accurately the
h]

effective indices of their modes. However, a deterministic

( - relation between  temperature and duration on one side (T,t); and
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(Ang,d) on the other side is needed to enable the
specification of waveguide parameters from arbitrary fabrication
conditions. In Chapter 2, we did find that the dcp}h of the
index'profile (as defined in eqn.(4-2)) is proportional (see 2-
54)) to the square root of the duration (at a given

temperature):

d = bt (4-6)

We introduce here the concept of an “effective diffusion
coefficient” D, that lnclfxdes all the proportionality factors
and depends on the 1profile and the actual definition of d that
is used.

It ts easy to verify the validity of (4-6) by plotting d
against At for all the guides measured. This i® done on
Ftgure 4-5, On these plots, straight lines (forced through the
origin) are fi-ttedp to the data points by & least-squares
procedure to yield the coefficients D,(T). Finally, to model
the relation between D, and T, the similarity of ion-exchange
with cfassical diffusion is exploited ﬁy looking for an

Arrhenius [Chartier 1983] type of equation:

D. = Do e-ﬁi (4-7)
where Do = constant to be determined

AH = an activation energy (also to be determined)

R - molar gas constant (8.31 Joules-mole !9k~
The values of D, and AH/R are found 6y fitting ﬁstralzht'-

lines to plots of In(D,) vs (1/T). This is tllustrated iIn
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i

.10 20 30 40
Vtime (in minutes)

Figure 4-5. Guide depth d versus the square root of the exchange

time, for various temperatures (labeled in °C).
a) TE modes. b) TM modes.
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Figure 4-6 where the validity of equation (4-7) {s cleatly
demonstrated.
Table 4-2 summarizes all the results of this characteriza-
tion. The information cont“ained therein allows for the

calculation of the index profile of K*'-Na* ton-exchanged

waveguides fabricated in soda-lime glass for any temperature or

duration.

4.4 DISCUSSION OF ERRORS

In this sort of work, it is not so much the absolute
accuracy in 4n;, and d that counts but rather how accurate the
effective i1ndices calculated from them are. In order to answer
that' question, the average difference between the measured

N,’s (167 data points) and the values calculated from the

results of section 4.3 has been found to be equal to 1.6 X

10°* (¢ 1.2 x 107%), smaller than the measurement uncertainty on N,.

The single largest difference |{s 6 X 1074, ‘

The problem of estimating the correctness of the choice of
the profile and of the values of An, and d by another
independent measurement is far from trivial and is sddressed in
the next s:ection. s

Another question of interest, which relates more to the
quality of the febrication procedure, is asabout the
reproducibility of the results. To evaluate that property, two

waveguides were made, more than S months apart, in same

3
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coefficient D, versus the inverse of the temperature
ins. The straight line is a best fit to the

individual points.

a) TE modes.

b) TM modes.
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TABLE 4-2

Summary of results for the characterization of planar waveguides
made by K'-lon ‘exchange in soda-lime glass.

T an T x10°  an,™ x10° DE x10™ D, xio'®
°c) , (m?/sec) (m<2/sec)
58 43 43 1 33 AL g2
8§ LE : 41 b g
; 73 S I 3

4
D, = 7.82 x 10 Pexp(-L4 210} (m /gec) & 27
4
p,™ - 156Q x 1073 exp(j'—s'*—.ri-ﬂ—] (m,/sec) = 2%
d - J5t
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conditions (time and temperature). Their measured effective
indices, slong with the resulting profile paralmeters. are
prcser;ted in Table 4-1a as numbers 18 and 38 for T = 385°C.
The asgreement is better than 57 for An,,:loi for d, a;ld
within experimental error for N,, which is not bad coynsidering
the absolute size of the quantities involved (difficulties
prevented the measurement of high érder TM modes.

4.5 INTERPRETATION OF THE RESULTS

Although & certaln number of assumptions were made in the
process of modelling ~the different parameters involved in this
characterization, the experimental results did follow the
various relationships that were introduced somewhat arbitrarily.
Also, the models introduced for (An,,d) vs (Tit) have been
shown to succeed in reproducing the experimentllly determined
values of eff;sc.tlve indices, within measurement accuracy.
However, the evidence for, among other things, the Gaussian
spape of the profile, is indirect and brobably inconclusive. In
an extension of our v}ork on K'-Na* exchang;, to other types
of substrate glass, another group [Gortych 198!':8.!:] h;ss used
successfully a different profile (an errojr function complement)
tl;'the fitting procedure of section 4.2. Altpough their
fabrication methods are different from ours and also that the

exact profile does vary with the type of glass (see Chapter 2),
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such a fundamental change of sha;;c may seem surprising.
An explanation of that observation is that there is a

certain gezrge of .insensitivity to the exact lhi’pe of the

"profile in the solution of (4-3) (especially near the origin),

and that other means of measurement are rfeeded to conclusively
determine the shape of the profile. However, these methods wéuld
need a depth resolution of the order of a tenth ‘of = mlcr;)n
(because the differences between the erfc and Gaussian functions

occur on such a scale) along -with a high sensitivity to very

I

small quantities of K* ions (a few percent) in the glass. This
is ciearly not an easy experimental problem, and for the purpose
of designing optical wa\;egulde structpres. the model that we
have uysed is more than sufficiently accurate to be useful, and '
well justified physically (Chapter 2).

Also, it seems that the types of glass used in those studies

‘ "
may have a much lower value of @ than soda-lime clalss. which

has the highest value of the glasses compiled in (Doremus 1969).
In that case the better fit with the erfc function is not

surprising, as can be seen in Figure 2-1.
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SYAPTER S. THE ORIGIN OF THE INDEX CHANOE

OR K"'-Na* EXCHANGE.

N\
N

5.1 INTRODUCTI®

[ S b
The fabrici

exchange usually 1nvc;lves a silicate glass substrate containing

process for optical waveguides by ion-

soda (Na,0) and variousy,other oxides (CaO, K,0, Al,0;,
a

etc...). This process has been known for a long time [Schulze

1913], for purposes different from waveguide fabrication, and

has been used successfully to strengthen glass by tnducing a

high compression layer at the surface to prevent crack formatiop
£

" and propagation [Bartholomew ]980].

The 'explanation for the index change resuiting from ifon-
exchange is based on the fact that the {onrs participating in the
exchange have different electronic polarlzabllltl’es and that
they occupy a different volume‘in the glass. An inde); increase

a
results from 1ons of higher polarizability and/or of smalier

volume. The relevant parameters are presented in Table 5-1

[Findakly 1985]).

TJABLE 5-1
3
ion  Polarizability (A")  Ionic Radius (A) Exp. An
. 4 . -
e 236 93 ~I0%
K* 1.33 133 ~LY.

AS

Qualitatively, it aiapears that in both cases the increase

%
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in the polarizability is ‘the,' domm‘n«t foect'a‘;'n: that it is
somewhq//correlated to the result'a'nt An. .Hou;éver, an attempt
to calculate the index change simply from the compositional
change, based on a model due to [Huggins 1940]) and refined by

[Fantone 1983), ylelds the correct value for the Ag*'-Na*

case (see below), but fails completely in the case of K'-Na*

[Fantone 1983, Gortych 1986a,b], underestimating An by 2

.orders of magnitude. It would appear that in the latter case the

increase due to the polarizability is almost exactly cancelled
by th;e decrease due to the volume change; and yet we, do get a
An of 17 experimentally. . . 4!

We present here a quantitative explanation of this
disgrepancy based on the effect of the large induced stresses at
the surface through the photoelastic effect.” Apart from 1its
interest as a basic phenomenon, the theory behind the stress-
induced index change may lead to a better understanding of how
the fabrication procedures affect the properties of the optical
waveguides.

In the following section, the Huggins-Fantone (H-F) model is’
described and its predic'tions compared with lhe experimental
resu;ts. Then, in the third section, we will discuss how
stresses develop in the~ exchanged layer and how they influence
the index change calculated' from the H.-F\model.* Fina}ly the

implications and applicat‘ions of our calculations will be

discussed.
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S.2 THE HUGGINS-FANTONE MODEL

The derivatioh presented here follows that of (Fantone

1983}. The refractive index n of a silicate giass can be

expressed in terms of its composition by:

R .
n-1+v°n- (5-1)

J

where Ry is the refraction per mole of oxygen fons and
Vy is the volume of glass per mole of oxygen ions.

[Huggins 1940] showed that both V, and R, can be
calculate& directly from the composl‘tlon of the glass through a
set of empirically determined coefficients in the following
linear relationships:

Vg = cte + b"hiu (5-2)

Rp = 3 ayNy, (5-3)

where Ny is the number of moles of ton I contributed by

the molecular component M = 1,0, (K,0 or Al;0; for

instance) per mole of oxygen ions contr'lbuted by all the

components of the glass. It is calculated from the compositional
data in weight fractions by the following tfbrmula:

Ne = 2 !P_! !f!!/wu
’ M3 nyfy/ Wy

where W,, is the molecular weight (weight of one mole) of

(5-4)

the component M, f, its weight fraction {n the glass, my the

- number of fons I and ny the number of oxygen (O) fons in the

molecular formula. Relevant coefficients are listed in Table 5-2

(from [Fantone 1983], 'Table 11 for b and Table V for a)

s




TABLE 5-2
-1 s’ b
Na 6.02 8.7
Ag* .. 1597 12.72
: K* . 9.54 . 155 .

All units in cm®mole of fon . °

[

~ « The value of a is wavelength-dependent. Its value for

656 nanometers {8 used here although our working wavelength fis
- f
633 nanometers (differences in “a" are fairly insensitive to

wavelength in th’at region).

% Let us examine what happens to R; and Vg, and

consequently to n, when we exchange a fraction x of Na* ions

14
with K* (or Ag*) ions:
! Vo = cte + 3 byNy + (1-x)by,Nya * XbgNng (5-5)
- . . r‘b
Ra = 2' GMN“ + (I’X)QN-NN‘ + XBKNN! (5-6)

where ¥ indicates summation over all components except
[

sodium and potassium -(recall that Ny, refers to/'ryhe

o

initial concentration of sodium ions). ’ (VZ
Then:
Vp-Vg = x4V - XNno(bg~bya) (5-7)
Rg-Rg = X4R = xﬁ".(a‘-au.) {(5-8)
yielding:

L3

Ry - R Ry*XxAR ‘ ‘
e -note R _ R i,
i A Voav " Ve - ((5-9)
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an‘d. neglecting terms of order 2 in A:

An = ‘}‘E(An - %%AV) (5-10)

Equation (5-10) constitutes a demonstration that the index

change resultlné frt;m lon-ethanze is in fact proportional to
the: amount &f exchange Y%, and there\fore to the concentration of
new ions (because x ‘-”NK/NN.). This is a result often
used but rarely proved. o

In order to calculate An from (5-10) we need to know the

Nya Oof the substrate. Using a typlcn\l) éomposit,ional data
for ordinary soda-lime glass (given {n Tab'le 5-3) [Shand 1958,
Gortych 1986al, we get Ny = 0.155. For K -Na*
';xchange. this values gives: h

AV = 1.054 cm?/mole 0° i{ons

AR = 0.546 ¢e¢m3/mole O~ {fons

) . v \~.
An ~ 3x10”Y
TABLE S-3 .
n om {3 S W(gr/mole)
k Sio 2 | 72 R '60Q.1

Na,8 1 2 14 62.0 -

R S 1 g
Al,0, 3. 2 1 102.0

.. n(A=633 nm) = 1,513

Vo » 15. cm*/ mole of O~ ions [Fantone 1983]

<

Since Ix lies between 0 and 1, the last resuit is two orders of
magnitude too small (see Chapter 4). A similar ¢onclusion hoilds
for BK-7 zlass'[Gortych 1986a,b and Fantone 1983]. Using t/hc

sameﬂ Ny, for Ag*-Na* exchaan'ge. wﬁ get An =~ .08,

4

4




indu\\;try (Bartholomew 1980], ‘doés ‘not allow. free expansion of

substrate- becomes neclizibla (of the order ‘of {(d

s 85— -

lﬁn' good agreement with ‘thg measured ‘value of "0.09 ([(Stewart

1977]. - o )
What is so peculiar about K'-Na* -that makes the H-F
model fafl? "We will show in the next 9ec,_ti0n”' that this: process,

n~

known as ‘ton stuffing’ fg;r'sumfac«e strenghtening in the' glass

-

the glass to accommodate, the larger kK* ions. Therefore, the
value of AV to be used in (5-10) is smalier than the. calculated

one and results in a larger value of An. The same effect occurs

for Ag*-Na* exchange. but in that case fts magnitude is 10

' time°s smaller than the'inde‘x chanqe calculated withou_t,iti. It \1’5

the slmost exact cancellation: of thg two terms of (5-10) which '

makes it significant for the potassium case. R

5.3 CORRECTIONS DUE TO SURFACE-INDUCED'STRESS y

The build- up of stress by lon-cxchenge ls a well—known fact

IS
i '

in the class”industry [Kistler 1962] observe/cl measurable‘

o

bending of thin (1l mm) glass plates by exchliinging various- types

of ions on one side only of - the plates ‘ When the rat;o of

exchanzed depth (d) to substrate thickness (b) is very small as
is ¢enerally the case \vith optical wuvezuides. the amount of

stress relaxation due to bmdmg and stretching/J/ the whole

away from
-

- the edces to be preclse. see [Timoshenko 1951], \yith fRichmond

~ sy \

&
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by [Timoshenko 1951]:

" 86

1964] for the analogy between thermal stress and chemical

"exchange stress). In that case, it is. as if the_newly exchanged

@

gluss, with its larger volume, had been compressed back by the
resistance of the substrate to expand laterally. The only
directlon of free expansion to accommodate the larger size is in

n t

the direction perpendicular to the plane of the substrate, Whete

l\the glass-air interface opposes no reslsﬁlnce This is. clearly

shown in, (Bradenburg 1986] and also in Section 54
Translated into elastic analysls. these statements are
equivalent to saying that the following 1onzltudin,gl stresses

oy have been applied to the exchanged g!‘ass [Ricpmond 1964 ]:

4

6, = 0, = Og 0 = O o (5-11)

The change-in v;lume resulting from these "stressés is given
' v o \

We e (5013
£

where the strains €, are related to the stresses by Hooke's

law [Timoshenko 1951]:

-2 .
e,-é—(o, - v(o, 40,)]-—?—’1 .
e& = é.(oy - viog + oz)) - (i--g-)-u—Q - (5-13) .

|
€, = é(oz - v(og + oy)) = (—E-]—O-Q

©

This givesa for the volume change (l.e. the amount of ‘volume
change that could not occur dﬁe to the resistarnce of the

substrate):
4y - 2po-2v) © (5-14)

where E is Young’'s modulus and v {s Poisson’s ratio. For abdn—
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lime glasses we have [Shand 1958]: ‘
. . E = 7.2 x 10* N/mx}r‘xz
v = 021"

A} J———

. w ,
In order to evaluate (5-14)) an estimate of g, the
‘ -~
ma—xl’mum stress at the surface of th% substrate, is needed. From
[

(Kistler 1962 and Bradenburg 1986], we can estimate o; to

lie .between -700 and -1000 N/mm? (compressive stresses are
negative). Of course the exact value depends on a lot of
factors, like the glass composition anﬁ the temperature ,of the
process, but we can use this range as fairly representative
since their experimental conditions were reasonably similaor to
ours.

The highest value of the stress range (i.e. =-1000N/mm?)
zives the b;st agreement with our An, values and will be used
here. This can be explained by the faci that the temperatures

that we have chosen are much lower than the strain point of

- glass (515°C [(Shand 1958], below which very little stress

3

relaxation occurs). o

First, we compute the relative volume change in terms of the

molar volume (choosing V=V, = 15 cm3/mole 07, in (5-14)):

%‘f - -0.017 AV’ = -0.25

Then, the net volume change (from fonic change minus °‘the
compraession) is:

: AV, = AV + AV’ = 1.054 - 0.25 = 0.804 (5-15)

.
=

Substituted in (5-10) the new value for AV yields:

\
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aAny.. = 89 %10

This result does not take into account the axistencg of'a'

birefringence,” ftnduced by the anisotropic stress through the

photoelastic effect [Morey 1938). Light polarized along the’

plane of the substrate (i.e. parallel to the stress) and
perpendicular ta it will travel at different velocities (the
former corresponds to TE wéves, the latter to TM waves). Also,

the’ maximum value of index change should occﬁr\a‘t the minimum

exchange temperature. This is because at higher temperatures the

viscosity of the glass decreases .and relaxation (diminution) of

stress occurs. Then, AV’ is smaller, AV,,. ts larger, o

and An smaller by (5-10). Both of these effects have been’

\ -

observed experimentally. as can be seen in Table 4-2.

o

The birefringence can also be calculated from a siress i)oin‘t‘

of view. From photoelastic theory, we have in our case [Shand

L]
=y .

1958]): @

€ N N \

6 - Anm -'Anm - B(’u‘" (5"16)

wher® B i;x the birefringence factor of the material - "F.or soda~
v N '”‘
lime glass [Shand 1958], B =~ 2.4 x 10" mm2/N. |
\ . o »
This gives a &§ of 2.8 x 1073, somewhat higher but

3

still’ pretty close to the maximum measured value of (2.120.6)

% 10 ~2 (see Table 4-2¥ -

A comparison of the main results of this analysis- with the

[N

expef‘iment'al values {s presented ianable 5-4.

It should be noted at this point that many stress

\

>

Ty

+

0
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‘mesurements in ¢llss are can:tcd out in the opposite wag; as was
c ' donc‘he_r'e The bire!ringemce is measured interferometrically or

'b); s'ome:other optical. means and the stres‘s is calculated with

the -_t_leip of p‘hotoelast;c coefficients or of the birefringence

«*

f!ctor

T ‘ - In the case of lon exchange. tms approach i{s to be taken
with caution. Fllrst of all, most of these methods lack the sub-
‘micron resolution needed to pinpoint the actual maximum of ‘the
stress p}t;ftle (which t‘s’only one or two microns deep as a
whola) and yield a value that is some\;rhat lower due to
lvcraging. Secon&ly‘und perhaps more important the material
inrameter‘s used (i_hetoglastic coefficients) are generally those
(of th‘e sil'bstr.ate‘ gl‘ass_ This turns out to be incorrect becaus;
'thc photoelastlc constants are fairly sensitive to glass
composltlon (Shand 1958 and Schaefer 1953]) and that the
exchanged glass has a very different composition ,than that of
‘the ’s’ubstrates so‘ga-llvme glass can hardly be still designated as

such after all the sodium is replaced by potassium. This

"tlnac‘,curacy is reflected in our results as a larger error in én

because we had to use the stress factor B of soda-lime glass. By

‘contrlst "the elastic ﬁropei‘tiei—are relatively less sensitive

to »composltion [Shand 1958] and therefore give a better resuit

5

} - for A n, ' ’
o - :
) - Regarding the fact that K'-Na* exchange in BK-7 glass

G‘af "1 ylelds wuve‘cuIQgﬁ with higher An, than those made in -soda-
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limeaglass [Gortychr 1986a,b), even thduqh it contains _less
» - )

sodium, the explanation lies probably in the blocking effect of

calcium. BK-7, contrary to soda-lime, doeés not contaln this
L.

"element, which has been known to restrict the exch—angghof

potassium for sodium [Bartholomew 1980)] and therefore the size

of the final index change. . : !

13

Finally, the Ag*-Na* process also gives-rise to surface

-~

induced stresses because of the even lower temperatures uvsed

(215-250°C) and of the size mismatch (Table S-1). Using o,

= -200 N/mm? (from -[Bradenburg 1986]), we get a stress-

corrected An, of 8.33 x 1072 {nstead of 8.16 x
"k

1072 (see Table 5-4), and a stress-indued birefringence

of 5 x 1079, Both of these corrections are very small

(0.5 and 17 of the measured”An, reépec}idely) and unlikely- to
[

have been observed other than by a specifically designed

measurement.

Ions AV AR An AV’ An(+str.) An(exp) én Sn(exp)

*-Na*° 1.054, .546 .0003 -.25 .0089 " .008-,009 . .0014-,0021
A‘g‘yﬁa* L3t 3% O D6 .083 09 8833 -

All AV and AR in the table are in cm®/mole e

° N

L
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5.4 OBSERVATION OF SURFACE COMPRESSION |

-

The expansion of the glass r\esultlng from fon-exchange can
be\observed by measuring height gdifferences between exchanged . :

and sked areas on & ‘flat substrate.

To \verify this, a .waveguide was fabricated at a temperature
i

of 0°C for a tifne of one hour with an aluminlﬁrp -mask’” .
covering part of the substrate. After removing the m¥sk, a

surface profiter was -used to scan the hyght of the surface
h h o

across the boundary of the exchanged area. The result is shown
in Figure 5-1 and the measured height is 22 nanometers, for a

waveguide which is 1300 nanpmeters deép. Measurements at higher
S .

temperatures yielded lowerv strains, again consistent with the - .

- -* ’ ~ - M ‘Nu

theory of Section 5.3. i

' v
.

5.5 CONELUSIONS ‘ .
We. have shown t'hat, the refractive index increase and

birefring @nce resulting from%otassium-sodium jén-exchange in"

- soda-lime glass is almost exclusively due to a stress-induced

surface effect. This (s in total/contras{ wltho tﬁe case o(

-

s{lver-sodium exchange where most of the «index increase .is due

#

to a volume effect and to the difference in po!ariznbiiity.lof !

we

the ions, and where no birefringence has been r;'ported. ﬂ
Some of the impll\catlons of these results are as follows.

L

First, the proportionality between in'dex’chanze‘and

concentration of exchanged ions, which can be explained Ss in

-~

-~ ' ?jj

B
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Section 5-2, may not hold when stresses are taken into account.
Near the surface the relationship is still valid because the
volume correction (5-14) is proportional to o5, which is
itself proportional to the exchanged concentration [{Richmond
1964]}. For deeper waveguides however, ‘the normal stress
compdnent o, may no longer be neglected away from the free
surface and the variation of AV’ with depth becomes more
complicated. Second, in‘ the heat treatment of a waveguide to
increase its cross-section and lower its maximum index change by
allow-l‘:\g Q‘le diffusion to proceed without a source of exchanging
fons, the effect of stress relaxation must be considered as much
as the redistribution of exchanged ifons. This (s true of all the
fabrication procedures: whenever a prediction of refractive
index shape is attempted based on experimental parameters, the
influence of these on the state of ;tress should be included in
the analysis. As a final example on this topic, an attempt to
bury the waveguiding layer below-the surface of the substrate by
back-diffusion wlthethe orlglhal fon present in the glass

(Na*), may increase scattering loss instead of decreasing it
because tl':is process in—duces tensile stresses on the
originally compxl‘essed glass, which could promote crack formation
and p»ropaeation (Kistler 1962). In view of what has been.

presented in this chapter, a more( efficient way of burying a

waveguidealayer would be to subject an ordinary ion-exchanged
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substrate to a very high temperature (above the softening point
of soda-lime glass, 735°C (Shand 1958, Table 2-1]) for a short
period of time. This would lead to total stress relaxation af
the surface by allowing glass flow [therefny locally reducing the
index change to zero) while deeper layers would remain
unaffected because of the relatively poor thermal conductivity

of glass.
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CHAPTER 6. CHANNEL WAVEGUIDE MODELLING AND DESIGN

6.1 STATEMENT OF THE PROBLEM

A strg.ncture which {s relatively uniform in one direction

(say, the 2 direction to be consistent with the previous
chapters), and has a limited region of refractive index h;;.l:er
than that of its surroundin;s (in the %-9 plane) has the
property that it can be used to confine an electromagnetic wave,
under the right circumstances (see for example [Marcuse 1982]).
The previous chapters have demonstrated a method to fabricate
such structures in glass. Here, the modes of propagation of
these waveguides are derived, starting from Maxwell’s equations.

wi

Using phasor notation, a time dependence of e} is

assumed throughout since the fields are monochroma}lc (the
dispersive effect of modulation of the optical wa‘ves is
neglected because the propagétion lengths are too small for
frequency variations of the order of .001% (GHz vs optical
frequencies) to have any effect).

In those conditions, and assuming hon-magnetic materials,

the source-free Maxwell’s equations are written:

V x H - jweE = 0 (6-1)
VxE+ jupH = 0 (6-2)
V.@)-0" ‘ (6-3)
VeH=0 ' (6-4)

The vector wave equation for E is derived in the usual manner

e

L




o

by taking the curl of (6-2) and replacing (6-3) in the result.

Because of the dependence of € on (x,y,z), the wave equation

has one more term than {s usually the 'case:
V@I - E) + VE + W% €E = 0 (6-5)
The wave equation for H is derived similarly:
vine) X (v X H) + V2H + wlep H = 0 , (6-6)
Now, we assume that the waveguide is uniform in 2 and

that we have p\l}opagating fields in that direction (i.e. "modes”

of the waveguide). In that case, the 2z dependence of the fields
is given by e .  We also replace wzuoe by k?n?(x,y). where
k is the wavenumber in free-space (w J@. and the wave equations become:
Y,n(e) + E) + V’E + (k°n2(xy) - BIE = 0O (6-7)

Tin(e) x (V x H) + 92 + (kn%xy) - pOH = 0 (6-8)
Because of the presence of the first term in (6-7) and (6-8),

their solution is quite complex .for general cases of n?(x,y).

However, it i{s possible to neglect ‘that)term when the following

condition is met {Marcuse 1982,. p.101]%

A€ An
2ne m

In our case, R & .002 and the {inequality is well satisfied.

R - << 1 (6-’9)

Equations (6-7) and (6-8) are written below in their new

form for future reference (this is called the “sacalar wave

Q
sNote: This is less true for TM modes because of the large

discontinuity in € at the glass-air interface. For TE modes

this does not pose a problem because E’ s perpendicular to

the large gradient and the first term of (6-7) is zero.
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approximation”):
‘ VE + (k*n(xy) - BUE - O (6-10)
VH + k*n2(x,y) - pYH = O (6-11)
The modes of the waveguides are obtained by solving these
efgenvalue problerps.'wlth the appropriate boundary cﬂondltlons,
for a given field compo‘nent. Once that solution {8 found, the
other field components are calculated from Maxwell's equations.
In the case of planar waveguides.‘for which all derivatives
with respect to y vanish (proi)agatlon along z and depth along
x), the modes can be separated in two independant ortho‘;onal
groups because h;laxwell's equations become partially uncoupled

[Born 1980 or Landau 1969]. The only non-vanishing comenerqs

for each of these groups'are= TE modes (Eg'Hx'Hz) and TM
modes (Hy,E,,Ez). For the more general case of channel

waveguides, such separation is not strictly possible because
d/3y # 0, and the modes are "hybrid”, meaning neither

TE nor TM. t

£
However, in the case of ion-exchanged waveguides fabricated

by the two-step method, the index gradients in x are much larger
than those in y (especially for small values of t;), as can be
seen from Figures 2-6 and 2-7. In this, almost planar situation,
.there will be again two groups'@bf solutions, the quasi-TE modes,

where E,, H,, and H, are much larger than the other three

~
«F -,
1

components, and the quasi-TM modes, where H,, E,, and E;

dominate. These 'TE' modes will be obtained by solving (6-10)
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for Ey and the "'TM' modes by solving (6-11) for Hy, The two

equations are exactly similar, but the boundary condition to b'e
sati_sfie\d at the glass-air interface is not the same [Marcuse
1982), and the index anisotropy must be taken into account.

It is the solution of this set of equations for the wavegui-
ding structures fabricated‘by two-step ion-exchange that will be
the subject of the remainder of this chapter. As was mentioned
previously, the refractive index profile n(x,y) ls.obtnined from
the normalized concentration calculated in Chapter 2 by:

nix,y) = Ang X c(x,y) (6-12)

with An; for the TE and TM cases taken from Chapter 4, at our
]

working temperature of 385°C.
There will be three interrelated methods of soelution
presented in this Chapter. ,To avoid confusion between them, here

is a ‘flow chart’ to guide the reader in what follows:

f
WAVEGUIDING PROBLEM (find E(x,y) or H(x,y) and )

) S
6.2 Full 2-D solution by 6.3.1 Separation of the problem
Rayleigh-Ritz method. E(x,y) =« F(x)G(y)
- ] Saqalution of {-D problem
\[ by Rayleigh-Ritz.
- v
E(x,y) and p F(x) and N(y), the
— lateral “effective index”
profile
6.3.2; Solution of the 6.3.3 Solution of the
lateral problem by lateral problem by
the WKB method. the variational m.
v v
G(y), B G(y), B

fhe three sets of results are discussed in Section 6.4.
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6.2 FULL SCALE NUMERICAL SOLUTION OF THE WAVE EQUATION

Y L

6.2.1 Variational formulation of the eigenvalue problem
The rather complicated shape of n(x,y) prevents the use of
analytical methods of solution to the wave equations. On the

other hand, the differential eigenvalue problem defined by

(6~-10) and its boundary conditions can be shown [Mathews 1970 or
Marcuse 1982}, to be equivalent to a variational pro(tyam.
e . ~
First, let us rewrite the wave equation in tx“uly scalar

form, for the eigenfunction Y and its associated eigenvalue

p?, to avoid constant reference to TE and TM modes (in the

former case Y = Ey and in the latter case y = Hy; and the

lppropriate' An, must be used in each case).

v + KEnixyly - B2 ‘ (6-13)
with - Y(o,o) = 0 and %%’(Q'm] -0 (6-14)

where fi {s an outward normal to the boundary of the domain in

the x-y plane. Condition (6-14) ensures that there is no power

‘flow in direction fi, for modes propagating along the 2

axis.

_The variational problem to which (6-13) and (6-14) is
c'quivalent can be statgd as follows [Adams 19811}
r

\/ Dafining the functional Bly] by:
)

J[ Zaxdy (-0 + K

Bly] = (6-15)
C T e

s

Then, the eigenmodes ¥ and associated eigenvalues pnz

are such that: !




o . ’ ~ a

5B 0  andB? = Bly,) (6-16)

",
meaning that the extrema of the functional occur when ¢ |is
equal to ar; eigenmode, and that the values of the functional at
those points correspond to the eigenvalues.‘ In the particular

case of equation (6-13), the extrema to be found are the maxima

of B. This can be seen Ey rewriting it as:

(in all of the following, [ "dxdy is replaced

by IdA,to.simplify the notation)
[aA® - k%n?? - -[dA(Ty)? (6-17)
, fda® - k*n?w? < 0 (6-18)

p o JoA KV (6-19)
c A ———— -
foa v* -
Since B is bounded from above, it has a maximum value,
Bg, which corresponds to the mode of the waveguide with
the largest propagation constant, {.e. the fundémental mode
¥,. , ’
9 S
* Bo. = "y Byl = Blygl (6-20)

THhe ot’her modes (corresponding to smaller local maxima of B),

are found by using the property that the solutions’ v, of the,

problem form an orthegonal set in the following sense: \

faa vy, =0 forr A s . (6-21)

1

-Then, the maximum value of B[y], restricted to the space 'of the

functions orthogonal to ¢, will yield the next mode of tthe,/

waveguide:
B2 = $1, Brwl = Blw, (6-22)

and so on for the rest of the modes:

s
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By = wwé"\,i“..w,_p BIY = Bly,)  (6-23)

since y:p must ‘be- orthogonal to all the. modes w.lth higher

values of ﬁz.
< Jt, s wortp noting at this point that the problems (6-20),
[6-22),f(6-53) are exactiy equivalent‘ tp (6-13)."provided that

(6-14) is satisfied in all cases. Herice, finding the

N

absolute maxima of the functional B is just as difficult as sol-

ving (6-13). However, the variational formulation of the problem

allows approximate solutions to be found far more easily than

the differential equation formulation. Also, the ‘value of -p°

/
smal!l changes in lb and that even an approximatlon of ¥ can

£y

is “ataionary".~m~éanl~ng that it is relatively lnsensltlve to

A

yield a pretty good result for p° [Mathews 1970]. Such an

ap‘proximate sojution is described next.

6.2.2 The Rayleigh-Ritz method

K

~

' Since the exact elgenfﬁnétlon ’tpo' ylelqél the absolute
maximu}rqt of B, an(y approximwa’te' flun(ction for: w‘u will ‘reéult in
a sma‘llhtr value.”/The‘refqre, a s,tr‘at”e‘gy_ for finding Yo
consists of trying a suhcc'/e.';si;)n'ofdf’l.u;ctiof’s in (6-20) in a
manner such that the‘ valJu‘e :o‘f B increases, meaﬁ;ng that the

trial funetlons approxlmate !b better and better. This

strategy is at the heart of the Rayletgh -Ritz procedure

‘.IMat&uhara 1973, Taylor 1976. Adams 1981). - :

. %

-
\

The solutions of (5 15) (6 16) belong to a space of

¢
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functions with the following characteristics.” They arse

continuous, and so are their derivatives (at least up to second
order), over the whole x-y plane. They are integrable, meaning

that for any pair of functions belongi;\g to that space: |

JdA o(xy)0(xy) <°M = a non-infinite number (6-24)
We can find a complete set of basis functiéns for the function
space in the sense that any of its functions \“car'i be written as a

combination of basis functions:

V) = 5 8, xy) (6-25)

The basis functions chosen should be orthonormal:

foa o0, = 8 (6-26)
The last property facilitates calculations enormously. ‘
Note that the basis functions must form an infinite set to
be able to satisfy (6-25) for any function 'of the space that we
have defined. This is of course not very practical. By
truncating the series (6-25) to a H;\ite number (' - say, N) -of

terms, the function ¥ is only approximated. As N gets larger,

the approximation improves. This is the idea behind the

Rayléigh-Ritz process. The trial function Y used to
approximate ¢ is obtained by truncating (6-25) to N terms:
- \,; N-1 o
Vg = I a9,xy) . (6-27)
=0 :
Then, for each value of N, the "best™ trial function is found by

calculating the set of coefficients 3, which maximizes B. This

is done by solving the following set of equations:

D

3B . -
£-o0 { = 00.2..N-1 . (6-28)

N
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for the a,’s and B (p?). As soon as B has converged to an

acceptable precision. the process is stopped. -

-y

. If the basis -is well cho)sen among the many that can be used
for the function space which has been defined, the successive
trial functions resulting from an increasing N will yield a
value of B converging rapidly to its maximum [Meunier 19?3].

The only problem that remains is the method by which (6-28)

is solved. First, replacing (6-27) in (6-20) ‘leads tos

QN

faa 1 -(vta,wvra,%)) . k2 a0 a,ol

(6-29)
a;a,. 6”

B -

where the repeated indices-imply summation on ”thes'e,in,dices:

L

'akb,; = E a;bk

PR
»

.

and where drthonormality (6-26) has t;,een used ' in the

t o )
)

denominator. Now, using (6-29) in (6-28):

"

b a

IdA { a,%, V¢, .+ k°n? a:tol 8,8 - R X
b 3 1 . .
—LSLB =0 o e N1 A{6-30
, 88 by 8,850, ( AN AET30)

or:

(fn 1-96,:90, + K¥n%e,0) - B8, & = 0 G=0L.N-D '~ - (6-31)

3

which is a matrix eigenvﬁilpe Pprc;'blem with 'eie‘er{'vg}ixfes B = nz
A3 . M . \‘

and etgenv'ectorp a - {au,a,.az,.'.;n"_l}, for the |
matrix M, of which the (i, j)th:’e]ement' is"‘d"ehf‘iqed by the
first two tcrms in the pnrenthesis of (6 31) "With' the hel{ﬁ of

the identity matrix I, (6-31) can- be Wrntex_l ase . .. -

)

z . dpzn..o' ' ‘.. (6-32) -

K ) 4 b 3 .
In order to introduce a notation used later in the Chapter. ,
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o

0

where tbﬁ/ X and y dependence of oitx.y)"la explicitly

- specified by separate subscripts p and q, (6-25) is written:
- ‘ ® . .
vyl = 3% aye, (6-33)
i=0 J=0 )
and (6-31) becomes:

- 2 * -
(ﬁ@ [-V,:Vo,, + K%, 0,) - Bouby) &y = 0 (6-34).
with (1=0,1,..,N;=1:§=0,1,..,N, = 1),

" " o
It is important to remember that a given pair of indices
(1,J) or (k,!) refers to a single basis function of x and y.
Therefore, the set of coefficients 8, specifies
unambléﬂously the solution of the problem.
The eigenvector of M corresponding to the largest
eigenvalue approximates the fundamental mode. Since‘the—

g eigenvectors of a matrix are orthogonal to each other, the

second eigenvector corresponds to the second ‘mode, and so on for

“alf the eigenvectors. However, the accuracy of the approximation
k]

decreases with the increasing mode order for a given N because

’-

7" the size of the available basis decreases. This phenomenon (s

"“- due to.the fact that the search for the second mode occurs in

2
~the function space tha\t is spanned by the basis but orthogonal

]
4 " .
of"freedom to adjust to maximize the trial function, which

/ “to the first e;genfunct&on. Therefore, there is one less degree

oy

7 L .
. .limits its eventual accuracy ([Gould 1966]). Higher-order modes

:ﬁave to be orthogonal to all the previously found eigenvectors,

-

. . and since the total base is limited to N dlmena:rons. the

I3
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R .
avajlable degrees of freedom avajlable to them become severely

-

limited. For this reason, th-I“s method will only be used for the\g
first two modes of t;le waveguides in this %vork.

It turns out that because the index pll'ofile is symmet,i;i‘c
with respec’t to 'y. the eigenmodes x',wlll be either even or o’dd in
y [Yariv 1975]. Thereforé the Hproblem can be split in two by
considering separately superpositions <;f even basis functions or
odd basis functions. This is because a superposition of both odd
and even functions has no definite parity. (i.e. is neither odd
nor even) and can not be a solution. Using even functions will
yield the fundame\ntal mode (mode 0)- with the largest eigenvalue,
while odg f\t\mvctalons wll\l superpo§e to“ g'lve’ the lowest orde-r odd
mode (i.e." r{mdg 1, with the second largest eigenvalue).

"6.2.3 Implementation of the Rayleigh-Ritz method:

The first step is thef'determwlnation of the set of basis

_functi‘ons. Since the waveguides made by twolstep ijon-exchange

have a high aspect ratio (width/depth), it is more cor;venient to

have basis functions mad: up of products of functions in x and .

in y. Also, the basis functions have to be scaled to fit the

dimensions of the problem and centered somewhere in the core of

the waveguides. Therefore we will use basis functions of the

\ 3

form:

¢, ) - fp(%;i@]gq(%;) S '(6-35)

1

Note that the origin of y 8xis is At the“center of the channel,




'

therefore no offset in y is\needed. Furthermore, the functions

g, must be even or odd. i ‘ A .

Another desirsble feature of a basis, is that its functions
should be the exact solutions (modes) of a problem that
resembles the one at \t?and [Meunier 1983]). Although these
condaitic;ms are ‘no;c necessary in principle, they contribute to
a‘ccelerate the convergence of the Rayleigh-Ritz process.

A particularily useful basis‘with all of the above
characteristics, is composed of products of Hermlteé-cluui-n

functions [{Marcuse 1982], also called parabolic cylinder

functions [Jahnke 1945]. They are soiutions of the following

‘equation:
- 3y L4 .2 l.
axz + ([n+2) b .4)hn - o (5-36)
_ which can be transformed to become a one-dimensional scalar wave

equation for a parabolic }nde\( profile [Marcuse 1982], a .

reasonably close problem to ours. These functions are defined

by:

N :

) - L H (x)
Palx) = s Pl

where H,(x) is the Hermite polynomlal of order n:

(6-37_)

Ha(x) = ﬁz‘(- g;)" o | (6-38)

and they -obey:

9

7 ax nong) - 8 (6-39)

This basis has been used in many instances for the analysis
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of vearious types’ of 1-D and'-2-D waveguiding proglems by the
Rayleigh-Ritz method in the ;;ast {Matsuhara 1973, Taylor 1976,
Meunier 1983]). Finally, the basis functions are:
X-X y
oy o BN :
¢ (XY =
pq Y ¥ ¥

where the denominator has been added to preserve (6-39) with the
b

(6-40)

scaled variables. Note also that two indices are kept to
fdentify a single basis function in order to highlight its

features In both x and y (p and q are the number of nodes in

each directioﬁ%.

Before we begin the calculation of the mairix elements, we
&

have to spec)fy how the additional parameters (x;, w, and

wy) are chosen. We cannot simply add equations of the type:

9
2B . (6-41)
Xo
to the set defined by (6-31) because they would not be linear in
the o,'s and would not fit in the matrix eigenvalue problem.
On the other hand, it is not necessary that equations such as
(6-41) be satisfied exactly because of the stationarity of B

near the exact value of V. Therefore, following [Matsuhara

1973) and [Taylor 1976), the values of x5, w,, and w, are

determined separately by maximizing My, the first

diagonal element of the matrix M. The reason for doing so is

that in the\slmplest form of the Rayleigh-Ritz method, only one

"basis function is used (om] to set an estimate of p2;

?
and since the estimate improves by maximizing B (equal to Mgy

ot
-
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for N=-1, see (6-32)), the. values of x; w,,.and Wy which
do so'are the best ones for that one-dimensjional problem.
Strictly speaking, enlarging the basis requires recalculating
those parameters. However, if Py 19 Kn‘é;)t too far from the

fundamental mode field wo. the parameters found are close to

their exact values and the linear combination (6-27) gives an
”

excellent approximation? to [520 fn spite of the small

inaccuracy in Y, Figure 6-1 {llustrates schematically how

¢
the best value of (320 is approached,
The matrix elements are calculated as follows. The first
term of (6-34) 1s expanded:
Z , N ~
faa (9o, Vo) - [aA (¢, 9%, - v-(@, Ve,,) (6-42)
2
= JdA o,,v O - $lo, Ve, )f di (6-43)

The second term of the RHS of (6-43) is obtajned from the
divergejyice theorem (noting that the integrand has no z
component), and is equal to zero since the integration path ‘s

located at infinity, where ¢, and V¢H are zero.

J

X-X
Also, expanding the Laplacian (with the definitions u-—w;n

y
and V--W):

’

2 2
fan o, 9%, - Iw%g(n,(u)nj(v)-a%,hk(u)n,(Y) . h‘(u)h,(v)-a%,}hk(u)h,(v)) (6-44)
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Figure 6-1. Effect of optimizing Mgo: by scaling and
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recentering the basis functions, on the convergence

the Rayleigh-Ritz process (simulated).

of




2 2
- [ Jauavingoin o) ) o hyGanw h,(v)f;;h,(vn

jau L h (u)-—hk(u) « fav -ﬂs, n,(v)i-,n ) (6-45)

- . ~.c

where (6-39) has been used to get the delta functions(5,;).
; Both terms on the RHS of (6-45) contain the same type of

integral: .
- fdu %(U)ffihn(‘-') = [du h,,,(u](%3 - n - Hh () (6-46)
with the help of (6-36). Continuing, we get:
(6-46) = (-n - £)5,, + & fdu ny(wulh () (6-47)
= (-n - D5, + 2 fdu n (D@, o) + ...
.+ 4n{n=Tlh, _,(u) + “(2n+1)h, (u)) (6-48)

with the help of recursion relations for the Hermite-Gaussian

functions (Jahnke 1945]. Using orthonormalitys

(6-48) = L NN 2b,000z) * ANz ~(20418,,) (6-49)

So that finally:

M = 4_\,,'5,‘_2'”“*1')('1—*776(“2,‘ s A8 oy - (21+1)8) +... ‘
x

L)
. ___4‘;32( IU-'».li”-ijbu*zn + 4””-156“_2” - (2§+1)8,) ... -~
y .

T -
@\r , -+ & [l n2tey) by = x“u,{‘ x“]hj(w-]h,(v-) (6-50)

and the problem {is reduced to solving the last integral.



111

Note that My, = M, in (6-50) which is easy
to see in' the last term, but also in the first two in the cases
where they are not identically zero because of the delta
functions. Thereqfore the matrix is symmetric and we do not need

to calculate all its elements. A further simplification arises

again because of the symmetry of n?(x,y) with y in the
integral. Since even and odd basis functions are treated

separately, their products in (6-50) are always even and we can
replace:

© ©

[ dy by 2f dy
again reducing the numerical computation time in\half.

-~ The final simplification of the problem comes from the. fact

that in a large part of the integration domain the function
n’(x.y) is equal to 1 (for all the regior\‘r x<0). Then, we can

replace:

“’?;g;f:"” . By %?)hlg;)ht(%? h;[%;) n?(x,y) (6-51)

by: ’

o

2 o ®© 2 Lo © .
ﬁ%;j'odfy [ ax hyhyhyhy (n2xy) - 1) + g}x?w;]ody |7 dx npph o (6-52)

-&‘{;-j"d [Pdx nhhehy (n2xy) - 1+ k2 8,8 (6-53)
Wy oY)y Hhkl, D4 1951
where the x integral domain is reduced in half since n - 1=0

when x < 0.
The integration is done numerically with a Simpson’s Rule

ngorithm [Conte 1980]. To calculate the “function”™

4




n®(x,y) at points not located on the grid on which it is

defined, linear interpolation is used because of the s;xxoothnesa
of the profile (except at all points lying between the grid
points x(8) and x(9) where a cubic spline interpotation is
needed, see l':'igure 6-2). The 2-D integral is separated into a

[

succession of 1-D problems as follows. First, theblntegral along

=

y is solved at all 10 grid points in x, and stored in array

YINT. Then, the integral along x is perfgrmed:

“igy.':dx hx(%g]hk[%_:g] I :hj(wy;]hx(%;)(“ztx'y) - ndy

2k? e :
-wtwyfodx hyh, YINT(x) (6-54)

The integration domain extends over the first 10 grid points
in x and the first 15 points in y, correspox;dlng to x = 0 to
9pm and y = 0 to 3Suym. The Simpson’s Rule algorithm divides
these into 40 subintervals for integration (the number. of

subintervals was chosen after trials with various numbers showed

that convergence was attained to one part in 10%,

After all its elements have been calculated, the matrix
eigenvalue problem must be solved. Since we are principally
/c{ncerned with single-mode channel waveguides, only two

propagation constants are needed: that of the fundamental mode

and that of the second mode, in order to determine its cut-off

. .
Eoint. i.e. the timit of the single-mode rangese. Mode 0

w
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" Flgure 6-2. Justification for usipg a linear interpolation between

the discrete values ©f n(x), except between elements
(8) and (9), where a cubic spline interpolant is used.
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corresponds to the \largest eicenv‘alue in the even mode problem
while mode | is obtained from the fundamental odd mode problem
(which is treated separately). Since only the largest eigenvalue
is needed in each case, this is a simpler problem than the one

of finding all the eigenvalues of a given matrix and it is

solved efficiently by the method of inverse iteration (a variant
of the power method), which yields only the largest eigenvalue
and iis associated eigenvector (the FORTRAN source program for
that method was taken from [Conte 1980] without modification).
Before ‘presenting the results of these numerical
calculations, the number of basis functions to be used must be
determined. In order to do that, a test run is made with a given
problem (here specified by t = 6°, t; = 54°, T = 385°C, D
= 10pym, TE mode) for different numbers of basis functions in x

and y. The scalings and offset for that case are: w, = 0.518,

Wy = 3.9, and x5 = 1.556 , ell in um. They are found by

trial and error using the program to calculate Myy
interactively until its maximum wvalue is found.

At first, a single function was used in y (ho), and the
number of functions in x (N;) was varied. Figure 6-3 shows the
value of the propagation constant p/k that resuits. From this
graph, it is estimated that an accuracy better than 2 X 1075

is achieved with N, = 21, It takes that many functions because

2
the depth profile of refractive index is highly asymmetrical
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~with e large discontinuity at x = 0. Returning to the lateral

direction (along y, and remembering to use only even basis

fqnctions), no cﬁange fn p (within 1 part «in 105) was

" found for N, as high as 5 (with N, = 14) or N, = 3 (with

" - 21). Therefore, only one -basis function is sufficient to

describe the fundamental mode laterally, c;nd‘x that function is a
Gaussian (the lowest order Hermite-paussian),. It is because of
the smoothness, symmetry, and w;ak Iguidance )of the lateral index
profile that the Gaussian function approximate so well the
fundamental mode, as in other cases of weakly guiding single-

2]

mode waveguides [Marcuse 1982]. Note that the N, = 14, Ny -

5 case involves the calculation of 2485 matrix elements and the
solution of a symmetric 7070 matrix eigenvalue problem.

To end this section, a list of the scalings and offsets is
presented in Table 6-1. All the waveguides have a mask width

J
of 10 ym and the total exchange time (t,+t°) is kept at 1

hour, at a temperature of 385°C (refer to chapters 2 and 3 for
other details of geometry or fabrication).
The procedure just outlined is rather lengthy and involved,
and it is preferable to i::ai/e simpler ways to characterize
S

channel optical waveguides in optical circuit design situations.

Such methods are described in the following sections. Their

results will be presented along with those of the Rayleigh-Ritz ‘

method &t the end of the chapter for comparison purposes.




TABLE 6-1
SCALINGS AND OFFSETS FOR THE 2-D RAYLEIGH-RITZ METHOD
&
TE MODES
t ty Wy \:'3 wy
planar guides
two-step guides even/odd even/odd even/odd
: : : 2i87 c.o / ¢c.0 £/c.0
_Q0p’ / / 3/¢.
’ " /. /1. 4/ 9
- - / A 974
0’ ' /. /1. 372
channel guides even/odd even/odd even/odd
60’ 0o’ .529/.533 1.59/1.60 2.0/1.8
T™™ MODES
two-step guides even/odd even/odd even/odd

- =
.o

SN N

-All quantities are in pm (except t\he times, in minutes).

-

-The wvalues of w, and Xg for the TM modes were taken to be
the same as those for the TE modes since the fact that we are
using 21 functions in x corrects for small changes in these

parameters. )
-“even” and "pdd” refer to the parity of the modes {n the y
direction. i

-“c.0"” refe(ri to a mode below cut-off.

-Scalings and offsets are given for the second mode at t, = 9
even though it is below cut-off becausé this was not known

beforehand

/
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6.3 SEMI-ANALYTICAL METHODS, ' . : . - - .

o

6.3.1 Separation of the p'roble,jﬁ L A ' ,

Lot ) ’ "“' r S, a
A great simplification in the solution of the wawveguiding .

problem (eqn. (6-13)) would result if the method of sepai'ation

- of varjables cotuld be used. ll.&nfortunate.ly, this i3 not the case’ "

because the index profile n?(x,y) cannof be put in the form
% ) s ’z p

n(x) -« nyz(y) [Danko 1985). However, we have seenl,

in the previous section that a very good approximation to .the

y
3

eigenmodes is obtained by a superposition of basis functions in
which a single function in y is used. In that case, and only in
that case, the solution can be separated into its x and y
dependences:

J) 20, (x xu)

w(xy) = ———L nzo T (6-55)
= G(y)F(x) (6-56)

5

The fact that this approximate form gives useful results
comes from the fact that the guidance is much stronger in the

]

depth direction than in the lateral direction; this also
suggests that it is worth trying a-method of partial separation
of variables, \called “effective index method” [Knox 1970] to
solve the problem. Its results will be compared with those of
the previous section to check on their accuracy. The method is

described below. .

First, equation (6-13) is rewritten "here for convenience:

»
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;;"5 . g; + (nfley) - B = 0 (6-57)
Then, we rewrite ¥ as: , |
¥(x,y) = F(x,y)G(y) - (6-58)
which transfprms (6-57) into: b . & ‘
9-,2(% + B;F Fay iay %—% v (K2n3(x,y) - n’)x-*é -0 (6-59)
A new function, NAy), is introduced and defined by:
%;% s (N%(y) - BAG = O (6-60)
and substituted ‘\ (6-59):
Ggi" . 03:“" % %% + (k%n2(x,y) - N%(y))FG = 0 (6-61)

Note that until now no approximations have been made,. (6-61)

is exactly equivalent to (6-57), just written differently. The
\

approximation consists of neglecting the derivatives of F wl\th
respect to y in (6-61), meawng that we assume that most of the
y d;pendence of ¢ is taken up by G with whatever that is left
included in F so that (6-58) can still be satisfied. The
appropriateness of that assumption will be verified iater, af ter

F(x,y) has been calculated. Using that\approximatlon, (6-61)

reduces to:

-g-i—"_; + k%n?(xy) - N(y)F - O (6-62)
which is a one-dimensional problem in x, with y as a parameter;
meaning’ that this problem can be solved at a given position y

because n(x‘,\y_@/ is known there, and yielding a local value of

J
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, ) ' index N(y) .is. four
N(y) Jand F(x,y) Afte,%ithe tocal effective in fx (y)és lfourrd\

%

¢ o
for all the values of y, it is substituted in (6-60) to yield

G(y) and B. It must be"/"r?att'cr/tha't‘the waveguides analyzed here

-

are particularly well suited for time effective index method -

o since N(y) is unambiguously defined at all lateral points
- S .

bec;use of the shallower plaﬁar guide that surrounds) the. channel

(for "ordinary” channel waveguid_eé, there is no guidance away

» .
from the chennel and N(y) is taken to be equal t/b the substrate
. , e
§

index there, a somewhat unrealistic assumption). -~

<

Since  n(x,y) represents a graded-index profile, N(y) is'a(

continuous function 6f y and we.should solve (6-62) at an

<

/ .
C infinite number of points to descrive {t completel:'/l;or use in

(6-60). This is of course impossible and instead we will derive
’ :

R s

?n’ analytical model for N(y) (as in [Kirby 1976], in a different
context), valid for a practical range’ of wvalues of t. This

~

-

4, model, allows forithe solution of waveg‘uidmg st;‘uctures def~ined_
by1any comblnatic;n of qperture widths in y ’and for any set of
fabrication conditions (times, temperature, ion-species,
substrate) that ean be used in two-step ion-exchange, as long as

b the second excihunﬂ time is such that a depth mode can bde
sup;;orted outside of the main channels.
The depth characteristics (F(x,y) and N(y)) of the model

<

('s: need to be derived only once so it is worthwhile to use an exact

29

numerical method, even if fairly lengthy, to ‘solve (6-62). The
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¢

same Rayleigh-Ritz method thd} was described previousiy was
used, but modified to work in one dimens;on only (i.e. replacing
hg(y) by 1 and not integrating in y). The value of N(y) is
calculated in that mannet: (again with Ny = 21) for lll-thu

values of y on which n(x,y) is defined. Then, the individual
results. are fitted (by a'least-squares procedure [Conte 1980))

[

with the, following function:

N(y) = N(w) + (NEOQLN@No &HDQ) - erf Lzgg)) ~  (6-63)

where: -H is the fitting parameter,
y -N(0) the effective index of a planar guide exchanged for

’

one\hour (t,+t;), i.e. N(y=0),

—N(oo)\the effective index of a planar guide exchanz‘ed
for time ty, i.e. N(y) away from the edge of the
aperture in the mask, j

-D the width of the aperture in the mask,

_erf is the error function [Jahnke 1945]

This process has been ‘repeated for six different values of

t;, keeping t,+t; = 1 hour, and for both TE and TM modes.

A few examples of the results of the fit are shown on Figure

6-4. The choice of that particular fitting function, !;I:Id the

excellent agreement that it provides with the data‘, csome\iom‘
o

the fact that |t represents the exact solution of a very close

problem. This problem is the classical (Fickian) diffusfon (with

constant diffusion goefficiénts) in one dimension (y) with a.

i
»

TN . @
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finite source of diffusang, fnitially Ilmltedk in space (to a
size equal to the mask aperture) [Crank 1975]. By analogy with
that problem, the fitting parameter H (detelrmined here
statistically by minimizing the difference Petween (6-63) and
the i1ndividual points) should be nearly equal to the followlhg

formula, which is related to the lateral diffusion length:

H = Dyt (6-64)

where Dy is an effective lateral diffusion coefficient and t

the time of diffusion. In the case discussed here, since glasye
T
is an isotropic substance, Dy must be equal to the depth
5
diffusion coefficient D, found in chapter 4. As for t, it is

taken to be equal to to\\because during t the lateral
diffusion {is, fnhibited near x=0 by the presence of the metallic
mask (see Chapter 2). This becomes a poorer estimate for large

values of t, because then the new ions have reached g/reater

depths where side diffusion can occur. A comparison of the
values of H obtained by fitting the individual results of (6-62)
and by equation (6-64) is presented in Table 6-2. The aéreement
is very good and the so’lutioﬁ of (6-60) obtained by the

substitution of (6-63) with either value of H gives the same

resu or B/k (wNhin 1 x 107%),

herefore, the combination of (6-63) and (6-64) represents a
model for the lateral effective index profile of two-step 1on-’
exchanged waveguides that depends exclusively on data derived

from planar waveguide measurements (i.e. N(0), N(), and D,).

-
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TABLE 6-2
LATERAL DIFFUSION PARAMETER ‘H'

t, H(TE) H(TM '
Fit Eqn.(6-60) Fit Eqnh.(6-60)

DN B A

r

D,(TE) = 10.8 x 107" m?s

D,(TM) --10.6 x 107 m¥s

All values of H In um.




=

0O

124

This means that it can be a-pplied to all the types of ion-
exchange for which such characterizations are availabl\e"’ (see
[Findakly 1985]) or [Chartier 1983] for reviews on planar jon-
exchange papers, and [(Gortych 1986) er [(Lagu 1986) for more
recent work). After the description of methods of solution of
(g-GO) in the following sections,. the full design of optical

circu!ﬁts in ving channel waveguides will prove to be

especialty/ simple.

ow the time to examine our neglect of the y
dependen of F(x,y) in (6-62). Far from the edges of the
channel the waveguides are essentially planar and u\e steps
leading to equation (6-62) shouid become "locally” exact.

{

Assuming further Ehat the variation of F(x,y) across the region
where n(x,y) changes with y (i.e. between the two planar
regions) is gradual and smoo‘th, a qualitative estimate of the
size of O8F/dy can be obtained by comparing F(x,0) with
F(x,70) in the fairly extreme case of t;=t;=30". This |{s
s;own on Figure 6-5. We see that 3F/3y % indeed very
small, and should be even less for smaller values of t,. This
can be explained by the fact that in the channel, the depth mode
is well-confined in a reljatively deep layer while in the

"cladding"” the guide is shallower but the mode is extending more

into the substrate because it is closer to cut-off. The net

yresult is that F(x,y) is fairly independent of y and that the:

e

1
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Figure 6-5. Depth dependence of the field profile at the center
(y=0) and In, the planar section (y=70 um) of a

two-step chanrlff%, = 30 minutes, T=385°C).
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effective tndex method becomes almost approximation-freel
6.3.2 The WKB method

Having an analytical proffle function for N(y) to put

intof{‘t‘; 1-D boundary problem (6-60) helps in using the various
methods of solutiqn available for such problems. In the previous
section, we could afford to use a rather long and complicat;d
method to solve (6-62) because this had to be doner only a few
times, enough to characterize the model for N(y) from
fabrication parameters. On tlhé other hand, (6-60) has to be
solved each time a new waveguide is planned or designed.
Therefore, a quick solution method is desirable in this case.
One sych method is provided by the so-calledgeWKB (or quasi-
classical) method approximation (see [Landau 1965], [Mathews
1970]), [Schiff 1968) for instance). For the case of a symmetric
continuous profile N(y), the dispersion relation becomes

g

(Kogeinik 1979):

I’;t\szn"’(y) _ p:) dy = (m#%)% (m-b,l,z,...) \(\6-65)

which is root-searched for bm. the propagation constasnt of
the m'» mode. The turning polint y, of 8= mode is defined

by= N

Niy) - B /k > (6-66)

The WKB method relies on asymptotic representations of the

solutions of the wave equation to establish formula (6-65). Near
Q .

the turning points, these asymptotic expressions “blow up” \»d\

h )

)
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require another form of approximation to the solutions [Landau
1965]. When the ze\ro/of KN’-p* at y is of first

order, an approximate solution valid across the turning point
can be derived [Rapp 1971 or Schiff 1968). The solutions of
(6-60) in the verious regions of interest are given by the
following formulas (where the numerical factors in front of each
expression ensure the continuity of the function for the whole y
axis). The definitions are given for’ y > 0, since we know that
the ‘'modes are either symmetric or anti-symmetric relative to y
(see [Schiff 1968), eqns. (28-16), (28-14) and the as;sociated

discussion):

2 A2cos(n/6)

G(y) =
Qn Jkiﬁi(y) - p2
/\/ 2%3%8% 3k y
Gly) = —2— M(-—(—E—b)%] with E, = [ y‘Jk ?-pidy (ysy) (6-68)

cos(t, - ) (y << y) (6-67)

&N - p3)d
Lid : )
2%3 3
Gly) = s T M([—gl)%] with £, = [T 6N - pay (y2y) (6-69)
2 24 ¥y
? - N9

, NZ2cos(n/6)
\n pZ - kN2
/

"Note that Eb - -k

Gly) = exp(-§ ) (y >> y) (6-70)

. when ysy‘.

The equations (6-68) and (6-69) are\obtained from a local,
linearized N(y), and are asyﬁptotically equivalent to (6-67) and
(6-70). The function Ai(z) is the Airy function [Abromovitz

1965), a linear combination of Bessel functions of order
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In spite of the complexity of these expressions, they
represent a particularly simple way to solve (6-60), and they

are exact solutions both near and far from Y, The only region

where they may be less accurate is in the intermediate range
where the Airy functions transform into their asymp‘totlc
representations, if that region is too far away from the turning
point for the linear approximation to N(y) to be still valid. On
the other hand, the propagation constants obtained from the
dispersion relation (6-65) are known to be inaccurate for low
order modes [Landau 1965]. k

This situation {s interesting in the sense that the other
semi-analytic method used in this work (as described in the next
section) has the complementary characteristic, i.e- a very
accurate propagation constant with a relatively approximate mode
function for G(y). |

60.3.3 The single function variational method (SFV)

The other semi-analytical method of solution for (6-60) is a
variational method [Sharma 1980], similar to the one presented
in section 6.2. }-{ere. we make use of the fact that the Rayleigh-
Ritz procedure has indicated that the Gaussian function
approximates very well the lateral variation of the fundamental

mode (and also that the Hermite-Gaussian of order | approximates

well the second mode). Therefore, we use again the variational
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formuls for p? given by (6-15), transformed slightly to. apply

fn y only:

!

j_: dy [xNy)63y) - (%‘2)2]
B - !'r’&]& ]5 dy G(y) - (6-71)

But this time, instead of a series of functions, we use a si‘ng'le

function for the two firat modes, a Gaussian for the

fundamental:

C . 2
Goly) - e 'V (6-72)

and the Hermite-Gaussian of order 1 for the second mode:

Ayl
ye w (6-73)

jon of the functional (6-71) is

This way, thé maximiza

reduced to find{ng the valup of o, (i=0,1) which satisfies:

o ¢ (6-74)

Once o, is found, it is replaced in (6-71) to yield ﬁl,

the propagation constant of the T mode., Aga!\n. we
TN,

5 N
emphasize that with a variational approach, the propagation

constant can be very accurate even for an approximate mode

function. Defining:

v [ -
P [ dyc? and ¢ - 3¢ (6-75)

equation (6-74) can be written:

(- ]
dy GG’

(12, ay ¥n%ee - §S2(80)) - (17 ay kN6? - (%—G,;)z](lﬂ—p——] - 0 (6-76)

The solution of (6-76) for o is very easy to.find with a

computer. In fact, if N(y) was a little bit simpler (the error
\ :
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functions are difficult t% integrate), (6-76) could probably be
solved analytically.

This completes the description of the semi-analytical
methods that were used to find the wavespl}lnc characteristics

"

of two-step ion-exchanged channels.

<

6.4 DISPERSION CURVES AND MODES OF TWO-STEP CHAN/NE’L WAVEGUIDES

The dispersion curves usually show the propagation constant
of *the modes in terms of the physical parameters o; a guide,
regrouped into what is called a normealized frequency [Kogelnik
1979]). ) The usefulness of that representation lies in the fJact
that the curves can be read directly for any value of wavelength
or size of the waveguides. In this study of two-step waveguides,
the depth of the channel is kept fixed, corresponding to a
constgnt‘ value of the local effective index N(0) and of the
depth dependance of the modes F(x,0). The depth of the
surrounding planar guide is varjed, corresponding tp chentea in
its effective index, N{(wo), which can be considered as the
"c‘ladding" index of theA equivalent 1-D waveguide }in y. This also
results in a variation of the lateral dependence of the mode,
i.e. G(y).

Therefore, the results of the analysis will be presented

using the following conventions, which al'\l\gelate to the
A

x (
lateral waveguiding properties. The normalized propeaat}on

constant b {s:




131

2 2 ' '
b ) - N (6-77)
N%0) - N¥(w) -
and the normalized frequency:

/
V = kDAN“0) - Ni(w) (g—\nl
/

We see thaf b varies from 0 A0 1 for guided modes since B must

lie between kN(o) and kN(0).

In order to compare the results of the three aforementioned
methods, a common set of base data must be used. This poses no
problem for ‘/the two semi-analytical methods since it suffices to
use the same function N(X) in both (i.e. the same N(0), N(eo),
H, and D). However, 8 further comparison with the 2-D Rayleigh-
Ritz method reveals a problem of 'consistency in the treatment of
the depth mode solution. In the Rayleigh-Ritz method, the exact
profile resulting from given parameters An, and D, is used
and the propagation constant determined very accurately.
However, these parameters were found by using the Gaussian
approximation for n(x) and solving the WKB dispersion relation
(also an approxquation) of section 4.2 to reproduce as claosely
as possible the measured effective .indices. This model is based

‘ )
on two approximations, but they balance each other out in the
sense that the pair of parameters An, and D, that it yields
for given fabrication conditions lead directly to the measured
effective indices of the resulting waveguide. Using the same
pair of parameters in a dlfferent method f specifying the

profile (even if in principle more accurate, as in the case of




kof section 6.2. :.sn g,

132

the Rayleigh-Ritz method applied to the results of the ion-
exchange diffusion equation) and extracting the effective
indices from it , has to ylelc\jdlfferent answers. In fact, the

effective indices obtained from the 1-D Rayleigh-Ritz of section

6.3.1 are systematically 1 x 10" higher than the

¢

results of chapter 4, for _the same waveguide, and the same

effect occurs implicitly tn $he 2-D Rayleigh-Ritz calculations
N/

e

o
rd

Therefore, in order to be able to compare the results of
this last method with those of the semi-anajytical approaches
(Table 6-3)), we must use in them the same values of effective
indices that it uses, {.e. those that can be calculated from the
1-D Rayleigh-Ritz method (they are listed in t;n Table). Of
course, it can be argued that the exact numerical solution for
n(x) and the 1-D Rayleigh-Ritz procedure should have be’le‘n used
in the characterization, but that would have made it an aln;oat
intractable problem (because it would have required solving
the 1-D diffusion equation of fon-exchange numerically and
the full ,l-D Rayleigh-Ritz problem at each step of a 2-D root
search for An; and D)), with very little profit. In fact,
the Gaussian-WKB approach continues to be helpful here through
the ease with which we can get almost exact effective indices

from fabrication parameters to input in the channel waveguide

model,
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TABLE 6-3

SUMMARY OF RESULTS FQR PROPAGATION CONSTANTS OF CHANNEL WAVEGUIDES

TE MODES -

_/

4 W) (WKB) : (5145; RR)
00° 1.51558 - - -
06’ 1.54535 1.51547 151547 - 1.51547
09’ 1.51521 1.51545 1.51545 1.51545
12 1.51507 1.51544 151542 - 1.51542
17 1.51482 123dt i:21342 131349
30° 151402 - 18l33 121393 }-2133%
TM MODES
4
00 1.51676 - - . ' -
06’ 1.51648 1,51664 1.51664 1.51665
09’ 1.51633 1.51662 151662 1.51662
12 1.51616 }-31854 fe3y o hEie33
7~ 151585 lsfesa {21838 121838
. 12i8s8

~

]

The values of H tha__t\t):)fe‘used are those calculat from (6-64).

I

When two. or more values are listed for a given t they

corre$spond to successive modes of'increasing order.
3 ‘

/\
;o
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Fromgthe results of Table 6-3, it is obvious that the single
function variational method is sufficient to describe the
waveguiding cha’rec’teristlca of the twp—st{; ibn-exchance
channels. Using that method, and, this time, the measured set of
effective indgﬂ;ces, it is possiple to find the full dis“perslon
curves of the waveguides, presented graphically as b-V diagrams
(Figures 6-6 and §—7). The single-mode range extends from V = 0'
to 3.8 (corresponding to t & 0 to 10°, at T=385°C,
tysty = |1 houﬁr,)and D=10 pm). For other temperatures and
times, the propagation constants are‘:obtalned directly from the
graphs by finding the appropriate normalized frequency V.

As far as the mode solutions tﬁ(/x.y) are ,concerned, we can
examine sepa'rately the behaviour of F(x,0) and G(y). The depth
dependence of the .modes, F(x,y), which we have shown to be
almoe:t i‘ndependent of y was presented on Figure 6-5 andl,rematns
the same for any value of t (submitted to the same
restrictions of constant total time and temperature). - The
lateral dependence of the mode; (G(y)). is shown on;Flgure 6-8
for the three methods and for two wellcseparated vajlues of ¢
(actually, the results of the two variational methods *are
e-q%;valent Aand their curves overlap, since a atncle'function in
y was eventually used in th:_* Rayleigh-Ritz case).

Here, it is the WKB solution ihgt sets the standard against

) v ) ) ‘
/‘J\MCh the others are to be judged. We see that indeed .the

Gaussian function approximates the jateral behaviour of the mode

]

R}

/

<

o
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Flgurc 6-6. Normalized dispersion curves for channel guides made

by two-step lon-exchange. D=10 um, T=385°C and the
total time (1 hour) are fixed, and t, is allowed to
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:very well and that in view of its extreme simplicity of)
. {

calculation, compared with the complex formulas for the WKB’
solutions, it should be use. to represent G(y) whenever high
accuracy is not required.

The parameters that define the shape of G(y) for both semi-
analytical methods are presented in Table 6-4 for reference.

These were calculated with the measured effective indices.

¢
~

6.5 FINAL REMARKS !

To conclude this rather long chapter it may be useful to
recall what wé intended to do at the start and what has been
accomplished. Starting from the 2-D refractive index profile
that was defined from the results of. chapters 2 and 4, the
waveguiding characteristics of channel waveguides fabricated by
two-step fon-exchange were sought after. In particular, throug_th
thﬁ reduction of the dimensionality of the problem by the use of
the effective index method (which we showed to be espéclally
appropriate in our case), a8 simple model of the equivalent
tateral guide was derived and shown toc be very accurate by
comparing 1t with an exact numerical method (which was also
described fairly extensively).

In summary, the method of characterization i1s as follows:

-From the results of a planar waveguide cheracterization,

\i}es“as a

obtain the values of D,, and of the effective ind

function of tfie temperature and duration of the ion-exchange.
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. ) TABLE 6-4
' SUMMM}D OF RESULTS FOR LATERAL MODE PROFILE CHARACTERISTICS

t, N(c) TBE} RW Y, o N(e) Tﬁhﬂ?ﬁgf Y, ]

04’ 1.51531 1.51538 5.30 .0114° 151625 1.51634 517 .0125
05" 1.51527 1.51537 5.06 .0136  1.51620 1.51633 492 .0152
06° 1.51523 1.51536 4.87 .0158  1.51614 1.51632 4.70 .0i81
09° 1.51509  "1.51535 4.48 .0218  1.51598 1.51630 4.35 .0242

127 151495 151533  4.25 .Q264 151582  L.51629 343 9789
77 L5468 RS8R 237 83%% BT SIS0 2E %
30° 151384 L§is3L 376 0463 151442 iggﬁ@ gzcgsé 0504

NE(0) = 1.51548
-~

The effective indices and propagation constants f¢r the WKB
solutions are included because they are needed(explicitly in /
the field profiles. The values of H can be found in Ta-ble 6-2
under the column (eq. (6-64)).

When (wo or more values are listed for a given #t they}

3

correspond\ to successive modes of increasing order.

For example, at t, = 17’, the first value of o corresponds to
¥
0p and the second one to o

?
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@ -Calculate the profile function N(y) and substitute it in
the single-function veriational formula of section 6.3:3 to get\
the propagation constant and lateral profile shape of the modes
by a simple root-search procedure,.

As the following chapters demonstirate, the method just
outlined can be used in the design of more complex structures

-~ made up of many two-step channels patterned on a substrate to

perform some optical signal processing function.

T T T,
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" CHAPTER 7. DIRECTIONAL COUPLER DESIGN

/1 INTRODUCTION TO THE PROBLEM u

The goal of the fabrication of optical waveguides on planar
subsirates is to achieve some sort of signal processing
function, or field transformation. For passive devices, such as
those that can be made in glass, typical examples include power
splitters [Findakly 1982), [Cullen 1984]}, directional ‘couplers
[(Walker 1983 ], [Yip 1984], ring resonators [Walker 1983a],
[Honda 1984), tapered junctions [Campbell 1979]], etc... All of
these can be fabricated advantageously by using thé two-step
ioﬁ«exchange method, which provides a better control of

K;performance than single-step methods through the fine tuning of
- the propagation constants and mode fields that it provides.

The method of solution of waveguide problems presented’in
the previous chapter can be extended to such structures provided
that some conditions a'lre met. The individual channels composing
the circuits should be wide enough and separated enough to avoid
overlap.of the error functions that describe the effective index
transitions on each side of the channels.

To test both the accuracy of the model deveioped in Chapter

’6 and the control of device performance provided by the two-step
method.‘ it was decided that we would"‘design, fabrica.tce, and
measure & single-mode directiénal coupler.

An optical directional couplter (abbreviated as DC in the
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.
following)\consists of two waveguides brought into sufficiently

close proximity to allow the transfer of light power between the
two by tunneling (i.e. coupling through the evanescent' fields
that propagate outside the cores of the waveguides). A
pt;rticularly convenient form of DC to design and fabricate
consists of two parallel identical waveguides. The analysis of
this typew of DC is simplified considerably in comparison with
more complex stiructures an allows detajiled quantitative
predictions to be made. As lon was the coupling between the
branches remains we%k, a total transfer of power from one branch
to the other is possible [Suematsu 1977]. Of course, in a
practical design, the parallel section must be preceded and
followed by transition sections to facilitate input and output
coupling to the device (because the width of the single-mode
channels and t;aeir spacing are of the order of 10 um).

The analysis of the DC is split up into two parts. First,
the‘ parallel section, and then the i{nput/output transitions.
7.2 OVERVIEW OF THE METHODS OF SOLUTION

Using as before the effective index method to reduce the

problem to one dimension, a typical lateral effective {ndex

profile for a parallel DC is (Figure 7-1):
N™(y} = N(y-w/2) + N(y+W/2) - N() (7-1)

where Nc(y) is the single channel index profile (6-63).
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Figure 7-1. Directional coupler effective index profile for
W=20 um, and various values of t,.
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\

The channels, defined by two-step ion-exchange ihrouch 10
um wide masks have a center-to-center spacing W esnd effective
index difference AN. Having fixed the width D at 10 um, the
amount of coupling between the guides is determined solely by W
and AN, becoming smaller as either or both increase.

The step-index equivalent of this one-dimensional problem
has been the subject of many studies [Marcuse 1982}, [Yariv
1973}, [Kogelmk 1979] based on the earlier problem of coupled
transmission lines [Miller 1954]). In these so-called “coupled-
mode" approaches, the field of the DC is taken td be a
superposition of the modes of the individual guides, calculated
as if they were isolated from each other. The presence of the
other guide then acts as a perturbation whose effect is to "tap”
part of the propagating mode power. This is most easily seen for
fdentical guides. The evanescent field that extends outside the
core.of one guide into the core of the other one becomes &
source term (i.e. variable electric and magnetic field) of just
the right ten'lporal and spatial frequency to excite a mode of
that waveguide (Figure 7-2). The inverse transfer is exactly
equivalent and the exchange of power is described by a "Coupling
" coefficlienit” calculated from an overlap integrel between the two
modes involved. Recent changes have been made to the theory to
fmprove the treatment of radiation modes and power conservestion
[Strgeifer 1987]), [Haus 1987], [Marcatili 1986), [Chuang 1987].

However, this method is still limited to cases of wesk coupling
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Schematic view of power transfer between parallel
channels. On the ‘left, the arrows indicate the induced

"polarizaetion from the evanescent field of the adjacent

channel. On the right, the interference between the
odd (dashed line) and even (cont. line) modes is seen
to correspond 'to power redistribution between the
channels, ’
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1

because of the use of the modes of the isolated waveguides in
: |

the c/alculation. In the limit of large separation, the method
becomes’ exact but useless, since the guides Jre then decoupled.
Partly because of this limitation, and partly because it is

difficult to keep track of the approximations that are involived,

another approach was taken here, the "normal modes"” method
([Suematsu 1977}, [Suhara 1979], [Donnely 1983], [Ctyroky 1984b]
and many others).

In this case, we make use of the fact that the structuré is

oy

confined in the y and uniform in the axial direction z.

Therefore, it can support modes -characterized by a constant

b'e

functional shape G(y) and a z dependence of the form .e”if* -

(for time harmonic flelds 'with e¥*'), Other than the

o

appro‘ﬁimation made to arrive at the scalar wave equatlbn. and

those of #e effective index method (“whlchbwere both also

e '

present in the coupled-mode approaches), this {s asn exact

mathematical problem. The exact modes of the DC can be obtained

¢

in principle, numerically i{f necessary. Again, since N(y) is

. , .
symmetric, the modes are//tither symmetric or anti-sy'mmetric, To
4 t
have a device with unequivocal transfer characteristics, the two
J .

channels muét be indfvidually singl_e-moded;l this means that the
DC —supports only‘ two modes, the fundamental symmetric mode

(which looks somewhat like a superposition of two channel mod‘es)\
Co . \
and the first anti-symmetric- mode (that resembles a

.

¢
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) ’
superposition of a channel mode with the negative of the other

channel mode). . ' , -

From that point of view, the transfer of power from one

guide to the other results from the interference between the two
3 .

DC modes (heretofore referred to as the "even” and the "odd"

modes). Specifically, the transfer characteristics can be

.calculated from a knowledge of the difference‘ in their

~

propagation constants AP and of the initial condition (i.e.c
. - Coy

the relative amplitudes of the two modes at the start of the

t . i
parallel section). See Figure 7-2 for schematic view of power

v

. - . ' w . N
transfer due to mode interference. A detailed discussion of the:
14 .
&

relation /&z.l;’{en the coupled-modes and normal modes approaches
can be found’in [Mart¥ 1984].

4 .
Various methods of scolution for the normal %des of graded-

index DC's have been-used ih the past. Some approximate results

were obtained by using an approximate lateral profile N(y) for
which analytical solutions of the wave equation were possible

. ~
[Mueller 1985)]. However, apart from the fact that their profileyg -

would not fit the s‘pecial case 6f two-step ioh-exchange, the

agreement with experimental results (good for channel guides)

~ S

was relatively poor for the transfer characteristics of

>

directional couplers. Exact numerical methods can be used [Feit’
1983}, [Yeh 1979], [Ctyroky 1984b], but the computational cost

is high for the resolution needed (apart from the difficult

N . e, //‘
.
.

e
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1mplemen‘tation of the methods if the numu‘ical programs are not
alreadyﬂ available). The WKB method .is applicable to the parallel
waveguides case [Suhgra 1979) but i:}qulresﬁ:fmre computations
than the single chaqnel case becaupe asymptotic solutions’
decéylng exponentially to y = 200 must be "connected" across
Lmakes the derivation of the dispersion
relation fairly difficult but once it is done, the propagation
conustants are still obtained by a simple root-;earch procedure
(see sect‘lonq7.3.1). It also yields accurate field solutions.
Its main drawback is that its accuracy decreases for\ strong
coupling (as the coupled-modes methods) because the turning
poinis become too close together for the asymptotic
represintpiions used in the connection “fogymulas to be val;d.
The simplest method, &8s in the previous chapter, is to use

the single fur}ction vdariational method {[{Sharma 1980]. As we will

see in sectton 7.3.2,.it works even for small. waveguide

. sepirations (i.e. sgrong coupling) even though the trial

functions begin to be less accur‘ate. This is due again to the
stationarity of the ‘variational formﬁla, which tolerates :slicht
deviations in the mgde function and yet yields the right
propagation con~stants.

The last two methods are described in more det®ils in 'tha
next sections, and their resultﬂsﬁ"'compa‘red. In order to
i(ll'ustrate the limitations of the couple;-mode approache‘sv, the

o

esults of ‘one of these methods will also be presented. it is

- >
a - e >
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described in {Landau 1965] as a worked out problem. |
/ i

7.3.1 The WKB method /

7.3 NORMAL MODE SOLUTIONS

.Following [Suhajra 1979), we can write down the field
solutions in all the regions of interest of the coupler
(refer to Figure 7-3), concentrating on y 2 0O because of
symmetry. For large wvalues ofy y, the fifeld must decay
exponentially in thé following manner to satisfy the lateral

wave equa%on\,(S-GO):

A ,la -t
G(y) = W 5n € 2 (y >> ylo) (7-2)
x = 7 V2 gy (7-3)
, v,
o
f = (kN*(y) - B9 (7-4)

The outer turning point is defined by kN(y1) - p, for
. 0

y greater than W/2. Near that turning point, é solution can be

obtained by using a linear approximation for N(y) and requiring

"that the solution behaves asymptotically like (7-2). This

solution is:

.A‘IE_a 3Ai(z) '
Gly) = TER:; (y 2 yto) | (7-5)
3F 2
, z = —24'-)3 (7-6)

where the following relation between the Bessel functions of

order 1/3 and the .Airy function has been used [Abramowitz 1965]:

~

AR L L Ulyale) - Tyge) (#-7)

-
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N(y)
L
Y<Y,‘,§V>V,‘_ th(Y«Yt. ¥<Y,_ Y>Y¢‘
e
ﬁ y<<yt[ E
_K_ B S .---g --------------------------------------------------------
A
=0 %, %,

LY

Figure 7-3. Approxin;ate regions of applicqbilny of the various
WKB expressions for the field of the DC.
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On the other side of the turning point, continuity requires:

AJED anic ‘ .
fi:; ML) ¥ s y,) (7-8)

G(y) =

1.4-2-‘,,‘\ - -
zZ = (i;-‘-’-Ja ' (7-9)

with § defined as in (6-68), relative to y‘o'

~

This solution. behaves asymptotically as:

Gly) = ;9; qg- cos(g, - :) ' tytl << y << yt] (7-10)
)

For the solutions surrounding the other turning point, a

w

complication arises from the fact that the boundary condition is

not as straightforward due to the presence of the other channel.

—

The boundary conditions to be satisfied come from symmetry

arguments as: “

%(yy) - = 0 for syt%metric modes (7-11)
and u G(y=0) = 0 for anti-symmetric modes (7-12)

The most gen®ral solution for a linearized N(y) near A
» 1

is [Schiff 1968}:

F

a

Gly) = ;mi (CIya(8,) + DI_ 5 ) y 2 y) (7-13)
,

2, [yt‘ AF dy (7-14)

Gly) = IT'{S‘; El 5 )+ FI_) (e ly s y,) (7-15)

: y
- 2= [0 gy (7-16)
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Taking the limit of both (7-13) and (7-15) as y - ¥,
1 L4 ‘

(with £, &, — 0) we get necessarily:

E = -C and F «D (7-17)

which means that (7-15) becomes:

s

G(Y) = W (—CIV3(EQJ+ DI-VB(EQ)) (y s yt’) (7"18)

Using (7-18), we get from (7-12):

¢ I_yafE(0)) N ~
- T, 5,00 for the anti-symmetric mode, (7-19)

and from (7-11), along with the fact that % = 0 at y = O:

dIVB(E I, 5(8,)

U4 _
'f' dy y=0 2J—_x 3[E ) 4,
dE dl_, ,5(E))
D d 17354
g vtday Py 720

where:

al,, (k) i dl ) 50 ,) a, d¥

dy G,  dy "l gy (7-21)

so that for the symmetric mode:

(B (0)) + E (NI a(E (0D + I_oqfE (O0)) |
C val%y 2/3 3 7e22
D 1,,315 VRN PRI I WS ()] (7-22)

qwhere we have used a recurrence relation to get rid of the

derivatives [Dwight 1961]):

[ Y

oA = I, ¢ Iy, (7-23)
We still have to connect (7-13) to (7-10) for continuity of

G(y). Taking the limit of (7-13) for large‘gc we get (Dwight

1961]=C/\\ —
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2 ’ A
A
\

s . /
£ 2

Sn (2 n
G(y) = f—l,—;(C ﬁ; cos(Ec - TZ_J + D'\}TE: cos(!;‘c - -1—2-)] (7-24)

}

And we note that in the region between the turning points:

y y
g, = j;o A dy = jy'° NF dy - &, (7-25)
Y

Therefore, the edquality between (7-10) and (7-24) becomes:

y
ﬁAcosz? Af dy - E_ - -ﬁ- ) = C cos(g, - %) + D cos(E_ - 1%_) (7-26)
!

which must be valid for any value of ¥_. between 0 and
¥y
[ © Af dy (ie. y between y and y, ).
Yy, Y "o

We use this property to H‘an the dispersion rejation and the
value of C (or D, which is related to C by (7-19) or (7-22) in
terms of the arbitrary amplitude A. First, we define:

y .
o = Iy‘o NFdy - % (7-27)
Y

and we use Ec = 0

N3A cos(®) = C Y D -5 (7-28)

Pad

Now with !:;c = /2

A3 + 1 A3 -1
A e - a—— e —— 7-29
A3A sin(@) = C Y D o " ( )

and by taking the ratio of these two results:
B

(43 + 1)C + (A3 - 10D (7-30)

tan®) = BT + (A5 + 1D
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33 from which we can get (by isolating (C-D) and (C+D) and using
trigonometric identities):
£ =-D - I -
B s D) tan(e 4] (7-31)
or
jy‘o NF dy + tan-l[—-l-:—ﬁﬂ?—) = (n + %}n (n = 0423...) (7-32)"
yt 45(1 . C/D) 1 plpdpese

4
which is a transcendental equation in only one unknown, p, i.e.’
the dispersion relation for the modes of the DC.

Finally, taking E, = n/4:

N3A cos(® - %) - LC__*_;E_ (7-33)
@ A=E 5 D sec(6 --}J (7-34)
A = :C—l-P-\jx + tan(e - 0) (7-35)

2 4 .

in which we replace (7-31i):

;2 + gz + CD
A= 2 3 (7-36)

To choose the sign of the radical in (7-36), we note that in
replacing the secant in going from (7-34) to (7-35), the sign of
the radical depends on the quadrant in which the argument |is
located (Dwig‘ht 1961}. Defining A to be positive for the
fundamental mode (n=0), its sign will be negative Yor ail the
odd modes (n=1,3,5,...).
This completes the derivation of the WKB solution for the
o normal modes of the full IZ;C probiem. The propagation constants

are obtained from (7-32), and the fields from (7-2), (7-5),
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(7-8), (7-10), (7-13), and (7-18). Examples of normal modes are
given in Figure 7-4. Before the discussion of power transfer in
terms of the normal modes repre_sentation. we ‘will describe the
variational approach to find the normal modes.

7.3.2 The variational method

This method 1s based on the work of [Sharma 1980], and is
strictly an extension of the single channel solution of section
6.3.3. The method consists of using a single trial function with
a shape that can reasonably be expected to look like an
eigenmode of the DC.

The trial function to be used in this case is a
superposition of (.-Iaussian func{lons centered in the middle of
each channel. The width of the Gaussians is determined by the
variational parameter used to maximize the functional (6-71).
For the profile of Figure 7-1, the trial function is:

+ W/2)2

- - W/2 -
Sesc” ? + 5 % e Seso¥ (7-37)

Gesoly) = €
where: s = +] for the even mPe (subscript e)

s = -1 for the odd mode (subscript o)

It must be stressed that (7-37) is not a superposition of modes

v

of the individual channels. The width f?tor ¢ is different,

and depends on W, as well as on D and AN."To find o and P, we

pl;oceed again to solve;

2
8 . ; -
== 0 . (7 -38)

. o
a

which is exactly the same as (6-76), except that in this case,

<

.
'
4
@ B
< N
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@ the expressi‘on‘s for G(y) and its various derjvatives are
slightly more complicated. Examples of normal modes calculated
by this method are shown in Figure 7-4.
7.3.3 Results of the normal mode methods
As we have seen in section 7.2, thi parameters of importance
are the difference in propagation con\stant AP and ‘tr‘gvg,_ne‘latlve
amplitudes of the modes at the start of the paralie]l section.
The discussion of the latter point must be delayed until BQCNQ{I
7.4, where different input-output conditions are considered. For
now, we can present graphical resuits for AP vs W and AN.
1@ These will be useful as design tools in lat;;r sections and in
Chapter 8, for the fabrication of a working prototype.
In addition to the results of the two previous sections, a
few points obtained with the coupled-mode analysis of [Landau
1965]) are plotted for comparison. The method uses a
supefrposition of individual channel modes obtained by‘the WKB

approximation. Three sets of results are presented in Figure 7-5

(for tl-S'), whille additional data are plotted for the

variational method only in Figure 7-6. As can be seen in the’
f\ first figure, the curves for both the coupled-mode and WKB
o methods .begin to flatten for strong coupling, indicating that
: \

their range of validity has been exceeded. The last data points,
, ) /

. at W=24 pym, are not very accurate because AP/k becomes of the

b
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same order of megnjtude as the accuracy with which B?k is
calculated (0.00001). Also, as W tends towards D, the
propaéation constants of the even and odd modes should tend
towards those of the single channel (:;f width 2D. Using the SFV

L3

of section 6.3.3, the two propagation constants were. calculated

.

and yielded AP(t=-9°)/k = 1.5 x 10™*. This point is
p_l”ot%d at W = 10 ym in Figure 7-5 and is a direct
extrapolation of the remairfing SFV data. We may also note that

for large separation or AN, both Be and BD tends towards

the propagat‘lon constant of a single guide in isolation. For
A

instance, for TM modes at {=9' and W=24 um Be and «Bo

are equal to 1.516292 and 1.51'6290 respectively, while for an
isolated channel, p=1.51629.
For the field solutions, Figure 7-4 indicates very good

agreement between the, WKB .and varjational methods.

' This confirms the conclusion of Chapter 6 that the single
function variational method is a very useful and 'accurate way of
describingnthej‘wa‘%eguiding properties of these chqnnels. A
summary of the results for directional couplers is prefented in

Table 7-1.
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7.4 INPUT-OUTPUT F{OB’LEM AND POWER TRANSFER CHARAC'I‘BRIS'I‘ICSl

7.4.1 Introduction

7

o
For single-mode {ndividual channels, the DC can support only

two modes at the most, i.e. the even and ofid modes shown in
Figure 7-4. The odd mode-may even be cut-off if W dn;/or AN are
too small. Therefore, whatever 1ncident‘fielq is input to the
DC, it can only launch these two modes, plt‘:s‘ non-~guided

scattering in the form of radiation modeg. Assuming that these

PaY A

are minimized, the power transfer between the channels |{s
©a

totally deterimmined by the relative amplitudes of the two

B .
propagating - modes at the start, and by their relative phage at

&

the end. But before weé are able to quantifyw "power transfer”, we

must determine what that term means. “ ]

For strongly coupled guides, even .if they are identical, the

N

power is never totally in one guide or the other (or more

a

precisely, there is no superposition of modes of the DC that

yields zero pl‘)wer' in one of.' the brancheqs), [Suematsu 1977]. At
an/y point along the.DC, & good measure of how much po'\ve‘r
actually propagates in one brancl; is given by t‘he projgctlon of
the field of the DC on the s!ng]g-mbde of that chan'nel by means

The idea of i{nput-output t}a‘n‘snlon sections is to have
totally uncoupled gulde,s\ 'ih“whiph to launch and receive power.

Two distinct cases are possible. - First, an ab‘supt transition

betu;epn a région with only one waveguide ' and a ;euonﬂ with two

ri

[
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waveguides. This is preferred at the input (to "ensure launching
»

from one branch only). Heowever. it is not a good design‘ for the
output because any power left in the terminated branch would
scatter in the same general direction as the remaining granch
and induce noise in it. A second t{pe of transis{ion is\‘\a smooth
and gradual increase in the separation‘)w, until the two guides
become totally decoupled (Figure 7-7). Such transition should be
adiabatic, meaping that the total power‘is conserved as ‘guided
modes. In principle, it cen be used without problems as input or
output. The two types of transitions are analyzed below. =~

7.4.2 Abrupt transition

When used at input, the problem to be solved is to determine
how the incident mode of the single waveguide excites the -normal
modes of the DC (and how much ends up lost in radiation modes

also). Neglecting the backward reflection due to the slight

mismatch of wave impedances, this is simply the problem of the

. \
b ]

projection of a given, function onto a basis of functions (in the

same sense as in section 6.2.2), using a scalar product defined

‘1-‘
L]

by: ’ 3
4
"
<flgs> = [_w fy)g(y) dy (7-39)
- . -
The modes of the DC (plus the radiation modes) form an

orthogonal basis and we can express the field of an incident

qhannél as:’
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Figure 7-7. Schematic view of the two types of transitions between .
the parallel DC and the individual! channel guides.
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C - . ,
(7-40)

Goly) = AGoly) + AGoly) + F, "
using normalized modes:

. G
G,(y) = S (7-41)

ql‘GﬂGR

where F, is the total radiation field excited because 6c

L3

does not necessarily match exactly a superposition of 6.

and 60. the even and odd'modes of the DC, with amplitudes

. A, and A, (the amplitude transfer functions, reblativ'e to

unit input power). These are obtained by taking the scalar

(1“ ’

product of G, and G, with (7-40):

’ : Ay = <G416.> ' (7-42)
A, = <G 1G> | (7-43)

C And the radiated power Il",\l2 by:
IF % = P, = 1 - (A2 + AD) | | (7-44)

Using the variational method, we use expression (6-72) (cengered

at W/2) for G.(y) (and replace o by o.), and expression

3

(7-37) for G, and G, and get:

o

// -cﬂwh
e A o 0 w4
/ ‘ . e N0, ¥0 W (7-45)
3 f 1« e

-6,.6 W2

( )V4 T%.
, ne Stz g 7:48)

N 2 [\ Oc\ -a wz

2%~
I -e ¢

Results for variou$ cases of interest are presented in Table
m ¢ @

7-2. We see that both A, and A, converge towards 1/ 42
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as W or AN increases, meaning that the incoming normalized mode
splits equally into the two modes of the DC with no acgttered
power P.. The only entry of the table for which P, is
measurable (=47%) is at t, equal 5° for the TM modes. The fact
that P, increases for strong coupling meang that no

W
superposition of DC modes can représent a mode of 8 channel,

a
f.e. the guided power is never restricted to only one guide, and
of course, total transfer is not possible.

‘The inverse problem (i.e. Vé’utput fr;m the 2-guide parallel
section to a single guide by abrupt termination of one guide,
can also. be addressed with equations (7-45) and 27-46). In that
case, ﬁA, and A, are to be interpreted as transfer functions
Letweerrn the normalized modes of the DC and the channel remaining
for output. ’The total output power is‘calculated by projecting

~—

the field of the DC onto thg ‘fleld of the output channel:

Pout ™= (a‘,l’s‘,Jé.a‘,[-t'\;,)‘)2 | (7-47)
where a, and aj arﬁthe ar'bitrary amplitudes (magnitude and
phase) of the normal modé;‘at the junction plane (where one
waveguide abruptly ends). Note tha,t -A, is used because it is

assumed that the output channel is not the same as the input

channel, and the sign of Ao'debends on which channel is used

for the overlap inlteg.ra/l [re;l/;\l:lnglﬁo(y) by -Go(-y)).
- /

Also, we note that for anything but a 1007 transfer coupler

’thls design is not very.good t;ecause of the forward scattering

. . - '
of the power remaining in the interrupted branch.




167

7.4.3 GCGradual transition

Inasmuch as the transition is sm\ooth enough for scattering
losses to be neglected, this is a8 much simpler problem. However,
because the structure is not uniform in the 2z direction,
strictly speaking, there can be no modes as such (with a
constant propagation p and modal shape G(y)). We assume {instead
that the modes exist locally, with slowly varying ‘properties.

At input, we launch power into one branch, at a point where
the spacing is so large that there is no coupling with the other
branch, Then, as we have seen in the previous sections, the
single channel mode can be thought of as an exact superposition
of the even and odd modes of the DC (with equal amplitudes). The
channels get closer together as they approach the parallel
sectiox;\. but for a sufficiently smooth transition, we can assume
that the power carried by each mode is constant (as for a
uniform waveguide).

The change in spacing has one important effect, however, a
gradual variation of the propagation constant of the normal

modes. Assuming unit power in the incident channel, we get for
L]

all the regions where coupling occurs:’

tya) - '4‘3‘"&.()1.:) P @ ‘.ili Goly2) e U o (7-48)

where z is measured from the start of the coupling region, where

the two modes are equal in amplitude: ‘and phase. -The integrais
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*

represent the accumulated phase increase for each mode in going

[

from 0 to z with a varying propagation constant A(z). Variants
of this method for the treatment of non-paraliel waveguides have
been used by various authors in the past: [Matsuhara 1975},
[Findakly 1978], [Anderson 1979].

The validity of the approach comes from the adiabaticity of
the transition, f.e. the fact that the power carried by each
mo;je in conserved. Obviously, this is only correct for small
axial non-uniformities (smﬁll angles between the axes of the

, .

channels) so that modes can ‘be identified at alj.- Intuitively

therefore, we must have: /
i ]

TR TR | ' (7-49)

When the coupled—n:node approach i{s used for the same problem

of non—paralle\: waveguides, conceptual difficulties arise from
the ‘non,-pa,rallelism of the wave-fronts of the modes to be

coupled (see [McHenry 1984] and

woovp A

references therein for a full
discussion on this topic):

Now, when an output section is made up of such a gradual
increase in spacing, equation (7-48) still applies, but ln.
general, the »amplltudes 6f the modes need no‘;t be equal,
depending on 'thet input condition. Instead, we get (assum\ing

input amplitudes A, and A;): |

(z*) dz’

- z 4 - z _ |
TP adya &I (7-50)

Gly2) = AG,(y2) e
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When the spacing becomes so large that coupling no ionger

occurs, the normal modes can be expressed as a superposition of

%
channe! modes in the following manner:

Gely) = —4‘5 Galy) + —jg Gyly) (7-51a)
6,(y) = 7’_5- .y - -—14-5- G, (y) © (7-51b)

or 8‘
Guly) = —J%cé,fé,,) and Gy(y) = 741_5(6,-6‘,) ' (7-52)

and the power ending up in each channel is obtained by the

-

projection of G(y,z-end) onto either 6‘0 or,G,:

- L
Pa = I<GLIGIy1? = Sl o Bogfo®) o
[ ]
A0 L R oY ool (* st azly |
5 U (A‘) + 2[/\.) COS(ID Ap(2) dz)) | (7-53)
A A2 2 ’ 2
Py = 1<GylGly)s1? = =21 - %Qe.lfoal&[z) ¢z ~
. ®
A3 AO 2 AO 2 , . =
51+ (A‘) 2—.] cos(fo AP(2") dz),  7-54)

We see from (7-53) and (7-54) that only in the special case of
equal normal mode amplitu&es. A,/A, = 1, is total transfer
possible (i.e. ‘Pa or P, = 0). Note that when a gradual
con’vergine section is used a9 input, this condition is

automatically satisfied (see (7-48)). .

To conclude this analysis, we must establish how the

difference in propagation constants AP depends on the spacing

&

w- )
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@ If we can find a relationship for AP(W), then, in a given
» , DC design for which we specify an input or output section with

variable spacing W(z), we will be able to solve the integrals in
(7-53) and (7-54), and predict the power transfer
characteristics. Fortunately, the f‘unctlonal reilationship
between AP and W is easily apparent from Figure 7-5. A
straight line providea"a very good fit to the linear-log graph

of AP(W) and we get:

£y

__Aﬂ)EW) = A g-EW (7-55)

The relevant parameters, taken from the resuits of section
»

7.3.2, are listed in Table 7-3. and tl;e straight ‘line fits are

0 shown in Figure 7-6 for various cases of interest. For other

exchange times, A and m can be found easily from two appropriate
AP values (themselves calculated with (7-1), (7-37), and

(7_538”'

7.5 SUMMARY OF FULL DIRECTIONAL COUP}..ER DESIGN CALCULAI'I"ION

- ' For a gi'v‘enn finput coh'dition, generally a single channel
excitation, the power ending -up into each of the output branches
is given by (7-53) and (7-54). Within these, the relative

amplitudes of the normal modes are either equal (for the case of

G

input from a gradual tapered section) or calculated from (7-45)
!

" and (7-46) for iﬁput from a sudden transition from one to two
channels. And, finally, the total phase differénce is obtained

‘ J by specifying the shape of ‘the DC, W(z‘)’, along its full length,

7

f - . '
. R A
N . ‘
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A

and replacing it in (7-55), to get AB(Z) which is integrated

over the whole length of the coupler. Note that in the parallel

i

section, W(z) = constant, so is Af, and the phase integrals

0
L

reduce to Aﬂ(wo)i.. where L is the length of the parallel

&

section and W, its spacing.

~

Two examples of "real” designs are given in the next

chapter, aloﬁg with experimentall results.
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TABLE 7-3 . )
FITTING PARAMETERS FOR gg VS W . .
» TE ™ . ,
t, (min) Ax10* m (Y Ax10* m @EmY |
A A gog 3
A bl
- [ 4
. ¥ - ‘
P ) . - . .
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CHAPTER 8. EXPERIMENTAL VERIFICATION Ol-‘ "‘HE 3
DIRECTIONAL COUPLER PROPERTIES '
¥ ‘ e
8.1 INTRODUCTION o
« In this chapter, two .directional c.oupler designs are

presented, in order to 'verIPy some of the claims made in
,previous chapters. The main points t‘o consider are: the accuracy
of the model! for N(y) and of the method of solution to t\'he
waveguiding problem' in predicting devife perfo‘fmance: and the
adjustability of the device properties provided by the two step

fon-exchange fabr!cation process,

It is the basic phenomenon of directional coupling in these

novel structures that will be examined, not the functionality of-

the device from a system point of view, Thereford, parameters of

technological importance, such as lnﬂs“ertion loss or throughput
loss, will ot be considered here. -This will be needed at a
further stage in the development of practical devices, after

optimization of some of the wa.veguidingﬁ properties (as will be
discussed in the conclusion). "‘,A’:‘c;:ordinglJ)v, in the choice of
these optical circuits.@ many design decisions will be made while-

keeping in mind the fact ‘that'tn,e main concern is.only to test

duan!tnatlvely the two points mentioned in the Hrst_pp‘rnraph .

In particular, the circuits should be easy to- fabricate and
i { ‘
measure, with good reproducibility, in ‘our laboratory

t

factlities. -

4

3
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8.2 ACTUAL DESIGNS .

» 5
-

As was done for all channel waveguides stu;li,ed until now,
the width D {s fixed at 10 um. This {8 fairly large for a
singlie mod# guide at a wavelength of 0.6328 pm, and it
facil\itates input/output coupling to the guides. It alao relaxes
the constraints in the fabrication of the aluminium ﬁasks b§
photolithography. Usually, single-mode waveguides made by
conventional methods in gl.ass or other materials have much
smaller dimensions (2-3 um).‘ Compatibility with single-mode
fibers is also improved since they have typical radit of aroundg_
S pm.

The total exchange time (t + t;) is kept at 'l hour, but

t, is allowed to vary.
{

’

For the spacing of éthe channels in the‘ plarallél section,
three_thh;gs.ha've to be considergd: 1) If toctal power transfer
is desired (at least as a possibility) at a value of t where
the guides alre single-modid‘,’ then the coupling must not be too
strong (W not too small); u2) the linewidths realizable with our
photolithographic set-up are no smaller than about 2-3 um; 3)
the longest dimension that can be accommodated by the equipment
is about 50 mm, Therefore, W canno{ be too large either ff we

wantﬂthe possibility of total transfer occurring at least once

fn ‘that length.

-

A good compromise turns out to be W « 16 um&h At that

spacing, total transfer is possible for t = 6° and 9' in a
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length of the order of 10 mm, and the minimum pattern size
P
appearing in the mask is 6 pm (the separation between the two

open channeis in the mask).

.
The final design decisions concern the input/output

/

sections.

For one design, a fully symmetrical 4-port device {8 chosen

2

(and Teferred to as the 4P device in the follbwing) with stepped

sections of linearly increasing (or decreasing) spacing (Figure

8-1)- <

Because the channels are very weakly guiding in the single-

R
v

mode regime (AN £ 2 x 10'4), such discrete bends
may contiribute to in-plane scattering. To investigate that

problem, another device is included on the same mask, and will

-~

therefore be fabrlcated"simultaneo{:sly on the same substrate.

That device is made up of one completely siraight waveguide

'

adjacent to another guide, parallel to it for a length L, and

»

then branching out as in the fi}st case (Figure 8-1). This

circuit is a three-port device (3P), a configuration which is

sufficient for many applications of directional couplers (see

[Cochrane J§86], fog, instance). . Scattering is. more or less

'

eliminated from the inp\ut branch, which is a big {mprovement

over the 4P devi‘ce because, in the latter case, the scattered

\
power generated in the input section could be recoupled into the

guides at the bends of the output branches. On the other hand,

o
W
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Figure 8-1. Design of the two fabricated directional. couplers.
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Figure 8-2. Design details for the transition sections.
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‘take |}, = 1.75 mm for a "round” number (this yields an actual

- 180

scattering generated near the end of the directional couplers
stands less chance of being recoupled into the guides to époil
‘the comparison ‘between the power transfer measurements and
preélicted values ' (based on negligible scatteringﬂ).
8.3 CALCULATED TRANSFER CHARACTERISTICS

For both devices, the parallel] section length L is fixed at
10 mm. Also, for both cases, thé first branching section is used
to separate the two waveguides beyond the point where there is

no more coupling. A spacing of 46 pm is more than sufficient

for that purpose. Finally, individua! bends in the waveguides

are kept smaller than 0.5° to_minimize scattering losses.
The details of the initiel transition sections are shown-in

Figure 8-2. For the 4P device, the spacing.varies from W = 16 to

46 pm in & distance ll\so that '8, < 0.5°. We have,

e 46 - 16 min 15
t . (46 - 16) = - 8 -
N . anel 21‘ ] . l l ) ta eml‘x um [ 1]
L S

or I > 1.72 mi'n,,on both sides of the. paralle] section. Let us
' \

branching angie of 0.49%).

For the 3P device, only one branch is bent. Therefore, to

" reach ‘the same final separation, we need:

9.

v

tang, = -@i{——ls-l = T4 30 um ' (8-2)
\ ) 2 . tanez
or ™" -« 2", We take:

1 = 2l = 3.5 mm’ | (8-3)




@ ) The complete design of both devices is shown in Flc‘ure 8-1.

All .th'e individual .bends are smaller than 0.5° and the channel

s

separations at input and output are at least 200 um for ease of
launching power in the individual channels and measuring their
outputs.

For the 4P device, we need to consider the coupling for

- L

three regions:r the parallel section, and the first
-

divergent sections on each side of it,. In that case, A,/A, =

. by .
! and the only parameter needed is the total phase change.

For the parallel section, we have:

o“ S A¢, = AP(W=16)el (8-4)
and, in the input section, we have: ~
W(z) = 46 - 2ztan(8,) pm (8-5)
1 L ©
by = [ kA eV 4z - (8-6)
N o . ~46m (1 _2mztang . ~i6m  ~ AP(16) - taa
j kAe ID e dz. %ﬁ%—ﬁé—; Smiand; (8-7)
.,Simihau'ly,‘n at output:
® W(z) = 16 + 2ztan®, pm (8-8)
- ' ) ’ Iy -mW(z) (] -
o . . L 0 kA e dz (8-9)
. -16m { W _~Zmztand, . apae) - .
T A ﬁ?&-ﬁy; (8-10)

; o and,t}le total phase change is:

o = 8BU6) (L + EaE) (8-11)
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-When the design values (Lyl!0 mm and tan®, = 30 uxpr/AZl,)A,"areg

replaced in (8-11), we get: ‘ L

se = spue) o + 2GR 7 (8-12)

~ w

with m expressed in pm™, and AP taken f'romf’l‘able 7-2
and expressed in- rad/mm.
. ‘ 3 '
Fer the 3P e l\c>e, we have again in the parallel section:

& ag; = BRUBIL © (8-13)

and in the output section:

—— w(z) ’-4416 + ztanéz (8-152
8¢, = j’oz , e "BV 4 ‘ | ni(s-]t-;o)
- 4pde) :,2 ("e"“‘"““"é dz o o (é‘—17) |
R4 -
s | oy, | zigcer, Ty
so that the total phase 'change is: v
a6 - 4pUS) (10 + 247130 . “ L | (8-19)

i.e. exactly the same as for the 4P device. ‘Howe\’ler. in this '

-

case, A,/A, # 1 and depends on Y (for.W = 16 um). -

. [#4
Again, m must be in pm~! and AP in rad/mm.
v &

Using equations (8-19) and (8-12) in (7-53) and (7-54)

allows the calculation of the power transfer characteristics of -

the directional couplers.‘f-‘/c—)r‘the 3P device, the a plitude ratio

‘ R . \
must also be calculated from (7-45) and (7-46).

If we .de‘flne the power transfer by: ' /
n p""—p—Pb | (8;191
o a + b . / o . - a

P / .
_ for input from branch "a", and the amplitude’ ratio by: '

d - o
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A - .

R - ’ ’ (8'20
D‘L , . . ] ' .\

we get -the following -formula for =

T "n - 315 -“(1—-13-? cosl¢ . (8-21)

As an example, n is .plotted on Figure 8-3 against the

léngth of the center section L, for two values of t,.in the

o

- gingle-mode regime,

~ We see t‘hat for a given tt;ask (i.e. fixed L), a wide. range of
transfer uvalues -can be obtained by ,varyi&nc t. This
interesting prc;periy allows for.the fine tuning of‘) ftln
p;arformance obtained with a mask, without having to t"ep‘l’a'cg‘ﬂ.
Mir;or fabricatlon or de;lgn lnaccuracles can therefore be
compensated easily with_ this two -step method.

v
In Figure 8-4, another type of relation is plotted namely

z
the transfer n against tl for the two designs that were
" specified in this chapter. The two curves overlap over the whole
rar‘we shown. Actually, the difference becomes of the order of i%
at t, = .5, at which value the ratio of amplitudes R i:s 0.86
for TM and 0.83 for TE. _

The portion of the curve that extends past t, = 10 minutes

has a restricted meaning. All the c‘alcu'lationé were carried out

r_astumi'ng single~mode channels, which is no longer the case in

that time range. Therefore; the transfer {s depéndbnt on the

amount of power .carried by each of the possible modes, and other
values thay those shown agre possible by changing the input

conditions.
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.." 8.4 EXPERIMENTAL RESULTS ' ' ‘ :

The directional couplers were fabricated and measured with ;
‘the methbds ou/t,l'ined in Chapter 3. On each substrate and for
‘ L]

each polarization, three seCs of power measurements can b& made
- (each ~s'e"t cpnsist\ing in a scan of the power across the two '1
{l i <

output branches of a device): one set for the 3P device, and two
'sets for the 4P device because of the two possible input
branches.- For each potar{l‘{:tlon. the three transfer ’(n)

measurements are expected to yield,identical results (as long as

- \
- N .

t,25°). - .

w@‘rcan make allowances for scattering in the following
> S ! .

¥
4

fasqhion. For the 4P devi'ge. both input branches have‘ the same

'shaple‘ and should have the same fractloln of scattered power H,.

Thérefore, for an input power P, the power reaching the coupling
l‘:)t " " .
section is (1-H/)P = Pg(0). At the end of the coupling -

S

section, a fraction n has been-transferred to branch "b",

Po(end) = .n;P,(~b)—;"n(1-H,)¢. and (1 - n)(1-H)P

the branches

‘become (accounting for a fraction H, being scattered): ’
’, ' »
Pylout) = (1-H n(i~-H,P ' P (out) = (1-Hy)(1- n)(1-H,)P - (8-22)
Then n is obtained directly from a measurement of the. following
% : -
ratio: . . Ce - :
Py L n
- - "23
L il‘.l‘b T-ma "
. v R " . .

.The measured vilue is independent: of H, and H,.




186

G . For the 3P device, there is no loss in the input branch, and
at the end of the coupling sectjon we have: P’a(end]:- (1-n)P
amd P (end) - nP. At the output, P, has not changed but
P, has reduced to Py(out) = (1-H,JnP because. of the

bénds. Th_erefore':

v

R i n_ Py (1-HoInP (1-Hohn .
5 . p‘ + Pb - ﬁ‘HOJ‘nP — (l-ﬂ)P - z—*——-—jl_nHo ,< N (8-24)

and the measured transfer efficiency should be somewhat lower

than the calculated ones, especially at .smaller values of

°

- (larger Hy).
The scaitering that occurs at the various discontinuities of

c the devices should be resiricted mainly to the plane of the -
\ .

-

wéveguides. This is' because the confinement is much weaker in

that direction (AN 2 2-10 x 10°%) than in th’e‘ depth

Kdirection (An & 1%).  Therefore, most of the scattering will

be observable on the oytput profile traces as peaks of‘, power
! outside of the channel regions, e.g. Figure 8-5.

Significant resuits for nn are shown in Tables 8-1 and 8-2

and in Figures 8-5 and 8-6.

8.5 DISCUSSION OF THE RESULTS

Several points must be,a.ddressed (regarding these results.
"First of all, t’he transfer value for the 4P device is. not
symmetrical and’does not correla’te well with predic.t'ed value'sk.

[%

’ As we have just shown, this cannot ‘be explained by scattering
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@ alone, although 4P devices did show quite a bit of it at the

«

output (Figure 8-5). However, some of the waves scattered in the

- v

input section stand a good chance of being recoupled (or “re-

,s'catt;i'ed") at. discontinuities of the output branches (Figure 8-

]
>

7). The slightest difference in input beam alignment or in the
. 4 ’
. geometry of the branches of the DC would resuit in different

o

amounts of power ending up in the output’ branches. This effect

%‘h% ' - {s beliéved to be the main cause ofl the problem. Again, tt;e fact
- ‘thaat ;a planar,gui.de confines the scattered light in the depth
dlrec’Hon ‘facilitates this rec9up_llng“effect. Ot;mer channell
. waveguides do not have thls‘problem“ because scattered light.

o . ’ leaks into thefsubstr;te. . '

Secondly, the transfer efficiency n for multimode devices

“(t; > 10°) can be adjusted by changing the angl%of cntry‘ and
t

the’ spot size of the inlput beam. °This has the effect of varying %

-

"

the amount of power carried by each mode, Higher-order modes are

JL e st

Lot

" @

less confined and couplg more strongly to the adjacent- channel,

giving higher n values than the predictions‘ of the

calculations. This is shown by the results of fneasurements on

a

the device fabricated with t; = 13°. \

As can be seen from Figures 8-5 and 8-6,-the 3P devices

showed significantly less scattering, and especially so for the
a" -

o .7 TM polarization. These resulis are more reliable for o

-~

comparison with theory (Figure 8-8). We see that the agreement

is excellent. for the TM modes (decreasing slightly st smaller
\ v
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Figure 8-7. Diagram showing scattering points, planar modes and

possible recoupling points at downstream bends in the
channels. i
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values of t as predicted by (8-24), because of the lo?e{ of
confinement). For TE modes on the other hand (Figure 8-8), the
sgreement is less aécurate, probably due to the already -.observed
occurrencge of more scattering for that polarization. The cause
of that phenomenon is not understood at the present time because
the lateral confinement of the TM modes is only marginally
: p |
better (as evidenced by the larger AN values). It must have
arisen from some increased sensitivity to scattering for t.hat
polarization.
To c¢onciude on these results, we can say that when the
proper experimental conditions are met, the agreement between

’

predicted and measured values of power transfer {s excellent. In

short, these conditfons are those for which the confinement is
maximal (i.e. t{ as large asu possible), while keeping the
individual waveguides in the single-mode regime (which' places an.
upper limit on t) to get a unique transfer coefficient n.
Also, ‘th~e adjust‘ab(llty of device performancq allowed by the
two-step method Kwith varying relative times of ‘exchange has been
dembnstratoed. as., well as the feasib‘mty of single~mode optica}
circuits with channels of wide.lateral dimensions.

On the other hand, these advantage; come with & structure
which 8 very weakly guiding and inherently susceptible to
cr‘osstalk‘(unwnnted and uncontrolled coupling) due to lateral

N

scattering. This introduces constraints on the geometry of the
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0 . devices that can be expected to perform according to~ the
theoretical predictions.
) TABLE 8-1 -
EXPERIMENTAL RESULTS FOR n, 4-PORT DEVICES
t, TE ™
input a TH a b TH

- | 2 :é :g% :§ : : -85
% : 33 o '. : !
i%’ :§ :§8 :13 : : :3

“TH" stands for theoretical calculation.
"input a"” means that light is launched in branch "a" and gg)wer

transfer to branch "b" is measured (opposite for "input

0 ""
TABLE 8-2
. EXPERIMENTAL RESULTS FOR . 3-PORT DEVICES
Yy TE : TH ‘ ™ TH

00

é

23

"TH" stands for theoretical calculation.- For t; = 13° and 17,

the measured efficiencies are the maximum ones obtained.
= Other input conditions change the transfer result (see text).
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CHAPTER 9. CONCLUSION

The work .presented in this thesis can be conveniently split
up into two main aspects.

It is possible to summarize the net accomplishment of
ch&pters 2 to 5 as the gain of a better understanding of the
process of potassium-sodium iqn-éxchange in glass for the
purposes of making optical waveguides. The methods used to
achieve this are fairly general andﬁ can be used in the study of

other types of fon-exchange. 1In fact, the characterization

procedure of chapter 4,. apart from yielding essential design

parameters, has been repeated by another group to study K*-
Na* in other types of glass [Gortych 1986a, 1986b].

Also, while we were not the first to solve numerically the

non-linear diffusion equations of ion-exchange [(Helfferich
1958], IWllki‘nson 1978],. nor the last [{Houde-Walter 19«851. our
main contribution in this area was the use of an analytical
app'roximation for the resulting concenitration profile' and its
correlation w‘lt‘h the single independent parameter of th‘ese
equations (x). This prdvides a clarification of the problem of
deciding which approximate profile provides the best fit fox:

different types of exchange. Furthermore, the apﬁroach

consisting of presenting analytical approximatlc;ns to numerical

. results is believed to be more useful! to other workers.ﬂ

espccilnlly experimentalists, in the field because they do not
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ha've to reproduce the computer programs and entire culcul;‘uon:

to\ adapt the resuits to Sh_eir specific ‘problems.

Finally, the stress analysis of chapter 5 helped to slolvc
two important problems, i.e. first, the h;cons‘l?tcncy bctwogh
the Huggins-Fantone model and tr:e measurements of the maximum
index change An, and second, the infiuence of thelexchange
temperature and glass composition on t‘he ngnitude of the iIndex
change.

As in all scientific endeavours, it is from a better

re
understanding of some basic phenomena that advances and

3 .
breakthroughs become Bosslble. In_the case of K*-ion exchange

in giass, the process had been used quite fre'qucntly' in the
pa¥t 15 years or so for device work; mainly because of its
simplicity and potential! for ‘low propagation losses and good
index match to single-mode o';:tical fibers, but generally with
very approximate ‘knowi-edge of waveguide parameters (diffusion
depth and index change). h

The. results presented here provide a much firmer basis for
the develoPment of waveguide features that will bring this
tec;mol_ogy toward more practical and commercial applications. It
was already noted that the great potential of thﬁe \vlv;culdcs
lies probably in passive wa;eéutde functions where low insertion

and throughput losses are essential. Measurements have shown
\;

that propagation lisses as low as 0.2 dB/cm are possibie ln‘

et e e et B ARt . . s b N o
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planar andw multimog chaﬁnel waveguides [Findakly. 1985, Findakly
1980]°. Also, it can be seen from Figure 8-6 that very little
additional losses are Ct;used by bends in the guides when they
are well designed. Therefore, the main problem left to be solved
is that of the {insertion lossés at the fiber-waveguide junction.
- For multimode waveguides, great pro.gress haé occurred in thism
area recently, ,vith propagation losses lower than .05 dB/cx(n:/‘énd
coupling losses of .25 dB/facet [Cline 1986]. For single-;node
waveguides, the coupling is much more difficult in view of the
small sizes involved. A way to avoid that difficulty is to
increase the size of the single-mode channel waveguides and to*
“symmetrize” their index profile in the depth direction, to
improve the refractive-index match with fibers [Chartier 1980,
(‘ Findakly 1980, Parriaux 1982, Voges 1983, Tangonan 1983, Ctyroky
1984a]. As an example of how the re;ults of. ttgis work can be
used in -this context, studies of refractive index modifications
for the purposes of lowering throughput losses and improving
mode matching to opticai fibers , can be undertaken with the
methods of Chapter 2 and 5. In particular, it is possible to run
the 2-D ion-exchange numerical model with diff‘erent boundary
conditions to -get quite interesting predicted profile shapes

(Figures 9-1 to 9-3). /

The second part of the thesis deals with the realization of
single-mode °pae;sive optical circuits in glass. The basic element
of these circuits {s a channel waveguide fabricated by a two-
=«Note: it was not our goal in this work to determine the

@ : losses of these particular waveguideg. but rather to prove
certain concepts and find methods of anai);sis.' Loss measurements

are nece’ssary at a later stage in device development.
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step ién-éxch;nze method, for which we have ’preuntcd the flir;t’
de'(uil,egd analysis. The main 1ife of thouc;zt. here, was that of
having a self-contained design procedure, as general as
possible, and simple to carry out without losing lccukrlcy.

This was a_chieved with the help of the"‘cffcctivc-l}ndcx
method”, in itself a standard procedure by now, but with the
more novel app\roach of fitting local values of effectl“va tndc-x

(calculated on the exact refractive index profile with an

accurate numerical method) with a simple analytical function.

, The parameters of .this anajytical model have been shown to be

N G

derivable from planar waveguide data exciusively. Therefore,
with the fabrication and measurement of a minimum of)wo piunar
waveguides, from which An, and D, can be calculated at a
given temperature, a full mode! for a channel waveguide made by

two-step ion-exchange can be written down directly.

N Furthe?more, we have shown that Hermite-Gaussian functions

provide excellent approximations to the lateral dependence of
the two lowest modes of these channels, allow*inc the use of a
particularly simple variational method to the solution o!Atha
dispersion equation. .

Finally, a deslc'n example for a simple circuit was
presented, along with experimental verification of’the results.

These showed that the two-step channel guides provide good

'adjustabillty of performance because their “cladding® index can

\
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be controlled by. changing the relative times of exchange of the

two steps.

-

This is a lot simpler than the alternative approaches .

available for lateral mode control, such as using a planar

"cladding [Haruna 1985] (which requires an additional _';tep“ of .

‘hlgh vacuum processing), or a raised strip on top of a planar
guide [Hocker 1976] (which is difficult to fabricate with

-

precision and yields a non-planar structure).
[ .
It is worth noting that the methods of Chapter 6 are
adaptable to other types of waveguide fabrication (titanium in-

diffusion or pt"oton excl‘nngg-ln lithium niobate 4’f6r instance

&
(Warren 1983]).

.

. ¢ 4 n
Again for this part of the thesis, we can say that the

4
’

groundwork has been established for further developments. In
fact, the analytical mode‘l‘ for the lateral’ e"f’fect‘lve-“nideit
profile can 'be used for other‘ geometries than® stratght chan;telas _
This is because this model is e.s.sné’n’tiully a fit oflthe
transition between two planar regi;:qs\s‘ of dii;ferent d~e'pthxs
(Figure 6-4). Therefore, it can be used to model struct,g;x:es‘ of
arbitrary geometry in the plane of‘t'he substra\ta.\suc'h as:
prisms, lenses, tapers, etc... [H!ﬁkov 1?82. Tamir 19?9;.p.133].
which are needed for signal prqcessln‘m as wavelengih-dlvlgton

(de-)multiplexers, Fourier transform 'e"lem‘er“?j&'s, or mode._

t ™
-

transformers respectively.
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\:\/mor-e specutative note, some of the Pparticular

ﬁrc;pér'ti'es of the two-step ion-exchanged channels in glass that

Finally, on =

were highlighted ‘in this work could be exploited in sensor.

devices. In particular, the directional couplers of Chapter 8

were seen to be ;/éry weakly guiding with a AN as small as 2-5 X% 1074,
| Therefore, an externally lndu?ed index perturbation of the
same mégnltude ‘[e.g.&from a temperatu{re{-‘ change, or ‘from an index
cha'ngé’ in the tcladding of the guide) would have a strong
l‘nfluéncq on measurable optical propert’les. This {s also true of

ext\ernally applied stresses since the index change of these

guides is almost entirely due to stress already.
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APPENDIX A B .

i )
o .

" In this section, equations (2~30) and (2-31) are derived

explicitly, following (and expanding on) [Crank 1956). Note that

L=

most of the symbols (p,¢, etc...) used here do not have the

k)

same definitions as in the core of the thesis; they will be

defined as we go along and as needed.

First, let's define: ' Co .
. In(l - &c) 1) -
Tt - ® o oAb
whitch means that: ) ' ’ -

o \

> o8In(l - b]
¢ - L2el (A-2)
[» 4
€ --tmu-a et -9 (A-3)
and (2-2\9) becomes:

ondC . . L A -sinll - Epney - &) oSN - &SY _
@S « - & Ll - Fina - &) e" = (A-4)

o Inll - &) _smng - axds) . _ Inlt - &) 2 -
o an(- T e ) 53 - (A9
.(:MVA\HQE% - =27 elll‘l(l - &) g_§_ R ) ' (A-6)

. dn dn ‘
' - c,odel A-7)

y so=1 v @ -0 | _ (A-7)

. (note: c20 , &Sl = 12520 = | e*inl = &’l < o in (A-3)

1




Transformin‘g again:

b = - 48
* dn

p=-inll - @&
) -ps
q - Lr
Equation (A-6) becomes:

and we glso get:

so that:

de _dq d¢ _ do
dn " dn dq - Pa¢

which transforms (A-11) into:

=92 - -21‘

We differentiate with respect to gq:

2
do-—-d—ﬂ--
pr Rl

Now, posing: &
we: get:
dp -1 w 2
pral ey e &L
which, replaced in (A-15), gives: ' L,,ﬂ
. - 4
dafF-&-5-4
R T RN

&8 -5 &

(A-8)
(A-9)
(A-10)
(A-11)

(A-1f)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

" (A-18)

(A-19)

(A-20)
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c 0 fw /7 & 3
with u = In(q). 7 (A-21)
Equation (A-20) is integratable if we can find a function
"g* whose derivative with respect to "u" gives the right-hand

side. Such & function is:

2
- zz _ 4 -
¢-(A+% -3 m= | (A-22)
since:
dg _(z . 4)dz _23)
du (2 Fi)du ) (A-23)
Replacing (A-23) in (A-20)
d(dz) _ _1 dg (A=
duldu) 2(_@] du (A-24)
du/
D
rearranging: =
‘ dz drdz) _ 98 % - -
k3 o= 2du du du) du (A-25)
d(dz}? _ dg . \ -
duldu/ = du (A-25)
( integrating once: S
. , | ‘
- ($8)" = &a +B . ©(A-27)
and upon rJegroupmg constants and using (A-22):
2
L . :.\Ja e E - -g-ln(z) (A-28)
which is a separable ODE. We get:
. u+ b t]oz gZ. (A-29),
- ] da + 271- - %ln(z‘) :
where a and b are the constants of integration. Replacing q and
¢ we get:
N X
! In(q) + b = tj'o'ﬁ % (A-30)
. 4:# %—- g-ln(z)
and from (A-7), (A-9), (A-10) ¢ —- 0 as q — 1/Pp. of
c. course, s - 0 because ¢(n - w) = 0 as well as -cdﬁ;

so that: '
b = -ln%] | (A-31)

Sy

-



&

and (A-30)' becomes:

£

in(Bq) = = f T g (A-32)
a + & - %ln(z‘)

Now from {(A-14), (A-7), (A-10) we get that:

-p
%%—00-:1‘—.0*3'—»1-9(]—025— (A-33)

In order to use condition (A-33) to fix \"a“. we must

differentiate (A-32) with respect to "q". ®But at first we note
&hat:

In(Bq) - -Ps < O (since s, p 2 0),
which means that we must take the negative sign on the RHS of

(A-32) (since the integrand and the upper limit are positive).

So:

<

Lonpa) - § - - &f Ptk (A-34)
; da + & - a-ln(z')
d @
- (%) Fo)

where F is a primitive of the integral, &hich implies that:

L}

L -
. dF(WJ"J ) N 2q4q

1
? “ \J a-ln(——)

Applying condition (A-33) to (A-36), we get:

.hre. Ql&

¢/(2 -p
g- R =
da + —'a - Bln(Tq)
which imposes:

a-= g—m(—%) evaluated at q - ;B_a
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Gy - - f =t (A-39)
¢ 4 ’
2Z - i)

¢ f
where € = {—= - .
ﬂ]qﬁg ,

(A-40)

To simplify (A-39) even further, we must introduce some more

transformations:
r = ﬁﬁ (A"41)
- . ]
6 = -e—d—ﬁ (A-42)
o, = & (A-43)
b= l_a% © (A-44)
to arrive at:
Inc?) = 2 In(r) = —2_[(;ze '249-;5 ‘ (A-45)
- Qz - Bin@z/e)
In(r) = -I ° € 4% (A-46)
0 \Jezez - 8in(s,?) ‘
g

(A-47)

0 de,
In(r) = Jo rx——y

Now we must replace condition (A-40) by a condition on y, which

is equivalent atcording to (A-44). Putting (A-40) into (A-42),
' 1
we asee that when q = (eP/p), 6 = 1, which transforms

(A-47).for this particular case to:
1 de,

which is a completely deterministic equation for p since

p-2f (A-48)

P is a known constiant and 6, a dumr‘ny variable. We will now

LY



‘o

return to the original variables to find c(wn).

(A-14), (A-42),

n--t® . Lt

al

ne= - %&:ﬁ * «ﬁ%)
P
n - - 3B S5
where:
. re do,
r exP( ID Jg'z . ln(@lz))
giving: -
dar _ _ I
@ 8% - uin(e?)
or:

J - uln(e5
r
A - 52):

n - -—-(e - % - pln(p), e!P(Io W)

and putting in (

r
We also have, from (A-10), (A—4i):

- 2
ng:-q-?-ﬁs-'m@q)-vs-m:%l
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First from

(A-49)

¢A-50)

(A-51)

(A-52)

(A-53)

(A-54)

(A-59)

(A-56)

(A-57)
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giving, by (A-47):

~21n(r) o . 46 )
- - [A'SS)
° gl {82 - uin(e,®

and s is related to ¢ by (A-1), giving:
‘ ] - g-mn-é‘x) ] - E—B'
cC = - - Yy (A-59)

e & @

s0 that:

1 (A-60)

- 8 de
: c = -.-(1 - exp(-z 1 )]
M o ID leiz - uln(elZJ

Equstions (A-60) and (A-56) together form a parametric
£

solution for c(n) as c(8) with n(9).
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APPENDIX B

FLOW CHﬁRTSKOF MAIN COMPUTER PROGRAMS WRITTEN FOR THIS WORK
*y «
A. PROGRAM DBLDOFS to calculate the concentration profile -
. resulting from ion-exchanga.

Read input varlebleuJ

/ ¢
Initialization of profilel

Transformation of variablaes
3¢ x
<=y
f <-¢

- t=0 ‘

—>1Calculation of finite differances of f{x,y,t)

t =t + dif J’

\ Calculation of f(t + dt)
no i
< [1¢ <t + dt) > ¢
v/lvee :
‘ v
k Change boundary condition '
{remove mask)

no V
L [1r e an > g+ to)

v[ves
Vv

Transform back the variables
X <=%
y <-4
c <~ ¢

Y

Output the results
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B. PROGR&M BETA2D to calculate the mode and propagation constant b
of a channel guide by the Rayleigh-Ritz method

W

[Bead input variablesl

[Define index profile|

>

Transformation of variables
<~ x .
n<-vy
l yes
Optimize N(1,1,1,1) ?|===~= >|Iterate to find
o . Xy o Uy , Wy

/

For J = | to JMAX -
For L = 1| to J

'

Perform the numerical integral along y
and stors the results in array YINT

“ l |

For 1T = 1 to IMAX
- For K = 1 to I

'

Integrate YINT along x and calculate matrix elemsnt N(I,J,K,L)
Define the matrix alaments that are equal to this one by symmetry
Call the Power Method package to find the largest eigenvalue

and corrssponding eigenvector of the matrix «

Output the results
Note: In the ona-dimanaional equivalent of this program, the integration

alohg y 1is. not performad and the array XINT is defined by the
values of the integrand at the corrasponding x positions.
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