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ABSTRACT

Low-Density Parity-Check (LDPC) codes are one of the most powerful
classes of error-control codes known to date. These codes have been consid-
ered for many recent digital communication applications. In this dissertation,
we propose stochastic decoding of state-of-the-art LDPC codes and demon-
strate it as a competitive approach to practical LDPC decoding algorithms.

In stochastic decoding, probabilities are represented as streams of ran-
dom bits using Bernoulli sequences in which the information is contained in
the statistics of the bit stream. This representation results in low hardware-
complexity processing nodes that perform computationally-intensive opera-
tions. However, stochastic decoding is prone to the acute problem of latching.
This problem is caused by correlated bit streams within cycles in the code’s fac-
tor graph, and significantly deteriorates the performance of stochastic LDPC
decoders.

We propose edge memories, tracking forecast memories, and majority-
based tracking forecast memories to address the latching problem. These
units efficiently extract the evolving statistics of stochastic bit streams and
rerandomize them to disrupt latching. To the best of our knowledge, these
methods are the first successful methods for stochastic decoding of state-of-
the-art LDPC codes.

We present novel decoder architectures and report on several hardware
implementations. The most advanced reported implementation is a stochas-
tic decoder that decodes the (2048,1723) LDPC code from the IEEE 802.3an
standard. To the best of our knowledge, this decoder is the most silicon area-
efficient and, with a maximum core throughput of 61.3 Gb/s, is one of the

fastest fully parallel soft-decision LDPC decoders reported in the literature.



We demonstrate the performance of this decoder in low bit-error-rate regimes.

In addition to stochastic LDPC decoding, we propose the novel applica-
tion of the stochastic approach for joint decoding of LDPC codes and partial-
response channels that are considered in practical magnetic recording appli-
cations. Finally, we investigate the application of the stochastic approach for
decoding linear block codes with high-density parity-check matrices on fac-
tor graphs. We consider Reed-Solomon, Bose-Chaudhuri-Hocquenghem, and

block turbo codes.
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ABREGE

A ce jour, les codes Low-Density Parity-Check (LDPC) font partie des
codes correcteurs d’erreurs les plus performants. Ces codes sont inclus dans
différents standards de communications numériques. Dans ce manuscrit, nous
proposons d’utiliser le décodage stochastique pour les codes LDPC. D’autre
part, nous démontrons que pour les codes LDPC, le décodage stochastique
représente une alternative réaliste aux algorithmes de décodage existants.

Dans le processus de décodage stochastique, les probabilités sont représent-
ées sous forme de séquences de Bernoulli. L’information est contenue dans la
statistique de ces flux binaires aléatoires. Cette représentation particuliere
permet d’exécuter des calculs intensifs avec une faible complexité matérielle.
Cependant le décodage stochastique est enclin au probleme du verrouillage
(“latching”). La corrélation entre les bits des différents flux au sein des cy-
cles du graphe biparti dégrade les performances du décodage stochastique des
codes LDPC.

Pour résoudre le probleme du verrouillage, nous proposons trois solutions:
les mémoires de branche, les mémoires de suivi, et les mémoires de suivi a
majorité. Ces différents composants permettent de suivre I’évolution de la
statistique des flux binaires et de réintroduire des éléments aléatoires au sein
des séquences observées, minimisant ainsi le phénomene de verrouillage. A
notre connaissance, il s’agit 1a des premiers résultats probants permettant un
décodage stochastique efficace des codes LDPC.

Nous proposons de nouvelles architectures de décodeurs associées a leurs
implantations matérielles respectives. La plus perfectionnée des architectures
présentée ici est celle d'un décodeur stochastique pour le code LDPC (2048,1723)

associé au standard IEEE 802.3an. A notre connaissance, en comparaison avec
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I'état de l'art actuel, ce décodeur dispose du meilleur rapport vitesse/complexité.
Le débit maximum (au niveau du coeur), est de 61.3 Gb/s, il s’agit la du plus
rapide des décodeurs de codes LDPC a décisions souples connu a ce jour.
Nous présentons par ailleurs les performances de ce décodeur a tres faible taux
d’erreurs binaire.

De plus, nous proposons d’appliquer le calcul stochastique au décodage
conjoint des codes LDPC et des canaux a réponse partielle qui est utilisé dans
les applications d’enregistrement magnétique. Enfin, nous étudions I’extension
du décodage stochastique au décodage des codes en blocs ayant une matrice
de parité a forte densité. Nous appliquons le décodage stochastique sur des
graphes biparti aux codes Reed-Solomon, Bose-Chaudhuri-Hocquenghem, et

aux turbocodes en blocs.
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CHAPTER 1

Introduction

1.1 Motivations

Error-control coding (channel coding) is a powerful technique in digi-
tal communications used to ensure reliable communication over an unreliable
channel. In this technique, error-control codes are used to efficiently add re-
dundant structure to the transmitted data to allow the receiver to detect and
correct errors introduced during passage through a noisy and distorting com-
munication channel (see Figure 1-1). Error-control coding has evolved since
the advent of information theory by Shannon in 1948 [81] and it has become
essential in a wide variety of modern applications [22]. In particular, error-
control coding has received a lot of attention in recent years because of the
significant progress in designing powerful error-control codes as well as the
progress in Very-Large-Scale Integration (VLSI) technology, which has facili-
tated the hardware implementation of computationally-complex decoding al-
gorithms.

Among different classes of error-control codes, Low-Density Parity-Check
(LDPC) codes [33,34] are one of the most powerful classes known to date.
LDPC codes have been considered as forward error correction in several recent
communication applications and standards including digital video broadcast-
ing (DVB-S2) [1], 10 Gb/s Ethernet (IEEE 802.3an or 10GBASE-T) stan-
dard [2], broadband wireless access (IEEE 802.16e or WiMAX) standard [3],
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Figure 1-1: The schematic diagram of a communication system.

wireless local area network (IEEE 802.11n or WiFi) standard [4], and deep-
space communications [9]. LDPC codes were invented by R. G. Gallager in
1962 [34]. Gallager discovered and applied an iterative decoding algorithm to
a new class of error-control codes. He named these codes low-density parity-
check codes, because their parity-check matrices had to be sparse in order to
have good performance. However, LDPC codes had been ignored for almost
three decades mainly because of the requirement for high complexity compu-
tation, particularly for LDPC codes with long code length. The advent of
turbo codes in 1993 [12] and the observation of their remarkable “capacity-
approaching” performance raised many questions and triggered many research
efforts toward iterative decoding. Turbo codes made it possible to get within
a few tenths of a decibel (dB) away from the Shannon capacity limit at a
Bit-Error-Rate (BER) of 107°. This in fact started a new paradigm in the
design of error correcting codes, which led to the rediscovery of LDPC codes
in 1995 [57,58], and graph-based codes. Like Turbo codes, LDPC codes were
demonstrated to perform very close to the Shannon limit when decoded itera-
tively on graphs using a message-passing algorithm such as the Sum-Product
Algorithm (SPA) [20, 56,58, 75]. It was also shown that iterative LDPC de-

coding and turbo decoding of turbo codes are instances of the Pearl’s belief
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propagation algorithm [72], collecting LDPC codes and Turbo codes under the
same model [57,58,62]. In addition, the graph-based code-description became
a common way of representing error correcting codes [50].

An LDPC code and its iterative decoding can be graphically represented
by a factor graph [50]. A factor graph is a bipartite graph which consists of
two different groups of processing nodes: Variable Nodes (VNs) and Parity-
check Nodes (PNs). The VN and PN groups in a factor graph are connected to
each other by bidirectional edges. The connection between VNs and PNs are
defined by the parity-check matrix of the code. Iterative decoding of LDPC
codes usually involves message-passing between VNs and PNs over the edges
of the factor graph for some number of decoding iterations. These messages
represent the VNs’ and PNs’ beliefs (in the form of probabilities) about the
correctness of the received information from the channel. In general, LDPC
decoders can be categorized into fully parallel and partially parallel decoders.
In a fully parallel decoder the entire factor graph is implemented in hardware,
while in a partially parallel decoder a portion of the graph is implemented
and, hence, hardware resource sharing and memory blocks are employed to
compute, save and pass probability messages between different portions of the
factor graph.

Despite the excellent error-correcting performance of LDPC codes, the
hardware implementation of LDPC decoders is complex and challenging [13,
24-26,28,90,107], hence, an LDPC decoder is often implemented optionally,
as an additional premium, in communication systems (e.g., in [3,4]). Pow-
erful LDPC codes usually have long code lengths. Also, their parity-check
matrix usually imposes random-like/irregular connections between VNs and
PNs. In this respect, a fully parallel hardware implementation of a capacity-

approaching LDPC decoder usually requires the implementation of thousands
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of processing nodes in a silicon chip. In addition, thousands of physical wires
are needed in the silicon chip to accommodate message-passing between VNs
and PNs. For instance, a decoder for the LDPC code that is considered for
the 10Gb/s Ethernet standard [2], has 2048 VNs and 384 PNs. Each VN
communicates with six PNs in each decoding iteration. Therefore, by using
W-bit quantization to represent probability messages passed between nodes
in a fully parallel implementation, a total of 2048 x 6 x 2 x W = 24576 x W
physical wires are needed between PNs and VNs (in both the input and output
directions). Using 4-bit and 6-bit quantization, the number of physical wires
between VNs and PNs in the decoder chip is 98304 and 147456, respectively.
The high number of processing nodes and the abundant number of physical
wires make the chip consume a large silicon area. In addition, the random-like
connections between VNs and PNs result in long and random physical wires
and interconnections across the chip, which causes routing congestion. These
long wires also limit the clock frequency and the throughput of the decoder
and increase its power consumption [13,25,26,28]. In partially parallel de-
coders, the large and irregular communication network between VNs and PNs
results in large memory blocks and address generation units with high power
consumption. Another challenge in the design of LDPC decoders is that sim-
plifying the decoder hardware by using a low number of quantization levels
can degrade the error-correcting behavior of an LDPC decoder, particularly,
in low BER regimes where LDPC codes are usually supposed to operate [111].
Conversely, most modern communication applications require high through-
put decoding while demanding low silicon area and power consumption, as

well as good decoding performance in low BER regimes. These challenges
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have made efficient LDPC decoding a focal point of research at both the the-
oretical/algorithm level and the hardware implementation level (see Section
2.2).

To address the above-mentioned problems, this work proposes the stochas-
tic decoding of practical capacity-approaching LDPC codes on factor graphs.
Stochastic decoding is a new approach for iterative decoding on graphs. This
approach is inspired by the method of stochastic computation developed in
the 1960’s [32]. In stochastic decoding, instead of propagating probabilistic
beliefs by exchanging distinct probability messages, as in the conventional
message-passing algorithms, beliefs are conveyed in streams of stochastic bits
in a sense that the probability of observing a “1” in a stream is equal to the
original (encoded) probability. Therefore, VNs and PNs exchange beliefs in a
bit-serial manner along the edges of the graph. Stochastic decoding reduces
the hardware-complexity of processing nodes in an LDPC decoder and, more
importantly, it significantly reduces the number of physical wires between pro-
cessing nodes. The first stochastic decoding method was proposed in [36, 74].
However, stochastic decoding methods prior to this work (i.e., [36,37,74,95,97])
resulted in significant decoding performance loss compared to the conventional
iterative LDPC decoding methods and thus were not practical solutions for de-
coding LDPC codes (see Section 2.4).

1.2 Objectives

The objectives in this work are to develop stochastic decoding approaches
that (a) can decode practical capacity-approaching LDPC codes on factor
graphs, (b) have area-efficient hardware implementations, (c) achieve high
throughput, and (d) provide good decoding performance, especially in low

BER regimes.
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1.3 Contributions

This dissertation proposes stochastic decoding as a new competitive ap-
proach for decoding state-of-the-art LDPC codes on factor graphs.

We propose edge-based rerandomization using Edge Memories (EMs) [82,
85,86] as the first successful stochastic approach in the literature for decoding
practical capacity-approaching LDPC codes on factor graphs. We also pro-
pose a fully parallel decoder hardware architecture for the EM-based stochas-
tic LDPC decoding and discuss its novel architectural features. We apply
this architecture to decode an irregular state-of-the-art (1056,528) LDPC code
(chosen from the WiMAX standard [3]) on a field-programmable gate-array
(FPGA) device. This decoder is the first stochastic LDPC decoder architec-
ture in the literature that decodes a practical LDPC code. The implemented
decoder achieves a clock frequency of 222 MHz and a maximum throughput of
about 1.66 Gb/s on FPGA. The EM-based stochastic decoder provides good
decoding performance behavior at low BERs. We demonstrate the perfor-
mance of this decoder down to a BER of about 107® and compare it with
other decoding approaches. We show that the proposed decoder provides a
performance within 0.5 dB and 0.25 dB of the floating-point SPA with 32 and
16 iterations, respectively. We compare this decoder with other high through-
put FPGA-based fully parallel LDPC decoders in detail and demonstrate that
this decoder is one of the fastest and most resource-efficient FPGA-based fully
parallel LDPC decoders.

We consider the ASIC implementations of stochastic LDPC decoders.
We discuss ASIC implementation challenges of EM-based stochastic decod-
ing and propose edge-based rerandomization using Tracking Forecast Mem-

ories (TFMs) [87,88] to significantly reduce the silicon area consumption of
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ASIC stochastic decoders. By comparing EM-based decoders with the TFM-
based LDPC decoders, we show that TFM-based decoders provide similar or
better decoding performance compared to EM-based decoders while having
about 40% to 65% less silicon area consumption. The ASIC TFM-based de-
coder proposed in this dissertation is the first ASIC stochastic LDPC decoder
reported in the literature.

We propose node-based rerandomization using Majority-based Tracking
Forecast Memories (MTFMs) [89] for area-efficient high throughput ASIC im-
plementation of stochastic LDPC decoders. We apply the MTFM approach for
ASIC implementation of a fully parallel stochastic decoder that decodes the
(2048,1723) LDPC code from the IEEE 802.3an (10GBASE-T) standard [2].
This stochastic decoder occupies a silicon core area of 6.38 mm? in CMOS 90
nm technology, achieves a maximum clock frequency of 500 MHz, and provides
a maximum core throughput of 61.3 Gb/s. The decoder also has good decod-
ing performance and error-floor behavior. We investigate and demonstrate its
decoding performance down to a low BER of about 4 x 10713, We compare
this decoder with several recent ASIC LDPC decoders in detail. To the best
of our knowledge, the proposed MTFM-based stochastic LDPC decoder is the
most silicon area-efficient fully parallel soft-decision LDPC decoder and it is
one of the fastest fully parallel LDPC decoders reported in the literature.

In addition to stochastic LDPC decoding, we consider other applications
of the stochastic approach. We propose the novel application of stochas-
tic decoding for joint message-passing decoding of LDPC codes and partial-
response channels that are considered in practical magnetic recording appli-
cations. We propose low hardware-complexity stochastic processing nodes
to perform computationally-intensive operations required in partial-response

channel detectors. We present decoding performance results for the dicode
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partial-response channel and the Extended Class-4 Partial-Response (EPR4)
channel, and discuss the throughput and latency of the proposed method.

Finally, we investigate stochastic decoding of linear block codes with high-
density parity-check matrices on factor graphs [83]. Stochastic decoding was
previously applied to Reed-Solomon (RS) codes in [112]. In this dissertation,
we further investigate stochastic RS decoding and extend the application of
stochastic decoding to Bose-Chaudhuri-Hocquenghem (BCH) codes and BCH-
based turbo block codes. We also propose efficient hardware implementations
of high-degree nodes used in the decoding of linear block codes with high-
density parity-check matrices on factor graphs. Results demonstrate decod-
ing performance close to floating-point iterative soft-input soft-output (SISO)
decoding while offering nodes with considerably lower complexity compared
to fixed-point SISO decoding. These results are the first results reported in
the literature for stochastic decoding of Bose-Chaudhuri-Hocquenghem (BCH)
codes and BCH-based turbo block codes.
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1.4 Dissertation Outline

Chapter 2 provides background materials. It reviews LDPC codes, the
SPA, the strategies and challenges of hardware implementation of LDPC de-
coders, stochastic computation and its benefits, and early stochastic decoding
methods. Chapter 2 is in part based on the material in our papers [82,84].

Chapter 3 proposes the EM approach as the first successful stochastic
method for decoding state-of-the-art LDPC codes. It also proposes the first
hardware architecture for stochastic decoding of practical Low-Density Parity-
Check (LDPC) codes on factor graphs. Chapter 3 is in part based on the
material in our papers [82,85,86].

Chapter 4 focuses on ASIC implementations of stochastic LDPC decoders.
It discusses the silicon area complexity of stochastic decoders and proposes the
TFM approach to significantly reduce the hardware-complexity of stochastic
decoders for ASIC implementation. It proposes the first ASIC architecture
for stochastic decoding of LDPC codes on factor graphs. Chapter 4 is in part
based on the material in our papers [87-89]

Chapter 5 continues the theme of Chapter 4 on ASIC implementation of
stochastic decoders. It proposes MTFMs for area-efficient high throughput
ASIC implementation of stochastic LDPC decoders. The proposed method
is applied for the ASIC implementation of a fully parallel stochastic decoder
that decodes the (2048,1723) LDPC code from the IEEE 802.3an (10GBASE-
T) standard. To the best of our knowledge, this implemented decoder is the
most area-efficient and one of the fastest fully parallel soft-decision LDPC
decoders reported in the literature. The decoding performance of this decoder
has been investigated down to a BER of about 4 x 107!3. Chapter 5 is in part

based on the material in our paper [89].
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Chapter 6 proposes the novel application of stochastic decoding for joint
decoding of LDPC codes and partial-response channels that are considered
in practical magnetic recording applications. This chapter presents hardware
architectures for stochastic processing nodes to perform the complex operations
required in the partial-response channel detectors. Performance, latency, and
throughput of the proposed joint stochastic decoding method are discussed.

Chapter 7 investigates the application of the stochastic decoding approach
to decode linear block codes with high-density parity-check matrices on factor
graphs. It demonstrates results for decoding the important and popular classes
of RS codes, BCH codes, and BCH block turbo codes. Chapter 7 is in part
based on the material in our paper [83].

Finally, Chapter 8 concludes the dissertation and provides potential venues

for future work.
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Background

2.1 LDPC Codes and Iterative Decoding

A binary (n, k) LDPC code is defined as the null space of a sparse (n —
k) x n binary parity-check matrix H. This LDPC code consists of codewords
x = (21,23, ..., x,) such that

xH" =0, (2.1)

where & contains k information bits and n — k parity bits, and H” is com-
puted in the Galois field GF(2) [33]. LDPC codes and their iterative decoding
process can be graphically represented using bipartite factor graphs [50]. Fac-
tor graphs consist of two distinctive groups of processing nodes, VNs and
PNs, and edges that connect VNs to PNs. A factor graph for an (n, k) full-
rank LDPC code has n VNs and n — k PNs. The ¢-th VN, v;, is connected
to j-th PN, ¢;, if and only if hj;, the entry in H at row j and column ¢, is
1. The connecting/communication network between VNs and PNs is called
interleaver (see Figure 2-1). The number of edges connected to a node (in
the interleaver) is referred to as the degree of the node and represented as d,
for the VNs and d.. for the PNs. In regular codes, d, and d. are fixed for all
VNs and PNs, respectively. In irregular LDPC codes, d, and d. vary for dif-
ferent nodes. Figure 2-1 also highlights a length-4 cycle in the depicted factor

graph. A cycle is a closed path in the graph and its length is defined as the
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n variable nodes

interleaver

cq ) €3 ¢4 Cn-k-3 €p-k-2 €n-k-1 Cn-k
n-k parity-check nodes

Figure 2-1: A typical factor graph and the interleaver for a full-rank (n, k)
LDPC code. A length-4 cycle is dashed. In a conventional implementation
with W-bit representation of messages, each edge requires 2W wires (for two
directions).

corresponding number of path edges. The length of the smallest cycle is the
girth of the factor graph. While the factor graph of a practical LDPC code
can have thousands of cycles, its girth should be more than four to provide a

good decoding performance.

LDPC codes are encoded using a k X n generator matrix, G, where
GH" =0. (2.2)

During the encoding process, n — k parity bits are added to b = (by, ..., by),

the information vector, to form the codeword & = (x4, ..., x,), where
x = bG. (2.3)

In a typical LDPC-coded communication system, after encoding the infor-
mation vector at the transmitter, the codeword @ is transmitted through a
communication channel. At the receiver, the received vector, y = (y1, ..., Yn),

is passed to the LDPC decoder (see Figure 1-1).

14
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2.1.1 Sum-Product Algorithm
LDPC codes are usually iteratively decoded by means of belief propaga-
tion [72] using message-passing algorithms such as the SPA (see [50]) or its
less-complex approximation, the Min-Sum Algorithm (MSA) [94]. The SPA is
an iterative algorithm for decoding LDPC codes. The SPA uses soft informa-
tion (probabilities) received from the channel and iteratively processes them
using VNs and PNs. The SPA makes decisions by comparing final probabilities
to a threshold value (hard-decision) at the end of the decoding process.
Suppose that z,, and y,,, respectively, denote the m-th sample (1 < m <
n) in the transmitted vector, x, and in the received vector, y, in a Binary
Phase-Shift Keying (BPSK) transmission over an Additive White Gaussian
Noise (AWGN) channel with zero mean and a single-sided noise power spectral
density of Ny. Let P,Sj} be the probability message from the VN v,, to the PN
¢; and Ql(;)m be the probability message from ¢; to v,, in the i-th iteration (see
Figures 2-2 (a) and (b)). Also, let N(m) be the set of PNs connected to
Vi and M (1) be the set of VNs connected to the ¢;. The SPA steps in the
probability domain can be described as follows (see [50,79] for details):
[ Set the iteration counter to zero (i = 0).
IT For all VNs, i.e., for 1 <m <mn, [ € N(m), initialize PTESI) to Pty the a

posteriori probability (channel probability), computed as:

exp (L)

PgLH = Pr(xm = 1|ym) == Wu
CH

(2.4)

where Ll is the log-likelihood ratio (LLR) of v, and it is computed as:

Pr(z,, = llym)> _ W (2.5)

L, =1
CH 8 (Pr(:pm = 0|ym) Ny

15
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Figure 2-2: Message-passing in the SPA.

IIT Update all the PNs; i.e., for 1 <1 <n —k, m € M(l) compute:
Qn=05-{05 J[ -2r0") ], (2.6)
m/eM(l)\m

where M (I)\m denotes the set of VNs connected to ¢; excluding vy,.

IV Update all the VNs, i.e., for 1 <m <mn, [ € N(m) compute:

PCH H Ql/

; VeN(m)\l
Pl — . (27)
Pl H 2 I i A U B
I'eN(m reN(m)\l
V For all VNs, i.e., 1 <m <n, [l € N(m), compute P, as:
Péi H Qi
P = penm . (28)
Pe I @i |+ {0 -Fa0 TT -
VEN(m) I'eN (m)

A

Make the hard-decision to obtain the estimated vector, & = (&1, ..., Z,),
where z,,, = 1 if P, > 0.5, and 2,,, = 0, otherwise.

VI Terminate decoding if #H' = 0 or if i has reached the maximum number

of iterations. Otherwise, set ¢ = ¢ + 1 and return to step III.
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Because of the high hardware-complexity of VNs’ and PNs’ operations
in the probability domain, the SPA is usually implemented in the log-domain
where channel probabilities are considered as LLRs. Using the log-domain
conversion, VNs calculate the summation of LLR messages and PNs employ
tanh(-) processing to compute their outgoing messages [79]. In the MSA, the
tanh(-) processing in PNs is approximated to reduce the complexity, usually at
the expense of some decoding performance loss, compared to the SPA [8,38].
To compensate for some of the loss, different improved methods are suggested
in the literature (e.g., see [17,18,38,42,44]).

2.2 Strategies and Challenges of Hardware Implementations of
LDPC Decoders

In general, fully parallel and partially parallel architectures are two main
strategies for the implementation of LDPC decoders. In the fully parallel strat-
egy, the entire factor graph is implemented in hardware and all VNs and PNs
in the graph are updated concurrently. Fully parallel decoders are usually
implemented to achieve high-throughput decoding of a certain LDPC code,
usually at the cost of high area consumption. This approach is particularly
considered for applications with high-speed requirements such as the IEEE
802.3an (10GBASE-T) standard [2]. The partially parallel approach instanti-
ates a portion of the factor graph. Partially parallel decoders employ memory
and hardware resource sharing to manage message-passing between different
portions of the factor graph. The main benefits of this approach are to mini-
mize the area and/or to offer the flexibility to support different code lengths
and code rates in applications such as IEEE 802.16e (WiMAX) [3] and IEEE
802.11n (WiFi) [4]. However, the partially parallel approach usually has a
lower throughput compared to the fully parallel approach. The partially par-
allel approach is also used for the implementation of LDPC decoders with

very long code lengths where the fully parallel approach is not feasible today,
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such as the LDPC code for the DVB-S2 standard with a code length of 64800
bits [90].

A major challenge in the implementation of LDPC decoders is the com-
plexity of the interconnections between VNs and PNs. The complexity of the
interleaver is due to the random-like locations of ones in the code’s parity-check
matrix. This problem is acute for practical fully parallel decoders (where the
code block length is usually long) and results in routing congestion and inter-
connection problems [13,24,25,28]. The routing congestion causes high area
consumption and low logic utilization in the decoder. For instance, with 4-
bit precision of probability messages, the 52.5 mm? die size of the (1024,512)
decoder in [13] has a logic utilization of 50% in its core; the rest of the core
area is occupied by wires. In addition to high area consumption, the presence
of long physical wires in the interleaver increases the power consumption and
limits the maximum achievable clock frequency and thus the throughput of a
fully parallel LDPC decoder (see [13,25,26,28]).

To alleviate these problems, different approaches are investigated in the
literature at both the code design and the hardware implementation levels.
One approach is to design “implementation-aware” codes. In this approach,
instead of randomly choosing the locations of ones in the parity-check matrix
(at the code design stage), the parity-check matrix of an LDPC code is designed
with constraints allowing for a suitable structure for a decoder implementation
and providing acceptable decoding performance [14,17,60,61,102,106].

Another approach used to alleviate the routing congestion problem is to
use bit-serial or digit-serial architectures to implement LDPC decoders. Ex-
amples of this approach are the FPGA implementation of a bit-serial (480,355)
LDPC decoder in [27] and the ASIC implementation of a (660,480) LDPC de-

coder in [28] based on the bit-serial approximate MSA, and also the MSA-based
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bit-serial (256,128) LDPC decoder in [15]. Additionally, a message broad-
casting technique was suggested in [25] to alleviate the routing congestion by
reducing node-to-node communication complexity in LDPC decoders.

Bit-flipping decoding [34] is another approach for low-complexity LDPC
decoding at the cost of some performance loss. Bit-flipping methods do not
exploit message-passing, they use the knowledge of unsatisfied parity-checks
to iteratively correct bit errors. Recently, there has been research interest in
various bit-flipping methods such as weighted bit-flipping methods (see [105]
and [48]) and a differential binary decoding method based on bit-flipping [63].
Among conventional bit-flipping methods, the weighted bit-flipping method
in [48] performs well on many LDPC codes and has a performance loss of
about 0.5 to 1 dB, compared to the SPA [48].

The split-row technique [65] is another approach to alleviate the routing
congestion problem in LDPC decoders. In the MSA-based split-row technique,
the global minimum operation in PNs is partitioned into localized minimum
operations. Therefore, the parity-check matrix of an LDPC code is partitioned
into multiple blocks which require local routing. However, in the split-row
technique, increasing the number of splits/partitions results in decoding per-
formance loss and, possibly, a higher error-floor [65-67]. This is because in this
technique, each PN is divided into lower degree PNs (assigned to each block).
These lower degree PNs calculate the minimum of only a portion of incoming
messages. Therefore, their outputs are not necessarily the global minimum of
all incoming messages received by the PN. As the number of splits increases,
the approximation made in lower degree PNs becomes less accurate. Recently,
MSA-based threshold decoding methods have been proposed for the split-row

technique to reduce this performance loss (e.g., see [67]).
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LDPC decoders can be implemented with a programmable architecture
or processor, which lend themselves to a software-defined radio. Software-
defined radio is a programmable hardware platform that consists of multiple
processing and memory units. It supports software implementations of wireless
communication protocols for physical layers. Software-defined radio offers the
flexibility to support codes with different block lengths and rates; however, the
throughput of LDPC decoders that are implemented using software-defined
radio is usually low (e.g., see [80]).

In addition to digital decoders, continuous-time analog implementations
have been considered for LDPC codes [41] and other error-control codes [11,
35,55,64,91,96]. Compared to their digital counterparts, analog decoders
offer improvements in speed and/or power. However, because of the complex
and technology-dependent design process, the analog approach has only been
considered for short error-correcting codes. The only reported analog LDPC
decoder decodes a (32,8) LDPC code [41].

2.3 Stochastic Computation

Stochastic computation was introduced in the 1960’s [32]. A significant
motivation for considering stochastic computation was the possibility to per-
form complex computations using only simple circuitry [16,32]. In stochastic
computation, probabilities are represented as streams of random bits using
Bernoulli sequences in which the information is contained in the statistics of
the bit stream. Using this representation, complex operations on probabilities
such as multiplication and division are converted to operations on bits which
can easily be manipulated using simple stochastic gates. This allows high
clock rates for the stochastic computational elements while requiring a low
computation hardware area. In addition, as a result of the bit-serial nature

of stochastic computation, communication between computational elements
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Figure 2-3: Some possible streams for a probability of 0.8125.

requires only one wire per signal. Also, stochastic computation can trade off
computation accuracy and time without any change in hardware [16]. Stochas-
tic computation has been considered for different applications such as a field
programmable computer in [7], the implementation of artificial neural networks
in [16], and a real-time motor controller in [29]. Error-control coding is also a
recent application for stochastic computation (see Section 2.4).

2.3.1 Stochastic Representation

In stochastic computation, probabilities are converted to streams of bits
called Bernoulli sequences [32]. In this transformation, each bit in a stochastic
stream is equal to 1 with the probability represented/convereted. Therefore,
the observation of 1’s in a stream of bits, {a(t)}, determines the probability,
i.e., Pr(a(t) = 1) = P. The transformation of a probability to a stochas-
tic stream is not unique; therefore, different stochastic streams are possible
for a given probability. This also implies that the order/sequence of 1’s in
a stochastic stream is not important. For example, Figure 2-3 shows some
possible streams for a probability of 0.8125. In each stream, 13 bits out of 16
bits are 1, which represents a probability of 13/16 = 0.8125.

The comparator shown in Figure 24 can be used to convert probabilities
to stochastic streams [29,32]. In this figure, P and R are W-bit wide inputs
in [0,1] range. P is fixed and R is a (pseudo) random number with uniform
distribution which varies in every clock cycle. In every clock cycle, the output

bit of the comparator is 1 if P > R, and it is 0, otherwise. Therefore, the
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Figure 2-4: Probability to stochastic stream conversion.

likelihood of observing 1 in the output stream is equal to P, representing a
probability of P.
2.3.2 Main Stochastic Operations

Using stochastic representation, operations such as multiplication and di-
vision on probabilities can be performed using simple hardware structures. It
should be noted that stochastic operations discussed in this section are held
under the assumption that input stochastic streams are Bernoulli sequences,
meaning that the probability of a given bit being equal to 1 is independent of
the values of any previous bits. Also, in the case of stochastic operations with
multiple input streams, it is assumed that the input streams are uncorrelated
with each other.

2.3.2.1 Inversion

Let P, = Pr(a(t) = 1) be the input stream of an inverter. The output bit
of the inverter, ¢(t), is 1 when a(t) = 0, and it is 0 when a(t) = 1. Therefore,
P.=Pr(c(t)=1)=1- P, [32].

2.3.2.2 Multiplication

Consider the AND gate shown in Figure 2-5 and its input stochastic
streams with P, = Pr(a(t) = 1) and P, = Pr(b(t) = 1) probabilities. The
output bit, ¢(t), is 1 when a(t) = 1 and b(t) = 1. Therefore, P. = Pr(c(t) =
1) = P, x B,. Similarly, other boolean operations (such as NAND, XOR, etc.)

can be used to implement different operations on probabilities.
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Figure 2-5: Stochastic multiplication [32].
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Figure 2-6: Stochastic division [32].

2.3.2.3 Division
Consider the JK flip-flop shown in Figure 2-6. This JK flip-flop can be
represented as a Markov chain with two states (0 state and 1 state). The

probability (transition) matrix of this chain is:

1-P, P,
T - ,
P, 1-P

where t;;, the entry at row ¢ and column j in T, is the probability of transition
from state i to j (i,7 € {0,1}). The probability of observing 1 in the steady
state of the Markov chain, i.e., P. = Pr(c(t) = 1), is obtained based on the
eigenvector of T' with respect to an eigenvalue of 1. This probability is equal

to
P
P. = S
P, + P,

(2.9)

The operation of (2.9) is an approximation to P,/F,, if P, << P,. Other
stochastic division methods exist with more precision [32]. However, as will

be discussed in Section 2.4, (2.9) matches the VN operation in the SPA.
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Figure 2-7: Approximate stochastic addition [32].

2.3.2.4 Addition

Consider the OR gate shown in Figure 2-7 and its input stochastic bit
streams with P, = Pr(a(t) = 1) and P, = Pr(b(t) = 1) probabilities. The
output bit stream of the OR gate represents P. = Pr(c(t) = 1) = P,+P,—P,P,.
This OR gate can be used as an approximate adder. The approximation made
in the OR gate becomes accurate when P, P, is small [32].

In general, stochastic addition and substraction are not as straightforward
as multiplication and division. This is because they are not closed operations
on the probability interval of [0,1]. Therefore, these operations should be
combined with a scaling operation to ensure the range of [0,1] for the out-
come [16]. Addition with scaling is performed as P. = Zjvzl S;P;, where
P; = Pr(aj(t) = 1) and S; is the probability of selecting the j-th input bit
stream, {a;(t)}, such that Z;VZI S; = 1. The outcome is the scaled sum of the
input probabilities. This operation can be implemented in hardware using a
multiplexer as shown in Figure 2-8, where RSS refers to the random selection
signal supplied by (pseudo) random number generators. Generating RSS is
straightforward when the N is a power of two. In a case where N is not a
power of two, it is possible to increase N by padding 0 signals to input at the
cost of sub-optimality of calculation [16].

2.4 Early Stochastic Decoding Methods

Error-control coding is a recent application of stochastic computation.

The idea to use stochastic computation in the SPA-based iterative decoding

is first proposed in [36,74]. In this decoding approach, probabilities received
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Figure 2-8: Scaled stochastic addition [16].

from the communication channel are converted to streams of stochastic bits.
In every stochastic decoding iteration, one bit of each stream is generated and
passed to the corresponding VN. Iterative stochastic decoding proceeds by
stochastic VNs and PNs exchanging bits until a maximum number of stochastic
iterations has been exhausted.

The stochastic representation of probabilities in the code factor graph re-
sults in low hardware-complexity bit-serial PNs and VNs. In addition, stochas-
tic computation reduces the routing congestion problem, because only one bit
(per direction) is required to represent an edge between a PN and a VN. This
implies that in a stochastic decoding iteration (which is usually equal to one
clock cycle), decoding proceeds by the VNs and PNs exchanging a bit (per
direction) along each edge in the factor graph. The term Decoding Cycle or
DC is used in the stochastic decoding literature to refer to a stochastic decod-
ing iteration (i.e., the exchange of one bit between stochastic VNs and PNs),
and to highlight that a stochastic decoding iteration (or decoding cycle) does
not directly correspond to one iteration in the SPA. We stress that in this
dissertation, it is assumed that each decoding cycle takes one clock cycle.

This section reviews stochastic decoding methods proposed prior to the
work presented in this dissertation (i.e., [36,37,74,95,97]). These early methods

were only successful for decoding either short/acyclic codes or some specific
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Figure 2-9: The structure of a basic stochastic variable node [36].

error-correcting codes on trellis graphs. They resulted in significant decod-
ing performance loss when used for the decoding of state-of-the-art capacity-
approaching LDPC codes on factor graphs.
2.4.1 Basic Stochastic Variable Node

The basic stochastic VN was first proposed in [36]. Let P, = Pr(a(t) = 1)
and P, = Pr(b(t) = 1) be the probabilities of two input bit streams, {a(t)} and
{b(t)}, in a stochastic VN. In the SPA, the outgoing probability is computed

as:
Pan
P.= )
PP+ (1—P,)(1—Fy)

(2.10)

Figure 2-9 shows the stochastic VN’s hardware structure proposed in [36] to
perform (2.10). It is important to note that in Figure 2-9, the JK flip-flop
forces the VN to be in the hold state (i.e., ¢(t) = ¢(t — 1)), when the two input
bits are not equal (a(t) # b(t)).
2.4.2 Stochastic Parity-Check Node

The stochastic PN was first proposed in [36]. Let P, = Pr(a(t) = 1)
and P, = Pr(b(t) = 1) be the probability of two input bit streams, {a(t)} and
{b(t)}, in a stochastic PN. In the SPA, the outgoing probability P, is computed

as:

P.=05—-05(1—2P,)(1—2P,) = P,(1 — P,) + Py(1 — P,). (2.11)
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Figure 2-10: The structure of a stochastic parity-check node [36].

Figure 2-10 shows the stochastic PN’s hardware structure proposed in [36] to
perform (2.11).

The VN and PN structures shown in Figures 2-9 and 2-10 are used in [74]
and [36] for decoding a (7,4) Hamming and a (16,8) LDPC code, respectively.
In [36], the decoder had about 0.15 dB decoding performance loss at a Bit Er-
ror Rate (BER) of 10™* with respect to the SPA decoding. However, because
of severe decoding performance loss, this method cannot be directly used to
decode long (practical) LDPC codes. Figures 2-11(a) and (b), respectively,
show the decoding performance of this method when applied to a (200,100)
regular LDPC code and a (1024,512) regular LDPC code in a BPSK trans-
mission over an AWGN channel. In these figures, Fj, is the energy per bit and
Ny is the single-sided noise power spectral density of the AWGN channel. As
shown, even by using several thousands of decoding cycles the performance
loss is severe compared to the SPA.

2.4.3 The Latching Problem

As mentioned before, stochastic operations rely on the assumption that
input bit streams are uncorrelated Bernoulli sequences. This assumption does
not hold in graphs with cycles. In addition, a major difficulty observed in
stochastic decoding is the sensitivity to the level of random switching activity
(bit transition) for a proper decoding operation [95]. The problem of latching is
described in [82,97] for stochastic decoding on graphs with cycles. The latching
problem refers to the case in which a cycle in the code graph causes a group of

nodes to lock into a fixed state which is solely maintained by the correlated bit
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Figure 2-11: Decoding performance of the early scholastic decoding method
for decoding (a) a (200,100) LDPC code and (b) a (1024,512) LDPC code.
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Figure 2-12: An example of latching within a length-4 cycle in a factor graph.

streams within the cycle [82,97]. A simple latching example is the all-zero state
in a factor graph. If all internal messages between VN and PN are zero, then
they will be held permanently at zero, regardless of any activity from the VNs.
This condition occurs because of the JK flip-flop memory used in a stochastic
VN (see Figure 2-9). Figure 2-12 shows another example of the latching
problem. It illustrates how the lack of switching activity within a length-4
cycle can cause VNs to lock into a fixed state (“hold” state in this example) for
several decoding cycles. The latching problem is particulary acute in LDPC
decoders, whose corresponding codes’ factor graphs have many cycles, and
causes severe decoding performance loss [82]. Note that latching can be worse
at high Signal-to-Noise-Ratios (SNRs) in which channel probabilities approach
zero (or one). In this case, bits in stochastic sequences are mostly 0 (or 1),

hence, random switching events become too rare for proper decoding [95].
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2.4.4 Supernodes

The idea of supernodes was proposed in [97]. Supernodes are special struc-
tures which reduce the latching problem by regenerating new messages based
on the probabilities of incoming stochastic messages. A supernode tabulates
incoming messages in histograms to estimate their probabilities and regener-
ates new stochastic messages. In [97], supernodes are used as a special VN
which can be placed in critical parts of the graph (e.g., where short cycles
exist). Figure 2-13(a) shows the structure of supernodes used in [97] for trel-
lis decoding of a (256,121) product Turbo code constructed based on acyclic
(16,11) Hamming component decoders. Supernodes in this trellis decoder [97]
are used instead of VNs shown in Figure 2-9. These supernodes were “pack-
etized” in a sense that they are using the conventional SPA calculation (i.e.,
(2.7)) after a time-step to calculate the probabilities of the new outgoing prob-
ability messages and regenerate new stochastic streams. Figure 2-13(b) shows
another structure of supernodes suggested in [97]. In this structure, the input
messages are fed directly to a counter to tally the number of ones for a given
number of samples. This count is then used to generate new probabilities.
This structure is used in [37] for hardware implementation of a decoder that
decodes a specially-constructed tail-biting (16,8) LDPC code with an acyclic
factor graph. Supernodes in this implementation were placed between VNs
and PNs of the decoder.
2.4.5 Scaling Channel Reliabilities

Scaling methods have been previously suggested in the literature for per-
formance improvement of the SPA (e.g., see [100] for details). As mentioned
before, the latching problem can be worse at high SNRs due to the lack of
switching activity. In stochastic decoding, scaling channel reliability is used

in order to increase the switching activity in the decoder. This idea is first
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Figure 2-13: Structure of supernodes used (a) in [97] and (b) in [37].

suggested in [95] and used in stochastic decoding of a (16,11)
In this method, every block of channel reliabilities received is

imum value to ensure the same level of switching activity for

The above-mentioned early stochastic methods were applied for decod-
ing some short Hamming and LDPC codes, a specially-constructed tail-biting
(16,8) LDPC code with an acyclic factor graph, and trellis decoding a (256,121)
product Turbo code constructed based on acyclic (16,11) Hamming component
decoders. As a result of their significant decoding performance loss and/or high

error-floors compared to conventional LDPC decoding algorithms, these meth-

ods were not practical solutions for decoding state-of-the-art

factor graphs. The next chapter proposes the first successful stochastic LDPC

decoding approach.
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CHAPTER 3

Edge-Based Rerandomization Using
Edge Memories

In this chapter, we propose the rerandomization of stochastic bit streams
using EMs and a new method for scaling channel reliabilities to address the
latching problem in stochastic LDPC decoders. We discuss the architecture of
high-degree stochastic VNs and propose Internal Memories (IMs) to improve
the decoding performance of stochastic LDPC decoders. We also discuss the
hardware architecture and implementations of EM-based stochastic LDPC de-
coders and provide comparison with practical LDPC decoding approaches.
3.1 Edge Memories and Regenerative Bits

EMs are memory-based rerandomization units that are assigned to edges
in the factor graph. They replace the JK flip-flop used in the basic stochas-
tic VN structure (shown in Figure 2-9). The principal function of EMs is to
disrupt correlations among the stochastic streams within cycles by rerandom-
ization. This is effectively accomplished by time-interleaving the output stream
of stochastic VNs. In this respect, stochastic bits generated by a VN are cate-
gorized into two groups: regenerative bits and conservative bits. Conservative
bits are output bits which are produced in the hold state and regenerative bits
are output bits which are produced in nonhold (regular) states. The essentials

of the operation of EMs are twofold:
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i EMs are only updated with the regenerative bits. Therefore, when a
VN is not in the hold state, the newly produced regenerative bit is used
as the outgoing bit of the edge and the EM is updated with this new
bit. When the VN is in the hold state for an edge,! a bit is randomly
chosen from the corresponding EM and is used as the outgoing bit. This
mechanism breaks the correlation of stochastic streams by rerandomizing
stochastic bits and also reducing the correlation caused by the hold state
in a stochastic stream. The reason is that every time the hold state
happens, a bit is randomly chosen from previous regenerative bits (which
are not generated in the hold state).

ii In order to facilitate the convergence of the decoder, EMs need to have a
time-decaying reliance (forgetting mechanism) on previous regenerative
bits and only rely on the most recent regenerative bits.

Figure 3—-1 shows the structure of an EM. An EM is implemented as an
M-bit shift register with a single selectable bit. In this implementation, the
shift register is updated only when U = 1, which indicates that the VN output
bit, (t), is regenerative. In the case that the VN is in the hold state (U = 0),
a bit is (pseudo) randomly chosen from the shift register using a (pseudo)
randomly generated address, R(t). Clearly, the length of the shift register, M,
guarantees the time-decaying reliance mechanism needed for an EM. As will

be shown in this chapter, the shift register-based architecture of EMs results

1 We recall that, in general, a stochastic VN is in the hold state for edge e,
when the input bits of the VN (excluding the input bit received from edge e)
are not equal. For a VN that is constructed based on lower degree subnodes
(discussed in Section 3.2), the VN is called in the hold state for edge e, when
the input bits of the final/exiting subnode for edge e are not equal.
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Figure 3-1: An EM is implemented as an M-bit shift register with a single
selectable bit.

in their resource-efficient FPGA implementation using shift register look-up
tables.
3.2 High-Degree Stochastic Nodes and Internal Memories

Regenerative bits are important for the proper operation of a stochastic
decoder. The lack of enough regenerative bits propagating in the decoder re-
sults in low switching activity and a high possibility of latching. A frequent
occurrence of the hold state and latching in VNs can severely affect the de-
coding performance. In this respect, the structure used for VNs is crucial for
the decoding performance of stochastic LDPC decoders.

In general, a high-degree node can be constructed based on subgraphs of
low-degree subnodes [36,50]. We show that for the case of stochastic decoding,
high-degree VNs should be constructed based on low-degree subnodes (usually,
d, < 4 subnodes can be used). To elaborate, consider the structure of the
stochastic VN in Figure 3-2(a) with an arbitrary d,. This stochastic structure
is not suitable for high-degree VNs because it is entirely in the hold state
when any two input bits are not equal; therefore, the chance of being in a
hold state increases as d,, increases. An increased chance of hold state for VNs
reduces the propagating of regenerative bits in the graph and results in less

switching activity within the graph, and thus degraded stochastic decoding
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performance. Note that this phenomenon can be very destructive when bits
in input stochastic streams of VNs are mostly 0 (or 1), for instance at high
SNRs where corresponding probability messages are either close to 0 (or 1),
or during the convergence to the right codeword where most PNs are satisfied
and only a few PNs remained unsatisfied. We propose that these problems
can be significantly alleviated by using the VN structure shown in Figure 3-
2(b) (only one output and corresponding inputs are shown). In this figure,
a high-degree stochastic VN is constructed based on subgraphs of low-degree
subnodes with memory. In this structure, by having stochastic input bits which
are either mostly 0 (or 1), the chance of a hold state for the (highlighted) exit
subnode is much lower. Therefore, the entire node is less likely to be in the
hold state. Note that in Figure 3-2(b), an EM is used only for the exit output
edge. To show the difference between the two structures of Figures 3-2(a) and
(b), Figure 3-3 compares the averaged percentage of hold state occurrence
for d, = 9 with P, varying and P, = P3 = ... = Py = 0.9. As shown, the
percentage of the hold state decreases significantly when the VN is constructed
based on subgraphs of low-degree subnodes.

We also propose the use of IMs for each subnode in high-degree VNs
to further decrease the chance of being in the hold state in a high-degree
VN. This structure is shown in Figure 3—4, where each IM is assigned to one
subnode. The operation of IMs is similar to EMs, but the IM length, L, is much
shorter than the EM length, M (it is only a few bits). An IM is updated with
regenerative bits produced by the subnode and in the case of the hold state
for a sub-node a bit is randomly chosen as the outgoing bit of the subnode.

A straightforward way to implement all the outputs of a VN, is to have
d, instances of the structure shown in Fig 3-2(b). Using this method the

entire VN requires d,(d, — 1) subnodes. We propose that the complexity of a
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Figure 3-2: (a) A structure which is not suitable for high-degree VNs. (b) An
example of constructing a high-degree VN based on low-degree subnodes.
high-degree stochastic VN can be significantly reduced by efficient sharing of
subnodes. Figure 3-5 shows the efficient implementation for a degree-16 VN
(d, = 16). VNs with arbitrary degrees can be similarly implemented. Based
on properties of binary trees, it can be shown that using this structure a degree
d, > 2 VN can be efficiently implemented by 3d, — 6 subnodes.

The construction of high-degree stochastic PNs is based on XORing input
bits. It can be shown than a degree d. PN requires 2d. — 1 two-input binary
XORs to compute all the outputs. Figure 3—6 shows the structure of a degree-
16 stochastic PN (d. = 16).

3.3 Scaling Channel Reliabilities

Scaling methods have been previously suggested in the literature for per-
formance improvement of iterative decoders (e.g., see [31,100,101] for details).
For stochastic decoders, we use a new scaling method. This method is em-
ployed to provide a similar level of switching activity over different ranges of

SNRs, which results in improved BER decoding performance for stochastic
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Figure 3-4: The construction of a VN based on IMs for low-degree sub-VNs.
An EM is only used for the exit edge.
decoders. In this scaling method, received channel reliabilities are scaled by a
factor that is proportional to the noise level in the channel. The scaled relia-
bilities are, however, independent of channel noise and thus the decoder does
not need to estimate the noise in the AWGN channel.

Assume that Ly = %—: is the channel LLR for y,,, the m-th symbol in

the received vector, in a BPSK transmission over an AWGN channel as defined

in (2.5). The scaled LLR, L, is computed as:

L&y = (vNo) Ly = 49Ym, (3.1)
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Figure 3-5: The proposed low complexity structure for the implementation of
a degree-16 stochastic VN.

where v is a fixed empirical factor whose value is chosen based on the best
BER performance of the stochastic decoder. The input channel probabilities
in stochastic decoding is computed based on the scaled LLRs as:

exp(Ldly)

po, = —Plcn)
CH exp(Ldy) +1

(3.2)
3.4 Effects on the Decoding Performance

Figures 3-7 (a) and (b) show the BER performance of the EM stochastic
decoding approach for a (200,100) and a (1024,512) regular LDPC code with
degree-3 VNs and degree-6 PNs. Note that in these figures, the maximum
number of decoding cycles used for stochastic decoding is set to a high number
to show that the significant performance loss (for the case in which EMs and
scaling are not used) is not improved by increasing the decoding latency. As
will be shown in the rest of this dissertation, the maximum number of decoding
cycles used by stochastic decoding (to provide a competitive performance with
state-of-the-art LDPC decoders) is less than the values used in these figures

by about two orders of magnitudes. We used M = 25 and maximum 10K
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Figure 3-6: The structure of a degree-16 stochastic PN based on 2-input binary
XORs.

decoding cycles for decoding the (200,100) LDPC code and, M = 50 and
maximum 60K decoding cycles for the (1024,512) code. A v = 0.5 is used
for both codes. As shown, with respect to the floating-point SPA with 64
iterations,? the proposed method provides comparable BER performance for
the (200,100) code and near-optimal performance for the (1024,512) code. An
SNR loss of less than 0.1 dB is observed for the latter code at the BER of
1075, To show the performance contribution of scaling and EMs, results for (i)
decoding without scaling and EMs and, (ii) decoding with EMs but without
scaling are also depicted in Figures 3-7 (a) and (b). The contribution of
EMs can be observed by comparing results for case (i) and (ii). Also, the
contribution of scaling at higher SNRs can be easily seen by comparing the

results of case (ii) and stochastic decoding with EMs and scaling.

2 No major BER improvement is observed after the 64th iteration.
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Figure 3-7: Performance of the EM-based approach for decoding (a) a
(200,100) code and (b) a (1024,512) code. A high maximum number of de-
coding cycles is used to show that the significant performance loss (for the
case in which EMs and scaling are not used) is not improved by increasing the
decoding latency.
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3.5 A (1056,528) Fully Parallel EM-based LDPC Decoder

This section presents the hardware architecture of fully parallel EM-based
stochastic LDPC decoders in detail. Although the focus of this section is on
EMs and FPGA implementation, the proposed architecture and its features
form the basis of the structure of ASIC stochastic decoders that are explained
in the following chapters.

The stochastic decoding operation can be summarized as follows. Upon
receiving a vector from the AWGN channel, channel reliabilities are scaled
and then transformed into stochastic streams. Each VN receives one bit per
decoding cycle and propagates its outgoing 1-bit messages to the connected
PNs. PNs check the parities and send their 1-bit messages to VNs. The output
of each VN at the end of a decoding cycle is passed to an up/down counter in
which its sign-bit determines the hard-decision. This exchange of bits between
VNs and PNs will be stopped as soon as all the parity-checks are satisfied or
a maximum number of decoding cycles is exceeded.

Table 3-1 summarizes the characteristics of two LDPC codes considered
in this section. Both codes are irregular and belong to the IEEE 802.16e
(WiMAX) standard [3]. The code used for implementation is the (1056,528)
code. The (1056,704) code is only used to study performance behavior. The
reader should note that the main reason to choose these codes was to show
the applicability of the stochastic approach to decode state-of-the-art irregular
LDPC codes with high-degree nodes designed for recent applications (using the
fully parallel design approach). In Section A.1 of Appendix A, we provide the
performance results of the EM approach for decoding various LDPC codes.
3.5.1 Decoder Specifications and Architecture

This section discusses specifications and the hardware architecture of the

implemented (1056,528) EM-based stochastic LDPC decoder.
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Table 3-1: Irregular LDPC codes chosen from the IEEE 802.16e standard.

(nk) | d, distribution | d. distribution
(1056,528) || (2,3,6)=111/24,1/3,5/24} | (6,7)={2/3,1/3}
(1056,704) || (2,3,4)={7/24,1/24,2/3} | (10,11)={7/8, 1/8}

3.5.1.1 Scaling

We used look-up-tables to apply scaling to the symbols received from the
AWGN channel. The input of each look-up-table is a 6-bit received symbol and
the output is the corresponding probability, represented in 7 bits. Probabilities
in each look-up-table are calculated according to (3.2). Note that because of
the symmetry in (3.2), a look-up-table can store only half of the probabilities.
For example, it is possible to only store probabilities for positive y,,’s (i.e.
probabilities > 0.5). When a y,, is negative, an additional NOT operation can
be performed on the stochastic stream (during probability to stochastic stream
conversion). Using this scheme, the size of each look-up-table is 2671 x 7 bits
or 28 bytes. The implemented stochastic decoder employs 44 look-up-tables
to apply scaling, and each look-up-table serially generates probabilities for
1056/44 = 24 VNs. This uses Tio = 24 decoding cycles,> where Tjo is the
number of decoding cycles the decoder spends to input channel reliabilities, to
apply scaling, and to output the decoded bits.

3.5.1.2 Probability to Stochastic Stream Conversion

The conversion of each Pl to the corresponding stochastic stream is done
by employing a 7-bit comparator as shown in Figure 3-8. In this structure, Pfy
is fixed during the decoding operation and is compared to a (pseudo) random
number, R, which changes at every decoding cycle. The output bit of the

comparator is 1 when P7; > R, and it is 0, otherwise. The random number in

3 We recall and highlight that each decoding cycle takes one clock cycle.
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Figure 3-8: Conversion of channel probabilities to stochastic streams.

the figure is generated by a Distributed Randomization Engine (DRE) which
is described in Section 3.5.1.7. The output of each comparator is fed to one
VN in each decoding cycle. The decoder, hence, needs one comparator per
VN.

An attractive advantage of using look-up-tables to apply scaling in stochas-
tic decoders is that the precision of the look-up-tables’ output probabilities can
be increased without a significant change in the decoder complexity. This is
because the precision of probabilities does not affect the interleaver, VNs or
PNs. It only affects the size of look-up-tables used for scaling, the compara-
tors and the DRE. This, however, is not the case for SPA-based or MSA-based
decoders in which changing the precision means significantly increasing the
number of wires in the interleaver. For the case of bit-serial SPA-based or
MSA-based decoders, increasing the precision increases the latency of each
iteration and hence reduces the throughput, because more clock cycles are
needed to bit-serially send messages between nodes.

3.5.1.3 Architecture of Variable Nodes

Figure 3-9 depicts the architecture of VNs in the (1056,528) stochastic
decoder (only one output and its corresponding inputs are shown). EM lengths
of M =32, M =48, and M = 64 bits are used for d, =2, d, =3, and d, =6
VNs, respectively. The architecture of d, = 3 VNs is based on two d, = 2

subnodes. The architecture of d, = 6 VNs is based on two d, = 3 and one
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d, = 2 subnodes. IM lengths of L = 1 and L = 2 bits are used for d, = 3
and d, = 6 VNs, respectively. For FPGA implementations of EMs we used
shift register look-up-tables. Many FPGA architectures allow to utilize small
look-up tables as shift register look-up tables and to access a single bit in the
register (e.g., [98,99]). It is also possible to cascade any number of shift register
look-up tables to form a shift register of arbitrary size. These features exactly
match the operation of EMs.
The proposed EM-based VN structure has two modes of operation:

e Partial Initialization Mode: Prior to the decoding operation and when
the channel probabilities are all loaded into the decoder, VNs start to
initialize their EMs according to the received probability. It is possible
for EMs to start from zero state, however, the initialization of EMs
improves the convergence of the stochastic decoder. In the implemented
decoder, we consider partially initializing the EMs to 16 bits. During
the partial initialization, the EMs of each VN are bit-serially updated
with the output of the channel comparator for Ty,oapy,, = 16 decoding
cycles.

e Decoding Mode: After the partial initialization phase, the decoding op-
eration starts. Each VN in the Figure 3-9, uses a signal U to determine if
the VN is in the hold state (U = 0) or not (U = 1). When the VN is not
in the hold state, the new regenerative bit is used as the output bit and
also to update the EM. In the case of the hold state, a bit is randomly
chosen from the EM. This scheme is also employed in each subnode to
update the IMs. The random selection of bits in EMs and IMs are done
by (pseudo) random addresses which vary in each decoding cycle. These

addresses are also provided by the DRE in Section 3.5.1.7.

44



CHAPTER 3. Edge-Based Rerandomization Using EMs

Because of the partial initialization scheme used at the beginning of the decoder
operation, the range of (pseudo) random addresses is limited to 4 bits (i.e., 0
to 15) for 40 decoding cycles. This ensures that during the hold state, a valid
bit is picked from EMs. When decoding proceeds for 40 decoding cycles and
EMs are updated, the DRE produces full range addresses for EMs.

3.5.1.4 Hard-Decision using Saturating Up/Down Counters

The output bit of each VN at the end of every decoding cycle is passed
to an up/down counter. Each counter is incremented when receiving 1 and
decremented when receiving a 0 bit. The counters are implemented as satu-
rating counters which stop incrementing/decrementing when they reach their
maximum/minimum limits. For this implementation, we used 4-bit saturating
counters that count from -7 to 7. The sign-bit of each counter determines
the hard-decision, i.e., in a BPSK transmission a 0 sign-bit of the counters
determines a “+1” decoded bit and a 1 sign-bit determines a “-1” decoded bit.

Based on our observation, we discovered that for the case of stochastic
LDPC decoders, up/down counters are mostly effective at low SNRs (high
BERs). At high SNRs, up/down counters can be neglected and replaced with
1-bit flip-flops. In this case, the last output bit of each VN directly determines
the hard-decision. The reason is that at high SNRs where convergence of
stochastic decoders is fast, the counters easily become saturated (i.e., high
reliability) which implies that they mostly receive constant output bits from
VNs. The output bits of VNs at low SNRs are, however, less reliable and are
more varying.

3.5.1.5 Architecture of Parity-Check Nodes

The construction of a PN is based on XORing the input bits received from
VNs. Figure 3—10 shows the structure of a d. = 7 PN used in the implemented

stochastic decoder. The construction of d. = 6 PNs in the decoder is similar.
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Figure 3-9: Architectures of (a) a degree-2 VN, (b) a degree-3 VN, and (c) a
degree-6 VN based on IMs and an EM (in each figure, only one output and its
corresponding inputs are shown).

PNs send their output bits to VNs. In addition, each PN produces a “parity-
check satisfied” output signal which determines if the corresponding parity-
check is satisfied. This signal is used to terminate the decoding process, as

will be discussed in Section 3.5.1.8.
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3.5.1.6 Asynchronous Pipelining and Interleaver Design

As mentioned earlier, the structure of interleavers in LDPC decoders re-
sults in (long) wires and forces a bottleneck on the speed and throughput of
decoders. For this reason, fully parallel architectures can use pipelining to
break the wires and increase the speed/throughput. However, pipelining the
interleaver in conventional SPA-based or MSA-based decoders has a draw-
back: it increases the number of clock cycles required per iteration by a factor
of S, the number of pipeline stages. The reason is that in the SPA and the
MSA, there is a data dependency between iterations and the output of nodes
at each iteration depends on their outputs at the previous iteration. For in-
stance, assume that the non-pipelined decoder runs for [ iterations and uses 1
clock cycle per iteration. In the decoder with a pipelined interleaver, S clocks
are needed to pass messages generated in the previous iteration. Therefore,
although the pipelined decoder is faster than the non-pipelined decoder, it
needs S x I clock cycles to provide the same BER decoding performance. To
reduce this inefficiency and to increase the utilization of decoder, the pipelined
LDPC decoders need to decode more than one codeword in the pipelined in-

terleaver at the expense of more hardware-complexity [15]. Another suggested
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technique in the literature is block interlacing [25]. This technique is used to
increase the throughput of the decoder by processing two consecutive blocks
simultaneously. In [25], the block interlacing technique together with a mes-
sage broadcasting technique provided high throughput for ASIC LDPC de-
coders using 16 iterations of the MSA and 32 iterations of the hard-decision
message-passing decoding algorithm [76]. In addition to these methods, the
flooding-type update-schedule algorithm is suggested in [70]. This algorithm
allows limited partitioning of some of the long wires in the decoder using flip-
flops [70] without affecting the required clock cycles per iteration. This relies
on the similarity of time-consecutive messages which limitedly let nodes tol-
erate operating with messages produced in recent iterations. However, in this
algorithm the degree of freedom for partitioning wires is limited. In [70], only
messages from two consecutive iterations are used at VNs.

We claim that the above-mentioned drawbacks and limitations do not ap-
ply to stochastic decoders. The operation of stochastic nodes does not depend
on the output bits produced in the previous decoding cycle. In fact, the order
of bits in stochastic streams is not important for the nodes. That is why EMs
with random bit selection and different lengths can be used at VNs. There-
fore, if a stochastic decoder needs to operate for D decoding cycles to decode
a codeword, the S-stage pipelined stochastic decoder needs D + S decoding
cycles to decode the codeword. This interesting characteristic introduces a
high degree of freedom for partitioning wires in stochastic decoders, which is
especially advantageous for ASIC implementations:

i In principle, an arbitrary number of pipeline stages can be used in the

interleaver to break the wires and increase the clock rate to a “desired”

speed.
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ii Pipelining in a stochastic decoder does not need to be uniform in the
entire factor graph. Different stages of pipelining can be used for different
edges. It is also possible to only pipeline some (critical) wires in the
interleaver with an arbitrary number of pipeline stages.

It should be noted that because stochastic decoders (and other bit-serial ap-

proaches) require fewer wires to represent the factor graph, pipelining the

interleaver in stochastic decoders requires fewer hardware resources (registers)

compared to the conventional SPA-based or MSA-based decoders. For the

implemented stochastic decoder we used a 4-stage pipeline interleaver.
3.5.1.7 Distributed Randomization Engine

The randomization engine is responsible for providing random numbers
in the decoder. In the proposed architecture, (pseudo) random numbers are
used in comparators and also as the addresses of EMs and IMs. Although this
amount of random numbers for the entire decoder might seem high, (pseudo)
random numbers can be significantly shared at two levels without having a
considerable impact on the decoding performance of the decoder: (i) different
EMs can share the same random address and, (ii) random numbers used in
comparators and random numbers used as the addresses of EMs and IMs can
share bits. Sharing random numbers significantly reduces the complexity of
the randomization engine.

We propose a distributed architecture to generate random numbers. The
DRE consists of 48 independent randomization engines. Each randomization
engine generates the required random numbers for a portion of the factor graph
and consists of only two 10-bit Linear Feedback Shift Registers (LFSRs) asso-
ciated with prime polynomials. Random bits in each randomization engine are
generated by XORing different bits of the two LESRs. The main reason to use

a distributed structure is to reduce the routing required by DRE. Note that
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by using the asynchronous pipelining technique, the interleaver is no longer a
bottleneck for the speed of a stochastic decoder. This is because non-uniform
levels of registers can be used to break long wires in a pipelined stochastic in-
terleaver. In this case, the routing required by randomization engines becomes
a limiting factor for the speed and hence using a distributed architecture for
generating random numbers becomes essential. It should be noted that the
asynchronous pipelining technique is also applicable for DRE because the se-
quence/order of random numbers is not important for comparators, EMs and
IMs.

3.5.1.8 Termination Criteria

The stochastic decoder checks two criteria in each decoding cycle to ter-
minate the decoding operation: (i) it checks if all the PNs are satisfied or (ii)
if a maximum number of decoding cycles has been exceeded. As soon as one
of the criteria is satisfied, the decoder outputs the sign-bit of each saturating
up/down counters as the decoded codeword and starts loading the probabili-
ties for the next received block. Checking the first criterion is done by NORing
“parity-satisfied” signals from all PNs (i.e., decoding is terminated if all the
528 parity-checks are satisfied). This is implemented as a 3-stage pipelined
NOR tree. The latter criterion is checked using a counter.

3.5.1.9 Input/Output Unit

As mentioned previously, the decoder uses Ti1o = 24 decoding cycles to
load 1056 received symbols (each with 6-bit precision) into the decoder and
apply scaling. To do so, the decoder employs 264 input pins. While loading the
probabilities, the decoder also outputs the previous 1056 bit decoded codeword
using 44 pins (in 1056/44 = 24 decoding cycles). Therefore, the total 10

overhead is Tip = 24 decoding cycles.
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Table 3-2: Decoding parameters used.

Code || EM length (M) | IM length (L) | v | Max. DCs

(1056,528) || {32,48,64} for | {1,2}for | 0.5 700
d, = (2,3,6) | d,=(3,6)
(1056,704) || {32,48,48} for | {1,1}for | 0.75 700
d, = (2,3,4) dy, = (3,4)

3.5.2 Performance and Tradeoffs

Table 3-2 lists the parameters used for each code. To obtain the charac-
teristics of the proposed architecture, the (1056,528) irregular LDPC decoder
is implemented on a Xilinx Virtex-4 XC4VLX200-11FF1513 device 98] using
Xilinx ISE 9.2 tool. The following sections discuss the performance of the
decoder.

3.5.2.1 Decoding Performance

Figures 3-11 and 3-12 show the decoding performance. These figures
also depict the performance of the floating-point SPA. Also depicted in Figure
3-11 is the performance of the decoder in [104] and a (1024,512) EM-based
stochastic decoder whose implementation values will be discussed in Section
3.7. Compared to the floating-point SPA with 32 and 16 iterations, the ir-
regular stochastic decoders only have a loss of about 0.5 dB and 0.25 dB,
respectively, at low BERs. It should be highlighted that, in the BER region
shown, a similar error-floor behavior to that of the floating-point SPA is ob-
served. Note that the floating-point implementation usually outperforms the
fixed-point implementation which is considered in hardware implementations.
In fact, because of complexity/area concerns, in most fully parallel decoders,
fixed-point implementation with limited precision (usually < 4 bits) is consid-

ered, which may cause additional decoding loss and/or higher error-floors.
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Figure 3-11: Decoding performance of the implemented (1056,528) irregular
stochastic decoder.

Table 3-3: Xilinx Virtex-4 XC4VLX200-11FF1513 device utilization (LUT:
4-input look-up-table, FF: flip-flop).

Resources H Occupied ‘ Available ‘ Utilization

Slice LUTs || 68163 | 178176 38%
Slice FFs || 44502 | 178176 24%
I0Bs 308 960 32%
Slices || 46097 | 89088 | 51%

3.5.2.2 Area and Clock Frequency

Table 3-3 summarizes the area consumption of the (1056,528) decoder
on the FPGA device. The decoder occupies about 38% of the 4-input look-
up-tables and 24% of the flip-flops available on the device. These occupied
resources are distributed in 51% of the device slices. The decoder uses one
clock cycle per decoding cycle and achieves a clock rate of 222 MHz after

place-and-route.
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Figure 3-12: Decoding performance of the (1056,704) irregular stochastic de-
coder.

3.5.2.3 Throughput

As mentioned in Section 3.5.1.8, the decoder terminates the decoding and
starts loading the next codeword when all the parity check signals are satisfied
or when a maximum number of decoding cycles has been exceeded. Because
of these termination criteria, Thyq, the average number of decoding cycles
used to load, decode and output codewords determines the throughput of the
decoder. For the sake of brevity, we refer to Thyg as the average number of

decoding cycles. Tayg is equal to

Tave = Tavceors + 110 + TLOAD gy s (3.3)

where Tavaoong 15 the average number of decoding cycles used by the core de-
coder to decode codewords and, as mentioned before, T1o = 24 and T1,0Appy, =
16. It should be noted that at high SNRs (low BERs), Tayg is much less than

the maximum number of decoding cycles used by the core decoder (Tviaxcops =
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Figure 3-13: Histograms of Tayq at different SNRs (based on 1 million blocks).
Each decoding cycle takes one clock cycle.

700 decoding cycles). In fact at low BERs, only a few codewords require a high
number of decoding cycles to decode. This is shown in Figure 3-13 in which
the histograms of Tayg over different SNRs are depicted. These histograms
are based on observation of 1 million blocks.

Figure 3-14 shows the observed Tayg over different SNRs. It also shows
the throughput of the decoder based on Ty at different SNRs for the achieved
clock rate of 222 MHz. Thyg and the throughput of the decoder vary at differ-
ent BERs. As Figure 3-14 shows, at high SNRs (low BERs) the throughput
of the decoder is higher than the requirements of many applications. The de-
coder provides a throughput of more than 1 Gb/s for E,/Ny > 3.5 dB. The
throughput of the decoder at Ej,/Ny = 4.25 is about 1.66 Gb/s.
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Figure 3-14: Tayg and throughput of the decoder at different SNRs (based on
1 million blocks). Each decoding cycle takes one clock cycle.

3.5.2.4 Latency

Figure 3-15 shows the BER performance of the stochastic decoder versus
decoding cycle. The maximum number of decoding cycles used for decoding
the (1056,528) code was Thvaxoons = 700 decoding cycles. Because of the
termination criteria of the decoder, Thaxops Only influences the latency of
the decoder. The maximum latency of the decoder is determined by Tyax

which is calculated as

Thvax = Tvaxcors T 110 + TL0AD gy - (3.4)

For the (1056,528) decoder, Tyiax is 740 decoding cycles. With the achieved
clock rate of 222 MHz, this results in a maximum latency of 3.3 pus which is in
an acceptable range for most applications such as the IEEE 802.16e (WiMAX)

standard. In addition, as Figure 3-15 suggests, for applications which have
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Figure 3-15: Decoding performance of the (1056,528) stochastic decoder over
decoding cycles. Each decoding cycle takes one clock cycle.
a strict latency requirement, it is possible to trade the latency with decoding
performance.
3.6 A (1024,512) Fully Parallel EM-based LDPC Decoder
In this section, we report an FPGA EM-based stochastic decoder that
decodes a (1024,512) regular LDPC code with d, = 3 and d. = 6. The
implementation values obtained for this decoder enable us to better compare
the EM-based stochastic decoders with state-of-the-art FPGA LDPC decoders
in Section 3.7. Because all the building blocks of this EM-based decoder are
similar to those in the (1056,528) decoder discussed in the previous section, we
briefly mention the implementation characteristics and values of this decoder.
The (1024,512) decoder uses 8-bit input channel probabilities and a v =
0.5 for scaling. All VNs have 64-bit EMs, 1-bit IMs, and 6-bit saturating

up/down counters to make the hard-decision. The decoder uses a 2-stage
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Figure 3-16: Decoding performance of the (1024,512) stochastic decoder.

pipeline interleaver and its DRE generates 32 8-bit (pseudo) random num-
bers every decoding cycle. Each (pseudo) random number is shared between
1024/32 = 32 VNs. The (1024,512) decoder employs the termination criteria
described in the previous section. The decoder is implemented on a Xilinx
Virtex-4 XC4VLX200-11FF1513 FPGA device. It occupies 32875 slices of the
device (i.e., 36% of the total available slices). It achieves a maximum clock fre-
quency of 212 MHz and a throughput of 706 Mb/s at a BER of 107%. The BER
performance of the decoder is shown in Figure 3-16 for 6K and 1K maximum
decoding cycles. Each decoding cycle takes one clock cycle.
3.7 Comparison

This section compares the characteristics of the implemented EM-based
stochastic LDPC decoders with some recent high throughput FPGA-based

LDPC decoders.
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3.7.1 Comparison with FPGA Fully Parallel Decoders

Table 3-4 compares different aspects of the most recent FPGA-based fully
parallel LDPC decoders. To our knowledge, the decoders in [104] and [27] are
among the fastest (non-stochastic) FPGA-based fully parallel LDPC decoders.
The decoder in [104] decodes a (1200,600) regular code which is constructed
based on the progressive-edge-growth method [43]. The throughput of the
decoder is 12 Gb/s. This throughput was achieved by employing 3-bit fixed-
point MSA with 10 iterations. The decoder in [27] decodes a (480,355) regular
code with a throughput of 650 Mb/s using the bit-serial approximate MSA
with 15 iterations. The table also shows the implementation characteristics
of the (1056,528) and (1024,512) EM-based stochastic LDPC decoders. Note
that compared to the (1024,512) decoder, the (1056,528) decoder has a much
more complex structure because of its irregularity and high-degree nodes.

Table 3-4 gives the throughput efficiency per information bit for each
decoder. As discussed in Section 3.5.2.3, the throughput of the (1056,528) de-
coder varies at different SNRs. For example, the decoder provides a throughput
of 694 Mb/s at a E,/Ny = 2.5 dB (BER =~ 107*) and at E,/N, = 4.25 dB
(BER =~ 1078) the throughput is about 1.66 Gb/s. Compared to [104] and [27],
the stochastic decoder has a higher latency. This latency is however within an
acceptable range for many applications. Usually, a latency limit of about 6 us
is assumed for channel decoders in applications such as WiMAX. In addition,
as mentioned before, for applications with stricter latency requirements, it is
possible to trade the decoding performance with the latency (see Figure 3-15).

Table 3-4 also gives the absolute area as well as area efficiency based on
the number of 4-input look-up-tables and flip-flops per coded bit, and slices
per coded bit. Note that a Logic Element in the Altera Stratix architecture has

one 4-input look-up-table and one flip-flop [6] which is half of the resources of a
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slice in a Xilinx Virtex-4 architecture [98]. Since the number of look-up-tables
and flip-flops were not reported in [27], the comparison with this decoder is
based on the approximate slice per coded bit efficiency. The area efficiency of
the stochastic decoder is better than the bit-serial decoder in [27]. Compared
to [104], the stochastic decoder needs more look-up-tables and flip-flops per
coded bit (but offers about 1.3 dB decoding gain as shown in Figure 3-11).
The majority of this difference is because of the higher degree of VNs. As
shown, the (1024,512) EM-based stochastic decoder, with the same rate and
node degrees as in [104], needs much fewer resources and offers a better slice
per coded bit efficiency compared to [104].

Compared to other fully parallel approaches, an important advantage of
the stochastic approach is its good decoding performance and error-floor be-
havior. Figure 3-11 compares the performance of the (1024,512) stochastic
decoder with the decoder in [104]. Both codes are regular and have the same
rate and node degree. As shown, even though the (1200,600) LDPC code
in [104] is longer, stochastic decoders outperform this decoder by more than 1
dB. It should be noted that the reported area efficiency for stochastic decoders
is for providing a performance close to the floating-point SPA. The stochas-
tic decoding approach is able to easily trade the hardware-complexity with
decoding performance. For example, if performance close to the fixed-point
MSA with limited precision is required, it is possible to significantly increase
the area efficiency and/or reduce the latency of the stochastic decoder by us-
ing much shorter EMs/IMs, simpler DRE, and by reducing the precision of
comparators/counters.

3.7.2 Comparison with FPGA Partially Parallel Decoders
As mentioned before, partially parallel decoders use memory and share

hardware to trade area/flexibility with throughput. Fully parallel decoders,
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however, occupy a much larger area but provide much higher throughput.
In this respect, partially parallel and fully parallel decoders occupy a different
place on the trade-off curve. This is also the case for the proposed fully parallel
architecture. Compared to the recent FPGA partially parallel decoders, the
(1056,528) stochastic decoder occupies much more (absolute) area but corrects
more errors at a much higher speed. For example, the multi-rate partially
parallel decoder in [40] occupies 1640 to 6568 slices and uses more than 60K
bits of RAM, and provides a throughput of 41 to 278 Mb/s on a Xilinx Virtex-
IT 2V8000 device. Also, the partially parallel (8176,7154) decoder in [92] uses
about 23K to 27K slices and 128 block RAMs of a Xilinx VirtexII-6000 FPGA
device and, provides a throughput of 172 Mb/s with 15 decoding iterations.
3.8 Conclusion

This chapter proposed EMs for stochastic decoding of state-of-the-art
LDPC codes on factor graphs. It presented a novel decoder architecture for
fully parallel EM-based stochastic LDPC decoders. The proposed decoder ar-
chitecture was used for the FPGA implementation of a fully parallel stochastic
LDPC decoders that decodes a state-of-the-art irregular (1056,528) code. It
was also applied for the FPGA implementation of an EM-based stochastic
decoder that decodes a (1024,512) regular LDPC code. Both decoders were
implemented on Xilinx Virtex-4 LX200 FPGA devices. The (1056,528) de-
coder exploits several novel architectural techniques, provides a throughput of
1.66 Gb/s at E,/Ny = 4.25 dB (BER of 107®), and achieves decoding perfor-
mance within 0.5 dB and 0.25 dB loss of the floating-point SPA with 32 and
16 iterations, respectively. It was shown that this decoder provides similar
error-floor behavior as the floating-point SPA with 32 iterations. The LDPC

decoders proposed in this chapter are the first stochastic decoders that decode
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state-of-the-art LDPC codes, and they are among the fastest and the most
area-efficient fully parallel LDPC decoders implemented on FPGAs.

In the next chapter, we focus on the ASIC implementation of stochastic
LDPC decoders. We propose a new approach for decorrelating and rerandom-
izing stochastic streams. This approach significantly increases the silicon area
efficiency of stochastic decoders and thus facilitates their ASIC implementa-

tions.
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Table 3-4: Comparison of FPGA-based fully parallel LDPC decoders (LUT: 4-input look-up-table, FF: flip-flop, LE: Logic

Element).

Fast non-stochastic FPGA-based decoders Stochastic decoders
[27] | [104] |
Code (480,355) (1200,600) (1024,512) (1056,528)
Code structure Regular, RS-based Regular, PEG-based Regular Irregular, WiMAX code
Max. (d,,d.) (4,15) (3,6) (3,6) (6,7)
Decoding Bit-serial approx. MSA | 3-bit fixed-point MSA Stochastic Stochastic
Iterations or DCs 15 iters. 10 iters. 6K and 1K (max DCs) 700 (max DCs)
Input quantization 3 bits 3 bits 8 bits 6 bits
FPGA device Stratix EP1S80 Virtex-4 XC4VLX200 Virtex-4 XC4VLX200 Virtex-4 XC4VLX200
Max. clock 61 MHz 100 MHz 212 MHz 222 MHz
Clocks per iter. or DC 3 1 1 1
Max. latency (us) 0.73 0.1 28.30 (for 6K max. DCs) 3.3
4.71 (for 1K max. DCs)

Throughput 650 Mb/s 12 Gb/s 706 Mb/s 1.66 Gb/s
Throughput per 1.83 Mb/s 10 Mb/s 1.38 Mb/s 3.14 Mb/s
information bit (at E,/Noy=3 dB) (at E,/No=4.25 dB)

Absolute area 66588 LEs 40613 slices 32875 slices 46097 slices

(in slices/LEs )

(233294 slices)

4-input LUTs and

not reported

57.5 LUTs and

46.0 LUTs and

64.5 LUTs and

FFs per coded bit 15.7 FFs 20.1 FFs 42.1 FFs
Slices/LEs per coded bit || 138.7 LEs (~69.3 slices) 33.8 slices 32.1 slices 43.6 slices
Relative decoding gain not comparable - ~ 1.1 dB gain, ~ 1.3 dB gain,
(at BER=10"%) compared to [104] compared to [104]
Hardware decoding not reported ~ 0.25 dB loss ~ 0.2 dB loss ~ 0.4 dB loss

loss (at BER=10"*)

from floating-point

MSA (10 iters.)

from floating-point

SPA (32 iters.)

from floating-point

SPA (32 iters.)

SN 8uis() uorjeziwopuelrdy posedq-o8py ¢ YA LIVHD



CHAPTER 4

Edge-Based Rerandomization Using
Tracking Forecast Memories

As discussed in the previous chapter, EMs can be efficiently implemented
using shift register look-up-tables available in FPGAs. This implementation
makes EM-based stochastic LDPC decoders resource-efficient in FPGAs. How-
ever, EMs consume considerable silicon area in ASIC. For example, a 64-bit
EM has about 821 two-input NAND gate-count complexity and occupies about
4506 pum? silicon area in CMOS 90nm technology (when synthesized for max-
imum possible speed). Because EMs are assigned to each outgoing edge of
VNs in a factor graph (see Figure 4-1), a practical ASIC stochastic LDPC de-
coder requires thousands of EMs whose silicon area consumption becomes the
bottleneck of the overall hardware-complexity of the decoder. In this respect,
less-complex solutions that can provide similar or better decoding performance
are important.

In this chapter, we propose TFMs to replace EMs in ASIC stochastic
decoders. We discuss various hardware architectures for ASIC implementation
of TFMs and their effects on the complexity of stochastic VNs. We also provide
examples of ASIC stochastic decoders that decode a (1056,528) LDPC code
chosen from the IEEE 802.16 (WiMAX) standard. We show that TFMs can

provide similar or better decoding performance compared to EMs, while having
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Figure 4-1: EMs or TFMs are used for rerandomization/decorrelation of
stochastic streams and are assigned to each outgoing edge of stochastic VNs.
much lower hardware-complexity. We also investigate the impact of TFMs on
the overall area of ASIC stochastic decoders.
4.1 Tracking Forecast Memories

TFMs replace EMs in stochastic VNs. Similar to EMs, TFMs are used to
alleviate the latching problem and increase the switching activity by rerandom-
izing /decorelating stochastic streams. In this respect, EMs and TFMs can be
considered as rerandomization units in stochastic decoders as shown in Figures
4-1 and 4-2. A TFM efficiently extracts the moving average probability of a
stochastic stream based on the method of successive relaxation [49,71,103].
Let r(t) € {0,1} be the input bit of a TFM in a stochastic VN and P(t) be the
probability extracted by the TFM at time ¢ for the corresponding stochastic
stream (0 < P(t) < 1). The TFM updates P(t) in nonhold (regular) states as
follows:

P(t+1)=P(t)+ p(t) (r(t) — P(t)), (4.1)

where ((t) is the relaxation coefficient and usually 0 < §(t) < 1. In stochastic

decoding, [ is considered as an empirical factor whose value (for decoding a
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Figure 4-2: Structure of a degree-2 stochastic VN (only one output and its
corresponding inputs are shown). An EM or a TFM can be used as a reran-
domization unit.

specific code) can be chosen by simulation (i.e., based on the best decoding per-
formance obtained for different (). This memory-based mechanism is named
TFM since it is based on tracking the past observations while emphasizing
recent outcomes (see [59]).

As shown in Figure 4-2, the operation of a TFM-based VN is similar to
an EM-based VN (discussed in Section 3.5). In regular states, the TFM is
updated as in (4.1) and ¢(¢) = r(¢). When the VN is in the hold state, the
TFM is not updated and ¢(t) = 7/(¢t). To generate 7/(t), P(t) is compared

against a (pseudo) random number, R(t), as follows:

(t) = 1 P(t) > R(t), (42)
0 otherwise.
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The TFM update criterion provides an exponential time-decaying depen-

dence on input bits. By unrolling (4.1) we have:

P(0) <H (1- ﬁ(j))) (4.3)
SO0+ Y (( 1] o- 6(U))> 6(9’)7“(]’)) .

u=j+1

Also, when f(t) is a constant value equal to 3, we have:
t
P(t+1) = P0) (1= 8)" + 8> (1 8)"7r(j). (4.4)
=0

Figure 4-3 (a) and (b), respectively, depict the dependence of P(t + 1) on
previous input bits in a TFM with 8(t) = 27° and in an EM with a length of
M = 32 bits. As shown, the dependence in the TFM exponentially decreases
over time as (3, (1 — 3)8, (1 — 3)?4, ..., but the dependence in the EM is equal
to 1/M for the last M input bits and is zero for the prior input bits. Figure
4-3 (c) shows the dependence in a bit-serial TFM which is presented in Section
4.2.3.

The strong dependence on recent input regenerative bits and gradual for-
getting of older input bits enable TFMs to track changes in P,(t) = Pr(r(t) =
1). The value of (t) determines the speed and the accuracy of the conver-
gence/response of TFMs. Figure 4-4(a) shows the convergence of a TFM for
different values of 3(t). The input stream of the TFM is generated based on
input stream probability of P,(¢) = 0.8 and the TFM is initialized to P(0) = 0
for each case. As shown, as the value of 3(t) decreases, TFM converges more
conservatively toward P.(t), but after convergence, P(t) approximates P, (t)
more accurately and with less fluctuations. This can be also seen in Figure 4-

4(b), in which the estimation error of TFMs, E(t) = |P(t) — P.(t)|, is depicted.
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Figure 4-3: The dependence of output probability on previous input bits in
(a) TFM with 3 =27° (b) EM with M = 32 bit length and, (¢) approximate
bit-serial TFM with M = 32 bit length and 3 = 275,
4.2 Hardware Realization of TFMs

This section discusses different variants of TFMs and their hardware re-
alizations.
4.2.1 General Architecture

Figure 4-5 shows the general architecture of a TFM. In this architecture,
it is assumed that 3(t) can vary over time. We recall that the signal U in the
figure determines if the VN is in hold state (U= 0) or if it is in a nonhold state
(U = 1) and hence r(t) is regenerative. When U = 1, P(t) is updated and VN
directly uses r(t) as the output bit. When U= 0, P(¢) does not change and
the VN uses /() as the output bit. This architecture requires the use of one

multiplier, two adders, one comparator and one register.
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Figure 4-4: (a) The convergence speed and (b) the corresponding estimation
error of a TFM for different values of 3(t).
4.2.2 Reduced-Complexity Architecture

The complexity of a TFM is significantly reduced when 3 is chosen as
a negative power of 2. In this case, the multiplication involved in the TFM
operation can be replaced by shifting bit wires of P(t). We also propose that
when P(t) is represented as an unsigned integer, 1 — P(t) is equal to P(t), the
complement of P(t); therefore, the two adders in Figure 4-5 can be replaced

by one adder/subtractor unit because

P4 1) = Pt) —pt)Pt)  r(t) =0, (45)
P(t) + B(t)P(t) r(t) = 1.

Figure 4-6 shows the proposed reduced-complexity architecture for a
TEM. Compared to the general architecture, this architecture does not use

any multiplier and uses one fewer adder. In our simulations we observed that
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Figure 4-5: General architecture of a TFM. ((t) can change and take any
value in the [0,1] interval.

by using the reduced-complexity architecture the decoder is able to provide
similar decoding performance as the general architecture.
4.2.3 Approximate Bit-Serial Architecture

As shown in Figure 4-3, a TFM provides an exponential time-decaying de-
pendence on the past input regenerative bits. In approximate bit-serial TFMs,
the TFM operation is approximated by using only the last M regenerative in-

put bits as:

t

Pit+1)=PO)(1—-p)""+5 > (1-p)"r(i-1). (4.6)

j=t—M+1
Figure 4-3(c) depicts the dependence on previous input bits in an approximate
bit-serial TFM with 3(¢) = 27° and M = 32. It can be seen that for the last
M bits, the dependence is the same as a TFM, while for the prior input bits
the dependence is zero.

Figure 4-7 depicts the proposed architecture for bit-serial approximate
TFM. In this architecture, the last M regenerative bits are stored in an M-bit
shift register and upon receiving a new regenerative bit a single shift operation

is performed. The TFM operation is performed by a series of concatenated
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Figure 4-6: Architecture of a reduced-complexity TFM. ((t) is a negative
power of 2.

multiplexers. The selection line of each multiplexer is an independent stochas-
tic stream with a probability of P; = 3 where 0 < 3 < 1. This means that
at each multiplexer stage, the bit in the shift register is (directly) selected
with a probability of P, and the bit from the previous stage is passed through
with a probability of 1 — P,. To provide an (initial) estimation for (residual)
regenerative input bits that has been neglected (i.e., r(j) with j < ¢t — M),
the generated stochastic stream, {incy }, from the received channel probability,
Pcy = Pr(ingg = 1), can be connected as the input bit to the last multiplexer.

In this case, the probability of 7/(¢) being equal to 1 is:
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Figure 4-7: Architecture of an approximate bit-serial TFM. incy is the input
stochastic bit from the channel and P, = (8

BPr(ro=1)4+ (1 = B)Pr(ry=1) + - --

+ 01— )" Pr(ryy = 1) (4.7)
+ (1= B)MPeu
=0 (Z_(l — B)Pr(r; = 1)) + (1= )M Pey.

It should be noted that compared to the shift register used in an EM
(shown in Figure 3-1), the shift register in the bit-serial TFM is less complex,
because it does not provide a single selectable output bit and hence, does not
require the use of an address decoder. However, compared to EMs and non-
bit-serial architectures for TFMs, the random number generation for bit-serial
TFMs is more complex and, depending on the length of the shift registers
used, can require more physical wires.

4.2.4 Approximate Counter-Based Architecture
Another method for approximating the TFM operation, for the sake

of lower hardware-complexity, is to approximate the addition/subtraction in
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Figure 4-8: Architecture of an approximate counter-based TFM.

r(t) —»

up/down

(4.1). Since the probability stored in a TFM memory is in [0, 1] interval, the
TFM update rule in (4.1) implies that the maximum absolute change in the
value of P(t) is 5(t) in other words, |P(t + 1) — P(t)| < 5(t). Therefore, for
the sake of lower hardware-complexity, it is possible to approximate P(t + 1)
by an up/down counter (see Figure 4-8) with a step-size equal to §(t) which

operates as follows:

Py = OO =0 (4.8)

P(t) + 5(t) r(t) = 1.

4.3 Comparison of TFM-based and EM-based Variable Nodes

Figure 4-9 compares the performance of EM and TFM approaches for
decoding a (2048,1723) LDPC code with degree-6 VNs and degree-32 PNs
chosen from the 10 Gb/s Ethernet (10GBASE-T) standard [2]. The figure
shows the decoding performance of 32-bit EMs, 64-bit EMs, 12-bit reduced-
complexity TFMs, 12-bit approximate bit-serial TFMs, and 12-bit counter-
based TFM approaches. For all of these approaches, symbols received from
the channel are quantized to 6 bits and a scaling factor of v = 1.33 is used.

Also, an early decoding termination (based on syndrome checking) until a
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(2048,1723) RS-based LDPC code
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Figure 4-9: Comparison of decoding performance of EMs and TFMs.

maximum number of 400 decoding cycles is used. As shown, the reduced-
complexity 12-bit TFM approach outperforms 64 bits and 32 bits EMs for
decoding the (2048,1723) LDPC code.

Table 4-1 shows the silicon area consumption, 2-input NAND gate count,
and the maximum achievable clock period for degree-6 stochastic VNs in
CMOS 90nm technology. The table is divided into two sections. Results
shown in the first (left) section are obtained for synthesizing for the maximum
possible speed. Therefore, as shown in the second (right) section of the table,
by synthesizing the modules for a lower target clock frequency, lower silicon
area consumption can be obtained. The first section of the table confirms that

stochastic VNs are able to operate very fast, with clock frequencies beyond 2.5
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Table 4-1: Hardware-complexity of TFM-based and EM-based degree-6 VNs
in CMOS 90nm technology.

Area in ym? | Clock || Area in pm?
Module and Architecture & Gate count | period || & Gate count
in ps at 500 MHz

EM-based VN (32 bits) (13860, 2525) | 283 || (7133, 1299)
EM-based VN (64 bits) (22575, 4112) | 287 || (12255, 2232)

TFM-based VN (0223, 1670) | 263 | (4352, 793)
(12 bits bit-serial)
TFM-based VN (9111, 1660) | 312 | (5318, 969)
(12 bits counter-based)
TFM-based VN (14989, 2730) | 354 | (5924, 1079)

(12 bits reduced-complexity)

GHz. With respect to the area consumption, as the second section of the table
shows, a reduced-complexity TFM-based VN consumes about 48% of the sili-
con area of a 64-bit EM-based VN and about 83% of the silicon area of a 32-bit
EM-based VN. Also, it is possible to further reduce the area consumption of a
TFM-based VN by about 10% to 26% by using the approximate counter-based
and the approximate bit-serial TFM architectures.
4.4 Decoding Performance and Hardware-Complexity

This section investigates the effects of the TFM approach on the overall
hardware-complexity and decoding performance of ASIC stochastic decoders.
We compare the decoding performance and ASIC implementations of a TFM-
based decoder and two EM-based decoders. All decoders decode a (1056,528)
irregular LDPC code that is chosen from the IEEE 802.11n (WiMAX) standard
[3]. In Section A.2 of Appendix A, we provide the performance results of the
TEFM approach for decoding various LDPC codes.
4.4.1 Decoding Performance

Figure 4-10 shows the BER decoding performance of the proposed TFM
method for decoding a (1056,528) LDPC code. To show the effects of prob-

ability quantization in the TFM architecture on decoding performance, the
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figure shows the performance of floating-point TFM implementation as well as
9-bit, 8-bit, and 7-bit fixed-point TFM implementations. Also, for the sake of
comparison, the figure shows the decoding performance of the floating-point
SPA, the floating-point MSA, and the floating-point offset MSA. In addition,
the figure shows the performance of two EM-based stochastic decoders that
decode the same (1056,528) LDPC code: (a) the EM-based decoder discussed
in Section 3.5 which uses 64-bit, 48-bit, and 32-bit EMs for degree-6, degree-
3 and degree-2 VNs, respectively, and (b) an EM-based stochastic decoder
which uses 32-bit EMs for every VNs. All stochastic decoders in the figure use
early termination, a maximum of 700 decoding cycles, and a scaling factor of
~v = 0.5. Note that for the case of “ideal” stochastic decoding, floating-point
implementation is used and random numbers in the stochastic decoder are
not shared. For true-bit stochastic simulations, fixed-point implementation of
TFMs is considered and symbols received from the channel are quantized to six
bits as in Section 3.5. Also, random numbers are generated by a DRE identical
to the one used in the (1056,528) EM-based stochastic decoder in Section 3.5.
This DRE consists of 48 independent random number generators (randomiza-
tion engines). Each random number generator consists of two 10-bit LFSRs
and produces a (pseudo) random number which is shared between 22 VNs
(by XORing different bits of the LFSRs). Therefore, in total, 1056/22 = 48
random numbers are procured for the entire decoder in every decoding cycle.

As shown in Figure 4-10, the floating-point TFM outperforms the EM-
based decoder at low SNRs. The decoding performance of stochastic decoders
with 9-bit fixed-point TFMs and 8-bit fixed-point TFMs (with shared random
numbers) are similar to the performance of the floating-point TFMs at low
BERs (high SNRs). The decoder with 9-bit fixed-point TFMs exhibits a per-

formance similar to the performance of the EM-based decoder in Section 3.5
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(1056,528) LDPC code with degree {2,3,6} VNs and degree {6,7} PNs
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Figure 4-10: Decoding performance results for a (1056,528) LDPC code
(FP:floating-point, FX:fixed-point).

and outperforms the 32-bit EM-based stochastic decoder. It also outperforms
the floating-point MSA with 16 iterations and, at low SNRs, it has a perfor-
mance comparable to the performance of the floating-point offset MSA with
16 iterations. The performance loss of the decoder with 9-bit TFMs is about
0.5 dB and 0.25 dB, when compared to the floating-point SPA with 32 and
16 iterations, respectively. In summary, it can be concluded that 8 or 9-bit
fixed-point TFMs are sufficient to provide similar decoding performance as
the EMs used in Section 3.5 for stochastic decoding of the (1056,528) irregu-
lar LDPC code. However, since the decoding performance of 8-bit and 9-bit
TFMs are similar in low BER (high SNR) regimes, where practical LDPC

decoders are expected to be used, we consider 8-bit fixed-point TFMs for the
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implementation of the (1056,528) stochastic LDPC decoder in the following
section.
4.4.2 Hardware-Complexity Comparison

To study the effects of TFMs on the overall area of stochastic decoders,
we implemented two EM-based and one TFM-based fully parallel stochastic
LDPC decoders which decode the (1056,528) irregular LDPC code. The TFM-
based decoder uses 8-bit TFMs and the EM-based decoders use 64-bit EMs
and 32-bits EMs. All decoders are synthesized in the ST Microelectronics 90
nm 1V CMOS technology and are clocked at 500 MHz. Note that, as shown in
Chapter 3, with this clock frequency a fully parallel stochastic LDPC decoder
is able to provide multi Gb/s throughput at low BERs (high SNRs). Table
4-2 summarizes the synthesis results for area and 2-input NAND gate count of
these decoders. As shown, TFMs significantly reduce the hardware-complexity
of the stochastic decoder. The area and the gate count of the TFM-based
decoder is about 60% of the area and the gate count of the 32-bit EM based
decoder and it is about 35% of the area and the gate count of the 64-bit
EM based decoder. It is also possible to approximately compare the area
efficiency of the (1056,528) TFM-based decoder with other decoders in the
literature. For example, the 8-bit TFM-based decoder has 517K /1056 ~ 489
gate-count-per-coded-bit complexity (after synthesis) which is much less than
the 2230K /2048 ~ 1088 gate-count-per-coded-bit complexity (after synthesis)
reported for the bit-serial MSA-based (2048,1723) LDPC decoder in [28].
4.5 Conclusion

This chapter proposed TFMs for efficient rerandomization and decorrela-
tion of stochastic bit streams in stochastic channel decoders. Various hardware
architectures for ASIC implementation of TFMs were discussed. It was shown

that TFMs are able to provide similar or better BER decoding performance as
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Table 4-2: Synthesis results for EM-based and TFM-based (1056,528) stochas-
tic LDPC decoders in CMOS 90nm technology. All decoders are synthesized
for 500 MHz clock frequency.

Decoder | Area (mm?) | Gate count
EM-based decoder 7.890 1437 K
(64-bit EMs)
EM-based decoder 4.604 838 K
(32-bit EMs)
TFM-based decoder 2.841 517 K
(8-bit TFMs)

EMs for decoding state-of-the-art LDPC codes while having much lower silicon
area consumption. This chapter also showed that TFMs significantly reduce
the overall area of ASIC implementations of stochastic LDPC decoders. The
silicon area consumption of the proposed ASIC TFM-based (1056,528) LDPC
decoder is 40% and 65% less than the area consumption of ASIC EM-based
LDPC decoders with 32-bit EMs and 64-bit EMs, respectively.
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Node-Based Rerandomization Using
Majority-Based Tracking Forecast Memories

The TFM approach is much more area-efficient compared to the EM ap-
proach. However, both EM and TFM approaches rely on the edge-based reran-
domization where a rerandomization unit is assigned to each outgoing edge of
a stochastic VN (see Figure 4-1). Therefore, the total number of TFMs in a
stochastic LDPC decoder is equal to the number of edges in the correspond-
ing LDPC code’s factor graph, and even though the hardware-complexity of
a TFM is much less than an EM in ASIC, the total number of TFMs is still
the bottleneck of the overall hardware-complexity of ASIC TFM-based de-
coders. In this chapter, we propose node-based rerandomization using the
MTFM stochastic decoding approach. In this approach, instead of assigning
one TFM per outgoing edge, each VN uses only one MTFM as its rerandom-
ization unit (see Figure 5-1). This significantly reduces the total number of
rerandomization units used in a stochastic LDPC decoder. For example, the
number of rerandomization units in a decoder that decodes a regular (n, k)
LDPC code with degree-d, VNs, reduces from n x d, to n. For the case of
the (2048,1723) LDPC code from the 10 Gb/s Ethernet (10GBASE-T) stan-
dard [2], the number of rerandomization units reduces from 2048 x 6 = 12288

to 2048.
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Figure 5-1: An MTFM-based stochastic decoder uses one MTFM per VN.

We refer to this approach as the MTFM approach, since it relies on the
TFEM approach, but it has a different update rule based on the majority of out-
going regenerative bits in a stochastic VN. As will be shown in this chapter,
the MTFM approach significantly reduces the hardware-complexity of stochas-
tic LDPC decoders. We apply this approach to implement an ASIC MTFM-
based stochastic decoder that decodes the (2048,1723) LDPC code from the 10
Gb/s Ethernet standard [2]. To the best of our knowledge, this MTFM-based
stochastic decoder is the most silicon area-efficient fully parallel soft-decision
LDPC decoder reported in the literature.

5.1 Majority-Based Tracking Forecast Memories

To explain the concept of node-based rerandomization, Figure 5-2 de-
picts the block diagram of a degree-6 MTFM-based stochastic VN. This VN
receives the incy bit (from a comparator that converts the corresponding chan-
nel probability to a stochastic stream) and 6 input bits, ing to ins, from the
six connected PNs. The corresponding output bits are outcy and outy to
outs. The final output of the VN, outcy, is determined by the majority of

bits received from connected PNs. The structure of the VN is based on the
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cascaded subgraphs of degree-3 and degree-2 subnodes in which each degree-3
subnodes uses 2-bit IMs. The VN uses one MTEFM. The (final) input stream
of the MTFM is the majority of the VN’s outgoing regenerative bits for all
edges. It is important to note that at a given time the VN might be in a
nonhold state for some of its edges and be in the hold state for the rest of the
edges.! Therefore, some of the input bits of the MTFM might be regenerative
and the rest are conservative bits. For this reason, each degree-2 subnode sends
two bits, 7;(t) and s;(t), to the MTFM, where 0 <14 < d, — 1. s;(t) determines
if the VN is in the hold state or nonhold (regular) state for edge i. Also, r;(t)
is the output bit of the subnode which can be regenerative or conservative.
The MTFM of the degree-6 VN computes the majority of ro(t) to r5(t)
bits if they are regenerative. The MTFM-based VN operates as follows:
e When the VN is in a nonhold (regular) state for edge i, it directly uses
the corresponding regenerative bit as the outgoing bit of the edge.
e In case that the VN is in the hold state for the edge 7, it refers to the
MTFM and uses its output bit as the outgoing bit.
Different thresholds might be exploited for (i) updating an MTFM and (ii)
for calculating the majority of regenerative bits in a MTFM. For example, the
MTFM might be updated only when at least a certain percentage of its input
bits are regenerative, and the majority criteria might be set to “> 50%” or

“> T5%" etc.

! Note that a VN is in the hold state for an edge, when the input bits of the
final /exiting subnode for that edge are not equal. Therefore, the VN in Figure
5-2 is in the hold state for edge ¢ when the two input bits of the degree-2
subnode i are not equal.
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Figure 5-2: The structure of a degree-6 MTFM-based stochastic VN. Pgy is
the channel probability, R(t) and RA are (pseudo) uniform random numbers,
ra; is a random bit, and IM refers to internal memory.
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5.2 Hardware Realization of MTFMs

This section discusses the hardware realization of MTFMs and how the
choice of majority and update thresholds can affect the hardware-complexity
of MTFMs.

5.2.1 General Architecture

Figure 5-3 shows the general architecture of MTFM for a degree-d, VN.
Note that the TFM block in the figure can use any TFM architecture discussed
in Section 4.2. We recall that r;(¢) is the output bit of the VN for the i-th
edge. Also, s;(t) determines the state of the VN for the i-th edge: s;(t) = 0
means that the VN is in the hold state, and s;(¢) = 1 means that the VN is in
a nonhold state for the i-th edge and r;(¢) is regenerative.

The MTFM architecture shown in the figure uses 7T;,, as a majority thresh-
old and it uses T, as a (fixed) threshold for updating the TFM. The MTFM
calculates S(t) = Zfil s;(t) which determines the number of input bits that
are regenerative. It also computes X (t) = S°% s;(t)r;(t) which determines
how many of these regenerative bits are equal to 1 (note that when s;(¢) = 0,
r;i(t) is not regenerative and it is forced to be 0 by using an AND gate at
the input). The comparator in this architecture applies the majority criterion
according to the majority threshold, 7},. In this respect, T,, is usually set to
S(t)/2 which implies that the output bit of the comparator, r(t), is equal to
1 when more than half of the regenerative bits at time ¢ are 1, and it is equal
to 0, otherwise.

The TFM is only updated when U = 1 which indicates that S(t) > T,
i.e., the number of input regenerative bits is greater than 7T,. In general, T,
is a fixed integer (0 < T, < d,) whose value can be chosen based on the
decoding performance of the decoder for different 7). As shown in Figure 5-2,

the MTFM-based VN uses the output bit of the MTFM, 7/(¢), as the outgoing
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Figure 5-3: General architecture of an MTFM. T, is a fixed threshold for
updating the TFM and T, is the majority threshold.
bit for any edge that is in the hold state; however, if edge i is in a nonhold
state it directly uses r;(t) as the outgoing bit for that edge.
5.2.2 Reduced-Complexity Architecture

The hardware-complexity of an MTFM can be significantly reduced by
properly adjusting 7;, and T,,. Figure 54 shows the reduced-complexity im-
plementation of architecture of an MTFM. In this structure, the TFM is only
updated when all the input bits are regenerative (i.e., T,, = d,); therefore, the
update signal for the TFM, signal U, can be determined by a d,-input AND
gate (instead of a comparator as in Figure 5-3). Also, T,, is set to d, /2, hence,
the most significant bit of X (¢) directly determines the majority and if the in-
put bit of the TEM, r(¢), is 0 or 1. Compared to the general architecture of
MTFMs in Figure 5-3, the reduced-complexity MTFM uses one fewer adder
and two fewer comparators. The reduced-complexity MTFM architecture is
used for ASIC implementation of the (2048,1723) LDPC stochastic decoder,

which is discussed in Section 5.4.
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Figure 5-4: Architecture of a reduced-complexity MTFM. r(t) is the most
significant bit (MSB) of X (¢).

5.3 Comparison of the Hardware-Complexity and Decoding Per-
formance of MTFMs with EMs and TFMs

In an MTFM-based stochastic VN, the output bit for an edge is deter-
mined by the MTFM only when the edge is in the hold state. In nonhold
(regular) states, the output bit for an edge is directly determined by the newly
regenerative bit in both TFM and MTFM approaches. In this regard, the
majority approximation made in the MTFM approach is only effective when
an edge is the hold state, and no approximation is made in nonhold (regular)
states. The majority approximation used in MTFM approach is precise when
the degree of the VN is high (usually, a degree of 4 or more). For instance,
Figure 5-5 shows the output probability of an edge in degree-6 TFM-based and
MTFM-based VNs and compares them with the ideal target output probability
(computed according to the floating-point SPA). Both VNs receive the same
input stream. As shown, the extracted output probabilities in both approaches
closely follow the SPA’s output probability.

Figure 5-6 compares the performance of the MTFMs with EMs and TFMs
for decoding the (2048,1723) LDPC code with degree-6 VNs and degree-32
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Figure 5-5: Extracted output probability of an edge in degree-6 TFM-based
and MTFM-based VNs. Both VNs receive the same input stream.
PNs. Note that results reported for the MTFM approach in this section are
based on the reduced-complexity MTFM architecture that uses a reduced-
complexity TFM (see Figure 5-4). For all of these approaches, symbols re-
ceived from the channel are quantized to 6 bits and an early decoding termi-
nation (based on syndrome checking) until a maximum number of 400 decoding
cycles is used. As shown, the reduced-complexity MTFM approach provides
similar decoding performance compared to the TFM approach which outper-
forms 64-bit and 32-bit EMs for decoding the (2048,1723) LDPC code. The
performance loss of the MTFM approach compared to the SPA with floating-
point implementation and 32 iterations is about a 0.2 dB loss.

Table 5-1 shows the silicon area consumption, 2-input NAND gate count,
and the maximum achievable clock period for degree-6 stochastic VNs and a
degree-32 stochastic PN in CMOS 90nm technology. Results shown in the first

section of the table are obtained for synthesizing for the maximum possible
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Figure 5-6: Comparison of decoding performance of EM-based, TFM-based,
and MTFM-based stochastic decoding approaches.
speed. These results confirm that stochastic nodes are able to operate very
fast, with clock frequencies beyond 2.5 GHz. As shown in the second section
of the table, by synthesizing the modules for a lower target clock frequency,
lower silicon area consumption can be obtained. With respect to the area con-
sumption, the second section of the table shows that the reduced-complexity
MTFM approach results in significant area reduction when compared to the
TFM and EM approaches. The area of a degree-6 MTFM-based VN is about
32% of the area of a reduced-complexity TFM-based VN, 15% of the area of
a 64-bit EM-based VN, and 27% of the area of a 32-bit EM-based VN. The
hardware-complexity of an MTFM-based VN and a stochastic PN operating
at 500 MHz (2 ns clock period) is equivalent to the complexity of 351 and 79
two-input NAND gates, respectively.

Since the main difference between stochastic approaches is in the VN

architecture, it is possible to approximately compare the area efficiency of
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Table 5-1: Hardware-complexity of degree-6 VNs and degree-32 PN in CMOS
90nm technology.

Area in pm? | Clock || Area in pm?
Module and Architecture || & Gate count | period || & Gate count
in ps at 500 MHz
EM-based VN (32 bits) || (13360, 2525) | 283 | (7133, 1299)
EM-based VN (64 bits) || (22575, 4112) | 287 || (12255, 2232)
TFM-based VN (9223, 1670) 263 (4352, 793)
(16 bits bit-serial)
TFM-based VN (9111, 1660) 312 (5318, 969)
(12 bits counter-based)
TFM-based VN (14989, 2730) | 354 (5924, 1079)
(12 bits reduced complex.)
MTFM-based VN (4329, 789) 350 (1927, 351)
(12 bits reduced complex.)
Stochastic PN | (1415,258) | 283 [ (431, 79)

LDPC decoders implemented using these approaches from Table 5-1. For
example, we can estimate that the implementation of a (2048,1723) LDPC
decoder using the 12-bit MTFM approach in CMOS 90 nm technology and
with maximum 500 MHz clock frequency results in saving of about 2048 x
(5294 — 1927) = 6.89 mm? silicon area compared to 12-bit reduced-complexity
TFM approach, and about 2048 x (12255 — 1927) = 21.15 mm? silicon area
compared to the 64-bit EM approach.

5.4 A (2048,1723) Fully Parallel MTFM-based Stochastic LDPC
Decoder

This section discusses the ASIC implementation of a fully parallel MTFM-
based stochastic decoder that decodes the (2048,1723) LDPC code from the
IEEE 802.3an standard. This LDPC code is a regular RS-based code [30] with
degree-6 VNs and degree-32 PNs. It is adopted for the standard to provide
enough coding gain to allow for a BER level of 107!2 or less. To demonstrate

the applicability of the MTFM approach to decode other LDPC codes, we also
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provide the performance of the MTFM approach for decoding a (1057,813)
LDPC code at low BERs in Section A.3 of Appendix A.
5.4.1 Decoder Architecture and Specifications

The implemented fully parallel stochastic decoder instantiates 2048 MTFM-
based degree-6 VNs and 384 degree-32 PNs based on the partitioned design
shown in Figure 5-7. The decoder uses a flooding-schedule for updating VNs
and PNs. The binary parity-check matrix of the (2048,1723) LDPC code is
based on the permutation of 64 x 64 sub-matrices. This parity-check matrix is
not full-rank and has 384 degree-32 PN. Each PN has exactly one connection
to a VN in every 64 columns. Therefore, it is possible to partition the whole
parity-check matrix into 32 VN blocks in which each block has 64 degree-6
VNs (see Figure 5-7). In this configuration, each block receives 64 x 6 = 384
input bits from each one of its neighbor blocks and outputs 384 bits to each
of them. To form the parity-check equation, each VN inside a block XORs its
output bit with the input received from the neighboring block and passes it to
the next neighboring block. The VN also XORs the input bits received from
the neighbor blocks to from its input bit. This method of partitioning relies
on the split-row technique for MSA-based decoders first introduced in [65].
However, we note that compared to the split-row technique for the MSA it has
the following major benefits:

e In the split-row technique, increasing the number of splits/partitions
results in decoding performance loss and, possibly, a higher error-floor
[65-67]. Recently, MSA-based threshold decoding methods have been
proposed for the split-row technique to reduce this performance loss (e.g.,
see [67]). In stochastic decoders, however, partitioning PNs does not af-
fect the decoding performance or the error-floor. This is because in the

split-row technique for the MSA, each PN is divided into lower degree
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PNs (assigned to each partition). These lower degree PNs calculate the
minimum of only a portion of incoming messages. Therefore, their out-
puts are not necessarily the absolute minimum of all incoming messages
received by the PN. As the number of splits increases, the approximation
made in lower degree PNs becomes less accurate. In stochastic decod-
ing, the PN operation is XOR-based, hence, as shown in Figure 5-7,
each lower degree PN can send its 1-bit outcome to neighboring PNs
and; therefore, no approximation is made in the PN operation.

e Increasing the number of partitions/splits results in long physical wires
between VN blocks. These wires can become the bottleneck of the clock
frequency and throughput. For instance in Figure 5-7 the input signal of
the VNs in the block number 32 starts from block 1 and passes through 30
VN blocks before reaching block 32. Stochastic decoding benefits from
asynchronous pipelining (discussed in Section 3.5.1.6). Asynchronous
pipelining enables stochastic decoders to pipeline long wires with negli-
gible effect on the average number of decoding cycles and throughput.
By relying on this useful feature, non-uniform levels of registers can be
inserted to pipeline the signals between VN blocks and break long wires
into small pieces to increase the clock frequency and throughput. In the
implemented decoder, three levels of flip-flops (i.e., one level of flip-flop
after every 8 VN block) are used to break these wires.

The decoder receives 6-bit input symbols from the channel. It applies scal-
ing (with a scaling factor of v = 1.33) and converts the input symbols to 7-bit
probabilities using 25 x 7 bits (56 bytes) look-up tables. These probabilities are
converted to stochastic streams using 7-bit comparators. The MTFM resolu-
tion in VNs is 11 bits and all the MTFMs are initialized to the corresponding

channel probabilities prior the start of the decoding operation.
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5.4.1.1 Random Number Generation

The stochastic decoder requires (pseudo) random numbers at input (chan-
nel) comparators to convert probabilities to stochastic streams. Random num-
bers are also required in MTFMs to convert probabilities stored in MTFMs
to stochastic streams. Random numbers used in the decoder are generated
using a DRE architecture which consists of 64 independent random engines.
Every two random engines are assigned to a VN block. Each random engine
consists of four 16-bit LFSRs associated with different prime polynomials and
generates an 11-bit random number which is shared among 2048/64 = 32 VNs.

5.4.1.2 Early Decoding Termination Criterion

The VNs and PNs exchange bits until decoder output bits satisfy all the
parity checks (i.e., syndrome checking) or a maximum number of 400 decoding
cycles is exhausted (see Section 5.4.1.3). In the implemented decoder, each
decoding cycle takes one clock cycle. The final output of each VN is determined
by the majority of bits received from connected PNs. The syndrome checking
is performed in every clock and hence the decoder stops decoding as soon as
it finds a valid codeword. The syndrome check is performed by XORing the
output bits of VNs that are connected to the same PNs. If the outcome of
all of these XOR gates are zero, decoding terminates. The early termination
logic consists of 384 32-input XOR gates whose 384 output bits are passed
through a 384-input NOR gate or equivalently 383 2-input NOR gates in a
tree configuration. Because of the early termination criterion, the throughput
of the decoder is determined by the average number of decoding cycles used
and the decoding latency is determined by the maximum number of decoding

cycles used.
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Figure 5-7: The (2048,1723) stochastic decoder is implemented using 32 VN blocks in which each block contains 64 degree-6
VNs. Each block receives 384 input bits from each one of its neighbor blocks and outputs 384 bits to each of them. To form
the parity-check equation, each VN inside a block XORs its output bit with the input receives from the neighboring block and
passes it to the next neighboring block. The VN also XORs the inputs received from neighbor blocks to from its input bit. One
level of flip-flops is used after every 8 VN blocks to break long wires.
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5.4.1.3 Redecoding and Postprocessing

The idea of combining different decoding algorithms, for the sake of bet-
ter performance or less latency, has been used in the literature (e.g., see [10]).
The ASIC stochastic decoder uses a combined redecoding [53] and postpro-
cessing scheme which lowers the error-floor of the 10GBASE-T LDPC code
and enables the decoder to achieve a good BER decoding performance with
less decoding latency. Redecoding [53] is an interesting feature of stochas-
tic decoders which is useful for lowering the error-floor of LDPC codes. In
stochastic decoding the decoding trajectory depends on the stream of random
numbers generated for conversion of probabilities to stochastic bit streams.
Consequently, by using different sequences of random numbers, different de-
coding trajectories are possible. Therefore, if the decoding outcome does not
converge to a codeword after some decoding cycles, it is possible to restart
the decoding operation with different random numbers (a different decoding
trajectory) to possibly converge to a codeword in the new round. For the case
of the (2048,1723) LDPC code, it is known that the dominant error events
in the error-floor region are due to (8,8) absorbing sets (e.g., see [108-110]).
Redecoding in this respect helps to reduce these events by randomizing the
decoding trajectory.

The ASIC stochastic decoder uses 4 rounds of decoding for Ej,/Ny > 5 dB
in which each decoding round uses a maximum number of 100 decoding cycles
(i.e., a maximum of 400 decoding cycles including redecoding and postprocess-
ing). In rounds 1 to 3 of decoding, the stochastic decoding is performed for 92
decoding cycles. In the last 8 decoding cycles of these decoding rounds, the
ASIC decoder uses a postprocessing scheme to correct the remaining bit errors.
During the postprocessing mode, the output bit of each VN is directly sent

to PNs. The PNs perform the parity-check operation and send back their bit
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messages to VNs. This postprocessing scheme can efficiently correct remain-
ing bit errors provided they are few. When the number of bit errors are high,
this scheme may result in propagation of errors in the entire graph; therefore,
the ASIC decoder only uses this postprocessing scheme at the end of decoding
rounds 1, 2 and 3 and does not use it for the last round. If the syndrome check
is not satisfied during decoding rounds 1 to 3, all MTFMs are reset to the
corresponding channel probabilities and the next round of decoding is started.
In the last round of decoding (round 4), stochastic decoding is performed for
a maximum of 100 decoding cycles.
5.5 Performance and Tradeoffs

This section discusses the decoding performance as well as various char-
acteristics of the implemented MTFM-based stochastic LDPC decoder.
5.5.1 Decoding Performance

Figure 5-8 depicts the BER and Frame-Error-Rate (FER) decoding per-
formance of the MTFM-based stochastic decoder. The BERs of the MTFM-
based decoder at Ej,/Ny = 5.00 dB and E,/Ny; = 5.15 dB are obtained by
counting 30 and 10 frame errors, respectively. For FEj,/Ny < 4.75 dB at least
100 frame errors are counted.? For the sake of comparison, the figure shows
the decoding performance of MTFM-based stochastic decoding without post-
processing and redecoding (with the same maximum number of decoding cy-
cles), the floating-point sum-product with 32 iterations, 6-bit fixed-point sum-
product with 50 iterations from [108], and 4-bit fixed-point offset min-sum

from [108]. Also shown in the figure are the decoding performance of the

2 To simulate a very low BER, we used two Canadian clusters (namely,
WestGrid and CLUMEQ) and a local cluster available at our research group.
Our simulations took about two months and were distributed on about 1000
CPUs.
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Figure 5-8: Decoding performance of the MTFM-based stochastic decoder.
The stochastic decoder uses early termination until a maximum of 400 decod-
ing cycles has been exhausted.

(2048,1723) ASIC LDPC decoder in [24] which uses the approximate bit-serial
MSA, the (2048,1723) MSA Split-16 decoder in [67], and the (2048,1723) ASIC
LDPC decoder in [108,109]. The decoder in [67] is a recently proposed fully
parallel decoder which provides a maximum throughput of 92.8 Gb/s by using
an early termination criterion. The decoding performance of this decoder is
demonstrated down to a BER of about 1077 in [67]. The decoder in [108,109]
is also a recently proposed partially parallel decoder that relies on the 4-bit
fixed-point offset MSA and a special postprocessing technique [110] to lower
the error-floor of the (2048,1723) LDPC code. It also uses an early termination

criterion to increase the decoding throughput.
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Table 5-2: Summary of the ASIC implementation results for the (2048,1723)
MTFM-based stochastic LDPC decoder.

CMOS technology || CMOS90nm-GPSVT (7 metal layers)
Supply voltage 1V
Clock frequency 500 MHz
Decoding latency 800 ns
Throughput 61.3 Gb/s at E,/Ny = 5.5 dB
Core area 6.38 mm?
Logic utilization 86% (initial) and 95% (final)

As shown Figure 5-8, the proposed MTFM-based stochastic decoder is
able to provide a BER of 4 x 1071 at E,/Ny = 5.15 dB. Compared to the 4-bit
offset MSA (without postprocessing) and the 6-bit SPA, the stochastic decoder
shows superior error-floor behavior since no error-floor is observed down to the
BER of 4 x 1073, This decoder outperforms the bit-serial decoder in [24,28]
by about 1 dB and 6-bit sum-product decoding algorithm by about 0.4 dB.
Compared to the decoder in [108,109] with postprocessing, the MTFM-based
decoder has about 0.2 dB loss. The stochastic decoder and the decoder in [67]
have similar decoding performance down to a BER of about 107 in the water
fall region.

5.5.2 Implementation Characteristics and Hardware-Complexity

Table 5-2 summarizes the ASIC implementation characteristics of the
MTFM-based stochastic decoder. The decoder is implemented using GP 90nm
CMOS technology (standard Vt) from STM with 1 V supply voltage. It is
synthesized using Cadence RTL-Compiler in nominal process corner and place
and route was done by using Cadence Encounter. The decoder achieves a
maximum clock frequency of 500 MHz after the place and route step and its
core occupies 6.38 mm? silicon area with a high final logic utilization of 95%.

Figure 5-9 shows the chip layout after the place and route step.
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Figure 5-9: The stochastic decoder chip layout.

5.5.3 Throughput

Figure 5-10 depicts the average number of decoding cycles used (left y-
axis) for decoding at different Ej, /Ny and the corresponding throughput (right
y-axis) with the achieved clock frequency of 500 MHz after the place and
route step. As mentioned before, the stochastic decoder uses early termina-
tion criterion and the core throughput of the decoder is determined by the
average number of decoding cycles used. At E,/Ny = 5.50 dB the MTFM-
based stochastic decoder uses an average of 16.7 decoding cycles which results
in a core throughput of 61.317 x 10° b/s or 61.3 Gb/s (each decoding cycle
takes one clock cycle). The throughput of the decoder at FE,/Ny = 5.15 dB is
about 49.4 Gb/s. Also, as Figure 5-10 shows, the decoder is able to provide
throughput of more than 23 Gb/s for Ej,/Ny > 4.5 dB (BERs less than 1077,
approximately). Figure 5-11 shows histograms of the decoding cycles used for
decoding at different Ej/Ny. The figure also shows the corresponding mean
(1) and the standard deviations (o) associated with each histogram. Each
histogram is based on observation of one million transmitted codewords. As

shown, at high Ej /Ny the majority of transmitted codewords are decoded very
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Figure 5-10: Average number of decoding cycles used (left y-axis) for decoding
at different SNRs and the corresponding core throughput (right y-axis) for the
achieved clock frequency of 500 MHz. Each decoding cycle takes one clock
cycle.
fast and hence the histograms become highly concentrated near the average
number of decoding cycles used.
5.5.4 Latency

The latency of the MTFM-based decoder is determined by the maximum
number of decoding cycles used. As mentioned before, the decoder uses a
maximum of 400 decoding cycles (including postprocessing), hence, with the
clock frequency of 500 MHz, the decoder maximum latency is 800 ns. If lower
latency is required, it is possible to trade BER with the maximum number of
decoding cycles used. For example, Figure 5-12 shows the BER/FER versus
latency (in nanoseconds) tradeoff at Ej,/Ny = 5.15 dB. As shown, at this SNR
a BER of about 107!2 can be achieved with 580 ns decoding latency (i.e.,

maximum 290 decoding cycles).
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Figure 5-11: Histograms of decoding cycles used for decoding codewords at
different SNRs. One million codewords used for each histogram. g is the
average number of decoding cycles and ¢ is the standard deviation. Each
decoding cycle takes one clock cycle.
5.5.5 Input and Output Buffer Requirements

Because of the early termination used in the decoder, the proposed stochas-
tic decoder needs to use input and output buffers to accommodate the differ-
ence between the variable number of decoding cycles used and the maximum
number of decoding cycles. The distribution of the number of decoding cycles
used changes with Fj,/Ny. Based on the histograms of the number of decoding
cycles used (see Figure 5-11), it is possible to determine the buffer require-
ments of the stochastic LDPC decoder for a specific operating Ej,/Ny. In
particular, we would like to determine such requirements for low BER regimes
(high E}/Ny) where the decoder is supposed to operate.

The input buffer of the decoder receives a codeword from the channel ev-

ery T1n decoding cycles. Each received codeword occupies 2048 x 6 bits or 1.5K
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Figure 5-12: Decoding performance versus latency (in nanoseconds) at
E,/Ny = 5.15 dB. A BER of about 1072 is achieved with about 580 ns max-
imum decoding latency (i.e., maximum 290 decoding cycles). The shown 800
ns latency corresponds to the maximum 400 decoding cycles with the achieved
500 MHz clock frequency. Each decoding cycle takes one clock cycle.

bytes. The number of decoding cycles used by the decoder for decoding, Tp, is
a random variable where 0 < T < 400 and its probability distribution func-
tion is obtained by the histograms shown in Figure 5-11. Every T decoding
cycles, the decoder takes a codeword from the input buffer. On the other hand,
the output buffer of the decoder receives a decoded codeword from the decoder
every Tp decoding cycles and outputs a codeword every Toyr decoding cycles.
Note that each decoded codeword occupies 2048 bits or 256 bytes which is
much less than a received codeword. Figure 5-13 shows the simulation results
for the probability of codeword overflow at E, /Ny = 5.15 dB for different input
and output buffer sizes (Tiy = 128 and Toyr = 16). As shown, the codeword

overflow probability sharply decreases by increasing the size of the input and
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Figure 5-13: Probability of codeword overflow for different sizes of (a) input
buffer and (b) output buffer at £,/Ny = 5.15 dB.
output buffers. This is mainly because the probability distribution function of
the number of decoding cycles used is highly concentrated near the average.
For example, at Fj,/Ny = 5.15 dB with a FER of about 3.9 x 107! the input
and output buffers require about 10K bytes in total (roughly about 0.28 mm?
in CMOS 90nm technology) to have a codeword overflow probability that is
below the FER, induced by the channel, by more than an order of magnitude.
5.6 Comparison with State-of-the-Art ASIC LDPC Decoders

Table 5-3 compares the implemented MTFM-based stochastic decoder
with some state-of-the-art high-throughput soft-decision ASIC LDPC decoders.
The table is partitioned in two parts: first, ASIC decoders that decode the
(2048,1723) LDPC code from the IEEE 802.3an standard and second, ASIC
decoders that decode other LDPC codes.

101



CHAPTER 5. Node-Based Rerandomization Using MTFMs

With respect to the decoding latency, the stochastic decoder requires 800
ns latency which is higher than other (2048,1723) LDPC decoders in the table,
but it is within an acceptable latency range (< 1 us) for a channel decoder.
Also, if lower latency is desired, it is possible to trade latency with decoding
performance as shown in Figure 5-12. The stochastic decoder occupies a core
area of 6.38 mm? in CMOS 90nm technology. To compare with the area of
the decoders that are implemented in different technologies, the table also
shows the scaled-area-per-coded-bit (in CMOS 90 nm technology). As shown,
this factor for the stochastic decoder is 3115 pm?, which indicates the most
area efficiency among the soft-decision decoders in the table. The decoder
also achieves a maximum core throughput of 61.3 Gb/s which is the second
highest throughput among the decoders. To bring the effect of technology and
code block length into account, the table shows the throughput-per-coded-bit-
per-scaled-area (in CMOS 90nm technology) for each decoder. This factor for
the stochastic decoder is 4.69 Mb/s/mm? which is about twice that of for the
decoder in [108] and it is about 4% less than that of for the decoder in [67].
5.7 Conclusion

This chapter proposed the node-based rerandomization of stochastic strea-
ms using MTFMs for area-efficient and high throughput ASIC implementation
of stochastic LDPC decoders. It presented a (2048,1723) fully parallel MTFM-
based ASIC LDPC decoder. The implemented decoder provides a maximum
throughout of 61.3 Gb/s and occupies a 6.38 mm? core area in CMOS 90
nm technology. To the best of our knowledge, this decoder is the most area-
efficient soft-decision fully parallel LDPC decoder and it is one of the fastest

fully parallel LDPC decoders reported in the literature.
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Table 5-3: Comparison with some state-of-the-art high throughput soft-decision ASIC LDPC decoders.

Decoders for the (2048,1723) LDPC code from IEEE 802.3an

Other decoders

this work | 24, 28] | [108,109] | [54] | [67] [13] | [15]
Code (2048,1723) (2048,1723) (2048,1723) (2048,1723) (2048,1723) (1024,512) (256,128)
Code regular, regular regular regular regular irregular regular
structure RS-based RS-based RS-based RS-based RS-based
Maximum (d,,d.) (6,32) (6,32) (6,32) (6,32) (6,32) not reported (3,6)
Decoding MTFM-based bit-serial offset MSA + SPA MSA SPA bit-serial
algorithm stochastic approx. MSA postprocessing Split-16 MSA
Implementation fully fully partially partially fully fully fully
strategy parallel parallel parallel parallel parallel parallel parallel
CMOS technology 90 nm 90 nm 65 nm 90 nm 65 nm 160 nm 180 nm
Input quantization 6 bits 4 bits 4 bits 5 bits 5 bits 4 bits 4 bits
Clock 500 MHz 250 MHz 700 MHz 207 MHz 195 MHz 64 MHz 250 MHz
frequency (before place & route)
Iterations or max. 400 8 8 4+ 4 postproc. 16 11 64 32
decoding cycles (with postproc.)
Clocks per iteration 1 4 12 5 1 1 8
or decoding cycle
Decoding latency 800 ns 128 ns 206 ns 386 ns 54 ns 1000 ns 1024 ns
Throughput 61.3 Gb/s at max. 16 Gb/s 47.7 Gb/s at 5.3 Gb/s 92.8 Gb/s at 1 Gb/s 500 Mb/s
E,/Ny=5.5 dB E,/Ny=5.5 dB E,/Ny~4.55 dB
Area 6.38 mm? 9.8 mm? 5.35 mm? 14.5 mm? 4.84 mm? ~40 mm? 6.96 mm?
(before place & route)
T/P per coded bit per 4.69 0.80 2.27 0.18 4.88 0.08 1.12
scaled area (in 90 nm) Mb/s/mm? Mb/s/mm? Mb/s/mm? Mb/s/mm? Mb/s/mm? Mb/s/mm? | Mb/s/mm?
Scaled area per 3115 pm? 4785 pim? 5008 jim? 7080 pum? 4530 pm? 12360 pm? | 6797 pm?
coded bit (in 90 nm) (before place & route)
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CHAPTER 6

Joint Stochastic Decoding of LDPC Codes and
Partial-Response Channels

This chapter proposes the application of the stochastic decoding approach
for joint decoding of LDPC codes and partial-response channels. Our proposed
method relies on the joint message-passing algorithm in [51,52] for decoding
of LDPC codes and partial-response channels.

6.1 System Model

Figure 6-1 depicts the system model considered in this chapter. In this
model, it is assumed that an independent and identically distributed binary
vector & = (x4, ..., x,), where z; € {0, 1}, is passed through a partial-response
channel. The transfer polynomial of the partial-response channel is h(D) =
Zj:o h;D?, where d is the channel degree, and h; is a real number. The
output vector of the partial-response channel is y = (y1,..., Ynsa), and its
output alphabet set is A, where y; € A. The vector y is passed through an
AWGN channel with zero mean and a single-sided noise power spectral density
of Ny. The joint decoder receives the vector r = (r1, ..., 7,14) from the AWGN
channel.

Similar to [51], we consider two types of partial-response channels in this
chapter: the dicode channel and the EPR4 channel. The transfer polynomial
of the dicode channel is

h(D)=1-D. (6.1)
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Figure 6-1: System model.

In the dicode channel, d = 1 and the channel’s output alphabet set is A =
{=1,0,+1}. The EPR4 channel model is a practical partial-response channel
model considered in magnetic recording applications. This channel model has

a transfer polynomial of
h(D) =1+ D — D* — D?. (6.2)

In the EPR4 channel, d = 3 and A = {-2,—1,0,+1,+2}. We assume that
the partial-response model starts from the zero state, and it is terminated at
the zero state.

6.2 Overview of Joint Message-Passing Decoding

This section provides a brief overview of the bit-based joint message-
passing decoding of LDPC codes and partial-response channels which was
proposed in [51,52].

Figure 6-2 depicts the block diagram of the joint message-passing decod-
ing of LDPC codes and partial-response channels. The joint message-passing
decoder is comprised of a partial-response channel detector and an LDPC
decoder. Similar to LDPC codes, the message-passing detector for the partial-
response channel detector is represented by a bipartite graph. This graph has
two types of nodes: triangle nodes which receive the noisy samples, r;, from

the AWGN channel, and bit nodes. In Figure 6-2, triangle nodes are depicted
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Figure 6-2: Joint message-passing diagram for decoding LDPC codes and
partial-response channels. d is the degree of the partial-response channel.
as grey triangles and bit nodes are depicted as grey circles. The connection be-
tween triangle nodes and bit nodes is determined by h(D), i.e., a triangle node
is connected to a bit node if and only if h(D) indicates a direct dependence be-
tween the input and the corresponding output of the partial-response channel.
The detector operates for T iterations on the received samples from the chan-
nel, then it passes its soft outputs to the LDPC decoder. The LDPC decoder
runs for S iterations and its soft outputs are passed back to the detector. This
scheme is repeated for U global/turbo iterations [51,52].

Figures 6-3 (a) and (b) show the message-passing graph for the dicode
channel and the EPR4 channel, respectively. Note that the message-passing
graph for the dicode channel is acyclic, but the graph for the EPR4 channel

has many length-4 cycles. A length-4 cycle is highlighted in the latter graph.
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Figure 6-3: (a) The message-passing diagram for the dicode channel with
h(D) = 1 — D. The p-th triangle node is connected to bit nodes numbered
p and p — 1. (b) The message-passing diagram for the EPR4 channel with
h(D) =1+ D — D? — D3. The p-th triangle node is connected to bit nodes
numbered p, p — 1, p — 2, and p — 3. A length-4 cycle is highlighted in the
graph.
6.2.1 Operation of Triangle Nodes

Triangle nodes and bit nodes in the detector exchange probability mes-
sages that represent Pr(x; = 1). Their outgoing messages are produced ac-
cording to the SPA rule, in which the outgoing message for an edge is based
on all incoming messages, excluding the message received from that edge. Let
x) ;= (Tp_d, ..., 7p) and let mi\_"; be a vector for the same bits excluding bit
Ty for p—d <m < p. Let bg\m_p+d = (bo, ..., bg) be a vector of binary inputs
to the partial-response channel except for b,,_, 4, and let B,, , 4 be the set of

all such binary inputs. The probability message from the p-th triangle node to

the m-th bit node is R, (1), and the message from the m-th bit node to the
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p-th triangle node is Qpyp(1). Rym(-) and Qumy(+) are defined as functions of j,

where j € {0,1}. The p-th triangle node computes R,,,(j) as follows [51,52]:

Ry (j) =
Pr(zn, = jlry) =
Z Pr(z,, = j, wz\_ﬁ = bg\m_“d, Yp = alrp) =
acApl\"Pep
Z Pr(z,, = j, wz\_ﬁ = bﬁ\m_“d, Yp = a)X

acApl\" e

Pr('rp‘yp = a)Pr(yp = a|m5\_r; — b(c)l\m_p—l—d)PI'(mz\jZ) — bg\m—p-l-d)

Pr(ry)

. n d\m—p+d
Z PI‘(,’L’m =1 mz\_d = bO\ e 7yp = CL)X

acApl\" e

m d\m—p+d p\m
Pr(ryly, = a)Pr(y, = a|w§\—d = bo\ . ) 1T Qup(bu—psa)

u=p—d
Pr(r,)
(6.3)
In the above equation, the term Pr(z,, = 7, aci\_rzl = bg\m_p . Yy, = a) is either

zero or one, and the term Pr(y, = a\wg\_ﬁ) is equal to 0.5 for all nonzero terms
in the summation. Also, the term Pr(r,|y, = a) is the channel probability,
which is calculated using the knowledge that the channel is AWGN. Finally,

Pr(z,, = j, mi\—rfi — bg\m—p+d

.Yp = a) are the prior probabilities which are
factored into individual probability messages sent by the connected bit nodes
to the p-th triangle node [51,52].
6.2.2 Operation of Bit Nodes

The operation of bit nodes is the same as the operation of VNs in the

SPA. The m-th bit node computes its outgoing message for the p-th triangle
node, @y (j), as follows [51,52]:
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Qmp(]) -
m-+d\p .
1__[ Pr(z,, = j|r.)
m+d\p m+d\p -
1__[ Pr(z,, = 1|r,) + 1__[ Pr(z,, = 0|r,) (6.4)
m-+d\p .
[I Run(d)
m~+d\p m-+d\p ’
1__[ Rum (1) + 1__[ Ry (0)

6.3 The Proposed Method

The triangle node operation in the joint message-passing decoding is a
computationally-intensive operation which requires the division, multiplica-
tion, and summation of probabilities. It is possible to perform this operation
in the log-domain to avoid division and multiplication, but even by using the
LLR transformation, the triangle node’s operation requires the evaluation of
complex nonlinear functions (see [21]). In this section, we propose hardware
architectures that perform the triangle node operation for the dicode and the
EPR4 channels using the stochastic approach. Because the operation of bit
nodes in a message-passing channel detector is the same as VNs in a LDPC
decoder, stochastic VNs discussed in previous chapters can be used to perform
bit node operations in a stochastic partial-response channel detector. In this
regard, we do not discuss the hardware architectures of stochastic bit nodes in
this chapter.

In joint stochastic decoding, channel probabilities, Pr(r,|y, € A), are
transformed into stochastic bit streams. Similar to stochastic LDPC decod-
ing, this transformation is done by comparing each channel probability to a
(pseudo) random number that changes in every decoding cycle. The output

bit stream of the comparator represents the corresponding channel probability.
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In the dicode channel, the alphabet set A has three elements; therefore, each
triangle node transforms three channel probabilities to stochastic streams, i.e.,
Pr(rply, = —1), Pr(r,ly, = 0), and Pr(r,|y, = +1). Similarly, in the EPR4
channel, A has five elements and each triangle node transforms five chan-
nel probabilities to stochastic streams, i.e., Pr(r,|y, = —2), Pr(r,|ly, = —1),
Pr(rylyp = 0), Pr(ryly, = +1), and Pr(ryly, = +2).

Each triangle node in the stochastic detector receives one bit from each
of its (channel) comparators in every decoding cycle.! The stochastic channel
detector operates by stochastic triangle nodes and bit nodes exchanging bits
for Tsp decoding cycles. The detector then passes its soft output (extracted
by TFMs) to the stochastic LDPC decoder which runs for a maximum of Ssp
decoding cycles. The stochastic LDPC decoder performs syndrome checking in
every decoding cycle to terminate the joint decoding process as soon as all the
parity-checks are satisfied. If this termination criterion is not satisfied within
Ssp decoding cycles, the stochastic LDPC decoder passes back its soft outputs
(extracted by TFMs) to the channel detector. This scheme is repeated for at
most U global/turbo iterations.

6.3.1 Stochastic Triangle Nodes for the Dicode Channel Detector

As mentioned previously, the message-passing graph of the dicode channel
is acyclic. In acyclic graphs, the latching problem does not hold. In this re-
spect, the proposed stochastic triangle node architecture for the dicode channel

does not use rerandomization units.

I Similar to the definition of a decoding cycle or DC (i.e., a stochastic de-
coding iteration) in Section 2.4 for stochastic LDPC decoding, in a stochastic
partial-response channel detector, a decoding cycle refers to the exchange of
one bit between triangle nodes and bit nodes.
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From (6.3), it follows that we can write R,,,(1) in the form of

Py
=1 :
Ron(1) = 5 (65)
where, for the case of the dicode channel,
P =Pr(z,=1,1,) =
(6.6)
0.5 x Pr(rplyp = +1)(1 = Qn—1)p) + 0.5 X Pr(rp|yp = 0)Q(m-1)p:
and
Py ="Pr(z,=0,r,) =
(6.7)

0.5 x Pr(rplyp = 0)(1 = Qu-1)p) + 0.5 X Pr(rplyp = =1)Q(m-1)p-

Figure 6-4 depicts the proposed hardware architecture to compute R, (1) in
a stochastic triangle node for the dicode channel detector. A similar hardware
architecture is used to compute R,(,—1)(1). In this architecture, the inverse
operation on Q;,—1), is performed using a NOT gate, and the multiplication
of probabilities is performed using AND gates. The output of each AND gate
in the figure forms a term for the summation in (6.6) and (6.7). The stochastic
summation is performed by two 2-input OR gates. As mentioned in Chapter
2, an OR gate can be used as an approximate stochastic adder. The output
streams of the OR gates shown in the figure represent P| ~ 2P, and Pj ~ 2F.
Finally, the stochastic streams representing P; and P are passed to a JK flip-
flop that performs a division and its output bit stream represents P|/(P|+ F}),
which approximates R, (1) = P/(FPy + P1).

The structure of degree-2 stochastic bit nodes used in the dicode channel
detector is based on the basic stochastic VN structure, where a JK flip-flop is

used to perform division (see Figure 2-9 in Chapter 2).
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Figure 6-4: The hardware architecture of a stochastic triangle node for the
dicode channel (only one output and its corresponding inputs are shown).
6.3.2 Stochastic Triangle Nodes for the EPR4 Channel Detector
The message-passing graph for the EPR4 channel has many length-4 cy-
cles (see Figure 6-3(b)). These short cycles severely intensify the latching
problem in the stochastic channel detector and deteriorate the BER decod-
ing performance of joint stochastic decoding. Moreover, triangle nodes and
bit nodes in the EPR4 channel detector have higher node degrees and per-
form more complex operations compared to the triangle nodes and bit nodes
in the dicode channel detector. In this respect, the proposed architecture for
stochastic triangle nodes in the EPR4 channel detector relies on TFMs, as
rerandomization units, to alleviate the latching problem and to increase the

switching activity in the joint decoder.
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In the EPR4 channel, the term P, in (6.5) is computed as:
P =Pr(zx,=1,1,) =
0.5 % Pr(rplyy = +1)(1 = Qun-1)p) (1 = Qm-2p) (1 = Qm-3p)+
0.5 % Pr(rplyy = 0)(1 = Qn-1)p)(1 = Qm-2p)Qim-3p+
0.5 % Pr(rp|y, = 0)(1 = Qn-1)p) Qm-2)p(1 — Qm—3)p)+
0.5 % Pr(rply, = =1)(1 = Qpn-1)p) Qum-2pQm—3)p+ (6.8)
0.5 X Pr(rplyp = +2)Qm-1)p(1 = Qm-2)p) (1 = Qm-3)p)+
0.5 x Pr(rplyp = +1)Qm-1)p(1 = Qn—2)p) Q(m—3)p+
0.5 x Pr(rply, = +1)Qm-1)pQ(m—2)p(1 — Qm-3)p)+
0.5 X Pr(rp|yp = 0)Qm-1)pQm-2)pQ(m—3)p-

Also, Py in (6.5) is computed as follows:

Py =Pr(z, =0,r,) =
0.5 % Pr(rply, = 0)(1 = Quu-1)p) (1 = Qun-2)p) (1 = Qn-3)p)+
0.5 % Pr(rplyp, = =1)(1 = Qun-1)p) (1 = Qn-2)p) Qm-3)p+
0.5 % Pr(rplyp = =1)(1 = Qun-1)p) Qim-2)p (1 — Qm-3)p)+
0.5 x Pr(rply, = =2)(1 = Qun-1)p) Qm—2pQ(m—3)p+ (6.9)
0.5 x Pr(rylyy = +1)Qn-1)p(1 = Qm-2p) (1 — Q(m-3)p)+
0.5 X Pr(rplyp, = 0)Qm-1)p(1 — Qm—2)p) Q(m—3p+
0.5 X Pr(rply, = 0)Q(m-1pQm-2)p(1 = Qm-3)p) +
0.5 x Pr(rylyp = —=1)Qm-1pQ(m-2)pQ(m—3)p-

Figure 6-5 depicts the proposed hardware architecture to compute R,,,(1) in a
stochastic triangle node for the EPR4 channel. Similar hardware architectures
are used to compute Rpin-1)(1), Ryom—2)(1), and Ryi,—3)(1). In the architec-

ture shown, the network of AND gates computes the terms that are needed for
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summations in (6.8) and (6.9). The stochastic summation is performed by two
8-input OR gates. The output streams of the OR gates shown in the figure
represent P| ~ 2P, and Pj ~ 2P,. The division required to compute Ry,(1)
in (6.5) is performed by a TFM-based stochastic divider. The operation and
the update rule of the TFM-based divider is the same as a JK flip-flop divider,
however, instead of a flip-flop, a TFM is used to efficiently rerandomize the
output stochastic bit stream. The output stream of the TFM-based divider
represents P /(P] + P}) ~ 2P,/(2P, + 2Fy) = P,/(P, + ). In this divider,
the TFM is updated when J # K. The output bit of the divider is 1 when
J=1and K =0, and it is 0 when J =0 and K = 1. Also, when J =K =0
the output bit of the TFM is directly used as the output of the divider (i.e.,
hold state), and when J = K =1 the inverse of the output bit of the TFM is
used as the output of the divider (i.e., reverse state).

The structure of degree-4 stochastic bit nodes used in the EPR4 channel
detector is based on the MTFM-based stochastic VN structure (see Section
5.1). We used reduced-complexity MTFMs with T, = d, = 4 and T,, =
d,/2 = 2.

6.4 Decoding Performance Results

Figure 6-6 shows the BER decoding performance of the stochastic ap-
proach for joint decoding of a (2000,1000) LDPC code and the dicode partial-
response channel.? For the sake of comparison, the figure also shows the
decoding performance results obtained for the floating-point joint message-

passing decoding (with a floating-point channel detector and a floating-point

2 The energy per bit in the simulation results reported in this chapter is
defined as E, = E,/R, where R = k/n is the rate of the LDPC code, and E,
is the average energy of y;’s. E, is calculated by considering the probabilities
of occurrence of y; € A, given equiprobable channel inputs z; € {0, 1}.
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Figure 6-5: The hardware architecture of stochastic triangle node for the EPR4
channel (only one output and its corresponding inputs are shown). R(t) is a

(pseudo) random number varying in every decoding cycle.

SPA-based LDPC decoder), and the dicode channel truncated union bound

from [51,93]. We used U = 16, T' = 3, and S = 3 for the floating-point SPA-

based message-passing decoding. Also, for joint stochastic decoding, we used

1
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U = 16, Tsp = 100 decoding cycles for detection, and Ssp = 100 decoding cy-
cles for stochastic LDPC decoding. The (2000,1000) stochastic LDPC decoder
used in joint decoding relies on TFMs with a relaxation coefficient of 3 = 27%.
The LDPC decoder applies syndrome checking to terminate the joint decoding
process as soon as all the parity-checks are satisfied. As shown, at a BER of
about 1078, the proposed joint stochastic decoder is able to provide a decoding
performance within 0.4 dB of the floating-point joint message-passing.

Figure 6-7 shows the BER decoding performance of the stochastic ap-
proach for joint decoding of a (2000,1000) LDPC code and the EPR4 partial-
response channel. Also shown in the figure are the decoding performance of
floating-point joint message-passing decoding using a floating-point channel
detector and a floating-point SPA-based LDPC decoder, and the EPR4 chan-
nel truncated union bound from [51,93]. To show the effects of quantization
in the EPR4 channel detector, the figure also depicts performance results for
joint message-passing decoding using an 8-bit channel detector and a floating-
point SPA-based LDPC decoder. We used U = 16, T' = 8, and S = 8 in
both joint message-passing decoding schemes. For joint stochastic decoding,
we used U = 16, Tsp = 200 decoding cycles for detection, and Ssp = 200
decoding cycles for TFM-based stochastic LDPC decoding. Results demon-
strate the applicability of the proposed stochastic approach for joint decoding
of LDPC codes and the EPR4 channel. Despite the existence of a high number
of length-4 cycles in the detector graph of the EPR4 channel, which severely
intensify the latching problem, no error-floor is observed down to a BER of
about 1078, Compared to the dicode channel, more decoding loss with re-
spect to the floating-point joint message-passing is observed. A comparison
of joint message-passing decoding with floating-point and 8-bit channel detec-

tors reveals the sensitivity of the BER decoding performance to the number
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Figure 6-6: Decoding performance of the stochastic approach for joint decod-
ing of a (2000,1000) LDPC code and the dicode partial-response channel.
of quantization levels used in the EPR4 channel detector. The decoding per-
formance of the joint stochastic decoding is within about 0.6 dB of the joint
message-passing decoding with an 8-bit channel detector and a floating-point
SPA-based LDPC decoder.
6.5 Estimation of Decoding Latency and Throughput

Although the hardware implementations of the proposed joint stochastic
decoders are not considered in this chapter, based on the results presented in
previous chapters, it is possible to investigate/approximate the (core) decod-
ing latency and throughput of the joint stochastic decoders. As mentioned
in previous chapters, one of the main challenges in hardware implementations
of LDPC decoders is the random-like /irregular connections between VNs and
PNs. These irregular connections result in long physical wires across the de-
coder chip, which limit the speed and increase the area and power consump-

tions of LDPC decoders. It is worth noting that, compared to LDPC codes,
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(2000,1000) (3,6)-regular LDPC code, EPR4 channel
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Figure 6-7: Decoding performance of the stochastic approach for joint decod-
ing of a (2000,1000) LDPC code and the EPR4 partial-response channel (FP:
floating-point).

connections between triangle nodes and bit nodes in a message-passing graph
for partial response channels are regular. This feature is favorable for hard-
ware implementations, because physical wires between triangle nodes and bit
nodes become local/short, which potentially results in a higher speed as well
as higher area and power efficiency.

ASIC implementations of stochastic LDPC decoders in previous chapters
showed that clock frequencies in the order of 500 MHz can be achieved for fully
parallel ASIC stochastic LDPC decoders (in CMOS 90nm technology). The
decoding latency of the joint stochastic decoder is determined by U(Tsp+Ssp).
For the dicode channel and the EPR4 channel, the decoding latencies are 3200
decoding cycles and 6400 decoding cycles, respectively, where each decoding
cycle takes one clock cycle. Figure 6-8 shows the decoding latency of the joint

decoder for different clock frequencies ranging from 100 MHz to 500 MHz. It
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Figure 6-8: Estimated latency of joint stochastic decoding for different clock
frequencies.

should be noted that compared to digital wireless and wireline communications
applications, magnetic recording applications have higher decoding latency
requirements (usually, in the order of milliseconds). As shown, the decoding
latency for the case of the dicode channel ranges from 0.0320 down to 0.0064
milliseconds, and for the case of the EPR4 channel, it ranges from 0.0640 down
to 0.0128 milliseconds.

The throughput of the joint decoder is determined by the average number
of decoding cycles used. This is because the stochastic LDPC decoder uses an
early decoding termination criterion that stops the joint decoding process as
soon as all the parity-checks are satisfied. Figure 6-9 (a) depicts the average
number of decoding cycles used for joint stochastic decoding at different SNRs
for the dicode and the EPR4 channels. Also, Figures 6-9 (b) and (c) show
the corresponding (core) throughput for different clock frequencies ranging

from 100 MHz to 500 MHz. As shown, the average number of decoding cycles
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Figure 6-9: (a) Average number of decoding cycles used for joint stochastic de-
coding at different SNRs. (b) Estimated (core) throughput for joint stochastic
decoding of the (2000,1000) LDPC code and the dicode channel. (c¢) Estimated
(core) throughput for joint stochastic decoding of the (2000,1000) LDPC code
and the EPR4 channel.

decreases significantly in low BER regimes (high E,/Ny), which enables the

joint stochastic decoder to provide multi-Gb/s throughput.

6.6 Stochastic Channel Detection and Log-Based LDPC Decoding
Although the focus of this chapter was on joint stochastic decoding (us-

ing stochastic channel detection and stochastic LDPC decoding), it should be

noted that it is feasible to use stochastic channel detection with LDPC decod-

ing algorithms that operate in the log-domain. Recently, it was shown that

the concept of TFMs is applicable in the log-domain [53]. An LLR-based TFM

120



CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

receives an input stochastic bit stream and tracks the corresponding LLR of
the bit stream, at the cost of more hardware-complexity compared to regular
TFMs. It is therefore possible to have a stochastic channel detector whose
final soft outputs (passed to an LDPC decoder) are in the form of LLRs. In
this respect, stochastic partial-response channel detection can be used jointly
with LDPC decoding algorithms such as the MSA, the offset MSA, etc.
6.7 Conclusion

This chapter proposed the novel application of joint stochastic decoding
of LDPC codes and partial-response channels that are considered in practical
magnetic recording applications. It proposed low hardware-complexity ar-
chitectures for stochastic triangle nodes to perform computationally-intensive
operations required in the dicode and the EPR4 partial-response channel de-
tectors. The decoding performance, latency, and throughput of the proposed
joint stochastic decoding method are discussed. Results demonstrated the ap-
plicability of the stochastic approach for joint decoding of LDPC codes and

practical partial-response channels.
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CHAPTER 7

Stochastic Decoding of Linear Block Codes
with High-Density Parity-Check Matrices

This chapter investigates stochastic decoding of linear block codes with
high-density parity-check matrices on factor graphs. As mentioned in Chapter
1, stochastic decoding was first applied to RS codes in [112]. Our contributions
in this chapter will be to further investigate stochastic RS decoding, to extend
the application of stochastic decoding to BCH codes and BCH-based block
turbo codes, and to investigate efficient hardware implementations of high-
degree nodes used in the decoding of linear block codes with high-density
parity-check matrices on factor graphs. This chapter is in part based on the
material in our paper [83]. It shows how the stochastic approach, despite its
bit-serial nature, can integrate in the Adaptive Belief Propagation (ABP) [47]
and the Turbo-oriented Adaptive Belief propagation (TAB) [45,46]. Although
the focus of this chapter is on the EM-based stochastic decoding, it should be
noted that TFMs and MTFMs are also applicable for this purpose. To the best
of our knowledge, results provided in this chapter are the first results reported
in the literature for stochastic decoding of BCH codes and BCH-based turbo

block codes on factor graphs.
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7.1 Overview

Despite the excellent performance of the SPA (also referred to as belief
propagation or BP) for LDPC decoding, the SPA/BP algorithm is not suit-
able for decoding codes with non-sparse parity-check matrices such as BCH
and RS codes. This problem was investigated in [47] and a new ABP was sug-
gested for RS decoding. It was shown that when BP is applied to a code with
high-density parity-check matrix, it is likely that BP gets stuck at some local
minimum points that correspond to some unreliable symbols. Therefore, at
each iteration of ABP, the parity-check matrix of the code is adapted accord-
ing to the bit reliabilities to sparsify those columns associated with unreliable
bits. The ABP offers a decoding gain of more than 3 dB over hard-decision
RS decoding. However, the parity-check matrix adaptation step in the ABP
is complex. Inspired by the ABP, a novel method for the TAB was proposed
for turbo decoding of product codes [45,46]. In the TAB, the parity-check
matrix adaptation is performed before the BP process and thus, the parity-
check matrix is fixed during the BP process in the component decoder. This
feature significantly decreases decoding complexity. In addition, the TAB out-
performs the ABP and provides a performance close to the Chase-Pyndiah
algorithm [73].
7.1.1 Adaptive Belief Propagation

This section provides an overview of the ABP for SISO RS decoding over
GF(29) [47]. The same approach is applicable for binary BCH codes.

BCH and RS codes are important classes of linear cyclic error-correcting

codes with multiple error detection and correction capability. The parity-check
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matrix of an (n, k) RS code over GF(27) can be represented by

[ 1 6% e a(n_l) |
1 a2 PN a2(n_1)
H= , (7.1)
1 a(n—k) a(n—k)(n—l)

where « is the primitive element in GF(27). In the ABP, H is expanded to
its binary representation, H, by substituting each codeword in the GF(27)
with its equivalent binary representation [47]. This representation transforms
the problem of RS decoding to the general problem of decoding of an (NN, K)
binary block code with N =¢ x n and K = ¢ X k.

Let 7 denote the iteration step in the ABP. Also, let L be the vector of
LLRs and H z(j) be the adapted binary parity-check matrix at the ¢-th iteration.
At i = 0, the ABP starts with the channel LLRs (L® = Lc¢y) and the
binary parity-check matrix (H I()O) = H,;). At each iteration of ABP, two steps
are performed: the reliability-based adaptation of H z(j) and the generation of
extrinsic information using BP [47]:

e Reliability-based Adaptation: In this step, the LLRs are sorted based
on their absolute value in an ascending manner and ordering indices
are stored. Let L = {L,(fb)l, ...,L%)N} be the sorted list of LLRs and
{my,...my} be the stored indices. The first LLR, Lg?l, corresponds the
least reliable bit (the mj-th bit in the block) and the last LLR, L,
corresponds to the most reliable bit (the my-th bit in the block). After
this phase, starting from j = m; to my, row operations are performed
to systematize the j-th column of H l(f) to form a unity weight column
e; = [0..010..0]", in which the only non-zero element is placed at the
j-th position. If such systematization is not possible for a column, the

algorithm proceeds to the next column in LY. This procedure can be
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Figure 7-1: Form of an adapted parity-check matrix in the ABP [47].

done using the Gaussian elimination method. Figure 7-1 shows the form
of an adapted parity-check matrix which is decomposed into dense and
low-density parts.

e Generation of Extrinsic Information: After the adaptation step, the BP
is applied on the sorted LLRs, L', based on the adapted parity-check

)

, to generate the extrinsic LLRs, LY The LLR LUV is

ext*

matrix, H g

then updated according to:

LD =0 4 \x LY (7.2)

ext»

where 0 < A < 1 is a damping coefficient. The algorithm returns to the
adaptation step unless it has been run for a fixed maximum number of
iterations, i,,.y, or all the parity-checks are satisfied.

The ABP can be exploited with variants of BP such as the MSA and
the offset MSA [44]. In addition, the Hard-Decision Decoding (HDD) step
at the end of each iteration of ABP may be used to improve the decoding
performance [47]. The HDD variant consists of (a) performing hard decisions

on LLRs at the end of each iteration of ABP to obtain a codeword and, (b)
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selecting the most likely codeword at the end of the decoding process. This
variation improves the convergence and the performance of the iterative RS
decoder [47].
7.1.2 Turbo-Oriented Adaptive Belief Propagation

The TAB is a new method for block turbo decoding using BP-based de-
coders as elementary SISO component decoders [45,46]. The TAB is inspired
by the ABP but it is less complex than the ABP and offers better decoding
performance. Figure 7-2 shows the principles of SISO block turbo decoding.
It includes sequential decoding of rows and columns of the component codes
and the iterative process. The “global/turbo” iterations, i, have to be distin-
guished from the iterations of the BP process that we call “local” iterations. As
mentioned earlier, the ABP requires the adaptation of H;, and the generation
of extrinsic information using BP in each local iteration. The Gaussian elimi-
nation used in the adaptation step of the ABP is a computationally-expensive
process. In the TAB, the adaption step is only performed at the beginning
of each global iteration (before the BP process). This means that the parity-
check matrix is the same during the BP process and no damping coefficient or
matrix adaptation is necessary during local iterations. Instead, the LLR up-
date is performed in the global iteration of turbo process using u coefficient.
This feature significantly reduces the complexity. In addition, the TAB out-
performs the ABP for block turbo decoding and provides performance close to
the Chase-Pyndiah algorithm [45,46].
7.2 The Stochastic Decoding Method

This section discusses the stochastic method for decoding high-density

linear block codes.
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Figure 7-2: Block turbo decoding.

7.2.1 High-Degree Stochastic Nodes

The parity-check matrix of an RS or BCH code is a dense matrix which
results in a factor graph with high-degree nodes. For instance, the factor graph
of the (63,55) RS code used in this chapter has 378 VNs and 48 PNs over
GF(2%). The maximum degrees of VNs and PNs are 34 and 184, respectively,
and about 77% of VNs have a d, > 20. In this respect, it is essential to
construct high-degree stochastic VN based on the method proposed in Section
3.2 to provide enough switching activity in the decoder and to significantly
alleviate the latching problem.
7.2.2 Representing Soft-Output Information

The ABP and the TAB rely on the parity-check matrix adaptation as well
as the reliability update scheme using BP. Both of these steps use the soft-
output information provided by BP. Since the BP-based decoders inherently
operate on reliabilities, they can be easily incorporated into the adaptation and
the update scheme. However, the situation is different for stochastic decoding
methods. Stochastic methods convert the channel reliabilities to stochastic
bit streams and the decoding proceeds entirely in a bit-serial fashion. To
incorporate the reliability update and adaptation steps, it is essential that

the stochastic decoding method provides soft-output information. For this
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purpose, we use the value of saturating up/down counters to represent soft-
output information [112]. In this technique, a counter is assigned to each VN.
The counter can be initialized to contain zero value. The counter is incre-
mented if the corresponding VN output is 1, unless the counter has reached
its maximum limit (4+U). Similarly, when the VN output is 0 the counter is
decremented, unless it has reached its minimum limit (—U). After a number
of decoding cycles, the contents of the counters can be converted to soft infor-
mation and the LLR update and the parity-check matrix adaptation steps can
be performed. Let V' be the value of a saturating up/down counter associated
with a VN (=U < V < +U). This value can be transformed into extrinsic

soft-information in the probability domain as [112]:

v+U

Pex -
U

(7.3)

Consequently, the corresponding extrinsic LLR of the VN is

Py U+V
Lext = log (#) = log (U V) s (74)
— Lext -

where log(+) indicates the natural logarithm operation.

To increase the efficiency of the counters, we update counters only with
regenerative (output) bits. This means that the counters are not updated
when their corresponding VNs are in the hold state. This technique prevents a
counter from being updated with the same bits when its VN is in the hold state.
Also, it provides a faster convergence for counters (i.e., output reliabilities) and
makes it possible to use counters with a smaller size. Note that as (7.4) shows,
the size and the value of a counter affects the reliabilities. In this respect, a
large size counter requires more decoding cycles to converge.

It should also be noted that the sign-bits of the up/down counters can

be used for the HDD method in RS decoding. In this case, a hard-decision is
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applied to V. Thus, a 0 sign-bit and a 1 sign-bit, respectively, indicate a —1
and a +1 decision, as discussed in Section 3.5.
7.2.3 Summary of the Stochastic Decoding Method

The stochastic decoding method starts with H, and Lcy. At the adap-
tation step, the parity-check matrix adaptation is performed to obtain H z(f)
as discussed in Section 7.1.1. After the adaptation step, LLRs are scaled and
transformed into stochastic bit streams as in (3.2). Stochastic decoding is then
applied to the adapted parity-check matrix H z(j) and proceeds by VNs and PNs
exchanging bits for a fixed number of decoding cycles. At the end of the last
decoding cycle, the contents of up/down counters are transformed into the ex-

trinsic LLRs, L%, according to (7.4). The LY

ext» ext

is then used to update LLRs
based on the ABP (for RS and BCH codes) or the TAB (for BCH block turbo
codes). For the case of RS decoding, the HDD is also applied to the contents
of counters. The decoding process is terminated as soon as all parity checks
are satisfied or if a maximum number of iterations, 7,,.¢, has been exhausted.
7.3 Decoding Performance Results

Classes of BCH, RS and BCH block turbo codes are considered for simu-
lation. Concerning BCH codes, extended BCH codes are considered since they
are more efficient than non-extended codes. A BPSK transmission with an av-
erage bit energy of Ej over an AWGN channel is assumed for each simulation.
The parity-check matrix adaption step for BCH and RS codes is done based
on the ABP. This step for BCH block turbo codes is performed based on the
TAB.

The decoding performance of a (128,120) BCH code is depicted in Figure
7-3(a). For this code, several decoding methods are employed: the Maxi-
mum A Posteriori (MAP) probability decoding, the ABP, the adaptive offset

MSA and stochastic decoding. For comparison, the uncoded BPSK and the

129



CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

Maximum-Likelihood (ML) lower bound [19] curves are also plotted. The val-
ues of the damping coefficient and number of adaptations are A = 0.2 and
Tmax = 1. The EM and IM lengths of M = 25 and L = 5 are used for the
stochastic decoding method. Stochastic decoding runs for a fixed number of
500 decoding cycles. No significant BER deviation is observed for (128,120)
BCH codes between the stochastic decoding and the floating-point ABP. The
floating-point offset MSA outperforms the ABP at low SNRs. As shown, to
achieve the same performance with the fixed-point adaptive offset MSA at least
6-bit precision is needed. The MAP decoding outperforms other methods by
about 0.25 dB at a BER of 1075 and achieves the asymptotic bound. However,
the MAP decoding of this BCH code requires a trellis with 256 states and 128
sections which is too complex for implementation.

Figure 7—4 shows the results obtained for (31,25) and (63,55) RS codes
over GF(2°) and GF(2%). In this figure, FER performance for Algebraic hard-
decision decoding, the ABP, the adaptive-MSA and, stochastic decoding are
shown. The values A = 0.05 and i,,,x = 20 are used for the (31,25) RS code.
For the (63,55) RS code these values are A = 0.115 and iy = 5. A scaling
parameter of v = 1.33 and the EM and IM lengths of M = 50 and L = 8 are
used for RS codes. Stochastic decoding runs for 500 decoding cycles and 750
decoding cycles, between each adaptation, for the (31,25) and the (63,55) RS
code, respectively. Similar to [47], after each iteration, i, the HDD is applied.
Stochastic decoding provides performance close to the ABP for both codes and
as shown in Figure 7—4(a), it outperforms the adaptive-MSA by more than 0.5
dB. To show the effect of EMs, Figure 7-4(b) depicts the performance of
stochastic decoding with M = 10. As shown, an early error-floor is observed

for short EM length.
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Figure 7-3: (a) Simulation results for a (128,120) BCH code. (b) Average
number of decoding cycles for stochastic decoding of (128,120) BCH code.

Results for a (256,121) block turbo code based on (16,11) BCH compo-
nent decoders and a (1024,676) block turbo code based on (32,26) BCH com-

ponent decoders are shown in Figure 7-5. For turbo decoding of these codes,
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Figure 7-4: Simulation results for (a) a (31,25) RS code over GF(2°) and (b)
a (63,55) RS code over GF(2°).

the traditional Chase-Pyndiah algorithm (with 6 global iterations and 16 error
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patterns), the TAB, the Turbo-oriented Adaptive MSA (TA-MSA), the Turbo-
oriented Adaptive Offset MSA (TA-Offset MSA), and the stochastic decoding
method (applied to the TAB algorithm) are employed for the SISO decoding
algorithm during the iterative process. Note that only 3 local iterations are
necessary during the BP process of the TAB algorithm and 6 global iterations
are sufficient for the two decoding methods based on the TAB algorithm. In
addition, no damping coefficient is necessary for the TAB algorithm. Instead,
the reduction of the extrinsic information effect is done during the soft infor-
mation computation [45,46]. The EM and IM lengths of M = 25 and L = 5,
and a fixed number of 500 decoding cycles are used for the (256,121) turbo
code. These parameters for the (1024,676) turbo code are M = 40, L = 5, and
1K decoding cycles. For the (256,121) turbo code, the results for the floating-
point TAB and the stochastic decoding method are close and show a decoding
loss of about 0.1 dB compared to the classical Chase-Pyndiah decoding at 1076
BER. For the (1024,676) turbo code, the decoding loss of stochastic decoding
at 10" BER is about 0.1 dB and 0.3 dB, compared to the floating-point TAB
and Chase-Pyndiah decoding, respectively. As shown, the TA-MSA results
in about 1 dB loss compared to stochastic decoding, and the fixed-point TA-
Offset MSA requires at least 4-bit precision to provide performance close to
stochastic decoding.
7.4 Complexity Comparison and Trade-Offs

This section compares the complexity of nodes in stochastic decoding
with their equivalent fully parallel fixed-point offset MSA implementation. As
results in the previous section show, the MSA has a performance loss of more
than 0.5 dB compared to stochastic decoding. Also, the performance loss of
algebraic hard-decision decoding is more than 1.5 dB. Therefore, to have a fair

complexity comparison, we compare the offset MSA with stochastic decoding.
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Figure 7-5: Simulation results for (a) a (256,121) BCH block turbo code and
(b) a (1024,676) BCH block turbo code.

As simulation results show, to have a performance close to stochastic decoding,

the offset MSA needs at least 4 bits of precision.
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A VN in the MSA obtains the sum of the all inputs and then subtracts each
input from this value to obtain the output for each edge. The VN operation
is usually done using two’s complement arithmetic. A PN in the MSA is more
complex and for each edge it needs to obtain the minimum absolute values of
all inputs except the input received from that edge. A PN also calculates the
sign-bit of each output by XORing all sign-bits of inputs except the sign-bits
of the input of that edge. In the Offset MSA, an offset value is also added to
each output. To reduce the hardware-complexity, the PN operation is usually
done using sign-magnitude arithmetic; therefore, both two’s complement to
sign-magnitude (T’s-SM) conversion and sign-magnitude to two’s complement
(SM-T’s) conversion units are needed in VNs (or PNs). An efficient method to
implement a PN in the MSA is to only find the first and the second minimum
of all inputs. This method requires much fewer operations when compared to
the conventional implementation of a PN (see [39] for details) and, hence, it is
considered in this chapter. Table 7-1 shows the 2-input operations needed in
a VN and a PN. As mentioned in previous chapters, a stochastic PN needs to
calculate the XOR of all inputs and then XOR this value with the input bit
of each edge to obtain the output bit for that edge. Therefore, the complexity
of the entire stochastic PN is equivalent to only the sign-bit calculation in the
MSA’s PN. Using the proposed structure in Figure 3-5(b), stochastic VNs can
be implemented based on 3d, — 6 subnodes where each subnode has one AND
gate, one NOR gate, and one IM (except for exit subnodes). Stochastic VNs
also use one comparator (to transform probabilities to stochastic streams [82]),
one up/down counter, and d, EMs.

Based on the maximum node degrees in the (63,55) RS code (i.e., d,=34
and d.=184) and the (1024,676) BCH turbo code (i.e., d,=5 and d.=16),

we compared the FPGA implementation of the stochastic nodes with their
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Table 7-1: Basic 2-input resources in the fixed-point Offset MSA and stochas-
tic nodes (FX: Fixed-point, ADD: adder, SUB: subtractor, CMP: comparator,
CNT: u/d counter).

Method || VN (degree d,) | PN (degree d..)
d, — 1 FX ADDs, d, + logyd, — 2 FX CMPs,
Offset d, FX SUBs, d.+ 4 FX ADDs,
MSA [39] d, T’s-SM conversion 2d. — 1 binary XORs,

2 SM-T"s conversion

1 FX CMP, 1 CNT, d, EMs,
Stochastic 3d, — 6 AND and NOR, 2d. — 1 binary XORs
2d, — 6 IMs

equivalent 4-bit offset MSA. Table 7-2 shows the implementation results on
a Xilinx Virtex-4 LX200 device based on occupied 4-input look-up-tables and
flip-flops. EMs and IMs with M =48 and L=8 were implemented using shift
register look-up-tables as in Chapter 3. As shown, stochastic VNs have less
complexity compared to VNs in the 4-bit offset MSA. For d, = 34, a stochastic
VN needs about 70% fewer look-up-tables and 81% fewer flip-flops. Stochastic
PNs have much less complexity compared to PNs in the offset MSA. A d. = 16
stochastic PN uses about 93% fewer look-up-tables than a d. = 16 offset
MSA PN. The complexity of a d. = 184 stochastic PN node is even less
than a d. = 16 PN in the 4-bit offset MSA. For this reason, the complexity
advantage over a d, = 184 PN in the offset MSA follows and we did not consider
the implementation. Such a node should calculate the first and the second
minimum of 184 inputs and have a very high complexity. It is also important
to note that an appealing complexity advantage of stochastic decoding is that
it needs % fewer wires in the interleaver, compared to the W-bit fixed-
point MSA. As mentioned in previous chapters, this advantage is important
because in the implementation of factor graphs, the number of (interleaver)

wires directly translates to the area complexity and, in fact, it becomes the

bottleneck of the overall hardware-complexity [13].
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Table 7-2: Implementation comparison on a Xilinx Virtex-4 XC4VLX200-
10FF1513 FPGA device (LUT: look-up-table, FF: flip-flop).

VN PN VN PN
Method d,=5 d.=16 d,=34 d.=184
4-bit Offset || 106 LUTs | 325 LUTs | 1363 LUTs not
MSA 48 FFs 0 FFs 280 FFs | considered
Stochastic 90 LUTs | 22 LUTs | 401 LUTs | 245 LUTs
24 FFs 0 FFs 52 FFs 0 FFs

Since the parity-check matrix adaptation hardware in both stochastic and
MSA decoding is similar, to provide an estimation of the order of area com-
plexity and operating clock frequency for the stochastic decoding method, we
instantiated all VNs, PNs and the interleaver of the (128,120) BCH code on
the Virtex-4 LX200 FPGA device. This implementation occupied 11438 4-
input look-up-tables (6% of available look-up-tables), 3184 flip-flops (1% of
available flip-flops), and achieved a clock frequency of 180 MHz after place-
and-route. In general, compared to the adaptive offset MSA or the ABP, the
stochastic approach needs more clock cycles for decoding and therefore has a
longer latency. However, resulting from their low hardware-complexity nodes
and much alleviated routing problem, stochastic decoders can achieve higher
clock frequency which helps them to provide an acceptable throughput. In ad-
dition, in stochastic decoders, the required average number of decoding cycles
is usually much less than the maximum number of decoding cycles, especially
at low BERs. The reason is that at low BERs there are only a few codewords
that require a large number of decoding cycles to decode and thus the his-
tograms of the number of decoding cycles used for decoding at low BERs are
highly concentrated around the average number of decoding cycles. Therefore,
instead of operating for a maximum number of decoding cycles for all received
codewords, early termination methods can be exploited to terminate decod-

ing as soon as a codeword is found for the sake of increasing the throughput.
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As demonstrated in previous chapters, such a termination method has a sig-
nificant impact on the throughput of a stochastic decoder and it also has a
straightforward hardware implementation. For example, syndrome checking
can be done based on XORing the sign-bits of up/down counters (i.e., hard-
decisions). Figure 7-3(b) depicts the average number of decoding cycles for
decoding the BCH code when syndrome checking is used as the termination
criteria. As shown, at BERs less than 4.1 x 1073, the average number of de-
coding cycles is about 100 (i.e., a throughput of about 230 Mb/s with a 180
MHz clock frequency).
7.5 Conclusion

This chapter investigated the application of stochastic decoding to the im-
portant classes of RS, BCH, and block turbo codes. Simulation results demon-
strated decoding performance close to the floating-point ABP and TAB. This
chapter also discussed the hardware-complexity and the throughput of the
stochastic approach and compared it with low-complexity fixed-point imple-
mentations of the ABP. It was shown that the hardware-complexity of stochas-
tic decoding on factor graphs with nodes of high-degree is significantly lower

than that of the offset MSA.
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Conclusion and Future Work

8.1 Advances

The edge-based rerandomization approach using EMs and TFMs, and the
node-based rerandomization approach using MTFMs are proposed for stochas-
tic decoding of state-of-the-art LDPC codes. The proposed approaches are the
first stochastic approaches in the literature for stochastic decoding of state-of-
the-art LDPC codes. They rely on the concept of regenerative and conserva-
tive bits, and efficient rerandomization of stochastic streams to alleviate the
latching problem. It was shown that these approaches are able to decode
state-of-the-art LDPC codes with competitive performance compared to the
practical LDPC decoding approaches.

We proposed hardware architectures and discussed FPGA and ASIC im-
plementations of the stochastic decoders. A (1024,512) and a (1056,528) EM-
based LDPC decoder are implemented in FPGA. The (1056,528) EM-based
decoder achieves a clock frequency of 222 MHz and a throughput of about 1.66
Gb/s at E,/Ny = 4.25 dB (a BER of 1078). The decoder latency is 3.3 pus. It
provides decoding performance within 0.5 dB and 0.25 dB of the floating-point
SPA with 32 and 16 iterations, respectively, and similar error-floor behavior.
The decoder uses less than 40% of the look-up-tables, flip-flops and IO ports
available on a Virtex-4 XC4VLX200 FPGA device. The proposed EM-based
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stochastic decoders are among the fastest and most resource-efficient FPGA
LDPC decoders reported in the literature.

The EM approach is resource-efficient in FPGAs and thus it is suitable
for FPGA implementations of stochastic LDPC decoders. However, this ap-
proach consumes a considerable silicon area when implemented in ASIC. The
TEM approach is therefore proposed to significantly reduce the silicon area
consumption of ASIC stochastic LDPC decoders. Various hardware architec-
tures for the implementation of TFMs are discussed. The TFM approach is
applied for ASIC implementation of a (1056,528) TFM-based LDPC decoder.
It was shown that the (1056,528) decoder with 8-bit TFMs occupies 40% and
65% less silicon area compared to (1056,528) decoders with 32-bit and 64-bit
EMs, respectively. Additionally, it was demonstrated that TFMs are able to
provide similar or better decoding performance compared to EMs.

Both EM and TFM approaches are based on the edge-based rerandom-
ization in which rerandomization units are assigned to each outgoing edge of
VNs. As a result, the decoder uses a high number of EMs or TFMs. We
proposed the node-based rerandomization approach using MTFMs in which
one rerandomization unit in each VN is used. This approach significantly re-
duces the number of rerandomization units used in a stochastic decoder and
thus the overall hardware-complexity of the stochastic decoder. The MTFM
approach is applied for ASIC implementation of a fully parallel stochastic
decoder that decodes the (2048,1723) RS-based LDPC code from the IEEE
802.3an (10GBASE-T) standard. The decoder occupies a silicon core area of
6.38 mm? in CMOS 90 nm technology, achieves a maximum clock frequency of
500 MHz, and provides a maximum core throughput of 61.3 Gb/s. The decoder
latency is 800 ns. The decoder has good decoding performance and error-floor

behavior and provides a BER of about 4 x 10713 at E},/Ny = 5.15 dB. The
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decoder’s area-per-coded-bit efficiency is 3115 pm? and its throughput-per-
coded-bit-per-area efficiency is 4.69 Mb/s/mm? (in CMOS 90 nm technology).
To the best of our knowledge, this decoder is the most area-efficient fully
parallel soft-decision LDPC decoder and it is one of the fastest fully parallel
soft-decision LDPC decoders reported in the literature.

In addition to LDPC decoding, we proposed the novel application of
stochastic decoding for joint decoding of LDPC codes and partial-response
channels. We considered the dicode partial-response channel and the EPR4
partial-response channel, which is a practical channel model considered in mag-
netic recording applications. The hardware architectures of stochastic dicode
and EPR4 channel detectors were presented. We demonstrated that in the case
of the dicode channel whose corresponding message-passing graph is acyclic,
it is possible to perform stochastic detection without using rerandomization
units. For the case of the EPR4 channel, whose message-passing graph has
a high number of length-4 cycles, TFMs are used to efficiently rerandomize
stochastic streams and alleviate the latching problem. Results demonstrated
the applicability of the stochastic approach for joint decoding of LDPC codes
and partial-response channels.

Finally, we investigated the application of the stochastic approach for
decoding linear block codes with high-density parity-check matrices on factor
graphs. We considered the stochastic decoding of RS codes, BCH codes and
BCH-based block turbo codes. Results showed that the stochastic approach
can be exploited in SISO decoding based on the ABP and the TAB. They
also demonstrated decoding performance close to floating-point iterative SISO
decoding while offering nodes with considerably lower complexity compared to

fixed-point SISO decoding.
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8.2 Future Work

Inspired by the results and based on intuitions gained from this work on
stochastic decoding of LDPC codes, several related research projects have be-
gun. In [78], non-binary EMs were used and stochastic decoding was extended
for decoding non-binary LDPC codes over GF(g). In [77], non-binary versions
of TFMs were used to reduce the decoding latency and increase the through-
put in stochastic decoding of non-binary LDPC codes over GF(g). In [53], it
was shown that the concept of TFMs can be applied in the log-domain. In this
respect, half-stochastic LDPC decoding was proposed in which VNs are based
on the SPA (in the log-domain) while PNs are in the stochastic domain. Also,
the concept of redecoding in stochastic LDPC decoders was introduced in [53].
It was shown that as a result of the random decoding trajectory in stochastic
decoding, it is possible to repeat the decoding experiment for several rounds
in order to improve the decoding performance and lower the error-floors of
LDPC codes.

In addition to the above-mentioned ongoing research projects, there are
other research possibilities that can be considered as related future work.
These potential research projects are briefly discussed as follows.

8.2.1 Power-Efficient Stochastic LDPC Decoders

The main focus of this dissertation was on the decoding performance,
silicon area consumption, throughput, and decoding latency of stochastic de-
coding. However, because the stochastic decoding approach has low silicon
area consumption, fast decoding convergence, and uses fewer physical wires in
the decoder chip (compared to conventional decoding approaches), it also has a
high potential for power-efficient LDPC decoding. In this respect, the power-
consumption analysis and comparison of EM, TFM, and MTFM stochastic

approaches would be valuable research work.
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8.2.2 Reduced-Latency Stochastic LDPC Decoders

In general, stochastic decoding has a longer decoding latency compared to
other decoding approaches. However, as histograms of the number of decoding
cycles used for decoding show, there are only few codewords that require a long
decoding latency; the majority of codewords decode very fast. In Chapter 5,
we used a postprocessing technique to enable the (2048,1723) MTFM-based
LDPC decoder to achieve a good BER decoding performance with less decod-
ing latency (i.e., 800 ns). Although this order of latency is acceptable for many
applications, there might be room for more improvement. In addition, our un-
derstanding of the effectiveness of the postprocessing technique was based on
heuristics and BER simulations. A better understanding can be developed to
both qualitatively and quantitatively justify the effectiveness of this technique.
8.2.3 Reconfigurable Stochastic LDPC Decoders

The FPGA and ASIC implementations presented in this dissertation are
based on the fully parallel design approach. In this approach, the whole factor
graph is implemented in hardware; therefore, this approach is usually suit-
able for applications where a fixed LDPC code is used, such as the 10Gb/s
Ethernet (10GBASE-T) standard. There are applications that are required to
support different LDPC codes (with different lengths and rates) depending on
the desired decoding performance and the channel condition (e.g., WiFi and
WiMAX). In such applications, reconfigurable stochastic decoders are required
whose architectures and implementations need to be investigated.

One possible approach to support reconfigurability is based on the par-
tially parallel LDPC decoding, where only a portion of the factor graph is
implemented in hardware. In applications such as WiMAX and WiFi, multi-
ple LDPC codes are designed in a way that allows for unified partially parallel

LDPC decoding. In a partially parallel stochastic LDPC decoder, memory
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blocks and the required control logic should be used to save the state of reran-
domization units and manage message-passing between different portions of
the factor graph. Also, different decoding schedules can be used in partially
parallel decoders whose effects on the latency and throughput of stochastic
decoding need to be investigated.

Another approach which can be suitable for some applications is to build
a fully parallel decoder that support different LDPC codes. For example, in
the WiMAX standard [3] there are multiple LDPC codes with different code
rates (which range from 1/2 to 5/6) and different code lengths (which range
from 576 to 2304). All the LDPC codes in this standard can be generated
by removing some rows and/or columns of the parity check matrix of the
(2304,1152) LDPC code (with rate 1/2). Therefore, it is possible to implement
a fully parallel stochastic LDPC decoder that decodes the (2304,1152) LDPC
code and to add extra control logic to deactivate some VNs, PNs and edges
according to the parity-check matrix of the target LDPC code. In [23], a
bidirectional interleaver architecture was proposed that can be used in fully
parallel stochastic LDPC decoders that support multi LDPC codes.
8.2.4 Different Channel Models

The AWGN and partial-response channels are the main channel models
used in this dissertation for stochastic decoding. Investigating the decoding
performance and hardware-complexity tradeoffs for communications systems
that have different channel characteristics (e.g., fading channels) would be an
interesting contribution.
8.2.5 Asynchronous Stochastic Decoding

The Muller’s C-element (also known as C-gate) is an asynchronous logic

component whose output reflects the inputs when the states of all inputs
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agree [68]. The output then remains in this state until all the inputs tran-
sit to another state. The operation of a C-element is similar to the basic
operation of a stochastic VN and the concept of regenerative and conservative
bits introduced in this dissertation. In a stochastic VN, if all the input bits
agree, the outgoing bit is regenerative and it is equal to the input bits. Other-
wise, the VN remains in a hold state. In addition, PNs in stochastic decoding
are based on combinational logic (XOR gates); therefore, they can be imple-
mented as asynchronous components. In this regard, asynchronous stochastic
decoding, at the both algorithm and hardware implementation levels, can be
considered as possible future work.
8.2.6 Quantum Stochastic Decoding

In stochastic computation, probabilities are encoded into streams of stoch-
astic bits and computation is performed on stochastic bit streams. In other
words, the statistic of a bit stream represents the original (encoded) probabil-
ity. In quantum computation, a quantum bit (referred to as “qubit”) can be
0, 1, or a superposition of both [69]. It is interesting to study the feasibility of
stochastic representation using quantum bits and to investigate the expression
of stochastic VNs” and PNs’ operations using quantum logic gates [69]. Such
a research study can potentially open doors for the application of quantum

computation for iterative decoding on graphs.
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APPENDIX A

Decoding Performance Results for
Various LDPC Codes

This appendix reports BER decoding performance results for stochastic
decoding of different LDPC codes. The reader should note that these results
are presented to demonstrate the applicability of the proposed stochastic ap-
proaches for decoding various LDPC codes with different lengths, rates, and
node degrees. In this regard, the parameters used for stochastic decoding of
these LDPC codes are not necessarily optimized for the best possible decoding
performance and/or lowest possible decoding latency.

A.1 Results for EM-Based Decoding

Figures A—1 to A—4 show the decoding performance of the EM approach.
In all simulations, an early termination criterion (based on syndrome checking)
is used until a maximum number of decoding cycles has been exhausted. The
(2000,1000) LDPC code used in simulations is a regular code with a girth of 8.
The (1536,1024) LDPC code and the (576,288) LDPC code are irregular codes
that belong to the WiMAX standard [3]. Also, the (648,540) LDPC code is
an irregular code from the WiFi standard [4].

A.2 Results for TFM-Based Decoding
Figures A-5 and A-6 show the decoding performance of the TFM ap-

proach. In all simulations, an early termination criterion (based on syndrome
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(2000,1000) regular LDPC code with dv=3 and dc=6
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Figure A-1: Performance of the EM approach for decoding a (2000,1000)
LDPC code.
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Figure A-2: Performance of the EM approach for decoding a (1536,1024)
LDPC code.
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Figure A-3: Performance of the EM approach for decoding a (648,540) LDPC

code.

Figure A—4: Performance of the EM approach for decoding a (576,288) LDPC

code.
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(1024,512) regular LDPC code with d,=3andd =6
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Figure A-5: Performance of the TFM approach for decoding a (1024,512)
LDPC code.

checking) is used until a maximum number of decoding cycles has been ex-
hausted. The (1024,512) LDPC code is a regular code with a grith of 8. The
(648,324) LDPC code is an irregular LDPC code that belongs to the WiFi
standard [4].
A.3 Results for MTFM-Based Decoding
To demonstrate the applicability of the MTFM approach for decoding
other LDPC codes, Figure A-7 depicts the performance of the MTFM ap-
proach for decoding a (1057,813) LDPC code chosen from [5]. This LDPC
code has maximum PN and VN degrees of 18 and 4, respectively. Figure A-7
also shows the decoding performance of the floating-point SPA with 32 and 16
iterations. At least 40 frame errors were counted for BERs less than 1077,
Similar to the proposed (2048,1723) stochastic LDPC decoder in Chapter

5, we used 6-bit input probabilities, 12-bit reduced-complexity MTFMs (with
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WiFi (648,324) irregular LDPC cdoe with dv=[2,3,12] and dC=[7,8]
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Figure A—6: Performance of the TFM approach for decoding a (648,324) LDPC
code.

T, =d, and T,,, = d,/2), and the same postprocessing and redecoding scheme
in our simulations. Also, an early termination criterion is used until a max-
imum of 400 decoding cycles has been exhausted. As shown, the proposed
MTFM approach (with postprocessing and redecoding scheme) has good de-
coding performance behavior in low BER regimes and at £,/Ny = 5.75 dB it

outperforms the SPA with 32 iterations.
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LDPC code. An early termination criterion until a maximum of 400 decoding
cycles is used.
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KEY TO ABBREVIATIONS

Acronym Significance

ABP Adaptive Belief Propagation

ASIC Application-Specific Integrated Circuit
AWGN Additive White Gaussian Noise

BCH Bose-Chaudhuri-Hocquenghem

BER Bit-Error-Rate

BP Belief Propagation

BPSK Binary Phase-Shift Keying

CMOS Complementary Metal-Oxide-Semiconductor
DC Decoding Cycle (i.e., stochastic decoding iteration)
dB Decibel

DRE Distributed Randomization Engine

EM Edge Memory

FER Frame-Error-Rate

FF Flip-Flop

FP Floating-Point

FPGA Field-Programmable Gate Array

FX Fixed-Point

GF Galois Field

IM Internal Memory
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LDPC

LFSR

LLR

LUT

MAP

ML

MSA

MTFM

PN

RS

SISO

SM-T’s

SNR

SPA

TAB

TA-MSA

TA-Offset MSA

T’s-SM

TFM

VLSI

VN

Low-Density Parity-Check

Linear Feedback Shift Register
Log-Likelihood Ratio

Look-Up Table

Maximum A Posteriori
Maximum-Likelihood

Min-Sum Algorithm

Majority-based Tracking Forecast Memory
Parity-check Node

Reed-Solomon

Soft-Input Soft-Output

Sign-Magnitude to Two’s Complement
Signal-to-Noise Ratio

Sum-Product Algorithm

Turbo-oriented Adaptive Belief propagation
Turbo-oriented Adaptive MSA
Turbo-oriented Adaptive Offset MSA
Two’s Complement to Sign-Magnitude
Tracking Forecast Memory
Very-Large-Scale Integration

Variable Node
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