
Stochastic Decoding of Low-Density

Parity-Check Codes

Saeed Sharifi Tehrani

Doctor of Philosophy

Department of Electrical and Computer Engineering

McGill University

Montreal, Quebec, Canada

January 2011

A thesis submitted to McGill University in partial fulfilment of the
requirements of the degree of Doctor of Philosophy

c© Saeed Sharifi Tehrani, 2011

DEDICATION

I dedicate this dissertation to my parents for their unconditional love and

support that made it possible.

ii

ACKNOWLEDGEMENTS

I consider myself fortunate to have been able to work in this doctoral re-

search with professors and talented scholars from universities in Canada, the

United States, and France. First and foremost, I would like to express my

sincere gratitude to my advisors, Prof. Warren J. Gross and Prof. Shie Man-

nor, for their guidance as well as their continuous encouragement and support

throughout this five-year journey.

I wish to thank Prof. Paul H. Siegel, my host advisor during a six-month

visit to the Center for Magnetic Recording Research (CMRR), University of

California, San Diego (UCSD). I benefited extensively from his vast knowl-

edge and experience, and was impressed by his open and warm personality.

The joint stochastic decoding of low-density parity-check codes and partial-

response channels, presented in Chapter 6 of this dissertation, was developed

during my visit to the CMRR, UCSD, in 2010.

I am thankful to Prof. Fabrice Labeau and Prof. Zeljko Zilic for taking

precious time to serve on my advisory committee. I am also thankful to Prof.

Vincent Gaudet at the University of Waterloo for helpful discussions and for

encouraging me to start my Ph.D. at McGill University. His interesting paper

with Anthony Rapley on stochastic decoding was the first inspiration for this

doctoral research. I would like to thank Prof. Chris Winstead at Utah State

University, and Prof. Sheryl L. Howard at Northern Arizona University, for

helpful discussions and their support during this doctoral research. I am also

indebted to my M.Sc. advisors at the University of Alberta, Prof. Bruce F.

Cockburn and Prof. Stephen Bates, for their kind support.

I would like to thank the coauthors of my publications for their collabora-

tions. I am thankful to Prof. Christophe Jego at the ENSEIRB-MATMECA

iii

Bordeaux, France, for his help in applying the stochastic decoding approach

to the turbo-oriented adaptive belief propagation. I would like to thank Ali

Naderi and Guy-Armand Kamendje for their help in the Verilog development

and place-and-routing of ASIC stochastic decoders. I also would like to thank

Bo Zhu for providing and discussing the initial results for stochastic Reed-

Solomon decoding, and Saied Hemati for his helpful suggestions on making

hard-decisions in stochastic decoders using majority criterion and on perform-

ing the tracking forecast memory operation using one adder/subtractor unit.

I am thankful to my officemates and my wonderful friends at McGill Uni-

versity and UCSD. They have filled the past five years of my life with so many

joyful moments.

I am sincerely grateful to my parents and my brother for always being

supportive and encouraging in my pursuit of academic excellence. I would like

to express my profound appreciation and deepest gratitude to my parents for

their constant care and love. Without them, I would not ever have completed

this dissertation.

I acknowledge the Natural Science and Engineering Research Council of

Canada (NSERC) for awarding the Alexander Graham Bell Canada Graduate

Scholarship (CGS Doctoral) and the Michael Smith Foreign Study Scholar-

ship. I also acknowledge the Fonds Québécois de la Recherche sur la Nature et

les Technologies (FQRNT) for awarding the Quebec International Internship

Scholarship. This doctoral research was financially supported by the NSERC,

the FQRNT, and the Canada Research Chair (CRC) funds. Also, research

work presented in Chapter 6 of this dissertation was supported in part by

the United States National Science Foundation (NSF) grant number CCF-

0829865. Results reported in Chapter 5 of this dissertation were obtained in

part thanks to the use of WestGrid and CLUMEQ computing resources.

iv

ABSTRACT

Low-Density Parity-Check (LDPC) codes are one of the most powerful

classes of error-control codes known to date. These codes have been consid-

ered for many recent digital communication applications. In this dissertation,

we propose stochastic decoding of state-of-the-art LDPC codes and demon-

strate it as a competitive approach to practical LDPC decoding algorithms.

In stochastic decoding, probabilities are represented as streams of ran-

dom bits using Bernoulli sequences in which the information is contained in

the statistics of the bit stream. This representation results in low hardware-

complexity processing nodes that perform computationally-intensive opera-

tions. However, stochastic decoding is prone to the acute problem of latching.

This problem is caused by correlated bit streams within cycles in the code’s fac-

tor graph, and significantly deteriorates the performance of stochastic LDPC

decoders.

We propose edge memories, tracking forecast memories, and majority-

based tracking forecast memories to address the latching problem. These

units efficiently extract the evolving statistics of stochastic bit streams and

rerandomize them to disrupt latching. To the best of our knowledge, these

methods are the first successful methods for stochastic decoding of state-of-

the-art LDPC codes.

We present novel decoder architectures and report on several hardware

implementations. The most advanced reported implementation is a stochas-

tic decoder that decodes the (2048,1723) LDPC code from the IEEE 802.3an

standard. To the best of our knowledge, this decoder is the most silicon area-

efficient and, with a maximum core throughput of 61.3 Gb/s, is one of the

fastest fully parallel soft-decision LDPC decoders reported in the literature.

v

We demonstrate the performance of this decoder in low bit-error-rate regimes.

In addition to stochastic LDPC decoding, we propose the novel applica-

tion of the stochastic approach for joint decoding of LDPC codes and partial-

response channels that are considered in practical magnetic recording appli-

cations. Finally, we investigate the application of the stochastic approach for

decoding linear block codes with high-density parity-check matrices on fac-

tor graphs. We consider Reed-Solomon, Bose-Chaudhuri-Hocquenghem, and

block turbo codes.

vi

ABRÉGÉ

À ce jour, les codes Low-Density Parity-Check (LDPC) font partie des

codes correcteurs d’erreurs les plus performants. Ces codes sont inclus dans

différents standards de communications numériques. Dans ce manuscrit, nous

proposons d’utiliser le décodage stochastique pour les codes LDPC. D’autre

part, nous démontrons que pour les codes LDPC, le décodage stochastique

représente une alternative réaliste aux algorithmes de décodage existants.

Dans le processus de décodage stochastique, les probabilités sont représent-

ées sous forme de séquences de Bernoulli. L’information est contenue dans la

statistique de ces flux binaires aléatoires. Cette représentation particulière

permet d’exécuter des calculs intensifs avec une faible complexité matérielle.

Cependant le décodage stochastique est enclin au problème du verrouillage

(“latching”). La corrélation entre les bits des différents flux au sein des cy-

cles du graphe biparti dégrade les performances du décodage stochastique des

codes LDPC.

Pour résoudre le problème du verrouillage, nous proposons trois solutions:

les mémoires de branche, les mémoires de suivi, et les mémoires de suivi à

majorité. Ces différents composants permettent de suivre l’évolution de la

statistique des flux binaires et de réintroduire des éléments aléatoires au sein

des séquences observées, minimisant ainsi le phénomène de verrouillage. À

notre connaissance, il s’agit là des premiers résultats probants permettant un

décodage stochastique efficace des codes LDPC.

Nous proposons de nouvelles architectures de décodeurs associées à leurs

implantations matérielles respectives. La plus perfectionnée des architectures

présentée ici est celle d’un décodeur stochastique pour le code LDPC (2048,1723)

associé au standard IEEE 802.3an. À notre connaissance, en comparaison avec

vii

l’état de l’art actuel, ce décodeur dispose du meilleur rapport vitesse/complexité.

Le débit maximum (au niveau du coeur), est de 61.3 Gb/s, il s’agit là du plus

rapide des décodeurs de codes LDPC à décisions souples connu à ce jour.

Nous présentons par ailleurs les performances de ce décodeur à très faible taux

d’erreurs binaire.

De plus, nous proposons d’appliquer le calcul stochastique au décodage

conjoint des codes LDPC et des canaux à réponse partielle qui est utilisé dans

les applications d’enregistrement magnétique. Enfin, nous étudions l’extension

du décodage stochastique au décodage des codes en blocs ayant une matrice

de parité à forte densité. Nous appliquons le décodage stochastique sur des

graphes biparti aux codes Reed-Solomon, Bose-Chaudhuri-Hocquenghem, et

aux turbocodes en blocs.

viii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

ABRÉGÉ . vii

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

1 Introduction . 1

1.1 Motivations . 1
1.2 Objectives . 5
1.3 Contributions . 6

1.3.1 List of Publications and Patent Applications 8
1.4 Dissertation Outline . 11

2 Background . 13

2.1 LDPC Codes and Iterative Decoding 13
2.1.1 Sum-Product Algorithm 15

2.2 Strategies and Challenges of Hardware Implementations of
LDPC Decoders . 17

2.3 Stochastic Computation . 20
2.3.1 Stochastic Representation 21
2.3.2 Main Stochastic Operations 22

2.3.2.1 Inversion . 22
2.3.2.2 Multiplication 22
2.3.2.3 Division . 23
2.3.2.4 Addition . 24

2.4 Early Stochastic Decoding Methods 24
2.4.1 Basic Stochastic Variable Node 26
2.4.2 Stochastic Parity-Check Node 26
2.4.3 The Latching Problem 27
2.4.4 Supernodes . 30
2.4.5 Scaling Channel Reliabilities 30

ix

3 Edge-Based Rerandomization Using Edge Memories 32

3.1 Edge Memories and Regenerative Bits 32
3.2 High-Degree Stochastic Nodes and Internal Memories 34
3.3 Scaling Channel Reliabilities 36
3.4 Effects on the Decoding Performance 38
3.5 A (1056,528) Fully Parallel EM-based LDPC Decoder 41

3.5.1 Decoder Specifications and Architecture 41
3.5.1.1 Scaling . 42
3.5.1.2 Probability to Stochastic Stream Conversion . . 42
3.5.1.3 Architecture of Variable Nodes 43
3.5.1.4 Hard-Decision using Saturating Up/Down

Counters . 45
3.5.1.5 Architecture of Parity-Check Nodes 45
3.5.1.6 Asynchronous Pipelining and Interleaver Design 47
3.5.1.7 Distributed Randomization Engine 49
3.5.1.8 Termination Criteria 50
3.5.1.9 Input/Output Unit 50

3.5.2 Performance and Tradeoffs 51
3.5.2.1 Decoding Performance 51
3.5.2.2 Area and Clock Frequency 52
3.5.2.3 Throughput . 53
3.5.2.4 Latency . 55

3.6 A (1024,512) Fully Parallel EM-based LDPC Decoder 56
3.7 Comparison . 57

3.7.1 Comparison with FPGA Fully Parallel Decoders . . . 58
3.7.2 Comparison with FPGA Partially Parallel Decoders . 59

3.8 Conclusion . 60

4 Edge-Based Rerandomization Using Tracking Forecast Memories . . 63

4.1 Tracking Forecast Memories 64
4.2 Hardware Realization of TFMs 67

4.2.1 General Architecture 67
4.2.2 Reduced-Complexity Architecture 68
4.2.3 Approximate Bit-Serial Architecture 69
4.2.4 Approximate Counter-Based Architecture 71

4.3 Comparison of TFM-based and EM-based Variable Nodes . . 72
4.4 Decoding Performance and Hardware-Complexity 74

4.4.1 Decoding Performance 74
4.4.2 Hardware-Complexity Comparison 77

4.5 Conclusion . 77

x

5 Node-Based Rerandomization Using Majority-Based Tracking
Forecast Memories . 79

5.1 Majority-Based Tracking Forecast Memories 80
5.2 Hardware Realization of MTFMs 83

5.2.1 General Architecture 83
5.2.2 Reduced-Complexity Architecture 84

5.3 Comparison of the Hardware-Complexity and Decoding
Performance of MTFMs with EMs and TFMs 85

5.4 A (2048,1723) Fully Parallel MTFM-based Stochastic LDPC
Decoder . 88

5.4.1 Decoder Architecture and Specifications 89
5.4.1.1 Random Number Generation 91
5.4.1.2 Early Decoding Termination Criterion 91
5.4.1.3 Redecoding and Postprocessing 93

5.5 Performance and Tradeoffs 94
5.5.1 Decoding Performance 94
5.5.2 Implementation Characteristics and Hardware-

Complexity . 96
5.5.3 Throughput . 97
5.5.4 Latency . 98
5.5.5 Input and Output Buffer Requirements 99

5.6 Comparison with State-of-the-Art ASIC LDPC Decoders . . 101
5.7 Conclusion . 102

6 Joint Stochastic Decoding of LDPC Codes and Partial-Response
Channels . 104

6.1 System Model . 104
6.2 Overview of Joint Message-Passing Decoding 105

6.2.1 Operation of Triangle Nodes 107
6.2.2 Operation of Bit Nodes 108

6.3 The Proposed Method . 109
6.3.1 Stochastic Triangle Nodes for the Dicode Channel

Detector . 110
6.3.2 Stochastic Triangle Nodes for the EPR4 Channel

Detector . 112
6.4 Decoding Performance Results 114
6.5 Estimation of Decoding Latency and Throughput 117
6.6 Stochastic Channel Detection and Log-Based LDPC Decoding120
6.7 Conclusion . 121

7 Stochastic Decoding of Linear Block Codes with High-Density
Parity-Check Matrices . 122

7.1 Overview . 123

xi

7.1.1 Adaptive Belief Propagation 123
7.1.2 Turbo-Oriented Adaptive Belief Propagation 126

7.2 The Stochastic Decoding Method 126
7.2.1 High-Degree Stochastic Nodes 127
7.2.2 Representing Soft-Output Information 127
7.2.3 Summary of the Stochastic Decoding Method 129

7.3 Decoding Performance Results 129
7.4 Complexity Comparison and Trade-Offs 133
7.5 Conclusion . 138

8 Conclusion and Future Work . 139

8.1 Advances . 139
8.2 Future Work . 142

8.2.1 Power-Efficient Stochastic LDPC Decoders 142
8.2.2 Reduced-Latency Stochastic LDPC Decoders 143
8.2.3 Reconfigurable Stochastic LDPC Decoders 143
8.2.4 Different Channel Models 144
8.2.5 Asynchronous Stochastic Decoding 144
8.2.6 Quantum Stochastic Decoding 145

A Decoding Performance Results for Various LDPC Codes 146

A.1 Results for EM-Based Decoding 146
A.2 Results for TFM-Based Decoding 146
A.3 Results for MTFM-Based Decoding 149

REFERENCES . 152

KEY TO ABBREVIATIONS . 162

xii

LIST OF TABLES
Table page

3–1 Irregular LDPC codes chosen from the IEEE 802.16e standard. . 42

3–2 Decoding parameters used. 51

3–3 Xilinx Virtex-4 XC4VLX200-11FF1513 device utilization (LUT:
4-input look-up-table, FF: flip-flop). 52

3–4 Comparison of FPGA-based fully parallel LDPC decoders (LUT:
4-input look-up-table, FF: flip-flop, LE: Logic Element). 62

4–1 Hardware-complexity of TFM-based and EM-based degree-6
VNs in CMOS 90nm technology. 74

4–2 Synthesis results for EM-based and TFM-based (1056,528)
stochastic LDPC decoders in CMOS 90nm technology. All
decoders are synthesized for 500 MHz clock frequency. 78

5–1 Hardware-complexity of degree-6 VNs and degree-32 PN in
CMOS 90nm technology. 88

5–2 Summary of the ASIC implementation results for the (2048,1723)
MTFM-based stochastic LDPC decoder. 96

5–3 Comparison with some state-of-the-art high throughput soft-
decision ASIC LDPC decoders. 103

7–1 Basic 2-input resources in the fixed-point Offset MSA and
stochastic nodes (FX: Fixed-point, ADD: adder, SUB: sub-
tractor, CMP: comparator, CNT: u/d counter). 136

7–2 Implementation comparison on a Xilinx Virtex-4 XC4VLX200-
10FF1513 FPGA device (LUT: look-up-table, FF: flip-flop). . . 137

xiii

LIST OF FIGURES
Figure page

1–1 The schematic diagram of a communication system. 2

2–1 A typical factor graph and the interleaver for a full-rank (n, k)
LDPC code. A length-4 cycle is dashed. In a conventional
implementation with W -bit representation of messages, each
edge requires 2W wires (for two directions). 14

2–2 Message-passing in the SPA. 16

2–3 Some possible streams for a probability of 0.8125. 21

2–4 Probability to stochastic stream conversion. 22

2–5 Stochastic multiplication [32]. 23

2–6 Stochastic division [32]. 23

2–7 Approximate stochastic addition [32]. 24

2–8 Scaled stochastic addition [16]. 25

2–9 The structure of a basic stochastic variable node [36]. 26

2–10 The structure of a stochastic parity-check node [36]. 27

2–11 Decoding performance of the early scholastic decoding method
for decoding (a) a (200,100) LDPC code and (b) a (1024,512)
LDPC code. 28

2–12 An example of latching within a length-4 cycle in a factor graph. 29

2–13 Structure of supernodes used (a) in [97] and (b) in [37]. 31

3–1 An EM is implemented as an M -bit shift register with a single
selectable bit. 34

3–2 (a) A structure which is not suitable for high-degree VNs.
(b) An example of constructing a high-degree VN based on
low-degree subnodes. 36

3–3 (a) Percentage of holds on the output of two dv = 9 VNs
based on structures in Figure 3–2(a) and Figure 3–2(b), P1

is varying and P2 = ... = P8 = 0.9. 37

xiv

3–4 The construction of a VN based on IMs for low-degree sub-VNs.
An EM is only used for the exit edge. 37

3–5 The proposed low complexity structure for the implementation
of a degree-16 stochastic VN. 38

3–6 The structure of a degree-16 stochastic PN based on 2-input
binary XORs. 39

3–7 Performance of the EM-based approach for decoding (a) a
(200,100) code and (b) a (1024,512) code. A high maximum
number of decoding cycles is used to show that the significant
performance loss (for the case in which EMs and scaling are
not used) is not improved by increasing the decoding latency. 40

3–8 Conversion of channel probabilities to stochastic streams. 43

3–9 Architectures of (a) a degree-2 VN, (b) a degree-3 VN, and (c)
a degree-6 VN based on IMs and an EM (in each figure, only
one output and its corresponding inputs are shown). 46

3–10 Architecture of a degree-7 stochastic PN. The “parity-check
satisfied” signal is used for termination criteria. 47

3–11 Decoding performance of the implemented (1056,528) irregular
stochastic decoder. 52

3–12 Decoding performance of the (1056,704) irregular stochastic
decoder. 53

3–13 Histograms of TAVG at different SNRs (based on 1 million
blocks). Each decoding cycle takes one clock cycle. 54

3–14 TAVG and throughput of the decoder at different SNRs (based
on 1 million blocks). Each decoding cycle takes one clock cycle. 55

3–15 Decoding performance of the (1056,528) stochastic decoder over
decoding cycles. Each decoding cycle takes one clock cycle. . . 56

3–16 Decoding performance of the (1024,512) stochastic decoder. . . . 57

4–1 EMs or TFMs are used for rerandomization/decorrelation of
stochastic streams and are assigned to each outgoing edge of
stochastic VNs. 64

4–2 Structure of a degree-2 stochastic VN (only one output and its
corresponding inputs are shown). An EM or a TFM can be
used as a rerandomization unit. 65

xv

4–3 The dependence of output probability on previous input bits in
(a) TFM with β = 2−5, (b) EM with M = 32 bit length and,
(c) approximate bit-serial TFM with M = 32 bit length and
β = 2−5. 67

4–4 (a) The convergence speed and (b) the corresponding estimation
error of a TFM for different values of β(t). 68

4–5 General architecture of a TFM. β(t) can change and take any
value in the [0,1] interval. 69

4–6 Architecture of a reduced-complexity TFM. β(t) is a negative
power of 2. 70

4–7 Architecture of an approximate bit-serial TFM. inCH is the
input stochastic bit from the channel and Ps = β 71

4–8 Architecture of an approximate counter-based TFM. 72

4–9 Comparison of decoding performance of EMs and TFMs. 73

4–10 Decoding performance results for a (1056,528) LDPC code
(FP:floating-point, FX:fixed-point). 76

5–1 An MTFM-based stochastic decoder uses one MTFM per VN. . 80

5–2 The structure of a degree-6 MTFM-based stochastic VN. PCH

is the channel probability, R(t) and RA are (pseudo) uniform
random numbers, rai is a random bit, and IM refers to
internal memory. 82

5–3 General architecture of an MTFM. Tu is a fixed threshold for
updating the TFM and Tm is the majority threshold. 84

5–4 Architecture of a reduced-complexity MTFM. r(t) is the most
significant bit (MSB) of X(t). 85

5–5 Extracted output probability of an edge in degree-6 TFM-based
and MTFM-based VNs. Both VNs receive the same input
stream. 86

5–6 Comparison of decoding performance of EM-based, TFM-based,
and MTFM-based stochastic decoding approaches. 87

xvi

5–7 The (2048,1723) stochastic decoder is implemented using 32 VN
blocks in which each block contains 64 degree-6 VNs. Each
block receives 384 input bits from each one of its neighbor
blocks and outputs 384 bits to each of them. To form the
parity-check equation, each VN inside a block XORs its
output bit with the input receives from the neighboring block
and passes it to the next neighboring block. The VN also
XORs the inputs received from neighbor blocks to from its
input bit. One level of flip-flops is used after every 8 VN
blocks to break long wires. 92

5–8 Decoding performance of the MTFM-based stochastic decoder.
The stochastic decoder uses early termination until a maxi-
mum of 400 decoding cycles has been exhausted. 95

5–9 The stochastic decoder chip layout. 97

5–10 Average number of decoding cycles used (left y-axis) for decod-
ing at different SNRs and the corresponding core throughput
(right y-axis) for the achieved clock frequency of 500 MHz.
Each decoding cycle takes one clock cycle. 98

5–11 Histograms of decoding cycles used for decoding codewords
at different SNRs. One million codewords used for each
histogram. µ is the average number of decoding cycles and
σ is the standard deviation. Each decoding cycle takes one
clock cycle. 99

5–12 Decoding performance versus latency (in nanoseconds) at
Eb/N0 = 5.15 dB. A BER of about 10−12 is achieved with
about 580 ns maximum decoding latency (i.e., maximum
290 decoding cycles). The shown 800 ns latency corresponds
to the maximum 400 decoding cycles with the achieved 500
MHz clock frequency. Each decoding cycle takes one clock
cycle. 100

5–13 Probability of codeword overflow for different sizes of (a) input
buffer and (b) output buffer at Eb/N0 = 5.15 dB. 101

6–1 System model. 105

6–2 Joint message-passing diagram for decoding LDPC codes and
partial-response channels. d is the degree of the partial-
response channel. 106

xvii

6–3 (a) The message-passing diagram for the dicode channel with
h(D) = 1 − D. The p-th triangle node is connected to
bit nodes numbered p and p − 1. (b) The message-passing
diagram for the EPR4 channel with h(D) = 1+D−D2−D3.
The p-th triangle node is connected to bit nodes numbered
p, p − 1, p − 2, and p − 3. A length-4 cycle is highlighted in
the graph. 107

6–4 The hardware architecture of a stochastic triangle node for the
dicode channel (only one output and its corresponding inputs
are shown). 112

6–5 The hardware architecture of stochastic triangle node for the
EPR4 channel (only one output and its corresponding inputs
are shown). R(t) is a (pseudo) random number varying in
every decoding cycle. 115

6–6 Decoding performance of the stochastic approach for joint
decoding of a (2000,1000) LDPC code and the dicode partial-
response channel. 117

6–7 Decoding performance of the stochastic approach for joint
decoding of a (2000,1000) LDPC code and the EPR4 partial-
response channel (FP: floating-point). 118

6–8 Estimated latency of joint stochastic decoding for different clock
frequencies. 119

6–9 (a) Average number of decoding cycles used for joint stochastic
decoding at different SNRs. (b) Estimated (core) throughput
for joint stochastic decoding of the (2000,1000) LDPC code
and the dicode channel. (c) Estimated (core) throughput for
joint stochastic decoding of the (2000,1000) LDPC code and
the EPR4 channel. 120

7–1 Form of an adapted parity-check matrix in the ABP [47]. 125

7–2 Block turbo decoding. 127

7–3 (a) Simulation results for a (128,120) BCH code. (b) Average
number of decoding cycles for stochastic decoding of (128,120)
BCH code. 131

7–4 Simulation results for (a) a (31,25) RS code over GF(25) and
(b) a (63,55) RS code over GF(26). 132

7–5 Simulation results for (a) a (256,121) BCH block turbo code
and (b) a (1024,676) BCH block turbo code. 134

xviii

A–1 Performance of the EM approach for decoding a (2000,1000)
LDPC code. 147

A–2 Performance of the EM approach for decoding a (1536,1024)
LDPC code. 147

A–3 Performance of the EM approach for decoding a (648,540)
LDPC code. 148

A–4 Performance of the EM approach for decoding a (576,288)
LDPC code. 148

A–5 Performance of the TFM approach for decoding a (1024,512)
LDPC code. 149

A–6 Performance of the TFM approach for decoding a (648,324)
LDPC code. 150

A–7 Performance of the MTFM approach for decoding a (1057,813)
LDPC code. An early termination criterion until a maximum
of 400 decoding cycles is used. 151

xix

CHAPTER 1

Introduction

1.1 Motivations

Error-control coding (channel coding) is a powerful technique in digi-

tal communications used to ensure reliable communication over an unreliable

channel. In this technique, error-control codes are used to efficiently add re-

dundant structure to the transmitted data to allow the receiver to detect and

correct errors introduced during passage through a noisy and distorting com-

munication channel (see Figure 1–1). Error-control coding has evolved since

the advent of information theory by Shannon in 1948 [81] and it has become

essential in a wide variety of modern applications [22]. In particular, error-

control coding has received a lot of attention in recent years because of the

significant progress in designing powerful error-control codes as well as the

progress in Very-Large-Scale Integration (VLSI) technology, which has facili-

tated the hardware implementation of computationally-complex decoding al-

gorithms.

Among different classes of error-control codes, Low-Density Parity-Check

(LDPC) codes [33, 34] are one of the most powerful classes known to date.

LDPC codes have been considered as forward error correction in several recent

communication applications and standards including digital video broadcast-

ing (DVB-S2) [1], 10 Gb/s Ethernet (IEEE 802.3an or 10GBASE-T) stan-

dard [2], broadband wireless access (IEEE 802.16e or WiMAX) standard [3],

1

CHAPTER 1. Introduction

Figure 1–1: The schematic diagram of a communication system.

wireless local area network (IEEE 802.11n or WiFi) standard [4], and deep-

space communications [9]. LDPC codes were invented by R. G. Gallager in

1962 [34]. Gallager discovered and applied an iterative decoding algorithm to

a new class of error-control codes. He named these codes low-density parity-

check codes, because their parity-check matrices had to be sparse in order to

have good performance. However, LDPC codes had been ignored for almost

three decades mainly because of the requirement for high complexity compu-

tation, particularly for LDPC codes with long code length. The advent of

turbo codes in 1993 [12] and the observation of their remarkable “capacity-

approaching” performance raised many questions and triggered many research

efforts toward iterative decoding. Turbo codes made it possible to get within

a few tenths of a decibel (dB) away from the Shannon capacity limit at a

Bit-Error-Rate (BER) of 10−5. This in fact started a new paradigm in the

design of error correcting codes, which led to the rediscovery of LDPC codes

in 1995 [57, 58], and graph-based codes. Like Turbo codes, LDPC codes were

demonstrated to perform very close to the Shannon limit when decoded itera-

tively on graphs using a message-passing algorithm such as the Sum-Product

Algorithm (SPA) [20, 56, 58, 75]. It was also shown that iterative LDPC de-

coding and turbo decoding of turbo codes are instances of the Pearl’s belief

2

CHAPTER 1. Introduction

propagation algorithm [72], collecting LDPC codes and Turbo codes under the

same model [57,58,62]. In addition, the graph-based code-description became

a common way of representing error correcting codes [50].

An LDPC code and its iterative decoding can be graphically represented

by a factor graph [50]. A factor graph is a bipartite graph which consists of

two different groups of processing nodes: Variable Nodes (VNs) and Parity-

check Nodes (PNs). The VN and PN groups in a factor graph are connected to

each other by bidirectional edges. The connection between VNs and PNs are

defined by the parity-check matrix of the code. Iterative decoding of LDPC

codes usually involves message-passing between VNs and PNs over the edges

of the factor graph for some number of decoding iterations. These messages

represent the VNs’ and PNs’ beliefs (in the form of probabilities) about the

correctness of the received information from the channel. In general, LDPC

decoders can be categorized into fully parallel and partially parallel decoders.

In a fully parallel decoder the entire factor graph is implemented in hardware,

while in a partially parallel decoder a portion of the graph is implemented

and, hence, hardware resource sharing and memory blocks are employed to

compute, save and pass probability messages between different portions of the

factor graph.

Despite the excellent error-correcting performance of LDPC codes, the

hardware implementation of LDPC decoders is complex and challenging [13,

24–26, 28, 90, 107], hence, an LDPC decoder is often implemented optionally,

as an additional premium, in communication systems (e.g., in [3, 4]). Pow-

erful LDPC codes usually have long code lengths. Also, their parity-check

matrix usually imposes random-like/irregular connections between VNs and

PNs. In this respect, a fully parallel hardware implementation of a capacity-

approaching LDPC decoder usually requires the implementation of thousands

3

CHAPTER 1. Introduction

of processing nodes in a silicon chip. In addition, thousands of physical wires

are needed in the silicon chip to accommodate message-passing between VNs

and PNs. For instance, a decoder for the LDPC code that is considered for

the 10Gb/s Ethernet standard [2], has 2048 VNs and 384 PNs. Each VN

communicates with six PNs in each decoding iteration. Therefore, by using

W -bit quantization to represent probability messages passed between nodes

in a fully parallel implementation, a total of 2048 × 6 × 2 × W = 24576 × W

physical wires are needed between PNs and VNs (in both the input and output

directions). Using 4-bit and 6-bit quantization, the number of physical wires

between VNs and PNs in the decoder chip is 98304 and 147456, respectively.

The high number of processing nodes and the abundant number of physical

wires make the chip consume a large silicon area. In addition, the random-like

connections between VNs and PNs result in long and random physical wires

and interconnections across the chip, which causes routing congestion. These

long wires also limit the clock frequency and the throughput of the decoder

and increase its power consumption [13, 25, 26, 28]. In partially parallel de-

coders, the large and irregular communication network between VNs and PNs

results in large memory blocks and address generation units with high power

consumption. Another challenge in the design of LDPC decoders is that sim-

plifying the decoder hardware by using a low number of quantization levels

can degrade the error-correcting behavior of an LDPC decoder, particularly,

in low BER regimes where LDPC codes are usually supposed to operate [111].

Conversely, most modern communication applications require high through-

put decoding while demanding low silicon area and power consumption, as

well as good decoding performance in low BER regimes. These challenges

4

CHAPTER 1. Introduction

have made efficient LDPC decoding a focal point of research at both the the-

oretical/algorithm level and the hardware implementation level (see Section

2.2).

To address the above-mentioned problems, this work proposes the stochas-

tic decoding of practical capacity-approaching LDPC codes on factor graphs.

Stochastic decoding is a new approach for iterative decoding on graphs. This

approach is inspired by the method of stochastic computation developed in

the 1960’s [32]. In stochastic decoding, instead of propagating probabilistic

beliefs by exchanging distinct probability messages, as in the conventional

message-passing algorithms, beliefs are conveyed in streams of stochastic bits

in a sense that the probability of observing a “1” in a stream is equal to the

original (encoded) probability. Therefore, VNs and PNs exchange beliefs in a

bit-serial manner along the edges of the graph. Stochastic decoding reduces

the hardware-complexity of processing nodes in an LDPC decoder and, more

importantly, it significantly reduces the number of physical wires between pro-

cessing nodes. The first stochastic decoding method was proposed in [36, 74].

However, stochastic decoding methods prior to this work (i.e., [36,37,74,95,97])

resulted in significant decoding performance loss compared to the conventional

iterative LDPC decoding methods and thus were not practical solutions for de-

coding LDPC codes (see Section 2.4).

1.2 Objectives

The objectives in this work are to develop stochastic decoding approaches

that (a) can decode practical capacity-approaching LDPC codes on factor

graphs, (b) have area-efficient hardware implementations, (c) achieve high

throughput, and (d) provide good decoding performance, especially in low

BER regimes.

5

CHAPTER 1. Introduction

1.3 Contributions

This dissertation proposes stochastic decoding as a new competitive ap-

proach for decoding state-of-the-art LDPC codes on factor graphs.

We propose edge-based rerandomization using Edge Memories (EMs) [82,

85,86] as the first successful stochastic approach in the literature for decoding

practical capacity-approaching LDPC codes on factor graphs. We also pro-

pose a fully parallel decoder hardware architecture for the EM-based stochas-

tic LDPC decoding and discuss its novel architectural features. We apply

this architecture to decode an irregular state-of-the-art (1056,528) LDPC code

(chosen from the WiMAX standard [3]) on a field-programmable gate-array

(FPGA) device. This decoder is the first stochastic LDPC decoder architec-

ture in the literature that decodes a practical LDPC code. The implemented

decoder achieves a clock frequency of 222 MHz and a maximum throughput of

about 1.66 Gb/s on FPGA. The EM-based stochastic decoder provides good

decoding performance behavior at low BERs. We demonstrate the perfor-

mance of this decoder down to a BER of about 10−8 and compare it with

other decoding approaches. We show that the proposed decoder provides a

performance within 0.5 dB and 0.25 dB of the floating-point SPA with 32 and

16 iterations, respectively. We compare this decoder with other high through-

put FPGA-based fully parallel LDPC decoders in detail and demonstrate that

this decoder is one of the fastest and most resource-efficient FPGA-based fully

parallel LDPC decoders.

We consider the ASIC implementations of stochastic LDPC decoders.

We discuss ASIC implementation challenges of EM-based stochastic decod-

ing and propose edge-based rerandomization using Tracking Forecast Mem-

ories (TFMs) [87, 88] to significantly reduce the silicon area consumption of

6

CHAPTER 1. Introduction

ASIC stochastic decoders. By comparing EM-based decoders with the TFM-

based LDPC decoders, we show that TFM-based decoders provide similar or

better decoding performance compared to EM-based decoders while having

about 40% to 65% less silicon area consumption. The ASIC TFM-based de-

coder proposed in this dissertation is the first ASIC stochastic LDPC decoder

reported in the literature.

We propose node-based rerandomization using Majority-based Tracking

Forecast Memories (MTFMs) [89] for area-efficient high throughput ASIC im-

plementation of stochastic LDPC decoders. We apply the MTFM approach for

ASIC implementation of a fully parallel stochastic decoder that decodes the

(2048,1723) LDPC code from the IEEE 802.3an (10GBASE-T) standard [2].

This stochastic decoder occupies a silicon core area of 6.38 mm2 in CMOS 90

nm technology, achieves a maximum clock frequency of 500 MHz, and provides

a maximum core throughput of 61.3 Gb/s. The decoder also has good decod-

ing performance and error-floor behavior. We investigate and demonstrate its

decoding performance down to a low BER of about 4 × 10−13. We compare

this decoder with several recent ASIC LDPC decoders in detail. To the best

of our knowledge, the proposed MTFM-based stochastic LDPC decoder is the

most silicon area-efficient fully parallel soft-decision LDPC decoder and it is

one of the fastest fully parallel LDPC decoders reported in the literature.

In addition to stochastic LDPC decoding, we consider other applications

of the stochastic approach. We propose the novel application of stochas-

tic decoding for joint message-passing decoding of LDPC codes and partial-

response channels that are considered in practical magnetic recording appli-

cations. We propose low hardware-complexity stochastic processing nodes

to perform computationally-intensive operations required in partial-response

channel detectors. We present decoding performance results for the dicode

7

CHAPTER 1. Introduction

partial-response channel and the Extended Class-4 Partial-Response (EPR4)

channel, and discuss the throughput and latency of the proposed method.

Finally, we investigate stochastic decoding of linear block codes with high-

density parity-check matrices on factor graphs [83]. Stochastic decoding was

previously applied to Reed-Solomon (RS) codes in [112]. In this dissertation,

we further investigate stochastic RS decoding and extend the application of

stochastic decoding to Bose-Chaudhuri-Hocquenghem (BCH) codes and BCH-

based turbo block codes. We also propose efficient hardware implementations

of high-degree nodes used in the decoding of linear block codes with high-

density parity-check matrices on factor graphs. Results demonstrate decod-

ing performance close to floating-point iterative soft-input soft-output (SISO)

decoding while offering nodes with considerably lower complexity compared

to fixed-point SISO decoding. These results are the first results reported in

the literature for stochastic decoding of Bose-Chaudhuri-Hocquenghem (BCH)

codes and BCH-based turbo block codes.

1.3.1 List of Publications and Patent Applications

This doctoral research has resulted in the following publications and patent

applications:

• Published or Accepted Journal Articles:

i S. Sharifi Tehrani, C. Winstead, W. J. Gross, S. Mannor, S. Howard, and

V. C. Gaudet, “Relaxation Dynamics in Stochastic Iterative Decoders,”

IEEE Transactions on Signal Processing, vol. 58, no. 11, November

2010, pp. 5955-5961.

ii S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Man-

nor, and W. J. Gross, “Majority-Based Tracking Forecast Memories for

Stochastic LDPC Decoding,” IEEE Transactions on Signal Processing,

vol. 58, no. 9, September 2010, pp. 4883-4896.

8

CHAPTER 1. Introduction

iii S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor, and W. J.

Gross, “Tracking Forecast Memories for Stochastic Decoding,” Invited

paper by Journal of Signal Processing Systems, Special Issue on the

DISPS Track of IEEE ICASSP 2009, Springer Publishing, To Appear

(online publication: January 2010), DOI: 10.1007/s11265-009-0441-5.

iv S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Fully Parallel Stochastic

LDPC Decoders,” IEEE Transactions on Signal Processing, vol. 56, no.

11, November 2008, pp. 5692-5703.

v S. Sharifi Tehrani, C. Jego, B. Zhu, and W. J. Gross, “Stochastic Decod-

ing of Linear Block Codes with High-Density Parity-Check Matrices,”

IEEE Transactions on Signal Processing, vol. 56, no. 11, November

2008, pp. 5733-5739.

vi S. Sharifi Tehrani, W. J. Gross, and S. Mannor, “Stochastic Decoding of

LDPC Codes,” IEEE Communications Letters, vol. 10, no. 10, October

2006, pp. 716-718.

• Peer-Reviewed Conference Papers:

i S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor, and W. J.

Gross, “Tracking Forecast Memories in Stochastic Decoders ,” Proceed-

ings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), April 2009, Taipei, Taiwan, pp. 561-564.

ii S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “An Area-efficient FPGA

based Architecture for Fully-Parallel Stochastic LDPC Decoding,” Pro-

ceedings of the IEEE International Workshop on Signal Processing Sys-

tems (SiPS), October 17-19, 2007, Shanghai, China, pp. 255-260.

9

CHAPTER 1. Introduction

iii S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Survey of Stochastic

Computation on Factor Graphs,” Proceedings of the 37th IEEE Interna-

tional Symposium on Multiple-Valued Logic (ISMVL), May 14-16, 2007,

Oslo, Norway, pp. 54-59.

• Workshop Papers:

i S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “A Novel Architecture for

Fully-Parallel Stochastic LDPC Decoders,” presented at the 7th annual

Analog Decoding Workshop (ADW 2008), July 12th, 2008, Logan, USA.

ii S. Sharifi Tehrani, W. J. Gross, and S. Mannor, “Stochastic Decoding of

LDPC Codes,” presented at the 6th annual Analog Decoding Workshop

(ADW 2007), May 24-25, 2007, Montreal, Canada.

• Submitted Patent Applications:

The following patent applications have been filed by the office of technol-

ogy transfer at McGill University:

i S. Sharifi Tehrani, P. H. Siegel, S. Mannor, and W. J. Gross,“Method for

Joint Decoding of LDPC Codes and Partial-Response Channels and Ap-

paratuses Thereof,” United States Patent Application 61/433,997, Filed

in January 2011.

ii S. Sharifi Tehrani, S. Mannor, and W. J. Gross,“Method and Systems

for Improving Iterative Signal Processing,” United States Patent Appli-

cation 12/566,829, Filed in September 2009.

iii S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Methods and Appa-

ratuses of Mathematical Processing,” United States Patent Application

12/250,830, Filed in October 2008.

iv S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Method for Imple-

menting Stochastic Equality Nodes,” United States Patent Application

12/153,749. Filed in May 2008.

10

CHAPTER 1. Introduction

1.4 Dissertation Outline

Chapter 2 provides background materials. It reviews LDPC codes, the

SPA, the strategies and challenges of hardware implementation of LDPC de-

coders, stochastic computation and its benefits, and early stochastic decoding

methods. Chapter 2 is in part based on the material in our papers [82, 84].

Chapter 3 proposes the EM approach as the first successful stochastic

method for decoding state-of-the-art LDPC codes. It also proposes the first

hardware architecture for stochastic decoding of practical Low-Density Parity-

Check (LDPC) codes on factor graphs. Chapter 3 is in part based on the

material in our papers [82, 85, 86].

Chapter 4 focuses on ASIC implementations of stochastic LDPC decoders.

It discusses the silicon area complexity of stochastic decoders and proposes the

TFM approach to significantly reduce the hardware-complexity of stochastic

decoders for ASIC implementation. It proposes the first ASIC architecture

for stochastic decoding of LDPC codes on factor graphs. Chapter 4 is in part

based on the material in our papers [87–89]

Chapter 5 continues the theme of Chapter 4 on ASIC implementation of

stochastic decoders. It proposes MTFMs for area-efficient high throughput

ASIC implementation of stochastic LDPC decoders. The proposed method

is applied for the ASIC implementation of a fully parallel stochastic decoder

that decodes the (2048,1723) LDPC code from the IEEE 802.3an (10GBASE-

T) standard. To the best of our knowledge, this implemented decoder is the

most area-efficient and one of the fastest fully parallel soft-decision LDPC

decoders reported in the literature. The decoding performance of this decoder

has been investigated down to a BER of about 4× 10−13. Chapter 5 is in part

based on the material in our paper [89].

11

CHAPTER 1. Introduction

Chapter 6 proposes the novel application of stochastic decoding for joint

decoding of LDPC codes and partial-response channels that are considered

in practical magnetic recording applications. This chapter presents hardware

architectures for stochastic processing nodes to perform the complex operations

required in the partial-response channel detectors. Performance, latency, and

throughput of the proposed joint stochastic decoding method are discussed.

Chapter 7 investigates the application of the stochastic decoding approach

to decode linear block codes with high-density parity-check matrices on factor

graphs. It demonstrates results for decoding the important and popular classes

of RS codes, BCH codes, and BCH block turbo codes. Chapter 7 is in part

based on the material in our paper [83].

Finally, Chapter 8 concludes the dissertation and provides potential venues

for future work.

12

CHAPTER 2

Background

2.1 LDPC Codes and Iterative Decoding

A binary (n, k) LDPC code is defined as the null space of a sparse (n −

k)× n binary parity-check matrix H . This LDPC code consists of codewords

x = (x1, x2, ..., xn) such that

xHT = 0, (2.1)

where x contains k information bits and n − k parity bits, and xHT is com-

puted in the Galois field GF(2) [33]. LDPC codes and their iterative decoding

process can be graphically represented using bipartite factor graphs [50]. Fac-

tor graphs consist of two distinctive groups of processing nodes, VNs and

PNs, and edges that connect VNs to PNs. A factor graph for an (n, k) full-

rank LDPC code has n VNs and n − k PNs. The i-th VN, vi, is connected

to j-th PN, cj , if and only if hji, the entry in H at row j and column i, is

1. The connecting/communication network between VNs and PNs is called

interleaver (see Figure 2–1). The number of edges connected to a node (in

the interleaver) is referred to as the degree of the node and represented as dv

for the VNs and dc for the PNs. In regular codes, dv and dc are fixed for all

VNs and PNs, respectively. In irregular LDPC codes, dv and dc vary for dif-

ferent nodes. Figure 2–1 also highlights a length-4 cycle in the depicted factor

graph. A cycle is a closed path in the graph and its length is defined as the

13

CHAPTER 2. Background

Figure 2–1: A typical factor graph and the interleaver for a full-rank (n, k)
LDPC code. A length-4 cycle is dashed. In a conventional implementation
with W -bit representation of messages, each edge requires 2W wires (for two
directions).

corresponding number of path edges. The length of the smallest cycle is the

girth of the factor graph. While the factor graph of a practical LDPC code

can have thousands of cycles, its girth should be more than four to provide a

good decoding performance.

LDPC codes are encoded using a k × n generator matrix, G, where

GHT = 0. (2.2)

During the encoding process, n − k parity bits are added to b = (b1, ..., bk),

the information vector, to form the codeword x = (x1, ..., xn), where

x = bG. (2.3)

In a typical LDPC-coded communication system, after encoding the infor-

mation vector at the transmitter, the codeword x is transmitted through a

communication channel. At the receiver, the received vector, y = (y1, ..., yn),

is passed to the LDPC decoder (see Figure 1–1).

14

CHAPTER 2. Background

2.1.1 Sum-Product Algorithm

LDPC codes are usually iteratively decoded by means of belief propaga-

tion [72] using message-passing algorithms such as the SPA (see [50]) or its

less-complex approximation, the Min-Sum Algorithm (MSA) [94]. The SPA is

an iterative algorithm for decoding LDPC codes. The SPA uses soft informa-

tion (probabilities) received from the channel and iteratively processes them

using VNs and PNs. The SPA makes decisions by comparing final probabilities

to a threshold value (hard-decision) at the end of the decoding process.

Suppose that xm and ym, respectively, denote the m-th sample (1 ≤ m ≤

n) in the transmitted vector, x, and in the received vector, y, in a Binary

Phase-Shift Keying (BPSK) transmission over an Additive White Gaussian

Noise (AWGN) channel with zero mean and a single-sided noise power spectral

density of N0. Let P
(i)
ml be the probability message from the VN vm to the PN

cl and Q
(i)
lm be the probability message from cl to vm in the i-th iteration (see

Figures 2–2 (a) and (b)). Also, let N(m) be the set of PNs connected to

vm and M(l) be the set of VNs connected to the cl. The SPA steps in the

probability domain can be described as follows (see [50, 79] for details):

I Set the iteration counter to zero (i = 0).

II For all VNs, i.e., for 1 ≤ m ≤ n, l ∈ N(m), initialize P
(0)
ml to P m

CH, the a

posteriori probability (channel probability), computed as:

P m
CH = Pr(xm = 1|ym) =

exp(Lm
CH)

exp(Lm
CH) + 1

, (2.4)

where Lm
CH is the log-likelihood ratio (LLR) of ym and it is computed as:

Lm
CH = log

(

Pr(xm = 1|ym)

Pr(xm = 0|ym)

)

=
4ym

N0

. (2.5)

15

CHAPTER 2. Background

Figure 2–2: Message-passing in the SPA.

III Update all the PNs, i.e., for 1 ≤ l ≤ n − k, m ∈ M(l) compute:

Q
(i)
lm = 0.5 −



0.5
∏

m′∈M(l)\m

(1 − 2P
(i−1)
m′l)



 , (2.6)

where M(l)\m denotes the set of VNs connected to cl excluding vm.

IV Update all the VNs, i.e., for 1 ≤ m ≤ n, l ∈ N(m) compute:

P
(i)
ml =

P m
CH

∏

l′∈N(m)\l

Q
(i)
l′m



P m
CH

∏

l′∈N(m)\l

Q
(i)
l′m



+



(1 − P m
CH)

∏

l′∈N(m)\l

(1 − Q
(i)
l′m)





. (2.7)

V For all VNs, i.e., 1 ≤ m ≤ n, l ∈ N(m), compute P m
ext as:

P m
ext =

P m
CH

∏

l′∈N(m)

Q
(i)
l′m



P m
CH

∏

l′∈N(m)

Q
(i)
l′m



+



(1 − P m
CH)

∏

l′∈N(m)

(1 − Q
(i)
l′m)





. (2.8)

Make the hard-decision to obtain the estimated vector, x̂ = (x̂1, ..., x̂n),

where x̂m = 1 if P m
ext > 0.5, and x̂m = 0, otherwise.

VI Terminate decoding if x̂HT = 0 or if i has reached the maximum number

of iterations. Otherwise, set i = i + 1 and return to step III.

16

CHAPTER 2. Background

Because of the high hardware-complexity of VNs’ and PNs’ operations

in the probability domain, the SPA is usually implemented in the log-domain

where channel probabilities are considered as LLRs. Using the log-domain

conversion, VNs calculate the summation of LLR messages and PNs employ

tanh(·) processing to compute their outgoing messages [79]. In the MSA, the

tanh(·) processing in PNs is approximated to reduce the complexity, usually at

the expense of some decoding performance loss, compared to the SPA [8, 38].

To compensate for some of the loss, different improved methods are suggested

in the literature (e.g., see [17, 18, 38, 42, 44]).

2.2 Strategies and Challenges of Hardware Implementations of
LDPC Decoders

In general, fully parallel and partially parallel architectures are two main

strategies for the implementation of LDPC decoders. In the fully parallel strat-

egy, the entire factor graph is implemented in hardware and all VNs and PNs

in the graph are updated concurrently. Fully parallel decoders are usually

implemented to achieve high-throughput decoding of a certain LDPC code,

usually at the cost of high area consumption. This approach is particularly

considered for applications with high-speed requirements such as the IEEE

802.3an (10GBASE-T) standard [2]. The partially parallel approach instanti-

ates a portion of the factor graph. Partially parallel decoders employ memory

and hardware resource sharing to manage message-passing between different

portions of the factor graph. The main benefits of this approach are to mini-

mize the area and/or to offer the flexibility to support different code lengths

and code rates in applications such as IEEE 802.16e (WiMAX) [3] and IEEE

802.11n (WiFi) [4]. However, the partially parallel approach usually has a

lower throughput compared to the fully parallel approach. The partially par-

allel approach is also used for the implementation of LDPC decoders with

very long code lengths where the fully parallel approach is not feasible today,

17

CHAPTER 2. Background

such as the LDPC code for the DVB-S2 standard with a code length of 64800

bits [90].

A major challenge in the implementation of LDPC decoders is the com-

plexity of the interconnections between VNs and PNs. The complexity of the

interleaver is due to the random-like locations of ones in the code’s parity-check

matrix. This problem is acute for practical fully parallel decoders (where the

code block length is usually long) and results in routing congestion and inter-

connection problems [13, 24, 25, 28]. The routing congestion causes high area

consumption and low logic utilization in the decoder. For instance, with 4-

bit precision of probability messages, the 52.5 mm2 die size of the (1024,512)

decoder in [13] has a logic utilization of 50% in its core; the rest of the core

area is occupied by wires. In addition to high area consumption, the presence

of long physical wires in the interleaver increases the power consumption and

limits the maximum achievable clock frequency and thus the throughput of a

fully parallel LDPC decoder (see [13, 25, 26, 28]).

To alleviate these problems, different approaches are investigated in the

literature at both the code design and the hardware implementation levels.

One approach is to design “implementation-aware” codes. In this approach,

instead of randomly choosing the locations of ones in the parity-check matrix

(at the code design stage), the parity-check matrix of an LDPC code is designed

with constraints allowing for a suitable structure for a decoder implementation

and providing acceptable decoding performance [14, 17, 60,61, 102, 106].

Another approach used to alleviate the routing congestion problem is to

use bit-serial or digit-serial architectures to implement LDPC decoders. Ex-

amples of this approach are the FPGA implementation of a bit-serial (480,355)

LDPC decoder in [27] and the ASIC implementation of a (660,480) LDPC de-

coder in [28] based on the bit-serial approximate MSA, and also the MSA-based

18

CHAPTER 2. Background

bit-serial (256,128) LDPC decoder in [15]. Additionally, a message broad-

casting technique was suggested in [25] to alleviate the routing congestion by

reducing node-to-node communication complexity in LDPC decoders.

Bit-flipping decoding [34] is another approach for low-complexity LDPC

decoding at the cost of some performance loss. Bit-flipping methods do not

exploit message-passing, they use the knowledge of unsatisfied parity-checks

to iteratively correct bit errors. Recently, there has been research interest in

various bit-flipping methods such as weighted bit-flipping methods (see [105]

and [48]) and a differential binary decoding method based on bit-flipping [63].

Among conventional bit-flipping methods, the weighted bit-flipping method

in [48] performs well on many LDPC codes and has a performance loss of

about 0.5 to 1 dB, compared to the SPA [48].

The split-row technique [65] is another approach to alleviate the routing

congestion problem in LDPC decoders. In the MSA-based split-row technique,

the global minimum operation in PNs is partitioned into localized minimum

operations. Therefore, the parity-check matrix of an LDPC code is partitioned

into multiple blocks which require local routing. However, in the split-row

technique, increasing the number of splits/partitions results in decoding per-

formance loss and, possibly, a higher error-floor [65–67]. This is because in this

technique, each PN is divided into lower degree PNs (assigned to each block).

These lower degree PNs calculate the minimum of only a portion of incoming

messages. Therefore, their outputs are not necessarily the global minimum of

all incoming messages received by the PN. As the number of splits increases,

the approximation made in lower degree PNs becomes less accurate. Recently,

MSA-based threshold decoding methods have been proposed for the split-row

technique to reduce this performance loss (e.g., see [67]).

19

CHAPTER 2. Background

LDPC decoders can be implemented with a programmable architecture

or processor, which lend themselves to a software-defined radio. Software-

defined radio is a programmable hardware platform that consists of multiple

processing and memory units. It supports software implementations of wireless

communication protocols for physical layers. Software-defined radio offers the

flexibility to support codes with different block lengths and rates; however, the

throughput of LDPC decoders that are implemented using software-defined

radio is usually low (e.g., see [80]).

In addition to digital decoders, continuous-time analog implementations

have been considered for LDPC codes [41] and other error-control codes [11,

35, 55, 64, 91, 96]. Compared to their digital counterparts, analog decoders

offer improvements in speed and/or power. However, because of the complex

and technology-dependent design process, the analog approach has only been

considered for short error-correcting codes. The only reported analog LDPC

decoder decodes a (32,8) LDPC code [41].

2.3 Stochastic Computation

Stochastic computation was introduced in the 1960’s [32]. A significant

motivation for considering stochastic computation was the possibility to per-

form complex computations using only simple circuitry [16, 32]. In stochastic

computation, probabilities are represented as streams of random bits using

Bernoulli sequences in which the information is contained in the statistics of

the bit stream. Using this representation, complex operations on probabilities

such as multiplication and division are converted to operations on bits which

can easily be manipulated using simple stochastic gates. This allows high

clock rates for the stochastic computational elements while requiring a low

computation hardware area. In addition, as a result of the bit-serial nature

of stochastic computation, communication between computational elements

20

CHAPTER 2. Background

Figure 2–3: Some possible streams for a probability of 0.8125.

requires only one wire per signal. Also, stochastic computation can trade off

computation accuracy and time without any change in hardware [16]. Stochas-

tic computation has been considered for different applications such as a field

programmable computer in [7], the implementation of artificial neural networks

in [16], and a real-time motor controller in [29]. Error-control coding is also a

recent application for stochastic computation (see Section 2.4).

2.3.1 Stochastic Representation

In stochastic computation, probabilities are converted to streams of bits

called Bernoulli sequences [32]. In this transformation, each bit in a stochastic

stream is equal to 1 with the probability represented/convereted. Therefore,

the observation of 1’s in a stream of bits, {a(t)}, determines the probability,

i.e., Pr(a(t) = 1) = P . The transformation of a probability to a stochas-

tic stream is not unique; therefore, different stochastic streams are possible

for a given probability. This also implies that the order/sequence of 1’s in

a stochastic stream is not important. For example, Figure 2–3 shows some

possible streams for a probability of 0.8125. In each stream, 13 bits out of 16

bits are 1, which represents a probability of 13/16 = 0.8125.

The comparator shown in Figure 2–4 can be used to convert probabilities

to stochastic streams [29, 32]. In this figure, P and R are W -bit wide inputs

in [0, 1] range. P is fixed and R is a (pseudo) random number with uniform

distribution which varies in every clock cycle. In every clock cycle, the output

bit of the comparator is 1 if P > R, and it is 0, otherwise. Therefore, the

21

CHAPTER 2. Background

Figure 2–4: Probability to stochastic stream conversion.

likelihood of observing 1 in the output stream is equal to P , representing a

probability of P .

2.3.2 Main Stochastic Operations

Using stochastic representation, operations such as multiplication and di-

vision on probabilities can be performed using simple hardware structures. It

should be noted that stochastic operations discussed in this section are held

under the assumption that input stochastic streams are Bernoulli sequences,

meaning that the probability of a given bit being equal to 1 is independent of

the values of any previous bits. Also, in the case of stochastic operations with

multiple input streams, it is assumed that the input streams are uncorrelated

with each other.

2.3.2.1 Inversion

Let Pa = Pr(a(t) = 1) be the input stream of an inverter. The output bit

of the inverter, c(t), is 1 when a(t) = 0, and it is 0 when a(t) = 1. Therefore,

Pc = Pr(c(t) = 1) = 1 − Pa [32].

2.3.2.2 Multiplication

Consider the AND gate shown in Figure 2–5 and its input stochastic

streams with Pa = Pr(a(t) = 1) and Pb = Pr(b(t) = 1) probabilities. The

output bit, c(t), is 1 when a(t) = 1 and b(t) = 1. Therefore, Pc = Pr(c(t) =

1) = Pa ×Pb. Similarly, other boolean operations (such as NAND, XOR, etc.)

can be used to implement different operations on probabilities.

22

CHAPTER 2. Background

Figure 2–5: Stochastic multiplication [32].

Figure 2–6: Stochastic division [32].

2.3.2.3 Division

Consider the JK flip-flop shown in Figure 2–6. This JK flip-flop can be

represented as a Markov chain with two states (0 state and 1 state). The

probability (transition) matrix of this chain is:

T =







1 − Pa Pa

Pb 1 − Pb






,

where tij , the entry at row i and column j in T , is the probability of transition

from state i to j (i, j ∈ {0, 1}). The probability of observing 1 in the steady

state of the Markov chain, i.e., Pc = Pr(c(t) = 1), is obtained based on the

eigenvector of T with respect to an eigenvalue of 1. This probability is equal

to

Pc =
Pa

Pa + Pb

. (2.9)

The operation of (2.9) is an approximation to Pa/Pb, if Pa << Pb. Other

stochastic division methods exist with more precision [32]. However, as will

be discussed in Section 2.4, (2.9) matches the VN operation in the SPA.

23

CHAPTER 2. Background

Figure 2–7: Approximate stochastic addition [32].

2.3.2.4 Addition

Consider the OR gate shown in Figure 2–7 and its input stochastic bit

streams with Pa = Pr(a(t) = 1) and Pb = Pr(b(t) = 1) probabilities. The

output bit stream of the OR gate represents Pc = Pr(c(t) = 1) = Pa+Pb−PaPb.

This OR gate can be used as an approximate adder. The approximation made

in the OR gate becomes accurate when PaPb is small [32].

In general, stochastic addition and substraction are not as straightforward

as multiplication and division. This is because they are not closed operations

on the probability interval of [0, 1]. Therefore, these operations should be

combined with a scaling operation to ensure the range of [0, 1] for the out-

come [16]. Addition with scaling is performed as Pc =
∑N

j=1 SjPj, where

Pj = Pr(aj(t) = 1) and Sj is the probability of selecting the j-th input bit

stream, {aj(t)}, such that
∑N

j=1 Sj = 1. The outcome is the scaled sum of the

input probabilities. This operation can be implemented in hardware using a

multiplexer as shown in Figure 2–8, where RSS refers to the random selection

signal supplied by (pseudo) random number generators. Generating RSS is

straightforward when the N is a power of two. In a case where N is not a

power of two, it is possible to increase N by padding 0 signals to input at the

cost of sub-optimality of calculation [16].

2.4 Early Stochastic Decoding Methods

Error-control coding is a recent application of stochastic computation.

The idea to use stochastic computation in the SPA-based iterative decoding

is first proposed in [36, 74]. In this decoding approach, probabilities received

24

CHAPTER 2. Background

Figure 2–8: Scaled stochastic addition [16].

from the communication channel are converted to streams of stochastic bits.

In every stochastic decoding iteration, one bit of each stream is generated and

passed to the corresponding VN. Iterative stochastic decoding proceeds by

stochastic VNs and PNs exchanging bits until a maximum number of stochastic

iterations has been exhausted.

The stochastic representation of probabilities in the code factor graph re-

sults in low hardware-complexity bit-serial PNs and VNs. In addition, stochas-

tic computation reduces the routing congestion problem, because only one bit

(per direction) is required to represent an edge between a PN and a VN. This

implies that in a stochastic decoding iteration (which is usually equal to one

clock cycle), decoding proceeds by the VNs and PNs exchanging a bit (per

direction) along each edge in the factor graph. The term Decoding Cycle or

DC is used in the stochastic decoding literature to refer to a stochastic decod-

ing iteration (i.e., the exchange of one bit between stochastic VNs and PNs),

and to highlight that a stochastic decoding iteration (or decoding cycle) does

not directly correspond to one iteration in the SPA. We stress that in this

dissertation, it is assumed that each decoding cycle takes one clock cycle.

This section reviews stochastic decoding methods proposed prior to the

work presented in this dissertation (i.e., [36,37,74,95,97]). These early methods

were only successful for decoding either short/acyclic codes or some specific

25

CHAPTER 2. Background

Figure 2–9: The structure of a basic stochastic variable node [36].

error-correcting codes on trellis graphs. They resulted in significant decod-

ing performance loss when used for the decoding of state-of-the-art capacity-

approaching LDPC codes on factor graphs.

2.4.1 Basic Stochastic Variable Node

The basic stochastic VN was first proposed in [36]. Let Pa = Pr(a(t) = 1)

and Pb = Pr(b(t) = 1) be the probabilities of two input bit streams, {a(t)} and

{b(t)}, in a stochastic VN. In the SPA, the outgoing probability is computed

as:

Pc =
PaPb

PaPb + (1 − Pa)(1 − Pb)
. (2.10)

Figure 2–9 shows the stochastic VN’s hardware structure proposed in [36] to

perform (2.10). It is important to note that in Figure 2–9, the JK flip-flop

forces the VN to be in the hold state (i.e., c(t) = c(t−1)), when the two input

bits are not equal (a(t) 6= b(t)).

2.4.2 Stochastic Parity-Check Node

The stochastic PN was first proposed in [36]. Let Pa = Pr(a(t) = 1)

and Pb = Pr(b(t) = 1) be the probability of two input bit streams, {a(t)} and

{b(t)}, in a stochastic PN. In the SPA, the outgoing probability Pc is computed

as:

Pc = 0.5 − 0.5(1 − 2Pa)(1 − 2Pb) = Pa(1 − Pb) + Pb(1 − Pa). (2.11)

26

CHAPTER 2. Background

Figure 2–10: The structure of a stochastic parity-check node [36].

Figure 2–10 shows the stochastic PN’s hardware structure proposed in [36] to

perform (2.11).

The VN and PN structures shown in Figures 2–9 and 2–10 are used in [74]

and [36] for decoding a (7,4) Hamming and a (16,8) LDPC code, respectively.

In [36], the decoder had about 0.15 dB decoding performance loss at a Bit Er-

ror Rate (BER) of 10−4 with respect to the SPA decoding. However, because

of severe decoding performance loss, this method cannot be directly used to

decode long (practical) LDPC codes. Figures 2–11(a) and (b), respectively,

show the decoding performance of this method when applied to a (200,100)

regular LDPC code and a (1024,512) regular LDPC code in a BPSK trans-

mission over an AWGN channel. In these figures, Eb is the energy per bit and

N0 is the single-sided noise power spectral density of the AWGN channel. As

shown, even by using several thousands of decoding cycles the performance

loss is severe compared to the SPA.

2.4.3 The Latching Problem

As mentioned before, stochastic operations rely on the assumption that

input bit streams are uncorrelated Bernoulli sequences. This assumption does

not hold in graphs with cycles. In addition, a major difficulty observed in

stochastic decoding is the sensitivity to the level of random switching activity

(bit transition) for a proper decoding operation [95]. The problem of latching is

described in [82,97] for stochastic decoding on graphs with cycles. The latching

problem refers to the case in which a cycle in the code graph causes a group of

nodes to lock into a fixed state which is solely maintained by the correlated bit

27

CHAPTER 2. Background

1 1.5 2 2.5 3 3.5 4 4.5 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

(200,100) regular LDPC code, 100 block errors

Early stochastic decoding (max. 10K DCs)
SPA (floating-point, 64 iterations)

(a)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

(1024,512) regular LDPC code, 100 block errors

Early stochastic decoding (max. 60K DCs)

SPA (floating-point, 64 iterations)

(b)

Figure 2–11: Decoding performance of the early scholastic decoding method
for decoding (a) a (200,100) LDPC code and (b) a (1024,512) LDPC code.

28

CHAPTER 2. Background

Figure 2–12: An example of latching within a length-4 cycle in a factor graph.

streams within the cycle [82,97]. A simple latching example is the all-zero state

in a factor graph. If all internal messages between VN and PN are zero, then

they will be held permanently at zero, regardless of any activity from the VNs.

This condition occurs because of the JK flip-flop memory used in a stochastic

VN (see Figure 2–9). Figure 2–12 shows another example of the latching

problem. It illustrates how the lack of switching activity within a length-4

cycle can cause VNs to lock into a fixed state (“hold” state in this example) for

several decoding cycles. The latching problem is particulary acute in LDPC

decoders, whose corresponding codes’ factor graphs have many cycles, and

causes severe decoding performance loss [82]. Note that latching can be worse

at high Signal-to-Noise-Ratios (SNRs) in which channel probabilities approach

zero (or one). In this case, bits in stochastic sequences are mostly 0 (or 1),

hence, random switching events become too rare for proper decoding [95].

29

CHAPTER 2. Background

2.4.4 Supernodes

The idea of supernodes was proposed in [97]. Supernodes are special struc-

tures which reduce the latching problem by regenerating new messages based

on the probabilities of incoming stochastic messages. A supernode tabulates

incoming messages in histograms to estimate their probabilities and regener-

ates new stochastic messages. In [97], supernodes are used as a special VN

which can be placed in critical parts of the graph (e.g., where short cycles

exist). Figure 2–13(a) shows the structure of supernodes used in [97] for trel-

lis decoding of a (256,121) product Turbo code constructed based on acyclic

(16,11) Hamming component decoders. Supernodes in this trellis decoder [97]

are used instead of VNs shown in Figure 2–9. These supernodes were “pack-

etized” in a sense that they are using the conventional SPA calculation (i.e.,

(2.7)) after a time-step to calculate the probabilities of the new outgoing prob-

ability messages and regenerate new stochastic streams. Figure 2–13(b) shows

another structure of supernodes suggested in [97]. In this structure, the input

messages are fed directly to a counter to tally the number of ones for a given

number of samples. This count is then used to generate new probabilities.

This structure is used in [37] for hardware implementation of a decoder that

decodes a specially-constructed tail-biting (16,8) LDPC code with an acyclic

factor graph. Supernodes in this implementation were placed between VNs

and PNs of the decoder.

2.4.5 Scaling Channel Reliabilities

Scaling methods have been previously suggested in the literature for per-

formance improvement of the SPA (e.g., see [100] for details). As mentioned

before, the latching problem can be worse at high SNRs due to the lack of

switching activity. In stochastic decoding, scaling channel reliability is used

in order to increase the switching activity in the decoder. This idea is first

30

CHAPTER 2. Background

Figure 2–13: Structure of supernodes used (a) in [97] and (b) in [37].

suggested in [95] and used in stochastic decoding of a (16,11) Hamming code.

In this method, every block of channel reliabilities received is scaled to a max-

imum value to ensure the same level of switching activity for each block.

The above-mentioned early stochastic methods were applied for decod-

ing some short Hamming and LDPC codes, a specially-constructed tail-biting

(16,8) LDPC code with an acyclic factor graph, and trellis decoding a (256,121)

product Turbo code constructed based on acyclic (16,11) Hamming component

decoders. As a result of their significant decoding performance loss and/or high

error-floors compared to conventional LDPC decoding algorithms, these meth-

ods were not practical solutions for decoding state-of-the-art LDPC codes on

factor graphs. The next chapter proposes the first successful stochastic LDPC

decoding approach.

31

CHAPTER 3

Edge-Based Rerandomization Using

Edge Memories

In this chapter, we propose the rerandomization of stochastic bit streams

using EMs and a new method for scaling channel reliabilities to address the

latching problem in stochastic LDPC decoders. We discuss the architecture of

high-degree stochastic VNs and propose Internal Memories (IMs) to improve

the decoding performance of stochastic LDPC decoders. We also discuss the

hardware architecture and implementations of EM-based stochastic LDPC de-

coders and provide comparison with practical LDPC decoding approaches.

3.1 Edge Memories and Regenerative Bits

EMs are memory-based rerandomization units that are assigned to edges

in the factor graph. They replace the JK flip-flop used in the basic stochas-

tic VN structure (shown in Figure 2–9). The principal function of EMs is to

disrupt correlations among the stochastic streams within cycles by rerandom-

ization. This is effectively accomplished by time-interleaving the output stream

of stochastic VNs. In this respect, stochastic bits generated by a VN are cate-

gorized into two groups: regenerative bits and conservative bits. Conservative

bits are output bits which are produced in the hold state and regenerative bits

are output bits which are produced in nonhold (regular) states. The essentials

of the operation of EMs are twofold:

32

CHAPTER 3. Edge-Based Rerandomization Using EMs

i EMs are only updated with the regenerative bits. Therefore, when a

VN is not in the hold state, the newly produced regenerative bit is used

as the outgoing bit of the edge and the EM is updated with this new

bit. When the VN is in the hold state for an edge,1 a bit is randomly

chosen from the corresponding EM and is used as the outgoing bit. This

mechanism breaks the correlation of stochastic streams by rerandomizing

stochastic bits and also reducing the correlation caused by the hold state

in a stochastic stream. The reason is that every time the hold state

happens, a bit is randomly chosen from previous regenerative bits (which

are not generated in the hold state).

ii In order to facilitate the convergence of the decoder, EMs need to have a

time-decaying reliance (forgetting mechanism) on previous regenerative

bits and only rely on the most recent regenerative bits.

Figure 3–1 shows the structure of an EM. An EM is implemented as an

M -bit shift register with a single selectable bit. In this implementation, the

shift register is updated only when U = 1, which indicates that the VN output

bit, r(t), is regenerative. In the case that the VN is in the hold state (U = 0),

a bit is (pseudo) randomly chosen from the shift register using a (pseudo)

randomly generated address, R(t). Clearly, the length of the shift register, M ,

guarantees the time-decaying reliance mechanism needed for an EM. As will

be shown in this chapter, the shift register-based architecture of EMs results

1 We recall that, in general, a stochastic VN is in the hold state for edge e,
when the input bits of the VN (excluding the input bit received from edge e)
are not equal. For a VN that is constructed based on lower degree subnodes
(discussed in Section 3.2), the VN is called in the hold state for edge e, when
the input bits of the final/exiting subnode for edge e are not equal.

33

CHAPTER 3. Edge-Based Rerandomization Using EMs

Figure 3–1: An EM is implemented as an M -bit shift register with a single
selectable bit.

in their resource-efficient FPGA implementation using shift register look-up

tables.

3.2 High-Degree Stochastic Nodes and Internal Memories

Regenerative bits are important for the proper operation of a stochastic

decoder. The lack of enough regenerative bits propagating in the decoder re-

sults in low switching activity and a high possibility of latching. A frequent

occurrence of the hold state and latching in VNs can severely affect the de-

coding performance. In this respect, the structure used for VNs is crucial for

the decoding performance of stochastic LDPC decoders.

In general, a high-degree node can be constructed based on subgraphs of

low-degree subnodes [36,50]. We show that for the case of stochastic decoding,

high-degree VNs should be constructed based on low-degree subnodes (usually,

dv ≤ 4 subnodes can be used). To elaborate, consider the structure of the

stochastic VN in Figure 3–2(a) with an arbitrary dv. This stochastic structure

is not suitable for high-degree VNs because it is entirely in the hold state

when any two input bits are not equal; therefore, the chance of being in a

hold state increases as dv increases. An increased chance of hold state for VNs

reduces the propagating of regenerative bits in the graph and results in less

switching activity within the graph, and thus degraded stochastic decoding

34

CHAPTER 3. Edge-Based Rerandomization Using EMs

performance. Note that this phenomenon can be very destructive when bits

in input stochastic streams of VNs are mostly 0 (or 1), for instance at high

SNRs where corresponding probability messages are either close to 0 (or 1),

or during the convergence to the right codeword where most PNs are satisfied

and only a few PNs remained unsatisfied. We propose that these problems

can be significantly alleviated by using the VN structure shown in Figure 3–

2(b) (only one output and corresponding inputs are shown). In this figure,

a high-degree stochastic VN is constructed based on subgraphs of low-degree

subnodes with memory. In this structure, by having stochastic input bits which

are either mostly 0 (or 1), the chance of a hold state for the (highlighted) exit

subnode is much lower. Therefore, the entire node is less likely to be in the

hold state. Note that in Figure 3–2(b), an EM is used only for the exit output

edge. To show the difference between the two structures of Figures 3–2(a) and

(b), Figure 3–3 compares the averaged percentage of hold state occurrence

for dv = 9 with P1 varying and P2 = P3 = ... = P8 = 0.9. As shown, the

percentage of the hold state decreases significantly when the VN is constructed

based on subgraphs of low-degree subnodes.

We also propose the use of IMs for each subnode in high-degree VNs

to further decrease the chance of being in the hold state in a high-degree

VN. This structure is shown in Figure 3–4, where each IM is assigned to one

subnode. The operation of IMs is similar to EMs, but the IM length, L, is much

shorter than the EM length, M (it is only a few bits). An IM is updated with

regenerative bits produced by the subnode and in the case of the hold state

for a sub-node a bit is randomly chosen as the outgoing bit of the subnode.

A straightforward way to implement all the outputs of a VN, is to have

dv instances of the structure shown in Fig 3–2(b). Using this method the

entire VN requires dv(dv − 1) subnodes. We propose that the complexity of a

35

CHAPTER 3. Edge-Based Rerandomization Using EMs

(a)

(b)

Figure 3–2: (a) A structure which is not suitable for high-degree VNs. (b) An
example of constructing a high-degree VN based on low-degree subnodes.

high-degree stochastic VN can be significantly reduced by efficient sharing of

subnodes. Figure 3–5 shows the efficient implementation for a degree-16 VN

(dv = 16). VNs with arbitrary degrees can be similarly implemented. Based

on properties of binary trees, it can be shown that using this structure a degree

dv > 2 VN can be efficiently implemented by 3dv − 6 subnodes.

The construction of high-degree stochastic PNs is based on XORing input

bits. It can be shown than a degree dc PN requires 2dc − 1 two-input binary

XORs to compute all the outputs. Figure 3–6 shows the structure of a degree-

16 stochastic PN (dc = 16).

3.3 Scaling Channel Reliabilities

Scaling methods have been previously suggested in the literature for per-

formance improvement of iterative decoders (e.g., see [31,100,101] for details).

For stochastic decoders, we use a new scaling method. This method is em-

ployed to provide a similar level of switching activity over different ranges of

SNRs, which results in improved BER decoding performance for stochastic

36

CHAPTER 3. Edge-Based Rerandomization Using EMs

Figure 3–3: (a) Percentage of holds on the output of two dv = 9 VNs based
on structures in Figure 3–2(a) and Figure 3–2(b), P1 is varying and P2 = ... =
P8 = 0.9.

Figure 3–4: The construction of a VN based on IMs for low-degree sub-VNs.
An EM is only used for the exit edge.

decoders. In this scaling method, received channel reliabilities are scaled by a

factor that is proportional to the noise level in the channel. The scaled relia-

bilities are, however, independent of channel noise and thus the decoder does

not need to estimate the noise in the AWGN channel.

Assume that Lm
CH = 4ym

N0
is the channel LLR for ym, the m-th symbol in

the received vector, in a BPSK transmission over an AWGN channel as defined

in (2.5). The scaled LLR, L
′m
CH, is computed as:

L
′m
CH = (γN0)L

m
CH = 4γym, (3.1)

37

CHAPTER 3. Edge-Based Rerandomization Using EMs

Figure 3–5: The proposed low complexity structure for the implementation of
a degree-16 stochastic VN.

where γ is a fixed empirical factor whose value is chosen based on the best

BER performance of the stochastic decoder. The input channel probabilities

in stochastic decoding is computed based on the scaled LLRs as:

P m
CH =

exp(L
′m
CH)

exp(L
′m
CH) + 1

. (3.2)

3.4 Effects on the Decoding Performance

Figures 3–7 (a) and (b) show the BER performance of the EM stochastic

decoding approach for a (200,100) and a (1024,512) regular LDPC code with

degree-3 VNs and degree-6 PNs. Note that in these figures, the maximum

number of decoding cycles used for stochastic decoding is set to a high number

to show that the significant performance loss (for the case in which EMs and

scaling are not used) is not improved by increasing the decoding latency. As

will be shown in the rest of this dissertation, the maximum number of decoding

cycles used by stochastic decoding (to provide a competitive performance with

state-of-the-art LDPC decoders) is less than the values used in these figures

by about two orders of magnitudes. We used M = 25 and maximum 10K

38

CHAPTER 3. Edge-Based Rerandomization Using EMs

Figure 3–6: The structure of a degree-16 stochastic PN based on 2-input binary
XORs.

decoding cycles for decoding the (200,100) LDPC code and, M = 50 and

maximum 60K decoding cycles for the (1024,512) code. A γ = 0.5 is used

for both codes. As shown, with respect to the floating-point SPA with 64

iterations,2 the proposed method provides comparable BER performance for

the (200,100) code and near-optimal performance for the (1024,512) code. An

SNR loss of less than 0.1 dB is observed for the latter code at the BER of

10−6. To show the performance contribution of scaling and EMs, results for (i)

decoding without scaling and EMs and, (ii) decoding with EMs but without

scaling are also depicted in Figures 3–7 (a) and (b). The contribution of

EMs can be observed by comparing results for case (i) and (ii). Also, the

contribution of scaling at higher SNRs can be easily seen by comparing the

results of case (ii) and stochastic decoding with EMs and scaling.

2 No major BER improvement is observed after the 64th iteration.

39

CHAPTER 3. Edge-Based Rerandomization Using EMs

1 1.5 2 2.5 3 3.5 4 4.5 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
it
 E

rr
o
r

R
a
te

(200,100) regular LDPC code, 100 block errors

Stochastic dec. without scaling and EMs (max. 10K DCs)

Stochastic dec. without scaling (M=25, max. 10K DCs)

Proposed stochastic dec. (=0.5, M=25, max. 10K DCs)

SPA (floating point, 64 iterations)

(a)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
it
 E

rr
o
r

R
a
te

(1024,512) regular LDPC code, 100 block errors

Stochastic dec. without scaling and EMs (max. 60K DCs)

Stochastic dec. without scaling (M=50, max. 60K DCs)

Proposed stochastic dec. (=0.5, M=50, max. 60K DCs)

SPA (floating point, 64 iterations)

(b)

Figure 3–7: Performance of the EM-based approach for decoding (a) a
(200,100) code and (b) a (1024,512) code. A high maximum number of de-
coding cycles is used to show that the significant performance loss (for the
case in which EMs and scaling are not used) is not improved by increasing the
decoding latency.

40

CHAPTER 3. Edge-Based Rerandomization Using EMs

3.5 A (1056,528) Fully Parallel EM-based LDPC Decoder

This section presents the hardware architecture of fully parallel EM-based

stochastic LDPC decoders in detail. Although the focus of this section is on

EMs and FPGA implementation, the proposed architecture and its features

form the basis of the structure of ASIC stochastic decoders that are explained

in the following chapters.

The stochastic decoding operation can be summarized as follows. Upon

receiving a vector from the AWGN channel, channel reliabilities are scaled

and then transformed into stochastic streams. Each VN receives one bit per

decoding cycle and propagates its outgoing 1-bit messages to the connected

PNs. PNs check the parities and send their 1-bit messages to VNs. The output

of each VN at the end of a decoding cycle is passed to an up/down counter in

which its sign-bit determines the hard-decision. This exchange of bits between

VNs and PNs will be stopped as soon as all the parity-checks are satisfied or

a maximum number of decoding cycles is exceeded.

Table 3–1 summarizes the characteristics of two LDPC codes considered

in this section. Both codes are irregular and belong to the IEEE 802.16e

(WiMAX) standard [3]. The code used for implementation is the (1056,528)

code. The (1056,704) code is only used to study performance behavior. The

reader should note that the main reason to choose these codes was to show

the applicability of the stochastic approach to decode state-of-the-art irregular

LDPC codes with high-degree nodes designed for recent applications (using the

fully parallel design approach). In Section A.1 of Appendix A, we provide the

performance results of the EM approach for decoding various LDPC codes.

3.5.1 Decoder Specifications and Architecture

This section discusses specifications and the hardware architecture of the

implemented (1056,528) EM-based stochastic LDPC decoder.

41

CHAPTER 3. Edge-Based Rerandomization Using EMs

Table 3–1: Irregular LDPC codes chosen from the IEEE 802.16e standard.

(n,k) dv distribution dc distribution

(1056,528) (2,3,6)={11/24, 1/3, 5/24} (6,7)={2/3, 1/3}
(1056,704) (2,3,4)={7/24, 1/24, 2/3} (10,11)={7/8, 1/8}

3.5.1.1 Scaling

We used look-up-tables to apply scaling to the symbols received from the

AWGN channel. The input of each look-up-table is a 6-bit received symbol and

the output is the corresponding probability, represented in 7 bits. Probabilities

in each look-up-table are calculated according to (3.2). Note that because of

the symmetry in (3.2), a look-up-table can store only half of the probabilities.

For example, it is possible to only store probabilities for positive ym’s (i.e.

probabilities ≥ 0.5). When a ym is negative, an additional NOT operation can

be performed on the stochastic stream (during probability to stochastic stream

conversion). Using this scheme, the size of each look-up-table is 26−1 × 7 bits

or 28 bytes. The implemented stochastic decoder employs 44 look-up-tables

to apply scaling, and each look-up-table serially generates probabilities for

1056/44 = 24 VNs. This uses TIO = 24 decoding cycles,3 where TIO is the

number of decoding cycles the decoder spends to input channel reliabilities, to

apply scaling, and to output the decoded bits.

3.5.1.2 Probability to Stochastic Stream Conversion

The conversion of each P m
CH to the corresponding stochastic stream is done

by employing a 7-bit comparator as shown in Figure 3–8. In this structure, P m
CH

is fixed during the decoding operation and is compared to a (pseudo) random

number, R, which changes at every decoding cycle. The output bit of the

comparator is 1 when P m
CH > R, and it is 0, otherwise. The random number in

3 We recall and highlight that each decoding cycle takes one clock cycle.

42

CHAPTER 3. Edge-Based Rerandomization Using EMs

Figure 3–8: Conversion of channel probabilities to stochastic streams.

the figure is generated by a Distributed Randomization Engine (DRE) which

is described in Section 3.5.1.7. The output of each comparator is fed to one

VN in each decoding cycle. The decoder, hence, needs one comparator per

VN.

An attractive advantage of using look-up-tables to apply scaling in stochas-

tic decoders is that the precision of the look-up-tables’ output probabilities can

be increased without a significant change in the decoder complexity. This is

because the precision of probabilities does not affect the interleaver, VNs or

PNs. It only affects the size of look-up-tables used for scaling, the compara-

tors and the DRE. This, however, is not the case for SPA-based or MSA-based

decoders in which changing the precision means significantly increasing the

number of wires in the interleaver. For the case of bit-serial SPA-based or

MSA-based decoders, increasing the precision increases the latency of each

iteration and hence reduces the throughput, because more clock cycles are

needed to bit-serially send messages between nodes.

3.5.1.3 Architecture of Variable Nodes

Figure 3–9 depicts the architecture of VNs in the (1056,528) stochastic

decoder (only one output and its corresponding inputs are shown). EM lengths

of M = 32, M = 48, and M = 64 bits are used for dv = 2, dv = 3, and dv = 6

VNs, respectively. The architecture of dv = 3 VNs is based on two dv = 2

subnodes. The architecture of dv = 6 VNs is based on two dv = 3 and one

43

CHAPTER 3. Edge-Based Rerandomization Using EMs

dv = 2 subnodes. IM lengths of L = 1 and L = 2 bits are used for dv = 3

and dv = 6 VNs, respectively. For FPGA implementations of EMs we used

shift register look-up-tables. Many FPGA architectures allow to utilize small

look-up tables as shift register look-up tables and to access a single bit in the

register (e.g., [98,99]). It is also possible to cascade any number of shift register

look-up tables to form a shift register of arbitrary size. These features exactly

match the operation of EMs.

The proposed EM-based VN structure has two modes of operation:

• Partial Initialization Mode: Prior to the decoding operation and when

the channel probabilities are all loaded into the decoder, VNs start to

initialize their EMs according to the received probability. It is possible

for EMs to start from zero state, however, the initialization of EMs

improves the convergence of the stochastic decoder. In the implemented

decoder, we consider partially initializing the EMs to 16 bits. During

the partial initialization, the EMs of each VN are bit-serially updated

with the output of the channel comparator for TLOADEMs
= 16 decoding

cycles.

• Decoding Mode: After the partial initialization phase, the decoding op-

eration starts. Each VN in the Figure 3–9, uses a signal U to determine if

the VN is in the hold state (U = 0) or not (U = 1). When the VN is not

in the hold state, the new regenerative bit is used as the output bit and

also to update the EM. In the case of the hold state, a bit is randomly

chosen from the EM. This scheme is also employed in each subnode to

update the IMs. The random selection of bits in EMs and IMs are done

by (pseudo) random addresses which vary in each decoding cycle. These

addresses are also provided by the DRE in Section 3.5.1.7.

44

CHAPTER 3. Edge-Based Rerandomization Using EMs

Because of the partial initialization scheme used at the beginning of the decoder

operation, the range of (pseudo) random addresses is limited to 4 bits (i.e., 0

to 15) for 40 decoding cycles. This ensures that during the hold state, a valid

bit is picked from EMs. When decoding proceeds for 40 decoding cycles and

EMs are updated, the DRE produces full range addresses for EMs.

3.5.1.4 Hard-Decision using Saturating Up/Down Counters

The output bit of each VN at the end of every decoding cycle is passed

to an up/down counter. Each counter is incremented when receiving 1 and

decremented when receiving a 0 bit. The counters are implemented as satu-

rating counters which stop incrementing/decrementing when they reach their

maximum/minimum limits. For this implementation, we used 4-bit saturating

counters that count from -7 to 7. The sign-bit of each counter determines

the hard-decision, i.e., in a BPSK transmission a 0 sign-bit of the counters

determines a “+1” decoded bit and a 1 sign-bit determines a “-1” decoded bit.

Based on our observation, we discovered that for the case of stochastic

LDPC decoders, up/down counters are mostly effective at low SNRs (high

BERs). At high SNRs, up/down counters can be neglected and replaced with

1-bit flip-flops. In this case, the last output bit of each VN directly determines

the hard-decision. The reason is that at high SNRs where convergence of

stochastic decoders is fast, the counters easily become saturated (i.e., high

reliability) which implies that they mostly receive constant output bits from

VNs. The output bits of VNs at low SNRs are, however, less reliable and are

more varying.

3.5.1.5 Architecture of Parity-Check Nodes

The construction of a PN is based on XORing the input bits received from

VNs. Figure 3–10 shows the structure of a dc = 7 PN used in the implemented

stochastic decoder. The construction of dc = 6 PNs in the decoder is similar.

45

CHAPTER 3. Edge-Based Rerandomization Using EMs

(a)

(b)

(c)

Figure 3–9: Architectures of (a) a degree-2 VN, (b) a degree-3 VN, and (c) a
degree-6 VN based on IMs and an EM (in each figure, only one output and its
corresponding inputs are shown).

PNs send their output bits to VNs. In addition, each PN produces a “parity-

check satisfied” output signal which determines if the corresponding parity-

check is satisfied. This signal is used to terminate the decoding process, as

will be discussed in Section 3.5.1.8.
46

CHAPTER 3. Edge-Based Rerandomization Using EMs

Figure 3–10: Architecture of a degree-7 stochastic PN. The “parity-check sat-
isfied” signal is used for termination criteria.

3.5.1.6 Asynchronous Pipelining and Interleaver Design

As mentioned earlier, the structure of interleavers in LDPC decoders re-

sults in (long) wires and forces a bottleneck on the speed and throughput of

decoders. For this reason, fully parallel architectures can use pipelining to

break the wires and increase the speed/throughput. However, pipelining the

interleaver in conventional SPA-based or MSA-based decoders has a draw-

back: it increases the number of clock cycles required per iteration by a factor

of S, the number of pipeline stages. The reason is that in the SPA and the

MSA, there is a data dependency between iterations and the output of nodes

at each iteration depends on their outputs at the previous iteration. For in-

stance, assume that the non-pipelined decoder runs for I iterations and uses 1

clock cycle per iteration. In the decoder with a pipelined interleaver, S clocks

are needed to pass messages generated in the previous iteration. Therefore,

although the pipelined decoder is faster than the non-pipelined decoder, it

needs S × I clock cycles to provide the same BER decoding performance. To

reduce this inefficiency and to increase the utilization of decoder, the pipelined

LDPC decoders need to decode more than one codeword in the pipelined in-

terleaver at the expense of more hardware-complexity [15]. Another suggested

47

CHAPTER 3. Edge-Based Rerandomization Using EMs

technique in the literature is block interlacing [25]. This technique is used to

increase the throughput of the decoder by processing two consecutive blocks

simultaneously. In [25], the block interlacing technique together with a mes-

sage broadcasting technique provided high throughput for ASIC LDPC de-

coders using 16 iterations of the MSA and 32 iterations of the hard-decision

message-passing decoding algorithm [76]. In addition to these methods, the

flooding-type update-schedule algorithm is suggested in [70]. This algorithm

allows limited partitioning of some of the long wires in the decoder using flip-

flops [70] without affecting the required clock cycles per iteration. This relies

on the similarity of time-consecutive messages which limitedly let nodes tol-

erate operating with messages produced in recent iterations. However, in this

algorithm the degree of freedom for partitioning wires is limited. In [70], only

messages from two consecutive iterations are used at VNs.

We claim that the above-mentioned drawbacks and limitations do not ap-

ply to stochastic decoders. The operation of stochastic nodes does not depend

on the output bits produced in the previous decoding cycle. In fact, the order

of bits in stochastic streams is not important for the nodes. That is why EMs

with random bit selection and different lengths can be used at VNs. There-

fore, if a stochastic decoder needs to operate for D decoding cycles to decode

a codeword, the S-stage pipelined stochastic decoder needs D + S decoding

cycles to decode the codeword. This interesting characteristic introduces a

high degree of freedom for partitioning wires in stochastic decoders, which is

especially advantageous for ASIC implementations:

i In principle, an arbitrary number of pipeline stages can be used in the

interleaver to break the wires and increase the clock rate to a “desired”

speed.

48

CHAPTER 3. Edge-Based Rerandomization Using EMs

ii Pipelining in a stochastic decoder does not need to be uniform in the

entire factor graph. Different stages of pipelining can be used for different

edges. It is also possible to only pipeline some (critical) wires in the

interleaver with an arbitrary number of pipeline stages.

It should be noted that because stochastic decoders (and other bit-serial ap-

proaches) require fewer wires to represent the factor graph, pipelining the

interleaver in stochastic decoders requires fewer hardware resources (registers)

compared to the conventional SPA-based or MSA-based decoders. For the

implemented stochastic decoder we used a 4-stage pipeline interleaver.

3.5.1.7 Distributed Randomization Engine

The randomization engine is responsible for providing random numbers

in the decoder. In the proposed architecture, (pseudo) random numbers are

used in comparators and also as the addresses of EMs and IMs. Although this

amount of random numbers for the entire decoder might seem high, (pseudo)

random numbers can be significantly shared at two levels without having a

considerable impact on the decoding performance of the decoder: (i) different

EMs can share the same random address and, (ii) random numbers used in

comparators and random numbers used as the addresses of EMs and IMs can

share bits. Sharing random numbers significantly reduces the complexity of

the randomization engine.

We propose a distributed architecture to generate random numbers. The

DRE consists of 48 independent randomization engines. Each randomization

engine generates the required random numbers for a portion of the factor graph

and consists of only two 10-bit Linear Feedback Shift Registers (LFSRs) asso-

ciated with prime polynomials. Random bits in each randomization engine are

generated by XORing different bits of the two LFSRs. The main reason to use

a distributed structure is to reduce the routing required by DRE. Note that

49

CHAPTER 3. Edge-Based Rerandomization Using EMs

by using the asynchronous pipelining technique, the interleaver is no longer a

bottleneck for the speed of a stochastic decoder. This is because non-uniform

levels of registers can be used to break long wires in a pipelined stochastic in-

terleaver. In this case, the routing required by randomization engines becomes

a limiting factor for the speed and hence using a distributed architecture for

generating random numbers becomes essential. It should be noted that the

asynchronous pipelining technique is also applicable for DRE because the se-

quence/order of random numbers is not important for comparators, EMs and

IMs.

3.5.1.8 Termination Criteria

The stochastic decoder checks two criteria in each decoding cycle to ter-

minate the decoding operation: (i) it checks if all the PNs are satisfied or (ii)

if a maximum number of decoding cycles has been exceeded. As soon as one

of the criteria is satisfied, the decoder outputs the sign-bit of each saturating

up/down counters as the decoded codeword and starts loading the probabili-

ties for the next received block. Checking the first criterion is done by NORing

“parity-satisfied” signals from all PNs (i.e., decoding is terminated if all the

528 parity-checks are satisfied). This is implemented as a 3-stage pipelined

NOR tree. The latter criterion is checked using a counter.

3.5.1.9 Input/Output Unit

As mentioned previously, the decoder uses TIO = 24 decoding cycles to

load 1056 received symbols (each with 6-bit precision) into the decoder and

apply scaling. To do so, the decoder employs 264 input pins. While loading the

probabilities, the decoder also outputs the previous 1056 bit decoded codeword

using 44 pins (in 1056/44 = 24 decoding cycles). Therefore, the total IO

overhead is TIO = 24 decoding cycles.

50

CHAPTER 3. Edge-Based Rerandomization Using EMs

Table 3–2: Decoding parameters used.

Code EM length (M) IM length (L) γ Max. DCs

(1056,528) {32, 48, 64} for {1, 2} for 0.5 700
dv = (2, 3, 6) dv = (3, 6)

(1056,704) {32, 48, 48} for {1, 1} for 0.75 700
dv = (2, 3, 4) dv = (3, 4)

3.5.2 Performance and Tradeoffs

Table 3–2 lists the parameters used for each code. To obtain the charac-

teristics of the proposed architecture, the (1056,528) irregular LDPC decoder

is implemented on a Xilinx Virtex-4 XC4VLX200-11FF1513 device [98] using

Xilinx ISE 9.2 tool. The following sections discuss the performance of the

decoder.

3.5.2.1 Decoding Performance

Figures 3–11 and 3–12 show the decoding performance. These figures

also depict the performance of the floating-point SPA. Also depicted in Figure

3–11 is the performance of the decoder in [104] and a (1024,512) EM-based

stochastic decoder whose implementation values will be discussed in Section

3.7. Compared to the floating-point SPA with 32 and 16 iterations, the ir-

regular stochastic decoders only have a loss of about 0.5 dB and 0.25 dB,

respectively, at low BERs. It should be highlighted that, in the BER region

shown, a similar error-floor behavior to that of the floating-point SPA is ob-

served. Note that the floating-point implementation usually outperforms the

fixed-point implementation which is considered in hardware implementations.

In fact, because of complexity/area concerns, in most fully parallel decoders,

fixed-point implementation with limited precision (usually ≤ 4 bits) is consid-

ered, which may cause additional decoding loss and/or higher error-floors.

51

CHAPTER 3. Edge-Based Rerandomization Using EMs

 !" # #!" $ $!" % %!"
 &

' #

 &
' &

 &
'(

 &
')

 &
'%

 &
'#

 &
&

*
+
,-

&
./012

1
34
.*
55
6
5.
7
8
49
./
1
*
7
2

.

.

/ #&&:)&&2.;*<'+8=90.>609:.$'+34.?@A.B &%C
/ &#%:" #2.>609:.*?'+8=90.=46>D8=43>.09>6095
/ &"):"#(2.>609:.*?'+8=90.=46>D8=43>.09>6095
/ &"):"#(2.>609:.E6F'@;A./06G+E9'H59>3=36I:.).3495=!2
/ &"):"#(2.>609:.E6F'@;A./06G+E9'H59>3=36I:.$#.3495=!2

Figure 3–11: Decoding performance of the implemented (1056,528) irregular
stochastic decoder.

Table 3–3: Xilinx Virtex-4 XC4VLX200-11FF1513 device utilization (LUT:
4-input look-up-table, FF: flip-flop).

Resources Occupied Available Utilization

Slice LUTs 68163 178176 38%
Slice FFs 44502 178176 24%

IOBs 308 960 32%

Slices 46097 89088 51%

3.5.2.2 Area and Clock Frequency

Table 3–3 summarizes the area consumption of the (1056,528) decoder

on the FPGA device. The decoder occupies about 38% of the 4-input look-

up-tables and 24% of the flip-flops available on the device. These occupied

resources are distributed in 51% of the device slices. The decoder uses one

clock cycle per decoding cycle and achieves a clock rate of 222 MHz after

place-and-route.

52

CHAPTER 3. Edge-Based Rerandomization Using EMs

Figure 3–12: Decoding performance of the (1056,704) irregular stochastic de-
coder.

3.5.2.3 Throughput

As mentioned in Section 3.5.1.8, the decoder terminates the decoding and

starts loading the next codeword when all the parity check signals are satisfied

or when a maximum number of decoding cycles has been exceeded. Because

of these termination criteria, TAVG, the average number of decoding cycles

used to load, decode and output codewords determines the throughput of the

decoder. For the sake of brevity, we refer to TAVG as the average number of

decoding cycles. TAVG is equal to

TAVG = TAVGCORE
+ TIO + TLOADEMs

, (3.3)

where TAVGCORE
is the average number of decoding cycles used by the core de-

coder to decode codewords and, as mentioned before, TIO = 24 and TLOADEMs
=

16. It should be noted that at high SNRs (low BERs), TAVG is much less than

the maximum number of decoding cycles used by the core decoder (TMAXCORE
=

53

CHAPTER 3. Edge-Based Rerandomization Using EMs

Figure 3–13: Histograms of TAVG at different SNRs (based on 1 million blocks).
Each decoding cycle takes one clock cycle.

700 decoding cycles). In fact at low BERs, only a few codewords require a high

number of decoding cycles to decode. This is shown in Figure 3–13 in which

the histograms of TAVG over different SNRs are depicted. These histograms

are based on observation of 1 million blocks.

Figure 3–14 shows the observed TAVG over different SNRs. It also shows

the throughput of the decoder based on TAVG at different SNRs for the achieved

clock rate of 222 MHz. TAVG and the throughput of the decoder vary at differ-

ent BERs. As Figure 3–14 shows, at high SNRs (low BERs) the throughput

of the decoder is higher than the requirements of many applications. The de-

coder provides a throughput of more than 1 Gb/s for Eb/N0 > 3.5 dB. The

throughput of the decoder at Eb/N0 = 4.25 is about 1.66 Gb/s.

54

CHAPTER 3. Edge-Based Rerandomization Using EMs

Figure 3–14: TAVG and throughput of the decoder at different SNRs (based on
1 million blocks). Each decoding cycle takes one clock cycle.

3.5.2.4 Latency

Figure 3–15 shows the BER performance of the stochastic decoder versus

decoding cycle. The maximum number of decoding cycles used for decoding

the (1056,528) code was TMAXCORE
= 700 decoding cycles. Because of the

termination criteria of the decoder, TMAXCORE
only influences the latency of

the decoder. The maximum latency of the decoder is determined by TMAX

which is calculated as

TMAX = TMAXCORE
+ TIO + TLOADEMs

. (3.4)

For the (1056,528) decoder, TMAX is 740 decoding cycles. With the achieved

clock rate of 222 MHz, this results in a maximum latency of 3.3 µs which is in

an acceptable range for most applications such as the IEEE 802.16e (WiMAX)

standard. In addition, as Figure 3–15 suggests, for applications which have

55

CHAPTER 3. Edge-Based Rerandomization Using EMs

Figure 3–15: Decoding performance of the (1056,528) stochastic decoder over
decoding cycles. Each decoding cycle takes one clock cycle.

a strict latency requirement, it is possible to trade the latency with decoding

performance.

3.6 A (1024,512) Fully Parallel EM-based LDPC Decoder

In this section, we report an FPGA EM-based stochastic decoder that

decodes a (1024,512) regular LDPC code with dv = 3 and dc = 6. The

implementation values obtained for this decoder enable us to better compare

the EM-based stochastic decoders with state-of-the-art FPGA LDPC decoders

in Section 3.7. Because all the building blocks of this EM-based decoder are

similar to those in the (1056,528) decoder discussed in the previous section, we

briefly mention the implementation characteristics and values of this decoder.

The (1024,512) decoder uses 8-bit input channel probabilities and a γ =

0.5 for scaling. All VNs have 64-bit EMs, 1-bit IMs, and 6-bit saturating

up/down counters to make the hard-decision. The decoder uses a 2-stage

56

CHAPTER 3. Edge-Based Rerandomization Using EMs

1 1.5 2 2.5 3 3.5 4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

(1024,512) regular LDPC code

Stochastic decoder (1K max. DC)
Stochastic decoder (6K max. DC)
SPA (floating-point, 32 iterations)

Figure 3–16: Decoding performance of the (1024,512) stochastic decoder.

pipeline interleaver and its DRE generates 32 8-bit (pseudo) random num-

bers every decoding cycle. Each (pseudo) random number is shared between

1024/32 = 32 VNs. The (1024,512) decoder employs the termination criteria

described in the previous section. The decoder is implemented on a Xilinx

Virtex-4 XC4VLX200-11FF1513 FPGA device. It occupies 32875 slices of the

device (i.e., 36% of the total available slices). It achieves a maximum clock fre-

quency of 212 MHz and a throughput of 706 Mb/s at a BER of 10−6. The BER

performance of the decoder is shown in Figure 3–16 for 6K and 1K maximum

decoding cycles. Each decoding cycle takes one clock cycle.

3.7 Comparison

This section compares the characteristics of the implemented EM-based

stochastic LDPC decoders with some recent high throughput FPGA-based

LDPC decoders.

57

CHAPTER 3. Edge-Based Rerandomization Using EMs

3.7.1 Comparison with FPGA Fully Parallel Decoders

Table 3–4 compares different aspects of the most recent FPGA-based fully

parallel LDPC decoders. To our knowledge, the decoders in [104] and [27] are

among the fastest (non-stochastic) FPGA-based fully parallel LDPC decoders.

The decoder in [104] decodes a (1200,600) regular code which is constructed

based on the progressive-edge-growth method [43]. The throughput of the

decoder is 12 Gb/s. This throughput was achieved by employing 3-bit fixed-

point MSA with 10 iterations. The decoder in [27] decodes a (480,355) regular

code with a throughput of 650 Mb/s using the bit-serial approximate MSA

with 15 iterations. The table also shows the implementation characteristics

of the (1056,528) and (1024,512) EM-based stochastic LDPC decoders. Note

that compared to the (1024,512) decoder, the (1056,528) decoder has a much

more complex structure because of its irregularity and high-degree nodes.

Table 3–4 gives the throughput efficiency per information bit for each

decoder. As discussed in Section 3.5.2.3, the throughput of the (1056,528) de-

coder varies at different SNRs. For example, the decoder provides a throughput

of 694 Mb/s at a Eb/N0 = 2.5 dB (BER ≃ 10−4) and at Eb/N0 = 4.25 dB

(BER ≃ 10−8) the throughput is about 1.66 Gb/s. Compared to [104] and [27],

the stochastic decoder has a higher latency. This latency is however within an

acceptable range for many applications. Usually, a latency limit of about 6 µs

is assumed for channel decoders in applications such as WiMAX. In addition,

as mentioned before, for applications with stricter latency requirements, it is

possible to trade the decoding performance with the latency (see Figure 3–15).

Table 3–4 also gives the absolute area as well as area efficiency based on

the number of 4-input look-up-tables and flip-flops per coded bit, and slices

per coded bit. Note that a Logic Element in the Altera Stratix architecture has

one 4-input look-up-table and one flip-flop [6] which is half of the resources of a

58

CHAPTER 3. Edge-Based Rerandomization Using EMs

slice in a Xilinx Virtex-4 architecture [98]. Since the number of look-up-tables

and flip-flops were not reported in [27], the comparison with this decoder is

based on the approximate slice per coded bit efficiency. The area efficiency of

the stochastic decoder is better than the bit-serial decoder in [27]. Compared

to [104], the stochastic decoder needs more look-up-tables and flip-flops per

coded bit (but offers about 1.3 dB decoding gain as shown in Figure 3–11).

The majority of this difference is because of the higher degree of VNs. As

shown, the (1024,512) EM-based stochastic decoder, with the same rate and

node degrees as in [104], needs much fewer resources and offers a better slice

per coded bit efficiency compared to [104].

Compared to other fully parallel approaches, an important advantage of

the stochastic approach is its good decoding performance and error-floor be-

havior. Figure 3–11 compares the performance of the (1024,512) stochastic

decoder with the decoder in [104]. Both codes are regular and have the same

rate and node degree. As shown, even though the (1200,600) LDPC code

in [104] is longer, stochastic decoders outperform this decoder by more than 1

dB. It should be noted that the reported area efficiency for stochastic decoders

is for providing a performance close to the floating-point SPA. The stochas-

tic decoding approach is able to easily trade the hardware-complexity with

decoding performance. For example, if performance close to the fixed-point

MSA with limited precision is required, it is possible to significantly increase

the area efficiency and/or reduce the latency of the stochastic decoder by us-

ing much shorter EMs/IMs, simpler DRE, and by reducing the precision of

comparators/counters.

3.7.2 Comparison with FPGA Partially Parallel Decoders

As mentioned before, partially parallel decoders use memory and share

hardware to trade area/flexibility with throughput. Fully parallel decoders,

59

CHAPTER 3. Edge-Based Rerandomization Using EMs

however, occupy a much larger area but provide much higher throughput.

In this respect, partially parallel and fully parallel decoders occupy a different

place on the trade-off curve. This is also the case for the proposed fully parallel

architecture. Compared to the recent FPGA partially parallel decoders, the

(1056,528) stochastic decoder occupies much more (absolute) area but corrects

more errors at a much higher speed. For example, the multi-rate partially

parallel decoder in [40] occupies 1640 to 6568 slices and uses more than 60K

bits of RAM, and provides a throughput of 41 to 278 Mb/s on a Xilinx Virtex-

II 2V8000 device. Also, the partially parallel (8176,7154) decoder in [92] uses

about 23K to 27K slices and 128 block RAMs of a Xilinx VirtexII-6000 FPGA

device and, provides a throughput of 172 Mb/s with 15 decoding iterations.

3.8 Conclusion

This chapter proposed EMs for stochastic decoding of state-of-the-art

LDPC codes on factor graphs. It presented a novel decoder architecture for

fully parallel EM-based stochastic LDPC decoders. The proposed decoder ar-

chitecture was used for the FPGA implementation of a fully parallel stochastic

LDPC decoders that decodes a state-of-the-art irregular (1056,528) code. It

was also applied for the FPGA implementation of an EM-based stochastic

decoder that decodes a (1024,512) regular LDPC code. Both decoders were

implemented on Xilinx Virtex-4 LX200 FPGA devices. The (1056,528) de-

coder exploits several novel architectural techniques, provides a throughput of

1.66 Gb/s at Eb/N0 = 4.25 dB (BER of 10−8), and achieves decoding perfor-

mance within 0.5 dB and 0.25 dB loss of the floating-point SPA with 32 and

16 iterations, respectively. It was shown that this decoder provides similar

error-floor behavior as the floating-point SPA with 32 iterations. The LDPC

decoders proposed in this chapter are the first stochastic decoders that decode

60

CHAPTER 3. Edge-Based Rerandomization Using EMs

state-of-the-art LDPC codes, and they are among the fastest and the most

area-efficient fully parallel LDPC decoders implemented on FPGAs.

In the next chapter, we focus on the ASIC implementation of stochastic

LDPC decoders. We propose a new approach for decorrelating and rerandom-

izing stochastic streams. This approach significantly increases the silicon area

efficiency of stochastic decoders and thus facilitates their ASIC implementa-

tions.

61

C
H

A
P

T
E

R
3.

E
d
ge-B

ased
R

eran
d
om

ization
U

sin
g

E
M

s

Table 3–4: Comparison of FPGA-based fully parallel LDPC decoders (LUT: 4-input look-up-table, FF: flip-flop, LE: Logic
Element).

Fast non-stochastic FPGA-based decoders Stochastic decoders
[27] [104]

Code (480,355) (1200,600) (1024,512) (1056,528)
Code structure Regular, RS-based Regular, PEG-based Regular Irregular, WiMAX code
Max. (dv,dc) (4,15) (3,6) (3,6) (6,7)

Decoding Bit-serial approx. MSA 3-bit fixed-point MSA Stochastic Stochastic
Iterations or DCs 15 iters. 10 iters. 6K and 1K (max DCs) 700 (max DCs)
Input quantization 3 bits 3 bits 8 bits 6 bits

FPGA device Stratix EP1S80 Virtex-4 XC4VLX200 Virtex-4 XC4VLX200 Virtex-4 XC4VLX200
Max. clock 61 MHz 100 MHz 212 MHz 222 MHz

Clocks per iter. or DC 3 1 1 1
Max. latency (µs) 0.73 0.1 28.30 (for 6K max. DCs) 3.3

4.71 (for 1K max. DCs)
Throughput 650 Mb/s 12 Gb/s 706 Mb/s 1.66 Gb/s

Throughput per 1.83 Mb/s 10 Mb/s 1.38 Mb/s 3.14 Mb/s
information bit (at Eb/N0=3 dB) (at Eb/N0=4.25 dB)
Absolute area 66588 LEs 40613 slices 32875 slices 46097 slices

(in slices/LEs) (≃33294 slices)
4-input LUTs and not reported 57.5 LUTs and 46.0 LUTs and 64.5 LUTs and
FFs per coded bit 15.7 FFs 20.1 FFs 42.1 FFs

Slices/LEs per coded bit 138.7 LEs (≃69.3 slices) 33.8 slices 32.1 slices 43.6 slices
Relative decoding gain not comparable − ≃ 1.1 dB gain, ≃ 1.3 dB gain,

(at BER=10−4) compared to [104] compared to [104]
Hardware decoding not reported ≃ 0.25 dB loss ≃ 0.2 dB loss ≃ 0.4 dB loss
loss (at BER=10−4) from floating-point from floating-point from floating-point

MSA (10 iters.) SPA (32 iters.) SPA (32 iters.)

62

CHAPTER 4

Edge-Based Rerandomization Using

Tracking Forecast Memories

As discussed in the previous chapter, EMs can be efficiently implemented

using shift register look-up-tables available in FPGAs. This implementation

makes EM-based stochastic LDPC decoders resource-efficient in FPGAs. How-

ever, EMs consume considerable silicon area in ASIC. For example, a 64-bit

EM has about 821 two-input NAND gate-count complexity and occupies about

4506 µm2 silicon area in CMOS 90nm technology (when synthesized for max-

imum possible speed). Because EMs are assigned to each outgoing edge of

VNs in a factor graph (see Figure 4–1), a practical ASIC stochastic LDPC de-

coder requires thousands of EMs whose silicon area consumption becomes the

bottleneck of the overall hardware-complexity of the decoder. In this respect,

less-complex solutions that can provide similar or better decoding performance

are important.

In this chapter, we propose TFMs to replace EMs in ASIC stochastic

decoders. We discuss various hardware architectures for ASIC implementation

of TFMs and their effects on the complexity of stochastic VNs. We also provide

examples of ASIC stochastic decoders that decode a (1056,528) LDPC code

chosen from the IEEE 802.16 (WiMAX) standard. We show that TFMs can

provide similar or better decoding performance compared to EMs, while having

63

CHAPTER 4. Edge-Based Rerandomization Using TFMs

Figure 4–1: EMs or TFMs are used for rerandomization/decorrelation of
stochastic streams and are assigned to each outgoing edge of stochastic VNs.

much lower hardware-complexity. We also investigate the impact of TFMs on

the overall area of ASIC stochastic decoders.

4.1 Tracking Forecast Memories

TFMs replace EMs in stochastic VNs. Similar to EMs, TFMs are used to

alleviate the latching problem and increase the switching activity by rerandom-

izing/decorelating stochastic streams. In this respect, EMs and TFMs can be

considered as rerandomization units in stochastic decoders as shown in Figures

4–1 and 4–2. A TFM efficiently extracts the moving average probability of a

stochastic stream based on the method of successive relaxation [49, 71, 103].

Let r(t) ∈ {0, 1} be the input bit of a TFM in a stochastic VN and P (t) be the

probability extracted by the TFM at time t for the corresponding stochastic

stream (0 ≤ P (t) ≤ 1). The TFM updates P (t) in nonhold (regular) states as

follows:

P(t + 1) = P(t) + β(t) (r(t) − P(t)) , (4.1)

where β(t) is the relaxation coefficient and usually 0 < β(t) < 1. In stochastic

decoding, β is considered as an empirical factor whose value (for decoding a

64

CHAPTER 4. Edge-Based Rerandomization Using TFMs

Figure 4–2: Structure of a degree-2 stochastic VN (only one output and its
corresponding inputs are shown). An EM or a TFM can be used as a reran-
domization unit.

specific code) can be chosen by simulation (i.e., based on the best decoding per-

formance obtained for different β). This memory-based mechanism is named

TFM since it is based on tracking the past observations while emphasizing

recent outcomes (see [59]).

As shown in Figure 4–2, the operation of a TFM-based VN is similar to

an EM-based VN (discussed in Section 3.5). In regular states, the TFM is

updated as in (4.1) and c(t) = r(t). When the VN is in the hold state, the

TFM is not updated and c(t) = r′(t). To generate r′(t), P(t) is compared

against a (pseudo) random number, R(t), as follows:

r′(t) =











1

0

P(t) > R(t),

otherwise.
(4.2)

65

CHAPTER 4. Edge-Based Rerandomization Using TFMs

The TFM update criterion provides an exponential time-decaying depen-

dence on input bits. By unrolling (4.1) we have:

P(t + 1) =

P(0)

(

t
∏

j=0

(1 − β(j))

)

+ β(t)r(t) +
t−1
∑

j=0

((

t
∏

u=j+1

(1 − β(u))

)

β(j)r(j)

)

.

(4.3)

Also, when β(t) is a constant value equal to β, we have:

P(t + 1) = P(0) (1 − β)t+1 + β
t
∑

j=0

(1 − β)t−jr(j). (4.4)

Figure 4–3 (a) and (b), respectively, depict the dependence of P (t + 1) on

previous input bits in a TFM with β(t) = 2−5 and in an EM with a length of

M = 32 bits. As shown, the dependence in the TFM exponentially decreases

over time as β, (1− β)β, (1− β)2β, ..., but the dependence in the EM is equal

to 1/M for the last M input bits and is zero for the prior input bits. Figure

4–3 (c) shows the dependence in a bit-serial TFM which is presented in Section

4.2.3.

The strong dependence on recent input regenerative bits and gradual for-

getting of older input bits enable TFMs to track changes in Pr(t) = Pr(r(t) =

1). The value of β(t) determines the speed and the accuracy of the conver-

gence/response of TFMs. Figure 4–4(a) shows the convergence of a TFM for

different values of β(t). The input stream of the TFM is generated based on

input stream probability of Pr(t) = 0.8 and the TFM is initialized to P (0) = 0

for each case. As shown, as the value of β(t) decreases, TFM converges more

conservatively toward Pr(t), but after convergence, P (t) approximates Pr(t)

more accurately and with less fluctuations. This can be also seen in Figure 4–

4(b), in which the estimation error of TFMs, E(t) = |P(t)−Pr(t)|, is depicted.

66

CHAPTER 4. Edge-Based Rerandomization Using TFMs

Figure 4–3: The dependence of output probability on previous input bits in
(a) TFM with β = 2−5, (b) EM with M = 32 bit length and, (c) approximate
bit-serial TFM with M = 32 bit length and β = 2−5.

4.2 Hardware Realization of TFMs

This section discusses different variants of TFMs and their hardware re-

alizations.

4.2.1 General Architecture

Figure 4–5 shows the general architecture of a TFM. In this architecture,

it is assumed that β(t) can vary over time. We recall that the signal U in the

figure determines if the VN is in hold state (U= 0) or if it is in a nonhold state

(U = 1) and hence r(t) is regenerative. When U = 1, P (t) is updated and VN

directly uses r(t) as the output bit. When U= 0, P (t) does not change and

the VN uses r′(t) as the output bit. This architecture requires the use of one

multiplier, two adders, one comparator and one register.

67

CHAPTER 4. Edge-Based Rerandomization Using TFMs

Figure 4–4: (a) The convergence speed and (b) the corresponding estimation
error of a TFM for different values of β(t).

4.2.2 Reduced-Complexity Architecture

The complexity of a TFM is significantly reduced when β is chosen as

a negative power of 2. In this case, the multiplication involved in the TFM

operation can be replaced by shifting bit wires of P(t). We also propose that

when P(t) is represented as an unsigned integer, 1−P (t) is equal to P̄ (t), the

complement of P (t); therefore, the two adders in Figure 4–5 can be replaced

by one adder/subtractor unit because

P(t + 1) =











P(t) − β(t)P(t)

P(t) + β(t)P̄(t)

r(t) = 0,

r(t) = 1.
(4.5)

Figure 4–6 shows the proposed reduced-complexity architecture for a

TFM. Compared to the general architecture, this architecture does not use

any multiplier and uses one fewer adder. In our simulations we observed that

68

CHAPTER 4. Edge-Based Rerandomization Using TFMs

Figure 4–5: General architecture of a TFM. β(t) can change and take any
value in the [0,1] interval.

by using the reduced-complexity architecture the decoder is able to provide

similar decoding performance as the general architecture.

4.2.3 Approximate Bit-Serial Architecture

As shown in Figure 4–3, a TFM provides an exponential time-decaying de-

pendence on the past input regenerative bits. In approximate bit-serial TFMs,

the TFM operation is approximated by using only the last M regenerative in-

put bits as:

P(t + 1) = P(0) (1 − β)M+1 + β
t
∑

j=t−M+1

(1 − β)t−jr(j − 1). (4.6)

Figure 4–3(c) depicts the dependence on previous input bits in an approximate

bit-serial TFM with β(t) = 2−5 and M = 32. It can be seen that for the last

M bits, the dependence is the same as a TFM, while for the prior input bits

the dependence is zero.

Figure 4–7 depicts the proposed architecture for bit-serial approximate

TFM. In this architecture, the last M regenerative bits are stored in an M-bit

shift register and upon receiving a new regenerative bit a single shift operation

is performed. The TFM operation is performed by a series of concatenated

69

CHAPTER 4. Edge-Based Rerandomization Using TFMs

Figure 4–6: Architecture of a reduced-complexity TFM. β(t) is a negative
power of 2.

multiplexers. The selection line of each multiplexer is an independent stochas-

tic stream with a probability of Ps = β where 0 ≤ β ≤ 1. This means that

at each multiplexer stage, the bit in the shift register is (directly) selected

with a probability of Ps and the bit from the previous stage is passed through

with a probability of 1 − Ps. To provide an (initial) estimation for (residual)

regenerative input bits that has been neglected (i.e., r(j) with j < t − M),

the generated stochastic stream, {inCH}, from the received channel probability,

PCH = Pr(inCH = 1), can be connected as the input bit to the last multiplexer.

In this case, the probability of r′(t) being equal to 1 is:

70

CHAPTER 4. Edge-Based Rerandomization Using TFMs

Figure 4–7: Architecture of an approximate bit-serial TFM. inCH is the input
stochastic bit from the channel and Ps = β

Pr(r′(t) = 1) =

βPr(r0 = 1) + β(1 − β)Pr(r1 = 1) + · · ·

+ β(1 − β)M−1Pr(rM−1 = 1)

+ (1 − β)MPCH

= β

(

M−1
∑

j=0

(1 − β)jPr(rj = 1)

)

+ (1 − β)MPCH.

(4.7)

It should be noted that compared to the shift register used in an EM

(shown in Figure 3–1), the shift register in the bit-serial TFM is less complex,

because it does not provide a single selectable output bit and hence, does not

require the use of an address decoder. However, compared to EMs and non-

bit-serial architectures for TFMs, the random number generation for bit-serial

TFMs is more complex and, depending on the length of the shift registers

used, can require more physical wires.

4.2.4 Approximate Counter-Based Architecture

Another method for approximating the TFM operation, for the sake

of lower hardware-complexity, is to approximate the addition/subtraction in

71

CHAPTER 4. Edge-Based Rerandomization Using TFMs

Figure 4–8: Architecture of an approximate counter-based TFM.

(4.1). Since the probability stored in a TFM memory is in [0, 1] interval, the

TFM update rule in (4.1) implies that the maximum absolute change in the

value of P (t) is β(t) in other words, |P (t + 1) − P (t)| ≤ β(t). Therefore, for

the sake of lower hardware-complexity, it is possible to approximate P (t + 1)

by an up/down counter (see Figure 4–8) with a step-size equal to β(t) which

operates as follows:

P(t + 1) =











P(t) − β(t)

P(t) + β(t)

r(t) = 0,

r(t) = 1.
(4.8)

4.3 Comparison of TFM-based and EM-based Variable Nodes

Figure 4–9 compares the performance of EM and TFM approaches for

decoding a (2048,1723) LDPC code with degree-6 VNs and degree-32 PNs

chosen from the 10 Gb/s Ethernet (10GBASE-T) standard [2]. The figure

shows the decoding performance of 32-bit EMs, 64-bit EMs, 12-bit reduced-

complexity TFMs, 12-bit approximate bit-serial TFMs, and 12-bit counter-

based TFM approaches. For all of these approaches, symbols received from

the channel are quantized to 6 bits and a scaling factor of γ = 1.33 is used.

Also, an early decoding termination (based on syndrome checking) until a

72

CHAPTER 4. Edge-Based Rerandomization Using TFMs

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

(2048,1723) RS-based LDPC code

EM (32 bits)
EM (64 bits)

Reduced Complex. TFM (12 bits, =2
-5

)

Approx. Counter. TFM (12 bits, =2
-5

)

Approx. Bit-Serial TFM (12 bits, =2
-4

)
SPA (Floating-point, 32 iters.)

Figure 4–9: Comparison of decoding performance of EMs and TFMs.

maximum number of 400 decoding cycles is used. As shown, the reduced-

complexity 12-bit TFM approach outperforms 64 bits and 32 bits EMs for

decoding the (2048,1723) LDPC code.

Table 4–1 shows the silicon area consumption, 2-input NAND gate count,

and the maximum achievable clock period for degree-6 stochastic VNs in

CMOS 90nm technology. The table is divided into two sections. Results

shown in the first (left) section are obtained for synthesizing for the maximum

possible speed. Therefore, as shown in the second (right) section of the table,

by synthesizing the modules for a lower target clock frequency, lower silicon

area consumption can be obtained. The first section of the table confirms that

stochastic VNs are able to operate very fast, with clock frequencies beyond 2.5

73

CHAPTER 4. Edge-Based Rerandomization Using TFMs

Table 4–1: Hardware-complexity of TFM-based and EM-based degree-6 VNs
in CMOS 90nm technology.

Area in µm2 Clock Area in µm2

Module and Architecture & Gate count period & Gate count
in ps at 500 MHz

EM-based VN (32 bits) (13860, 2525) 283 (7133, 1299)
EM-based VN (64 bits) (22575, 4112) 287 (12255, 2232)

TFM-based VN (9223, 1670) 263 (4352, 793)
(12 bits bit-serial)
TFM-based VN (9111, 1660) 312 (5318, 969)

(12 bits counter-based)
TFM-based VN (14989, 2730) 354 (5924, 1079)

(12 bits reduced-complexity)

GHz. With respect to the area consumption, as the second section of the table

shows, a reduced-complexity TFM-based VN consumes about 48% of the sili-

con area of a 64-bit EM-based VN and about 83% of the silicon area of a 32-bit

EM-based VN. Also, it is possible to further reduce the area consumption of a

TFM-based VN by about 10% to 26% by using the approximate counter-based

and the approximate bit-serial TFM architectures.

4.4 Decoding Performance and Hardware-Complexity

This section investigates the effects of the TFM approach on the overall

hardware-complexity and decoding performance of ASIC stochastic decoders.

We compare the decoding performance and ASIC implementations of a TFM-

based decoder and two EM-based decoders. All decoders decode a (1056,528)

irregular LDPC code that is chosen from the IEEE 802.11n (WiMAX) standard

[3]. In Section A.2 of Appendix A, we provide the performance results of the

TFM approach for decoding various LDPC codes.

4.4.1 Decoding Performance

Figure 4–10 shows the BER decoding performance of the proposed TFM

method for decoding a (1056,528) LDPC code. To show the effects of prob-

ability quantization in the TFM architecture on decoding performance, the

74

CHAPTER 4. Edge-Based Rerandomization Using TFMs

figure shows the performance of floating-point TFM implementation as well as

9-bit, 8-bit, and 7-bit fixed-point TFM implementations. Also, for the sake of

comparison, the figure shows the decoding performance of the floating-point

SPA, the floating-point MSA, and the floating-point offset MSA. In addition,

the figure shows the performance of two EM-based stochastic decoders that

decode the same (1056,528) LDPC code: (a) the EM-based decoder discussed

in Section 3.5 which uses 64-bit, 48-bit, and 32-bit EMs for degree-6, degree-

3 and degree-2 VNs, respectively, and (b) an EM-based stochastic decoder

which uses 32-bit EMs for every VNs. All stochastic decoders in the figure use

early termination, a maximum of 700 decoding cycles, and a scaling factor of

γ = 0.5. Note that for the case of “ideal” stochastic decoding, floating-point

implementation is used and random numbers in the stochastic decoder are

not shared. For true-bit stochastic simulations, fixed-point implementation of

TFMs is considered and symbols received from the channel are quantized to six

bits as in Section 3.5. Also, random numbers are generated by a DRE identical

to the one used in the (1056,528) EM-based stochastic decoder in Section 3.5.

This DRE consists of 48 independent random number generators (randomiza-

tion engines). Each random number generator consists of two 10-bit LFSRs

and produces a (pseudo) random number which is shared between 22 VNs

(by XORing different bits of the LFSRs). Therefore, in total, 1056/22 = 48

random numbers are procured for the entire decoder in every decoding cycle.

As shown in Figure 4–10, the floating-point TFM outperforms the EM-

based decoder at low SNRs. The decoding performance of stochastic decoders

with 9-bit fixed-point TFMs and 8-bit fixed-point TFMs (with shared random

numbers) are similar to the performance of the floating-point TFMs at low

BERs (high SNRs). The decoder with 9-bit fixed-point TFMs exhibits a per-

formance similar to the performance of the EM-based decoder in Section 3.5

75

CHAPTER 4. Edge-Based Rerandomization Using TFMs

2 2.5 3 3.5 4

10
-10

10
-8

10
-6

10
-4

10
-2

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

(1056,528) LDPC code with degree {2,3,6} VNs and degree {6,7} PNs

Bit-true stoc., 7-bit FX TFM, (t)=2
-4

Bit-true stoc., 8-bit FX TFM, (t)=2
-4

Bit-true stoc., 9-bit FX TFM, (t)=2
-4

Ideal stoc., FP TFM, (t)=2
-4

Bit-true stoc., 32-bit EM

EM-based decoder in Chapter 3

MSA (FP, 16 iters.)

Offset MSA (FP, 16 iters., offset=0.25)

log-SPA (FP, 16 iters.)

log-SPA (FP, 32 iters.)

Figure 4–10: Decoding performance results for a (1056,528) LDPC code
(FP:floating-point, FX:fixed-point).

and outperforms the 32-bit EM-based stochastic decoder. It also outperforms

the floating-point MSA with 16 iterations and, at low SNRs, it has a perfor-

mance comparable to the performance of the floating-point offset MSA with

16 iterations. The performance loss of the decoder with 9-bit TFMs is about

0.5 dB and 0.25 dB, when compared to the floating-point SPA with 32 and

16 iterations, respectively. In summary, it can be concluded that 8 or 9-bit

fixed-point TFMs are sufficient to provide similar decoding performance as

the EMs used in Section 3.5 for stochastic decoding of the (1056,528) irregu-

lar LDPC code. However, since the decoding performance of 8-bit and 9-bit

TFMs are similar in low BER (high SNR) regimes, where practical LDPC

decoders are expected to be used, we consider 8-bit fixed-point TFMs for the

76

CHAPTER 4. Edge-Based Rerandomization Using TFMs

implementation of the (1056,528) stochastic LDPC decoder in the following

section.

4.4.2 Hardware-Complexity Comparison

To study the effects of TFMs on the overall area of stochastic decoders,

we implemented two EM-based and one TFM-based fully parallel stochastic

LDPC decoders which decode the (1056,528) irregular LDPC code. The TFM-

based decoder uses 8-bit TFMs and the EM-based decoders use 64-bit EMs

and 32-bits EMs. All decoders are synthesized in the ST Microelectronics 90

nm 1V CMOS technology and are clocked at 500 MHz. Note that, as shown in

Chapter 3, with this clock frequency a fully parallel stochastic LDPC decoder

is able to provide multi Gb/s throughput at low BERs (high SNRs). Table

4–2 summarizes the synthesis results for area and 2-input NAND gate count of

these decoders. As shown, TFMs significantly reduce the hardware-complexity

of the stochastic decoder. The area and the gate count of the TFM-based

decoder is about 60% of the area and the gate count of the 32-bit EM based

decoder and it is about 35% of the area and the gate count of the 64-bit

EM based decoder. It is also possible to approximately compare the area

efficiency of the (1056,528) TFM-based decoder with other decoders in the

literature. For example, the 8-bit TFM-based decoder has 517K/1056 ≃ 489

gate-count-per-coded-bit complexity (after synthesis) which is much less than

the 2230K/2048 ≃ 1088 gate-count-per-coded-bit complexity (after synthesis)

reported for the bit-serial MSA-based (2048,1723) LDPC decoder in [28].

4.5 Conclusion

This chapter proposed TFMs for efficient rerandomization and decorrela-

tion of stochastic bit streams in stochastic channel decoders. Various hardware

architectures for ASIC implementation of TFMs were discussed. It was shown

that TFMs are able to provide similar or better BER decoding performance as

77

CHAPTER 4. Edge-Based Rerandomization Using TFMs

Table 4–2: Synthesis results for EM-based and TFM-based (1056,528) stochas-
tic LDPC decoders in CMOS 90nm technology. All decoders are synthesized
for 500 MHz clock frequency.

Decoder Area (mm2) Gate count

EM-based decoder 7.890 1437 K
(64-bit EMs)

EM-based decoder 4.604 838 K
(32-bit EMs)

TFM-based decoder 2.841 517 K
(8-bit TFMs)

EMs for decoding state-of-the-art LDPC codes while having much lower silicon

area consumption. This chapter also showed that TFMs significantly reduce

the overall area of ASIC implementations of stochastic LDPC decoders. The

silicon area consumption of the proposed ASIC TFM-based (1056,528) LDPC

decoder is 40% and 65% less than the area consumption of ASIC EM-based

LDPC decoders with 32-bit EMs and 64-bit EMs, respectively.

78

CHAPTER 5

Node-Based Rerandomization Using

Majority-Based Tracking Forecast Memories

The TFM approach is much more area-efficient compared to the EM ap-

proach. However, both EM and TFM approaches rely on the edge-based reran-

domization where a rerandomization unit is assigned to each outgoing edge of

a stochastic VN (see Figure 4–1). Therefore, the total number of TFMs in a

stochastic LDPC decoder is equal to the number of edges in the correspond-

ing LDPC code’s factor graph, and even though the hardware-complexity of

a TFM is much less than an EM in ASIC, the total number of TFMs is still

the bottleneck of the overall hardware-complexity of ASIC TFM-based de-

coders. In this chapter, we propose node-based rerandomization using the

MTFM stochastic decoding approach. In this approach, instead of assigning

one TFM per outgoing edge, each VN uses only one MTFM as its rerandom-

ization unit (see Figure 5–1). This significantly reduces the total number of

rerandomization units used in a stochastic LDPC decoder. For example, the

number of rerandomization units in a decoder that decodes a regular (n, k)

LDPC code with degree-dv VNs, reduces from n × dv to n. For the case of

the (2048,1723) LDPC code from the 10 Gb/s Ethernet (10GBASE-T) stan-

dard [2], the number of rerandomization units reduces from 2048× 6 = 12288

to 2048.

79

CHAPTER 5. Node-Based Rerandomization Using MTFMs

Figure 5–1: An MTFM-based stochastic decoder uses one MTFM per VN.

We refer to this approach as the MTFM approach, since it relies on the

TFM approach, but it has a different update rule based on the majority of out-

going regenerative bits in a stochastic VN. As will be shown in this chapter,

the MTFM approach significantly reduces the hardware-complexity of stochas-

tic LDPC decoders. We apply this approach to implement an ASIC MTFM-

based stochastic decoder that decodes the (2048,1723) LDPC code from the 10

Gb/s Ethernet standard [2]. To the best of our knowledge, this MTFM-based

stochastic decoder is the most silicon area-efficient fully parallel soft-decision

LDPC decoder reported in the literature.

5.1 Majority-Based Tracking Forecast Memories

To explain the concept of node-based rerandomization, Figure 5–2 de-

picts the block diagram of a degree-6 MTFM-based stochastic VN. This VN

receives the inCH bit (from a comparator that converts the corresponding chan-

nel probability to a stochastic stream) and 6 input bits, in0 to in5, from the

six connected PNs. The corresponding output bits are outCH and out0 to

out5. The final output of the VN, outCH, is determined by the majority of

bits received from connected PNs. The structure of the VN is based on the

80

CHAPTER 5. Node-Based Rerandomization Using MTFMs

cascaded subgraphs of degree-3 and degree-2 subnodes in which each degree-3

subnodes uses 2-bit IMs. The VN uses one MTFM. The (final) input stream

of the MTFM is the majority of the VN’s outgoing regenerative bits for all

edges. It is important to note that at a given time the VN might be in a

nonhold state for some of its edges and be in the hold state for the rest of the

edges.1 Therefore, some of the input bits of the MTFM might be regenerative

and the rest are conservative bits. For this reason, each degree-2 subnode sends

two bits, ri(t) and si(t), to the MTFM, where 0 ≤ i ≤ dv −1. si(t) determines

if the VN is in the hold state or nonhold (regular) state for edge i. Also, ri(t)

is the output bit of the subnode which can be regenerative or conservative.

The MTFM of the degree-6 VN computes the majority of r0(t) to r5(t)

bits if they are regenerative. The MTFM-based VN operates as follows:

• When the VN is in a nonhold (regular) state for edge i, it directly uses

the corresponding regenerative bit as the outgoing bit of the edge.

• In case that the VN is in the hold state for the edge i, it refers to the

MTFM and uses its output bit as the outgoing bit.

Different thresholds might be exploited for (i) updating an MTFM and (ii)

for calculating the majority of regenerative bits in a MTFM. For example, the

MTFM might be updated only when at least a certain percentage of its input

bits are regenerative, and the majority criteria might be set to “> 50%” or

“> 75%” etc.

1 Note that a VN is in the hold state for an edge, when the input bits of the
final/exiting subnode for that edge are not equal. Therefore, the VN in Figure
5–2 is in the hold state for edge i when the two input bits of the degree-2
subnode i are not equal.

81

CHAPTER 5. Node-Based Rerandomization Using MTFMs

Figure 5–2: The structure of a degree-6 MTFM-based stochastic VN. PCH is
the channel probability, R(t) and RA are (pseudo) uniform random numbers,
rai is a random bit, and IM refers to internal memory.

82

CHAPTER 5. Node-Based Rerandomization Using MTFMs

5.2 Hardware Realization of MTFMs

This section discusses the hardware realization of MTFMs and how the

choice of majority and update thresholds can affect the hardware-complexity

of MTFMs.

5.2.1 General Architecture

Figure 5–3 shows the general architecture of MTFM for a degree-dv VN.

Note that the TFM block in the figure can use any TFM architecture discussed

in Section 4.2. We recall that ri(t) is the output bit of the VN for the i-th

edge. Also, si(t) determines the state of the VN for the i-th edge: si(t) = 0

means that the VN is in the hold state, and si(t) = 1 means that the VN is in

a nonhold state for the i-th edge and ri(t) is regenerative.

The MTFM architecture shown in the figure uses Tm as a majority thresh-

old and it uses Tu as a (fixed) threshold for updating the TFM. The MTFM

calculates S(t) =
∑dv

i=1 si(t) which determines the number of input bits that

are regenerative. It also computes X(t) =
∑dv

i=1 si(t)ri(t) which determines

how many of these regenerative bits are equal to 1 (note that when si(t) = 0,

ri(t) is not regenerative and it is forced to be 0 by using an AND gate at

the input). The comparator in this architecture applies the majority criterion

according to the majority threshold, Tm. In this respect, Tm is usually set to

S(t)/2 which implies that the output bit of the comparator, r(t), is equal to

1 when more than half of the regenerative bits at time t are 1, and it is equal

to 0, otherwise.

The TFM is only updated when U = 1 which indicates that S(t) > Tu,

i.e., the number of input regenerative bits is greater than Tu. In general, Tu

is a fixed integer (0 ≤ Tu ≤ dv) whose value can be chosen based on the

decoding performance of the decoder for different Tu. As shown in Figure 5–2,

the MTFM-based VN uses the output bit of the MTFM, r′(t), as the outgoing

83

CHAPTER 5. Node-Based Rerandomization Using MTFMs

Figure 5–3: General architecture of an MTFM. Tu is a fixed threshold for
updating the TFM and Tm is the majority threshold.

bit for any edge that is in the hold state; however, if edge i is in a nonhold

state it directly uses ri(t) as the outgoing bit for that edge.

5.2.2 Reduced-Complexity Architecture

The hardware-complexity of an MTFM can be significantly reduced by

properly adjusting Tm and Tu. Figure 5–4 shows the reduced-complexity im-

plementation of architecture of an MTFM. In this structure, the TFM is only

updated when all the input bits are regenerative (i.e., Tu = dv); therefore, the

update signal for the TFM, signal U, can be determined by a dv-input AND

gate (instead of a comparator as in Figure 5–3). Also, Tm is set to dv/2, hence,

the most significant bit of X(t) directly determines the majority and if the in-

put bit of the TFM, r(t), is 0 or 1. Compared to the general architecture of

MTFMs in Figure 5–3, the reduced-complexity MTFM uses one fewer adder

and two fewer comparators. The reduced-complexity MTFM architecture is

used for ASIC implementation of the (2048,1723) LDPC stochastic decoder,

which is discussed in Section 5.4.

84

CHAPTER 5. Node-Based Rerandomization Using MTFMs

Figure 5–4: Architecture of a reduced-complexity MTFM. r(t) is the most
significant bit (MSB) of X(t).

5.3 Comparison of the Hardware-Complexity and Decoding Per-
formance of MTFMs with EMs and TFMs

In an MTFM-based stochastic VN, the output bit for an edge is deter-

mined by the MTFM only when the edge is in the hold state. In nonhold

(regular) states, the output bit for an edge is directly determined by the newly

regenerative bit in both TFM and MTFM approaches. In this regard, the

majority approximation made in the MTFM approach is only effective when

an edge is the hold state, and no approximation is made in nonhold (regular)

states. The majority approximation used in MTFM approach is precise when

the degree of the VN is high (usually, a degree of 4 or more). For instance,

Figure 5–5 shows the output probability of an edge in degree-6 TFM-based and

MTFM-based VNs and compares them with the ideal target output probability

(computed according to the floating-point SPA). Both VNs receive the same

input stream. As shown, the extracted output probabilities in both approaches

closely follow the SPA’s output probability.

Figure 5–6 compares the performance of the MTFMs with EMs and TFMs

for decoding the (2048,1723) LDPC code with degree-6 VNs and degree-32

85

CHAPTER 5. Node-Based Rerandomization Using MTFMs

Figure 5–5: Extracted output probability of an edge in degree-6 TFM-based
and MTFM-based VNs. Both VNs receive the same input stream.

PNs. Note that results reported for the MTFM approach in this section are

based on the reduced-complexity MTFM architecture that uses a reduced-

complexity TFM (see Figure 5–4). For all of these approaches, symbols re-

ceived from the channel are quantized to 6 bits and an early decoding termi-

nation (based on syndrome checking) until a maximum number of 400 decoding

cycles is used. As shown, the reduced-complexity MTFM approach provides

similar decoding performance compared to the TFM approach which outper-

forms 64-bit and 32-bit EMs for decoding the (2048,1723) LDPC code. The

performance loss of the MTFM approach compared to the SPA with floating-

point implementation and 32 iterations is about a 0.2 dB loss.

Table 5–1 shows the silicon area consumption, 2-input NAND gate count,

and the maximum achievable clock period for degree-6 stochastic VNs and a

degree-32 stochastic PN in CMOS 90nm technology. Results shown in the first

section of the table are obtained for synthesizing for the maximum possible

86

CHAPTER 5. Node-Based Rerandomization Using MTFMs

Figure 5–6: Comparison of decoding performance of EM-based, TFM-based,
and MTFM-based stochastic decoding approaches.

speed. These results confirm that stochastic nodes are able to operate very

fast, with clock frequencies beyond 2.5 GHz. As shown in the second section

of the table, by synthesizing the modules for a lower target clock frequency,

lower silicon area consumption can be obtained. With respect to the area con-

sumption, the second section of the table shows that the reduced-complexity

MTFM approach results in significant area reduction when compared to the

TFM and EM approaches. The area of a degree-6 MTFM-based VN is about

32% of the area of a reduced-complexity TFM-based VN, 15% of the area of

a 64-bit EM-based VN, and 27% of the area of a 32-bit EM-based VN. The

hardware-complexity of an MTFM-based VN and a stochastic PN operating

at 500 MHz (2 ns clock period) is equivalent to the complexity of 351 and 79

two-input NAND gates, respectively.

Since the main difference between stochastic approaches is in the VN

architecture, it is possible to approximately compare the area efficiency of

87

CHAPTER 5. Node-Based Rerandomization Using MTFMs

Table 5–1: Hardware-complexity of degree-6 VNs and degree-32 PN in CMOS
90nm technology.

Area in µm2 Clock Area in µm2

Module and Architecture & Gate count period & Gate count
in ps at 500 MHz

EM-based VN (32 bits) (13860, 2525) 283 (7133, 1299)
EM-based VN (64 bits) (22575, 4112) 287 (12255, 2232)

TFM-based VN (9223, 1670) 263 (4352, 793)
(16 bits bit-serial)
TFM-based VN (9111, 1660) 312 (5318, 969)

(12 bits counter-based)
TFM-based VN (14989, 2730) 354 (5924, 1079)

(12 bits reduced complex.)
MTFM-based VN (4329, 789) 350 (1927, 351)

(12 bits reduced complex.)

Stochastic PN (1415, 258) 283 (431, 79)

LDPC decoders implemented using these approaches from Table 5–1. For

example, we can estimate that the implementation of a (2048,1723) LDPC

decoder using the 12-bit MTFM approach in CMOS 90 nm technology and

with maximum 500 MHz clock frequency results in saving of about 2048 ×

(5294−1927) = 6.89 mm2 silicon area compared to 12-bit reduced-complexity

TFM approach, and about 2048 × (12255 − 1927) = 21.15 mm2 silicon area

compared to the 64-bit EM approach.

5.4 A (2048,1723) Fully Parallel MTFM-based Stochastic LDPC
Decoder

This section discusses the ASIC implementation of a fully parallel MTFM-

based stochastic decoder that decodes the (2048,1723) LDPC code from the

IEEE 802.3an standard. This LDPC code is a regular RS-based code [30] with

degree-6 VNs and degree-32 PNs. It is adopted for the standard to provide

enough coding gain to allow for a BER level of 10−12 or less. To demonstrate

the applicability of the MTFM approach to decode other LDPC codes, we also

88

CHAPTER 5. Node-Based Rerandomization Using MTFMs

provide the performance of the MTFM approach for decoding a (1057,813)

LDPC code at low BERs in Section A.3 of Appendix A.

5.4.1 Decoder Architecture and Specifications

The implemented fully parallel stochastic decoder instantiates 2048 MTFM-

based degree-6 VNs and 384 degree-32 PNs based on the partitioned design

shown in Figure 5–7. The decoder uses a flooding-schedule for updating VNs

and PNs. The binary parity-check matrix of the (2048,1723) LDPC code is

based on the permutation of 64×64 sub-matrices. This parity-check matrix is

not full-rank and has 384 degree-32 PN. Each PN has exactly one connection

to a VN in every 64 columns. Therefore, it is possible to partition the whole

parity-check matrix into 32 VN blocks in which each block has 64 degree-6

VNs (see Figure 5–7). In this configuration, each block receives 64 × 6 = 384

input bits from each one of its neighbor blocks and outputs 384 bits to each

of them. To form the parity-check equation, each VN inside a block XORs its

output bit with the input received from the neighboring block and passes it to

the next neighboring block. The VN also XORs the input bits received from

the neighbor blocks to from its input bit. This method of partitioning relies

on the split-row technique for MSA-based decoders first introduced in [65].

However, we note that compared to the split-row technique for the MSA it has

the following major benefits:

• In the split-row technique, increasing the number of splits/partitions

results in decoding performance loss and, possibly, a higher error-floor

[65–67]. Recently, MSA-based threshold decoding methods have been

proposed for the split-row technique to reduce this performance loss (e.g.,

see [67]). In stochastic decoders, however, partitioning PNs does not af-

fect the decoding performance or the error-floor. This is because in the

split-row technique for the MSA, each PN is divided into lower degree

89

CHAPTER 5. Node-Based Rerandomization Using MTFMs

PNs (assigned to each partition). These lower degree PNs calculate the

minimum of only a portion of incoming messages. Therefore, their out-

puts are not necessarily the absolute minimum of all incoming messages

received by the PN. As the number of splits increases, the approximation

made in lower degree PNs becomes less accurate. In stochastic decod-

ing, the PN operation is XOR-based, hence, as shown in Figure 5–7,

each lower degree PN can send its 1-bit outcome to neighboring PNs

and; therefore, no approximation is made in the PN operation.

• Increasing the number of partitions/splits results in long physical wires

between VN blocks. These wires can become the bottleneck of the clock

frequency and throughput. For instance in Figure 5–7 the input signal of

the VNs in the block number 32 starts from block 1 and passes through 30

VN blocks before reaching block 32. Stochastic decoding benefits from

asynchronous pipelining (discussed in Section 3.5.1.6). Asynchronous

pipelining enables stochastic decoders to pipeline long wires with negli-

gible effect on the average number of decoding cycles and throughput.

By relying on this useful feature, non-uniform levels of registers can be

inserted to pipeline the signals between VN blocks and break long wires

into small pieces to increase the clock frequency and throughput. In the

implemented decoder, three levels of flip-flops (i.e., one level of flip-flop

after every 8 VN block) are used to break these wires.

The decoder receives 6-bit input symbols from the channel. It applies scal-

ing (with a scaling factor of γ = 1.33) and converts the input symbols to 7-bit

probabilities using 26×7 bits (56 bytes) look-up tables. These probabilities are

converted to stochastic streams using 7-bit comparators. The MTFM resolu-

tion in VNs is 11 bits and all the MTFMs are initialized to the corresponding

channel probabilities prior the start of the decoding operation.

90

CHAPTER 5. Node-Based Rerandomization Using MTFMs

5.4.1.1 Random Number Generation

The stochastic decoder requires (pseudo) random numbers at input (chan-

nel) comparators to convert probabilities to stochastic streams. Random num-

bers are also required in MTFMs to convert probabilities stored in MTFMs

to stochastic streams. Random numbers used in the decoder are generated

using a DRE architecture which consists of 64 independent random engines.

Every two random engines are assigned to a VN block. Each random engine

consists of four 16-bit LFSRs associated with different prime polynomials and

generates an 11-bit random number which is shared among 2048/64 = 32 VNs.

5.4.1.2 Early Decoding Termination Criterion

The VNs and PNs exchange bits until decoder output bits satisfy all the

parity checks (i.e., syndrome checking) or a maximum number of 400 decoding

cycles is exhausted (see Section 5.4.1.3). In the implemented decoder, each

decoding cycle takes one clock cycle. The final output of each VN is determined

by the majority of bits received from connected PNs. The syndrome checking

is performed in every clock and hence the decoder stops decoding as soon as

it finds a valid codeword. The syndrome check is performed by XORing the

output bits of VNs that are connected to the same PNs. If the outcome of

all of these XOR gates are zero, decoding terminates. The early termination

logic consists of 384 32-input XOR gates whose 384 output bits are passed

through a 384-input NOR gate or equivalently 383 2-input NOR gates in a

tree configuration. Because of the early termination criterion, the throughput

of the decoder is determined by the average number of decoding cycles used

and the decoding latency is determined by the maximum number of decoding

cycles used.

91

C
H

A
P

T
E

R
5.

N
o
d
e-B

ased
R

eran
d
om

ization
U

sin
g

M
T

F
M

s

Figure 5–7: The (2048,1723) stochastic decoder is implemented using 32 VN blocks in which each block contains 64 degree-6
VNs. Each block receives 384 input bits from each one of its neighbor blocks and outputs 384 bits to each of them. To form
the parity-check equation, each VN inside a block XORs its output bit with the input receives from the neighboring block and
passes it to the next neighboring block. The VN also XORs the inputs received from neighbor blocks to from its input bit. One
level of flip-flops is used after every 8 VN blocks to break long wires.

92

CHAPTER 5. Node-Based Rerandomization Using MTFMs

5.4.1.3 Redecoding and Postprocessing

The idea of combining different decoding algorithms, for the sake of bet-

ter performance or less latency, has been used in the literature (e.g., see [10]).

The ASIC stochastic decoder uses a combined redecoding [53] and postpro-

cessing scheme which lowers the error-floor of the 10GBASE-T LDPC code

and enables the decoder to achieve a good BER decoding performance with

less decoding latency. Redecoding [53] is an interesting feature of stochas-

tic decoders which is useful for lowering the error-floor of LDPC codes. In

stochastic decoding the decoding trajectory depends on the stream of random

numbers generated for conversion of probabilities to stochastic bit streams.

Consequently, by using different sequences of random numbers, different de-

coding trajectories are possible. Therefore, if the decoding outcome does not

converge to a codeword after some decoding cycles, it is possible to restart

the decoding operation with different random numbers (a different decoding

trajectory) to possibly converge to a codeword in the new round. For the case

of the (2048,1723) LDPC code, it is known that the dominant error events

in the error-floor region are due to (8,8) absorbing sets (e.g., see [108–110]).

Redecoding in this respect helps to reduce these events by randomizing the

decoding trajectory.

The ASIC stochastic decoder uses 4 rounds of decoding for Eb/N0 ≥ 5 dB

in which each decoding round uses a maximum number of 100 decoding cycles

(i.e., a maximum of 400 decoding cycles including redecoding and postprocess-

ing). In rounds 1 to 3 of decoding, the stochastic decoding is performed for 92

decoding cycles. In the last 8 decoding cycles of these decoding rounds, the

ASIC decoder uses a postprocessing scheme to correct the remaining bit errors.

During the postprocessing mode, the output bit of each VN is directly sent

to PNs. The PNs perform the parity-check operation and send back their bit

93

CHAPTER 5. Node-Based Rerandomization Using MTFMs

messages to VNs. This postprocessing scheme can efficiently correct remain-

ing bit errors provided they are few. When the number of bit errors are high,

this scheme may result in propagation of errors in the entire graph; therefore,

the ASIC decoder only uses this postprocessing scheme at the end of decoding

rounds 1, 2 and 3 and does not use it for the last round. If the syndrome check

is not satisfied during decoding rounds 1 to 3, all MTFMs are reset to the

corresponding channel probabilities and the next round of decoding is started.

In the last round of decoding (round 4), stochastic decoding is performed for

a maximum of 100 decoding cycles.

5.5 Performance and Tradeoffs

This section discusses the decoding performance as well as various char-

acteristics of the implemented MTFM-based stochastic LDPC decoder.

5.5.1 Decoding Performance

Figure 5–8 depicts the BER and Frame-Error-Rate (FER) decoding per-

formance of the MTFM-based stochastic decoder. The BERs of the MTFM-

based decoder at Eb/N0 = 5.00 dB and Eb/N0 = 5.15 dB are obtained by

counting 30 and 10 frame errors, respectively. For Eb/N0 ≤ 4.75 dB at least

100 frame errors are counted.2 For the sake of comparison, the figure shows

the decoding performance of MTFM-based stochastic decoding without post-

processing and redecoding (with the same maximum number of decoding cy-

cles), the floating-point sum-product with 32 iterations, 6-bit fixed-point sum-

product with 50 iterations from [108], and 4-bit fixed-point offset min-sum

from [108]. Also shown in the figure are the decoding performance of the

2 To simulate a very low BER, we used two Canadian clusters (namely,
WestGrid and CLUMEQ) and a local cluster available at our research group.
Our simulations took about two months and were distributed on about 1000
CPUs.

94

CHAPTER 5. Node-Based Rerandomization Using MTFMs

 !" # #!" " "!"
$%

&$#

$%
&$'

$%
&$%

$%
&(

$%
&)

$%
&#

*+,-./
0
1+

%
-23-456

/
77
8
7-
,
9
:;

.'%#(<$=' 6-,*&09>;4-?@AB-C84;

-

-

D/,<-*:8CE9>:2C-4;C84;7

5/,<-*:8CE9>:2C-F2:E8G:-A8>:H78C!-I-,;4;C!

5/,<-*:8CE9>:2C-4;C84;7

5/,<-JD&K*L-.#&02:6-M$%(NM$%ON

5/,<-JD&K*L-P-A8>:H78C!-.#&02:6-M$%(NM$%ON

5/,<-K*L-*HQ2:&$)-M)=N

5/,<-52:&*;729Q-K*L-.#&02:6-M'#NM'(N

5/,<-*AL-.)&02:-DR<-"%-2:;7>!6-M$%(NM$%ON

5/,<-*AL-.DA<- '-2:;7>!6

Figure 5–8: Decoding performance of the MTFM-based stochastic decoder.
The stochastic decoder uses early termination until a maximum of 400 decod-
ing cycles has been exhausted.

(2048,1723) ASIC LDPC decoder in [24] which uses the approximate bit-serial

MSA, the (2048,1723) MSA Split-16 decoder in [67], and the (2048,1723) ASIC

LDPC decoder in [108, 109]. The decoder in [67] is a recently proposed fully

parallel decoder which provides a maximum throughput of 92.8 Gb/s by using

an early termination criterion. The decoding performance of this decoder is

demonstrated down to a BER of about 10−7 in [67]. The decoder in [108,109]

is also a recently proposed partially parallel decoder that relies on the 4-bit

fixed-point offset MSA and a special postprocessing technique [110] to lower

the error-floor of the (2048,1723) LDPC code. It also uses an early termination

criterion to increase the decoding throughput.

95

CHAPTER 5. Node-Based Rerandomization Using MTFMs

Table 5–2: Summary of the ASIC implementation results for the (2048,1723)
MTFM-based stochastic LDPC decoder.

CMOS technology CMOS90nm-GPSVT (7 metal layers)
Supply voltage 1 V
Clock frequency 500 MHz
Decoding latency 800 ns

Throughput 61.3 Gb/s at Eb/N0 = 5.5 dB
Core area 6.38 mm2

Logic utilization 86% (initial) and 95% (final)

As shown Figure 5–8, the proposed MTFM-based stochastic decoder is

able to provide a BER of 4×10−13 at Eb/N0 = 5.15 dB. Compared to the 4-bit

offset MSA (without postprocessing) and the 6-bit SPA, the stochastic decoder

shows superior error-floor behavior since no error-floor is observed down to the

BER of 4 × 10−13. This decoder outperforms the bit-serial decoder in [24, 28]

by about 1 dB and 6-bit sum-product decoding algorithm by about 0.4 dB.

Compared to the decoder in [108, 109] with postprocessing, the MTFM-based

decoder has about 0.2 dB loss. The stochastic decoder and the decoder in [67]

have similar decoding performance down to a BER of about 10−7 in the water

fall region.

5.5.2 Implementation Characteristics and Hardware-Complexity

Table 5–2 summarizes the ASIC implementation characteristics of the

MTFM-based stochastic decoder. The decoder is implemented using GP 90nm

CMOS technology (standard Vt) from STM with 1 V supply voltage. It is

synthesized using Cadence RTL-Compiler in nominal process corner and place

and route was done by using Cadence Encounter. The decoder achieves a

maximum clock frequency of 500 MHz after the place and route step and its

core occupies 6.38 mm2 silicon area with a high final logic utilization of 95%.

Figure 5–9 shows the chip layout after the place and route step.

96

CHAPTER 5. Node-Based Rerandomization Using MTFMs

Figure 5–9: The stochastic decoder chip layout.

5.5.3 Throughput

Figure 5–10 depicts the average number of decoding cycles used (left y-

axis) for decoding at different Eb/N0 and the corresponding throughput (right

y-axis) with the achieved clock frequency of 500 MHz after the place and

route step. As mentioned before, the stochastic decoder uses early termina-

tion criterion and the core throughput of the decoder is determined by the

average number of decoding cycles used. At Eb/N0 = 5.50 dB the MTFM-

based stochastic decoder uses an average of 16.7 decoding cycles which results

in a core throughput of 61.317 × 109 b/s or 61.3 Gb/s (each decoding cycle

takes one clock cycle). The throughput of the decoder at Eb/N0 = 5.15 dB is

about 49.4 Gb/s. Also, as Figure 5–10 shows, the decoder is able to provide

throughput of more than 23 Gb/s for Eb/N0 > 4.5 dB (BERs less than 10−7,

approximately). Figure 5–11 shows histograms of the decoding cycles used for

decoding at different Eb/N0. The figure also shows the corresponding mean

(µ) and the standard deviations (σ) associated with each histogram. Each

histogram is based on observation of one million transmitted codewords. As

shown, at high Eb/N0 the majority of transmitted codewords are decoded very

97

CHAPTER 5. Node-Based Rerandomization Using MTFMs

4.5 4.75 5 5.25 5.5
10

20

30

40
A

v
e
ra

g
e
 n

u
m

b
e
r

o
f
D

C
s

E
b
/N

0
 (dB)

(2048,1723) regular LDPC code

4.5 4.75 5 5.25 5.5
20

30

40

50

60

C
o
re

 T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Average number of DCs

Core Throughput (Gbps)

Figure 5–10: Average number of decoding cycles used (left y-axis) for decoding
at different SNRs and the corresponding core throughput (right y-axis) for the
achieved clock frequency of 500 MHz. Each decoding cycle takes one clock
cycle.

fast and hence the histograms become highly concentrated near the average

number of decoding cycles used.

5.5.4 Latency

The latency of the MTFM-based decoder is determined by the maximum

number of decoding cycles used. As mentioned before, the decoder uses a

maximum of 400 decoding cycles (including postprocessing), hence, with the

clock frequency of 500 MHz, the decoder maximum latency is 800 ns. If lower

latency is required, it is possible to trade BER with the maximum number of

decoding cycles used. For example, Figure 5–12 shows the BER/FER versus

latency (in nanoseconds) tradeoff at Eb/N0 = 5.15 dB. As shown, at this SNR

a BER of about 10−12 can be achieved with 580 ns decoding latency (i.e.,

maximum 290 decoding cycles).

98

CHAPTER 5. Node-Based Rerandomization Using MTFMs

0 20 40 60 80 100
0

5

10

15

20

25

 (! =29.5, " =9.3)

 (! =23.4, " =6.0)

 (! =16.7, " =3.0)

Decoding Cycle (DC)

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s

(2048,1723) regular RS-based LDPC code

E
b
/N

0
=4.75 dB

E
b
/N

0
=5.00 dB

E
b
/N

0
=5.50 dB

Figure 5–11: Histograms of decoding cycles used for decoding codewords at
different SNRs. One million codewords used for each histogram. µ is the
average number of decoding cycles and σ is the standard deviation. Each
decoding cycle takes one clock cycle.

5.5.5 Input and Output Buffer Requirements

Because of the early termination used in the decoder, the proposed stochas-

tic decoder needs to use input and output buffers to accommodate the differ-

ence between the variable number of decoding cycles used and the maximum

number of decoding cycles. The distribution of the number of decoding cycles

used changes with Eb/N0. Based on the histograms of the number of decoding

cycles used (see Figure 5–11), it is possible to determine the buffer require-

ments of the stochastic LDPC decoder for a specific operating Eb/N0. In

particular, we would like to determine such requirements for low BER regimes

(high Eb/N0) where the decoder is supposed to operate.

The input buffer of the decoder receives a codeword from the channel ev-

ery TIN decoding cycles. Each received codeword occupies 2048×6 bits or 1.5K

99

CHAPTER 5. Node-Based Rerandomization Using MTFMs

300 400 500 600 700 800
10

-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

time (nanosecond)

E
rr

o
r

R
a
te

(2048,1723) RS-based LDPC code

FER at E
b
/N

0
=5.15 dB

BER at E
b
/N

0
=5.15 dB

Figure 5–12: Decoding performance versus latency (in nanoseconds) at
Eb/N0 = 5.15 dB. A BER of about 10−12 is achieved with about 580 ns max-
imum decoding latency (i.e., maximum 290 decoding cycles). The shown 800
ns latency corresponds to the maximum 400 decoding cycles with the achieved
500 MHz clock frequency. Each decoding cycle takes one clock cycle.

bytes. The number of decoding cycles used by the decoder for decoding, TD, is

a random variable where 0 < TD ≤ 400 and its probability distribution func-

tion is obtained by the histograms shown in Figure 5–11. Every TD decoding

cycles, the decoder takes a codeword from the input buffer. On the other hand,

the output buffer of the decoder receives a decoded codeword from the decoder

every TD decoding cycles and outputs a codeword every TOUT decoding cycles.

Note that each decoded codeword occupies 2048 bits or 256 bytes which is

much less than a received codeword. Figure 5–13 shows the simulation results

for the probability of codeword overflow at Eb/N0 = 5.15 dB for different input

and output buffer sizes (TIN = 128 and TOUT = 16). As shown, the codeword

overflow probability sharply decreases by increasing the size of the input and

100

CHAPTER 5. Node-Based Rerandomization Using MTFMs

Figure 5–13: Probability of codeword overflow for different sizes of (a) input
buffer and (b) output buffer at Eb/N0 = 5.15 dB.

output buffers. This is mainly because the probability distribution function of

the number of decoding cycles used is highly concentrated near the average.

For example, at Eb/N0 = 5.15 dB with a FER of about 3.9× 10−11, the input

and output buffers require about 10K bytes in total (roughly about 0.28 mm2

in CMOS 90nm technology) to have a codeword overflow probability that is

below the FER, induced by the channel, by more than an order of magnitude.

5.6 Comparison with State-of-the-Art ASIC LDPC Decoders

Table 5–3 compares the implemented MTFM-based stochastic decoder

with some state-of-the-art high-throughput soft-decision ASIC LDPC decoders.

The table is partitioned in two parts: first, ASIC decoders that decode the

(2048,1723) LDPC code from the IEEE 802.3an standard and second, ASIC

decoders that decode other LDPC codes.

101

CHAPTER 5. Node-Based Rerandomization Using MTFMs

With respect to the decoding latency, the stochastic decoder requires 800

ns latency which is higher than other (2048,1723) LDPC decoders in the table,

but it is within an acceptable latency range (< 1 µs) for a channel decoder.

Also, if lower latency is desired, it is possible to trade latency with decoding

performance as shown in Figure 5–12. The stochastic decoder occupies a core

area of 6.38 mm2 in CMOS 90nm technology. To compare with the area of

the decoders that are implemented in different technologies, the table also

shows the scaled-area-per-coded-bit (in CMOS 90 nm technology). As shown,

this factor for the stochastic decoder is 3115 µm2, which indicates the most

area efficiency among the soft-decision decoders in the table. The decoder

also achieves a maximum core throughput of 61.3 Gb/s which is the second

highest throughput among the decoders. To bring the effect of technology and

code block length into account, the table shows the throughput-per-coded-bit-

per-scaled-area (in CMOS 90nm technology) for each decoder. This factor for

the stochastic decoder is 4.69 Mb/s/mm2 which is about twice that of for the

decoder in [108] and it is about 4% less than that of for the decoder in [67].

5.7 Conclusion

This chapter proposed the node-based rerandomization of stochastic strea-

ms using MTFMs for area-efficient and high throughput ASIC implementation

of stochastic LDPC decoders. It presented a (2048,1723) fully parallel MTFM-

based ASIC LDPC decoder. The implemented decoder provides a maximum

throughout of 61.3 Gb/s and occupies a 6.38 mm2 core area in CMOS 90

nm technology. To the best of our knowledge, this decoder is the most area-

efficient soft-decision fully parallel LDPC decoder and it is one of the fastest

fully parallel LDPC decoders reported in the literature.

102

C
H

A
P

T
E

R
5.

N
o
d
e-B

ased
R

eran
d
om

ization
U

sin
g

M
T

F
M

s

Table 5–3: Comparison with some state-of-the-art high throughput soft-decision ASIC LDPC decoders.
Decoders for the (2048,1723) LDPC code from IEEE 802.3an Other decoders

this work [24, 28] [108, 109] [54] [67] [13] [15]

Code (2048,1723) (2048,1723) (2048,1723) (2048,1723) (2048,1723) (1024,512) (256,128)
Code regular, regular regular regular regular irregular regular

structure RS-based RS-based RS-based RS-based RS-based
Maximum (dv,dc) (6,32) (6,32) (6,32) (6,32) (6,32) not reported (3,6)

Decoding MTFM-based bit-serial offset MSA + SPA MSA SPA bit-serial
algorithm stochastic approx. MSA postprocessing Split-16 MSA

Implementation fully fully partially partially fully fully fully
strategy parallel parallel parallel parallel parallel parallel parallel

CMOS technology 90 nm 90 nm 65 nm 90 nm 65 nm 160 nm 180 nm
Input quantization 6 bits 4 bits 4 bits 5 bits 5 bits 4 bits 4 bits

Clock 500 MHz 250 MHz 700 MHz 207 MHz 195 MHz 64 MHz 250 MHz
frequency (before place & route)

Iterations or max. 400 8 8 + 4 postproc. 16 11 64 32
decoding cycles (with postproc.)

Clocks per iteration 1 4 12 5 1 1 8
or decoding cycle
Decoding latency 800 ns 128 ns 206 ns 386 ns 54 ns 1000 ns 1024 ns

Throughput 61.3 Gb/s at max. 16 Gb/s 47.7 Gb/s at 5.3 Gb/s 92.8 Gb/s at 1 Gb/s 500 Mb/s
Eb/N0=5.5 dB Eb/N0=5.5 dB Eb/N0≈4.55 dB

Area 6.38 mm2 9.8 mm2 5.35 mm2 14.5 mm2 4.84 mm2 ≃40 mm2 6.96 mm2

(before place & route)
T/P per coded bit per 4.69 0.80 2.27 0.18 4.88 0.08 1.12
scaled area (in 90 nm) Mb/s/mm2 Mb/s/mm2 Mb/s/mm2 Mb/s/mm2 Mb/s/mm2 Mb/s/mm2 Mb/s/mm2

Scaled area per 3115 µm2 4785 µm2 5008 µm2 7080 µm2 4530 µm2 12360 µm2 6797 µm2

coded bit (in 90 nm) (before place & route)

103

CHAPTER 6

Joint Stochastic Decoding of LDPC Codes and

Partial-Response Channels

This chapter proposes the application of the stochastic decoding approach

for joint decoding of LDPC codes and partial-response channels. Our proposed

method relies on the joint message-passing algorithm in [51, 52] for decoding

of LDPC codes and partial-response channels.

6.1 System Model

Figure 6–1 depicts the system model considered in this chapter. In this

model, it is assumed that an independent and identically distributed binary

vector x = (x1, ..., xn), where xi ∈ {0, 1}, is passed through a partial-response

channel. The transfer polynomial of the partial-response channel is h(D) =

∑d

j=0 hjD
j, where d is the channel degree, and hj is a real number. The

output vector of the partial-response channel is y = (y1, ..., yn+d), and its

output alphabet set is A, where yi ∈ A. The vector y is passed through an

AWGN channel with zero mean and a single-sided noise power spectral density

of N0. The joint decoder receives the vector r = (r1, ..., rn+d) from the AWGN

channel.

Similar to [51], we consider two types of partial-response channels in this

chapter: the dicode channel and the EPR4 channel. The transfer polynomial

of the dicode channel is

h(D) = 1 − D. (6.1)

104

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

Figure 6–1: System model.

In the dicode channel, d = 1 and the channel’s output alphabet set is A =

{−1, 0, +1}. The EPR4 channel model is a practical partial-response channel

model considered in magnetic recording applications. This channel model has

a transfer polynomial of

h(D) = 1 + D − D2 − D3. (6.2)

In the EPR4 channel, d = 3 and A = {−2,−1, 0, +1, +2}. We assume that

the partial-response model starts from the zero state, and it is terminated at

the zero state.

6.2 Overview of Joint Message-Passing Decoding

This section provides a brief overview of the bit-based joint message-

passing decoding of LDPC codes and partial-response channels which was

proposed in [51, 52].

Figure 6–2 depicts the block diagram of the joint message-passing decod-

ing of LDPC codes and partial-response channels. The joint message-passing

decoder is comprised of a partial-response channel detector and an LDPC

decoder. Similar to LDPC codes, the message-passing detector for the partial-

response channel detector is represented by a bipartite graph. This graph has

two types of nodes: triangle nodes which receive the noisy samples, ri, from

the AWGN channel, and bit nodes. In Figure 6–2, triangle nodes are depicted

105

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

Figure 6–2: Joint message-passing diagram for decoding LDPC codes and
partial-response channels. d is the degree of the partial-response channel.

as grey triangles and bit nodes are depicted as grey circles. The connection be-

tween triangle nodes and bit nodes is determined by h(D), i.e., a triangle node

is connected to a bit node if and only if h(D) indicates a direct dependence be-

tween the input and the corresponding output of the partial-response channel.

The detector operates for T iterations on the received samples from the chan-

nel, then it passes its soft outputs to the LDPC decoder. The LDPC decoder

runs for S iterations and its soft outputs are passed back to the detector. This

scheme is repeated for U global/turbo iterations [51, 52].

Figures 6–3 (a) and (b) show the message-passing graph for the dicode

channel and the EPR4 channel, respectively. Note that the message-passing

graph for the dicode channel is acyclic, but the graph for the EPR4 channel

has many length-4 cycles. A length-4 cycle is highlighted in the latter graph.

106

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

(a)

(b)

Figure 6–3: (a) The message-passing diagram for the dicode channel with
h(D) = 1 − D. The p-th triangle node is connected to bit nodes numbered
p and p − 1. (b) The message-passing diagram for the EPR4 channel with
h(D) = 1 + D − D2 − D3. The p-th triangle node is connected to bit nodes
numbered p, p − 1, p − 2, and p − 3. A length-4 cycle is highlighted in the
graph.

6.2.1 Operation of Triangle Nodes

Triangle nodes and bit nodes in the detector exchange probability mes-

sages that represent Pr(xi = 1). Their outgoing messages are produced ac-

cording to the SPA rule, in which the outgoing message for an edge is based

on all incoming messages, excluding the message received from that edge. Let

x
p
p−d = (xp−d, ..., xp) and let x

p\m
p−d be a vector for the same bits excluding bit

xm for p − d ≤ m ≤ p. Let b
d\m−p+d
0 = (b0, ..., bd) be a vector of binary inputs

to the partial-response channel except for bm−p+d, and let Bm,p,d be the set of

all such binary inputs. The probability message from the p-th triangle node to

the m-th bit node is Rpm(1), and the message from the m-th bit node to the

107

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

p-th triangle node is Qmp(1). Rpm(·) and Qmp(·) are defined as functions of j,

where j ∈ {0, 1}. The p-th triangle node computes Rpm(j) as follows [51, 52]:

Rpm(j) =

Pr(xm = j|rp) =

∑

a∈A,b
d\m−p+d

0
∈Bm,p,d

Pr(xm = j, x
p\m
p−d = b

d\m−p+d
0 , yp = a|rp) =

∑

a∈A,b
d\m−p+d

0
∈Bm,p,d

Pr(xm = j, x
p\m
p−d = b

d\m−p+d
0 , yp = a)×

Pr(rp|yp = a)Pr(yp = a|x
p\n
p−d = b

d\m−p+d
0)Pr(x

p\m)
p−d = b

d\m−p+d
0)

Pr(rp)
=

∑

a∈A,b
d\m−p+d

0
∈Bm,p,d

Pr(xm = j, x
p\n
p−d = b

d\m−p+d
0 , yp = a)×

Pr(rp|yp = a)Pr(yp = a|x
p\m
p−d = b

d\m−p+d
0)

p\m
∏

u=p−d

Qup(bu−p+d)

Pr(rp)
.

(6.3)

In the above equation, the term Pr(xm = j, x
p\n
p−d = b

d\m−p+d
0 , yp = a) is either

zero or one, and the term Pr(yp = a|x
p\m
p−d) is equal to 0.5 for all nonzero terms

in the summation. Also, the term Pr(rp|yp = a) is the channel probability,

which is calculated using the knowledge that the channel is AWGN. Finally,

Pr(xm = j, x
p\n
p−d = b

d\m−p+d
0 , yp = a) are the prior probabilities which are

factored into individual probability messages sent by the connected bit nodes

to the p-th triangle node [51, 52].

6.2.2 Operation of Bit Nodes

The operation of bit nodes is the same as the operation of VNs in the

SPA. The m-th bit node computes its outgoing message for the p-th triangle

node, Qmp(j), as follows [51, 52]:

108

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

Qmp(j) =

m+d\p
∏

u=m

Pr(xm = j|ru)

m+d\p
∏

u=m

Pr(xm = 1|ru) +
m+d\p
∏

u=m

Pr(xm = 0|ru)

=

m+d\p
∏

u=m

Rum(j)

m+d\p
∏

u=m

Rum(1) +
m+d\p
∏

u=m

Rum(0)

.

(6.4)

6.3 The Proposed Method

The triangle node operation in the joint message-passing decoding is a

computationally-intensive operation which requires the division, multiplica-

tion, and summation of probabilities. It is possible to perform this operation

in the log-domain to avoid division and multiplication, but even by using the

LLR transformation, the triangle node’s operation requires the evaluation of

complex nonlinear functions (see [21]). In this section, we propose hardware

architectures that perform the triangle node operation for the dicode and the

EPR4 channels using the stochastic approach. Because the operation of bit

nodes in a message-passing channel detector is the same as VNs in a LDPC

decoder, stochastic VNs discussed in previous chapters can be used to perform

bit node operations in a stochastic partial-response channel detector. In this

regard, we do not discuss the hardware architectures of stochastic bit nodes in

this chapter.

In joint stochastic decoding, channel probabilities, Pr(rp|yp ∈ A), are

transformed into stochastic bit streams. Similar to stochastic LDPC decod-

ing, this transformation is done by comparing each channel probability to a

(pseudo) random number that changes in every decoding cycle. The output

bit stream of the comparator represents the corresponding channel probability.

109

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

In the dicode channel, the alphabet set A has three elements; therefore, each

triangle node transforms three channel probabilities to stochastic streams, i.e.,

Pr(rp|yp = −1), Pr(rp|yp = 0), and Pr(rp|yp = +1). Similarly, in the EPR4

channel, A has five elements and each triangle node transforms five chan-

nel probabilities to stochastic streams, i.e., Pr(rp|yp = −2), Pr(rp|yp = −1),

Pr(rp|yp = 0), Pr(rp|yp = +1), and Pr(rp|yp = +2).

Each triangle node in the stochastic detector receives one bit from each

of its (channel) comparators in every decoding cycle.1 The stochastic channel

detector operates by stochastic triangle nodes and bit nodes exchanging bits

for TSD decoding cycles. The detector then passes its soft output (extracted

by TFMs) to the stochastic LDPC decoder which runs for a maximum of SSD

decoding cycles. The stochastic LDPC decoder performs syndrome checking in

every decoding cycle to terminate the joint decoding process as soon as all the

parity-checks are satisfied. If this termination criterion is not satisfied within

SSD decoding cycles, the stochastic LDPC decoder passes back its soft outputs

(extracted by TFMs) to the channel detector. This scheme is repeated for at

most U global/turbo iterations.

6.3.1 Stochastic Triangle Nodes for the Dicode Channel Detector

As mentioned previously, the message-passing graph of the dicode channel

is acyclic. In acyclic graphs, the latching problem does not hold. In this re-

spect, the proposed stochastic triangle node architecture for the dicode channel

does not use rerandomization units.

1 Similar to the definition of a decoding cycle or DC (i.e., a stochastic de-
coding iteration) in Section 2.4 for stochastic LDPC decoding, in a stochastic
partial-response channel detector, a decoding cycle refers to the exchange of
one bit between triangle nodes and bit nodes.

110

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

From (6.3), it follows that we can write Rpm(1) in the form of

Rpm(1) =
P1

P1 + P0
, (6.5)

where, for the case of the dicode channel,

P1 = Pr(xp = 1, rp) =

0.5 × Pr(rp|yp = +1)(1 − Q(m−1)p) + 0.5 × Pr(rp|yp = 0)Q(m−1)p,

(6.6)

and

P0 = Pr(xp = 0, rp) =

0.5 × Pr(rp|yp = 0)(1 − Q(m−1)p) + 0.5 × Pr(rp|yp = −1)Q(m−1)p.

(6.7)

Figure 6–4 depicts the proposed hardware architecture to compute Rpm(1) in

a stochastic triangle node for the dicode channel detector. A similar hardware

architecture is used to compute Rp(m−1)(1). In this architecture, the inverse

operation on Q(m−1)p is performed using a NOT gate, and the multiplication

of probabilities is performed using AND gates. The output of each AND gate

in the figure forms a term for the summation in (6.6) and (6.7). The stochastic

summation is performed by two 2-input OR gates. As mentioned in Chapter

2, an OR gate can be used as an approximate stochastic adder. The output

streams of the OR gates shown in the figure represent P ′
1 ≈ 2P1 and P ′

0 ≈ 2P0.

Finally, the stochastic streams representing P ′
1 and P ′

0 are passed to a JK flip-

flop that performs a division and its output bit stream represents P ′
1/(P ′

1+P ′
0),

which approximates Rpm(1) = P1/(P0 + P1).

The structure of degree-2 stochastic bit nodes used in the dicode channel

detector is based on the basic stochastic VN structure, where a JK flip-flop is

used to perform division (see Figure 2–9 in Chapter 2).

111

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

Figure 6–4: The hardware architecture of a stochastic triangle node for the
dicode channel (only one output and its corresponding inputs are shown).

6.3.2 Stochastic Triangle Nodes for the EPR4 Channel Detector

The message-passing graph for the EPR4 channel has many length-4 cy-

cles (see Figure 6–3(b)). These short cycles severely intensify the latching

problem in the stochastic channel detector and deteriorate the BER decod-

ing performance of joint stochastic decoding. Moreover, triangle nodes and

bit nodes in the EPR4 channel detector have higher node degrees and per-

form more complex operations compared to the triangle nodes and bit nodes

in the dicode channel detector. In this respect, the proposed architecture for

stochastic triangle nodes in the EPR4 channel detector relies on TFMs, as

rerandomization units, to alleviate the latching problem and to increase the

switching activity in the joint decoder.

112

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

In the EPR4 channel, the term P1 in (6.5) is computed as:

P1 = Pr(xp = 1, rp) =

0.5 × Pr(rp|yp = +1)(1 − Q(m−1)p)(1 − Q(m−2)p)(1 − Q(m−3)p)+

0.5 × Pr(rp|yp = 0)(1 − Q(m−1)p)(1 − Q(m−2)p)Q(m−3)p+

0.5 × Pr(rp|yp = 0)(1 − Q(m−1)p)Q(m−2)p(1 − Q(m−3)p)+

0.5 × Pr(rp|yp = −1)(1 − Q(m−1)p)Q(m−2)pQ(m−3)p+

0.5 × Pr(rp|yp = +2)Q(m−1)p(1 − Q(m−2)p)(1 − Q(m−3)p)+

0.5 × Pr(rp|yp = +1)Q(m−1)p(1 − Q(m−2)p)Q(m−3)p+

0.5 × Pr(rp|yp = +1)Q(m−1)pQ(m−2)p(1 − Q(m−3)p)+

0.5 × Pr(rp|yp = 0)Q(m−1)pQ(m−2)pQ(m−3)p.

(6.8)

Also, P0 in (6.5) is computed as follows:

P0 = Pr(xp = 0, rp) =

0.5 × Pr(rp|yp = 0)(1 − Q(m−1)p)(1 − Q(m−2)p)(1 − Q(m−3)p)+

0.5 × Pr(rp|yp = −1)(1 − Q(m−1)p)(1 − Q(m−2)p)Q(m−3)p+

0.5 × Pr(rp|yp = −1)(1 − Q(m−1)p)Q(m−2)p(1 − Q(m−3)p)+

0.5 × Pr(rp|yp = −2)(1 − Q(m−1)p)Q(m−2)pQ(m−3)p+

0.5 × Pr(rp|yp = +1)Q(m−1)p(1 − Q(m−2)p)(1 − Q(m−3)p)+

0.5 × Pr(rp|yp = 0)Q(m−1)p(1 − Q(m−2)p)Q(m−3)p+

0.5 × Pr(rp|yp = 0)Q(m−1)pQ(m−2)p(1 − Q(m−3)p)+

0.5 × Pr(rp|yp = −1)Q(m−1)pQ(m−2)pQ(m−3)p.

(6.9)

Figure 6–5 depicts the proposed hardware architecture to compute Rpm(1) in a

stochastic triangle node for the EPR4 channel. Similar hardware architectures

are used to compute Rp(m−1)(1), Rp(m−2)(1), and Rp(m−3)(1). In the architec-

ture shown, the network of AND gates computes the terms that are needed for

113

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

summations in (6.8) and (6.9). The stochastic summation is performed by two

8-input OR gates. The output streams of the OR gates shown in the figure

represent P ′
1 ≈ 2P1 and P ′

0 ≈ 2P0. The division required to compute Rpm(1)

in (6.5) is performed by a TFM-based stochastic divider. The operation and

the update rule of the TFM-based divider is the same as a JK flip-flop divider,

however, instead of a flip-flop, a TFM is used to efficiently rerandomize the

output stochastic bit stream. The output stream of the TFM-based divider

represents P ′
1/(P ′

1 + P ′
0) ≈ 2P1/(2P1 + 2P0) = P1/(P1 + P0). In this divider,

the TFM is updated when J 6= K. The output bit of the divider is 1 when

J = 1 and K = 0, and it is 0 when J = 0 and K = 1. Also, when J = K = 0

the output bit of the TFM is directly used as the output of the divider (i.e.,

hold state), and when J = K = 1 the inverse of the output bit of the TFM is

used as the output of the divider (i.e., reverse state).

The structure of degree-4 stochastic bit nodes used in the EPR4 channel

detector is based on the MTFM-based stochastic VN structure (see Section

5.1). We used reduced-complexity MTFMs with Tu = dv = 4 and Tm =

dv/2 = 2.

6.4 Decoding Performance Results

Figure 6–6 shows the BER decoding performance of the stochastic ap-

proach for joint decoding of a (2000,1000) LDPC code and the dicode partial-

response channel.2 For the sake of comparison, the figure also shows the

decoding performance results obtained for the floating-point joint message-

passing decoding (with a floating-point channel detector and a floating-point

2 The energy per bit in the simulation results reported in this chapter is
defined as Eb = Ey/R, where R = k/n is the rate of the LDPC code, and Ey

is the average energy of yi’s. Ey is calculated by considering the probabilities
of occurrence of yi ∈ A, given equiprobable channel inputs xi ∈ {0, 1}.

114

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

Figure 6–5: The hardware architecture of stochastic triangle node for the EPR4
channel (only one output and its corresponding inputs are shown). R(t) is a
(pseudo) random number varying in every decoding cycle.

SPA-based LDPC decoder), and the dicode channel truncated union bound

from [51, 93]. We used U = 16, T = 3, and S = 3 for the floating-point SPA-

based message-passing decoding. Also, for joint stochastic decoding, we used

115

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

U = 16, TSD = 100 decoding cycles for detection, and SSD = 100 decoding cy-

cles for stochastic LDPC decoding. The (2000,1000) stochastic LDPC decoder

used in joint decoding relies on TFMs with a relaxation coefficient of β = 2−4.

The LDPC decoder applies syndrome checking to terminate the joint decoding

process as soon as all the parity-checks are satisfied. As shown, at a BER of

about 10−8, the proposed joint stochastic decoder is able to provide a decoding

performance within 0.4 dB of the floating-point joint message-passing.

Figure 6–7 shows the BER decoding performance of the stochastic ap-

proach for joint decoding of a (2000,1000) LDPC code and the EPR4 partial-

response channel. Also shown in the figure are the decoding performance of

floating-point joint message-passing decoding using a floating-point channel

detector and a floating-point SPA-based LDPC decoder, and the EPR4 chan-

nel truncated union bound from [51, 93]. To show the effects of quantization

in the EPR4 channel detector, the figure also depicts performance results for

joint message-passing decoding using an 8-bit channel detector and a floating-

point SPA-based LDPC decoder. We used U = 16, T = 8, and S = 8 in

both joint message-passing decoding schemes. For joint stochastic decoding,

we used U = 16, TSD = 200 decoding cycles for detection, and SSD = 200

decoding cycles for TFM-based stochastic LDPC decoding. Results demon-

strate the applicability of the proposed stochastic approach for joint decoding

of LDPC codes and the EPR4 channel. Despite the existence of a high number

of length-4 cycles in the detector graph of the EPR4 channel, which severely

intensify the latching problem, no error-floor is observed down to a BER of

about 10−8. Compared to the dicode channel, more decoding loss with re-

spect to the floating-point joint message-passing is observed. A comparison

of joint message-passing decoding with floating-point and 8-bit channel detec-

tors reveals the sensitivity of the BER decoding performance to the number

116

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

3 4 5 6 7 8 9 10 11
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

(2000,1000) (3,6)-regular LDPC code, Dicode channel

Dicode union bound
Joint stochastic decoding
Joint msg. passing decoding (floating-point)

Figure 6–6: Decoding performance of the stochastic approach for joint decod-
ing of a (2000,1000) LDPC code and the dicode partial-response channel.

of quantization levels used in the EPR4 channel detector. The decoding per-

formance of the joint stochastic decoding is within about 0.6 dB of the joint

message-passing decoding with an 8-bit channel detector and a floating-point

SPA-based LDPC decoder.

6.5 Estimation of Decoding Latency and Throughput

Although the hardware implementations of the proposed joint stochastic

decoders are not considered in this chapter, based on the results presented in

previous chapters, it is possible to investigate/approximate the (core) decod-

ing latency and throughput of the joint stochastic decoders. As mentioned

in previous chapters, one of the main challenges in hardware implementations

of LDPC decoders is the random-like/irregular connections between VNs and

PNs. These irregular connections result in long physical wires across the de-

coder chip, which limit the speed and increase the area and power consump-

tions of LDPC decoders. It is worth noting that, compared to LDPC codes,

117

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

3 4 5 6 7 8 9 10 11
10

-8

10
-6

10
-4

10
-2

10
0

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

(2000,1000) (3,6)-regular LDPC code, EPR4 channel

EPR4 union bound
Joint stochastic decoding
Joint msg. passing (8-bit detection + FP decoding)
Joint msg. passing (FP detection + FP decoding)

Figure 6–7: Decoding performance of the stochastic approach for joint decod-
ing of a (2000,1000) LDPC code and the EPR4 partial-response channel (FP:
floating-point).

connections between triangle nodes and bit nodes in a message-passing graph

for partial response channels are regular. This feature is favorable for hard-

ware implementations, because physical wires between triangle nodes and bit

nodes become local/short, which potentially results in a higher speed as well

as higher area and power efficiency.

ASIC implementations of stochastic LDPC decoders in previous chapters

showed that clock frequencies in the order of 500 MHz can be achieved for fully

parallel ASIC stochastic LDPC decoders (in CMOS 90nm technology). The

decoding latency of the joint stochastic decoder is determined by U(TSD+SSD).

For the dicode channel and the EPR4 channel, the decoding latencies are 3200

decoding cycles and 6400 decoding cycles, respectively, where each decoding

cycle takes one clock cycle. Figure 6–8 shows the decoding latency of the joint

decoder for different clock frequencies ranging from 100 MHz to 500 MHz. It

118

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Clock frequency (MHz)

L
a

te
n

c
y
 (

m
ili

s
e
c
o
n

d
s
)

Dicode
EPR4

Figure 6–8: Estimated latency of joint stochastic decoding for different clock
frequencies.

should be noted that compared to digital wireless and wireline communications

applications, magnetic recording applications have higher decoding latency

requirements (usually, in the order of milliseconds). As shown, the decoding

latency for the case of the dicode channel ranges from 0.0320 down to 0.0064

milliseconds, and for the case of the EPR4 channel, it ranges from 0.0640 down

to 0.0128 milliseconds.

The throughput of the joint decoder is determined by the average number

of decoding cycles used. This is because the stochastic LDPC decoder uses an

early decoding termination criterion that stops the joint decoding process as

soon as all the parity-checks are satisfied. Figure 6–9 (a) depicts the average

number of decoding cycles used for joint stochastic decoding at different SNRs

for the dicode and the EPR4 channels. Also, Figures 6–9 (b) and (c) show

the corresponding (core) throughput for different clock frequencies ranging

from 100 MHz to 500 MHz. As shown, the average number of decoding cycles

119

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5
0

2

4

6

SNR (E
b
/N

0
 in dB)

 (c)

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

EPR4

500 MHz clock

250 MHz clock

100 MHz clock

5.5 6 6.5 7
0

5

10

15

20

SNR (E
b
/N

0
 in dB)

 (b)

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

Dicode

500 MHz clock

250 MHz clock

100 MHz clock

5.5 6 6.5 7 7.5
0

200

400

600

SNR (E
b
/N

0
 in dB)

 (a)

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

D
C

s

Dicode

EPR4

Figure 6–9: (a) Average number of decoding cycles used for joint stochastic de-
coding at different SNRs. (b) Estimated (core) throughput for joint stochastic
decoding of the (2000,1000) LDPC code and the dicode channel. (c) Estimated
(core) throughput for joint stochastic decoding of the (2000,1000) LDPC code
and the EPR4 channel.

decreases significantly in low BER regimes (high Eb/N0), which enables the

joint stochastic decoder to provide multi-Gb/s throughput.

6.6 Stochastic Channel Detection and Log-Based LDPC Decoding

Although the focus of this chapter was on joint stochastic decoding (us-

ing stochastic channel detection and stochastic LDPC decoding), it should be

noted that it is feasible to use stochastic channel detection with LDPC decod-

ing algorithms that operate in the log-domain. Recently, it was shown that

the concept of TFMs is applicable in the log-domain [53]. An LLR-based TFM

120

CHAPTER 6. Joint Stochastic Decoding of LDPC Codes and ...

receives an input stochastic bit stream and tracks the corresponding LLR of

the bit stream, at the cost of more hardware-complexity compared to regular

TFMs. It is therefore possible to have a stochastic channel detector whose

final soft outputs (passed to an LDPC decoder) are in the form of LLRs. In

this respect, stochastic partial-response channel detection can be used jointly

with LDPC decoding algorithms such as the MSA, the offset MSA, etc.

6.7 Conclusion

This chapter proposed the novel application of joint stochastic decoding

of LDPC codes and partial-response channels that are considered in practical

magnetic recording applications. It proposed low hardware-complexity ar-

chitectures for stochastic triangle nodes to perform computationally-intensive

operations required in the dicode and the EPR4 partial-response channel de-

tectors. The decoding performance, latency, and throughput of the proposed

joint stochastic decoding method are discussed. Results demonstrated the ap-

plicability of the stochastic approach for joint decoding of LDPC codes and

practical partial-response channels.

121

CHAPTER 7

Stochastic Decoding of Linear Block Codes

with High-Density Parity-Check Matrices

This chapter investigates stochastic decoding of linear block codes with

high-density parity-check matrices on factor graphs. As mentioned in Chapter

1, stochastic decoding was first applied to RS codes in [112]. Our contributions

in this chapter will be to further investigate stochastic RS decoding, to extend

the application of stochastic decoding to BCH codes and BCH-based block

turbo codes, and to investigate efficient hardware implementations of high-

degree nodes used in the decoding of linear block codes with high-density

parity-check matrices on factor graphs. This chapter is in part based on the

material in our paper [83]. It shows how the stochastic approach, despite its

bit-serial nature, can integrate in the Adaptive Belief Propagation (ABP) [47]

and the Turbo-oriented Adaptive Belief propagation (TAB) [45,46]. Although

the focus of this chapter is on the EM-based stochastic decoding, it should be

noted that TFMs and MTFMs are also applicable for this purpose. To the best

of our knowledge, results provided in this chapter are the first results reported

in the literature for stochastic decoding of BCH codes and BCH-based turbo

block codes on factor graphs.

122

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

7.1 Overview

Despite the excellent performance of the SPA (also referred to as belief

propagation or BP) for LDPC decoding, the SPA/BP algorithm is not suit-

able for decoding codes with non-sparse parity-check matrices such as BCH

and RS codes. This problem was investigated in [47] and a new ABP was sug-

gested for RS decoding. It was shown that when BP is applied to a code with

high-density parity-check matrix, it is likely that BP gets stuck at some local

minimum points that correspond to some unreliable symbols. Therefore, at

each iteration of ABP, the parity-check matrix of the code is adapted accord-

ing to the bit reliabilities to sparsify those columns associated with unreliable

bits. The ABP offers a decoding gain of more than 3 dB over hard-decision

RS decoding. However, the parity-check matrix adaptation step in the ABP

is complex. Inspired by the ABP, a novel method for the TAB was proposed

for turbo decoding of product codes [45, 46]. In the TAB, the parity-check

matrix adaptation is performed before the BP process and thus, the parity-

check matrix is fixed during the BP process in the component decoder. This

feature significantly decreases decoding complexity. In addition, the TAB out-

performs the ABP and provides a performance close to the Chase-Pyndiah

algorithm [73].

7.1.1 Adaptive Belief Propagation

This section provides an overview of the ABP for SISO RS decoding over

GF(2q) [47]. The same approach is applicable for binary BCH codes.

BCH and RS codes are important classes of linear cyclic error-correcting

codes with multiple error detection and correction capability. The parity-check

123

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

matrix of an (n, k) RS code over GF(2q) can be represented by

H =



















1 α · · · α(n−1)

1 α2 · · · α2(n−1)

...
... · · ·

...

1 α(n−k) · · · α(n−k)(n−1)



















, (7.1)

where α is the primitive element in GF(2q). In the ABP, H is expanded to

its binary representation, Hb, by substituting each codeword in the GF(2q)

with its equivalent binary representation [47]. This representation transforms

the problem of RS decoding to the general problem of decoding of an (N, K)

binary block code with N = q × n and K = q × k.

Let i denote the iteration step in the ABP. Also, let L(i) be the vector of

LLRs and H
(i)
b be the adapted binary parity-check matrix at the i-th iteration.

At i = 0, the ABP starts with the channel LLRs (L(0) = LCH) and the

binary parity-check matrix (H
(0)
b = Hb). At each iteration of ABP, two steps

are performed: the reliability-based adaptation of H
(i)
b and the generation of

extrinsic information using BP [47]:

• Reliability-based Adaptation: In this step, the LLRs are sorted based

on their absolute value in an ascending manner and ordering indices

are stored. Let L(i) = {L
(i)
m1 , ..., L

(i)
mN} be the sorted list of LLRs and

{m1, ...mN} be the stored indices. The first LLR, L
(i)
m1 , corresponds the

least reliable bit (the m1-th bit in the block) and the last LLR, L
(i)
mN

corresponds to the most reliable bit (the mN -th bit in the block). After

this phase, starting from j = m1 to mN , row operations are performed

to systematize the j-th column of H
(i)
b to form a unity weight column

ej = [0..010..0]T , in which the only non-zero element is placed at the

j-th position. If such systematization is not possible for a column, the

algorithm proceeds to the next column in L(i). This procedure can be

124

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

Figure 7–1: Form of an adapted parity-check matrix in the ABP [47].

done using the Gaussian elimination method. Figure 7–1 shows the form

of an adapted parity-check matrix which is decomposed into dense and

low-density parts.

• Generation of Extrinsic Information: After the adaptation step, the BP

is applied on the sorted LLRs, L(i), based on the adapted parity-check

matrix, H
(i)
b , to generate the extrinsic LLRs, L

(i)
ext. The LLR L(i+1) is

then updated according to:

L(i+1) = L(i) + λ × L
(i)
ext, (7.2)

where 0 < λ < 1 is a damping coefficient. The algorithm returns to the

adaptation step unless it has been run for a fixed maximum number of

iterations, imax, or all the parity-checks are satisfied.

The ABP can be exploited with variants of BP such as the MSA and

the offset MSA [44]. In addition, the Hard-Decision Decoding (HDD) step

at the end of each iteration of ABP may be used to improve the decoding

performance [47]. The HDD variant consists of (a) performing hard decisions

on LLRs at the end of each iteration of ABP to obtain a codeword and, (b)

125

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

selecting the most likely codeword at the end of the decoding process. This

variation improves the convergence and the performance of the iterative RS

decoder [47].

7.1.2 Turbo-Oriented Adaptive Belief Propagation

The TAB is a new method for block turbo decoding using BP-based de-

coders as elementary SISO component decoders [45, 46]. The TAB is inspired

by the ABP but it is less complex than the ABP and offers better decoding

performance. Figure 7–2 shows the principles of SISO block turbo decoding.

It includes sequential decoding of rows and columns of the component codes

and the iterative process. The “global/turbo” iterations, i, have to be distin-

guished from the iterations of the BP process that we call “local” iterations. As

mentioned earlier, the ABP requires the adaptation of Hb and the generation

of extrinsic information using BP in each local iteration. The Gaussian elimi-

nation used in the adaptation step of the ABP is a computationally-expensive

process. In the TAB, the adaption step is only performed at the beginning

of each global iteration (before the BP process). This means that the parity-

check matrix is the same during the BP process and no damping coefficient or

matrix adaptation is necessary during local iterations. Instead, the LLR up-

date is performed in the global iteration of turbo process using µ coefficient.

This feature significantly reduces the complexity. In addition, the TAB out-

performs the ABP for block turbo decoding and provides performance close to

the Chase-Pyndiah algorithm [45,46].

7.2 The Stochastic Decoding Method

This section discusses the stochastic method for decoding high-density

linear block codes.

126

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

Figure 7–2: Block turbo decoding.

7.2.1 High-Degree Stochastic Nodes

The parity-check matrix of an RS or BCH code is a dense matrix which

results in a factor graph with high-degree nodes. For instance, the factor graph

of the (63,55) RS code used in this chapter has 378 VNs and 48 PNs over

GF(26). The maximum degrees of VNs and PNs are 34 and 184, respectively,

and about 77% of VNs have a dv ≥ 20. In this respect, it is essential to

construct high-degree stochastic VN based on the method proposed in Section

3.2 to provide enough switching activity in the decoder and to significantly

alleviate the latching problem.

7.2.2 Representing Soft-Output Information

The ABP and the TAB rely on the parity-check matrix adaptation as well

as the reliability update scheme using BP. Both of these steps use the soft-

output information provided by BP. Since the BP-based decoders inherently

operate on reliabilities, they can be easily incorporated into the adaptation and

the update scheme. However, the situation is different for stochastic decoding

methods. Stochastic methods convert the channel reliabilities to stochastic

bit streams and the decoding proceeds entirely in a bit-serial fashion. To

incorporate the reliability update and adaptation steps, it is essential that

the stochastic decoding method provides soft-output information. For this

127

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

purpose, we use the value of saturating up/down counters to represent soft-

output information [112]. In this technique, a counter is assigned to each VN.

The counter can be initialized to contain zero value. The counter is incre-

mented if the corresponding VN output is 1, unless the counter has reached

its maximum limit (+U). Similarly, when the VN output is 0 the counter is

decremented, unless it has reached its minimum limit (−U). After a number

of decoding cycles, the contents of the counters can be converted to soft infor-

mation and the LLR update and the parity-check matrix adaptation steps can

be performed. Let V be the value of a saturating up/down counter associated

with a VN (−U ≤ V ≤ +U). This value can be transformed into extrinsic

soft-information in the probability domain as [112]:

Pext =
V + U

2U
. (7.3)

Consequently, the corresponding extrinsic LLR of the VN is

Lext = log

(

Pext

1 − Pext

)

= log

(

U + V

U − V

)

, (7.4)

where log(·) indicates the natural logarithm operation.

To increase the efficiency of the counters, we update counters only with

regenerative (output) bits. This means that the counters are not updated

when their corresponding VNs are in the hold state. This technique prevents a

counter from being updated with the same bits when its VN is in the hold state.

Also, it provides a faster convergence for counters (i.e., output reliabilities) and

makes it possible to use counters with a smaller size. Note that as (7.4) shows,

the size and the value of a counter affects the reliabilities. In this respect, a

large size counter requires more decoding cycles to converge.

It should also be noted that the sign-bits of the up/down counters can

be used for the HDD method in RS decoding. In this case, a hard-decision is

128

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

applied to V . Thus, a 0 sign-bit and a 1 sign-bit, respectively, indicate a −1

and a +1 decision, as discussed in Section 3.5.

7.2.3 Summary of the Stochastic Decoding Method

The stochastic decoding method starts with Hb and LCH. At the adap-

tation step, the parity-check matrix adaptation is performed to obtain H
(i)
b

as discussed in Section 7.1.1. After the adaptation step, LLRs are scaled and

transformed into stochastic bit streams as in (3.2). Stochastic decoding is then

applied to the adapted parity-check matrix H
(i)
b and proceeds by VNs and PNs

exchanging bits for a fixed number of decoding cycles. At the end of the last

decoding cycle, the contents of up/down counters are transformed into the ex-

trinsic LLRs, L
(i)
ext, according to (7.4). The L

(i)
ext is then used to update LLRs

based on the ABP (for RS and BCH codes) or the TAB (for BCH block turbo

codes). For the case of RS decoding, the HDD is also applied to the contents

of counters. The decoding process is terminated as soon as all parity checks

are satisfied or if a maximum number of iterations, imax, has been exhausted.

7.3 Decoding Performance Results

Classes of BCH, RS and BCH block turbo codes are considered for simu-

lation. Concerning BCH codes, extended BCH codes are considered since they

are more efficient than non-extended codes. A BPSK transmission with an av-

erage bit energy of Eb over an AWGN channel is assumed for each simulation.

The parity-check matrix adaption step for BCH and RS codes is done based

on the ABP. This step for BCH block turbo codes is performed based on the

TAB.

The decoding performance of a (128,120) BCH code is depicted in Figure

7–3(a). For this code, several decoding methods are employed: the Maxi-

mum A Posteriori (MAP) probability decoding, the ABP, the adaptive offset

MSA and stochastic decoding. For comparison, the uncoded BPSK and the

129

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

Maximum-Likelihood (ML) lower bound [19] curves are also plotted. The val-

ues of the damping coefficient and number of adaptations are λ = 0.2 and

imax = 1. The EM and IM lengths of M = 25 and L = 5 are used for the

stochastic decoding method. Stochastic decoding runs for a fixed number of

500 decoding cycles. No significant BER deviation is observed for (128,120)

BCH codes between the stochastic decoding and the floating-point ABP. The

floating-point offset MSA outperforms the ABP at low SNRs. As shown, to

achieve the same performance with the fixed-point adaptive offset MSA at least

6-bit precision is needed. The MAP decoding outperforms other methods by

about 0.25 dB at a BER of 10−6 and achieves the asymptotic bound. However,

the MAP decoding of this BCH code requires a trellis with 256 states and 128

sections which is too complex for implementation.

Figure 7–4 shows the results obtained for (31,25) and (63,55) RS codes

over GF(25) and GF(26). In this figure, FER performance for Algebraic hard-

decision decoding, the ABP, the adaptive-MSA and, stochastic decoding are

shown. The values λ = 0.05 and imax = 20 are used for the (31,25) RS code.

For the (63,55) RS code these values are λ = 0.115 and imax = 5. A scaling

parameter of γ = 1.33 and the EM and IM lengths of M = 50 and L = 8 are

used for RS codes. Stochastic decoding runs for 500 decoding cycles and 750

decoding cycles, between each adaptation, for the (31,25) and the (63,55) RS

code, respectively. Similar to [47], after each iteration, i, the HDD is applied.

Stochastic decoding provides performance close to the ABP for both codes and

as shown in Figure 7–4(a), it outperforms the adaptive-MSA by more than 0.5

dB. To show the effect of EMs, Figure 7–4(b) depicts the performance of

stochastic decoding with M = 10. As shown, an early error-floor is observed

for short EM length.

130

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

(a)

(b)

Figure 7–3: (a) Simulation results for a (128,120) BCH code. (b) Average
number of decoding cycles for stochastic decoding of (128,120) BCH code.

Results for a (256,121) block turbo code based on (16,11) BCH compo-

nent decoders and a (1024,676) block turbo code based on (32,26) BCH com-

ponent decoders are shown in Figure 7–5. For turbo decoding of these codes,
131

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

(a)

(b)

Figure 7–4: Simulation results for (a) a (31,25) RS code over GF(25) and (b)
a (63,55) RS code over GF(26).

the traditional Chase-Pyndiah algorithm (with 6 global iterations and 16 error

132

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

patterns), the TAB, the Turbo-oriented Adaptive MSA (TA-MSA), the Turbo-

oriented Adaptive Offset MSA (TA-Offset MSA), and the stochastic decoding

method (applied to the TAB algorithm) are employed for the SISO decoding

algorithm during the iterative process. Note that only 3 local iterations are

necessary during the BP process of the TAB algorithm and 6 global iterations

are sufficient for the two decoding methods based on the TAB algorithm. In

addition, no damping coefficient is necessary for the TAB algorithm. Instead,

the reduction of the extrinsic information effect is done during the soft infor-

mation computation [45, 46]. The EM and IM lengths of M = 25 and L = 5,

and a fixed number of 500 decoding cycles are used for the (256,121) turbo

code. These parameters for the (1024,676) turbo code are M = 40, L = 5, and

1K decoding cycles. For the (256,121) turbo code, the results for the floating-

point TAB and the stochastic decoding method are close and show a decoding

loss of about 0.1 dB compared to the classical Chase-Pyndiah decoding at 10−6

BER. For the (1024,676) turbo code, the decoding loss of stochastic decoding

at 10−7 BER is about 0.1 dB and 0.3 dB, compared to the floating-point TAB

and Chase-Pyndiah decoding, respectively. As shown, the TA-MSA results

in about 1 dB loss compared to stochastic decoding, and the fixed-point TA-

Offset MSA requires at least 4-bit precision to provide performance close to

stochastic decoding.

7.4 Complexity Comparison and Trade-Offs

This section compares the complexity of nodes in stochastic decoding

with their equivalent fully parallel fixed-point offset MSA implementation. As

results in the previous section show, the MSA has a performance loss of more

than 0.5 dB compared to stochastic decoding. Also, the performance loss of

algebraic hard-decision decoding is more than 1.5 dB. Therefore, to have a fair

complexity comparison, we compare the offset MSA with stochastic decoding.

133

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

(a)

(b)

Figure 7–5: Simulation results for (a) a (256,121) BCH block turbo code and
(b) a (1024,676) BCH block turbo code.

As simulation results show, to have a performance close to stochastic decoding,

the offset MSA needs at least 4 bits of precision.

134

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

A VN in the MSA obtains the sum of the all inputs and then subtracts each

input from this value to obtain the output for each edge. The VN operation

is usually done using two’s complement arithmetic. A PN in the MSA is more

complex and for each edge it needs to obtain the minimum absolute values of

all inputs except the input received from that edge. A PN also calculates the

sign-bit of each output by XORing all sign-bits of inputs except the sign-bits

of the input of that edge. In the Offset MSA, an offset value is also added to

each output. To reduce the hardware-complexity, the PN operation is usually

done using sign-magnitude arithmetic; therefore, both two’s complement to

sign-magnitude (T’s-SM) conversion and sign-magnitude to two’s complement

(SM-T’s) conversion units are needed in VNs (or PNs). An efficient method to

implement a PN in the MSA is to only find the first and the second minimum

of all inputs. This method requires much fewer operations when compared to

the conventional implementation of a PN (see [39] for details) and, hence, it is

considered in this chapter. Table 7–1 shows the 2-input operations needed in

a VN and a PN. As mentioned in previous chapters, a stochastic PN needs to

calculate the XOR of all inputs and then XOR this value with the input bit

of each edge to obtain the output bit for that edge. Therefore, the complexity

of the entire stochastic PN is equivalent to only the sign-bit calculation in the

MSA’s PN. Using the proposed structure in Figure 3–5(b), stochastic VNs can

be implemented based on 3dv − 6 subnodes where each subnode has one AND

gate, one NOR gate, and one IM (except for exit subnodes). Stochastic VNs

also use one comparator (to transform probabilities to stochastic streams [82]),

one up/down counter, and dv EMs.

Based on the maximum node degrees in the (63,55) RS code (i.e., dv=34

and dc=184) and the (1024,676) BCH turbo code (i.e., dv=5 and dc=16),

we compared the FPGA implementation of the stochastic nodes with their

135

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

Table 7–1: Basic 2-input resources in the fixed-point Offset MSA and stochas-
tic nodes (FX: Fixed-point, ADD: adder, SUB: subtractor, CMP: comparator,
CNT: u/d counter).

Method VN (degree dv) PN (degree dc)

dv − 1 FX ADDs, dc + log2dc − 2 FX CMPs,
Offset dv FX SUBs, dc + 4 FX ADDs,

MSA [39] dv T’s-SM conversion 2dc − 1 binary XORs,
2 SM-T’s conversion

1 FX CMP, 1 CNT, dv EMs,
Stochastic 3dv − 6 AND and NOR, 2dc − 1 binary XORs

2dv − 6 IMs

equivalent 4-bit offset MSA. Table 7–2 shows the implementation results on

a Xilinx Virtex-4 LX200 device based on occupied 4-input look-up-tables and

flip-flops. EMs and IMs with M=48 and L=8 were implemented using shift

register look-up-tables as in Chapter 3. As shown, stochastic VNs have less

complexity compared to VNs in the 4-bit offset MSA. For dv = 34, a stochastic

VN needs about 70% fewer look-up-tables and 81% fewer flip-flops. Stochastic

PNs have much less complexity compared to PNs in the offset MSA. A dc = 16

stochastic PN uses about 93% fewer look-up-tables than a dc = 16 offset

MSA PN. The complexity of a dc = 184 stochastic PN node is even less

than a dc = 16 PN in the 4-bit offset MSA. For this reason, the complexity

advantage over a dc = 184 PN in the offset MSA follows and we did not consider

the implementation. Such a node should calculate the first and the second

minimum of 184 inputs and have a very high complexity. It is also important

to note that an appealing complexity advantage of stochastic decoding is that

it needs W−1
W

fewer wires in the interleaver, compared to the W -bit fixed-

point MSA. As mentioned in previous chapters, this advantage is important

because in the implementation of factor graphs, the number of (interleaver)

wires directly translates to the area complexity and, in fact, it becomes the

bottleneck of the overall hardware-complexity [13].

136

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

Table 7–2: Implementation comparison on a Xilinx Virtex-4 XC4VLX200-
10FF1513 FPGA device (LUT: look-up-table, FF: flip-flop).

VN PN VN PN
Method dv=5 dc=16 dv=34 dc=184

4-bit Offset 106 LUTs 325 LUTs 1363 LUTs not
MSA 48 FFs 0 FFs 280 FFs considered

Stochastic 90 LUTs 22 LUTs 401 LUTs 245 LUTs
24 FFs 0 FFs 52 FFs 0 FFs

Since the parity-check matrix adaptation hardware in both stochastic and

MSA decoding is similar, to provide an estimation of the order of area com-

plexity and operating clock frequency for the stochastic decoding method, we

instantiated all VNs, PNs and the interleaver of the (128,120) BCH code on

the Virtex-4 LX200 FPGA device. This implementation occupied 11438 4-

input look-up-tables (6% of available look-up-tables), 3184 flip-flops (1% of

available flip-flops), and achieved a clock frequency of 180 MHz after place-

and-route. In general, compared to the adaptive offset MSA or the ABP, the

stochastic approach needs more clock cycles for decoding and therefore has a

longer latency. However, resulting from their low hardware-complexity nodes

and much alleviated routing problem, stochastic decoders can achieve higher

clock frequency which helps them to provide an acceptable throughput. In ad-

dition, in stochastic decoders, the required average number of decoding cycles

is usually much less than the maximum number of decoding cycles, especially

at low BERs. The reason is that at low BERs there are only a few codewords

that require a large number of decoding cycles to decode and thus the his-

tograms of the number of decoding cycles used for decoding at low BERs are

highly concentrated around the average number of decoding cycles. Therefore,

instead of operating for a maximum number of decoding cycles for all received

codewords, early termination methods can be exploited to terminate decod-

ing as soon as a codeword is found for the sake of increasing the throughput.

137

CHAPTER 7. Stochastic Decoding of Linear Block Codes with ...

As demonstrated in previous chapters, such a termination method has a sig-

nificant impact on the throughput of a stochastic decoder and it also has a

straightforward hardware implementation. For example, syndrome checking

can be done based on XORing the sign-bits of up/down counters (i.e., hard-

decisions). Figure 7–3(b) depicts the average number of decoding cycles for

decoding the BCH code when syndrome checking is used as the termination

criteria. As shown, at BERs less than 4.1 × 10−3, the average number of de-

coding cycles is about 100 (i.e., a throughput of about 230 Mb/s with a 180

MHz clock frequency).

7.5 Conclusion

This chapter investigated the application of stochastic decoding to the im-

portant classes of RS, BCH, and block turbo codes. Simulation results demon-

strated decoding performance close to the floating-point ABP and TAB. This

chapter also discussed the hardware-complexity and the throughput of the

stochastic approach and compared it with low-complexity fixed-point imple-

mentations of the ABP. It was shown that the hardware-complexity of stochas-

tic decoding on factor graphs with nodes of high-degree is significantly lower

than that of the offset MSA.

138

CHAPTER 8

Conclusion and Future Work

8.1 Advances

The edge-based rerandomization approach using EMs and TFMs, and the

node-based rerandomization approach using MTFMs are proposed for stochas-

tic decoding of state-of-the-art LDPC codes. The proposed approaches are the

first stochastic approaches in the literature for stochastic decoding of state-of-

the-art LDPC codes. They rely on the concept of regenerative and conserva-

tive bits, and efficient rerandomization of stochastic streams to alleviate the

latching problem. It was shown that these approaches are able to decode

state-of-the-art LDPC codes with competitive performance compared to the

practical LDPC decoding approaches.

We proposed hardware architectures and discussed FPGA and ASIC im-

plementations of the stochastic decoders. A (1024,512) and a (1056,528) EM-

based LDPC decoder are implemented in FPGA. The (1056,528) EM-based

decoder achieves a clock frequency of 222 MHz and a throughput of about 1.66

Gb/s at Eb/N0 = 4.25 dB (a BER of 10−8). The decoder latency is 3.3 µs. It

provides decoding performance within 0.5 dB and 0.25 dB of the floating-point

SPA with 32 and 16 iterations, respectively, and similar error-floor behavior.

The decoder uses less than 40% of the look-up-tables, flip-flops and IO ports

available on a Virtex-4 XC4VLX200 FPGA device. The proposed EM-based

139

CHAPTER 8. Conclusion and Future Work

stochastic decoders are among the fastest and most resource-efficient FPGA

LDPC decoders reported in the literature.

The EM approach is resource-efficient in FPGAs and thus it is suitable

for FPGA implementations of stochastic LDPC decoders. However, this ap-

proach consumes a considerable silicon area when implemented in ASIC. The

TFM approach is therefore proposed to significantly reduce the silicon area

consumption of ASIC stochastic LDPC decoders. Various hardware architec-

tures for the implementation of TFMs are discussed. The TFM approach is

applied for ASIC implementation of a (1056,528) TFM-based LDPC decoder.

It was shown that the (1056,528) decoder with 8-bit TFMs occupies 40% and

65% less silicon area compared to (1056,528) decoders with 32-bit and 64-bit

EMs, respectively. Additionally, it was demonstrated that TFMs are able to

provide similar or better decoding performance compared to EMs.

Both EM and TFM approaches are based on the edge-based rerandom-

ization in which rerandomization units are assigned to each outgoing edge of

VNs. As a result, the decoder uses a high number of EMs or TFMs. We

proposed the node-based rerandomization approach using MTFMs in which

one rerandomization unit in each VN is used. This approach significantly re-

duces the number of rerandomization units used in a stochastic decoder and

thus the overall hardware-complexity of the stochastic decoder. The MTFM

approach is applied for ASIC implementation of a fully parallel stochastic

decoder that decodes the (2048,1723) RS-based LDPC code from the IEEE

802.3an (10GBASE-T) standard. The decoder occupies a silicon core area of

6.38 mm2 in CMOS 90 nm technology, achieves a maximum clock frequency of

500 MHz, and provides a maximum core throughput of 61.3 Gb/s. The decoder

latency is 800 ns. The decoder has good decoding performance and error-floor

behavior and provides a BER of about 4 × 10−13 at Eb/N0 = 5.15 dB. The

140

CHAPTER 8. Conclusion and Future Work

decoder’s area-per-coded-bit efficiency is 3115 µm2 and its throughput-per-

coded-bit-per-area efficiency is 4.69 Mb/s/mm2 (in CMOS 90 nm technology).

To the best of our knowledge, this decoder is the most area-efficient fully

parallel soft-decision LDPC decoder and it is one of the fastest fully parallel

soft-decision LDPC decoders reported in the literature.

In addition to LDPC decoding, we proposed the novel application of

stochastic decoding for joint decoding of LDPC codes and partial-response

channels. We considered the dicode partial-response channel and the EPR4

partial-response channel, which is a practical channel model considered in mag-

netic recording applications. The hardware architectures of stochastic dicode

and EPR4 channel detectors were presented. We demonstrated that in the case

of the dicode channel whose corresponding message-passing graph is acyclic,

it is possible to perform stochastic detection without using rerandomization

units. For the case of the EPR4 channel, whose message-passing graph has

a high number of length-4 cycles, TFMs are used to efficiently rerandomize

stochastic streams and alleviate the latching problem. Results demonstrated

the applicability of the stochastic approach for joint decoding of LDPC codes

and partial-response channels.

Finally, we investigated the application of the stochastic approach for

decoding linear block codes with high-density parity-check matrices on factor

graphs. We considered the stochastic decoding of RS codes, BCH codes and

BCH-based block turbo codes. Results showed that the stochastic approach

can be exploited in SISO decoding based on the ABP and the TAB. They

also demonstrated decoding performance close to floating-point iterative SISO

decoding while offering nodes with considerably lower complexity compared to

fixed-point SISO decoding.

141

CHAPTER 8. Conclusion and Future Work

8.2 Future Work

Inspired by the results and based on intuitions gained from this work on

stochastic decoding of LDPC codes, several related research projects have be-

gun. In [78], non-binary EMs were used and stochastic decoding was extended

for decoding non-binary LDPC codes over GF(q). In [77], non-binary versions

of TFMs were used to reduce the decoding latency and increase the through-

put in stochastic decoding of non-binary LDPC codes over GF(q). In [53], it

was shown that the concept of TFMs can be applied in the log-domain. In this

respect, half-stochastic LDPC decoding was proposed in which VNs are based

on the SPA (in the log-domain) while PNs are in the stochastic domain. Also,

the concept of redecoding in stochastic LDPC decoders was introduced in [53].

It was shown that as a result of the random decoding trajectory in stochastic

decoding, it is possible to repeat the decoding experiment for several rounds

in order to improve the decoding performance and lower the error-floors of

LDPC codes.

In addition to the above-mentioned ongoing research projects, there are

other research possibilities that can be considered as related future work.

These potential research projects are briefly discussed as follows.

8.2.1 Power-Efficient Stochastic LDPC Decoders

The main focus of this dissertation was on the decoding performance,

silicon area consumption, throughput, and decoding latency of stochastic de-

coding. However, because the stochastic decoding approach has low silicon

area consumption, fast decoding convergence, and uses fewer physical wires in

the decoder chip (compared to conventional decoding approaches), it also has a

high potential for power-efficient LDPC decoding. In this respect, the power-

consumption analysis and comparison of EM, TFM, and MTFM stochastic

approaches would be valuable research work.

142

CHAPTER 8. Conclusion and Future Work

8.2.2 Reduced-Latency Stochastic LDPC Decoders

In general, stochastic decoding has a longer decoding latency compared to

other decoding approaches. However, as histograms of the number of decoding

cycles used for decoding show, there are only few codewords that require a long

decoding latency; the majority of codewords decode very fast. In Chapter 5,

we used a postprocessing technique to enable the (2048,1723) MTFM-based

LDPC decoder to achieve a good BER decoding performance with less decod-

ing latency (i.e., 800 ns). Although this order of latency is acceptable for many

applications, there might be room for more improvement. In addition, our un-

derstanding of the effectiveness of the postprocessing technique was based on

heuristics and BER simulations. A better understanding can be developed to

both qualitatively and quantitatively justify the effectiveness of this technique.

8.2.3 Reconfigurable Stochastic LDPC Decoders

The FPGA and ASIC implementations presented in this dissertation are

based on the fully parallel design approach. In this approach, the whole factor

graph is implemented in hardware; therefore, this approach is usually suit-

able for applications where a fixed LDPC code is used, such as the 10Gb/s

Ethernet (10GBASE-T) standard. There are applications that are required to

support different LDPC codes (with different lengths and rates) depending on

the desired decoding performance and the channel condition (e.g., WiFi and

WiMAX). In such applications, reconfigurable stochastic decoders are required

whose architectures and implementations need to be investigated.

One possible approach to support reconfigurability is based on the par-

tially parallel LDPC decoding, where only a portion of the factor graph is

implemented in hardware. In applications such as WiMAX and WiFi, multi-

ple LDPC codes are designed in a way that allows for unified partially parallel

LDPC decoding. In a partially parallel stochastic LDPC decoder, memory

143

CHAPTER 8. Conclusion and Future Work

blocks and the required control logic should be used to save the state of reran-

domization units and manage message-passing between different portions of

the factor graph. Also, different decoding schedules can be used in partially

parallel decoders whose effects on the latency and throughput of stochastic

decoding need to be investigated.

Another approach which can be suitable for some applications is to build

a fully parallel decoder that support different LDPC codes. For example, in

the WiMAX standard [3] there are multiple LDPC codes with different code

rates (which range from 1/2 to 5/6) and different code lengths (which range

from 576 to 2304). All the LDPC codes in this standard can be generated

by removing some rows and/or columns of the parity check matrix of the

(2304,1152) LDPC code (with rate 1/2). Therefore, it is possible to implement

a fully parallel stochastic LDPC decoder that decodes the (2304,1152) LDPC

code and to add extra control logic to deactivate some VNs, PNs and edges

according to the parity-check matrix of the target LDPC code. In [23], a

bidirectional interleaver architecture was proposed that can be used in fully

parallel stochastic LDPC decoders that support multi LDPC codes.

8.2.4 Different Channel Models

The AWGN and partial-response channels are the main channel models

used in this dissertation for stochastic decoding. Investigating the decoding

performance and hardware-complexity tradeoffs for communications systems

that have different channel characteristics (e.g., fading channels) would be an

interesting contribution.

8.2.5 Asynchronous Stochastic Decoding

The Muller’s C-element (also known as C-gate) is an asynchronous logic

component whose output reflects the inputs when the states of all inputs

144

CHAPTER . Conclusion and Future Work

agree [68]. The output then remains in this state until all the inputs tran-

sit to another state. The operation of a C-element is similar to the basic

operation of a stochastic VN and the concept of regenerative and conservative

bits introduced in this dissertation. In a stochastic VN, if all the input bits

agree, the outgoing bit is regenerative and it is equal to the input bits. Other-

wise, the VN remains in a hold state. In addition, PNs in stochastic decoding

are based on combinational logic (XOR gates); therefore, they can be imple-

mented as asynchronous components. In this regard, asynchronous stochastic

decoding, at the both algorithm and hardware implementation levels, can be

considered as possible future work.

8.2.6 Quantum Stochastic Decoding

In stochastic computation, probabilities are encoded into streams of stoch-

astic bits and computation is performed on stochastic bit streams. In other

words, the statistic of a bit stream represents the original (encoded) probabil-

ity. In quantum computation, a quantum bit (referred to as “qubit”) can be

0, 1, or a superposition of both [69]. It is interesting to study the feasibility of

stochastic representation using quantum bits and to investigate the expression

of stochastic VNs’ and PNs’ operations using quantum logic gates [69]. Such

a research study can potentially open doors for the application of quantum

computation for iterative decoding on graphs.

145

APPENDIX A

Decoding Performance Results for

Various LDPC Codes

This appendix reports BER decoding performance results for stochastic

decoding of different LDPC codes. The reader should note that these results

are presented to demonstrate the applicability of the proposed stochastic ap-

proaches for decoding various LDPC codes with different lengths, rates, and

node degrees. In this regard, the parameters used for stochastic decoding of

these LDPC codes are not necessarily optimized for the best possible decoding

performance and/or lowest possible decoding latency.

A.1 Results for EM-Based Decoding

Figures A–1 to A–4 show the decoding performance of the EM approach.

In all simulations, an early termination criterion (based on syndrome checking)

is used until a maximum number of decoding cycles has been exhausted. The

(2000,1000) LDPC code used in simulations is a regular code with a girth of 8.

The (1536,1024) LDPC code and the (576,288) LDPC code are irregular codes

that belong to the WiMAX standard [3]. Also, the (648,540) LDPC code is

an irregular code from the WiFi standard [4].

A.2 Results for TFM-Based Decoding

Figures A–5 and A–6 show the decoding performance of the TFM ap-

proach. In all simulations, an early termination criterion (based on syndrome

146

APPENDIX A. Decoding Performance Results for Different LDPC Codes

1 1.5 2 2.5 3
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

(2000,1000) regular LDPC code with d
v
=3 and d

c
=6

EM approach (max. 900 DCs, M=50 bits)
SPA (floating-point, 32 iters.)

Figure A–1: Performance of the EM approach for decoding a (2000,1000)
LDPC code.

1 1.5 2 2.5 3 3.5 4
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

WiMAX (1536,1024)-B irregular LDPC code with d
v
=[2,3,4] and d

c
=[10,11]

EM approach (max. 1200 DCs, M=48 bits)
SPA (floating point, 32 iterations)

Figure A–2: Performance of the EM approach for decoding a (1536,1024)
LDPC code.

147

APPENDIX A. Decoding Performance Results for Different LDPC Codes

1 2 3 4 5 6 7 8
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

 WiFi (648,540) LDPC code with d
v
=[2,3,4] and d

c
=[22]

EM approach (max. 1200 DCs, M=48 bits)
SPA (floating-point, 32 iters.)

Figure A–3: Performance of the EM approach for decoding a (648,540) LDPC
code.

1 1.5 2 2.5 3 3.5 4 4.5 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

WiMAX (576,288) irregular LDPC code with d
v
=[2,3,6] and d

c
=[6,7]

SPA (floating-point, 32 iterations)
EM approach (max. 1500 DCs, M=48 bits)

Figure A–4: Performance of the EM approach for decoding a (576,288) LDPC
code.

148

APPENDIX A. Decoding Performance Results for Different LDPC Codes

1 1.5 2 2.5 3 3.5 4 4.5 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

(1024,512) regular LDPC code with d
v
=3 and d

c
=6

TFM approach (max. 900 DCs, =2
-4

)
SPA (floating-point, 32 iters.)

Figure A–5: Performance of the TFM approach for decoding a (1024,512)
LDPC code.

checking) is used until a maximum number of decoding cycles has been ex-

hausted. The (1024,512) LDPC code is a regular code with a grith of 8. The

(648,324) LDPC code is an irregular LDPC code that belongs to the WiFi

standard [4].

A.3 Results for MTFM-Based Decoding

To demonstrate the applicability of the MTFM approach for decoding

other LDPC codes, Figure A–7 depicts the performance of the MTFM ap-

proach for decoding a (1057,813) LDPC code chosen from [5]. This LDPC

code has maximum PN and VN degrees of 18 and 4, respectively. Figure A–7

also shows the decoding performance of the floating-point SPA with 32 and 16

iterations. At least 40 frame errors were counted for BERs less than 10−9.

Similar to the proposed (2048,1723) stochastic LDPC decoder in Chapter

5, we used 6-bit input probabilities, 12-bit reduced-complexity MTFMs (with

149

APPENDIX A. Decoding Performance Results for Different LDPC Codes

0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

SNR (E
b
/N

0
 in dB)

B
it
 E

rr
o
r

R
a
te

WiFi (648,324) irregular LDPC cdoe with d
v
=[2,3,12] and d

c
=[7,8]

TFM approach (max. 1000 DCs, =2
-4

)
SPA (floating-point, 16 iters.)

SPA (floating-point, 32 iters.)

Figure A–6: Performance of the TFM approach for decoding a (648,324) LDPC
code.

Tu = dv and Tm = dv/2), and the same postprocessing and redecoding scheme

in our simulations. Also, an early termination criterion is used until a max-

imum of 400 decoding cycles has been exhausted. As shown, the proposed

MTFM approach (with postprocessing and redecoding scheme) has good de-

coding performance behavior in low BER regimes and at Eb/N0 = 5.75 dB it

outperforms the SPA with 32 iterations.

150

APPENDIX A. Decoding Performance Results for Different LDPC Codes

3.5 4 4.5 5 5.5 6
10

-12

10
-10

10
-8

10
-6

10
-4

SNR (E
b
/N

0
 in dB)

E
rr

o
r

R
a
te

(1057,813) irregular LDPC code

FER, MTFM approach
FER, MTFM w/o postproc. & redec.
BER, MTFM approach

BER, MTFM w/o postproc. & redec.
BER, SPA (floating-point, 16 iters.)
BER, SPA (floating-point, 32 iters.)

Figure A–7: Performance of the MTFM approach for decoding a (1057,813)
LDPC code. An early termination criterion until a maximum of 400 decoding
cycles is used.

151

REFERENCES

[1] The Digital Video Broadcasting standard, www.dvb.org.

[2] The IEEE P802.3an 10GBASE-T Task Force, www.ieee802.org/3/an.

[3] The IEEE 802.16 Working Group, http://www.ieee802.org/16/.

[4] The IEEE 802.11n Working Group, http://www.ieee802.org/11/.

[5] D. J. C. MacKay. Encyclopedia of Sparse Graph Codes,
http://www.inference.phy.cam.ac.uk/mackay/codes/.

[6] Altera Corporation. Stratix Device Handbook. www.altera.com.

[7] R. Ananth. A Field Programmable Stochastic Computer for Signal Pro-
cessing Applications. M.A.Sc. Thesis, University of Toronto, Canada,
1992.

[8] A. Anastasopoulos. A comparison between the sum-product and the
min-sum iterative detection algorithms based on density evolution. In
IEEE Global Telecomm. Conference, volume 2, pages 1021–1025, Nov.
2001.

[9] K. S. Andrews, D. Divsalar, S. Dolinar, J. Hamkins, C. R. Jones, and
F. Pollara. The development of turbo and LDPC codes for deep-space
applications. Proceedings of the IEEE, 95(11):2142–2156, Nov. 2007.

[10] M. Ardakani and F. R. Kschischang. Gear-shift decoding. Communica-
tions, IEEE Transactions on, 54(7):1235–1242, July 2006.

[11] M. Arzel, C. Lahuec, F. Seguin, D. Gnaedig, and M. Jezequel. Analog
slice turbo decoding. In IEEE International Symposium on Circuits and
Systems, pages 332–335, May 2005.

[12] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit
error-correcting coding: Turbo codes. In Proceedings of the IEEE Inter-
national Conference on Communications, pages 1064–1070, May 1993.

[13] A. Blanksby and C. J. Howland. A 690-mw 1-Gb/s 1024-b rate-1/2 low-
density parity-check code decoder. IEEE Journal of Solid-State Circuits,
37(3):404–412, March 2002.

152

[14] E. Boutillon, J. Castura, and F. R. Kschischang. Decoder-first code
design. In 2nd International Symposium on Turbo Codes and Related
Topics, pages 459–462, Brest, France, Sept. 2002.

[15] T. L. Brandon, R. Hang, G. Block, V. Gaudet, B. F. Cockburn, S. L.
Howard, C. Giasson, K. Boyle, S. Sheik Zeinoddin, A. Rapley, S. Bates,
D. G. Elliott, and C. Schlegel. A scalable LDPC decoder ASIC archi-
tecture with bit-serial message exchange. Integration, the VLSI Journal,
41(3):385–398, May 2008.

[16] B. Brown and H. Card. Stochastic neural computation I: Computational
elements. volume 50, pages 891–905, Sept. 2001.

[17] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu.
Reduced-complexity decoding of LDPC codes. IEEE Transactions on
Communications, 53(7):1232–1232, July 2005.

[18] J. Chen, R. M. Tanner, C. Jones, and Yan Li. Improved min-sum decod-
ing algorithms for irregular LDPC codes. In Proceedings of International
Symposium on Information Theory (ISIT), pages 449–453, 2005.

[19] F. Chiaraluce and R. Garello. Extended Hamming product codes an-
alytical performance evaluation for low error rate applications. IEEE
Transactions on Wireless Communications, (6):2353–2361, Nov. 2004.

[20] S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke. On the
design of low-density parity-check codes within 0.0045 dB of the Shannon
limit. IEEE Communications Letters, 5:58–60, Feb. 2001.

[21] G. Colavolpe and G. Germi. On the application of factor graphs and the
sum-product algorithm to ISI channels. IEEE Transactions on Commu-
nications, 53(5):818–825, May 2005.

[22] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker. Applica-
tions of error-control coding. IEEE Transactions on Information Theory,
44(6):2531 –2560, Oct. 1998.

[23] K. Cushon, W. J. Gross, and S. Mannor. Bidirectional interleavers for
LDPC decoders using transmission gates. In Proceedings of the IEEE
Workshop on Signal Processing Systems, pages 232–237, Tampere, Fin-
land, 2009.

[24] A. Darabiha. VLSI Architchtures for Multi-Gbps Low-Denisty Parity-
Check Decoders. Ph.D. Thesis, University of Toronto, Canada, 2008.

[25] A. Darabiha, A. Chan Carusone, and F. R. Kschischang. Block-
interlaced LDPC decoders with reduced interconnect complexity. IEEE

153

Transactions on Circuits and Systems-II: Express briefs, 55(1):74–78,
Jan. 2008.

[26] A. Darabiha, A. Chan Carusone, and F. R. Kschischang. Multi-Gbit/sec
low density parity check decoders with reduced interconnect complexity.
In IEEE International Symposium on Circuits and Systems, pages 5194–
5197, San Jose, USA, May 2005.

[27] A. Darabiha, A. Chan Carusone, and F. R. Kschischang. A bit-serial
approximate min-sum LDPC decoder and FPGA implementation. In
IEEE International Symposium on Circuits and Systems, pages 149–152,
Greece, May 2006.

[28] A. Darabiha, A. Chan Carusone, and F. R. Kschischang. A 3.3-Gbps
bit-serial block-interlaced min-sum LDPC decoder in 0.13-um CMOS.
In Custom Integrated Circuits Conference, pages 459–462, USA, Sept.
2007.

[29] A. Dinu, M. N. Cirstea, and M. McCormick. Stochastic implementation
of motor controllers. In Proceedings of the IEEE International Sympo-
sium on Industrial Electronics, pages 639–644, July 2002.

[30] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin. A class of low-density
parity-check codes constructed based on Reed-Solomon codes with two
information symbols. IEEE Communications Letters, 7(7):317–319, July
2003.

[31] M. Fu. Stochastic models for turbo decoding. In IEEE International
Conference on Communications, volume 1, pages 668–672, May 2005.

[32] B. Gaines. Advances in Information Systems Science, chapter 2, pages
37–172. Plenum, New York, 1969.

[33] R. G. Gallager. Low Density Parity Check Codes. Cambridge, MA: MIT
Press, 1963.

[34] R. G. Gallager. Low density parity check codes. IRE Transactions
Information Theory, 8:21–28, Jan. 1962.

[35] V. Gaudet and G. Gulak. A 13.3-Mb/s 0.35µm CMOS analog turbo
decoder IC with a configurable interleaver. IEEE Journal of Solid-State
Circuits, 38(11):2010–2015, Nov. 2003.

[36] V. Gaudet and A. Rapley. Iterative decoding using stochastic computa-
tion. Electronics Letter, 39(3):299–301, Feb. 2003.

[37] W. J. Gross, V. Gaudet, and A. Milner. Stochastic implementation of
LDPC decoders. In Proceedings of the 39th Asilomar Conference on

154

Signals, Systems, and Computers, pages 713–717, Pacific Grove, CA,
Nov. 2005.

[38] F. Guilloud, E. Boutillon, and J.-L. Danger. λ-min decoding algorithm
of regular and irregular LDPC codes. In Proceedings of the 3rd Inter-
national Symposium on Turbo Codes, pages 451–454, Brest, France, 1-5
Sept. 2003.

[39] K. K. Gunnam, G. S. Choi, and M. B. Yeary. A parallel VLSI architec-
ture for layered decoding for array LDPC codes. In Proceedings of the
20th International Conference on VLSI Design, pages 738–743, Wash-
ington, DC, USA, 2007.

[40] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman. VLSI
architectures for layered decoding for irregular LDPC codes of WiMax. In
IEEE International Conference on Communications, pages 4542–4547,
June 2007.

[41] S. Hemati, A. Banihashemi, and C. Plett. A 0.18µm analog min-sum it-
erative decoder for a (32,8) low-density parity-check (LDPC) code. IEEE
Journal of Solid-State Circuits, 41(11):2531–2540, Nov. 2006.

[42] S. Howard, C. Schlegel, and V. Gaudet. A degree-matched check node
approximation for LDPC decoding. In Proceedings of the IEEE Interna-
tional Symposium on Information Theory, pages 1131–1135, Adelaide,
Australia, 4-9 Sept. 2005.

[43] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold. Regular and irregular pro-
gressive edge-growth Tanner graphs. IEEE Transactions on Information
Theory, 51(1):386–398, Jan. 2005.

[44] J. Chen and M. P. C. Fossorier. Density evolution for two improved
BP-based decoding algorithms of LDPC codes. IEEE Communications
Letter, (5):208–210, May 2002.

[45] C. Jego and W. J. Gross. Turbo decoding of product codes based on the
modified adaptive belief propagation algorithm. In Proceedings of the
IEEE International Symposium on Information Theory, pages 641–645,
June 2007.

[46] C. Jego and W. J. Gross. Turbo decoding of product codes using belief
propagation. IEEE Transactions on Communications, (10):2864–2867,
Oct. 2009.

[47] J. Jiang and K. R. Narayanan. Iterative soft-input soft-output decod-
ing of Reed-Solomon codes by adapting the parity-check matrix. IEEE
Transactions on Information Theory, 52(8):3746–3756, Aug. 2006.

155

[48] M. Jiang, C. Zhao, Z. Shi, and Y. Chen. An improvement on the mod-
ified weighted bit flipping decoding algorithm for LDPC codes. IEEE
Communications Letter, 9:814–816, Sept. 2005.

[49] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations.
Philadelphia, PA: SIAM, 1995.

[50] F. R. Kschischang, B. Frey, and H. Loeliger. Factor graphs and the
sum-product algorithm. IEEE Transactions on Information Theory,
47(2):498–519, Feb 2001.

[51] B. M. Kurkoski, P. H. Siegel, and J. K. Wolf. Joint message-passing de-
coding of LDPC codes and partial-response channels. IEEE Transactions
on Information Theory, 48(6):1410–1422, June 2002.

[52] B. M. Kurkoski, P. H. Siegel, and J. K. Wolf. Joint message-passing de-
coding of LDPC codes and partial-response channels (correction). IEEE
Transactions on Information Theory, 49(8):2076–2076, Aug. 2003.

[53] F. Leduc-Primeau, S. Hemati, W. J. Gross, and S. Mannor. A re-
laxed half-stochastic iterative decoder for LDPC codes. In IEEE Global
Telecommunications Conference, pages 1–6, Nov. 30 - Dec. 4 2009.

[54] L. Liu and C.-J. R. Shi. Sliced message passing: High throughput
overlapped decoding of high-rate low density parity-check codes. IEEE
Transactions on Circuits and Systems I, 55:3697–3710, Dec. 2008.

[55] F. Lustenberger, M. Helfenstein, G. Moschytz, H.-A. Loeliger, and
F. Tarkoy. All-analog decoder for a binary (18,9,5) tailbiting trellis code.
In European Solid-State Circuits Conference, pages 362–365, 1999.

[56] D. J. C. MacKay. Good error-correcting codes based on very sparse
matrices. IEEE Transactions on Information Theory, 45:399–432, March
1999.

[57] D. J. C. MacKay and R. M. Neal. Good codes based on very sparse
matrices. In Proceedings of the 5th IMA Conference on Cryprography
and Coding, pages 100–111, Berlin, Germany, 1995.

[58] D. J. C. MacKay and R. M. Neal. Near Shannon limit performance
of low density parity check codes. Electronics Letter, 32(18):1645–1646,
1996.

[59] S. Mannor, S. J. Shamma, and G. Arslan. Online calibrated forecasts:
Memory efficiency versus universality for learning in games. Machine
Learning, 67(1-2):77–115, 2007.

[60] M. Mansour and N. Shanbhag. High-throughput LDPC decoders. IEEE
Communications Magazine, 11(6):976–996, Dec. 2003.

156

[61] M. Mansour and N. Shanbhag. A 640-Mb/s 2048-bit programmable
LDPC decoder chip. IEEE Journal of Solid-State Circuits, 41(3):684–
698, March 2006.

[62] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng. Turbo decoding as
an instance of Pearl’s belief propagation algorithm. IEEE Journal on
Selected Areas in Communications, 16:140–152, Feb. 1998.

[63] N. Mobini, A. H. Banihashemi, and S. Hemati. A differential binary
message-passing LDPC decoder. IEEE Transactions on Communica-
tions, 57(9):2518–2523, Sept. 2009.

[64] M. Moerz, T. Gabara, R. Yan, and J. Hagenauer. An analog 0.25 µm
BiCMOS tailbiting MAP decoder. In IEEE Custom Integrated Circuits
Conference, pages 356–357, Feb. 2000.

[65] T. Mohsenin and B. M. Baas. Split-row: A reduced complexity, high
throughput LDPC decoder architecture. In IEEE International Confer-
ence of Computer Design, 2006.

[66] T. Mohsenin and B. M. Baas. High-throughput LDPC decoders using a
multiple split-row method. In IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2007.

[67] T. Mohsenin, D. Truong, and B. Baas. A low-complexity message-
passing algorithm for reduced routing congestion in LDPC decoders.
IEEE Transcations on Circuits and Systems I, pages 1048–1061, May
2010.

[68] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In
Proceedings of International Symposium Theory of Switching (Part 1),
pages 204–243, Harvard University Press, 1959.

[69] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge Uinverstiy Press, 2000.

[70] N. Onizawa, T. Ikeda, T. Hanyu, and V. Gaudet. 3.2-Gb/s 1024-b rate-
1/2 LDPC decoder chip using a flooding-type update-schedule algorithm.
In Proceedings of the 50th IEEE Midwest Symposium on Circuits and
Systems, pages 217–220, Brest, France, Aug. 2007.

[71] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear
Equations in Several Variables. New York: Academic, 1970.

[72] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufman, 1988.

157

[73] R. Pyndiah. Near optimum decoding of product codes: Block turbo
codes. IEEE Transactions on Communications, pages 1003–1010, Aug.
1998.

[74] A. Rapley, C. Winstead, V. Gaudet, and C. Schlegel. Stochastic itera-
tive decoding on factor graphs. In Proceedings of the 3rd International
Symposium on Turbo Codes and Related Topics, pages 507–510, Brest,
France, Sept. 2003.

[75] T. J. Richardson, M. A. Shokrollahi, and R. Urbanke. Design of capacity-
approaching irregular low-density parity-check codes. IEEE Transactions
on Information Theory, 47:619–637, Feb. 2001.

[76] T. J. Richardson and R. Urbanke. The capacity of low-density parity-
check codes under message-passing decoding. IEEE Transactions on
Information Theory, 47:599–618, Feb. 2001.

[77] G. Sarkis and W. J. Gross. Reduced-latency stochastic decoding of
LDPC codes over GF(q). In Proceedings of the European Wireless Con-
ference, pages 994–998, April 2010.

[78] G. Sarkis, S. Mannor, and W. J. Gross. Stochastic decoding of LDPC
codes over GF(q). In Proceedings of the IEEE International Conference
on Communications (ICC), pages 1–5, Dresden, Germany, June 2009.

[79] C. B. Schlegel and L. C. Perez. Trellis and Turbo Coding. IEEE Press,
2004.

[80] S. Seo, T. Mudge, Y. Zhu, and C. Chakrabarti. Design and analy-
sis of LDPC decoders for software defined radio. In Proceedings of the
IEEE Workshop on Signal Processing Systems, pages 210–215, Shanghai,
China, Oct. 2007.

[81] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423, July 1948.

[82] S. Sharifi Tehrani, W. J. Gross, and S. Mannor. Stochastic decoding of
LDPC codes. IEEE Communications Letter, 10(10):716–718, Oct. 2006.

[83] S. Sharifi Tehrani, C. Jego, B. Zhu, and W. J. Gross. Stohastic decod-
ing of linear block codes with high-densiy parity-check matrices. IEEE
Transactions on Signal Processing, 56(11):5733–5739, Nov. 2008.

[84] S. Sharifi Tehrani, S. Mannor, and W. J. Gross. Survey of stochastic
computation on factor graphs. In the 37th IEEE International Sympo-
sium on Multiple-Valued Logic, pages 54–59, Oslo, Norway, May 2007.

158

[85] S. Sharifi Tehrani, S. Mannor, and W. J. Gross. Fully parallel stochastic
LDPC decoders. IEEE Transactions on Signal Processing, 56(11):5692–
5703, Nov. 2008.

[86] S. Sharifi Tehrani, S. Mannor, and W. J. Gross. An area-efficient FPGA-
based architecture for fully-parallel stochastic LDPC decoding. In Pro-
ceedings of the IEEE Workshop on Signal Processing Systems (SiPS),
pages 255–260, Shanghai, China, Oct. 2007.

[87] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor, and W. J.
Gross. Tracking forecast memories in stochastic decoders. In IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 561–564, Taipei, Taiwan, April 2009.

[88] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor, and W. J.
Gross. Tracking forecast memories for stochastic decoding. Invited pa-
per by Journal of Signal Processing Systems, Special Issue on the DISPS
Track of IEEE ICASSP 2009, Springer Publishing, To appear (online
publication: Jan. 2010), DOI: 10.1007/s11265-009-0441-5, Available:
http://www.springerlink.com/content/9j386874m12681r0/.

[89] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Mannor S. Hemati,
and W. J. Gross. Majority-based tracking forecast memories for
stochastic LDPC decoding. IEEE Transactions on Signal Processing,
58(9):4883–4896, Sept. 2010.

[90] P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebars,
E. Lantreibecq, and B. Gupta. A 135Mb/s DVB-S2 compliant CODEC
based on 64,800b LDPC and BCH codes. IEEE ISSCC Digest of Tech-
nical Papers, Feb. 2005.

[91] D. Vogrig, A. Gerosa, A. Neviani, A. Graell I Amat, G. Montorsi, and
S. Benedetto. A 0.35µm CMOS analog turbo decoder for the 40-bit
rate 1/3 UMTS channel code. IEEE Journal of Solid-State Circuits,
40(3):753–762, March 2005.

[92] Z. Wang and Z. Cui. Low-complexity high-speed decoder design
for quasi-cyclic LDPC codes. IEEE Transactions on VLSI Systems,
15(1):104–114, Jan. 2007.

[93] A. D. Weathers, S. A. Altekar, and J. K. Wolf. Distance spectra for
PRML channels. IEEE Transactions on Magnetics, 33(5):2809–2811,
Sept. 1997.

[94] N. Wiberg. Codes and Decoding on General Graphs. Ph.D. Thesis, Dept.
of Electrical Engineering, Linkoping University, Sweden, 1996.

159

[95] C. Winstead. Error-control decoders and probabilistic computa-
tion. In Tohoku University 3rd Student Organizing International Mini-
Conference on Information Electronics Systems (SOIM-COE), pages
349–352, Sendai, Japan, Oct. 2005.

[96] C. Winstead, J. Dai, S. Yu, C. Myers, R. Harrison, and C. Schlegel.
CMOS analog MAP decoder for (8,4) Hamming code. IEEE Journal of
Solid-State Circuits, 39(1):122–131, Jan. 2004.

[97] C. Winstead, V. Gaudet, A. Rapley, and C. Schlegel. Stochastic iterative
decoders. In IEEE International Symposium on Information Theory,
pages 1116–1120, Sept. 2005.

[98] Xilinx Corporation. Virtex-4 User Guide. www.xilinx.com.

[99] Xilinx Corporation. Virtex-5 User Guide. www.xilinx.com.

[100] M. R. Yazdani, S. Hemati, and A. Banihashemi. Improving belief propa-
gation on graphs with cycles. IEEE Communications Letter, 8(1):57–59,
Jan. 2004.

[101] R. Yazdani and M. Ardakani. Optimum linear LLR calculation for it-
erative decoding on fading channels. In IEEE International Symposium
on Information Theory, pages 61–65, June 2007.

[102] E. Yeo, B. Nikolic, and V. Anantharam. Iterative decoder architectures.
IEEE Communications Magazine, 41(8):132–140, Aug. 2003.

[103] D. M. Young and R. T. Gregory. A Survey of Numerical Mathematics
Reading. MA: Addison-Wesley, 1973.

[104] R. Zarubica, S. G. Wilson, and E. Hall. Multi-Gbps FPGA-based low
density parity check (LDPC) decoder design. In IEEE Global Telecomm.
Conference, Washington D.C., USA, Nov. 2007.

[105] J. Zhang and M. P. C. Fossorier. A modified weighted bit-flipping de-
coding of low-density parity-check codes. IEEE Communications Letter,
8:165–167, March 2004.

[106] T. Zhang and K. Parhi. Joint (3,k)-regular LDPC code and de-
coder/encoder design. IEEE Transactions on Signal Processing,
52(4):1065–1079, Aug. 2004.

[107] Z. Zhang. Design of LDPC Decoders for Improved Low Bit Error Rate
Performance. Ph.D. Thesis, University of California at Berkeley, July
2009.

160

[108] Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic. A 47 Gb/s
LDPC decoder with improved low error rate performance,. In Symposium
on VLSI Circuits, June 2009.

[109] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic. An efficient
10GBASE-T Ethernet LDPC decoder design with low error floors. IEEE
Journal of Solid-State Circuits., 45(4):843–855, April 2010.

[110] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. Wainwright.
Lowering LDPC error floors by postprocessing. In IEEE Global Com-
munications Conference, pages 1–6, November 2008.

[111] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. J. Wain-
wright. Design of LDPC decoders for improved low error rate per-
formance: quantization and algorithm choices. IEEE Transactions on
Communications, 57(11):3258–3268, Nov. 2009.

[112] B. Zhu. Adaptive stochastic Reed Solomon decoding. Master of En-
gineering Project Report, McGill University, Montreal, Canada, April
2007.

161

KEY TO ABBREVIATIONS

Acronym Significance

ABP Adaptive Belief Propagation

ASIC Application-Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BCH Bose-Chaudhuri-Hocquenghem

BER Bit-Error-Rate

BP Belief Propagation

BPSK Binary Phase-Shift Keying

CMOS Complementary Metal-Oxide-Semiconductor

DC Decoding Cycle (i.e., stochastic decoding iteration)

dB Decibel

DRE Distributed Randomization Engine

EM Edge Memory

FER Frame-Error-Rate

FF Flip-Flop

FP Floating-Point

FPGA Field-Programmable Gate Array

FX Fixed-Point

GF Galois Field

IM Internal Memory

162

LDPC Low-Density Parity-Check

LFSR Linear Feedback Shift Register

LLR Log-Likelihood Ratio

LUT Look-Up Table

MAP Maximum A Posteriori

ML Maximum-Likelihood

MSA Min-Sum Algorithm

MTFM Majority-based Tracking Forecast Memory

PN Parity-check Node

RS Reed-Solomon

SISO Soft-Input Soft-Output

SM-T’s Sign-Magnitude to Two’s Complement

SNR Signal-to-Noise Ratio

SPA Sum-Product Algorithm

TAB Turbo-oriented Adaptive Belief propagation

TA-MSA Turbo-oriented Adaptive MSA

TA-Offset MSA Turbo-oriented Adaptive Offset MSA

T’s-SM Two’s Complement to Sign-Magnitude

TFM Tracking Forecast Memory

VLSI Very-Large-Scale Integration

VN Variable Node

163

