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Abstract 

Metal halide perovskites (MHPs) have been widely explored and promisingly applied in 

optoelectronics devices because they have tremendous properties, most notably their low 

recombination rate, general insensitivity to defects, large optical absorption coefficient 

and great photovoltaic performance. To explain these properties one of the most widely 

proposed mechanics is large polaron formation.  

In this research, we apply ultra-broad band time-resolved teraherz spectroscopy (UBB-

TRTS) to study the photoconductivity dynamics of two kinds of lead halide perovskites 

(LHPs) following non-resonant 400 nm photo-excitation pulses with 3.1eV. We study 

bulk single crystals of the hybrid organic-inorganic methylammonium lead bromide 

perovskite CH3NH3(MA)PbBr3 and the all-inorganic cesium lead bromide perovskite 

CsPbBr3 at room temperature. Ultrafast dynamic screening of Coulomb interactions are 

observed, resulting in photocarrier induced shifts in the infrared phonon reflectivity and 

the formation of new dressed plasmon-longitudinal optical (LO) phonon modes. Fluence-

sensitive coherent oscillations of the transient reflectivity are observed for THz probe 

energies near the LO frequency (!!"
"#

)	~5.32 THz for MAPbBr3 and ~4.67 THz for CsPbBr3 

as the fluence increases. The coherent oscillations are strongly anharmonic, possibly 

indicating that vibrational energy is rapidly dispersed from high energy phonons to low 

energy phonons via phonon-phonon interactions, which is in agreement with liquid-like 

lattice excitations mentioned in previous works. We also discuss another possible 

explanation via the formation of a new plasmon-LO phonon modes leading to the shift
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of reststrahlen to higher  frequencies as the effect of injecting free carriers on the dielectric 

function. The rise time of transient reflectivity obtained by numerical Boltzmann fit in 

CsPbBr3 is around 2 times larger than that in MAPbBr3, which is attributed to the slower 

intervalley scattering process in CsPbBr3 and relatively faster intervalley scattering 

process in MAPbBr3. Physical models are provided to quantify the changing dynamics of 

transient reflectivity along short and long delay times respectively, quantifying the 

carrier cooling, the formation of polarons, and the relaxation of transient reflectivity. The 

photo-excited fluence-dependent complex optical conductivity of the two samples is 

modelled with a phenomenological Drude-Smith model incorporating coherent back-

scattering. With increasing excitation fluence, backscattering becomes less efficient as the 

initial electronic temperature increases. The Drude-Smith plasma frequency 𝜔$ is found 

to be saturated gradually due to depletion of the optical joint density of states.
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Abrégé  
 
Les pérovskites à halogénure métallique ont été largement explorées et appliquées de 

manière prometteuse dans les dispositifs d'optoélectronique en raison de leurs propriétés 

exceptionnelles, notamment leur faible taux de recombinaison, leur insensibilité générale 

aux défauts, leur grand coefficient d'absorption optique et leurs excellentes performances 

photovoltaïques. Pour expliquer ces propriétés, l'un des mécanismes les plus 

couramment proposés est la formation de grands polarons. 

Dans le cadre de cette recherche,  la spectroscopie térahertz à large bande et à résolution 

temporelle ultra-rapide est appliquée pour étudier la dynamique de la photoconductivité 

de deux types de pérovskites à halogénure de plomb suite à des impulsions de photo-

excitation non résonnantes de 400 nm avec une énergie de 3,1 eV. Nous étudions des 

monocristaux en vrac de la pérovskite de bromure de plomb hybride organique-

inorganique CH3NH3(MA)PbBr3 et de la pérovskite de bromure de plomb entièrement 

inorganique CsPbBr3 à température ambiante. Nous observons l’écrantage dynamique 

ultra-rapide des interactions coulombiennes, entraînant des décalages induits par les 

porteurs de charge dans la réflectivité des phonons infrarouges et la formation de 

nouveaux modes plasmoniques-optiques longitudinaux (LO) phononiques habillés. Des 

oscillations cohérentes de la réflectivité transitoire sensibles à la fluence sont observées 

pour des énergies de sonde térahertz proches de la fréquence LO (!!"
"#

) ~5,32 THz pour 

MAPbBr3 et ~4,67 THz pour CsPbBr3 à mesure que la fluence augmente. Ces oscillations 



iv 

cohérentes sont fortement anharmoniques, ce qui pourrait indiquer une dispersion 

rapide de l'énergie vibratoire des phonons de haute énergie vers les phonons de basse 

énergie via des interactions phonon-phonon, ce qui est en accord avec les excitations de 

type maille liquide mentionnées dans des anciens travaux. Une autre explication possible 

est proposée via la formation de nouveaux modes plasmoniques-LO phononiques 

conduisant au décalage des reststrahlen vers des fréquences plus élevées, en tant qu'effet 

de l'injection de porteurs libres sur la fonction diélectrique. Le temps de montée de la 

réflectivité transitoire obtenu par ajustement numérique de Boltzmann dans CsPbBr3 est 

environ deux fois plus long que dans MAPbBr3, ce qui est attribué au processus de 

diffusion inter-vallée plus lent dans CsPbBr3 et au processus de diffusion inter-vallée 

relativement plus rapide dans MAPbBr3. Des modèles physiques sont fournis pour 

quantifier les changements dynamiques de la réflectivité transitoire le long de durées de 

retard courtes et longues, quantifiant le refroidissement des porteurs, la formation de 

polarons et la relaxation de la réflectivité transitoire. La conductivité optique complexe 

dépendante de la fluence photoexcitée des deux échantillons est modélisée par un modèle 

phénoménologique Drude-Smith incorporant la rétrodiffusion cohérente. Avec 

l'augmentation de la fluence d'excitation, la rétrodiffusion devient moins efficace à 

mesure que la température électronique initiale augmente. La fréquence plasma de 

Drude-Smith est progressivement saturée en raison de l'épuisement de la densité d'états 

optiques conjoints. 
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2.2.2 Fröhlich Polaron Coupling Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      11 

  2.2.3 Binding Energy and Effective Mass of Polaron  . . . . . . . . . . . . . . .  . . . . . . . .      13 



viii 

          2.2.4 Mobility of Polaron  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       13 

          2.2.5 Optical Absorption of Polarons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       14 
 
          2.2.6 Polarons in Metal Halide Perovskites  (MHPs) . . . . . . . . . . . . . . . . . . . . . . . .      16 

                  2.2.6.1 Dominant Phonon Modes in MHPs. . . . . . . . . . . .  . . . . . . . . . . . . . . . .      16 

                  2.2.6.2 Formation Time of Polarons in MHPs . . . . . . . . . . . . . . . . . . . . . . . . . .      18 

                  2.2.6.3 Lifetime of Polarons in MHPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      19 

                  2.2.6.4 Mobility of Polarons in MHPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      20 

   2.3 Synthesis Methods of Metal Halide Perovskites (MHPs) . . . . . . . . . . . . . . . . . . . . .      22 

          2.3.1 Zero-Dimensional (0D) MHPs Nanocrystal . . . . . . . . . . . . . . . . . . . . . . . . . . .       22 

          2.3.2 One-Dimensional (1D) MHPs Nanowire . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      23      

          2.3.3 Two-Dimensional (2D) MHPs Nanoplatelet . . . . . . . . . . . . . . . . . . . . . . . . . .      23 

          2.3.4 Three-Dimensional (3D) MHPs Single Crystal. . . . . . . . . . . . . . . . . . . . . . . . .      24 

   2.4 Our Samples: CsPbBr3 and CH3NH3 (MA)PbBr3 Bulk Single Crystal . . . . . . . . . .      25 

2.4.1 Crystal Structure . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     25 

          2.4.2 Electronic Band Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     27 

2.4.3 Comparison Between MAPbBr3 and CsPbBr3  . . . . . . . . . . . . . . . . . . . . . . . . .     29  

          2.4.4 Sample Preparation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     30   

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     33    

   3.1 Terahertz Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     33    

         3.1.1 Terahertz Radiation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     33 

         3.1.2 Terahertz Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     34 

                  3.1.2.1 Photoconductive Switch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     36 



ix 

          

                  3.1.2.2 Optical Rectification   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     36 

                  3.1.2.3 Two Color Laser Induced Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      37 

         3.1.3 Terahertz Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     38 

                  3.1.3.1 Photocurrent Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      39 

                  3.1.3.2 Free Space Electro-Optic Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      40 

                  3.1.3.3 Air Biased Coherent Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     41 

   3.2 Terahertz Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      43 

        3.2.1 Terahertz Time-Domain Spectroscopy (THz-TDS) . . . . . . . . . . . . . . . . . . . . . .      43 

3.2.2 Time-Resolved Terahertz Spectroscopy (TRTS) . . . . . . . . . . . . . . . . . . . . . . . .      46 

3.2.2.1 One-Dimensional Scan of TRTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      47 

3.2.2.2 Two-Dimensional Scan of TRTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     48        

3.2.2.3 Thin Film Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     49 

   3.3 Theoretical Models for Conductivity in Materials  . . . . . . . . . . . . . . . . . . . . . . . . . .     51 

        3.3.1 Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     51 

        3.3.2 Lorentz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     53 

        3.3.3 Drude-Smith Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     55     

  3.4 System for Terahertz Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     59  

        3.4.1 Ultrafast Titanium Doped Sapphire Amplifier . . . . . . . . . . . . . . . . . . . . . . . . .       59 

        3.4.2 Ultra-Broadband TRTS Setup of This Research . . . . . . . . . . . . . . . . . . . . . . . . .       61 

4 Results and Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    63 

   4.1 Lattice Polarization Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    63 



x 

   4.2 Optical Excitation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    67 

   4.3 1D Transient Reflectivity of MAPbBr3 and CsPbBr3 . . . . . . . . . . . . . . . . . . . . . . . . .      69 

   4.4 2D Transient Reflectivity: Early Time Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . .      74 

   4.5 Conductivity of MAPbBr3 and CsPbBr3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     84 

   4.6 Quantifying Polaron Formation and Charge Carrier Cooling . . . . . . . . . . . . . . . . .     94 

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   103 

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106    

 

 

                      



xi 

List of Figures 
 
2.1 Diagram of perovskite unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      5 

2.2 Diagram of polarons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    10 

2.3 Diagram of polaron scattering process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    14 

2.4 Diagram of setup of ligand-assisted reprecipitation . . . . . . . . . . . . . . . . . . . . . . . . . .     22 

2.5 Diagram of vapor-transport system  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     24 

2.6 Diagram of vapor diffusion crystallisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     25  

2.7 Crystal structure of MAPbBr3 and CsPbBr3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     26  

2.8 Diagram of white light optical reflectance experimental setup . . . . . . . . . . . . . . . . .     27  

2.9 White light optical reflectance spectra of MAPbBr3 and CsPbBr3 . . .  . . . . . . . . . . . .     28  

2.10 Electronic band structure of MAPbBr3 and CsPbBr3  .  .  .  . . . . . . . . . . . . . . . . . . . . . .     29 

2.11 Photos of CsPbBr3 and MAPbBr3 .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     31 

3.1 THz radiation region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     33 

3.2 Diagrams of THz pulse generation methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     36 

3.3 Schematic of THz pulse detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     39 

3.4 Diagram of transmission and reflection of light . . . . . . . . . . . . . . . . . . . . . . . . . . . .     43  

3.5 Diagram of incident, transmitted and reflected electric fields . . . . . . . . . . . . . . . . . .     44  

3.6 Diagram of TRTS setup of transmission and reflection mode . . . . . . . . . . . . . . . . . .     46 

3.7 Schematic of conductivity of Drude model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     53  

3.8 Schematic of conductivity of Lorentz model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     55   

 



xii 

3.9 Diagram of conductivity of Drude-Smith model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    57   

3.10 Diagram of titanium doped sapphire amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    60 

3.11 Diagram of ultra-broadband TRTS setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     61 

4.1 Time domain data of MAPbBr3 and CsPbBr3 single crystals  . . . . . . . . . . . . . . . . . . .     64 

4.2 The complex refractive index and static reflectivity of MAPbBr3 and CsPbBr3  . . . .     66 

4.3 1D transient reflectivity &%&̃
&̃#
& dynamics evolution of MAPbBr3 and CsPbBr3   . . . . . .     70 

4.4 The maximum &%&̃
&̃#
& of MAPbBr3  and CsPbBr3 along fluence and fitting curves . . . .    73 

4.5 An example of a 1D &%&̃
&̃#
& compared to the extracted differential conductivities for 

various assumed indices of refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    74 

4.6 2D amplitude of normalized &%&̃
&̃#
& colourmap of MAPbBr3 . . . . . . . . . . . . . . . . . . . . . .    76 

4.7 2D amplitude of normalized &%&̃
&̃#
& colourmap of CsPbBr3  . . . . . . . . . . . . . . . . . . . . . . .    77 

4.8 2D amplitude of &%&̃
&̃#
&   colourmap (fluence of 362 uJ/cm2) of MAPbBr3 and CsPbBr3, 

1D &%&̃
&̃#
& cuttings, Boltzmann fitting curves, and Boltzmann time constant . . . . . . . . . . .    79 

4.9 Electronic band structure of MAPbBr3 and CsPbBr3  . . . . . . . . . . . . . . . . . . . . . . . . . . .   80 

4.10 1D &%&̃
&̃#
& with coherent oscillations in MAPbBr3 and CsPbBr3  . . . . . . . . . . . . . . . . . . .    81 

4.11 Diagram of Reststrahlen band shifting to left and right  . . . . . . . . . . . . . . . . . . . . . . .   83 

4.12 2D conductivity Δ𝜎 colourmap of MAPbBr3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    85   

4.13 2D conductivity Δ𝜎 colourmap of CsPbBr3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    86   

4.14 1D conductivity curves of MAPbBr3 at 11 THz and CsPbBr3 at 9 THz . . . . . . . . . .    87 

4.15 Drude-Smith fit of complex conductivity Δ𝜎)	of MAPbBr3 and CsPbBr3. . . . . . . . . .     88 



xiii 

4.16 Fluence dependence of the Drude-Smith scattering time, backscattering parameter, 

calculated carrier mobility, plasma frequency and carrier density of MAPbBr3 and 

CsPbBr3 at 2 ps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     90 

4.17 Delay time dependence of Drude-Smith scattering time, backscattering parameter, 

calculated carrier mobility plasma frequency and carrier density of MAPbBr3 and 

CsPbBr3 at fluence of 362 uJ/cm2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     93 

4.18  1D &%&̃
&̃#
& evolution and fitting curves within 2.25 ps of MAPbBr3 and CsPbBr3 . . . .     96 

4.19 Schematic of 1D photo-conductivity cut from 2D conductivity, fitting curves as well 

as fit parameters for MAPbBr3 and CsPbBr3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     99 

4.20 1D &%&̃
&̃#
& evolution and fitting curves of MAPbBr3 and CsPbBr3 at around 300 ps, and 

corresponding diagrams of the first 2.25 ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   100 

 

 

 

 



xiv 

List of Tables 
 
4.1 Summary of constants used in data analysis process of MAPbBr3 and CsPbBr3. . .   64 

4.2. Summary of incident pump fluence 𝐹 as well as corresponding photo-excited carrier 

density in MAPbBr3 and CsPbBr3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   69 

 

 



xv 

List of Acronyms 
 
MHPs                           Metal Halide Perovskites  

LEDs                            Light-Emitting Diode  

OHPs                           Organometal Halide Perovskites  

THz                              Terahertz  

TA                                Transient Absorption  

TAM                             Transient Absorption Microscopy  

PL                                  Photoluminescence 

UBB-TRTS                    Ultra-Broadband Time-Resolved THz Spectroscopy  

LHPs                             Lead Halide Perovskites  

MAPbBr3                      CH3NH3PbBr3 

LO                                 Longitudinal Optical  

TO                                 Transverse Optical 

HPs                               Halide Perovskites  

DFT                               Density Functional Theory  

SOC-DFT                      Spin-Orbit Coupling DFT  

SR-DFT                         Scalar Relativistic DFT  

SOC-QSGW                 Quasiparticle Self-Consistent GW with SOC corrections  

EBIC                              Electron Beam Induced Current  

SCLC                             Space-Charge-Limited Current  

IS                                    Impedance Spectroscopy



xvi 

JDOS                             Joint Density of State  

ASE                               Amplified Spontaneous Emission 

PLQE                            Photoluminescence Quantum Efficiencies 

NWs                              Nanowires 

MAPI                            Methylammonium Lead Iodide 

NCs                               Nanocrystals 

TR-OKE                        Time-Resolved Optical Kerr Effect 

TR-2PPE                       Femtosecond Time-Resolved Two-photon Photoemission 

TR                                  Transient Reflectance 

TR-PL                            Time-Resolved Photoluminescence 

TR-IR                            Time-Resolved Infrared Spectroscopy 

LAR                               Ligand-Assisted Reprecipitation  

ODE                              Octadecene  

OA                                 Oleic Acid  

OLA                              Oleylamine 

DMF                              Dimethylformamide 

AFM                              Atomic Force Microscopy 

SEM                               Scanning Electron Microscopy 

TEM                              Transmission Electron Microscopy 

CVD                              Chemical Vapor Deposition 

TSSG                             Top-Seeded Solution-Growth 

GBL                               γ-utyrolactone



xvii 

DMSO                          Dimethyl Sulfoxide 

OR                                Optical Rectification 

FWM                            Four Wave Mixing 

RD-SOS                        Radiation Damaged Silicon on Sapphire 

LT-GaAs                      Low Temperature Grown GaAs 

EO                                 Electro-Optic 

ABCD                           Air Biased Coherent Detection  

TFISH                           Terahertz Field Induced Second Harmonic 

THz-TDS                      THz Time-Domain Spectroscopy 

FWHM                          Full Width at Half Maximum 

PM                                 Parabolic Mirrors 

BBO                               Beta Barium Borate 

APD                              Avalanche Photodiode 

meV                              Milli-Electron-Volts 

eV                                  Electron-Volts 

ps                                   Picosecond 

fs                                    Femtosecond 

ns                                   Nanosecond 

𝜇s                                   Microsecond 

TAS                               Transient Absorption Spectroscopy 



xviii 

List of Symbols  

Goldschmidt Tolerance Factor                                          𝑡( 

More Accurate Goldschmidt Tolerance Factor               𝜏( 

Octahedral Factor                                                                𝜇( 

Mobility of Carrier                                                              𝜇  

Diffusion Coefficient                                                           𝐷	

Diffusion Length                                                                 𝐿) 

Binding Energy                                                                    𝐸* 

Plasma Frequency                                                               𝜔$ 

Charge Carrier Density                                                      𝑁	or 𝑛 

Complex Conductivity                                                       𝜎) 

Momentum Scattering Time                                              𝜏+  

Transport Scattering Time                                                 𝜏,  

Effective Mass                                                                      𝑚∗ 

Optical Dielectric Constants                                              𝜀.   

Static Dielectric Constants                                                 𝜀+  

Electron-phonon Coupling Constant                               𝛼/0$1 
Scattering Rate                                                                     𝛾 
Longitudinal Optical Phonon Frequency                        ω23 

Transverse Optical Phonon Frequency                            ω43 
Boltzmann Constant                                                            𝑘5 



xix 

Vacuum Permeability                                                         𝜇( 

Vacuum Impedance                                                            𝑍( 

Electron Unit Charge                                                          𝑒 

Electron Unit Mass                                                              𝑚( 

Planck Constant                                                                   ℎ 

Reduced Planck Constant                                                  ℏ	

Speed of Light in Vacuum                                                 𝑐	 	

Electronic Charge                                                                𝑞	

Monomolecular Recombination Rate Constant              𝑘6  

Bimolecular Recombination Rate Constant                     𝑘"   

Three-Body Auger Recombination Rate Constant       			𝑘7 

Temperature                                                                         𝑇 

Dielectric Constant                                                              𝜀 

Average Dielectric Constant                                              𝜀 ̅

Frequency of Light/Photon                                               Ω 

Admittance                                                                           Γ 

Photo-Excited Fluence                                                        𝐹 

Backscattering Parameter                                                   𝑐(	or 𝑐 or 𝑐8 

Radius of Polaron                                                                𝑟$ 
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Chapter 1 

Introduction 

Metal halide perovskites (MHPs) have a general ABX3 stoichiometry where A and B are 

metal cations arranged with the structure of BX6 octahedral network and A-site metal 

cation in 12-fold cuboctahedral coordination. MHPs are well-known for the properties of 

high photoluminescence quantum efficiencies, relatively high carrier mobility compared 

with other solution-processed materials, low recombination rate, general insensitivity to 

defects, large optical absorption coefficient, and tunable bandgaps which provide the 

possible of application in light-emitting diode (LEDs), injection lasers, electrically-

pumped lasing [1-5], solar energy supplies with ease of fabrication, relatively low cost, 

record breaking power conversion efficiencies which have already reach up to ~25.5% 

achieved for perovskite solar cells [6-10]. Thus, as one kind of MHPs, LHPs has become 

very promising materials. These properties, however, are counter to what one would 

expect for a typical direct band gap semiconductor and so their properties must be 

understood on a basic level. Many studies have been conducted on LHPs through 

Terahertz (THz) Spectroscopy, Raman Spectroscopy, Ultrafast Kerr Spectroscopy, 

Transient Absorption (TA) Spectroscopy, Photoluminescence (PL) spectroscopy, as well 

as X-ray spectroscopy [11-21]. Presenting theories of LHPs explaining these properties 

include charge carrier-phonon coupling (a kind of dressed quasiparticle named polaron), 

exciton dissociation, Rashba effects, ferroelectric effects, crystal-liquid duality, etc [17, 22].  
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Polaronic correlations caused by interactions of charge carriers to phonons in polar media 

has become the most widely accepted mechanism to explain the mysterious long carrier 

lifetime and insensitivity to defects. The dynamics of polaron formation time on the order 

of sub-ps following photon absorption are under scrutiny, with optical pump X-ray probe 

measurements claiming a more delayed dynamics of 20 ps [21], while other 

measurements including our own Yang et al.’ s work claiming much faster dynamics [14]. 

Current research attempts to reconcile the observed coherent band transport charge with 

the phonon dynamics of liquids, leading to the classification of lead halide perovskites as 

so-called phonon glass electron crystals, a concept originally formulated to explain the 

properties of the most efficient thermo-electrics [17]. 

In this work, we use time-resolved terahertz spectroscopy (TRTS) to study solution-

processed grown single crystals of the all-inorganic metal halide perovskite CsPbBr3 and 

the organic-inorganic metal halide perovskite MAPbBr3. At room temperature, where all 

measurements in this thesis occur, CsPbBr3 is in orthorhombic phase and MAPbBr3 is in 

cubic phase, respectively. Following interband absorption of femtosecond optical pulses, 

we observe how carriers dynamically interact with polaron phonons on multi-meV 

energy scales. We apply both one-dimensional (1D) and two-dimensional (2D) ultra-

braodband (UBB-TRTS) covering spectra from~1-20 THz following 400 nm photo-

excitation pulses (3.1eV) with varied photo-excited fluences from 23-362 uJ/cm2 and ~40 

fs temporal resolution. The far infrared reflectivity edge (reststrahlen band) is used as a 

marker for charge-lattice interactions, monitoring the carrier induced changes to the 

dielectric function of the polar lattice and is a particularly sensitive probe of polaronic 
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correlations. Following the  injection of free carriers, coherent oscillations are observed in 

the transient reflectivity corresponding to the reststrahlen edge happening around the 

LO frequency~5.32 THz for MAPbBr3 and ~4.67 THz for CsPbBr3. These oscillations are 

strongly down-chirped, indicating strongly anharmonic phonon landscape whereby 

vibrational energy is rapidly dispersed from phonons with high energy to phonons with 

low energy, reflecting the liquid-like lattice excitations of LHPs. These oscillations may 

also be viewed as the quantum kinetic formation of new coupled plasmon-LO phonon 

modes, causing the shift of the reststrahlen band. In the dynamic analysis of the transient 

reflectivity, the photoconductive rise time of CsPbBr3 is approximately 2 times larger than 

that of MAPbBr3, likely due to intervalley scattering processes present in CsPbBr3 and not 

in MAPbBr3. To quantify the transient reflectivity dynamics, we consider the initial 

relaxation of unscreened hot electrons (carrier cooling process) followed by polaron 

formation to reach a quasi-equilibrium state within short time in range of ~0-2.25 ps. 

Following this, relaxation of the transient reflectivity is found to occur over decay times 

of ~ 300 ps. Finally, we extract the fluence-dependent, transient complex optical 

conductivity via Fourier analysis, and quantitatively describe the spectra via a 

phenomenological Drude-Smith model. As the injection carrier density increases, 

backscattering is found to become less efficient as a consequence of the higher 

temperature of the initial electron population. The Drude-Smith plasma frequency 𝜔$ 

reaches saturation gradually as a function of excitation fluence. One possible explanation 

is the depletion of the density of states, giving rise to a saturation in photon absorption.  

 



 
 

4 

Chapter 2 

Material-Metal Halide Perovskites(MHPs)  

In the last two decades, perovskites have become one of the most promising materials for 

optoelectronic devices owing to their great properties like strong light absorption [23], 

direct tunable bandgaps [24], and defect resistance [25]. They are applied in many fields 

including photovoltaics [26], light-emitting devices [27] and so on. In 1839, Gustav Rose 

firstly discovered oxide perovskite calcium titanium oxide (CaTiO3), and named it after 

the Russian nobleman and mineralogist Count Lev Alekseyevich von Perovski using the 

term “perovskite” [28].  Then in 1893, inorganic metal halide perovskites with the form 

CsPbX3 form where X is Cl, Br, and I were reported. Different from the natural oxide 

perovskite CaTiO3, these synthetic perovskites were obtained by the method of solution 

crystal reaction [29]. Nowadays, a perovskite crystal lattice is defined as a general ABX3 

stoichiometry, where A and B are cations often with different sizes, and X is anion that 

bonds to both cations. The structure has BX6 octahedral network and A cation in 12-fold 

cuboctahedral coordination. There are varied types of perovskites in terms of different 

methods of classification. For example, with different X, perovskites can be classified into 

oxide perovskites, halide perovskites (HPs) and so on. And when A and B are different 

cations (metal ion or organic ion), perovskites can be classified into inorganic metal 

perovskites, organic inorganic metal perovskites and so on. Combined with the previous 

two methods of classification, perovskites can be subdivided into inorganic metal halide 
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perovskites and organic-inorganic metal halide perovskites. Materials of the formula 

ABX3 consisting of inorganic cations A, metal cations B and halogen anions X are called 

inorganic metal halide perovskites. In case of  organic-inorganic metal halide perovskites,  

they are materials of the formula ABX3 where at least one of the A, B, and X sites are 

organic cations, and the other sites are metal cations, typically A sites are occupied with 

organic ion while B sites are metal and X sites are halogen anions [30]. Besides, from a 

dimensional point of view, perovskites can be divided into three-dimensional (3D), two-

dimensional (2D), one-dimensional (1D), and zero-dimensional (0D) perovskites [31]. 

There are also other special types of perovskites, such as double perovskites in which 

either A or B site can be occupied by two different cations (A′A″B2X6 or A2B′B″X6) [32], 

vacant BX3 perovskites in which A cation site is vacant like AlF3 [33].  

2.1 Properties of Metal Halide Perovskites (MHPs) 

2.1.1 Crystal Structure 

 
Figure. 2.1 Diagram of perovskite unit cell composed of A and B cations, and halide X 
ions. 
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The stability of 3D perovskite structure can be determined by a semiempirical geometric 

parameter named Goldschmidt tolerance factor 𝑡( given by the equation 𝑡( =
&$D&%

√"(&&D&%	)
  

where 𝑟I, 𝑟5, 𝑟J are the ionic radii of A, B and X components respectively [34]. This factor 

can distinguish between perovskite and non-perovskite and be applied in perovskite 

discovery. Perovskite is expected when 𝑡( is in the range of ~0.825-1.059 [35]. However, 

it is found that the accuracy of Goldschmidt tolerance factor 𝑡( is often insufficient [35, 

36], and a new more accurate tolerance factor is presented with the form of 𝜏( =
&%
&&
−

𝑛I h𝑛I −
'$
'&

K;L'$'&
M
i where 𝑛I is the oxidation state of A, 𝑟I is the ionic radius of ion A, 𝑟5 is 

the ionic radius of ion B ( 𝑟I > 𝑟5 ), and 𝜏(  < ~ 4.18 indicates perovskite [35]. The 

performance of these two tolerance factors in distinguishing perovskites and non-

perovskites are compared shown in Ref.[35]. The new tolerance factor increases the 

accuracy by around 18% for 576 experimentally characterized ABX3 solids [35]. Another 

factor named octahedral factor 𝜇(  given by 𝜇( =
&&
&%

 can reflect octahedral stability and 

present a parameter space for perovskite formability together with Goldschmidt 

tolerance factor 𝑡( . Usually 𝜇(  with the range of ~ 0.4-0.9 indicates perovskite [37]. 

Nevertheless, Goldschmidt tolerance factor 𝑡(	 and the octahedral factor 𝜇(  are a 

necessary but not sufficient conditions.  

As the temperature changes, the crystal structure of MHPs undergoes crystal phase 

transition. Usually there are three common phases which are cubic, tetragonal, and 

orthorhombic phases. Take MAPbBr3 as an example, cubic phase transfers to tetragonal 

phase at ~155K, and tetragonal phase transfers to orthorhombic phase at ~237 K [38]. Not 



 
 

7 

only temperature can affect the crystal phase, there are also other factors can cause phase 

transition such as pressure and so on [39, 40].  

2.1.2 Electronic Band Structure 

Generally, halide perovskites are direct band gap semiconductors leading to strong band 

edge optical absorption and luminescence, which is highly related to the optoelectronic 

properties [1]. But there are some special cases such as non-centrosymmetric hybrid 

compounds induced by Dresselhaus or Rashba splitting as well [41]. And the band gap 

is usually related to the anion of MHPs. In homologous set of compounds with different 

anions of Cl, Br, and I, the band gap of compounds with Cl is the biggest while that with 

Br is the second highest, and that with I is the lowest [42, 43]. Halide substitution can 

modulate the valence band because of the large 𝑝 contribution of halide. However, anion 

has little influence on conduction band with nonbonding property [1]. It is found that 

calculating accurate electronic band structure of inorganic and hybrid MHPs is 

challenging by using computational methods [1]. As for Density Functional Theory (DFT) 

method, it has been applied to the MHPs, nevertheless, it is found to obtain lower band 

gaps compared with real band gaps although it can still provide extensive information 

on the band dispersion. As for better computational methods with corrections such as 

spin-orbit coupling DFT (SOC-DFT) and Scalar Relativistic DFT (SR-DFT), these methods 

cannot calculate accurately for Pb and Sn perovskites [1]. It has been shown that 

Quasiparticle Self-Consistent GW with SOC corrections (SOC-QSGW) can be used to 

calculate the band structure correctly in inorganic and hybrid MHPs [43-45]. MHPs’ 

electronic structures are highly affected by the high atomic mass elements. One of the 
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consequences is MHPs have prevalent SOC arising from the increased atomic mass. 

Compared with the typical 𝑠𝑝-hybridized semiconductors such as GaAs where SOC 

leads to the splitting of the upper valence band because of the anion 𝑝 character, and SOC 

leads to spin-orbit splitting of lower conduction band because of large metal 𝑝 

contribution in MHPs [1]. 

2.1.3 Carrier Transport 

In semiconductors MHPs, charge diffusion happens because of thermal energy 𝑘5𝑇	even 

without electric field. It  happens before the recombination, therefore, the diffusion length 

𝐿)	can be defined as the average distance that each charge distribution is able to move 

[46]. The diffusion length 𝐿) can be calculated by using 𝐿) = 𝐷𝜏 where 𝐷 is the diffusion 

coefficient, and 𝜏 is the lifetime of charge carrier. According to the Einstein relation, the 

mobility 𝜇 can be related to field-free diffusion given by the formula 𝜇 = )N
O&P

 where 𝑞 the 

electronic charge [1]. There are some models to simplify the process. For example, 

applying Drude model can obtain the mobility of carrier 𝜇 determined by the scattering 

time 𝜏+ or mean free path 𝜆+, and effective mass of charge carrier 𝑚∗given by the formula 

𝜇 = NQ(
R∗ =

NS(
√7OPR∗ , indicating that lower scattering and lower effective mass can cause 

higher mobility [1]. It is noted that in a photo excited system the correct mobility 

calculated from the diffusion length would be the bipolar mobility, taking into account 

the fact that one distribution cannot move without dragging the other one.  Another 

model assuming excited charge carriers acting only under the influence of isotropic 

diffusion is given by the formula T8
TU
= 𝐷∇"𝑛 − 𝑘6𝑛 − 𝑘"𝑛" − 𝑘7𝑛7 where 𝑛 is the density 
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of carriers, 𝐷  is the diffusion coefficient, 𝑘6  is the monomolecular recombination rate 

constant reflecting excitonic or trap-assisted recombination relying on an individual 

carrier captured in a trap, 𝑘" is the bimolecular recombination rate constant indicating 

intrinsic electron-hole recombination, and 𝑘7 is the three-body Auger recombination rate 

constant reflecting many-body process involving recombination of an electron, a hole, 

and the third carrier [47]. Then the total recombination rate is 𝑟(𝑛) = 𝑘6 + 𝑘"𝑛	 + 𝑘7𝑛", 

and the diffusion length is  𝐿)(n)=nVO&P
&(8)/

  [48]. As for measurements of diffusion length 

and carrier mobility, there have been several methods, such as transient absorption 

microscopy (TAM), TRTS, electron beam induced current (EBIC), Space-charge-limited 

current (SCLC), impedance spectroscopy (IS), PL and so on  For example, the carrier 

mobility and the diffusion length of MAPbBr3 single crystal have been measure and have 

the range of ~10-115 cm2V-1S-1 and ~3-17 𝜇m by using PL , SCLC and TAM [49].  

2.1.4 Optical Absorption and Photoluminescence 

As for MHPs’ optical absorption, it is determined by the joint density of state (JDOS) as 

well as transition matrix of states between valence and conduction bands. Based on 

Fermi’s Golden Rule, the absorption coefficient can be given by 𝑊OW⃗ ≅

"Y
ℏ
|⟨𝑓|ℋ[|𝑖⟩|"𝛿w𝐸,x𝑘F⃗ y − 𝐸\x𝑘F⃗ y − ℏ𝜔z where ℋ[ is the dipole operator, 𝑓 is the final state, 𝑖 

is the initial state, and 𝛿w𝐸,x𝑘F⃗ y − 𝐸\x𝑘F⃗ y − ℏ𝜔z is the JDOS [1]. In addition, there is strong 

optical absorption arising from the transition between halide-	𝑝 orbitals and metal-	𝑝 

orbitals in MHPs since the 𝑝 orbitals are less dispersive than s orbitals and JDOS close to 

the fundamental electronic absorption edge is large [50].  
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As for the photoluminescence, MHPs have already been reported to have amplified 

spontaneous emission (ASE) and lasing in previous research [3, 4, 51, 52]. For example, 

in Descher et al.’s research, they observed long carrier lifetimes as well as high 

photoluminescence quantum efficiencies (PLQE) more than 70% in solution-processed 

mixed halide perovskite CH3NH3PbI3−xClx , which shows the potential of MHPs to be 

used in photovoltaic diode operation [4]. In Zhu et al.’ s research, they proposed that 

single crystal lead halide perovskite nanowires (NWs) with long carrier lifetimes and low 

nonradiative recombination rates can realize wavelength-tunable lasing at room 

temperature with the lowest lasing thresholds (220 nJ/cm2) and highest Q factors (∼ 3600) 

compared with previously reported NW lasers [3]. Besides, MHPs with relatively high 

mobilities can realize electrically-pumped lasing as well [5]. 

2.2 Polaron 

2.2.1 Definition of Polaron 

 
Figure. 2.2 Diagram of charge carriers placed in polar lattice. The charge carrier along 
with self-induced lattice polarization is polaron.   

 
Polaron is a kind of quasiparticle caused by the correlation of charge carriers to virtual 

phonons in polar media with self-induced polarization proposed by Landau in 1933, and 

coined by Pekar in 1946 [53, 54]. As the charge carriers move into the lattice, except for 



 
 

11 

the interaction with the original polar lattice, at the same time, there is a lattice distortion 

induced by additional carriers to effectively screen the charge of electron as shown in Fig. 

2.2. These interactions lead to binding energies that range from 1 – 100 meV and thus they 

are able to be probed by THz spectroscopic techniques. Polaron interactions naturally 

lead to modifications in to the band effective mass and scattering rates, and are of 

importance in the investigation of photoconductivity of materials.  

Polarons can be roughly classified as large polarons and small polarons based on the 

polaron radius compared with the lattice constant [55]. For large polarons also called 

Fröhlich polarons, they have larger radii than the lattice constant, therefore, lattice can be 

regarded as a continuous polarization distortion. They are delocalized particles moving 

coherently under the applied field but with renormalized mass and scattering rate. As for 

small polarons, also called Holstein polarons, they have smaller polaron radii than the 

lattice constant, and thermally activated conductivity via hopping through a manifold of 

localized states [56].  

2.2.2 Fr𝐨̈hlich Polaron Coupling Constant 

Fröhlich polaron optical phonon interaction, coupling of charge carriers to a single and 

dispersion-less longitudinal optical (LO) phonon, is a simple theory for large polaron [57]. 

Fröhlich polaron coupling constant can be used to describe the strength of the coupling 

between the charge carries and phonon.  

																																																																												Δx ≈
Δυ
𝜔]^

																																																																								(2.1) 
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																																																															ΔxΔp ≈
𝑚

𝜔]^(Δυ)"
≥
ℏ
2																																																												

(2.2) 

																																																																								Δυ ≥ �ℏ𝜔]^
𝑚 																																																																					(2.3) 

																																																																					𝑟$ = Δx ≥ �
ℏ

2𝑚𝜔]^
																																																											(2.4)	

																																																												𝐸* = −
𝑒"

𝑟$𝜀̅
= −

		𝑒"

𝜀̅
�2𝑚*𝜔]^

2ℏ 																																																(2.5)	

																																																																													
	1
𝜀̅
=
1
𝜀.

−
1
𝜀+
																																																																	(2.6)	

																																																																														𝐸* = −αℏ𝜔]^																																																														(2.7) 

																																																																	α =
		𝑒"

ℏ𝑐
�
𝑚*𝑐"

2ℏ𝜔]^
�
1
𝜀.

−
1
𝜀+
�																																																	(2.8)	

If the LO phonon frequency is 𝜔]^, the transport time of the carrier can be given by  𝜔]^06. 

Therefore, the distance of carrier traveling Δx that electron can travel is given by Eq. 2.1 

where Δυ is the electron velocity quadratic mean square deviation. Then according to the 

uncertainty relation shown in Eq. 2.2, and the range of Δυ shown in Eq. 2.3, the radius of 

polaron 𝑟$ is given by Eq. 2.4. The average dielectric constant 𝜀 ̅is given by Eq. 2.6 where 

𝜀. is electronic/high frequency dielectric constant, and 𝜀+ is static frequency dielectric 

constant. Combined with the two formulas of binding energy 𝐸* given by Eq. 2.5 and Eq. 

2.7, the Fröhlich electron-phonon coupling constant α can be obtained shown in Eq. 2.8. 

where 𝑚* is the electron (hole) band mass.  
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2.2.3 Binding Energy and Effective Mass of Polaron 

A weak-coupling theory of the polaron via a perturbation theory was developed by 

Fröhlich [57]. The results are binding energy 𝐸* = −αℏ𝜔]^ and effective mass 𝑚∗ = R*
60+	-

. 

Later on, Lee, Low and Pines (LLP) used another method to investigate the properties of 

a weak-coupling polaron based on canonical transformations inspired by the research on 

quantum electrodynamics by Tomonaga. The effective mass is now given by 𝑚∗ = 

𝑚* �1 +
_
@
�	[58]. This kind of LLP approximation is also called intermediate-coupling 

approximation putting Fr öhlich results on a variational basis. As α  approach 0, two 

expressions of effective mass become the same. At present, more general evaluations of 

binding energy 𝐸*  and effective mass 𝑚∗  of polaron are given by 𝐸* = −(α +

0.0159196220α" + 0.000806070048α7 +⋯)ℏ𝜔]^ and𝑚∗ = 𝑚* �1 +
_
@
+ 0.02362763α" +

⋯� [59, 60]. For strong-coupling polarons, binding energy 𝐸* and effective mass 𝑚∗ are 

𝐸* = −(0.108513α" + 2.836)ℏ𝜔]^ and 𝑚∗ = 𝑚*(1 + 0.0227019αB) [61]. 

2.2.4 Mobility of Polaron 

Mobility is defined as the ratio of the drift velocity to the magnitude of the external field. 

The mobility of large polarons has been studied by various theoretical approaches, 

Fröhlich proposed the typical behavior of the large polaron mobility 𝜇 ∝ exp �ℏ`./
O&P

� in 

weak-coupling regime where 𝑇 is the temperature, and 𝑘5𝑇 ≪ ℏ𝜔]^. The full form of the 

mobility is 𝜇 = a
"R*`./_

exp �ℏ`./
O&P

�	[55]. As coupling constant α increases, mobility 𝜇 will 

decrease meaning polaron with the strong coupling prefers to localize in lattice sites. As 
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the temperature 𝑇  increases, the mobility 𝜇  will decrease. For small polarons, the 

mobility is proportional to the phonon density (𝜇 ∝ exp	(−ℏ𝜔]^/𝑘5𝑇)) at sufficient low 

temperature, which is totally different from that of the large polaron [62].  

2.2.5 Optical Absorption of Polarons 

 
Figure. 2.3 Diagram of polaron scattering process describing the absorption of an 
incoming photon and the generation of an outgoing phonon. 
 

The optical absorption is caused by the polaron scattering process in weak-coupling 

regime and at zero temperature shown in Fig. 2.3. In the weak-coupling limit (α ≪ 1), the 

polaron absorption coefficient was obtained by Gurevich, Lang and Firsov for the first 

time via perturbation theory [63]. The expression of polaron absorption coefficient in the 

region of comparatively low frequencies (ℏ``./
b

− ℏ`./
b

≪ 1) is  

																																						Γ(𝜔) =
1

𝜖(𝑛(𝑐
2
6
"𝑁$

"
7α

(3𝜋")
6
7

e"

(ℏ𝑚*𝜔]^)
6
"

𝜔 − 1
𝜔7 Θ(𝜔 − 1)																																(2.9) 

, and the expression of polaron absorption coefficient in the region of comparatively high 

frequencies (ℏ𝜔𝜔]^/𝜉 − ℏ𝜔]^/𝜉)1) is 

																																												Γ(𝜔) =
1

𝜖(𝑛(𝑐
2𝑁$e"α
3𝑚*𝜔]^

(𝜔 − 1)
6
"

𝜔7 Θ(𝜔 − 1)																																				(2.10) 
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where	𝜉	is	Fermi level for the electrons,	𝜖(	is	the	dielectric permittivity of the vacuum,	𝑛( 

is the refractive index of the medium,	𝑁$  is the concentration of polarons,	𝜔  is the 

normalized frequency equaling to frequency of the light divided by 𝜔]^, and Θ(𝜔 − 1)is 

the step function shown in Eq. 2.11 indicating the polaron scattering process happens 

only when the energy of the incident photon is larger than that of a phonon. 

																																																														Θ(𝜔 − 1) 	= �1						𝑖𝑓	𝜔 > 1	
0						𝑖𝑓	𝜔 < 1 																																																(2.11) 

When the temperature is not zero, the absorption of a photon can be accompanied by 

emission and absorption of one or more phonons [63]. 

In another weak-coupling limit via the canonical-transformation method by Devreese, 

Huybrechts and Lemmens, the expression of polaron absorption coefficient is 

																																																																					Γ(𝜔) =
𝑁

2𝜖(𝑛𝑐E"
ΩP(Ω)																																																	(2.12) 

																																										P(Ω) = 2π� ⟨Φ(|𝑉|𝑓⟩⟨𝑓|𝑉|Φ(⟩
	

c
𝛿xE( + Ω − Ecy																											(2.13) 

where Ω = 𝜔𝜔]^ is the frequency of light/photon, |Φ(⟩ is the wave function of ground 

state,	|𝑓⟩	 is the wave function of final state, 	E( is the energy of ground state, Ec is the 

energy of final state,  P(Ω) is the probability of the absorption of photon by these polarons 

in their ground state shown in Eq. 2.13 given by Fermi Golden Rule [64]. 

																																													Γ(𝜔) =
1

𝜖(𝑛𝑐
2𝑁e"α

3𝑚*𝜔7𝜔]^
√𝜔 − 1Θ(𝜔 − 1)																																					(2.14) 

As α  almost equals to 0, the absorption coefficient becomes an identical form to the 

previous polaron absorption coefficient via perturbation theory at relatively high 
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frequencies shown in Eq. 2.14 [64]. There are also optical absorption by using adiabatic 

strong-coupling approximation, and arbitrary coupling, which will not be discussed here 

[63].  

2.2.6 Polarons in Metal Halide Perovskites (MHPs) 

Here we mainly talk about LHPs, which have been reported to have dielectric responses 

and phonon dynamics comparable to that of liquids [17]. It has been reported in 

Wehrenfennig et al. that electron-hole recombination rates in LHPs are several orders of 

magnitude smaller than those of semiconductors obtained from Langevin theory [48]. 

One of the common explanations is competition between the polaron formation and 

charge carrier cooling process. The charge carriers coupling with the liquid-like 

polarizability of lattice forms polaron and polaron’s screened Coulomb potential reduces 

its scattering with defects and other charge carriers leading to the slow rates [17]. Another 

explanation is that lattice distortion associated with the polaron enlarges the effective 

mass. Except for reducing its scattering with lattice defects, polaron’s screened Coulomb 

potential can reduce the scattering of charges with defects [12]. Besides, the carrier-carrier 

scattering of hot carriers can be screened upon polaron formation [65]. There have been 

many studies focusing on intrinsic carrier cooling as well as polaron formation in general 

LHPs structure [13, 16, 17, 66, 67].  

2.2.6.1 Dominant Phonon Modes in MHPs 

In the lead halide perovskites, for example, it has been widely accepted that carrier 

behavior in polar lattice of lead halide perovskites can be well described by a Fröhlich 

interaction [68]. The Fröhlich coupling to LO phonons is the dominating charge-carrier 
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scattering mechanism in hybrid lead halide perovskites at room temperature. As the 

temperature increases, the impact of the Fröhlich interaction on carrier behavior increases 

because LO phonons become more thermally available [68, 69]. There are many LO 

phonon modes, however, only a single LO phonon mode dominates the interaction in the 

formation of polaron [68]. Which phonon mode, however, has been a subject of debate. 

The most widely studied LHP, methylammonium lead iodide (MAPI), was found to 

exhibit coupling between the electronic transition and coherent ~ 0.9 THz optical 

phonon(s) in MAPI films at room temperature via 2D Electronic Spectroscopy [70]. There 

is a collection of modes in the frequency range of 0.9−1 THz caused by Pb−I−Pb angular 

distortions but not coupling to methylammonium cation reorientations (cation rotations), 

which has already been observed in Raman and THz spectra of orthorhombic and 

tetragonal phases [71-73]. TRTS, however, is intrinsically sensitive to the internal 

excitations of the polaron. In our group’s previous TRTS work, we studied a bulk single 

crystal MAPI and observed an intra-band quantum beat superimposed on a slow 

photoconductive rise time causing by  polaron correlations on a sub-picosecond (sub-ps) 

time scale at room temperature [14]. The quantum beats arose from the dominating  LO 

phonon with `./
"Y

~3.7 THz coupling to electronic motion combined with Pb-I stretch and  

translational as well as librational motion of the methylammonium cation.  

Take another two types of lead halide perovskites, CsPbBr3 and MAPbBr3, as example, 

Iaru et al.’s research found that LO phonon mode at approximately ~4.84 THz (~20meV) 

acts as a dominant mode responsible for carrier–phonon scattering (Fröhlich interaction) 

in CsPbBr3 nanocrystals (NCs) via Raman scattering and THz time-domain spectroscopy 



 
 

18 

[68]. In Miyata et al.’ s research, they conducted time-resolved optical Kerr effect (TR-

OKE) time domain experiments and hybrid DFT calculations on single crystal CsPbBr3 

and MAPbBr3 to show the coupling of PbBr70  sublattice motions to across-bandgap 

electronic transitions (polaron formation), disregarding the cation type [11]. Faster 

polaron formation of MAPbBr3 is caused by the coupled motions of the 

methylammonium cations to the PbBr70  lattice [11]. They calculated the “killer LO 

phonon” frequency is ~136 cm-1 (~4.08 THz) and ~194 cm-1 (~5.81 THz) respectively for 

single crystal CsPbBr3 and MAPbBr3 [11]. These previous studies greatly emphasize the 

significance of considering the dominant LO phonon mode in the formation of polaron, 

which we will show is in agreement with our UBB-TRTS studies on bulk single crystals 

as shown in Chapter 4.  

2.2.6.2 Formation Time of Polarons in MHPs 

There are two important processes for polarons. One is the polaron formation process, 

the other is polaron decay process. In order to better quantify the polaron dynamics, the 

time of these two processes, the formation time and lifetime of polarons respectively, 

leads to extensive research. As for the polaron formation time, in Betz et al.’ s research of 

CdTe in 2002,  the polaron formation time is approximately at the scale of the reciprocal 

duration of LO phonon oscillation 𝜔]^06~200 fs [74]. There are some related researches 

of MHPs as well. In Bretschneider et al.’s research via THz-TDS and a quantifying model 

considering two distinct, sequential contributions (polaron formation happens after 

carrier cooling process) to the rise of the photoconductivity, the polaron formation time 

of FAPbI3 (400 ± 20 fs), MAPbI3 (390 ± 10 fs), and CsPbI3 (440 ± 10 fs) are similar and 
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lattice temperature-independent [16]. In Miyata et al.’ s research, polarons exist in both 

single crystal CsPbBr3 and MAPbBr3 but the difference is the polaron formation time. For 

CsPbBr3 the polaron formation time is 0.6 ± 0.1 ps, and for MAPbBr3 the polaron 

formation time is 0.28 ± 0.04 ps at room temperature [11]. Although methylammonium 

cations in MAPbBr3 cannot contribute to the polaron formation, their re-orientational 

motions coupling to Pb-Br-Pb phonon modes can cause faster polaron formation. The 

different large polaron formation speed/time is arising from the competitiveness 

between the polaron formation and hot carrier cooling in MAPbBr3/MAPI not in CsPbBr3 

[11, 12].  In J. S. Evans et al.’s research,  they found the polaron formation time of CsPbBr3 

is 0.7 ± 0.1 ps and 2.1 ± 0.2 ps at ~300K and ~80 K respectively via femtosecond (fs) time-

resolved two-photon photoemission (TR-2PPE) and transient reflectance (TR) 

spectroscopies [75]. As the temperature increases, the polaron formation rate increases 

arising from the broadening of phonon resonances, indicating that polaron formation can 

be facilitated by the phonon disorder. Unlike MAPbBr3, there’s no competition between 

the polaron formation cooling process of unscreened hot electrons in CsPbBr3 [75].  

2.2.6.3 Lifetime of Polarons in MHPs 

As for the lifetime, in Miyata et al.’s research in 2020, since dielectric screening is 

significant in exploring polaron dynamics, they conducted research on both single crystal 

CsPbBr3 and MAPbBr3 to explore the reason for the liquid-like dielectric response, and  

found that the polaron lifetimes of CsPbBr3 and MAPbBr3 are approximately ~1.6 𝜇𝑠 and 

~ 18 𝜇𝑠  via time-resolved photoluminescence (TR-PL) and time-resolved infrared 

spectroscopy (TR-IR) [76]. Compared with CsPbBr3, liquid-like dielectric response in 
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MAPbBr3 originates from the liquid-like rotational relaxation of polar methylammonium 

cation, although liquid-like relaxation has low effects on the formation time of the 

polarons, the liquid-like polarization can enlarge the lifetime [76].  In He et al.’s research, 

they obtained experimental long lifetime for holes of approximately ~25 𝜇𝑠  in single 

crystal CsPbBr3 caused by the polaron formation [77] 

While some studies separately consider the polaron lifetime and hot carrier cooling time, 

some explore polaron lifetime associated with hot carriers. In Niesner et al.’s research, 

they proposed that the lifetime of the initial large polaron formation is 0.25 ± 0.05 ps	and 

the long lifetime with time scale of around ~100 ps is because of the partial preservation 

of excess electronic energy caused by the fast motion of the methylammonium cation 

competing with the time scale for LO phonon scattering in MAPbI3 thin films (reduced 

scattering with optical phonons) [78]. In Frost et al.’s research Kadanoff polaron relaxation 

time is ~120 fs in MAPbBr3, ~130 fs in MAPbI3, and ~80 fs in MAPbCl3 at ~300K [79]. 

2.2.6.4 Mobility of Polarons in MHPs 

As for the mobility of polarons in MHPs such as lead halide perovskites, there has been 

many calculations and experiments. By using theoretical calculations, Miyata et al. used 

Feynman-O�saka formula to obtain the electron and hole polaron mobilities as well as 

corresponding polaron radii of CsPbBr3 and MAPbBr3. For CsPbBr3 , the electron polaron 

mobility is ~149.8 cm2 V-1s-1 ; the hole polaron mobility is ~79.2 cm2 V-1s-1 ; the Feynman 

electron polaron radius is ~4.18 nm; the Feynman hole polaron radius is ~3.13 nm [11]. 

For MAPbBr3 , the electron polaron mobility is ~48.2 cm2 V-1s-1 ; the hole polaron mobility 

is ~41.3 cm2 V-1s-1 ; the Feynman electron polaron radius is ~2.67 nm; the Feynman hole 
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polaron radius is ~2.49 nm [11]. In Frost et al.’s research, the electron and hole polaron 

mobilities in MAPbI3 are calculated to be ~136 cm2 V-1s-1 and ~94 cm2 V-1s-1 at room 

temperature by first-principles calculations [79]. Besides, in Sendner et al.’s research, it is 

estimated that the average electron/hole polaron mobility of MAPbBr3 is ~158 cm2 V-1s-1 

and the corresponding polaron radius is ~4.3 nm at room temperature. And the average 

electron/hole polaron mobility of MAPbI3  is ~197 cm2 V-1s-1 and the corresponding 

polaron radius is ~5.1 nm at room temperature. The average electron/hole polaron 

mobility of MAPbCl3 is ~58 cm2 V-1s-1 and the corresponding polaron radius is ~2.7 nm 

at room temperature [80]. In Frost et al.’s research, predicted Kadanoff mobilities are ~212 

cm2 V-1s-1 in MAPbBr3, and ~272 cm2 V-1s-1 in MAPbI3 at 300K. And predicted Hellwarth 

mobilities are ~157 cm2 V-1s-1 in MAPbBr3, and ~195 cm2 V-1s-1 in MAPbI3  at ~300K [79]. 

These calculation results are almost in consistent with some experimental results of 

polaron mobility ~24-164 cm2 V-1s-1 for MAPbI3,  ~5-115 cm2 V-1s-1 for MAPbBr3, and~52 

cm2 V-1s-1 for CsPbBr3 at room temperature [77, 81-83]. These are in agreement with the 

experimental mobilities obtained by our research mentioned in Chapter.4 as well.  

In addition, there are some other researches about the temperature-dependence of 

mobility. In Yi et al.’s research of MAPbBr3 single crystals, they proposed that the intrinsic 

charge carrier mobility follows an inverse power-law temperature dependence 𝜇 ∝ 𝑇0d# 

via temperature-varied conductivity and Hall effect measurements in single crystals 

MAPbBr3  mobility [83]. In the tetragonal phase (under ~235 K but higher than ~155 K), 

𝛾( equals to 0.5	 ± 	0.1 while in the cubic phase (higher than 235 K), 𝛾( equals to 1.4 ± 0.1, 

indicating acoustic phonon scattering is dominant rather than impurity scattering [83]. 
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2.3 Synthesis Method of Metal Halide Perovskites (MHPs) 

In terms of different dimensions, there are varied types of MHPs, thus the synthesis 

methods vary in regards of different types. Here mainly discuss several synthesis 

methods corresponding to zero-dimensional (0D) MHPs nanocrystals, one-dimensional 

(1D) MHPs nanowires, two-dimensional (2D) MHPs nanoplatelets, and three-

dimensional (3D) MHPs single crystals respectively. In our experiments of this research, 

CsPbBr3 and MAPbBr3 single crystals are used as the samples. Their synthesis method 

will be explicitly discussed later in Chapter. 2.4.4. 

2.3.1 Zero-Dimensional (0D) MHPs Nanocrystal 

 
Figure.2.4 Diagram of setup of LAR composed of three-neck flask and injector. 

 
Actually, 0D MHPs NCs mentioned here are referred to 0D MHPs quantum dots. There 

have been many methods of synthesis, such as Ligand-Assisted Reprecipitation (LAR) 

[84], Hot-injection method [85], Template Method, Sonication Method [86] and so on. 

Take LAR as an example, Hu et al. successfully synthesized colloidal CsPbBr3 NCs by 
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using this method. They dried octadecene (ODE) and lead bromide (PbBr2) under 

vacuum condition at the temperature of ~120 °C for one hour in a three-neck flask shown 

in Fig. 2.4, then injected dried Oleic acid (OA) and oleylamine (OLA) under N2  gas, raised 

the temperature by ~60°C when the mixture became clear, injected Cs-oleate solution, 

kept the temperature for five seconds, cooled down to room temperature, purified the 

NCs by centrifugation, and finally dispersed them in toluene to make sure the long-time 

stability [84]. 

2.3.2 One-Dimensional (1D) MHPs Nanowire 

Many methods have been used to synthesize 1D MHPs nanocrystal, such as the Slip-

Coating Method [87], Surface-initiated Solution Growth Method [3], Simple Solution 

Growth Method [88], and Modified Hot-injection Method [89]. Take as Slip-Coating 

Method an example, Horváth et al. used this method and obtained MAPbI3 nanowires. 

They dropped saturated MAPbI3 solution containing dimethylformamide (DMF) on a 

glass slide, used another glass slide to squeeze the excess solution relative to the first glass 

slide, exposed the remaining thin liquid film on the glass slide to the air, waited the thin 

liquid film to evaporate. Atomic Force Microscopy (AFM), Scanning Electron Microscopy 

(SEM), and Transmission Electron Microscopy (TEM) measurements can be applied to 

confirm the formation of nanowires [87]. 

2.3.3 Two-Dimensional (2D) MHPs Nanoplatelet 

As for synthesis of 2D MHPs nanoplatelet defined as thin film with thickness range of 

several nm to hundreds of nm here, there have been methods such as Chemical Vapor 
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Deposition (CVD) [90], Solution-Processed Method [91] , On-surface Direct Solution-

phase Growth [92] , and so on.   

 

 
Figure. 2.5 Diagram of vapor-transport system for MAPbX3 synthesis refer to [90]. 

 
Take CVD as an example, it is a process where some high-quality solid materials (powder, 

thin films, single crystals) can be deposited successfully from chemical reactions 

happening in vapor phase under specific conditions of reaction temperature, reaction 

pressure of gas flows, corresponding sources, substrates/without substrates, and so on 

[93]. Ha et al. have synthesized methylammonium lead halide perovskite (MAPbX3) 

nanoplatelets where X can be Cl, Br, and I by using CVD system shown in Fig. 2.5. They 

used Van der Waals epitaxy to grow lead halide PbX2 nanoplatelets on freshly-cleaved 

Muscovite Mica substrate in the quartz tube of CVD system, then put methylammonium 

halide MAX and PbX2 nano-platelets into CVD system accompanying with flow of high 

pure Ar or N2 gas. PbX2 nanoplatelets undergo gas-solid hetero-phase reaction with MAX 

molecules and change to MAPbX3 nanoplatelets in the end [90].  

2.3.4 Three-Dimensional (3D) MHPs Single Crystal 

Many synthesis methods have been developed to obtain 3D MHPs single crystals , such 

as Top-seeded Solution-growth (TSSG) Method [94], Vapor-diffusion Method [95], 

Modified Vertical Bridgman Technique [96] and so on.  
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Figure. 2.6 Diagram of Vapor Diffusion Crystallisation. 

 

In the Vapor-diffusion Method (named Vapor Diffusion Crystallisation as well, a wide 

vial with volatile solvent is placed into a narrower vial with less volatile solvent. As time 

goes by, the solvent in the wide vial diffuses into the solvent in the narrower one, then 

the product of reaction is precipitated and crystallize into single crystals shown in Fig. 

2.6 [97]. Semonin et al. have used this method to synthesize MAPbI3 single crystals 

successfully. They added methylammonium iodide (MAI) as well as lead iodide (PbI) 

dissolved in hydriodic acid with added hypo-phosphorous acid in the narrower vial, and 

added nitromethane into the wide vial (container). They kept two vials under an argon 

environment or air free conditions then obtain ~1–8 mm n-type MAPbI3 single crystals 

after several days. Also, they used similar methods to obtain p-type MAPbI3  single 

crystals [95].  

2.4 Our Samples: CsPbBr3 and CH3NH3(MA)PbBr3 Bulk 

Single Crystals 

2.4.1 Crystal Structure  
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Figure. 2.7 Cubic crystal structure (Pm3m phase) models of MAPbBr3 single crystal and 
orthorhombic crystal structure (Pnma phase) models of CsPbBr3 single crystal viewed 
along (001) as well as (100) at room temperature(∼298K). 
 

CsPbBr3 and MAPbBr3 single crystals all exhibit temperature-dependent phase 

transformations. At room temperature (~298 K) CsPbBr3 crystallizes into orthorhombic 

space group (Pnma), as the temperature increases, it deforms to tetragonal space group 

(I4/mcm) at ~361K and into cubic space group (Pm3m) at ~403K. At room temperature 

(~298K) MAPbBr3 crystallizes into cubic structure (Pm3m), as the temperature decreases, 

it goes through a phase transition from cubic space group to tetragonal space group 

(I4/mcm phase) at ~155K, and transforms to orthorhombic space group (Pnma phase) at 

~237 K [98, 99]. In this research, all the experiments are conducted at room temperature, 

thus the corresponding phase of CsPbBr3 and MAPbBr3 single crystals are orthorhombic 

structure (Pnma) and cubic structure (Pm3m) shown in Fig. 2.7. Compared with the 

orthogonal geometry of the perfect perovskite structure, orthorhombic structure (Pnma) 

at ~ 300K of CsPbBr3 has a deformed perovskite structure with inclined PbBr6 

octahedrons. Compared with tetragonal structure which has CH3NH3+ cations with 

positions differing from orthorhombic structure and disarranged molecules between two 
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nonequivalent places in the shells, cubic structure (Pm3m) of MAPbBr3 is more isotropic 

[38].  

2.4.2 Electronic Band Structure  

 

 
Figure. 2.8 Diagram of the white light optical reflectance experimental setup. 

 
The electronic band structures of MAPbBr3 and CsPbBr3 single crystals are mainly 

referred to Ref. [38]. However, to make sure the accuracy of band gap energy of our 

samples, white light reflectance experiments are conducted. The diagram of the setup 

composed of white light source, iris, lenses, parabolic mirror, spectrometer, and a PC with 

Spectrometer Operating Software is shown in Fig. 2.8. There are three spectra obtained 

from white light reflectance experiments which are dark spectrum, reference spectrum, 

and reflectance spectrum obtained in this experiment. A dark spectrum is a spectrum 

taken with the light path blocked; a reference spectrum is a spectrum taken with the light 

source on and a blank in the sampling region; a reflectance spectrum is a spectrum taken 

with the light source on and a sample.  
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Figure. 2.9 White light optical reflectance spectra of (a) MAPbBr3 single crystal and (b) 
CsPbBr3 single crystal used in our experiments.  
 
After data processing, the results of the white light optical reflectance experiments are 

shown in Fig. 2.9(a, b).  There is a peak at the wavelength of ~545 nm in the reflectance 

spectrum of MAPbBr3 and a peak at the wavelength of ~520 nm in the reflectance 

spectrum of CsPbBr3. As for MAPbBr3 single crystal, ~545 nm corresponds to photon 

energy of approximately ~2.275 eV. Two spectra all have a tiny blip at the wavelength of 

~610 nm, which is due to small amount of room lights entering the spectrometer. As for 

CsPbBr3 single crystal, 520 nm corresponds to photon energy of approximately ~2.384 

eV. These experimental results are almost consistent with the energy gaps ~2.28 eV of 

MAPbBr3 and ~2.35 eV of CsPbBr3 mentioned in Kiyoshi et al.’s research as well as energy 

gaps ~2.28 eV of CsPbBr3 in He et al.’s research [11, 77]. The adjusted electronic band 

structures of MAPbBr3 and CsPbBr3 single crystals based on our measurements as well 

as Ref. [38] are shown in Fig. 2.10. 
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Figure. 2.10 Electronic band structure of (a) MAPbBr3 of cubic structure (Pm3m) at room 
temperature and (b) CsPbBr3 of orthorhombic structure (Pnma) at room temperature. 
Adjusted based on Ref. [38]. 
 
2.4.3 Comparison Between MAPbBr3 and CsPbBr3 

Both MAPbBr3 and CsPbBr3 are semiconductors with direct band gaps and belong to lead 

bromide halide perovskites. They have many similar properties like the same 

temperature-dependence phase transformations, polaron formation, low recombination 

rate, general insensitivity to defects, and large optical absorption coefficient mentioned 

before. The main difference between them is MAPbBr3 is a kind of organic-inorganic 

halide perovskite also called hybrid perovskite with methylammonium cation, while 

CsPbBr3 is a kind of all-inorganic halide perovskite with cesium cation. Although they 

have different cations, they have the same cage-like PbBr3- sublattice which affects their 

properties a lot. It has been proposed by some research via dielectric measurements, 
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neutron scattering, and molecular dynamics that there are significant structural 

fluctuations with time scale of ps in hybrid perovskite crystal without defects mainly 

arising from the organic methylammonium cation [100-102]. In Yaffe et al.’s research they 

found that anharmonic local polar fluctuations are intrinsic to the lead-halide perovskite 

structure (octahedral cage-like PbBr3- sublattice), and not unique to the dipolar organic 

cation by applying low-frequency Raman scattering as well as first-principles molecular 

dynamics to MAPbBr3 and CsPbBr3 in their cubic and tetragonal phases. The local polar 

fluctuations in CsPbBr3 originate from the coupling between head-to-head Cs motion and 

Br face expansion on few hundred fs time scale [13]. As for the large polaron formation 

in MAPbBr3 and CsPbBr3, according to Miyata et al.’s research, polaron are 

predominantly caused by the deformation of PbBr3- sublattice like coupled Pb-Br 

stretching and Pb-Br-Pb bending instead of the cation. Nevertheless, MAPbBr3 has faster 

polaron formation than CsPbBr3 due to the coupled motions of the organic cations to the 

PbBr3- sublattice in MAPbBr3 [11]. 

2.4.4 Sample Preparation 

Two orange single crystals with the diameters of approximately ~5 mm and ~3 mm 

respectively in Fig. 2.11 are CsPbBr3 and MAPbBr3 bulk single crystals provided by Dr. 

Kanatzidis’s Laboratory, Northwestern University, and used for UBB-TRTS 

measurements. They were grown by the method of solution crystal growth similar to the 

growth of MAPbI3 bulk single crystal mentioned in the Ref. [103].  
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Figure. 2.11 CsPbBr3 and MAPbBr3 single crystals used in this research. Provided by 
Kanatzidis’s Laboratory, Northwestern University. 
 

As for the growth of MAPbBr3 bulk single crystals, the first step was to prepare the 

precursor solution composed of binary methylammonium bromide (MABr) and lead 

bromide (PbBr2) with a stoichiometric ratio of 1:1 in γ-utyrolactone (GBL). Then, filtered 

the solution, placed the filtered solution in a glass vial, heated it gradually until the 

nucleation, and kept it at a constant solution temperature ~80 °C to promote single 

crystal growth of MAPbBr3 for several hours. The specific time of growth depended on 

how long it takes to yield single crystal with expected size and flat facets suitable for THz 

experiments. Finally, in order to obtain single crystal in cubic shape with flat surface, 

MAPbBr3 was taken out of the solution and blown dry with nitrogen (N2) flow [104]. 

The growing process of CsPbBr3 bulk single crystals is similar. The precursor solution of 

CsPbBr3 single crystals growth was composed of ~0.05 mol cesium bromide (CsBr) and 

~0.1 mol lead bromide (PbBr2) in ~48.5 mL dimethyl sulfoxide (DMSO). After all the 

materials were dissolved, ~4.85 mmol of Tetramethylammonium Bromide (C4H12BrN) 

was added into the solution with continuous stirring for one day at ~60 °C. Besides, the 

solution temperature was increased from~ 60 °C to ~85 °C at a steady rate over one week, 

and then the constant solution temperature was kept at ~85	°C, and the time of growth 
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was re-adjusted. In the last step, CsPbBr3 was taken out from the solution and cleaned 

with toluene [105]. Except for solution-processed growth method, there is melt growth 

method for CsPbBr3 called Bridgman growth used in Dr. Kanatzidis’s Laboratory as well 

[106]. 
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Chapter 3 

Methodology 

In this thesis, we use time-resolved THz spectroscopy to measure the photoconductivity 

dynamics of MAPbBr3 and CsPbBr3 bulk single crystals with sub-picosecond resolution. 

In this chapter, we define some important terminology (e.g. THz pulses), outline THz 

generation and detection methods, the methodology of measuring static and time-

resolved THz spectra and related theoretical models of the optical conductivity of 

materials. 

 

3.1 Terahertz Pulses 

3.1.1 Terahertz Radiation 

 
Figure. 3.1 THz radiation region 

 
Generally, THz radiation ranges from the limits of photonics (10Hz) to electronics (100 

GHz) in the electromagnetic spectrum show in Fig. 3.1 [107]. As for the energy scale of 

THz, 1 THz equals to 1012 Hz. Besides, 1 THz also corresponds to thermal energy available 
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at around ~48K, a vacuum wavelength of ~300 𝜇𝑚, and a photon energy of ~4.14 meV. 

Around thirty years ago, due to the lack of convenient and reliable sources of THz 

radiation, optical properties of materials corresponding to 0.1 - 20 THz range cannot be 

probed well. However, in 1989, via the combined usage of ultrafast laser techniques and 

fast semiconductor, freely propagating as well as extreme far-infrared THz pulse was first 

generated [108]. Since then, a great diversity of techniques used to generate and detect 

propagating THz radiation have increasingly developed, promoting the process of 

various research such as quasiparticle scattering rates in semiconductors [109, 110], 

exciton transitions [111, 112], superconductivity energy band [113]. Now it is generally 

accepted that the so-called THz gap is closed. 

3.1.2 Terahertz Generation  

There have been several commonly used methods of THz pulse generation. Among them, 

using fast photoconductive switches and applying optical rectification (OR) in a 

nonlinear optical crystal are two of the most popular methods. Besides these, a newer 

method called two-color laser plasmas has remarkable advantages in bandwidth as well 

as pulse intensity. 

																																																																		∇ × EFF⃗ +
∂BFF⃗
∂t = 0																																																																						(3.1) 

																																																																							∇ ∙ BFF⃗ = 0																																																																														(3.2) 

																																																																	∇ × HFF⃗ =
∂DFF⃗
∂t + J⃗																																																																							

(3.3) 

																																																																							∇ ∙ DFF⃗ = ρ																																																																														(3.4) 
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																																																																								DFF⃗ = ϵEFF⃗ 																																																																																(3.5) 

																																																																								BFF⃗ = µHFF⃗ 																																																																																(3.6) 

Through Maxwell Equations, electromagnetic waves can be described greatly. After some 

transformations, the principle of obtaining THz by the method of nonlinear optical can 

be clarified clearly. 

																																																						∇ × x∇ × AFF⃗ y = −∇"AFF⃗ + ∇x∇ ∙ AFF⃗ y																																																				(3.7) 

																																																													
∂
∂t x∇ × B

FF⃗ y = ∇"EFF⃗ −
1
ϵ ρ																																																													

(3.8) 

																																																														∇"EFF⃗ − ϵµ
∂"EFF⃗
∂t" = µ

∂ȷ⃗
∂t																																																																

(3.9) 

																																																					∇"EFF⃗ − ϵµ
∂"EFF⃗
∂t" = µ§

∂ȷ⃗9:;<
∂t +

∂"PFF⃗
∂t"¨																																													

(3.10) 

Combination of Eq. 3.1 and Eq. 3.4 can be transformed to Eq. 3.8 by using the vector 

identity Eq. 3.7. Then apply Eq. 3.3 and condition of no free charge, Eq. 3.8 can be 

transformed to Eq. 3.9. Since the charges can be divided to free charges current and bound 

charges current, rewrite charge current J⃗ as the sum of  ȷ⃗=:>;<  and ȷ⃗9:;< . Additionally, 

plug  ȷ⃗=:>;<=ef
WW⃗

eg
 into Eq. 3.9, obtain Eq. 3.10 where PFF⃗  is the polarization and the two terms 

on second time derivative of the nonlinear polarization right-hand side greatly represent 

two ways of THz beam generation. One is photoconductive switch generation by first 

derivative of a conduction current, the other is OR by using the second time derivative of 

the nonlinear polarization transient. 
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Figure. 3.2 Diagrams of generating THz pulses by the method of (a) photoconductive 
switch, (b) optical rectification, and (c) two color laser induced plasma. 
 
3.1.2.1 Photoconductive Switch 

The first method introduced detailly here is photoconductive switch generation which is 

firstly used in 1970s and developed free space THz radiation in 1980s [114, 115].  Fig. 3.2(a) 

is the diagram of the setup where there are DC voltage bias and direct-gap 

semiconducting material semi-insulating GaAs wafer. Charge carriers are accelerated in 

the bias field and emit a THz pulse in the far field, then the THz radiation is proportional 

the first derivative of a conduction current.  

P(t) ∝ χ(6)E(t) + χ(")E(t)" 	+ 	χ(7)E(t)7 +⋯⋯																										(3.11)     

E6(t) = cos(ω6t)																																																																(3.12)                                                  

E"(t) = cos(ω"t)																																																																(3.13)                                                  

													P(")(t) ∝ χ(") cos(ω6t) cos(ω"t) =
χ(")[cos(ω6 +ω") t + cos(ω6 −ω") t]

2 											(3.14) 

3.1.2.2 Optical Rectification 
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The second method introduced in detail here is OR. After applying electric field E(t) to a 

material, the polarization response P(t)	can be written as Eq. 3.11, where different terms 

can be treated separately and regarded as different contributions of Taylor expansion of 

the atomic potential (different responses to high field carrier driving). As the 

anharmonicity in the oscillation of charge within the material, higher order responses 

become significant only at higher fields attained in fs laser pulses ~10hV/cm. But second-

order effects, such as sum and difference frequency generation and parametric 

amplification, can be easily observed in the laboratory. Through second-order nonlinear 

optical process, THz pulses can be generated successfully. Since the second order 

polarization corresponds to two photons with frequency ω6  and ω" , E(t)"  can be re-

written as the product of E6(t)	and E"(t) as shown in Eq. 3.12 and Eq. 3.13. Then one 

obtains the second order polarization show in Eq. 3.14, leading to the generation of sum 

and difference frequency. When ω6 equals to ω", the special case, a quasi-dc polarization 

(optical rectification), occurs. The THz electric field is proportional to the second time 

derivative of the nonlinear polarization (e
0fWW⃗

eg0
). As for χ(") , it is a tensor related to the 

crystallographic symmetry of the nonlinear material. Fig. 3.2(b) is the setup of OR, take 

ZnTe crystal as an example, then detect the parallel component of THz electric field with 

respect to polarization of generation pulse. If azimuthal angle θ is the angle between [1­10] 

axis and the polarization of generation pulse, then electric field of THz pulse is 

proportional to cos(3θ) − cosθ [116]. 

3.1.2.3 Two Color Laser Induced Plasma                                  
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E4ij ∝ χ(7)E!E!E"! 																																																																(3.15)                 

The third method and the one primarily used in this thesis to drive the ultrabroadband 

time-resolved THz spectrometer is a two-color laser induced plasma, which is simple and 

can emit broad bandwidth and strong THz pulses. THz pulses can be generated by 

focusing the fundamental frequency ω and second harmonic frequency 2ω as shown in 

3.2(c) [117]. The principle under this method can be understood as a four wave mixing 

(FWM) process with a third order susceptibility in the gas. The THz electric field can be 

written as Eq. 3.15 in the FWM process where χ(7)  is the third order nonlinear 

susceptibility,  E! is the electric field of the fundamental, and E"! is the electric field of 

the second harmonic respectively. When using this method, the only the laser pulse 

duration will limit the bandwidth as phase matching is near perfect across the entire 

pulse bandwidth. For example, 10 fs laser pulses can generate ultrabroadband pulses up 

to ~200 THz by air plasma [118]. Besides, longer wavelength can enhance the efficiency 

of down conversion in the THz region. It should be noted that the FWM approach is only 

valid in the low plasma density regime, above which one must take into account the 

complicated dispersion dynamics of the plasma itself.   

3.1.3 Terahertz Detection 

There have been some methods of THz pulse detection as well. Here mainly discuss three 

THz detections corresponding to the previous mentioned methods of THz generation, 

photoconductive switches, OR, and two-color laser plasmas respectively. 
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Figure. 3.3 Schematic of (a) photocurrent detection, (b) air biased coherent detection (c) 
free-space electro-optic detection   
 
3.1.3.1 Photocurrent Detection 

The first method is photocurrent detection, which is similar to the photoconductive 

switch as shown in Fig. 3.3(a). Instead of bias voltage source, photocurrent detection uses 

current amplifiers and connects to a lock-in amplifier. Low temperature grown GaAs (LT-

GaAs) and radiation damaged silicon on sapphire (RD-SOS) are two commonly used 

materials due to their sub-ps recombination time and relatively high carrier mobility [119-

121]. After the application of a fs sampling pulse, many free carriers are excited from the 

semiconductor between the electrodes. When the THz pulse is overlapped with the 

sampling pulse, a current transient which is directly proportional to the THz electric field 

can be generated and detected by the amplifier. Therefore, THz electric field as a function 
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of time can be obtained by scanning the sampling pulse relative to THz pulse. The choice 

of semiconductor in this case is such that the free carrier lifetime is short, preferably sub-

picosecond as it is in low-temperature grown GaAs.  

3.1.3.2 Free Space Electro-Optic Detection 

The second method is free-space electro-optic (EO) detection as shown in Fig. 3.3(c). The 

principle is making use of the Linear Pockels Effect of EO crystal to detect the quasi-DC 

electric field of THz radiation with respect to 100 fs sampling pulse [122-124]. There are 

many kinds of EO crystals, such as ZnTe, GaAs, GaP, GaSe, InP, and DAST [125], though 

ZnTe is the most common one as it is well phase matched to the 800 nm wavelength from 

commercial Ti:sapphire lasers. When only a linearly polarized sampling pulse traverses 

the ZnTe crystal, in the absence of a THz pulse, its polarization is unchanged. It then 

becomes circular-polarized after going through the quarter-wave plate, after which its 

polarization components are equally separated by a Wollaston prism and sent to 

balanced photodiode detector pair producing photovoltages VA and VB. Because of the 

circular polarization of the pulse, photodiodes on detector read the same voltage, leading 

to a zero reading on lock-in amplifier (VA – VB = 0). However, when THz pulse and 

sampling pulse traverse together and overlap in time, sampling pulse’s polarization will 

be affected slightly and tilted by an amount because of Pockels Effect (the tilted 

polarization is proportional to the electric field). Elliptical polarization is obtained after 

passing through the quarter-wave plate, then two different voltage signals are obtained 

after Wollaston prism and detector (VA – VB ≠ 0). By subtraction of two different voltage, 

lock-in amplifier obtained a signal which is proportional to the electric field of THz 
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radiation. Therefore, THz electric field can be obtained by scanning the time delay 

between the sampling pulse and THz pulse. The detection bandwidth is limited by the 

mismatch between the THz phase velocity and the group velocity of the sampling beam 

as it propagates through the detection crystal [126, 127]. Reducing the crystal thickness 

minimizes the influence of phase mismatch, although decreases the interaction length 

and produces a smaller detector response [128]. Besides the mismatch, take ZnTe as an 

example, the bandwidth is limited by the absorption phonon at ~1.6 THz, absorption 

phonon at ~3.7 THz  and transverse optical (TO) phonon at ~5.31 THz as well [127]. 

3.1.3.3 Air Biased Coherent Detection 

The third method, and the one used in the ultra-broadband TRTS system, is Air Biased 

Coherent Detection (ABCD) shown in Fig. 3.3(b). Because dry air is lacking in dispersive 

excitations, bandwidth limitations happening in electro-optic detection and 

photoconductive antennas are avoided. In ABCD, the laser pulse duration is the main 

limitation. The detection of ultrabroadband pulses can be in air and other gases with a 

third order nonlinearity, which is a four-wave mixing process. 

E"! ∝ χ(7)E4ijE!E! 																																																														(3.16)                         

I"! ∝ xχ(7)I!y
"
I4ij 																																																																(3.17)   

THz photon E4ij and two laser photons E! are focused to generate a second harmonic 

photon E"!  by third order nonlinear process called terahertz field induced second 

harmonic (TFISH) as shown in Eq. 3.16. The relation of the intensity of incoherent 

measured signal and THz pulse is Eq. 3.17 where phase components are lost.  
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E"!23 = E=klmno + E=klmpo 																																																																	(3.18)                                                  

I"! ∝ 〈	E"!" 〉 = 	〈xE"!4ij + E"!23y
"〉																																																																        

		= 	〈xE"!4ij + E=klmno + E=klmpo y"〉 																																																(3.19)      

= 	(E"!4ij)" 	+ xE"!noy
" + xE"!poy

"																																																							      

																												+ 2〈E"!4ijE"!no〉 + 2〈E"!4ijE"!po〉 + 2〈E"!poE"!no〉																														 

E"!4ij ∝ χ(7)I!E4ij 																																																																														                                 

E"!no ∝ χ(7)I!E=klmno 																																																																			(3.20)        

E"!po ∝ χ(7)I!E=klmpo 																																																																															     

I"! ∝ xχ(7)I!y
"
²(E4ij)" 	+ xE=klmno y" + xE=klmpo y"³																																												        

																																																	∓ 2E4ijE=klmno ∓ 2E4ijE=klmpo ∓ 2E=klmno E=klmpo 																																						(3.21) 

If one applies a local oscillator (LO) bias field composed of AC and DC components (Eq. 

3.18) to the optical focus, a coherent heterodyne measurement can be obtained. The 

oscillator will mix with the TFISH field, and rewrite the intensity (Eq. 3.19). The field 

induced second harmonics are shown in Eq. 3.20. Insert them into Eq. 3.19, then Eq. 3.19 

becomes Eq. 3.21. 

I"! ∝ 4xχ(7)I!y
"
E4ijE=klmno 	 																																																							(3.22)     

All DC bias signals can be removed by using lock-in, leading to terms containing AC bias 

signals to remain only. And by changing the applied DC bias field, the second and sixth 

terms in Eq. 3.21 can be cancelled, allowing a zero baseline in I"!. The fourth term in Eq. 
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3.21 can give the final I"! , where the intensity is proportional to THz electric field, 

therefore, the detection can be enhanced by using gases with low THz absorption and 

high third order nonlinear susceptibility, such as Xenon or alkanes.  

3.2 Terahertz Spectroscopy 

3.2.1 Terahertz Time-Domain Spectroscopy (THz-TDS) 

After applying THz pulse and sampling pulse to substrate, the detection of the response 

functions such as conductivity from changes in the transmitted/reflected electric field 

with respect to the reference in time is called THz Time-Domain Spectroscopy (THz-TDS).  

 
Figure. 3.4 Diagram of Transmission and reflection of light at an interface between two 
different mediums. 
 
																																																																		Eg = Ek + Eq																																																																										(3.23) 

																																																																		Hg = Hk + Hq																																																																									(3.24) 

																																																																			v¶BFF⃗ ¶ = ¶EFF⃗ ¶																																																																														(3.25) 

																																																												Egng = Eknk + Eqnq																																																																				(3.26) 
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																																																																				r) =
n) k − n)g
n) k + n)g

																																																																											(3.27) 

																																																																				t̃ =
2n) k

n) k + n)g
																																																																											(3.28) 

Fresnel equations can be used to describe the transmission and reflection of an 

electromagnetic field at an interface. For example, transmission and reflection of light at 

an interface between air and a medium are illustrated in Fig. 3.4. When the radiation is 

normally incident to the medium, the relations of amplitudes of the incident, transmitted 

and reflected fields are shown in Eq. 3.23 (Eq. 3.24). Because of the relation Eq. 3.25, Eq. 

3.24 can be rewritten as Eq. 3.26. The amplitude reflection r) and transmission coefficient 

t̃ can be written as Eq. 3.27 and Eq. 3.28 respectively.  

 

  
Figure. 3.5 Diagram of incident, transmitted and reflected electric fields in thick slab 
geometry. 
 
Transmission factor is given in Eq. 3.29, where d is the sample thickness. Consider the 

simplest condition that the sample is a thick slab with a thickness much larger than the 
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THz wavelength in the medium. Therefore, etalon effects can be ignored by time-

windowing out the reflections of the THz pulse. The diagram with air (sample 1) and 

medium (sample 2) regions is shown in Fig. 3.5. Complex transmission function from 

sample 1 to sample 2 then to sample 1 can be written as Eq. 3.30. Later Fourier transform 

the complex transmission function T¹(ω) which can be related to n) = n + iκ by Eq. 3.31. 

Since the absorption coefficient α can be written as Eq. 3.32, transmission function can be 

related α and n.  

																																																																						T = ek
!
9;r<																																																																											(3.29) 

 

																																																			T¹(ω) =
E¹sntf2u(ω)

E¹vuw
=
t6"t"6T"
T6

																																																					(3.30) 

 

						T¹(ω) =
4n)

(1 + n))" e
k(;r06)!9< =

4n)
(1 + n))" e

0x!9<ek(;06)
!
9< 	=

4n)
(1 + n))" e

0_<" ek(;06)
!
9<								(3.31)	

   

																																																																						α =
2κω
c 																																																																													(3.32) 

 

Transmission function T¹(ω) is a complex value with amplitude ¶T¹(ω)¶ and phase term 

eky(!) shown in Eq. 3.33, then ¶T¹(ω)¶ and ϕ(ω) can be obtained shown in Eq. 3.34 and Eq. 

3.35. Thus, index of refraction n(ω) and absorption coefficient α(ω) are Eq. 3.36 and Eq. 

3.37 respectively. After obtaining these parameters, the optical conductivity and dielectric 

function can be obtained as well through general relations.  

																																																														T¹(ω) = ¶T¹(ω)¶eky(!)																																																														(3.33) 

																																																										|T¹(ω)| = |
4n)

(1 + n))" |	e
0_<" 																																																								(3.34) 

																																																															ϕ(ω) = (n − 1)
ω
c d																																																															

(3.35) 
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																																																															n(ω) = 1 +
ϕ(ω)c
ωd 																																																																(3.36) 

																																																			α(ω) = −
2
d ln ¾	¿

(1 + n))"

4n) ¿ ¶T¹(ω)¶À																																															(3.37) 

3.2.2 Time-Resolved Terahertz Spectroscopy (TRTS) 

 
Figure. 3.6 Diagram of (a) TRTS setup of transmission mode and (b) TRTS setup of 
reflection mode 
 
TRTS is similar to the THz-TDS, adding a pump fs pulse that excites the sample into a 

non-equilibrium state. Since 1 THz is only ~4.1meV, the low energy of THz pulse can 

help to probe energy scales spectroscopically well under room temperature. Therefore, 

the nonequilibrium ps dynamics of systems within bandwidth of the THz pulse (~1 – 100 

meV) can be probed by THz pulses, which is named time-resolved terahertz spectroscopy 

(TRTS). In TRTS experiments, the sample can be excited to a nonequilibrium state after 

applying fs pump pulse, then the pump induced photoconductivity can be probed by the 

process of THz radiation traversing through the sample. The change of the induced 

photoconductivity can be mapped in time because pump probe time delay can be 
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scanned. The temporal resolution of the technique is determined primarily by the 

dispersion within the detection medium, which in our case using ABCD where the 

medium is dispersionless, the resolution is limited solely by the duration of the pump 

pulse. This is a special property of the coherent detection method, whereby specific choice 

of sample delay lines can lead to a projection of the dynamic response onto a constant 

pump-probe time axis. In essence, each measured point of the THz pulse has experienced 

the exact pump-probe time delay, leading to a simple convolution which can be solved 

by Fourier transform. TRTS can be used widely, such as bulk material systems, high-Tc 

superconductors, inorganic and organic semiconductors, insulators, liquids and so on 

[120, 129-135]. There are two modes of TRTS, one-dimensional (1D) scan whereby only a 

single point in the THz probe field is measured instead of the entire THz waveform. This 

ignores the phase information of the electric field and only records an “averaged” 

response. A two-dimensional (2D) scan, measuring the entire THz waveform for each 

pump-probe time delay, considers both amplitude and phase of the THz pulse electric 

field and contains all information about both energetics and dynamics of the interaction. 

There are also transmission and reflection mode of TRTS, which are shown in Fig. 3.6(a-

b). 

3.2.2.1 One-Dimensional Scan of TRTS 

In a 1D scan, the peak of the THz pulse and the sampling beam should arrive at the 

detection crystal at the same time by adjusting the THz source time delay. Then, lock-ins 

only monitor the peak of the THz waveform in which all the frequency components of 

the pulse are in phase. The pump beam which can be moved in time by a delay stage and 
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modulated by an optical chopper is added to excite the sample. Such a scan only contains 

useful information in the limit where no transient phase shifts are present in the THz 

pulse, which would mimic an amplitude shift.  

3.2.2.2 Two-Dimensional Scan of TRTS 

In a 2D scan, instead of only the peak of the waveform, the full waveform is measured. 

The pump excitation is moved in time with respect to the THz pulse by delay stage while 

pump pulse photoexcites the sample. The coherent detection of the amplitude and phase 

of the THz pulse electric field can be used to obtain complex conductivity on ps time 

scales without the help of Kramier-Kronig analysis. 1D scans can be derived easily from 

complete 2D scans. In experiments, the duration of sampling pulse is shorter than THz 

pulse, therefore, the evolution of THz electric field in time can be resolved. By adding a 

delay stage used to change the time gap on the fs order between THz radiation and 

sampling pulse, THz pulse can be sampled can be measured accurately. Small THz-

induced change can be measured with the mechanical chopping connected to lock-in 

amplifier. There are two measurements, one is with sample spectrum where pump-probe 

delay time is set to a specific positive value, the other is without sample as reference 

spectrum where pump-probe delay time is negative (THz pulse arrives before the pump 

pulse). After subsequent Fourier transforming of these two spectrums, frequency domain 

can be obtained. Then, the complex transmission function obtained from the ratio of the 

Fourier transforms of these two pulses can be related to the complex conductivity (Eq. 

3.51). According to Eq. 3.51, the real and imaginary parts of conductivity can be written 
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asσ6(ω) =
zD6
{#<

	² 6
|4(!)|

cosΦ − 1³	  and σ"(ω) = − zD6
{#<

	² 6
|4(!)|

sinΦ³  in terms of amplitude 

|T(ω)| and phase Φ(ω).  

3.2.2.3 Thin Film Approximation 

																																																						nÂ × xHFF⃗ 6 − HFF⃗ "y 			= Ã J⃗
.

(

dz = 	 J⃗d																																																			(3.38) 

																																																																	nÂ × xEFF⃗ 6 − EFF⃗ "y = 0																																																																(3.39) 

																																																																		Hk − Hq − Hg = Jd																																																																(3.40) 

																																																																				Ek − Eq − Eg = 0																																																																	(3.41) 

In TRTS experiments, the radiation passes through the thin substrate from the air, 

therefore, consider the situation of the radiation transmission from media 1 to the media 

2, the boundary conditions of electric fields and magnetic fields are given in Eq. 3.38 and 

Eq. 3.39 where d is the penetration depth. To simplify the situation, consider the normal 

incidence and obtain the Eq. 3.40 and Eq. 3.41 which are identical to the boundary 

conditions of Fresnel Transmission derivation.  

																																																																										Γ =
H
E 																																																																													

(3.42) 

																																																																			Eg =
2Γ6Ek − Jd
Γ6 + Γ"

																																																																		(3.43) 

																																																																					Γ6 =
Hk + Hq
Ek + Eq

																																																																						(3.44)	

																																																																									Γ" =
Hg
Eg
																																																																												(3.45) 
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Define admittance Γ  as shown in Eq. 3.42 and combine Eq. 3.40 as well as Eq. 3.41, 

transmitted electric field can be obtained (Eq. 3.43) where the Γ6 and Γ" can be expressed 

by Eq. 3.44 and Eq. 3.45. 

																																																																									t =
Eg
Ek
																																																																														(3.46) 

																																																																									J = σÅEg																																																																													(3.47) 

																																																																		t̃ =
2Γ6

Γ6 + Γ" + σÅd
																																																																		(3.48) 

																																																																										Γl =
Nl
Z(
																																																																											(3.49) 

																																																			t̃}kK~ =
2

𝑁( + 1 + Z(σÅ(ω)d
			�d ≪

λ
n�																																												

(3.50) 

Since Eq. 3.46 and Eq. 3.47 where σÅ  is the complex photoconductivity, transmitted 

coefficient t̃	can be obtained shown in Eq. 3.48. Use Nl as the index of refraction of the 

medium and Z( as the impedance of free space, then the admittance can be written as Eq. 

3.49. When considering the index of refraction of air is 1 and the index of refraction of 

substrate is 𝑁(  (roughly real), the final expression of the transmission through a thin 

conducting film �d ≪ �
;
� , Tinkham equation, can be obtained (Eq. 3.50) (internal 

reflections within the photo-excited layer are averaged and neglected) [136]. 

																																										T¹(ω) =
t}kK~
tm>=m

=
E¹�>~�(ω)
E¹qa}(ω)

=
𝑁( + 1

𝑁( + 1 + Z(σÅ(ω)d
																															(3.51) 

																																					T¹(ω) =
t}kK~
tm>=m

=
E¹�>~�(ω)
E¹qa}(ω)

=
𝑁( + 1

𝑁( + 1 + Z(σÅ(ω)d
e0

k�#<�
9 																					(3.52) 

																																									−
ΔT(t)
T(

=
T( − T�>~�

T(
= 1 −

𝑁( + 1
𝑁( + 1 + Z(dΔσ(t)

																															(3.53) 
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																																																				Δσ(t) =
𝑁( + 1
Z(d

�−
ΔT
T(
� É

1

1 + ΔT(t)T(

Ê																																												(3.54) 

Transmission function T¹(ω)  from the excited part of substrate to unexcited part is 

obtained (Eq. 3.51) by using the transmission coefficient of the unexcited substrate 

( tm>=mgqlga =
"

6D�#
). However, for deep penetrating excitation the distance traversing 

through the substrate differs from the excited substrate, therefore, transmission function 

changes to Eq. 3.52 by adding a phase factor. When assume the conductivity is real, the 

differential transmission can be written as the function of pump-induced change in 

conductivity Δσ(t)  shown in Eq. 3.53, therefore, Δσ(t)  can be written as Eq. 3.54. In 

experiments, T( is the THz transmission at negative pump-probe delay time, and two 

pump-probe delay scans are needed to obtain the differential transmission (−ΔT = T( −

T�>~�) where pump beam is chopped. 

3.3 Theoretical Models for Conductivity in Materials 

3.3.1 Drude Model 

In Drude Model, consider charge carriers as free carriers responding to electric field with 

a collisional dampening rate of 6
Q(

 (𝜏+  is the scattering time) also called scattering rate 𝛾. 

In an electric field, the carrier motion can be described by the rate equation Eq. 3.55. The 

current density is given by Eq. 3.56 where N is the charge carrier density, 𝑒is the electronic 

charge and 𝑚∗ is the effective mass of carrier respectively. Consider the steady state (DC) 

field, then obtain the relation Eq. 3.57. Combine Eq. 3.55-3.57, 𝜎?, can be obtained shown 
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in Eq. 3.58 where the plasma frequency 𝜔$ is defined by Eq. 3.59. Besides, mobility µ is 

defined by Eq. 3.60, then 𝜎?, can be rewrite in another way as Eq. 3.61. 

																																																			𝑚∗ 𝑑𝑣⃗(𝑡)
𝑑𝑡 = −𝑚∗ 𝑣⃗

𝜏+
− e𝐸F⃗ (𝑡)																																																												(3.55)	

          
																																																																				𝐽 = −Ne𝑣⃗																																																																													(3.56)	

                                                 

																																																																							
d𝑣
𝑑𝑡 = 0																																																																																(3.57)	

                                                 

																																																			𝜎?, =
𝐽
𝐸F⃗
=
𝑁𝑒"𝜏+
𝑚∗ = 𝜔$"𝜖(𝜏+																																																													(3.58)	

                                                

																																																																			𝜔$" =
𝑁𝑒"

𝜖(𝑚∗ 																																																																											(3.59)	

                                                 

																																																																	µ = 	
𝑣⃗
𝐸F⃗
=
𝑒𝜏+
𝑚∗ 																																																																										(3.60)	

                                                 
																																																																					𝜎?, = Neµ																																																																											(3.61) 

     
 

The electric field of frequency 𝜔  can be written as Eq. 3.62. After substituting this 

equation into Eq. 3.55, the solution can be obtained (Eq. 3.63), and Eq. 3.55 transforms to 

(−𝑖𝜔)𝑣(𝜔) = − \W⃗ (`)
Q(

− 𝑒𝐸F⃗ (𝜔). Since 𝜎)(ω) =  �⃗
�W⃗

 and Eq. 3.57, conductivity 𝜎)(ω) in Drude 

model can be written as Eq. 3.64 with real part and imaginary part shown in Eq. 3.65 and 

Eq. 3.66 respectively where 𝜎?, =
�/0Q(
R∗  , and 𝑚∗ is effective mass.                

																																																													𝐸F⃗ (𝑡) = 𝑅𝑒w𝐸F⃗ (𝜔)z𝑒0�`U																																																												(3.62)	
                                                 

																																																														𝑣⃗(𝑡) = 𝑅𝑒[𝑣⃗(𝜔)]	𝑒0�`U																																																											(3.63)	
                                                 

																																													𝜎)(ω) = 𝜎6(ω) + i𝜎"(ω) =
𝜎?,

1 − 𝑖𝑤𝜏+
																																																		(3.64)	
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																																						𝜎6(ω) =
1

1 + (𝑤𝜏+)"
𝜎?, 		or			

𝑁𝑒"

𝑚∗
𝜏+

1 + (𝑤𝜏+)"
																																								(3.65)	

                                                 

																														𝜎"(ω) =
𝑤𝜏+

1 + (𝑤𝜏+)"
𝜎?, = 𝑤𝜏+𝜎6(ω)			or		

𝑁𝑒"

𝑚∗ 	
𝑤𝜏+"

1 + (𝑤𝜏+)"
																						(3.66) 

 
 

One example of Drude model is shown below, considering two conditions. The first 

condition is 𝜔𝜏 ∼ 1  thus 𝜎6(ω) ∼ 𝜎"(ω)  shown in Fig. 3.7(a). The second condition is 

𝜔𝜏 ≪ 1 thus 𝜎6(ω) ∼ 𝜎?, and 𝜎"(ω) ∼ 𝜔𝜏+𝜎?, shown in Fig. 3.7(b). 

 
Figure. 3.7 Schematic of conductivity of Drude model in the conditions of (a) 𝜔𝜏+ ∼ 1 and 
(b) 𝜔𝜏+ ≪ 1 (the real and imaginary conductivity corresponds to blue and red curves 
respectively).  
 
3.3.2 Lorentz Model 

In Lorentz Model, light-matter interactions can be described in terms of the electric field 

inducing oscillations of the atomic dipole by the driving forces acting on the electrons. A 

single damped harmonic oscillator with force constant k driven by electric field can be 

described by the equation of motion (Eq. 3.67) where 𝑚∗ is the effective mass. Substitute 

the solution form of Eq. 3.68 into Eq. 3.67, then give Eq. 3.69. The resonant frequency of 
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the oscillator 𝜔(  has the relation shown in Eq. 3.70, and the dipole moment per unit 

volume is given by Eq. 3.71 or Eq. 3.72 related to electric susceptibility. Since electric 

susceptibility can be related to dielectric function (Eq. 3.73), then obtain Eq. 3.74.         

																																										𝑚∗ 𝑑
"𝑥⃗(𝑡)
𝑑𝑡" +

𝑚∗

𝜏+
𝑑𝑥⃗(𝑡)
𝑑𝑡 + k𝑥⃗(𝑡) = −e𝐸F⃗ (𝑡)																																												(3.67)	

                                                 
																																																																	𝑥⃗(𝑡) = 𝑥⃗(𝜔)𝑒0�`U																																																																(3.68)	

                                                 

																																															𝑥⃗(𝜔) = −
𝑒
𝑚∗

1

(𝜔(" − 𝜔") − 𝑖𝜔𝜏+

𝐸F⃗ (𝜔)																																																		(3.69)	

                                                 

																																																																									𝜔(" =
k
𝑚∗ 																																																																										(3.70)	

                                                 
					𝑃F⃗ = −𝑁𝑒𝑥⃗																																																																									(3.71)     

                                              
																																																																								𝑃F⃗ = 𝜖(𝜒𝐸F⃗ 																																																																										(3.72)	

                                                 
																																																																					ε = 𝜖((1 + 𝜒)																																																																					(3.73)	

                                                 

																																																				
𝜀̃(ω)
𝜖(

= 1 +
𝜔$"

(𝜔(" − 𝜔") − 𝑖𝜔𝜏+

																																																										(3.74) 

  

																																																							𝜎)(ω) = 	
𝜔$"𝜖(𝜔

𝑖(𝜔(" − 𝜔") + 𝜔
𝜏+
																																																													(3.75) 

                                                

																																𝜎6(ω) = 	
𝜖(𝜔$"𝜔" �1𝜏+

�

(𝜔(" − 𝜔")" + �𝜔𝜏+
�
" 	or	

𝑁𝑒"

𝑚∗

𝜔" �1𝜏+
�

(𝜔(" − 𝜔")" + �𝜔𝜏+
�
" 																					(3.76) 

  

																							𝜎"(ω) = −
𝜖(𝜔$"𝜔(𝜔(" − 𝜔")

(𝜔(" − 𝜔")" + �𝜔𝜏+
�
" 	or −

𝑁𝑒"

𝑚∗
𝜔(𝜔(" − 𝜔")

(𝜔(" − 𝜔")" + �𝜔𝜏+
�
" 																							(3.77) 
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Recall that the dielectric function is related to the conductivity by 𝜀̃(ω) = 1 + k�r(!)
�#`

 , then 

Eq. 3.74 can be transformed to the conductivity 𝜎)(ω) in Lorentz model shown in Eq. 3.75 

with real part and imaginary part shown in Eq. 3.76 and Eq. 3.77 respectively where 𝜔$	  

is the plasma frequency(𝜔$" =
�/0

�#R∗),  𝜏+ is the momentum scattering time (scattering rate 

𝛾 = 6
Q(

), and 𝑁	is the charge carrier density. 

 

Figure. 3.8 Schematic of conductivity of Lorentz model example showing the real (blue 
curve) and imaginary (red curve) parts of the conductivity for 𝜔( = 6  THz,  𝜔$ =
4 × 1067, and 𝜏+ = 400	fs.  
 

An example of Lorentz model with 𝜔( = 6 THz,  𝜔$ = 4 × 1067, and 𝜏+ = 400	fs is plotted 

shown in Fig. 3.8. The real part of the conductivity 𝜎6(ω) is the blue curve, and the 

imaginary part of the conductivity 𝜎"(ω) is the red curve. 

3.3.3 Drude-Smith Model 
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Drude model mentioned before is a good model to describe classic ordered systems such 

as semiconductors. Nevertheless, as for some disordered systems such as quasicrystal, 

Drude model is not applicable because these systems’ real part of the conductivity 𝜎6(ω) 

suppresses at low frequency as well as rises to a peak at a non-zero frequency, and 

imaginary part of the conductivity 𝜎"(ω) has capacitive response unlike the inductive 

response in Drude model [107]. A new model named Drude-Smith model based on 

carrier backscattering proposed by Smith can be greatly helpful for these situations the 

most of time. Different from the Drude model assuming the elastic isotropic carrier 

scattering, Drude-Smith model includes of the carrier’s previous momentum into the 

scattering event [137]. 

																																																					
j(t)
j(0) = 𝑒	

0 UQ( 	É1 +�
𝑐8 �

𝑡
𝜏+
�
	

8

𝑛!

.

8�6

Ê																																																					(3.78)	

																																																		𝜎)(ω) =
𝜔$"𝜖(𝜏+
1 − 𝑖𝜔𝜏+

Õ1 +�
𝑐8

(1 − 𝑖𝜔𝜏+)	8

.

8�6

Ö																																							(3.79) 

The Poisson statistics is used to describe current response given by Eq.3.78 where 𝑐8 is 

the fraction of the carrier velocity retained after the nth collision. The complex optical 

conductivity is obtained by the Fourier transform of the current response based on the 

impulse response formalism shown in Eq.3.79 [137].  

																																			𝜎6(ω) = 	
𝜔$"𝜖(𝜏+

[1 + (𝜔𝜏+)"]"
	 [1 + (𝜔𝜏+)" + 𝑐(1 − 𝜔"𝜏+")]																												(3.80) 

																																											𝜎"(ω) =
𝜔$"𝜖(𝜏+"𝜔

[1 + (𝜔𝜏+)"]"
	[1 + (𝜔𝜏+)" + 2𝑐]																																										(3.81) 
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Figure. 3.9 Diagram of conductivity of Drude-Smith model example showing the real 
(blue curve) and imaginary (red curve) parts of the conductivity for 𝜔( = 0 THz,  𝜔$ =
4 × 106B, 𝜏+ = 10	fs, and backscattering parameter 𝑐(	(𝑐) ranging from 0 to -1. 
 
Here only consider the first order 𝑐8  with n = 1 , indicating that there’s only one 

scattering event deviating from isotropic Drude scattering with 𝑐8 = 0. This assumption 

can be explained that first collision is ballistic and subsequent collisions are diffusive 

proposed by Mayou et la. [138] . It should be noted that this interpretation does not need 

to be invoked for the Drude-Smith model to be valid. Inspection of Eq. 3.78 reveals that 
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the Drude response can be modified by any analytic function g(t/𝜏s). The Drude-Smith 

model simply Taylor expands this unknown function about t = 0 where the c-values are 

the Taylor coefficients of this function. This explains the versatility of the Drude-Smith 

model, it can essentially fit any continuously differentiable and well-behaved 

modification to the Drude exponential decay. The real and imaginary part of conductivity 

are given in Eq. 3.80 and Eq. 3.81 respectively where 𝑐8  is relabeled as backscattering 

parameter  𝑐(	 (𝑐	 ) and the values of 𝑐	 ranging from 0 to -1. This generalized Drude 

formulas have interesting and versatile properties, particularly when 𝑐(	 is negative. 

When 𝑐(	 equals 0, the conductivity becomes common Drude conductivity with complete 

momentum randomization. The dc conductivity is given by �
∗/0Q((6D,#)

R∗  and carrier 

mobility is given by  /Q((6D,#)
R∗ 	where 𝑁∗ is adjusted carrier density [137]. 

The real part of the conductivity 𝜎6(ω) is the blue curve, and the imaginary part of the 

conductivity 𝜎"(ω) is the red curve as plotted in Fig. 3.9 (a-d) for the condition of 𝜔( = 0 

THz,  𝜔$ = 4 × 106B, 𝜏+ = 10	fs, and backscattering parameter 𝑐( in the range from 0 to -

1. In the case of 𝑐( = 0, the curves of conductivity are in agreement with the Drude model. 

As 𝑐(  decreases ( 𝑐( < 0 ), a dip of conductivity at low frequency and a peak of 

conductivity at a non-zero frequency appear. When 𝑐 is negative, the backscattering is 

predominant, and net current j(t) of the electron system reverses its direction before the 

relaxation to the equilibrium value of 0. For the effect on conductivity 𝜎)(ω), the dc 

conductivity is depressed, and the oscillator strength is shifted to higher frequencies. In 

the case of  𝑐( < − "
7
	, conductivity 𝜎)(ω) renders a minimum at zero frequency following 
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a maximum at frequency of 7,#D6
Q(	0(,#06)

. In the case of 𝑐( = −1 , the dc conductivity is 

completely suppressed and the maximum happens at frequency of 6
Q(		

 [137]. In the case 

of  𝑐( < − 6
"
 ,  the imaginary part of the conductivity 𝜎"(ω) is negative at low frequencies 

in agreement with the capacitive response. As the frequency increases, 𝜎6(ω)~
6

�!Q(	�	
0 and 

𝜎"(ω)~
6

!Q(	
	showing Drude behaviour [107]. 

 

																																																																														
j(t)
j(0) = 𝑒	

0 U
Q1 																																																																	(3.82)	

																																																																										𝜎)(ω) =
𝑛∗𝑒"𝜏,
𝑚∗

1 − 𝑖𝜔𝜏,
																																																								(3.83) 

																																																																												
1
𝜏,
=
1
	𝜏+
(1 − 𝑐()																																																									(3.84) 

For simple kinetic models, the assumption is that the duration of a collision is negligible 

compared with the interval between collisions. Make a further assumption that collisions 

are independent of each other 𝑐8 = 𝑐(8, then obtain Eq. 3.82 and Eq. 3.83 where 1/𝜏, is 

the transport scattering rate given by Eq. 3.84  [137]. 

3.4 System for Terahertz spectroscopy 

3.4.1 Ultrafast Titanium Doped Sapphire Amplifier 
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Figure. 3.10 Diagram of the Titanium Doped Sapphire Amplifier used in this research. 

 
The light source driving the THz spectrometer is significant. An ultrafast Titanium doped 

sapphire amplifier (Ti: sapphire Amplifier) can generate femtosecond duration pulses 

which are used in transient multi-THz spectroscopy to study ultrafast dynamics and 

optical properties of materials. The setup used in this research is shown in Fig. 3.10. First 

a nJ energy, ~30 fs pulse, centered at ~810 nm with ~400 mW and with a full width at 

half maximum (FWHM) of ~77 nm, is generated from the mode-locked Ti: sapphire 

oscillator through Kerr lens induced by Ti: sapphire crystal. Then, the seed fs pulse is 

directed to a stretcher stage, where the duration of the pulses is enlarged by around three 

orders of magnitude and the peak power of pulse is decreased below the optical damage 

threshold of Ti:sapphire gain medium. After that, the pulse goes into regenerative Ti: 

sapphire amplifier in which Ti: sapphire crystal along with focused 1 kHz frequency-

doubled Q-switched Nd: YLF laser to amplify the energy of pulse incrementally as it 

passes through the crystal for multiple times. Then, the pulse of around ~6 mJ/pulse is 
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sent to a compressor stage and compressed to pulse of ~5 mJ/pulse with FWHM of ~40 

fs and pulse-center of ~800 nm. The ultrashort pulse is obtained and sent to the THz 

generation via two-color air plasma emission [139].  

3.4.2 Ultra-Broadband TRTS Setup of This Research 

 
Figure. 3.11 Diagram of the ultra-broadband TRTS setup used for experiments of this 
research. 
 
After introducing the light source, the setup used for experiments is introduced here and 

shown in Fig. 3.11. An ultra-broadband TRTS setup of reflection configuration covering 

~1-20 THz range which is mainly composed of delay line, parabolic mirrors (PM) of 

different sizes, Beta Barium Borate (BBO), high resistivity silicon (Si) wafer, chopper 

system with controller as well as wheels, beam splitter, ABCD system, 400 nm filter, 

avalanche photodiode (APD), lock-in amplifiers is used. After the ultrafast pulse is 

obtained, it is sent to a beam splitter and split into a weak and a strong beam. The strong 

beam with higher power is sent to the THz spectrometer as the pump pulse, then the 
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weak beam is sent to another beam splitter and split into two beams (weaker one and 

stronger one). The weak one is used as sampling pulse later. The stronger one is sent to a 

delay line firstly, then to a BBO for ~400 nm second harmonic generation by a non-linear 

process. After the BBO, the ~800 nm fundamental and ~400 nm second harmonic beams 

of orthogonal polarizations are obtained, then they are focused by a PM to create plasma. 

Then optical pulses are sent to Si wafer which allows the THz pulse pass through and 

blocks the ~800 nm fundamental as well as ~400 nm second harmonic beams. After that, 

the THz beam is focused on the sample by PM, then the response of sample is collimated 

by PMs and detected by ABCD along with the sampling pulse. The last process is using 

a 400 nm filter to select the THz-induced second harmonic which can be detected by a 

APD connected to lock-in amplifiers [139]. No dispersion compensation was utilized to 

better temporally overlap the two colors in the laser plasma, which limits the peak THz 

electric field < 20kV/cm such that we remain in the limit of a linear response for typical 

semiconductors. Two different types of photo-excitation pulses can be provided by the 

setup. As for the pump pulse, besides 800 nm pump pulse (~1.55 eV), 400 nm (~3.1 eV) 

pump pulse can be generated by introducing the 800 nm pump pulses into a thin BBO 

crystal [139].  
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Chapter 4 

Results and Discussion 

Electron scattering processes in photo-excited polar semiconductors involve a dynamic 

screening of the Coulomb interactions, quantified by the dielectric function 𝜀̃	(Eq. 4.1). 

The bare Coulomb potential 𝑉N =
O/0

N0
 becomes the screened Coulomb interaction 

𝑊N(𝜔, 𝜏?) = 𝑉N/𝜀̃(𝜔, 𝜏?)  which now exhibits dispersion and evolves dynamically 

following the injection of charge under delay time 𝜏? .In an unexcited polar 

semiconductor under an externally applied electromagnetic field, the lattice response that 

is dictated by the steady state dielectric function 𝜀(̃𝜔) screens the applied field and leads 

to a strong reflectivity in the far-infrared called the reststrahlen band lying between the 

LO and TO phonons. For the LHPs there are many phonon modes, 𝑁�U�R atoms in the 

primitive unit cell (𝑁�U�R=5 for CsPbBr3 and 𝑁�U�R=12 for MAPbBr3) will lead to 3𝑁�U�R 

phonon modes (15 for CsPbBr3 and 36 for MAPbBr3). Despite this, the optical properties 

in the THz range are found to be dominated by only a few highly polar TO modes. When 

carriers are injected via an optical inter-band transition, however, these phonons become 

dressed by their interactions with plasmon excitations, forming coupled modes which 

can play an important role in redefining electron-phonon scattering processes. In this 

chapter, we discuss the role of dynamic screening effects in the LHPs following ultrafast, 

fs optical injection of charge carriers. 

4.1 Lattice Polarization Response 
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Figure. 4.1 Time domain data of (a) MAPbBr3 and (b) CsPbBr3 single crystals respectively 
at the fluence of 362 uJ/cm2  containing reference THz electric field 𝐸×&/c(𝑡) without pump 
(black curve), and differential THz electric field from normal incidence reflection 
Δ𝐸×(𝑡, 𝜏 = 1.25𝑝𝑠) = 𝐸×$�R$(𝑡, 𝜏) − 𝐸×&/c(𝑡) (red curve) where choose pump delay time 𝜏 at 
1.25𝑝𝑠 , (c, d) Corresponding Fourier amplitudes of the normal incidence reflection 
without photoexcitation ¶𝐸×&/c(𝜔)¶ (black curve), pump induced change of THz electric 
field |Δ𝐸×(𝜔, 𝜏 = 1.25𝑝𝑠)| (red curve), and normal incidence reflectance without photo-
excitation |	𝑟̃((𝜔)|(blue dashed curve) respectively obtained from dielectric parameters of 
MAPbBr3 and CsPbBr3 single crystals given by TABLE. 4.1.  
 

Material !2"
"#

 [THz] !!"
"#

 [THz] 𝜀. 𝜀+ 𝛾 𝑚∗/𝑚( 𝛼/0$1 

MAPbBr3 1.85 5.32 9 74.4 0.5 0.15 0.75 
CsPbBr3 1.79 4.67 4.3 29.3 0.1 0.2 2.3 
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TABLE. 4.1. Summary of optical and static dielectric constants (ε. and εm  respectively), 
angular frequencies [THz] of a characteristic LO phonon mode and TO phonon mode 
(!!"
"#

 and !2"
"#

 respectively), scattering rate 𝛾 , effective mass of charge carrier 𝑚∗	, and 
electron-phonon coupling constant 𝛼/0$1	used in the data analysis process of MAPbBr3 
and CsPbBr3.  

																																																			𝜀̃(𝜔) = 𝜀. +
(𝜀+ − 𝜀.)𝜔P^

"

𝜔P^
" − 𝜔" − 𝑖𝛾𝜔																																																								(4.1) 

 The background dielectric response for both CsPbBr3 and MAPbBr3 in the 1-12 THz 

region in this work is dominated by a single broadened phonon line at room temperature. 

The Lydanne–Sachs–Teller relationship defines the relationship between the LO (with 

frequency of 𝜔]^)	and TO (with	frequency	of	𝜔P^) phonon modes in terms of the static 𝜀+ 

and high frequency 𝜀.  dielectric constants  `./
0

`3/0
= �(

�4
  [140]. In MAPbBr3, the optical 

dielectric constants 𝜀. = 4.7, static dielectric constants 𝜀+ = 32.3, and `3/
"Y

= 5.01	THz as 

reported by Sendner et al. [80].  We note however that significantly different values of 4.4, 

21.36, 5.81 THz (approximately 193.8 cm-1) respectively are reported in Kiyoshi et al. [11, 

80]. In CsPbBr3, the optical dielectric constants 𝜀. = 4.3, static dielectric constants 𝜀+ =

29.37, and `3/
"Y

= 4.07	THz (approximately 135.8 cm-1) in Kiyoshi et al. [11]. However, 

these are all parameters from thin films and nanocrystals, which may differ significantly 

from their intrinsic values as measured in a single crystal, which can be influenced by 

crystal orientation when birefringence is present (as it is in the orthorhombic phase). THz 

pulses are reflected from the MAPbBr3 and CsPbBr3 crystal (100) facets as shown in the 

black traces in Fig. 4.1(a, b), and following Fourier transform we obtain the amplitude 

spectra in Fig. 4.1(c, d). The sharp reststrahlen features can be seen readily from the 

amplitude spectra. The reststrahlen band between the TO phonon at ∼(2𝜋)1.85	THz and 
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a LO phonon at ∼ (2𝜋)5.32	 THz is shown, and notably there is a dip centered 

𝜔~(2𝜋)5.7	THz where the lattice is least effective at screening the incident THz pulse 

field. The parameters found to best fit the measured static THz reflectivity spectra and 

used our subsequent time-resolved conductivity analysis are shown in TABLE. 4.1 which 

are relatively in good agreement with the reference THz electric field 𝐸&/c(𝑡) without 

pump (black curve) in Fig. 4.1(c, d).   

 
Figure. 4.2 The complex refractive index and static reflectivity of (a) MAPbBr3 and (b) 
CsPbBr3. Complex refractive index 𝑛 and 𝜅 and static reflectivity r0 are plotted as black, 
blue and red curves respectively. 
 
Corresponding `./

"Y
 modes are calculated using the Lydanne–Sachs–Teller relationship. 

The complex index of refraction, relevant for extraction of the optical conductivity, is 

shown in Fig. 4.2. One can divide the spectral regions into two based on these plots. The 

highly dispersive regime dominated by optical phonons < 7 THz, and the weakly 

dispersive regime > 7 THz.  

As THz is sensitive to the sum of electron and hole conductivities, and these scale 

inversely to the effective mass, it is appropriate to use an ambipolar effective mass 
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1/𝑚∗ = 6
R5
∗ +

6
R6
∗  where 𝑚/

∗  and 𝑚1
∗  are the electron and hole effective masses, respectively. 

There have been several reports of the electron-hole(e-h) effective mass  has a range of 

~0.117-0.19	𝑚( in MAPbBr3 and has a range of ~0.143-0.24 𝑚( in CsPbBr3 here 𝑚( is bare 

electron mass [11, 79, 80]. An ambipolar e-h effective mass  ~0.15	𝑚( in MAPbBr3 and  

~0.2	𝑚( in CsPbBr3 is used. The dimensionless Fröhlich polaron coupling constant	𝛼/0$1  

is also calculated as  𝛼/0$1 =
/0

ℏ
6

BY�#
n R∗

"ℏ`./
� 6
�4
− 6

�(
�  where ℏ  is the reduced Planck’s 

constant, 𝑒  is the charge of carrier, 𝜖(	is the dielectric constant of vacuum, 𝜔]^  is the 

angular frequency of a characteristic LO phonon mode, 𝜀. and 𝜀+ are optical and static 

dielectric constants respectively, and 𝑚∗  is e-h averaged effective band mass then the 

electron-phonon coupling constant	 𝛼/0$1 	(e-h averaged) is	 calculated	 to	 be	 0.75	 	 in 

MAPbBr3  and 2.3 in  CsPbBr3. Compared with  𝛼/0$1 of 2.76 (hole) and 2.64 (electron) in 

CsPbBr3  𝛼/0$1 of 1.87 (hole) and 1.56 (electron) in MAPbBr3 according to Miyata et al.’s 

research [11] as well as 1.69 in MAPbBr3 according to Sendner et al.’s research [80]. Our 

calculated coupling constants are consistent with these values, with the coupling constant 

for MAPbBr3 being notably smaller.  

4.2 Optical Excitation 

To understand the transient THz response following photoexcitation, it is important to 

understand the initial excitation in view of the electronic band structure. As the optical 

band gap for both CsPbBr3 and MAPbB3 are above the fundamental 1.55 eV photon 

energy of our Ti:sapphire laser system, we use the second harmonic at 400 nm (3.1 eV) to 

photoexcite.  Important to the quantitative calculation of the photoconductivity, we must 
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know the pump penetration depth in the sample. Thinning a single crystal down to one 

hundred nanometers over a size that can be easily characterized by optical excitation (10-

100 µm) requires a very difficult to achieve aspect ratio of 100-1000, which is why optical 

absorption measurements are typically done on deposited polycrystalline thin films on a 

substrate. Instead, we calculate the optical penetration depth via the dielectric function 

at room temperature for the relevant structural phases as mentioned in Chapter. 2.4.1. 

Using literature values of the complex dielectric constant 𝜀̃ = 𝜀6 + 𝑖𝜀"  and refractive 

index 𝑛) = 𝑛 + 𝑖𝜅, the penetration depth 𝛿 can be calculated via the formula of 𝛿 = S
BY�

 

where 𝜅 = �0
"8

, 𝜀"  is the imaginary part of dielectric constant, 𝑛  is the real index of 

refractive, and 𝜆  is the wavelength of excitation light. Using the complex dielectric 

constant calculated in Kovalenko et al. at 400 nm (3.1 eV excitation energy) at room 

temperature, the real and imaginary parts of the dielectric constant in CsPbBr3 of 

orthorhombic phase are ~5 and ~0.9 respectively, while those in MAPbBr3 of cubic phase 

are ~5.9 and ~1.5 respectively [38]. According to the formulas of 𝜀6 = 𝑛" − 𝜅"and 𝜀" =

2𝑛𝜅, the calculated 𝑛 = 2.245 and 𝜅 = 0.2 for CsPbBr3. For MAPbBr3, 𝑛 = 2.448 and 𝜅 =

0.306. Then calculated penetration depth 𝛿 of CsPbBr3 and MAPbBr3 are ~159 nm and 

~104 nm respectively.  

Initial excitation in both samples provides multiple 100’s of meV in excess energy to both 

electrons and holes, much greater than the exciton binding energies. Therefore, 

excitations are assigned to initially free carrier densities. The maximum carrier density, 

assuming unity quantum efficiency,  injected into the sample is then simplified to 𝑁�IJ =

(60�)�
�1c

. ℎ𝑓  is 3.1eV for this experiments with 400 nm photo-excitation pulses, 𝐹  is the 
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incident pump fluence, and R is the pump intensity reflection coefficient [133]. The 

reflectance for CsPbBr3 is approximately ~0.03 at 400 nm at room temperature [141] and 

is 0.1 for MAPbBr3 [142]. The calculated maximum carrier densities used in these 

experiments are shown in TABLE. 4.2.   

Incident Pump Fluence 𝐹 Photo-excited Carrier 
Density in MAPbBr3 

Photo-excited Carrier 
Density in CsPbBr3 

23 uJ/cm2 ~4.01 × 10"B/m3 ~2.82 × 10"B/m3 
56 uJ/cm2 ~9.74 × 10"B/m3 ~6.89 × 10"B/m3 
110 uJ/cm2 ~1.92 × 10"�/m3 ~1.35 × 10"�/m3 
185 uJ/cm2 ~3.23 × 10"�/m3 ~2.27 × 10"�/m3 
362 uJ/cm2 ~6.32 × 10"�/m3 ~4.46 × 10"�/m3 

 
TABLE. 4.2. Summary of incident pump fluence 𝐹(uJ/cm2) as well as corresponding 
photo-excited carrier density (/m3) in MAPbBr3 and CsPbBr3 used in 1D TRTS 
experiments. 
 
The photoexcitation is modelled as a thin conducting film on top of a semi-infinite 

insulating substrate (unexcited sample). Due to the thickness of the sample and the high 

dispersion in the vicinity of the phonons, time-frequency artifacts occur when 

experiments are performed in transmission. As such, all experiments are performed in 

reflection.   

4.3 1D Transient Reflectivity of MAPbBr3 and CsPbBr3 

The time domain data of reflected THz amplitude spectrum of MAPbBr3 single crystal is 

shown in Fig. 4.1(a), where 𝐸×&/c is the THz electric field without photo-excitation and the 

pump-induced change to the THz electric field is Δ𝐸×  = 𝐸×pump – 𝐸× ref for a pump-probe 

delay of 1.25 ps. The corresponding Fourier amplitudes are illustrated in Fig. 4.1(c).  The 
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reference THz electric field spectrum reflected from MAPbBr3 without pump ¶𝐸×&/c(𝜔)¶  

is show as black curve. Fourier amplitudes of reference sample pulse, differential THz 

pulse ¶Δ𝐸×(𝜔, 𝜏 = 1.25𝑝𝑠)¶ and reference reflectivity |	𝑟̃((𝜔)| calculated using parameters 

described in Table 4.1 are demonstrated as black, red and blue dashed curves, 

respectively. For dynamics of the region where the frequency is above ~5.7 THz, the 

response is dominated by electronic degrees of freedom. Similarly, the reflected THz field 

spectrum and Fourier amplitudes of CsPbBr3 single crystals are obtained as well shown 

in Fig. 4.1(b, d).  
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Figure. 4.3 1D transient reflectivity &%&̃
&̃#
&  dynamics evolution of (a) MAPbBr3 and (b) 

CsPbBr3 at longer time scale of around ~300 ps as well as transient reflectivity of (c) 
MAPbBr3 and (d) CsPbBr3 at shorter time scale of the first 2.25 ps under specified pump 
conditions of different incident pump fluence 𝐹 of 23 uJ/cm2, 56 uJ/cm2, 110 uJ/cm2, 185 
uJ/cm2, and 362 uJ/cm2. 
 
Fig. 4.3(a, c) shows the 1D transient reflectivity &%&̃

&̃#
& dynamics of MAPbBr3 where the THz 

field is sampled at the point of highest THz electric field when all Fourier components 

are in phase with one another and add constructively, and the pump-THz probe time 

delay is scanned. At early delay times as shown in Fig. 4.3(c), &%&̃
&̃#
& exhibits a sub-ps time 

scale evolution governed by two processes with of different time constants: a faster rise 

within the first  ~200 fs and a second component which takes ~1-2 ps to reach the quasi-

equilibrium state. This is consistent with photoconductivity/transient reflectance rise 

dynamics of lead perovskites in previous works. For example, in Bretschneider et al.’s 

research via TRTS, after photoexcitation the photoconductivity of FAPbI3 , MAPbI3, and 

CsPbI3 increases during the first ~1 ps to a steady-state photoconductivity [16]. 

Additionally, in Miyata et al.’s research, the transient reflectance of CsPbBr3 and MAPbBr3 

rises within half ps then reaches a quasi-equilibrium state [11]. This phenomenon is more 

pronounced at higher photo-excited carrier density as the fluence increases from 23 to 

362 uJ/cm2. The same measurement of CsPbBr3 is done as well show in Fig. 4.2(b, d). The 

results show the same behaviour. Bretschneider et al. and Miyata et al. believed this is due 

to competition between electron-phonon coupling and carrier cooling as mentioned 

before in Chapter. 2.2.6. Interestingly, the decaying dynamics within time scale of ~300 

ps also exhibits multiple channels regarding to initial relaxation of unscreened hot 
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electrons called carrier cooling [81]. Those processed will be explored more in Chapter. 

4.6. It’s important to note, however, that such 1D reflection transients are not valid 

representations of the conductivity, particularly if there is significant imaginary 

conductivity. In this case, phase changes can be interpreted as amplitude changes, and 

the dynamics can be misinterpreted. In all previous works, authors have used 1D 

measurements simply because it allows rapid acquisition of data [16]. A more complete 

measurement requires a full 2D map, which will be provided in this thesis. 

The fluence-dependence of the maximum value of 1D transient reflectivity &%&̃
&̃#
& and fitting 

curves of MAPbBr3  and CsPbBr3 are shown in Fig. 4.4. The fit is based on the material 

response function  

																																																					
Δ𝑟̃
𝑟̃(
=
(1 − 𝑛 − 𝑍(Δ𝜎𝑑)(1 + 𝑛)
(1 + 𝑛 + 𝑍(Δ𝜎𝑑)(1 − 𝑛)

− 1																																																(4.2) 

where 𝑛 is the index of refractive, 𝑍( = 376.7 is impedance of free space, 𝑑 is penetration 

depth, and differential conductivity is proportional to the pump fluence 𝐹 . Since the 

index of refractive complex index of refraction 𝑛) = 𝑛 + 𝑖𝜅	changes as frequency changes 

as show in Fig. 4.2, used the relatively stable 𝑛~2.5 for MAPbBr3 and  𝑛~1.9 for CsPbBr3 

after ~7 THz in the fit since refractive index changes a lot before that, however this is only 

useful for qualitative interpretation. The max(&%&̃
&̃#
&) initially grows linearly with fluence 

and shows saturation behaviour reflecting the inherently nonlinear relation shown in Eq. 

4.2, Besides, the fitting max(&%&̃
&̃#
&) of MAPbBr3 with larger gradient is plotted as red curve 
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while that of CsPbBr3 with smaller gradient is plotted as blue curve, which also agree 

with experimental data.  

  
Figure. 4.4 The maximum 1D transient reflectivity &%&̃

&̃#
& of MAPbBr3  and CsPbBr3 along 

fluence of the pump pulse and fit curves. 
 
In Chapter. 3.2.2.3 Thin Film Approximation, it mentioned the calculation of conductivity 

of the transmission mode. Similarly for reflection mode, use the formula of conductivity 

Δ𝜎 = 6
�#�

(�06)�8006�
(�06)(608)D"

 where R=&u
��>~�
u�qa}

&, and 	R − 1 = &%&̃
&̃#
& is transient reflectivity, therefore, 

the conductivity Δ𝜎 can be calculated based on the transient reflectivity. The conversion 

to conductivity from measured differential 1D reflectance %&̃
&̃#

 is strongly influenced by the 

background index of refraction of the underlying unexcited crystal. Fig. 4.5 shows how 

this inversion is influenced by the substrate index, which is strongly dispersive in the 

THz pulse bandwidth. This is most influenced at early times when the differential 

reflectance is greater, and eventually becomes independent of 𝑛. We thus perform time-
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intensive 2D maps in the first 2 ps following excitation and rely on 1D scans for long time 

dynamics. 

 
Figure 4.5. An example of a 1D transient reflectivity &%&̃

&̃#
&  compared to the extracted 

differential conductivities for various assumed indices of refraction. The influence of the 
choice of the index is most apparent for large differential conductivities in the first few 
picoseconds of the response. 

 
4.4 2D Transient Reflectivity: Early Time Response 

The transient 2D reflectivity maps for MAPbBr3 are shown in Fig. 4.6(a-d), presenting the 

amplitude of the 2D photo-induced relative transient reflectivity &%&̃
&̃#
&	dynamics at the 

early delay time from 0 to 2.25 ps and cuts at three delay time (0.25ps, 0.45ps, and 0.75ps) 

along 𝜔=1-12 THz. For MAPbBr3, the strong peaks at approximately 5.9 THz for all the 

delay times are due to lattice screening by mobile charge carriers at the reflectivity 

minimum of reststrahlen band high frequency edge where the lattice is least efficient at 

screening an external field, which agrees well with previous work [14]. The zero crossing 

of the modulation &%&̃
&̃#
& ≈ 0  is located at the LO phonon frequency `./

"Y
= 5.3	 THz, 
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indicating a restructuring of the reststrahlen reflectivity edge due to the photoexcitation. 

The dynamics of this restructuring are more ready seen in the constant pump-probe time 

delay cuts. The modulation is asymmetric favouring the high frequencies, reflecting the 

fact that injected photocarriers contribute highest to screening the fields just above the 

reststrahlen band at 5.9 THz. While the dynamics of the screening appears monotonic, 

we will see later that coherent oscillations appear for frequencies at the reststrahlen edge, 

where the reflectivity response is most sensitive to external perturbation. Note, however, 

that the onset of the reflection modulation does not appear simultaneously for all 

frequencies as the fluence increases. This reflects two processes: 1) carrier cooling due to 

intial excess energy from the 400 nm (ℏ𝜔 = 3.1 eV) pump pulse, and 2) the dynamics of 

screening of Coulomb interactions and the formation of new dressed quasiparticles. We 

will discuss this more in Chapter. 4.5. 

Fig. 4.7(a-d) shows the 2D transient reflectivity &%&̃
&̃#
& maps for the all-inorganic crystal 

CsPbBr3. Qualitatively, the differential response is similar to that of MAPbBr3, however 

the linewidth of the phonon is less leading to sharper spectral features. This is despite the 

main IR active phonon corresponding to motion of the orthorhombic Pb-Br cages present 

in both the hybrid and all-inorganic structure. It might be due to the “dynamic disorder” 

caused by the rotation of organic methylammonium cation in MAPbBr3. The strong peaks 

at approximately ~5.3 THz for all the delay times are due to lattice screening by mobile 

charge carriers at the reflectivity minimum of reststrahlen band high frequency edge, 

which agrees well with a previous work [14]. At the frequency approximates ~5 THz, 

&%&̃
&̃#
& ≈ 0, which does not correspond to the LO phonon frequency `./

"Y
= 4.67	 THz exactly 
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but this may be because it is within the resolution of the measurement of 0.3 THz. Again, 

the differential reflectivity spectrum shows an asymmetric bipolar response, although 

this asymmetry seems to evolve only at higher fluences. Similar to MAPbBr3, the peaks 

in the 1D transient reflectivity at frequency of approximately ~5.3 THz corresponding to 

minimums of the static reflectance 𝑟(  shown in Fig. 4.2(b) where the lattice is least 

polarizable. 
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Figure. 4.6 2D amplitude of normalized transient reflectivity &%&̃
&̃#
& colourmap for THz 

frequencies along delay time of MAPbBr3 and corresponding 1D transient reflectivity 
cuts at several different delay time 0.25ps, 0.45ps, and 0.75ps with four different incident 
pump fluences 𝐹 of (a) 23 uJ/cm2, (b) 56 uJ/cm2, (c) 110 uJ/cm2, and (d) 362 uJ/cm2. 
 

 
Figure. 4.7 2D amplitude of normalized transient reflectivity &%&̃

&̃#
& colourmap for THz 

frequencies along delay time of CsPbBr3 and corresponding 1D transient reflectivity cuts 
at several different delay time 0.25ps, 0.45ps, and 0.75ps with four different incident 
pump fluences 𝐹 of (a) 23 uJ/cm2, (b) 56 uJ/cm2, (c) 110 uJ/cm2, and (d) 362 uJ/cm2.  
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After obtaining the amplitude of 2D transient reflectivity and exploring the 1D transient 

reflectivity along frequencies at a certain delay time, here 1D transient reflectivity 

corresponding different frequencies along the delay time can be obtained as well. The 

dynamics are well fit by Boltzmann function 𝑦 = I70I0

6D/
898#
:8

+ 𝐴"  where 𝑑𝑥	 is the time 

constant. The fitting results for both MAPbBr3 and CsPbBr3 are shown in Fig. 4.8(a, c) 

respectively, where black solid lines are Boltzmann fitting curves. Almost all of the 

transient reflectivity of all frequencies fit well except the transient reflectivity at the 

frequency near LO phonon frequency	ω23/2π. Below ω23 the lattice is overscreened and 

above ω23 the lattice is underscreened by the injected photocarriers. Interestingly, there 

are coherent oscillations along the delay time near reflectivity dynamics near the crossing 

region ~5.3 THz in MAPbBr3 and ~5 THz in CsPbBr3. At this frequency corresponding 

to the reststrahlen inflection point, we are most sensitive to charge-induced modifications 

of the lattice response. We attribute this behaviour to be manifestation of coherent 

interactions between charge carriers and the ultra-soft polar lattice.  

In Fig. 4.8(a, c), for	ω > ω]^, the transient reflectivity is positive as the lattice polarization 

is underscreened and actually enhanced by the photocarriers. For	ω < ω]^, the transient 

reflectivity is negative as the lattice is overscreened. This is because when photoexciting, 

the free carriers are injected in the materials which screens the dipoles in the material and 

causi the shift of edge of the reststrahlen band to left/right or the increase of the 

reflectivity of reststrahlen band accompanying with the decrease of left side of minimum 

reflectivity above 5.7 THz. A similar response is observed for CsPbBr3. The coherent 
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response will be discussed later. Firstly we turn to the dynamics of the onset for the 

screened lattice response. 

 
Figure. 4.8 1D transient reflectivity cuttings at several different frequencies of (a) 
MAPbBr3 and (c) CsPbBr3 from 2D transient reflectivity &%&̃

&̃#
& colourmap at the incident 

pump fluence 𝐹 of 362 uJ/cm2 where black solid lines are Boltzmann fitting curves. Time 
constant τ5 	of Boltzmann fit at different frequencies for (b) MAPbBr3 and (d) CsPbBr3 
except the frequencies near coherent oscillations. 
 
After the Boltzmann fit, time constants τ5  corresponding to different frequencies are 

obtained as plotted in Fig. 4.8(b, d). Ignoring the frequencies in the vicinity fo the coherent 

oscillation where the Boltzmann fit is poor, we observe that the rise time constants are 

relatively independent of frequency with  τ5~60-80 fs for MAPbBr3, and τ5~80-130 fs for 

CsPbBr3 . Those time constants can be roughly regarded as the rise time of the transient 
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reflectivity. However, the rise time varies at different frequencies and there are 

oscillations which cannot fit to Boltzmann function well. A deeper analysis of the probe 

frequency dependence of time constants and oscillations should be conducted.  

 
Figure. 4.9 Electronic band structure of (a) MAPbBr3 and (b) CsPbBr3 at room temperature. 
Adjusted based on Ref. [38]. 
 
As for the frequency dependence of time constants, for MAPbBr3, if ignoring the 

frequencies around the LO frequency, the Boltzmann constants are almost a constant with 

average of ~0.08 ps. Similarly, the Boltzmann constants of CsPbBr3 are almost a constant 

with average of ~0.2 ps. The Boltzmann constants of CsPbBr3 are more than twice of those 

of MAPbBr3. This is because according to the electronic band structures of MAPbBr3 and 

CsPbBr3 at room temperature as show in Fig. 4.9(a, b) where 400 nm long arrow 

corresponds to the applied 400 nm photo-excitation pulses with ∼ 3.1 eV photon energy 

in the UBB-TRTS experiments as mentioned in Chapter. 2.4.2., when photoexciting the 

MAPbBr3, all the electrons and holes stay in the same bands, and so relaxation only 
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involves intravalley scattering. Therefore, the rise time of transient reflectivity will be fast. 

However, when photoexciting the CsPbBr3, intervalley scattering can occur because the 

possibility of coupling to side valley (X valley). The intervalley scattering process 

includes the relaxation process in the Γ valley after the photoexcitation down to the X 

valley then scattering back process to the Γ valley again, which takes time to be realized. 

The intervalley scattering process in CsPbBr3 is slower than the intervalley scattering 

process in MAPbBr3. The formation of a polaron can only occur after excess electronic 

energy has dissipated to less than the binding energy of the polaron, estimated to be ~ 42 

meV and ~ 39 meV for MAPbBr3 and CsPbBr3, respectively [143-146]. 
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Figure. 4.10 1D transient reflectivity &%&̃
&̃#
&  at frequencies of (a) ~5.625 THz with the 

incident pump fluence 𝐹 of 23 uJ/cm2 , (b) ~5.625 THz with the incident pump fluence 𝐹 
of 56 uJ/cm2 , (c) ~5.3125 with the incident pump fluence 𝐹  of 110 uJ/cm2, and (d)	
~5.3125 with the incident pump fluence 𝐹 of 362 uJ/cm2 in MAPbBr3, respectively. 1D 
transient reflectivity &%&̃

&̃#
& at frequencies of ~5 THz with the incident pump fluence 𝐹 of (e)  

23 uJ/cm2 , (f) 56 uJ/cm2 , (g) 110 uJ/cm2, and (h) 362 uJ/cm2 in CsPbBr3, respectively.  
 
To better explore the frequency dependence of oscillations, Fig. 4.10(a-h) plot 1D transient 

reflectivity of MAPbBr3 and CsPbBr3 near the frequency with coherent oscillations at four 

incident pump fluence 𝐹. For MAPbBr3, there are oscillations then trending to a stable 

value near zero at the frequency of ~5.625 THz with photo-excited fluences of 56 uJ/cm2, 

while there are similar oscillations at the frequency of ~5.3125 THz with photo-excited 

fluences 𝐹  of 110 uJ/cm2 and 362 uJ/cm2. And at the photo-excited fluences 𝐹  of 23 

uJ/cm2 , the oscillations cannot be observed clearly because there is lots of noise. Since 

the LO frequency (!!"
"#

) of MAPbBr3 at ~5.32 THz, indicate that those coherent oscillations 

happen around the LO frequency. For CsPbBr3, there are small oscillations then gradually 

trending to a stable value near zero at the frequency of ~5 THz (near the !!"
"#

~4.67 THz) 

with photo-excited fluences 𝐹 of 110 uJ/cm2 and 362 uJ/cm2, while there’s almost no 

oscillation with photo-excited fluences 𝐹 of 23 uJ/cm2 and 56 uJ/cm2 as shown in Fig. 

4.10(e-f). As it is known the reststrahlen band is determined by the background 

parameters including LO phonon frequency. The near-instantaneous photoexcitation 

depletes bonding states of the Br p-orbital character, modifying the pPb-pBr interaction 

according to crystal orbital overlap population calculations [147]. Such an interband 

transition between bonding and antibonding states can excite coherent phonons. The 
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relevant phonon modes in this case are fully symmetric Ag modes  [148], however, the 

coherent oscillations don’t have complete cycles and cannot be described by a simple 

harmonic mode. Instead, the oscillations appear negatively chirped whereby initially 

high frequency oscillations merge with a steady state. Such behaviour may be attributed 

to the strongly anharmonic, low energy phonons whereby vibrational energy is rapidly 

dispersed from high energy phonons to low energy phonons.  This is consistent with the 

often described liquid-like lattice excitations of the lead halide perovskites [12, 76].   

 

Figure. 4.11 Diagram of Reststrahlen band shifting to left and right. 

Another possible mechanism for the coherent oscillations is the formation of the coupled 

plasmon-LO phonon mode. The effect of injecting free carrier contribution to the 

dielectric function is to shift the reststrahlen to higher frequencies. This is a consequence 

of the formation of a new coupled plasmon-LO phonon mode, with coupled modes given 

by the solution of the quartic equation: 𝜔B − 𝜔"x𝜔]^" + 𝜔�" + 𝜔N"y + 𝜔P^
" x𝜔$" + 𝜔N"y = 0, 

where the dampening rate has been set to zero. At high densities, q=0 leads to solutions 
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of 𝜔D~𝜔$ and 𝜔0~𝜔P^. For 𝜔$ > 𝜔]^, the reflection edge of the reststrahlen band shifts 

to higher energies. This would lead to a positive differential reflectivity when monitoring 

the undressed 𝜔 = 𝜔]^, as shown in Fig. 4.11. One can see that this is the asymptotic 

condition for the highest fluences for both MAPbBr3 and CsPbBr3. However, the initial 

negative differential reflectivity at early times deviates from a simple, static plasmon 

screening of the LO phonon. Instead, the coherent oscillation indicates a dynamic 

screening process whereby the inertia of the charge carriers delays the instantaneous 

screened interaction. The formation of coupled plasmon-phonon modes was studied in 

InP, a system with well-formed harmonic modes. Here, however, the perovskites seem 

to show overdamped and even chirped response which is sensitive to the injected carrier 

density. While the quantum kinetic formation of coupled plasmon-phonon modes was 

observed and theoretically described in Ref. [112], the expectation for a system with 

highly anharmonic phonons is unclear. Also of note is the initially negative differential 

reflectance for the CsPbBr3 for the lowest fluences. Such a response is anomalous and 

cannot be described by a simple Drude conductivity for the photo-excited free carriers. 

One can perhaps understand this behaviour when considering the electron interaction 

strength with coupled plasmon-phonon modes 𝜔0  and 𝜔D , where for intermediate 

densities 𝜔0  can dominate over 𝜔D , but at high fluences the plasmon-like 𝜔D  mode 

dominates and the reststrahlen band shifts upward. Notably, the oscillations appear in 

both samples at the same fluence of 110 µJ/cm2. This may indicate a crossover where the 

plasma frequency is greater than the LO phonon frequency. 

4.5 Conductivity of MAPbBr3 and CsPbBr3 
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Further analysis by applying Fourier Transformation to 2D data gave access to pump-

induced change to reflectivity, then obtained pump-induced change to the optical 

conductivity Δ𝜎)(𝜔, 𝜏) by applying the background dielectric function using Eq. 4.1. Fig. 

4.12 shows 2D conductivity Δ𝜎  colourmap for THz frequencies along delay time of 

MAPbBr3 with four different fluences. It can be observed that there is a large change of 

the conductivity near the LO frequency forming a “step” due to the sharp change in the 

background dielectric function. No bi-polar response is present because after applying 

formula of conductivity Δ𝜎 = 6
�#?

(�06)�8006�
(�06)(608)D"

, the real part of the conductivity obtained is 

positive. This must be true for the linear response to be dissipative.  
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Figure. 4.12 2D conductivity Δ𝜎  colourmap for THz frequencies along delay time of 
MAPbBr3 obtained by Fourier analysis corresponding to four different incident pump 
fluences 𝐹 of a) 23 uJ/cm2, (b) 56 uJ/cm2, (c) 110 uJ/cm2, and (d) 362 uJ/cm2.   
 

 

 
Figure. 4.13 2D conductivity Δ𝜎  colourmap for THz frequencies along delay time of 
CsPbBr3 obtained by Fourier analysis corresponding to four different incident pump 
fluences 𝐹 of (a) 23 uJ/cm2, (b) 56 uJ/cm2, (c) 110 uJ/cm2, and (d) 362 uJ/cm2.   
 
Similar for CsPbBr3, 2D conductivity Δ𝜎 colourmap for THz frequencies along delay time 

with four different fluences are obtained shown in Fig. 4.13.  It can be observed that there 

is a large change of the conductivity near the LO frequency (form blue line) as well but 
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the change in CsPbBr3 is more pronounced. These 2D conductivity obtained from 2D 

TRTS scans are much more compete because of considering the frequency-dependence 

of photoconductivity.  

 

 
Figure. 4.14 1D conductivity curves cut from the 2D conductivity Δ𝜎 colourmap of (a) 
MAPbBr3 at frequency of ~11 THz and (b) CsPbBr3 at frequency of ~9 THz with four 
fluences. 
 
As the strong dispersion of the phonon can make inversion of the Tinkham formula to 

extract the conductivity difficult, we focus on frequencies far away from the LO phonon. 

Fig. 4.14(a, b) shows the 1D cut conductivity curves from the 2D conductivity Δ𝜎 

colourmap of MAPbBr3 at frequency of ~11 THz and CsPbBr3 at frequency of ~9 THz 

with four fluences respectively. Both 1D cut conductivity curves with time range from 0 

to 2.25 ps have the similar changing trend (rise then reach equilibrium) to the 1D transient 

reflectivity from 1D data and the 1D transient reflectivity cut from 2D data at frequency 

larger than ω23 . And as the fluence increases, the phenomenon becomes more 
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pronounced. The rising speed of our conductivity measured by 2D TRTS taking  the 

frequency-dependence in account is faster than other research’s 1D measurements 

ignoring the frequency change which is not accurate enough such as Ref.[16, 149]. More 

analysis will be mentioned later in Chapter. 4.6.  

 

 
Figure. 4.15 Drude-Smith fit of Δ𝜎)(𝜔, 𝜏? = 2	ps) = 𝜎6(𝜔, 𝜏? = 2	ps) + 𝑖𝜎"(𝜔, 𝜏? = 2	ps)	of 
MAPbBr3  for various incident pump fluences 𝐹 of a) 23 uJ/cm2, (b) 56 uJ/cm2, (c) 110 
uJ/cm2, and (d) 362 uJ/cm2 as well as of CsPbBr3  for various incident pump fluences 𝐹 
of (e) 23 uJ/cm2, (f) 56 uJ/cm2, (g) 110 uJ/cm2, and (h) 362 uJ/cm2 where	Δ𝜎6(𝜔, 2	ps)	is	
shown as black dot,	Δ𝜎"(𝜔, 2	ps)	is	shown as red dot, and corresponding fitting curves are 
shown as black and red solid lines respectively.  
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Turning now to the shape of the optical conductivity at a given pump-probe time delay 

𝜏d, Fig. 4.15 shows the complex THz differential photoconductivity Δ𝜎)(𝜔, 𝜏? = 2	ps) =

𝜎6(𝜔, 𝜏? = 2	ps) + 𝑖𝜎"(𝜔, 𝜏? = 2	ps)	of MAPbBr3 and CsPbBr3 for various incident pump 

fluences. The spectra are clearly of non-Drude character, with an increasing 𝜎6 with 𝜔 

and a negative, capacitive imaginary	 𝜎" . A phenomenological Drude-Smith model, 

originally formulated by the late Neville Smith, is used to fit the complex conductivity 

𝜎)(ω) = 𝜎6(ω) + 𝑖𝜎"(ω) =
`;0�#Q	
60�`Q	

²1 + 9
60�`Q	

³ . This model has been used previously to 

describe the influence of the presence of disorder in the conduction process. This model 

can be shown to essentially describe any small deviation from an exponential current 

relaxation (Drude) whereby the deviation causes the initial relaxation to be faster than 

exponential. Such a system can arise through several means, but the most common being 

the presence of preferential back-scattering (e.g. umklapp scattering). In crystalline 

materials, such non-isotropic scattering can occur through several means however it is 

known that the Pb2+ ns2 lone pairs cause B-site distortions in the perovskite lattice which 

drive local non-cubic structural fluctuations despite the global structure being cubic on 

average. Such local structural distortions can cause preferential electronic backscattering, 

for instance, which is the Drude-Smith model is characterized by the c-parameter 

approaching -1 (perfect backscattering). The corresponding formulas used in the fitting 

process are 𝜎6(ω) =
`;0�#Q

[6D`0Q0]0
[1 + 𝜔"𝜏" + 𝑐(1 − 𝜔"𝜏")]	 , and 𝜎"(ω) =

`;0�#Q0`
[6D`0Q0Q0]0

[1 +

𝜔"𝜏" + 2𝑐]	respectively with Drude-Smith scattering time 𝜏 	, Drude-Smith backscattering 

parameter 𝑐, and plasma frequency 𝜔$. The fitting curves are shown as black and red 

solid lines in Fig. 4.15(a-d), and well describes the conductivity spectra for all samples, 
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fluences and times. Similar	for	CsPbBr3	,	use the same Drude-Smith model to fit the real 

part and imaginary part of complex conductivity with unfixed 𝜏 	, unfixed backscattering 

parameter 𝑐, and unfixed 𝜔$, and the fitting curves are shown as black and red solid lines 

in Fig. 4.15(e-h). In Burgos-Caminal et al.’s research, they also adopted Drude-Smith 

model on the analysis of conductivity in another kind of LHPs, MAPbI3 thin films, 

following 510nm and 740nm photo-excitation pulses with pump fluence of 62 uJ/cm2 [66].  

 

 
Figure. 4.16 Incident pump fluence 𝐹 dependence of the Drude-Smith scattering time of  
(a) MAPbBr3 and (b) CsPbBr3, Drude-Smith backscattering parameter 𝑐  of (c) MAPbBr3 
and (d) CsPbBr3, calculated carrier mobility 𝜇 = (6D,)/Q

R∗  of (e) MAPbBr3 and (f) CsPbBr3, 
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Drude-Smith plasma frequency 𝜔$	of (g) MAPbBr3  and (h) CsPbBr3, Drude-Smith carrier 

density 𝑁 = `;0�#R∗

/0
 of (i) MAPbBr3 and (j) CsPbBr3 at delay time of 2 ps.  

 
After collecting the fitting parameters scattering time 𝜏 	and backscattering parameter 𝑐( 

(𝑐 ), plot their diagrams along fluences shown in Fig. 4.16(a-d). Firstly the extracted 

Drude-Smith scattering time 𝜏 	 for MAPbBr3 in Fig. 4.16(a) shows fluence-dependent 

transition. 𝜏  is relatively constant, varying between ~4.0 ± 1.3	fs to ~6.0 ± 2.5  fs. For 

CsPbBr3, the scattering time 𝜏 	 in Fig. 4.16(b) is also relatively fluence-independent as well, 

varying between ~5.0 ± 1.4	 fs to ~6.8	 ± 	3.5 fs over the fluence range. Our results are 

almost consistent with Burgos-Caminal et al.’s work on MAPbI3 thin films, their data fit 

via Drude-Smith model yields scattering time constant of 2.8 fs and 5 fs for 510nm and 

740nm photo-excitation pulses applied, respectively [66]. The scattering time of CsPbBr3 

and MAPbBr3 single crystals is little bigger than that of MAPbI3 thin films with 510 nm 

photo-excitation pulses (near 400 nm of us), which is expected since singe crystals have 

less disorder while thin films have relatively more grains leading to in plane disorder. 

Also it may exist grain scattering in thin films. When it comes to the Drude-Smith 

backscattering parameter 𝑐  , for MAPbBr3 the backscattering parameter in Fig. 4.16(c) 

increases from ~ − 0.7 ± 0.02	to	~ − 0.36 ± 0.12	along fluence of 23-110 uJ/cm2 (photo-

excited carrier density of ~4.01 × 10"B − 1.92 × 10"�/m3) then reaches relatively stable. 

For CsPbBr3, the backscattering parameter c in Fig. 4.16(d) almost keeps increasing from 

~ − 0.69 ± 0.02	to	~ − 0.37	 ± 0.16	 along the fluence of 23-362 uJ/cm2 (photo-excited 

carrier density of ~2.82 × 10"B − 4.46 × 10"� /m3). This implies that the hotter the 

electron population is the less efficient the backscattering, which is expected. Our results 
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of 𝑐~0.65 ± 0.01 for MAPbBr3 and 𝑐~0.65 ± 0.02 for CsPbBr3 at fluence of 56 uJ/cm2 

under 400 nm photo-excitation pulses are roughly comparable to Burgos-Caminal et al.’s 

Drude-Smith fitting results of backscattering parameters in MAPbI3 of -0.89 and -0.88 for 

510nm and 740nm photo-excitation pulses with fluence of 62 uJ/cm2 [66]. As for the 

carrier mobility	𝜇, it is calculated based on the formula 𝜇 = (6D,)/Q
R∗ , and plotted shown in 

Fig. 4.16(e-f). As the fluence increases, the mobility increases in both MAPbBr3 and 

CsPbBr3 with a range of approximately ~14-45 cm2 V-1s-1 for MAPbBr3 and 13-37 cm2 V-

1s-1 for CsPbBr3. These mobilities are almost in agreement with some other experimental 

results of mobility ~5-212 cm2 V-1s-1 for MAPbBr3, and ~52-150 cm2 V-1s-1 for CsPbBr3 at 

room temperature mentioned in Chapter. 2.2.4.6 as well as Burgos-Caminal et al.’s Drude-

Smith fitting mobiliy of ~5.3 cm2 V-1s-1 in MAPbI3 [66]. This is primarily due to the 

decrease in carrier backscattering as the electronic temperature is increased with fluence. 

As regards the Drude-Smith plasma frequency 𝜔$, it is shown in Fig. 4.16(g-h) with the 

x-axis of different  fluences. For MAPbBr3 , as the fluence increases and more carriers are 

injected into the system, the plasma frequency 𝜔$ reaches saturation gradually at around 

110 uJ/cm2 (photo-excited carrier density of ~1.92 × 10"�/m3). Such a saturation could 

be explained either by a saturation in photon absorption due to depletion of the density 

of states. Then with regard to Drude-Smith carrier density, it is calculated by the formula 

of 𝑁 = `;0�#R∗

/0
, and plotted in Fig. 4.16(i-j). For MAPbBr3, the obtained carrier density 

grows before the fluence of ~ 110 uJ/cm2 (photo-excited carrier density of ~1.92 ×

10"�/m3) then gradually saturates. For CsPbBr3, the obtained carrier density keeps 
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growing along the fluence of 23-362 uJ/cm2 (photo-excited carrier density of 

~2.82 × 10"B − 4.46 × 10"�/m3). 

 
Figure. 4.17 Delay time dependence of the Drude-Smith scattering time 𝜏 of (a) MAPbBr3 
and (b) CsPbBr3, Drude-Smith backscattering parameter c of (c) MAPbBr3 and (d) 
CsPbBr3, calculated carrier mobility 𝜇 = (6D,)/Q

R∗  of (e) MAPbBr3 and (f) CsPbBr3, Drude-
Smith plasma frequency 𝜔$	of (g) MAPbBr3  and (h) CsPbBr3, Drude-Smith carrier 

density 𝑁 = `;0�#R∗

/0
 of (i) MAPbBr3 and (j) CsPbBr3 with incident pump fluence 𝐹 of  362 

uJ/cm2. 
 
The time evolution of the Drude-Smith fitting parameters is plotted in Fig. 4.17, applying 

a similar process for the complex conductivity at the fluence of 362 uJ/cm2 along different 

delay times. For both MAPbBr3 and CsPbBr3, the Drude-Smith scattering time 𝜏 stays 

relatively constant within fitting error with the average value of approximately ~7.5 fs 
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for MAPbBr3 and ~8 fs for CsPbBr3 along pump delay time when considering the error 

bar at the same time, indicating that the scattering process of the materials are basically 

independent of the time as shown in Fig. 4.17(a-b). As for the backscattering parameter c, 

its absolute value decreases in both material with a range of for from ~ − 0.52 ± 0.04 to  

~ − 0.36 ± 0.12 for MAPbBr3 and from~ − 0.49 ± 0.07	 to~ − 0.37 ± 0.16	 or CsPbBr3, 

indicating it becomes more delocalized as time goes as shown in Fig. 4.17(c-d). Besides, 

carrier mobility	𝜇 stays roughly the same with the average value of approximately ~48 

cm2 V-1s-1 for MAPbBr3 and ~36.5 cm2 V-1s-1 for CsPbBr3 as delay time increases shown in 

Fig. 4.17(e-f). For both MAPbBr3 and CsPbBr3, the plasma frequency 𝜔$	rises within about 

half ps then reaches equilibrium since recombination is negligible in such as short delay 

time window(~2 ps) as shown in Fig. 4.17(g-h). Since the carrier density 𝑁 is proportional 

to the square of plasma frequency 𝜔$ , it almost obeys the change rules of plasma 

frequency, rising within approximately ~0.2-0.5 ps then arriving a relatively equilibrium, 

which indicate there’s no more recombination within the time range of ~2 ps as shown 

in Fig. 4.17(i-j). 

 
4.6 Quantifying Polaron Formation and Charge Carrier 

Cooling 
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𝑑𝑁$��(t)
𝑑𝑡 =

1
𝜏$��

	𝑁,��?(t)																																																		(4.5) 

																																																																													𝑁1�U(0) = N																																																																	(4.6) 

																																																																			𝑁,��?(0) = 𝑁$��(0) = 0																																																						(4.7) 

To quantify the process of rise dynamics before reaching the equilibrium (then drop 

down), here provide two models. The first model is proposed by Bretschneider et al. for 

exploring the polaron formation and charge carrier cooling in lead-iodide perovskites 

[16]. In Bretschneider et al.’ s work discussed previously, the hot carrier cooling time is 

from ~40 fs (700 nm pump pulse) to ~275 fs (400 nm pump pulse) for FAPbI3, ~30 fs (700 

nm pump pulse) and ~320 fs (400 nm pump pulse) for MAPbI3, and ~470 fs for CsPbI3 

with 400 nm pump pulse at ~295 K by using this model.   

The first model considers two distinct and sequential contributions to the rise of transient 

reflectivity (photoconductivity) which are carrier cooling and polaron formation 

occurring as follows. Then obtain three-level differential equations where three relevant 

populations are 𝑁ℎ�U (the number of hot carriers), 𝑁,��? (the number of cold carriers), and 

𝑁$�� (the number of polarons) as well as two time scales 𝜏,��� (relaxation time between 

hot carriers and cold carriers) and 𝜏$�� (polaron formation time) as given by Eq. 4.3-4.5. 

The initial conditions are that density of hot carriers equals to the number of injected 

carriers and the density of cold carriers and polarons is assumed to be zero, shown in Eq. 

4.6-4.7. The difference between our analysis and Bretschneider et al.’ s is they consider the 

dynamics of  ∆&
&#

  to be completely described by that of the charge carriers and only dealing 
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with normalized densities 𝑁1�U + 𝑁,��? + 𝑁$�� = N = 1. However, it is the conductivity 

that is related to the differential reflectivity through a nonlinear relation that is only linear 

in the small signal limit, and because they work with a normalized signal (albeit in 

transmission but the argument still applies) it is impossible to verify if they are in this 

linear regime. In our case, we are clearly outside of this linear regime, as mentioned 

previously. Still, for comparison to their work we make use of the relation ∆&
&#
∝ Δ𝜎 =

𝜇𝑒𝑁	thus ∆&
&#
∝ Δ𝜎 = 𝑒x𝜇1�U𝑁1�U + 𝜇,��?𝑁,��? + 𝜇$��𝑁$��y. The carrier densities used in the 

fit are referred to TABLE. 4.1. 

 
Figure. 4.18 1D transient reflectivity &%&̃

&̃#
& dynamics evolution obtained from 1D TRTS and 

fitting curves of (a) MAPbBr3 and (b) CsPbBr3 at shorter-time scale of the first 2.25 ps 
under specified pump conditions of different photo-excited fluences 𝐹 of 23 uJ/cm2, 56 
uJ/cm2, 110 uJ/cm2, 185 uJ/cm2, and 362 uJ/cm2 at~298K. 
 
Fig. 4.18 shows the fitting results of the first model at shorter time scale of the first 2.25 

ps at ~298K. The fitting hot carrier cooling time is from around ~130 to ~237 fs for 

MAPbBr3 under pump conditions of different photo-excited fluences 𝐹 . Since 
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Bretschneider et al. do not report their actual carrier density and do not do a fluence 

dependence, we take our low fluence value (130 fs) for comparison to their work (linear 

regime), which is faster than the reported cooling times in the iodides in all but the near 

resonant, band edge excitation conditions. The hot carrier cooling time is from around 

~123 to ~172 fs for CsPbBr3 under pump conditions of different photo-excited fluences 

𝐹, which almost agrees the hot electrons cooling time of ≤ 200 fs in J. S. Evans et al.’s 

research of CsPbBr3 via TR-2PPE and TR spectroscopies [75]. The fitting polaron 

formation time is from around ~141 to ~243 fs for MAPbBr3 and from around ~158 to 

~290 fs for CsPbBr3 at varied different photo-excited fluences 𝐹. These polaron formation 

time obtained are almost in consistence with those mentioned in Chapter. 2.2.6.2 

Formation Time of Polarons in MHPs. Especially in Miyata et al.’ s research, for CsPbBr3 

the polaron formation time is 0.6 ± 0.1 ps, and for MAPbBr3 that is 0.28 ± 0.04 ps at room 

temperature [11]. Additionally in J. S. Evans et al.’s research,  they found the polaron 

formation time of CsPbBr3 is 0.7 ± 0.1 ps at ~300K which is a little longer than ours [75]. 

Although the fitting results seem comparable to previous related works, it can be visibly 

observed the strong deviation of the fitting model showing coherent oscillations. This 

kind of deviation is observed as well in Bretschneider et al.’s research and other research 

used this model such as Jin et al.’s research [16, 150]. The systematic coherent oscillations 

need to be better explained outside of this polaron formation and carrier cooling model. 
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																																																									𝑁1�U(0) = 𝑁,��?(0) = 𝑁$��(0) = 0																																									(4.11) 

Here provides an example of the photo-conductivity from our 2D TRTS measurements: 

1D conductivity	Δ𝜎 cut of MAPbBr3 at frequency of ~11 THz and CsPbBr3 at frequency 

of ~9 THz respectively shown in Fig. 4.19 where fitting curves obtained via the first 

model, which avoids the nonlinear relation between transient reflectivity ∆&
&#

 and Δ𝜎.	The 

fitting hot carrier cooling time stays roughly the same with the average value of ~ 45 fs 

for MAPbBr3 and from ~ 47 fs for CsPbBr3 under pump conditions of different photo-

excited fluences 𝐹 as shown in Fig. 4.19(c-d). These fitting carrier cooling time is smaller 

than those of 1D measurements mentioned in Bretschneider et al.’s work and our fitting 

parameters of the transient reflectivity from 1D TRTS data [16]. And the fitting polaron 

formation time is ~	330 fs averagely for MAPbBr3 and ~	255 fs averagely for CsPbBr3 at 

different fluences as shown in Fig. 4.19(e-f). Our fitting polaron formation time for 

MAPbBr3 is almost consistent with that of 400 fs and 280± 40 fs for MAPbBr3 in Burgos-

Caminal et al.’s work and Miyata et al.’ s research, respectively [11, 81]. Our fitting polaron 

formation time for CsPbBr3 is smaller than that of 600 ± 100 fs  and 700 ± 100 fs for CsPbBr3 

in Miyata et al.’ s and J. S. Evans et al.’s works respectively [11, 75]. And both parameters 

are in the same time scale of Bretschneider et al. ‘s work of lead-iodide perovskites 

mention before but not sure since the samples are different  [16]. However, the 

pronouncedly smaller fitting carrier cooling time in this example greatly shows the 

limitation of using the relation ∆&
&#
∝ Δ𝜎 directly without using it in the linear regime.  
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Figure. 4.19 1D photo-conductivity cut from 2D conductivity and fitting curves of (a) 
MAPbBr3 at frequency of ~11 THz and (b) CsPbBr3 at frequency of ~9 THz within 
shorter-time scale of the first 2.25 ps under specified pump conditions of different photo-
excited fluences 𝐹  of 23 uJ/cm2, 56 uJ/cm2, 110 uJ/cm2, 185 uJ/cm2, and 362 uJ/cm2 
at~298K. Fitting carrier cooling time along fluence of (c) MAPbBr3 and (d) CsPbBr3; 
Fitting polaron formation time along fluence of (e) MAPbBr3 and (f) CsPbBr3 ,respectively. 
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The second model proposed by us is based on the first model but including the injecting 

carriers process of gaussian pulse and the decay process of polaron as well. Here are 

three-level differential equations given by Eq. 4.8-4.10 where three relevant populations 

are 𝑁1�U , 𝑁,��? , and 𝑁$��  as well as three time scales 𝜏,��� , 𝜏$�� , and 𝜏?/,�� . The new 

boundary condition is given by Eq. 4.11. Similarly, the carrier densities used in the fit are 

referred to TABLE. 4.1.  

 
Figure. 4.20 1D transient reflectivity &%&̃

&̃#
& dynamics evolution obtained from 1D TRTS and 

fitting curves of (a) MAPbBr3 and (b) CsPbBr3 at longer-time scale of around 300 ps under 
specified pump conditions of different photo-excited fluences 𝐹 of 23 uJ/cm2, 56 uJ/cm2, 
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110 uJ/cm2, 185 uJ/cm2, and 362 uJ/cm2 at ~298K as well as (c-d) diagrams of the first 
2.25 ps obtained from (a-b).  
 
Different from the shorter time scale of the first 2.25 ps only considering the rising 

dynamics until reaching equilibrium, longer time scale of around ~300 ps better describes 

the rise dynamics as well as decay dynamics. Fig. 4.20(a-b) shows the fitting results of the 

second model at longer-time scale of around 300 ps at ~298K. If narrow the time to the 

first 2.25 ps, the fitting curve of rise dynamics before reaching the equilibrium can be 

obtained as well given by Fig. 4.20(c-d). Under pump conditions of different photo-

excited fluences 𝐹, the carrier cooling time obtained from the fit is around ~230-307 fs for 

MAPbBr3 and ~170-530 fs for CsPbBr3. The polaron formation time is around ~27-57 ps 

for MAPbBr3 and ~49-77 ps for CsPbBr3 which is much larger than the expected polaron 

formation. This can be explained that this time constant may cannot represent the polaron 

formation time well. The decay time 𝜏?/,��	is around ~500-1300 ps for MAPbBr3 and 

~ 800-1900 ps for CsPbBr3 respectively, which is almost in agreement with the 

recombination time ~2	ns (2000 ps) obtained in a simple fit model of photo-induced 

change of electric field considering carriers cool to a lower state (equivalent to the band 

edge) with high mobility before finally recombining (electron-phonon coupling, phonon-

phonon coupling and the Auger mechanism) of Monti et al.’s research using TAS 

measurements [151]. Although this model can fit transient reflectivity with the long-time 

scale of around ~300 ps, however, the coherent oscillation still can be observed and needs 

to be better explained outside of this model. Besides, the complexity number of fitting 

parameters of in the differential equations of this model leads to the complexity of 
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significant uncertainty solutions (more parameters). And too many parameters enlarge 

the fitting difficulty as well as accuracy. 

To sum up,  two models mentioned above still have limitations, better models should be 

proposed in the future to quantify carrier cooling, polaron formation, and decay process 

(recombination process ). 
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Chapter 5 

Conclusions and Future Work 

In summary, as the injection of charge carriers into the system, the ultrafast screening of 

Coulomb interactions as well as buildups of new dressed quasiparticles within sub-ps 

are observed in two kinds of LHPs, MAPbBr3 and CsPbBr3 bulk single crystals, via UBB-

TRTS. In the analysis of transient reflectivity &%&̃
&̃#
&, the change rule: rising firstly then 

reaching a quasi-equilibrium state of transient reflectivity in MAPbBr3 and CsPbBr3 are 

in agreement with previous relative works of LHPs or other MHPs, which demonstrates 

the carrier cooling process caused by the excess energy from 3.1 eV pump pulse and  

polaron formation[11, 16]. First numerical Boltzmann fits are adopted to analyse the rise 

of transient reflectivity, the rise time of CsPbBr3 is near twice larger than that of MAPbBr3 

because the intervalley scattering process in CsPbBr3 is slower than the intervalley 

scattering process in MAPbBr3. Furthermore, two physical models to describe the 

transient reflectivity dynamics evolution of MAPbBr3 and CsPbBr3 are proposed, which 

greatly quantify the carrier cooling process, carrier-phonon coupling formation, and even 

recombination process. The carrier cooling time is approximately in the time scale of one 

or two hundreds fs (~100-200 fs), the polaron formation time is roughly within one or 

two hundreds fs (~100-200 fs), and the recombination time is around within several ns 

(~0.5-2 ns). Moreover, the transient reflectivity in both samples has the pattern of fluence-

sensitive coherent oscillations appearing chirped negatively then merging with a steady 
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state near !!"
"#

~5.32 THz for MAPbBr3 and !!"
"#

~4.67 THz for CsPbBr3 when the density 

of injection charge carriers/photo-excited fluence increases, which can be explained by 

strongly anharmonic, low energy phonons whereby vibrational energy is quickly 

dispersed from high energy phonons to low energy phonons called liquid-like lattice 

excitations of LHPs as well. An alternative possible mechanism for these coherent 

oscillations is the buildup of coupled plasmon-phonon causing the shift of the 

reststrahlen to higher frequencies. Then in the fluence-dependence of complex 

photoconductivity Δ𝜎)  analysis with Drude-Smith model, the Drude-Smith 

backscattering parameter c becomes less negative with the increasing fluence, indicating 

that the backscattering gets less efficient as the electron population becomes hotter. The 

Drude-Smith plasma frequency 𝜔$ is also observed to saturate, which may be due to a 

saturation in photon absorption caused by depletion of the density of states. These 

research results may shed new light on how carriers evolve and interact with the polar 

lattice in LHPs.            

For future investigations, resonant excitation should be performed by tuning the pump 

pulse energy to the band gap energy, since the excess kinetic energy of the high energy 

400 nm photons used here should strongly interfere with the process and likely mask 

other coherences. In our group previous work (Yang et al.’ s research), we applied the 

pump energy exactly equaling to the band gap energy, and observed a coherent 

intraband quantum beat reflecting the internal motion of the charge within the polaron 

potential in MAPI [14]. Therefore, it can be expected to observe the same coherent 

oscillation if conduct the experiments with pump energy of 2.275 eV for MAPbBr3 single 
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crystal and 2.384 eV for CsPbBr3 single crystal, although this must be verified.In 

Bretschneider et al.’ s research they also used the pump energy equaling to the band gap 

energy and directly assign the rise time to the polaron formation, this may be debatable 

since only 1D measurements were performed and the conductivity is only linear with the 

transient reflectivity/transmissivity for low differential responses (< 20%) [16]. We can 

also do experiments with applied pump energy of band gap energy adding one phonon 

energy to compare the effect of the resonant and a little bit above bandgap excitation. 

Two dimensional maps at much lower optical excitation must be performed to better 

simulate the response experienced by actual photovoltaic cells. Finally, better 

quantitative models of the transient THz response should be formulated considering not 

just carrier cooling, polaron formation, and recombination but including intervalley 

scattering and details of the electronic band structure.  
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