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Abstract

We present a cavity-enhanced optical absorption measurement technique based on high-
bandwidth Pound-Drever-Hall (PDH) sideband locking, which naturally provides a real-time,
resonant amplitude quadrature readout that can be mapped onto the cavity’s internal loss
rate. Cavity-enhancement is widely used in the detection of small signals – an optical
cavity traps photons between two highly reflective mirrors, thereby enhancing the e�ective
path length through the absorber [1]. Most of the available techniques, however, probe
transmission signals and/or do not provide the stability required for the detection of fast
signals.

To ensure optimal enhancement of absorption sensitivity, probe light must be locked
on resonance with the cavity. PDH locking relies on phase modulation of a laser beam,
creating two sidebands on the original carrier frequency [2]. Upon reflection from a cavity,
this modulated light produces a heterodyne signal (beat note) that can be detected and
demodulated. We use the phase quadrature of the beat note to lock the cavity on resonance
with one of the sidebands, achieving a locking bandwidth in the MHz range that keeps cavity
and probe light resonant for hours [3]. Simultaneously, we monitor the amplitude quadrature,
which provides a continuous, real-time, heterodyne-amplified readout of the cavity’s internal
absorption. Our PDH sideband cavity-enhanced absorption readout technique (SideCAR)
ensures high sensitivity without reaching saturation limits in the intracavity medium by
keeping a relatively low intracavity power, since only one of the sidebands is allowed to enter
the cavity, but the signal is boosted above the detector noise by heterodyne detection (using
the carrier as a local oscillator).

This thesis presents the theoretical formulation of the sensing technique together with
the expressions for the sensitivity limit (ultimately given by the laser quantum noise), and
the experimental results from a test cavity setup. Probing a proof-of-concept 5-cm-long
Fabry-Perot cavity with a coupled power of 160 µW, we measure an absorption sensitivity
of 7 ◊ 10≠11 cm≠1/

Ô
Hz at 100 kHz (roughly the cavity bandwidth), a factor of 11 from

the shot-noise limit. This technique allows the detection of small, transient signals against
absorptive backgrounds with sensitivity close to the shot noise limit using a reflection-based
measurement in a fairly simple setup, opening the possibility of developing new microscopic
single-port real-world sensors for transients, for example using micron-scale optical fiber
cavities.
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Abrégé

Nous présentons une technique de mesure d’absorption optique améliorée par cavité basée
sur le contrôle d’une bande latérale d’un laser via rétroaction Pound-Drever-Hall (PDH) à
haute bande passante. Cette technique fournit naturellement une lecture de la quadrature
d’amplitude en temps réel, qui peut être mappée sur le taux de perte interne de la cavité.
L’amélioration par cavité est largement utilisée dans la détection de faibles signaux: une
cavité optique capture des photons entre deux miroirs hautement réfléchissants, augmentant
ainsi la longueur du chemin e�cace à travers l’absorbeur [1]. Cependant, la plupart des
techniques disponibles sondent les signaux de transmission et/ou n’o�rent pas la stabilité
requise pour la détection de signaux rapides.

Pour assurer une amélioration maximale de la sensibilité d’absorption, la lumière de
la sonde doit être fixée en résonance avec la cavité. La technique PDH est basée sur la
modulation de phase d’un faisceau laser, formant deux bandes latérales autour de la fréquence
du faisceau d’origine [2]. Lors de la réflexion d’une cavité, cette lumière modulée produit un
signal hétérodyne qui peut être détecté et démodulé. Nous utilisons la quadrature de phase
de ce signal hétérodyne pour fixer la cavité en résonance avec l’une des bandes latérales,
obtenant ainsi une stabilité via rétroaction avec une bande passante dans la gamme du
MHz qui maintient la cavité et la lumière de la sonde en résonance pendant des heures [3].
En parallèle, nous surveillons la quadrature d’amplitude, qui permet une lecture continue
de l’absorption interne de la cavité en temps réel et amplifiée par détection hétérodyne.
Notre technique de détection de bande latérale (“SideCAR”) assure une sensibilité élevée
sans dépasser les limites de saturation dans le milieu intracavité, en gardant la puissance
intracavité relativement faible, car une seule des bandes latérales entre dans la cavité, mais
le signal est amplifié au-dessus du bruit du détecteur par détection hétérodyne (en utilisant
la bande centrale comme oscillateur local).

Cette thèse présente la formulation théorique de la technique de détection ainsi que les
expressions de la limite de sensibilité (déterminée ultimement par le bruit quantique du
laser), et les résultats expérimentaux obtenus avec une cavité de test. Lors du sondage
d’une cavité Fabry-Pérot de 5 cm de long avec une puissance couplée de 160 µW, nous
avons mesuré une sensibilité d’absorption de 7 ◊ 10≠11 cm≠1/

Ô
Hz à 100 kHz (environ la

bande passante de la cavité), un facteur 11 au-dessus de la limite de bruit quantique. Cette
technique permet la détection de faibles signaux transitoires contre des fonds absorbants avec
une sensibilité proche de la limite de bruit quantique en utilisant une mesure basée sur la
réflexion et avec une configuration simple, ouvrant la possibilité de développer de nouveaux
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capteurs microscopiques à un seul port pour les signaux transitoires, par exemple en utilisant
des cavités de fibres optiques à l’échelle du micron.
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Chapter 1

Introduction

This thesis details work done in the development of a time-resolved cavity-enhanced
absorption sensing technique based on Pound-Drever-Hall (PDH) sideband locking. The
goal of this project is to measure short-lived, weak absorption signals against an absorptive
background using optical cavities. The motivation for developing this new technique
originated from radiation dosimetry, where we aim to detect the dose deposited in water
via the additional broadband optical absorption induced by solvated electrons created in
radiolysis [4, 5], using fiber-based microcavities capable of measuring fast (≥ µs) transients
with access only to reflected signals. Here, we will describe the theory and proof-of-concept
experiment that demonstrate an absorption-sensing technique appropriate to this future
sensor.

The simplest absorption spectroscopy measurement illuminates a sample with incoming
laser intensity I0 and collects the output intensity I. The Beer-Lambert law I = I0e≠–d then
gives the absorption coe�cient – (commonly in units of cm≠1), with d corresponding to the
path length through the absorber. Often the signal attenuation caused by –d is very small,
and the big challenge of absorption spectroscopy is to detect small intensity changes against
high background losses and/or experimental technical noise [6]. Optical cavities enhance
the absorption signal by trapping resonant light between two highly reflective mirrors, so
photons travel back and forth until finally leaking out through one of the mirrors. This
increases the e�ective length over which light interacts with the material of interest by
up to twice the number of roundtrips the electric field goes through inside the cavity, or
equivalently by a factor of 2F/fi, where F is the cavity finesse (see Section 2.4). Cavity
enhancement is commonly used in spectroscopy, with numerous techniques already adapted
for specific applications. These techniques are usually divided in two groups, based on the
sensing method: either measuring intensity changes in the signal, or measuring changes
in the cavity decay rate (cavity ringdown spectroscopy – CRDS [7–9]). Simple intensity
measurements benefit from the 2F/fi signal enhancement, but are still highly sensitive to
laser intensity fluctuations and low frequency technical noise. Some more refined techniques
employ frequency-modulation (FM) to encode the signal into higher frequencies. Noise-
immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) [10, 11],
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for example, uses FM at a frequency equal to the cavity free spectral range, so both the
carrier and FM sidebands are resonant with the cavity. When one of the bands interacts
with an intracavity absorber, the triplet is disturbed, generating a beat note (see Section 4.4).
The transmitted beat is intrinsically immune to classical noise, so this technique can provide
close to shot-noise-limited measurements of narrow molecular resonances. Demonstrated
first by Ye et al. [10] in 1998, NICE-OHMS currently achieves the lowest sensitivity of any
absorption-sensing technique (Table 1.1).

The sensitivity of absorption measurements is defined by a noise-equivalent absorption:
the smallest absorption coe�cient that can be distinguished with a signal-to-noise ratio of 1
during a 1-s measurement interval, usually reported in units of cm≠1/

Ô
Hz. The fundamental

sensitivity limit is given by the shot noise of the laser. At this limit, every absorption event
could be detected, limited only by the uncertainty of occurrence of photon emission [10]. The
shot-noise-limited sensitivity for a single-pass absorption measurement ÈS–Í1-pass is therefore
given by

ÈS–Í1-pass = 1
d

Û
2e

÷P0
, (1.1)

where e is the electron charge, ÷ the detector responsivity (e.g. in A/W) and P0 the
power incident on the absorber. The improvement in sensitivity achieved by di�erent
cavity-enhanced sensing modalities will be detailed in Chapter 4. For a given detection
time, or equivalently detection bandwidth b, one can calculate the unitless minimum
detectable absorption loss (MDAL) by multiplying the sensitivity by

Ô
b and absorber path

length d (when using optical cavity enhancement, usually d becomes the cavity length L).
Table 1.1 shows the reported sensitivity, MDAL and relevant experimental parameters for
some previous measurements based on the two methods described above, and compare to
our new sideband cavity-enhanced absorption readout (SideCAR) technique (a broader
review can be found for example on Refs. [12–14]). Most of the available techniques,
however, allow for high sensitivity only under almost ideal conditions, with cavity sizes of
tens of cm, non-absorptive intra-cavity media and lossless mirrors. There is still room for
the development of new techniques looking for high sensitivity detection of concentration
of species under non-ideal conditions, e.g. transient signals immersed in highly absorptive
background media.

We describe a single-laser, single-modulator, weak-probe approach appropriate to
detecting both narrow and broadband transient absorption signals optimally suited to
a one-sided cavity (access to reflection only). To ensure that the probe light is always
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Technique Sensitivity MDAL L F Pin Pcirc

(cm≠1/
Ô

Hz) (cm)

NICE-OHMS [10] 1 ◊ 10≠14 5.2 ◊ 10≠13 50 100 000 9.5 mW† 300 W
Locked cw-CRDS [15] 8.8 ◊ 10≠12 - 42ú 12 500† 25 mW 100 W†

Swept cw-CRDS [9] 2.5 ◊ 10≠9 1.4 ◊ 10≠7 45 7 420 - -
O�-axis ICOS [16] 1.9 ◊ 10≠12 - 110 - - -
CEAMLAS [17] 2.6 ◊ 10≠10 1.6 ◊ 10≠7 20 1 000 - -
Opt feedback CEAS [18] 5.7 ◊ 10≠11 - 49 144 000 - -
CE-DCS [19] 2 ◊ 10≠10 - 60 ≥4 000 3.6 mW ≥4 W†

SideCAR [this work] 7 ◊ 10≠11 1.1 ◊ 10≠7 5 9 000 160 µW‡ 520 mW

Table 1.1: Comparison of reported sensitivity, MDAL, cavity length L, finesse F, input power
Pin and circulating power Pcirc between di�erent cavity-enhanced absorption sensing techniques.
NICE-OHMS: noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. CRDS:
cavity ring-down spectroscopy. ICOS: integrated cavity output spectroscopy. CEAMLAS:
cavity enhanced amplitude modulated laser absorption spectroscopy. CEAS: cavity-enhanced
absorption spectroscopy. CE-DCS: cavity-enhanced dual comb spectroscopy. SideCAR: sideband
cavity-enhanced absorption readout. úRoundtrip length. †Estimate (calculated from other stated
values, assuming lossless symmetric cavities). ‡Coupled input power (corresponding to the power
in one phase-modulation sideband). Dashes mean values are not stated.

on resonance with the cavity (necessary to detect transients), we employ a high-speed
PDH locking scheme [3], based on phase-modulation and posterior demodulation with a
reference signal, and we take advantage of the other demodulation quadrature (amplitude
quadrature) to measure cavity absorption. This signal varies with intracavity absorption,
providing cavity information without requiring access to a second optical port. Under ideal
circumstances, this heterodyne reflection measurement presents the same shot-noise-limited
sensitivity as a typical transmission measurement when considering cavities of same
finesse with the same circulating power. In addition, it allows the shift of the signal of
interest to higher frequencies (due to the frequency modulation and heterodyne detection),
where the detector noise is lower. When compared to transmission-based heterodyne
approaches (e.g. NICE-OHMS [10, 11]) or amplitude-modulated reflection measurements
(e.g. CEAMLAS [17, 20]), it permits operation with much lower intra-cavity power for a
given shot-noise-limited sensitivity. We demonstrate the proof-of-concept in a cm-scale,
finesse 9000 testbed cavity, achieving a sensitivity of 10≠10 cm≠1/

Ô
Hz without optimization
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over a 30-200 kHz frequency range with a coupled power of 160 µW (from a total of 3.5 mW
incident power). A minimal sensitivity of 7 ◊ 10≠11 cm≠1/

Ô
Hz is achieved around 100 kHz,

a factor of 11 above shot noise.
This thesis is divided in a theoretical part (Chapters 2 to 4) and a second part describing

the experiment (Chapter 5). We start by deriving the cavity model and cavity equations
in the high-finesse limit in Chapter 2. We then study the heterodyne PDH reflection signal
that gives rise to the two signals used for (i) locking (phase quadrature VY ) and (ii) sensing
(amplitude quadrature VX) in Chapter 3, and derive the e�ects of intracavity time-varying
absorption on the cavity output field and the signal of interest VX . This is especially
important for our goal of detecting transients, allowing us to understand the measurement
bandwidth. Chapter 4 gives the derivation of the sensitivity limit of our technique compared
to other absorption sensing modalities. We then turn to our testbed experimental setup
in Chapter 5, describing the apparatus and the set of measurements used to extract cavity
parameters. Finally, Section 5.4 illustrates our experimental results for the sensitivity of
the sideband absorption readout technique. We conclude the thesis in Chapter 6, discussing
briefly the future directions we can see for the project.
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Chapter 2

Cavity model

We begin by deriving the Fabry-Pérot cavity equations to be used throughout this thesis,
using the transfer matrix model to obtain the cavity amplitude reflection and transmission.
From that, we write down the equation for finesse (F) in a lossy cavity and analyze the
cavity equations in the limit of high finesse (highly reflective mirrors and low losses), an
approximation that represents well our experiment. Finally, we verify that an optical cavity
provides an enhancement of absorption signals equal to 2F/fi.

2.1 Cavity reflection and transmission

		"

#!

$!

#"

$"

##

$#

#$

$$

			%$

−"! "!

			%#

−"" ""

Figure 2.1: Fields in an optical cavity. The Fabry-Pérot cavity is made of two mirrors facing
each other. Laser light enters the cavity via the input mirror (with amplitude reflection and
transmission coe�cients r1 and t1) and leaks out either via the input mirror or the back mirror
(with amplitude reflection and transmission coe�cients r2 and t2). The optical field at the
jth location (j = 1, 2, 3, 4 represents each of the mirrors’ surfaces from left (mirror 1) to right
(mirror 2)) is given by Ajei((x≠xj)ñjÊ/c+Êt) + Bjei((x≠xj)ñjÊ/c+Êt), where x is the spatial position
of the field along the cavity axis (perpendicular to the mirrors), xj is the position of each mirror
surface, ñj is the complex refractive index of the jth-position medium and Ê is the laser frequency.
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A simple way to model the optical cavity is by considering the incoming and out-going
optical fields at each side of both mirrors. From Fig. 2.1,

A2 = A1t1 + B2r1

B1 = B2t1 ≠ A1r1 ,

(2.1)

where Aj and Bj are forward- and backward-propagating field amplitudes and ri and ti are
the (real) mirror reflection and transmission amplitude coe�cients (i = 1 for the input mirror
and i = 2 for the back mirror). Solving these for A2 and B2, we get

S

UA2

B2

T

V = M1

S

UA1

B1

T

V , (2.2)

where

M1 = 1
t1

S

Ur2
1 + t2

1 r1

r1 1

T

V (2.3)

is the transfer matrix representing the e�ects in the electric field due to the input mirror [21].
The back mirror transfer matrix M2 can be found by the same process. We assume lossless
mirrors (r2

i + t2
i = 1) and model cavity intrinsic losses by a zero-thickness scattering layer

added to each mirror [22], represented by multiplying the mirror matrices by the matrix

MS =
S

Ue≠”/4 0
0 e”/4

T

V , (2.4)

where ” represents the unitless intrinsic power losses per half of a round trip (i.e. per pass) in
the cavity. Extrinsic absorption is modelled by letting the (wavelength dependent) refractive
index ñ of the intracavity medium be complex,

ñ = n + i
–c

2Ê
, (2.5)

where n is the real refractive index, c is the speed of light, Ê the laser frequency and
– represents the extrinsic power losses per unit length (units of inverse length). The
intracavity field change per pass is then given by

E1-pass = E0e
iLñÊ/c = E0e

iLnÊ/ce≠ –
2 L , (2.6)

where E0 is the initial field amplitude. The propagation of the field is represented by the
intracavity matrix:

I =
S

UeiLnÊ/c≠ –
2 L 0

0 e≠iLnÊ/c+ –
2 L

T

V . (2.7)
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The full cavity transfer matrix C is then equal to

C = M2 ·MS · I ·MS ·M1 (2.8)

where S

UA4

B4

T

V =
S

UC11 C12

C21 C22

T

V ·
S

UA1

B1

T

V . (2.9)

For a normally incident field A1 (with no backward incident field B4 = 0), the cavity
fractional reflected and transmitted fields are given by

r(Ê) = Er

Ein
= ≠

C21
C22

= r2t2
1

e”+–L≠ 2iLnÊ
c ≠ r1r2

≠ r1 (2.10)

t(Ê) = Et

Ein
= C11 ≠

C12C21
C22

= t1t2e
”+–L

2 ≠ iLnÊ
c

e”+–L≠ 2iLnÊ
c ≠ r1r2

, (2.11)

and the fractional reflected and transmitted powers (reflectance R and transmittance T ) are:

R(Ê) =
----
Er

Ein

----
2

= |r(Ê)|2 = r2
1e2(”+–L) + r2

2 ≠ 2r1r2e”+–L cos(2LnÊ/c)
e2(”+–L) + r2

1r2
2 ≠ 2r1r2e”+–L cos(2LnÊ/c) (2.12)

T (Ê) =
----
Et

Ein

----
2

= |t(Ê)|2 = t2
1t

2
2e

”+–L

e2(”+–L) + r2
1r2

2 ≠ 2r1r2e”+–L cos(2LnÊ/c) . (2.13)

Figure 2.2: Cavity fractional power reflection and transmission versus cavity losses ” + –L, for
resonant light. Teal curves represent an asymmetric cavity with mirrors of fractional transmission
t2
1 = 407 ppm and t2

2 = 5 ppm. Coral curves represent a symmetric cavity of the same finesse
(t2

1 = t2
2 = 206 ppm). The vertical dashed line marks the intrinsic losses of our empty cavity

(F(– = 0) = 9006 and ” = 143 ppm)
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To study the change induced by absorption in the power of a resonant beam leaking
through a cavity, we plot in Fig. 2.2 the fractional reflected and transmitted power versus
intracavity losses, for the cases of an asymmetric cavity (with mirrors with transmissivities
equal to those in our experiment) and a symmetric cavity of the same finesse. The slope
at – = 0 tells us how much transmission or reflection changes as the absorption changes.
This slope is related to absorption measurement sensitivity, as we will see in Chapter 4. We
can observe that there is no information in reflected power at critical coupling (zero slope),
although there is still information in the phase of the reflected light.

2.2 Finesse in a lossy cavity

The equation for finesse in a lossy cavity can be derived by expanding transmission
(Eq. 2.13) around a resonance peak (i.e., when the detuning �Ê between laser light Ê and
a cavity mode goes to zero) to find the cavity linewidth Ÿ (defined as the FWHM of the
transmission peak, in units of rad/s). Cavity finesse F is then given by

F ©
ÊFSR

Ÿ
(2.14)

= e(”+–L)/2fi
Ô

r1r2
e”+–L ≠ r1r2

(2.15)

where ÊFSR = fic/(Ln) is the cavity free spectral range in rad/s.

2.3 The high finesse limit

In the high finesse limit, defined by low transmissivity mirrors and small cavity losses
(t2

1, t2
2, ”, –L π 1), we can make some approximations and write the cavity equations in terms

of cavity parameters F or · , where · © 1/Ÿ is the cavity power decay rate or cavity lifetime.
In this limit1 (and substituting ri =

Ò
1 ≠ t2

i ), Eq. 2.15 can be written as

F ¥
fi

t2
1
2 + t2

2
2 + ” + –L

(2.16)

1The approximations are truncated to

O

3
” + –L

2

41
+ O

3
t1
2

42
+ O

3
t2
2

42
+ O(” + –L)2 + O(t1t2)2 + O(t1)4 + O(t2)4 .
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and from Eq. 2.14, the cavity lifetime is

· ¥
Ln

c( t2
1
2 + t2

2
2 + ” + –L)

. (2.17)

Expanding for small detuning �Ê = |Ê ≠ Êc| from a cavity mode Êc, the cavity equations
(Eqs. 2.10 to 2.13) become2

r(�Ê) ¥
t2
1

2fi
1

1
2F ≠ i �Ê

ÊFSR

2 ≠ r1 (2.18)

t(�Ê) ¥
t1t2

2fi
1

1
2F ≠ i �Ê

ÊFSR

2 (2.19)

R(�Ê) ¥
t4
1 ≠ 2fir1t2

1/F

4fi2
3

1
4F2 + �Ê2

Ê2
FSR

4 + r2
1 (2.20)

T (�Ê) ¥
t2
1t

2
2

4fi2
3

1
4F2 + �Ê2

Ê2
FSR

4 . (2.21)

For a resonant beam (�Ê æ 0), these simplify to

rres ¥
Ft2

1
fi

≠ r1 (2.22)

tres ¥
Ft1t2

fi
(2.23)

Rres ¥
(Ft2

1 ≠ fir1)2

fi2 (2.24)

Tres ¥
F2t2

1t
2
2

fi2 , (2.25)

and the cavity fractional circulating power flcirc = Pcirc/Pin (Pcirc is the cavity circulating
power just next to the input mirror and Pin © |Ein|

2 is the incoming power3) is given by

flcirc ¥
F2t2

1
fi2 . (2.26)

Figure 2.3 illustrates the validity of the high F approximation for the mirrors used in our
experiment (t2

1 ¥ 407 ppm and t2
2 ¥ 5 ppm).

2Neglecting terms of second order in power losses and detune from cavity resonance.
3Technically, the power P in an electric field E = E0eiÊt is proportional to the time-averaged field,

i.e. P Ã ÈRe{E}
2
Í Ã E2

0/2 [23]. For simplicity, however, throughout this thesis we renormalize the field
amplitude so that P = EúE.

9



Figure 2.3: Corrections on finesse and cavity fractional amplitude reflection in the high finesse
approximation for varying cavity losses ” + –L, plotted for mirrors with fractional transmission
t2
1 = 407 ppm and t2

2 = 5 ppm (similar to the ones used in our experiment). The curves show
the ratio between the high F approximation and no approximations. (a) Correction on cavity
finesse, given by the ratio between Eq. 2.16 and Eq. 2.15. (b) Correction for cavity amplitude
reflection, given by the ratio between Eq. 2.22 and Eq. 2.10 for a resonant beam. Vertical dashed
lines mark the experimental cavity intrinsic losses ” = 143 ppm.

2.4 Cavity enhancement

Here we study the enhancement provided by an optical cavity to the change in optical
power of a laser beam passing through an absorber. Let’s look at the change in signal (”P )
due to absorption compared to the signal without absorption (signal contrast ”P/P ), in the
cases of free space and cavity-enhanced transmission measurements (assuming –L π 1) [24].
For an absorber in free space,

Pout
Pin

= e≠–L
¥ 1 ≠ –L and ”Pout

Pout,–=0
= ≠–L , (2.27)

where Pin is the incoming laser power and Pout is the power just after the absorber. Now,
when the absorber is inside an optical cavity, Pout æ PT , where PT is the power transmitted
by the cavity. If we substitute Eq. 2.16 in Eq. 2.25 and expand for small –L,

PT

Pin
¥

t2
1t

2
2

1
t2
1
2 + t2

2
2 + ”

22 ≠
2t2

1t
2
2–L

1
t2
1
2 + t2

2
2 + ”

23 and (2.28)

”PT

PT,–=0
= ≠

2–L
t2
1
2 + t2

2
2 + ”

= ≠
2F–L

fi
. (2.29)
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Comparing Eqs. 2.27 and 2.29, we finally get the cavity enhancement

”PT

PT,–=0

M
”Pout

Pout,–=0
= 2F

fi
. (2.30)

Note that the enhancement given by Eq. 2.30 is only true if the beam is on resonance with
the cavity and its linewidth is narrow in comparison to the cavity linewidth Ÿ.

Alternately, we can find the same enhancement by considering the e�ective length of the
cavity, as determined by the cavity power decay time · . After m intracavity roundtrips, the
transmitted field can be written as4

Et = (r1r2e
≠”≠–L)mE1-pass (2.31)

¥

A

e≠
t2
1
2 ≠

t2
2
2 ≠”≠–L

Bm

E1-pass (2.32)

where E1-pass = E0e(≠”≠–L)/2t1t2 is the transmitted field after a single pass. We know that

· = Ln

c( t2
1
2 + t2

2
2 + ” + –L)

and trt = 2Ln

c
, (2.33)

where trt is the time for one roundtrip. Substituting Eq. 2.33 into Eq. 2.32,

Et = e≠trtm/(2·)E1-pass . (2.34)

Note that the amplitude decay time is 2· . Finally,

2· = 2Lnm

c
= nLe�

c
, (2.35)

where Le� is the absorber e�ective length. Substituting · = F/ÊFSR = FLn/(fic),

Le�
L

= 2F
fi

. (2.36)

4Using ri ¥ 1 ≠
t2

i
2 .
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Chapter 3

Heterodyne reflection locking and
sensing

Our sensing technique relies on collecting and demodulating the optical heterodyne beat
signal generated upon reflection of a phase-modulated beam from an optical cavity. A phase-
modulated beam can be seen as a signal having three dominant frequency components: a
carrier at the original laser frequency, and two sidebands detuned from the carrier by the
modulation frequency. When only one modulation sideband interacts with an optical cavity
(which can happen in the resolved-sideband limit), the triplet is disturbed, generating a beat
between the interacting sideband and the non-interacting carrier (i.e., phase modulation is
converted into amplitude modulation). In the following section we derive the expressions for
the reflection of the phase-modulated light and explain how we use the resulting amplitude-
modulated signal (heterodyne beat note) to lock our cavity on resonance with one of the
sidebands [2, 3]. We then show how we use the out-of-phase quadrature5 of this same signal
to detect changes in intracavity absorption. This locked measurement is capable of detecting
transient signals with a detection bandwidth determined by the cavity amplitude decay rate
1/(4fi·), as we investigate at the end of this chapter.

3.1 Pound-Drever-Hall sideband locking

Pound-Drever-Hall locking [2] is based on phase-modulation (PM) of an incoming laser
beam, represented by

Ein,PM =
Ò

Pinei(Êlt+— sin(�t)) (3.1)

where Pin is the average incoming laser power, Êl is the original laser frequency, — the
modulation amplitude and � the modulation frequency. For small —, the phase-modulated
field can be written as

Ein,PM ¥

Ò
Pin

1
eiÊlt

Ô
flc ≠ ei(Êl≠�)tÔflsb + ei(Êl+�)tÔflsb

2
, (3.2)

5Shifted by fi/2 with respect to the modulation signal.
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which can be treated as an incoming beam with a carrier at frequency Êl and relative
amplitude Ô

flc ¥ 1 (in the limit where the approximation is valid), and two sidebands at
frequencies Êl ± � and relative amplitudes Ô

flsb ¥ —/2. Upon reflection from an optical
cavity, the outgoing reflected field Er,PM becomes:

Er,PM ¥

Ò
Pin

1
eiÊlt

Ô
flc r(Êl) ≠ ei(Êl≠�)tÔflsb r(Êl ≠ �) + ei(Êl+�)tÔflsb r(Êl + �)

2
(3.3)

and the reflected power PR,PM:

P R,PM ¥ Pin
1
flcr

2(Êl) + flsbr2(Êl ≠ �) + flsbr2(Êl + �)
2

¸ ˚˙ ˝
DC

(3.4)

+ Pin
Ô

flcflsb{≠r(Êl)rú(Êl ≠ �) + r(Êl)rú(Êl + �) ≠ rú(Êl)r(Êl ≠ �) + rú(Êl)r(Êl + �)}
¸ ˚˙ ˝

PX

cos(�t)

+ iPin
Ô

flcflsb{≠r(Êl)rú(Êl ≠ �) ≠ r(Êl)rú(Êl + �) + rú(Êl)r(Êl ≠ �) + rú(Êl)r(Êl + �)}
¸ ˚˙ ˝

PY

sin(�t)

+(terms oscillating in 2�) ,

with r(Ê) given by Eq. 2.10.
The cosine and sine terms in Eq. 3.4 can be seen as two quadratures of a beat note

oscillating at frequency �, while the constant (DC) terms represent the average reflected
power. Figure 3.1 illustrates these three distinct terms for varying cavity resonance frequency.
As we can see from Fig. 3.1c, the phase quadrature6 PY varies linearly close to resonance. In
the PDH sideband locking scheme [3], we park one of the sidebands on resonance with the
cavity and use PY as an error signal, feeding it back to a voltage-controlled oscillator (VCO)
that controls the sideband detuning frequency �, thereby keeping the sideband locked to the
cavity (see Fig. 5.1).

3.2 Sideband cavity-enhanced absorption readout
(SideCAR)

When one of the sidebands (say the one at Êl ≠ �) is resonant with the cavity, its
amplitude reflection coe�cient r(Êl ≠ �) = rres is real-valued and given by Eq. 2.22. If the
other bands are far from resonance (valid if � ∫ Ÿ), their amplitude reflection coe�cients

6In-phase with the modulation signal Ã sin(�t) (Eq. 3.1).
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Figure 3.1: Reflection of phase-modulated light (Eq. 3.4) vs. cavity resonance frequency, plotted
for a cavity of F = 150 and normalized for input power Pin. (a) DC terms (average reflected
power). (b) Amplitude quadrature PX ; and (c) phase quadrature PY of the PDH reflection beat
note. Red dots indicate the lower sideband resonance, which is used as the lock-point.

are given simply by ≠r1. As indicated by the red dot in Fig. 3.1c, the phase quadrature PY

in Eq. 3.4 goes to zero, and the reflected power becomes:

PR,PMsb ¥ Pin
1
flcr

2
1 + flsb(r2

1 + r2
res)

2

¸ ˚˙ ˝
DC

+ 2Pin
Ô

flcflsb
1
r2

1 + r1rres
2

¸ ˚˙ ˝
PX

cos(�t) . (3.5)

Equation 3.5 and Fig. 3.1b show that the heterodyne beat generated in PDH reflection
provides a non-zero signal at a sideband resonance. Moreover, this signal depends on
rres, which depends on cavity finesse F and therefore varies with intracavity absorption –.
Substituting Eq. 2.22 into Eq. 3.5, we find that exactly on sideband resonance the out-of-
phase quadrature amplitude becomes:

PX,sb ¥ 2Pin
Ô

flcflsb
Ft2

1
fi

. (3.6)

So, by locking the cavity to a sideband using the phase quadrature PY of the optical
heterodyne beat note, we can use the amplitude quadrature PX to monitor changes in
intracavity absorption in real time.

As will be detailed in Chapter 5, the measured signal is actually a voltage amplitude
VX = GXPX retrieved by demodulating a fi/2-shifted portion of the beat with a local
oscillator coming from the modulation signal (Ã sin(�t) according to Eq. 3.1), where GX

contains all the gains involved in the detection scheme. From Eq. 3.6, the signal VX is
proportional to Ô

flcflsb. Remembering that we work on the resolved sideband regime (i.e.,
modulation frequency � much larger than the laser and the cavity linewidths) and also
allow only one sideband to interact with the cavity by having � ”= ÊFSR, this means that
we can take advantage of a strong carrier signal flc to boost the weak sideband signal flsb.
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Since the cavity is locked on resonance with the laser light, this technique also allows us to
detect transient signals. The detection bandwidth for transients is investigated in the next
section, and the technique sensitivity floor will be discussed in Section 4.2.

3.3 Cavity response to modulated absorption

As described in the previous sections, the absorption detection scheme presented in
this thesis involves collecting and demodulating the amplitude quadrature of the Pound-
Drever-Hall reflection beatnote (PX), while keeping one phase-modulation sideband locked
on resonance to the cavity. This generates the voltage signal VX © GXPX (where GX is a
gain factor in V/W), which is sensitive to changes in intracavity absorption – according to
Eqs. 2.16 and 3.6. Our goal now is to understand the changes in VX due to time-varying
intracavity absorption (transients) to determine the bandwidth of our measurement scheme.
We will find that when – varies with time at a certain frequency Ê–/2fi, VX will fluctuate
at this same modulation frequency, with an amplitude that is filtered by the cavity low-pass
behaviour with cuto� frequency 1/(4fi·), where · is the cavity lifetime.

!!"(#)

!#$%(#)

!&!'&(#)

			"!

−&( &(

			""

−&) &)

!!""#"$ % &!'#()*((% − '%)

		(

Figure 3.2: Incoming (Ein(t)), circulating (Ecirc(t)) and out-going (Eout(t)) fields in a lossy cavity.
The cavity losses are separated in intrinsic (”) and time-varying extrinsic (–(t)L = –0L cos(Ê–t))
amplitude losses per roundtrip. ri and ti represent the ith mirror amplitude reflection and
transmission coe�cients, respectively, and L is the cavity length.

A classical version of the input-output formalism is used to derive the cavity response
to time-varying intracavity absorption (transients). The following derivation assumes that
the changes in intracavity absorption are slow when compared to the cavity round-trip time.
We start by deriving an equation of motion for the intracavity field (defined just to the
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right of the input mirror – Fig. 3.2). At time t, the circulating field is given by the incident
field transmitted by the front mirror t1Ein(t) plus the recirculating field from a time t ≠ �t

before:

Ecirc(t) = t1Ein(t) + r1r2e
≠”≠–(t)LEcirc(t ≠ �t) (3.7)

¥ t1Ein(t) +
A

1 ≠
t2
1
2 ≠

t2
2
2 ≠ ” ≠ –(t)L

B

Ecirc(t ≠ �t) (3.8)

where again we assume lossless mirrors with amplitude reflectivity and transmissivity ri and
ti, ” contains the cavity intrinsic losses (power loss per pass), –(t) represents the time-varying
extrinsic absorption (power loss per unit length) and �t = 2Ln/c is the roundtrip time (L
is the cavity length, n the intracavity medium refractive index and c the speed of light).
We assume low transmissivity mirrors and low losses t1, t2, ”, –L π 1. Equation 3.8 can be
written as a di�erential equation:

Ecirc(t) ≠ Ecirc(t ≠ �t)
�t

=
t1Ein(t) ≠

1
t2
1
2 + t2

2
2 + ” + –(t)L

2
Ecirc(t ≠ �t)

�t
(3.9)

∆
dEcirc(t)

dt
¥ ≠

c
1

t2
1
2 + t2

2
2 + ” + –(t)L

2
Ecirc(t)

2Ln
+ ct1Ein(t)

2Ln
(for �t æ 0) ,

(3.10)

following the assumption that the fluctuations in –(t) and Ein(t) are much slower than the
round-trip time. We can write Eq. 3.10 in terms of the cavity loss rate (cavity linewidth
Ÿ = 1/· , in rad/s), separating this rate in di�erent loss ports, namely Ÿin corresponding to the
input mirror transmission loss, Ÿ0 corresponding to scattering and back mirror transmission
losses, and Ÿ–(t) corresponding to the time-varying extrinsic absorption. From Eq. 2.17, in
the high finesse limit, we have:

Ÿ(t) = ct2
1

2Ln
+ c (t2

2 + 2”)
2Ln

+ c–(t)L
Ln

(3.11)

© Ÿin + Ÿ0 + Ÿ–(t) . (3.12)

Substituting Eq. 3.12 into Eq. 3.10, we have

dEcirc(t)
dt

= ≠
Ÿin + Ÿ0 + Ÿ–(t)

2 Ecirc(t) +
Ú

Ÿinc

2Ln
Ein(t) . (3.13)

We now let the time-varying absorption be a sinusoidal function at frequency Ê–

(–(t)L æ –0L cos(Ê–t)), which will cause a sinusoidal variation in the circulating and

16



output fields. Our goal is to investigate how the fluctuation in the output is related to
–(t). Assuming the fluctuations are small, the circulating field can be treated as a mean
value at the laser frequency and a small fluctuating term due to the modulated absorption,
Ecirc(t) = Ēcirc + �Ecirc(t):

d
1
Ēcirc + �Ecirc(t)

2

dt
= ≠

Ÿin + Ÿ0 + Ÿ–(t)
2

1
Ēcirc + �Ecirc(t)

2
+

Ú
Ÿinc

2Ln
Ēin , (3.14)

where we also assume no such fluctuations in the incoming field (�Ein(t) = 0; note that
we work in the frame rotating at the cavity resonance frequency Êc). Keeping only the
time-varying terms, we have:

d (�Ecirc(t))
dt

= ≠
Ÿin + Ÿ0

2 �Ecirc(t) ≠
Ÿ–(t)

2
1
Ēcirc + �Ecirc(t)

2
(3.15)

¥ ≠
Ÿin + Ÿ0

2 �Ecirc(t) ≠
Ÿ–(t)

2 Ēcirc (for |�Ecirc(t)| π Ēcirc) . (3.16)

Substituting Ÿ–(t) = c–0 cos(Ê–t)/n and going to the frequency domain,7

≠iÊ�Ecirc(Ê) = ≠
Ÿin + Ÿ0

2 �Ecirc(Ê) ≠

1
”(Ê ≠ Ê–) + ”(Ê + Ê–)

2c–0
4n

Ēcirc (3.17)

∆ �Ecirc(Ê) = ≠
1

≠iÊ + Ÿin+Ÿ0
2¸ ˚˙ ˝

‰(Ê)

1
”(Ê ≠ Ê–) + ”(Ê + Ê–)

2c–0
4n

Ēcirc (3.18)

where ”(Ê ± Ê–) is the Dirac delta function, and we defined the cavity susceptibility
‰(Ê) © 1/(≠iÊ + Ÿin+Ÿ0

2 ). So �Ecirc(Ê) is nonzero only at ±Ê–. Ēcirc can be found from the
time-independent terms of Eq. 3.14:

0 = ≠
Ÿin + Ÿ0

2 Ēcirc +
Ú

Ÿinc

2Ln
Ēin (3.19)

∆ Ēcirc = 2
Ÿin + Ÿ0¸ ˚˙ ˝

‰(0)

Ú
Ÿinc

2Ln
Ēin . (3.20)

Substituting Eq. 3.20 in Eq. 3.18,

�Ecirc(Ê) = ≠‰(Ê)
1
”(Ê ≠ Ê–) + ”(Ê + Ê–)

2c–0
4n

‰(0)
Ú

Ÿinc

2Ln
Ēin . (3.21)

7We use the following convention for the Fourier transform of a function f(t):

FT{f(t)} = f(Ê) = 1
2fi

⁄ +Œ

≠Œ
f(t)eiÊtdt .
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The cavity reflected field is given by:

Er(t) = ≠ r1Ein(t) + t1Ecirc(t) (3.22)

= ≠ r1Ēin + t1
1
Ēcirc + �Ecirc(t)

2
. (3.23)

Going to the frequency domain, substituting Eqs. 3.20 and 3.21 and t1 =
Ò

Ÿin2Ln/c

(Eq. 3.12),

Er(Ê) = ≠ r1Ēin + t1
1
Ēcirc + �Ecirc(Ê)

2
(3.24)

∆ Er(0) = (≠r1 + Ÿin‰(0)) Ēin (3.25)

Er(±Ê–) = ≠ Ÿin‰(0)‰(±Ê–)c–0
4n

Ēin . (3.26)

Since these are Fourier components in the frame rotating at the laser frequency, the outgoing
reflected field will have a carrier at the cavity resonance frequency Êc and two sidebands
detuned by the absorber frequency Ê– (Êc ± Ê–). On Fig. 3.3a-b, we plot the magnitude and
phase of Er(Ê–) (Eq. 3.26), and we can observe that the cavity acts as a low-pass filter with
cuto� frequency Êcuto� = (Ÿin + Ÿ0)/2 © 1/2· for intracavity modulated absorption.

3.3.1 Changes in VX due to time-varying absorption

To get an expression for the time-modulated VX(t), we have to account for the phase-
modulation of the incoming laser beam, i.e., include the promptly reflected, o�-resonant
carrier and (upper) sideband, and lock the other (lower) sideband on resonance with the
cavity (Êc æ Êl ≠ �). From Eq. 3.2, the incoming field can be written as

Ein,PM(t) = E0e
iÊlt

Ô
flc + E0e

i(Êl+�)tÔflsb ≠ E0e
i(Êl≠�)tÔflsb (3.27)

where now we let the incoming field be a fast-varying function of time with amplitude E0.
Upon reflection from the cavity, having the lower sideband locked on resonance and the
intracavity field time-modulated by transient absorption, the outgoing field becomes

Er,PMsb(t) = ≠ r1E0
1
eiÊlt

Ô
flc + ei(Êl+�)tÔflsb

2

≠

3
≠ r1E0 + t1

1
Ēcirc + �Ecirc(t)

2 4
ei(Êl≠�)tÔflsb . (3.28)
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Figure 3.3: Modulated intracavity absorption. (a) Magnitude and (b) phase of the
outgoing absorption modulation sideband Er(Ê–) (Eq. 3.26) as a function of the absorption
modulation frequency Ê–/2fi. We observe the cavity low-pass behaviour with cuto� frequency
1/4fi· = 160kHz (vertical dotted lines). Horizontal dotted lines mark the ≠3 dB point in
magnitude and 3fi/4 phase-shift. (c) VX(t) (Eq. 3.31), plotted for three di�erent absorber
frequencies Ê–/2fi: 100 kHz (teal), 160 kHz (coral) and 1 MHz (yellow). Again we can
observe the filtering e�ect of the cavity to the detection of the fluctuating absorption signal.
Plotted for the experimental parameters G, Pin, flc, flsb, r1, r2, ·, L, n, ” discussed in Chapter 5
and –0 = 10≠6 cm≠1.

We can find �Ecirc(t) by taking the inverse Fourier transform of Eq. 3.21:

�Ecirc(t) = ≠

1
eiÊ–t‰(≠Ê–) + e≠iÊ–t‰(Ê–)

2c–0
4n

‰(0)
Ú

Ÿinc

2Ln
E0 . (3.29)

Substituting Eqs. 3.20 and 3.29 into Eq. 3.28, noting that ≠r1 + Ÿin‰(0) = rres,

Er,PMsb(t) = ≠r1E0
1
eiÊlt

Ô
flc + ei(Êl+�)tÔflsb

2
≠ rresE0e

i(Êl≠�)tÔflsb

+ (r1 + rres)E0
Ô

flsb
c–0
4n

1
ei(Êl≠�+Ê–)t‰(≠Ê–) + ei(Êl≠�≠Ê–)t‰(Ê–)

2
. (3.30)

We finally find VX(t) by first calculating PR,PMsb(t) = Er,PMsb(t)úEr,PMsb(t), collecting it with
a photodetector, shifting by fi/2 and mixing with a reference at sin(�t). Neglecting terms
oscillating at Ø �,

VX(t) = ≠GXPin2Ô
flcflsb r1 (r1 + rres)

3
1 ≠

1
‰(≠Ê–) + ‰(Ê–)

2c–0
4n

cos(Ê–t)

≠

1
‰(≠Ê–) ≠ ‰(Ê–)

2c–0
4n

i sin(Ê–t)
4

(3.31)
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where GX is the gain of the detector and mixer circuits and Pin © E2
0 . We conclude that

intracavity time-modulated absorption adds a fluctuating term at the absorption modulation
frequency Ê– to VX , which is filtered by the cavity behaving as a low-pass with cuto�
frequency 1/2· , determined by the cavity susceptibility ‰(±Ê–) = 1/

1
1

2· û iÊ–

2
(Fig. 3.3c).
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Chapter 4

Shot-noise-limited sensitivity

In this chapter, we derive the theoretical noise floor (given by the shot-noise limit) of our
PDH sideband-lock absorption signal (a heterodyne reflection measurement), and compare
it to that of simple reflection, simple transmission and heterodyne transmission signals. We
will emphasize the

Ô
2 advantage of a conventional reflection sensing scheme compared to

conventional transmission sensing setups, and the
Ô

2 disadvantage of heterodyne detection
compared to average power (DC) detection.

The shot-noise-limited sensitivity ÈS–Í of an absorption measurement (in units of inverse
length per square root frequency) is given by the photocurrent shot noise at the detector
ÈSiÍ [25] scaled by the derivative of the signal isignal with respect to absorption,

ÈS–Í = ÈSiÍ

|d(isignal)/d–|
, (4.1)

where the shot noise comes from the time-averaged power at the detector P̄d,

ÈSiÍ =
Ò

2e÷P̄d (4.2)

(e is the electron charge and ÷ is the detector responsivity in A/W). In the following
derivations, we will also explicitly consider imperfect mode-matching to the cavity by
introducing a power coupling parameter ‘, where ‘ = 1 corresponds to perfect cavity
coupling. This coupling parameter has to be considered since the promptly reflected
uncoupled power adds noise to the detector in reflection-based measurements.

The sensitivity calculation for heterodyne detection can be approached by two di�erent,
equivalent ways. We can consider that the detector outputs a DC signal with amplitude
proportional to the RMS of the heterodyne beat, and the current noise is just proportional
to the square root of the average power reaching the detector P̄d. For simplicity, this is
the chosen approach for this section. Alternately, we can consider the detection through a
mixing circuit (what actually happens in our apparatus – see Chapter 5). A high-bandwidth
detector outputs an AC voltage proportional to the beat power, which is then mixed with
a reference at the same frequency. The mixer outputs a signal proportional to the beat
amplitude, but the noise is amplified by a factor of

Ô
2 (the power noise gets doubled). In
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both the cases, the sensitivity floor ÈS–Í of heterodyne detection increases by a factor of
Ô

2
when compared to simple detection.

4.1 Simple reflection measurement

We first study the case of a simple reflection measurement when unmodulated laser light
is resonant with the cavity. The power P̄d reaching the detector is the reflection of both
uncoupled and coupled terms, while the signal comes from the coupled, resonant mode:

ÈSiÍR =
Ò

2e÷Pin ((1 ≠ ‘)r2
1 + ‘r2

res) (4.3)

isignal,R = ÷‘Pinr2
res (4.4)

where rres is given by Eq. 2.22. Equations 4.1 and 4.2 give:

ÈS–ÍR = fi2

F2Lt2
1

Ò
(1 ≠ ‘)r2

1 + ‘r2
res

rres‘
Ô

2Pin

Û
e

÷
. (4.5)

In the limit of high reflectivity and small losses (i.e., r1 and rres ¥ 1, so that P̄d ¥ Pin),
Eq. 4.5 becomes

ÈS–ÍR ¥
fi2

F2Lt2
1

1
‘
Ô

2Pin

Û
e

÷
(4.6)

¥
fi

2FL

1
‘
Ô

2Pin

Û
e

÷
(for ” æ 0, t2

1 æ 2fi/F) . (4.7)

In terms of circulating power Pcirc = flcirc‘Pin (flcirc given by Eq. 2.26), Eqs. 4.5 and 4.6
become

ÈS–ÍR = fi

FLt1

Ò
(1 ≠ ‘)r2

1 + ‘r2
res

rres
Ô

2‘Pcirc

Û
e

÷
(4.8)

¥
fi

FLt1

1
Ô

2‘Pcirc

Û
e

÷
. (4.9)
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4.2 Heterodyne reflection measurement – SideCAR

We now study the case of heterodyne detection when one sideband is locked on resonance
with the cavity and the other sideband and the carrier are o�-resonant (resolved sideband
limit), which is the measurement technique described in this thesis (see Chapter 3). In
our heterodyne reflection detection, the average power at the detector P̄d is given by the
uncoupled reflected power plus the coupled DC terms in Eq. 3.5, and isignal is proportional
to the RMS (see Page 21) of the detected beatnote (term at cos(�t) in Eq. 3.5),

ÈSiÍSideCAR =
Ò

2e÷Pin((1 ≠ ‘)r2
1 + ‘(flcr2

1 + flsb(r2
1 + r2

res)) (4.10)

isignal,SideCAR = ÷‘2Pin
Ô

flcflsb(r2
1 + r1rres)

Ò
Ècos(�t)2

Í (4.11)

= ÷‘
Ô

2Pin
Ô

flcflsb(r2
1 + r1rres) . (4.12)

If we assume high reflectivity input mirror r1 ¥ 1 and small modulation amplitude flsb æ 0,
so that the total average power at the detector is ¥ Pin, we then have the measurement
sensitivity:

ÈS–ÍSideCAR = fi2

F2Lt2
1

1
‘
Ô

Pinflcflsb

Û
e

÷
(4.13)

¥
fi

2FL

1
‘
Ô

Pinflcflsb

Û
e

÷
(for ” æ 0, t2

1 æ 2fi/F) . (4.14)

In terms of circulating power Pcirc = flcirc‘flsbPin (with flcirc given by Eq. 2.26, and noting
that now only one sideband is coupled to the cavity), Eq. 4.13 becomes

ÈS–ÍSideCAR = fi

FLt1

1
Ô

‘Pcircflc

Û
e

÷
. (4.15)

4.3 Simple transmission measurement

In this case, the signal that carries absorption information is equal to the total power
reaching the detector, so the photocurrent shot noise and signal current are given simply by

ÈSiÍT =
Ò

2e÷‘Pint2
res (4.16)

isignal,T = ÷‘Pint2
res (4.17)
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where tres is given by Eq. 2.23. Note that transmission measurements are commonly
performed using a symmetric cavity8 (r1 = r2), and reflection measurements typically use
single-sided cavities (r2 æ 1). To avoid confusion, we will from now on represent symmetric
cavity mirrors by r̃i and t̃i, while ri and ti represent single-sided cavity mirrors. To get
cavities with same finesse, we use r̃1 = r̃2 = Ô

r1r2. Equations 4.1 and 4.2 give:

ÈS–ÍT = fi2

F2Lt̃1t̃2

1
Ô

2‘Pin

Û
e

÷
(4.18)

¥
fi

FL

1
Ô

2‘Pin

Û
e

÷
(for ” æ 0, t̃1t̃2 æ fi/F) . (4.19)

In terms of circulating power Pcirc = flcirc‘Pin, Eq. 4.18 becomes

ÈS–ÍT = fi

FLt̃2

1
Ô

2Pcirc

Û
e

÷
. (4.20)

4.3.1 Comparing simple reflection to simple transmission

The ratio between Eqs. 4.9 and 4.20 given by
A

ÈS–ÍR

ÈS–ÍT

B

Pcirc

= 1
Ô

2‘
(4.21)

(where we use t̃2 =
Ô

1 ≠ r1r2 ¥ t1/
Ô

2 for t1 æ 0) confirms the intuition that, for cavities
of the same finesse and with the same circulating power, a conventional reflection
measurement (single-sided cavity) performs better than a conventional transmission
measurement (symmetric cavity) by a factor of

Ô
2, since in the double-sided cavity we lose

information from the input port, while collecting only what leaves from the back mirror.
This advantage however depends on good coupling between laser and cavity, since uncoupled
power adds noise to the reflection detector. Transmission measurements through reversed
asymmetric cavity (r1 æ 1) achieve the same sensitivity as an ideal reflection measurement.

8One could claim that the best transmission measurement would be achieved by using a single-sided cavity
with r1 æ 1 (inverted mirrors when compared to optimized reflection measurements). This would result
in a sensitivity better by a factor of

Ô
2 when compared to the double-sided cavity transmission (Eqs. 4.18

and 4.20 divided by
Ô

2). However, to build up the same circulating power as the double-sided simple
transmission cavity, the inverted asymmetric one would need an incoming power Pin many times larger,
which may not be easily achievable experimentally. For a cavity of F ¥ 9000 and intrinsic power losses
” ¥ 140 ppm (similar to our experiment parameters – Section 5.2), that would require an incoming power
> 40 times larger! Comparing to the circulating power inside the asymmetric sideband reflection cavity (say
we would just swap the mirrors in our apparatus), this

Ô
2 improvement in sensitivity would still require

≥ 5 times more incoming laser power.
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4.3.2 Comparing SideCAR to simple transmission

Comparing the shot-noise limited sensitivity for a single-sided cavity probed using our
sideband-based technique (Eq. 4.15, where we assumed small losses and small modulation
amplitude so that P̄d ¥ Pin) to the shot-noise-limited sensitivity for a double-sided cavity
probed by transmission on resonance (Eq. 4.20) for measurements with same cavity finesse
and same circulating power, we get

A
ÈS–ÍSideCAR

ÈS–ÍT

B

Pcirc

=
Ô

2t̃2
t1

Ô
‘flc

(4.22)

= 1
Ô

‘flc
, (4.23)

again using t̃2 ¥ t1/
Ô

2 for the case of cavities with same finesse. Equation 4.23 immediately
shows that the sensitivity of our technique (Eqs. 4.13 and 4.15) is comparable to that of
transmission-based strategies. As shown in Fig. 4.1, in an ideal case of high finesse, perfect
coupling e�ciency, low sideband power flsb, and minimal loss in the path between cavity and
reflection detector (which can be achieved with a circulator), the two measurements present
the same sensitivity floor.

From Eq. 4.21, a simple reflection measurement from a single-sided cavity provides
sensitivity better than transmission (from a double-sided cavity) by a factor of

Ô
2. This

advantage is lost in heterodyne detection, since in this case the noise is increased by
Ô

2
when mixing down (see Page 21). Imperfect cavity coupling adds uncoupled power to the
reflection measurement, thus increasing its shot noise, while not a�ecting the transmission
measurement. Similar results to the ideal case are obtained if we use the actual mirror
reflectivities and sideband power employed in our experiment. Our technique is thus
comparable to transmission-based methods while also permitting a high-bandwidth lock
and single-port geometry that may be advantageous for real-world devices.
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Figure 4.1: Comparing the sensitivity of our SideCAR technique (sideband reflection from a
single-sided cavity) ÈS–ÍSideCAR to that acquired with a simple symmetric cavity transmission
measurement ÈS–ÍT for varying cavity coupling, for cavities of same finesse and same circulating
power. Black curve shows the ratio in an ideal case of r1, flc æ 1 and flsb æ 0. Coral curve shows
the sensitivity ratio for our experimental cavity parameters (r1 ¥ 0.999796, r2 ¥ 0.9999974,
flc ¥ 0.8831, flsb ¥ 0.0590), assuming perfect collection of reflected power. Dashed vertical line
marks the fractional coupled power in our experiment (‘ ¥ 0.749). For a fixed circulating power,
transmission measurements are insensitive to coupling. The promptly reflected uncoupled light
adds noise to the reflection detector though, bringing the noise floor up.

4.4 Heterodyne transmission measurement – NICE-
OHMS

NICE-OMHS [10, 11] is a noise-immune spectroscopy technique that collects a heterodyne
transmission signal from a phase-modulated laser. We consider it here for comparison
purposes, since it is a well-known and widely-employed spectroscopy technique that uses
a similar phase modulation approach. The incoming field is again given by Eq. 3.2, but the
modulation frequency � is chosen to be a multiple of the cavity free spectral range, so that
the carrier and two sidebands are all resonant with the cavity. There is no beat signal if
all three bands are equally disturbed, but if the absorption spectrum is narrower than �,
then only one of the bands interacts with the intracavity sample and a heterodyne signal is
generated in transmission.

Traditionally, to get the maximum sensitivity, the carrier interacts with the sample,
which yields a heterodyne signal twice as high as that given by a sideband interaction.
Upon interaction with a sample resonance, the carrier goes through a phase shift „, giving a
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dispersion signal. However, to compare NICE-OHMS to our heterodyne reflection technique
without too many approximations in the final result usually given in literature, I here derive
the NICE-OHMS sensitivity by looking at an absorption signal, instead of dispersion. Since
we know there is no absorption beat signal when the carrier interacts with the sample, we
instead analyze the case of a sample resonant with the lower sideband.

When the lower sideband interacts with a sample resonance, the cavity transmitted field
is given by

ENICEsb =
Ò

‘Pin(Ôflce
iÊlttres,–=0 ≠

Ô
flsbei(Êl≠�)ttres,– ”=0 + Ô

flsbei(Êl+�)ttres,–=0) (4.24)

where tres is the cavity amplitude transmission coe�cient (Eq. 2.23) for the non-interacting
(– = 0) and interacting (– ”= 0) modes.

The output power PNICEsb, neglecting terms at 2�, becomes:

PNICEsb = ‘Pin((flc + flsb)t2
res,–=0 + flsbt2

res,– ”=0 + 2Ô
flcflsbtres,–=0(tres,–=0 ≠ tres,– ”=0) cos(�t)) .

(4.25)

We can write tres,– ”=0 by substituting Eq. 2.16 into Eq. 2.23 and expanding for small –L9:

tres,– ”=0 ¥
Ft̃1t̃2

fi
≠

F2t̃1t̃2–L

fi2 , (4.26)

so the detected signal proportional to the beat RMS will be (see Page 21):

isignal,NICEsb =
Ô

2÷‘Pin
Ô

flcflsb
F3t̃2

1t̃
2
2–L

fi3 . (4.27)

As with the other detection schemes, the photocurrent shot-noise depends on the total
average power at the detector, and here is given by

ÈSiÍNICEsb =
Ò

2e÷Pd =
Ò

2e÷‘Pint2
res (4.28)

¥
Ft̃1t̃2

fi

Ò
2e÷‘Pin , (4.29)

remembering that all three modes (carrier and two sidebands) are resonant to the cavity,
and tres is given by Eq. 2.23. Equations 4.1, 4.27 and 4.28 give:

ÈS–ÍNICEsb = fi2

F2Lt̃1t̃2

1
Ô

‘Pinflcflsb

Û
e

÷
(4.30)

¥
fi

FL

1
Ô

‘Pinflcflsb

Û
e

÷
(for ” æ 0, t̃1t̃2 æ fi/F) . (4.31)

9As a reminder, t̃i represents the mirror amplitude transmissivity of a symmetric cavity (most commonly
used in transmission-based detection setups) with same finesse as an asymmetric cavity with mirror
transmissivity ti.
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In terms of Pcirc = flcirc‘Pin,

ÈS–ÍNICEsb = fi

FLt̃2

1
Ô

Pcircflcflsb

Û
e

÷
. (4.32)

4.4.1 Comparing SideCAR to NICE-OHMS

Comparing Eqs. 4.13 and 4.30 for measurements with same cavity finesse and same
incoming power, we get10

A
ÈS–ÍSideCAR
ÈS–ÍNICEsb

B

Pin

= t̃1t̃2
t2
1

1
Ô

‘
(4.33)

= 1
2
Ô

‘
(4.34)

where again we use t̃1 = t̃2 = t1/
Ô

2 for the case of cavities with same finesse. When
comparing them for the same circulating power, we get:

A
ÈS–ÍSideCAR
ÈS–ÍNICEsb

B

Pcirc

=
Ú

flsb
2‘

. (4.35)

If we were to consider NICE-OHMS with the carrier probing a sample resonance (see
Footnote 10),

A
ÈS–ÍSideCAR
ÈS–ÍNICEc

B

Pin

= 1
Ô

‘
and

A
ÈS–ÍSideCAR
ÈS–ÍNICEc

B

Pcirc

=
Û

2flsb
‘

. (4.36)

In the weak modulation regime (small flsb) and with reasonable coupling ‘ to the cavity,
there is a clear advantage in the sideband reflection shot-noise-limited sensitivity when a
small circulating power is desired, even when using the carrier as a probe for NICE-OHMS
(Fig. 4.2).

10Note again that I am using the NICE-OHMS case with sideband interaction, not carrier. Although
carrier interaction is optimized (gives sensitivity 2 times better than sideband interaction), it can only
give a dispersion signal, and the equation given in literature for the dispersion case contains undesired
approximations of ” æ 0. So when comparing the optimized SideCAR with optimized NICE-OHMS (carrier),
at the limit of r1 æ 1 and ‘ æ 1, the sensitivity floor of the two techniques is the same (Eq. 4.36). Note
also that for a carrier interaction and in the limit of ” æ 0, the results derived here give

ÈS–ÍNICEc = fi

2FL

1
Ô

‘Pinflcflsb

Ú
e

÷
.

This result di�ers from Ye et al. [10], Ma et al. [11] by a factor of 1/2.
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We note however that NICE-OHMS is intrinsically noise-immune and therefore can indeed
achieve the shot-noise limit, while our reflection technique su�ers from classical noise (see
Section 5.4). Nonetheless, we can still achieve comparable experimental noise floors over a
frequency range relevant to detection of ≥ µs transients, but with a much lower intracavity
power, which might be important to avoid nonlinearities in the intracavity medium. Also,
the possibility of single-port measurements can be useful for practical sensors.

Figure 4.2: Comparing the shot-noise-limited sensitivity of SideCAR ÈS–ÍSideCAR to that
acquired with the optimized NICE-OHMS measurement ÈS–ÍNICEc, for cavities of same finesse
and same circulating power (Eq. 4.36). Coral curve shows the points of equal sensitivity
ÈS–ÍSideCAR = ÈS–ÍNICEc. Shaded area illustrates the region where there is an advantage in
using SideCAR (if shot-noise-limited). Dashed grey lines mark our experimental parameters
(‘ = 0.749, flsb = 0.0590).
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Chapter 5

Experimental setup and results

In an experimental setup, there are many sources of technical noise that usually do not
allow us to reach the quantum-limited absorption sensitivity derived in Chapter 4. We
performed a set of experiments using a 5-cm long optical cavity to test the validity of the
proposed sensing technique, and to measure real-world noise floors. The signal that we
measure in the laboratory is a voltage VX , related to the heterodyne reflection beat amplitude
by VX © GXPX (Section 3.2). Following the same idea from Chapter 4, the experimental
noise-equivalent absorption sensitivity can be found by the noise present in the measurement
of VX scaled by |dVX/d–|, which can be determined from Eqs. 2.16 and 3.6:

-----
dVX

d–

----- = 2F2Lt2
1

fi2 |GX |Pin‘
Ô

flcflsb . (5.1)

Thus, in order to determine the experimental sensitivity, we need to know all the following
parameters: front and back mirror amplitude reflectivities r1 and r2 (or equivalently power
transmissivities t2

i = 1 ≠ r2
i ); cavity length L; cavity intrinsic losses ” (or equivalently the

cavity lifetime · – Eq. 2.17); the factor GX that involves all gains in the path from the
cavity until the measurement of VX (i.e., optical power gains Gopt from cavity to detector,
detector gain Gd in V/W and mixing circuitry voltage gains Gmix); cavity input power
Pin; power coupling parameter ‘; and fractional carrier and sideband powers flc and flsb.
Sections 5.1 to 5.3 detail our experimental apparatus and the measurements performed
in order to characterize all these setup gains and parameters. It all comes together in
Section 5.4, where we present the noise-equivalent absorption sensitivity of this experiment.

5.1 Apparatus

The apparatus used for our sideband locking and sensing technique is represented in
Fig. 5.1. A 1550-nm continuous-wave laser is phase-modulated at frequency �/(2fi) ≥ 1 GHz
with an electro-optical modulator (EOM) controlled by a voltage-controlled oscillator (VCO).
The phase-modulated signal is outcoupled via a fiber collimator, propagates in free space
through a non-polarizing 50-50 beamsplitter (BS) and reaches a 5-cm long optical cavity
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Figure 5.1: Experimental setup for sideband PDH locking and cavity-enhanced absorption
readout. Laser light at frequency Êl is phase-modulated at � by an EOM, generating two
sidebands at Êl ± �. When one of the tones is resonant with an optical cavity, the triplet is
disturbed and generates a heterodyne beat that is collected by an AC-coupled photodetector
(PDR,AC) and demodulated with a reference at �. Insets show PDH out-of-phase (amplitude)
quadrature (VX) and in-phase (phase) quadrature (VY ). Red dots indicate the lock point
on the lower sideband. Three DC-coupled photodetectors are used for setup diagnosis and
measurement of system parameters. EOM: electro-optical modulator. BS: non-polarizing
beamsplitter. PD: photo-detector (T: transmission, R: reflection). VCO: voltage-controlled
oscillator. -A: feedback controller. fi/2 indicates a phase shift.

formed by a flat input mirror and a concave back mirror. We collect the other half of the
signal from the BS with a pick-o� DC-coupled photodetector (PDpick-o�). This signal is used
to normalize all other collected signals in terms of cavity input power Pin. The transmitted
light is also collected with a second photodetector (PDT ). The reflected light goes back
through the BS and is directed to a second non-polarizing 50-50 BS. Half of the signal is
collected by a third DC-coupled photodetector (PDR,DC). The three detectors PDpick-o�,
PDT and PDR,DC are the ThorLabs PDA10CF (bandwidth DC ≠ 150 MHz). The other half
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of the reflected signal is collected by an AC-coupled fast detector PDR,AC (FEMTO HSA-X-
S-2G-IN, bandwidth 10 kHz ≠ 2 GHz), which is fast enough to measure the heterodyne beat
(at frequency �) generated by the PDH reflection. The AC voltage signal is then split again:
half of it is demodulated with an in-phase reference signal at � coming from the VCO, while
the other half is phase-shifted before being mixed with the same reference. The in-phase
mixed signal VY Ã PY (Eq. 3.4) is sent to a feedback controller and fed back to the VCO, so
it controls the sideband frequency, keeping the lower sideband locked on resonance with the
cavity (Section 3.1). A delay line is added between the VCO and mixer LO port to ensure
the LO and RF signals have the same delay, ensuring stable relative phase even when the
VCO frequency changes. The out-of-phase mixed signal VX is acquired and used to monitor
changes in intracavity absorption – (Section 3.2).

5.2 System parameters

!!

!"	#2

!#$

Lifetime %

Coupling!

!! !"&%&

&'

Figure 5.2: Schematic of the parameters extracted from measurements and simultaneous fit.
Transmission and reflection detectors are used to perform independent measurements to extract
system parameters, namely: carrier and sideband relative power flc and flsb, front and back
mirror amplitude reflectivity r1 and r2, power coupling parameter ‘, empty cavity lifetime · , and
the gain factors in the three signal paths: transmission (GT ), DC reflection (GDC) and beatnote
reflection (GX). All measurements are normalized for the cavity input power Pin using a pick-o�
detector.
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We perform a set of measurements using the voltage readings of four photodetectors
depicted in Fig. 5.2 to extract all our unknown system parameters. The cavity length L, the
input mirror fractional transmitted power t2

1 (which gives r1 =
Ò

1 ≠ t2
1) and the transmission

path gain factor GT = VT /PT (where VT is the transmission-diode voltage reading and
PT is the average power transmitted by the cavity) are directly measured. By quickly
sweeping the cavity length by means of a piezo-mounted back mirror, we take swept ringdown
measurements to extract the empty cavity lifetime · (Fig. 5.3a). In addition, by sweeping
the cavity length more slowly, we acquire a set of five measurements: cavity reflection VR and
transmission VT without phase modulation, cavity reflection with phase modulation around
the carrier VRc and the lower sideband resonance VRsb, and the demodulated PDH amplitude
quadrature VX around the lower sideband resonance (Fig. 5.3b-f). These five measurements
are then simultaneously fitted to extract the remaining parameters (carrier and sideband
relative power flc and flsb, back mirror amplitude reflectivity r2, power coupling parameter
‘, and the gain factors in the DC (GDC) and beat (GX) reflection paths). To account for
incoming power fluctuations, we normalize the voltage sweeps using the readings from the
pick-o� diode. The swept ringdown measurements are fitted with the function [9, 26]:

VRD = ae≠t/2· cos ((Ê + bt)t + c) + d + gt + ht2 . (5.2)

The equations for the simultaneous fits are:

VR

Pin
= GDC

1
(1 ≠ ‘)r2

1 + ‘R(�L)
2

(5.3)

VT

Pin
= GT ‘T (�L) (5.4)

VRc
Pin

= GDC
1
(1 ≠ ‘)r2

1 + ‘(flcR(�L) + 2flsbr2
1)

2
(5.5)

VRsb
Pin

= GDC
1
(1 ≠ ‘)r2

1 + ‘(flcr
2
1 + flsbr2

1 + flsbR(�L))
2

(5.6)

VX

Pin
= 2GX‘

Ô
flcflsb

1
r2

1 + r1 Re{r(�L)}
2

(5.7)

with r(�L), R(�L) and T (�L) given by expanding Eqs. 2.10, 2.12 and 2.13 around a small
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cavity length detuning from resonance �L and using the high finesse limit approximation:

r(�L) ¥
t2
1

fi
F

≠ 2i�LnÊ/c
≠ r1 (5.8)

R(�L) ¥
t4
1 ≠ 2fir1t2

1/F
fi2

F2 + (2�LnÊ/c)2 + r2
1 (5.9)

T (�L) ¥
t2
1t

2
2

fi2

F2 + (2�LnÊ/c)2 , (5.10)

setting Ê ¥ Êl and the time-dependent displacement from resonance �L = va(vbt2 + t ≠ t0).
va and vb are fit parameters that account for the nonlinear displacement of the piezo with
time, and t0 is a fit time o�set. The resulting values for all the setup parameters are given
in Table 5.1. The intracavity medium (air) index of refraction n is set to 1.

Parameter Experimental Value

L 5.19 ± 0.10 cm
· 495.9 ± 0.2 ns
‘ 0.749 ± 0.005
r1 0.999796 ± 0.000006
r2 0.9999974 ± 0.0000001
F 9006 ± 174
” (143 ± 9) ◊ 10≠6

flc 0.8831 ± 0.0007
flsb 0.0590 ± 0.0003
GT 3014 ± 159 V/W
GDC 364 ± 9 V/W
GX ≠80 ± 3 V/W

Table 5.1: Experimental parameters. L, r1 =
Ò

1 ≠ t2
1 and GT are directly measured. · , ‘, r2, flc,

flsb, GDC and GX are extracted from the fit of a set of measurements (see text). F = fic·/(Ln)
(Eq. 2.14) and Eq. 2.17 give the cavity finesse F and intrinsic losses ”, respectively.
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Figure 5.3: Empty cavity characterization with simultaneous fits. We extract system parameters
(cavity lifetime · , gain factors GDC and GX , power coupling parameter ‘, back mirror amplitude
reflectivity r2, and carrier and sideband relative power flc and flsb) by simultaneously fitting a
set of six cavity length sweep measurements: (a) swept ring-down spectroscopy VRD; (b) cavity
reflection VR (without sidebands); (c) cavity transmission VT (without sidebands); (d) modulated
reflection around the carrier resonance VRc; (e) modulated reflection around the lower sideband
resonance VRsb; and (f) demodulated PDH beat signal VX . We observe a small divergence
between fit and data in the right-hand side of the peaks of the slow sweep measurements (b-f),
due to residual ring-down from intracavity light even at small (≥ 10 Hz) sweeping frequencies,
not accounted for in the fit equations.
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5.3 Mixing circuit gain
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Figure 5.4: Characterization of mixing circuitry gain. A signal coming from a signal generator
replacing the fast photodetector is collected after mixing. BP: band-pass filter. LP: low-pass
filter.

In the detection setup, the signal collected by the fast detector goes through a band pass
filter (20-1000 MHz), a ≠10 dB attenuator, a fi/2 splitter, a mixer and an 11 MHz low-pass
filter (components inside teal dashed box in Fig. 5.4). Although we could extract this mixer
circuitry gain Gmix from GX = GoptGdGmix using the detector nominal gain Gd in V/W and
Gopt (that is easily measured from the ratio of the readings of a power meter in front of
PDR,AC and in front of the cavity), we measured it experimentally as a check (which also
serves as a check that the detector true gain agrees with specs, giving Gd = 4.8 ± 0.2 V/mW
versus a nominal gain of 4.75 V/mW). The total gain of these circuit components was
measured by replacing the fast detector output by an RF signal of known amplitude at
the modulation frequency (�/(2fi) ¥ 896 MHz), and monitoring the amplitude of the mixer
+ low-pass output. In our case, the voltage gain was found to be Gmix = 0.094 ± 0.002. The
signal (in V) detected by the fast detector is scaled by Gmix, while the noise (in V/

Ô
Hz) is

scaled by
Ô

2Gmix, since the mixing doubles the power noise (see Page 21).
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5.4 Experimental results

As detailed in Chapter 4, the absorption sensitivity of our measurement can be found
by the noise present in the measurement of VX scaled by dVX/d–11. While in principle we
have a theoretical prediction for dVX/d– given by Eq. 5.1 that we can evaluate with the
cavity parameters extracted with the measurements described in Section 5.2, we perform an
independent calibration as a check (Fig. 5.5b). Note that, using Eq. 2.17:

dVX

d–
= dVX

d·

d·

d–
and

-----
d·

d–

----- = c· 2

n
, (5.11)

where c is the speed of light and n is the index of refraction of the intra-cavity medium.
Thus, by measuring dVX/d· , i.e. how the measured voltage and measured cavity lifetime
vary as we change the absorption, we can experimentally calibrate our sensitivity.

In Fig. 5.5a, we plot the measured noise power spectrum of VX (in units of V2/Hz)
from 160 µW coupled to the cavity (corresponding to the power ‘flsbPin in the resonant
lower sideband, from a total Pin = 3.55 mW landing on the cavity), and 520 mW circulating
power. From this circulating power, only 38 µW land on the PDR,AC (due to losses to the
two BS). The “locked” data (coral) shows the VX signal that carries information on the
intracavity absorption. For comparison, we plot the noise in VX when the cavity is unlocked
(laser and electronics noise – teal curve), the noise from electronics added to a shot-noise-
limited laser (dotted yellow – calculated) and the theoretical shot noise limit (SNL) itself
(dotted black – calculated as per Footnote 11).

Figure 5.5b shows the measured values of VX (normalized using the voltage readings of
a pick-o� diode to account for power fluctuations) and cavity lifetime · as we marginally
occlude the cavity mode with a block of anodized aluminum, thereby changing the
absorption in the cavity. As expected from the high-finesse relationship given by Eq. 3.6

11Note that in this chapter we consider voltage amplitude measurements (Ã PX) and voltage shot noise
limit ÈSV Í, where in Chapter 4 we considered current RMS signals isignal (Ã


ÈPX cos(�t)Í2) and current

shot noise limit ÈSiÍ (Eq. 4.2), for simplicity. The two quantities are simply related by

ÈSV Í =
Ô

2GmixZÈSiÍ = 2GmixZ
Ò

e÷P̄d ,

where Gmix is the voltage gain of the mixing circuitry (Section 5.3), Z is the detector transimpedance
in V/A and the extra

Ô
2 factor comes from the unavoidable doubling in power noise due to mixing. The two

treatments are equivalent, since when dealing with currents the same factor of
Ô

2 arrises from “collecting”
the current RMS.
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Figure 5.5: Experimental results. (a) Measurement noise spectrum (power spectral densities
– PSDs). Coral: noise floor of the system (VX) while laser is locked to the cavity. Teal:
unlocked laser noise. Dotted yellow: shot-noise limit (SNL) and electronics noise. Dotted
black: SNL (experimental quantum limit). The vertical dashed line marks our VX measurement
bandwith 1/(4fi·) = 160 kHz. (b) Calibration of voltage measurement VX (normalized) vs.
cavity lifetime · . Black line is a fit to data (coral). As expected, we observe a linear relation
between VX and · (Eq. 5.12), supported by the linear fit R2 of 0.99894. Top axis shows predicted
–-dependence of VX

1
– = ≠

t2
1+t2

2+2”
2L + n

c·

2
. (c) Conversion of the voltage measurement from (a)

to sensitivity using the calibration from (b). We correct our locked measurement of VX for the
cavity transfer function (low pass behaviour). We currently achieve noise-equivalent absorption
sensitivities below 10≠10 cm≠1/

Ô
Hz from 30 to 200 kHz and a minimum of 7 ◊ 10≠11 cm≠1/

Ô
Hz

at ≥ 100 kHz, a factor of 11 from the SNL, due to classical amplitude noise in the laser and
frequency noise from the locking technique.

and VX = GXPX
12, and substituting F = ÊFSR · · = fic·/(Ln) (Eq. 2.14),

VX = 2GX‘Pin
Ô

flcflsb
t2
1c·

Ln
(5.12)

depends linearly on · . The slope of the fitted data13 dVX/d· = 225.5 ± 0.3 mV/µs agrees
with the theoretical value of 227 ± 14 mV/µs evaluated from Eq. 5.12 for our system
parameters (Table 5.1). The linear relation between VX and · is also confirmed by the fit
R2 equal to 0.99894.

12As a reminder, GX contains all the gains in the AC detector path from the cavity until acquisition,
including the optical power losses between cavity and detector, detector gain Gd = Z÷ in V/W and circuitry
voltage gains Gmix.

13VX calibration measurements are scaled to what they would be for an incoming power Pin = 3.55 mW
(the average Pin during locked PSDs acquisition) by multiplying by 3.55 mW over the measured input power.
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The results of Fig. 5.5a and Fig. 5.5b are combined with the measurement bandwidth
to determine the absorption sensitivity of our apparatus. In principle, the voltage power
spectrum can be converted to sensitivity (in cm≠1/

Ô
Hz) by scaling the square root of

the PSDs (V/
Ô

Hz) by dVX/d– (V/cm≠1), using the calibration from Fig. 5.5b and
Eq. 5.11. However, as detailed in Section 3.3, the cavity imposes a low-pass filter with cuto�
frequency 1/4fi· = 160 kHz on the absorption signal, increasing the impact of noise at higher
frequencies. The resulting noise-equivalent absorption sensitivity (corrected for the cavity
response) is shown by the coral curve in Fig. 5.5c, along with the SNL (dotted black) and
electronic noise + SNL (dotted yellow) for comparison. Over the 30 ≠ 200 kHz frequency
range, we observe a noise-equivalent absorption sensitivity below 10≠10 cm≠1/

Ô
Hz, with a

minimum of 7 ◊ 10≠11 cm≠1/
Ô

Hz at ≥ 100 kHz, a factor of 11 from the SNL.
By comparing the locked (coral) and unlocked (teal) curves in Fig. 5.5a, we observe

that the excess noise occurs primarily in the transition from unlocked to sideband-
locked operation. Due to the mixing with a reference at the modulation frequency
� ≥ 2fi · 1 GHz (see Fig. 5.1), when unlocked, VX measures laser noise at frequencies
� < Ê < � + 2fi · 11MHz, with the 11 MHz bandwidth dictated by a low-pass filter after
the mixer. In contrast, when locked, the collected signal beats at �, so mixing VX detects
the true laser noise at the plotted frequency (0 < Ê/2fi < 11 MHz). This measurement
is sensitive to low-frequency laser noise (at the plotted frequency), and other sources
including laser frequency noise (detuning from cavity resonance), VCO frequency noise and
cavity length noise. Fluctuations in cavity length or laser frequency change the resonance
condition, detuning the cavity and also changing the modulation frequency � via the
feedback loop. If the VCO output power varies with �, it results in amplitude noise in VX

from changes in the modulation amplitude (fluctuations in Ô
flsb). We investigate these noise

sources by simultaneously acquiring voltages from the pick-o� diode, feedback controller
error monitor and VCO output (using a crystal detector to collect the VCO output power).
The noise spectra of the four measurements are plotted in Fig. 5.6. We can identify many
of the features in VX coming from the other sources. Current work is being done towards
subtraction of these three noise sources from VX .
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Figure 5.6: Investigating features in VX noise spectrum. Noise spectrum in four simultaneously
acquired locked measurements: VX (coral), feedback controller error monitor (yellow), pick-o�
diode (teal) and VCO output power (black). We can identify the features appearing in VX from
the other measurements, e.g.: the known laser amplitude noise peak around 500 kHz in the
pick-o� measurement; the peak around the feedback loop bandwidth (≥ 2 MHz) in the feedback
controller (Error); and the low-frequency noise likely arising from cavity length drifts in the VCO
output power.
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Chapter 6

Conclusion and Outlook

This thesis details the work done towards the development of a new absorption sensor
that works in reflection and is capable of detecting both narrow and broad absorption
features, with high sensitivity within a large bandwidth. We showed that the robust PDH
sideband locking scheme enables a simultaneous absorption measurement with the readout
of the amplitude quadrature of a heterodyne reflection beat, which varies linearly with cavity
lifetime. By monitoring this signal, we can detect transients with a bandwidth set by the
cavity amplitude decay rate. We developed a model of the measurement that allows us to
quantitatively predict its shot-noise-limited performance, showing that its sensitivity floor is
comparable to standard transmission measurements. Finally, we demonstrated the method
with a test air-filled 5-cm-long cavity, finding a noise-equivalent absorption sensitivity
≥ 10≠10 cm≠1/

Ô
Hz in the 30 ≠ 200 kHz range, and a minimum of 7 ◊ 10≠11 cm≠1/

Ô
Hz at

100 kHz without system optimization, while maintaining the cavity locked to a modulation
sideband with a coupled power of 160 µW. This sensitivity is a factor of 11 from the
shot-noise limited sensitivity. The use of a shot-noise-limited laser, lower noise VCO and
electronic components and the current work being done towards subtraction of classical
noise will allow us to further approach this quantum limit.

The project was motivated by the proposal of developing a solvated electron dosimeter
for radiotherapy applications [27]. Solvated electrons are entities formed upon hydrolysis
(following water irradiation) that exhibit broad optical absorption in the visible and near
infrared [4, 5]. This signal persists only for a few microseconds and is hidden by a strong
background absorption of the water medium in the same spectral range. Up until today,
dosimetry in radiotherapy is mostly done using radiographic films placed at a distance
(external to the body) of the aimed irradiated tissue, which results in poor sensitivity
and lack of spacial resolution. Radiographic films also forbid a real-time dose assessment,
since the films are only verified after the irradiation session. Our locked measurement will
allow the detection of transients in real time. The possibility of measuring reflection from
a micrometer-scale fiber cavity [28] lets us envision the design of a sensor placed at the
tip of an endoscope, giving spatially-resolved measurements from a low-power probe with
enough sensitivity (boosted by heterodyne detection) to detect the relatively small solvated
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electron absorption signal in the noisy absorptive background. For applications that require
a high-bandwidth lock, low-power probe, or reflection-based detection, this approach could
replace a range of transmission-based cavity-enhanced absorption sensing schemes, and could
facilitate sensitive detection of transient absorption features with close to shot-noise-limited
sensitivity.
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