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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. 

Chemotherapeutic agents, including gemcitabine, alone or in combination with other anti-

cancer drugs, are widely applied for treatment. However, benefits from these treatments are 

modest due to the therapeutic limitations associated with drug resistance. Therefore, 

identification of new targetable molecules is urgently needed in order to improve survival and 

prognosis. Dopamine receptor D2 (DRD2) is a potential target whose inhibition suppresses 

PDAC proliferation and metastasis upon the functional blockage of the receptor with 

antagonists in vitro and in vivo. In this study, we investigated possible therapeutic benefits of 

a combination therapy using a DRD2 antagonist and gemcitabine. For this purpose, effects of 

co-treatment with DRD2 antagonist Haloperidol and chemotherapy agent gemcitabine on 

viability of multiple PDAC cell lines were examined for various combination formulations to 

understand the interaction between both drugs and to determine the most efficacious 

combination approach. Furthermore, we examined the ability of co-treatment to induce 

apoptosis in different PDAC cells. Moreover, we investigated the effects of treatment on 

metastasis-potential of PDAC cells through analyzing invasion capacity of cells. Our results 

show that, while a 1:1 constant combination ratio provides the strongest growth inhibitory 

effect in PDAC cells, different responses to the combination treatment are observed in PDAC 

cell lines, in line with variable levels of DRD2 expression in these lines. The combination 

treatment leads to significant induction of apoptosis. Moreover, it reduces cell migration 

relative to vehicle-treated controls. We further validated a commercially available antibody 

against DRD2, which can be used for detection of DRD2 protein in PDAC. Taken together, 

our results indicate that the combination of Haloperidol with gemcitabine has a greater anti-

cancer effect in comparison to single therapy with either of them. 
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Resume  

L'adénocarcinome canalaire du pancréas (ADCP) est la forme la plus courante du cancer 

du pancréas. Les agents chimiothérapeutiques comme la gemcitabine, seuls ou en association 

avec d’autres médicaments anticancéreux, sont communément utilisés pour traiter ce cancer. 

Cependant, en raison des limitations thérapeutiques associées à la résistance aux 

médicaments, les avantages de ces traitements demeurent modestes. Par conséquent, il est 

primordial d’identifier de nouvelles molécules à cibler afin d’améliorer la survie et le 

pronostic des patients. Le récepteur dopaminergique D2 (DRD2) constitue une cible 

potentielle dont le blocage fonctionnel par des antagonistes inhibe la prolifération de l’ADCP 

et les métastases, in vitro et in vivo. Dans cette étude, nous avons étudié les possibles 

avantages thérapeutiques de l’association médicamenteuse entre l’Haloperidol, un 

antagoniste du DRD2 et la gemcitabine, un agent chimiothérapeutique. À cette fin, les effets 

du traitement sur la viabilité de plusieurs lignées cellulaires de l’ADCP ont été examinés sous 

diverses formulations, afin de comprendre l’interaction entre les deux médicaments et de 

déterminer la formule la plus efficace. De plus, nous avons examiné l'aptitude de 

l’association de traitements à induire l'apoptose dans les différentes lignées cellulaires. Nous 

avons également étudié les effets du traitement sur le potentiel métastatique des cellules de 

l’ADCP en analysant la capacité d’invasion des cellules. Nos résultats démontrent qu’un 

rapport de concentration constant de 1:1 produit la plus puissante inhibition de la croissance 

des cellules de l’ADCP. Cependant, nous avons observé des réponses inégales dans les 

différentes lignées cellulaires, ce qui reflète le niveau d'expression variable du DRD2 dans 

ces lignées. Le traitement d'association mène à une induction significative de l'apoptose et 

réduit la migration cellulaire par rapport au contrôle. De plus, nous avons validé un anticorps 

disponible commercialement contre le DRD2, qui est utilisé pour détecter la protéine DRD2 

dans l’ADCP. Dans l'ensemble, nos résultats indiquent que l’association de l'halopéridol avec 
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la gemcitabine a un effet anticancéreux plus important par rapport à une thérapie unique où 

l'un ou l'autre est utilisé seul. 
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Pancreatic ductal adenocarcinoma  

Currently, pancreatic ductal adenocarcinoma (PDAC) is considered the fourth leading 

cause of cancer death worldwide, and expected to be the third most common cause of death 

after lung cancer by 2030 [1, 2]. Despondently, the median survival of PDAC is less than six 

months and only 2% of metastatic cases survive for 5 years [3-5]. Several risk factors are 

associated with PDAC incidence including age, sex, ethnicity, smoking, alcohol, diabetes, 

obesity, infection, and chronic pancreatitis, which are accounted for one- quarter to one third 

of all cases [6-9]. About 90% of PDAC patients are over 55 years of age, and PDAC is 

slightly higher in males than in females, presumably due to the different interactions with 

environmental exposure and genetic factors [10]. Infection with certain pathogens increases 

PDAC risk; for instance, the infection with Helicobacter pylori (H-pylori) or hepatitis C is 

associated with PDAC development that has been extensively investigated [11].  

Additionally, family history of pancreatic cancer is counted for 5-10% of PDAC incidence 

[12-14]. 

Accumulation of genetic mutations has been shown to be involved in cancer initiation, 

progression, and metastasis[15]. Aberrations in Kirsten rat sarcoma (KRAS) have been shown 

to be responsible for >90% pancreatic ductal adenocarcinoma initiation; followed by 

mutations in SMAD4, CDKN2A and TP53 [15].  

Recent comprehensive genomic analyses, including whole exome and genome 

sequencing, have revealed previously-unrecognized genetic heterogeneity within pancreatic 

tumors and between tumors from individual patients [16]. To gain a better understanding of 

intra-tumoral heterogeneity and clonal composition genetics analyses of multiple regions 

from a single patient tumor are under consideration [16].  The intra-tumoral heterogeneity has 

important impacts on tumor evolution and outcomes of drug treatment. This has recently 

been studied in PDAC using clonal tracking experiments through cell barcoding 
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technologies, which are promising tools to detect low-representing clonal populations in the 

tumor. [17]. This study reports on small population of cells with stem cells features like 

quiescence, drug-detoxifying capability, and tolerance to DNA damage, which help them to 

exhibit resistance to drug treatments. Thus, treating tumors with gemcitabine depleted 20% of 

clonal subpopulations, and resulted in the enrichment of some clones, which pre-existed in 

the tumor [17].  

Inter-individual heterogeneity in PDAC tumors have also been linked to different 

treatment outcomes. For example, Collisson et al.  have used gene expression microarray 

analysis and identified three intrinsic PDAC subtypes, which are classical, quasi-

mesenchymal (QM-PDA), and exocrine- like [18]. The authors showed that QM-PDA 

subtype exhibit high sensitivity to conventional chemotherapy (gemcitabine) as compared to 

the classical subtype [18].  

Early Stages of PDAC 

Pancreas physiological function   

The pancreas has irregular shape located behind the stomach and surrounded by spleen, 

liver, and duodenum. The location of the pancreas makes it difficult to visualize by the 

current imaging methods for tumor detection. It consists of three types of cells with diverse 

functional properties depending on their location in the exocrine or endocrine gland [22]. The 

exocrine gland has acini cells that secrete digestive enzymes, and ductal cells that transport 

fluid from the acinar cells to the stomach, beside bicarbonate secretion for stomach acid 

neutralization[22]. The endocrine gland comprises of Islets cells, which produce insulin 

(Figure 1) [23].  
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Figure 1. Schematic representation of the pancreas physiological location and its cell 

types [23]. 

Pancreatic Intraepithelial Neoplasia 

Approximately, 60-70 % of PDAC arise in the head of the pancreas, followed by 11% in 

the body, and another 11% in pancreas tail. PDAC develops following a series of mutations 

from normal mucosa to precursor lesions and invasive malignancy [24, 25]. It is 

histologically characterized by intraepithelial neoplasia (PanIN), intraductal papillary 

mucinous neoplasms (IPMN), and mucinous cystic neoplasms (MCN) [25]. PanIN is sub-

classified according to the disease degree into PanIN-1 (A and B), PanIN-2 and PanIN-3[26]. 

Genetics analyses have indicated many significant genetic alternations in PanINs that are also 

found in invasive PDAC [24, 27]. The molecular genetics abnormalities in lower grade of 

PDAC include mutations in KRAS gene and telomere shortening that are associated with 

developing invasive malignancy [28]. In the higher grades of PanIN 2-3, the prevalence of 
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KRAS mutations is higher, and other mutations in p16, CDNK27, p53, and SMAD4 appear 

to take a place (Figure 2) [29].  

 

Figure 2. PDAC progression from PanIN formation to invasive PDAC. Different stages of 

disease development from normal epithelium to the formation of PanIN-1 to PanIN 3 lesions, 

and  eventually to invasive PDAC with various driver mutations throughout disease 

development are shown [29]. 

Clinical presentation of pancreatic ductal adenocarcinoma  

The non- specific and asymptomatic manifestations, lack of biomarkers, and difficulties in 

imaging at an early stage of PDAC lead to diagnosis at an advanced stage with limited 

treatment options. Pancreatic cancer can occur in the head, body, and tail of the pancreases. 

When tumors locate in the head of the pancreas symptoms present early due to biliary 

obstruction [30]. But tumors that develop in the body and tail remain undetected until a late 

stage. Abdominal pain, jaundice, pruritus, weight loss, new-onset diabetes mellitus, and 

depression are the common PDAC manifestations [31, 32].  
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Later symptoms are related to metastasis in the liver, stomach, and colon, that cause 

gastric obstruction or delay gastric emptying, with nausea and satiety. Moreover, patients 

present with acute pancreatitis, thrombophlebitis, hypoglycemia or hypercalcemia (Figure 3) 

[25, 33].  .   

 
 
Figure 3. Pancreatic cancer location and clinical presentation [25]. 
 

In consequence, surgery treatment is possible only for 15-20% of patients [10]. Systemic 

therapy with gemcitabine is clinically administrated to advanced and metastatic cases with a 

median survival of four to six months. Clinical efficacy using chemotherapies based on 

gemcitabine fails to achieve greater survival due to the emergence of drug resistance [34]. 

Advances in therapy are therefore urgently needed. 

Pancreatic ductal adenocarcinoma current treatment strategies 

Surgery 

Surgical resection provides significant hope for only 15- 20% of patients with resectable 

or borderline-resectable tumors [35]. Majority of patients 80% with a tumor in the pancreas 
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head with jaundice symptoms due to biliary obstruction [36, 37]. Due to complications 

associated with preoperative biliary drainage, early surgery without preoperative biliary 

resection is performed for patients who exhibit jaundice [38]. Poor predictors for successful 

resection include lymph node involvement [39], high tumor grade [40], large tumor size [41], 

and positive margins of tumor pro-resection [4, 42]. Surgery treatment is not considered 

without additional therapy, since more than 90% of patients relapse and die after a potentially 

curative operation. Accordingly, chemotherapy treatment strategies in adjuvant setting have 

been used over the past decades.  

Chemotherapy  

Generally, treatment of locally advanced pancreatic ductal adenocarcinoma is 

complicated, and initially systemic chemotherapy is administered, but if the tumor 

metastasizes and no metastatic reduction after treatment is observed, therapies for tumor 

control and/or symptoms relief are administrated. Borderline resectable tumors are usually 

treated with chemotherapy to improve the chance of curative tumor resection and to increase 

patient’s survival rates [43, 44]. Patients with resectable and locally advanced unresectable 

tumors can also benefit from neoadjuvant or perioperative chemotherapy. The initiation of 

the neoadjuvant therapy process is evaluated by histological confirmation of PDAC. 5-

fluorouracil (5-FU) based chemotherapy was the first chemotherapy for PDAC with a mean 

survival of 3 months. Combination of 5-FU with other chemotherapies such as doxorubicin, 

methotrexate, and cisplatin did not improve overall patient’s survival[45-47]. 

The chemotherapeutic agent gemcitabine (or 2’, 2’- difluoro 2’-deoxycytidine, dFdC) is a 

nucleoside cytidine analog, which is widely used for treatment of PDAC [48]. It is the first 

monotherapy drug that surpassed 5-FU at increasing overall survival to 6 months [46]. The 

biological uptake of gemcitabine into the cell is mediated by three nucleoside transporters 

SLC28A1, SLC28A3, and SLC29A1 [49]. It metabolizes into its active form by a series of 
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phosphorylation events that result in binding to DNA strands during replication, inhibiting 

DNA synthesis and causing cell death [34]. There are several mechanisms associated with 

gemcitabine resistance phenomena such as the dysregulation of proteins involved in the 

gemcitabine metabolism pathways, and high expression of ATP-binding cassette transporters 

[50]. Therefore, combination of gemcitabine with other drugs has been evaluated in PDAC 

treatment[51]. A recent trial has shown that adjuvant therapy with a gemcitabine-capecitabine 

combination in patients with resected disease increased median survival up to 28 months 

compared to 25.5 months with gemcitabine alone [47, 52]. The combination therapy of 

gemcitabine- capecitabine toxicity was tolerable and manageable to be considered as a new 

standard adjuvant combination therapy in the 2017 American Society of Clinical Oncology 

(ASCO) Clinical Practice Guideline update for potentially curable pancreatic cancer [52]. 

Likewise, combination of gemcitabine with nab-paclitaxel (nanoparticle albumin-bound 

paclitaxel) prolonged overall survival for two months as compared to gemcitabine treatment 

alone [53]. 

A revolution that has marked the history of PDAC treatment is the application of 

FOLFIRINOX that shows significant survival prolongation of one year compared to 

gemcitabine [54]. FOLFIRINOX is composed of four chemo-agents: 5-fluorouracil, 

leucovorin, irinotecan, and oxaliplatin. However, diverse toxicity and side effects including 

severe hematologic toxic effects and diarrhea make this treatment less favorable [55]. A 

modified FOLFIRINOX with less toxicity as an adjuvant therapy in patients with resected 

PDAC tumors has considerably improved median disease- free survival up to 21.6 months 

compared to 12.8 months in the gemcitabine- treated group [55, 56]. Despite the significant 

achievements in the development of PDAC therapeutics, the modest efficacy of the currently 

used chemotherapies highlights the need for developing novel targeted therapies, particularly 

for patients who cannot be offered curative surgery [57]. 
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Targeted therapy in pancreatic ductal adenocarcinoma 

Recent studies have revealed significant pathologic molecular processes that are involved 

in PDAC development or progression [57]. This knowledge has led to the development of 

therapeutic strategies targeting key disease-driving molecules[57]. For example, aberrant 

activation of the epidermal growth factor receptor (EGFR) pathway in PDAC results in tumor 

progression and metastasis[57, 58]. Thus, erlotinib and cetuximab, which inhibit the EGFR 

pathway,  have been used to treat PDAC, and has exhibited tumor-growth inhibitory effects, 

although some molecular aspects of the response are not yet fully understood [57, 59, 60]. 

Furthermore, the combination of erlotinib with gemcitabine improves median survival by two 

weeks compared to gemcitabine treatment alone [61]. Also, several other proteins have been 

examined as potential therapeutic targets [57], including vascular endothelial growth factor 

(VEGF) receptor, which is associated with poor prognosis of PDAC, [62] and is inhibited by 

bevacizumab; the drug is also used in combination with gemcitabine and  improved the 

overall survival to 8.8 months in phase II trial [63]. Unfortunately, phase III trial of 

gemcitabine and VEGF inhibitors (Placebo or bevacizumab) combinations has failed to 

improve overall survival [63]. Moreover, trametinib, which inhibits MEK1/2, downstream of 

KRAS, is also used in combination with gemcitabine [57]. Although preclinical or clinical 

trial studies of these targeted therapies showed promising outcomes, the effects are overall 

marginal and no further targeted concept exists [47, 57]. As such, despite the latest 

improvements, the identification of valid and effective therapeutic targets for PDAC has 

remained an ongoing challenge, which requires further insights into the biology of the disease 

in order to pinpoint novel targetable pathways.  

The existence of genomic transcriptomic data of PDAC tumors has provided an 

opportunity to identify molecular subtypes of PDAC that benefit from particular treatments. 

For instance, recent research has shown that PDAC patients with deficient DNA repair 
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mechanisms may benefit from platinum-based chemotherapy [47, 57, 64]. Moreover, the use 

of such genome dataset can help to advance our understanding of the molecular mechanisms 

of PDAC formation and progression, and thereby to identify new potentially targetable 

molecules. Specifically, the development of computational modelling and quantitative 

methods that integrate large-scale genomic data of cancers with knowledge of molecular 

networks (e.g. protein-protein interaction or gene-regulatory networks) have facilitated the 

identification of molecules that are critical for growth or survival of cancer cells. [65, 66]. 

Applying such computational approaches to transcriptome data of PDAC, our lab identified 

dopamine receptor D2 (DRD2) as a key factor involved in pancreatic cancer cells survival, 

and as a potentially novel target for PDAC treatment [67].  

Dopamine receptors, and their emerging roles in cancer 

Dopamine receptors belong to the G protein-coupled receptors family, which are encoded 

by genes localized on different chromosomal loci, with homology in protein structure and 

function [68]. They consist of two groups: D1- like receptors, including DRD1 and DRD5 

receptors, and D2- like receptor (DRD2, DRD3, and DRD4), which generally have seven 

transmembrane domains and COOH and NH2 terminals (Figure.4). They are associated with 

stimulatory and inhibitory function of cyclic adenosine monophosphate (cAMP) and protein 

kinase A (PKA) [69].  Dopamine receptors are predominantly expressed in the brain, 

cardiovascular system, retina, and kidney [70-72].  
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Figure 4. Dopamine receptor structure. D2-like receptors have seven transmembrane 

domains with short COOH- terminal tail and bigger third intracellular loop than D1-like 

receptor. Phosphorylation sites are found on the third loop as well on the COOH- terminal. 

The glycosylation sites are present on the NH2-termnial [68]  

 

There are two main variants of DRD2, long and short isoforms D2L and D2S, which are 

produced by alternative splicing of exon 6, which is 87 bp long [73]. They differ by 29 amino 

acid residues in the protein structure but share similar pharmacological characteristics [74]. 

However, DRD2 isoforms showed to have different physiological functions, since D2L acts at 

the postsynaptic sites and D2S acts at the presynaptic autoreceptor functions (Figure 5) [75]. 

Several studies have described crucial roles for DRD2 in modulating the cardiovascular and 

renal function and in gastrointestinal motility[69]. In the brain, dopamine receptors have a 

significant role in mediating the effect of dopamine neurotransmitter, as well as motor, 

cognitive, and neuroendocrine functions[76, 77]. The dysfunction of DRD2 has been 
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implicated in a variety of neurological disorders including Parkinson’s disease and 

schizophrenia [77, 78].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. DRD2 receptors isoforms structure representation. The specific 29 amino acids 

differences represent in D2L and absent in D2S that is located in the third cytoplasmic loop. 

The ligand, phosphorylation, and glycosylation sites are shown in both DRD2 isoforms[68].  

 

Interestingly, in Parkinson’s disease, the defective dopaminergic signaling has been 

observed to be associated with lower cancer incidence rate [79]. Recent studies have shed 

light on the contribution of dopamine receptors in cancer progression and metastases in 

different types of cancer including glioblastoma, colorectal, breast, gastric, and PDAC [80-

83]. It has been shown that the overexpression of DRD2 alters signaling pathways that are 

implicated in tumor growth, angiogenesis, and metastasis [84]. Specifically in PDAC, the 
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inhibition of DRD2 function through inhibitory RNAi or pharmacological approaches using 

DRD2 antagonists haloperidol and pimozide reduced pancreatic tumor growth and metastases 

in vitro and in vivo by increasing cAMP/PKA activation [67], leading to a rapid increase in 

the cytosolic Ca2+ level and causing endoplasmic reticulum (ER) stress[67]. Consequently, it 

induces cell cycle arrest at the G1 phase with a higher number of apoptotic cells [67]. These 

observations indicate the potential of DRD2 inhibition as a novel targeted therapy in PDAC. 

Given that DRD2 antagonists are already used in the clinic to manage psychiatric disorders 

(e.g. schizophrenia), the use of DRD2 inhibition approach for PDAC treatment may be 

facilitated through a drug repositioning strategy.  

Haloperidol is a standard antipsychotic drug that is used to treat many psychiatric diseases 

such as schizophrenia with high clinical efficacy in reducing schizophrenia symptoms. It 

binds to dopamine and 1-adrenergic receptors and with modest affinity to histamine H1, 

serotonin 5-HT2c, and muscarinic M1 receptors[85, 86]. It highly metabolizes in the liver. 

Since haloperidol is approved by the Food and Drug Administration (FDA) for the treatment 

of psychiatric disorders, data is already available on tolerability of its side effects, making it 

very attractive candidate for drug repositioning for PDAC treatment.  

Approaches for drug combination in cancer 

The concept of drug combination is commonly employed in treating fatal diseases such as 

cancer and AIDS. The purpose of combination therapy is to achieve synergistic effect, dose 

and toxicity reduction, and to minimize or delay the emergence of drug resistance [87]. There 

are two combination strategies; vertical combinations, where two or more drugs target the 

same pathway at different points, and horizontal combination, in which, drugs have different 

intercellular signaling pathways targets. To determine if drug combinations are 

synergistically affecting tumor growth, preclinical studies (in vitro and in vivo) allow for 

more rational design of clinical setting protocols, which is usually administrating each drug at 
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their maximum tolerated doses (MTDs) [88, 89]. MTDs may result in high toxicity with less 

beneficial effects of the combination due to concentration- dependent drug interactions [90]. 

The in vitro beneficial combination treatment effect is dependent on drug: drug ratio. 

Therefore, constant and non-constant combination ratios are used to define the optimal drug-

combination interaction effects. In the constant ratio method, fixed dilution factors (e.g. 2-

fold dilution) are applied to the IC50 values of both drugs to create a series of drug 

combination doses (above or below IC50 values), in which a constant ratio exists between the 

two drug doses. These fixed dilution factors can be equal, for example 1:1 for drug 1: drug 2 

combinations, or they can be different, for example 2:1 or 1:2 for drug 1: drug 2 

combinations. Non-equal constant-ratio methods can be used to have a wide view on the 

optimal drug combination ratio that can be affected by limitations in solubility or toxicity of 

one of the two drugs [87]. Another method to explore the effect of the combination treatment 

is non-constant ratio, which is maintaining fixed concentrations of one drug and increasing 

concentrations of the other drug [87].     
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Rational and Objectives  

 

Obstacles in pancreatic cancer early diagnosis, disease heterogeneity, and emergence of 

resistance to current therapies highlight an urgent need to identify novel and effective 

therapeutic strategies for PDAC. A promising target in PDAC treatment is dopamine receptor 

D2 whose expression has been found in 80% of PDAC tissues. Our laboratory showed the 

contribution of DRD2 to PDAC growth and metastasis, marking DRD2 as a promising 

potential target for therapy. The commonly used chemotherapy agent gemcitabine exert its 

function by binding to DNA strands during replication and consequently inhibiting DNA 

synthesis process, whereas DRD2 antagonists induce excessive ER stress in cancer cells. 

Therefore, we hypothesize that a combination of DRD2 antagonism with gemcitabine may 

result in improved anti-tumor effects of either drug individually, and may serve as a novel 

therapeutic approach for PDAC treatment. The objective of this study is to evaluate potential 

beneficial effects of a combination therapy involving DRD2 inhibition and gemcitabine in 

PDAC. For this purpose, we have examined the effects of co-treatments with DRD2 

antagonist haloperidol and gemcitabine on viability, apoptosis induction and migration 

capacity of multiple PDAC cells lines, as described below. 
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Assessment of drug concentration- effect on 2D models of PDAC cell lines 

The Sulforhodamine B (SRB) assay, a cell viability determination assay that measures 

cellular protein content, was performed to examine the effect of the combination treatment on 

cell viability in PDAC cell lines Panc-1, MiaPaCa-2, and BxPC-3. These cell lines differently 

express DRD2 with highest expression in BxPC-3 to lowest in Panc-1. Cells were plated in 

96-well plates (11×102- 5×102 cells/well) and 24h after were treated with various 

concentrations of gemcitabine. 24h after treatment with gemcitabine, cells were treated with 

different doses of haloperidol. Assays were developed after 96h post gemcitabine treatment. 

Initially, the concentration of a single drug that inhibits 50% of cell proliferation (IC50) was 

determined by fitting the slope to an inhibitory response curve utilizing GraphPad 7 software.  

 

Assessment of drug concentration-effect on 3D spheroid models of PDAC cell lines 

Cell Titer-Glo, is a cell viability determination assay that measures cellular ATP, which is 

an indicator of metabolically active cells. The assay was used to examine the effect of the 

combination treatment on the cell viability in 3D models of PDAC cell lines Panc-1, 

MiaPaCa-2, and BxPC-3. To generate 3D spheroids, cells were plated in 96- well U-shaped 

plates (5×102- 2 ×103 cells/ well) and on the fourth day after plating, spheroids were treated 

with gemcitabine for 24h, then haloperidol was added. Assays were developed after 12 days 

from plating cells. The concentration of single drugs that inhibits 50% of cell proliferation 

(IC50%) was determined, and the combination treatment was tested.  

 

Knockdown experiments using siRNAs and shRNAs 

DRD2 siRNAs were purchased from Dharmacon Company. siRNA transfection was 

performed with 25 nM final concentration of siRNA using Lipofectamine RNAiMAX 

protocol. Lentiviral-delivery of shRNAs was performed as described previously [67].  
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DRD2 
siRNA 

Sequence  

siRNA-2 CCUGAGGGCUCCACUAAAG 
siRNA-4 GAUGGUGAGUGGAAAUUCA  
siRNA-17 CUGUCAUCGUCUUCGGCAA 
siRNA-18 CCAUGCACCAAACUAAUAA 
 

Quantitative real-time PCR 

The miRNAeasy kit (Qiagen) was used to extract total RNA. 1ug RNA was reversed 

transcribed into complementary DNA (cDNA) using Transcriptor First Strand cDNA 

Synthesis Kit for RT-qPCR (Thermo Scientific Rockford, USA). Real-time PCR reactions 

were prepared using the Lightcycler 480 SYBR green I master kit (Roche), and were run on a 

LightCycler 480 instrument (Roche) according to the manufacturer’s instructions. Relative 

DRD2 mRNA levels were normalized to the expression of the housekeeping gene 18S 

ribosomal RNA. Quantitative values were calculated according to a delta ct method.     

Following primers were used for DRD2 and 18S: 

DRD2: 

Forward: AGCCACCACCAGCTGACTCT 

Reverse: GGGCATGGTCTGGATCTCAA 

18S:  

Forward: AACCCGTTGAACCCC ATT 
Reverse: CCATCCAATCGGTAGTAGCG 
 

Western blotting 

Cells were washed with cold PBS, and protein isolation was performed using a scraper in 

the presence of cold M-PER lysis buffer (Thermo Scientific) containing 1mM Na3VO4, 10 

mM NaF, and anti-phosphatase and protease inhibitor. Total protein was quantified using 

BCA protein assay and was mixed with Laemmli Sample Buffer (Bio-Rad). After denaturing 

the lysate at 98 oC for 5 min, 10 ug of each protein lysate was separated by 10% SDS-PAGE 

and transferred into nitrocellulose membranes. After blocking for 1 hr with 5% (w/v) BSA or 

non-fat milk in TBST (50mM Tris-HCL pH 7.4, 150 mM NaCl, 0.1 % Tween20), 
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membranes were incubated with primary antibodies DRD2 Millipore) 1: 3000 dilution, 

GAPDH (Thermo Scientific) 1:10000 overnight at 4oC followed by secondary antibodies 

(HRP-conjugated anti-rabbit) for 1 hr at RT. Signals were detected using prime ECL plus 

(Sigma) and exposing the membrane to an X-ray film (Thermo Scientific).  

 

Apoptosis Assay -Caspase 3/7 activity 

Apoptosis induction upon treatment with the DRD2 antagonist, gemcitabine, and 

combinations treatment was determined using a Caspase-Glo 3/7 Assay kit (Promega, 

Madison, USA) according to the manufacturer’s instructions. Cells were incubated with 

gemcitabine for 24h, before treatment with haloperidol for another 24h, then the Caspase-Glo 

3/7 reagent in a volume equal to that of the existing medium in each well was added to the 

well. Plates were shook for 30 sec and incubated at RT for 30 min before luminescent signals 

were quantified. 

 

Transwell migration assay (Boyden chamber assay)   

Cell culture Transwell inserts of 8.0 um pore polycarbonate membranes were placed into 

96 well plates. The bottom chambers were filled with 325ul medium containing 20% FBS. 

Then, cells were suspended in 75ul 0.1% serum medium supplemented with DMSO (solvent 

control) or drugs and were added to the upper part of the chamber. Following 4 h incubation 

at 37oC medium was removed and the chambers were washed with PBS. Penetrated cells 

were detached with accutase, and the cell number was determined by Cell Titer- Glo 

Luminescent cell viability assay. 
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Statistics  

All graphs were prepared using GraphPad prism version 8. Data are expressed as mean 

±SD. Student t-test was used to examine the differences between treatment groups, and 

results were considered significant at p-values<0.05. 
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Combination treatment effects on PDAC cell growth 

In this study, we investigated a potential treatment using a combination of haloperidol 

with gemcitabine against various PDAC cells lines to further boost gemcitabine therapeutic 

effects. Various combination approaches, including constant and non-constant combination 

ratios [91] were applied to identify the most-effective combination strategy in vitro. First, 

single drug treatment of gemcitabine (nM) and haloperidol (uM) were applied separately to 

identify IC50 values for each compound in Panc-1, MiaPaCa-2, and BxPC-3 cell lines. 

Figure 6 shows response curves to treatments with the drugs and the IC50 values 

corresponding to each cell line. The results in figure 1 show that Panc1 is more resistant to 

both drugs (with highest IC50s) than MiaPaca-2 and BxPC-3. Moreover, MiaPaca-2 and 

BxPC-3 show greater sensitivity to haloperidol treatment than Panc1 cells. These results are 

consistent with results from our earlier study demonstrating a correlation between expression 

levels of DRD2 and the sensitivity to haloperidol in MiaPaca-2 and BxPC-3 cell lines [67].  

Next, constant-ratio drug combination approaches of 1:1, 1:2 or 2:1 was applied based on 

IC50Gemcitabine:IC50Haloperidol concentrations to investigate effects of combination of drugs on 

cell viability. The 1:1 combination strategy resulted in significantly stronger effects on 

reducing cell viability when compared to individual single treatments in BxPC-3 cells. We 

also observed a similar trend in MiaPaca-2 cells, though the differences were not significant. 

However, this combination strategy did not show any beneficial effects on reducing viability 

of Panc-1 cells. (Figure 7A). Other constant combination ratio approaches of haloperidol and 

gemcitabine (1:2, 2:1) did not show beneficial effects in PDAC cell lines examined (Figure 

7B-C).  
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Figure 6. Response curves showing the effects of treatment with Haloperidol or Gemcitabine 

on the viability of PDAC cell lines. Cell viability was measured by SRB assay 96h post- 

treatment. The effect of treatment on cell growth was plotted as the fraction of live cells in 

each treatment condition relative to that of cells treated with carrier solvent. Error bars 

represent standard deviation (SD) of three experiments done in quadruplicate. 

 
To determine the potential beneficial effects of combination treatment using non-constant 

ratio approach we treated cells with different fixed doses of haloperidol that were 

independently combined with increasing concentrations of gemcitabine. As such, this 

strategy provides an opportunity to explore the combination effects in a wide range of drug 

combination scenarios. 
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Figure 7. The combination treatment effects using 1:1 (A), 1:2 (B) and 2:1 (C) constant drug 

ratio method for gemcitabine and haloperidol on the growth of PDAC cell. Cell lines were 

treated with gemcitabine for 24h, and then different concentrations of haloperidol were 

added. Cell viability was measured by SRB assay 96h post-treatment with gemcitabine. The 

effect of drug treatments on cell growth was shown as the average fraction of live cells in 

each treatment condition relative to that of control cells treated with carrier solvent. Error 

bars represent SD of three experiments done in quadruplicate. * P < 0.05. 
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In total, in each cell line 20-30 combinations were examined, of which some showed a 

significant beneficial effect on cell viability (Figure 8). Although we found conditions with 

potential beneficial combination effects in all examined cell lines, BxPC-3 showed more 

conditions in which combinations had stronger effects compared to single treatments (see 

dashed boxes in Figure 8). Notably, these conditions involved lower concentrations of both 

drugs in BxPC-3 cells in comparison to other cell lines. In other words, beneficial effects 

were observed with higher doses of drugs in MiaPaca-2 and Panc-1 cells.                   

 

Figure 8. The combination treatment effects on the viability of PDAC cells following non-

constant ratio method. PDAC cells were treated with increasing gemcitabine concentration 

for 24h then multiples fixed concentrations of haloperidol were added. Cell viability was 

measured 96h post-treatment with gemcitabine. The effect of drug treatments on cell growth 

was shown as the average fraction of live cells in each treatment condition relative to that of 

control cells treated with carrier solvent. Error bars represent the SD of three experiments 

done in quadruplicate. Boxes indicated by dashed lines mark combination conditions that 
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showed significantly stronger effects on reducing cell viability when compared to their 

corresponding single treatment conditions with gemcitabine and haloperidol separately. * P < 

0.05.  

Combination treatment induces apoptosis  

Given beneficial results on reducing cell viability from 1:1 constant ratio combination 

therapy, we sought to examine if this combination treatment can induce apoptosis in PDAC 

cells. To investigate apoptosis induction active caspase 3/7 was measured in PDAC cell 

lysates after treatment with haloperidol and gemcitabine or either of them. We observed a 

significant increase in Caspase 3/7 activity upon combination therapy in BxPC-3 and 

MiaPaca-2 cells but not in Panc1 cells, in comparison to treatments with single drugs (Figure 

9). These data are in line with results from cell viability analysis of these cell lines, and 

indicate that induction of apoptosis by the combination treatment may underlie reduced 

viability of cells following the combination treatment. 

Combination treatment inhibits cancer cell migration  

DRD2 regulates cellular cAMP levels, which are known to modulate cancer cell adhesion 

and invasion potential in pancreatic cancer [92]. Therefore, we tested whether the 

combination treatment has an effect on cancer cell migration by assessing the motility of 

PDAC cells using quantitative three-dimensional Boyden chamber assays. To avoid potential 

confounding results that could originate from cytotoxic effects of combination therapy, cell 

migration and invasion potential was examined in cells exposed to combination therapy for 

4h only, when the combination therapy did not change the viability of cells upon combination 

therapy (Supplementary Figure 1). The combination treatment reduces cell migration in a 

larger extent than those observed in single treatments with either drugs in all cell lines 

(Figure 10). This effect was observed with a range of drug dosage (low and high) in BxPC-3, 

whereas similar results were obtained only with higher doses of drugs in MiaPaca2 and Panc-

1 cells (Figure 10). 
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Figure 9. Combination treatment with haloperidol and gemcitabine induces apoptosis. Cells 

were exposed to gemcitabine for 24h and then haloperidol for 24h when the abundance of 

active caspase 3/7 was measured in each treatment condition using Caspase 3/7 Glo assay. 

Graphs represent relative average abundance of active caspase 3/7 in treatment conditions as 

compared to controls. Error bars represent SD of two independent experiments performed in 

four replicates. ***p<0.001 and ****p<0.0001 when compared to both gemcitabine and 

haloperidol treated conditions.  
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Figure 10. Inhibitory effects of combination therapy with gemcitabine and haloperidol on the 

migration capacity of Panc-1, MiaPaCa-2 and BxPC-3 cells.  Cells were treated with various 

doses of gemcitabine for 24h and then plated on transwells, migrated cells were counted in 

each treatment condition and normalized to corresponding number of cells in control 

condition after exposure to different doses of haloperidol for 4h. Graphs represent results 

from experiments performed with four replicates as average number of migrated cells relative 

to control condition. Error bars represent SD of four replicates. P-values are shown when 

combination treatments have stronger effects in comparison to both single treatments. 
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Combination treatment effects on 3D spheroid models generated from PDAC cell 

lines  

The above-mentioned observations in 2D monolayer cell culture, prompted us  to explore 

effects of the combination treatments in 3D spheroid cultures. For this purpose, we first 

performed multiple initial experiments to rule out possibility of changes in expression 

patterns of DRD2 in 2D and 3D cultures, and to identify the optimized experimental 

conditions, including appropriate number of initial cells to generate spheroids from each cell 

line, and appropriate time-points to measure cell viability in spheroid cultures.  

To verify similar expression patterns of DRD2 protein in 2D and 3D culture, we examined 

DRD2 expression by western blotting in both conditions. To identify a reliable antibody that 

accurately detect DRD2, a set of commercially available antibodies were purchased and were 

subjected to verification by western blotting in cells in which DRD2 was suppressed by 

independent siRNA molecules or shRNA constructs. Complementing WB assays, DRD2 

mRNA was also measured in the same cells by qRT-PCR.  These experiments showed that 

among the tested antibodies, the Merck Millipore (Cat AB5084P) antibody is reliable for the 

detection of DRD2 protein. As shown in Figure 11A, out of four individual tested siRNAs, 

siRNA-18 showed knockdown for DRD2 at protein level. This observation is in line with 

results from qRT-PCR analysis of the same cells that show knock-down of DRD2 at mRNA 

levels only for siRNA-18 (Figure 11B). To have an independent validation, we also 

performed similar tests in cells infected by two different shRNA-expressing constructs 

against DRD2, which we had previously validated and used in our previous study[67]. As 

shown in Figure 11C-D, the same antibody showed DRD2 knockdown in cells expressing 

DRD2-shRNA as compared to the control condition (pLKO), in line with results from qRT-

PCR analysis of the same cells. Notably, the same antibody was also validated by another 

study, in which authors had tested different antibodies against DRD2 using western blots and 
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immunohistochemistry on mouse striatum in wild type and DRD2-null mice [93]. Therefore, 

we used this antibody to compare expression levels of DRD2 between 2D and 3D culture. To 

examine if the 3D model would change DRD2 protein expression, as it is scholarly 

mentioned for some proteins [94-96], compared to 2D model, we conducted a western blot to 

compare the protein level of DRD2 in both conditions. This experiment showed that the 

expression levels of DRD2 in the tested cells remain similar in both models (Figure 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. DRD2 knockdown in MiaPaCa-2 cells. Panel A shows western blot analysis for 

DRD2 using DRD2 Millipore polyclonal antibody in cells transfected with individual 

siRNAs against DRD2 or control siRNA. Total protein was extracted after 72h treatment 

with siRNAs and equal amounts of cell lysates were analyzed by Western blot. Panel B 

represents qTR-PCR results for DRD2 mRNA in the same cells described in A. Expression 
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values in each condition were normalized to that of 18S and shown as fold-change relative to 

that of si-control condition. Panel C shows western blot analysis for DRD2 using DRD2 

Millipore polyclonal antibody in cells infected through lentiviral delivery of vectors 

expressing shRNA targeting DRD2 (shDRD2#4 and shDRD2#5) or control pLKO vector. 

Total protein was extracted 72h post-infection and equal amounts of cell lysates were 

analyzed by Western blot. Panel D represents qTR-PCR results for DRD2 mRNA in the same 

cell lines described in C. GAPDH served as a loading control in western blots. 

 

 

 

 

 

 

 

 

Figure 12. DRD2 expression in 2D and 3D model of PDAC. Total protein was extracted 

from 2D and 3D models of PDAC cells and equal amounts of cell lysates in each condition 

were analyzed by Western blot using DRD2-Millipore polyclonal antibody. GAPDH served 

as a loading control. 

 

Next, we examined different number of cells to generate spheroids, and investigated the 

reliability of cell viability measurements after 12 days of cultivation. Due to higher 

sensitivity and technical advantage for application to 3D models we decided to use Cell Titer 

Glo viability assay to monitor cell viability. As such, to ensure that results generated by Cell 

Titer Glo assay are comparable to those generated by SRB assay, which was used in 
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abovementioned experiments, we conduct a side-by-side comparison between readouts of 

both methods following drug treatments. Our analysis confirmed that results from these 

methods are similar (Supplementary Figure 2). Therefore, we used Cell titer Glo assay in our 

next experiments to find the optimal number of cells to generate 3D models and then for drug 

sensitivity experiments. As shown in Figure 13, a cell number up to 5000 used for initial 

seeding of cells resulted in reliable quantitative measurements of cell viability at day 12 post-

seeding for all cell lines.  According to these observations and considering the proliferation of 

each cell line we chose to use 500, 1000, and 2000 cells for Panc-1, MiapaCa-2, and BxPC-3, 

respectively to generate spheroid cultures for drug treatment experiments. 

 

 

 

Figure 13. Optimization of the 3D spheroid culture of PDAC cell lines for drug treatment 

experiments. (A) Phase light images of spheroids generated from different initial number of 

cells (mentioned on top of images) for each PDAC cell line over a period of a 12-day 
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cultivation. (B) Cell viability was measured at day 12 post-seeding using cell titer glo assay, 

and was visualized as luminescent signals vs. number of initial cells seeded. Error bars 

represent the SD of representative experiments done in replicates.  

 

Then, we compare the treatment results from 3D spheroid to 2D monolayer culture 

systems; we applied the same drug dosage that had been tested in 2D culture in our 3D 

spheroid assays. As shown in Figure 14, haloperidol reduced cell viability in 3D spheroid 

culture of all cell lines examined. Interestingly, haloperidol effects on viability of BxPC-3 

cells, which had shown the highest sensitivity among cell lines in 2D culture, was even 

stronger in 3D culture. That is the IC50 value of haloperidol was lower in 3D culture 

compared to 2D culture (4uM and 20uM in 3D and 2D cultures, respectively). On the other 

hand, we observed resistance to gemcitabine treatment in 3D spheroid generated from BxPC-

3 cells (Figure. 14). A trend toward resistance to gemcitabine treatment was also observed for 

low concentration of the drug in spheroid of Panc-1 cells, but not for those of MiaPaca-2. 

(Figure.14). Finally, combination of haloperidol and gemcitabine did not result in a beneficial 

effect on reducing viability of cells as compared to those from treatment with either of these 

drugs. (Figure.14). 
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Figure 14. Effects of haloperidol and gemcitabine individually or in combination on viability 

of 3D spheroid models generated from different PDAC cell lines. Spheroid models were 

treated with increasing gemcitabine concentration for 24h then multiple concentrations of 

haloperidol were added following a 1:1 constant ratio strategy. Cell viability was measured 

for all conditions 4 days (A) and 8 days (B) after treatment with gemcitabine. The effects of 

drug treatments are shown as average of cell viability measures in each treatment conditions 

relative to those of control conditions treated with carrier solvent. Error bars represent SD of 

three experiments done in quadruplicate.  
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Conventional chemotherapies, including gemcitabine, in pancreatic ductal 

adenocarcinoma are the standard treatment procedures for the metastatic disease. Despite 

improvements made by chemotherapy in clinical management of the disease, the emergence 

of the resistance to chemotherapies remains a major issue.  Combination treatment 

approaches using targeted therapies may help to overcome this obstacle and to improve 

patient survival.  

In this study we examined the potential benefits of a combination treatment with DRD2 

antagonist haloperidol and chemotherapeutic agent gemcitabine in inhibiting cell growth and 

invasion potential of pancreatic cancer cells in vitro. Our data suggest that this combination 

treatment has potential benefits for reducing viability and migration of PDAC cells, when 

compared to individual drug treatments. However, the extent of these effects varied between 

different PDAC cell models examined. A similar pattern was observed in our previous study 

when we observed stronger anti-growth effects for DRD2 inhibitors in PDAC cell lines that 

have higher endogenous levels of DRD2. As such, we anticipate that higher expression of 

DRD2 may be indicative of more sensitivity to the treatment. Although, we were not able to 

examine this possibility thoroughly in this study, we identified and validated a reliable DRD2 

antibody, which can serve for screening purposes in the future. Our results are also in line 

with previous studies reporting that the deficiency of DRD2 promotes ER stress, which 

eventually triggers cell cycle arrest and apoptosis. Taken together our results are promising in 

a way that a combination therapy using DRD2 inhibitors and gemcitabine may have better 

anti-cancer effects than treatment with gemcitabine alone. However, this needs to be 

examined and validated using better models of the disease. We attempted to test our 

observations in 3D models generated from PDAC cells lines in vitro. However, we realized 

that these models need further optimization and eventually do not recapitulate important 

features of tumor microenvironment, which are crucial in PDAC. Therefore, we believe that 
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the effects of these drugs should be examined in appropriate in vivo models in future studies.  

ONC201 and ONC212, which are small- molecule inhibitors against DRD2 activity, show 

growth-inhibitory effects in PDAC in vivo as a single agent or in combination with 5-

fluorouracil, irinotecan, and oxaliplatin [57, 97, 98]. Notably, the inhibitory effect of 

ONC201 and ONC212 is also through suppressing Akt and ERK pathways, while DRD2 

inhibitors such as haloperidol and pimozide did not affect these pathways in PDAC [67].  

Nevertheless, all these agents show a common effect in suppressing PDAC growth, further 

supporting the potential of DRD2 as a therapeutic target. 

Interestingly, the incidence rate of multiple cancers including colon and prostate cancers 

among schizophrenic patients who received DRD2 inhibitors is lower than the general 

population [99]. DRD2 overexpression has been detected in 80% of PDAC cases, as well as 

in leukaemia and glioblastoma. It has also been shown to have significant impacts on critical 

signalling pathways involved in tumor survival, angiogenesis, migration and metastases 

[100]. Accordingly, DRD2 inhibition therapy has been examined for multiple cancers (Table 

1). In PDAC, DRD2 inhibition has resulted in an anti-cancer activity by inducing cell death 

through activating the cAMP/PKA pathway, regulating Ca2+ levels and subsequently 

increasing endoplasmic reticulum (ER) stress, thus inducing apoptosis (Figure 15) [67]. In 

glioblastoma, however, an integrated mitogenic signalling between DRD2 and EGFR seems 

to mediate the anti-cancer effects of DRD2 inhibition [100]. These observations suggest that 

the mechanisms by which DRD2 signalling contributes to cancer appear to be cell-type 

dependent.  

DRD2 involvement in cancer stem cells (CSCs) was noted when an anti-CSC activity of 

Thioridazine, which is DRD2 antagonist, impacted the leukemic stem cell function in 

forming leukaemia in vivo [101]. Given the involvement of CSCs in cancer initiation, 

development and resistance to treatment, DRD2 inhibition may have a broad clinical 
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significance for cancer therapy. PDAC stem cells are resistant to all type of treatment 

including chemotherapy and radiotherapy, leading to relapse and metastasis of untreatable 

tumor. Indeed, poor prognosis and metastasis in PDAC are associated with the enrichment of 

CD133+ and CXCR4+ stem cell populations in primary pancreatic cancer [102, 103]. Taken 

together, the combination of DRD2 antagonists and gemcitabine may represent a promising 

treatment outcome by targeting both tumor bulk and CSCs. The refinement therapy of DRD2 

antagonists and gemcitabine can benefit other malignancies, which are influenced by DRD2 

overexpression and treated with gemcitabine.   

 

Table 1. Pre-Clinical studies on DRD2 inhibitors in various cancers, adapted from [57]. 

 

 

 

 

 

 

 

 

Cancer Type DRD2 Antagonist PubMed Reference 

Pancreatic cancer Haloperidol and Pimozide PMID: 27578530 

Glioblastoma Haloperidol PMID: 24658464 

Glioblastoma ONC201 PMID: 26474387 

Colorectal cancr ONC201 PMID: 29357916 

Pancreatic cancer ONC201 PMID: 27233611 
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Figure 15. Proposed mechanism of DRD2 inhibition pathway: DRD2 inhibitors increase 

adenylyl cyclase (AC) that elevate cAMP/PKA level and cause high cytosolic calcium 

release from ER. Eventually, ER stress activates the transmembrane protein kinase (PERK), 

leading to activation of series apoptotic proteins, adapted from [57]. cAMP/PKA: cyclic 

adenosine monophosphate and protein kinase A. ER: endoplasmic reticulum.  
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The high mortality and short survival rates of PDAC patients make the small treatment 

advances to have an immediate and significant clinical impact. The improving 

chemotherapeutic approaches that could be applied to PDAC patients would benefit the 

majority of patients who cannot be offered surgery and second line treatment alternative. 

Therefore, DRD2 inhibitors provide an opportunity because of their known and manageable 

side effects. As these inhibitors have been in clinic for treatment of psychiatric disorders, a 

drug repositioning can shorten the time needed to perfume clinical trials to prove their 

efficacy in cancer patients. Preclinical studies of DRD2 antagonists alone or in combination 

with conventional chemotherapy could determine effective drug dosage with minimum side 

effect. The first-in man- studies using dosage approved to treat schizophrenia could provide 

an evaluation on the tolerability and beneficial effects of the combination therapy of DRD2 

antagonists and standard chemotherapy in patients with metastatic PDAC. The recommended 

dosage by the Schizophrenia Patient Outcome Research Team guideline is ranging from 6 to 

20 mg/day of haloperidol in adults with acute schizophrenia, and 6 to 12 mg/day for 

maintenance therapy. To determine the safety and tolerability of haloperidol with standard 

chemotherapy in patients, an intra-patient-dose-escalating scheme could be applied and 

maximum tolerated dose (MTD) could be determined and overall safe dose recommended 

(SDR) for routine application. Although PDAC is a heterogeneous disease, DRD2 is found in 

about 80% of patients tumors, suggesting that the majority of patients would benefit from a 

combination therapy of DRD2 inhibitors and chemotherapy. 
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Figure S1. Investigating potential effects of short-time combination therapy with 

gemcitabine and haloperidol on the survival of PDAC cell lines corresponding to migration 

assay experiments.  Cells were patted in 96 well plates and treated with various doses of 

gemcitabine for 24h. Then cells were treated different doses of haloperidol for 4h, when 

migration assay was performed. Cell viability was measured by Cell- titer glo before (time 
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0h) and after (time 4h) treatment with haloperidol. The effect of treatment on cell growth was 

plotted as the fraction of live cells in each treatment condition relative to that of cells treated 

with carrier solvent. Viability of cells at time 4h was compared to the corresponding cells at 

time 0h for each condition, to evaluate the possible effect of combination therapy on viability 

of cells within the 4h co-treatment period. Error bars represent standard deviation (SD) of 

three experiments done in quadruplicate. 

 

 

 

 

 

 

 

Figure S2. Comparison of results of cell viability measurements between two methods of 

SRB and cell titer-Glo assay. Response curves show effects of treatment with Haloperidol, 

Gemcitabine, and combination on the viability of MiaPaCa-2 cell line. Cell viability was 

measured by SRB (left) and Cell- titer glo (right) assays 96h post- treatment. The effect of 

treatment on cell growth was plotted as the fraction of live cells in each treatment condition 

relative to that of cells treated with carrier solvent. Error bars represent standard deviation 

(SD) of three experiments done in quadruplicate.. 
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