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ABSTRACT

Continuous response measurement offers a data-rich trace of a listener’s

experiences of music in time. Listeners’ responses are most often studied in

collections—each a set of time series of the same response measure to the same

stimulus from multiple listenings. Inter-response variability and the challenges of

time series analysis complicate the interpretation of these collections. This thesis

describes traditional and novel methods of analyzing collections of continuous

responses to music with the goal of identifying what information can be found in

these collections before trying to establish possible relationships to the features of

the stimulating music. Besides mathematical investigations of these analysis meth-

ods, their potential outcomes are assessed by applying each to forty experimental

collections of continuous rating responses and four artificial collections of unrelated

continuous rating responses. The traditional analyses studied include the average

response time series and Pearson correlations between continuous responses as a

measure of response reliability. The chapter on novel techniques introduces activity

analysis and coordination tests, evaluates measures of the relative significance of

time points in these collection, and applies cluster analysis in search of distinct

patterns of response to the same stimuli. The results of these analyses suggest that

though music does not provoke the same continuous response from all listeners,

musical works can induce distinct and repeatable listening experiences which are

measurable in collections of continuous responses.

iii



ABRÉGÉ

L’évaluation des réactions continues permet d’obtenir un tracé riche en

données de l’expérience des auditeurs par rapport à la musique au fil du temps. En

règle générale, les réactions des auditeurs sont analysées par ensembles, c’est-à-dire

par groupes de séries chronologiques portant sur de mêmes relevés de réactions au

même stimulus provenant d’écoutes multiples. La variabilité entre les réactions

et les défis inhérents à l’analyse des séries chronologiques rendent l’interprétation

de ces ensembles encore plus complexe. La présente thèse décrit des méthodes

traditionnelles et nouvelles d’analyse d’ensembles de réactions continues à la

musique afin d’identifier quelles informations peuvent être recueillies dans ces

ensembles avant de tenter d’établir des liens possibles avec les caractéristiques

de la musique stimulante. En plus de létude mathématique de ces méthodes

d’analyse, leurs résultats potentiels ont été évalués en appliquant chacune d’entre

elles à quarante de ces ensembles d’évaluation de réactions continues ainsi qu’à

quatre ensembles artificiels d’évaluations de réactions continues non apparentés.

Les analyses traditionnelles étudiées comprennent les séries chronologiques

moyennes et des corrélations de Pearson entre les réactions continues comme

évaluation de la fiabilité de la réaction. Le chapitre portant sur les nouvelles

techniques commence par une présentation de lanalyse de l’activité et des tests de

coordination. Par la suite, il évalue les mesures de pertinence des repres temporels

de ces ensembles, puis il rend compte de l’analyse par regroupements visant à

identifier des modèles précis de réactions aux mêmes stimuli. Les résultats de ces
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analyses sous-tendent que bien que la musique ne provoque pas la même réaction

chez tous les auditeurs, l’œuvre musicale peut créer des expériences d’écoute

distinctes et reproductibles pouvant être évaluées dans des ensembles de réactions

continues.
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CHAPTER 1

Introduction

1.1 Continuous responses to music
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Collection of felt emotional arousal responses to the same stimulus

Figure 1–1: Above is a single response, one participant’s rating of their felt emo-
tional arousal while attending a live performance of a madrigal. Below is a collec-
tion of responses, 35-Arc2A, from 17 participants performing the same task to the
same stimulus.

Continuous response data are generated by the rapid repeated sampling of a mea-

sure of response to a stimulus. These time series quantify reactions within the time

span of seconds and minutes rather than days or years. Human responses can be

measured through neurological or psychophysiological activity, through motion, or

through self-evaluation. This thesis will address mainly the analysis of collections

of the continuous responses to music as measured by continuous ratings—a type of

behavioural measure—however many of the approaches described in the following
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chapters can be adapted to explore data from other forms of behavioural response

and continuous physiological measures.

Experiments measuring continuous responses to music often collect the

same response measures from a number of people as they are presented the same

musical performance. Others adapt the selection of stimuli to each participant

while trying to capture the same kinds of responses (e.g., chills). In the latter

case, it is not possible to compare the complete temporal profiles of participants’

responses. Figure 1–1 shows a single response and the collection of responses to

a live performances of the Renaissance madrigal Il bianco e dolce cigno composed

by Jacques Arcadelt. Response collections such as the lower graph shown in figure

1–1 make it possible to consider how these responses resemble each other and how

they might be related to the stimulus. Handling these collections of stimulus and

measure related responses, rather than individual responses or sets of responses

collected to different stimuli, is the focus of the work that follows.

1.1.1 Behavioural responses

In the last century, the most commonly collected continuous responses to mu-

sic were through behavioural measures, and these measures are still quite popular.

These time series have also been called self-report responses or self-evaluations

because they require participants to assess and express their own experience

moment-by-moment. Such tasks can be more challenging for participants to per-

form than post-stimulus judgments, and many studies report having participants

practice the task before recording responses to the experimental stimuli.
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Behavioural measures have used a number of different collection methods.

Some reports are made on a continuous scale via positioning a physical object

like rotating the pointer on a dial or shifting the knob on a slider. Continuous

measures are also collected using virtual versions of these devices on computers

or handheld devices with touch interfaces, with GUI sliders or two-dimensional

rating fields from which cursor positions are recorded. These responses fall on

continuous scales: participants report their position between extremes such as

pleasant to unpleasant or excited to calm. Other continuous response measures are

more categorical, using button interfaces to report isolated events (e.g., perceived

phrase boundaries or experience of chills) or to choose between multiple categories

(e.g., a list of words describing the music, or a list of elements of music to which

they are attending.)

GUI interfaces are often more economical to use, requiring only specialised

software to run on standard lab equipment. These, however, can be quite limited

in the feedback they give to participants, requiring users to look where they are

clicking, tracing, or dragging within a range set on a screen. Some physical devices

incorporate haptic feedback via springs to help participants feel their position

on the rating scale. One important example of this was the Simenon used by

Frede Nielsen in his influential experiments in the early 80’s. This device was

a spring-mounted potentiometer that participants squeezed to indicate tension

[Nie87].
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1.1.2 Measures of experience vs measures of perception

Some behavioural responses ask participants to report their perception or

assessment of the stimulus, called “perceived” responses. These measures are

often of the emotion expressed by the music or performers. The other focus of

continuous responses are of the subjective experiences of participants. “Expe-

rienced” responses are recordings of participants’ subjective responses to the

stimulus. Behavioural measures of experienced responses include reporting their

emotional state while the music plays or what aspects of the music are attracting

their attention. Other uses of continuous responses include judging the quality of

performances, which may be treated as perceived or experienced, depending on the

context. While the debate continues on how and whether music induces emotions

in listeners, both types of response measures seem to be of theoretic interest.

1.1.3 Contrasting continuous measures

Studies have found significant differences in continuous ratings depending

on what aspect of their response participants are measuring. A striking differ-

ence between ratings of “tension” and “aesthetic response” published by W. E.

Fredrickson show strong contrasts in the average response time series to the same

stimuli [Fre95]. In particular, the average time series had much greater variability

for the ratings of tension than for that of the ratings aesthetic response. Whether

this is due to different rating strategies or less contraditory responses is not clear.

1.1.4 Psychophysiological responses

Psychophysiological measures used to assess responses to music are usually of

biosignals measured using non-invasive sensors such as surface electromyography
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electrodes for facial muscle activation and finger cuff photoplethysmyography

sensors for blood volume pulse (BVP). These measures are generally intended

to measure aspects of participants’ experiences as they are expressed physically,

and often involuntarily, within the time during which the stimulus is presented.

Common measures are skin conductance (SC), heart rate, skin temperature,

facial eletromyographic activity (EMG) of the zygomaticus and the corrugator,

and respiration. Some are reportedly related to arousal and attention, such as

skin conductance and heart rate, while others are presumed to give signals of

emotional responses, principally positive valence emotions through the smiling

muscle zygomaticus and negative valence emotions through the brow-furrowing

corrugator.

1.2 A history of analysing continuous responses to music

Continuous responses to music have been collected with excitement for more

than half a century. One early experiment was a complex study of psychophys-

iological responses and verbal accounts of subjective experience recorded to

polygraph paper [Fra56]. Several responses to the same stimuli were collected, a

total of 38 across three groups with distinct levels of musical expertise. Most of the

analysis was performed through study of individual responses, counting different

behaviours as seen across groups. From the beginning, musical experience has

been the first choice in trying to explain the variability of responses to music, over

factors such as pre-listening mood, arousal, or stimulus familiarity.

Once signals began to be collected digitally, the analysis of the response

average became common practice. From Nielsen’s analysis of tension ratings
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[Nie87] to the present day, this method of summarising a collection of responses

is standard, and seen in two-thirds of the publications reviewed using continuous

responses to music. Some publications interpret the plotted average time series

visually, while others apply to it more sophisticated statistical and numerical

techniques.

These responses are collected in time, but analyses have often been per-

formed out of time. For many of the early studies trying to compare populations’

responses, the simplest method of evaluation was to average each response lon-

gitudinally to a single datum [Fra56]. This turns the collections of time series

into much more manageable sets of discrete points to be compared between

different stimuli [VVS93], responses measures [Lyc98], and participant groups

[Fre99b]. Work by Ruth Brittin and others defended using continuous ratings in

this fashion by showing that the longitudinal averages were quantifiably different

from post-stimulus rating judgments [BS95] [DC01]. This type of response- or

participant-wise reduction is typical for most analyses of psychophysiological

responses[Kru97] [Ric04], more popular than average time series. This is because

many meaningful features in these signals are assessed over time periods of minutes

[IM99] or seconds for particularly controlled stimuli, [SKS06] and these features

could not be evaluated from sensor data averaged across responses.

According to Diane Gregory’s review of the reliability of continuous responses

[Gre95], the earliest published example of correlating continuous response time

series was in a 1989 article by Deborah Capperella. Many experiments performed

with the Centre for Music Research of Florida State University requested that
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some percentage of participants provide a second continuous rating of the stimuli

to test the reliability of participants results. The consistency of raters’ responses

would be assessed by averaging the Pearson product-moment correlation coeffi-

cients between the first and second ratings from each retest participant.[Mad97].

This assessment of reliability was also used to compare responses between partic-

ipants [Kru96], average response time series of different collections to the same

stimuli [Fre99a], and average response time series to continuous representations of

aspects of the music [MGF97].

Correlations of continuous responses have continued to be used as statistical

test of reliability despite Schubert’s 2002 article highlighting the problem of

serial correlation in time series [Sch02]. Rather than abandon the practice, wider

awareness of time series analysis has resulted in researchers applying different

manipulations of response data [CJSK+10] prior to correlations as well as more

complicated correlation techniques being proposed [VKWL06].

Continuous responses have been evaluated and discussed in relation to the

stimuli since the very first responses were recorded to music, but models of re-

sponses have been slow to come forward. An influential first step was the multiple

regression technique Schubert proposed first in his thesis [Sch99a]. With a set

of time series descriptions of the stimulus, these models try to explain variations

in response values over time using a mixture of numerical representations of

dynamic aspects of music. In the 2000’s, many “one-of-a-kind” multiple regres-

sion models/analyses were published, most being variants on linear regression

[KCJ05][LTE+08].
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In trying to fit loudness curves and one-dimensional reductions of harmony

to average response time series, many have confronted the issue of response lag.

Cross-correlation techniques have been used to quantify what delay between stim-

ulus data and response data result in the tightest fit. For behavioural measures in

particular, changes in ratings appear to follow stimulus events by 1 to 3 seconds

[Sch04], but the duration of this lag varies between participants and across stim-

ulus effects. Attempts to model continuous responses from stimulus information

invariably parametrize lag, usually per stimulus feature, to handle this issue in

self-report measures of response.

Analysis techniques have diversified since the turn of the century. The

introduction of functional data analysis (FDA) to this research in 2004 has been

followed by applications in a number of papers, but other “novel” approaches

have not spread as far. Models of averaged responses have been attempted using

non-linear regression [FS09], multilinear modelling [DMR06], and neural networks

[CC09]. Other models have tried to fit the variance in these collections with

functional principal component analysis [LNVR07] and decision trees [TMCV06].

Instead of trying to explain the data from the stimuli, other new techniques

have focused on exploring the robustness of continuous response collection results.

Some have tried to identify moments of extreme responses and degrees of coor-

dination in physiological and behavioural responses [GNKA07a] [Sch07], while

others have tried to characterize the time course of continuous responses [BBL+09]

[TWV07]. Finding the reliable information in these complicated data sets can only

improve discussions of collective and individual responses to music in time.
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Continuous responses have been discussed in many neighbouring disciplines.

This type of data have been recorded to audiovisual stimuli such as movie excerpts

[LC10] and TV commercials [RT04] for marketing [WM08], emotion [MR09],

and political communication [Iye11] research. Experiments using music as a

stimulus has been published in music therapy, music education, music theory,

music cognition, information theory, and psychology journals of international

repute. From a database of 66 publications spanning 55 years, continuous response

to music experiments have been reported in at least 24 journals, with the highest

concentration of articles in Music Perception and the Journal of Research in Music

Education. These two have been publishing articles on the topic steadily for more

than 15 years. Similarly, researchers have been exploring continuous responses

around the world. Authors in the article database worked from more that 50

research and educational institutions found in 15 countries across four continents.

The diversity and distribution of the interested community likely accounts for both

the breadth of analysis methods published and the rarity of debate on methods

relative merits.

This thesis reviews traditional techniques and presents some novel methods

for exploring collections of continuous responses in and of themselves. Before ex-

plaining these data in terms of the stimuli, we need to know what information they

contain. By comparing the performance of these methods on several collections of

responses, the advantages and limitations of these techniques can be more fully

explored than is possible in the single data set discussions of the published articles

mentioned above.
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1.3 Introducing the data sets

The analyses that follow have been applied to data sets collected for a

number of earlier experiments. The data sets are of continuous ratings, though the

measures are not all the same. Each set includes participants’ responses to more

than one stimulus, and some contain different audiences responses to different

performances or productions of the same musical work.

For the purpose of these analyses, the ranges of all behavioural response

collections were linearly transformed to the interval [0,1], and responses showing

no changes in ratings were excluded as “outliers” under the assumption that this

meant the participant chose not to perform the task (see section 2.3). Below

are explanations of the behavioural data sets used in this thesis. The appendix

contains tables with more detailed descriptions of each collection. The data

collections used in examples throughout this thesis are referred to by the names

listed in these tables, of the form “16 - MorningV” and “35 - Arc2A” which specify

the collection index and collection tag name.

Set AR1: collections 1 to 6

The first set of response collections was from the first of a three-session ex-

periment testing the Continuous Audience Response System (CARS) at McGill

University in 2009. In this session, 45 university community members rated con-

tinuously their felt emotions on one of three scales via iPod Touch devices. Fifteen

participants rated the valence of their emotions (negative to positive), on a one-

dimensional slider GUI. Fifteen participants rated the arousal of their emotions

(weak to strong) on a similar one-dimensional slider. The last 15 participants rated

10



both dimensions simultaneously by reporting their felt emotions via finger position

on a square surface 2D GUI with the horizontal dimension representing emotional

valence and the vertical emotional arousal. For the purpose of the following analy-

ses, the 30 arousal ratings and 30 valence ratings are collected together regardless

of whether this was the only dimension of emotion the participant reported or

one of two. Participants were given a chance using the reporting devices during a

training piece, and then their responses were recorded to three stimuli of contrast-

ing genres. The first piece was a Renaissance madrigal, the second one movement

from a Romantic string quartet, and the last an Electroacoustic work for a digital

instrument, the soprano T-stick. This data set is described in Table 5-1.

Set Kor: collections 7 to 18

The second set of data was collected by Mark Korhonen at the University

of Waterloo [Kor04]. The responses recorded were two-dimensional reports of

appraised emotion (valence × arousal), collected using Schubert’s EmotionSpace

computer GUI [Sch99b], from 35 participants of diverse musical background.

The stimuli were six excepts of Classical music from the Naxos recording “Dis-

cover Classical Music, Vol. 1”. The Kor data set contained 12 collections of 35

responses, with one valence and one arousal collection per stimulus. More details

can be found in Table 5-2 of the appendix.

Set Moz: collection 19 to 26

The third set of data was collected from participants attending concert

performances of the Boston Symphony Orchestra (one, a live concert, the other, a

digital reproduction using stereo sound and HD video presented in a concert hall).
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The stimuli were four orchestral excerpts by W. A. Mozart. Participants rated

their felt emotional intensity on handheld slider potentiometers with the range

marked from “Strong” to “Weak”. These eight collections are described in Table

5-3.

Set AoD: collections 27 to 34

These behavioural data were collected as part of the Angel of Death project

[MVV+04]. Responses were recorded during two live concerts, one in Paris,

France, and the other in La Jolla, California; at each, two groups of participants

continuously rated their experience through two versions of Roger Reynold’s Angel

of Death. One group rated the force of emotion (force emotionnelle in Paris)

they experienced in response to the music, while the other rated resemblance

(familiarité). This second measure was a subjective assessment of how much the

current music resembled the musical materials presented in the piece up to that

point in time. Table 5-4 of the appendix describes these collections in more detail.

Set AR3: collections 35 to 40

This fifth set of experimental response collections were collected at the last

of the three-session CARS experiment. In a participating audience of 70, 30

rated continuously their felt emotions in response to the three live performances,

using the two-dimensional GUI interface used in AR1. The stimuli were live

performances of the three stimuli of AR1, each different interpretations than that

of the recordings. There were technical problems with the data collection during

this experiment, resulting in number of responses being lost. 17 complete responses
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were collected for the first stimulus, 8 for the second and all 30 for the last. These

six collections are presented in Table 5-5.

Set Rdm: collections 41 to 44

The last set of response collections are were constructions of unrelated

responses. When responses of the same measure to the same stimulus show as

such diversity, it is necessary to consider whether these responses may in fact be

random, unrelated to the stimulus or task. To challenge this concern, these four

unrelated response collections were assembled to explore whether and how analysis

techniques differentiate these from the experimentally related responses gather in

the collections 1 to 40.

Each of these unrelated response collections took one randomly selected

response from each of the 40 behavioural response collections, resulting in a

collection in which each response differs from all others in stimulus and/or measure

of response. Two of these collections excerpt the first two minutes of the selected

responses; two excerpt the last two minutes of each response. The responses were

sampled at 1 Hz, using simple downsampling as described in the next chapter, so

as to have all responses recorded at the same rate.

These collections took excerpts from either the beginning or the ends of re-

sponses to capture what seem to be an artifact of rating responses unrelated to

stimuli. As will be demonstrated in the following chapters, rating response collec-

tions often show more agreement at the beginnings of responses than throughout

the rest of these series. This may be the result of collection devices which are

reset to a specific value between stimuli (say the middle of the rating range), or
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a consequence of participants’ need to listen for a few seconds to formulate their

initial response. Whatever the cause, this higher degree of agreement may be

a consequence of a stimulus beginning, rather than one stimulus in particular.

Endings, in contrast, do not regularly show greater inter-response agreement than

the middles of rating responses. By using unrelated response collections aligned by

beginnings and by endings, the contribution of this “beginning” effect can be as-

sessed in comparison the the endings collections and its impact can be considered

on the experimental collections.

1.3.1 Notation and terminology

To discussion analysis techniques, it is necessary to establish a common

language of description. This section presents the mathematical notation used

through out this thesis to describe the numerical manipulations of data collections.

A collection of M continuous responses, represented by a capital letter such as

X , is composed of synchronously sampled responses xr such that X := {xr}, for

r ∈ {1, 2, ...,M}. In sequence notation, the collection can also be expressed as the

ordered set X = {x1,x2, ...,xr, ...,xM}.

Each response xr, is recorded as a time series, xr := {xr,i} for i ∈ {1, 2, ..., N},

with N being the number of time points at which the response is sampled. Each

response can also be written as: xr = {xr,1, xr,2, ..., xr,i, ..., xr,N}.

Lowercase bold font is used to notate both the single continuous response

and the time series measured from it. Each datum, in lowercase italics, is a

single response sampled at a time point, ti, such that xr,i = xr(ti). Unless

otherwise specified, time points are sampled on a regular interval, ∆t = ti − ti−1,
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∀i ∈ {2, ..., N}, and the sample frequency or sample rate, in Hz, is the inverse of

this interval in units of a second.

The responses in a collection X are all sampled on the same one-dimensional

measure. Though some experiments simultaneously collect multiple responses or

dimensions of response from participants, analyses are generally applied to only

one dimension of response at a time. While it is possible, and likely interesting,

to study such responses as multi-dimensional time series, for the purpose of this

thesis composite data sets are separated into distinct one-dimensional stimulus-

and participant-related response collections. The response measure recorded in the

series xr takes values from R (the real numbers) though in many cases the range

of values is restricted to a finite number of values, a finite continuous interval in R,

or transformed to have a particular distribution. Every response is a set of data

in two dimensions, namely, time and response measure value. Thus a collection

of responses is a set of data in three dimensions: participant or response number

(ID), time of measurement, and response measure value. All of the statistics that

follow depend on removing information from one or several of these dimensions.

The notation used here, and the experiments from which the data are derived,

treat the participants and time as independent variables, and the measured

response values as the dependent variable to be interpreted.

Many figures in the following chapters will present the assessments or effects

of analyses on every behavioural collection in figures similar to figure 1–2. These

serve to show variation and trends in collection-wise characteristics and give

a sense of the distribution of values or effects possible for response collections
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Figure 1–2: Example all-collections graph. Dots represent a datum describing each
collection. One graph plots the number of responses included in each collection,
while the other presents the duration of each collections’ stimuli/responses time
series in seconds.

similar to those used here. The x dimension presents the collections by index

number, with data sets separated by vertical lines, and the y dimension is in units

relevant to the statistics being reported. In figure 1–2, the response numbers

graph shows that while most collections are made of responses collected from

30 to 35 participants, a few collections in one set (AoD) include upwards of 60

responses, while two in AR3 have fewer than 10. In the second graph, showing the

duration of the responses recorded, the AoD set is again distinct, with an average

duration above 2000 seconds per collection while the median response duration is

205 seconds. Other factors that distinguish these data sets are the participants

whose responses were collected, the devices used to collect responses (either one-

dimensional or two-dimensional, for example), and the focus of measurement

(experience or perception). While the numerical analyses that follow treat all
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the collections systematically, the distinctions between sets will be discussed

throughout, as they are exposed by each analysis.
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CHAPTER 2

Continuous response data preparation

Before proceeding to analyses, it is often necessary to massage a collection’s

responses to better expose pertinent information. These treatments remove

information that is considered redundant or irrelevant to the research question.

2.1 Changing sample rate

Time series are, by and large, measurements sampled at a regular tempo-

ral interval. It is possible to collect data at thousands of samples per second,

however human responses, particularly behavioural responses to music, are not

expressed at such high frequencies. Unnecessarily high sample rates give a false

sense of precision while complicating many types of analyses. Traditional signal

analysis proposes reducing the sample rate of a signal to twice that of the highest

relevant frequency, called the Nyquist frequency, to minimize redundancy. At

least one study has tried to estimate such a threshold to downsample continuous

response data from their quantification of the dynamic information in the stimulus

[CJSK+10].

When downsampling, it is important to not go below the frequencies in which

signal information is present. For example, the 0.1 Hz sample rate in figure 2–1

seems to skip relevant contour information while the 1 Hz rate is very close to

the original 10 Hz signal, with a tenth of the points describing it. For behavioural

responses, sample rates used are generally between 0.5 Hz and 10 Hz, while
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physiological responses are collected and analyzed at higher frequencies, from 64

Hz to several kH.
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Figure 2–1: An excerpt of one response for the data collection 3-Sch1A from set
AR1, sampled at 10 Hz and downsampled (simple) to 1 Hz and 0.1 Hz.

There are several ways to implement downsampling. Given a collection

X := {xr} with each response xr = {xr,i} for i = {1, 2, ..., N} and a sample rate

of 1/∆t, downsampling is simplest when the new sample rate is an integer ratio

of the original. When the rates are not so aligned, it is necessary to resample to

the continuous responses by interpolating between the recorded points. Depending

on the response, the best interpolation method may be step-wise (for some rating

responses), nearest neighbour (for some categorical assessments), linear (for some

other rating types) or higher-order, such as polynomial or spline (for smoother

signals). The interpolation method may cause undesirable consequences for some

analyses; it is necessary to determine whether connectedness, smoothness, or

temporal accuracy is most important before choosing the resampling method.

If the sample rate is to be reduced from 1/∆t to 1/∆t′ such that ∆t′/∆t = k

and k ∈ N (k is a positive integer), the simplest method of downsampling a

collection is to select every kth element in the response time series. Technically,
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this downsampled collection X ′ would now consist of continuous responses {x′
r}

such that x′r,j = xr,i for i = k ∗ j, ∀ j ∈ {1, 2, ...⌊N/k⌋}.

In traditional signal processing, where the spectral content of time series is

important, the simple downsampling approach is unsatisfactory because of the

potential of aliasing; in highly oscillatory signals, it is necessary to filter the series

to remove frequencies above the Nyquist limit to prevent them from inducing

apparent lower frequency effects in the downsampled signal. In such cases, a

downsampling of collection X := {xr} by a factor of k ∈ N should first apply a

low-pass filter f(x) with cutoff of 2 ∗ k/∆t Hz. This new collection, X ′ := {x′
r},

would then be defined by x′r,j = f(xr)i, when i = j ∗ k for j ∈ {1, 2, ..., ⌊N/k⌋}.

When downsampling a very sparse series, it is sometimes relevant to extract

a maximum value or some other statistic from the time interval to be represented

by each sample of the new series. In such cases x′r,j = g({xr,k∗j+l | l = 1 −

(k/2), ...,−1, 0, 1, 2, ..., k/2}), where g may be a function to determine the mean,

the maximum, the minimum, the median, or some other characteristic of the time

interval. The interval to be represented may be entirely forward or backward in

time, or balanced around the associated time point as in the above formula. These

more complicated methods of downsampling are a form of time series feature

extraction, with the resulting time series reflecting some aspect of the initial series

rather that trying to be the “closest” series at the new sample rate.

2.2 Filtering

Removing superfluous or irrelevant data from experimental results is often

necessary. If information is being removed from a data set, the criteria must be
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clearly articulated, justified, and systematically implemented. One type of data

removal is filtering, a transformation which removes specific frequencies from a

series.

Besides downsampling, it is fairly routine in signal processing to filter un-

wanted frequencies from signals when the interesting frequencies have already

been identified. For physiological responses, filtering is necessary to remove sensor

and measurement effects and to expose the relevant temporal variation in the

signal. One aspect of filtering which is particularly important for the analysis of

coordinated continuous responses is the filter’s effect on the phase of frequency

components. Standard linear filters attenuate unwanted frequencies, but in the

process of reducing these frequencies’ amplitudes, they also affect the amplitude

and phase of the preserved frequencies. When filtering using cutoffs close to a rate

of interest to temporal analysis, say below 3 Hz, the phase effects of filtering can

move local peaks by tenths to tens of seconds. This scale of shifting can interfere

with interpreting the alignment of responses with the stimulus and other signals.

It is possible to avoid this by using filters designed to be phase-linear, because

they preserve the phase of all frequency components. For those unfamiliar with

filter manipulation, one way to perform a phase-linear filtering is to pass the signal

through a standard linear filter twice, the second time in reverse linear time. This

results in a sharper frequency cutoff having the desired effect on the amplitude of

frequency components while reversing the phase effects of the first pass to leave all

spectral components in their initial orientation.
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2.3 Removing outliers

Similar to filtering, the purpose of removing outlier responses or data from

a data set is to remove excessive and irrelevant variation from the experimental

results. When a blood volume pulse sensor is attached too tightly or an EMG

sensor is not grounded properly, the data collected deviates wildly from what

is expected. Such outlier responses are easy to identify and discard, but other

definitions of outliers are less obvious.

For behavioural responses, it is fair to exclude the data collected from partic-

ipants who misunderstood the task or refused to perform it, but identifying such

cases from the collected responses is not always straight-forward. Experiments

can be designed to catch unreliable responses and evaluate response reliability:

some experimenters ask participants to report whether their expressed responses

matched their experience [MF93] [CS92], others have some of the participants

respond multiple times to the same stimuli [Gre94], sometimes in different sessions

[GNKA07b] [CJSK+10].

After data collection, a few criteria have been used to exclude responses that

appear to be too deviant. One type of outlier for rating data is the flat-liner: a

response which appears not to change for minutes at a time [MVV+04]. Post-

experiment, it is not possible to discern whether the invariance in response is a

true stasis in experience or a failure of the participant to perform the task. Rather

than risk increasing variance with false data, such ambiguous rating responses are

discarded because they are quantifiably different from the rest of the collection.

Another method is to exclude participants with low average inter-response
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correlations. Luck et al. excluded responses which, on average, correlated with

other responses at r < 0.2 [LTE+08], again using demonstrable deviant criteria.

There is at least one instance of non-filter within-response outlier removal in

the literature. In his work on modelling of continuous ratings of emotion in music,

Mark Korhonen assessed the response collection for outliers by time point [Kor04].

For time points when less than 10% of response values were more than 2 standard

deviations from the mean of that moment, those distant response values were

excluded as outliers. Responses in which more than 10% of response values were

excluded by the previous criterion were removed from the collection. Korhonen

reported that this process reduced the variance in his data set of 6 collections

by an average of 5% by removing less than 1% of the recorded data. While this

process significantly reduces the measured variance in one experimental data set, it

also carries the assumption that it is legitimate to discard these deviant responses

in favour of a supposedly ideal central tendency to best describe these continuous

responses. This position is challenged in Chapter 4.3, on clustering responses

within data collections.

In the behavioural data sets used here, responses compromised by faulty

equipment were discarded, and flat-liners showing no changes in ratings over the

entire response were removed.

2.4 Normalization

For some continuous responses, the contour of the signal is more interesting

than the values measured at each moment. For physiological responses such as

heart rate, participants naturally have different distributions of values taken
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Figure 2–2: Effects of normalization. On three felt emotional arousal ratings from
5-Ste1A in AR1, the left plots show these on their original rating scale and after
range and z-normalizations. Graphs to the right show the mean (solid horizontal
lines), the mean +/− the standard deviation (ends of dashed lines), and the min
and max values (ends of dotted lines) for each of the responses.

over time, and these inter-individual differences should be minimized before

interpreting the aggregate. In rating responses, participants may be more or

less expressive of the variation they feel or perceive, or they may hold a device

differently, impairing the useful range of the instrument. These participant-wise

differences are important for some analyses while in others, they are irrelevant to

the information being sought. Normalization manipulates a response by scaling the

range of values measured to simplify some kinds of comparisons between individual

responses, while preserving the rank and contour of elements within each time

series. There are two types of common linear transformations for normalization

of responses within a collection: normalization of range—shifting and stretching
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each response so that its maximum value is one and minimum value is zero—and

z-normalization, which sets each response’s distribution to have a mean of zero and

variance of one.

From the initial response collection X , the range-normalized collection

Y := {yr} with r ∈ {1, 2, ...,M} and yr := {yr,i} for i ∈ {1, 2, ..., N} would be

calculated as:

yr,i =
xr,i −min(xr)

max(xr)−min(xr)
(2.1)

Thus each signal, unless it never changes value, will have an absolute minimum

of 0 and an absolute maximum of 1. Figure 2–2 shows the effect of this kind of

normalization on three continuous rating responses from the original rating scale

of the top graph to the range-normalized result in the bottom graph. The small

graphs to the right show how the means of each response (horizontal solid lines),

and the standard deviations (dashed lines) shift with this transformation while

the range of responses (dotted line) stretches the full range from 0 to 1. This type

of normalization is convenient when contour is the most important aspect of the

signal and different time series in the collection occupy arbitrary ranges. When

responses each take values sufficiently uniformly over some interval on the measure

range, this transformation is most appropriate. For rating responses where the

midpoint of the scale is marked and the extremes are defined as opposite poles,

it may be more appropriate to preserve the distinction of “above” or “below”

this threshold. An alternative normalization for such situations, presuming this

25



midpoint has a value of 0 in the initial ratings, would be:

yr =
xr

max({|xr,i|, ∀i})
(2.2)

Dividing by the maximum of the absolute value of each series stretches the

response values into comparable ranges without shifting the centre.

For some physiological signals, the range and distribution of response values

collected may vary greatly between participants, sometimes containing extreme

values which dwarf the variation in most of the series. Rather than force all

responses to the same range, these signals can be best standardized with z-

normalization. If multiple responses are collected from the same participant over

a single experiment session, it is useful to treat all of these data together to best

capture the full range of the signal and thereby reduce the risk of amplifying

insignificant jitter. From the initial response collection X , the data of the z-

normalized collection Y would be calculated as

yr,i =
xr,i − µr(X)

σr(X)
(2.3)

This transformation does presume a normal distribution of values within each

series. In figure 2–2, the middle graph shows the effects of this kind of normaliza-

tion. The units of the z-normalized scale are standard deviations, as each response

has been transformed to show the same spread of variance over the time series

(overlapping dashed lines). It is worth considering the actual distribution of the

measured values in the individual response series along with the intended analyses
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when deciding whether and which form of normalization would be appropriate for

preparing the response collection.

2.5 First-order difference, auto-regression residuals and other features

If the contour is more interesting than the original values of responses, one direct

way to study it is through the first derivative of each continuous response. Using

functional representations of the data, the derivative can be studied directly, as

had been done for analyzing familiarity ratings in the Angel of Death project

[MVV+04]. When working with a digital sampling of the response, the simplest

numerical approximation of the derivative is the first-order difference series which

reports the change of value from one sample to the next. From the initial response

collection X , the first-order difference collection, Y := {yr} with r ∈ {1, 2, ...,M}

and yr := {yr,i} for i ∈ {1, 2, ..., N − 1}, would be calculated as:

yr,i = xr,i+1 − xr,i (2.4)

First-order difference calculations using more points can also be used to approxi-

mate the derivative of continuous responses more precisely when the samples are

sufficiently dense. For behavioural responses, however, the sample rate is too low

to benefit from more sophisticated techniques. Similarly, higher order differences

can be taken to approximate higher order derivatives, when the sample rate is

sufficiently high for these estimates to be considered helpful.

Besides describing how a response changes over time, this transformation is

a useful representation of continuous response because it can greatly reduce the

effect of serial correlation in continuous responses. Time series data usually cannot
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be analyzed by traditional forms of discrete statistics because they fail to satisfy

the necessary requirement of independent sampling. In continuous responses, the

response measured at time ti+1 is most often very close in value to the response

measured at time ti, and this proximity demonstrates that the values recorded

in these series are not sequentially independent. When applying statistics to

assess the distributions of these series, the serial relationship between data points

violates the assumptions of common tests and this results in misleading estimates

of significance.

Time series analysis has developed techniques to remove the problem of serial

correlation from series while minimally compromising relevant information. For

example, given a time series x := {xi}, auto-regression analysis constructs a linear

model of a series’ elements xi from elements xi−j for various integer values of j.

The difference between such a model and the actual series, the residual, is often

a (weakly) stationary series which supposedly only contains noise or information

from outside the model.

The first-order difference transformation is equivalent to the residual of

a basic first-order auto-regression model. More sophisticated auto-regression

analysis may pull out higher-order temporal relationships, but for behavioural

responses, the sequential subtraction at around 1 Hz does a great deal to reduce

serial correlation. Figure 2–3 shows a continuous rating response and its 1 Hz first-

order difference series. Their respective distributions, to the right, show how the

difference series has values very close to zero more often than not and this series

is visibly more stationary that the original. In the original series, most adjacent
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Figure 2–3: One continuous response from collection 5-Ste1A and the first-order
difference of the response when sampled at 1 Hz. The small plots to the right show
the distribution of values of each series over their respective ranges.

time points are close to each other in value and rarely cross the mean of the series,

while in the transformed series it is not easy to predict from one point whether

the next will be of similar value, zero or of opposite sign. This representation

of continuous response time series has been used by Schubert and others for

regression and correlation analyses [Sch02], though others have not found it to be

useful for relating responses to time series representations of stimuli [LTE+08].

Many other transformations are possible and necessary for physiological

response analysis. There are several ways of estimating heart rate from blood

volume pulse, and respiration rate from chest expansion, most involving the

detection of minima or maxima and calculating their period from one cycle to the

next.
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2.6 Preparing collections for comparison

Numerically, when comparing time series in time, it is necessary to have

them sampled at the same rate for the same number of samples. It is also relevant

to expose the information that these series contain in similar ways. A series

or collection of series which has been z-normalized may not be easily modelled

by range-normalized time series because of the way the values are distributed.

Similarly, a stationary series will not correlate well with a non-stationary series,

even if the relationship would be clear after the removal of serial correlation. There

are many factors that go into deciding the methods of data preparation, both for

responses and stimuli representations, but among them should be consideration of

the rate and character of information to be compared.
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CHAPTER 3

Traditional analyses

There are some analysis techniques which have been applied to continuous

responses for decades with some degree of success but little criticism. This chapter

presents commonly applied methods for summarizing and comparing continuous

response collections, with examples and comments derived from the application of

these techniques to the six data sets.

3.1 Cross-sectional distribution time series: mean and dispersion

3.1.1 Normal statistics

Of all the possible methods for generating a single representative time series

for a collection, the most popular for continuous responses is to take the average at

each sample point. Figure 3–1 shows the distribution of response values recorded

each time point which are expected to be represented by their average (red dashed

line). For a set of continuous responses X = {xr}, the average time series of the

collection µI(X) := {µi(X)} is defined, for all i ∈ {1, 2, ..., N}:

µi(X) =

∑M
r=1 xr,i
M

(3.1)

To distinguish this from means calculated over other dimensions, the result of

equation 3.1 can be called the cross-sectional average as it is the average over

successive slices of the collection, cross-sections of the responses per time point

[Say89].
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Figure 3–1: Example of cross-sectional distributions in the collection 10-AranjuezV
of the Kor data set. Responses in the collection were downsampled to 0.1 Hz
and plotted in the top graph with dots marking each datum. The middle graph
presents the cross-sectional average with response spread measured by the cross-
sectional standard deviation. The distributions of response values per time point
(or cross-section) are plotted below with the related mean and standard deviation.

As a descriptor of the distribution, the standard deviation of the cross-section

can also be calculated per time point, σI(X) := {σi(X)}:

σi(X) =

√

∑M
r=1(xr,i − µi(X))2

M
(3.2)

The standard deviation measures the average distance of elements in a set to

their average. This statistic is very well understood and useful when the set it is
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describing has a Gaussian distribution, a.k.a. is normally distributed. However,

as shown in the cross-sectional distributions of the response collection in figure

3–1, the set of response values in each cross-section would not always pass tests of

statistical normality. In such cases, the average and standard deviation time series

are not the most useful descriptors of cross-sectional distribution, being only very

rough measures of the central tendency and dispersion of responses at each time

point.

3.1.2 Non-parametric statistics

To get around the problem of assuming normality, the non-parametric

statistic of the median has been proposed as an alternative for these cross-sectional

assessments. The cross-sectional median has been used instead of the mean in

a few analyses [GNKA07a][Kor04]. The median time series of the collection

X := {xr} is here notated as µ1/2 I(X) := {µ1/2 i(X)}. The cross-sectional median

time series is defined, for all i ∈ {1, 2, ..., N}, as:

µ1/2 i(X) = minr∈{1,2,...,M}

({

xr,i such that
‖{q ∈ {1, 2, ...,M} | xq,i 6 xr,i}‖

M
> 1/2

})

(3.3)

The median is the middle-most value of a set, or in this case, of a cross-section of

responses.

A non-parametric alternative to the standard deviation time series is the

interquartile range. Quartile statistics, notated as µ1/4 I(X) and µ3/4 I(X), are

defined similarly to equation 3.3, only replacing the 1/2 threshold with their

respective 1/4 and 3/4. To get a single statistic describing the dispersion in

each cross-section, the interquartile range is simply the difference between these
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statistics. For the purpose of comparisons, however, the author finds it more

convenient to use the half interquartile range, µ3/4−1/4 I(X)/2. For each time point

i, this would be :

µ3/4−1/4 i(X)/2 =
µ3/4 i(X)− µ1/4 i(X)

2
(3.4)

Using again the downsampled response collection 10-AranjuezV, figure 3–2

shows how the normal statistics compare to the non-parametric statistics at each

cross-section/time point.
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Figure 3–2: Example of cross-sectional distributions in a collection 10-AranjuezV.
Bottom graph compares the parametric µI(X) and σI(X) with the non-parametric
µ1/2 I(X), µ1/4 I(X) and µ3/4 I(X).

These statistics, parametric and non-parametric, are meant to capture what is

called the “central tendency” of the cross-sections of these responses. They select

a representative value for each set, the average or median, and measure the quality
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of that estimate according to their corresponding rules for describing dispersion,

standard deviation and interquartile distance. These methods for summarising a

response collection presume that the experimental results are noisy deviations from

a single ideal response which they are designed to identify. Looking back at figure

3–1, it seems as though the distribution of responses per time point is bimodal

from around 70 seconds to 120 seconds. In this stretch, the median performs

better than the average because it represents common values by sticking with the

dominant trend (below 0.5), but neither representation succeeds in warning of a

possible split in response behaviour.

3.1.3 Effectiveness of cross-sectional distribution descriptors

The average time series is attractive as a first analytic step: it is expected

to capture the dominant dynamics of response despite inter-subject differences.

This series gives a rough idea of whether the ratings tend to be high or low and

whether the responses shift strongly at some point in the stimulus. It is presumed

to preserve variation in time that is representative of the participants’ dynamic

responses. This variation over time is an important clue for evaluating how

effectively this statistic summarizes experimental data. The following analysis

looks at trends across response collections in the distribution of values in the

cross-sectional average and median time series, and in how they compare to those

of the dispersion measures.

Figure 3–3 presents these summary time series for three behavioural response

collections: one of perceived emotions, one of felt emotions, and another of unre-

lated continuous responses. The standard deviation series of these three contrast
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Figure 3–3: Central tendency summary time series for collections 16-MorningV in
Kor, 25-K551L in Moz, and 43-RmdF1 in Rdm.

predictably. The variation is generally lower for ratings of perceived emotion than

in the collection of felt emotion ratings, and the unrelated responses also have

relatively high standard deviation values. The differences in the cross-sectional

distributions of the felt and the random collections is more clearly marked by

the half interquartile distance, in light blue. For the unrelated responses, the two

measures of dispersion are very close, while the spread of responses in the felt

response collection looks to be in a range more similar to the perceived responses

when using the non-parametric measure.

In all three examples of figure 3–3, the range of the values taken by the

average is a fraction of the range employed by the individual responses in the

collection. In the felt emotional response series, the variation in time is mostly

less than the standard deviation measured for most cross-sections. The unrelated
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responses central tendency series are flatter still, with high standard deviation for

all time points. Given that the mean time series is expected to be meaningless in

the last case, are the mean time series of the other collections demonstrably more

informative?
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Figure 3–4: Dispersion statistics of cross-sectional distribution time series for all
behavioural response collections. Measures of either standard deviation of central
tendency time series or means of dispersion measure time series are compared on
units of the rating ranges [0, 1].

To get a sense of the behaviour of these statistics across all of the data

sets, figure 3–4 presents four summary measures of dispersion as applied to

each collection. The spread of values suggests many things, but three trends in

particular relate to the discussion of the information contained in these central

tendency statistics:

1. σ(µI(X)) 6 σ(µ1/2 I(X)): The variation of the cross-sectional average over

time is generally smaller than that of the median. The median and other
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percentile measures of distribution are increasingly popular statistics for

continuous response analysis because they are presumed to be more robust

to variation in outlier responses. For discrete data sets with non-parametric

distributions, the median does indeed prove to be more robust to outlier

data, but in a time series, the median does not show greater sequential

stability than the mean. While the series are close to each other in the

examples of figure 3–3, the median is noticeably steeper climbs and falls.

The median time series changes value in two cases: when more than half of

the responses change simultaneously in the same direction, and when one or

more responses cross the median line (see equation 3.3). In the collections

considered here, the second case is much more common than the first,

resulting in a jagged median time series as it jumps between neighbouring

response values from one cross-section to the next every time an individual

response crosses current median. The mean, on the other hand, is deceptively

smooth while it shifts slightly with every change in individual responses.

Despite the consistent ordinal relationship of the variance of the mean being

smaller than that of the median, these values do not correlate significantly

across collections. Since the cross-sectional response values do not usually

have a normal distribution, the median values may be more appropriate,

and appear (when averaged) to be sensitive to distinct information in these

response collections, although the details of the contour of this series should

be interpreted with its own particular sensitivity to individual response

behaviour in mind.
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2. µ(σI(X)) & µ(µ3/4−1/4 I(X)/2): Although the non-parametric measure of

dispersion used here is always somewhat smaller than the standard deviation,

the two values are highly correlated, Pearson r = 0.94 with p ≪ 0.001.

Of interest is the way these descriptors of distribution change across the

different data collections. The unrelated response collections (Rdm, the right-

most set in figure 3–4) show high cross-sectional dispersion, but not higher

than all experimental response collections. If the dispersion measured in

unrelated collections determined a threshold for “acceptable” inter-response

disagreement, a fifth to a quarter of the actual response collections would

exceed it. That some collections show greater variance than these random

collections may be an indication that the single central tendency model

is not appropriate for capturing trends in responses within each cross-

section. Though not included in the graph above, the variance of the half-

interquartile distance time series is also generally greater than its parametric

cousin’s. Its contour is similarly sensitive as the median time series, and

should be interpreted for gross rather than fine contour information unless

the behaviour of individual responses have been considered for context.

3. µ(µ3/4−1/4 I(X)/2) versus σ(µ1/2 I(X)): While the difference between the

parametric measures of dispersion is more dramatic than the non-parametric

in figure 3–4, the latter may prove to be more interesting. The largest

differences between the standard deviation of the median time series and

the average of the half-interquartile distance series are seen in the unrelated

collections, where the spread of independently varying responses flatten the
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central tendency series into stillness. But these two statistics are very close

in a number of other response collections, some in which standard deviation

of the central tendency time series exceeds the average of the dispersion

measure time series. Such cross-overs seem to be determined by the greater

variability of the median rather than exceptionally low interquartile ranges.

Future analyses should explore the possibility that the responses in such

collections are more consistent than those with greater distance between

the standard deviation of the median time series and the average of half-

interquartile distance time series.

The median and quartile time series are more explicit measures of the distribution

of response values in each cross-section, and the longitudinal distributions of these

time series do not seem to be any less reliable than their parametric counterparts

for estimating the overall variability in these collections. When discussing the

central tendency time series, the following pages of this thesis will most often refer

to the parametric measures rather than the non-parametric, but only because they

are more commonly used in the literature. The analysis of this section strongly

recommends using the nonparametric time series, except, perhaps, for the purpose

of standard correlations (which will be discussed later) and tight regression fitting

because of the sensitivity of these summary series to crossings by individual

responses.

3.1.4 A note on graphical assessment

Some papers stop the numerical analysis once the cross-sectional average

response time series has been calculated and continue the investigation using visual
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Figure 3–5: Average time series of 41-RdmI1, a collection of unrelated responses,
shown on a subsection of the rating range and on the full range [0, 1].

analysis of the plotted mean. One proponent of this tact was Frede Nielsen, who

wanted to avoid the “atomistic approach” which compared aspects of the stimuli

to the responses directly and tempted researchers to generalize relationships too

far [Nie87]. Vision can be misleading when interpreting non-spatial data, but

looking at the summary time series may stimulate analytic intuition. No matter

the mode of analysis which follows the calculation of this summary of a collection,

the random response collection mean shown in figure 3–5 is a reminder of how easy

it can be to see significant variation in this time series when there is none. Plotting

such series on a graph scaled to show the full rating range puts the details of its

contour in perspective and can discourage investing too much before employing

more impartial methods. At this time, there is no rule for what size of change in

average can be trusted as significant, and until such limitations can be articulated,

skepticism of these time series is reasonable.
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3.2 Discrete statistics on continuous responses

Continuous response data are recorded as time series but they are not always

analyzed in time. By summarizing each response series into one or a few discrete

values, the issues of serial correlation and temporal alignment are conveniently put

aside. Though these longitudinal summaries can be used to describe a collection

of responses, most often they are calculated in order to compare collections of

responses related by some experimental factors, such as stimuli, and differentiated

by others, for example participants’ musical expertise.

3.2.1 Response-wise statistics

For a collection X , statistics describing each response time series xr are

calculated to describe the collection in a distribution of points fR(X) := {fr(X)}

for r ∈ {1, 2, ...,M}. For example, the longitudinal averages of a collection form

a set of the average value of each response. Formally, µR(X) := {µr(X)} for

r ∈ {1, 2, ...,M} such that:

µr(X) = µ(xr) =

∑N
i=1 xr,i
N

(3.5)

Such averages can be referred to as longitudinal or response-wise averages to make

explicit the dimension of data being summarized. Though very similar to the

calculation of the cross-sectional average time series described by equation 3.1,

averaging per response across time results in a set of very different character. For

one, µR is a set of independent samples: the value of µr does not determine the
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value of µr+1, in contrast to µi which is a strong determinant of µi+1. Indepen-

dence of samples makes the full suite of discrete statistical techniques applicable to

this type of collection reduction.
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Figure 3–6: Calculation of the mean or median values per response on two example
rating responses from collection 36-Arc2V from AR3.

Like the cross-sectional statistics, parametric measures of distribution on

individual responses are often inappropriate because the sampling of values by a

response on the rating range is not necessarily normal. Figure 3–6 shows how these

responses can be bimodal or skewed away from symmetric distributions properly

represented by the arithmetic mean. The median may fare better with its simpler

relationship to the distribution, but either way, these central tendency distribution

descriptors do not tell the whole story.

Once the calculation per response has been performed, the distribution

of these longitudinal statistics are then subject to statistical analysis. Figure
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Figure 3–7: Collection 39-Ste2A, continuous ratings of felt emotional arousal from
AR3, with response-wise averages (dashed lines) and the distribution of these
longitudinal statistics for this collection.

3–7 illustrates the distribution of response-wise averages for a collection of felt

emotional arousal ratings. The spread of these response-wise statistics suggests

that distinct experiences may be presente in the collection.

3.2.2 Longitudinal distributions and interrupted time series

Other kinds of longitudinal descriptions of response evaluate how many

samples, i.e. how much time, participants’ responses spend in subsections of the

range. One example of this in the literature collected categorical behavioural

responses. The categorical measure of focus of attention asked participants to

indicate which elements of the music they were attending to at any given moment

[MG90] using a slider-potentiometer interface. The resulting collections were

compared by evaluating how much time participants spent on Rhythm or Timbre

from one stimulus to the next. For responses collected on a finite continuous scale,
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a similar question would be what proportion of sample points per response are

greater than or equal to 75% of the scale range.

Whether of average values or more complicated descriptors of response be-

haviour, these response-wise calculations have been very important for comparing

responses of the same participants to different stimuli. This approach is used on

physiological responses as well as behavioural responses [IM99][Kru97][Ric04].

Related to stimulus-wise comparisons, some studies cut long stimuli into chunks

on the order of a minute to make comparisons between successive excerpts [IM99].

When responses are summarized over stretches of time, this approach is in some

sense a kind of downsampling, with intervals between time points chosen to greatly

reduce any expected effects of serial correlation.

Another short excerpt approach is to evaluate responses around or following

some event. Events in the series can be stimulus defined, such as the onset of

silences in Lisa Margulis’s studies of tension through silence in classical piano

repertoire [Mar07], or they can be participant defined, such as button presses

indicating pleasure level in chill studies [SBL+09]. While the responses are sampled

in time, their relative positions are not considered in the analysis. One way to

analyse the response around these events is called Interrupted Time Series Analysis

[SD04]. This technique compares time series values before and after events to

evaluate the consistency of effect and has been used to compare, for example the

strength of changes in familiarity ratings at different types of section boundaries

[MVV+04].
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3.2.3 Effectiveness of response-wise statistics

Longitudinal summaries of response collections can seem like a waste of

resources. For behavioural responses in particular, the task of rating continuously

is quite demanding on participants while the analysis makes use of only one

datum per continuous response. Given the continuing use of post-stimulus Likert

scale ratings, it has been necessary to consider whether or not these summarized

time series are better descriptions of participants’ responses to music than the

less-technologically demanding alternative. While there are similarities between

the responses from static post-stimulus measures and longitudinal averages of

continuous measures, studies have found that they are not equivalent [BS95],

particularly for stimuli which provoke more varied responses over the course of

continuous responses [DC01].
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Figure 3–8: Average rating value, µ(µR(X)) for each behavioural collection with
four measures of collection dispersion, both longitudinal and cross-sectional
variation measures marking the “spread” of response values range around each
µ(µ(X)).
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To get a sense of how the longitudinal summaries describe behavioural

collections of responses and how these compare to some of the cross-sectional

statistics, figure 3–8 displays results of these descriptions of response collections

from all six data sets. Each column of symbols describe the distribution response

values in a single collection. Centred around the black dot of the average of the

average are plus and minus the standard deviation of the response-wise averages

in red crosses, the average of response-wise standard deviations with blue exes, the

standard deviation of the average time series with pink triangles, and the average

cross-sectional standard deviation with light blue circles. Like figure 3–4, there are

a few trends in these statistics that deserve some attention:

1. Average rating value per collection, (n.b. µ(µR(X)) = µ(µI(X))): In the

collections considered here, this average central value ranges between 0.3 and

0.8 of the normalizes rating range. This spread of average values is consistent

with the significant differences found between collections using ANOVA on

response-wise averages reported in many papers to date. By the nature of

these data sets, it would be very rare to have this statistic move closer to the

extremes of the rating range. While the average of the average is a very poor

representative of a continuous response collection, there are some tantalizing

trends. For example, AR1 and AR3 are collections of the same measures

of response from different participants on stimuli which were different

interpretations of the same three musical pieces. Despite their differences,

these means of means show the same pattern of values. Quantifying the

47



significance of such results is possible with relatively accessible discrete

statistics when using the set of response-wise averages.

2. µ(µR(X)) ± σ(µR(X)): The measure of dispersion used to compare the

longitudinal distributions is marked in figure 3–8 by red +’s. Adding this to

the consideration of the differences in means’ mean within datasets, there are

some differences of distribution of responses which look significant, at least

under these parametric assumptions.

3. Ranges of µ(σR(X)) (x) and σ(µI(X)) (▽): For the most part, the average

longitudinal standard deviation of responses is greater than the standard

deviation of the cross-sectional averages. This demonstrates how the average

time series is flatter than most responses it is meant to represent, its range

reduced by the distance and asynchrony between individual responses. In

the collections considered in figure 3–8, those of the Rdm set have the most

dramatic differences in these two statistics, as expected. Collections with

proportions of µ(σR(X))/σ(µI(X)) similar to these of the unrelated sets

should be treated with some skepticism, such as the 4th collection in the Moz

data set, 22-K16R.

4. µ(σI(X)) (O) and σ(µR(x)) (+): When the standard deviation of longitu-

dinal averages is much smaller than the breadth of variation measured at

the average time point, this suggests that an important difference between

responses (and contributor to the second statistics) in this collection is the

breadth of the rating range used in each, rather than disagreements as to

where responses are centred on the rating scale. When these two statistics
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are very close, this suggests that responses are occupying different parts of

the rating scale while making use of similar proportions of the rating range.

The distributions of response-wise averages are not so deviant as to be found

significantly not-normal by the single sample Kolmogrov-Smirnov goodness-

of-fit hypothesis test, however, as shown in figure 3–6, parametric statistics

are not necessarily the most useful descriptors of the distribution of values in

individual response time series. The medians of the medians for these behavioural

response collections are almost always more divergent (further from 0.5) that

the corresponding means’ means. Selecting the right longitudinal summarizing

function can effect differences measured between collections, and the parametric

default may not be appropriate.

While statistical techniques can quantify the significance of the differences

in this conveniently discrete representation of continuous response collections,

these techniques do little to explain the results. Investigation into the time course

of responses is necessary to explore how these differences in the distribution of

response-wise means are manifest.

3.3 Correlations on continuous responses

Pearson correlations have been used in many publications to compare indi-

vidual responses [Fre99b], average response time series, and continuous response

to time series representations of stimuli. Earlier uses of the Pearson Product

Moment Correlation Coefficient (PPMCC) were intended to assess the reliability

of individual participants responses: some participants were asked to perform

the rating task a second time and the correlations between these first and second
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ratings were averaged across this subgroup of participants to gauge the validity of

the task[Gre95]). In the mid-nineties, publications began to share average inter-

response correlation values as a measure of how consistent responses were between

participants so as to demonstrate whether “most listeners showed the same general

patterns” of response [Kru96]. This practice of average inter-subject correlations

was possibly borrowed from analysis techniques for discrete rating response sets

[PK87]. Collections’ average time series have been also widely used to assess the

temporal relationship between continuous responses, exploring both the strength of

covariance and cross-correlations to evaluate lags in between responses and stimuli.

This next section will discuss the correlation of time series with a particular focus

on inter-response comparisons.

3.3.1 Correlating time series

Mathematically, the correlation coefficient can be expressed and interpreted

many ways [RN88], but the following definition is most pertinent to the discussion

of time series. For two paired sets of values x := xi and y := yi for i ∈ I =

{1, 2, ..., N}, the Pearson Product Moment Correlation Coefficient, r is defined as:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)

√

∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

(3.6)

In words, rx,y is a measure of the amount variation from their respective means

that is shared between the paired values of the two sets. Though the index in the

calculation orders the pairing of values between sets, the additive series is not

sensitive to the sequence of the pairs and thus is blind to the order of time series.

The comparison is also unitless: if one set has large variance and the other little,
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this does not negatively effect the correlation because the measure is completely

relative to the distribution with each set. rx,y increases from pairings on the same

side of their respective averages and decreases when they are opposite. When

both sets have values close to their averages, these pairs have little impact on the

correlation total.
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Figure 3–9: Example of three inter-response correlations between responses 2, 8,
13, and 19 from collection 12-fanfareV. The top row of graphs plot the two time
series in the original rating scale, the middle show the z-normalized responses, and
bottom presents the product-variance series for each pairing which is summed to
determine the PPMC r values.

To illustrate what information is measured by the PPMCC in these contin-

uous responses, figure 3–9 shows comparisons between one response and three

others, all taken from behavioural response collection 12-fanfareV of perceived
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emotion ratings (valence dimension). This set is among those with the highest

average inter-response correlations analysed in this thesis. The actual r values for

each pairing is printed in the top graph. The highest correlation is found between

responses 2 and 19, and the z-normalisation shows why: both responses are at

their lowest at the very beginning and are mostly above their respective means

after second 100. In the first column, responses 2 and 8 correlate fairly well, with

somewhat similar contours. Visual inspection of the top graph makes the proxim-

ity of the two series after around 75s to be a strong indication of relatedness. The

bottom graph however, shows that the time points with the most positive impact

on these PPMCC are between 0s and 25s, while the remanders of the series are

less important because both responses are very close to their respective means and

the mean crossings are not so well synchronized.

The pairing in figure 3–9 with the lowest correlation coefficient, between

responses 2 and 13, is the most dramatic example of how the PPMCC fails to

capture salient similarities between responses. Looking at the top graph, the

contour of these responses share many traits. Near the beginning, both descend,

though response 13 drifts gradually while response 2 jumps directly to its lowest

values. At around 20s, both responses rise, with 13 again changing more gradually.

These are both steady until around 80 seconds when they both dip for the same

amount of time. And lastly, the two responses are fairly stable until 150s. Despite

all of this common behaviour, the Pearson correlation is low because the measure

depends on the distance from the longitudinal means of these responses—a
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questionable statistic for the distribution of these values—rather than the contour

information readily available to the eye.

At this level of detail, it is evident that the Pearson correlation coefficient

does not capture much of what researchers find interesting in relating continuous

responses. However, the average inter-response PPMCC is a popular measure

of collection coherence, and a number of publications have shared suggestions

on how such time-series correlations could be improved (rather than abandoned

for something better). The following section presents some of the proposed

imporvements and discusses what affect they have on this dubious statistic.

3.3.2 Qualifying inter-response correlations

The average inter-response correlation, also referred to as the average inter-

subject correlation, is the average across the correlation values of the set of

all pairwise comparisons between responses in a collection. For a set with M

responses, there are M ∗ (M − 2)/2 unique pairings, so the average inter-response

correlation, µ(ρ(X)) can be calculated as:

µ(ρ(X)) =

∑M
r=1

∑M
s=r+1 ρ(xr,xs)

M ∗ (M − 1)/2
(3.7)

When the two sets of data being correlated are independently sampled experimen-

tal measurements, the PPMCC can also be given a p-value to be judged against a

threshold of significance such as α < 0.05. Continuous response data do not satisfy

the conditions for α to be meaningful, as will be explored later, but this same

threshold will be used in the following figures to give a measure of the distribution

of pairwise inter-response correlation values. Significance(*) here forward will be
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starred to emphasis the assessments of “significance” are not in fact measures of

statistical significance. The other description used to interpret the inter-response

correlation distribution is the proportion of significant(*) and positive correlations,

to give a sense whether there is strong disagreement between responses as would

not be reflected in the average.
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Figure 3–10: Comparing average Pearson Product Moment Correlation Coefficients
(PPMCC) inter-response correlation values for the 44 behavioural response collec-
tions with the average correlation value between the responses and the collection’s
average time series. The top graph shows the average r values of the pairwise cor-
relations. The bottom shows the proportion of these values which are (calculated
as) significant with α < 0.05 presented as bars, and plus signs (+) marking the
proportion of significant and positive pairwise correlations for each collection and
correlation condition.

The average inter-response correlation is sometimes replaced with the average

mean-response correlation, literally the average r or ρ for all correlations between

individual responses in a collection and the collections cross-sectional average.

In figure 3–10, the results of this alternative (in red) are nearly parallel to the
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average inter-response correlation (in blue). These two measures have a Pearson

correlation of r = 0.97 with p ≪ 0.001 but the average mean-response correlation

is the greater value by 0.25, on average. The proportions of significant and positive

correlations are also much higher for this second, smaller set, in part because the

average time series contains variation from of all the responses it summarizes.

The effect of this can be seen in the unrelated response of set Rdm: though the

average inter-rating correlations are very close to zero, as would be expected from

responses which were indeed unrelated, the average response to mean correlations

are positive. The rare responses which correlate significantly(*) negatively with

the average can be supposed to go strongly against the grain of the majority of

their collections. Between the average inter-response correlation and the average

response-average correlation, the former seems to be the more conservative

measure of within-collection coherence.

PPMCC’s measure the linear covariance of two sets, and sometimes the

linearity assumption is too restrictive. A popular alternative to Pearson’s r is

Spearman’s ρ, a statistic which does much the same calculation as the former, but

after mapping each sets elements from their original values to their ordered rank,

from smallest to largest. On these collections, the average pairwise inter-response

Spearman correlation values (red in figure 3–11) are not very different from the

average PPMCC’s (in blue). These responses are all measured on a fixed finite

interval, and so the differences between the Spearman and the Pearson correlations

would be the result of how each interpret the already confined distribution of

values within each responses. From section 3.2, we know that these responses are
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Figure 3–11: Comparing average inter-response PPMCC for the 44 behavioural
response collections with the average Spearman’s rank inter-response correlation
value. Average correlation values per collection on top; proportion of pairwise
correlations with p < 0.05 (bars) and proportion significant and positive (+) on
bottom.

not usually normally distributed; when, for example, a response has a bimodal

distribution of values sampled over time, a Pearson correlation will preserve the

distance between these clusters while the Spearman correlation will erase it. For

this reason, Spearman’s ρ is a good default when comparing two sets of elements

measured on different scales, such as continuous response ratings and the loudness

of the stimulus. But given that the measures estimate very similar proportions of

significant(*) pairwise correlations, it seems pertinent to go with the measure that

preserve some characteristics of the responses’ longitudinal distributions.

There has been some questioning of the validity of the first few seconds of be-

havioural responses. As many collection devices default to start at a certain point

on the rating scale or field, the beginnings of ratings are typically characterized
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Figure 3–12: Comparing average inter-response PPMCC for the 44 behavioural
response collections with and without the initial 25 seconds of responses. Average
correlation values per collection on top; proportion of pairwise correlations with
p < 0.05 (bars) and proportion significant and positive (+) on bottom.

by a large shift away from that default. Another issue is cognitive: it takes time

for participants to develop and/or recognize their responses. In one study, partici-

pants were asked not to begin rating their felt emotional response to the stimulus

before forming a clear idea of what emotion they felt, and on average, responses

began 8 seconds after the beginning of the music [BBL+09]. This first disoriented

section can bias correlations of responses which are otherwise very close to their

averages (as seen in figure 3–9). To evaluate the importance of this beginning on

the correlation values, figure 3–13 shows the average inter-response correlations

for collections using complete responses and responses measured after the first 25

seconds (in red). For some collections, particularly those with very long stimuli

as in AoD and the last collections in AR1 and AR3, removing the first 25 seconds

does not change much in terms of significance(*) or average correlation. Some lose

a proportion of significant correlations but those in the Moz set, for example, show
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a drop in the number of positive significant pairwise correlations. Given that the

effect of these first seconds varies from collection to collection, it may be an issue

for some stimuli and data collection devices.

The principle reason Pearson correlations and other common discrete statistics

cannot be applied to time series data is the fact that time series are not sets of

independently sampled data. Serial correlation is evidence of this fact. To get

around the problem of independent sampling, time series analysis has developed

techniques for manipulating time series until the data look close enough to being

relatively independent, with only new information at each point. A time series

which reaches this degree of sequential unrelatedness is called “stationary”.

Continuous response ratings are not, on the outset, stationary, and they do not

behave like most of the time series these techniques were designed to manipulate,

but reducing serial correlation can improve (in part) the legitimacy of applying

discrete statistical techniques, such as correlations, to time series data.

As mentioned in section 2.5, one method for reducing the serial correlation

in time series that has been used in the continuous response to music literature

is the first-order difference transformation. Figure 3–13 presents the PPMCC

results for the normal behaviour collections and for their corresponding first-

order difference collections (in red). While the transformed responses are much

closer to behaving like sets of independent samples, the distributions of values

are sharply concentrated around zero which makes most time points nearly

irrelevant to the summation that generates the correlation. Thus, the correlation

values are very low and never more than half of the pairwise comparisons are
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Figure 3–13: Comparing average inter-response PPMCC for the 44 behavioural
response collections with that of the first-order difference series of these collections.
Average correlation values per collection on top; proportion of pairwise correlations
with p < 0.05 (bars) and proportion significant and positive (+) on bottom.

significantly correlated. It may be that other measures of similarity are more useful

for interpreting these differenced data collections.

Another tactic to make a time series seem more like an independently sampled

set is to downsample [CJSK+10], again using the assumption that if every sample

point can be expected to carry new information, that is close enough. Figure

3–14 shows the performance of these average correlation assessments for response

collections sampled at four different rates. For the most part, the correlations

are very similar across sample rates, suggesting that indeed there was a great

deal of redundancy in these serially correlated responses sampled at 1 Hz or 0.5

Hz. However, the proportion of the significant(*) pairwise correlations decreases

consistently as the sample rate goes down, as expected.
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3.3.3 The insignificance of correlation significance

As previously mentioned, the commonly used measure of significance for

PPMCC depends on assumptions that cannot be satisfied by time series data.

When testing the significance of a Pearson correlation, three values are used:

significance threshold, α, the correlation value, r, and size of the data set, N . For

a set of a given size N and significance level α there is a value of r above which

correlations are taken to be significant and below if which they are not. The test is

however, most often expressed as the relationship between the correlation’s p-value

and α. The p-value is calculated from the cumulative distribution of Student’s

T with N − 2 degrees of freedom, and every added sample lowers p. When

the samples are independent—say taken from different subjects—more samples

means lower likelihood of getting a type I error. When sampling a continuous
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response, the number of sample points is not a measure of how much independent

information is contained in the series because any number of points can be used

to represent the same continuous response. If we had an estimate of the amount

of “independent” information in a response, regardless of how it was sampled, this

quantity could be used to measure the significance of these correlations. The fact

that the average inter-response correlations are mostly the same at 1 Hz and 0.1Hz

suggests that the covariance of responses in these collections are described well

enough by the lower sample rate and the correspondingly higher p-values are not

unduly conservative.

The Pearson product-moment correlation coefficients measure variation from

responses’ respective longitudinal means—a volatile descriptor of these non-normal

distributions of values—and it ignores the actual values measured on the rating

scale. If researchers are interested in comparing the contour of these ratings,

difference data or other derivative representations would be less effected by the

mean estimate. If the actual rating values are of interest, a different measure of

distance or difference between ratings, like the standard euclidean distance metric

would be more practical.

The popularity of correlating continuous response data is likely due to the

simplicity with which the supposed significance of the statistic can be calculated.

However, like the average, convenience of calculation does not guarantee a mean-

ingful result. Time series do not satisfy the assumptions of the standard p-value

estimation used for independently sampled data sets. While the effect of serial

correlation can be reduced within a given time series, the number of periodically
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sampled points is still not analogous to the number of independent samples. The

correlation between responses may be an interesting result for other interpretations

of the calculation, but it is not an appropriate means of assessing the significance

of coherence or agreement between responses in a continuous response collection or

with other related time series.

3.4 Conclusions on these traditional analyses

The results of this chapter’s study of traditional techniques suggest a few

recommendations of future analyses:

1. When not testing for normality of distribution, non-parametric statistics are

recommended for capturing more reasonable summaries of the actual data,

whether cross-sectionally or longitudinally.

2. When quantifying the dispersion of rating values across a collection of

responses, it is worth considering both the longitudinal and the cross-

sectional variability in response values with non-parametric measures to

investigate the relative importance of different factors of variation.

3. A better measure of coherence or agreement between time series is needed to

replace the often misused Pearson correlation.

4. These techniques are useful for exploring the data and generating basic

contrasts between collections, but there is a lot that is lost in the reductions.

Rather than ends, they should be means to directing more detailed investiga-

tions of continuous response collections so as to relate the measured results

to theories and models of the experience of listening to music in time.
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CHAPTER 4

Novel analyses

Many of the advantages of continuous responses are not employed in the tra-

ditional approaches described in the previous chapter. A collection of continuous

responses to the same stimulus carries information about the individual responses

and the timing of response variation. This level of temporal detail is of great

interest to theories and models of music cognition. Rather than collapse responses

by dimension, the analyses in this chapter ask if responses are coordinated, when

responses appear to be coordinated, and which responses seem to be coordinated

with each other. Audience activity analysis is a means of describing concurrent

activity in responses of a collection and it enables measures of coordination of

this activity. Event analyses are techniques which differentiate time points in the

sampling series by the behaviour of responses in the collection. The last section

of this chapter introduces cluster analysis to sort responses into groups of similar

behaviour as elements in a set of time series.

4.1 Activity analysis and coordination testing

If participants all agreed in their responses to music, the average time series

would be a perfect summary of a continuous response collection. One look at the

top graph of figure 4–1, however, is often enough to convince most researchers

that individual responses do not behave so consistently. For this collection, the

standard deviation band around the mean time series engulfs more than half of the
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Figure 4–1: Summaries of collection 19-K492L of the Moz data set. On top, all
responses; in the middle, the collection’s average response time series +/- the stan-
dard deviation; below the activity-level time series, counting increases in ratings,
measured in frames of two seconds. The boxes and arrows compare time frames
with similar means and different levels of activity across the collection.

rating range at nearly every time point. Rather than apply statistics that presume

a single ideal continuous response, activity analysis evaluates the concurrent

activity across responses to the same stimulus. In figure 4–1, the response activity

measured is increases in ratings in some time interval, and the last graph in

the figure presents the proportion of responses showing this type of activity in

successive two second time frames. Working with this representation of a collection

of responses, this chapter section presents one method for answering the question

of whether the responses of a collection are coordinated, i.e., are they related to

each other. The Moz data set is used for most examples because it conveniently
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contains two response collections for each of four stimuli, all orchestral works

by W. A. Mozart. This technique for testing coordination demonstrates that

some pieces provoke more coordinated responses than others, and some forms of

response activity are more coordinated than others.

4.1.1 Activity basics

There are many reasons for individual responses to differ within a collection.

First, the same music can evoke different experiences, depending on the listener’s

musical experience and state of mind. Second, participants also vary in reaction

time, each relatively faster or slower to show the same kind of response. When re-

sponses are collected though a behavioural task, a third factor is that participants

may perform the task differently by being more or less sensitive to changes, or by

reporting different aspect of their experience. Also particular to ratings is a fourth

confound: participants’ attention may wander from the task they have been asked

to perform. Participants can accidentally omit of changes in response, or they may

inadvertently change their criteria for expressing their response over the course of

an experiment. As a consequence of these performance concerns, participants may

also attempt to compensate for deviations by making corrections not synchronized

to the stimulus. Between legitimate differences in experience and all the other

sources of noise, it is necessary to ask:“Is there any common experience of the

musical stimulus to be found in these responses?”

A time-sensitive indication of a reaction to the stimulus is required to assess

whether responses are coordinated, the timing of which could be compared

between responses. Such an indication of a reaction to a stimulus is called response
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activity. For continuous rating response collections, one kind of response activity

would be increases in rating. An increase in rating is not guaranteed to be a sign

that the participant’s experience just changed because of the stimulus, but if

the stimulus can motivate a change in experience, such a change would often be

expressed through an increase in rating, and that is good enough for the tests that

follow.

An activity indicator function, φ, determines whether a response xr is active

in some time interval T = [ta, tb]:

φT (xr) =











1 if xr is active in the interval [ta, tb]

0 if xr is not active in the interval [ta, tb]
(4.1)

For increasing activity as measured here, φ detects whether a response has

increased by at least 2% of the rating range over the course of interval T :

φT (xr) =











1 if xr(tb)− xr(ta) > 0.02

0 if xr(tb)− xr(ta) < 0.02
(4.2)

Similarly, a decreasing activity indicator may be defined, here after represented by

ψ, which would detect a decrease of at least 2% of the rating scale over the interval

T .

To measure coordination across a collection X of M responses, the activity-

level of the collection for some time interval T is the proportion of responses

showing some activity, φ.

aT (X, φ) =

∑M
r=1 φT (xr)

M
(4.3)
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To assess the variation of activity-levels over the course of time, we cut the

duration of the recorded responses into a sequence of non-overlapping time frames

of size ∆T on which the activity-level can be measured. Since responses are

thought to lag behind the stimulus by 1 to 3 seconds [Sch04], two second time

frames are used in the following examples to capture some temporally related

activity.

A collection of responses, X , is measured at time points {t1, t2, ..., ti, ..., tN}

with a sample period of ∆t. A sequence of time frames {Tj} for j ∈ J =

{1, 2, ..., NJ}, NJ = ⌊N ∗ ∆t/∆T ⌋ + 1, are defined by a downsampling of

points {τj} and {τ ′j} from the sequence {ti} such that Tj = [τj−1, τj] and centred

on time point τ ′j . The sequence of {τj}
NJ
j=0 is defined as τj = t⌊(j−1/2)∗∆T/∆t⌋ with

τ0 = t1 and τNJ = tN , while {τ ′j}
NJ
j=1 is then defined as τ ′j = t⌊(j−1)∗∆T/∆t⌋. The time

frames can be defined more simply, but for the sake of graphical interpretation,

this centring of time frames is less confusing to the eye. All time frames except

the first and the last are of duration ∆T . The activity-level, for some activity φ,

can now be measured on each of these time frames, making the activity-level time

series for the collection X , a(X, φ,∆T ) := {aj(X, φ,∆T )} for j ∈ J such that:

aj(X, φ,∆T ) =

∑M
r=1 φTj (xr)

M
(4.4)

The building of this series is hinted at in figure 4–1 and shown more explicitly

in the first two graphs in figure 4–2. The boxes define the time frames in which

the activity-level is measured, here increasing rating activity φ. This time series

representation of the audiences’ response to music exposes different information
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Figure 4–2: Steps to generating the activity distribution, dΦ,X,∆T , on an excerpt
of 19-K492L. From the individual responses to the activity-level time series
a(X, φ, 2s), and down to the distribution of time frames at different activity-levels
over this excerpt of the collection.

than that of the average time series. Looking at the activity shown in the bottom

graph of figure 4–1, a series typical for the felt emotional intensity rating data

collections of the Moz data set, it is possible to see how rarely even a third of

responses show synchronized increases. In relation to the stimulus, a four minute

overture, there are spikes of simultaneous activity in time to the first fortissimo

and a couple other moments, but most peaks in synchronous rating changes are

common to fewer than a quarter of participants’ responses. Correspondingly, it
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is also rare for there to be no ratings showing increases in these two second time

intervals. The lowest quartile of activity includes up to 5% of participants sharing

the same activity.

The audience activity time series shows a greater contrast from moment

to moment than is measurable in the average time series. Time points with the

similar cross-sectional averages, or even intervals with similar changes in cross-

sectional average ratings, may reflect very different degrees of activity. In figure

4–1, activity around seconds 25, 80, and 208 have been boxed for comparison. The

activity indicator φ democratizes the summary representation by allowing each

participant’s reported response to have equal weight rather than favour a few more

dramatic raters over the more conservative.
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Figure 4–3: Comparing two activity-level time series of the same collection: in-
creases in ratings above zero, a(X, φ, 2s), and decreases in ratings below zero,
a(X,ψ, 2s), for collection 20-K492R.

Visual inspection of both increases and decreases in ratings show that

participants’ rating changes can be contradictory. Figure 4–3 shows the proportion

of participants decreasing ratings below the proportion of participants showing

increases in the same time interval. For most of the samples, some participants
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show increases in ratings while others show decreases. In some rating response

collections, there appears to be alternation between increasing and decreasing

activity but with some overlap. This fact does not imply that participants are

having opposite responses to the stimulus. Rather, with variable reaction time and

the width of the time frame, the disagreement could also be caused by different

moments or by attention to different aspects of the work. Still, the contradictory

responses, usually suppressed in the cross-sectional average time series, may be

cognitively and musically significant.

Just as the activity-level time series shows information not in the average, the

average time series presents information not obvious from activity. Particularly

for responses using categorical distinctions or quadrant representations of emo-

tion, changes in ratings do not show which emotions are being reported. Other

definitions of activity could be used to consider the concentrations of agreement

for categorical purposes. Regardless, the coordination of activity in a collection

measures, in some sense, the robustness of the average time series.

4.1.2 Activity distributions

The activity-level time series show variation in concurrent activity across

the responses of the collection from one time frame to the next, but the range of

activity levels shown in these time frames is limited. In the examples presented,

the highest concentrations of activity peak at half of the collection’s responses

showing simultaneous activity, while in the frames with the lowest activity

levels, complete stillness is more rare than the single dissident response. Like

the experimental collection seen in figure 4–3, the activity of a collection of
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unrelated responses, shown in figure 4–4, has some variation in activity-level from

frame to frame—moments of relatively high and relatively low activity. If the

majority of responses to the same stimulus do not actively agree on when their

respective experiences change, and there are nearly always a few responses showing

activity in any given time frame, it is necessary to consider the possibility that

responses to the same stimulus may not be measurably coordinated. Comparing
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Figure 4–4: Two activity-level time series for collection 44-RdmF2, increases in
ratings above zero, a(X, φ, 2s), and decreases in ratings below zero, a(X,ψ, 2s).

experimental responses directly to random collections of time series cannot answer

this question efficiently. A more practical method for evaluating the coordination

in a collection is to consider the distribution of activity-levels over the time course

of the stimulus. The longitudinal distribution of activity-levels is calculated by

counting how often time frames show different proportions of responses being

active. The activity distribution for activity φ on response collection X in time

frames of size ∆T , notated as dX,φ,∆T , would be a sequence of M + 1 values defined

as:

dX,φ,∆T (m/M) = ‖{j ∈ {1, 2, ..., NJ} such that aj(X, φ,∆T ) = m/M}‖ (4.5)
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for m ∈ {0, 1, ...,M}. Figure 4–2 traces the construction of an activity distribution

between the middle and lower graph. The resulting histogram defines the increas-

ing activity distribution of this excerpt from the 19-K492L collection of continuous

responses.

If every response in these collections was the result of the same expression

criteria and experience, the activity distribution would be bimodal: many time

frames in which no or very few responses showed activity, some showing nearly

all responses being active, and very few frames with activity-levels in between

these extremes. In figure 4–5, the left graph is an example of how the activity

distribution of such a harmonious response collection would look. If every response

in a collection was motivated by completely unrelated experiences, each active

independent of others and of the stimulus, the distribution of activity would

be more like the right graph of figure 4–5: few instances of very low or high

activity and most samples showing middle to low proportions of participants

simultaneously active.

If the activity measured on a collection resulted in a distribution like that of

the right of figure 4–5, this would be an indication that the activity is not more

coordinated than the output of a random process. Whether or not the responses

in the collection were confident reflections of individual listeners experience of the

music, we cannot draw conclusions about the variation in activity-levels in relation

to the stimulus if the activity distribution fails to show more coordination than

a random process because we have no reason to expect that the same pattern of

variation would be repeated.

72



0 0.2 0.4 0.6 0.8 1
0

2

4

6
Hypothetical Coordinated Activity Distribution

# 
tim

e 
fr

am
es

Activity−level
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

Hypothetical Independent Activity Distribution

# 
tim

e 
fr

am
es

Activity−level

Figure 4–5: Hypothetical activity distributions. On the left, the activity distribu-
tion (histogram of time-frames with different activity-levels from the activity-level
time series) for a highly coordinated collection of responses. On the right, the
activity distribution expected for a collection of unrelated continuous responses.

Before measuring the difference between the actual activity distribution

and that of the closest random process, it is necessary to generate this random

model’s distribution. The model distribution for a collection’s activity describes

the expected activity distribution if all responses were independently active—

each showing activity at random rather than in response to the shared stimulus.

The actual average rate of activity per response per time frame, pφ,X,∆T , can be

calculated for each collection and activity indicator:

pX,φ,∆T =

∑NJ
j=1 aj(X, φ,∆T )

NJ
(4.6)

With this estimated parameter, the random model distribution is calculated

for each possible level of activity {0, 1/M, 2/M, ..., 1}. In most the collections

analyzed here, M is around 30, but for the sake of flexibility, the expected activity

distribution has been calculated discretely. Under a binomial assumption, the

probability that a time frame Tj would have an activity-level of m/M , m ∈
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{0, 1, 2, ...,M}, would be:

P (aj(X, φ,∆T ) = m/M) =
M !

m!(M −m)!
pmX,φ,∆T (1− pX,φ,∆T )

M−m (4.7)

With NJ time frames, the expected frequency distribution of activity-levels in the

time series a(X, φ,∆T ) for a collection of independently active responses would be:

eX,φ,∆T (m/M) = NJ ∗ P (aj(X, φ,∆T ) = m/M) (4.8)

This equation defines the random model activity distribution: the distribution

expected if all responses were independently active of each other. The binomial

assumption presumes the average rate of activity per response is a sufficiently close

approximation of the activity rate for each response, and that all response activity

series are independent of each other.

The lower left graphs in figures 4–6 and 4–7 show activity distributions of

two response collections plotted against their respective closest model activity

distributions. Though the experimental activity distributions are not bimodal,

the small differences between the actual distributions and the random model may

be significant. More low activity-level and high activity-level time frames with

correspondingly fewer middling activity-level time frames suggest that the activity

of responses in a collection is not completely independent.

4.1.3 Goodness-of-fit test

A common hypothesis test for evaluating a distribution of observations in

terms of a theoretical frequency distribution is Pearson’s Chi-square goodness-of-fit

test [DM88]. Given a significance level α, this test accepts or rejects the null
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Figure 4–6: Testing the coordination of increases in responses in collection 20-
K492R, X , of the data set Moz. Above, the φ activity-level time series on two
second frames, a(X, φ, 2s); bottom left is the activity distribution dX,φ,2s with the
random model distribution eX,φ,2s; bottom right are the bins for comparing these
distributions and the results of the goodness-of-fit test with 2 d.f. The results
reject the null hypothesis.

hypothesis that a set of observations, each falling into one of K bin, could have

been sampled from a predetermined distribution function. In this case, we want to

test whether dX,φ,∆T , the frequency of activity-levels observed in the time frames of

the a(X, φ,∆T ) are distributed differently from that of the random model eX,φ,∆T .

Comparing the distributions at all activity levels m/M for m ∈ {0, 1, 2, ...,M}

could easily overfit the data, particularly since there are so few responses at the

highest values. Instead, the distributions can be simplified to a small number

of bins with comparable numbers of time frames expected in each, according to

the random model. These bins must cover all categories of observations and be

mutually exclusive. For K bins, Bk with k ∈ {1, 2, ..., K}, they are defined such
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that Bk ⊂ {0, 1/M, 2/M, ..., 1} and Bi ∩ Bj = ∅ for all i 6= j and
⋃K
k=1Bk =

{0, 1/M, 2/M, ..., 1}. A last condition on the bins, to satisfy the conditions

of the χ2 test, is that no bin be expected to contain less than 5 observations:

∑

b∈Bi
eΦ,X(b) > 5 [DM88]. In the tests that follow, they satisfy a more strict

standard of
∑

b∈Bi
eΦ,X,∆T (b) > NJ/2K for all k ∈ {1, 2, ..., K}, and the number of

bins K is usually 3, 4, or 5. The lower right graph of figure 4–6 shows a bar graph

with the number of time frames falling into each of the four bins used for the χ2

test on this activity distribution.

To test the bin-wise fit of the model on the experimental data, their weighted

squared-difference is calculated to give the test statistic, Λ, from which the p-value

of the difference is estimated.

Λe,d =

K
∑

k=1

(Ok − Ek)
2

Ek
=

K
∑

k=1

(
∑

b∈Bk
dX,φ,∆T (b)−

∑

b∈Bk
eX,φ,∆T (b)

)2

∑

b∈Bk
eX,φ,∆T (b)

(4.9)

Depending on the significance threshold, Λe,d determines whether or not the

model distribution/null hypothesis can be rejected for the degrees of freedom

of the test. The degrees of freedom for this test is K − 2, i.e., the number of

bins less one less the number of estimated parameters. The test statistic Λ is

(nearly) asymptotically χ2
K−2 [CL54], the chi-square distribution with K − 2

degrees of freedom, and it is on the basis of this relationship that the p-value is

determined for this test. In relating the test statistic Λ to distribution of χ2
K−2,

we can estimate the likelihood of finding a test statistic of equal or more extreme

value under the null hypothesis, i.e., the p-value.
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Figure 4–7: Testing the coordination of decreases in responses in collection 22-
K16R, X , of the data set Moz. Above, the φ activity-level time series on two
second frames, a(X, φ, 2s); bottom left is the activity distribution dX,φ,2s with the
random model distribution eX,φ,2s; bottom right are the bins for comparing these
distributions and the results of the goodness-of-fit test with 2d.f. The results fail
to reject the null hypothesis.

In hypothesis testing, the p-value is not generally used for purposes beyond

determining the outcome of the test. In the context of many tests, however, it is

not uncommon to specify the performance of test statistics according to multiple

significance levels at different orders of magnitude. In the following tests, α < 0.01

is the significance level, with one chance in a hundred of falsely rejecting the

null hypothesis. In cases when the p-value is less than 10−4, or 10−8, we may

interpret these as very rough indications of how very different the actual activity

distribution is from the random model.

Many of the behavioural response collections tested show sufficient coordina-

tion in the φ and ψ activity distributions to reject the random model (see figure
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4–13), but there are many for which the test does not. As shown in Fig. 4–7, the

distribution activity-levels for decreases in responses, ψ, for collection 22-K16R

is very close to that of the random model. The goodness-of-fit test statistic fails

to reach the significance threshold with a p-value above 0.5. If the null hypoth-

esis fails to be rejected by the goodness-of-fit test, this does not mean that the

responses really did respond randomly. Rather, it suggests that the actual activity

distribution is not differentiable from the random model; we cannot presume that

the variation of activity-levels across time frames is coordinated by the stimulus to

such a degree that the pattern would be repeated in another set of responses to the

same stimulus.

4.1.4 Joint activity coordination and contingency tables

Testing one type of activity per collection gives some information about

the coordination of responses in time, but there are many possible measures of

activity for any type of response. By considering different activity-level time series

in relation to each other, more evidence of response coordination may be found.

For example, the apparent inverse parallel between increasing and decreasing

rating activity time series of a single collection, shown in figure 4–3, suggests to

the eye that the responses mostly alternate in activity. If these time series were

demonstrably alternating, this could support the study of the contour of average

time series as representative of the collection’s dynamic experience.

Like the simple goodness-of-fit test, the joint activity distribution test

compares the actual joint distribution of two activity series to a model distribution

function. This model, defining the null hypothesis of this test, is constructed

78



0 10 20
0

0.2

0.4

0.6

0.8

1

ψ
 a

ct
iv

ity
−

le
ve

ls

# Frames

 
Joint distribution of a(X,φ,2s) and a(X,ψ,2s) for 20−K492R

 0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1
0

10

20

φ activity−levels

Figure 4–8: Composition of the joint activity distribution. The bar graphs are of
the actual activity distributions for activity indicators φ and ψ measured on two
second frames from the series seen in figure 4–3. The colours of the matrix in the
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from the actual activity distributions of each activity-level time series under the

assumption that the two series are independent.

Comparing two forms of activity on the same collection, X , the actual joint

distribution, dX,φ,ψ,∆T (m1/M,m2/M) counts the number of time frames with a

φ activity-level of m1/M and a ψ activity-level of m2/M . The result is a two-

dimensional matrix of the concentration of time frames across activity-levels,

plotted using colour to show the number of time frames per cell in figure 4–8.

When the two activities are non-exclusive, i.e., when it is possible for a single

response to show both kinds of activity in the same time frame, the model joint

distribution is simply the product of the two simple distributions to reflect the null

hypothesis of independence:

eX,φ,ψ,∆T (m1/M,m2/M) = dX,φ,∆T (m1/M) ∗ dX,ψ,∆T (m2/M)/NJ (4.10)

When the two activities measured on the same collection are exclusive, such

as increasing and decreasing ratings, the random model is modified by applying a

binomial assumption to one of the distributions so as to offset the combinatorial

limits of the finite population.

eX,φ,ψ,∆T (m1/M,m2/M) = dX,φ,∆T (m1/M) ∗ d′X,ψ,∆T (m2/(M −m1)) /NJ (4.11)

If the audience activity time series were indeed independent of each other,

i.e. uncoordinated, we would expect the joint distribution to form a round blob

of activity towards the lower range of both distributions, as in the left bottom

corner in the left graph of figure 4–9. If the audience activity time series were
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identical or varying in parallel, the activity would make a diagonal strip across

the joint distribution matrix, as in the middle graph of figure 4–9. And if the two

series alternated in degree of activity, one being quiet while the other is active and

vice versa, the distribution would cluster to the edges of the matrix as seen in the

right most graph of figure 4–9, with few time frames counted down the middle.

Either of the last two would be examples of two activities jointly coordinated in

the collection X .
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Figure 4–9: Three hypothetical joint activity distributions. To the left, the distri-
bution expected if the two activities are completely independent and unrelated; in
the middle, the joint distribution if the two activities are highly related and often
happen together; to the right, the joint distribution if the two activities are related
and tend to alternate.

The test for these joint distributions is called an r x c contingency table, a

common method for assessing the independence of two categorical variables of a

data set [DM88]. The hypothesis uses the same test statistic as the goodness-of-fit

test, here called Λe,d, to measure the difference between the observed and expected

number of samples falling into each cell of the contingency table. To compare the

actual joint distribution to the model of independent activity using this hypothesis

test, it is again necessary to aggregate these many levels of activity into a smaller
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number of categories in both dimensions of the joint distribution. Both activity-

level distributions are cut into three categories of relatively low, middle and high

activity-levels. The cuts are made to aggregate around a third of the time frames

of the activity-level time series into each category, when considering only one

type of activity. The two dimensions combine to form a 3 x 3 contingency table,

with close to a ninth of the total number of frames expected in each cell of table.

Similar to the simple activity coordination test, if the expected number of cells

in one time frame is less than 5, this might threaten the asymptotic assumptions

used to estimate the significance of test statistic. When that happens, one of

the activity distributions is reduced to two categories for a 2 x 3 contingency

table. Now we have cells Bk1k2 of two matrices of size K1 × K2 summarizing

the expected and actual joint distributions, with elements b ∈ Bk1k2 of the form

b = (m1/M,m2/M). The test statistic, Λe,d, is then given by:

Λe,d =
∑K1

k1=1

∑K2

k1=2

(Ok1k2−Ek1k2)
2

Ek1k2

=
∑K1

k1=1

∑K2

k1=2

(

∑

b∈Bk1k2
dX,φ,ψ,∆T (b)−

∑

b∈Bk1k2
eX,φ,ψ,∆T (b)

)

2

∑

b∈Bk1k2
eX,φ,ψ,∆T (b)

(4.12)

The degrees of freedom on this test is (K1 − 1)(K2 − 1), and the p-value of the

difference between the distributions, as measured by Λ is again evaluated using the

χ2 distribution with (K1 − 1)(K2 − 1) degrees of freedom [DM88]. Again, p-values

below α = 0.01 are presumed to be significant.

Figures 4–10 and 4–11 show the results of these contingency table tests of

independence on joint distributions of activities of the same collection. Figure 4–10

shows the distribution of rating increases and decreases for one audience’s ratings
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Figure 4–10: Test of independence of increasing and decreasing activity in 20-
K492R. Above, the rating increases activity-level time series is plotted with the
rating decreases (below zero) on two second time frames. Bottom left shows the
actual joint activity distribution matrix, bottom right is the difference between the
actual distribution and the independent model as evaluated on the contingency
table, and in the middle is the test statistic and corresponding p-value for 4 d.f.

of experience emotional intensity during the presentation of a recordings of the

Marriage of Figaro overture. The joint distribution shows a high concentration

in the mid-low range for both distributions, as we would expect from a random

distribution, but there many samples also along the lower and left edges of the

joint distribution matrix. The right graph of figure 4–10 shows the difference

between the number of time frames falling into each cell of the contingency table

and the number expected by the assumption of independence. The test statistic

Λ = 27 given the four degrees of freedom in this test, maps to a p-value which

comfortably rejects the null hypothesis for a significance level of α = 0.01. The

83



50 100 150 200 250 300 350 400
−0.5

0

0.5
Increasing rating activity and decreasing rating activity�level time series for collection 23�K622L

Time(s)

A
ct

iv
ity

 le
ve

l

 

 

a(X, φ, ∆ T)
−a(X, ψ, ∆ T)

0 0.5 1
0

0.5

1

 
Joint distribution φ & ψ

φ activity−levels

 

ψ
 a

ct
iv

ity
−

le
ve

ls

0

2

4

6

8  

O
k

1
 k

2

 − E
k

1
 k

2

 −10

−5

0

5

10

Λ =2.4

pval =0.67

Figure 4–11: Test of independence of increasing and decreasing activity in 23-
K622L. Above, the rating increases activity-level time series is plotted with the
rating decreases (below zero) on two second time frames. Bottom left shows the
actual joint activity distribution matrix, bottom right is the difference between the
actual distribution and the independent model as evaluated on the contingency
table, and in the middle is the test statistic and corresponding p-value for 4 d.f.

colours of differences per table cell show that fewer samples were both low-low

and high-high in the actual joint activity distribution than expected by the

independent model, while more time frames showed low-high and high-low joint

activity. This pattern suggests that the coordination between the two forms of

activity is a tendency to alternate.

Not all activity series are so well-behaved. The joint activity for 23-K622L, a

collection of responses to the live performance of the Adagio movement of Mozart’s

famous Clarinet Concerto, is presented in figure 4–11. The joint distribution is
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rather concentrated in the corner and the test of independence fails to reject the

null hypothesis that these two forms of activity are unrelated.
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Figure 4–12: Test of independence of increasing activity in two collections of re-
sponses to the same stimulus: 25-K551L and 26-K551R. Above is plotted the
rating increases activity-level time series of the first collection against the rating
increases of the second (below zero) on two second time frames. Bottom left shows
the actual joint activity distribution matrix, bottom right is the difference between
the actual distribution and the independent model as evaluated on the contingency
table, and in the middle is the test statistic and corresponding p-value for 4 d.f.

When two collections are related by stimulus, the activity-level time series

for the same form of activity can be compared between the two series, and the

calculation of the joint distribution is simplest because the measured activities are

not exclusive. The top graph of figure 4–12 shows the activity-level time series

for increases in responses over two second time frames are presented from two

collections of responses to the same performance (one live, one recorded) of the

Finale to Mozart’s the Jupiter Symphony, K551. The joint distribution map shows
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the time frames lifting away from the lower and left sides and collecting along

the diagonal. This difference is caught by the contingency table test, with more

time frames with similar activity-levels and many fewer of contrasting activity-

levels than expected from the independent model. The test soundly rejects the

null hypothesis, while the joint distribution pattern confirms that some of the

audiences’ temporal pattern of increasing activity is shared. This test result is a

strong indication that stimuli can provoke repeatable patterns of response when

considering the aggregate of many participants.

4.1.5 Coordination tests for all collections

The section to follow presents the results of coordination tests on increasing

and decreasing activity in all 44 continuous response collection. The individual and

joint activity tests applied and the resulting p-values (so as to manage the different

degrees of freedom dependent on the number of time frames) are reported on a

logarithmic scale.

Considering the results of the coordination tests on all of the data sets, in

the top graph of figure 4–13, it is interesting to note that most data sets contain

both collections with strong rating change coordination and collections which fail

to reject the random and independent null hypotheses. Data sets AR1, Kor, and

Moz use the same sets of participants for all or half of the collections in the set.

This suggests that the differences in coordination of activity from one collection

to the next is determined by the stimuli rather than variables associated with the

participants.
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Some collections show strong agreement in both increasing and decreasing

activity and also show coordinated joint activity (note that the statistic does not

specify whether these series are coordinated together or alternate in degrees of

activity). Others fail one, two, or in many cases, all of the activity coordination

tests attempted. Those collections which show coordination within each activity

series but fail to reject the hypothesis of independence between increasing and

decreasing activity require further investigation. This is mostly an issue with

the low activity and long excerpt collections in the AoD set. It is reassuring to

note that the random collections mostly fail to reject the null hypothesis in the

goodness-of-fit tests. Their activity distributions, in the lower graph of figure

4–13, are similar to some of the experimental collections which also failed to show

coordinations.

The lower graph of figure 4–13 presents some information on the distribution

of these activity-levels across these behavioural response collections. On average,

for either form of activity, around a quarter of time frames have less than 10%

of responses being active, and the medians (green dots) show similar consistency.

The distributions vary the most for the 90th percentile and 98th percentile

activity-levels. In the AR1 and Kor data sets, both having been reported using

two-dimensional graphical interfaces, a number of collections have between 5-10%

of their two-second time frames with activity-levels above 0.5. In the other sets,

the instances of a majority of participants showing the same activity in any two-

second window is much lower. The fact that most moments of change in responses

measured across a collection are driven by a minority of participants should inform
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our interpretation of collection summaries such as the cross-sectional average time

series.

4.1.6 Conclusions

Audience Activity explores the diversity in ratings and other continuous

responses by focusing on events in individuals’ continuous response time series and

by evaluating the coincidence of such with those of other participants. Despite

wide inter-subject variability in continuous ratings, collections of responses often

show measurable coordination through the distribution of activity across time and

responses. Responses of the same participants to different stimuli result in different

degrees of coordination in all of the experimental data sets. Coordination tests

show that responses are not acting completely independently, at least not in all

collections. However, the distributions of activity show that the responses showing

relatively high levels of active agreement in two-second time frames are rarely even

half of those in the collection. Though the collections studied here were continuous

ratings, other types of responses can be studied with similar or different definitions

of response activity.
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4.2 Event analyses: determining which moments to study

Continuous responses are interesting to music cognition because music

happens in time and our experience of it is admittedly dynamic. Collections of

responses make it possible to compare time points within the series, measuring

whether a moment of music is aligned with normal or extreme response behaviour.

Analyses of the time varying qualities of the musical experience have often been

studied through the lens of correlation and regression to aspects of the stimulus,

techniques which attempt to fit the full duration of these responses. Theoretic

speculation on the temporal dynamics of music listening have taken inspiration

from visual interpretation of the collections’ cross-sectional averages, but there

exists more reliable methods of distinguishing time points of a collection using

systematic criteria.

One reason to distinguish between time points of a collection is to discard

those which do not yield reliable (read replicable)information. The problem of

inter-response variability calls for a measure to assess the reliability of the average

response given the cross-sectional distribution of values at each moment. Such a

test, designed by Emery Schubert for rating responses, is also intended to provide

researchers with “a form of visual display from which meaningful conclusions can

be reported” [Sch07].

Another type of time point differentiation is exceptional event finding. Tests

of this type isolate moments when responses deviate from some expected be-

haviour: they identify time points or intervals that stand out from the usual noise.

Studies like Sloboda’s 1991 survey show that music listeners remember strong
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responses at specific moments in music [Slo91]. If their memory of experience is

accurate and if the experience is common, exceptional event analysis could expose

these affective moments by their traces across collections of continuous responses.

One method for identifying these events was first described in [GNKA07a], and

discussed in more detail in the following pages.

4.2.1 Second-order standard deviation test

Inter-response variability has been fodder for skeptics of continuous responses

to real musical stimuli. While the standard deviation time series, on its own, has

not helped the interpretation of other cross-sectional statistics, researchers have

been looking for a similar simple calculation to determine when they can have

confidence in their results.

To assess the validity of the average time series from one moment to the next,

Schubert proposed in 2007 a new method for assessing the significance of time

points in collection of continuous responses. This method defines “significant”

time points to be those which show relatively low cross-sectional dispersion when

compared to other cross-sections of the collection [Sch10]. The threshold is set

with respect to the distribution of the standard deviation time series, σI(X).

Published uses of the test have defined the threshold according to equation 4.13,

taking the average standard deviation, µ(σI(X)), plus or minus some factor

k of the standard deviation of the standard deviation time series, σ(σI(X)).

For a collection X of M responses, each time series of length N , with a cross-

sectional standard deviation time series σI(X) = {σi(X)} for samples of index
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Figure 4–14: Example of second-order standard deviation test for significant
events. Above, the collection of responses, middle, the cross-sectional standard
deviation time series with different possible thresholds, bottom, cross-sectional
average time series with “significant” time points highlighted according to the
different possible thresholds. Note: the dots in the lower graph overlap; by the
thresholds in the middle graph it can be assumed all points which are green are
also dark blue, all red points also green and all light blue points also red.

i ∈ {1, 2, ..., N}, the variance threshold γk(X) would be defined as:

γk(X) = µ(σI(X))− kσ(σI(X))

=
∑N
i=1

σi(X)

N
− k ∗

√

∑N
i=1

(σi(X)−
∑N
i=1

σi(X)/N)2

N

(4.13)

for some k ∈ R. Thus, a time point, ti, is significant, according to this measure, if

σi(X) < γk(X), or more explicitly if:

√

∑M
r=1(xr,i − µi(X))2

M
< µ(σI(X))− kσ(σI(X)) (4.14)
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The use of the longitudinal standard deviation of the cross-sectional standard

deviation time series gives this technique the name of second-order standard

deviation threshold [Sch07]. In figure 4–14, the application of this threshold is

demonstrated on collection 1-Arc1A of the AR1 data set. The middle and bottom

graphs are the summary time series of the collection plotted at the top of the

figure. On the middle graph, the cross-sectional standard deviation time series

is cut by thresholds determined by the second-order standard deviation equation

for different factors of k. As according to equation 4.14, the time points for which

this standard deviation time series fall below these lines are deemed “significant”

by the test, and these points are highlighted by coloured dots on the average

time series. By using the standard deviation as a measure of variability, this

thresholding test depends on the legitimacy of the assumption that the cross-

sectional average, µi(X), is an appropriate statistic at all moments ti, i.e., that

the cross-section has a normal distribution. Because of this, the test in some sense

quantifies the validity of this average time series as representative of the collection

moment by moment.

At this time, there is no recommended formula for the proportions, though

published uses have set k to 1, 0.5 [Sch07], and −0.5 [SSM+09]. In a first paper

describing the technique, Schubert admits that this measure is entirely relative and

would always define some time points as significant [Sch07]. Acknowledging the

parametric assumptions of the mean and standard deviation, he also suggests other

descriptors of the cross-sectional distribution might be appropriate, such as the

median and interquartile values [Sch10].
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Figure 4–15: second-order standard deviation test as applied to two collections
with contrasting degrees of inter-response variability: 11-FanfareA of the Kor data
set and 43-RdmF1 from the Rdm set of unrelated response collections. Below the
plots of all responses of each collection is the standard deviation time series with
the threshold for k = 1 and at the bottom, the average time series with “signifi-
cant” time points highlighted in red.

For analytic intuitions trained on discrete collections of data, the cross-

sectional standard deviation seems to be a reasonable indication of how much the

average value can be trusted. However, by setting the threshold in terms of the

actual distribution of variance, the measure can only tell which time points are

more “reliable” than others within a particular data collection. When considering

different collections of responses, the same threshold definition could treat time

points with the same cross-sectional distributions differently, depending on the

behaviour of their respective collections.
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Figure 4–15 shows the time points selected as “significant” from two collec-

tions using a threshold of µ(σI(X)) − σ(σI(X)), with k = 1. The middle graphs

are the standard deviation time series with the second-order standard deviation

threshold in red, and the selected time points marked by red stars on the average

response series in the bottom graph. Notice how the scale of the cross-sectional

standard deviation time series differ between these two collections. It is no surprise

that the cross-sectional standard deviation values of the unrelated response collec-

tion are, on average, more than twice that of the experimental collection (right).

Despite this sizeable difference between the collections, a similar proportion of time

points are selected as significant, i.e., as reliable, in each collection by this test.

Thresholding σI(X) in terms of its own distribution makes this measure blind to

the actual variability of a collection.

Testing the performance of this test on all of the behavioural collections,

figure 4–16 shows the distribution statistics of the cross-sectional standard

deviations of each collection above the graph reporting the precentage of time

points found to be significant in each collection, according to different values of

k. The longitudinal average of the cross-sectional standard deviation series varies

within and between data sets, while the variance of these summary time series

seem to be much more limited in range. Some researchers stopped publishing

graphs of the cross-sectional standard deviation series because they found it

“provided little information ” [GMG04] with such small variance over time.

The patterns of percentages found significant for each k do not correlate across

collections with either the µ(σI(X)) or the σ(σI(X)). The performance of the
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test on the unrelated response collections also show that the moments found,

whether many or few, can not be assumed to be indicative of inter-response

coordination. While simple to calculate, this technique is evidently too arbitrary

to make “significant” distinctions between time points in a collection of continuous

responses.

4.2.2 An extreme event test

At the other end of the time-point differentiation problem is indentifying

moments of extreme or deviant response behaviour. Rather than remove the

unreliable time points from future analysis, the goal for this kind of “significant

event” test is to identify those few moments over the course of the stimulus during
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Figure 4–17: Upper and lower extreme event test for collection 27-DSljEmF of the
AoD data set. Below the plot of all responses is the median response time series
with thresholds for testing, and on the bottom, the median with points starred for
passing the Wilcoxon signed-rank test against the longitudinal median.

which particularly strong responses are reported by/recorded from many or most

listeners. Oliver Grewe et al., published an interesting technique for identifying

moments of extreme responses using the Wilcoxon signed-rank test to evaluate

the significance of these response events against the average, or rather median,

cross-section of responses [GNKA07a]. Using non-parametric distribution criteria,

a threshold is calculated for the median time series of a collection of responses.

The cross-section at time points whose median values exceed this threshold are

then tested against the collections longitudinal median distribution. If the test
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shows the response values at that time point to have a significantly different

distribution from the longitudinal median, this time point is labeled as an extreme

event. Grewe et al., use the term affect event because this test was developed for

continuous responses related to emotion [GNKA07a], however the same process

may be applied to measures of other aspects of responses.

The process outlined in the Emotion article defined the threshold for cross-

sectional medians as the median of the 90th percentile values of individual time

series. Note that if the response are really variable in range, it could be that the

median time series would never reach threshold. The authors did not explain the

choice of 90th percentile, and lower bounds, such as those used in figure 4–18.

Using the notation described in chapter 3 for the median and quartile values of

a set, we define the longitudinal 90th percentile response values of collection X

to be µ0.9,R(X) = {µ0.9(xr)}
M
r=1. The threshold is then the median of this set,

µ0.5(µ0.9,R(X)). A time point, ti, would qualify to be tested for significance if

µ0.5,i(X) > µ0.5(µ0.9,R(X)), or, more explicitly, if:

‖{r ∈ {1, 2, ...,M} | xi,r > µ0.5(µ0.9,R(X))}‖

M
> 1/2 (4.15)

This thresholding of the median can be seen in figure 4–17. In this figure, the

threshold has been calculated for the 90th percentile and the 10th percentile to

catch both upper and lower extremes. Applying the threshold to the median time

series ensures that only moments when the majority of responses are above the

articulated threshold are considered for testing. Even though the threshold is

based on the actual distribution of values within the collection, the median time
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series many never reach these extreme values, as is the case for the lower bound on

19-K492L in figure 4–18.

This test was initially applied to the rating response collections under the

first-order difference transformation alongside physiological responses [GNKA07a].

To demonstrate its effectiveness on both the original rating values and differenced

responses, figure 4–18 shows the results for two collections under less stringent

thresholds based on the 80th and 20th percentiles. Even with this more inclusive

criterion for time-points to qualify for testing against the longitudinal median,

these events are not common. In collection 19-K492L, there are not time points

at which the median of the differenced data is significantly non-zero. This kind of

thresholding ensures that the points investigated always reflect the behaviour of

the majority of responses, and if a majority never acts in concert, the collection

fails to show any extreme events as defined by this test.

The fact that the Wilcoxon signed-rank test is non-parametric makes it all

the more appropriate for evaluating these collections’ cross-sections, as can be

seen in figure 3–1. The Wilcoxon signed-rank test is a more powerful version of

the non-parametric pair-difference test, the sign test. Given two sets of values,

Xi := {xi,r}
M
r=1 and Xj := {xj,r}

M
r=1 paired by index r, a sign test evaluates

the difference of each pair, zR := {xj,r − xi,r}
M
r=1, with the null hypothesis that

µ0.5(zR) = 0. This hypothesis is tested by counting the number of positive zr

and number of negative zr and the test statistic is the minimum of these two

values. The sign-rank test adds another factor to this comparison of positive

and negative paired differences by summing the ranks of the absolute value of
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Figure 4–18: Example results of extreme event test for collection 19-K492L of
the Moz data set and 5-Ste1A from the AR1 set. Below each collections plot of
responses are the median time series for the collections and their first-order dif-
ference. The bottom graphs marks extreme events of either type with stars in the
colour of the threshold on the cross-sectional median time series.

each difference zr for positive and for negative differences. The minimum of

these sums is the measure of deviation from the median null hypothesis [Wil45].

Given the number of pairs, or rather the number of non-zero pair-wise differences,

the likelihood of the signed test statistic can be calculated with respect to their

expected distribution under the null hypothesis. Grewe et al. used a significance

level of 0.05 [GNKA07a].

Besides highlighting the differences in response ranges per collection, figure

4–19 shows the difference between the median longitudinal percentile criterion and

a threshold based on the distribution of the cross-sectional medians (the latter
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Figure 4–19: Comparison of median-based thresholds and proportion of time
points measured as significant events across behavioural response collections.

being the non-parametric equivalent of second-order standard deviation threshold).

The former thresholds are always more extreme, and often the difference is enough

to prevent all time points from being tested. The median 90th percentile criterion

yields no extreme events in the unrelated responses collections, but it also shuts

out some of the experimental collections. The lower graph of figure 4–19 shows the

percentage of time points exceeding the thresholds (high and low) as well as the

number passing the Wilcoxon signed-rank test against the longitudinal medians

of each collection. Most of the collections had some time points selected to be

tested by the initial thresholding, at least on one of the extremes, but few tested

both high and low. In only three collections did any of the selected time points

fail to reject the null hypothesis of the signed-rank test. This suggests that more

time points in these collections would be found “significant” by the same test.

Rather than violate multiple test constraints further by testing all points, a lower

threshold, as seen in figure 4–18, could catch more extreme events. Complimentary
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Figure 4–20: Comparison of median based thresholds and proportion of significant
events measured across the first-order difference (1 Hz)of all behavioural response
collections.

evaluation of these extreme events could inform the selection of a most practical

percentile value or other thresholding criteria.

The same evaluation applied to the first-order difference of these data

collections (sampled at 1Hz) shows similar results, plotted in figure 4–20. For these

difference data, it is important to note the number of collections for which the 90th

and 10th percentile of the median series are zero. As discussed in the context of

activity analysis, it is very rare to have even half of the responses in a collection

showing the same kind of change in ratings in the same short time interval. Those

few points found to satisfy the cross-sectional median threshold almost never

fail the significance test. The exceptions here are from data collections of very

small numbers, containing less than 10 responses. More collections would have

time points exceeding these thresholds if the difference transformation was on
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a lower sampling frequency, but even with such adjustments, another kind of

selection criterion may be needed to find moments of sufficiently drastic change.

Another option might be to first sort responses within collections to get higher

concentrations of similar patterns of response variation.

The purpose of this test is to find moments of coordinated extreme responses

within the audience. By using the median time series and a threshold derived from

longitudinal distributions and a statistically sound test of significant difference

from median response behaviour, this test does a good job of picking out extreme

time points. It is not clear, however, what might be missed in the process of

applying such strict selection criteria. For both the ratings and the first-order

differenced ratings, the cutoff of µ0.5(µ0.9,R(X)) does not seem to be the most

efficient means of selecting time points of extreme responses as it renders the

signed-rank test redundant in the vast majority of cases. Further study of this

test and the implications of each step may yield a less stringent but more useful

variation of Grewe et al.’s initial parameters.

4.2.3 Conclusion

There is a great deal of interest in the moment-by-moment details of con-

tinuous responses. The number of pages spent expounding on the details of the

average time series’ contour is but one sign of the need for reliable methods for

systematically and skillfully detecting time points of interesting character. The

methods presented in the section are just a beginning.

Assessing reliability or validity of responses, and in particular the average

response time series, could ground a lot of speculation. However the test proposed
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by Emery Schubert in 2007 is not the solution. Such a test would need to manage

both the non-parametric distribution of cross-sections and the consequences of the

serial nature of these data.

The model of extreme event finding laid out here is also a starting point for

identifying isolated moments of particularly distinct responses. Given the results

of activity analysis, study of simultaneous changes in response may require criteria

that do not depend on the majority of responses showing the same activity, and

further consideration must be given to selecting the most useful threshold, but the

introduction of non-parametric criteria to this area of analysis is a very helpful

step towards more reliable results.

Besides these two, there are many possible methods for differentiating time

points or time intervals within collections of continuous responses. Activity

analysis, for example, provides new basis for this process without depending on

central tendency statistics. But before methods become established, definitions

of what kind of response behaviour should count as significant need further

development.
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4.3 Clustering: grouping responses by profile and character
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Figure 4–21: Clustering of responses in collection 4-Sch1V from the data set AR1.
Using Euclidean distance and Ward linkage, three clusters are presented below the
plot of all the responses, each with the responses’ average time series.

The variation between participants responses to the same stimuli has often

been noted, but despite this, most traditional analysis methods presume that there

is a single ideal response underlying the responses collected to the same stimulus.

Such singular representations of a collection’s continuous responses mask the con-

tradictory patterns of experience noticeable when studying individual responses.

Currently, there are no reliable measures of how well a central tendency time series

represents the individual responses in a collection. Given the detrimental effect of

this diversity on standard summary statistics, it may be practical to consider the

105



possibility of multiple distinct temporal profiles of response within a given collec-

tion, as suggested in figure 4–21. In this section, simple hierarchical clustering is

used to explore whether responses within collections can be separated into distinct

clusters of related temporal profiles.

Botryology is admittedly a finicky science, if not a black art [vD00], and time

series data add to it the same challenges that hinder other forms of time series

analysis. There have been many creative time series clustering studies [L+05],

but not all have the same purpose. The following goals have contributed to the

selection clustering criteria:

1. Similar response values: Fundamentally, we want to know if different

participants show similar responses to the stimulus at any given moment.

The simplest evidence of this in collections of response ratings would be

responses showing the same rating values at the same time.

2. Similar response behaviour: Participants may have similar experience but

perform rating tasks differently. Differences such as varying degrees of

sensitivity to the rating scale, faster or slower reaction times, or distinct

interpretations of the task can hide similar experiences. To study these

general behaviours, responses can be grouped by characteristics such as

rating range use, or sudden versus gradual rating changes, whether or not

these characteristics are separable from the gross rating value information.

3. Similar moments of response: Participants may have different responses while

being affected by the same events in the time course of the stimulus. This

would be expressed by changes in response around the same time, despite
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possible differences in response values. Studying responses by contour or

rating change activity would show groups of this type.

It is common place to normalize time series prior to clustering [KK03], by range,

mean, or variance. Continuous rating data, however, are collected on a fixed, finite

range, and normalization would interfere with the first goal of clustering similar

response values. Some distance metrics are sensitive to the absolute values of data

sets, while others are designed to measure relative values.

As mentioned above, continuous responses may show differences due to

reaction times of participants: it takes a moment for subjects to realize their

experience and another moment for them to express it. To reduce the effect of

variable reaction times, the responses have been down-sampled to 1 or 0.5 Hz

(depending on the technique). This lower sample rate is also useful for reducing

the sensitivity of rating change timing for goal no. 3.

4.3.1 Hierarchical clustering of continuous responses

There are many ways to build hierarchical clusters. The process and result

depend on choices of distance metrics and linkage criterion. For a first attempt,

the standard Euclidean distance metric should suffice. Given two vectors of the

same n-dimensional vector space, xr := {xr,i}
i=n
i=1 and xs := {xs,i}

i=n
i=1 , the Euclidean

distance between these vectors is defined as:

d(xr,xs) =

√

√

√

√

n
∑

i=1

(xr,i − xs,i)2 (4.16)

This metric measures the distance per time point between responses on the

units of the response scale. This is different from a Pearson product-moment
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correlation, a more popular similarity measure for these data, which is variance

neutral. The Euclidean measure is effective at capturing the difference between

responses as per the first clustering goal: grouping by rating value.
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Figure 4–22: Hierarchical clustering of collection 4-Sch1V of the AR1 data set.
The dendrogram is a bottom-up construction using Euclidean distance with Ward
linkage criterion for cluster formation.

Bottom-up hierarchical clustering is a recursive process of joining the ele-

ments, or previously clustered subset of elements, which are closest to each other

until the whole collection of elements have been joined into one cluster. After the

first step of measuring the distance between all elements and joining the closest

two, it is necessary to have some way of measuring the distance between subsets of

elements of size greater than one. The method to assess that distance is called the

linkage criterion and it is defined in part by the element distance measure. The y

dimension on dendrograms such as figure 4–22 corresponds to the linkage distance

measure: the height of each link joining two clusters represents the measured

distance between the merging subsets.
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A common measure of the distance between two sets of vectors is called the

Single linkage criterion. For two subsets R and S with elements xr and xs, the

Single distance is the minimum distance measured between all possible element

pairings between the sets. This linkage criterion makes it easy for sets to grow one

element at a time, often resulting in staircase-like dendrograms. A more exclusive

distance metric between sets is the opposite measure, called the Complete linkage

distance. This takes, instead, the maximum distance between any two pairs of

vectors:

D(R, S) = max{d(xr,ys) | ∀ xr ∈ R, ∀ xs ∈ S} (4.17)

The Single and Complete distance measures are linkage criteria that can

be applied to any well-defined element-wise distance metric, d(xr,xs). When

the vector distance metric is Euclidean, there are other commonly used options

that manage to compromise between these extremes. Clustering responses to

minimise variance would satisfy goal No. 1, for which the Ward measure would be

appropriate. According to Liao, et al.: “The Ward’s minimum variance algorithm

merges the two clusters that will result in the smallest increase in the value of

the sum-of-squares variance. At each clustering step, all possible mergers of two

clusters are tried. The sum-of-squares variance is computed for each and the

one with the smallest value is selected.” [L+05] One method of calculating this

measure evaluates the difference in the centroids of two vector sets weighted

against the number of vectors composing the sets. If the centroid of a set R with

NR elements xr is defined as the average of elements in the set µR, then the Ward
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distance for two sets R and S would be given by:

D(R, S) = NRNS
d(µR, µS)

NR +NS

(4.18)

Hierarchical clustering is sensitive to the choice of linkage criterion. On these

continuous response collections, the Single distance measure most often results

in staircase dendrograms; making a long sequence of nested clusters rather than

forming distinct subsets at any given level. The Complete distance measure, on the

other hand, amplifies the distance between subsets and distinguishes clusters that

may not be robustly distinct. The Ward metric is somewhere between the two, and

is used in these first examples of clustering collections of continuous response.

Note that these measures are not designed for time series. When applied

to serially sampled data, each sample point is treated as its own dimension.

Insensitive to the visually obvious parallels behind spurious noise like the phase

variation in reaction times, there are aspects of similarity and difference in these

time series which will be missed by the above clustering approach. Despite this,

alternative measures designed for time series rarely out-perform the Euclidean

distance measure [KK03]. One successful technique to get around this temporal

blind spot of the standard Euclidean measure is to apply controlled dynamic time

warping [RK05], although that has not been attempted here.

The last step in generating clusters from an agglomerative hierarchical

clustering process is to apply some criterion for cutting the dendrogram tree into

distinct subsets of the full collection [TSK+06]. One method for cluster selection

depends on the linkage measure by selecting a threshold above which all links are
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ignored. A similar tactic is to specify in advance how many clusters should come

out of the process. This criterion uses an algorithm to find a threshold value at

which slicing the tree will leave the “right” number of subsets. When something is

known about the possible clusters, these methods are quick and simple means for

selecting clusters.

With no precedent for clustering continuous response data, there is no expe-

rience to inform these criteria. Thus, it is more useful to work with a clustering

criterion that measures the quality of each potential cluster. The inconsistency of a

cluster is a measure of the highest link height against the nearest links the cluster

contains. If one cluster is very tight and the next step up the hierarchy joins it

with a very different cluster, the inconsistency measure will have a high value.

The inconsistency measure uses the distribution of link heights of the present link

and those immediately below it and can be expanded to include links deeper into

the component clusters. The inconsistency clustering criterion results in a set of

largest clusters which cover the full collection and in which all component links

fall below the inconsistency threshold. The clusters in this section used a depth

of 3 for the inconsistency measurements and the results of several thresholds were

compared. Rather than present all clusterings found, below are some examples of

typical clustering outcomes from the behavioural data collections.

Figures 4–22 and 4–24 are examples of dendrograms of agglomerative hier-

archical clustering using the Euclidean metric and the Ward linkage criterion.

The relatively large distances between higher levels of the hierarchy suggest that

these responses separate into distinct clusters. In the example of the felt emotional
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valence ratings to a recording of the Andante movement of Schumann’s 3rd String

Quartet, the dendrogram in figure 4–22 suggests three separate clusters, each with

similar sizes and degrees of internal variation. An inconsistency threshold of 1.5

(depth 3) selects these three cluster as presented in the lower three graphs of figure

4–21. While these cluster do share some characteristics, their differences reflect the

particularities of their subset. For example, the last two clusters are very similar

between seconds 250 and 400, but the first and third are more similar between 100

and 250 seconds. All three show similar drops in ratings at the beginning of the

stimulus, but the bottom two show much greater variation in mean rating values

than the first cluster. Compared to the average rating for the entire collection,

these cluster centroids some distinct “common” response behaviours.

Not all response collections group in comparable numbers. In figure 4–23,

the colours of different inconsistency thresholds spread differently depending

on the response collection. The second graphs shows the median within cluster

cross-sectional variance against the same statistic for each entire collection.

The complete sets have higher variance, but depending on the collection, their

transition is smooth or there is a big gap from one thresholding criterion to the

next. The last figure shows a similar trend, with the variance of the median being

higher within the many clusters of small size than the complete or nearly complete

collections. These graphs suggest that, at least in some cases, collections can

be clustered to satisfy goal 1 and, for the purpose of finding ideal and distinct

responses, many small clusters may be more interesting than a few big messy sets.
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Figure 4–23: Hierarchical clustering summary of all behavioural collections with
many degrees of inconsistency. The top graph presents the number of clusters
resulting for each threshold; the second graph plots the median of the longitudi-
nal median for the cross-sectional non-parametric half-interquartile evaluated per
cluster; the third graph plots the median of the half-interquartile distance of the
distribution of the median time series of each cluster.
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The responses of 18-PizzicatoA do not cluster as quickly as the valence

ratings of Schumann piece. Figure 4–24 shows the dendrogram generated by the

algorithm. This clustering suggests a few thresholds for clean cuts, but the same

inconsistency threshold of 1.5 with a depth of 3 results in seven distinct clusters

within the collection. Figure 4–25 shows these clusters with their mean time series

below the ratings of the complete collection.
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Hierarchical clustering of collection 17−PizzicatoA with Euclidean distance and Ward linkage

Figure 4–24: Hierarchical clustering of collection 17-PizzicatoA of the Kor data set.
The dendrogram is a bottom-up construction using Euclidean distance with Ward
linkage criterion for cluster formation.

In the clustering shown in figure 4–25, each subset is much less variable and

more noticeably distinct that the three clusters in figure 4–21. The second-to-last

of the seven clusters consists primarily of responses which go high quickly and stay

there. The last cluster, in contrast, meanders around the midpoint of the range

and shows similar points of change from the positive arousal to negative arousal

range. While the relationship of the average time series within each cluster to that

of the whole collection is visible, the differences in degree of change per moment,

related to goal No. 2, are also reflected in these small subsets.
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Figure 4–25: Clustering of responses in collection 17-PizzicatoA from the data
set Kor. Using Euclidean distance and Ward linkage, seven clusters are presented
below the plot of all the responses, each with the responses’ average time series.
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These clusters show that rating time series can show very similar responses

despite individual differences while being distinct from most other responses in

the collection. The clusters show a matching of task behaviour as well as response

profile. With larger response collections, robust distinct clusters may emerge more

clearly.

4.3.2 Hierarchical clustering on first-order differenced responses
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Hierarchical clustering of the first order difference of collection 17−PizzicatoA, distance Hamming, Complete linkage

Figure 4–26: Hierarchical clustering of the sign first-order difference of the collec-
tion 17-PizzicatoA of the Kor data set. The dendrogram is a bottom-up construc-
tion using Hamming distance with Complete linkage criterion for cluster formation.

The first clustering approach tried to address the first two clustering goals,

but within each cluster, differences in the “when” of ratings are suppressed in

favour of the “how”. Clustering the first-order difference of response collections

would capture similarities in contour and other aspects of rating behaviour. To

remove the bias of expressiveness, the first-order difference of each downsampled

response is simplified to the sign-difference series of 0’s 1’s and −1’s. For each

sample, the sign-difference series specifies whether that participant’s rating
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Figure 4–27: Clustering of the signed first-order differences (0.5 Hz) of responses
in collection 17-PizzicatoA from the data set Kor. Using Hamming distance and
Complete linkage, five clusters are presented below the plot of all the responses,
each with the responses’ average time series. To the right of each cluster plot is the
rating increases (blue) and decreases (green, negative) activity-level time series to
show the common activity within each cluster.
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increased, decreased or stayed the same over the two second window centred on the

associated time point.

For these series, it is also reasonable use another kind of distance measure.

The purpose is to compare when response ratings change and when they stay

constant. For this, a useful measure is the Hamming distance, a measure of the

ratio of dimensions, or in this case, time points, in which the two vector elements

do not match. Because the Hamming distance is not Euclidean, these hierarchical

clusterings were performed using the Complete linkage criterion to sort responses

into distinct clusters.

The clustering outcomes of the sign-difference data were similar in number

and distinctness to the clustering using the Euclidean/Ward combination on the

untransformed ratings. But one difference in the clustering behaviour is the speed

of the collapse to smaller numbers of clusters. Using these distance measures

and response representations, some collections require much higher allowances of

inconsistency to move from many small clusters to larger subsets. To compare this

clustering’s performance with the last, consider again the collection of perceived

emotional arousal ratings to the Strauss’ Pizzicato Polka. The y axis in Figure

4–26 reflects the use of a different distance metric and linking criterion, and the

hierarchical clustering differs from the initial pairings to higher clusters of the

dendrogram in Figure 4–22. Still, the resulting clusters show behaviours of interest

to goal No. 3, gathering responses which share moments of stillness and rating

change. Figure 4–27 presents the five selected clusters, each beside their respective

activity-level time series in Figure 4–27, as explained in section 4.1.
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The five clusters selected by the inconsistency threshold of 1.5 are not very

tight around the responses’ mean time series, however the incidence of complete

agreement in simultaneous increase and decreases show how these clusters differ

from each other. The cluster rating change activity-levels is a counting of the ratio

of responses changing ratings. The blue lines specify the proportion of responses

in the cluster increasing ratings in that time window, while the green line traces

the negative of the proportion of responses decreasing in each two-second interval.

The first cluster then shows six time points at which all response move together

with values of 1 and -1. The strongest contrast between clusters may be between

the third and all other subsets, as this cluster brings together the responses which

change the least often—clustering by stillness rather than by common moments of

active response. Another type of difference can be seen between the last cluster

and the rest. This set of three ratings share a calm in the middle of the piece

by not changing ratings while the other clusters show a mix of strong and weak

activity-levels. Instances of participants changing ratings together may be caused

by similar sensitivities to the specific aspects of the stimulus.

Both hierarchical approaches expose patterns of rating behaviour while the

clusters for specific collections might differ greatly depending on the clustering

criteria. The activity profiles and cluster average time series suggest that separable

clusters may still share similar response patterns to subsections of stimuli. It may

be that participants do not fall into one or three ideal listening tracks but instead

skip between listening approaches as their attention shifts.
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4.3.3 Conclusions

Cluster analysis has a distinguished history of leaving researchers with more

questions than answers. This introductory effort to cluster responses suggests new

possibilities for continuous response analysis. Responses to specific stimuli may

contain a lot more significant information than might be assumed when looking at

the mess of complete response collections. Without considering the different ways

in which participants can respond, it will be hard to make sense of the weak trends

which are presented in summaries of the collection.

Time series clustering may also be greatly improved with the use of dynamic

time warping. The responses here vary too widely in contour for simple techniques

to be successful, but controlled warping may be the key to cleaning up these

responses into clearer distinct subsets. At the very least, these clustering efforts

once again show that these responses do diverge greatly from the simple average

and, with clustering, those differences finally show themselves to be repeatable

rather than accidental.

4.4 Conclusion

Collections of responses have a lot more to share than is made available

through the techniques discussed in chapter 3. This set of novel approaches present

new relevant and robust information about listeners’ responses to music.

Given the results of section 4.1 on activity analysis, researchers using con-

tinuous response data should realize that testing for coordination should always

precede analyses of summary time series like the cross-sectional average. And while

responses in the collections studied here do not seem to express a single united
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experience per stimulus, this diversity need not be dismissed as noise. Rather than

lessening the information to be found in the collections, contradictory responses

may yet show themselves to be repeatable and legitimate expressions of distinct

experiences of the music.

Coordination plays an important role in identifying when responses more or

less agree and when the music really moves listeners’ responses. The exploration

of extreme events and activity-level time series suggest an event representation

of stimuli may be more fruitful for modelling responses than the current popular

continuous feature approaches.

These techniques are admittedly just beginnings of new directions for contin-

uous response analysis. However, they already promise to be useful tools, not only

because they stand on firmer statistical and numerical ground than some of the

more popular techniques in the literature.
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CHAPTER 5

Conclusions

From the many analyses included in the previous chapters, a number of

conclusions and many more questions arise. Besides discussing some outcomes of

this study of methods, this last chapter addresses trends and characteristics of

these collections as exposed by the different data treatments.

5.1 Traditional analyses

The traditional analyses discussed were the most broadly employed tech-

niques, and their popularity has been encouraged by their familiarity and sim-

plicity. Each of the three categories of analyses described in chapter 3 had been

scrutinized in the literature before, and the repeated applications and analyses

here should give more weight to the concerns expressed by other researchers. The

principle conclusions are as follows:

1. It cannot be assumed that these continuous responses data are distributed

normally, either in the cross-sections of collections, or in the longitudinal dis-

tributions of values in each response. Using the median and the interquartile

distance as alternatives to the arithmetic mean and standard deviation allows

for more flexible and more explicit descriptors of these distributions, though

these measures on cross-sections are still sensitive to individual responses

dynamic behaviour.
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2. Central tendency statistics, even non-parametric ones, should be treated

with skepticism, as there can be broad disagreement between responses

to the same stimuli. Beyond issues of skewness and kurtosis, the data

being summarized may be bimodal, in which case, neither the mean nor

the median effectively represent the distribution. Reporting dispersion

measures, particularly the more sensitive interquartile range, is one way of

acknowledging this disagreement.

3. Correlations, Pearson or otherwise, may not be measuring relevant differ-

ences between responses. And while they may be interpretable for some

applications to continuous response data, the standard estimates of the

significance of these measures of covariance do not apply to time series.

Likelihood estimates that use the number of sample points directly as the

degrees of freedom depend on the assumption that each datum is sampled

independently. Though complicated alternatives may be found, the Student

T estimate with N − 2 degrees of freedom is meaningless for serially sampled

data sets.

Traditional analyses can pull significant conclusions from these collections,

particularly when using response-wise statistics, but the results are large-scale

descriptors of the responses. Numerically, these analyses do not take full advantage

of the diversity of responses, or the temporal character of these collection.

The average response time series does not, as a rule, represent the average

listener’s continuous response. While this result is not surprising to those who

often listen to music, this distinction has not be widely acknowledged in the
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analyses and interpretations of these collections of responses. Though the central

tendency time series does not necessarily represent the majority of responses,

it may still be a meaningful summary of the collection. Even if music does not

affect individuals deterministically, there appears to be significant consistency

in how it effects groups of people. This collective experience of music can be

studied explicitly through the dimensional reductions of collections of continuous

responses.

5.2 Novel analyses

As explained in chapter 4, the novel techniques discussed here employ and

express the inter-response variability and the temporal profiles of continuous

responses. Some of the novel techniques did not get the same critical treatment as

the often published traditional techniques as this would require a less bias eye than

that of their designer. With this caveat in mind, there are some conclusions to be

drawn from their application.

1. The novel analyses showed that responses are not generally unified. The rar-

ity of a majority of responses being active within the two second time frames

of the activity analysis is corroborated by the rarity of extreme events in the

first-order differenced collections. The disagreement in rating responses was

also noted in the rarity of extreme events on the untransformed collection,

much less than the hypothetical maxima of 10 − 20% of time points, and by

the high inconsistency thresholds required to aggregate most collections into

only a few clusters.
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2. Despite the variablity of responses, many of the collections generally showed

significant coordinated activity. The results of the activity coordination tests

varied between collection of responses from the same participants, suggesting

that differences in significant coordination are due to the coordinating power

of stimuli. Cluster analysis also suggest that participants responses can

resemble the responses of others, though the interpretation of these clusters

and their differences requires further exploration.

3. It is possible and relevant to ask when responses show more agreement or

when responses show coordinated extreme responses. Rather than lead the

analysis of responses by that of the stimulus, as is the case for interrupted

time series and regression analysis, it is possible to have the collection of

responses direct the analysis of the stimulus by quantifying when and how

the listening experience changes significantly.

There is robust information in these response collections which is not caught

by traditional analyses. Activity analysis, for example, offers an alternative time

series summary of collections for which the contribution of individual responses

to the summary is clear at each time point. These techniques may be promising,

however, they also need the establishment of reliable data-determined standards of

application, standards as have yet to be fixed for the traditional analysis methods

as well. Studies comparing the results of analysis techniques on multiple data sets

are necessary for the development of sound methodologies.
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5.3 Trends in response collections

Without discussing each collection in details, there are interesting trends in

the results of the analyses which should be explored in the future. By comparing

multiple data collections, differences are noticeable between groups of collections

defined by common participants, by responses measures, by collection devices,

and by stimulus characteristics. The significance of these factors have yet to be

properly evaluated.

Different sets of collection have different degrees variability in response

ratings, though within sets, collections also differ in range use and variability.

The collections with the smallest cross-sectional dispersion were in those data sets

collected using two dimensional GUI emotion rating system, both of perceived and

experienced emotion. This difference is visible via clustering, activity analysis, and

the traditional longitudinal summaries of collections.

The differences between collections in all of these analyses also show the

importance of the response measure and the stimulus. For many stimuli of the

collections, emotional arousal ratings were more active and variable than emotional

valence ratings. The size of the collections also affect some of the analyses: the

small size some collections in AR3 and the opposite distinction of some collection

in AoD interfered with the interpretation of other factors across all collections.

Experimental collections vs unrelated collections

The unrelated response collections were quite useful as litmus tests for these

analyses, setting bounds on unreasonable results for variability, coordination and

other aspects of summary analyses. It would be useful to articulate in more detail
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the differences between related and unrelated collections. Some of the experimental

collections used here were not always measurably different from the artificially

constructed collections, and while activity analysis suggests one explanation of

this, there may be specific reasons for their lack of coordination.

Some of the less coordinated data collections, particularly in the Kor data

set, did not show strong disagreement between responses. Instead, according to

the average longitudinal standard deviation of responses, it seems that the stimuli

for these collections did not provoke a wide use of the rating range. It could be

that for stimuli which are fairly uniform in expression over their duration, response

changes are not determined by the common stimulus. In such cases, the temporal

dynamics may be too subtle to catch consistent effects in collections of only 35

participants.

Experienced measures vs perceived measures

In these data sets, there was only one with ratings of perceived emotion,

Kor, and this set did contrast in some ways with the collections of experienced

emotion ratings. It is easy to assume that ratings of the emotion perceived in the

music would agree more than ratings of felt emotions. For most of the sets using

experience measures, namely Moz and AoD, they showed less activity and more

inter-response variability. However, AR1, also composed of felt emotion ratings,

showed coordination and variability similar to that of the Kor data collections.

Analyses of rating values show many collections in the Kor data set with

“high” inter-response agreement, a higher proportion than is seen in the the

experience emotion data sets AR1, Moz, AoD (first 4 collections), and AR1. This
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contrast is much stronger in analyses which depend on the original rating values

than in the results of those techniques employing the first-order difference of the

collections.

The first 20 seconds

For most collections, inter-response correlations did not change much as a

consequence of removing the first 25 seconds of responses. However, for the few

that it did, it seems possible that the effect may be worsened by the response

collection device. According to extreme points analyses, the lowers extremes

are often pulled out of collections like those of the Moz data set when the first

few samples are removed. If they are artifacts of the rating task, rather that

representative of participants responses, these time points should be excluded from

further analysis.

5.4 Future work

The analyses of analyses presented here are beginnings; all of the novel

techniques need further development. Conversations between researchers working

on continuous responses to music should determine the direction taken for cluster

analysis, event detection and activity analysis. Cluster analysis, for example, may

be more useful for assess subsections of responses, which could then be interpreted

like decision trees [TMCV06].

The distinct clusters of responses found in many collections, along with the

many negative pairwise correlations between responses, are reminders that we

should not expect music to produce a singular sequence experiences. Along with

admitting inter-response variability, individual responses need to be explored
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directly. Given the sparse step-like character of many individual rating responses,

and the advent of event analyses, we may realize that a different approach to

modelling responses is necessary. If participants seem to respond to cues rather

than reflect gradual shifts in alignment with stimulus characteristics, it would be

useful to quantifying stimuli and responses by looking at when these sharp changes

are recorded.

From the beginning of research into continuous responses to music, there

has been an interest in capturing when participants responsed and how their

responses differ [Fra56] [Nie87] [Slo91] [CS92]. However, traditional analyses

have mostly aggregated response to form a (possibly false) single ideal response

for direct comparison to the stimulus. Publications of studies using continuous

responses to music have reported results using ill-fitting statistical tools because

of a lack of reliable and accessible methodologies suited to the questions at hand.

Without sufficient implementation and comparison, many novel and promising

approaches have sat waiting to be discovered again. This first comparison of

analysis techniques, as applied to many collections of responses, is a starting point

for developing accurate tools tailored to the nature of these data and the questions

music cognition researchers hope to answer.
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Appendix

Table 5–1: This table describes the collections in the Data set AR1, Audience
Response system 1, recorded in March 2009. Participants were members of the
university community who listened to the stimuli all together in concert like rowed
seating. Their responses were recorded on iPod Touch devices with either a one
dimensional slider GUI or a two-dimensional cartesian GUI.

1 - Arc1A
Il bianco e dolce cigno Emotional Arousal 30 responses

Recording (King Singers) Experienced 10 Hz
J. Arcadelt 1 of 1 or 2 dim 119.7 seconds

2 - Arc1V
Il bianco e dolce cigno Emotional Valence 30 responses

Recording (King Singers) Experienced 10 Hz
J. Arcadelt 1 of 1 or 2 dim 119.7 seconds

3 - Sch1A
Mvmt 1, String Qt No. 3, Op. 48 Emotional Valence 30 responses
Recording (St. Laurence Quartet) Experienced 10 Hz

R. Schumann 1 of 1 or 2 dim 488.6 seconds

4 - Sch1V
Mvmt 1, String Qt No. 3, Op. 48 Emotional Valence 30 responses
Recording (St. Laurence Quartet) Experienced 10 Hz

R. Schumann 1 of 1 or 2 dim 488.6 seconds

5 - Ste1A
Everybody to the Power of One Emotional Arousal 30 responses
Recording (d. andrew stewart) Experienced 10 Hz

d. andrew stewart 1 of 1 or 2 dim 390.4 seconds

6 - Ste1V
Everybody to the Power of One Emotional Valence 30 responses
Recording (d. andrew stewart) Experienced 10 Hz

d. andrew stewart 1 of 1 or 2 dim 390.4 seconds
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Table 5–2: This table describes the collections in the Data set Kor, responses col-
lected by Mark Korhonen for his 2004 thesis. Participants were divers in terms of
musical expertise. Each listened to stimuli and responded using the EmotionSpace
Lab, a 2D Emotion Space interface via computer screen and mouse. All musical
stimuli were taken from the Naxos CD Discover the Classics, Vol. 1, and some
stimuli were edited excerpts of the tracks of these compilation CDs.

7 - AllegroA
Allegro - Piano Concerto No. 1 Emotional Arousal 35 responses
Recording (C. Oliver Dohnanyi) Perceived 1 Hz

F. Liszt 1 of 2 dim 315 seconds

8 - AllegroV
Allegro - Piano Concerto No. 1 Emotional Valence 35 responses
Recording (C. Oliver Dohnanyi) Perceived 1 Hz

F. Liszt 1 of 2 dim 315 seconds

9 - AranjuezA
Adagio - Concierto de Aranjuez Emotional Arousal 35 responses
Recording (s. Norbert Kraft) Perceived 1 Hz

J. Rodrigo 1 of 2 dim 165 seconds

10 - AranjuezV
Adagio - Concierto de Aranjuez Emotional Valence 35 responses
Recording (s. Norbert Kraft) Perceived 1 Hz

J. Rodrigo 1 of 2 dim 165 seconds

11 - FanfareA
Fanfare for the Common Man Emotional Arousal 35 responses
Recording (c. S. Gunzenhauser) Perceived 1 Hz

A. Copland 1 of 2 dim 170 seconds

12 - FanfareV
Fanfare for the Common Man Emotional Valence 35 responses
Recording (c. S. Gunzenhauser) Perceived 1 Hz

A. Copland 1 of 2 dim 170 seconds

13 - MoonlightA
Adagio - Moonlight Sonata Emotional Arousal 35 responses
Recording (s. Jeno Jando) Perceived 1 Hz

L. van Beethoven 1 of 2 dim 153 seconds

14 - MoonlightV
Adagio - Moonlight Sonata Emotional Valence 35 responses
Recording (s. Jeno Jando) Perceived 1 Hz

L. van Beethoven 1 of 2 dim 153 seconds

15 - MorningA
Morning - Peer Gynt Suite No. 1 Emotional Arousal 35 responses
Recording (c. Jerzy Maksymiuk) Perceived 1 Hz

E. Grieg 1 of 2 dim 164 seconds

16 - MorningV
Morning - Peer Gynt Suite No. 1 Emotional Valence 35 responses
Recording (c. Jerzy Maksymiuk) Perceived 1 Hz

E. Grieg 1 of 2 dim 164 seconds

17 - PizzicatoA
Pizzicato Polka Emotional Arousal 35 responses

Recording (c. Ondrej Lenard) Perceived 1 Hz
Johann Strauss II, Josef Strauss 1 of 2 dim 164 seconds

18 - PizzicatoV
Pizzicato Polka Emotional Valence 35 responses

Recording (c. Ondrej Lenard) Perceived 1 Hz
Johann Strauss II, Josef Strauss 1 of 2 dim 164 seconds
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Table 5–3: This table describes the collections in the data set Moz, a collection of
responses to pieces by W. A. Mozart, recorded during two concerts in 2006. Par-
ticipants were diverse in age and musical expertise and recorded their responses on
handheld slider potentiometers wired to their seats in the concert halls. All stimuli
were performed by the Boston Symphony Orchestra under the direction of Maestro
Lockhart.

19 - K492L
Overture - Marriage of Figaro, K492 Emotional Intensity 30 responses

Live (BSO) Experienced 2 Hz
W. A. Mozart 1 of 1 dim 239.5 seconds

20 - K492R
Overture - Marriage of Figaro, K492 Emotional Intensity 23 responses

Recording (BSO) Experienced 2 Hz
W. A. Mozart 1 of 1 dim 239.5 seconds

21 - K16L
Rondo - Symphony No. 1, K16 Emotional Intensity 30 responses

Live (BSO) Experienced 2 Hz
W. A. Mozart 1 of 1 dim 128 seconds

22 - K16R
Rondo - Symphony No. 1, K16 Emotional Intensity 22 responses

Recording (BSO) Experienced 2 Hz
W. A. Mozart 1 of 1 dim 128 seconds

23 - K622L
Adagio - Cl. Concerto in A, K622 Emotional Intensity 31 responses

Live (BSO) Experienced 2 Hz
W. A. Mozart 1 of 1 dim 401.5 seconds

24 - K622R
Adagio - Cl. Concerto in A, K622 Emotional Intensity 22 responses

Recording (BSO) Experienced 2 Hz
W. A. Mozart 1 of 1 dim 401.5 seconds

25 - K551L
Finale - Symphony No. 41, K551 Emotional Intensity 31 responses

Live (BSO) Experienced 2 Hz
W. A. Mozart 1 of 1 dim 350.5 seconds

26 - K551R
Finale - Symphony No. 41, K551 Emotional Intensity 22 responses

Recording (BSO) Experienced 2 Hz
W. A. Mozart 1 of 1 dim 350.5 seconds

132



Table 5–4: This table describes the collections in the data set AoD, of the Angel of
Death project, recorded in two concerts in 2002, one in Paris, France and another
in La Jolla, California. Participants were diverse in age and musical expertise and
recorded their responses on handheld slider potentiometers wired to their seats in
the concert halls.

27 - DSljEmF
Angel of Death, D-S version Emotional Force 41 responses

Live (G. Cheng, SONOR Ensemble) Experienced 2 Hz
R. Reynolds 1 of 1 dim 2054.5 seconds

28 - SDljEmF
Angel of Death, S-D version Emotional Force 51 responses

Live (G. Cheng, SONOR Ensemble) Experienced 2 Hz
R. Reynolds 1 of 1 dim 2033.5 seconds

29 - DSpaEmF
Angel of Death, D-S version Force emotionnelle 54 responses

Live (JM Cottet,Court Circuit) Experienced 2 Hz
R. Reynolds 1 of 1 dim 2067.5 seconds

30 - SDpaEmF
Angel of Death, S-D version Force emotionnelle 41 responses

Live (JM Cottet,Court Circuit) Experienced 2 Hz
R. Reynolds 1 of 1 dim 2067.5 seconds

31 - DSljFam
Angel of Death, D-S version Familiarity 34 responses

Live (G. Cheng, SONOR Ensemble) Experienced 2 Hz
R. Reynolds 1 of 1 dim 2054.5 seconds

32 - SDljFam
Angel of Death, S-D version Familiarity 43 responses

Live (G. Cheng, SONOR Ensemble) Experienced 2 Hz
R. Reynolds 1 of 1 dim 2033.5 seconds

33 - DSpaFam
Angel of Death, D-S version Ressemblance 36 responses

Live (JM Cottet,Court Circuit) Experienced 2 Hz
R. Reynolds 1 of 1 dim 2067.5 seconds

34 - SDpaFam
Angel of Death, S-D version Ressemblance 40 responses

Live (JM Cottet,Court Circuit) Experienced 2 Hz
R. Reynolds 1 of 1 dim 2067.5 seconds
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Table 5–5: The collections in the data set AR3, Audience Response system 3,
recorded in March 2009. Participants were members of the public and music the-
orists in town for a conference who attended this concert. Their responses were
recorded on iPod Touch devices with a two dimensional cartesian GUI.

35 - Arc2A
Il bianco e dolce cigno Emotional Arousal 17 responses
Live (Orpheus Singers) Experienced 10 Hz

J. Arcadelt 1 of 1 or 2 dim 128.4 seconds

36 - Arc2V
Il bianco e dolce cigno Emotional Valence 17 responses
Live (Orpheus Singers) Experienced 10 Hz

J. Arcadelt 1 of 1 or 2 dim 128.4 seconds

37 - Sch2A
Andante-Allegro, String Qt No. 3, Op. 48 Emotional Valence 8 responses

Live (Student Quartet) Experienced 10 Hz
R. Schumann 1 of 1 or 2 dim 130 seconds

38 - Sch2V
Andante-Allegro, String Qt No. 3, Op. 48 Emotional Valence 8 responses

Live (Student Quartet) Experienced 10 Hz
R. Schumann 1 of 1 or 2 dim 130 seconds

39 - Ste2A
Everybody to the Power of One Emotional Arousal 30 responses

Live improvisation (d. andrew stewart) Experienced 10 Hz
d. andrew stewart 1 of 1 or 2 dim 446.1 seconds

40 - Ste2V
Everybody to the Power of One Emotional Valence 30 responses

Live improvisation (d. andrew stewart) Experienced 10 Hz
d. andrew stewart 1 of 1 or 2 dim 446.1 seconds

Table 5–6: The artificial “unrelated” collections constructed from responses se-
lected from each of the 40 previous experimental collections.

41 - RdmI1
First 2 minutes of random responses Mixed 40 responses

Mixed Mixed 1 Hz
Mixed 1 of 1 or 2 dimensions 119 seconds

42 - RdmI2
First 2 minutes of random responses Mixed 40 responses

Mixed Mixed 1 Hz
Mixed 1 of 1 or 2 dimensions 119 seconds

43 - RdmF1
Last 2 minutes of random responses Mixed 40 responses

Mixed Mixed 1 Hz
Mixed 1 of 1 or 2 dimensions 119 seconds

44 - RdmF2
Last 2 minutes of random responses Mixed 40 responses

Mixed Mixed 1 Hz
Mixed 1 of 1 or 2 dimensions 119 seconds
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Glossary of Math

This is a glossary of math symbols to clarify the particularities of the notation

used here.

:= such as X := {xr}, this modification of the equal sign, =, specifies that the

equation gives the definition of the term X and thus taken to be a fact

rather that a relationship to be proven.

{} also found in X := {xr}, curly brackets mark a set of elements, a collection.

In this case, X refers to the set rather than any element in the set. The

elements in a countable set can be indexed (though they need not be), and a

quick notation for this is with super- and sub-scripts such as xr := {xr,i}
N
i=1.

In this case, xr is a set of N elements and the index of xr,i ∈ xr is significant.

Note that the collections of time series are then sets of sets of data.

∈ as used above, ∈ means the symbol to the left is an “element of the set”

symbolized to the right.

⌊y⌋ as used in ⌊N/k⌋. These partial square brackets indicate that the resulting

numbers is the greatest integer less than the value in the brackets.

‖A‖ the size of a set, i.e., the number of elements in the set.

∀ for all elements in the set.
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