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ABSTRACT

Amyloid aggregation is involved in the death of many cells and is believed to

be the leading cause of neurodegenerative diseases such as Alzheimers, Parkinsons,

Huntington, and Type II Diabetes. In order to counter their detrimental effects to

the cell, it is crucial to first understand their intrinsic structural properties and their

molecular dynamics. Although the topic of amyloid nucleation has been studied

extensively, there are no computational studies modeling full aggregation of amyloid

proteins into stable long fibril structures and analyzing their stability potentials. In

addition to the computational complexity of these problems, there have been very

few computational studies exploring the effect of sequence mutations on amyloid

stability, amyloidegenicity and toxicity. In this thesis, we ultimately aim to construct

these computational methods by modeling and simulating the dynamics of amyloid

fibril build-up and assessing their sensitivity to sequence alterations. We present the

tools we built to simulate the aggregation process of amyloid proteins into fibrils,

explore the effect of sequence mutations on destabilizing amyloid fibrils, reveal the

mutational landscape of the amylin amyloid protein involved in diabetes, and outline

a novel method to construct a therapeutic agent to minimize the toxicity of amyloid

oligomers in the pancreas of diabetes patients.
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ABRÉGÉ

L’agrégation d’amylöıde est impliquée dans la mort de nombreuses cellules et est

considérée comme la principale cause de maladies neurodégénératives telles que la

maladie d’Alzheimer, de Parkinson, de Huntington, et le diabète de type II. Afin de

lutter contre leurs effets néfastes sur la cellule, il est essentiel de d’abord comprendre

leurs propriétés structurelles et leurs dynamiques moléculaires. Au meilleur de notre

connaissance, il n’y a pas eu d’étude de modélisation informatique qui construit

l’agrégation de la protéine amylöıde dans une structure de fibrilles stables et qui

analyse leurs potentiels de stabilité, ni y a t-il d’étude informatique qui a exploré

l’effet des mutations de la séquence sur la stabilité de l’amylöıde et sa toxicité. Dans

cette thèse, nous visons ultimement à la construction de ces méthodes de calcul

par la simulation de la dynamique des fibrilles amylöıdes au niveau moléculaire et

cellulaire . Nous présentons les outils que nous avons construit pour simuler le

processus d’agrégation de protéines amylöıdes dans les fibrilles, pour explorer l’effet

des mutations de la séquence à déstabiliser des fibrilles amylöıdes, pour révéler le

paysage de mutation de la protéine amyline amylöıde impliquée dans le diabète,

et pour définir une nouvelle méthode de construire une agent thérapeutique pour

réduire au minimum la toxicité des oligoméres amylöıdes dans le pancréas de patients

diabétiques.
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CHAPTER 1

Introduction

Some proteins that carry essential functions in cells degenerate, misfold, and

aggregate into structures known as amyloid proteins. These amyloids are believed

to be a major contributing factor in the progression of several neurodegenerative

diseases such as Alzheimer’s and diabetes. In the case of diabetes, we found that

short amyloid aggregates permeate the cell membrane of cells and disrupt the electric

potential across the membranes, which lead to cell death. Finding ways to limit

this toxicity of amyloids is a crucial step towards the improvement of health care

standards for patients. The overall aim of this thesis is to explore different methods

that decrease amyloid formation and toxicity. The results of this work can help

simulate accurate amyloid aggregate models that occur in a specific disease, and

research novel ways to limit the harmful impact on cellular toxicity. The direct

objectives of this thesis are:

1. To simulate the aggregation process of amyloid proteins into polymorphic fibrils

and model, for the first time, reliable atomic structures of fibrils.

2. To use the amyloid aggregate models in exploring the effect of sequence muta-

tions on amyloid inhibition.

1



CHAPTER 1

3. To characterize the complete mutational landscape of the amylin amyloid in

diabetes and unravel all stabilizing and amyloidogenic mutations that can affect

the onset and progression of the disease.

4. To design a method towards developing a novel therapeutic agent that lowers

the toxicity of amyloids in type II diabetes.

The objectives of this work are directly motivated by the following questions:

• Can we computationally simulate the process of aggregation given limited ex-

perimental data we have on amyloid structures?

• What structural parameters and physical interactions of amyloids act as po-

tential players in the process of aggregation?

• How do we assess and confirm the correctness of aggregation models, and what

tools can help us estimate their structural energy?

• How significant are amino acid mutations in affecting the emergence of amyloid

proteins?

• If mutations are a significant contributing factor in affecting the emergence

of amyloid proteins, can we construct a methodology to explore the effects of

these mutations?

• What other methods can we utilize and explore to destabilize or inhibit amyloid

fibrils from forming and affecting the rate of cell death?

• What tools can we provide to help explore the exact effect of amyloids on

cell death in diabetes and can this relationship be modelled to offer a better

understanding of the dynamics of the disease?

2



1.1. BACKGROUND

In this chapter, we provide a brief background to amyloid proteins and their in-

volvement in various human diseases. We discuss some of the computational tools and

standards used in assessing protein structure and energetics and provide a roadmap

for the rest of the chapters in this thesis.

1.1 Background

Alzheimer’s, Parkinson’s, Huntington, and type II diabetes are the most com-

mon neurodegenerative diseases today affecting more than 600 million people world-

wide. Alzheimer’s costs the USA $148 billion in treatment every year, Parkinson’s

an estimate of $20 billion a year and type II diabetes another $40 billion, not to men-

tion the cost of family sorrow, grievance and hardship. The financial toll and social

implications of these disease have been a driving force in motivating researchers to

find cures.

These neurodegenerative diseases afflict neurons and result in the deterioration

of the brain, spinal cord, and nerves. Various organs including the heart, kidney,

spleen, liver, pancreas, lungs and eyes are also indirectly affected [1]. Some of the

symptoms of these diseases include hallucinations, abnormalities in speech and move-

ment, severe memory loss, depression, deterioration of cortical neurons and awkward

gait [2, 3, 4, 5, 6]. Diabetes, which is one of the main focus points of this thesis, is

characterized by insulin resistance [7, 8] and the failure of the pancreatic beta cells

to supply required levels of insulin [9]. The failure to secrete enough insulin is caused

by beta cell dysfunction and reduced beta cell mass [10, 11, 12]. Many studies have

found an association between this failure to produce insulin and the emergence of

3
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islet amyloid protein deposits in humans [13, 14, 15], in non-human primates [16, 17],

and cats [18]. Interest in studying the potential pathogenic role of islet amyloid de-

posits in type II diabetes has been incentivized by experiments reporting that mice

transgenic for human islet amyloid develop hyperglycemia [19, 20, 21], a signature

condition for type II diabetes.

1.1.1 Protein misfolding and amyloids

For reasons not entirely known, critical proteins in the body degenerate and

misfold into β-sheet rich structures known as amyloids. These amyloids aggregate

with one another into large deposits that aggravate the conditions of neurodegenera-

tive diseases [22]. The deposits build up over time into organs and tissues and slowly

force cells into apoptosis [1]. The amyloid deposits found in various diseases share

common structural properties. They are all composed of β-strands that run perpen-

dicular to the axis of the aggregation. These deposits, often referred to as fibrils,

possess a hidden inner hydrophobic core and are stabilized by a dense network of

hydrogen bonds that create firm linear aggregates [23, 24]. The toxicity of the fibrils

kills neurons in the central nervous system and infects neighbouring tissue [25, 26],

which leads to the symptoms mentioned earlier. Figure 1–1 shows a snapshot of an

amyloid protein in it’s normal native stage, a snapshot as it starts to misfold, and a

snapshot in its final amyloid form.

It is believed that proteins of all kinds can misfold and self-assemble into amyloid

fibrils [27]. Environmental stress and thermodynamic conditions facilitate the con-

formational change and misfolding of normal proteins into amyloid structures that

4



1.1. BACKGROUND

Figure 1–1: Protein misfolding into an amyloid structure. Left: the 3D structure of
the amylin protein colored in green. Center: the amylin protein starting to misfold
colored in yellow. Right: the misfolded, amyloid form of the amylin protein involved
in diabetes.

are attributed to more than 40 pathological human conditions [28]. The amyloid

aggregates usually form insoluble structures that create larger plaques and inclusion

bodies that contribute to cellular inflammation [29]. Fibrils of the Aβ amyloid pro-

tein, the protein involved in Alzheimer’s disease, were observed to form plaques in

human brain tissue [30]. Many believe that understanding the right conditions for

misfolding can help combat this phenomenon and help advance methods to hinder

the assembly of toxic amyloid aggregates and the formation of fibrils.

Researchers have used an array of methods and techniques to report the 3D

structure of amyloid proteins, including electron microscopy, X-ray and neutron scat-

tering, magnetic resonance spectroscopy, and biochemical techniques [31]. Although

some of these techniques are state-of-the-art in capturing protein 3D structure, amy-

loid structures are extremely difficult to unravel. Their large and insoluble ultra-

structural appearances prevent experimental techniques from correctly decoding their

5
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Figure 1–2: Modeling HET-s polymorphic amyloid fibril structures.

structure [32]. Nevertheless, some of the structural decoding successes include the

HET-s prion [33] from the filamentous fungus Podospora anserina, the Aβ amyloid

protein involved in Alzheimer’s disease [32], and the amylin protein in diabetes [34].

1.1.2 Polymorphic fibrils

Proteins that misfold into insoluble amyloid structures possess the potential to

form aggregates consisting of a structural spine with cross-β motifs. Hydrogen bonds

6



1.1. BACKGROUND

parallel to the spine stabilize fibril structure and determine any polymorphism prop-

erties. Depending on the alignment and strength of the hydrogen bonds, single fibril

structures can assemble into higher-order forms. These higher-order polymorphisms

are characterized by the packing distance between adjacent β-sheets on the single

fibrils, the number of packed fibrils, and the degree of twisting along the main poly-

morphic aggregate axis. The hydrogen bonds are significant to the point that they

influence the rate of polymorphic assembly and polymorphic fibril size. The various

polymorphic assemblies give rise to different biological functions [35, 36] and toxicity

levels in cells [37, 38]. Some studies even show that these fibrils propagate their spe-

cific polymorphisms to daughter fibrils [39, 40] to preserve their destructive potential.

Some of the best known fibrils have been observed in cryo-TEM reconstruction of

insulin fibrils [41], TEM analysis of amylin [42], cryo-EM analysis of HET-s [37], and

TEM analysis of Aβ [43]. Figure 1–2 presents models for polymorphic fibril forms of

HET-s and has been constructed by tools we developed in the next chapters.

HET-s fibrils have been observed to undergo two polymorphisms [37] and Aβ has

been observed to exist in three polymorphic shapes. Many other fibrils are believed

to exhibit polymorphic structures, however, the current limitations in technology

and the high insolubility of these structures impede experimental validation. Efforts

have turned to computational modeling and simulation to assist in revealing fibril

structure and predicting aggregation dynamics.
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Figure 1–3: Short amyloid fibril structures of HET-s (left), Aβ (center), and amylin
(right).

1.2 Amyloids in various diseases

Amyloids have been attributed to the progression of more than 40 diseases. In

this section, we touch upon three of the best known amyloid peptides, Aβ, amylin,

and HET-s, and explain their role in disease. Figure 1–3 shows 3D representations

of these peptides in amyloid fibril form.

1.2.1 Aβ role in Alzheimer’s disease

β-amyloid peptide (Aβ), found excessively in patients with Alzheimer’s disease,

is believed to lead to neurodegeneration in humans [44]. This protein aggregates into

various fibril shapes that form neuritic plaques and neurofibrillary tangles [45, 46, 47].

Aβ molecules are known to form into the polymorphic 3-packed fibril [48] and 2-

packed shapes [49, 35]. It is unclear whether Aβ deposits in brains of Alzheimer’s

patients are the main cause of the disease, a major contributing factor, or a byproduct

of reactions that degenerate neuron cells.

8
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Polymorphic models of Aβ fibrils expose different residues on their surface to

interact with water solution. 2-packed fibrils expose less hydrophobic residues on

the surface and are hypothesized to be the predominant Aβ fibril structure, fol-

lowed by the 3-packed fibrils and the single fibrils. The hydration shell effect on the

monomers that make up these fibrils could possibly explain the stability of one or

more predominant Aβ fibril structure in neuron cells and their potential toxicity.

Recently observed structures, termed as wrapped Aβ fibrils, are believed to fur-

ther stabilize 2 packed polymorphs. Stroud et al. [49] used X-ray powder diffraction

to observe that some Aβ fibrils compose of laterally associated protofilaments that

twist around more than one internal helical axis. Together, the internal axes also

twist (in phase) around a main fibril axis, creating multiple wrappings in structures.

Stroud et al. showed that larger twisting angles result in greater fibril curvature

and larger holes in fibrils, suggesting that Aβ fibril toxicity could be related to their

polymorphic shapes and potential for forming pores.

1.2.2 HET-s fungal prion

HET-s is a fungal prion involved in the programmed cell death of filamentous

fungi Podospora anserina. When it is in its misfolded amyloid form, it is involved

in a self recognition process known as heterokaryon incompatibility; when two cells

respectively contain amyloid HET-s and native HET-s fuse, programmed cell death

occurs [37]. Unraveling the structure of HET-s (in both amyloid and native form)

and the mechanism of fibril propagation and cell toxification might prove beneficial
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in understanding the reasons behind amyloid misfold and disease propagation and

progression.

HET-s fibrils have been studied extensively as a result of their available high

resolution atomic structures [33]. Its fibrils exhibit a left handed swirling orientation

of HET-s amyloid monomers around their axis. The experimentally observed pre-

dominant form of HET-s fibrils are the single and 3-packed fibrils [37]. It is believed

that at pH values lower than 3, single fibrils come together and pack to form 3-packed

structures. The most energetically favorable HET-s fibrils possess a helical pitch of

about 410-Å, beta sheet aggregation of 4.8-Å, and left-handed twist of the fibril [37].

1.2.3 Amylin amyloids in the pancreas

Islet amyloid polypeptide (amylin) deposits in the pancreas are believed to be

a contributing factor to the onset and progression of type II diabetes [50, 51]. Poly-

merized amylin fibrils in vitro showed a diverse ensemble of polymorphic shapes

[52, 42], but unfortunately to date, no one has been able to crystallize full-length

human amylin. Several models have been proposed, one of which by Wiltzius et

al. [34] built using biochemical and structural data along with the fibril NNFGAIL

and SSTNVG crystallized regions of amylin to formulate a structure with atomistic

details for the protein in the form of a 2-packed fibril. It is our understanding at the

time of this thesis that this is the best model in the literature regarding amylin in

its monomeric amyloid form. This model claims that the 2-packed fibril hides most

hydrophobic residues from water and hence is very stable.
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Normally after a meal, the body digests food into glucose for energy consump-

tion. When glucose levels increase in the blood (after a meal), the β-cells in the

pancreas generate insulin and amylin proteins at a ratio of 1:100 as a response. To-

gether, insulin and amylin lower glucose levels in the blood and play a crucial role

in maintaining glucose homeostasis [53]. Although amylin is one of the most crucial

proteins in the body, it has a tendency to misfold into destructive amyloid forms and

aggregates to create insoluble fibrils that damage the β-cells that produce it. This

tendency increases when a person stresses their body by eating too much, forcing

high spikes of glucose levels in the blood and an increased production of insulin and

amylin. The amylin peptide forms small and large deposits in the intra and extra-

cellular chambers of β-cells over the time span of years [54, 55]. Although it remains

obscure why amylin would misfold and convert into insoluble, aggregating amyloid

fibrils, these deposits are among the most common pathological features of type II

diabetes found diabetic subjects [56, 57].

The deposits can create pores in the membranes of β-cells that disrupt ion flow

and kill cells. Once a β-cell dies, it can no longer produce insulin. If many β-cells

die, the pancreas cannot produce enough insulin to lower glucose levels in the body

and the person becomes diabetic (needs insulin injections: type II diabetes). Finding

a way to limit the aggregation and toxicity of the amylin fibrils could help lengthen

the lifespan of the β-cells and maintain glucose-insulin homeostasis. This would be

of critical importance for attempting to find therapeutics to combat the growth of

amylin fibrils in pancreas [51].
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1.3 Mutations affect amyloids

Proteins have been observed to undergo natural mutations that change their

amyloidogenicity potential and rate formation. Several cases of Parkinson’s disease

are associated with amino acid mutations of the alpha-synuclein (αS) protein [58,

59, 60]. The A30P mutation in αS decreases the overall rate of fibril formation

[61, 62], while the H50Q, H50A, and G51D mutants aggregate more quickly than

the wild type but more slowly than A53T and E46K mutants [63]. Single-point

mutations have been observed to be sufficient to affect the landscape of the Aβ42

protein in Alzheimer’s and change the internal dynamics between microstates [64].

R5A mutation studies showed a decrease both in the tendency towards Aβ aggregate

formation and a reduced toxicity in Alzheimer’s [65]. A mutation in amino acid

position 25 of Aβ, the loop area connecting two beta strands has been show to

destabilize Aβ fibrils [66]. Furthermore, a single mutation of serine-to-glycine at

position 20 in amylin in Chinese and Japanese populations [67] is associated with

early onset of type II diabetes [68, 69] and amplified amyloid formation [70, 71,

72]. The Q10R mutation of the amylin gene in the New Zealand Maori population

is believed to explain the high susceptibility and prevalence of diabetes in Maori

patients [73]. Rodents and mice exhibit six point mutations in their amylin peptide

that inhibit fibril formation [74, 75, 76]. Moreover, more than 120 single point

mutations have been associated with the systemic disorder FAP [77].

As a result of the frequently observed natural mutations, research into deliber-

ately mutating amino acids of amyloids has been proposed as an explorative method

to destabilize fibrils and reduce toxicity. Computational methods coupled and steered
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with Molecular Dynamics simulations have proved to be a viable strategy to study

the impact of mutations, however, they are unscalable and expensive in resources

and time [78]. Advancements in understanding the effects of amyloid sequence mu-

tations on fibril toxicity and formation rate has paved the way for the development

of therapeutic agents to replace highly amyloidogenic species. Re-engineering the

genetic code of proteins and administering them as substitute agents for patients is

a promising strategy for drug development. Pramlintide, a mutated protein version

of amylin, is used as a drug replacement in type I and type II diabetes and has been

shown to produce less fibrils and cause less β-cell death in the pancreas [79]. It is still

unclear how point mutations alter the pathway of oligomerization and the kinetics

of fibril conformational transitions [64], however, it is clear that proteins aggregate

through nucleation-dependent polymerization [22, 63]. Hence, exploring mutations

that affect the nucleation of amyloid monomers has the potential to facilitate the

development of more therapeutic agents to inhibit oligomer formation and reduce

the effect of disease.

1.4 Computational tools in studying amyloids

Determining the high resolution structure of amyloid proteins is a crucial step

towards understanding the mechanisms of amyloid aggregation, causes of fibril tox-

icity, and perpetuation of fibril structures in membranes. Studying high resolution

structures of amyloid proteins is also believed to enhance the possibilities of develop-

ing new reagents to inhibit fibril formation. However, due to the current limitations

of experimental methods, researchers have not been very successful in discovering
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amyloid structures. Many have turned to computational efforts in hope of correctly

deciphering structure [80]. Computational researchers in the field have attempted

to model amyloid proteins and simulate their aggregation, but are facing simultane-

ously scalability and complexity challenges [80, 81, 82, 83].

1.4.1 Simulating protein structure & environment

Because simulating protein structures is a computational intensive task, most

researchers have used heuristic approaches to create course grain models and cap-

ture only the most important details affecting their systems [84, 85, 86]. In addition,

solvents are usually never explicitly added in a simulation, rather, implicitly mod-

elled with potential functions and limited performance due to the complexity that

solvents add. However, to accurately model and quantify the dynamics and stability

of amyloid proteins, such approximations are limiting and do not provide accurate

results. To perform acceptable simulations, one needs a detailed molecular structure

model and a tool to accurately compute solvation energy, coulomb interactions, and

electrostatic potentials.

1.4.2 Computing solvation energy

Solvation energy is a term that takes into account hydrogen bonds and inter-

actions between a molecule and its surrounding water solvent. It is the free energy

that is required to transfer a solute molecule from a solvent environment to vacuum

and is highly dependent on pH and temperature [87, 88]. The accurate and efficient

calculation of solvation energy is difficult [89]. In standard practice, solvation energy
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of a molecule is calculated by computing the Poisson-Boltzmann (PB) second or-

der, elliptic, nonlinear partial differential equation. This method quickly increases in

complexity as the number of molecules increase in a system, making exact computa-

tion unfeasible. The most recent method in approximating solvation energy has been

introduced by the AQUASOL framework. Currently, this tool is the state-of-the-art

at solving the dipolar Poisson-Boltzmann-Langevin equation (DPBL) instead of PB

to estimate solvation energy [89] (see Figure 1–4). Solving the DPBL improved the

precision and performance of solvation energy calculations. According to its authors,

AQUASOL is fast, accurate and robust. In this work, we rely on AQUASOL to pro-

vide the solvation energy calculations for the molecules we simulate.

Figure 1–4: Dipolar solvent model. Illustration of the lattice gas model for the
DPBL equation. Each lattice cell may be empty, occupied by one ion or occupied
by a water dipole of constant magnitude p0 but variable orientation. This example
shows multiple sites occupied by water dipoles and two sites occupied by ions with
valence zi and zj. The lattice size a sets the size of the ions and dipoles. (figure and
caption taken from an article by Patrice Koehl et al. [89].
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1.4.3 Molecular Dynamics

We resort to Molecular Dynamics (MD) to simulate the motion of molecules we

model throughout this work. In particular, we use the GROMACS package [90, 91]

to perform MD simulations and track the motion of molecules over time (see Fig.

1–5). GROMACS simulates protein motion using Newtonian physics and uses force

fields and thermodynamics parameters to assess potential energies of structures as

they change over time. The package essentially attempts to mimic how proteins

would behave in a natural environment. In our simulations, we use the GROMACS

package to study how the behavior and energetics of our proteins change under vary-

ing conditions. We do not determine the solvation energy term with GROMACS as

it is expensive to compute compared to AQUASOL.

Figure 1–5: Simulating protein motion. Three snapshots of the structure of the
amylin protein as it moves in solution (hidden) over a time frame of 30 picoseconds.
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1.4.4 Threading techniques

Traditional experimental methods, such as x-ray crystallography, electron mi-

croscopy, and nuclear magnetic resonance have not seen great success in elucidating

the structures of most amyloids, due to insolubility and noncrystalline nature of

amyloid proteins. To circumvent these challenges, computational techniques have

been introduced and widely used to build structural motifs of amyloid fibrils, test

their stability, and reveal the mechanisms behind fibril formation. One prominent

approach is to generate amyloid models with threading tools and test their structural

stability using MD simulations. Although this approach potentially enables explor-

ing structural conformations that stabilize proteins [92], threading amyloid structures

remains difficult and inaccurate. Figure 1–6 shows a drawing of this process.

From the sparse scientific data gathered about amyloids, it is established that

these proteins possess rich β-strand morphologies that are held by hydrogen bonds

running perpendicular to their main fibril axis. This can be clearly observed for

the Aβ, amylin, and HET-s peptides. Using this information and data provided by

other statistical knowledge relating the potential of sequences to fold into known

structures, threading tools and software have been intensively used to generate and

deduce realistic structural models for unknown proteins [93, 94, 95].

Amyloids are mostly insoluble proteins that cannot be observed by experimen-

tal methods. However, since their amino acid sequences can easily be determined,

threading tools are a first good step in modelling and predicting their unknown

structures by using statistical information obtained from published structures in the
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Protein Data Bank (PDB). Structural threading is powerful when it correctly iden-

tifies structural homologs by aligning target amino acid sequences onto structural

templates [96, 97]. TANGO [98] and AmyloidMutants [99] are among the current

threading tools that explore protein (including amyloid) stability and analyze the

effect of secondary structure modifications on properties such as amyloidogenicity

and protein aggregation. Such tools use coarse-grained models that enable them

to perform high-throughput screenings, but cannot achieve the accuracy of higher

resolution models that take into account long-range interactions in structure [78].

Various energy functions are used to empirically evaluate the validity of models.

One such function, the Ramachandran Plot, shows the acceptable range of phi-psi

angles for different amino acids in a 3D structure. This plot assesses protein tertiary

structures and confirms or rejects threaded models.

After the threading and initial structural assessment of a few amyloid protein

models, MD simulations are used to measure with great detail the stability of these

structures. MD simulations undergo intensive numerical calculations of physical

movements of atoms within molecules. Forces between particles and potential en-

ergies are computed and updated in a continuous time frame using minuscule time

intervals. Each threaded protein is initially prepared in a box of water molecules

at time t = 0. As time progresses, the simulation calculates the effect of the forces

produced by each atom on the total stability of the amyloid structure. At the end

of the run, simulation results either reveal proteins that break up and denature (due

to high unstable internal forces) or proteins that have reshaped slightly to optimize

their stability. Only those proteins that have maintained their stability after the run
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Figure 1–6: Representation of protein threading approach. Target sequence is the
sequence of a protein for modeling. The sequence is “threaded” against several
protein structure templates. The template that returns the best fit is used as a
predictive model for the sequence.
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are chosen for further assessment and believed to be closer candidates to the real

unknown amyloid structures.

1.4.5 Conformational search and structural prediction

Protein structure prediction has been of utmost interest to researchers attempt-

ing to correlate structure with protein function. The theory in the field claims that

structure is tightly linked to function. Amyloid proteins exist in native and amyloid

forms, each exhibiting a different biological function. For several years, scientists

have tried to explore the unknown structure of some amyloids without much suc-

cess, due to the current limitations in biological instruments and to the insolubility

of amyloid aggregates. Nevertheless, the primary sequence of those proteins can be

easily determined. With the known primary sequence, the challenge is in developing

computational methods to infer protein structure from primary sequence.

Starting with a protein’s primary sequence of amino acids, scientists aim to

determine the most energetic 3D fold for the protein. This task usually involves

creating a large number of possible folds to explore the structural landscape of the

protein and assessing each fold’s potential using some energy function [30]. Ideally,

this search process would find the structure with the lowest energy in the landscape

and return it as a potential result. However, since no knowledge is known about the

folding landscape and assessing the stability of each possible fold is too expensive,

intelligent algorithms scan parts of the landscape for minima points and usually use

variations of steepest descent algorithms [100] in their search. The search problem

in the continuous landscape is difficult, usually exhibits no clear energetic pattern,
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is composed of many minima, and unsurprisingly is NP complete. In the case where

researchers re-engineering mutations into a molecule to alter stability, they assume

that a few single-point mutations will unlikely alter a structural fold. Prior knowledge

regarding a folding route of a sequence, or parts of a sequence, can be used to assist

in conformational searchers and structure prediciton.

Recent developments in computer power and modelling approaches have started

to pave the way for deciphering amyloid structure and characterizing fibril morphol-

ogy. Algorithms to search structural energy landscapes, predict folding patterns,

and screen millions of fibril inhibitors are providing advances in the understanding

of fibril formation and in the prevention of disease. In this thesis, we build on these

developments and explore novel techniques to accurately model fibril polymorphisms

and morphology. We use the models to study the impact of mutations on fibril sta-

bility, amyloidogenicity, and therapeutic capacity.

1.5 Thesis roadmap

This chapter introduced the biological background and clinical importance of

amyloid proteins, and discussed the current computational methods available to

study them. The following four chapters describe novel computational methods in

modeling amyloid fibrils and in finding ways to destabilize their structures. Each

chapter presents a specific research project, with the addition of a Preface section

that motivates the research question addressed in it. Chapter 2 introduces a tool

that accurately builds amyloid fibril models by assessing structural and landscape

energetics. Chapter 3 describes a method to analyze an amyloid structure and infer
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optimal single-point mutations that weaken amyloid fibrils. The tool from Chapter

2 is used to build the mutated amyloid fibrils and assess their stability. In Chapter

4, we use the techniques developed in the previous chapter to characterize the com-

plete mutational landscape of the amylin amyloid to find mutations that improve

the efficacy of the current Pramlintide drug in diabetes. Chapter 5 introduces a

mathematical model relating amyloid production to the emergence and progression

of diabetes and establishes a novel computational method to reduce the toxicity of

amyloids in the disease. Finally, Chapter 6 summarizes these research contributions

and presents discussions on future works.

1.6 Publications and author contributions

This thesis comprises the full text and figures of four scientific articles, one of

which has been published and three have been submitted for publication. These

articles are listed below in the order they appear in this thesis. I am the first author

of each one of them.

• Chapter 2: M. R. Smaoui, F. Poitevin, M. Delarue, P. Koehl, H. Orland,

and J. Waldispühl. “Computational Assembly of Polymorphic Amyloid Fibrils

Reveals Stable Aggregates”. Biophysical Journal, vol. 104, pp. 683 693, 2013

In this work, I designed and implemented the CreateFibril tool, the stability

landscape method, performed all experiments, and wrote the paper under the

supervision of Dr. Jérôme Waldispühl and Dr. Henri Orland. Dr. Jérôme

Waldispühl and Dr. Henri Orland and I designed the study. Marc Delarue,
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1.6. PUBLICATIONS AND AUTHOR CONTRIBUTIONS

Frederic Poitevin and Patrice Koehl updated their AQUASOL framework to

work with proteins. Finally, Frederic Poitevin helped in generating the results

for Figure 5 and wrote the “Dipolar water model” paragraphs in the methods

sections.

• Chapter 3: M. R. Smaoui and J. Waldispühl. “Computational re-engineering

of Amylin sequence with reduced amyloidogenic potential”. Submitted for re-

view in June 2014.

Dr. Jérôme Waldispühl and I designed the study for this manuscript. I per-

formed all experiments, designed and implemented the computational tool, and

wrote the paper.

• Chapter 4: M. R. Smaoui and J. Waldispühl. “Complete characterization

of the mutation landscape reveals the effect on amylin stability and amyloido-

genicity”. Submitted for review in Sept 2014.

Dr. Jérôme Waldispühl and I designed the study for this manuscript. I per-

formed all experiments, designed and implemented the computational tool, and

wrote the paper.

• Chapter 5: M. R. Smaoui, H. Orland and J. Waldispühl. “Probing the bind-

ing affinity of amyloids to reduce toxicity of oligomers in diabetes”. Submitted
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for review in Sept 2014.

Dr. Jérôme Waldispühl and I designed the study for this manuscript. I per-

formed all experiments, designed and implemented the computational tool, and

wrote the paper. Dr. Henri Orland wrote the “Oligomer concentration” part in

the methods section.
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Computational assembly of polymorphic amyloid fibrils
reveals stable aggregates

2.1 Preface

We discussed in Chapter 1 the difficulty faced by experimental scientists to

decode the shapes of amyloid aggregate structures. The shapes of many amyloid

aggregates are believed to be polymorphic and highly dependent on environment

conditions such as temperature, pressure, and pH. Amyloids form in various sizes,

shapes, and structural forms. The Aβ fibrils in Alzheimer’s disease form in fibril

pairs [101, 35] and triplets [48, 102]. The HET-s amyloids form single and triple

fibrils depending the pH of their surrounding system [37]. The different amyloid

structures and shapes influence the infectivity of fibrils in various diseases [103].

Although fibrils share many similar structural characteristics including beta-

strands that run perpendicular to a main fibril axis [23, 24], the insolubility and

large sizes of these aggregates have hindered our understanding of their interaction

dynamics and their detailed compositions. The few experimental successes in captur-

ing the structures of amyloid fibrils include identifying short segments of the HET-s

fibril [33], determining an incomplete structure for the Aβ amyloid [32], and a com-

putationally assisted reconstruction of amylin from biological data [34]. These results
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are a good start and could be pieced together to reveal structural information about

their higher-order polymorphic fibrils.

Predicting how an amyloid protein will aggregate and what polymorphic shape

it would assume is a challenging task given the sparse experimental data on amyloid

proteins. The idea behind this chapter is to introduce a computational method

to tackle this challenge and predict full atomistic models of amyloid aggregates in

various polymorphic forms. Many steps were needed to accomplish this. First,

we surveyed the literature on amyloid fibrils and gathered all experimental figures

and illustrations showing low-resolution visualizations of fibrils. With this data, we

identified fibril aggregation patterns and constructed a classification of possible fibril

polymorphic assemblies. Second, we built a tool that takes a single amyloid protein

(PDB file) and a set of structural parameters to construct the polymorphic assemblies

outlined in our classification. The assemblies were constructed using transformation

matrices and the careful design of a fibril axis. The transformation matrices moved

3-dimensional amyloid protein structures in space and aggregated them into fibril

structures. To address the complexity of determining which parameters produce a

reasonable structure and to reduce the search space for various degrees of freedom

involved in constructing polymorphic fibrils, we developed the stability landscape

method as a quick brute force approach to analyze energies returned by a selection

of parameters. Finally, after successfully building a set of polymorphic fibrils for

a single amyloid protein, determining the likelihood of each polymorph to occur in

nature was not straightforward. This is only possible with the use of an energy

function that accurately and quickly computes the free energies of the large fibril
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structures. We expanded the function of the AQUASOL [89] tool to compute the

free energies of proteins and large assemblies. AQUASOL computationally validated

experimental results for amyloids and helped us determine which polymorphs would

potentially occur for a certain protein.

Decoding amyloid and fibril structures are important for therapeutic engineer-

ing of molecules to inhibit their formation or alter environment conditions to weaken

and hinder their toxicity. In this work, our aim is to build a computational frame-

work that creates polymorphic fibril ensemble structures for a given amyloid protein

and to test the likelihood of each polymorph to occur. We validated our approach

with experimental data for the HET-s and Aβ proteins and predicted fibril results

for amylin. Experimental data supported our predictions for amylin fibrils [104].

The remaining content of this chapter is reprinted with permission from:

• M. R. Smaoui, F. Poitevin, M. Delarue, P. Koehl, H. Orland, and J. Wald-

ispühl. “Computational Assembly of Polymorphic Amyloid Fibrils Reveals

Stable Aggregates”. Biophysical Journal, vol. 104, pp. 683-693, 2013

Copyright (2013) Biophysical Society.

2.2 Abstract

Amyloid proteins aggregate into polymorphic fibrils that damage tissues of the

brain, nerves, and heart. Experimental and computational studies investigated the

structural basis and the nucleation of short fibrils, but the prediction and the precise

quantification of the stability of larger aggregates remain elusive. We established a
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complete classification of fibril shapes and developed a tool, called CreateFibril, to

automatically build these complex polymorphic modular structures. Stability land-

scapes, a technique we introduced to reveal reliable fibril structural parameters, was

applied to assess fibril stability. CreateFibril constructed HET-s, Abeta, and Amylin

fibrils up to 17nm in length, and utilized a novel dipolar solvent model that captured

the effect of dipole-dipole interactions between water and very large molecular sys-

tems to assess their aqueous stability. Our results validated experimental data for

HET-s and Abeta, and suggested novel findings for Amylin. In particular, we pre-

dicted the correct structural parameters for the one and three predominant HET-s

protofilaments. We revealed and structurally characterized all known Abeta poly-

morphic fibrils including structures recently classified as wrapped fibrils. Finally, we

elucidated the predominant Amylin fibrils and asserted that native Amylin is more

stable than its amyloid form. CreateFibril and a database of all stable polymorphic

fibril models we tested along with their structural energy landscapes are available on

http://amyloid.cs.mcgill.ca.

2.3 Introduction

Amyloid proteins are believed to be associated either in partial causality or com-

plete aggravation with the severity of neurodegenerative diseases such as Alzheimer’s,

Parkinson’s, Huntington, and Type II diabetes [30, 1]. These mis-folded proteins

form stable aggregates, known as fibrils, that damage tissues of the brain, nerves,

and heart, leading to symptoms of severe memory loss, deterioration of cortical neu-

rons, fatigue, muscular rigidity, and depression [22, 2, 3, 4, 5, 6]. Apart from their
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common central cross-β spinal core [105], fibrils assemble in polymorphic structures

and pack in several orientations giving rise to different biological functions [35, 36]

and toxicity levels in cells [37, 38]. Furthermore, studies showed that fibrils are

capable of propagating their specific polymorphisms to daughter fibrils [39, 40] to

preserve their destructive potential. Moreover, it is hypothesized that proteins of all

kinds can self-assemble into amyloid fibrils under optimum conditions [106]. Some

of the best known fibrils have been observed in cryo-TEM reconstruction of insulin

fibrils [41], TEM analysis of Amylin [42], cryo-EM analysis of HET-s [37], and TEM

analysis of Abeta [43].

Recent experimental studies enabled to describe with high atomic resolution the

molecular structures of HET-s and Abeta fibrils [33, 48], but to date, computational

modelling and simulation studies are limited to the analysis of the nucleation phase

that involve only a few polypeptide chains [107, 108, 109]. It follows that the pre-

diction and the understanding of the aggregation process remains obscure. More

importantly, although the importance of water in forming and stabilizing fibrils has

been widely acknowledged, current simulation frameworks are restricted to implicit

solvent models with limited performance. Computational simulation of amyloid fib-

rils is facing simultaneously scalability and complexity challenges. The modelling and

precise quantification of the stability of the molecular structure of polymorphic amy-

loid fibrils are key to understanding the toxicity potential and the self-propagation

mechanisms of these proteins.
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In this paper, we introduce CreateFibril, a computational framework to build

polymorphic fibrils of amyloid proteins and explore their stability by means of sta-

bility landscapes. We developed these landscapes to reveal reliable fibril structural

parameters and assist CreateFibril in building realistic structures. Upon creating

fibrils, their structural stability in water is assessed by a novel dipolar solvent model

that captures the effect of dipole-dipole interactions and computes the hydration

shell that forms around proteins – an insight that cannot be reached with implicit

solvent models. More specifically, we expanded the AQUASOL framework [89, 110]

to compute the solvation, Coulomb, and Van der Waals energies of molecular sys-

tems with up to 36,180 atoms. CreateFibril explored the architectural landscape

of HET-s, Abeta, and Amylin proteins and captured with great accuracy the prop-

erties of helical pitch, packing distance for multi-meric polymorphs, and hydrogen

bond distance on β-sheets between amyloid monomers as they aggregated. We pre-

dicted correct structural parameters for HET-s fibrils, revealed and characterized all

Abeta fibril polymorphs, and promoted a fibril model for the most common Amylin

polymorph. We discovered that native Amylin is more stable than its amyloid form.

2.4 Materials and Methods

We aimed to analyze the stability and dynamics of large polymorphic amyloid

fibrils using force field calculations. 3D models of these fibril structures were re-

quired for analysis but unfortunately, all protein databases only provide very short

fibril segments of a few monomers in length. Thus, we designed an automated tool to

bridge this gap and create longer fibril models from amyloid fragments and simulate
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the structure of various polymorphic fibrils. The tool resorted to the computational

technique of Rigid Affine Transformations [111] to construct the fibril models. Fig.

2–2 presents a flowchart of CreateFibril’s pipeline that we describe next.

2.4.1 Construction & classification of polymorphic fibrils

Our automated tool, called CreateFibril, produced an ensemble of stable poly-

morphic fibril structures from a monomer amyloid in the PDB [112]. Single fibrils

(Fig. 2–1) were constructed by assembling copies of a monomer amyloid side by side

to mimic the oligomerization result and elongation of fibrils. This assemblage was

stabilized by the alignment of the monomers’ hydrogen bonds and β-sheets that twist

around a helical fibril axis, emulating the natural assembly of amyloids [113]. Higher-

order structures (Rings, Stacks, and Polygons) included harmonic combinations of

Single fibrils packed in different orientations and distances. The key to create good

structures was to pick “parameter” values that build architecturally stable fibrils.

The following are the “parameters” our tool provides to create fibrils:

1. Protein PDB file of an amyloid fragment

2. Fibril class: Ring, Polygon, or Stack

3. Number of filaments and their packing distance perpendicular to fibril axis

4. Fibril axis location and direction

5. Rotation angle of amyloid monomers along the fibril axis

6. Hydrogen bond distance of β-sheets along the fibril axis

7. Length of fibril
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Figure 2–1: Classification of the polymorphic fibril structures produced by Create-
Fibril. Ring fibrils pack and join at turns, Polygon fibrils join to create a polygon
shaped core, and Stack fibrils pack laterally.

The algorithm that builds polymorphic amyloid fibrils performs numerous Transla-

tion and Rotation Affine Transformations and is explained in detail in the SI Ma-

terials and Methods. Although the algorithm may seem complex, CreateFibril’s

interface is built to be user-friendly and intuitive. Moreover, CreateFibril is the only

automated tool for building fibrils to date.

32



2.4. MATERIALS AND METHODS

2.4.2 Energy Minimization to filter fibril structures

It is expected that only a specific set of “parameter” values would create realistic

fibril models. A certain choice of “parameter” values could assemble monomers

too close to one another or too far from one another, while another choice might

assemble monomers that rotate abruptly with respect to the main fibril axis. We

were interested in finding “parameter” values that CreateFibril could use to create

stable conformations. We exhaustively built structures with reasonable distances

and angles to search proper “parameter” values for HET-s, Abeta, and Amylin.

An energy function, ED,θ based on light Energy Minimization runs and stability

landscape results for each “parameter” value guided the search. “Parameter” values

that returned the most stable structures were returned for each fibril type (n-Polygon,

n-Ring, and n-Stack) and were kept for further analysis by the dipolar water model.

Light Energy Minimization was performed upon creating a structure for two

reasons. First, we performed minimization to relieve the system from any clashes

that could have occurred during the fibril elongation process due to our rigid place-

ment of monomers and second, we used the minimization data to gather stability

information of the structure. Through minimization we calculated the LJ Poten-

tial and Coulomb Forces of the structure before, during and after minimization and

used them to construct stability landscapes and assess the quality of the “parame-

ter” values we started with. Structures that drifted significantly from their initial

configuration and contained high LJ and Coulomb energies were not believed to live

in local minima, and hence the initial choice of “parameter” values do not produce

stable conformations.
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To perform Energy Minimization and potential calculations, we used the GRO-

MACS [91] Molecular Dynamics and Energy Minimization package with the following

parameters: CHARMM force field and the SPC model [114], a TIP3P box [115, 116]

with a minimum distance of 15 Å from any edge of the box to any amyloid atom. The

box was kept empty of water and simulations were done in vacuum for two reasons.

First, water molecules tend to restrict significant conformational change of unsta-

ble fibrils; they added noise to our calculations by stabilizing all systems. Second,

minimization to pinpoint the unstable structures occured orders of magnitude faster

without explicit water molecules in the simulation box. We were not interested in

a full MD run, hence water was not of utter importance here. The systems were

energy minimized for 1000 steepest gradient descent steps with an energy step of

0.01. Long-range electrostatic interactions were calculated using the particle mesh

Ewald with a cutoff of 1.0 Å for all simulations [117, 118].

2.4.3 Dipolar water model

At this stage we had “parameter” values that structurally encoded an ensemble

of the most stable fibril structures of each type of Polygon, Ring, and Stack class.

To infer the most stable polymorphs likely to form in nature, we needed to assess

the stability of these structures and compare them in water. The main challenge in

estimating the energy of large polymers was calculating of the Solvation energy, the

energy associated with the formation of a structure in water. For this, we extended

the development of a fast and detailed dipolar water model introduced by AQUASOL

[89, 110], the first tool to succeed in computing the solvation free energy of molecules
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Figure 2–2: CreateFibril procedures and pipeline.
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by solving the dipolar non-linear Poisson-Boltzmann-Langevin equation. Our model

took into account dipole-dipole interactions and treated water explicitly to accurately

calculate the Solvation energy, Coulomb and Van der Waals forces of our fibrils, as

seen in Eq. 2.1. CreateFibril used the result of adding these terms as a measure to

assess the total stability of the fibrils it created. The lower the sum of these three

values, the more stable a fibril is. Our choice of method was orders of magnitude

faster than full Molecular Dynamics simulations.

Once a solution was found by AQUASOL, the free energy of the system was

computed a posteriori. Nevertheless, a problem inherent to all grid approaches was

the emergence of an artifactual term in the energy, the so-called grid energy. In

order to correct for this term and get the true free energy FE, one needs to compute

the free energy of the system with the solvent concentration defined at a given value

F(p0,Cdip), and subtract the free energy of the system with the solvent concentration

set to zero F(0,0). This leads to minimization of the artifactual term, but also takes

out the Coulomb energy of the solute, which needs to be brought back afterwards.

Finally, one wants to subtract the solvent energy term Nwμw, which is linear with the

number of water molecules within the grid, and can also be computed analytically.

If one is interested in the solvation free energy Fsolv, then the Coulomb energy must

not be brought back.

The results we obtained compare the stability of the best structures across all

polymorphic types we designed. In particular, we compared the solvation energies

and the total energies of all polymorphs at different fibril lengths to analyze the

stability behaviour of the polymorphs.
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FE = Fsolv + Fcoulomb14 + Fvdw + Fbnd (2.1)

where,

Fsolv = F(p0,Cdip) − F(0,0) −Nwμw

Fbnd = Fbond + Fangle + Fdihed + Fimp

μw = kBT
ln(1−NACdipa

3)

NACdipa3

Nw =

∫
solvent

drρdip(r)

The atomic charges and radii were assigned with PDB2PQR using CHARMM

force field at neutral pH. Optimization of Hydrogen-bonding was performed. The

following parameters were used in AQUASOL: Grid of 257 points per edge spaced by

1 Å, temperature 300K, surface definition: Solvent Accessible Surface (Rprobe = 1.4

Å), trilinear interpolation protocol for projection of fixed charges on the grid, lattice

grid size for the solvent: a = 2.8 Å, solvent made of dipoles of moment p0 = 3.00D

at a concentration of Cdip = 55M, no salt was added to the solution, electrostatic

potential set at zero at the boundaries, and stopping criteria for residual: 1.10−6

(when possible).

It is key to note that the solvent and the small ions are correctly treated in

all our calculations, both as far as enthalpy and entropy are concerned. Since we

use frozen models for proteins, two scenarios arise: First, if the protein is very well
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structured, we neglect the small contribution of vibrational entropy, and second, if

the protein has unstructured parts such as loops, we neglect the conformational en-

tropy of these unstructured parts. However, as far as we know, there is no rigorous

way to take conformational entropy into account other than by performing long MD

simulations and thermodynamic integrations, a hopeless approach for the problem

we are interested in. It should therefore be checked that the monomers under study

are well structured, with minimal unstructured parts.

2.4.4 Implicit water model

The second method we used to assess the stability of the polymorphs was based

on an implicit model of water molecules in solution. We used the tool FAMBE-pH

[119] to calculate the Solvation energy and enthalpy of our structures. FAMBE-

pH solves the Poisson equation with an optimized fast adaptive multigrid boundary

element (FAMBE) method that implicitly models water.

The energy values returned by the implicit model and our explicit model nat-

urally differed in magnitude. The explicit model returned Solvation energy values

much higher than the implicit model because it considered dipole-dipole and atomic

interactions with explicit water molecules in its calculations. Since the water vol-

ume has been kept relatively constant in all the explicit simulations we were able to

compare the energies among different fibrils modelled explicitly, and compare their

trends with the implicit simulations.
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2.4.5 CreateFibril: Rigid Affine Transformations

Affine Transformations are represented by mathematical matrices which we use

to act on the atom positions of proteins stored in PDB files. The translation matrix is

capable of moving atoms, and when applied to a protein’s atom positions it produces

the effect of moving the protein in 3D space. We represent an atom in the following

homogenous representation,

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ax

ay

az

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.2)

where ax, ay, and az, are how far a lies in the direction of the x-axis, y-axis, and

z-axis, respectively. To move the atom a by a distance dx in the x-axis direction, dy in

the y-axis direction, and dz in the z-axis direction, we apply the following translation

matrix T (d),

T (d) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.3)

onto the homogenous representation of a in the following way

a′ = T (d) ∗ a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ax + dx

ay + dy

az + dz

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.4)
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Ignoring the 1 at the very bottom of a′, we observe that the point a′ is in fact

a translation of a distance of dx in the x-axis direction, dy in the y-axis direction,

and dz in the z-axis direction, as wanted. This way, we can move a whole protein

in space a distance d by applying T (d) onto all its atom positions. Furthermore, we

apply T (d) to copies of an amyloid protein and force them to aggregate side-by-side

and simulate the assembly of fibrils.

The second type of Rigid Affine Transformation matrices we find useful is ro-

tation matrices. We can rotate points in a 3D space around the x-axis, y-axis, or

z-axis using standard affine transformation rotation matrices.

For example, to rotate the atom representation, a, about the x axis by θ degrees

counterclockwise we multiply it by the following matrix,

Rx(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 cos(θ) −sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.5)

Similarly, to rotate a about the y-axis by α degrees counterclockwise we multiply it

by the following matrix,

Ry(α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos(α) 0 sin(α) 0

0 1 0 0

−sin(α) 0 cos(α) 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.6)
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Also, to rotate a about the z-axis by β degrees counterclockwise we multiply it by

the following matrix,

Rz(β) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos(β) −sin(β) 0 0

sin(β) cos(β) 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.7)

We are not constrained to rotations about the x, y, and z axes only. Correctly

combining the three rotation matrices above allows to rotate about any arbitrary

axis. The power of Affine Transformations lies in the fact that we can combine and

chain many transformation operations on a single point, or atom in this case.

The amyloids that make up fibrils have been reported to aggregate together and

rotate slightly with every monomer addition about a fibril axis. The translation and

rotation matrices applied together enable us to model this fibril aggregation-rotation

phenomenon. For our computational framework, we meticulously derive the fibril

axis and transformation matrices that build our fibrils next.

2.4.6 CreateFibril: Fibril Axis Matrix

CreateFibril rotates aggregates around a fibril axis by θ degrees and moves them

along the axis by d angstroms by computing a transformation matrix Fθ,d that applies

rotation and translation matrices on the amyloid protein models.

The general idea behind constructing Fθ,d is to first move the protein a distance

of d angstroms along the fibril axis by applying a translation matrix T (d). To rotate

the protein around the fibril axis, we move the fibril axis to the origin, rotate the
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axis so that it aligns with either the x, y, or z axis, apply a standard rotation

transformation to it by θ degrees with respect to the chosen axis, and then return

the fibril axis to its original position in space. This procedure involves a combination

of translation and rotation matrices that we believe is worthy of explaining. Without

loss of generality, given a point p lying in the -x, -z, +y direction for which the fibril

axis passes through, we translate the system that contains our fibril axis and shifted

protein atoms by T (−d− p). This operation translates all the objects in our system

towards the origin. The fibril axis now passes through the origin and all distances

between the atoms and the fibril axis are preserved.

We will choose to align the fibril axis with the x-axis. To do so, we first need to

rotate the fibril axis by φ degrees to intersect the x-y plane, and then rotate it by ψ

degrees to align it with the x-axis. Therefore, we need to apply the rotation matrix

Ry(φ) to the fibril axis to intersect the x-y plane followed by the rotation matrix

Rz(ψ) to rotate the fibril axis along the z-axis and align it with the x-axis.

We are now in a position to rotate our protein atoms around the fibril axis by θ

degrees. We use the standard x-axis rotation transformation since the x-axis and the

fibril axis are aligned at this point. We apply the rotation matrix Rx(θ) to the fibril

axis and the protein. The fibril axis rotates around itself, while the protein atoms

rotate around the fibril axis.

To conclude, we need to move our fibril and protein back to their initial positions

in space. To undo all axis positioning rotations and translations we rotate the axis

back by ψ degrees with Rz(−ψ) followed by −φ degrees around the y-axis with

Ry(−φ). We finally translate the axis and the protein back by T (d + p). This puts
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the fibril axis exactly back where it was and achieves our desired rotation of the

protein atoms by θ degrees around the fibril axis. Hence our fibril axis rotation

matrix is,

Fθ,d = O−1(d, p, φ, ψ) ∗Rx(θ) ∗O(d, p, φ, ψ) ∗ T (d) (2.8)

where O−1 and O are defined as,

O−1(d, p, φ, ψ) = T (d+ p) ∗Ry(−φ) ∗Rz(−ψ) (2.9)

O(d, p, φ, ψ) = Rz(ψ) ∗Ry(φ) ∗ T (−d− p). (2.10)

The last piece of the puzzle is to explain how to obtain the correct values for

φ and ψ. The φ angle is the angle needed to rotate the fibril axis to intersect the

x-y plane, i.e., the angle between the fibril axis and the x-y plane. To find φ, we set

v to be the projection of the fibril axis on to the x-z plane (v is the fibril axis with

the y component set to 0) and we set w to be a vector on the x axis (w is the fibril

axis with the y and z component set to 0) and make use of the following dot product

property to find φ,

φ = cos−1
v · w
‖v‖‖w‖ . (2.11)

With this φ value, we can rotate our fibril axis to fall into the x-y plane and

denote it as f . If we set vector l to be the projection of the fibril axis in the x-y

plane (l is f with the y component set to 0) then we can find ψ by,
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ψ = cos−1
l · f
‖l‖‖f‖ . (2.12)

Fθ,d is dynamically calculated in CreateFibril whenever a rotation by θ and

translation by d is needed. Supplying CreateFibril with values for d and θ creates

fibrils that elongate at a distance d apart and rotate an angle of θ degrees about the

fibril axis.

2.5 Results & Discussion

Amyloid fibrils are known to grow by monomer addition [113]. Monomers ag-

gregating at fibril ends usually create a helical structure of a single fibril filament

but are capable of creating higher-order fibrils composed of multiple single filaments

packed closely by hydrogen bond interactions on β-sheets. These higher-order fibrils

can be composed of 2-filaments, 3-filaments or even a larger number of n-filaments.

In designing the different possible geometric forms an n-filament fibril can assemble

in, we observed three main configurations that characterize the possible interactions

of fibril filaments. We classify these various shapes in the categories of: Ring Family,

Polygon Family, and the Stack Family. Ring fibrils comprise of filaments that pack

together at their β-sheet turns, creating a hollow ring shape in the main axis of a

fibril. Polygon fibrils comprise of filaments that pack together at their β-strands,

creating a hollow n-polygon shape through the main axis of a fibril. Finally, Stack

fibrils comprise of filaments that pack together at their β-strands and pack laterally

creating planar fibril sheets. All these kinds of fibrils have been recorded experi-

mentally throughout the years, but a formal classification for fibrils has never been

formalized yet. This nomenclature will be used throughout the paper to discuss the
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various polymorphic fibrils we observe. A visual representation of this proposed novel

classification is provided in Fig. 2–1. This section describes polymorphic preferences

predicted by CreateFibril.

2.5.1 Stability landscape

We developed a tool, called CreateFibril (see Methods), to build energetically

stable fibrils out of single experimentally validated amyloid monomers. We were

interested in obtaining structural values of distances and rotations that characterize

the architecture of stable fibrils. These structural values constitute the numerous

fibril degrees of freedom and would be given as input “parameter” values to our tool

to assemble monomers together and construct stable conformations (see Fig. 2–3 for

an illustration of these “parameters”). CreateFibril intends to find suitable parame-

ters that characterize stable structures (i.e. structures that would not diverge during

MD simulations).

One brute force approach to find suitable “parameter” values is to run Molecu-

lar Dynamics (MD) simulations on a starting configuration, attempt to remove any

atomic clashes, minimize the energy of the structure and reshape the fibril into a

more stable conformation. However, such simulations are computationally expensive

in resources and time, prone to numerical imprecisions, and do not guarantee a fi-

nal stable conformation. For this reason, we introduce a new strategy that searches

for suitable “parameter” values by means of generating fibril stability landscapes.

Starting with an accurate crystal or NMR amyloid monomer, we first define a range
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Figure 2–3: The different parameters used by CreateFibril to build structures. Pa-
rameters drawn are fibril axis location and direction, rotation angle of amyloid
monomers along the fibril axis, hydrogen bond distance of β-sheets along the fib-
ril axis, and packing distance of filaments perpendicular to fibril axis. Parameters
not drawn include: protein PDB structure file, fibril class type, and length of fibril.

of naturally possible values for the various fibril degrees of freedom characterized

by rotation angles, packing distances and beta strand proximities, as shown in Fig.

2–3. Second, CreateFibril utilizes these range of values to construct all possible

fibril structures using rigid affine transformations (see SI Materials and Methods).

Third, we perform light runs of Energy Minimization (a few hundred steps) on each

generated structure to assess its initial stability sensitivity by calculating any en-

thalpy drift between final and initial conformations. This step creates the fibril

stability landscape by exhausting all suitable “parameter” values. We then search

the landscape for values that construct the most stable initial conformation. These
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“parameter” values would create structures with lowest enthalpy drift and lowest ini-

tial Lennard-Jones and Coulomb terms. Structures with low enthalpy drifts allude

to stable conformations (local minima on the structural energy landscape of fibrils),

and structures with high energy drifts suggest parameters that produce unstable con-

formations. We applied this approach to explore the structures of HET-s, Abeta and

Amylin fibrils by exhaustively searching the fibril degrees of freedom for values that

produce maximum stability. Parameter mining of the three proteins are summarized

in Table 2–1. Fig. 2–4 provides an enthalpy drift plot describing the rotation angle

vs. beta strand distance landscape for the Single HET-s fibril and packing distance

for the 3-Polygon HET-s.

2.5.2 HET-s

HET-s (PDB Id 2RNM) is a fungal prion involved in the programmed cell death

of filamentous fungi Podospora anserina. HET-s fibrils have been studied extensively

as a result of their available high resolution atomic structures [33]. CreateFibril

explored the stability landscape of HET-s and simulated an ensemble of polymorphic

fibril models that confirm the structural properties observed in experimental data.

Capturing 3-Ring and Single HET-s fibril structures. Seven different

HET-s fibrils were modelled up to 80 nm in length. This large scale modelling of

fibrils is the first of its kind providing models on the scale of structures observed ex-

perimentally (5 - 10 nm). The enthalpy drift calculations shown in Fig. 2–4 suggest

that a left handed swirling orientation of the HET-s amyloids around their fibril axis

is more favorable than a right handed twist. The Single and 3-Ring structures are
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Type Rotation H bond Packing Max-length Helical Pitch 360◦ (Å) Experimentally

angle (deg) (Å) Distance (Å) model (Å) model literature observed

H
E
T
-s

Single 22 4.7 NA 800 402 410 Yes [37]
2-Stack 16 4.7 8 406 656 - -
2-Ring 27 4.7 3 412 451 - -

3-Ring 17 4.7 7 238 668
1005 -
1083

Yes [37]

4-Ring 14 4.7 8 199 738 - -
3-Polygon 16 4.7 9 290 637 - -
4-Polygon 13 4.7 16 203 773 - -

A
b
et
a

Single 6 4.7 NA 694 925 - -

2-Stack 4 4.7 9 373 1268
1140 -
1760

Yes [35]

2-Ring 4 4.7 7 379 1390
1620 -
2980

Yes [35]

3-Ring 4 4.7 7 248 1334 - -
4-Ring 4 4.7 9 183 1236 - -

3-Polygon 2 4.7 16 240 2748
2000 -
2800

Yes [48]

4-Polygon 3 4.7 21 179 1684 - -

A
m
y
li
n

Single 8 5 NA 789 664 242 - 833 †Yes [104]
2-Stack 9 5 3 396 591 - * Yes [34, 120]
2-StackE - - - 244 - 486 * Yes [34]
2-Ring -8 5 5 419 624 - * Yes [52]
3-Ring -7 5 8 269 870 - * Yes [42]
4-Ring -3 5 12 195 1090 - * Yes [42]
3-Polygon 6 5 16 262 998 - * Yes [42]
4-Polygon 4 5 28 190 1324 - * Yes [42]

* It is ambiguous as to whether the Ring or Stack structures really form.
† A Single fibril model was built out of partial EPR distance measurements.

Table 2–1: Predicted structural parameters for HET-s, Abeta, and Amylin fibrils
produced by CreateFibril. Note that the parameters produce structures that have
very similar helical pitches to fibrils seen in nature, hence, the H bond lengths, angles,
and packing distances are accurate predictions. Highlighted rows are the polymorphs
CreateFibril predicted to form in greatest abundance and possessed the lowest total
energies.

well known in the literature as the predominant forms of HET-s [37]. The Single

fibrils come together and pack to form 3-Ring structures at pH values lower than

3. From CreateFibril’s structural findings for HET-s in Table 1, we verify that the
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HET-s Single fibril helical pitch of 410-Å, beta sheet aggregation of 4.8-Å, and left-

handed twist of the fibril reported by [37] all fall in the range of the most energetically

favorable structural parameters of HET-s. Furthermore, the 3-Ring structures form

with a packing radius of 7 Å and an axial repeat of 66.8 nm. Due to the large size of

the HET-s protein and the many steric clashes that form during aggregation, it was

expensive to run full EM to relax fibrils in preparation for calculating the total en-

ergies of the different polymorphs by our dipolar solvent model; a task not intended

for the purposes of this fast method. Fig. 2–6 (a) and (b) show the predominant

HET-s fibrils in nature. The Single fibril hides the hydrophobic regions in its core,

while the 3-Ring fibril uses the branching residues of each fibril filament to further

cover hydrophobic areas.

2.5.3 Abeta

β-amyloid peptide (Abeta), found excessively in patients with Alzheimer’s dis-

ease, is believed to lead to neurodegeneration in humans [44]. This protein aggre-

gates into various fibril shapes that form neuritic plaques and neurofibrillary tangles

[45, 46, 47]. Abeta molecules are known to form into the 3-Polygon [48], 2-Stack and

2-Ring polymorphic shapes [49, 35]. CreateFibril structurally characterized Abeta’s

polymorphic fibrils and computationally assessed their stability in solution.

CreateFibril matched the helical pitches of Abeta polymorphs in na-

ture. Using rigid affine transformations and enthalpy drift measurements, Create-

Fibril built several potential polymorphs for Abeta. In Table 1, we reported these

best structures along with their structural parameters. The helical pitches of the
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(a) (b) (c)

Figure 2–4: HET-s Single fibril parameter findings. (a) Heat map representation
of the stability landscape of Single HET-s structures exploring rotational angle θ
(y-axis) and beta sheet bonding distance d (x-axis). Green circles indicate stable
structures with low enthalpy drift, red circles indicate unstable structures with high
enthalpy drift, and black circles are intermediately stable structures. (b) Single HET-
s fibril built by CreateFibril with the values of θ = 22 degrees and d = 4.7 Å taken
from the best result in (a) enclosed by the red square. ?? Stability landscape of the
Packing Distance (PD) of HET-s 3-Polygon. Energy values are in KJ/mol.

fibrils we modeled were inline with those stated in the literature [35]. Although the

structure of Abeta (PDB Id 2BEG) was missing residues 1 - 16, CreateFibril was still

able to choose the right rotation angles θ, fibril packing distances, and beta sheet

aggregation distances, d, for all polymorphs to reproduce the structures that have

been observed in nature (see Table 2–1).

2-Stack, 3-Polygon, and Single Abeta polymorphs predicted to form.

Fig. 2–6 (a) describes the effect of water solvent on the aggregation of the Abeta
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polymorphs modeled with our dipolar water formalism. Up to length 27 monomers,

water favors the formation of the Single Abeta fibril. At length of 27 monomers,

the 2-Stack and the 3-Polygon start outperforming the Single in aggregation. This

could be explained by the packing of Single fibrils to produce 2-Stack and 3-Polygon

structures. In Fig. 2–7 (b), the energies of all polymorphs grow negatively im-

plying favorable aggregation with regards to solvation and enthalpy. At around 32

monomers of length, the figure suggests that the 2-Stack structure is the most stable

polymorph in the set, followed by the 3-Polygon, and the Single fibrils, all of which

have been observed experimentally. Fig. 2–6 (c) - (e) shows the hydration shell effect

on the monomers that make up these fibrils and how aggregation attempts to hide

hydrophobic regions. Fig. 2–5 (a) and (b) present the results of the implicit water

model in calculating solvation energy and total free energy of Abeta polymorphs.

This model proposes the emergence of the 4-Polygon and the 4-Ring fibrils which

were never experimentally observed.

CreateFibril characterized the stability landscape of wrapped Abeta

fibrils. Wrapped structures can further stabilize 2-Stack fibrils. Stroud et

al. [49] used X-ray powder diffraction to observe that some Abeta fibrils are likely

composed of laterally associated fibril filaments that twist around internal helical

axes. These internal axes wrap around a common superhelical axis in a geometry

that they term wrapping. When a filament is wrapped around a helical axis in this

manner, it obtains a twist that is in phase with the fibril helix. Stroud et al. showed

that higher crossing angles are related to greater curvature and increasingly large

holes in fibrils, suggesting that Abeta fibril toxicity may be related to their potential
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(a) ABeta implicit solvent Solvation Energy (b) ABeta implicit solvent Total Energy

(c) Amylin implicit solvent Solvation Energy (d) Amylin implicit solvent Total Energy

Figure 2–5: Energies of ABeta and Amylin fibrils as they aggregate. (a) and (c)
Solvation energy by implicit solvent, (b) and (d) Free energy by implicit solvent.

,

for forming pores. In Fig. 2–9 (c), we constructed the stability landscape plot for

Abeta wrapped fibrils with crossing angles between 0 and 88 degrees and rotation

angles (with respect to main fibril axis) between −13 and 13 degrees. Wrapped struc-

tures we modeled did not contain runaway domain swapping. Two stable wrapped

structures suggested by the stability landscape had a crossing angle of 8 and 59,

and a rotation angle of -3 and -11, respectively. In Fig. 2–9 (d) the first wrapped

structure obtained a more stable conformation than the 2-Stack model, validating

that some 2-Stack Abeta fibrils are indeed wrapped. Fig. 2–8 expands the stability
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(a) HET-s Single (b) HET-s 3-Ring (c) Abeta Single

(d) Abeta 2-Stack (e) Abeta 3-Polygon (f) Amylin native (non-fibril)

(g) Amylin Single (h) Amylin 2-Stack

Figure 2–6: Cross-sectional view of the hydration shell effect on the hydrophobic-
ity of the predominant HET-s, Abeta, and Amylin fibrils produced by AQUASOL.
Blue regions represent hydrophilic residues while red regions represent hydropho-
bic residues. HET-s Single fibrils possess a hydrophobic core which they aggregate
around (a), and the branching residues of the Single fibrils help hide hydrophobic
residues of their neighboring fibril when packed in the 3-Ring structure (b). Abeta
2-Stack and 3-Polygon fibrils aggregate creating a hydrophobic core (d) and (e).
The native amylin contains many hydrophobic residues (f) yet possess a lower en-
ergy than its amyloid counterpart (g). To hide they hydrophobic residues, amylin
amyloids aggregate in the 2-Stack polymorph (h).
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(a) Abeta Solvation Energy by dipolar solvent (b) Abeta Total Energy by dipolar solvent

(c) Amylin Solvation Energy by dipolar solvent (d) AmylinTotal Energy by dipolar solvent

Figure 2–7: Energies of Abeta and Amylin fibrils as they aggregate. (a) and (c)
Solvation energy by dipolar solvent, (b) and (d) Free energy by dipolar solvent.

landscape results by showing the enthalpy energies before and after minimization

runs.

2.5.4 Amylin

Deposits of Islet amyloid polypeptide (Amylin) in the pancreas are toxic and

believed to be a contributing factor to Type II diabetes [50, 51]. Amylin fibrils
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(a) LJi + Coulombi

(b) LJf + Coulombf

(c) Enthalpy drift = |LJf − LJi| +
|Coulombf − Coulombi|

Figure 2–8: Heatmap representation of the stability landscape and the enthalpy drift
of Abeta wrapped 2-Stack fibrils. Exploration covered crossing angles between 0 and
88 degrees and fibril rotation angles (main axis) between -13 and 13 degrees. (a)
The energies of structures initially built by CreateFibril assembled through rigid
affine transformations. (b) The energy plot of each structure after a run of Energy
minimization. (c) The energy difference, or enthalpy drift, determines the initial
structural stability of fibrils built by CreateFibril in (a). Structures that represent
low drifts are considered fixed points and believed to live in local minimum neigh-
bourhood. Energies in KJ/mol.
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were successfully polymerized in vitro and showed a diverse ensemble of polymor-

phic shapes [52, 42]. To reconstruct the polymorphs computationally, CreateFibril

required the atomic structure of the amyloid form of Amylin. Unfortunately to date,

no one has been able to crystallize full-length human Amylin. Instead, many models

for the monomeric form of amyloid Amylin have been proposed and among the most

prominent structures are ones proposed by Wiltzius et al. [34], Luca et al. [120], and

Bedrood:2012nx et al. [104]. The model of Luca et al. consists of a full atomic model

of a single striated ribbon amylin polymorph based on constraints from solid-state

NMR. This work in 2007 opened the doors for further Amylin experimental model

development. Interestingly, we have observed that the Amylin structures proposed

by Bedrood:2012nx et al. resemble the wrapped Abeta fibrils containing swapping

runaway domains recently discovered by Stroud et al. [49]. Although the model of

Bedrood:2012nx et al. gives new insight into a possibly novel Amylin conformation

depicted by EPR distance measurements, the model was built by only consider-

ing a single stack of peptides and ignored additional restrictions that would rise

from the packing of multiple fibril filaments around each other. Hence, the model

Bedrood:2012nx et al. present might be a special form an Amylin monomer can

take, and not the predominant conformation. The final prominent atomic model of

Amylin proposed by Wiltzius et al. [34] was built using biochemical and structural

data along with the fibril NNFGAIL and SSTNVG crystallized regions of Amylin to

formulate a structure with atomistic details for the protein in the form of a 2-Stack.

It is key to start CreateFibril with a very realistic amyloid monomer as this is the
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basis for determining polymorphic shapes and predicting accurate likelihoods of for-

mation. Perturbations at the monomer level can alter the fibril pitch and packing

distances which might introduce artifacts when calculating likelihoods of formation.

It is important to start with an amyloid crystal structure, when possible, or a precise

model that is not very different from the actual amyloid (≈ RMSD 2 Å see Fig.

2–10 for convergence analysis). An RMSD difference of 2 Å is quite large for small

monomers such as Abeta and Amylin. MD simulations and minimization techniques

should be used to improve model quality when necessary. It is our understanding

that this Wiltzius’ model is the best model in the literature regarding Amylin in its

monomeric amyloid form and we refer to it as 2-StackE in Fig. 2–7 and in Table

2–1. We extracted one Amylin protein from this fibril model and used it as a starting

template to build the other polymorphic fibrils. Having verified that our approach

generated valid structural results for Abeta and HET-s and valid solvation results

for Abeta, we endeavored to find novel findings for Amylin polymorphs.

2-Stack and Single Amylin polymorphs have lowest total energies.

Fig. 2–7 (d) graphs the total energy of the Amylin polymorphs and suggests that

Amylin Single and 2-Stack polymorphs compete in solution. The Single structure

dominates in lowest total energy until a 35 amyloid fibril is reached, after-which, the

2-Stack polymorph becomes more abundant. This figure also shows that the other

polymorphs cluster together and are higher in energy. Assuming that the model we

started with is the actual model of Amylin in amyloid form we can suggest that the

2-Ring, 3-Ring, 3-Polygon, 4-Ring and 4-Polygon are unlikely to form. Although Fig.

2–7 (c) suggests that solvation generally prefers the emergence of the Single structure
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(a) (b) (c)

(d)

Figure 2–9: Abeta wrapped fibrils. (a) Cross-sectional top view and (b) side view
of the wrapped Abeta fibril. (c) Heat map representation of the stability landscape
of Abeta wrapped fibrils characterized by rotational angle θ (y-axis) and crossing
angle ω (x-axis). Green circles indicate stable structures with low energy, red circles
indicate unstable structures with high energy, and black circles are intermediately
stable structures. Energy values are in KJ/mol. (d) 2-StackWrap A structure with
crossing angle 8 and rotation -3 is more stable than a non-wrapped 2-Stack. 2-
StackWrap B has a crossing angle 59 and rotation angle -11.

in solution over the 2-Stack, total stability and dominance of structure is determined

by a combination of enthalpy and solvation. The dipolar water model in Fig. 2–7

(d) suggests that a 2-Stack, supported in the literature by [34, 120] should exist in
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greater abundance and possess the greatest stability among polymorphs. Because

Single fibrils initially are more energetically favorable than the 2-Stack and might

contribute to the emergence of the 2-Stack, we propose that finding a way to limit the

aggregation of the Single polymorph could greatly diminish all the fibrils that form

in solution. This would be of critical importance for attempting to find therapeutics

to combat the growth of Amylin fibrils in the Beta Cells of the pancreas [51]. Fig.

2–6 (f) - (h) presents the hydration shell effect on the hydrophobicity of Amylin when

aggregated in the Single and 2-Stack fibril form and when left in native form. We

observe that the 2-Stack model structure hides most hydrophobic regions, perhaps

one explanation to its abundance in solution. The implicit water model suggests

in Fig. 2–5 (c) that the 2-Stack Amylin structures are high in energy and are not

likely to exist for a long period of time, a result that contradicts the experimental

finding of Goldsbury et al. that claims the dominance of the 2-polymorph Amylin

structures in vitro [52, 42]. On the other hand, the dipolar water model confirms

these findings and furthermore suggests that the dominant 2-polymorph fibrils would

take on a 2-Stack conformation and any emerging 3-polymorph fibril would take on

a 3-Polygon conformation similar to the 3-Polygon of Abeta.

Native Amylin predicted to be lowest in energy. It has been unclear

whether amyloid monomers form because they are lower in energy compared to their

native counterparts, or because their aggregation produces lower energy structures

compared to an accumulation of unbound native proteins. Using our dipolar solvent

model, we found that the total energy of one Amylin monomer in native form (PDB

ID 2KB8) was 6504.7 KCal/mol and the total energy of one Amylin monomer in
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(a) Structure convergence to Abeta

(b) Structure convergence to Amylin

Figure 2–10: Convergence rate of Abeta and Amylin tweaked structures. Thousands
of structures were created and tweaked for every RMSD decimal of convergence. MD
simulations were performed on tweaked structures with the following parameters:
CHARMM force field, SPC model, TIP3P box with a minimum of 15 Å from any
edge of the box to any atom, and 20000 integration steps per minimization run
following a steepest gradient decent algorithm.
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amyloid form was 6660.7 KCal/mol. Assuming we started with an accurate Amylin

model, this result reveals that the native form of Amylin is initially favored in nature

over the amyloid form. As amyloids find each other and aggregate, the energy of

an aggregate structure of k monomers becomes lower than the energy of k native

molecules floating in solution for all k > 2. This could explain the rapid aggregation

phenomenon of Amylin fibrils.

2.5.5 Online tool & Fibril database

In this paper, we have shown how to build amyloid fibrils with various geome-

tries by using rigid affine transformations, starting from the amyloid structure of a

single prion form of the protein. The free energy of these structures in water was

computed by adding together the Lennard-Jones, Coulomb and solvation energies.

The latter is a crucial component in the stability of the fibrils, and has been com-

puted by using the AQUASOL program, a software which yields free energies in good

agreement with those computed from long runs of MD. These computed free energies

in turn allow to assess the stability of the various proposed structures and to classify

their abundance in amyloid solutions. Our results are in very good agreement with

current experimental findings, and in some cases predict the existence of stable forms

of aggregates which have not yet been observed. Table 1 summarizes the stability

landscape exploration parameters used by CreateFibril to build the most stable fib-

ril structures for HET-s, Abeta, and Amylin proteins. We collect all the generated

polymorphic fibril structures in an open database at http://amyloid.cs.mcgill.ca and
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provide CreateFibril as a free online application on the same site.
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Computational re-engineering of Amylin sequence with reduced
amyloidogenic potential

3.1 Preface

A significant effort in the field of amyloid inhibition has been spent in researching

ways to limit the growth of amyloid fibrils, slow their production, and impede their

formation. Molecules have been designed to target early oligomer aggregates to pre-

vent amyloid fibril formation [121, 122, 123]. Others have been designed to enhance

fibril formation to reduce the build up of oligomers in the cases where oligomers where

toxic [124]. Other approaches included capping fibrils with docking proteins [125],

inhibiting fibrils by methods of Lysine-specific molecular tweezers [126], and using

sulfonated triphenyl methane derivatives as potent inhibitors [127]. Although some

of these attempts have demonstrated fibril inhibition and slower reaction rates in

vitro, the effect of introducing these various molecules on cellular processes, reaction

pathways and other proteins is not clear.

We established in Chapter 1 that amino acid mutations affect the stability and

initiation processes of amyloids. Single-point mutations are associated with the onset

and progression of several diseases, including diabetes. The right mutations can
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stabilize, or destabilize, fibril structures affecting their rates of formation, insolubility

properties, sizes, and polymorphic assemblies.

The second objective of this thesis is to explore ways to destabilize or inhibit

amyloid and fibril formation. Tweaking environment conditions such as pH and

temperature around proteins to lower their amyloidogenicity was one of our prime

interests. However, we found that 1) changing environment conditions is theoretically

possible in silico but difficult in vivo, 2) tampering with environment conditions

in the cell could affect other processes and organelles, 3) modeling environment

conditions at an atomic level is computationally difficult and infeasible, and 4) certain

environment conditions could be critical for the native structure of the protein to fold.

All four factors motivated our idea to destabilize amyloids with sequence mutations

that could be engineered into cells.

The tool from the previous chapter was the first of its kind in successfully cre-

ating fibril models from a single amyloid PDB structure. One of the main results

obtained from the previous work is the prediction of amylin’s polymorphic structure

and the precise parameter values needed to make up its morphology. This has now

enabled us, for the first time, to start exploring fibril dynamics and expound how

different amino acid regions contribute to fibril stability.

In this chapter, we describe a protocol to analyze the structure of an amyloid

protein and search for regions that could be exploited with sequence mutations to

destabilize fibril structures. We apply this protocol to suggest mutations that po-

tentially weaken the diabetes-related amylin 2-Stack fibril. In particular, we identify

six key regions that contribute to amylin’s fibril stability and use the tools from the
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previous chapter to study the effect of single-point mutations on amylin nucleation

and aggregation. We a packaged the algorithm that assess the stability of regions

into a tool called FibrilMutant. The goal behind this work is to explore impeding

aggregation without stressing the cellular environment.

The remaining content of this chapter has been taken from a manuscript that was

submitted for publication:

• M. R. Smaoui and J. Waldispühl. “Computational re-engineering of Amylin

sequence with reduced amyloidogenic potential”. Submitted for review in June

2014.

3.2 Abstract

The aggregation of amyloid proteins into fibrils is associated with neurodegen-

erative diseases such as Alzheimer’s and Type II Diabetes. Different methods have

explored ways to impede and inhibit amyloid aggregation. Most attempts in the

literature involve applying stress to the environment around amyloids. Varying pH

levels, modifying temperature, applying pressure through protein crowding and lig-

and docking are classical examples of these methods. However, environmental stress

usually affects molecular pathways and protein functions in the cell and is challenging

to construct in vivo. In this paper, we explore destabilizing amyloid proteins through

the manipulation of genetic code to create beneficial substitute molecules for patients

with certain deficiencies. To unravel sequence mutations that destabilize amyloid fib-

rils yet simultaneously conserve native fold, we analyze the structural landscape of

amyloid proteins and search for potential areas that could be exploited to weaken
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aggregation. Our tool, FibrilMutant, analyzes these regions and studies the effect of

amino acid point mutations on nucleation and aggregation. This multiple objective

approach impedes aggregation without stressing the cellular environment. We iden-

tified six main regions in amyloid proteins that contribute to structural stability and

generated amino acid mutations to destabilize those regions. Full length fibrils were

built from the mutated amyloid monomers and a dipolar-solvent model capturing the

effect of dipole-dipole interactions between water and very large molecular systems

to assess their aqueous stability was used to generate energy plots. Our results are

in agreement with experimental studies and suggest novel targeted single point mu-

tations in Amylin, potentially creating a better therapeutic agent than the currently

administered Pramlintide drug for Type I Diabetes patients.

3.3 Introduction

Protein misfolding has been regarded as one of the most important events trig-

gering a wide variety of neurodegenerative and systemic diseases including Alzheimer’s,

Parkinson’s, Prion disease, and Type II Diabetes [128, 27, 30]. The misfolding of

certain critical soluble proteins introduces conformational changes that favor aggrega-

tion and the creation of highly ordered beta sheet rich insoluble polymers [129, 130].

These structures, often referred to as amyloids in their monomeric form, or amyloid

fibrils in their long aggregated form, have been observed to accumulate in the brain,

heart, pancreas, and other organs. They are believed to contribute to many health

problems including memory loss, brain lesions, senile plaques, synaptic spline loss,

neurotic dystrophy, and cell death [22, 131].
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Considerable amount of work has been spent into researching ways to limit

the growth of amyloid fibrils, slow their production, and inhibit their formation.

Molecules have been designed to target early oligomer aggregates to prevent amyloid

fibril formation [121, 122, 123]. Interestingly, others have been designed to enhance

fibril formation to reduce the build up of oligomers in the cases where oligomers where

toxic [124]. Other approaches included capping fibrils with docking proteins [125],

inhibiting fibrils by methods of Lysine-specific molecular tweezers [126], and using

sulfonated triphenyl methane derivatives as potent inhibitors [127]. Although some

of these attempts have demonstrated fibril inhibition and slower reaction rates in

vitro, the effect of introducing these various molecules on cellular processes, reaction

pathways and other proteins is not clear and can be unfavorable.

Amyloids have been observed to undergo mutations that change their amyloido-

genicity and rate formation. Several cases of Parkinson’s disease are associated with

amino acid mutations of the alpha-synuclein (αS) protein [58, 59, 60]. The A30P

mutation in αS decreases the overall rate of fibril formation [61, 62], while the H50Q,

H50A, and G51D mutants aggregate more quickly than the wild type but more slowly

than A53T and E46K mutants [63]. One point mutations have been observed to be

sufficient to affect the landscape of the Aβ42 protein in Alzheimer’s and change the

internal dynamics between microstates [64]. R5A mutation studies showed a de-

crease both in the tendency towards Aβ aggregate formation and a reduced toxicity

in Alzheimer’s [65]. A mutation in amino acid position 25 of Aβ, the loop area

connecting two beta strands has been show to destabilize Aβ fibrils [66]. Further-

more, a single mutation of serine-to-glycine at position 20 in Amylin in Chinese and
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Japanese populations [67] is associated with early onset of Type II Diabetes [68, 69]

and amplified amyloid formation [70, 71, 72]. Moreover, more than 120 single point

mutations have been associated with the systemic disorder FAP [77].

As a result of the heavily observed natural mutations, research into deliberately

mutating amino acids of amyloids has been proposed as an explorative method to

destabilize fibrils and reduce toxicity. Computational methods coupled and steered

with Molecular Dynamics runs have proved to be a viable strategy to study the

impact of mutations, however, unscalable and expensive in resources and time [78].

Advancements in understanding the effects of amyloid sequence mutations on fibril

toxicity and formation rate has paved the way for the development of therapeutic

agents to replace highly amyloidogenic species. Re-engineering the genetic code of

proteins and administering them as substitute agents for patients is a promising

strategy for drug development. Pramlintide, a mutated protein version of Amylin,

is used as a drug replacement in Type I Diabetes and has been shown to produce

less fibrils and cause less beta cell death in the pancreas [79]. It is still unclear

how point mutations alter the pathway of oligomerization and the kinetics of fibril

conformational transitions [64], however, it is clear that proteins aggregate through

nucleation-dependent polymerization [22, 63]. Hence, exploring mutations that affect

the nucleation of amyloid monomers has the potential to introduce more therapeutic

agents to inhibit oligomer formation and reduce the effect of disease.

In this paper we describe a protocol to analyze the structure of an amyloid

protein and search for regions and residues that could be exploited to weaken ag-

gregation. We focus our study on the diabetes-related protein, Amylin, and explore
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six key regions potentially contributing to amyloid oligomerization and fibril produc-

tion. We developed a tool, FibrilMutant, that implements this protocol and suggests

several amino acid mutations that weaken fibril structure. Subsequently, we address

the multi-objective problem of discovering point mutations that destabilize fibrils yet

conserve the native fold in an efficient manner by running short Molecular Dynamics

simulations on single mutated native Amylin proteins to detect any initial structural

turbulence and utilizing a dipolar solvent model to assess the fibril aqueous stability

of much larger mutated amyloid aggregates. Our approach generated several destabi-

lizing mutations that respect the multiple objectives. Oligomers and fibrils were built

from each mutation and assessed for structural stability with an energy function that

takes into account solvation energy, hydrophobicity, electrostatic interactions, and

hydrogen bonding. We validate our method with results of mutations determined

experimentally for Amylin and suggest new mutations that show stronger amyloid

destabilizing potential than the current best therapeutic agent for diabetes.

3.4 Materials and Methods

We created FibrilMutant to explore the effect of sequence mutations on desta-

bilizing amyloid fibrils. FibrilMutant takes a PDB file of a single amyloid monomer

and a PDB file of its native protein conformation as input and generates single point

mutations to destabilize the protein’s fibril structure. We apply the mutations to

both the native and the amyloid form of the protein and calculate the stability ef-

fect on both forms. The following procedure is followed to generate and assess the

mutations:

69



CHAPTER 3

1. Load the PDB file into FibrilMutant and analyze key structural characteristics

contributing to aggregation.

2. Explore a set of mutations that could weaken regions contributing to aggrega-

tion.

3. Generate fibril stability landscapes to find the most stable fibril polymorph of

the amyloid PDB monomer.

4. Build mutated fibrils of the most stable polymorph.

5. Assess the stability of each mutated fibril in water with a dipolar water modal.

6. Discard any mutation that stabilizes the amyloid fibrils, and verify with short

full Molecular Dynamics (MD) simulations that the final mutation list does

not introduce structural lump turbulences that destabilize the native protein.

FibrilMutant builds on our recent work that enabled the simulation of accurate

fibril models [132]. Its core development includes predicting a set of effective muta-

tions and building oligomers and large fibrils to test the effects of these mutations

on structural stability. A detailed description of the procedure is described below.

Step 1: Analyzing amyloid structures

Amyloids share key structural similarities. FibrilMutant extracts from a PDB

file regions with Beta strands, screens regions at Beta turns, identifies salt bridges,

and examines hydrophobic, polar and charged residues. This collected data is then

utilized to generate amino acid mutations in the extracted key regions and residues.

Step 2: Generating mutations

Structural data collected from an amyloid PDB file is used to predict destabiliz-

ing mutations. The inner core of amyloids is known to be a hydrophobic core. One
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way to disrupt this core is by introducing a mutation of one of its amino acids into a

charged residue. We have explored several ways mutations can weaken the structure

stability of amyloids. Upon selection of potential mutations, we run TANGO [98]

to quickly rank candidate mutations and provide preliminary data on the potential

destabilizing effect of each mutation. We understand that TANGO uses a coarse-

grained model to perform high-throughput screenings of results, hence we only use

it as a guide to initially rank the numerous mutations. Table 3–1 summarizes the

method behind choosing these mutations.

Step 3: Fibril stability landscape

Amylin has recently been found to form into a fibril structure composed of two

stacked protofibrils [34]. However, the experimental structural parameters, mainly

fibril rotation angle and protofibril packing distance, have not been published yet.

MD simulations could be used to find these parameters but the process is compu-

tationally expensive in resources and time, and we estimated these by our previous

work on Stability Landscapes [132].

Starting with an accurate crystal or NMR amyloid monomer, we first define a

range of naturally possible values for the various fibril degrees of freedom charac-

terized by rotation angles, packing distances and beta strand proximities. Second,

we utilize these range of values to construct all possible fibril structures using rigid

affine transformations. Third, we perform light runs of Energy Minimization (a few

hundred steps of relaxing the protein structure and removing close clashing atoms)

on each generated structure to assess its initial stability sensitivity by calculating any

enthalpy drift between final and initial conformations. This step creates the fibril
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Structure Characteristic Contribution to Amyloid Stability Disruption Method
Hydrophobic Core Hides core residues from water Mutate a hydrophobic residue in the core

and generates a packed core into a charged one
Hydrophilic Surface Provides a stable contact surface to water Mutate a polar residue on the surface

into a hydrophobic one
Beta Sheets Constitute the backbone of fibrils Decrease the number of hydrogen bonds

between Beta strands
Beta Turns Provide needed torsional flexibility for Beta Mutate the center residue and any Glycine

sheets to form amino acid of a Beta turn region into a Proline
to limit torsional flexibility

Salt Bridges Produce an ionic bond between fibril Search the amyloid structure for bonds less
monomersor the monomer itself than 4.5Å apart bonding the following

pair of amino acids: ASP - LYS, ASP - ARG,
GLU - LYS, GLU - ARG, and mutate one amino
acid into a non charged, non polar residue to
break the ionic bond.

Polar Regions Contribute hydrogen bonds Mutate polar residues into non polar ones to
weaken hydrogen bonds

Table 3–1: Effect of mutation choice on structural stability. This table summarizes
our approach to choosing mutations to test for fibril destabilization. We identify
six main features of amyloids that contribute to structure stability and outline the
methods we used to weaken their contribution to the amyloidogenicity of proteins.

stability landscape by exhausting all suitable “parameter” values. We then search

the landscape for values that construct the most stable initial conformation. These

“parameter” values would create structures with lowest enthalpy drift and lowest ini-

tial Lennard-Jones and Coulomb terms. Structures with low enthalpy drifts allude

to stable conformations (local minima on the structural energy landscape of fibrils),

and structures with high energy drifts suggest parameters that produce unstable

conformations.

Step 4: Building fibril models

A different amyloid monomer is generated for every mutation. To test the

stability effect of the mutations on fibrils, these mutated amyloid monomers need to

assemble into fibrils. Fibrils are polymorphic and since we don’t know the polymorph

this specific amyloid protein will aggregate in, we first need to figure out which
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polymorph is the most stable for the current protein. To do this, we resort to

our previous work, CreateFibril, a tool that builds and explores the stability of

fibrils. Once we know the specific polymorph the protein will aggregate in, we apply

mutations to the amyloid monomer and construct a new mutated structure with

SCWRL [133]. SCWRL is a tool that determines side-chain conformations to a

backbone structure. We specified the original backbone of the protein, but gave

SCWRL the mutated sequence of amino acid to fit onto the structure. We then

perform energy minimization on the mutated structures to remove any steric clashes

due to mutations. The structure is then built into the correct fibril polymorph by

CreateFibril.

Step 5: Assessing mutated fibril structural stability

Applying point mutations to a structure can introduce steric clashes between

amino acid side chains. To combat this issue, we perform EM to relax all mutated

amyloid and native structures. After this process of relaxation, we use our previ-

ous work to quickly calculate the Free energy of proteins. We calculate the LJ and

Coulomb energies and use a fast and detailed dipolar water model to compute the

solvation energy of molecules by solving the dipolar nonlinear Poisson-Boltzmann-

Langevin equation. Together, the three energy terms are used to describe the stabil-

ity behavior of fibrils. Fibrils with higher energy than the natural control are termed

as unstable, and the mutations that generate them are kept for further analysis on

the native structure. We used the program AquaSol [89] with the following setup:

atomic charges and radii assigned with PDB2PQR using CHARMM force field at

neutral pH. A grid or 257 points per edge spaced by 1 Å, a temperature of 300K,
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and a solvent accessible surface with an Rprobe of 1.4 Å. All hydrogen-bonds were

optimized. We used a trilinear interpolation protocol for projection of fixed charges

on the grid, a lattice grid size for the solvent: a = 2.8 Å, solvent made of dipoles

of moment p0 = 3.00D at a concentration of Cdip = 55M. No salt was added to the

solution and small ions were used to equilibrate the system when needed. The elec-

trostatic potential was set to zero at the boundaries, and the stopping criteria for

residual was sent to: 1.10−6 (when possible).

FE = Fsolv + Fcoulomb14 + Fvdw (3.1)

where,

Fsolv = F(p0,Cdip) − F(0,0) −Nwμw

μw = kBT
ln(1−NACdipa

3)

NACdipa3

Nw =

∫
solvent

drρdip(r)

Step 6: Structural deviations of the native protein

This step is crucial in addressing the multi-objective problem of discovering

point mutations that destabilize fibrils yet conserve the native fold. Mutations that

create unstable fibrils are applied to the native protein form to assess any structural

stability effect they could produce. We are interested in mutations that destabilize

the amyloid but not the native form. Such mutations theoretically preserve structure

and protein function and are candidates for therapeutic engineering. We use SCWRL
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to build the mutated native proteins and run EM to relax the structures. We then

run a full MD simulation and plot RMSD and RMSF graphs to verify any structure

deviations caused by the mutation. In particular, we calculate the perturbation in

structural motion with

δrmsd = RMSD(mutant)−RMSD(native)

where, RMSD measures the root mean-square deviations, in angstroms, of the Cα

atom positions in a protein’s residues over a simulation run.

We also calculate the root mean square fluctuations (RMSF), a measure of the

deviation between the position of a particle i over a simulation run,

RMSF =
1

T

T∑
tj=1

(xi(tj)− x̃i)
2

where T is the total simulation time, and x̃i is the reference position of particle

i. Low RMSF at a particular mutation site suggests the absence of local residual

instability.

3.4.1 Molecular Dynamics and Energy Minimization

We used the GROMACS 4.5 [90] molecular simulation package to run molecular

dynamics (MD) and energy minimization (EM) simulations. Our mutated proteins

were solvated in a cubic box (with a minimum distance of 35 Å from any edge of the

box to any atom) and neutralized with chloride ions and modeled using the GRO-

MOS96 53a6 force field along with the SPC water model. We used a cutoff of 10 Å for

van der Waals and short range electrostatic interactions, and calculated long range

electrostatic interactions using a particle mesh Ewald sum [117, 118]. Simulations
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were prepared for a full MD run in both isothermal-isobaric (100 ps) and canoni-

cal equilibration (100 ps) ensembles. Temperature and pressure were controlled at

300 K and 1 bar using the velocity rescaling thermostat and the Parrinello-Rahman

barostat, respectively. A linear constraint solver was used to keep all bonds at their

equilibrium length. Approximately ten million time steps were used with an integra-

tion time step of 2 fs. The system’s coordinates were saved every 10 ps for further

analysis.

3.4.2 Analyzing Energy Results

To assess the effect of mutations on amyloid fibril stability, we generated fibril

mutants up to 25 monomers in size and used Eq. 3.1 to calculate their energies. The

solvation term was calculated by AquaSol while the LJ and Coulomb terms were

calculated by GROMACS. The same formula was used in the initial assessment of

the mutated native structures. We generated RMSD and RMSF plots from MD sim-

ulations to analyze structural changes and residue perturbations in native Amylin

mutants.

3.5 Results and Discussion

In this section we apply our methods to the protein Amylin (PDBID 2KB8), a

37 residue peptide hormone that is secreted from the pancreas in response to intake

of food. The 2KB8 is a micelle-stabilized NMR structure suited for diabetes protein-

membrane aggregation studies. Amylin normally contributes to glycemic control

and inhibits the appearance of specific nutrients in the plasma [134, 135]. In patients

with Type II Diabetes, Amylin has been found to misfold into destructive amyloid
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monomers that aggregate in pancreatic beta cells and disturb cellular activity, dis-

rupt flow of ions through membranes, and force cells to apoptosis [54, 57]. Little

is known about the mechanism or pathway behind the misfolding event, however,

the structure of Amylin’s amyloid protein is known. Patients with Type I Diabetes

are unable to produce Amylin in their pancreas and require Amylin injections. In

2005, Pramlintide, a version of Amylin with three point mutations that has a lower

affinity to form amyloids and fibrils was introduced in the treatment of Type I and

Type II Diabetes [136], and has been a better substitute for Amylin in patients with

diabetes. Pramlintide, however, is not optimal as patients still experience the emer-

gence of some fibrils that further destroy their β-cells. In this section, we present the

results of applying our FibrilMutant protocol on analyzing Amylin’s conformational

regions and stability landscape. Moreover, we show that our energy function and

destabilizing criteria are in agreement with experimentally tested Amylin mutations

and discover novel mutations with stronger destabilizing potential and lower fibril

affinities than Pramlintide.

3.5.1 Exploring key stability regions of Amylin

The protocol we implemented into FibrilMutant identified six key stability re-

gions in Amylin that contribute to the emergence of amyloids and the growth of their

fibrils. It generated twenty three single point mutations with potential to destabilize

Amylin fibrils, possibly hindering their production or slowing down their aggrega-

tion. The mutations were initially ranked by a statistical mechanics algorithm used

in TANGO [98] to help us prioritize simulation order. Table 3–2 displays these mu-

tations. These suggested mutations imply that Amylin amyloid fibrils are stabilized
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Original Residue No. Mutated Disruption TANGO
Amino Acid Amino Acid Method Rank

A 13 R making core charged 1
F 15 P mutating an amino acid on a beta strand 2
F 15 D making core charged 3
L 16 D making core charged 4
A 25 R making core charged 5
I 26 R making core charged 6
G 24 P mutating GLY at a turn 7
L 27 R making an amino acid on a beta strand charged 8
F 23 E making core charged 9
G 24 D making core charged 10
V 17 E making core charged 11
Q 10 H making protein surface hydrophobic 12
N 21 P mutating an amino acid at a turn 14
C 2 Q making protein surface hydrophobic 15
T 6 M making protein surface hydrophobic 16
T 4 S making protein surface hydrophobic 17
V 32 K making an amino acid on a beta strand charged 18
N 3 H making protein surface hydrophobic 19
A 8 E making an amino acid on a beta strand charged 20
T 9 N making protein surface hydrophobic 21
L 12 E making core charged 23
C 7 T making protein surface hydrophobic 24
G 33 E making an amino acid on a beta strand charged 25

S 20 G discovered experimentally 13
S 20 K discovered experimentally 22
N 21 L discovered experimentally 26
N 14 L discovered experimentally 27

Table 3–2: Amylin Mutations generated by FibrilMutant with destabilizing poten-
tial. Mutations above the horizontal line are destabilizing mutations proposed by
FibrilMutant, and mutations below the line have been suggested and tested exper-
imentally. Mutations are ranked by TANGO from lowest aggregation potential to
highest aggregation potential.

by the following four main factors: a hydrophilic surface contact with water, a large

hydrophobic core region, beta strands, and glycine amino acids at beta sheet turns as

illustrated in Fig. 3–1. All proposed mutations attempt to destabilize these regions

to weaken Amylin fibril structures.

3.5.2 Generating Amylin fibrils

To test the effectiveness of the mutations suggested by FibrilMutant, we apply

the mutations to Amylin fibrils ranging in size from one to twenty five monomers as
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Figure 3–1: Amylin amyloids. Left: Identification of key stability regions of amy-
loid Amylin by FibrilMutant. Beta strands are colored green, beta turns red,
charged residues orange, hydrophobic residues purple, polar residues grey, and glycine
residues at turns blue. Right: Full Amylin fibrils of 25 monomers in size.

shown in Fig. 3–1. Amylin fibrils have been found to form into a dimer conformation

recently classified as a 2-Stack. Using fibril stability landscapes from our previous

work [132], we construct the mutated structures with a fibril packing distance of 3.0

Å, Hbond distance of 5.0 Å between monomers and a rotation angle of 9 degrees along

the fibril axis. Each fibril contains one amino acid mutation on each of its amyloid

monomers. The stability landscapes are efficient-exhaustive search heuristics for

structural parameters that create energetically optimal fibril shapes.

3.5.3 Analyzing Amylin fibrils

Fig. 3–2 shows the free energies of the most significant fibrils at their nucleation

phase and at their extended aggregation phase. Energy values higher than the con-

trol fibril correspond to a decrease in stability, while lower energies correspond to an
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Figure 3–2: Free energies of Amylin mutated fibrils calculated with Eq. 3.1. The
inner box is a close up showing energies at the nucleation phase.The control wild type
fibril is marked with boxes along its curve. All fibrils with lines above the control are
less stable than the control, and all fibrils below the control increase fibril stability.

increase in fibril stability. We are interested in mutations that create the most insta-

bility. To be able to sort out these better mutations, we developed three formulas to

rank the mutations according to the metrics that measure a protein amyloidogenicity

factor, a fibril nucleation factor, and a fibril aggregation extension potential factor.

Together, these metrics are intended to measure stability deviations in the various

stages of fibril development and growth. The amyloidogenicity factor is measured by

ΔGi = F i
a1
− Fn1 (3.2)
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where ΔGi is the free energy resulting from transforming an Amylin protein from a

mutated native to a mutated amyloid fold, F i
a1

is the free energy of a single amyloid

monomer and Fn1 is the free energy of a single native protein for all mutated fibrils

i.

The second metric is

ΔN i = F i
a4
− 4 F i

a1
(3.3)

where ΔN i is the free energy of nucleation resulting from joining four free amyloid

monomers into a fibril structure, F i
a4

is the free energy of an Amylin fibril composed

of 4 monomers and F i
a1

is the free energy of a single amyloid monomer for all mutated

fibrils i.

The third metric, ΔF̃ i, measures the difference in energy between the mutated

fibril and the control averaged out over the length of the fibril,

ΔF̃ i =
n∑
j

F i
aj
− F c

aj

j
(3.4)

where F i
aj

is the free energy of the mutated fibril i at length j and F c
aj

is the free

energy of the control wild type fibril at length j.

Together, ΔG, ΔN and ΔF̃ provide insights into the stability perturbations

caused by the mutations at the amyloid formation phase, fibril nucleation phase,

and fibril elongation phase, respectively. Table 3–3 shows the energy values of all

the three metrics applied to the mutated fibrils. A positive ΔG value describes an

endothermic reaction where native Amylin structures required an input of energy

to form into amyloid monomers. The higher the ΔG, the higher the gap in energy
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between amyloids and native Amylin. Negative ΔG suggest favorable exothermic

reactions and possibly spontaneous formation of fibrils. Hence, mutations in Table 3–

3 with negative ΔG are eliminated in red.

ΔN is useful in comparing the strength of fibrils created at nucleation. The

more negative ΔN values produce stronger exothermic reactions, and hence more

stable fibrils. For our study, we want to explore the mutations that produce a ΔN i

greater than ΔN c (control). We rank the mutations in the middle column of Table 3–

3 from weakest to highest and remove all mutations smaller than ΔN c. Finally, ΔF̃ i

estimates the stability deviation of the mutated fibril from the control wild type.

Positive values suggest fibrils that are weaker than the control and negative values

suggest fibrils more stable than the control. We observe that the energy gap widens

between fibrils and the control as fibrils grow in size which suggests that unstable

fibrils (high energy difference with respect to the control) are likely to create energet-

ically preferred shorter structures, possibly a better chance for degrading enzymes

and macrophages to destruct them [137, 138]. We ranked the filtered mutations in

Table 3–3 and highlighted in green the unstable fibrils out of our set.

The sensitivity of amyloid formation to point mutations can be exploited to de-

sign slower Amylin aggregating variants that inhibit fibril formation. There has been

no reported systematic analysis of all of the amino acid positions of IAPP or their

amyloidogenicity potential, and mutation studies are sparse [139]. We validate our

method and rankings by first considering the few mutations explored experimentally

[140, 72]. Amylin N14L and N21L mutants did not form amyloids experimentally
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Mutation ID ΔG ΔN ΔF
G33E 296.52 T6M -15494.80 L12E 969.34
F23E 242.23 A8E -15592.10 A8E 831.79
F15P 217.67 T9N -15635.66 G33E 764.78
A25R 207.75 G24D -15694.84 L16D 296.82
N3H 207.72 V17E -15755.21 F15P 266.55
Control 205.79 F15P -15771.38 F15D 249.14
C7T 205.12 G33E -15794.61 C7T 227.84
L16D 200.64 V32K -15802.45 N21P 171.83
A13R 197.74 G24P -15866.30 T6M 136.14
L12E 190.56 L12E -15915.03 Q10H 115.75
F15D 184.83 N21P -16044.82 Control 0.00
I26R 181.08 C7T -16098.65 G24P -12.28
L27R 167.15 Q10H -16104.24 C2Q -74.43
N21P 161.64 F15D -16144.06 N3H -101.91
Q10H 153.91 L16D -16145.39 V17E -116.60
T4S 144.96 A25R -16147.63 G24D -345.73
G24P 125.15 Control -16158.22 T4S -464.05
V17E 94.30 T4S -16177.21 F23E -615.08
C2Q 80.36 N3H -16249.20 T9N -636.75
G24D 72.18 C2Q -16312.04 A25R -1338.74
A8E 56.52 I26R -16424.93 I26R -1644.14
T6M 36.38 F23E -16429.73 L27R -2056.31
T9N -11.13 A13R -16557.11 A13R -2363.51
V32K -13.97 L27R -16623.31 V32K -2487.62

S20G 226.36 PRAM -15592.91 PRAM 436.84
N14L 223.82 N21L -15768.26 N21L 473.79
N21L 193.17 S20K -15865.49 N14L 316.25
S20K 146.17 N14L -15967.28 S20G 106.47
PRAM 42.08 S20G -16044.40 S20K -1340.63

Table 3–3: Fibril stability results. Stability values of mutated fibrils. Mutations
above the horizontal line were proposed by FibrilMutant. Mutations below the line
were explored experimentally. The “Control” fibril is the non-mutated, naturally
occurring fibril. Units are in KCal/mol.
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while, the S20K mutant lengthened the lag phase by a factor of 18 and had a sig-

nificant effect on amyloid formation and S20G was observed to form amyloids. The

lower part of Table 3–3 shows the ΔG, ΔN , and ΔF̃ of these 4 mutations. We

observe that N14L and N21 have a higher ΔN and ΔF̃ than the control, suggesting

that these mutations destabilize their fibrils, and hence could explain why they do

not form experimentally. S20K has a ΔN that is also higher than the control, sug-

gesting that the nucleation product is less stable than the control’s oligomer, also

suggesting a longer nucleation phase as observed experimentally. The S20K ΔF̃ is

quite small, suggesting that this mutation might form unstable fibrils, as observed

experimentally. The S20G mutant was observed to form amyloids, and its corre-

sponding ΔF̃ also suggests this finding. It is key to note that Pramlintide ranked as

the highest unstable mutant explored experimentally with a ΔF̃ = 436.84, close in

instability to the N21L mutant.

Our results indicate that the mutant L12E causes the most instability to fibrils

and has a high ΔG, ΔN , and ΔF̃ . In fact, its ΔF̃ is more than twice as large as the

PRAM ΔF̃ , suggesting that it might inhibit fibrils altogether. The mutant A8E also

has twice as large a ΔF̃ than PRAM, but also has a slower more unstable nucleation

phase, indicating that it has a strong potential to inhibit fibril formation. In fact,

the results of running AmyloidMutants [99] on the A8E mutation suggest that this

point mutation destabilizes amylin fibrils, as shown in Fig. 3–3. The last competitive

mutant, G33E, also exhibits a higher ΔF̃ than Pramlintide and shows a high ΔN

value, also suggesting high instability in the nucleation phase and fibril elongation

phase. Together, these observations recommend a Glutamic acid mutation in Amylin
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to stop it from forming fibrils. Since Amylin contains no acidic residues, the addition

of this charged, acidic residue will enhance the formation of a quasi-infinite array that

destabilized the fibrils with unfavorable electrostatic interactions created along the

fibril length [72]. The other highlighted mutations in green in Table 3–3 also have

the potential to destabilize and inhibit fibrils, and their effect might be similar or

smaller than Pramlinitide. Fig. 3–2 confirms that the formation of fibrils is always

favorable and that aggregation of amyloid monomers contributes to stability. The

key thing to note is that some mutations produce fibrils that are less stable than

others, and some mutations might produce fibrils that have high activation energies

and will not form in physiological conditions. An excellent example is rat Amylin; it

does not form any fibrils in vivo, however, under the right environment conditions,

it has recently been reported to create long fibrils [141]. The results we report in

this study are important to design stronger alternative variants to the Pramlintide

antihyperglycemic drug with a minimalistic mutation approach for diabetes patients.

TANGO and AmyloidMutants are current computational tools exploring amy-

loid stability and analyzing the effect of secondary structure modifications on increas-

ing amyloidogenicity and protein aggregation. Such tools use coarse-grained models

that enable them to perform high-throughput screenings, but cannot achieve the ac-

curacy of higher resolution models [78]. The use of AmyloidMutants and TANGO

assisted in ranking candidate destabilizing mutations prior to running our computa-

tionally expensive dipolar solvent model to accurately assess the instability caused

in the mutated fibrils. Although, the TANGO and AmyloidMutants results did not

match well with our results, they did provide some valuable insight. TANGO results
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Figure 3–3: Top 3 mutation results from AmyloidMutants. Mutation A8E presents
a high destabilization fibril aggregation frequency.

in Table 3–4 suggest that the A8E mutation doubles the potential of alpha helices

compared to the Control and the L12E mutation lowers the amyloidogenicity by a

factor of 42 compared to the Control. AmyloidMutants also suggested that the A8E

mutation should destabilize fibrils.
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TANGO Mutation AGG AMYLO TURN HELIX BETA
Rank

1 A13R 17.4231 0.00229692 26.2032 46.2422 50.1558
2 F15P 17.4231 0.00483631 24.9158 50.5216 44.2985
3 F15D 18.6542 0.00494376 26.6371 18.5491 45.443
4 L16D 18.6542 5086.05 27.7912 26.473 55.8228
5 A25R 19.9643 11265.8 27.9887 38.6424 55.1474
6 I26R 19.9643 11265.8 27.6605 39.8376 43.7964
7 G24P 19.9643 11265.8 25.3545 38.6424 47.8267
8 L27R 19.9643 11265.8 27.6375 38.6424 47.5071
9 F23E 20.1387 11265.3 28.4565 42.7176 46.663
10 G24D 20.1387 11265.3 26.3146 40.1409 52.1159
11 V17E 27.6387 11303.4 27.8741 37.1066 42.0603
12 Q10H 36.4611 11348.7 27.7108 4.22761 52.4841
14 N21P 37.2516 11271.1 39.9629 41.3196 47.075
15 C2Q 37.3071 11266.1 27.5314 41.2988 46.1128
16 T6M 37.311 3600.44 26.6308 44.1818 41.6555
17 T4S 37.3528 12404.1 27.732 43.2968 47.3828
18 V32K 37.3697 11265.8 29.2945 41.3929 45.9617
19 Control 37.3874 11265.8 27.3615 41.4001 47.7778
20 N3H 37.4431 13070.4 27.169 37.9999 51.2714
21 A8E 37.4799 12261.2 26.8771 92.3333 53.2163
22 T9N 37.5127 12620.4 28.8211 33.0901 45.0847
24 L12E 37.6587 264.028 25.8306 23.7728 48.1199
25 C7T 37.6787 4923.45 26.176 26.4939 47.923
26 G33E 38.7927 11265.3 21.6298 41.3269 64.2312

13 S20G 36.959 11266.7 31.3738 41.3718 47.3916
23 S20K 37.5908 11268.8 24.84 39.3714 49.6538
27 N21L 42.4584 11266.8 20.5032 42.4313 61.4794
28 N14L 503.96 12778.5 24.8149 23.0706 51.5248

Table 3–4: TANGO results on amylin mutations. Mutations above the horizon-
tal line are destabilizing mutations proposed by FibrilMutant, and mutations below
the line have been suggested and tested experimentally. Mutations are ranked by
TANGO from lowest AGG potential to highest AGG potential. The TANGO algo-
rithm predicts cross-beta aggregation in proteins and populates structures according
to a Boltzmann distribution to 4 structural stats: beta-sheet aggregation, beta-turn,
alpha-helix, and alpha-helical aggregation. The results in this table describe the
following in respective order: percentage of aggregation, amyloidogenicity potential,
percentage of beta-turn conformation, percentage of alpha-helical conformation, and
percentage of beta-strand conformation
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Figure 3–4: Stability of the Amylin mutants in their native fold. Each bar represents
one mutated protein in native fold, where the energies are the free energy differences
between the mutant and the non-mutated Amylin.

(a) L12E (b) A8E (c) G33E

Figure 3–5: δrmsd and RMSF plots for mutants L12E, A8E, and G33E over a 5ns
simulation. The top figures display δrmsd graphs between each mutant and the na-
tive Amylin, and the bottom plots are the RMSF plots. δrmsd graphs show extremely
small modifications in structure � 1 Å. RMSF plots also show very minimal struc-
tural variance at the amino acid mutation sites.
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3.5.4 Maintaining native structure & function

Introducing a mutation to the sequence of Amylin might cause a change in its

structure and force it to fold into a different shape, affecting its normal function. For

this reason, we have tested the effect of the destabilizing mutations on the native

structure of Amylin. The free energies of mutated Amylin in Fig. 3–4 show that the

mutations result in energy states close to the native control, rat Amylin, and pram-

lintide. Fig. 3–4 suggests that these mutations do not make native Amylin unstable.

To further verify this, we ran short MD simulations on the top 3 native mutants

(L12E, A8E, and G33E) to test any structural turbulence or major energetic imbal-

ances as a result of the point wise substitution. We observed very slight deviations in

δrmsd, stable RMSF in mutated regions and smooth energy trajectories, suggesting a

preservation in shape and function. Fig. 3–5 shows the δrmsd and RMSF results for

best mutants, L12E, A8E, and G33E.

3.6 Conclusion

The process of amyloid protein formation and aggregation is sensitive to amino

acid sequence point mutations. We discuss in this manuscript how altering the ge-

netic code of these amyloid proteins has been shown to affect fibril propagation,

dynamics, growth, stability, and infectivity. Certain regions in amyloid proteins con-

tribute to fibril structural stability, compactness, and insolubility. Altering some

amino acids that make up these regions, such as the amino acids that are involved

in creating a hydrophobic core, can create energy perturbations and imbalances that

weaken an individual amyloid protein monomer and subsequently carry on the effect
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to weaken every amyloid monomer on the fibril, resulting in an accumulated fibril

destabilization effect. Tackling the problem from this perspective has enabled us

to computationally perform an amino acid mutation analysis on Amylin to unravel

modifications that potentially destabilize fibrils, yet are restricted to conserve the

native fold of the protein. Addressing this multi-objective problem can be generally

useful in suggesting novel therapeutic agents or improving existing treatments for

cases where drugs have to be administered to patients. In our case, addressing this

problem has opened up discussions on the 3 potential efficacy improvements in the

Pramlintide drug for Type I Diabetes.
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Complete characterization of the mutation landscape reveals the effect
on amylin stability and amyloidogenicity

4.1 Preface

We have presented in the previous two chapters the importance of amino acid

mutations in affecting amyloid structure and toxicity. Researchers have been trying

to deduce which mutations, out of the set of all possible mutations, affect the stability

of amyloids. Since every residue position of a protein can be mutated into 19 different

possibilities, this results in a mutation space, M , given by,

M =

(
n

k

)
∗ 19k (4.1)

where n is the number of residues in a protein and k is the number of residues that

we wish to mutate. Even for low values of k, the mutation space is infeasible to

explore experimentally.

In the previous chapter, we relied on properties of amyloid structures to deduce

constructive mutations. We used a heuristic method to return a small set of mu-

tations that potentially lower the amyloidogenic of amylin. We generated complete

fibrils for the mutations and quantified their nucleation and elongation.
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In this chapter, we explore the mutational landscape of amylin for k = 1 and

assess the effect of mutations on amylin’s stability and potential to form amyloids.

Computing the free energies of amylin mutant structures for k = 1 was an expen-

sive brute-force task and exploring mutational landscapes of k > 1 is improvident.

However, from the results of the mutational landscape for k = 1, we constructed a

way to quickly estimate the stability and amyloidogenicity effect of multiple-point

mutations for k > 1. In this work, we restrict our search to k = 3 mutations to limit

the compounding error on the estimation of stability and amyloidogenicity values.

This opened up the possibility to efficiently explore larger mutational landscapes

and significantly reduced the search space for experimentalists. According to our

results, the leading Pramlintide drug in diabetes can be significantly improved with

the selection of different amino acid mutations that engineer more stability and less

amyloidogenicity.

The remaining content of this chapter has been taken from a manuscript that was

submitted for publication:

• M. R. Smaoui and J. Waldispühl. “Complete characterization of the mutation

landscape reveals the effect on amylin stability and amyloidogenicity”. Sub-

mitted for review in Sept 2014.

4.2 Abstract

Type II diabetes is characterized by insulin resistance and a failure of the pan-

creas to supply enough insulin. This failure is believed to be partially aggravated

by the emergence of toxic amylin protein deposits in the extracellular space of the
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pancreas β-cells. Amylin in normal form is a regulatory hormone that is co-secreted

with insulin, however, it has been observed to misfold into toxic structures. Pram-

lintide, an FDA approved injectable amylin analog mutated at positions 25, 28 and

29 was therefore developed to create a more stable, soluble, less-aggregating, and

equipotent peptide that is used as an adjunctive therapy for diabetes. Although

Pramlintide has shown some therapeutic benefits over amylin, it is far from ideal.

Researchers have been attempting to optimize this drug by further chemically mod-

ifying its amino acids to generate better therapeutic amylin analogs. In this work,

we assist the finding of optimal analogs by computationally revealing the mutational

landscape of amylin. We computed the structure energies of all the possible single-

point mutations on amylin and studied the effect they have on protein stability and

amyloidogenicity. Each of the 37 amylin residues was mutated into the 19 canon-

ical amino acids and an energy function computing the Lennard-Jones, Coulomb

and Solvation energy was used to analyze changes in stability. The mutation land-

scape enabled us to identify amylin’s conserved stable regions, residues that can be

tweaked to further stabilize structure, regions that are susceptible to mutations, and

mutations that are amyloidogenic. We used the data of the single-point mutational

landscape to generate estimations for higher-order multiple-point mutational land-

scapes and discovered millions of 3-point mutations that are more stable and less

amyloidogenic than Pramlintide. The landscapes provided an explanation for the

effect of the S20G and Q10R mutations on the onset of diabetes of the Chinese and

Maori populations, respectively.
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4.3 Author Summary

Amylin is a crucial protein in balancing the blood glucose levels in the human

body. When the pancreas undergoes significant, prolonged pressure to produce large

quantities of this molecule, amylin starts to misfold into toxic structures that kill

cells in the pancreas. Researchers have tried to stop this phenomenon by creating

amylin analogs that have lower tendencies to misfold. So far, the FDA approved

an injectable amylin analog substance, called Pramlintide, engineered with three se-

quence mutations that proved to lower the potential of misfolding. It is very likely

that there exist different mutations that produce a better analog than Pramlintide.

However, because there are far more combinations of possible mutations to experi-

mentally test for than there are atoms in the universe, proper testing is not feasible.

Instead, we can computationally explore the effect of the 740 point-mutations on

amylin’s stability and likelihood to misfold. Examining these mutations enabled us

to identify the regions in amylin that are prone to misfold and regions that can be

mutated to improve stability. From this analysis, we were able to efficiently search

through all the 62 million combinations of 3-point mutations and find many analogs

that are potentially more advantageous than Pramlintide.

4.4 Introduction

Type II diabetes affects approximately 333 million people around the world and

is likely to increase by 50.7% over the next 20 years [142]. It is characterized by

insulin resistance [7, 8] and the failure of the pancreatic beta cells to supply required

levels of insulin [9]. The failure to secrete enough insulin is caused by beta cell
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dysfunction and reduced beta cell mass [10, 11, 12]. Many studies have found an

association between this failure to produce insulin and the emergence of islet amyloid

protein deposits in humans [13, 14, 15], in non-human primates [16, 17], and cats

[18]. Interest in studying the potential pathogenic role of islet amyloid deposits in

type II diabetes has been incentivized by experiments reporting that mice transgenic

for human islet amyloid develop hyperglycemia [19, 20, 21], a signature condition for

type II diabetes.

Islet amyloid polypeptide, also widely known as amylin [143], is a 37 amino

acid peptide that is co-stored and co-secreted with insulin in secretory granules in

beta cells [144, 145]. Amylin’s functions include modulating gastric emptying [146],

inhibiting glucagon to prevent postprandial spikes in blood glucose levels [147], and

inducing satiety leading to decreased food intake and weight loss [148, 149]. Together,

amylin, insulin, and glucagon play a crucial role in maintaining glucose homeostasis

[53]. However, amylin has been observed to counterbalance the stability of beta cells

by misfolding into beta-sheet rich amyloid deposits. The peptide has been observed

to form oligomer and fibril deposits in the intra and extra-cellular compartments

of beta cells [54, 55]. The extreme insolubility of these deposits have hindered our

understanding of how they form, what they are made of, and how they bind to differ-

ent molecules. Although causative factors for the conversion of the normally soluble

native amylin peptide into insoluble, aggregating amyloid fibrils remain largely ob-

scure, these amyloid depositions are among the most common pathological features

of type II diabetes arising in almost all diabetic subjects [56, 57].
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Although the function and primary shape of native amylin have been well con-

served [150], there exist some amino acid mutations across species that influence

amyloid formation. As mentioned earlier, diabetes associated amyloid is observed

in cats and in non-human primates, but not in rodents. Rodents and mice exhibit

six point mutations in their amylin peptide that inhibit fibril formation [74, 75, 76].

Nonetheless, amyloid fibrils have been observed to form in transgenic mice producing

human amylin [151] suggesting that point-mutations might alter the energy barrier

required for amylin to misfold. The misfolding is believed to happen inside granules

as they transport insulin and amylin from the cell cytoplasm to the membrane [152].

Point-wise mutations have also been observed in humans. The S20G mutation of

the amylin gene in Japanese type II diabetes patients accounted for 4.1% of all cases

and increased the risks of early and severe onset of type II diabetes [69]. Similarly, the

S20G mutation has also been found to increase the diabetes risk of Chinese patients

[153]. Moreover, the Q10R mutation of the amylin gene in the New Zealand Maori

population is believed to explain the high susceptibility and prevalence of diabetes

in Maori patients [73].

Extensive amyloid deposition has been correlated with reduced islet function,

the loss of beta cell mass, and the need for insulin injection therapy in humans.

Although the exact relationship of amylin to the onset and progression of type II

diabetes is unknown, hindering the misfolding of amylin and reducing the forma-

tion of amyloids and fibrils might prolong the onset and severity of type II diabetes

[152]. Pramlintide, an FDA approved injectable amylin analog administered subcuta-

neously at mealtimes, was therefore developed by performing three-point mutations
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on amylin replacing amino acids 25, 28, and 29 with prolines to create a stable, sol-

uble, non-aggregating, and equipotent peptide that is used as an adjunctive therapy

for type I and type II diabetes [154, 155].

Although Pramlintide has shown some therapeutic benefits over amylin, its phar-

macokinetic properties are not ideal. Because it precipitates above a pH of 5.5, pa-

tients need to inject it separately from insulin. Pramlinitide has a half life of only

45 minutes, requiring a daily injection three times [156, 157]. For these reasons,

researchers have been attempting to optimize this drug by further chemically mod-

ifying its amino acids and generating several other stable amylin analogs to offer a

more appealing therapeutic agent [158].

In this work, we aim to reveal the mutational landscape of amylin to assist in

the further development of analogs for type I and type II diabetes. We compute all

the possible 740 single-point mutations on amylin and study the effect they have on

protein stability and amyloidogenicity. Each of the 37 amylin residues is mutated

into the 19 canonical amino acids and an energy function computing the Lennard-

Jones, Coulomb and Solvation energy is used to analyze and detect changes in energy.

The mutational landscape enabled us to identify amylin’s conserved stable regions,

regions that are susceptible to mutations, and mutations that are amyloidogenic. We

used the data of the single-point mutational landscape to generate estimations for

higher-order multiple-point mutational landscapes and efficiently explored millions

of 3-point mutated analogs that are more stable and less amyloidogenic than Pram-

lintide.
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4.5 Methods

In this section we present, MAPOR, the tool we built to generate the muta-

tional landscape of proteins. We will outline the algorithm it uses to measure the

stability and amyloidogenicity of each structure along trajectories in the mutational

landscape. MAPOR can be downloaded from http://amyloid.cs.mcgill.ca/

4.5.1 Computing the landscape

MAPOR (MutAtion landscaPe generatOR) is a tool that analyzes the muta-

tional landscape of proteins by assessing changes in energy and stability. Its ba-

sic procedure is outlined in Algorithm 1 of Table 4–1. Given a protein’s complete

PDB structures in amyloid and non-amyloid form, MAPOR performs all possible

mutations on the amino acid backbone of the protein. With each mutation, the

Lennard-Jones, Coulomb, and Solvation energies are computed and compared to the

non-mutant energies as shown in Eqs. 4.2-4.4.
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Require: StructureNative, StructureAmyloid, SEQUENCE
Ensure: StructureNative.Length == StructureAmyloid.Length ==
SEQUENCE.Length
MutationList← List(“ARNDCQEGHILKMFPSTWYV”)
ResultsNative ← [ ]
ResultsAmyloid ← [ ]
for x in [1, 2, ..., SEQUENCE.Length] do
for m in MutationList do
MutatedSequence ← mutateSequence(position ← x, mutation ← m,
SEQUENCE)
MutantNative ← createMutatedStructure(MutatedSequence,
StructureNative)
CoulombE ← calculateCoulombEnergy(MutantNative)
LJE ← calculateLJEnergy(MutantNative)
SolvationE ← calculateSolvationEnergy(MutantNative)
ResultsNative.add(MutatedSequence, CoulombE, LJE, SolvationE)
MutantAmyloid ← createMutatedStructure(MutatedSequence,
StructureAmyloid)
CoulombE ← calculateCoulombEnergy(MutantAmyloid)
LJE ← calculateLJEnergy(MutantAmyloid)
SolvationE ← calculateSolvationEnergy(MutantAmyloid)
ResultsAmyloid.add(MutatedSequence, CoulombE, LJE, SolvationE)

end for
end for
return ResultsNative, ResultsAmyloid

Table 4–1: Generating the mutational and amyloidogenic landscapes of amylin
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E = Solvation+ LJ + Coulomb (4.2)

ΔE = E − E0 (4.3)

where E0 is the energy of the native non-mutant protein and E is the energy of a

mutant structure, and

ΔE ′ = E ′ − E ′0 (4.4)

where E ′0 is the energy of the amyloid non-mutant protein and E ′ is the energy of a

mutant amyloid structure. Together, ΔE and ΔE ′ measure the difference in energy

caused by a mutation in both the native and amyloid forms, respectively. Changes

in energy correlate to changes in stability. Positive ΔE values correlate to a decrease

in stability and negative ΔE values correlate to an increase in stability. We measure

the difference in energy between amyloid and native structures by computing ΔG in

Eq. 4.5.

ΔG = E ′ − E. (4.5)

ΔG is the minimum energy required to change the protein from its native to amyloid

form. It is estimated that the larger the ΔG, the larger the energy barrier between

the native and amyloid structures. In this work, we correlate amyloidogenicity with

ΔG values. Mutations that significantly increase ΔG values lower amyloidogenicity
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and mutations that decrease ΔG values make it potentially easier for amylin to

misfold into its amyloid form.

The landscape returned by MAPOR is 3-dimensional. The 20 possible amino

acid mutations make up 1 dimension, the amino acid length of the protein being stud-

ied makes up the second dimension, and the energy values of each mutated structure

make up the third dimension.

4.5.2 Mutant Structures

We performed 19 mutations for every amino acid in amylin. Mutations were

constructed with SCWRL4 [133], a tool to determine the side-chain conformations

to a backbone structure. For each generated mutant structure, SCWRL took as

input the original native amylin protein (PDBID 2kb8) and the new mutated amino

acid sequence to fit onto the structure. We then performed energy minimization

on the mutated structures to remove any steric clashes due to mutations prior to

calculating the LJ, Coulomb, and Solvation energies. We repeated the process for

the amyloid mutant forms of amylin [34].

4.5.3 Calculating structure energy

We perform Energy Minimization (EM) on all mutant structures to reduce any

steric clashes that might occur in the amino acid mutation process. After this process

of relaxation, we resort to our previous work to quickly calculate the Free energy of

proteins [132] computed by Eq. 4.2. The Solvation energy term in Eq. 4.2 is pro-

duced using a fast and detailed dipolar water model that solves the dipolar nonlinear
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Poisson-Boltzmann-Langevin equation. The three energy terms in Eq. 4.2 are used

to describe the stability of molecules. Native amylin mutants that have a ΔE that

is negative are more stable that amylin itself, and amyloid mutants that have a ΔE ′

that is positive possess greater instability than amylin’s amyloid molecule. Solvation

energy was precisely calculated using AquaSol [89] with the following setup: atomic

charges and radii assigned with PDB2PQR using CHARMM force field at neutral

pH. A grid or 257 points per edge spaced by 1 Å, a temperature of 300K, and a sol-

vent accessible surface with an Rprobe of 1.4 Å. All hydrogen-bonds were optimized.

We used a trilinear interpolation protocol for projection of fixed charges on the grid,

a lattice grid size for the solvent: a = 2.8 Å, solvent made of dipoles of moment p0 =

3.00D at a concentration of Cdip = 55M. No salt was added to the solution and small

ions were used to equilibrate the system when needed. The electrostatic potential

was set to zero at the boundaries, and the stopping criteria for residual was sent to:

1.10−6 (when possible).

4.5.4 Molecular Dynamics and Energy Minimization

We used the GROMACS 4.5 [90] molecular simulation package to run molecular

dynamics (MD) and energy minimization (EM) simulations. Our mutant molecules

were solvated in a cubic box (with a minimum distance of 35 Å from any edge of the

box to any atom) and neutralized with chloride ions and modeled using the GRO-

MOS96 53a6 force field along with the SPC water model. We used a cutoff of 10 Å for

van der Waals and short range electrostatic interactions, and calculated long range

electrostatic interactions using a particle mesh Ewald sum [117, 118]. Simulations
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were prepared for a full MD run in both isothermal-isobaric (100 ps) and canoni-

cal equilibration (100 ps) ensembles. Temperature and pressure were controlled at

300 K and 1 bar using the velocity rescaling thermostat and the Parrinello-Rahman

barostat, respectively. A linear constraint solver was used to keep all bonds at their

equilibrium length. One million time steps were used with an integration time step

of 2 fs to assess any potential turbulence introduced into the molecules by mutations.

The system’s coordinates were saved every 10 ps for further analysis.

4.5.5 Assessing structural deviations

After a mutant structure is built and relaxed with EM, we assess the struc-

tural effect of mutations by calculating perturbations in amino acid positions using

RMSD and RMSF graphs. RMSD measures the root mean-square deviations, in

angstroms, of the Cα atom positions in a protein’s residues over a simulation run,

whereas the RMSF measures the root mean square fluctuations, a measure of the

deviation between the position of a particle i over a simulation run given by,

RMSF =
1

T

T∑
tj=1

(xi(tj)− x̃i)
2

where T is the total simulation time, and x̃i is the reference position of particle i. Low

RMSF at a particular mutation site suggests the absence of local residual instability.

4.5.6 Calculating energies for multiple-point mutations

Algorithm 2 of Table 4–2 explains in detail the procedure for calculating ap-

proximations of ΔE and ΔG given by ΔẼ and ΔG̃, respectively, for multiple-point
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mutations. Given a sequence of length k, the possible combination of n-point amino

acid mutations is (
k

n

)
∗ 20n. (4.6)

Starting with the ΔE and ΔG tables generated by MAPOR using Algorithm 1 from

Table 4–1 for the single-point mutations, we compute the estimates ΔẼ and ΔG̃ for

n-point mutations by Eqs. 4.7-4.9,

ΔẼ =
n∑

i=1

ΔE(mi, pi) (4.7)

ΔẼ ′ =
n∑

i=1

ΔE ′(mi, pi) (4.8)

ΔG̃ = ΔG0 −ΔẼ +ΔẼ ′ (4.9)

where mi is the mutation number i, xi, is the residue position that the mutation

mi should take effect on, n is the total number of desired mutations and the dimen-

sion of the landscape, and ΔG0 is the ΔG value for native with no mutations. The

estimates are calculated directly by summing values from the ΔE, ΔE ′, and ΔG

tables and without running the MAPOR simulations. We found the estimates to

be close to values returned by simulation runs. We hypothesize that the estimates

deviate slightly from real values because they do not take into account the pairwise

electrostatic and coulomb effects of the mutations with one another. Nevertheless,

they provide good estimates and allow us to compute values for millions of mutations
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efficiently.

Require: ResultsNative, ResultsAmyloid, E0, E
′
0,ΔG0, SEQUENCE

MutationList← List(“ARNDCQEGHILKMFPSTWYV”)
Table ΔE ← ResultsNative − E0 // for each element in Results
Table ΔE ′ ← ResultsAmyloid − E ′0 // for each element in Results
Results← [ ]
Tuples Mutations← CHOOSE(n, SEQUENCE.Length)
for all (x1, x2, ..., xn) tuples in Mutations do
for m1 in MutationList do
for m2 in MutationList do
...
for mn in MutationList do
MSeq ← mutateSequence(positions ← (x1, x2, ..., xn), mutations ←
(m1,m2, ...,mn), SEQUENCE)

ΔẼ ←
n∑

i=1

ΔE(mi, xi)

ΔẼ ′ ←
n∑

i=1

ΔE ′(mi, xi)

ΔG̃← ΔG−ΔẼ +ΔẼ ′

Results.add(MSeq,ΔẼ,ΔG̃, (x1, x2, ..., xn), (m1,m2, ...,mn))
end for
...

end for
end for

end for
Results.SORT (Key ← 3) //Sorts on third element descending
return Results

Table 4–2: Generating ΔẼ and ΔG̃ for n-point mutations
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4.6 Results & Discussion

We applied Algorithm 1 in Table 4–1 to the protein amylin (PDBID 2kb8) and

generated its mutational landscape consisting of 740 single-point mutations as shown

in Fig. 4–1(a). Each amino acid position in the 37 residues of amylin was mutated

into the 19 different canonical amino acids. For each mutation, a separate amylin

mutant structure was creates and its Coulomb, Lennard-Jones, and Solvation energies

were calculated as defined in the Methods section. The result of the simulation runs

is the 3-dimensional plot in Fig. 4–1(a). The 20 possible amino acid mutations make

up 1 dimension, the amino acid length of the protein being studied makes up the

second dimension, and the energy values of each mutated structure make up the

third dimension. The same procedure was repeated for the amyloid form of amylin.

We used the structure given by Wiltzius et al. [34] as amylin’s amyloid form. The

difference in energies between the amyloid landscape and the native (non-amyloid)

landscape gave us values for ΔG and are plotted in Fig. 4–1(b).

The mutational landscape of amylin’s native structure exhibits several features.

First, it contains rugged regions that explain the sensitivity of amylin to point muta-

tions. Second, the landscape reveals amylin’s unstable residue positions and unstable

regions. These unstable single residues and regions return high energy values com-

pared to the non-mutant amylin. Third, it identifies amino acids mutations that

have the potential to further stabilize amylin. Fourth, it pinpoints several mutations

across the landscape that have a high potential to destabilize amylin. Finally, it de-

tails a residue segment in amylin that is energetically conserved against destabilizing
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(a) Mutational stability landscape for native amylin

(b) Amyloidogenicity landscape ΔG

Figure 4–1: Stability and amyloidogenicity mutational landscapes. The energy values
represent the free energy of structures given by Eq. 1 and are in kcal/mol. The
energies of all 740 mutant native 2kb8 structures are shown in (a). The energy
difference between native and amyloid structures corresponding to the same mutation
are given by ΔG and shown in (b). 107
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mutation effects.

4.6.1 Amyloidogenicity mutational landscape analysis

The change in energy between mutant amyloid structures compared to the non-

mutant amyloid structure is represented by ΔE ′ as outlined in Eq. 4.4. Although

ΔE ′ values tell us how mutations affect the stability of amylin’s amyloid form, it

is more insightful to consider the change in energy between the native mutants and

the amyloid mutant forms given by ΔG from Eq. 4.5 and plotted in Fig. 4–1(b).

Although ΔG values are not correlated with the actual energy barriers between

structures, ΔG is the minimum energy required to transform a native structure

into its amyloid form. The greater this lowerbound is, the bigger the gap between

structures and the lower the amyloidogenicity.

Fig. 4–2(b) presents the projection of ΔG values onto a 2-dimensional graph.

Light green values represent large energy gaps between a mutant’s amyloid and na-

tive structures, the intense red colored boxes represent very low ΔG values, and the

spectrum between green and red represents the energy values in between. Generating

this amyloidogenicity mutational landscape allows us to easily identify point muta-

tions that lower the gap in energy between native and amyloid form, and equally

distinguishes point mutations that increase the gap in energy between native and

amyloid form and decrease amyloidogenicity.
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(a) 2D projection of mutational landscape stability for native amylin

(b) Amyloidogenicity landscape 2D projection

Figure 4–2: Projections of mutational landscapes. (a) The projection of Fig. 4–1(a)
onto a 2-dimensional plane. The x-axis is the amino acid positions of amylin, the
y-axis are the 20 possible amino acid mutations, and the color intensity represents
the energy of the structure. Light green are the most stable mutants while bright
red are the most unstable. (b) The projection of Fig. 4–1(b). List green are mutants
with highest ΔG, while bright red are mutants with the smallest ΔG.
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(a) ΔE variance across residues (b) ΔE′ variance across residues

(c) Distribution of ΔE values (d) Distribution of ΔG values

(e) Histogram of ΔE values (f) Histogram of ΔG values

Figure 4–3: Stability analysis of mutations. Figs. (a) and (b) show the variance in
energy across amylin residues for native and amyloid mutants, respectively. Close
to 20 percent of mutations will stabilize amylin in (c) and most mutations show a
ΔG ≈ 175 Kcal/mol. Figs. (e) and (f) outline the distribution of the values in (c)
and (d), respectively.
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4.6.2 Stable and unstable regions in native amylin

To further dissect the mutational landscape and identify key mutations, Fig.

4–3(a) presents the maximum and minimum energy value perturbations caused by

mutations for every residue position in amylin. The average plot is a measure of

the stability susceptibility of every residue and is essentially the mean of energies

produced by the 19 mutations on a single position. The stable residue positions

that are immune to destabilizing mutational effects are those with an average ΔE

value close to 0 and min and max values relatively close to one another. We could

see from Fig. 4–2(a) and Fig. 4–3(a) that these positions constitute the segment

with positions 12-34. The local maxima on the max graph in Fig. 4–3(a) show the

positions that can be altered to significantly destabilize amylin and they represent

the following mutations: K1I, T4P, Q10Y, R11L, N14V, V17F, F23G, G24R, S28Y,

S34P, T36Y and Y37V. Similarly, we can see that the following mutations drastically

stabilize amylin: *(5-25)K, I26D, L27E, S29E, T30D, N31E, G32D, and N35D. We

highlight these residue positions on amylin’s structure in Figs. 4–4(a) and 4–4(b).

Fig. 4–3(c) shows the percentage of mutations that create amyin mutant struc-

tures below a certain ΔE value. We observe that approximately 60% of all single-

point mutations destabilize amylin, while less than 10% of mutations show a drastic

improvement in stability (ΔE ≤ −50 Kcal/mol). Fig. 4–3(e) is a histogram of the

mutational landscape showing that most mutations fall in the ΔE bins between -15

and 77 Kcal/mol.
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(a) Unstable residues (b) Stable residues

(c) Most Amyloidogenic residues (d) Most Amyloidogenic residues

(e) Least amyloidogenic residues (f) Least amyloidogenic residues

Figure 4–4: Residues that contribute to stability and amyloidogenicity. (a) The red
amino acid positions (1, 4, 10, 11, 14, 17, 24, 28, and 34) can be mutated to cause
the most instability. (b) The green positions that are most stable. (c) Residues (1,
6, 8, 10, 14, 16, 24, 32, 34, and 37) can be mutated to produce the smallest ΔG
values. (d) The same residues in (c) but colored on the amyloid form. (e) The green
colored positions (2, 3, 4, 5, 6, 8, 13, 18, 24, 26, and 36) can be mutated to produce
the highest ΔG values and (f) shows the same residues but on the amyloid form of
amylin.
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4.6.3 Amyloidogenic regions in amylin

Similar to Fig. 4–3(a), Fig. 4–3(b) plots the energy value perturbations caused

by mutations for every residue position in the amyloid form. We refer to these

values as ΔE ′ as defined in Eq. 4.8. For each residue position, the plot outlines the

minimum, maximum, and average energy perturbations caused by the 19 mutations.

Some of the positions that show resistance to destabilization include positions 10,

12, 31, 33, and 35. Fig. 4–3(d) shows the percentage of mutations that produce a

ΔG lower than a value y Kcal/mol. According to the histogram in Fig. 4–3(f), most

mutations in the amyloidogenic landscape result in creating a minimum ΔG energy

barrier between 86 and 230 Kcal/mol. However, a few mutations result in negative

ΔGs, suggesting that the misfolding process can possibility undergo an exothermic

reaction to produce amyloid oligomers and fibrils spontaneously.

The amyloidogenic landscape in Fig. 4–2(b) does not seem to be as smooth as

the landscape in Fig. 4–2(a). It is very rugged and contains pockets of stable and

unstable regions, suggesting a strong sensitivity to point mutations. A mutation into

a D or an E in the region 26-36 seems to lower amyloidogenicity yet increase it in the

region 1-11. Similarly, a mutation into a K in positions 5-16 lowers amyloidogenicity

while increasing it in the region 27-36. Moreover, any mutation in positions 1, 11, or

37 increases amyloidogenicity and the probability of the native structure to misfold.

4.6.4 Evolutionary mutations

The S20G mutation has been observed to increase the risk of early and severe

onset of type II diabetes in Chinese and Japanese patients [69, 153]. According to
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1-------9--------18-------27--------37 ΔE ΔẼ ΔE′ ΔẼ′ ΔG ΔG̃
Human KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY 167.6
Monkey -----------------R------T---------D-- -125.1 -121.8 -30.3 -7.5 262.5 281.9
Cat ----------------IR----L-----P-------- -12.0 -11.2 0.2 39.0 179.8 217.8
Dog -----------------RT---L-----P-------- -6.8 -8.6 -8.2 31.5 166.2 207.8
Rat -----------------R----L-PV-PP-------- 3.9 18.8 -144.0 68.1 19.8 216.9
Mouse -----------------R----L-PV-PP-------- 3.9 18.8 -144.0 68.1 19.8 216.9
Hamster -------------------N-L-PV-P---------- 40.7 41.3 180.0 -67.3 306.9 59.0
G-pig -----------T-----R--H-L-A-LP-D------- -128.7 -129.3 11.1 54.7 307.4 351.5
Degu -----------T-----R--H-L-A-PP-K------- -82.5 -57.6 -89.6 15.3 160.5 240.6
Rabbit --------I--------F-PPS 29.0 33.2 174.3 85.7 312.9 220.1
Hare --------I--------F-PP- 26.6 29.1 165.7 174.0 306.7 312.5
Cougar -*----*---------IRSS*------* -38.9 -27.5 12.3 10.2 218.8 205.2
Pig -M------H-----DR-R-L:-T-F-P-K--- 40.3 27.0 -102.5 -163.1 24.9 -22.5
Pram ------------------------P--PP-------- 39.5 51.2 35.0 46.7 163.1 163.1

Table 4–3: Evolutionary amylin mutations in species. Amylin sequence alignment
across 13 species. Amino acids shared with the human sequence are indicated with a
(-), (*) are amino acids that are unknown, and (:) in the Pig sequence is a missing
residue. ΔG̃, ΔẼ ′, and ΔẼ estimates are computed using Eqs. 6-8.

the mutation and amyloidogenic landscapes, the S20G mutation has a negative ΔG

value (-55.8 Kcal/mol) and a slight ΔE instability of value (5.4 Kcal/mol). The

negative ΔG could explain the emergence of amyloids and early onset of diabetes for

these patients. The Q10R mutation observed in the New Zealand Maori population

[73] also exhibits a negative ΔG value of -11.3 Kcal/mol, yet a more stable ΔE value

of -40.6 Kcal/mol. The S20K experimentally explored mutation lengthened the lag

phase by a factor of 18 before misfolding into amyloids [72]. In our results, the

S20K mutation improves the stability of native amylin with a ΔE = -61.1 Kcal/mol

and significantly lowers the ΔE ′ resulting in a negative, highly amyloidogenic ΔG =

-125.7 Kcal/mol.

In Table 4–3, we calculate the ΔE, ΔE ′, and ΔG values for the mutant amylin

structures of twelve species and for the recently administered diabetes drug Pram-

lintide. We find that regardless of the number of point mutations, the ΔE value
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is small and between -128.7 and 40.7 Kcal/mol. In addition, according to our gen-

erated mutational landscape, each single-point mutation in these species does not

individually destabilize the native structure. In fact, many of the mutations individ-

ually contribute to the increase of ΔG, suggesting that the evolutionary mutations

do not prefer destabilizing the native form of amylin. The ΔG values range from

20 to 312 Kcal/mol. Although some of these species produce amyloids and some do

not, it is difficult to explain the phenomenon of amyloid aggregation without accu-

rately estimating the energy barrier and required activation energy between native

and amyloid forms. This is specially evident for the ΔGs of Pramlintide and the Rat

and Mouse which supposedly do not form fibrils in normal physiological conditions.

It is intriguing to note that while computing the mutational landscape for multi-

point mutations is extremely expensive in time and resources, we found that calcu-

lating multi-point mutations by using sums of single-point mutations provides a

reasonable estimate for stability in the various species. We defined estimates of ΔE,

ΔE ′, and ΔG as ΔẼ, ΔẼ ′, and ΔG̃, respectively, as shown in Eqs. 4.7-4.9. We com-

puted the values of the estimates for the twelve species in Table 4–3 and observed

very close results to the real values. We believe the small discrepancy in values are a

result of not taking into account the long-range interactions caused by multiple-point

mutations on the entire structure. Nevertheless, this method allowed us to explore

the landscapes of multi-point mutations and estimate the energy results of millions

of mutations efficiently.
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4.6.5 Efficient estimation of stability and amyloidogenicity in multiple-
point mutation landscapes

Working with the assumption that ΔẼ and ΔG̃ values are good estimates for

stability and amyloidogenicity in multiple-point mutation landscapes, we embarked

on exploring the 3-point mutational landscape of amylin and assessing whether a

more stable and less amyloidogenic structure than Pramlintide can be found. Such

structure can potentially be a better therapeutic agent than Pramlintide, producing

less amyloid fibrils and affecting beta cells less. We restrict our search to 3-point

mutations to limit the compounding error on the estimation of ΔẼ and ΔG̃ values.

Using Eq. 4.6 and Algorithm 2 of Table 4–2, we generated the ΔẼ and ΔG̃ of all

62,160,000 distinct 3-point mutations in amylin and sorted them by descending ΔG̃

and ΔẼ values. This returned the mutants with the most stability in native form and

the highest minimum required activation energy for misfolding into amyloid form.

Using this method Pramlintide ranked in the top 32% of all mutations in stability

and amyloidogenicity. There were millions of other candidate analogs that showed

better stability. We report the best 20 results in Table 4–4 and the top 1000 results

in Table S1. Algorithm 2 of Table 4–2 can be used to explore the n-point mutational

landscape of any protein. However, for the reason of finding the most parsimonious

mutations in amylin and reducing the complexity of the search space (see Eq. 4.6),

we capped our search at 3-point mutations.
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1-------9--------18-------27--------37 ΔẼ ΔG̃ Mutations
KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY

----K--R---------------I------------- -254.5 681.2 A5K A8R G24I

----KR-----------------I------------- -215.7 670.8 A5K T6R G24I

----K------------------I-F----------- -154.3 667.1 A5K G24I I26F

----KR-R----------------------------- -333.5 658.6 A5K T6R A8R

----K--R-----------------F----------- -272.1 654.9 A5K A8R I26F

----K--R---------------Q------------- -275.4 653.9 A5K A8R G24Q

-----R-R---------------I------------- -172.5 653.4 T6R A8R G24I

-------R---------------I-F----------- -111.2 649.7 A8R G24I I26F

----KR-------------------F----------- -233.3 644.5 A5K T6R I26F

----KR-----------------Q------------- -236.6 643.5 A5K T6R G24Q

----K-------I----------I------------- -137.4 643.4 A5K A13I G24I

----K--M---------------I------------- -146.1 641.6 A5K A8M G24I

----K------------------Q-F----------- -175.3 639.8 A5K G24Q I26F

-----R-----------------I-F----------- -72.4 639.3 T6R G24I I26F

----K------------------I-----------D- -295.0 639.0 A5K G24I T36D

----K------------Y-----I------------- -125.7 638.0 A5K H18Y G24I

----K------------------I-----------E- -247.4 636.1 A5K G24I T36E

--Y-K------------------I------------- -118.3 636.0 N3Y A5K G24I

----K--R----I------------------------ -255.3 631.3 A5K A8R A13I

-----R-R-----------------F----------- -190.2 627.1 T6R A8R I26F

Table 4–4: Top 20 results for amylin 3-point mutations. Pramlintide (3 mutations
of 25P, 28P, and 29P) ranked no. 19,918,936 out of all the 62,160,000 at the top
32% of all 3-point mutations for amylin stability and amyloidogenicity. The 3-point
mutation landscape incorporates the 1-point and 2-point mutational landscapes in
its results.
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4.6.6 Mutant (A5K, A8R, G24I) is stable and less amyloidogenic

The top result in the 3-point mutational landscape of amylin has a ΔẼ of -254.5

and a ΔG̃ of 681.2 Kcal/mol, suggesting a super stable native structure and an ex-

tremely large gap between native and amyloid forms. The large gap could possibly

indicate the high instability of the amyloid form. We performed a complete Molecu-

lar Dynamics simulation on both native and amyloid structures of this mutant and

found that indeed the native structure is very stable while the amyloid structure is

unstable to a point that it unfolds out of its beta-structure and starts to form helices

again. Figs. 4–5(a) and 4–5(b) show the RMSD results for the native and amyloid

forms. The native RMSD is low while the amyloid is extremely high. Figs. 4–5(c)

and 4–5(d) show the RMSF plots for the native and amyloid and Figs. 4–5(e) and

4–5(f) show the final shape of the native and amyloid structures after 18n seconds

of MD simulation. It is clear from the graphs that the amyloid form has misfolded

and is highly unstable and unfavorable, while the native maintained its structure.

4.7 Conclusion

The misfolding of amylin molecules in diabetes patients contributes to the β-cell

death and deterioration of the pancreas. The sensitivity of amylin to point muta-

tions has been exploited to design the drug Pramlintide, an amylin analog that is

more stable and less amyloidogenic than amylin. However, because amylin mutation

studies are sparse and because no reported systemic analysis of all the amino acid

positions or their amyoidogenicity potentials exists [139], it is highly likely that there

are many other amylin analogs that could perform better than Pramlintide. Testing
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(a) Native mutant after 18ns MD run (b) Amyloid mutant after 18ns MD run

(c) RMSD graph for native mutant (d) RMSD graph for amyloid mutant

(e) RMSF graph for native mutant (f) RMSF graph for amyloid mutant

Figure 4–5: MD results of mutation (A5K, A8R, G24I). (a) The final mutant native
structure after 18ns of MD simulation. The structure looks stable and according to its
low RMSD values in (c) and low RMSF values in (e), the structure is believed to be
conserved. (b) The final mutant amyloid structure after 18ns of MD simulation. The
structure has collapsed on itself and broken its two beta-strands to create multiple
alpha helices. (d) The RMSD values of the mutant amyloid and (f) the RMSF
values of the mutant amyloid are high and suggest instability and severe deviation
in structure.
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experimentally for these mutations is not feasible as the number of possible tests

are innumerable. Using the dipolar water model that calculates precisely the free

energies of proteins, we constructed the single-point mutational and amyloidogenic

landscape of amylin and reported the effects of any and all mutations on amylin’s sta-

bility and amyloidogenicity potential. We found that increasing the number of point

mutations can decrease amyloidogenicity. This motivated us to generate millions of

3-point mutations and explore mutants that show a higher stability than Pramlintide

and lower amyloidogenicity potential. With the use of Molecular Dynamics packages,

promising mutants can be further tested for stability prior to lab experimentation.

The tool we developed to produce the landscape values, MAPOR, is freely available

at http://amyloid.cs.mcgill.ca. It can be used to generate the landscapes of other

proteins and explore their n-point mutations.
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4.9. SUPPLEMENTARY MATERIAL

4.9 Supplementary material

Table S1 from the supplementary material is too long to include in this thesis.

To view the Table online, please visit: http://amyloid.cs.mcgill.ca/Suppl3
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Probing the binding affinity of amyloids to reduce toxicity of oligomers
in diabetes

5.1 Preface

Obesity, unhealthy diet, and low physical activity can eventually lead to type

II diabetes, which affects around 350 million people worldwide. It is a disease that

results in the failure of the pancreas to produce enough insulin and amylin proteins

in the human body. This failure of meeting the body’s insulin and amylin demands

results in high glucose concentration in the blood and low glucose absorption into

the heart, muscles and adipose tissue. The pancreas fails to produce enough insulin

due to the death of its overworked and overstressed β-cells. As such, patients with

this disease are required to inject insulin and amylin replacements daily to survive.

Because amylin has a tendency to misfold into amyloid aggregates that further

infect β-cells, leading to an accelerated failure of the pancreas, we explored in the

previous chapter the mutational landscape of amylin to understand the effect of

mutations on its stability and amyloidogenicity. The landscapes revealed regions in

the amylin protein that were conserved and regions prone to instability. We suggested

improving the efficiency of the Pramlintide drug by engineering a novel amylin analog
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with stronger stabilizing mutations. The increase in stability will further reduce the

rate of misfolding into amyloid structures.

In this chapter, we explore the reverse problem. In diabetes, short amyloid ag-

gregates (oligomers) in the pancreas are toxic. These oligomers inject themselves into

membranes of β-cells in the pancreas and create pores that disrupt the electric poten-

tial across the membranes. However, long aggregates (fibrils) do not permeate cells

and are not toxic. The idea behind the work in this chapter is to design a molecule

(amylin mutant analog) that forces the short oligomers to extend their length. We

engineer a molecule that binds very strongly to the oligomer extension surface and

induces aggregation. The extension lowers the toxicity created by oligomer pores by

slowly restoring the disrupted electric potential that exists across the membrane to

its equilibrium. The uncontrolled flow of ions is hindered by lengthening the oligomer

structures. We design the molecule to be administered with Pramlintide injections.

By design, the molecule is engineered to repel from Pramlintede and not interact

with it, elimination any potential for Pramlintide to misfold. Upon injection into the

body, the molecule perform’s amylin normal functions. When the molecule reaches

the pancreas, it should misfold into amyloid shapes and bind to the oligomers.

We extend the insulin-glucose mathematical model to present a novel system of

integral equations that model the effect of amyloid production on the insulin-glucose

relationship. The model is the first in incorporating the affect of amyloids in diabetes

and shows how reducing the toxicity of oligomers keeps the pancreas in a healthier

state.
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The remaining content of this chapter has been taken from a manuscript that was

submitted for publication:

• M. R. Smaoui, H. Orland, and J. Waldispühl. “Probing the binding affinity of

amyloids to reduce toxicity of oligomers in diabetes”. Submitted for review in

Sept 2014.

5.2 Abstract

Motivation: Amyloids play a role in the degradation of β-cells in diabetes patients.

In particular, short amyloid oligomers inject themselves into the membranes of these

cells and create pores that disrupt the strictly controlled flow of ions through the

membranes. This leads to cell death. Getting rid of the short oligomers either by

a deconstruction process or by elongating them into longer fibrils will reduce this

toxicity and allow the β-cells to live longer.

Results: We develop a computational method to probe the binding affinity of amy-

loid structures and produce an amylin analog that binds to oligomers and extends

their length. The binding and extension lower toxicity and β-cell death. The amylin

analog is designed through a parsimonious selection of mutations and is to be ad-

ministered with the Pramlintide drug, but not to interact with it. The mutations

(T9K L12K S28H T30K) produce a stable native structure, strong binding affin-

ity to oligomers, and long fibrils. We present an extended mathematical model for

the insulin-glucose relationship and demonstrate how affecting the concentration of

oligomers with such analog is strictly coupled with insulin release and β-cell fitness.
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Availability: SEMBA, the tool to probe the binding affinity of amyloid proteins

and generate the binding affinity scoring matrices and R-scores is available at:

http://amyloid.cs.mcgill.ca

Contact: jeromew@cs.mcgill.ca

5.3 Introduction

Insulin and amylin molecules are co-secreted from β-cells in the pancreas to

lower the concentration of glucose in the blood. Some of the amylin misfold into

amyloids and do not continue to carry on their normal functions in the body. In

type II diabetes, these amylin amyloids are observed to form in the extracellular

space surrounding β-cells and build up into different sizes, some small (oligomers)

and others large (fibrils) [152]. The exact effect of the very large fibril deposits

on the progression of diabetes and the inflammation of β-cells is not really known.

However, amyloid oligomers have been clearly observed to be toxic, while the longer

fibrils are non-toxic [159]. These aggregates inject themselves into cell membranes

and create weakly-selective pores that introduce an uncontrolled influx of ions into

and out of the cell [160, 161]. Their short length allows for ions to pass through

them easily, unlike fibrils. The influx of ions is mainly due to the high concentration

gradient of calcium molecules separating the cytoplasm and extracellular space. This

influx disrupts cell coupling, impairs insulin secretion, depletes ATP, depolarizes the

membrane, and weakens cells inducing apoptosis [162]. Upon cell breakdown, the

oligomers find other live cells to target [159]. Fig. 5–1 shows an illustration of amylin

oligomers permeating a cell membrane.
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When too many amylin molecules misfold into amyloids, due to insulin resis-

tance and extreme pressure on the pancreas to secrete insulin, the required levels of

amylin in the body to modulate gastric emptying and prevent postprandial spikes

in glucose levels are not met. This further complicates the conditions of type II

diabetes patients. Several injectable amylin analogs have been created in an effort

to find a suitable replacement for this lack of the necessary levels of amylin. The

most promising one, Pramlintide, is an analog containing 3 proline substitutions at

positions 25, 28 and 29, and reveals a weak tendency to aggregate [163]. Pramlin-

tide is an effective amylin replacement agent that acts as a synergetic partner to

insulin [164]. Pramlintide does not enter the cells of the pancreas, however, it moves

through the circulatory system to reach necessary organs and compensates for the

lack of sufficient amylin levels.

Although Pramlintide has a weaker tendency to aggregate, and compensates for

amylin’s lost functions, it does not solve the problem of amyloid oligomer toxicity.

The inhibition of the amyloid production has been studied as a way to elongate

cell life in diabetes. Molecules like rifampicin have been designed to prevent fibril

formation [165], but failed to remove the short toxic oligomers that speed up the

death of cells [159]. Other attempts at designing inhibiting molecules include the

red wine compound resveratrol [166], Vanadium complexes [167], Polyphenols [168,

169], selenium-containing phycocyanin molecules [170], and N-methylation of amylin

[171]. Many of these molecules presented strong inhibiting results that lower the

rate of oligomerization in vitro and are currently undergoing more experimentation.

However, none of them are at a stage of being produced as a therapeutic agent.
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In this work we explore a different technique to reduce the toxicity of oligomers.

Instead of inhibiting fibril extension, we promote it. At a higher rate of amyloid

aggregation, longer structures are created. The higher the rate, the lower the con-

centration of oligomers and the higher the concentration of fibrils. We aim to achieve

this high aggregation rate by constructing a molecule that when injected into the

human body, binds to these short oligomers and extends their length, promoting

aggregation and forcing them into long non-toxic fibrils. A circumspect approach to

create such molecule that does not perform unknown and undesirable interactions

in the body is to engineer the molecule as an amylin analog with a parsimonious

selection of mutations to perform the task. We construct this molecule as an analog

of high amyloidogenicity, to have very strong binding affinity to the amyloids, and

to have an extremely low dissociation rate. The low dissociation rate is essential in

preventing the emergence of more short oligomers through fibrils breaking up. This

analog is designed to be administered with the Pramlintide drug in a native, non-

amyloid form. The analog is engineered to have a low binding affinity to Pramlintide

to prevent inducing Pramlintide to misfold. To conserve structure, the analog is

designed through a parsimonious selection of mutations.

5.4 Approach

Ridding the pancreas from toxic, short amyloid oligomers will reduce β-cell

death. In theory, we could remove these oligomers in three ways:

1. Altering the environment around amyloids to reduce the rate of nucleation and

inhibit oligomerization.
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2. Designing molecules that bind to the ends of oligomers to stop the flow of ions

through pores and to inhibit amyloid extension.

3. Promoting amyloid extension and fibril growth to reduce oligomer toxicity.

In this work, we develop a novel method to assist researchers with solutions 2

and 3. Although we do not focus on exploring molecules to inhibit amyloid growth,

our work will show how the method could be used to assess the binding preferences

and affinity of amyloids to other molecules. In particular, we use the method to

improve the binding of amylin amyloids to other amyloids, stimulating growth and

extension. Promoting amyloid extension forces oligomers to grow into fibrils and

decreases their toxicity.

Amyloids inherently bind to each other. They have a strong affinity to aggregate.

Introducing the right amino acid mutations into amyloids can increase their binding

affinity and likelihood to aggregate. This increase results in longer structures, forcing

short oligomers to grow into fibrils. The Binding Affinity Scoring Matrix (BASM)

method we introduce in this paper explores the affinity of amyloid residues to all

possible amino acid bindings. We explore the effect of pairing a single amino acid with

an amyloid structure at a specific residue position. For each of the residue positions

of an amyloid, we generate 20 binding affinity readings, one for every position and

amino acid pair, as illustrated in Fig. 5–2. The affinity measures the Lennard-

Jones potential between the amino acid and the amyloid structure, the Coulomb

interactions, and the Solvation energy of the system. We organize the readings into

a n x 20 matrix. The first dimension of the matrix comprises the 20 amino acids, the

second dimension is the protein residue positions, and each record is what we call an
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R-score. The lower the R-scores, the stronger the binding affinity between an amino

acid and the amyloid structure at the specific residue position.

The goal behind the BASM method is to identify bindings that increase affinity.

The best structure bindings could be used to engineer an amylin analog that produces

amyloids that bind better to the ones in the pancreas. If designed with the proper

amyloidogenicity, the engineered analog will not only bind well to oligomers, but will

also promote amyloid extension. This extension reduces oligomer toxicity and β-cell

death.

The analog can be administered in native, non-amyloid form with Pramlintide

injections. In its native form, it will carry out the normal functions of amylin and

Pramlintide. Once it reaches the pancreas (through the bloodstream) and makes

contact with the amyloids, it should misfold and aggregate with the surrounding

amyloids and oligomers due to its high amyloidogenicity. To prevent any potential

aggregation with Pramlintide, the analog is designed with lowest affinity to Pram-

lintide. In the Methods section we explain in detail how we develop this analog by

generating the BASM R-scores for amylin and Pramlintide amyloids.

5.5 Methods

BASM R-scores

The free energy of a system, FE, that includes an amyloid protein and an amino

acid separated far apart from each other can be given by,

FE = (LJp + Coulp) + (LJa + Coula) + S (5.1)
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Figure 5–1: Oligomer toxicity. Amylin amyloid oligomers (red) permeating the cell
membrane and disrupting the tightly controlled flow of ions through the membrane.
Figure created with PyMol [172]
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Figure 5–2: Binding affinity method. Twenty amino acids are placed on top of a
specific residue position on the amylin protein, one at a time, to compute the R-
scores in Eq. 5.4

where LJ is the Lennard-Jones potential, Coul is the Coulomb energy, and S is

the solvation energy of the entire system. The terms with a p subscript denote the

energies of the amyloid protein and the terms with an a subscript denote energies of

a separate amino acid. If we alter the system such that we place the amino acid in

close proximity to the protein to interact with it, the free energy becomes

F̃E = (LJp + Coulp) + (LJa + Coula) + (LJap + Coulap) + Sap (5.2)

where LJap and Coulap are the Lennard-Jones and Coulomb terms resulting from the

interaction of the atoms of the amino acid with the atoms of the protein, respectively.

Sap is the solvation energy of the coupled system. Subtracting Eq. 5.2 from 5.1 yields

the residue binding affinity, R, of the amino acid to the protein at the position it
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was coupled at and gives,

R = LJap + Coulap + Sap − S (5.3)

or in more formal terms,

R(N1, N2) =

N1∑
i=1

N2∑
j>i

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
+

N1∑
i=1

N2∑
j>i

[
f
qiqj
εrrij

]
+ Sap − S (5.4)

where N1 are the atoms of the amino acid and N2 are the atoms in the protein. ε is

the depth of the Lennard-Jones potential well, σ is the finite distance at which the

inter-particle potential is zero, rij is the distance between the protein atoms i and j,

and qi and qj represent the charges of the two atoms. The solvation terms are given

by

S = F(p0,Cdip) − F(0,0) −
(
kBT

ln(1−NACdipa
3)

NACdipa3

)∫
solvent

drρdip(r). (5.5)

where F(p0,Cdip) defines the free energy of the system defined at dipoles of moment

values p0 and concentration Cdip, F(0,0) the free energy of the system with solvent

concentration set to zero, a3 is the lattice grid size volume of the solvent, kB is

the Boltzmann constant, T temperature in Kelvin, and r is the surface definition,

solvent-accessible surface probe. The lower the R-scores, the stronger the binding

affinity of an amino acid to a particular position within the protein.

5.5.1 BASM matrix

Let M be the set of canonical amino acids given by,

M = {A,R,N,D,C,Q,E,G,H, I, L,K,M, F, P, S, T,W, Y, V } (5.6)
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we construct a protein’s residue-Binding Affinity Scoring Matrix (BASM) using the

R scores in Eq. 5.4. In particular, for every residue position i of a protein p, we

compute twenty R scores, one for each m ∈M computed with

BASM [i,m] = R(Np, Nm), 1 ≤ i ≤ n,m ∈M (5.7)

To physically model this system where we have an amino acid interacting with

the amyloid, we start with a PDB of dimer amyloid structure. We mutate an amino

acid in one of the amyloid structures using SCWRL [133], and remove all the non-

mutated amino acids from that amyloid. This leaves an amino acid placed on top of

an amyloid monomer at the right binding distance.

Binding affinity function

Let S be the sequence of amino acids representing a protein with length n

such that S ∈ Mn and B the residue binding affinity scoring matrix (BASM) of

sequence S. We compute, F (R), the global-sequence binding affinity function of B

to a sequence of amino acids R ∈Mn by,

F (R) =
n∑

k=1

B[k,Rk] (5.8)

where Rk is an amino acid at position k. We can also compute partial-sequence

binding affinities of B to R and point-binding affinity functions by,

F (R)i,j =

j∑
k=i

B[k,Rk] (5.9)
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F (R)k = B[k,Rk] (5.10)

respectively. i and j are the starting and ending amino acid positions of subsequences

S and R.

To construct a sequence S∗ with optimal BASM binding affinity to S, we must

find F (S∗) such that

F (S∗) = minF (R), ∀R ∈Mn (5.11)

Because the values in a BASM matrix are independent of one another, F (S∗)

can be computed by

F (S∗) =
n∑

i=1

[
min
j∈M

B[i, j]

]
(5.12)

and the sequence S∗ can be constructed by,

S∗i = S∗i−1 + Ji, 1 ≤ i ≤ n (5.13)

where Ji ∈M and Ji satisfies

B[i, Ji] = min
j∈M

B[i, j], 1 ≤ i ≤ n (5.14)

Finding best fit to amylin and worst to Pramlintide

Let B1 be the BASM of the amylin sequence S1 and B2 the BASM of the Pram-

lintide sequence S2. To construct a sequence with strong binding affinity to the

sequence of amylin amyloids S1 and simultaneously weak binding affinity to Pram-

lintide amyloid sequence S2, we generate a BASM B̄ that satisfies this constraint
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and combines B1 and B2 in the following way,

B̄ = α ∗B1 − β ∗B2 (5.15)

where α and β can be considered as amyloid and pramlintide affinity coefficients,

respectively. Because we aim to find a binding sequence that produces very stable

bonds with amyloids and simultaneously, very unstable bonds with pramlintide, set-

ting α
β
= 1 generates a B̄ with amino acid affinities that prefer amylin amyloids as

much as they repel Pramlintide. Similarly, choosing α
β
> 1 results in a sequence that

binds better to amylin amyloids and repels Pramlintide less.

If we let F̄ be the sequence binding affinity function for B̄, we can construct

S∗ for this system by using Eqs. 5.12 - 5.14. S∗ might contain 1 to n differences

in amino acids compared to amylin’s sequence, S1. However, too many differences

in amino acids might create a structure that differs from amylin and does not bind

to the amyloids. In order to guarantee that we have a sequence that represents a

structurally conserved, folded amylin analog, we will restrict the number of possible

differences between S∗ and S1. Using S∗, we will construct a parsimonious sequence

SP .

If we allow for only 1 difference in sequence between S∗ and S1, we can generate

a 1-residue parsimonious sequence SP1 such that,

F̄ (SP1) = min
1≤i≤n

{F (S1)1,i−1 + F̄ (S∗)i + F (S1)i+1,n} (5.16)

where F is the sequence binding affinity function for B1 and

SP1 = S1
1S

1
2 · · ·S1

l−1S
∗
l S

1
l+1 · · ·S1

n (5.17)
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where l is the i value that returns the minimum in Eq. 5.16. We can generalize

Eq. 5.16 to allow for k differences in sequence between S∗ and S1 and generate a

k-residue parsimonious sequence SP
k by solving

min
i1,i2,...,ik

{F (S1)1,i1−1 +
n∑

j=1

F̄ (S∗)ij +
n∑

j=1

F (S1)ij+1,i(j+1)−1 + F (S1)ik+1,n} (5.18)

where 1 ≤ i1 < i2 < ... < ik ≤ n. SPk can be constructed by

SPk = S1
1 · · ·S1

l1−1S
∗
l1
S1
l1+1 · · ·S1

l2−1S
∗
l2
S1
l2+1 · · ·S1

lk−1S
∗
lk
S1
lk+1 · · ·S1

n (5.19)

where l1, l2, ..., lk are the i values that solve for the minimum in Eq. 5.18. Apply-

ing the BASM technique on amylin will generate an optimal binding sequence for

chosen α and β values. Ensuring a parsimonious selection of mutations increases

the complexity of the problem and reduces the optimality of the binding affinity for

amyloids. Nonetheless, this reduces the risk of losing structure and function.

5.5.2 Amyloidogenicity

In solving for the minimum binding score in Eq. 5.18 for amylin, we pick the top

10 results (Table 5–2). Out of the 10 results, we pick the one that has the highest

potential to misfold into amyloids and has the lowest dissociation potential. The

higher the amyloidogenicity, the more likely the analog will misfold in the presence

of amyloids and aggregate. The lower the dissociation, the less oligomers will form

out of the analog. We estimate a lower bound on amyloidogenicity by calculating

ΔG, the difference in energy (LJ, Coulomb and Solvation) between the amyloid and

native forms as follows,
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ΔG = Eamyloid − Enative (5.20)

Although ΔG does not reflect the true energy barrier between native and amyloid

form, we use it to estimate a lower bound on the energy needed for a structure to

misfold.

5.5.3 Oligomer concentrations

Out of the set of solutions for Eq. 5.18 we choose the parsimonious solution that

has the lowest dissociation potential, producing the lowest number of oligomers. For

each solution, we measure the concentration of oligomers they might create. We can

quantitatively express these concentrations by computing the free energies of the

oligomers. The expression for the concentration of these structures in terms of the

chemical potential of the system μ, the free energies of oligomers Fk, and the number

of monomers k at each state can be computed by the law of mass action.

Let’s denote by N the initial number of proteins in the solution, V the volume

of the system, Nk the number of oligomers of type k. Let a3 be the volume of a

protein. The initial volume fraction φ of the proteins is defined by φ = Na3/V = ca3

where c = N/V is the initial concentration of proteins and the volume fraction of

the oligomers of type k by φk = Nkka
3/V . Note that all φk and φ must be positive

and smaller than 1.
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The partition function of the system is written as

Z = e−βF

=
∞∑

N1...NM ...=0

eΛ+Γ (5.21)

where β = 1/(kBT ) is the inverse temperature and F is the total free energy of the

system and Λ and Γ are

Λ = βμ
∑
k

kNk −
∑
k

Nk log
Nk

e
(5.22)

Γ =
∑
k

Nk log
V

ka3
− β

∑
k

NkFk (5.23)

The expression for the concentrations in Eq. 5.21 is obtained by minimizing the

exponent with respect to the Nk

βμk − logNk + log
V

ka3
− βFk = 0 (5.24)

or equivalently

φk =
Nkka

3

V
= e−β(Fk−μk) (5.25)

The chemical potential μ of the system is determined by solving the equation

1

β

∂

∂μ
logZ =

∑
k

kNk = N (5.26)

or in term of the volume fractions

φ =
∑
k

e−β(Fk−μk) (5.27)
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5.5.4 Molecular Dynamics and Energy Minimization

We used the GROMACS 4.5 [90] molecular simulation package to run molecular

dynamics (MD) and energy minimization (EM) simulations. Our mutant molecules

were solvated in a cubic box (with a minimum distance of 35 Å from any edge of the

box to any atom) and neutralized with chloride ions and modeled using the GRO-

MOS96 53a6 force field along with the SPC water model. We used a cutoff of 10 Å for

van der Waals and short range electrostatic interactions, and calculated long range

electrostatic interactions using a particle mesh Ewald sum [117, 118]. Simulations

were prepared for a full MD run in both isothermal-isobaric (100 ps) and canoni-

cal equilibration (100 ps) ensembles. Temperature and pressure were controlled at

300 K and 1 bar using the velocity rescaling thermostat and the Parrinello-Rahman

barostat, respectively. A linear constraint solver was used to keep all bonds at their

equilibrium length. One million time steps were used with an integration time step

of 2 fs. The system’s coordinates were saved every 10 ps for further analysis.

5.5.5 Dipolar water solvent

We resort to our previous work in [132] to calculate the Free energy of protein

aggregates and plot Fig. 5–3. In particular, we compute a Lennard-Jones, Coulomb

and Solvation energy terms. The Solvation term is computed using a fast and detailed

dipolar water model that solves the dipolar nonlinear Poisson-Boltzmann-Langevin

equation. The three energy terms are used to describe the stability of molecular forces

in molecules. Solvation energy was precisely calculated using the AQUASOL routine

[89] with the following setup: atomic charges and radii assigned with PDB2PQR
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using CHARMM force field at neutral pH. A grid or 257 points per edge spaced by

1 Å, a temperature of 300K, and a solvent accessible surface with an Rprobe of 1.4

Å. All hydrogen-bonds were optimized. We used a trilinear interpolation protocol

for projection of fixed charges on the grid, a lattice grid size for the solvent: a = 2.8

Å, solvent made of dipoles of moment p0 = 3.00D at a concentration of Cdip = 55M.

No salt was added to the solution and small ions were used to equilibrate the system

when needed. The electrostatic potential was set to zero at the boundaries, and the

stopping criteria for residual was sent to: 1.10−6 (when possible).

5.5.6 Building oligomer structures

The 3D structures (PDB files) are required in the process of assessing the con-

centration of oligomers produced by a particular analog. To create the 3D oligomers

for amylin, we start with the amylin PDB structure solved by Wiltzius et. al [34]

and use SCWRL [133] to perform the necessary mutations introduced in each ana-

log. The mutated structure is then used by the CreateFibril tool [132] to construct

the oligomers with the following parameters: 8 deg rotation angle, 5.0 Å between

monomers, and a fibril packing distance of 3 units.

5.5.7 The effect of amyloid oligomers on the Insulin-Glucose system

The process of response to glucose intake in the human body is complex. Many

factors determine how the pancreas responds to such stimulus. The natural heredi-

tary reaction would be to release enough insulin into the bloodstream to signal other

organs to consume the glucose. The following system is the basic insulin-glucose
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model proposed in 1961 by Bolie [173]

dG

dt
= q − γI − δG (5.28)

dI

dt
= p− αI + βG (5.29)

where G is the level of glucose in the blood, I is the level of insulin released from

the pancreas and the rest of the variables are coefficients that were determined ex-

perimentally. This model is a high level representation of the normal production of

insulin in healthy patients.

To capture the effect of amyloids on the insulin-glucose relationship and to

incorporate the effect of oligomers on β-cell death, we extend Eqs. 5.28 and 5.29 and
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propose the following system of integral equations,

Ḡ(t) = Ḡ(0) +

∫ t

0

q − γĪ − δḠ dt (5.30)

Ī(t) = Ī(0) + θ(R) ∗ (1− R

C
) ∗

[∫ t

0

p− αĪ + βḠ dt

]
(5.31)

R(t) =

[
1

j

∫ t

0

O(t) dt

] [
(1 +

i

100
)i∗t − 1

]
(5.32)

O(t) =

⎧⎪⎪⎨
⎪⎪⎩
Å(t)

kO
∗ σ1 −M(t) ∗ σ2 for Å(t)

kO
σ1 ≥M(t)σ2

0 otherwise

(5.33)

Å(t) = F (A(t)) (5.34)

A(t) =
Ī(t)

100
(5.35)

F (A(t)) =

⎧⎪⎨
⎪⎩
ε for A(t) < h

(1− ε′) ∗ A(t) for A(t) ≥ h

(5.36)

θ(R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1− R
C

for R(t) < d

1

1− d
C

for R(t) ≥ d

(5.37)

where θ is the over burden term expressing how cells produce more insulin to com-

pensate for their dead neighbors, C is the total number of β-cells in a pancreas, R

is the number of dead β-cells in the pancreas at time t, A is the level of amylin

molecules released with insulin, Å is the number of amyloid proteins generated from

amylin, O is the number of oligomers in the pancreas, kO is the average length of

oligomers, σ1 is the percentage of amyloid structures that form into oligomers, M is

the number of engineered molecules injected into the system to reduce the toxicity
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α β Sequence S∗ F (S∗)
1 0 KKKKMKKQPKKKKMKNNYHKKYFHNKPLKKNMKNKQK -5484
0 1 ETIWDGESDDYRPLTTTQKTFTTFWDFEESKRPEYET -3944
1 1 KTKKKKKKKKKKKEKIKKKKFTKPNKHESKKVNKHKK -3162
2 1 KKKKMKKQKKKKKMKNEYYKKYFHNKKHKKKVKQKFK -7913
4 1 KKKKMKKQPKKKKMKNNYYKKYFHNKKHKKNWKNKFK -18737
10 1 KKKKMKKQPKKKKMKNNYYKKYFHNKPLKKNMKNKFK -51585
1 2 ETIWDGEKDIYRWLTTTQKTFTKRFDHESSKRPEHET -5720

Table 5–1: Sequences S∗ for various α and β binding affinity values. α
β
= 1 results

in a sequence S∗ that has a binding affinity to amylin amyloids that is equal to
its repelling affinity towards Pramlintide. A α

β
> 1 results in a sequence that binds

better to amylin amyloids and repels Pramlintide less. F (S∗) values are in Kcal/mol.

of oligomers, σ2 ∈ [0, 1] is the binding affinity of molecules M to the oligomers, i

is the infection rate of oligomers in killing cells (how fast do they kill cells), j the

number of oligomers required to kill a cell, ε a small value equal to the amount of

amyloids being produced before reaching the threshold h, ε′ is a small term to correct

the amount of amylin molecules that do not misfold after reaching the threshold h,

and d is the threshold of dead β-cells before the pancreas can stop compensating for

dead cells.

The model is analyzed further in the Discussion section and provides a founda-

tion for exploring the relationship between oligomers and β-cell fitness.

5.6 Results

We introduced the method to compute R-scores of BASM in the Methods sec-

tion and described how they can be used to engineer an injectable amylin analog that

binds well to amyloids in the pancreas while preventing Pramlintide from misfolding.
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Rank 1-------9--------18-------27--------37 F (SP4) ΔG Mutations
KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY -1650.0 167.6 NA

1 -----------K-------------K-H-K------- -3013.5 125.8 L12K I26K S28H T30K

2 -----------K------------N--H-K------- -3007.5 178.0 L12K A25N S28H T30K

3 -----------K-------K-------H-K------- -3005.4 185.9 L12K S20K S28H T30K

4 ---K-------K---------------H-K------- -2993.3 246.9 T4K L12K S28H T30K

5 -----------K-----------H---H-K------- -2992.3 210.5 L12K G24H S28H T30K

6 -----------K------------NK---K------- -2965.3 115.0 L12K A25N I26K T30K

7 -------Q---K---------------H-K------- -2957.7 191.3 A8Q L12K S28H T30K

8 -----------K-------K----N----K------- -2957.2 122.4 L12K S20K A25N T30K

9 --------K--K---------------H-K------- -2954.9 167.7 T9K L12K S28H T30K

10 -----------K-----------H-K---K------- -2950.1 129.2 L12K G24H I26K T30K

Table 5–2: Top results solving the 4-residue parsimonious sequences for SP4 with
α = 2 and β = 1. F (SP4) values are in Kcal/mol. The complete list of all 4-residue
parsimonious sequences is given in Table S3.

Table 5–3 shows the R-scores that we generated for all the residue positions of amylin

amyloid, and Table 5–4 shows the R-scores for Pramlintide’s amyloid residues. In

Table 5–1, we solve for the sequence S∗ with optimal binding affinity to BASM B̄ for

various α and β values. Setting a fixed β = 1 value and increasing α doesn’t dras-

tically change the sequence S∗, suggesting that the residues of S∗ possess a strong

binding affinity to amylin. We proceed with sequence S∗ generated by α = 2 and

β = 1. This sequence encompasses a binding affinity to amylin that is twice as large

as the repelling forces to Pramlintide.

Constructing optimal binding analogs

As explained in the Methods section, S∗ will naturally have a low sequence sim-

ilarity to amylin. To construct an amylin analog that is structurally conserved and

binds well to amylin amyloids and extends the length of oligomers, we’ll introduce

some of the amino acid variations from S∗ into the analog. To introduce a parsimo-

nious selection of variations to the amylin sequence, we solve Eqs. 5.18 and 5.19 for a
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Res. A R N D C Q E G H I L K M F P S T W Y V
1 100.0 7.2 55.9 183.5 113.7 150.7 196.1 94.1 116.2 101.1 49.3 -4.2 81.0 60.6 32.6 115.8 121.5 42.8 82.6 126.6
2 6.2 -26.8 -0.6 116.3 5.9 61.0 124.6 -8.1 111.2 48.4 38.5 -111.8 25.5 68.3 50.1 163.7 141.8 53.7 55.2 46.0
3 -115.7 93.2 12.9 89.3 50.3 -11.1 101.8 -123.9 -93.8 226.1 -104.6 -160.2 -0.7 -69.3 -150.7 -108.7 111.2 -108.2 -80.1 50.4
4 91.7 28.1 -10.9 85.8 81.5 87.7 82.0 43.2 84.3 56.0 -19.7 -61.4 64.6 -55.8 49.8 87.6 131.3 128.7 48.5 110.0
5 38.1 10.1 55.5 184.5 107.0 66.9 92.8 90.2 28.3 58.0 62.9 36.8 -21.0 -1.1 -3.4 100.1 59.4 36.1 68.2 99.2
6 -53.8 -69.2 -4.9 -96.5 -71.6 -135.9 -127.0 51.9 -169.2 -142.9 12.2 -197.0 -70.8 44.4 39.5 7.3 -99.3 -108.7 14.4 -124.9
7 -79.8 -92.8 -128.1 -19.4 -87.1 -84.4 -4.1 -75.7 -92.0 -67.2 -68.2 -173.4 -93.5 -83.3 -114.0 -70.9 -52.7 -75.7 -72.0 -56.1
8 46.9 -113.9 -28.3 -122.5 -24.6 -138.7 36.2 44.8 47.3 36.9 -90.0 -3.8 -123.1 -11.8 -7.3 79.8 -105.2 12.6 26.6 -49.1
9 13.1 -7.5 -1.2 128.5 18.4 30.1 76.6 20.6 3.7 24.7 19.1 -113.1 -122.4 13.2 -130.3 23.1 46.8 77.2 41.3 30.5
10 -125.0 -131.1 -27.8 78.9 -128.9 -112.6 -60.3 -125.9 -49.7 25.1 -26.7 -161.3 -148.1 -104.8 -105.1 -132.1 -104.9 -97.7 -102.9 -106.1
11 -106.7 -147.3 -165.8 -46.5 -115.0 -110.2 -68.3 -120.4 -132.6 -114.4 -119.1 -212.2 -143.8 -121.7 -139.1 -86.1 -64.3 -138.5 11.0 -99.1
12 16.6 144.1 -173.6 -92.5 25.4 -4.2 51.6 1.8 -22.5 -103.6 79.6 -205.1 -78.1 -27.9 13.7 33.1 46.6 16.0 115.4 50.5
13 -166.7 -188.2 -238.5 -171.9 -164.8 -165.9 -123.9 -166.1 -194.1 -182.0 -186.0 -238.7 -209.6 -181.4 47.0 -156.3 -155.6 20.7 -175.9 -175.5
14 -82.7 -17.3 -218.9 -95.5 -63.4 -167.7 -57.0 -60.5 -192.0 -38.2 50.9 -22.2 -220.4 -175.0 -62.1 -60.4 -20.6 -166.9 -160.5 -162.6
15 -132.6 -136.4 -179.7 -122.3 -131.5 -105.8 -129.6 -138.9 -153.3 -21.6 -133.4 -194.2 -166.3 -142.3 -153.8 -99.5 -70.9 -186.6 -123.6 -109.1
16 11.2 19.6 -171.0 -78.3 66.8 -147.1 -5.5 14.5 -49.8 -42.0 -147.3 -50.9 -143.8 -131.8 57.5 -7.9 139.9 21.9 -122.8 -94.8
17 10.0 34.9 -181.5 2.4 -3.3 102.5 -151.2 11.8 -31.1 -26.8 -99.9 -95.5 -65.1 27.4 -118.0 25.6 55.9 13.6 100.5 -9.6
18 -134.6 20.2 -3.8 63.0 -131.6 148.1 18.2 -127.8 -111.0 -113.8 -22.5 -25.6 7.1 -112.4 -71.2 -116.6 -85.4 -133.4 -154.1 70.4
19 -78.0 -50.4 -102.6 -67.8 -82.6 -85.5 -75.4 -86.7 -121.6 -77.9 -89.1 -36.1 19.8 -109.9 20.3 -67.4 74.0 -83.1 -121.2 -52.9
20 116.0 109.6 3.3 69.2 22.1 63.7 56.1 -55.2 42.5 -76.4 -65.3 -82.9 -22.4 48.9 6.2 67.9 154.5 33.7 -6.3 111.2
21 28.8 90.1 -48.1 41.4 21.2 31.4 36.4 95.7 37.7 -43.0 30.8 -51.6 38.3 60.6 137.2 54.7 122.1 42.2 -37.2 87.5
22 -1.2 67.0 -85.8 -55.6 -1.7 -6.0 10.8 -7.5 -15.5 -80.7 -100.6 -6.5 56.1 -56.3 -99.4 11.7 36.0 -7.4 -102.9 26.3
23 28.8 28.0 -142.5 12.4 46.9 15.7 -48.6 -77.5 -119.2 -151.3 -156.7 40.0 -130.2 -174.1 -117.8 -59.8 138.0 -51.0 -146.7 -28.9
24 -107.9 69.3 -147.6 -30.2 36.5 -112.6 15.3 32.7 -189.8 -62.6 17.0 -52.6 -155.4 102.6 -29.9 -114.5 36.2 25.7 54.1 99.8
25 -75.5 -101.7 -221.3 -178.7 -108.1 -166.7 -183.7 -126.1 -169.4 -189.6 -123.3 -221.3 -195.6 -100.5 -177.2 -126.2 -89.9 -14.9 -117.1 -154.9
26 14.0 9.2 -13.0 38.3 -3.6 -120.7 -46.5 17.9 -119.9 87.6 -107.0 -129.4 -104.6 -79.3 11.2 17.2 -23.0 -78.9 -53.5 -20.8
27 -57.1 -74.7 -96.7 -58.4 -51.5 -78.7 -83.9 -34.8 -93.1 -50.0 -81.7 -139.6 -108.4 54.0 -151.8 -54.3 16.1 -92.0 -77.0 -53.6
28 74.2 1.4 56.7 121.9 53.3 14.7 85.8 101.0 -93.6 -4.1 -129.7 -29.5 34.5 -9.1 86.4 56.0 213.1 77.1 -26.5 27.7
29 -19.6 -89.5 -67.4 -55.5 -38.3 -62.9 -40.6 -32.6 -65.3 -47.2 -90.3 -121.0 -120.4 -81.4 -55.5 -74.2 -53.5 -70.3 -58.3 -47.4
30 89.4 -137.3 -118.8 91.8 78.0 -79.6 99.9 77.3 68.2 -98.7 -98.2 -153.3 33.3 -6.1 66.2 73.0 117.0 73.9 88.0 47.1
31 -133.4 -85.3 -172.3 -59.5 -122.1 -90.2 -144.1 -126.6 -116.5 -138.6 -156.7 -124.8 -164.7 -133.7 -67.0 -98.0 -116.6 -92.7 -142.4 -155.8
32 -55.5 124.3 76.1 110.7 -69.3 -47.5 181.6 -0.4 -2.8 -65.2 6.9 -31.1 -91.2 -66.1 -8.8 -27.7 -14.4 -90.4 -73.1 -69.3
33 -143.4 -142.1 -141.9 -112.0 -126.8 -171.8 -92.3 -108.1 -108.4 -131.5 -142.7 -198.9 -4.4 -129.6 8.8 -139.5 -100.7 -90.8 -103.3 -94.2
34 -5.7 96.2 -141.1 -10.4 -9.4 -125.4 72.8 -15.8 101.0 -97.6 -20.7 -28.1 -98.5 23.4 -4.1 -5.8 -37.0 -35.3 9.1 -10.9
35 -129.9 -104.1 -169.9 -100.9 -151.5 -118.3 -102.0 -140.3 -146.1 -162.0 -106.5 -208.0 -182.4 -70.4 -140.8 -118.2 -98.0 -127.5 -54.3 -114.0
36 52.0 42.6 -4.4 74.9 51.3 -86.5 98.1 44.0 -45.7 49.2 -9.7 6.7 24.4 -86.3 34.9 51.5 67.4 -65.0 -25.2 55.1
37 -156.2 -141.3 -160.9 -157.4 -156.3 -167.6 -154.3 -23.0 -156.6 -170.1 -5.2 -219.5 -165.4 -157.0 8.8 -159.6 14.2 -22.2 -61.5 -151.6

Table 5–3: The Binding Affinity Scoring Matrix (BASM) R score values of the amylin
amyloid. The first column represents the amino acid residue positions 1-37 of the
amylin amyloid. The rest of the columns show the R-scores of the 20 amino acids
interacting with every residue position of amylin.

4-residue parsimonious sequence. The assumption we make here is that the binding

affinity effect of separate positions are additive. This should hold for residues that

are not adjacent. We rank all the possible SP4 mutation combinations according

to their global binding affinity values and organize them in Table S4. The top 10

results are shown in Table 5–2. For each of the top 10 results, we calculate their ΔG

values using Eq. 5.20 to obtain a lower-bound on their amyloidogenicity potential.

All of the ΔG values are positive, indicating that the analog will not spontaneously

misfold. Their stability is expected to be similar to amylin because of the similarity
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Res. A R N D C Q E G H I L K M F P S T W Y V
1 132.5 25.4 83.9 213.6 128.2 154.3 224.0 126.2 130.9 135.0 76.9 67.1 113.4 82.2 68.0 -26.8 122.1 65.3 100.4 149.8
2 52.1 34.5 43.6 165.4 39.9 104.6 170.5 37.9 163.1 96.1 85.2 -49.6 72.4 117.5 81.1 164.5 217.2 99.4 100.4 90.4
3 -85.1 109.2 36.3 119.7 42.0 25.7 109.6 -95.1 -67.0 247.3 -107.4 -86.9 27.0 -43.6 -128.6 -77.9 125.4 -100.9 -71.0 96.9
4 93.5 43.3 38.9 145.7 100.9 43.0 81.4 62.7 103.5 107.6 8.0 11.3 56.5 -22.0 69.4 102.4 151.8 190.7 81.2 134.8
5 85.8 52.4 99.2 231.3 147.4 112.8 122.3 139.5 59.2 105.7 109.2 132.0 22.5 45.7 41.4 145.8 107.0 82.5 114.2 147.5
6 -21.5 -50.4 8.7 -60.5 -41.9 -108.4 -94.5 93.4 -139.7 -111.1 21.7 -115.2 -38.2 32.7 78.2 17.8 -65.4 -89.0 4.3 -86.6
7 -47.2 -60.9 -93.9 11.1 -54.1 -49.1 24.8 -49.0 -63.9 -20.7 -34.7 -89.9 -59.0 -51.4 -82.2 -41.3 -13.7 -43.9 -40.7 -22.1
8 97.0 -97.8 -3.4 -82.7 19.9 -94.5 52.9 94.1 96.3 47.5 -52.1 101.2 -94.3 27.4 41.2 102.5 -59.1 18.3 55.2 -14.8
9 31.9 14.4 14.2 150.6 37.9 51.2 92.6 39.0 24.6 44.3 39.3 -45.9 -84.7 35.9 -81.2 43.3 68.3 69.0 58.2 48.6
10 -89.8 -94.2 18.5 65.9 -92.5 -77.0 -33.4 -93.5 -14.2 65.5 -9.7 -79.3 -120.9 -66.8 -61.8 -98.8 -69.1 -60.6 -70.9 -78.5
11 -77.7 -124.4 -144.9 -18.3 -79.1 -85.7 -21.8 -94.1 -110.6 -76.6 -99.9 -139.7 -111.3 -114.8 -109.3 -54.9 -26.3 -114.5 25.4 -64.2
12 52.5 139.5 -149.1 -76.5 59.3 4.4 39.6 40.3 43.9 -82.8 66.7 -97.6 -61.2 5.4 62.2 66.9 81.7 57.4 110.2 90.8
13 -139.7 -157.0 -211.4 -145.1 -146.6 -135.0 -84.3 -134.1 -161.0 -140.0 -150.2 -167.7 -174.8 -150.2 7.9 -114.0 -121.8 1.9 -140.7 -139.6
14 -28.7 10.1 -186.3 -56.0 -44.7 -135.3 11.2 -14.8 -148.2 20.7 69.7 31.9 -177.0 -135.0 -31.8 -56.4 18.8 -115.4 -123.7 -116.2
15 -108.3 -111.2 -154.7 -99.6 -107.1 -96.2 -100.9 -117.4 -124.6 -16.2 -107.9 -111.7 -136.8 -108.6 -121.4 -66.4 8.5 -149.5 -94.3 -91.3
16 27.7 42.4 -149.4 -130.2 60.0 -128.4 25.6 34.0 -20.4 63.9 -111.6 18.8 -125.1 -103.7 79.2 2.5 162.7 -35.3 -92.2 -59.8
17 26.0 51.0 -155.8 54.9 32.8 57.0 -93.1 33.4 -5.5 9.8 -80.0 -23.0 -35.4 22.4 -110.1 58.3 88.3 62.1 86.8 -0.3
18 -106.2 65.5 -4.0 74.2 -112.5 136.2 1.8 -90.1 -84.0 -81.4 0.8 29.2 20.8 -79.6 -37.8 -89.9 -42.4 -86.5 -124.8 69.1
19 -60.1 -39.6 -88.6 -45.3 -64.9 -77.3 -51.9 -75.4 -95.6 -64.0 -58.1 52.0 46.9 -86.6 35.0 -30.5 20.8 -46.6 -84.2 -43.7
20 100.8 112.2 -0.8 96.5 36.1 106.7 90.9 -32.1 48.6 -31.6 -91.4 43.9 -5.6 79.3 9.8 63.3 180.2 55.3 -37.7 128.1
21 58.8 74.8 6.8 59.3 53.6 57.8 73.2 100.9 13.5 -39.6 89.1 7.3 67.2 124.9 81.6 85.5 77.5 68.1 -18.1 99.1
22 20.1 97.4 -44.6 -38.5 32.5 36.3 87.4 32.1 1.3 -44.9 -71.5 53.1 96.4 -7.0 -73.9 36.2 133.7 11.9 -75.1 65.3
23 36.1 80.4 -123.9 18.6 19.7 36.5 -32.8 -38.7 -117.8 -109.1 -132.6 118.1 -87.4 -126.9 -72.6 -39.8 129.0 -79.6 -93.2 13.1
24 -94.4 106.7 -161.0 0.5 27.0 -84.7 11.9 32.9 -147.8 -48.3 0.5 -10.7 -138.3 108.5 21.1 -76.9 76.0 47.1 52.6 66.3
25 -51.2 -77.3 -87.5 -127.1 -55.6 -123.7 -155.3 -96.9 -138.9 -162.9 -138.5 -149.6 -187.2 5.1 -160.6 -108.9 -61.7 36.6 -66.3 -134.6
26 41.8 -0.3 42.8 74.0 41.0 -110.1 -11.7 47.6 -77.5 24.1 -118.0 -60.7 -68.2 -54.8 10.1 62.2 -10.1 -55.4 -26.5 -7.6
27 -54.8 -52.6 -78.9 -29.2 -17.9 -44.4 -54.6 -9.6 25.0 -32.1 -50.0 -61.7 -73.7 69.2 -113.4 -31.6 10.3 -72.0 -56.7 -48.8
28 122.1 129.6 92.4 139.4 97.0 97.9 279.7 162.3 84.6 18.0 -104.1 62.9 72.1 1.8 113.9 98.6 259.6 64.8 -22.2 61.0
29 -26.4 -69.2 -57.6 -39.4 -50.3 -40.0 -19.9 -25.5 -70.9 -39.2 -76.5 -83.3 -87.2 -66.7 -45.2 -36.0 -35.9 -68.9 -43.6 -35.4
30 118.2 -111.7 -124.3 131.5 100.2 -73.5 81.1 121.1 -97.7 -70.6 -106.2 -65.9 88.0 49.6 116.5 133.8 114.6 99.5 132.7 53.5
31 -56.7 -64.3 -136.2 -70.8 -109.1 -91.7 -100.6 -87.5 -94.2 -89.3 -92.1 -21.1 -106.1 -104.4 -72.7 -57.7 -109.4 -37.1 -94.1 -107.6
32 -23.1 175.9 74.9 105.0 -42.3 -25.7 163.7 27.2 -3.9 -12.6 46.4 32.4 -58.1 -11.8 14.5 -12.6 19.9 -51.8 -20.2 5.3
33 -81.9 -102.2 -61.5 -69.1 -97.1 -116.1 -68.5 -91.7 -121.9 -95.6 -106.4 -119.5 15.4 -66.9 25.7 -105.9 -71.2 -56.2 -111.5 -60.6
34 30.2 117.4 -113.7 20.2 37.3 -75.9 131.4 17.9 94.3 -62.8 11.3 45.6 -68.2 74.7 20.5 30.1 3.6 1.4 46.0 13.3
35 -102.5 -78.1 -145.7 -72.3 -125.1 -91.7 -76.3 -112.8 -63.2 -124.2 -81.2 -133.9 -149.0 -104.4 -124.9 -101.3 -77.0 -121.7 -29.3 -92.1
36 82.0 65.1 21.0 82.8 62.0 -78.1 134.1 50.7 -5.9 76.9 16.8 75.2 53.0 -37.4 56.8 81.9 86.6 -23.5 8.5 83.2
37 -120.5 -106.7 -124.3 -111.8 -119.6 -124.3 -107.3 -12.8 -111.1 -142.7 -19.3 -130.1 -132.4 -130.4 18.6 -122.2 39.6 8.3 -58.9 -112.9

Table 5–4: The Binding Affinity Scoring Matrix (BASM) R score values of the
Pramlintide amyloid. The first column represents the amino acid residue positions
1-37 of the Pramlintide amyloid. The rest of the columns show the R-scores of the
20 amino acids interacting with every residue position of Pramlintide.

in ΔG values. The global binding affinity score for the top 10 results are almost

twice that of an amylin amyloid, suggesting that the binding between an amyloid

and one of these analogs will be twice as strong as the binding between two amylin

amyloids. We used TANGO [98] to explore the amyloidogenicity potential of these 10

sequences and found that all sequences were predicted to create beta-strands, were

predicted to not form any alpha-helices, and expressed an extremely high propensity

for aggregation (see Table 5–5). This validation by TANGO supports the high values
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of ΔG in the top 10 parsimonious sequences.

Mutant AGG AMYLO TURN HELIX HELAGG BETA
M7 20.366 0.0755151 31.0521 16.326 0 52.5555
M4 20.3613 0.000988828 31.1604 20.7997 0 39.2829
M9 20.3598 0.0213931 31.3389 29.4205 0 39.2994
M3 19.6618 0.0699662 28.7727 21.8182 0 42.3278
M8 1.85245 0.141604 36.4188 19.4214 0 43.4389
M2 1.84561 0.0589466 39.0022 18.7469 0 39.0683
M1 0.94131 0.0589388 31.2728 26.4465 0 39.4491
M5 0.94131 0.059078 28.3981 18.7469 0 47.8042
M6 0.94131 0.0589388 37.8203 19.8651 0 38.7392
M10 0.94131 0.0589369 29.2805 21.189 0 45.6678

Table 5–5: Exploring aggregation properties of top 10 results with TANGO. The
AGG column ranks the beta-sheet aggregation propensity of each sequence. TANGO
suggests that the top 6 sequences are highly amyloidogenic. All the sequences possess
a HELAGG (helix-aggregation propensity) of 0. Although TANGO predicts the
aggregation propensity of proteins from sequence alone, the dipolar solvent model
provides much more accurate results since it calculates precisely the solvation and
enthalpy terms based on the full 3D atomic structure of proteins. It is supportive
however to find that the results from TANGO are in-line with our predictions.

Oligomer concentrations

The F (SP4) values in Table 5–2 give good binding affinities to the amyloids. In

addition to a strong binding affinity, the analog must form long fibril structures. We

built the aggregate structures for all ten results and computed their free energies (Eq.

5.1) in Fig. 5–3. We observe that all the ten sequences in Fig. 5–3 produce more

stable oligomers than the amylin amyloid, suggesting that they would form longer

aggregates since it is energetically favorable to do so. To determine the SP4 that

generates the highest potential to form long aggregates, we compute molecule con-

centrations (Eq. 5.27) by the law of mass action and report the volume fractions of

147



CHAPTER 5

Figure 5–3: Energies for top ten SP4 amylin analog oligomers.

Figure 5–4: Concentration of oligomers in solution.

oligomers at various lengths in Fig. 5–4. The sequence that ranked 9th in Table 5–2

expressed the most stability in Fig. 5–3 and dominated the volume fractions in Fig.

5–4 at oligomers of size greater than 7. This suggests that this sequence creates the

longest aggregates out of the 10 results. The longer it is, the more stable it gets. In

contrast, we observe that the SP4 ranked 10th in Table 5–2 would create many short

oligomers of length 4 compared to the ten sequences. It is also worth mentioning

that the most stable amyloid SP4 monomer is produced by the sequence ranked 1.
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(a) RMSD (b) RMSF

Figure 5–5: RMSD and RMSF plots for the SP4 sequence with the T9K, L12K, S28H
and T30K mutations over a 6ns simulation.

In Fig. 5–4 we see that this sequence dominates the concentrations at length 1 but

does not have a strong affinity to aggregate when compared to the other sequences.

Maintaining native form

Introducing four mutations to the sequence of amylin might destabilize it and

force it to misfold. To ensure that the (T9K L12K S28H T30K) mutation preserves

amylin structure and does not induce Pramlintide to misfold, we ran an MD simula-

tion of 6 ns on this amylin mutant. We report in Fig 5–5 (a) and (b) the RMSD and

RMSF graphs, respectively. The RMSD graph shows low values (< 1), indicating

that the mutant structure is very stable. From the RMSF graph, we see that the

positions 9, 12, 28, and 30 that correspond to the mutations all have low RMSF

values, indicating that the mutations do not cause structural turbulence and are not

disadvantageous to amylin. This preservation of structure should preserve amylin’s

functions.
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Modeling the effect of oligomers on the insulin-glucose relationship

Upon having a meal, glucose levels increase in the bloodstream. The increase in

levels signals the β-cells in the pancreas to produce insulin to instruct body organs

such as the hearth and muscles to absorb and metabolize glucose. This process lowers

the glucose level in the blood. The amylin polypeptide is also secreted with insulin

in this process at a ratio of 1:100 [51]. Amylin’s functions include modulating gastric

emptying, inhibiting glucagon to prevent postprandial spikes in blood glucose levels,

and inducing satiety leading to decreased food intake and weight loss [148, 149]. To-

gether, amylin and insulin play a crucial role in maintaining glucose homeostasis.

5.7 Discussion

Binding to oligomers

It is a challenging and computationally intensive task to find a molecule A that

binds well to a molecule B or subregions of B. One can perform docking simulations

with millions of molecules to narrow the search of finding a good fit. In this work, we

introduced the BASM method of calculating binding affinities of optimal sequences

to cut down on this search process and analyze the binding preferences of B, or

subregions of B. This procedure allowed us to explore engineering analogs that bind

strongly to oligomers and promote their aggregation.

Applying the BASM method to engineer an amylin analog that can be admin-

istered in native, non-amyloid form with Pramlintide injections resulted in discov-

ering a mutant (T9K L12K S28H T30K) that is predicted to bind twice as strong

to oligomers as amylin does to oligomers. This has been achieved by computing
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R-scores that bind well to oligomer surfaces and repel from Pramlintide’s amyloid

surface (Table 5–1). Using the optimal sequence constructed by these R-scores, we

searched through 66 thousand combinations of parsimonious mutations to find the

mutant with optimal binding and aggregation potential. This aggregation potential

was both assessed by the dipolar solvent model from [132] and by TANGO [98].

Furthermore, we validated the stability of the mutant in native form by performing

an MD production of 6 ns. The results showed that the mutant was stable in native

form, and hence could be a potential candidate for therapeutic injections.

The function of the mutant is intended to reduce oligomer toxicity and decrease

the rate of β-cell death. The mutant is stable in native form, and forms long fibrils

in amyloid form. Since its native structure is conserved and is analogous to amylin,

it will carry out the normal functions of amylin and Pramlintide. By design, the

analog has low affinity to Pramlintide and should not interfere with its function. It

will act as a replacement to amylin molecules and modulate gastric emptying, inhibit

glucagon, and induce satiety [148, 149].

Once the mutant analog reaches the pancreas and makes contact with the amy-

loids, some of it should misfold and aggregate with the surrounding amyloids and

oligomers, due to its relatively high ΔG (amyloidogenicity potential). Although long

fibrils have not been observed to be toxic in the pancreas, the pharmacological ef-

fect of elongating the oligomers still needs to be further studied. If very long fibrils

are observed to be unfavorable, controlling aggregation and capping the growth of

oligomers at a certain length will be required and can be achieved by choosing mu-

tants that exhibit lower oligomer concentration potentials or regulating the dosage
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of the injectable analogs in the body. The contribution of the BASM approach and

R-scores to limit the toxicity of oligomers by favoring aggregation could be extended

to explore creating potential therapeutic analog candidates for other amyloid related

diseases such as Huntington and Parkinson’s.

Modeling the effect of oligomers on the insulin-glucose relationship

Upon having a meal, glucose levels increase in the bloodstream. The increase in

levels signals the β-cells in the pancreas to produce insulin to instruct body organs

such as the heart and muscles to absorb and metabolize glucose. This process lowers

the glucose level in the blood. The amylin polypeptide is also secreted with insulin

in this process at a ratio of 1:100 [51]. Together, amylin and insulin play a crucial

role in maintaining glucose homeostasis.

Several mathematical models have been proposed to represent the complex pro-

cess of response to glucose intake [174]. However, to date, no model has incorporated

the production of amyloids and the effect of oligomers on β-cell death. We think that

by taking into account the observed effect of oligomers on cell death the analytical

solution of insulin in Eq. 5.29 introduced by [173] will be the one presented in Eq.

5.31.

We introduce a θ and R function into Eq. 5.31, where θ is the over burden term

expressing how cells produce more insulin to compensate for their dead neighbors

and R is the number of dead β-cells in the pancreas at time t. The (1 − R
C
) term

lowers the expected production of insulin proportional to the number of dead β-

cells in R. The more β-cells die, the less insulin should be produced. However,
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this relationship is not linear. Upon death of β-cells, the pancreas still attempts

to generate the required insulin by signalling the remaining live β-cells to secrete

higher levels [175]. This overburdening of cells is modelled with θ. The live cells will

produce higher levels of insulin and compensate for the dead cells until a threshold

d is reached, after-which the cells cannot produce any higher levels and the required

level of insulin is not met. When this happens, glucose levels in Eq. 5.30 are not

returned to normal, and the pancreas is required to continue pumping insulin. More

insulin produces more amylin (Eq. 5.35) at a ratio of 1:100 [135], and more amylin

creates higher levels of amyloids (Eq. 5.34). Again, this relationship is not linear.

When amylin concentration is lower than a threshold h, minimal amyloids form, and

when the threshold is exceeded, amyloid production is initiated in high concentration.

Eq. 5.33 models the percentage of amyloids in the pancreas system that form into

oligomers of average length kO. This percentage is positive or 0, depending on the

efficacy of any introduced oligomer inhibiting molecules. Because the death rate of

β-cells due to oligomers resembles a very slow exponential-like curve [176], we use

the compound interest formula to model this phenomenon in Eq. 5.32 .

The key to suppress the deterioration of β-cells is to minimize the number of

oligomers infecting cells, modelled in Eq. 5.33. Producing M molecules that bind

well to the oligomers achieves this result. In return, this affects Eq. 5.32, lowering

the number of dead cells and stabilizing Eq. 5.31 to produce the right quantity of

insulin. If the opposite occurs, Eq. 5.33 produces more oligomers, increasing the

dead cells in Eq. 5.32, and in turn lowering the production of insulin in Eq. 5.31.

Glucose levels will remain high in Eq. 5.30, prompting more insulin to be produced,
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triggering an increase in amylin and amyloid production in Eqs. 5.34 and 5.35. This

in turn creates more oligomers, and the cycle repeats.

Although the behavior of the subsystems of the theoretical model presented in

Eqs. 5.30 - 5.37 are known biologically, we do not provide a simulation at different

time points because there are way too many parameters in the system of integral

equations that we dont have experimental values for. The aim of the model is to pro-

vide the theoretical framework that incorporates amyloids, oligomers, and toxicity

of the beta cells, and to show at a high level the general effect of lowering oligomer

concentration on the fitness of β-cells. It will become useful to extract data from

simulating the model once many of the parameters are discovered experimentally.

Online tool

The BASM method and R-scores procedure have been packaged into a tool

called Single-rEsidue Mutational based Binding Affinity (SEMBA) to probe the mu-

tation landscape of amyloid proteins. The tool can be downloaded as a standalone

software from http://amyloids.cs.mcgill.ca
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5.8 Supplementary material

Table 5-6 (S4) was too long to include in this thesis. It can be found at the

following link: http://amyloid.cs.mcgill.ca/SEMBA

At the same link is an executable file called “GetRank.py” that can be used to

find the specific ranking and affinity of any of the 4-point mutations.
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Conclusion

6.1 Summary

In this thesis we developed a framework to simulate the atomic structures of

amyloid fibrils and explore ways to limit their aggregation and toxicity. Our work

has focused in particular on amyloids in diabetes, but can certainly be applied to

study amyloids in Alzheimer’s, Huntington, and Parkinson’s diseases.

In Chapter 2, we developed the stability landscape method to find suitable struc-

tural parameters to build polymorphic fibril aggregates with our CreateFibril tool.

The CreateFibril tool uses the structure of one amyloid protein to simulate and build

the possible polymorphic assemblies using replication and rigid affine transformation

matrices. This method replicated the experimental results for the Aβ and HET-s

amyloids, and predicted the correct amylin fibril structures, which were validated

during the time of our study.

In Chapter 3, we used the CreateFibril tool and results from Chapter 2 to

construct the structures of amyloid fibrils that develop in diabetes patients. We

developed a fast method to analyze an amyloid structure and predict destabilizing
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mutations. The method studied the effect of the destabilizing mutations on nucle-

ation, amyloidogenicity and fibril extension. Using this method, we found a set of

mutations that destabilize amylin amyloids and potentially lower aggregation rates

and amyloid formation. The mutations can be further studied and validated experi-

mentally to engineer a replacement drug for amylin amyloids.

In Chapter 4, we explore and characterize the entire single-point mutation land-

scape for the amylin protein that misfolds in diabetes. We reveal the effect of single-

point mutations on amylin’s stability and potential to misfold into amyloids. Using

the data of single-point mutations, we construct a way to estimate efficiently the ef-

fect of n-point mutations. This allowed us to explore millions of potential mutation

combinations that stabilize amylin and inhibit fibrils more than the leading Pram-

lintide drug. Because experimental testing of all these mutation combinations is not

feasible, this computational work can be used as a guide to shortlist the candidate

mutations for potential drug design.

In Chapter 5, we attempted to tackle the problem of toxic oligomers (short

amyloid aggregates) killing β-cells and aggravating the conditions of diabetes. We

developed the Binding Affinity Scoring Matrix (BASM) method to probe the binding

affinity of amylin amyloids and engineered an amylin mutant analog that elongates

oligomer structures to reduce their toxicity. We designed the analog to be administed

with Pramlintide shots for type I and type II diabetes patients.
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6.2 Contribution to amyloid research

The results of this thesis are of high importance to the fields of drug design,

development, and therapy. The computational tools to build amyloid fibrils and as-

sess their stability under the application of mutations can facilitate the exploration,

development, and enhancement of therapeutics that hinder or inhibit fibril forma-

tion. In the case of the Pramlintide drug in diabetes, our tools showed that various

improvements to the sequence of the drug can be made to offer a more stable replace-

ment, an insight that can’t be made through experimental efforts alone. The ability

to screen billions of possible mutation combinations to find a few good candidates is

becoming crucial in advancing therapeutics.

The methods in this thesis could be applied to explore the mutation landscape

of the Aβ protein in Alzheimer’s and the α-s protein in Parkinson’s, among other

diseases. The landscapes can determine the mutations required to create more stable

analogs and restore lost biological function. The BASM method in Chapter 5 could

be used to probe the binding affinity of Aβ and α-s to construct molecules that bind

strongly to their amyloids and either inhibit or promote their extensions.

6.3 Future direction

We have emphasized in this work that amino acid mutations alter the stability of

proteins and their potential to misfold into amyloid structures. Researchers have been

engineering Aβ and amylin analogs with mutations that affect their amyloidogenicity

rate and their membrane permeability. However, computationally quantifying the

effect of a mutation on the energy barrier between a native protein structure and its
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amyloid form is an unexplored challenge. Understanding the effect of mutations on

energy barriers will help us design more efficient analogs for disease. In this thesis, we

quantified the effect of mutations on the stability of native proteins, and estimated a

lower bound on the energy barrier between native and amyloid forms. Determining

the full energy barrier will enable us to predict the effect of mutations on altering the

probability of misfolding into amyloids. With this information, we can confidently

select candidates for drug design that not only introduce stability to the native form,

but also increase the energy barrier to decrease the chance of misfolding.

One way to determine this barrier is to construct possible folding pathway tra-

jectories between a native and amyloid shape. Molecular dynamics and affine trans-

formation matrices can be used to assist a structure in misfolding along the pathways

and assessing structural energy at specific points along a trajectory. For each pre-

dicted folding point in a trajectory that we make, we let the molecule “relax” by

running energy minimization and MD, upon which we predict the pathways that can

be taken from that point to reach to the amyloid form. We can repeat this procedure

for several points along the trajectory, until the structure converges to an amyloid.

This generates a rough estimate of the energy barrier along the trajectory. Solving

for the optimal trajectory returns an estimate for the energy barrier between the

native and amyloid form.
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come in different colours: entropy-enthalpy compensation, free energy windows,
quantum confinement, pressure perturbation calorimetry, solvation and the
multiple causes of heat capacity effects in biomolecular interactions,” Biophys
Chem, vol. 93, pp. 215–30, Nov 2001.

[88] R. LoBrutto, A. Jones, Y. V. Kazakevich, and H. M. McNair, “Effect of the
eluent ph and acidic modifiers in high-performance liquid chromatography re-
tention of basic analytes,” J Chromatogr A, vol. 913, pp. 173–87, Apr 2001.

[89] P. Koehl and M. Delarue, “Aquasol: An efficient solver for the dipolar poisson-
boltzmann-langevin equation,” J Chem Phys, vol. 132, p. 064101, Feb 2010.
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R. Lurz, R. Anwyl, S. Schnoegl, M. Fändrich, R. F. Frank, B. Reif, S. Günther,
D. M. Walsh, and E. E. Wanker, “Small-molecule conversion of toxic oligomers
to nontoxic -sheet-rich amyloid fibrils,” Nat Chem Biol, vol. 8, pp. 93–101, Jan
2012.

[125] R. Gupta, N. Kapoor, D. P. Raleigh, and T. P. Sakmar, “Nucleobindin 1
caps human islet amyloid polypeptide protofibrils to prevent amyloid fibril
formation,” J Mol Biol, vol. 421, pp. 378–89, Aug 2012.

[126] S. Sinha, D. H. J. Lopes, Z. Du, E. S. Pang, A. Shanmugam, A. Lomakin,
P. Talbiersky, A. Tennstaedt, K. McDaniel, R. Bakshi, P.-Y. Kuo, M. Ehrmann,
G. B. Benedek, J. A. Loo, F.-G. Klärner, T. Schrader, C. Wang, and G. Bitan,



173

“Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly
and toxicity of amyloid proteins,” J Am Chem Soc, vol. 133, pp. 16958–69, Oct
2011.

[127] F. Meng, A. Abedini, A. Plesner, C. T. Middleton, K. J. Potter, M. T. Zanni,
C. B. Verchere, and D. P. Raleigh, “The sulfated triphenyl methane derivative
acid fuchsin is a potent inhibitor of amyloid formation by human islet amyloid
polypeptide and protects against the toxic effects of amyloid formation,” J Mol
Biol, vol. 400, pp. 555–66, Jul 2010.

[128] P. T. Lansbury, Jr, “Evolution of amyloid: what normal protein folding may
tell us about fibrillogenesis and disease,” Proc Natl Acad Sci U S A, vol. 96,
pp. 3342–4, Mar 1999.

[129] C. A. Ross and M. A. Poirier, “Protein aggregation and neurodegenerative
disease,” Nat Med, vol. 10 Suppl, pp. S10–7, Jul 2004.

[130] D. J. Selkoe, “Folding proteins in fatal ways,” Nature, vol. 426, pp. 900–4, Dec
2003.

[131] A. Alonso, T. Zaidi, M. Novak, I. Grundke-Iqbal, and K. Iqbal, “Hyperphos-
phorylation induces self-assembly of tau into tangles of paired helical fila-
ments/straight filaments,” Proc Natl Acad Sci U S A, vol. 98, pp. 6923–8,
Jun 2001.

[132] M. R. Smaoui, F. Poitevin, M. Delarue, P. Koehl, H. Orland, and J. Wald-
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