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ABSTRACT

This thesis investigates the dynamics of Rayleigh and compressional wave propa-

gation in viscoelastic materials. A variety of experiments were performed and compu-

tational models were created to quantify homogeneous and inhomogeneous material

properties. The present research highlights the mathematical and physical principles

of Rayleigh wave propagation. A basic mathematical model for single- and multi-

mode Rayleigh wave propagation was created. Model predictions were used to inter-

pret experimental observations. Spectral analysis in the wavenumber-frequency do-

main was performed to provide detailed information about the wave propagation phe-

nomena, obtained both numerically and experimentally. The frequency-dependent

viscoelastic material properties of silicon rubbers and one injectable hydrogel bioma-

terial were quantified based on the Rayleigh wave method and torsional rheometry.

Compressional wave propagation experiments were performed using a traveling wave

approach for verification purposes. The measured wave speed and the dispersion

curves confirmed the results from the Rayleigh wave experiment. Viscoelastic in-

homogeneous structures with embedded nylon fibers were then investigated. The

influence of the fibers on the anisotropy of the wave propagation was analyzed. A

detailed numerical simulation of the laboratory experiment was finally performed.

The results were found to be in agreement with measured data, thereby validating

the approach. A parametric study uncovered the possibility to adjust material pa-

rameters to fit the numerical envelope function of the peak amplitudes obtained from

experimental data. The simulation and experimental methods enabled the inverse
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determination of the frequency-dependent material properties up to a frequency of

2 kHz.
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ABRÉGÉ

Ce travail de thèse avait pour but d’étudier le comportement dynamique de la

propagation d’ondes de Rayleigh et de compression dans des matériaux viscoélastiques.

Diverses mesures exprimentales ont été faites et des modèles numériques ont été con-

struits afin de quantifier les propriétés homogènes et inhomogènes des matériaux.

Le présent travail met en evidence les principes physiques et mathématiques de la

propagation d’ondes de Rayleigh. Des modèles mathématiques de propagation uni-

modale ou multimodale d’ondes de Rayleigh ont été développés. Les prédictions ont

permis d’interpréter les comportements expérimentaux observés. L’analyse spectrale

dans le domaine nombre d’onde versus fréquence a été utiliseée afin d’obtenir des in-

formations détaillées sur la vitesse de propagation d’ondes, tant expérimentalement

que numériquement. Les propriétés du silicone et d’un biomatériau, un hydrogel

injectable, ont été quantifiées en fonction de la fréquence grâce à la théorie d’ondes

de Rayleigh et à un rhéomètre de torsion. Les résultats confirment les tendances

observées pour les ondes de Rayleigh. Des matériaux viscoélastiques inhomogènes

avec des fibres de nylon incorporées ont ensuite été étudiés. L’influence des fibres

sur l’anisotropie de propagation de l’onde a été analysée. Dans le cas des ondes

progressives, il a été observé que l’approche d’onde stationnaire n’était pas appro-

priée pour de hautes fréquences. Un model d’onde progressive de compression a

été implémenté. Une simulation numérique détaillée de l’expérience en laboratoire

a été exécutée. Les résultats obtenus correspondent aux données expérimentales,
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validant ainsi cette approche. Une étude paramétrique a mis en avant la possi-

bilité d’ajuster les paramètres des matériaux pour faire correspondre la fonction

d’enveloppe obtenue numériquement avec les données expérimentales. Les méthodes

numériques et expérimentales ont ainsi permis l’identification inverse des propriétés

matériau jusqu’à une fréquence de 2 kHz.
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CHAPTER 1
Introduction

1.1 Overview

Viscoelastic materials are increasingly used over a wide range of biomedical

applications. In the field of tissue engineering, viscoelastic materials have been used

to help tissue regeneration following injury. One typical example is the injection of

a viscoelastic material into vocal fold scar [1]. Scaring increases the stiffness of vocal

fold tissue due to an increase in amount of collagen type I, in contrast to unscarred

tissue which has a higher density of collagen type III [2]. This change in stiffness has

a significant impact on voice production. Voice is created by an oscillatory motion

of the vocal folds due to forced airflow through the glottis. This forced vibration

induces a wavy motion on the folds surface, often called a mucosal wave. Latifi

et al. [1] suggested that the use of an injectable viscoelastic material can help to

restore the original vocal fold tissue properties after scarring. Other investigations

proposed that viscoelastic materials can be used to create functional grafts for the

replacement of different organs [3], [4]. Kozin et al. [4] presented a method to produce

a 3D printed tympanic membrane (TM) to fully replace the eardrum. The prosthetic

replacement of the original TM needs to transmit sound from the surroundings to

the ossicular chain of the middle ear. The goal of this study was to measure the

viscoelastic properties, including the wave speed and phase velocity, of the prosthetic

replacement and to tune the properties to match those of the native human TM. The
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vocal folds and the TM, are the only organs which are mechanically solicited at high

frequency. The vocal folds vibrate over the frequency range between 0.1 to 2 kHz [5],

[6] and the eardrum is excited over the range between 0.1 to 30 kHz [3]. A method

to quantify the frequency-dependent material properties of the viscoelastic material

used is needed to perfectly restore the behavior and the function of the replaced

organs.

1.2 Literature review

Lagakos et al. [7] 1986 studied the frequency and temperature dependence of

the elastic moduli for numerous viscoelastic materials. The conclusion drawn from

their work was that material properties change with decreasing temperature in a

way that is proportional to their change with increasing frequency. Based on this

assumption, frequency-dependent material characterizations with a vast number of

experimental methods have been developed and performed [8], [9], [10]. Conven-

tional methods to quantify viscoelastic biomaterials are most frequently related to

parallel plate rheometry [11]. Chan and Titze [12], [13] quantified the viscoelastic

material parameters of implantable polytetrafluoroethylene and other phonosurgi-

cal biomaterials. Their experiments were performed by a parallel-plate rotational

rheometer with frequencies up to 15 Hz. Klemuk et al. [14] used a controlled stress

parallel plate rheometer in the frequency range of 0.001 Hz to 100 Hz. Viscoelastic

parameters were determined and extrapolated to obtain the viscoelastic properties

for frequencies up to 1000 Hz. In 2004 a significant paper was published on high fre-

quency injectable biomaterial testing by Titze et al [14]. Based on an error analysis

of the results obtained by rheometry, an accurate prediction of the elastic and shear

2



modulus in the audible frequency range of 20 Hz to 150 Hz was obtained. Jia et al.

[15] developed a galvanometer which is based on a slightly modified rheometer. The

fundamental idea of their experimental method was to isolate the response of the

shear wave components traveling in the material tested at high frequencies. In that

way accurate predictions of the material behavior up to a frequency of 500 Hz were

made. Based on the reviewed literature, no experimental approach based on parallel

plate rheometry is known to determine material properties above 500 Hz.

Pritz [16] developed a mathematical model and experimental method for the

characterization of a high frequency-dependent viscoelastic material. A rod-like

specimen was produced and excited. The frequency-dependent response was used

to quantify the material properties. Based on this work Park et al. [8] character-

ized numerous materials and obtained their Young’s modulus over a wide frequency

range. Lai and Rix [17] performed a near-surface site characterization with the help

of the simultaneous inversion of Rayleigh phase velocity and attenuation. Their

work explained in detail how to predict surface layer propagation and multi-mode

excitation. The thesis contained a detailed analysis of known surface wave meth-

ods, mathematical analysis, including the Green’s function approach and a proposed

reformulation of the linear theory of viscoelasticity regarding Rayleigh wave eigen-

problems. Moreover, a detailed explanation on how to calculate the effective Rayleigh

phase velocity for superimposed modes of propagation was proposed. Finally an al-

gorithm to predict the shear wave velocity profile was implemented and tested. The

results calculated from the numerical implementation were in good agreement with

the predictions from the theoretical model.
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Foti [18] proposed a new testing method for surface characterization based on

the experimental transfer function. It included the measurement and investigation

of coupling between Rayleigh dispersion and attenuation, a regression process to

quantify numerical simulation data, and the determination of the stiffness and the

damping of layered viscoelastic materials. The basic idea of the before mentioned

surface wave dispersion equation was derived from [19] and [20]. Royston et al.

[10] proposed a surface wave propagation method to determine viscoelastic material

properties caused by surface excitation at a low audible frequency, below 1 kHz. Two

different approaches were proposed. The first one was based on optimizing coeffi-

cients through the regression of experimental dispersive Rayleigh phase speed data.

The second one focused on optimizing coefficients in a proposed linear viscoelastic

model to fit the dynamic frequency response function between the displacement at

two known locations. Boeckx et al. [21] proposed a new method to quantify the wave

speed of guided acoustic waves in poroelastic or poroviscoelastic plates. The experi-

mental setup was similar to the one of Royston et al. and included an electrodynamic

shaker and laser doppler vibrometer (LDV). Different phase velocities for different

modes were identified with the help of the relationship between wave number and

frequency. Kazemirad et al. [22], [23] proposed a method to quantify the dynamic

frequency-dependent material properties of a layered viscoelastic structure based on

Rayleigh surface wave phase speed and attenuation. The determination was possible

up to a frequency of 4 kHz. The developed method was reported to be accurate and

cost effective. One of the limitation of all the reviewed papers was that there were

a limited number of experimental methods to cross validate the obtained results.
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Moreover, there was no way to compare wave field and phase velocity distributions

for the proposed approaches.

Gucunski et al. [24] simulated the behavior of multi-mode Rayleigh wave propa-

gation for layers with different stiffness. It was shown that the dominance of different

modes is dependent on the arrangement of the layers with increasing or decreasing

stiffness. Bhashyam [25] explained how to choose the correct model to simulate

viscoelastic material and do a correct analysis. Adhikari and Chowdhury [26] pro-

posed simulating frequency-dependent damping of viscoelastic material based on the

Rayleigh damping approach and explained in detail the underlying mathematics and

physics, [27].

1.3 Research objectives

The literature review showed that much numerical and experimental work has

been done in the field of viscoelastic material characterization. Numerous exper-

iments and simulations were performed to determine wave attenuation and phase

velocities. What is missing from the literature is a detailed analysis of the com-

plex wave propagation and the underlying wave field between the performed ex-

periments. Little work was done on differentiating between different kind of wave

types propagating, interfering and maybe invalidating the fundamental assumptions.

Moreover, few comparison between numerical and experimentally obtained results

were made. The main goal of the present study was to understand the behavior of

frequency-dependent viscoelastic materials, and to develop a reproducible charac-

terization method to quantify injectable hydrogel and other viscoelastic materials.
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Moreover, a detailed numerical model was needed to distinguish between interfering

waves and multi-mode waves.

The first goal was to identify the most accurate experimental method to quan-

tify the material properties. Different methods were compared to cross-validate the

obtained results. The method should not be limited to one specific material, but

should work for a variety of viscoelastic materials. The bandwidth of the experimen-

tal method should be in the frequency range of interest, up to 2 kHz. The developed

surface wave quantification method should enable a detailed investigation of the un-

derlying wave field. A frequency-wavenumber spectrum approach was followed [28],

[29], [30].

The second aim was to develop a numerical model replicating the experiments

performed in the laboratory. The analysis of the numerically obtained results re-

veals any shortcomings of the assumptions, and help identify experimental errors.

A mathematical simulation of Rayleigh wave propagation and multi-mode behavior

based on a mathematical model proposed in [31] was thus created.

1.4 Thesis organization

The theoretical model for three different methods to quantify the viscoelastic

material properties and an analytical expression to simulated Rayleigh wave prop-

agation is described in Chapter 2. The experimental methods, including sample

preparation, detailed apparatus description and method implementation is presented

in chapter 3. Chapter 4 presents the numerical implementation of the physical exper-

iment. In Chapter 5, the results of the experimental methods are discussed, analyzed
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and correlations between them were made. Chapter 6 contains a summary of the

work, and of suggested future work.
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CHAPTER 2
Theoretical model

2.1 Rayleigh wave propagation in a homogeneous half-space

Compressional and shear waves propagate inside extended viscoelastic or solid

materials upon dynamic excitation. When structural waves strike a surface or an

interface between two different materials, their energy is scattered. Different wave

components are reflected or transmitted. A fraction of the incident wave energy is

used to produce a surface wave at the interface, traveling along the boundary between

different media. These surface waves are called Rayleigh or Love waves. Love waves

are characterized by a horizontally polarized in plane motion, which is hard to detect.

Rayleigh waves have a vertically polarized out-of-plane motion, which is easier to

observe. There is no difference in the physics of the Rayleigh wave propagation at an

interface between two media or at a boundary. The surface of a material constitutes

an interface between the medium and it’s surrounding environment. Surface waves

are attenuated at a certain rate along the direction of propagation. The wave phase

velocity and it’s amplitude attenuation rate fully characterize wave propagation [32],

which can be represented by a complex wavenumber, k̂. It is possible to calculate the

wave speed and the attenuation rate by measuring the displacement and phase at

different locations. The attenuation rate and speed of propagation carry information

about the frequency-dependent material properties. The complex shear modulus

can be described as Ĝ � G
�

� iG
��

, with G
�

and G
��

representing the storage and loss
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modulus, respectively. Both of these parameters can be obtained from the theoretical

models, provided that the type of surface wave is known. In the present work,

a method to extract the dynamic shear modulus Ĝ from the measured Rayleigh

wavenumber k̂R is investigated. The theoretical model for traveling Rayleigh wave in

one single layer medium is relatively simple. The limitation is that there should be

no reflection from the medium boundaries which create reflected wave components

that could interfere with the original propagating wave.

Figure 2–1 illustrates the ideal situation of a surface wave generated on the sur-

face of a soft material by the vibration of a plunger. The plunger creates a sinusoidal

displacement along the vertical x2-direction with a known frequency. This pertur-

bation created one or several compression and shear waves propagating inside the

material [33], with the complex speeds represented by ĉC and ĉS, respectively. These

waves are measurable byproducts of the excitation. To obtain a purely traveling

wave, the wave must be sufficiently attenuated before reaching the boundary. The

surface wave created is confined to the interface and is assumed to exhibit a typical

Rayleigh wave behavior. It is assumed that a near-field exists. i.e. the region within

one wavelength from the excitation source may not exhibit an ideal propagating

wave. The theory of surface wave propagation predicts one single wave propagating

for a homogeneous half-space [18].

2.1.1 Mathematical model

The material was assumed to be viscoelastic, isotropic and homogeneous. There-

fore, the constitutive equation relating stress, σij and strain, εij is

σij � λ̂�ω�δijε � 2μ̂�ω�εij, (2.1)
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Plunger
Propagation direction

Sample

Figure 2–1: Sketch illustrating compressional, shear and Rayleigh wave propagation
inside a homogeneous half-space. One Rayleigh wave is propagating on the surface
of the material. The wave propagates along the x1-direction.

where λ̂�ω� and μ̂�ω� represent the complex, frequency-dependent Lame functions,

δij is the Kronecker delta function and ω is the angular frequency. The Lame func-

tions are defined as

μ̂�ω� � Ĝ�ω�, (2.2)

λ̂�ω� �
2ν

1 � 2ν
Ĝ�ω�, (2.3)

where ν is the Poisson’s ratio of the material and Ĝ�ω� � G
�

�ω�� iG
��

�ω� represents

the complex shear modulus. The displacement of any point within the solid must
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obey Navier’s equation [34]

ρ
∂
2
ū

∂2t
� μ̂�

2
ū � �μ̂ � λ̂��̄��̄ � ū�, (2.4)

where ρ represents the density of the material, and ū is the displacement vector. Ac-

cording to Helmholtz, the displacement may be expressed as the sum of the gradient

of a scalar potential, φ and the curl of a vector potential, ψ̄, as

ū � �̄φ � �̄ � ψ̄, (2.5)

with the assumption that �̄ � ψ̄ � 0. The vector potential may be caused to be

ψ̄ � �0, 0, ψ� Substitution of Eq. (2.5), into Eq. (2.4) and equating each term to

zero yields a system of two Helmholtz equations

�k̂2
C ��

2�φ̂ � 0, (2.6)

�k̂2
S ��

2�ψ̂ � 0, (2.7)

with ψ̂ and φ̂ representing the shear and the compressional wave potentials [35].

The complex wavenumber k̂c and k̂s, can be expressed as

k̂C �
ω

ĉC
�

2πf�
�λ̂ � 2μ̂��ρ

, (2.8)

k̂S �
ω

ĉS
�

2πf�
μ̂�ρ, (2.9)

where f is the frequency of excitation, and ĉc and ĉs represent the complex com-

pressional and shear wave speed, respectively. The potentials help us to express the
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directional displacement component in a Cartesian coordinate system

ûx1
�

∂φ̂

∂xx1

�

∂ψ̂

∂xx2

, (2.10)

ûx2
�

∂φ̂

∂xx2

�

∂ψ̂

∂xx1

. (2.11)

To satisfy the stress free boundary condition at x2 � 0 the wave motion is

expressed in x1-direction in the following form [34]

φ̂ � Âe
ik̂Rx1�η̂x2 , (2.12)

ψ̂ � B̂e
ik̂Rx1�β̂x2 , (2.13)

where k̂R represents the complex Rayleigh wavenumber, Â and B̂ the potentials

amplitudes and the time-dependence exp��iωt� is implicit. It is worth noticing that

ψ and φ decay exponentially with increasing x2. This condition is in agreement with

the assumption that the Rayleigh wave is confined to the surface of the material.

Substitution of Eqs. (2.12) and (2.13) into Eqs. (2.6) and (2.7) yields

�k̂
2
R � η̂

2
� k̂

2
C� η̂ �

�
k̂2
R � k̂2

C , (2.14)

and

�k̂
2
R � β̂

2
� k̂

2
S� β̂ �

�
k̂2
R � k̂2

S. (2.15)
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The set of boundary conditions which satisfy the stress free interface are σ̂12 �

σ̂22 � 0. Applying this and substituting Eqs. (2.10) and (2.11) into Eq. (2.1) one

gets

σ̂22 � �μ̂�k̂2
Sφ̂ � 2� ∂

2
ψ̂

∂2x2x1

�

∂
2
φ̂

∂2x1
2
��

� �μ̂��k̂2
S � 2k̂

2
R�Âeik̂Rx1�η̂x2

� 2ik̂
2
Rβ̂B̂e

ik̂
2
Rx1�β̂x2�, (2.16)

σ̂12 � μ̂�2 ∂
2
φ̂

∂2x1x2

�

∂
2
ψ̂

∂2x2
2

�

∂
2
ψ̂

∂2x2
1

�

� μ̂���2ik̂Rη̂�Âeik̂Rx1�η̂x2
� �k̂R � β̂�B̂e

ik̂Rx1�β̂x2�, (2.17)

with confinement to the surface x2 � 0 one gets

��2k̂2
R � k̂

2
S�Â � 2ik̂Rβ̂B̂�eik̂Rx1

� 0, (2.18)

��2ik̂Rη̂Â � �2k̂2
R � k̂

2
S�B̂�eik̂Rx1

� 0. (2.19)

The before mentioned equations can be rearranged in matrix format and are satisfied

if
�����������

�2k̂2
R � k̂

2
S� 2ik̂Rβ̂

�2ik̂Rη̂ �2k̂2
R � k̂

2
S�

�									


�
���


Â

B̂

�
���
�
�

�����������

0

0

�����������
(2.20)

A nontrivial solution of Â and B̂ is obtained when the determinant is equal to zero

�2k̂2
R � k̂

2
S�2 � 4k̂

2
Rβ̂η̂ � 0. (2.21)
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Eq. (2.21) simplified leads to the following dissipation equation

�2w2

ĉ2R
�

w
2

ĉ2S
�2 � 4

w
2

ĉ2R
�w2

ĉ2R
�

w
2

ĉ2C
�

1
2�w2

ĉ2R
�

w
2

ĉ2S
�

1
2

� 0, (2.22)

�2 � ĉ
2
R

ĉ2S
�2 � 4�1 � ĉ

2
R

ĉ2C
�

1
2�1 � ĉ

2
R

ĉ2S
�

1
2

� 0, (2.23)

�2 � ξ̂
2�2 � 4

��������1 � ξ̂2��1 � ξ̂2

κ̂2
� � 0, (2.24)

where

κ
2
� � ĉC

ĉS
�2 � � k̂S

k̂C
�2 � λ̂ � 2μ̂

μ̂
�

2 � 2ν

1 � 2ν
, (2.25)

and ξ̂ � ĉR
ĉS
�

k̂S
k̂R
. From Eqs. (2.14) and (2.15) η̂ � k̂R

�
1 � ξ̂2

κ̂2 and β̂ � k̂R

	
1 � ξ̂2.

The Rayleigh wave is thus treated as the superposition of a compressional and a

shear wave. Taking a closer look at Eqs. (2.25) and (2.24), it can be observed that

the relationship between shear and Rayleigh wave ξ̂ is dependent on κ̂ which can be

expressed in terms of the Poisson ratio. It is known that if ξ̂ is smaller than unity,

and if κ̂ is greater than unity, then η̂, β̂ are real numbers η̂, β̂ � R. Mal and Singh

[36] proved that Eq. (2.24) has only one root between 0 and 1. To show that, first

the radicals have to be eliminated and Eq. (2.24) rearranged


2 � ξ̂
2�4 � 16
1 � ξ̂

2�
1 � ξ̂
2
 1

κ̂2��, (2.26)

ξ̂
6
� 8ξ̂

4
� 
24 � 16 1

κ̂2�ξ̂2 � 16
1 � 1

κ̂2� � 0 � f�ξ̂2�. (2.27)
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If ξ̂
2
� 0 and ξ̂

2
� 1 and solve for f

f�0� � �16�1 � 1

κ̂2 � � 0, (2.28)

f�1� � 1 � 8 � 24 � 16 � 1 � 0. (2.29)

is obtained. The term ξ̂
2
has a maximum of three roots since the equation of ξ̂

2

is a third order polynomial. It was shown that f�ξ̂2� switches its sign between 0 and

1 and therefore it can have either a maximum of all three roots or a minimum of 1 in

between. Furthermore, the behavior of f between 0 and 1 can be identified by looking

at it’s slope f
�

. The slope is positive between 0 and 1 because f�0� � 24 � 16 1

κ̂2 �

0, f
���ξ̂2� � 6ξ̂

2
� 16 � 0. Therefore, ξ̂

2
has only a single root between 0 and 1. From

now on, this root is called ξ̂R �
ĉR
ĉS
. This is very important to understand because it

proves that there is one unique solution and therefore only one mode of propagation

in homogeneous viscoelastic materials. This mode of propagation is confined to the

surface of the material, and constitute the canonical Rayleigh wave.

Finally the corresponding surface displacement field can be obtained by substi-

tuting Eqs. (2.12), (2.13) into Eqs. (2.10), (2.11)

ûx1
�iω, x1, x2� � �ik̂RÂe�η̂x2

� β̂B̂e
β̂x2�eik̂Rx1 , (2.30)

� ik̂RÂ�e�η̂x2
� � k̂

2
S

2k̂2
R

� 1�e�β̂x2�eik̂Rx1 , (2.31)

�x2�0�
� ik̂RÂ� k̂

2
S

2k̂2
R

�eik̂Rx1 , (2.32)

15



ûx2
�iω, x1, x2� � � � η̂Âe

�η̂x2
� ik̂RB̂e

�β̂x2�eik̂Rx1 , (2.33)

� η̂Â� � e
�η̂x2

�

i
2
k̂
2
R

2k̂R � k̂S
e
�β̂x2�eik̂Rx1 , (2.34)

�x2�0�
� η̂Â� � 1 �

k̂
2
R

2k̂R � k̂S
�eik̂Rx1 . (2.35)

In these equations, the time-dependence e
iωt

is implicit. The coefficients of the

exponential terms of ûx1
and ûx2

are imaginary and real. That indicates that the

displacements components are 90
�

out-of-phase. Moreover, the Rayleigh wave pene-

trates the material below it’s surface as well. The elliptical motion can be shown by

calculating the real part of Eqs. (2.32) and (2.35)

Real�ûx1
�iω, x1, x2�� �x1�0�

� �k̂RÂ�e�η̂x2
� � k̂

2
S

2k̂2
R

� 1�e�β̂x2�sin�iωt�, (2.36)

Real�ûx2
�iω, x1, x2�� �x1�0�

� η̂Â� � e
�η̂x2

�

k̂
2
R

2k̂R � k̂S
e
�β̂x2�cos�iωt�. (2.37)

2.1.2 Transfer function method

The transfer function between the oscillatory displacements at two different lo-

cations along the wave propagation direction was calculated. The transfer function

between the vertical components, ux2, at two different locations along the propaga-

tion direction, x1 , on the interface of the specimen is defined as

Ĥ�iω� � 					Ĥ�iω�					 eiϕ � ûx2
�iω�
x1�x12

ûx2
�iω�
x1�x11

, (2.38)
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where �Ĥ�iω�� and ϕ are the amplitude and phase of the transfer function. Substi-

tution of Eqs. (2.32) and (2.35) into Eq. (2.38) yields

Ĥ�iω� �

ûx2
�iω��x1�x12

ûx2
�iω��x1�x11

, (2.39)

� e
ik̂R�x12�x11�, (2.40)

� e
γL
e
iλL

, (2.41)

�����
Ĥ�iω�

�����
� e

γL
, ϕ � λL, (2.42)

where k̂R � λ � iγ and L � x12 � x11 is the distance between the two measured

points on the surface of the specimen. The complex shear modulus can be expressed

in terms of the Rayleigh wavenumber

Ĝ �

ω
2
ρ

k̂2
S

�

ω
2
ρ

k̂2
Rξ

2
R

�

ĉ
2
Rρ

ξ2R
. (2.43)

Furthermore, the Young’s modulus can be expressed in therms of the shear modulus

Ê � 2�1 � ν�Ĝ, (2.44)

and the loss modulus can be expressed as the ratio of loss and the storage modulus

η �

E
��

E �
�

G
��

G�
. (2.45)

2.2 Rayleigh wave propagation in an inhomogeneous, two layered half-
space

It was shown that Rayleigh waves are confined to a stress free boundary and

they do not propagate inside the material. However, for a multilayer medium an
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additional Rayleigh wave is trapped at the interface between the two layers and

propagates parallel to the Rayleigh wave on the free surface of the medium (Figure

2–2). The Rayleigh waves are created at the interface between different material

layers when compressional and a shear waves reach the interface between the two

layers. Some energy is reflected or transmitted, and one portion of the energy is

transformed into a Rayleigh wave. Since the layers are parallel to each other, the

propagation of the interface Rayleigh wave is parallel to the propagation of the

surface Rayleigh wave. The energy reflected from the interface of the layers may

propagate back to the surface of the material to create another Rayleigh wave. This

usually happens when the top layer is very thin and C and S waves don’t disperse

before reaching the surface again. The interference between different Rayleigh modes

changes the motion of local points on the surface [37]. Therefore, the motion is not

necessarily anti-clockwise anymore! It is important to notice that, based on this

theory, multiple Rayleigh waves, and therefore multiple Rayleigh wave numbers, can

be measured on top of the surface. The governing equations are very similar to those

for the mono-layer method and are therefore omitted.

The potentials satisfying the before mentioned wave propagation are [34]

φ̂1 � �a1e
�iη̂1x2

� b1e
iη̂1x2�e

ik̂Rx1 , (2.46a)

ψ̂1 � �c1e
�iβ̂1x2

� d1e
iβ̂1x2�e

ik̂Rx1 , (2.46b)

φ̂2 � b2e
�iη̂2x2e

ik̂Rx1 , (2.46c)

ψ̂2 � d2e
�iβ̂2x2e

ik̂Rx1 , (2.46d)
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Plunger
Propagation direction

Top Layer 
Sample

h

Substrate

Figure 2–2: Compressional, Shear and Rayleigh wave propagation inside a two-layer
system. At least two Rayleigh waves propagate inside the sample. One Rayleigh
wave on the surface of the sample and one in the interface between both materials.
The wave propagates along the x1-direction.

where a1, b1, c1, d1, b2 and d2 are the unknown coefficients and represent the am-

plitudes of the potentials of incident and reflected waves. Taking into account the

relationship between compressional and shear wave

κ
2
i � � ĉCi

ĉSi
�
2

� � k̂Si
k̂Ci

�
2

�

λ̂i � 2μ̂i

μ̂i
�

2 � 2νi
1 � 2νi

, i � 1, 2, (2.47)
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and substitution of the potentials into the governing wave equations, we get

η̂1 �
�
k̂2
C1
� k̂2

R, β̂1 �

�
k̂2
S1
� k̂2

R,

η̂2 �
�
k̂2
R � k̂2

C2
, β̂2 �

�
k̂2
R � k̂2

S2
.

The subscripts 1 and 2 refer to each layer. Substitution of the potential Eq. (2.46)

into the stress-free boundary condition at x2 � 0 yields

σ̂
1
22�x2�0 � �μ̂1�k̂2

S1
φ̂1 � 2� ∂

2
ψ̂1

∂2x2x1

�

∂
2
φ̂1

∂2x2
1

��
x2�0

, (2.48a)

� �μ̂1��k̂2
S1
� 2k̂

2
R��a1 � b1� � 2k̂Rβ̂1�c1 � d1��eik̂Rx1 , (2.48b)

and

σ̂
1
12�x2�0 � μ̂1�2 ∂

2
φ̂1

∂2x1x2

�

∂
2
ψ̂1

∂2x2
2

�

∂
2
ψ̂1

∂2x2
1

�, (2.49a)

� μ̂1��2k̂Rη̂1��a1 � b1� � �k̂2
R � β̂

2
1��c1 � d1��eik̂Rx1 . (2.49b)

Moreover, the substitution of the potential Eq. (2.46) into the stress-free boundary

condition, at the interface of the layers at x2 � h yields

σ̂
1
22�x2�h � σ̂

2
22�x2�h, (2.50a)

μ̂1 	k̂2
S1
φ̂1 � 2� ∂

2
ψ̂1

∂2x2x1

�

∂
2
φ̂1

∂2x2
1

�
 � μ̂2�k̂2
S2
φ̂2 � 2� ∂

2
ψ̂2

∂2x2x1

�

∂
2
φ̂2

∂2x2
1

��, (2.50b)

μ̂1��k̂2
S1
� 2k̂

2
R��a1Ê�1

1 � b1Ê1� � 2k̂Rβ̂�c1B̂�1
1 � d1B̂1��eik̂Rx1

� 0, (2.50c)

μ̂2��k̂2
S2
� 2k̂

2
R�b2Ê2 � 2ik̂Rβ̂2d2B̂2�eik̂2Rx1

� 0, (2.50d)
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and

σ̂
1
12�x2�h � σ̂

2
12�x2�h, (2.51a)

μ̂1�2� ∂
2
φ̂1

∂2x2x1

� �∂
2
ψ̂1

∂2x2
2

�

∂
2
ψ̂1

∂2x2
1

�� � �2� ∂
2
φ̂2

∂2x2x1

1 � �∂
2
ψ̂2

∂2x2
2

�

∂
2
ψ̂2

∂2x2
1
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μ̂1��2̂k2
Rη̂1��a1Ê�1

1 � b1Ê1� � �k̂2
R � β̂

2
1��c1B̂�1

1 � d1B̂1��eik̂Rx1
� 0, (2.51c)

μ̂2�� � 2ik̂Rη̂2�b2Ê2 � �k̂2
R � β̂

2
2�d2B̂2�eik̂Rx1

� 0. (2.51d)

Substitution of Eq. (2.46) into the displacement boundary conditions along the

x1 and x2-direction yields

û
1
1�x2�h � û

2
1�x2�h, (2.52a)

�∂φ̂1

∂x1
�

∂ψ̂1

∂x2
�
x2�h

� �∂φ̂2

∂x1
�

∂ψ̂2

∂x2
�
x2�h

, (2.52b)

�ik̂R�a1Ê�1
1 � b1Ê1� � iβ̂1� � c1B̂

�1
1 � d1B̂1�� � �ik̂Rb2Ê2 � β2d2B̂2�, (2.52c)

and

û
1
2�x2�h � û

2
2�x2�h, (2.53a)

�∂φ̂1

∂x2
�

∂ψ̂1

∂x1
�
x2�h

� �∂φ̂2

∂x2
�

∂ψ̂2

∂x1
�
x2�h

, (2.53b)

�iη̂1� � a1Ê
�1
1 � b1Ê1� � ik̂R� � c1B̂

�1
1 � d1B̂1�� � � � iη̂2b2Ê2 � ik̂Rd2B̂2�. (2.53c)

21



Variables Ê1, Ê2, B̂1 and B̂2 are defined as

Ê1 � e
iβ̂1h, (2.54)

Ê2 � e
�iη̂2h, (2.55)

B̂1 � e
iη̂1h, (2.56)

B̂2 � e
�iβ̂2h. (2.57)

The before mentioned boundary conditions can be rearranged in matrix format and

are satisfied if

¯̄Ac

�
������������������������������
�

a1

b1

c1

d1

b2

d2

�
������������������������������
�

�

������������������	�����������������


0

0

0

0

0

0

������������������������������������

(2.58)

where the matrix ¯̄Ac is defined as

�A� �

�������������������������������������

τ τ �2k̂Rβ̂1 2k̂Rβ̂1 0 0

2k̂Rη̂1 �2k̂Rη̂1 τ τ 0 0

τμ1Ê
�1
1 τμ1Ê1 �2k̂Rβ̂1B̂

�1
1 2k̂Rβ̂1B̂1 �χμ2B̂2 �2ik̂Rβ̂2μ2B̂2

2k̂Rη̂1μ1Ê
�1
1 �2k̂Rη̂1μ1Ê1 τμ1B̂

�1
1 τμ1B̂1 2ik̂Rη̂2μ2Ê2 �χμ2B̂2

ik̂RÊ
�1
1 ik̂RÊ1 �iβ̂1B̂

�1
1 iβ̂1B̂1 �ik̂RÊ2 β̂2B̂2

�iη̂1Ê
�1
1 iη̂1Ê1 �ik̂RB̂

�1
1 �ik̂RB̂1 η̂2Ê2 ik̂RB̂2

�������������������������������������

. (2.59)
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with τ � 2k̂
2
R � k̂

2
S1 and χ � 2k̂

2
R � k̂

2
S2. A nontrivial solution for the coefficients

a1, b1, c1, d1, b2 and d2 is obtained when the determinant is equal to zero. This

relationship is also called dispersion equation, since it links the different Rayleigh

wave numbers to a specific frequency. It is important to understand that in a layered

system, the wave propagation is no longer dispersive as in the homogeneous case.

In fact the wave propagation is highly dispersive. This means that the propagation

speed of Rayleigh waves is dependent on its frequency. Also, as mentioned in the

introduction, there are multiple Rayleigh waves (different modes) traveling in the

sample. This is in agreement with the dispersion equation, since it yields multiple

solutions for different k̂R. The dispersion equation can be rewritten in a coefficient

matrix Aci,j � fi,j�k̂R, k̂S1, k̂S2, μ̂2, ν1, ν2, ρ, ω, h�; i, j � 1, 2, ..., 6. The only unknowns

in this equation before the experiment are k̂R and k̂S1. After measuring the different

k̂R the high order polynomial can be solved for k̂S1. Once solved for k̂S1 the complex

shear and elastic moduli and the loss factor of the top layer can be determined.

2.3 Compressional wave propagation method

2.3.1 Standing wave method

The compressional wave propagation method is a well understood and commonly

used technique for the characterization of viscoelastic materials. The fundamental

idea is to create a longitudinal wave, propagating inside a rod-like specimen. The

wave is usually created by attaching one end of the rod to an electrodynamic shaker,

while the displacement of the other end is recorded, Figure 2–3. The data can be

used to calculate the Complex shear modulus based on a transfer function method
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Sample

Shaker

Accelerometer

Laser Head

Figure 2–3: Sketch of the standing compressional wave method. An electrodynamic
shaker creates a standing wave in a rod-like specimen. The laser measures the dis-
placement of the free end

[16]. The displacement traverse to the propagation direction can be assumed to be

homogeneous.

Deriving the transfer function based on the assumption that the rod specimen

consists of a homogeneous and isotropic material, constant diameter, which is much

smaller than the wavelength of the propagating wave , specific boundary conditions,
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one can write [16]

Re� 1

Ĥ�iω�� � cosh�αl�cos�βl� � M
m �αlsinh�αl�cos�βl� � βlcosh�αl�sin�βl��,

(2.60a)

Im� 1

Ĥ�iω�� � sinh�αl�sin�βl� � M
m �αlcosh�αl�sin�βl� � βlsinh�αl�cos�βl��,

(2.60b)

where Ĥ�iω� defines the transfer function between the induced vibration and the

measured response of the sample, l is the length of the rod, α and β represent

the amplitude decay and phase shift, respectively and k̂c � β � iα describes the

wavenumber.

From the frequency-dependent wavenumber one can calculate the complex Young’s

modulus

k̂c �
ω

ĉc
�

�
ω2ρ

Ê
, (2.61)

Ê �

ω
2
ρ��β2

� α
2� � 2iαβ��β2

� α2� 2

. (2.62)

The loss factor can be described as the relationship between absorbed and stored

energy

η �
E

��

E �
�

2αβ

β2
� α2

. (2.63)
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At this point it is important to understand that the relationship between diam-

eter, d, and wavelength, β, with (d �� β), defines an upper frequency limit, because

with an increase in frequency the wavelength decreases. Therefore, to obtain a wide

frequency spectrum of properties for one material tested, several experiments, with

different diameters, need to be conducted.

2.3.2 Transient wave method

The major difference between the standing and the transient wave methods was

that in the later, the wave dissipates before reaching the free end of the sample.

Therefore, no standing wave pattern was created.

For this new method the setup was slightly changed. Instead of measuring the

displacement of the free end along x2-direction, it was measured on the side of the

rod along the x1-direction (Figure 2–4). The compression wave, propagating inside

the sample, created a transverse expansion due to the Poisson effect. As for the

Rayleigh wave approach, the speed of the expansion wave propagating along the rod,

can be measured. Once the speed of the compression wave is known the material

properties can be calculated [38]. Gordon S. Kino [39] published the relationship

between Young’s modulus, E, and longitudinal bulk velocity, cbc, as

ĉbc �

�
Ê
ρ

1 � ν�1 � ν��1 � 2ν� , (2.64)

where ν represents the Poisson ratio and ρ the density. This equation can be

rewritten into

Ê � ĉ
2
bc

�1 � ν��1 � 2ν�
1 � ν

ρ, (2.65)
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Ĝ � ĉ
2
bc

�1 � 2ν�

2�1 � ν�
ρ. (2.66)

Sample

Shaker

Accelerometer

Laser Head

Figure 2–4: Sketch of the transient compressional wave method. An electrodynamic
shaker creates a compression wave propagating along the rod. The traveling wave
dissipates before reaching the free end. The laser records the displacement on the
side of the rod.

2.4 Analytical Rayleigh wave model

Before any experiments and simulations, a simple numerical Rayleigh wave sim-

ulation in Matlab was performed. This provided insight into the behavior of Rayleigh

waves and it’s underlying mechanical behavior. The implementation was based on

a volume point source on a surface creating an arbitrary oscillatory wave field in an
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homogeneous, isotropic elastic half-space [31]. In the following only the basic equa-

tions on which the wave propagation was implemented are mentioned. The local

motion of any particle along x1, x2 � 0 in the x1, x2 plane is defined as

ū�x1� � π
2
sτu

2
0

ρĉ2C
�fx1

�x1, k̂R�ēx1
� fx2

�x1, k̂R�ēx2
�, (2.67)

where

fx1
�x1, k̂R� � �ξ̂S � τ̂��H�k̂2

RJ1��k̂R�x1�sgn�k̂R��k̂R � ik̂
2
RJ1�k̂Rx1�sgn�k̂R��,

(2.68a)

fx2
�x1, k̂R� � �ik̂2

R�1 � τ̂ ξ̂C�H�2�
0 ��k̂R�x1�, (2.68b)

and

ξ̂C �

�
1 �

ĉ2R

ĉ2C
, ξ̂S �

�
1 �

ĉ2R

ĉ2S
,

τ̂ � �2

	
1 �

ĉ2R
ĉ2C

2 �
ĉ2R
ĉ2C

, ŝ � �
ρĉ

2
C

iω
Q,

where ē stands for the related unit vectors, Q is the volume velocity of the point

source. H
�2�
0 is the zeroth order Hankel function of the second kind, J1 is the ze-

roth order Bessel functions of the first kind and H is the Hilbert transform. In the

derivation process the influence of bulk waves were ignored and therefore the solu-

tion is incomplete. But experiments performed by Zabolotskaya et al. [31] showed

an increasing accuracy of the solution with increasing distance from the source of

excitation. However this approximation should serve as a good platform to start a

more detailed surface wave analysis.

28



CHAPTER 3
Experimental methods

In this chapter, the different methods which were utilized are mentioned and

explained. The material preparation procedure, the actual experiments and the

experimental challenges are discussed. The performed rheometry and the accuracy

of the data is described. Finally, an outline of a detailed simulation model in ANSYS

is described.

3.1 Sample preparation

The material response of three major materials was investigated: 1) silicon

rubber; 2) chitosan gel; and 3) silicon rubber with embedded nylon fiber fibers.

3.1.1 Single and two layer method

The silicon rubber used (Ecoflex 10 Platinum Cure Silicone Rubber Smooth-On,

Inc) was made of three components: 1) part A; 2) part B; and 3) silicon thinner.

The mixing ratios were varied and represented in the form of 1:1:1 which meant in

this case an equal mass of component A, B and silicon thinner. The amount of each

component was varied. For example a mixing ratio of 1:1:0.5 represented in a 250 g

sample 100 g of component A, 100 g of component B and 50 g of silicon thinner. The

addition of silicon thinner had a direct impact on the dispersive behavior of the wave

propagation. The stiffness of the material was decreased. Softer materials tended to

be more dispersive.
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(a) 5 cm x 5 cm x 10 cm steel tray (b) 3.5 cm x 4 cm x 7.5 cm plexiglas tray

Figure 3–1: The different trays served as a mold to cure the material. For the exper-
iment the trays were bolted onto the table to avoid rattling during the excitation.

The silicon rubber samples were inexpensive to manufacture, and served to

develop and troubleshoot the wavenumber-frequency method, which is described

later. The tray size was 5 cm x 5 cm x 10 cm for silicon rubber Figure 3–1 (a), and

a smaller tray of 3.5 cm x 4 cm x 7.5 cm used for the hydrogels, Figure 3–1 (b).

One of the challenges was to produce a bubble free material sample. When the

required mixing ratio was reached, the components had to be mixed, which entrained

air inside the material. The gel had to be degassed to avoid bubble formation. De-

gassing a large amount of gel requires air to escape trough the free surface connecting

though the body. The speed of this process depends on the amount of gel used and

the power of the vacuum pump. For large amounts of gel, the gel may cure before

the air is completely removed from the sample. This had to be avoided, since air

trapped inside the sample creates an inhomogeneity which influences the wave field.

Many different methods have been used in the attempt to prevent the formation of
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bubbles. The best solution was to vacuum the sample for 30 minutes, and pour it in

a way that the distance between the tray and the bucket was large enough (around

1.5 m) to stretch the stream into a small thread. This caused the bubbles to stretch

while flowing and to burst. The material was finally cured for 3-6 hours at room

temperature. This period doubled when the amount of silicon thinner was doubled.

For hydrogels, Glyoxal and Glycol-Chitosan 40% were acquired from Sigma

Aldrich Corporate. The components were mixed in deionized water with a con-

centration of GCs 5% and Gy 10%. The final solution was placed in a laboratory

rotator, and spun at 30 rpm for 24 hours. Efforts were made to keep the chitosan gel

hydrated. A humidifier was constantly blowing saturated humid air over the surface.

The final concentration of GCs and Gy was 2.5% and 0.005%, respectively. The

reason for this specific concentration of cross linker and natural polymer is that it

showed no cytotoxicity, and it is therefore a viable candidate for injection [1]. At

last, the hydrogel was cured in the tray, as shown in Figure 3–1 (b).

The creation of a two-layer sample was very similar to that of a single layer

sample. A material with similar properties to the one which was investigated was

used and a sandwich structure created. A substrate with known material properties

served as the base of the two layered structure. A very thin layer of the biomaterial

of interest was cured on top of the substrate. Both layers were produced following

the previously described single layer procedure. The advantage of this procedure is,

that only a very small volume of the material to be investigated is needed. This

reduces the cost of the experiment.
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3.1.2 Fibrous structure

To create a fibrous structure, two flat pieces of cardboard were sutured, such

that nylon fibers were stretched between them. The cardboards were glued to the

inner walls of the tray, which was prepared for the experiment, Figure 3–2. The tray

itself was 7 cm x 7 cm x 12 cm to ensure a reflection free wave field. Once the glue

Figure 3–2: Fishing rod was sutured between two cardboard pieces. The pieces were
disassembled and glued to the inner walls of the tray.

has dried, the tray was filled with the silicon rubber. The rubber was mixed and

degassed, following the previously described procedures. The fibers were embedded
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near the surface, to ensure an interaction between Rayleigh wave and nylon fiber.

Figure 3–3 shows the cardboard embedded inside the gel. The cardboard had no

effect on the wave propagation, since the tray was large enough that the wave field

dispersed before it could reach the boundaries. The nylon fibers spacing was 5 mm.

Figure 3–3: The tray containing the silicon rubber.

The fibers were laid only in the center of the tray, since the Rayleigh wave was

assumed to propagate linearly along this path. There were only two rows of fibers

since the penetration depth of the Rayleigh wave is usually no more than one or two

wavelength, which are at high frequency a few millimeters. The material was left to

cure for 12 hours, Figure 3–4.
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Figure 3–4: Final sample, with nylon fibers embedded, left to cure.

3.1.3 Compressional wave method

For the compressional wave method, cylindrical, homogeneous, bubble free, rod-

like specimens had to be manufactured. The material used was the same as for the

wave propagation experiment, i.e. Ecoflex silicon rubber. To study the influence of

silicon thinner on the material properties and the wave propagation. Different ratios

of silicon thinner were examined. Once the components were mixed in the required

ratio, the material was put into a vacuum chamber to degas for 20 minutes. Pipettes

of 25 mL, 15 mL and 10 mL volume served as mold to obtain cylindrically shaped

samples. To pour the material into the pipettes, the silicon rubber was aspirated by

connecting the open end to a vacuum pump, to prevent bubble formation. After the

material was cured, the sample was cut into the required length, and glued to the
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accelerometer attached to the electrodynamic shaker. A standard silicon adhesive

was used. The measurement can be performed with an attached mass to the free end

of the rod. The weight stretched the sample, which influences the wave propagation.

3.2 Rayleigh wave apparatus

Figure 3–5 shows a schematic of the experimental setup. It consisted of four

major components: (1) A source of excitation which induced wave propagation inside

the material (B&K Mini-shaker Type 4810); (2) The investigated material (Silicon

rubber or Chitosan gel); (3) An LDV receiver which measured the displacement

generated by the propagating wave (OFV-534 Compact Sensor Head, Vibrometer

Controller OFV-5000) (4) An accelerometer which measured the blade displacement

(PCD PIEZOTRONICS Model 352C44). The displacement of the shaker was based

on a predefined sinusoidal impulse generated in LabVIEW and amplified by a power

amplifier (AudioSource AMP100). The displacement of the surface of the sample

was measured using the LDV and saved. The procedure was repeated several times

for each sample. Once the gel was cured, the tray was bolted into the laser table.

The shaker was installed and the blade was positioned near the center of the sample

to minimize reflections. The blade was homogeneously driven into the surface to

produce a symmetric wave field.

Two different procedures were used to measure the wave propagation speed.

The first was based on a 10 s sinusoidal input with a constant frequency. The shaker

excited the surface at one single frequency while the accelerometer measured the

displacement of the blade and the LDV recorded the out-of-plane motion of a single

location on the sample surface. The frequency was varied between 100 Hz and 2000
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(1) Shaker
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(4) Accelerometer(3) Vibrometer Controller

Power amplifier

Figure 3–5: Schematic of the experimental setup.

Hz. After 10 s, the shaker stopped for 1 s and the stage drove the laser head to

the next position on a predefined path. The shaker excited for another 10 s and the

accelerometer and LDV recorded the signals. This procedure was repeated until the

entire measurement grid was scanned. Usually the spacing between the points was

between 0.5 mm and 1 mm and the pattern contained between 100 (simple line) to

3000 (whole surface) points.

The second method used a frequency sweep generator. The procedure was the

same as mentioned before, but the excitation was a 20 s frequency sweep instead of 10

s constant frequency input. The results were the same, but with a different resolution.

The frequency sweep covered the whole range of frequencies between 100 Hz and

2000 Hz, but had a lower resolution for the wave speed and the amplitude ratio.

The constant frequency input yielded a single frequency result but a high resolution
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in the wave speed and amplitude attenuation [40]. For each sample, both methods

were used. In that way, trends were clearly identified in the wavenumber-frequency

spectrum but also the propagation speed and attenuation precisely measured.

3.2.1 2D and 3D visualization along the direction of the laser beam

One limitation of the setup was that one can only measure the out-of-plane mo-

tion and therefore the surface response at a single point. To overcome this problem,

the local velocity was acquired synchronously with the accelerometer, which served

as a phase reference [41]. Based on the cross-spectral density the frequency response

of multiple surface points was identified. Figure 3–6 shows a typical measurement

grid over the top of the sample. From the cross-spectral density the system response

Plunger

Propagation direction

Accelerometer

Figure 3–6: Measurement grid on the surface of the sample. The laser scans each
point one at the time, using the accelerometer as reference.

for the specific frequency of interest was calculated. Based on this procedure, the

maxima were isolated at ever grid point and plotted in Figure 3–7. The envelope

function is not exponential. The envelope function in this thesis represents peak am-

plitudes of the transfer function. There are multiple plausible reasons why this could
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Figure 3–7: Envelope function of a propagating wave at 300 Hz. The amplitude of
the transfer function was obtained by using the cross-spectral density.

happen. The first hypothesis was that there are near field effects. Near field effects

are phenomena which confine parts of the energy of the propagating wave locally

close to the point of excitation. To explain it more visually, the local motion close

to the blade consists of a propagating and a stationary component. Both contribute

to the surface displacement, but only the propagating component transports energy.

This would explain why the envelope function is not exponential close to the point

of excitation. Moreover, the cross-spectral density shows only the component at a

certain frequency. Therefore, the near field was locally fluctuating at 300 Hz. An

argument which contradicts this theory was that past the near field region of one

38



wavelength λR the exponential decay didn’t recover. This leads to a second pos-

sible reason, namely constructive interferences between multiple waves propagating

on the surface of the sample. To further tackle this point, additional methods of

investigations were used.

3.2.2 Wavenumber-Frequency spectrum

The relative amplitude of Figure 3–7 shows the envelope function of the wave at

a frequency of 300 Hz. The cross-spectral density does not provide information about

the associated wave type. The pattern in Figure 3–7 may be related to constructive

interference between different waves types. Therefore, the spatial Fourier transform

was used in an attempt to identify different wave types [42]. First the complete data

set was rearranged in a 3-dimensional matrix illustrated in Figure 3–8. The drive

point acceleration of the blade and the traverse velocity at each point were measured.

This yielded a three-dimensional matrix of mass spectral coefficients in the x1, x3

plane. Next, the out-of-plane velocity was differentiated into acceleration and the

Fourier transform was calculated. This converted the matrix axis from (x1, x3,t) into

(x1, x3, f)

¯̄A�x1, x2, f�blade � �
�

��

¯̄a�x1, x2, t�e
�2πitf

dt, (3.1)

¯̄A�x1, x2, f�points � �
�

��

¯̄a�x1, x2, t�e
�2πitf

dt, (3.2)

where x1,x2 represent the length and with of the sample, respectively and ¯̄a the ac-

celeration of each grid point over time. The matrix ¯̄A�x1, x2, f�points was normalized

with respect to the driving point acceleration at each frequency, ¯̄A�x1, x2, f�blade. The

39



Grid points in direction

Figure 3–8: The black dots stand for the scanned laser points. The laser measures
the velocity along the x2-direction over time, t. The points are arranged in the x1, x2

plane. A temporal Fourier transform was applied along t, and a spatial Fourier
transform along the x1-direction.

x1 axis was converted with the help of the spatial Fourier transform into wavenumber

k̂R

¯̄A k̂R, x2, f F K Spectrum

¯̄A x1, x2, f points

¯̄A x1, x2, f blade

e
2πix1k̂Rdx, (3.3)

where the plane k̂R, f of ¯̄AF K Spectrum represents the wavenumber-frequency spec-

trum. The spatial Fourier transform was applied beyond one wavelength λR distance

from the source of excitation, to develop the Rayleigh wave characteristics. Each indi-

vidual line in the wavenumber-frequency spectrum represented one wave propagating

on the sample. Multiple lines indicated an interference between surface waves. The
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sample K-F-plot in Figure 3–9 shows one of these lines. The spectrum is very clear

up-to a frequency of 900 Hz. Past that frequency, it was not possible anymore to

clearly say in which way the trend develops. One fundamental Rayleigh mode was

propagating inside the sample, indicating that a homogeneous material was investi-

gated. Therefore, each frequency had one significant wavenumber value k̂R. From

this information it was possible to determine the wave speed, ĉR, corresponding to

the Rayleigh mode. This information elucidates the mode of energy propagation in

the system.

Figure 3–9: Typical Wavenumber-Frequency Plot. The yellow/green line represents
the wavenumber, Real�k̂R�, development with increasing frequency. A spurious res-
onance at 500 Hz contaminated a potion of the data.
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Other methods [23] of wave speed determination use measurements of the phase

shift at multiple points along a line on the surface. The average phase shift served as

an estimate for the speed of propagation. With this approach it was not possible to

distinguish between different wave components. Therefore, the phase shift couldn’t

accurately represent the speed of propagation and was not used to measure the phase

speed. The big advantage of the new procedure presented was that all points on the

surface were taken into account to evaluate the speed of propagation. Moreover, with

the new method, it was possible to distinguish between different modes of propaga-

tion. The presented method improved the accuracy of the experiment significantly.

3.2.3 Sources of structure borne noise

For the material tested, it was observed that the lower the frequency of excitation

the lower the wave dissipates. This indicated that low frequency waves had a great

chance of being reflected from the boundaries. Moreover, there was a lower frequency

limit of excitation imposed by the limited bandwidth of the shaker. The lower

frequency limit was usually around 100 Hz for most of the samples investigated. This

limit varied slightly from material to material. The stiffer the material the higher

the frequency limit. The tested hydrogels were much softer than silicon rubber and

therefore enabled a high resolution around 100 Hz.

Some artifacts are visible in the data, most likely caused by extraneous vibra-

tions. Examples include the natural frequencies of the receiver, the source or setup

holders, the rattling of loose screws or surrounding equipment or a bad setup. The

setup had to be repeatedly modified to minimize the sources of interference. The

shaker was connected to a shelf separated from the optical table where the LDV was
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mounted. The only connection between the shaker and the optical table was the

blade. Vibration absorbing mounts with the appropriate bandwidth were installed

below the laser to minimize laser vibrations. To verify the isolation, a test was per-

formed. The blade was disconnected from the sample and the surface was scanned.

The result, shown in Figure 3–10, compared the relative amplitude for an excitation

of 100 Hz with and without touching the surface of the sample. The difference is very

significant (over 20 dB). The noisy function (b) was without any kind of excitation.

The receiver was perfectly isolated from the source of excitation.
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Figure 3–10: Two envelope function of the peak amplitudes. One (a) where the
blade was touching the surface of the material and one (b) where it doesn’t touch
the surface of the sample.
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Efforts were made to eliminate the natural frequencies of the setup. The main

resonances were related to the shaker holder. The most dominant resonance fre-

quencies were at 300 Hz, 500 Hz and 700 Hz, which were identified because of their

smudging effect on the peak in the wavenumber-frequency spectrum. The holder

was investigated individually outside of the setup with the same result. Special

damping material and additional mass was assumed to solve the problem but the

resonance frequencies were impossible to eliminate. The holder was thus excluded

from the setup. Instead the shaker was hanged with a rod from the shelf above the

table, thereby eliminating essentially all natural frequencies. One natural frequency

remained around 500 Hz. Hanging the shaker with the blade not touching the sur-

face, with a sinusoidal input, the acceleration of the plunger was recorded by the

accelerometer and the spectrum was calculated. In Figure 3–11 a peak at 500 Hz

was detected, disturbing the exponential decay. That means the frequency results at

500 Hz for all the upcoming discussions had to be excluded from the interpretation.

It was observed that the accelerometer spectrum was uniform until 500 Hz, but it

was noisy beyond 500 Hz. This caused noise for all the results above 500 Hz in the

wavenumber-frequency spectra.

3.3 Compressional wave experiment

The compressional wave experiment was described in section 2.3. The thickness

of the rod was much smaller than the wavelength to avoid transverse modes. To

avoid possible influences of the specimen length, multiple samples, different in length

l , diameter d and with or without weight were manufactured and tested. The

parameters of the different samples are listed in the following Table 3-1.
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Figure 3–11: Accelerometer Spectrum during a frequency sweep. This plot served to
identify natural frequencies.

Experiment Diameter d in cm Length l in cm Mixing ratio Added mass
Nr.1 0.55 7 1:1:1 No
Nr.2 0.55 7 1:1:0 No
Nr.3 0.55 12 1:1:0 No
Nr.4 1.4 10 1:1:1 No
Nr.5 1.4 12 1:1:1 No
Nr.6 1.4 15 1:1:1 No
Nr.7 1.4 21 1:1:1 No
Nr.8 1.4 27 1:1:1 No
Nr.9 1.4 12 1:1:1 No
Nr.10 0.55 7 1:1:0 Yes

Table 3–1: Different manufactured rod samples

3.4 Torsional rheometry

Rheology was used to obtain an initial guess for the numerical simulations and

also as a baseline to compare with the results obtained from the Rayleigh wave

45



method. For all the experiments the Hybrid Rheometer DHR-2 by TA Instruments

was used in the stress-controlled mode. The adapter plate was a centered cylinder

with a diameter of 2 cm. The material was placed in the narrow gap between the

two plates. Depending of which material, a few minutes was needed for curing. The

curing procedures for silicon rubber and hydrogels were different. The silicon rubber

samples were separately manufactured in the shape of a small disc with a radius of

1 cm and thickness of 1.5 mm. The hydrogels were cured for 25 minutes between

the two cylinders. To avoid dehydration, a film of water was poured over the gel.

The top plate was rotated and the sinusoidally angular response of the material was

recorded. The effect of sliding created jumps in the dynamic shear modulus which

were rarely observed, thus no special modification was needed. Each experiment was

repeated to validate the acquired data. The material parameters obtained from the

experiments were the frequency-dependent dynamic shear modulus, Ĝ � G
�

� G”,

and loss modulus, η.

The bandwidth of the rheometer was different than that of the Rayleigh wave

method. The frequency range of the rheometry experiment was 0.01 Hz to 100

Hz and the Raleigh wave method 100 Hz to 2000 Hz. Therefore, the Rayleigh

wave method complimented the rheometer. However, above a certain frequency,

standing shear waves propagated inside the sample and invalidated the rheometry

results. This specific frequency was identified when a downturn in the phase angle

tan
�1
�G

��

�G
�

� occurred (Figure 3–12). This leads to a frequency gap of roughly 70 Hz

between Rayleigh wave method and rheometry. Interpolation between the two results

looks reasonable, which validated the Rayleigh wave method approach. Interpolation
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Figure 3–12: Complex shear modulus and phase angle vs. frequency. ��: Phase
angle ; �: Loss modulus ; �: Storage modulus. Obtained results past 31.5 Hz are
invalid due to standing wave propagating inside the sample.

has been used before to predict trends in the determination of viscoelastic material

properties [14].
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CHAPTER 4
Simulation and virtual experimentation

A computational model of the Rayleigh wave propagation apparatus was created

to provide a better physical understanding of the wave field, and to provide a tool

for the inverse determination of the material constants.

4.1 Courant-Friedrichs-Lewy condition

The Courant-Friedrichs-Lewy condition, also called CFL number, is a metric for

numerical stability. The CFL criterion is as follows

C
vΔt

Δx
� Cmax, (4.1)

where v is the magnitude of the velocity, Δx is the length interval and Δt is the

time step. The numerator of the equation describes the distance a cell or the content

of a cell can move divided by the dimension of the cell. The equation was to fulfill

the condition C � Cmax � 1. The interpretation of this equation is that the cell or

the content of the cell motion can not exceed the element size, otherwise it can cause

numerical errors and instability.

4.2 Transient dynamic analysis

The computational model was implemented in ANSYS version 17.2. It was

decided to perform a transient analysis, since the constitutive equation is seeked

from the dynamic response of the system under time-dependent perturbations. This

made it possible to measure the surface displacement in response to a dynamic input.

48



However, the underlying equation also took damping effects into consideration which

was fundamental in simulating viscoelastic behavior. The equation of motion for the

transient structural analysis of a viscously damped system is

F̄ �t� � ¯̄M ¨̄un �
¯̄C ˙̄un �

¯̄Kūn, (4.2)

where F̄ �t� is the load vector, ¯̄M is the mass matrix, ¯̄C is the viscous damping

matrix, ¯̄K stiffness matrix, and ūn represents the nodal displacement vector. This

equation is solved at any given time step by taking inertia ¯̄M ¨̄un, and damping for as

¯̄C ˙̄un into consideration.

Accurate models for damping were investigated. The specific physical mecha-

nisms of energy dissipation are not fully understood. Moreover, the dominant damp-

ing behavior of a structure changes under different dynamic load conditions. In

the analytical model, the damping is represented in the equation of motion by the

damping term ¯̄C. Viscous damping is assumed. But ideal viscous behavior is only

an approximation of the underlying natural damping mechanism.

A Rayleigh damping model was used for the finite element model [26]. This

model was chosen because it was the only material-dependent damping for which

a full transient analysis under dynamic cyclic loads is possible. A closer look into

the formulation of the underlying theory follows. If Eq. (4.2) is orthogonally trans-

formed, it simplifies into

ψ̄
T
F̄ �t� � ψ̄

T ¯̄Mψ̄ ¨̄ξ � ψ̄
T ¯̄Cψ̄ ˙̄ξ � ψ̄

T ¯̄Kψ̄ξ̄, (4.3)
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where ψ̄ is the normalized eigenvector of the system, and ξ̄ is the transformed

displacement. The transformation is only valid if

ψ̄
T ¯̄Cψ̄ �

������������������������

αd � βdω
2
1 0 ... 0

0 αd � βdω
2
2 ... 0

... ... ... ...

0 ... ... αd � βdω
2
i

������������������������

(4.4)

which indicates the damping matrix �C� is a linear combination of mass and stiffness

matrices in the form of

¯̄C � αd
¯̄M � βd

¯̄K, (4.5)

where αd specifies the mass-proportional Rayleigh damping and βd represents the

stiffness-proportional Rayleigh damping. Eq. (4.3) can further be reduced into i-

individual equations defined as

F̄i	t
 �
¨̄ξ � 2ζiωi

˙̄ξ � ω
2
i ξ̄, (4.6)

where ωi is the natural circular frequency of the specific mode and the damping

ratio, ζi, is the representation of actual damping to critical damping for a distinct

mode of vibration. For this relationship, a line i of the matrix (4.4) can be equated

to damping in Eq. (4.6) and further reduced to

ζi �
αd

2ωi
�

βdωi

2
. (4.7)

The coefficients αd and βd can be calculated from the modal damping ratios ζi.
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Based on Eq. (4.7) the constant αd represents the damping in the low frequency

range. As frequency is decreased, the influence of the αd-term increases and that of

the βd-term decreases. This is important because upon forced response, some energy

cascades over the entire bandwidth of the spectrum, regardless if only one frequency

component is excited. The αd-term was used to filter the energy cascading into the

low frequency region. The beta coefficient was the value of interest, since it regulates

the high frequency damping.

4.3 Geometry, mesh and boundary condition

The dimension and shape of the computational model replicated those of the

experimental apparatus, described in chapter 3. It consisted of a homogeneous ma-

terial block with dimensions of 5 cm x 5 cm x 12.4 cm. All the boundaries, with the

exception of the superior surface, were fixed. Near the center of the superior surface

(4.3 cm far from the yx-plane of the model), a nodal displacement was imposed along

a 2.2 cm long line, replicating the blade perturbation (Figure 4–1). The Displace-

ment magnitude was calculated based on the recorded accelerometer data from the

experiment. The acceleration data was twice integrated and a sinusoidal function

fit to the displacement. This fit served as input function for the simulation dis-

placement. For 100 Hz, the displacement was defined as ux2
� Afsin��2��100�t180�,

where Af was the variable to fit the displacement amplitude to the experimental

accelerometer data and t the time step. The nodal displacement was defined along a

line which replicated the dimensions of the blade. Each experiment was done for one

single frequency to avoid unexpected dynamic transition effects which were observed
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in experiments. Otherwise, there was no further confinement to the top surface of

the material block.

A coarse mesh was used in regions where there was no wave propagation to limit

computational loss. The excitation amplitude was selected to create surface waves

and avoid body waves propagating and reflecting inside the sample. The damping of

the material mesh near the bottom of the domain was high enough to dissipate body

waves very quickly. A low damping would allow refections from the lower boundary.

In addition, the low mesh resolution at the bottom would significantly increase the

error for the results obtained.

On the free surface, a mesh was created with a high resolution at the center of the

material, where the important energy transition from element to element occurred.

By increasing frequency, the wavelength of the propagating wave decreased. At high

frequency only a few mesh points would resolve one wavelength. To avoid numerical

errors the spatial resolution of the surface mesh had to be sufficient. Consequently, a

mesh density of 10 points per wavelength was used for accuracy. A conversion study

on the mesh elements supported this assumption thus ensure a mesh-independent

solution.

4.4 Material properties

The overall goal was to mimic the viscoelastic behavior in a computational

model to obtain the material properties and to further understand the underlying

physics of the experimental observations. As previously mentioned, one of the ma-

jor reasons why Rayleigh damping was used was its frequency-dependence. The

frequency-dependence of viscoelastic materials is known to depend on the nature
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Figure 4–1: Mesh for an excitation of 200 Hz with a predefined line source nodal
displacement on the surface of the sample.

of its structural composition. The fibrous structure of viscoelastic materials signifi-

cantly influences the frequency response of the system. This behavior was simulated

by a frequency-dependent damping coefficient, ζ, achieved by the Rayleigh coeffi-

cients αd and βd, Eq. (4.7).

The simulation was based on a nearly incompressible hyperelastic Neo-Hookean

material constitutive law. The hyperelastic model replicated the non-linearly elastic

and incompressible rubber-like behavior and is therefore also valid for larger wave

amplitudes. This material implementation was tested and showed promising results.

Other material models made it difficult to implement frequency dependent damping

and were therefore omitted. The Initial shear modulus, G, and stiffness damping,

βd, were the significant parameters manipulated in this simulation. Other material
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parameters such as the incompressibility, di � 0.00001, and the density, ρ � 1086 of

the material were calculated from the laboratory experiments and kept constant [43].

The incompressibility parameter, di, must be different from 0 for the Neo-Hookean

model to converge. Therefore, di was set to the smallest possible value. The material

incompressibility parameter is linked to the initial bulk modulus, K �

2

di
.

The goal was to find the value of three material constants E, αd and βd. Accurate

αd and βd values may be obtained by fitting Eq. (4.7) to the damping ratio ζ

calculated from the rheometry data of the materials. This approach is discussed in

detail in the result section. Table 4-1 shows the material properties entered into the

Simulation αd βd G
Nr.1 1.948 0.00015 10000
Nr.2 1.948 0.00015 20000
Nr.3 1.948 0.00015 40000
Nr.4 1.948 0.0001 10000
Nr.5 1.948 0.0001 20000
Nr.6 1.948 0.0001 40000
Nr.7 1.948 0.00005 10000
Nr.8 1.948 0.00005 20000
Nr.9 1.948 0.00005 40000

Table 4–1: The different simulations and their related material parameters.

simulation to start a parametric study. The αd coefficients were unchanged. This

was based on the assumption that βd has a greater effect on the wave propagation

at high frequencies (Section 4.2).
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CHAPTER 5
Results

5.1 Compression wave results

The goal of this experiment was to generate a standing longitudinal wave prop-

agating in a rod-like specimen to obtain the frequency-dependent Youngs modulus.

The specimen dimensions, thickness and length were described in Table 3-1. The

material used was silicon rubber with a mixing ratio of 1:1:0 and 1:1:1.

5.1.1 Standing wave method

The first experimental results were obtained by measuring the velocity of the

rod specimen tip, while exciting at the other end. The transfer function of the

displacement at the two ends of the sample was obtained. Youngs modulus was

calculated for different specimen length, and plotted in Figure 5–1.

It was observed that to obtain high quality results for short samples was difficult.

When longer samples were produced it increased the quality of the results. This hints

that there was a difference in the underlying physics for long or short samples. In

experiments explained in section (5.3) it was observed that surface waves, in the

same material, dissipated within two to three centimeters (Figure 5–7). Such high

dissipation for longitudinal or Rayleigh waves, it is unlikely that the amplitude of

the reflected wave would be sufficient to obtain a standing compression wave in the

case of 12 cm long samples.

55



102 103f in [Hz]

104

105

106

107

G
' i

n
 [

P
a]

Figure 5–1: Young’s modulus vs. frequency. Each line represents a sample with a
different rod length. All samples had the same diameter of d � 1.4 cm as well as
mixing ratio of 1:1:1. �: l � 27 cm ; �: l � 21 cm ; �: l � 15 cm ; �: l � 12 cm ; �:
l � 10 cm.

The complex displacement amplitude and the phase with distance were mea-

sured as a function of distance. To avoid transverse waves the diameter, d of the

samples had to be much smaller than the wavelength. The results for a diameter

of d � 0.55 cm at three different frequencies are shown in Figure 5–2. The plot

(a) shows the phase and (b) the amplitude as attenuation of distance traveled. The

envelope of the amplitude of the transfer function at 100 Hz in (b) clearly displays

a standing wave pattern. Two lobes, at x1 � 0.003 m and x1 � 0.046 m, are distin-

guishable. Moreover, a saddle point in the phase development is identifiable, which

is typical for a standing wave. The 500 Hz envelop function has no clear standing

wave pattern. A few reflections from the tip of the rod are visible, but they are not

strong enough to create a standing wave. This causes the phase development in (a)
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to be a perfect linearly decaying function. For a greater excitation frequency up to

1000 Hz, no wave propagation was recorded beyond a distance of 0.04 m. The same

happened to the phase development. The LDV was barely able to record any signal

beyond 0.04 m.

Figure 5–2 shows that no standing wave was present for 1000 Hz or 500 Hz.

Moreover, the compression wave dissipated before reaching the end of the sample at

1000 Hz. The response of the sample was not measured when no wave was prop-

agating. The assumption, to calculate the material properties based on a standing

wave method for a wide frequency range, was wrong. The experiment was repeated

with (Nr.10) and without (Nr.2) weight. No differences between the results were

observed. Adding mass to the free end of the rod did not change the propagation

behavior.

5.1.2 Traveling wave method

It was found that the standing wave method was not working, at least for fre-

quencies above 100 Hz. To obtain valid result with the experimental apparatus the

approach was changed to the traveling wave method. Instead of creating a standing

wave propagating in a rod, a traveling wave was created which dissipated before

reaching the free end of the rod. The compressional wave speed was measured to

calculate the material properties.

In Figure 5–3 the wave speeds (a) and shear moduli (b) are shown vs. frequency

for two silicon rubber samples Nr.1 and Nr.2. The development of the wave speed

in (a) between both functions was very similar. Up to 700 Hz, the wave speed in

silicon rubber with mixing ratio of 1:1:0 and 1:1:1 was in the vicinity of 10 m

s
and 6 m

s
,
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Figure 5–2: Unwrapped phase (a) and relative amplitude (b) vs. distance propa-
gated. �: 100 Hz ; �: 500 Hz ; ��: 1000 Hz for sample Nr.5.
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respectively. The differences between the propagation speed seemed reasonable, since

waves propagate faster in stiffer materials. Beyond 700 Hz, both functions experience

a significant change in behavior. It was assumed that at this point the diameter of

the sample, d, did not satisfy the necessary condition of d �� λbk anymore. Any

value or trend beyond 700 Hz was not valid.

A similar behavior was found in the shear modulus development (b) for both

test samples. For silicon rubber with mixing ratio of 1:1:1 and 1:1:0, the values of

the shear modulus were around 6x10
3
Pa and 2x10

4
Pa, respectively. Beyond 700

Hz, the data was invalid because the wavelength did not fulfill the required condition

d �� λbk.

5.2 Analytical Rayleigh wave model

Analysis was performed in order to elucidate the characteristics of single Rayleigh

waves in comparison to those of multiple Rayleigh wave components propagating

along the same direction. The propagation of Rayleigh waves generated by different

sources, or the propagation of different Rayleigh modes excited by the same source

were investigated. The latter may be encountered when the medium is not per-

fectly homogeneous, for example if the sample is not homogeneously degassed and

gas bubbles are trapped right below the surface of the sample [28]. Inhomogeneous

media may cause Rayleigh waves to be scattered into multiple Rayleigh modes which

propagate along the same direction [44]. A Matlab script was used to investigate the

motion of a single point on the surface, given by Eq. (2.67). For one single Rayleigh

wave component propagating in a homogeneous half space, the local motion of a

single point on the surface can be described by a anti-clockwise ellipse, as shown in
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Figure 5–3: Bulk velocity (a) and shear modulus (b) vs. frequency. �: Silicon
rubber, mixing ratio of 1:1:0 ; �: Silicon rubber, mixing ratio of 1:1:1
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Figure 5–4: The motion of one local point on the surface for a single Rayleigh wave
plot in (a) and for Rayleigh wave interference plot in (b).
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Figure 5–4 (a). Wave propagation in an inhomogeneous substrate causes multiple

Rayleigh modes with constructive and destructive interferences [45], [46]. This leads

to a more complex motion of a local point on the surface of the substrate (b). This

may be clockwise or counter clockwise, depending on how many modes are propa-

gating. These differences in particular motion may be used to identify the presence

of a scattered field. For example, high speed imaging was used to identify the local

motion of a point on the surface. A anti-clockwise motion indicated that the material

was homogeneous, with one single Rayleigh mode propagating over the surface of the

material.

In Figure 5–5, the envelope functions of the peak displacement amplitudes are

drawn. The envelope function in Figure 5–5 (a) is for one single Rayleigh wave, and in

(b) for two Rayleigh waves propagating parallel to each other. The envelope function

of one single Rayleigh wave in (a) is exponentially decaying, but with interference

in (b), it did not decay exponentially. It was possible to fit an exponential function

to the amplitude decay in (a) but not in (b). Fitting an exponential function to the

amplitude ratio, based on Eq. (2.42), wis of course possible. However, the fit of an

exponential function to the interference in (b), yields inaccurate amplitude attenu-

ation rates. Therefore, it must be concluded that obtaining the material properties

based on an exponential fit is invalid for a multi-mode system. Previous work, [22],

[23], neglected multi-mode propagation and possible interference. The results from

these previous studies may not always be very accurate.

Since it is difficult to establish a priori if one or several wave components are

generated simultaneously at the driving point, a procedure was implemented and
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Figure 5–5: Envelope function of peak amplitudes for (a) one single Rayleigh wave
or (b) two Rayleigh waves.
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analytically verified for the post processing of the experimental data. The wavenum-

ber spectrum was calculated by using the spatial Fourier transform of the measured

amplitudes along the x1-direction. The real part of the wavenumber of the Rayleigh

wave is, λ � Real�k̂R�, based on Eq. (2.67). Data analysis should yield the same

wavenumber. In Figure 5–6, the spatial Fourier transform of the plots in Figure

5–5 are shown. The exponential decay of the envelope function in Figure 5–5 (a)

indicates that one single Rayleigh wave is propagating, which is consistent with the

obtained wavenumber spectrum. A clear peak at λ � 700 1

m
represents one single

wave propagating with a wavelength and wave speed of λR �

2pi

λ
�

2pi

700
� 0.0090 m

and Real�ĉR� � λRf � �0.009��300� � 2.6928 m

s
, respectively. The initial wavenum-

ber defined in the code was λ � 700 1

m
. This verifies the accuracy of this method for

the inverse determination of the wavenumber.

The spatial Fourier transform of the peak amplitudes (Figure 5–5 (b)) is shown

in Figure 5–6 (b). Two peaks at λ � 1000 1

m
and λ � 700 1

m
were identified in

the wavenumber spectrum. The speed of the second Rayleigh wave was Real�ĉR� �

λRf � �0.0063��300� � 1.8850 m

s
. The initially defined wavenumbers in the code

were λ � 700 1

m
and λ � 1000 1

m
. The procedure allows the accurate determination

of both wave speeds.

5.3 Experimental Rayleigh wave propagation

Samples were prepared and experiments were performed following the proce-

dures described in sections (3.1) and (3.2). The first material investigated was a

silicon rubber with a mixture of 1:1:0. There were two different plungers used in this

setup, a blade of 2.2 cm width, reproducing the effect of a line source excitation and
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Figure 5–6: Wavenumber spectrum of (a) one singe Rayleigh wave with a wavenum-
ber of λ � 700, or (b) two Rayleigh waves with wavenumber λ1 � 700 and λ2 � 1000.
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a circular plunger with a diameter of 1.7 mm, imitating a point source excitation.

Figure 5–7 shows the envelope function for the blade and point source excitation for

300 Hz and 900 Hz. The point source excitation created a radial dispersing wave

field where the blade excitation created a parallel, more homogeneous wave field. The

blade excitation was used since the derivation of the equation was based on parallel

propagating wave field and not a radial propagating wave field, which is created by

the circular plunger.

At 300 Hz, the wave field died out at around 2 cm to 3 cm. Reflections from

the boundaries were negligible since the boundaries were more than 2 cm away from

the centerline of the tray. At lower frequency, 200 Hz or 100 Hz, reflections were

present and observed. At 900 Hz, the waves propagated in a perfect half circle, with

no reflections from the boundaries.

The most significant observation in Figure 5–7 is that none of the amplitude

curves exhibit an exponential decay, except maybe the case of Figure 5–7 (c). How-

ever, a transition region can be identified. Figure 5–7 (a),(b) and (c) clearly show

interference between different waves, or near field effects. To see if the effect was

based on constructive interference between waves with different wavelengths, the

centerline displacement of plot (c) and (d) was extracted and spatially Fourier trans-

formed. The results are shown in Figure 5–8. The number of points used for the

spatial Fourier Transform were 240, consisting of 60 actual displacement values and

180 added zeros to smoothen the spectrum. Zero-padding increased the resolution

bandwidth but created side lobes. The spatial Fourier transforms were obtained

passed the near field of one wavelength, λR, up to the last recorded data point before
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Figure 5–7: The envelope functions of the peak amplitudes for the the wave propa-
gation on the surface of the sample for a (a) 300 Hz line source excitation; (b) 900
Hz line source excitation; (c) 300 Hz point source excitation; and (d) 900 Hz point
source excitation.

67



the wave died out. Therefore, the first point in the time domain displacement field

was one wavelength away from the source of excitation.

Each plot has two significant peaks. The first, at λ � 0, is the DC component

and represented a constant value in addition to the sinusoidal displacement in the

time spectrum. The value of the second peak were (a) λ � 53 and (b) λ � 139. The

wavelength and wave speed of the associated waves were (a) λR �

1

53
� 0.0189 m,

Real�ĉR� �
ω

λ
� λRf � �0.0189��300� � 5.6700 m

s
and (b) λR �

1

139
� 0.0072 m,

Real�ĉR� �
ω

λ
� λRf � �0.0072��900� � 6.4800 m

s
. The material behaved disper-

sively because the wave speed increases with an increase in frequency. It may be

inferred that the wave field in these experiments consisted of either single wave or

multiple waves propagating with the same speed along the same direction. The pres-

ence of several wave components may be explained as follows. The plunger may have

imposed a vertical displacement along with a shear force at the driving point. The

necessity of matching the displacement and shear force in the solid at the boundary

must require in some cases more than one wave component, as the exact relation be-

tween displacement and shear in a single Rayleigh wave may not be representative of

the plunger motion. Therefore, the excitation is creating a combination of Rayleigh

or other wave components propagating at the same speed, since no other wave types

propagating at different speeds were observed. A more detailed investigation of the

underlying wave field follows in the computational section.

A second method was used to obtain the wave speed. The approach described in

section 2.1.2 measures the phase shift of the propagating wave between two different

points with known distance between them. Based on this information, the phase
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Figure 5–8: Wavenumber spectra computed from the envelope functions of the peak
amplitudes in Figure 5–7. (a) At a frequency of 300 Hz and (b) at a frequency of
900 Hz.
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Figure 5–9: Unwrapped phase vs. distance traveled for (a) 300 Hz, and (b) 900 Hz
excitation.
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velocity of the propagating wave was obtained. In Figure 5–9 the radial phase shift

along the centerline of Figure 5–7 (c) and (d) was plotted. The phase speed was

obtained by either Eq. (2.42) or by taking the equivalent, the slope of the function.

The obtained slope from Figure 5–9 (a) was δϕ

δx2
� �334. This resulted in a wave

speed of Real�ĉR� �
2pi�300�

334
� 5.6436 m

s
. The equivalent value calculated from Figure

5–9 (b) was Real�ĉR� � 6.5 m

s
. The results are in perfect agreement with the spatially

Fourier transformed data.

The phase shift method had one big disadvantage. By calculating the phase

shift between different points no differentiation between wave types, modes or other

propagating energy types can be made [37]. Therefore, the phase shift might be

polluted by unrecognized artifacts. The spatial Fourier transform allows discrimina-

tion between different propagating energy types, and breaks down propagation into

different components [47]. Each of these Fourier components can be identified as

an additional line in the wavenumber-Frequency spectrum. This offers a significant

advantage because multiple wave components can be identified. The spatial Fourier

Transform was subsequently used as it is a more accurate tool.

5.3.1 Rayleigh wave wavenumber-frequency spectrum

The procedure to obtain the wavenumber frequency spectrum and to calculate

the material properties was described in section 3.3.2. The shaker generated a sweep

function up to 2 kHz and the displacement was measured along the propagation

direction, at 100 equally spaced points. The 2D Fourier transform was used to

convert the data into the wavenumber-frequency spectrum. The Storage modulus

was then obtained.
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Figure 5–10 shows the wavenumber-frequency spectrum extracted from the ex-

perimental data for all the different materials tested. The different materials tested

were characterized by different amplitude curve offsets and slopes.

The silicon rubber with a mixing ratio of 1:1:0 was the stiffest and thus had

the lowest wavenumber values. The wavenumber real�k̂R� linearly increased for all

silicon rubber samples with increasing frequency. The silicon rubber with a mixing

ratio of 1:1:0.5 was softer and had higher wavenumber values than the silicon rubber

with a mixing ratio of 1:1:0. The silicon rubber with a mixing ratio of 1:1:1 was

the softest among the silicon rubbers tested. It had the highest wavenumber values.

Increasing the amount of silicon thinner increased the offset, with minor changes in

slope. This indicated a lower stiffness and a greater viscosity. The hydrogel was

more viscous and less stiff than the silicon rubber samples. It had the highest offset.

A higher wavenumber indicates a smaller wavelength. The more viscous and less

stiff the material, the shorter the wavelength. This affects the cycles per length

and therefore the damping. The behavior of the hydrogel follows the trend of the

Silicon samples. The increase in wavenumber is linear with increasing frequency.

The offset is much higher compared to the silicon rubbers which indicates a much

softer material. The differences between the materials tested were more visible in

the wave speed plot of Figure 5–11.

The overall wave speed behavior is logarithmic, which is indicated by a linear

increase in the wavenumber frequency plot. The wave speed in the hydrogel was

the lowest measured. It trends asymptotically towards a value around Real�ĉR� �

2 m

s
. Silicon rubber with mixing ratios of 1:1:1, 1:1:0.5 and 1:1:0 trends towards
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Figure 5–10: Wavenumber-frequency spectrum. �: Silicon rubber, mixing ratio of
1:1:0 ; �: Silicon rubber, mixing ratio 1:1:0.5 ; �: Silicon rubber, mixing ratio 1:1:1
; ��: Hydrogel, mixing ratio of GCs 2.5% and Gy 0.005%.

Real�ĉR� � 3.4 m

s
, Real�ĉR� � 5 m

s
and Real�ĉR� � 6.8 m

s
, respectively. The greater

the rigidity of the sample, the faster the wave propagation.

A similar behavior was observed when plotting the shear modulus, shown in Fig-

ure 5–12. The relationship between wave speed and the shear modulus is quadratic,

therefore the trend was almost maintained. All the samples showed a logarithmic

increase and an asymptotic trend towards a constant value at a certain frequency.

This was believed to come from the influence of the fibrous structure of the mate-

rial. At low frequency the fibers have less time to unravel and adhere to each other,

which resulted in an increase in stiffness. At a certain frequency the fibrous structure

didn’t respond anymore. Any further increase in speed did not change the behavior
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Figure 5–11: Wave speed cR vs. frequency. �: Silicon rubber, mixing ratio of 1:1:0
; �: Silicon rubber, mixing ratio 1:1:0.5 ; �: Silicon rubber, mixing ratio 1:1:1 ; ��:
Hydrogel, mixing ratio of GCs 2.5% and Gy 0.005%.

of the fibers anymore. Among all the materials tested, the wave speed of the hydro-

gel reaches a constant value at greater frequency. This indicated a difference in the

material structure of the hydrogel compared to the Silicon rubbers. Based on the

previously mentioned theory, this could result from a less fibrous structure. A less

fibrous structure has more space for the polymer chains to unravel. This could lead

to a longer logarithmic increase. The opposite was true for the Silicon rubber. The

ratio of fibers per matrix is much greater and therefore the whole structure is much

more dense. When excited, the fibers have less space to unravel and start to adhere

to each other at lower frequency. Therefore, the asymptotically trends towards a

constant value showed up later.
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Figure 5–12: Shear modulus vs. frequency for, �: Silicon rubber, mixing ratio of
1:1:0 ; �: Silicon rubber, mixing ratio 1:1:0.5 ; �: Silicon rubber, mixing ratio 1:1:1
; ��: Hydrogel, mixing ratio of GCs 2.5% and Gy 0.005%.

5.3.2 Traveling compression wave method vs. Rayleigh wave method

Figure 5–13 shows the shear modulus obtained with the compression and the

Rayleigh wave methods for two silicon rubber samples with different mixing ratios.

The rod experimental results were significantly lower than the shear modulus ob-

tained by using the Rayleigh wave method. The trend was the same up to 700 Hz

for the silicon rubber with a mixing ratio of 1:1:0. Only the values are different. It

was believed that this might be related to the influence of the Poisson ratio in the

rod experiment. Due to the nature of the equations, the influence of the Poisson

ratio was much greater in the rod experiment than the Rayleigh wave method. If the

Poisson ratio was sightly off it had a big influence on the final material properties. It
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Figure 5–13: Shear modulus vs. frequency for the Rayleigh wave method and travel-
ing compression wave method. �: Compression wave in silicon rubber, mixing ratio
of 1:1:1 ; �: Compression wave in silicon rubber, mixing ratio of 1:1:0 ; �: Rayleigh
wave in silicon rubber, mixing ratio of 1:1:1 ; ��: Rayleigh wave in silicon rubber,
mixing ratio of 1:1:0.

was observed that multiple waves were propagating inside the rod during the excita-

tion. The wave speed was calculated based on the spatial Fourier transform described

in Chapter 4. The resulting spectrum shows multiple waves propagating inside the

sample. Shear and other wave types were present inside the rod. The angle of the

shaker might have had an influence on the relative amplitude of the different wave

components. This was previously observed in the Rayleigh wave experiment. If the

angle between the gel and the blade was 90
�

the majority of the energy cascaded into

the shear wave component. When the angle was change to 45
�

the energy cascaded
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into the compression wave increased but into the shear wave decreased. Therefore

the Rayleigh wave was much weaker.

5.3.3 Rheometry results

The material used for all experiments was from the same lot and the samples

were fabricated (cast) at the same time. All the plots in this section show the

frequency-dependent shear modulus. In both the wave propagation and the tor-

sional rheometery experiments, the response of the material under shear was mea-

sured. The shear component of the Rayleigh wave was used to obtain the response

of the material per Eq. (2.43). In all cases, the modulus vs. frequency plots,
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Figure 5–14: Shear modulus vs. frequency for silicon rubber with a mixing ratios of
1:1:0. �: representing data obtained by rheometry ; �: representing data obtained
by Rayleigh wave propagation.

shown in Figures 5–14 trough 5–17, are in a very good agreement. The interpola-

tion between the two different experimental results seems reasonable accurate. The
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Figure 5–15: Shear modulus vs. frequency for silicon rubber with a mixing ratios of
1:1:05. �: obtained by rheometry ; �: obtained by Rayleigh wave propagation.

results in Figures 5–16 and 5–17 show a very smooth transition. The shear modulus

obtained by rheometry was very typical, and can be compared with that of many

other homogeneous viscoelastic materials. The stiffness increased with an increase

in frequency, first slowly than faster. It was believed that this behavior is related to

the time-dependent response of the material. At low frequency, the polymer chains

have time to unravel and to slide relative to each other. At high frequency, the mate-

rial becomes ”frozen”. The polymer chains do not have enough time to unravel and

pull each other, which resulted in an increase in stiffness of the material. At high

frequency, the obtained shear modulus using the Rayleigh wave approach follows a

complementary trend. Between 100 Hz and 400 Hz, the increase is logarithmic. It is

believed that at a transition point the polymer chain do not unravel anymore. The
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Figure 5–16: Shear modulus vs. frequency for silicon rubber with a mixing ratios of
1:1:1. �: obtained by rheometry ; �: obtained by Rayleigh wave propagation.

values asymptotically converge towards a constant value, probably representative of

the polymer chains modulus.

The high frequency response corresponds to material behavior at low temper-

ature. The temperature-frequency relation for viscoelastic material is 1

T
� log�f�,

where T and f represent temperature and frequency, respectively. At low temper-

atures the material was very brittle and hard. It resembles more a metal than a

viscoelastic material [7]. The wave propagation in a homogeneous metal is non dis-

persive, which is perfect agreement with observations. This specific behavior was

observed for all materials tested.

The frequency-dependent shear moduli obtained by two different experimental

methods were compared. The shear modulus of the Rayleigh wave method was
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Figure 5–17: Shear modulus vs. frequency for hydrogel with a mixing ratio of GCs
2.5% and Gy 0.005%. �: obtained by rheometry ; �: obtained by Rayleigh wave
propagation.

compared with shear modulus obtained by rheometry. The lower frequency limit of

the Rayleigh wave method was 100 Hz and the upper limit of the rheometer was 30

Hz. This created a 70 Hz band gap. However, it was believed that the trend between

the two different experiments was in agreement with each other, supporting a the

validity of the Rayleigh wave method.

5.3.4 Effects of longitudinal fibers on the shear modulus

The effect of embedded nylon fibers on the material response and properties

was tested. The material was prepared and cured following the procedure described

in Section 3.1.3. Two different experiments were performed. The wave propagation

along as well as transverse to the fiber orientation was investigated. Figure 5–18

shows the wave speed as a function of frequency. The response of the material
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without fibers is shown for comparison. The wave speed along the fiber direction

was much higher throughout a wide frequency range than that transverse to the fiber

orientation, or with no fibers. The wave speed function peaked at a frequency of 600

Hz, and started decaying afterwards. It decreased exponentially until it reached the

same value as the wave speed of the fibers traverse to the wave propagation. This

indicated that the influence of the fibers was highly frequency-dependent. Over the

frequency range between 100 Hz and 600 Hz, the wave speed significantly increased

with embedded fibers. From 600 Hz to 2000 Hz, this effect decreased exponentially.

This indicated that the effect of the fibers on the wave speed was diminished until

the wave speed was the same regardless of the fiber orientation. Furthermore, the

wave speed along the transverse fiber orientation, and that of homogeneous silicon

rubber diverged as well. The results indicated that the transverse fibers decreased

the wave speed at low frequency, and increased the wave speed at high frequency.

The density of the nylon fibers and silicon rubber with a mixing ratio of 1:1:0 was

similar, 1259 m

s
and 1087 m

s
, respectively. Density effects on the wave speed were

thus unlikely.

The shear modulus is shown as a function of frequency in Figure 5–19. The same

trends as in Figure 5–18 were observed. The shear modulus for the wave propagation

along the fibers direction was much greater than the one of the other materials tested.

The stiffness of the homogeneous material was greater at low frequency, but lower

for high frequencies than the material with transverse fiber orientation.

The general conclusion from this transversely isotropic material was that the

fibers have an influence on the frequency-dependent wave speed. Fibers aligned along
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Figure 5–18: Wave speed vs. frequency for different fiber orientations. �: Fibers
transverse to the wave propagation direction ; �: Silicon rubber without fibers ; �:
Fibers aligned along the wave propagation direction.

the wave propagation, stiffened the material drastically. Their influence decreased at

higher frequency. Fibers perpendicular to the wave propagation softened the material

for low frequency, but stiffened it drastically for high frequency. The orientation of

the fibers made no difference at high frequency .

Embedding nylon fibers in a polymer matrix stiffens the material. Such fi-

brous polymer matrix composites are significantly lighter than comparable material

with similar stiffness and strength [48]. The transversely isotropic viscoelastic ma-

terial structure is hard to compare with other fibrous structures. Wood is a fibrous

structure but does not have the same entanglement as polymers do. The proposed

theory is based on a significantly entangled structure. Moreover, wood does not

have the same matrix-fiber relationship. In the experiments performed a few fibers
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Figure 5–19: Shear modulus vs. frequency for different fiber orientations. �: Fibers
transverse to the wave propagation direction ; �: Silicon rubber without fibers ; �:
Fibers aligned along the wave propagation direction.

83



were embedded in a large quantity of matrix. In wood, a large number of fibers are

surrounded by a small quantity of matrix.

5.3.5 Two-layer method

Samples were prepared following the procedures described in Chapter 3. As for

the mono-layer method, an electrodynamic shaker generated a sweep function up

to 2 kHz. The wavenumber-frequency spectrum was obtained with the help of the

2D Fourier transform. Attempts were made to replicate previously published results

[22], [23].

Different materials with similar Young’s modulus were tested to find an optional

substrate and top layer sample thickness [49]. A wide range of top layer thicknesses

was investigated to understand the relation between sample thickness and substrate

interactions. If the top layer sample is very thin (1 mm) the Rayleigh wave observed

was exclusively dependent on the substrate used. If the thickness of the top layer

was increased up to 1 cm, the wavenumber spectrum was exclusively dependent on

the top layer material properties. No interaction between both substrates could be

observed.

The shaker excited Rayleigh waves propagating on the surface and compression

and shear waves propagating inside the material. When compression and shear

waves reach the interface between two materials, they create an additional Rayleigh

wave at the interface. It was believed that, for a specific thickness of the top layer,

the Rayleigh wave confined to the interface may interact with the surface Rayleigh

wave, although such interaction may be mitigated by the high dissipation inside the

material. The Rayleigh wave at the interface might have dissipated much faster than
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the Rayleigh wave on the top surface. This theory was supported by the extremely

high dissipation of the Rayleigh waves on the surface. Rayleigh waves above 200 Hz

usually dissipated over only 2 cm. A much higher dampened interface Rayleigh wave

would have dissipated even earlier.

5.4 Computational model

The simulation was performed using the model described in Chapter 4. Multi-

ple cases were simulated with different damping coefficients and shear moduli (Table

4–1). A suitable method to calculate damping parameters αd and βd for the experi-

mentally tested material was found. This approach lead to unrealistic results because

no interpolation into the high frequency spectrum was not possible. However, this

approach concluded in a new idea for the reverse engineering the material properties.

The envelope function of the peak amplitudes was fit to the one of the experiment

by adjusting the simulation parameters.

5.4.1 Rayleigh damping model

Efforts were made to quantify the damping coefficients αd and βd. Initially the

idea was to obtain these by fitting Eq. (4.7) to the damping ratio ζ. The damping

ratio ζ was calculated from the rheometry data for the different materials. It was

assumed that the trend obtained by fitting Eq. (4.7) would be a good initial guess

to start the simulation. Figure 5–20 shows the damping ratio, ζ, over the frequency

range from 0 to 25 Hz for all four materials tested. The trend observed for all

materials is exponential. The results for the three different silicons tested are almost

identical. Only the hydrogel shows a different damping behavior. It was a much

slower decaying exponential function. Similarities between silicon rubber damping
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Figure 5–20: Damping ratio ζ vs. frequency. �: Silicon rubber, mixing ratio of 1:1:0
; �: Silicon rubber, mixing ratio 1:1:0.5 ; �: Silicon rubber, mixing ratio 1:1:1 ; ��:
Hydrogel, mixing ratio of GCs 2.5% and Gy 0.005%.

ratios were observed previously. The shear modulus development for all three silicon

rubbers in Figure 5–12 was exactly the same, only the offset of the functions were

different. That leads to the conclusion that the logarithmic increase is regulated by

the damping and the final asymptotic trend towards a constant value is based on the

shear modulus.

The next step was to fit Eq. (4.7) to these damping ratios. For example, the

closest fit for the damping ratio of the hydrogel was obtained with αd � 150 and

βd � 0.0914 (Figure 5–21). For low frequency up to 0.2 Hz the fitting based on the

least square method did not replicate the damping behavior. For higher frequency
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Figure 5–21: Damping ratio ζ vs. frequency. The material investigated was hydrogel
with a mixing ratio of GCs 2.5% and Gy 0.005%. �: representing data obtained by
rheometry ; ��: Fit based on least square method

of 0.2 Hz to 16.5 Hz the fit was acceptable. These values were set as initial damping

parameters for the simulation. The first results obtained showed that this method

was not valid to obtain reasonable initial guesses for αd and βd. The fitting approach

was replaced by a parametric study to better understand the effect of damping and

shear modulus on the wave propagation.

5.4.2 Parametric study

In the parameter study the damping coefficient and the shear modulus was var-

ied. Other material specifications like incompressibility parameter and density were

kept constant. For analytical reasons, the envelope function of the peak amplitudes
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for the wave propagation was plotted vs. distance traveled. The difference between

Figure 5–7 and the following was that only the centerline was plot with the real

displacement.

Figure 5–22 shows the effect of different Rayleigh damping parameters on the

wave propagation for two frequencies, 300 Hz (a) and 600 Hz (b). The plots show the

development of the envelop function of the peak amplitudes vs. distance traveled.

The blade was positioned 4.2 cm from the left boundary of the setup (Figure 4–1).

Two different waves, to the left and right of the blade were observed. Figure 5–

22 (a) shows the peak amplitudes at 300 Hz for three different Rayleigh damping

parameters. Simulation Nr. 1 had the highest amplitude along x1 and the lowest

damping value with βd � 0.00005. Waves propagating to the left of the blade were

reflected back and a standing wave pattern was observed. This is related to the

fact that the blade was closer to the left boundary of the system than to the right.

Simulation Nr. 4 had a greater damping of βd � 0.0001. The standing wave pattern

almost disappeared, and the amplitudes were significantly smaller. Simulation Nr.

7 had the greatest damping value of βd � 0.00015 and the smallest amplitudes.

Looking at the right of the source of excitation, the effect of the damping only

influenced the amplitude development. The location of the first lobe to the right was

for all simulations exactly the same.

The same behavior was observed in Figure 5–22 (b) for a frequency of 600 Hz.

With increasing Rayleigh damping factor, βd, the amplitudes decreased without ef-

fecting the positions of the side lobes. Regardless of frequency, the Rayleigh damping

effected only the amplitude development. The wave speed or the wavelength of the
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propagating wave was not effected. Figure 5–23 shows the effect of different shear

moduli on the wave propagation at two frequencies (a) 300 Hz and (b) 600 Hz. The

plots show the envelop function of the peak amplitudes vs. distance traveled, similar

to the previous Figure 5–22. The damping parameter, βd, was fixed to one value

and only the shear modulus G was varied. Figure 5–23 (a) shows the development

at a frequency of 300 Hz. The propagation to the right of the sample was similar

to the previously observed behaviors. Two lobes were identified. The major differ-

ence between the material responses was the location of the lobes. The first lobe of

simulation Nr. 4, with a shear modulus of G = 10 kPa was exactly at the position

of 6.04 cm. Increasing the shear modulus to G = 20 kPa in simulation Nr. 5 and

to G = 40 kPa in simulation Nr. 6 shifted the lobe with each increase further away

from the excitation point, to 6.97 cm and 8.41 cm, respectively. The shift of the

lobe further away from the source of excitation indicated an increase in wave speed

and wavelength. This is in agreement with the equation Ĝ �

ρω
2

k̂2S
� ρĉ

2
S � ρ�λ̂Sf�

2

indicating that by increasing the shear modulus the wave speed and the wavelength

had to increase, while the density, ρ, and the frequency, f , were kept constant. The

amplitude of the lobes decreased when shifted to the right. The decrease in the

amplitude was related to the increased distance propagated. The further the wave

propagates, the more damping it experiences, which causes a shorter amplitude.

The same behavior was observed for an excitation frequency of 600 Hz in Figure

5–23 (b). With an increase in shear modulus the first side lobe, to the right of the

blade, shifted from 5.23 cm to 5.546 cm and than 6.04 cm, for a shear modulus

of 10 kPa, 20 kPa and 40 kPa, respectively. Thus, an increase in the damping
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Figure 5–22: Effects of Rayleigh damping parameters on wave propagation (a) 300
Hz simulation �: Nr.1 ; ��: Nr.4 ; �: Nr.7 (b) 600 Hz simulation �: Nr.2 ; ��: Nr.5
; �: Nr.8.
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Figure 5–23: Effects of shear modulus on the envelope function of a (a) 300 Hz
simulation �: Nr.4 ; �: Nr.5 ; ��: Nr.6 and (b) 600 Hz simulation �: Nr.7 ; �: Nr.8
; ��: Nr.9.
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coefficient, βd, increased the dissipation and therefore shortened the amplitude of

the propagating wave. It was observed that the position of the lobes did not change

by manipulating βd. Increasing the shear modulus highly effected the wave speed

as well as the wavelength. The lobes shifted further from the source of excitation

with each increase in shear modulus. To further investigate the conclusions made,

an analysis based on the mathematical theory in chapter 2 was performed. Surface

displacements of the computational models were extracted to mimic the laboratory

experiment and to calculate the material properties.

Figure 5–24 shows the Rayleigh wave speed and shear modulus for all 9 sim-

ulations. The results obtained were not dependent on the damping and therefore

the simulations yielded perfectly overlapping results. This was predicted by the

before-mentioned analysis, because the damping did not effect the wavelength or

wave speed. Simulations were grouped and plotted together. Simulation Nr.3,6,9

(Group 3) had a shear modulus of 40 kPa, Nr.2,5,8 (Group 2) of 20 kPa and Nr.1,4,7

(Group 1) of 10 kPa. In Figure 5–24 (a) the prediction show that an increase in

shear modulus increased the wave speed. Group 3 has the highest shear modulus

and therefore the highest reported wave speed, followed by Group 2 and Group 1.

In addition, to the shift in wave speed, the shear modulus had an effect on the slope

of the speed development. Group 3 with a very steep slope for a bandwidth of 100

Hz to 800 Hz distinguished itself from other groups where no obvious slope devel-

opment was recognizable above 400 Hz. The interpretation can be as follows. With

an increase in shear modulus, constant density and incompressibility parameter, the

wave speed development took longer to reach it’s final asymptotic value. That means
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the material was more dispersive for higher shear modulus. In Figure 5–24 (b) the

asymptotic shear modulus’s value at high frequency differed from the shear modulus

defined in the simulation. In addition, a greater the shear modulus in the simulation

caused the shear modulus calculated based on the mathematical model to diverge

from the correct value. One possible explanation was that a combination of Rayleigh

and body waves may have been generated. In Figure 5–7, 5–2, 5–23 (b) and 5–24

(b) the envelope functions decayed exponentially. Further investigations based on

the spatial Fourier transform showed no significant additional wave at a different

wave speed. It was assumed that the blade perturbation did not create the specific

boundary conditions to create a perfect single Rayleigh wave. Therefore, a detailed

investigation of the boundary conditions was needed.

5.4.3 Influence of boundary condition at drive point

To obtain one single Rayleigh wave, the transverse and longitudinal displace-

ment imposed at the driving point must be consistent with Eqs. (2.36) and (2.37).

However, in the experiment the surface perturbation of the shaker is purely uniaxial

which is in contradiction with the displacement definition of the Rayleigh wave (Eqs.

(2.36) and (2.37)). This leads to additional wave components propagating in the

material as described in section 5.3.2. In fact, an exponential amplitude decay was

rarely observed (Figure 5–7 and 5–2), which indicated the presence of multiple wave

components.

The Rayleigh wave displacement with depth was analyzed. Plotting Eqs. (2.36)

and (2.37) in Figure 5–25 revealed multiple interesting trends. It was observed that

the motion of the particles was not always elliptical anti-clockwise. At a certain
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Figure 5–24: Rayleigh wave speed (a) and shear modulus (b) vs. frequency for the
computational models. �: Nr.3,6,9 ; �: Nr.2,5,8 ; �: Nr.1,4,7.
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point, the motion in propagation direction became negative and therefore changed

its orientation.

-0.2 0 0.2 0.4 0.6 0.8 1

A
d

0

0.5

1

1.5

2

2.5

3

x
2
/

R

Figure 5–25: Normalized Rayleigh wave displacement Ad vs. normalized depth. �:
normalized displacement along the x1-direction ; �: normalized displacement along
the x2-direction

The second and most significant observation was that the out-of-plane motion

along the x2-direction had it’s maximum displacement below the surface of the ma-

terial. Since the motion, experimentally and computationally, was a pure line source

excitation without variations is depth, this fundamental characteristic of Rayleigh

waves was absent. This hinted, that the difference in applied boundary conditions

created additional energy, flowing into shear and compressional wave components.

95



Furthermore, no additional wave with different speed was visible in the wavenumber-

frequency spectra, which indicates that the added body waves propagated at the same

phase velocity.
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Figure 5–26: Cut of a material section, showing the individual nodes where displace-
ments is applied. Displacement varied with depth of the material, dependent on the
Rayleigh wave displacement.

To verify this hypothesis, the boundary conditions in the computational model

were changed. The new boundary conditions were based on Eq. (2.37), replicating

the Rayleigh out-of-plane motion, Figure 5–26. The coefficients to solve Eq. (2.37)

were based on the wavenumber calculated from a computational experiment. In other
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words, first a simple blade excitation was performed and the specific wavenumber,

characterizing the material, was identified. In the next step the wavenumber was

used to solve the Rayleigh boundary condition equation. The exact Rayleigh dis-

placement for each individual node was calculated, once the boundary conditions

were solved. The result is shown in Figure 5–27. The orange dotted line represents

the envelope function of the peak amplitudes when a line source excitation was ap-

plied on the surface of the sample Figure 5–26. As previously discussed, decay is not

exponential. However, the blue line described the envelope function of the applied

Rayleigh wave boundary condition to a cross section of the sample. The same mate-

rial was tested but the results were very different. The decay with modified boundary

conditions, was nearly perfectly exponential. This proved the hypothesis that the

boundary conditions were responsible for the additional lobe visible in every exper-

imentally or computationally obtained envelope function. The boundary conditions

play a significant role in the development of different wave types. It was shown that

with a modification into a more Rayleigh like boundary condition an almost perfect

exponential decay was created and thus additional wave types propagating inside the

material were eliminated. In the laboratory, it was nearly impossible to impose the

Rayleigh wave conditions which were created in the simulation.
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CHAPTER 6
Conclusions and future work

6.1 Summary and conclusions

The goal of this thesis was to investigate the surface wave propagation be-

havior of viscoelastic materials and to quantify the visco-elastic properties of soft

hydrogels over a frequency range up to 2 kHz. Different homogeneous and inho-

mogeneous materials were investigated, and their material properties quantified. A

deeper understanding of the underlying physics was obtained following experimental

investigations.

Firstly, a compressional wave propagation method for standing as well as trav-

eling waves was investigated. Two cylindrical silicon rubber samples with different

mixing ratio were tested. A method to calculate the response of the material based

on the longitudinal wave speed was implemented. The surface displacements of the

sides of the rod were measured and their cross-spectral density calculated. The wave

speed and amplitude decay of the traveling compressional wave was quantified up to

a frequency of 700 Hz. The wave speed for silicon rubbers with a mixing ratio of

1:1:1 and 1:1:0 reached a constant value of 5 m

s
and 10 m

s
, respectively. Based on the

measured wave speed, the shear modulus was calculated. The shear modulus for sili-

con rubbers with a mixing ratio of 1:1:1 and 1:1:0 reached a constant value of 5.5 kPa

and 20 kPa, respectively. Results were compared to results obtained with the sur-

face wave propagation. The trends were in good agreement up to a frequency of 700
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Hz. Similar asymptotic trends previously observed in the Rayleigh wave propagation

method were present. But the shear modulus values differed.

Based on the analytical Rayleigh wave model [31], the fundamental behavior

of single- and multi-mode Rayleigh waves was elucidated. It was observed that a

single Rayleigh wave has an anti-clockwise local particle motion. Moreover, the

local particle motion for a multi-mode Rayleigh wave propagation is dependent on

the number of different modes and the intensity. A numerical model was created

with which the differentiation between different modes and their related speed were

quantified.

The surface displacement created by the Rayleigh wave propagation, for four

different materials was measured. The recorded data was further analyzed with

the help of the cross-spectral density. A computational model was created which

transformed the obtained experimental data into a wavenumber-frequency spectrum.

The spectrum enabled to differentiate between waves propagating at different speeds.

The wave propagation in silicon rubbers with different stiffness was investigated as

well as the behavior of soft biomaterials under high frequency excitation. The wave

speed in the silicon rubbers with a mixing ratio of 1:1:1, 1:1:0.5 and 1:1:0 reached

a constant asymptotic value of 3.2 m

s
, 4.9 m

s
and 6.5 m

s
, respectively. The wave

speed for the hydrogel was 2.1 m

s
. Once the frequency-dependent wave speed was

calculated, the material properties were obtained. The shear modulus for silicon

rubbers with a mixing ratio of 1:1:1, 1:1:0.5 and 1:1:0 reached a constant asymptotic

value of 15 kPa, 20 kPa and 50 kPa, respectively. The silicon rubber samples with

higher ratio of silicon thinner were significantly softer and thus, had a smaller shear
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modulus. The hydrogel tested had the smallest shear modulus of 4 kPa. Results

were compared with previous work [22] done over the same frequency range. The

comparison between the results showed a good agreement for low frequencies, but

no overlap for high frequencies. It was believed that the new results have a greater

accuracy. The methodology followed in [22] relies on exponential regressions, which

was found to be flawed.

The shear moduli of the samples tested were compared to experimental results

obtained by rheometry. A good agreement between rheometry results and surface

wave propagation was identified. The rheometry results complemented the low fre-

quency spectrum of the shear modulus. The shear modulus for all materials tested

was linearly increasing, complemented with a logarithmic increase and asymptotic

values measured with the Rayleigh wave method. The effects of embedded fibers on

the wave propagation and the material response were explored. It was observed that

the alignment of embedded nylon fibers highly impacted the wave propagation and

the shear modulus. When the fibers were aligned with the wave propagation the

shear modulus significantly increased from 51 kPa without embedded fibers up to

100 kPa at a frequency of 600 Hz. When the fibers were transverse to the wave prop-

agation the shear modulus increased slightly by 1 kPa. At low frequency, entangled

fibers may have slipped relative passed each other, but at high frequencies cling to

each other, thus stiffening the material. A two-layer method was investigated, but

no interaction between multiple Rayleigh waves was observed.
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Computational methods validated the observed physical behavior of the surface

wave propagation. The experimentally obtained development of the peak ampli-

tudes was successfully replicated. Frequency-dependent damping was successfully

implemented to simulate viscoelastic material behavior. A high-fidelity model of the

laboratory experiment was created. The same post processing as for the experimental

data was applied to the computational model. Material properties were successfully

obtained based on the Rayleigh wave method, validating the approach. Simulations

with the shear modulus of 10 kPa, 20 kPa and 40 kPa were successfully reversely de-

termined to yield around 11 kPa, 21 kPa and 45 kPa, respectively, at high frequency.

The simulated wave propagation features were in good agreement with the one in

the experiment. A parametric study showed the effect of a variation of damping and

shear modulus on the wave propagation. It was observed that the Rayleigh damp-

ing only affected the amplitude development. With increasing Rayleigh damping

the amplitude decreased. The shear modulus only affected the phase development.

The wavelength was increased with increasing shear modulus. Different boundary

conditions were investigated which explained experimental observations. The nodal

surface displacement created a combination of shear and Rayleigh wave propagating

at the same speed. This created an interference between wave components. It was

possible to isolate the Rayleigh wave components and explain why envelope func-

tions developed the way they did. A single Rayleigh wave excitation was found to

be possible if the excitation amplitude varied with depth.
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6.2 Future work

Not many experiments have covered as wide a bandwidth as the present study.

Jia et al. performed experiments with a modified rheometer examining viscoelastic

materials up to 500 Hz, in 2006. It would be interesting to compare the Rayleigh

wave results with the results of that rheometer over the same frequency range.

An upgrade of the computational model to investigate the two-layer method

seems desirable. A few test runs were performed with promising results. The focus

should lay on how to choose the top layer thickness to ensure a Rayleigh wave inter-

action, and what the damping parameters need to be to prevent excessive dissipation.

The computational model offers an ideal platform for the reverse determination of

the material properties. This can be achieved by adjusting the simulation parameters

(damping and shear modulus) to replicate the same envelope function of the peak

amplitudes. If the envelope functions of the peak amplitudes are in agreement, one

knows the material properties. The code would have to be based on an initial guess

and an iterative method.

The effect of the fibrous structure should be further investigated. To further un-

derstand the effect of fibers on the material properties, the amount of fibers used, the

thickness and the distance between the fibers should be varied. A further expansion

of the experiment would bring light into the stated theory of matrix-fiber interac-

tion. By using nylon fibers embedded in viscoelastic elastic material, the behaviour

of fibrous tissue can be mimicked. This basic model can be linked to the mechanical

behavior of collagen and elastin components in tissue [50]. A future project should
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be the investigation of embedding fibers in viscoelastic material to replicate tissue

properties.

In future projects, the surface wave characterization method can be used to

determine the change of material properties with regards to external modifications.

One future project could be to investigate the effect of cells seeded in viscoelastic

materials and their effect on the material properties [51]. If cells are placed in an

environment they start creating an extracellular matrix (EM) in which they can

move and communicate with other cells [28]. This EM might have an influence

on the material properties of the gel they are seeded in [52]. The surface wave

characterization method is the perfect approach the quantify this change. Lots of

research has been done on human derived fibroblasts and their behaviour under

induced vibration [53]. However, the effect of acoustical waves on cells is not fully

understood [54]. One hypothesis to verify is that cells reacted to vibrations which

directly effects the proliferation [55]. The proposed experiments could be used to

investigate the effect of frequency-dependent vibrations on cells.
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APPENDIX A
Matlab code

Matlab version 2016b for Windows operating system.

A.1 Green’s function implementation

1

2 % Clear Working space

3 c l c ;

4 c l e a r ;

5 c l o s e a l l ;

6

7 %% Constants

8 f s= 2ˆ12 ; % Sampling ra t e

9 s ec =5; % Simulate 5 seconds o f propagat ion

10 Col=1; % Number o f columns t r av e r s propagat ion d i r e c t i o n

11 Row=100; % Number o f rows in propagat ion d i r e c t i o n

12 P=Col∗Row; % Number o f t o t a l po in t s measured

13 rho = 1011 ; % Specimen dens i ty in kg/meter ˆ3

14 po i s son =0.4 ; % Poisson r a t i o

15 L2=0.000762; % Distance between po in t s

16 k=(2�2∗po i s son ) /(1�2∗ po i s son ) ;
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17

18 %% Greens func t i on based on Zabolotskaya et a l . , 2011

19

20 yy= 300 ; % Def ined f requency

21 r= 0 . 00001 : L2 :Row∗L2 ; % Array po in t s in Row

22 r r= 0 .0015875 ; % Radius plunger diameter

23 xx= 0 .015875 ; % Displacement o f p lunger in meter

24 Q= pi ∗ r r ˆ2 ∗ xx ; % Volume v e l o c i t y

25 omegaR = 2∗ pi ∗yy ; % Radial f r equency

26 k1=1000; % Defined wavenumber

27 k2=700;

28

29 f o r k R = [ k1 , k2 ]

30 c R= omegaR/k R ;% Rayle igh wave speed

31 x i= 0 . 9 5 ;

32 x i l= sq r t ( 1 � x i ˆ2 ∗ kˆ�1 ) ;

33 x i t= sq r t ( 1 � x i ˆ2 ) ;

34 eta= �2 ∗ s q r t ( 1 � x i ˆ2 ) / ( 2�x i ˆ2 ) ;

35 c t= c R/ x i ;

36 c l= c t ∗ s q r t ( k ) ;

37 s= �rho ∗ c l ˆ2 ∗ Q / ( 1 i ∗ omegaR) ;

38 u0= 1 / ( sq r t (2 ) ∗ pi ) ∗ ( x i t + 1 / x i t + eta ˆ2 ∗ (

x i l + 1 / x i l ) + 4∗ eta ) ˆ�0.5;

113



39 P11= ( x i t + eta ) ∗ ( h i l b e r t ( k Rˆ2 ∗ b e s s e l j (1 , abs ( k R ) ∗ r

) ∗ s i gn ( k R ) ) + 1 i ∗ k Rˆ2 ∗ b e s s e l j (1 , abs ( k R ) ∗ r ) ∗ s i gn

( k R ) ) ;

40 P22= �1 i ∗ k Rˆ2 ∗ ( 1 + eta ∗ x i l ) ∗ be s s e l h (0 , 2 , abs ( k R

∗ r ) ) ;

41 Gr=( p i ˆ2 ∗ s ∗ eta ∗ u0ˆ2 ) / ( rho ∗ c l ˆ2 ) ∗ P11 ;

42 Gz=( pi ˆ2 ∗ s ∗ eta ∗ u0ˆ2 ) / ( rho ∗ c l ˆ2 ) ∗ P22 ;

43

44 i f k R == k1

45 Gz1=Gz ;%/(max(Gz) ) ;

46 end

47 i f k R == k2

48 Gz2=Gz ;%/(max(Gz) ) ;

49 end

50 end

51

52 v = VideoWriter ( ’ peaks . av i ’ ) ;

53 open (v ) ;

54 de l e t e ( gcp ( ’ nocreate ’ ) )

55 f I d = f i g u r e ( ’ p o s i t i o n ’ , [ 2 00 �200 550 450 ] , ’ V i s i b l e ’ , ’ on ’ ) ;

56 ax i s t i g h t manual

57 ax = gca ;

58 ax . NextPlot = ’ r ep l a c eCh i l d r en ’ ;

114



59

60 f o r t =0:1/10000 :0 .0003

61 T=exp (1 i ∗omegaR∗ t ) ;

62 f i g u r e ( f I d ) ;

63 %disp vs d i s t anc e

64 Uz1=T.∗Gz1 ;

65 Uz2=T.∗Gz2 ;

66 Ur=T.∗Gr ;

67 hold on

68 p lo t ( r+Ur , Uz1 , ’ ko ’ ) ;

69 t i t l e ( ’ Sur face d i sp lacement ’ , ’ FontWeight ’ , ’ bold ’ ) ;

70 g r id on

71 ax i s ( [ 0 max( r ) �0.000015 0 . 0 00015 ] )

72 %ax i s ( [�0.000008 0.000008 �0.00008 0 . 0 0 008 ] )

73 y l ab e l ( ’ Disp . (m) ’ ) ;

74 x l ab e l ( ’ l ength ax i s o f specimen (m) ’ ) ;

75

76

77 frame = getframe ( gc f ) ;

78 writeVideo (v , frame ) ;

79 end

80

81 f o r p=1: l ength ( r )
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82 i o =1;

83 f o r t =0:1/ f s : s e c

84 U(p , i o )=Gz(p) ∗exp (1 i ∗omegaR∗ t ) ;

85 i o=i o +1;

86 end

87 ACCn( : , p )=r e a l (U( 1 , : ) ) ;

88 LDVn( : , p )=r e a l (U(p , : ) ) ;

89 end

90

91 %% Sp l i t t i n g s i g n a l s to s e v e r a l segments

92 Ns=5;

93 Np=2ˆ12;

94 f o r i t =1: l ength ( r )

95 f o r k = 1

96 f o r kk = 1 :Np

97 % B1s (kk , i t , k ) = U( i t , kk ) ;

98 B1s (kk , i t , k ) = LDVn(kk , i t ) ;

99 B2s (kk , i t , k ) = ACCn(kk , i t ) ;

100 end

101 end

102 f o r k = 2 :Ns

103 f o r kk = 1 :Np

104 B1s (kk , i t , k ) = LDVn( ( ( k�1) /2) ∗Np+kk , i t ) ;
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105 B2s (kk , i t , k ) = ACCn( ( ( k�1) /2) ∗Np+kk , i t ) ;

106 end

107 end

108 end

109

110 %% Windowing Han

111 Wh = hann (Np, ’ p e r i o d i c ’ ) ;

112 f o r i t =1: l ength ( r )

113 f o r k = 1 :Ns

114 f o r d = 1 :Np

115

116 B1s (d , i t , k ) = B1s (d , i t , k ) .∗Wh(d) ;

117 B2s (d , i t , k ) = B2s (d , i t , k ) .∗Wh(d) ;

118

119 end

120 end

121 end

122

123 %% Creat ing 2D Matrix

124 f o r i x =1:Ns

125 p=1;

126 f o r i z =1: l ength ( r )

127 ML( : , i z , i x )=B1s ( : , p , i x ) ;
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128 MA( : , i z , i x )=B2s ( : , p , i x ) ;

129 p=p+1;

130 end

131 end

132

133 %% FFT in time

134 s = s i z e (ML) ;

135 f o r i x =1:Ns

136 FFT MA1( : , : , i x )=f f t (MA( : , : , i x ) , [ ] , 1 ) ;

137 FFT ML1 ( : , : , i x )=f f t (ML( : , : , i x ) , [ ] , 1 ) ;

138 FFT F1 ( : , : , i x )=sq r t (8/3) ∗(FFT ML1 ( : , : , i x ) . /FFT MA1( : , : , i x ) ) ;

139 end

140

141 %% ZeroPadding

142 Zero Padd=5;

143 FFT F1 ( : ,Row:Row∗Zero Padd , : ) =0;

144 Row=length ( r ) ∗Zero Padd ;

145 P=Row∗Col ;

146 s s1=s i z e (FFT F1) ;

147

148 %% Spa t i a l windowing :

149 % win=tukeywin ( s s1 (2 ) ) ;

150 % fo r ix =1:Ns

118



151 % fo r poi =1: l ength (FFT F1 ( : , 1 , 1 ) )

152 % fo r poi1=1: s s1 (2 )

153 % FFT F11( poi , poi1 , i x )=FFT F1( poi , poi1 , i x ) ∗win ( poi1 ) ;

154 % end

155 % end

156 % end

157

158 %% FFT in space

159 f o r i x =1:Ns

160 FFT F ( : , : , i x )=f f t (FFT F1 ( : , : , i x ) , [ ] , 2 ) /( s s1 (2 ) ) ;

161 end

162

163 %% Amplitude c o r r e c t i o n

164 f o r i x =1:Ns

165 FFT F ( : , : , i x ) = sq r t (8/3) ∗FFT F ( : , : , i x ) ;

166 end

167

168 %% Averaging

169 FFT AV = mean(FFT F , 3 ) ;

170

171 %% Spacing

172 Kx s = 1 / L2 ;

173 f=f s ∗ l i n s p a c e ( �0 .5 ,0 .5 , s s1 (1 ) ) ;
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174 kx=Kx s∗ l i n s p a c e ( �0 .5 ,0 .5 , s s1 (2 ) ) ;

175 Nf = length ( f ) ;

176 Nx = length ( kx ) ;

177

178 %% Sur face p l o t

179 [ c f f ] = min ( abs ( f�yy ) ) ;

180 [ f m , kx m ] = meshgrid ( f , kx ) ;

181 Z = reshape (FFT AV( 1 : Nf , 1 :Nx) ,Nf ,Nx) ;

182

183 %% Plo t t i ng s p a t i a l FFT

184 To=f f t s h i f t ( abs (Z) ) ;

185 f i g u r e

186 s u r f ( f m ’ , �kx m ’∗2∗ pi , f f t s h i f t ( abs (Z) ) , ’ EdgeColor ’ , ’ none ’ ,

’ L ineSty l e ’ , ’ none ’ ) ;

187 Ti t l e =[ ’Normal ,Row=’ num2str (Row) ’ , Col=’ num2str ( Col ) ’ ,

Freq=’ num2str ( yy ) ’Hz ’ ] ;

188 t i t l e ( T i t l e )

189 s e t ( gca , ’ xl im ’ , [ f ( f f ) �0.01 f ( f f ) +0 .01 ] )

190 s e t ( gca , ’ yl im ’ ,[� r e a l ( k R )�1000 r e a l ( k R ) +1000])

191 c ax i s ( [ 0 , max(To( f f , : ) ) ] )

192 s e t ( gca , ’ z l im ’ , [ 0 , max(To( f f , : ) ) ] )

193 y l ab e l ( ’ Spa t i a l Frequency ’ )

194 x l ab e l ( ’Time Frequency ’ )
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195

196 TT=f f t s h i f t ( abs (Z) ) ;

197 [ o , gg ]=min ( abs ( f �100) ) ;

198 f i g u r e

199 p lo t ( kx∗2∗ pi ,TT( gg , : ) )

200 s e t ( gca , ’ xl im ’ , [ 0 max( kx∗2∗ pi ) ] )

A.2 Spatial FFT for separate frequency excitation

1 c l c ;

2 c l e a r ;

3 c l o s e a l l ;

4

5 %% Const

6 Fs = 2ˆ13 ;

7 S = 10∗2ˆ13;

8 G1 = 0 . 0 0 5 ; % LVD gain in (m/ s ) /V

9 G2 = 0 .01062 ; % Acce lerometer ga in in read ing the

a c c e l e r a t i o n in mV/(m/ s ˆ2)

10

11 %% Import

12 Col=1;

13 Row=100;

14 P=Col∗Row;

121



15 Zero Padd=8;

16 whertobegin=1;

17 rho = 1011 ;

18 po i s son =0.4 ;

19 L2=0.0004445;

20 k=(2�2∗po i s son ) /(1�2∗ po i s son ) ;

21

22 poi =1;

23 f o r yy=300

24 Col=1;%Orthogonal to Blade

25 Row=100;%Pa r a l l e l to Blade

26 P=Col∗Row;

27 p1=[ ’ Fi rs tOutput ’ num2str ( yy ) ’ Hz P . tdms ’ ] ;

28 [ f ina lOutput , metaStruct ] = TDMS readTDMSFile ( p1 ) ;

29 Data = TDMS readTDMSFile ( p1 ) ;

30 data=Data . data ;

31

32 p=1;

33 f o r i t =3:3 : l ength ( data )

34 T1=data ( i t ) ;

35 T2=data(1+ i t ) ;

36 TT1=T1{1 ,1} ;
37 TT2=T2{1 ,1} ;
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38 LDVn( : , p )=TT1(Fs+1:S) ∗G1;

39 ACCn( : , p )=TT2(Fs+1:S�1)/G2 ;

40

41 p=p+1;

42 end

43

44 %% Zero padding

45 s9=s i z e (ACCn)

46

47 %% Ve loc i ty to Acce l e r a t i on

48

49 f o r i t =1:P

50 B1(1 , i t )=LDVn(1 , i t ) ∗Fs ;

51 f o r i i = 2 : l ength (LDVn)�1

52 B1( i i , i t )=(LDVn( i i , i t )�LDVn( i i �1, i t ) ) ∗Fs ;

53 end

54 end

55

56 %% Acce l e r a t i on to Ve l o c i t y

57 % fo r i t=1

58 % fo r i i = 1:40960�1

59 % V1( i i , i t )= sum(ACCn( 1 : i i , i t )+ACCn( 2 : i i +1, i t ) ) /2 .0/ Fs ;

60 % V1 LDV( i i , i t )= sum(B1 ( 1 : i i , i t )+B1 ( 2 : i i +1, i t ) ) /2 .0/ Fs ;
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61 % end

62 % end

63 %

64 % V1 = detrend (V1) ;

65 %

66 % t= ( 1 : l ength (V1) ) ’ ;

67 % opol= 120 ;

68 % [ p , s ,mu]= p o l y f i t ( t ,V1 , opol ) ;

69 % f y = po lyva l (p , t , [ ] ,mu) ;

70 % V1d= V1 � f y ;

71

72 %% ve l o c i t y to d i s t

73 % fo r i i = 1:40960�2

74 % D1( i i , i t ) = sum(V1( 1 : i i , i t )+V1( 2 : i i +1, i t ) ) /2 .0/ Fs ;

75 % end

76 % D1= detrend (D1) ;

77 % t= ( 1 : l ength (D1) ) ’ ;

78 % opol= 120 ;

79 % [ p , s ,mu]= p o l y f i t ( t ,D1 , opol ) ;

80 % f y= po lyva l (p , t , [ ] ,mu) ;

81 % D1 = D1 � f y ;

82
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83 c l e a r LDVn s9 TT2 TT1 T2 T1 data Data p1 f ina lOutput

metaStruct

84 %% Sp l i t t i n g s i g n a l s to s e v e r a l segments

85 Ns=300;

86 Np=400;

87 f o r i t =1:P

88 f o r k = 1

89 f o r kk = 1 :Np

90 B1s (kk , i t , k ) = B1(kk , i t ) ;

91 B2s (kk , i t , k ) = ACCn(kk , i t ) ;

92 end

93 end

94 f o r k = 2 :Ns

95 f o r kk = 1 :Np

96 B1s (kk , i t , k ) = B1 ( ( ( k�1) /2) ∗Np+kk , i t ) ;

97 B2s (kk , i t , k ) = ACCn( ( ( k�1) /2) ∗Np+kk , i t ) ;

98 end

99 end

100 end

101

102 c l e a r B1

103 %% Windowing (Han)

104 Wh = hann (Np, ’ p e r i o d i c ’ ) ;
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105 f o r i t =1:P

106 f o r k = 1 :Ns

107 f o r d = 1 :Np

108 B1s (d , i t , k ) = B1s (d , i t , k ) .∗Wh(d) ;

109 B2s (d , i t , k ) = B2s (d , i t , k ) .∗Wh(d) ;

110 end

111 end

112 end

113

114 %% Creat ing 3D Matrix

115 f o r i x =1:Ns

116 p=1;

117 f o r i z =1:Row

118 f o r i y =1:Col

119 ML( : , i z , i x )=B1s ( : , p , i x ) ;

120 MA( : , i z , i x )=B2s ( : , p , i x ) ;

121 p=p+1;

122 end

123 end

124 end

125 c l e a r B1s B2s ACCn

126 f o r i x =1:Ns

127 f o r i z =2:2 :Row
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128 ML( : , i z , i x )=ML( : , i z , i x ) ;

129 MA( : , i z , i x )=MA( : , i z , i x ) ;

130 end

131 end

132

133 %% FFT

134 f o r i x =1:Ns

135 FFT MA1( : , : , i x )=f f t (MA( : , : , i x ) , [ ] , 1 ) ;

136 FFT ML1 ( : , : , i x )=f f t (ML( : , : , i x ) , [ ] , 1 ) ;

137 FFT F1 ( : , : , i x )=sq r t (8/3) ∗(FFT ML1 ( : , : , i x ) . /FFT MA1( : , : , i x ) ) ;

138 end

139

140 r r r=l i n s p a c e (0 , 1 , 100 ) ∗L2 ;

141 t e s t=mean(FFT F1 , 3 ) ;

142 r r r=l i n s p a c e (0 ,100 ,100) ∗L2 ;

143 t e s t=mean(FFT F1 , 3 ) ;

144 f 1=l i n s p a c e (0 , 1 , l ength (FFT MA1( : , 1 , 1 ) ) ) ∗Fs ;

145

146 f o r i =1: l ength (FFT MA1( : , 1 , 1 ) )

147 t t2 ( i , : )=unwrap ( ang le ( t e s t ( i , : ) ) ) ;

148 t t3 ( i , : )=unwrap ( abs ( t e s t ( i , : ) ) ) ;

149 end

150 f o r g i =1:P
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151

152 j j=yy ;

153 %f i nd i n g phase s h i f t and amplitude f o r po int 1

154 f o r ee =30:�0.1:0

155 i f f i nd (yy�ee<f 1 & f1<yy+ee )

156 e l s e

157 phase (1 , j j )=f i nd (yy�( ee +0.1)<f 1 & f1<yy+(ee +0.1) ) ;

158 f f = phase (1 , j j ) ;

159 break ;

160 end

161 end

162 end

163

164 t4=tt2 ( f f , : ) ;

165 f i g u r e

166 p lo t ( t t2 ( f f , : ) )

167 hold on

168 f i g u r e

169 p lo t ( t t3 ( f f , : ) )

170 hold on

171 ( t t2 ( f f , 3 6 )�t t2 ( f f , 3 5 ) ) /L2

172 c l e a r ML MA FFT MA1 FFT ML1

173
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174 FFT F1 ( : ,Row:Row∗Zero Padd , : ) =0;

175 Row=Row∗Zero Padd ;

176 P=Row∗Col ;

177

178 f o r iyy=whertobegin ;

179 s s1=s i z e (FFT F1) ;

180 FFT F=1;

181 c l e a r FFT F

182 f o r i x =1:Ns

183 FFT F ( : , : , i x )=f f t (FFT F1 ( : , iyy : s s1 (2 ) , i x ) , [ ] , 2 ) /( s s1 (2 ) ) ;

184 end

185 s=s i z e (FFT F) ;

186 c l e a r FFT F1

187

188 %% Averaging

189 FFT AV = mean(FFT F , 3 ) ;

190 s1=s i z e (FFT AV) ;

191 Kx s = 1 / L2 ;

192 f=Fs∗ l i n s p a c e ( �0 .5 ,0 .5 , s1 (1 ) ) ;

193 kx=Kx s∗ l i n s p a c e ( �0 .5 ,0 .5 , s1 (2 ) ) ;

194 Nf = length ( f ) ;

195 Nx = length ( kx ) ;

196 [ c f f ] = min ( abs ( f�yy ) ) ; %point o f i n t e r e s t
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197

198 %% Sur face p l o t

199

200 [ f m , kx m ] = meshgrid ( f , kx ) ;

201 Z = reshape (FFT AV( 1 : Nf , 1 :Nx) ,Nf ,Nx) ;

202 TT21=f f t s h i f t ( abs (Z) ) ;

203 %contour f ( f m ’ , �kx m ’ , f f t s h i f t ( abs (Z) ) , ’ EdgeColor ’ , ’ none

’ , ’ L ineSty le ’ , ’ none ’ ) ;

204 % su r f ( f m ’ , �kx m ’ , f f t s h i f t ( abs (Z) ) , ’ EdgeColor ’ , ’ none ’ , ’

L ineSty le ’ , ’ none ’ ) ; %f i l t e r o u t l i e r s

205 %su r f ( f m ’ , kx m ’ , f f t s h i f t ( abs (mean(FFT F1 ( : , : , 2 , : ) , 4 ) ) ) , ’

EdgeColor ’ , ’ none ’ , ’ L ineSty le ’ , ’ none ’ ) ;

206 %su r f ( f m ’ , kx m ’ , f f t s h i f t ( ang le (mean(FFT F1 ( : , : , 2 , : ) , 4 ) ) ) , ’

EdgeColor ’ , ’ none ’ , ’ L ineSty le ’ , ’ none ’ ) ;

207 % Ti t l e =[ ’Zoom , Freq=’ num2str ( yy ) ’Hz ,Row=’ num2str (Row) ’ ,

Excluded po in t s=’ num2str ( iyy ) ’ , Distance from blade=’

num2str (L2∗ iyy ) ’m’ ] ;

208 % t i t l e ( T i t l e )

209 % view ( [ 1 0 0 , 1 0 , 1 0 ] )

210 % cax i s ( [ 0 , max(TT21( f f , : ) ) ] )

211 %colormap ( j e t (4 ) )

212 % se t ( gca , ’ zl im ’ , [ 0 max(TT21( f f , : ) ) ] )

213 % view ( [ 1 0 0 , 5 , 1 0 ] )
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214 %se t ( gca , ’ ZScale ’ , ’ log ’ )

215 % se t ( gca , ’ xlim ’ , [ f ( f f ) f ( f f ) +0 .1 ] )

216 %se t ( gca , ’ xlim ’ , [ f ( f f ) �0.01 f ( f f ) +0 .01 ] )

217 %se t ( gca , ’ ylim ’ , [ �max( kx ) ∗2∗ pi max( kx ) ∗2∗ pi ] )

218 % se t ( gca , ’ ylim ’ , [ 0 800 ] )

219 % y lab e l ( ’ Spa t i a l Frequency ’ )

220 % x lab e l ( ’ Time Frequency ’ )

221 end

222 c l e a r FFT AV Wh Z Kx s

223 T91( poi , : )=TT21( f f , : ) ;

224 poi=poi +1;

225 end

226 f o r i =1:15

227 f i g u r e

228 p lo t (�kx , T91( i , : ) )

229 s e t ( gca , ’ xl im ’ , [ 0 800 ] )

230 x l ab e l ( ’ Spa t i a l f r equency in mˆ{�1} ’ )
231 y l ab e l ( ’ Re l a t i v e amplitude ’ )

232 Ti t l e =[ ’Wavenumber specctrum f o r ’ num2str ( i ∗100) ’Hz ’ ] ;

233 t i t l e ( T i t l e )

234 g r id on

235 end
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