Genetic Algorithms and Cache Replacement

Policy

Erik R. Altman

McGill University, Montreal

October 1991

A Thesis submitted to the Faculty of Graduate Studies and Resaearch in partial
fulfillment of the requirements for the degree of Master of Engineering.

© Erik R. Altman, 1991

Acknowledgements

Thanks start with Jonathan C. Rand, who introduced me to genetic algorithms and kindly
lent, then gave me Goldberg’s book on the subject. Anne Brindle’s unsolicited donation of

her Thesis further sparked my interest in genetic algorithms.

Profeszor Guang R. Gao's inspired teaching has stimulated my interest in many areas
of computer architecture, particularly caches. Professor Vinod K. Agarwal has offered
numerous insightf * suggestions along the way, and has been extremely patient in waiting
for the final result. Professor P.C.P. Bhatt’s review of an early, and none too polished,
draft has improved this one considerably. As well, the many conversations with my fellow

students helped crystalize several ideas for me.

This work also depended on the considerable computing facilities made available to me
in the Computer Systems and Circuits Laboratory. Jacek Slaboszewicz insured that system

downtime was minimized, and was always willing to increase my disk quota when needed.

Thanks also to Russel] A. Olsen and Yoshiko Fueki, who provided me with a delicious
dinner and merriment more times than I can count. Visits and conversation with my family

were always fun and helped me keep things in perspective.

Finally and especially thanks to my wonderful wife, Sheila Sundaram, who never com-
plained about my odd hours, who gave me encouragement when I needed it the most, who
proofread this thesis on a moment’s notice, who translated the abstract, and who helped

me with the proofs in the Appendix.

Contents

Acknowledgements

1 Introduction

2 Cache Basics

8 Genetic Algorithms

4 Genetic Algorithms Applied to Cache Replacement
4.1 Basics e e e e e e e e e e e e e

42 Bxample. e

4.3 Combination Approaches

44 Hardware Implementation

5 Simulations

5.1 Methodology and Details

5.2 Line Hit Rate i i i e e e e e e e

............................

ii

............

11

17
17
19
21
23

29

5.2.4 Random Performance @ ... e 66

53 OPT Match Rate i i it e e e e e e it et e e et e 76
5.4 History e e e e e e e e 88
54.1 Canonical Form. it e 89

5.4.2 Genetic Algorithms versus Least Recent History 93

543 TwoHistory Variants v, 97

55 Shadow Cachet i ii ittt i 99
5.6 Optimizationby Set e e 100

6 Conclusion 1038
A Proofs 1086
A.1 Derivation of Number of Orbits 106
A2 Proofof CompressionRatio 108
A.3 Proof of Increase in Canonical Forms 108
Bibliography 110

iii

List of Tables

5.1

5.2

5.3

5.4

5.5

(<]
(=]

5.7
5.8
5.9
5.10

5.11

5.12

Number of Total Addresses and Number of Unique Addresses in Each Bench-

Overall Hit Rates for 512 byte Instruction and Data caches with 4.way as-

sociativity, 32 bytelines. Lo L oL

Line Hit Rates for 512 byte Instruction and Data caches with 4-way associa-

tivity, 32 bytelines. oo o
LRU-OPT Gawms for 512 byte I-cache, 4-way associativity, 16 byte lines. . .
LRU-OPT Gains for 512 byte D-cache, 4-way associativity, 16 byte lines.
LRU-OPT Gains for 512 byte I-cache, 4-way associativity, 32 byte lines. .
LRU-OPT Gains for 512 byte D-cache, 4-way associativity, 32 byte lines.
Indiwndual-Suite Ratios for LRU-History.
Mean Generation at which Best String Occurred.

Mean Percentage Differences in Line Hit Rates between Best Strings Gener-

ated by Genetic Algorithm Approach and by Random Approach.

Mean Percentage Differences in Line Hit Rates between Best Strings Gener-
ated by Population of 100 for 9 Generations and by a Population of 800 for

2 Generations. i e e e e e e e e e e e e e e e

OPT Match Rates: Percentage of Misses in which Different Algorithms Re-
placed the Line OPT Would Have.

v

31

73

83

5.13 Mean Overall Hit Rates When Genetic Algorithm Policies Maximize OPT
Match Rate. e e

5.14 Number of Canonical Forms for History Replacement.

5.15 Line Hit Rates using Cano~ical and Non-canonical Representation. 512 byte

Instruction and Data caches with 4-way associativity, 32 byte lines.

5 16 Line Hit Rates for Least Recent History and other Replacement Policies. 512
byte I.cache with 4-way associativity, 32 bytelines.

5.17 Line Hit Rates for Least Recent History and other Replacement Policies. 512
byte D-cache with 4-way associativitv, 32 byte lines.

5.18 Percentage Distribution of Distinct Lines Accessed in Set When Miss Occurs

using LRH replacement. 512 byte I. Cache with 4-way associativity, 32 bytle

5.19 Percentage Distribution of Distinct Lines Accessed in Set When Miss Occurs
using LRH replacement. 512 byte D-Cache with 4-way associativity, 32 byte

5.20 Line Hit Rates for History of Line References and for History of Line Ref-
erences and Hits/Misses. 512 byte Instiuction and Data Caches with 4-way

associativity, 32 bytelines. oL .

5.21 Line Hit Rates for LRU, LRU-History, and Shadow Caches. 512 byte In-

struction and Data caches with 4.way associativity, 32 byte lines.

$.22 Performance of LRU-History with Common Cache Replacement Policy and
with Individual Set Replacement Policies. 512 byte Instruction and Data

caches with 4-way associativity, 32 bytelines.

88
90

92

List of Figures

2.1

4.1
4.2
4.3
44

5.1

5.2

5.3

5.4

5.5

Typical Cache Layout.

Block Diagram of Cache Miss Hardware.

........

Hardware for LRU-FIFO Method.
Hardware for LRU-Count Method on Misses.

Hardware for History Method.

Comparison of Performance of Best String by Generation for a Mutation
Rate of 0 1 (solid lines) and 0.01 (dashed lines) for a 512 byte I-cache, 4-way

associativity, 16 bytelines 0 Lo

Comparison of Performance of Best String by Generation for a Mutation
Rate of 0.1 (solid lines) and 0.01 (dashed lines) for a 512 byte D-cache,
4-way associativity, 16 bytelines. 0L,

Improvement in Best Strategy for kalman by Generation Solid lines repre-
sent longer history or count record, dashed lines represent shorter. Results

for 512 byte I-cache, 4-way associativity, 32 bytelines.

Improvement in Best Strategy for poly by Generation. Solid lines represent
longer hsstory or count record, dashed lines represent shorter. Results for

512 byte I-cache, 4-way associativity, 32 bytelines.

Improvement in Best Strategy for ccal by Generation for 512 byte I.cache,

4-way associativity, 32 bytelines. L

vi

38

40

5.6

5.7

5.8

5.9

5.10

5.11
5.12
5.13
5.14

5.15

5.16

5.17

5.18

5.19

5.20

Improvement in Best Strategy for emacs by Generation for 512 byte I-cache,

4-way associativity, 32 bytelines. L L.

Improvement in Best Strategy for whetstone by Generation for 512 byte I-
cache, 4.way associativity, 32 bytelines.

Improvement in Best Strategy for ccal by Generation for 512 byte D-cache,

4-way associativity, 32 bytelines0,

Improvement in Best Strategy for #emacs by Generation for 512 byte D-cache,

4-way associativity, 32 bytelines. oo L.,

Improvement in Best Strategy for whetstone by Generation for 512 byte D-

cache, 4-way associativity, 32 bytelines.
Line Hit Rates for 512 byte I-cache, 4-way associativity, 16 byte lines.

Line Hit Rates for 512 byte D-.cache, 4-way associativity, 16 byte lines. . . .
Line Hyt Rates for 512 byte l.cache, 4-way associativity, 32 byte lines.

Lwne Hit Rates for 512 byte D-cache, 4-way asrociativity, 32 byte lines. . .

Results by Algorithm for a Multitasking Suite of All Benchmarks for 512
byte I-cache, 4-way associativity, 32 bytelines,

Results by Algorithm for a Multitasking Suite of All Benchmarks for 512
byte D-cache, 4-way associativity, 32 bytelines.

Results of using the overall best LRU-History algorithm on individual bench-
marks. Upper Bar is LRU, Lower is LRU-Hustory. 512 byte I-cache, 4-way
associativity, 32 bytelines. e

Results of using the overall best LRU-History algorithm on individual bench-
marks. Upper Bar is LRU, Lower is LRU-History. 512 byte D-cache, 4-way

associativity, 32 bytelines. L L o oL,

Best, Worst, and Mean Performance of LRU-Hsstory Strings on Suite of
Benchmarks for 512 byte I-cache, 4-way associativity, 32 byte lines.

Performance of Best and Worst Strings for Suite of Benchmarks for 512 byte
I-cache, 4-way associativity, 32 bytelines.

vii

44

45

46

47

48
49
50
51
52

59

60

65

67

5.21 Performance of Best and Worst Strings for Suite of Benchmarks for 512 byte

I-cache, 4-way associativity, 32 byte lines.

5.22 Distribution of Generations at which Best Strings Occurred

5.23 Percentage Differerces in Line Hit Rates between Best Strings Generated
by Genetic Algorithm Approach and Best Strings Generated by Random
Approach for a 512 byte I-cache, 4-way associativity, 32 byte hines

5.24 Percentage Differences in Line Hit Rates between Best Strings Generated
by Genetic Algorithm Approach and Best Strings Generated by Random
Approach for a 512 byte D-cache, 4-way associativity, 32 byte lines

5.25 Improvement in Line Hit Rate by Generation using the History Method for
a 512 byte L.cache, 4-way associativity, 32 byte lines.

......

5.26 Improvement in Line Hit Rate by Generation using the LRU-Count Method
for a 512 byte I-cache, 4-way associativity, 32 byte lines

.....

5.27 Misses under LRU and OPT.

........

5.28 Behavior of Replacement Policies Compared to OPT. Genetic Algorithm
Policies have OPT Match Rate Maximized. 512 byte l-cache, 4-way associa-
tivity, 32 byte lines.

........

5.29 Behavior of Replacement Policies Compared to OPT. Genetic Algorithm
Policies have OPT Match Rate Max:mized. 512 byte D-cache, 4-way asso-
ciativity, 32 byte liges.

......

5.30 Behavior of Replacement Folicies Compared to OPT. Genetic Algorithm
Policies have Line Hit Rate Maxirnized 512 byte I-cache, 4-way associativity,
32 bytelines

...................

5.31 Behavior of Replacement Policies Compared to CPT. Genetic Algorithm
Policies have Line Hit Rate Maximized. 512 byte D-cache, 4-way associativ-
ity, 32 byte lines.

5.32 Overall Hit Rates When Genetic Algorithm Policies Maximize OPT Match
Rate. 512 byte I-cache, 4-way associativity, 32 byte lines.

viii

68

69

71

72

80

81

86

5.33 Overall Hit Rates When Genetic Algorithm Policies Maximize OPT Match
Rate. 512 byte D-cache, 4-way associativity, 32 byte lines. 87

ix

Abstract

The most common and generally best performing replacement algorithm in modern
caches is LRU. Despite LRU’s superiority, it is still possible that other feasible and im-
plementable replacement policies could yield still better perfortaance (34] found tha‘ an

optimal replacement policy (OPT) would often have a miss rate 70% that of LRU.

If better replacement policies exist, they may not be obvious One way to find better
policies is to study a large number of address traces for common patterns. Such an under-
taking involves such a large amount of data, that some automated method of generating
and evaluating policies is required Genetic Algorithms provide such a method, and have

been used successfully on a wide variety of tasks [21].

The best replacement policy found using this approach kad a mean improvement in
overall hit rate of 0.6% over LRU for the benchmarks used. This corresponds to 27% of the
2.2% mean difference between LRU and OPT. Performance of the best of these replacement
policies was found to be generally superior to shadow cache [33], an enhanced replacement

policy similar to some of those used here.

Résumé

Le plus performant et le plus utilisé des algorithmes de remplacement dans les systemes
de cache modernes est 1'algorithme LRU. Malgré cette supériorité, il est possible d'implanter
d’autres algorithmes de remplacement avec une meilleure performance. Dans (34], on a
trouvé un algorithme optimal qui le plus souvent fait preuve d'un “miss rate” valant 70%
de celui du LRU.

Méme si des algorithmes plus performants existent, la question d’en trouver est autrement
difficile. Une technique pour trouver un meilleur algorithme est d’étudier un grand nombre
de traces d’adresses pour le méme motif. Cette tache exige le traitement d’une quantité
énorme de données, et par conséquent n'est pas praticable sans un outil automatique pour
engendrer et évaluer les différents algorithmes. La méthode des Algorithmes Génétiques
fournit un tel outil; les chercheurs s’en sont servis avec succés pour une large gamme de
taches [21].

Le meilleur algorithme de remplacement trouvé dans cette thése, en utilisant cette
méthode, jouit d’'une amélioration moyenne de 0,6% dans le “hit rate” global, relativement
& celui de l'algorithme LRU, par rapport aux “benchmarks” utilisés. Cette amélioration
correspond & 27% de la différence moyenne de 2,2% entre les algorithmes LRU et OPT.

La performance du meilleur des algorithmes de remplacement ici présentés s'est révélée
généralement supérieure 3 celle du “shadow cache” [33], une régle de remplacement qui

ressemble & certains des algorithmes dans cette thése.

Chapter 1

Introduction

This introduction assumes a basic familiarity with caches and genetic algorithms. If
this is not the case, Chapter 2 reviews fundamentals of cache operation, and Chapter 3

provides basic motivation and theory of genetic algorithms.

An important aspect in determining cache performance is the replacement policy used.
In a typical system, main memory may be 10 times slower than cache {36] (41] [23]. In this
case improving cache hit rate from 90% to 95% reduces the effective memory access time
by more than 30%. Furthermore the gap between cache speed and main memory speed is
growing [27].

The problem of increasing hit rate has been handled by:

1. Increasing the cache size

2. Increasing the line size

3. Maintaining separate instruction and data caches
4. Increasing the associativity

5. Prefetching

6. Software “hints” to the cache

CHAPTER 1. INTRODUCTION

7. Investigating alternative replacement policies

The order of this list gives some indicaticn of the relative emphasis that has been placed
on different solutions. However, the ranking is not rigid and some may prefer a slightly
different order. Nevertheless, the most common replacement policies now in use, such as
LRU and FIFO, have been employed at least since the 1960’ [36].

There are several reasons for this. Both LRU and FIFO are relatively simple to imple-
ment and offer good performance, with LRU generally having the higher hit rate. Other
replacement methods have been tried, for example Random, Least Frequently Used (LFU),
and Partition LRU—a slightly simplified version of LRU [29] [36]. However LRU has gen-
erally been found to have the highest hit rate of all these replacement policies [36]. Upon
reflection, the reader will likely find that few additional policies come to mind.

Different cache parameters are most often tested using software simulators. A typical
way to do this is to collect “representative” benchmark programs and execute them on an
architectural simulator. As part of the simulation, the stream of addresses generated by
the benchmark are stored to a file. This address trace file is then used as input to the cache

simulator.

Variations are possible, such as integrating the cache simulator with the architectural
simulator, thereby eliminating the need for the intermediate address trace file. This is im.
portant, as address trace files are often many megabytes or even gigabytes. Unfortunately,
address trace files are needed here for reasons given in Chapter 4.

One of the advantages of using trace driven cache simulation is that it is possible to
determine the optimal performance achievable by any replacement algorivhm [6]. This
optimal replacement policy is sometimes called MIN, but here it will be referred to as OPT
following the convention of (29]. It has been found that OPT often has a miss rate only 70%
that of LRU [34]. Thus there is significant room for improvement in replacement policies.

However, if improved replacement policies exist, they may not be obvious. One way
to find better policies is to study a large number of address traces for common patterns.
Such an undertaking involves such a large amount of data, that some automated method
of generating and evaluating policies is required. Genetic Algorithms (GA's) provide such
a method, and have been used successfully on a wide variety of tasks [21].

CHAPTER 1. INTRODUCTION 3

Some examples of these include VLSI circuit layout {13}, adaptive filter design [17], the
travelling salesman problem (8] [22] (42], prisoner’s dilemma [5], and job shop scheduling
[12). Other areas of application range from cellular biology to demographics.

In essence, genetic algorithms attempt to mimic evolution: different replacement policies
compete, with the fittest surviving and evolving to even fitter policies. Different replacement

policies are represented as different bit strings, in a manner analogous to DNA sequences.

As described here, genetic algorithms would be employed during the design of an archi-
tecture or possibly at compile time. They would not be used on the fly by the cache, as the
time and space overhead is far too prohibitive.

The basic notion is as follows. Start with a popula‘ion of random strings (replacement
policies). For each string, run a cache simulation on a benchmark address trace. Record
the hit rate or some other performance measure for the string. After all strings have
been simulated, reproduce the better strings in a new generation of strings. Finally apply
additional genetic operators such as mutation and crossover between strings to find new

and better replacement policies.

The goal of this work is to use this genetic algorithm approach to find replacement
policies which improve upon traditional policies, in particular, LRU.

Chapter 2

Cache Basics

CPU’s have historically been able to operate at faster clock rate than main memory and
this imbalance is likely to continue for the foreseeable future. [27]. One means of alleviating
this bottleneck has been to employ fast cache memory between the CPU and main memory.
However, in order to achieve this speed, the size of caches has been far smaller than that of
main memory. (Because they are small, caches can employ more expensive, higher power
memory chips than main memory. They can alsc be placed on the die of modern CPU’s,
thereby avoiding the speed penalty caused by the large capacitances on the chip’s output
pins.)

Since caches are smaller than main memory, some means is required to map main
memory addresses to cache. There are a multitude of ways to do this, but the basics of
almost all caches are the same. Caches function as an associative memory. As is illustrated
in Figure 2.1, internaily they are almost all divided into 3 parts which determine the overall

size of the cache:

e N Sets
e K Lines per Set (K is the Associativity)
o L Bytes Per Line

o Cache Size = Nx K x L

CHAPTER 2. CACHE BASICS 5

Cache
Set
f
| ma—— K lines
N Sets E ‘
N L bytes/ine N

Figure 2.1: Typical Cache Layout.

In the literature, the synonym block is often used for line [36).

This structure facilitates quickly finding whether a particular main memory address
is present in the cache. To see this, consider the steps a sample cache follows in finding

whether an address is present:

1. 16-bit Address, ABCDEFGHIJKLMNOP
2. 1024 byte Cache

3. K = 4-way associativity

4. L = 8 bytes per line

5 N = °%x!sm = 4—:?::)(8 E“Iu = 32 sets

6. Address Bits NOP specify which of the 8 bytes in the line

7. Address Bits IJJKLM specify which of the 32 sets
8. Address Bits ABCDEFGH form a tag

9. Usc K = 4 comparators to determine if the tag is present in the set

CHAPTER 2. CACHE BASICS 6

Note than every memory address maps to a specific cache set, and hence one of K lines.
The cache must determine whether a value requested by the CPU is present and return it
as quickly as possible. Hence the number of tag comparisons (K) performed to check if a
value is present must be minimized. Even if all the comparisons are performed in parallel,
there are problems: a large amount of space is required for the comparators and the larger
space implies a reduced maximum clock frequency. Peak power consumption is increased.
On the other hand, too small an associativity, K, can cause problems when maay memory
addresses to map to the same set. The result is thrashing while the different addresses
compete for space in the set. Typically K is 2 or 4, but values from 1 to 16 have heen used
[36]. K is typically a power of two, but as can be seen in the example above, it need not

be. [31] for example uses a K = 3-way associative cache. N and L must be powers of 2.

As can also be seen in the example, the lower order bits zre used to map addresses
to sets. As one might expect this acts as a quasi-random function to evenly distribute
addresses among all sets. A random mapping generally minimizes the number of multiple
addresses competing for space in the same set, i.e. it minimizes thrashing. However, since
caches are smaller than main memory, conflicts sometimes occur. If each of the K lines in
a set contains an address, then one of the K addresses must bz replaced, when a new line

also maps to that set.

There are several common algorithms which are used to decide which line to replace.

The algorithms must be simple as usually they must operate in one or two CPU cycles.

e LRU, the Least Recently Used line is replaced.

e Partition LRU, a simplified approximation to LRU. Here the K lines in a set are
partitioned into subsets. For example, an 8-way associative cache may have 4 subsets
of 2 lines each. The order of use of each subset is maintained, as is the order within
each subset. On a miss the least recently used line in the least recently used subset

is replaced. Partition LRU is used mainly in “highly” associative (K > 4) caches.
e LFU, the Least Frequently Used line is replaced.
e FIFO, the First In line is the First Out.

¢ Random, a pseudo-randomly chosen line is replaced.

CHAPTER 2. CACHE BASICS 7

s OPT, the optimal strategy where the line which is used furthest in the future is
replaced [6].

Since future information is unknown to the cache, OPT cannot be used in real caches.
However software cache models are commonly used to test a specific cache configuration
[36] {37] [1] [16]. These models take as input, a trace of memory addresses generated by a
particular benchmark or benchmarks. (Methods of generating such a trace are described
below.) A prepass can be done on this trace to determine how long until each line is
referenced again. OPT can then use this information on s second pass to expel the line
referenced furthest in the future. The performance achieved using OPT provides a good
basis against which other strategies can be compared. It is actually possible to write a
single pass OPT [7]. LRU is the most common and generally the best performing of the
(implementable) algorithms above [36]

In order to determine which replacement and which cache parameters are best, some

measure of cache performance is required. There are several:

o Hit Rate, the percentage of time that the location desired by the CPU is present in

the cache. This metric is a good measure of overall cache performance.

o Line Hit Rate [39], similar to Ast rate, but for a given set, the only accesses considered
are those which are to a different line than the previous time the set was accessed.
Any series of accesses within a single line produces hits no matter what replacement
algorithm is used. As a consequence maximizing the line hit rate also maximizes the
overall hit rate. However, the line kit rate more closely reflects the difference between

two replacement policies.

The behavior of line hit rate can be surprising. If tLe metric used is overall hit rate
and one of the cache size parameters—line size (L), associativity (K), or number of
sets (N)—is increased while the others are held constant, then the overall Ait rate is
increased (or possibly held constant). However if the metric usec' is line Ast rate, this

is not true.

This is because the line hit rate considers only those references which access a different
line than the previous time a given set was accessed. When the cache size is increased,

the number of references in which a new line is referenced is generally decreased. The

CHAPTER 2. CACHE BASICS 8

line hit rate of this decreased number of new line references raay be lower than for a

smaller cache with more new line references.

e OPT Match Rate, the percentage of time that the line replaced is the same line that
OPT would have replaced.

e Average Access Time, the average number of cycles the cache takes to return a value
to the CPU. This is directly related to the hst rate.

o Memory Traffic, the number of transfers between cache and main memory. This is
especially important for a multiprocessor system with global memory and where each

processor has a local cache.

e Utilization, the number of times each location in the cache is accessed. This is a
measure of the value of a cache compared to alternative uses of the chip or board space.
If utilizatson is low, it may be a better use of space to have two simple processors with

small caches, than one complex processor with a single larger cache.

Here we are most interested in the effectiveness of replacement algorithms. Hence hit
rate, line hit rate, and OPT match rate are used. Trying to find a replacement policy which
matches OPT is one way of having the cache recognize certain access patterns and respond

to them, hopefully in an optimal way.

Although most caches are organized as has been described, a single CPU need not have
only one unified or combined cache. The CPU may have multiple caches, each containing

distinct information. Two types of divisions are most often suggested [36):

e Instruction Cache and Data Cache

e Supervisor Cache and User Cache

Separate supervisor and user caches are designed to increase Ast rate and utilization by
keeping user code in cache during interrupts. These goals are not always accomplished.
This is because two, half-size caciies can be too small to accommodate the working set of
references, whereas one larger cache would be sufficient. The larger cache also dynamically
shifts what fraction of it is used for one purpose and what fraction is used for the other.

For this reason, separate supervisor/user caches are rarely used [36)].

CHAPTER 2. CACHE BASICS 9

Separate instruction and data caches have two other advantages. Bandwidth from cache
to processor is increased—barring cache misses the processor can be continuously fed with
inetructions and data. An instruction cache can also be simpler (and hence larger and
faster) since it need never be concerned with memory writes. (Most modern architectures

assume that self-modifying code is not used.)

A CPU may also have multiple levels of cache. In a multi-level system, instead of
placing a single cache in between the CPU and main memory, an additional, generally
slower cache is placed between the first cache and main memory. This hierarchy may be
extended arbitrarily deep, but there is generally not enough difference in speed between

main memory and the CPU to warrant more than two levels of cache (41].

Finally as already noted, most cache study is done using software cache simulators and

address traces. Some methods of trace collection are

o Special instrumentation and recording hardware for existing systems.

o Software architectural simulators.

o ATUM or Address Tracing Using Microcode [2]. Patches are made to microcode to
record all address references made by the machine including operating system calls

and interrupts.

Architectural simulators are simplest, but have the drawback that they usually gener-
ate traces irom only a single (user) program. Obtaining and properly mixing addresses
from system code and interrupts is virtually impossible. Microcode patches become less
viable as RISC (no microcode) and VLSI (microcode not patchable) grow ever stronger.
Instrunentation hardware is too expensive and too complicated to be of general use. It is

especially difficult to synchronize trace collection with the execution of specific programs.

Trace simulation allows complete flexibility as to cache parameters, and even allows the
OPT replacement policy to be used. However, trace simulation is also orders of magnitude
slower than an actual cache and deals with traces that almost always represent very little
computing time. 20 million addresses might represent only one second of computing in a

modern RISC processor, but take up 80 megabytes of disk space.

CHAPTER 2. CACHE BASICS 10

This large disk space requirement has spurred some researchers to integrate their cache

simulator more fully with an architectural simulator (26]. Desired benchmarks are executed

on the simulator and as address references are generated, they are immediately passed to
the cache simulator, which maintains the desired statistics. Unfortupately this approach is
not practical here. As will be seen, the same trace must be reused hundreds and thousands
of times. The additional overhead of simulating an entire architecture running the desired
benchmark is prohibitive.

An alternative to trace simulation or architecture/cache simulation is to have the cache
maintain CPU addressable counters for the number of hits and the number of misses [4].
The CPU could clear these counters and later record the number of hits and raisses at any
desired point. Incrementing of the counters can be done in parallel with other cache activity
and hence need not slow it down. This method could provide the hit rate for the system
including all interrupts and system code. With a small additional bit of hardware, the line
hit rate could also be maintained in this manner. Memory traffic could also be accurately

measured via onboard counters.

Clearly, this counter scheme could not be used directly in developing new architectures.
However if it were generally implemented, cache performance statistics would be available

for a much wider variety of machines and workloads than is presently the case.

Chapter 3

Genetic Algorithms

The goal of genetic algorithms is to mimic evolution to find optimal or near optimal
solutions for a given problem!. The problem must be well defined, and a function must exist
to evaluate proposed strategies. A number of approaches for genetic algorithms have been
proposed. Almost all modern approaches use a population of binary strings (or strategies)
(21], all of the same length, I-bits Each string represents a possible solution.

Any moderately complex problem has more solutions than can reasonably be enumer-
ated and searched for an optimum. If | = 32, exhaustive search requires that 232 = 4 billion
strategies be evaluated to find the optimum of the function Genetic algorithms attempt to
reduce the search space to a manageable size at the risk of finding only an approximately

optimal solution.

A simple genetic algorithm, typical of many modern approaches, is outlined below:

1. Generate a random population of I-bit binary strings.
2. Evaluate fitness of all strings.

3. Use fitness to determine which strings to reproduce in the next generation.

'The exposition in this Chapter borrows heavily from descniptions given in Goldberg's comprehensive
1989 book (21]

11

CHAPTER 3. GENETIC ALGORITHMS 12

4. Original generation “dies”.
5. Pair off strings in new generation.

6. For each pair, randomly choose a bit position, p in the string.

-

. Swap the bits to the right of p between the two strings in the pair. (Crossover)

8. Randomly mutate (with small probability) bits in resulting population.

©w

. Goto Step 2.

This algorithm uses three operations to systematically seek improvements in the popu-
lation, or in other words to search for an optimum solution.

o Reproduction rewards the fittest strategies.

e Crossover generates new strategies and rewards good suvstrings.

o Mutation adds diversity and insures that all strings may be generated at all times.

To make matters more concrete, consider the following example which goes through one

iteration of the basic algorithm above.

1. Initial Population: A = 0111000, B = 0101010, C = 1001001, and D = 1010110

2. Assume A, C, and D are best by some criteria and two A’s, one C, and one D are

reproduced in the next generation.
3. Assume the pairingis A/C and A/D.

4. Randomly choose 3 as the crossover position for A/C, and 5 as the crossover position
for A/D.

5. This yields: A’ = 0111001, B’ = 1001000, C* = 0111010, and D’ = 1010100.
6. Randomly choose the 2nd bit of C’' and the Tth bit of D’ to mutate.

7. The new generation is: A’ = 0111001, B’ = 1001000, C’' = 0011010, and D’ =
1010101.

[

CHAPTER 3. GENETIC ALGORITHMS 13

A simple and innovative use of genetic algorithms was proposed by Axelrod and Forest
[5] (18] for the game, Prisoner’s Dilemma. In this game, two accomplices are held in separate
rooms by police as suspects in some crime. In truth both prisoners are guilty However,
the suspects will receive longer or shorter sentences depending on whether both, neither or
one of them confess. To make the game more interesting, this sequence is repeated for a
large number (150) of moves, thereby allowing each of the two prisoner's to learn about the

other’s behavior.

At a 1985 computer tournament, a tit-for-tat strategy was victorious over many more
complicated strategies. (In tit-for-tat, one does what the opponent did in the previous
move.) Using a genetic algorithm approach, Axelrod and Forest found a strategy that con-
sistently beat tit-for-tat as well as the other strategies in the tournament Their approach

can be summarized (and slightly simplified) as follows:
1. At each move each prisoner can confess or not. Hence each move can be recorded
with 2 bits.
2. Record the 6-bit history of past 3 moves.
3. Choose the next move based on this 6-bit history.
4, 6 bits = 2° = 64 possible histories.
5. For each of the 64 histories, the strategy must indicate whether to confess or not.
6. Goal: Find the optimal 64-bit strategy.

7. Method: Generate a random population of 64-bit strings and use genetic algorithm as
described above. At each generation, play each string against every other. A string's
fitness is a (nonlinear) function of the total amount of prison time incurred by that

string.

Althoagh genetic algorithms have some appeal merely by analogy to nature, it can be

shown in a more mathematically rigorous manner, that the operations of reproduction,

crossover, and mutation will tend to produce successively more optimal populations [24).

To begin a pair of definitions are needed.

CHAPTER 3. GENETIC ALGORITHMS 14

e A schema is a binary string, but not all bit positions need be defined. Don't Cares,
* are allowed. For example, H = 011« 1 # «. (The plural of schema is schemata).

e The defining length, §(H) of a schema, H, is the number of bits between the first and
last defined bit position. For example, §(H = 011+ 1% =) = 4.

These definitions can now be used to show that over time, reproduction creates expo-

nential growth in the number of above average schemata in the population.

o Let there be a population, P containing n strings of length [at time ¢.

Let the fitness of string, 7 be f,.

Let the average fitness of strings representing schema, H in this population be f(H).

Let m(H,t) be the number of strings containing schema, H at time ¢t.

Then the expected number of strings containing H after reproduction at time ¢ + 1

is proportional to id 7
: nf(H)
m(H,t+1) = m(H't)E?f,
= m(H, t)f—(.f-H—l

o If strings containing H are a factor ¢ better than average at each generation, then

m(H,t+1) = m(H,t)-(-Zi.'_f—cz-)-
(1+¢e)ym(H,1)

o This produces exponential growth in number of above average schemata and expo-

nential decay for below average schemata.

m(H,t) = (1 + c)'m(H,0)

CHAPTER 3. GENETIC ALGORITHMS 15

Reproduction never produces new strings. Alone it can never improve on the perfor-
mance of the original ropulation. Crossover does introduce new strings, and does so in
such a way as to reward highly fit, short schemata. In other words good, small building
blocks are favored. To see this, consider an example.

e Let Hy =»1 %% +«%0 and H; = « %10 « ». Then §(H,) =5 and §(H;) = 1.

o There are 6 possible crossover locations for both H; and H,;. H, is destroyed by
§(H,) = b of the 6 choices. Hj is destroyed by only §(H3) = 1 of the 6 crossover

choices.
More generally, this idea can be summarized as follows.

o If crossover occurs with probability, p., the probability, p,, of schema, H surviving is

§(H)
-1

Po(H)=1-pc

o In pure reproduction, p. = 0 and p, = 1. Allowing crossover changes the number of
occurrences of schema, H expected in the next generation:

f(H)

m(H,t+1) = m(II,t)-—-}-,——P.(H)
_ f(H) é(H)
= m(H, t)‘—-f-— [1 - ”‘T:T]

¢ Now the number of schemata, with short defining lengths, §(H) grows exponentially:
the system rewards good, small building blocks.

Note that in this derivation, we ignore the small chance that crossover of two schemata
not containing H will create an instance of H in the new generation. Including this effect

does not change the main result [21].

Here mutation is assumed to occur as inversion of single bits. Multiple bits in a string
may mutate, but each occurrence is assumed to be independent. Mutation has two roles. It

can add diversity to a population, as well as guarantee that it is always possible to generate

CHAPTER 3. GENETIC ALGORITHMS 16

any string. Always being able to generate any string is necessary to avoid getting stuck at a
suboptimal solution when all strings in the population are identical at certain bit positions.
Mutation also has a danger. If the mutation rate is too high, then the progress made
through reproduction and crossover can be destroyed. Formally, the effect of mutation is

as follows.

o Let p,, be the probability of a bit mutating.

o Define the order of a schema, o H) to be the number of fixed positions in H. For
example, if H = 011 % 1+, then o(H) = 4.

o The probability of H surviving mutation is

Prnsur = (1= pm)) = 1 — o(H)pm for pm < 1
o The probability of H not surviving mutation is
Prmdie =1~ [1 - O(H)Pm] = o(H)pm
Subtracting the destruction rate of schemata due to mutation from the previous recur-

rence for number of schemata in a generation yields The Fundamental Theorem of Genetic
Algorithms:

m(H,t+1)= m(H,t)-f—(-;—I- [1 - pcf—(;q% - o(H)p,,.]

Chapter 4

Genetic Algorithms Applied to

Cache Replacement

4.1 Basics

As noted in Chapter 2, LRU is currently the most common replacement strategy used
in caches. To improve upon it, either more or different information must be kept about the
lines residing in cache. One way of using more information is to use both LRU and FIFO
information in deciding which line to replace. Keeping a history of cache accesses is a way
of using different information. A history could be kept and used with a genetic algorithm
as follows:

o For the previous m accesses to a cache set, record whether the access is a hit or miss.
o If the access is a hit, record to which line it is a hit.
o If the access is a miss, record which line was replaced.

o If K is the cache associativity, then a genetic algorithm would require a population
of strategy strings, each of B bits, where B is

17

1 CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 18

B = logy(K) x 2mli+iesn(X)]

The derivation of this is quite simple. For each of the previous m accesses 1+ loga(K)
bits are used to record what happened on that access. Thus there are 2™{1+ioga(K)]
possibilities for the previous m accesses. For each of these possibilities, the line to be
replaced must be specified. This takes log2(K') bits, which yields the formula for B

given above.

e For K = 4-way associativity and a history of the last 4 accesses, each string is 8192
bits! For comparison [10] used some of the longest strings in genetic algorithm appli-
cations. They were the equivalent of less than 4000 bits. There are ways to reduce
the complexity here as is discussed briefly below in Section 4.4 and more fully in
Section 5.4.1.

Regardless of what approach is used—a combination of LRU and FIFO, history, or
something else—some means is needed to find good solutions in the myriad of possible
solutions. As noted, if even a relatively short history is kept, a brute force method would
entail a search of 28192 possibilities. Genetic algorithms offer an attractive alternative to

such a method.

Note that only cie approach—an LRU-FIFO combination, history, etc—is tried at a
time. A genetic algorithm tries to find a near optimal strategy within that one approach.
However, for each approach, the same basic method is used to find a good replacement
strategy:

1. Generate a random popul~*ion of strategies (strings) for the approach (LRU-FIFO,
history, etc).

2. For each string in the population, perform a cache trace simulation using a particular
benchmark or set of benchmarks.

3. During each simulation, use the string to determine which line to replace when a

cache miss occurs.

4. After each simulation, record the line hit rate or some other performance measure for
the string.

By

CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 19

5. Calculate the fitness of the string as a nonlinear function of the performance measure.

6. After a simulation has been performed for each string, use reproduction, crossover,

and mutation to generate a new generation of strategies based on these fitnesses.

7. Goto step 2.

4.2 Example

To make this more concrete, consider an example using the Aistory method. Let the cache

have K = 4-way associativity and keep a history of m = 1 previous accesses. This requires

B =2 x 21x[+on(4)) — 16 pigs

for each strategy string. More intuitively

o The history of the previous access is recorded in 3 bits, Hist = B3 B, By. The 3 bits

refer to the line referenced (2 bits) and whether the access was a hit or a miss (1 bit).

o The strategy must indicate which line to replace on a miss for each of the 2° = 8

possible histories.
¢ 4-way associativity = 2 bits to specify the line to be replaced.

¢ Since 8 lines must be specified, 8 x 2 = 16 bits are required for each strategy string.
Several additional assumptions are required:

e Let B; = 1 for a hit, 0 for a miss.

o Let B, B, specify the line to be replaced.

o Let the Strategy string S under consideration be

7 6 5 43 32 10
§=0100100011011110

S can be viewed as an array of 8, 2-bit elements, one for each possible history. Each
element specifies which line to replace for a given history.

CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 20

o Assume Hist = 101 and there is a miss.
The history method then works as follows

e The line replaced is that specified by the B,B; By = 1013 = 5th pair in the strategy,
103 = 2.

o Thus the new Hist = 010: a miss occurred and line 2 was replaced.
¢ Next assume there is a hit to line 0 of the set.

o Therefore the new Hist = 100.

The string S is used in this manner for the entire address trace, i.e. based on the past
history of accesses to a set, § indicates which line should be replaced when a miss to that set
occurs. When the simulation finishes with the address trace, the performance of § is noted.
Then the same procedure is repeated for the rest of the strings in the population. Finally
after the performance of all strings has been measured, the reproduction, crossover, and
mutation operators are applied in an attempt to produce a new and hopefully improved gen-
eration. This process continues, generation after generation until each generation performs
approximately as well as its predecessor. (There is no hard and fast rule for determining

when this convergence has occurred [21].)

Clearly the choice of address trace is critical to this process. (The address trace corre-
sponds to some benchmark program or programs.) Some strings perform well with some
programs, others with different programs. One goal is find a single string which performs
well, although perhaps never optimally for a wide variety of traces. Well might be defined
as better than LRU.

Alternatively the replacement string could be dynamically specified to the cache. This
would allow different applications to use different replacement policies. Such an approach
raises the question: how does the application know what is a good replacement policy? One
way is to generate an address trace from the application and use the complete genctic algo-
rithm procedure described above. Another possibility is for the compiler to use heuristics

to specify the strategy. For example a large number of deeply nested loops might suggest

CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 21

one replacement strategy, and recursion another. Using this approach it might even be

possible for each subroutine or procedure to specify its own replacement strategy.

A third alternative would be for the cache itself to recognize certain access patterns.
Upon recognizing a pattern, the cache would use a corresponding replacement strategy.
Patterns would probably have to be relatively simple in order that the cache could recognize
them in real time. (For example, the full blown genetic algorithm approach described above

is clearly too complex for a cache to perform in real time.)

4.3 Combination Approaches

In addition to LRU-FIFO, several “combination” approaches are possible. Those com-
bination approaches implemented here are listed below along with number of bits they
require in each strategy string. The computation of the number of bits is similar to that
described above for history. Note that in all cases the number of bits B is a multiple of
loga(K), since log;(K) bits are needed to specify which line is to be replaced.

1. Combination of LRU and FIFO information (LRU-FIFQ). In this case the replace-
ment algorithm must know the FIFQ rank of each LRU line. (In this document the
term, “LRU line” is sometimes used to mean a line’s rank from most recently used
to least recently used. In such cases it does not mean literally the least recently used

line. Context should make clear whether this or the literal meaning is intended.)

However most LRU to FIFO mappings are impossible. LRU lines 1 and 2 cannot
both correspond to FIFOQ line 4. For example the following mappirg is legal:

-> 4
-> 2
->3
->1

w W N -

While this is not:

CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 22

=>4
-> 4
->3
-1

W W e

Formally the LRU to FIFO mapping must be 1:1, i.e. each LRU line must correspond
to a single FIFO line and no other LRU line may correspond to that same FIFO line.

There are 1! ways the LRU ordering can map to the FIFO order. Hence B =
K logy(Kj. This produces relatively short strings. For example, if K = 4, then
B = 48 bits.

A more brute force method could be used in which an explicit LRU to FIFO table
is maintained. This table would have K entries each of log, K bits or Klog, K bits
total. In this method B = 2K/9Kog,(K) = KXlogy(K). Using the same example
with K = 4 yields a far larger B = 512 bits.

2. Combination of LRU and a c-bit count of hits to each line (LRU-Count). Note
that the count must stop incrementing when it reaches 2° — 1. Here cK bits are
required to record the number of hits for all the lines, and hence there are 2°X possible
combinations of hits and lines. Thus B = 2°¥log,(K). This produces strings of

intermediate length. For example, if K = 4 and ¢ = 2, then B = 512 bits.

3. Combination of LRU and an h-bit history (hit/miss) of accesses to each set (LRU-
History). With an A-bit history, there are 2" possible histories, so B = 2*og;(K).
This produces short strings. If K = 4 and h = 4, then B = 32 bits.

4. Combination of FIFO and a c-bit count of hits to each line (FIFO-Count). The
analysis is the same as with LRU and a ¢-bit count, hence B = 2°Klog;(K). If K = 4
and ¢ = 2, then B = 512 bits. |

5. Combination of FIFO and an h-bit history (hit/miss) of accesses to each set (FIFO-
History). The analysis is the same as with LRU and an A-bit history, hence B =
2hogy(K). K = 4 and h = 4, then B = 32 bits.

CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 23

4.4 Hardware Implementation

The amount of space and time required for the approaches described is generally small.
Each method requires combinational logic, PROM, or RAM to encode the string corre-
sponding to the replacement policy. When a cache miss occurs, the function must produce
the loga K bit value of the line to replace, where as usual K is the cache associativity, and
is typically less than or equal to 4 {36]. Different replacement functions require different
input: Aistory requires a record of hits, misses, and lines accessed while LRU-FIFO requires
the mapping from LRU to FIFO. Let the replacement strategy be a function of By bits.
Note By is different than B, the number of bits in a strategy string. However, the two are
related:

81 = 1o (15|

A block diagram of the cache replacement hardware is in Figure 4.1.

A more detailed hardware description for each method is given below. Note that stan-
dard cache hardware is not covered, instead only what is unusual or extra for these methods

18 discussed.

1. LRU-FIFO.

Br = [log:K!]. If K = 4, then By = 5 bits. Note that the brute force approach
would require By = Klog K bits.

To implement this, the LRU to FIFO mapping must be updated whenever a set is
referenced. A block diagram of this is shown in Figure 4.2. The mapping must be
updated differently depending on whether the reference results in a hit or a miss.
This Ast logic must also know which line is the new MRU. For the muss logic, the
new MRU is just the replaced line. The replacement line specified on a miss is nct a
physical line in the set, but instead the LRU ranking of the line to be replaced—for
example, replace the 2nd least recently used line. Hence a second translation would

be necessary to obtain the physical cache line.

CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 24

Current State

Combinational Logic,
PROM, or RAM

+log K

Line to Replace

Figure 4.1: Block Diagram of Cache Miss Hardware.

The combinational logic in Figure 4.2 could equally well be PROM or RAM as pre-
viously noted. All sets could share a single copy of the combinational logic portion

of the mapping hardware. Each set must however, maintain the register which maps
LRU lines to FIFO lines.

2. LRU-Count or FIFO-Count.
By =cK. f K =4 and ¢ =2, By = 8 bits. The c-bit counter must be updated

whenever there is a hit to the line. The counter must also stop when the count
reaches its maximum and be resettable to 0 when the line corresponding to it, is
replaced. Unlike LRU-FIFO, the actual physical line to be replaced is output from
the combinational logic. This is because the combinational logic requires the LRU to
physical line mapping in order to determine which LRU line to associate with each
¢-bit counter. Since tLe logic already nas the physical mapping it makes use of it by
providing the physical line as output. A block diagram of the circuitry required on a
miss is shown in Figure 4.3. On a hit, all that is required is a demultiplexer to map
the line with the hit to an increment signal for that line’s counter.

3. LRU-History or FIFO-History.

CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 25

New Mapping

LRU to FIFO
Mapping Register
T rlog x|
New
MRU, | HIT Combinational MISS Combinational
log K Logic Logic
[og k!l T 4 g x1]
Y
Cache Miss —'\\‘ / 4 log K
T rlog Kﬂ
]
Line to
Replace

Figure 4.2: Hardware for LRU-FIFO Method.

l CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 26

Physical c-bit

Cache Lines Counters
Line 1 Physical Line
Line 2 to LRU Mapping

Line K r‘l

\

cK g rlog Kﬂ

L ‘

Combinational Logic

» e

Clear Physical Line to
Counter Replace

Figure 4.3: Hardware for LRU-Count Method on Misses.

CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 27

By = h. If h = 4, then By = 4 bits. This method is particularly simple on both hits
and misses: on a miss, a 0 is shifted into an h-bit shift register, while on a hit a 1 is
shifted in. A simple function of h bits specifies which line to replace on a miss. In
this case the LRU ranking of the line is specified and must be mapped to the physical
line.

4. History.

B; =m(1+log;K). f K = 4 and m = 4, B; = 12 bits. Recall that at the start of this
chapter, it was stated that the complexity of the history method can be significantly
reduced. Unfortunately the simplification applies only to genetic algorithms searching

for a good replacement strategy, not to the hardware implementation.

The simplification uses the fact that many histories are actually equivalent. To make
use of that here would require a three step process: 1) Reduce to the equivalent form,
2) Determine line to replace, and 3) Tranlate the equivalent replacement line to the
actual replacement line. This is almost certainly more complicated than implementing
the function directly. For more details see Section 5.4.1.

The implementation is simple and similar to LRU- History. Each time a hit occurs to
a line, this information is shifted into a 1+log, K bit wide shift register—the extra “1”
is for the hit/miss information. Likewise when a line is replaced on a miss, the line
number and miss bit are shifted into the shift register. This is depicted in Figure 4.4.
Since this method manipulates lines directly without the need of correlating LRU or
FIFO information, the line specified for replacement is the physical line.

As can be seen the time required for these methods is also generally small. Actually
there are two separate times, the time for a cache hit and the time for a cache miss. The
cache hit time is most important because most accesses are hits. Most cache studies find
hit rates well over 80% and often greater than 90% [36) [1] [3] [11]. As was seen the methods
proposed here require little time on a hit: generally a counter must be incremented or a
shift register updated. LRU-FIFQ is the most complicated. Miss time is generally small
too, consisting of the combinational logic or PROM delay to find which line should be

replaced plus time to clear a counter or update a shift register.

1 CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE R™"LACEMENT 28

Hit / Miss
Shift Register

Hit Line
‘ P Line

log 'K Shift Register

Hit

¥ m log K 4 m

A\

Combinational Logic

nY

" log K

Y
Physical Line to
Replace

Figure 4.4: Hardware for History Method.

Chapter 5

Simulations

5.1 Methodology and Details

The cache simulator used in this work was developed by R.A. Olsen, a student in the
McGill Advanced Computer Architecture and Program Structures (ACAPS) Group [32].
The simulator has been extensively modified and supplemented by the author. The genetic
algorithm portion of the simulator follows the outline presented in [21].

All code was written in the C language. The source contains over 9000 lines of code,
while the optimized executable SPARC version has a tezt size of 81920 bytes.

Traces from six benchmark programs have been used throughout !. The benchmarks
are drawn from a variety of applications, some numerically intensive, others not. The six

benchmarks are:

1. ccal} (PASCAL): Simulates a simple pocket calculator.

! All simulations were run on Sun-4 SPARC (tm) architectures. The time to complete sn individual sim-
ulation (one benchmark and one genetic algorithm approach) was typically 30 minutes to 6 bours depending
on the parumeters used.

29

—_

CHAPTER 5. SIMULATIONS 30

2. emacs (): The common text editor program.

3. kalmant (FORTRAN): A kalman filter routine.

4. mcsh (): The “Mouse” shell, an enhanced emacs-like UNIX c-shell.
5. polyt (FORTRAN): Symbolic polynomial manipulation.

6. whetstonet (FORTRAN): The standard floating point benchmark program.

Items with a { are benchmarks distributed by Stanford University with their Architect’s
Workbench program.

The traces correspond to execution of the benchmarks on a SPARC architecture. Bench.
marks were first compiled using standard UNIX C, FORTRAN, and PASCAL compilers.
Traces were then collected by simulating program execution on a SPARC architectural

simulator developed by Sun Microsystems.

The ccal, kalman, poly, and whetstone traces correspond to complete program execution.
The other two, emacs and mcsh correspond to start of program execution. All traces are
relatively small by modern standards, ranging up to a few hundred thousand addresses
at most. However, the number and duration of the simulations required that the length
of traces be kept relatively low. The exact number of addresses and number of unique
addresses are given in Table 5.1. Note that in the Table the sum of instruction addresses
and data addresses is slightly less than the number of combined addresses. This is because
the traces also contain a small number of system traps which are not considered to be in
either category.

All results given here refer to separate instruction and data caches of 512 byte caches
each, and both with 4.way associativity. Tt use of separate instruction and data caches
is in keeping with most modern architectures, for example the 68040 [15], the R6000 [28],
the NS32532 [30], the Clipper [25), and the i860 [23].

The choice of 4-way associativity reflects the maximum value used in most modern
caches [36]. Use of an associativity less than 4 minimizes the effect of the replacement
policy. With an associativity of 1 (direct-mapped), there is no choice for the replacement
policy, and for an associativity of 2 or 3, the choice of lines to replace is limited.

CHAPTER 5. SIMULATIONS 31

INSTRUCTION DATA COMBINED

Unique | Total [{ Unique | Total || Unique | Total
CCAL a721| 53570 || 880 [15128 || 5602 | 68803
EMACS 8525 | 205936 | 7195 | 50982 [15721 [256973
KALMAN 6258 | 73990 [| 2085 [17076 | 8344 | 91261
MCSH 2050 | 309929 || 2618 | 78024 | 4669 | 388012
POLY 4913 | 42679 || 2266 | 11975 | 7180 | 54835
WHETSTONE | 2154 | 14046 || 1530 3811:}{ 3685 | 17914

Table 5.1: Number of Total Addresses and Number of Unique A<cresses in Each Bench-
mark.

A 512 byte cache is quite small for modern processors, even for an onchip cache. This
small size was chosen in order to emphasize the effect of the replacement policy. Using a
larger (but still relatively small) 4K cache, results in little difference in hit rates between
different replacement policies. Using a 512 byte cache results in overal] hit rates of between
85% and 95% for most benchmarks and replacement policies. Table 5.2 gives overall hst

rates for caches with 32 byte lines. Table 5.3 gives the corresponding line hit rates.

The results from two types of approaches are presented. First are results where a genetic
algorithm approach was used to find a good strategy for each benchmark individually. This

is useful for a cache with a small RAM containing the replacement strategy. The operating
system could load this RAM with the appropriate strategy whenever the program is run.
This approach is also useful in providing a rough upper bound on how well the second
approach can do.

The second approach provides results from using a genetic algorithm to find a good
strategy for a group of benchmarks. If these benchmarks represent a “typical” workload,
then the best strategy can be hardcoded into combinational logic or a PROM in the cache.

The replacement policies simulated, LRU-FIFO, LRU-Count, LRU-History, FIFO-Count,
FIFO-History, and History are as described in Chapter 4, with the exception of History.

As described in Chapter 4, the History method maintained for each set a record of lines

CHAPTER 5. SIMULATIONS

Instruction Data

LRU | FIFO | OPT || LRU | FIFO | OPT
CCAL 888 | 88.8| 91.0 | 896 88.4| 92.1
EMACS 950 95.0| 959 || 943 93.7| 954
KALMAN 874 | 87.3}] 90.3 || 857 844 | 88.9
MCSH 923 | 92.1] 955} 941 | 92.7| 95.6
POLY 90.7| 90.6| 92.7 || 855| 84.3| 88.1
WHETSTONE | 915| 912} 93.8 f 826 823 85.0
Mean 910 908 90.9
SUITE 922 92.1) 945 921 | 91.0) 93.8 l

32

Table 5.2: Overall Hit Rates for 512 byte Instruction and Data caches with 4-way associa-
tivity, 32 byte lines.

Instruction Data

LRU | FIFO | OPT || LRU | FIFO | OPT
CCAL 294 | 202 432 67.7| 640 75.6
EMACS 226 | 225 365 | 693| 66.0| 75.2
KALMAN 308| 302 46.7 || 613| 57.6| 69.9
MCSH 56.6| 55.7| 74.8 || 833| 79.4| 87.5
POLY 296| 28.5| 44.5 || 564 | 52.8| 64.1
WHETSTONE | 30.1| 27.5| 49.0 | 363 | 35.0| 45.2
Mean _ﬂ 32.3
SUITE [439] 432[605 37| 70.1[795

Table 5.3: Line Hit Rates for 512 byte Instruction and Data caches with 4-way associativity,

32 byte lines.

CHAPTER 5. SIMULATIONS 33

accessed and hits/misses, Except in Section 5.4.3, the History simulations in this Chapter
malintain no hit/miss information.

There are several reasons for this. Common replacement methods such as LRU and
FIFO maintain information about lines, i.e. recency of line use and order of line entry
into the set respectively. No information is maintained about hits/misses. Thus keeping
no hit/miss information makes History in some sense more comparable to LRU and FIFO.
Excluding hit/miss information also makes the length of History strings 30 bits instead of
480 bits. 30 bits is more comparable to the other methods which generally have string
lengths from 32 to 48 bits.

Additional justification for excluding hit/miss information is given in Sections 5.4.2

and 5.4.3. Section 5.4.3 also investigates the effect of excluding the hit/miss information.

The genetic algorithm techniques employed here are quite simple, employing only the
basic techniques outlined in Chapter 3. Other techniques are widely used. Population size
can be allowed to vary between generations, overlap between generations can be allowed,
crossover can be done between deterministically chosen pairs instead of randomly chosen
pairi—the best performing pairs would generally be crossed in this case. Techniques can
also be used to promote diversity, particularly early in the simulation when the danger of
finding a poor local optima is highest. Simulation of dominant and recessive genes can also
be used. More sophisticated forms of crossover such as PMX (Partially Matched Crossover)
could also be employed. These additional techniques were not employed primarily for four
reasons:

1. The duration of the simulations is already quite lengthy and the memory requirements
quite large. This additional overhead would make the simulations prohibitively long
and large.

2. The time required to write software and simulate all of these additional techniques
was judged to be excessive for the scope of this work.

3. The fundamental operators provide a sufficient basis on which to test the concept of
applying genetic algorithms to cache replacement policy.

4. Many of the enhancements seem unlikely to produce significantly better results. For

example, consider PMX. In all discussion thus far, it has been assumed that the

CHAPTER 5. SIMULATIONS 34

position of a group of bits in a string determines the function of those bits. However,
this need not be the case, and is not in nature. If a gene is moved to a different
location on a chromosome it will continue to perform the same function. PMX and
related techniques allow Jkis capability to be added to genetic algorithms.

Bit location is important. Bits which are highly correlated in function may be widely
separated in the string. In order to obtain the full benefit of crossover and its effect
of finding good, small schemata, the string must use a representation in which related
bits are grouped closely together.

PMX is essentially a more complicated form of crossover [12], that makes a bit’s
function independent of its position. It attempts to find natural groupings of bits in
addition to finding good values for the bits. In this work, some effort was made to
manually find representations in which correlated bits are grouped together. In most
cases, natural representations appear to group bits reasonably well. For example, in
the LRU-Count method, bits representing what to do when the least recently used line
has been accessed 1 or 2 times are grouped adjacently. Given this natural grouping
(and the added time and space requirements for adding position independence), it
was decided not to ‘mplement position independence. However this might be an

interesting area for further study.

Nonetheless some of the advanced techniques described above could prove useful in
extending this work. For example, dominant and recessive genes are useful when the envi-
ronment changes over time. Some criteria may be important at some tiine, then cease to
be s0, and later become important again. Recessive genes provide a natural way of storing

useful information, even in generations where it is not needed [21}.
For cache replacement algorithms, recession and dominance could be useful in the fol-
lowing procedure.

1. Simulate the first benchmark program for a “few” generations.

2. Take the population of strategies from the last generation of the previous benchmark
and use them as the initial population in simulating the next benchmark for a “few”

generations.

3. Repeat Step 2. until the last benchmark is reached, then go to Step 1.

CHAPTER 5. SIMULATIONS 35

Although this procedure is reasonable without employing recession and dominance,
using them could improve performance. This is because certain criteria might be very
important in some benchmarks, but not important in others. These criteria would have a
good chance of being preserved in recessive genes, but might be lost otherwise. This might
make an interesting area for further study.

5.2 Line Hit Rate

Much of the discussion here also applies to Section 5.3, Opt Match Rate. Here the goal
is to maximize the line Ait rate. (Recall from Chapter 2 that maximizing the line hst rate
also maximizes the overall hit rate.) In Section 5.3, the goal is to maximize the fraction
of misses in which the replacement algorithm replaces the same line OPT would have. In
particular, much of the Parameters Section below applies equally to the Section on OPT
Match Rate.

5.2.1 Parameters

As discussed in Chapter 3, there are four major genetic algorithm parameters in addition
to the many cache parameters. To try all possible reasonable combinations of these would
result in simulations taking billions of years, even for these six small benchmarks. Hence
only a few variations are presented here, alonjy with discussion on the effect of altering the

values selected for the parameters.

The four basic genetic algorithm parameters are

o The probability of crossover
o The probability of mutation (or mutation rate)
¢ The population size

e The number of generations

CHAPTER 5. SIMULATIONS 36

In addition to these four parameters, there is an additional important “parameter”
which is hard-coded into the simulator. This is the objective function. The objective
function takes the metric used to measure the performance of a string, such as the line Ait
rate, and returns some (usually nonlinear) function of it. The value of the objective function
probabilistically determines the relative number of the string that will be reproduced in the
next generation.

Here the objective function used was 2fne Mit rate Hence if string, A has a 1% better line
hit rate than string B, then approximately twice as many of A will usually be produced in
the next generation as are produced of B. Since the simulation uses a fixed finite population,

strings with low line hit rales will likely not be reproduced at all in the next generation.

Less steep objective functions, such as line hit rate'®, were tried, but reproduced too
many poor strings, resulting in slow improvement from generation to generation. Steeper
objective functions have the opposite problem and tend to lose needed population diversity.

The result is that they often converge at relatively poor local optima.

Returning to the four “major” parameters, the probability of crossover was always 0.6 in
these simulations. This value has been found to be suitable for a wide range of applications
by other researchers [14].

A very important parameter in obtaining good results in this study is the mutation
rate. Recall from Chapter 3 that the mutation rate is the probability that a single bit
will change its value. Two values of mutation rate were used in this study, 1% and 10%.
Figures 5.1 and 5.2 compare the performance of LRU-FIFO using a 1% mutation rate and
a 10% mutation rate. As can be seen, a mutation rate of 10% generally provides superior

results to a mutation rate of 1%.

With a 1% mutation rate, the simulations tend to get stuck at relatively poor local
optima. The increased mutation rate allows the simulation to more readily jump out of
these local optima when they occur. (This is somewhat similar to raising the temperature
in simulated annealing.) Because of its universally superior performance, the 10% mutation
rate is used in all the findings reported below.

The population size was problematic. A population size of 100 was chosen for all simu-
lations. This number is a compromise between the conflicting goals of a diverse population

and the need to minimize simulation time. It is also comparable to what other researchers

CHAPTER 5. SIMULATIONS 37
38.0

£
°

% Line Hit Rate

32.0
30.0
. — — @~~~ — ¥~ — - - — @~~~ —@
28.0
RS L
T e = =X
x X ocal (0 1)
e X - — —X ocal(001)
A ————/ emacs (0 1)
A=~ — — A emacs (0 01)
A 4 kalman (O 1)
A- — —A kalman {001)
- & poly (0 1)
&~ — —@ poly (00Y)
e Q[whetstons (0 1)
O0- — —(O whetstone (0.01)
220
] I 4 | 1 1 1 1 L R
20.0
(] 2 3 4 S [} 7 s Py 10

Generation Number

Figure 5.1: Comparison of Performance of Best String by Generation for a Mutation Rate
of 0.1 (solid lines) and 0.01 (dashed lines) for a 512 byte I-cache, 4-way associativity, 16
byte lines.

% Line Hit Rate

s2.0 «

48.0 L 2

CHAPTER 5. SIMULATIONS 38

A A s s
/‘m———ﬁ-—-ﬂ——-&—-ﬂ—-—é\

> ocal (0.1)

X~ = => ocal (0.01)

A v 1\ @Mace (O 1)
A= = =/, emacs (0 01)
r'y A kaiman (0 1)
A~ — — 4 kalman (0.01)
@ poly (0.1)

&~ — —@ poly(001)
O————[1 whetstone (0.1)
O= = =[] whetstone (0 01)

44.0
— b3t -3
40.0
38.0
3203
= = -]
e S L - N S = e |
1 1 1 f [[1]
8.
zoo 1 2 3 4 8 [7 L 9 10

Generation Number

Figure 5.2: Comparison of Performance of Best String by Generation for a Mutation Rate
of 0.1 (solid lines) and 0.01 (dashed lines) for a 512 byte D-cache, 4-way associativity, 16
byte lines.

CHAPTER 5. SIMULATIONS 39

have chosen [9] [19] (14] [20]. Section5.2.4 gives additional empirical evidence that 100 is a
reasonable choice for population size.

Another factor to consider when choosing the population size is the length of strings in
the population. 100 appears adequate even for large string sizes. For example, if a 2-bit
count is used in LRU-Count or FIFO-Count, each string in the population has 512 bits.
Using a 1-bit count requires strings of only 32 bits. Likewise if an 8-bit miss history is used
in LRU-History or FIFO-Hstory each string in the population has 512 bits, while a 4-bit
history requires only 32-bit strings. As can be seen in Figures 5.3 and 5.4, the improvement
in the longer strings is far more dramatic. (Results corresponding to longer strings all have

solid lines, while those corresponding to shorter strings all have dashed lines.)

It is also interesting to note that in the early generations, the performance of the longer
strings is generally worse than that of the shorter ones. This is because most of the addi-
tional possible actions of long strings are bad. Later, however, the performance of the longer
strings overtakes that of the shorter ones. This is reassuring. Since the longer strings have
all the information available in the shorter ones, plus additional information, they should
always be able to do at least as well. As can be seen in Figures 5.3 and 5.4, by the end of 9
generations, the performance of the longer strings is better than that of the corresponding
shorter string in all but one case, LRU-Count and the poly benchmark.

Even in this case, if the number of generations is increased to 11, the performance is
almost identical to that of the shorter string (3U.92% line hit rate for the shorter strings
versus 30.88% for the longer strings). Furthermore, in most cases the performance of the

longer strings is still improving after 9 generations while that of the shorter strings is flat.

Despite the generally better performance when using a deeper history and larger counts,
the simulations reported below all use the shorter versions, i.e. 1-bit counts and 4-deep miss
histories when in combination with LRU or FIFO. The stand-alone history also uses a 4-
deep record of hits/misses and lines accessed. Shorter versions require less hardware to
implement and would likely be slightly faster as well. Furthermore their simplicity does
not sacrifice much overall performance. For the kalman benchmark, the additional data
provides a mean improvement of only 0.08% in overall hit rate from 87.70% to 87.78%,
while for the poly benchmark the difference is only 0.03% from 90.93% to 90.96%.

The number of generations can be determined by viewing the rate of improvement

i CHAPTER 5. SIMULATIONS 40
s 34.2
|
| ¥
| 5 333
| n
|
| 32.4
\
\
31.8
30.6
LRU-CNT (2-bit)
&A- — —4& LRU-CNT (1-bit)
20.7 n -0 FIFO-CNT (2-bit)
M- — —E FIFO-CNT (1-bit)
O e & LRU-HIST (8-but)
Ow = =& LRU-HIST (4-tit)
Q wmmmmee (O FIFO-HIST (8-bit)
28.8 O= = —O FIFO-HIST (4-bit)
27.9
27.0
26.1
1 1 1 [1] Il 1 1 } i |
zu.zo 1 2 3 4 [] 7 [® 10

Generation Number

Figure 5.3: Improvement in Best Strategy for kalman by Generation. Solid lines represent
longer history or count record, dashed lines represent shorter. Results for 512 byte I-cache,
4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 41

32.2 -
3.5
30. s
30.1 -
290.4 §—
28.7
28.0 - LRU-CNT (2-bit)
A~ —~ — & LRU-CNT (1-bit)
M —— @ FIFO-CNT (2-bi)
- -~ —W FIFO-CNT (1-bwt)
O e & LRU-HIST (8-bat)
O =« = LRU-HIST (4-tat)
27.3 ¢4 QO ——ree O FIFO-HIST (8-int)
O= = 0O FIFO-HIST (4-bit)
28.8
[{ {)] { | [| |
25.9
0 1 2 3 4 L] [} 7 8 9 10

Generation Number

Figure 5.4: Improvement in Best Strategy for poly by Generation. Solid lines represent
longer history or count record, dashed lines represent shorter. Results for 512 byte I-cache,

4-way associativity, 32 byte lines.

ﬁ

i CHAPTER 5. SIMULATIONS 42

between generations. When little or no improvement occurs, the simulation can be stopped.
The improvement over a number of generations is illustrated in Figures 5.5 to 5.10. These
depict the improvement over 9 generations for an instruction and data cache for three of
the benchmarks: ccal, emacs, and whetstone. The results from the other benchmarks are
similar.

Note that occasionally performance is flat for many generations, then suddenly jumps.
The improvement of FIFO-Count is relatively flat up to the 5th generation in Figures 5.6
and 5.7, but makes a sudden improvement in the 6th generation. In most of the other

cases the performance improvement is relatively flat within a small number of generations.

Despite the fact that the overall performance of these genetic algorithm techniques
was worse with data caches than with instruction caches, the data caches generally exhib-
ited marginally more improvement from initial to final generation than did the instruction
caches. This can be seen graphically by comparing Figures 5.5- 5.7 to Figures 5.8- 5.10.

5.2.2 Results for Individual Benchmarks

Overall the improvement of these new approaches over traditional methods was mod-
erate. Figures 5.11 to 5.14 (page 49) show the line Ait rates obtained for instruction and
data caches for 16 and 32-byte lines. Several points can be inferred from these Figures.

The most obvious result is that the genetic algorithm approaches provide substantially
better improvement over LRU and FIFO on instruction caches than on data caches. Possible

reasons for this are discussed below.

It is also clear that the performance improvement of the genetic algorithm approaches
is generally about the same for both 16 and 32 byte lines. One useful way to measure the
performance of the genetic algorithm approach is to measure how much of the possible gain
from LRU to OPT is attained. Call this the LRU-OPT gain.

For example if LRU has a line hit rate of 30% and OPT bhas a line hit rate of 50%, and
a genetic algorithm approach achieves a line Ait rate of 35%, then the LRU-OPT gain is
g-g—:—g% = 25%. LRU-OPT gain can be applied to other measures as well, for example overall
hst rate. However, unless otherwise indicated it refers to line Ait rate. As a practical matter

% Line Hit Rate

20.4

20.1

CHAPTER 5. SIMULATIONS 43
.9
- MN
]
HIST
A A LRU-FIFO
A ——— & LRU-CNT
B ——M FIFO-CNT
< < LRU-HIST
Q=) FIFO-HISTY
1 L 1 1 1 d
1 2 8 7 8 9 10

Generation Number

Figure 5.5: Improvement in Best Strategy for ccal by Generation for 512 byte I-cache, 4-way

associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 44
~ s 28.2
E
s P S S = < —©
» 24.8
-r————
24.4
236 = =
23.2
22.8
HIST
LRU-FIFO
LRU-CNT
22.4 FIFO-CNT
O = LRU-HIST
O O FIFO-HIST
22.0
1 1 1 § 9 ! 1 1 { |
21.6 o 1 2 3 4 s e 7 [o 10

Generation Number

Figure 5.6: Improvement in Best Strategy for emacs by Generation for 512 byte I-cache,

4-way associativity, 32 byte lines.

% Line Hit Rate

CHAPTER 5. SIMULATIONS 45

il
i

i

i
il
i
uf

38.0
P - 1S4 - -€)
@//-—e/i? = “r “r 'Y
34.0
Oe——1{ HIST
A ————— A LRU-FIFO
& —— A LRAU-CNT
N~ FIFO-CNT
O e O LRU-HIST
B ——— FIFO-HIST
32.0 © ©
30.0
{ { | B | 1 1 1 1]
28.0
(/] 1 2 3 4 3 [] 7 [9 10

Generation Number

Figure 5.7: Improvement in Best Strategy for whetstone by Generation for 512 byte I-cache,
4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 46

8.4

% Line Hit Rate

—_—
e7.8
= =3 =]
e7r.2 -
sa.6
8.0
._-—-———.
es.4 —-
)
o o —_—
4.0 -
4.2 3 [Qmm——[T] HIST
A e A\ LRU-FIFO
> A ————4& LRU-CNT
& -——m FIFO-CNT
O e LRU-HIST
Q= FIFO-HIST
3.6 &
3.0 1 i |] 1 1 | i |
0 1 2 3 4 [e 7 [9 10

Generation Number

Figure 5.8: Improvement in Best Strategy for ccal by Generation for 512 byte D-cache,

4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 47
i 7.4
§
70.8
x
70.2
e9.8 -
9.0 §-
8.4
7.8
s7.24 {J =[] HIST
O ~——— A LRU-FIFO
& ———— & LRU-CNT
@——m FIFO-CNT
O e & LRU-HIST
QO FIFO-HIST
es.0 -
1 | 1 1 | 1 L I { {
¢8.0 1 2 3 4 s e 7 [9 10

Generation Number

Figure 5.9: Improvement in Best Strategy for emacs by Generation for 512 byte D-cache,

4-way associativity, 32 byte lines.

% Line Hit Rate

CHAPTER 5. SIMULATIONS 48

© ©
38.8
A
38.0 A
7.8
7.0
3.8
&
3.0 A O——0 HIST
a & LRU-FIFO
A A LRU-CNT
®—— @ FIFO-CNT
o S LAU-HIST
o © FIFO-HIST
s
35.0
P
] A Lo ! ! 1 J 1] !
34.8
2 3 r s s 7 s ® 10

Generation Number

Figure 5.10: Improvement in Best Strategy for whetstone by Generation for 512 byte D-
cache, 4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 49

o0 50-60 WHETSTONE
4049 POLY
30-39° MCSH
20-20 KALMAN
10-19 EMACS

0- 9 CCAL
N oPT
L LRU
—_— FIFO
80 S HIST
L LRU-FIFO
—— LRU-CNT
] FIFO-CNT
S LRAL-HIST
AR FIFO-HIST
40
ORISR TR RS s S SRR RN
30
T
20
10
° 4 RN SRR .~:-:'-‘-:\.. 1 1 1 1 1 1
0.0 9.0 18.0 27.0 38.0 45.0 34.0 63.0 720 810

% Line MHit Rate

Figure 5.11: Line Hit Rates for 512 byte I-cache, 4-way associativity, 16 byte lines.

ﬁ

CHAPTER 5. SIMULATIONS 50

o0 60-59: WHETSTONE
40-49: POLY
30-39. MCSH
20-29: KALMAN
10-19: EMACS

0-9: CCAL
L] oPT
[] LAU
o FIFO
0 G HIST
MR LRU-FIFO
s LAU-CNT
e FIFO-CNT
T LAU-HIST
MW FIFO-HIST
40
I
1
]
20
10
o ' =) 1 |
0.0 10.0 20.0 30.0 40.0 80.0 €0.0 70.0 80.0 90.0
% Line MHit Rate

Figure 5.12: Line Hit Rates for 512 byte D-cache, 4-way associativity, 16 byte lines.

l

i CHAPTER 5. SIMULATIONS 51
0 50-50. WHETSTONE
40-48. POLY
30-39 MCSH
20-20 KALMAN
10-18 EMACS
0-9 CCAL
] OPT
] LRU
] FIFO
$0 [] HIST
A LRU-FIFO
—— LRAU-CNT
—— FIFO-CNT
— LRU-HIST
[FIFO-HIST
40
g]
e]
SRR RN e
20
B SRS oo o
20
10
°) RS e A 1 T 1 L 1 1
0.0 9.0 18.0 27.0 36.0 45.0 354.0 63.0 72.0 81.0

% Line Hit Rate

Figure 5.13: Line Hit Rates for 512 byte I-cache, 4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS

80 80-60:
4049
30-30°
20-28.
10-19

52

WHETSTONE
POLY

MCSH
KALMAN
EMACS

0-9° CCAL

OoPT
LRU
FIFO
HIST

1 1

LRU-FIFO
LRU-CNT
FIFO-CNT
LRU-HIST
FIFO-HIST

I

o0.0 10.0 200 30.0 40.0 80.0 80.0 70.0 80.0

90.0

% Line MHit Rate

Figure 5.14: Line Hit Rates for 512 byte D-cache, 4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 53

the LRU-OPT gain is generally about the same for the line At rate and the overall At rate.

In the discussion below it is important to keep in mind that the absolute difference in
performance between LRU and OPT is generally quite small. The mean difference in overall
hit rate is 2.2% for instruction caches and 2.3% for data caches. Thus a (hypothetical) 15%
LRU-OPT gain in overall hit rate would correspond to only a 0.3% absolute improvement
in hit rate.

While 0.3% is small, it represents 15% of what is possible. It is also larger than the
mean gap of 0.2% between LRU and FIFO for instruction caches in these benchmarks.
Furthermore, larger, more complex benchmarks may have wider absolute gaps between the
hit rates of LRU and OPT. For example if the hit rates were 75% for LRU and 85% for
OPT, an LRU-OPT gain of 15% would correspond to a 1.5% absolute improvement. And
as reported below, the LRU-OPT gawm is in some instances over 40%. Such a gain would

yield a 4% absolute improvement in this hypothetical case.

Overall the best performing genetic algorithm approach, LRU-History, has a mean LRU-
OPT gain of 18% and a mean absolute improvement in overall miss rate of 0.4% for an
instruction cache with 32 byte lines. Averaging over all the approaches, instruction caches
with 16 byte lines attain a mean LRU-OPT gain of 12% while those with 32 byte lines have
a mean LRU-OPT gamn of 10%. For data caches with 16 byte lines, mean performance
actually drops—the LRU-OPT gawn is -1% for 16 byte lines and -4% for 32 byte lines.
For more detailed information on the performance of each approach on each algorithm see
Tables 5.4 to 5.7.

The best LRU-OPT gain for instruction caches was 44%. This result occurred using
the whetstone benchmark and the Awstory method and a cache with 16-byte lines. For data
caches, the best LRU-OPT gain was 30%. This was obtained using the emacs benchmark
and the LRU-FIFO method and a cache with 32 byte lines.

The 44% LRJ-OPT gain on whetstone provides a 1.7% increase in the overall hit rate
from 87.1% to 88.8%. The 307, increase on emacs corresponds to 0.3% increase in overall
hit rate from 94.3% to 94.6%. A greater increase in overall hit rate in a data cache is
actually attained by whetstone using LRU-Count. In a cache with 32-byte lines the overall
hit rate is increased by 0.7% from 82.6% to 83.3%. '

In viewing Tables 5.4 to 5.7, there is no clear ranking among the genetic algorithm

—%

CHAPTER 5. SIMULATIONS 54

LRU- { LRU- | LRU- FIFO- | FIFO-
FIFO | Count | Hist | Hist | Count | Hist || MEAN
CCAL 7% 5% | 10% | 8% 5% | 13% 8%
EMACS 16% 9% | 19% | 11% 9% 17% 13%
KALMAN 5% 6% 12% | 9% -1% 9% %
MCSH 14% | 16% | 29% | -2% | -4% 2% 9%
POLY 2% 6%] 13% | 11% 0% 9% %
L_V_V_EI_I%TSTON E} 26% 23% | 42% | 44% 13% 39% 3&
Mean 12% | 1% | 21%|13% | 4% [15% 12% |

Table 5.4: LRU-OPT Gans for 512 byte I-cache, 4-way associativity, 16 byte lines.

LRU- | LRU. | LRU- FIFO- | FIFO.

FIFO | Count | Hist | Hist | Count | Hist || MEAN
CCAL 5% 15% | 13% | -1% 9% | -12% 2%
EMACS 23% 4% 11% | -13% | -41% | -40% -9%
KALMAN 5% % % 5% | 7% | -29% -4%
MCSH 7% 11% 10% 1% | -42% | -50% -11%
POLY 4% 6% 6% 1% -6% -5% 1%
WHETSTONE | 11% | 22% | 26% | 12% 9% 10‘_?_6_ | 15%
Mean 9% | 11% | 12% | 1% | -18% | -21% | -1% |

Table 5.5: LRU-OPT Gains for 512 byte D-cache, 4-way associativity, 16 byte Liaes.

S

/

CHAPTER 5. SIMULATIONS 55

LRU- | LRU. | LRU. FIFO- | FIFO-

FIFO { Count | Hist { Hist | Count { Hist || MEAN

CCAL 9% 1% | 10% | 3% 2% 6% 5%

EMACS 14% 10% | 14%| 7% 6% 17% 11%

KALMAN 10% ™%| 1% | 5% 4% 15% 9%

MCSH 23% 16% | 17% | -8% 1% 8% 10%

POLY 5% 9% | 15% | 4% 4% 10% 8%

WHETSTONE | 24% 2% | 33% | 37% -4% 27% 20%

i Mean 14% %) 18% | 8% 2% 14% 10%

Table 5.6: LRU-OPT Gains for 512 byte I-cache, 4-way associativity, 32 byte lines.

LRU- | LRU- | LRU- FIFO- | FIFO-
FIFO | Count | Hist | Hist | Count | Hist | MEAN
CCAL -1% 3% 1% | -5% | -29% | -35% -11%
EMACS 30% 5% | 12% | 15% 1% | -26% 6%
KALMAN 2% % 9% 3% | -23% | -25% -5%
MCSH -8% 10% 5% {-12% | -66% | -87% -27%
POLY 8% 6% 3% | -1% | -18% | -21% -5%
_Y‘YHETSTONE 19% | 28% | 25% | 12% 15% 15% 19%
[Mean 8% | 10%[9%] 2% 20%]| n%] 4%

Table 5.7: LRU-CPT Gains for 512 byte D-cache, 4-way associativity, 32 byte lines.

|

CHAPTER 5. SIMULATIONS 56

approaches other than LRU-History. The FIFO-Count method is the most consistently
bad, while FIFO-History does quite well for instruction caches, but quite poorly for data
caches. The other three methods, LRU-FIFO, LRU-Count, and History do moderately well
on everything.

A wariety of other observations can made from Tables 54 to 5.7 and Figures 5.11
to 5.14.

Combining LRU and FIFO information in the LRU-FIFO policy almost always yields
an improvement over both LRU and FIFO performance. For an instruction cache with 32
byte lines, LRU-FIFO has a mean line hit rate of 35.6% versus 33.2% for LRU and 32.3%
for FIFO. For data caches the gap is narrower for LRU and wider for FIFO. With 32 byte
lines LRU-FIFO has a mean line hit rate of 63.2% versus 62.4% for LRU and 59.1% for
FIFO.

Comparing the performance of History in Tables 5.4 and 5.6 shows that History is an
exception to the general rule that behavior with 16 and 32 byte lines is quite similar. For
an instruction cache the LRU-OPT gain falls from 13% with 16 byte lines to 8% with 32
byte lines.

This is to be expecte i: since longer lines exploit spatial locality, the line reference history
is more likely to contain only a small number of distinct lines when the line size is longer.
And if only 1 or 2 lines are accessed in the history records, it is difficult to choose which
line to replace. Surprisingly, data cache behavior defies this logic and shows an increase in
LRU-OPT gain from 1% to 2%.

To alleviate the problem of History faring more poorly with longer line sizes, alternatives
could be used, such as recording every other line accessed, or only recording instances when
the line referenced is different than the previous line referenced in the set. However, these
measures add complexity. Furthermore they grow quite similar to LRU: LRU records
exactly the most recent reference to any given line.

For instruction caches, combining hit-miss history information for the set with LRU
or FIFO information (LRU-History and FIFO-History) generally does better than com-
bining the counts of hits to each line with LRU or FIFO information (LRU-Count and
FIFO-Count). Maintaining a hit-miss history gives an indication that the working set is

CHAPTER 5. SIMULATIONS 57

changing—if several misses occur in succession, it is likely that the program is moving to
a new phase of work. The hit-miss history provides this information, and may allow the
cache to quickly rid itself of lines that it would otherwise keep.

For data caches, LRU-History and LRU-Count fare approximately equally when com-
bined with LRU. However, FIFO-Count does somewhat better than FIFO-History. Perhaps
this is because LRU has (recency of) usage information, while FIFO provides no usage in-
formation. Hence sugmenting LRU with a usage count adds little useful information, while

augmenting FIFO provides usage information needed for improvement.

Furthermore the improvement should be particularly noticeable in a data cache where
it is important to be able to distinguish “scratch” variables which are used only once. This
view is supported by the fraction of misses when it is best not to store the newly referenced
line in cache. This fraction is much higher for data caches than for instruction caches, as

is discussed in Section 5.3.

As can be seen in Tables 5.4 and 5.6, FIFO-History always outperforms simple LRU
for instruction caches. In fact on average FIFO-History obtains an LRU-OPT gan of 15%.
In most cases FIFO-Count also outperforms simple LRU for instruction caches, although
marginally, obtaining an LRU-OPT gawn of 2% to 4%.

However for data caches, both FIFO-History and FIFO-Count do significantly worse
than simple LRU. This is likely caused by three factors.

1. The line Ait rate in data caches is substantially higher than in instruction caches—
62.4% on average versus 33.2% for LRU and 32 byte lines Hence existing algorithms
already perform well in data caches.

(Interestingly instruction caches do slightly better in overall hit rate—88.6% on aver-
age versus 91.0% for the same LRU, 32 byte line case. To achieve the better overall
performance, the instruction caches are clearly exploiting the greater temporal locality

present in \he instruction stream.)

2. The next reason is similar. The ratio of the LRU line hst rate to OPT's line hst rate
is higher in data caches than instruction caches. Again taking the example of a cache
having 32 byte lines, LRU’s line hit rate is 88.8% of OPT on average for a data cache,

while the ratio is 66.6% for an instruction cache.

CHAPTER 5. SIMULATIONS 58

3. The last reason is that plain FIFO does better compared to plain LRU in instruction
caches than in data caches. On average FIFO’s line hit rate is 94.8% of LRU’s for a
data cache with 32 byte lines, while for instruction caches the ratio is 97.2%. Hence
hybrid FIFO techniques start at a significant disadvantage with respect to LRU.
However in all cases, the two hybrid FIFO techniques perform better than plain
FIFO.

5.2.3 Results for a Multitasking Suite of Benchmarks

The basic parameters used here are the same as those used for individual benchmarks
in Section 5.2.2. In particular the mutation rate is 10%, counts are 1-bit, and histories are
4.deep. There are three additional parameters that are required for simulating multiple

traces:

1. The task switch interval is 20,000 addresses. This means that 20,000 addresses from
the first benchmark are processed, then 20,000 {from the second, etc. until the sixth
and last benchmark, after which the first benchmark is restarted at the point where
it was left. This simulates a multitasking operating system.

There is actually one additional nuance to this scheme. In order to better simulate
equal time slices in a multitasking operating system, a method originally suggested
in [38] was used. Whenever a miss occurs, the assumed miss latency is subtracted
from the 20,000 addresses to be processed in that interval. Here the miss latency is
assumed to be 6 cycles. Hence if a benchmark had 25 misses during its interval, only
20000 — 25 x 6 = 19850 addresses would actually be processed.

2. A physical address cache is modelled, and the cache is not flushed on task switches.
With a physical address cache it is possible to have different benchmarks use the same
physical memory. In such a case, any cache entries corresponding to the overlapping
memory must be invalidated. However, the total resident size (under 1 megabyte)
of the suite of benchmarks used here is sufficiently small as to all fit in the physical
memory of most modern machines. Hence the effect of overlapping physical addresses

is ignored.

CHAPTER 5. SIMULATIONS 59

OPT (60 5%)
LRU

FiFO

HIST
LRU-FIFO
LRU-CNT

FIFO-CNT
LARU-HIST

R A RIS MO ARSI ISR

SN FIFO-HIST

&\ 0
AR
1

| |
42.0 42.7 43.4 44.1 44 .8 45.5 46.2 46 9 47.8

% Line Hit Rate

Figure 5.15: Results by Algorithm for a Multitasking Suite of All Benchmarks for 512 byte
I-cache, 4-way associativity, 32 byte Lines.

3. The order of the benchmarks also has some effect on the resulting hit rate. The

order used here is emacs, ccal, mesh, kalman, poly, whetstone. This choice is largely

arbitrary.

Several of the genetic algorithm approaches attain a significantly higher line hit rate
than achieved by LRU. Results for an instruction cache with 32 byte lines are shown in
Figure 5.15, while results for a data cache with 32 byte lines are in Figure 5.16.

As was the case with the individual benchmarks, LRU-History is again the best overall
genetic algorithm approach. For an instruction cache with 32 byte lines, it achieves a line
hit rate of 45.7% for the overall suite of benchmarks. This compares to only 43.9% for
simple LRU. The LRU-OPT gain is 11%.

For a data cache, the numbers are 73.9% line hit rate for LRU-History versus 73.7% for
simple LRU. The LRU-OPT gain is 3%, Actually LRU-Count does as well for data caches,
also achieving a 73.9% line hit rate. As with the individual benchmarks, improvement is
better in instruction caches.

The overall hit rates are, of course, somewhat closer: Instruction caches yield a 92 2%

CHAPTER 5. SIMULATIONS 60

OPT (79 5%)
LRU

FIFO

HIST
LRU-FIFO
LRU-CNT
FIFO-CNT
LRU-HIST

FIFO-HIST

1 1 L
70.0 70.7 71.4 72.1 72.9 73.5 74.2 74.9 75.6
% Line MHit Rate

Figure 5.16: Results by Algorithm for a Multitasking Suite of All Benchmarks for 512 byte
D-cache, 4-way associativity, 32 byte lines.

hit rate for LRU and 92.4% for LRU-Hstory giving an LRU-OPT gasin of 9%. Data caches
yield 92.11% for LRU, and 92.14% for LRU-History, giving an LRU-OPT gain of 2%.

In addition to their performance for the entire suite of benchmarks, it is important
to know how well replacement strings developed using the suite of benchmarks do on the
sndinndual benchmarks. It is possible that LRU-History might do much better than simple
LRU for one benchmark, but significantly worse for the others. If the performance of LRU-
History on the one benchmark were sufficiently high, the poor performance on the other

benchmarks would be masked.

Luckily this is not the case. The performance of the individual benchmarks with the
best LRU-History algorithm found are shown in Figures 5.17 and 5.18, instruction and
data cache results respectively. Actually separate algorithms were used for instruction and
data caches. As can be seen in Figure 5.17, the performance of LRU-History is superior
to simple LRU on each individual benchmark for an instruction cache. For a data cache,

LRU-Hstory is better in 4 of the 6 benchmarks, and slightly worse in the other two.

Of course, the LRU-History algorithm was found by applying a genetic algorithm to

CHAPTER 5. SIMULATIONS

D
T
- KALMAN
e
I
WHETSTONE

R R A A SN A R Ja TR R

AR St VPPN SRR Vi i it vl

SRR X3 PO S ") HUOPPR N
[% .y 1 |
35.0 45.0 80.0 850 0.0

% Line MHit Rate

Figure 5.17: Results of using the overall best LRU-History algorithm on individual bench-
marks. Upper Bar is LRU, Lower is LRU-History. 512 byte I-cache, 4-way associativity, 32

byte lines.

CHAPTER 5. SIMULATIONS 62

B cc~
Bl ewcs
Bl ovan
B s+
B o
B w~ersTone
SPICE
LISP
b
£ ST EETRE I
| L 4 | | 3 } | 1
34.0 40.0 46.0 52.0 58.0 4.0 70.0 76.0 82.0

% Line Hit Rate

Figure 5.18: Results of using the overall best LR U-History algorithm on individual bench-
marks. Upper Bar is LRU, Lower is LRU-History. 512 byte D-cache, 4-way associativity,
32 byte lines.

CHAPTER 5. SIMULATIONS 63

these 6 benchmarks. Hence it might be argued that this algorithm should do well on these
6 benchmarks, but that the algorithm might not do well on benchmarks for which it was
not specifically trained. To investigate this possibility, two additional traces were used.
These traces were also used in [1]. The two traces are

e SPICE, an execution of the circuit modelling program.

e LISP, an execution of a LISP inte’ preter.

SPICE is a floating point intensive numeric program, while LISP uses symbolic ma-
nipulations. In short these are two quite different applications For both benchmarks, the
LRU-History algorithms proved superior to simple LRU—for both instruction and data
caches. This can be seen at the bottom of Figures 5.17 and 5.18.

As noted in Section 5.1 on Methodology and Details, one of the reasons for using genetic
algorithms to optimize hit rate for individual benchmarks was to provide a rough upper
bound on how well this overall approach can do. Here with the overall approach, we are
optimizing for the suite of benchmarks and not any one benchmark. Hence we expect
the resulting algorithm to perform more poorly than the specially optimized algorithms of
Section 5.2.2.

The performance of the individual and suite approaches can best be measured in a
manner similar to the LRU-OPT gatn discussed in Section 5.2.2. For example, the kalman
benchmark has a lsne hit rate of 30.8% using simple LRU, of 33.4% using an LRU-History
algorithm optimized specifically for kalman, and of 32 1% using the LRU-Hstory algorithm
optimized for the entire suite of benchmarks. The individual-suste ratio is then $4-332 —
50.0%. In other words roughly half the gain realizable by using the LRU-History method
is actually achieved.

The results for all the benchmarks are presented in Table 5.8. They vary wildly. The
data cache for the mcsh benchmark actually did better with the overall algorithm than with
the specially tailored algorithm. Perhaps it was able to better learn certain cases important
to mcsh by seeing them in the other benchmarks. As noted previously, a data cache for the
ccal benchmark and the poly benchmark actually does better with simple LRU than the

CHAPTER 5. SIMULATIONS 64

Individual-Suite Ratio
INSTRUCTION | DATA
CCAL 3.0% | -816.7%
EMACS 25.6% 11.3%
KALMAN 50.0% | 33.8%
MCSH 83.7% | 142.1%
POLY 25.9% | -42.3%
WHETSTONE 11.3% 23.5%
Mean 33.3% | -108.1%

Table 5.8: Indivsdual-Suite Ratios for LRU-History.

overall LRU- History algorithm. This causes them to have large negative sndividual-suite

ralsos.

It is also interesting to note that the best algorithm for instruction caches is significantly
different than the best for data caches. When the best LRU-History algorithm for data
caches (for the suite of benchmarks) is used with an instruction cache, the performance is
worse than simple LRU—43.8% line hit rate versus 43.9% line hit rate.

Likewise when the best LRU-History algorithm for instruction caches (for the suite of
benchmarks) is used with a data cache, its performance is substantially worse than simple
LRU-—71.3% Uline hit rate versus 73.7% line hit rate.

Finally it should be noted that there is wide variety in the performance of different
strings in a given population. Figure 5.19 shows the best, worst, and mean performance
by generation of the LRU-History technique applied to an instruction cache for the entire
suite of benchmarks. Note that the performance of the worst strategy does not show much
improvement over the generations and actually often declines. This is largely due to the
high mutation rate (10%). With such a high rate, unfit mutants are likely to be produced

at each generation.

Also note that the best string from the entire simulation has a line Ait rate almost 3
times greater than the worst string from the entire simulation (45.7% versus 16.1%). A

CHAPTER 5. SIMULATIONS 65

5 a7.0§
nr o < <> - —- ©
wr
a0} \ — -
30.0 -
(o) O BEST STRATEGY
A A AVERAGE STRATEGY
@ ~————— @ WORST STRATEGY
38.0
310
27.0
23.0
190 =
15.0 1 | Il 1 { 1 1))]
") 1 2 3 4 [[7 s 9 10
Generation

Figure 5.19: Best, Worst, and Mean Performance of LRU-History Strings on Suite of Bench-
marks for 512 byte I-cache, 4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 66

ratio of 3 between best and worst is actually quite small. The ratios range from 1.1 for a
data cache with FIFO-Hustory to 1506 for an instruction cache with LRU-Count. In many
cases the line Ait rates are less than 1% for the worst strings. In other words, when the
cache tries to access a different line in a set than it accessed the previous time, it is almost
never there! The best and worst strings for each approach are plotted in Figure 5.20 for
instruction caches and Figure 5.21 for data caches. Note that the X-axis has a log scale.

Curiously LRU-History and FIFO-History have by orders of magnitude, the smallest
ratios for both instruction and data caches. It is not clear why the bad strings from these

two approaches should do s0 much better than the bad strings from the other approaches.

5.2.4 Random Performance

In order to corroborate that the performance of the genetic algorithm approach is bet-
ter than random chance, two checks were made. First, a histogram was made charting
the generations at which the best strings occurred. If the genetic algorithm were ideal,
performance would increase at each generation, and the best strings for the entire simu-
lation would always occur in the last generation, i.e. generation 9. On the other hand, if
the genetic algorithm approach behaves as a random search, then the occurrence of best
strings should be uniformly distributed among the generations with a mean in the middle,

generation 5.

Luckily for this work, the results fall much closer to the ideal genetic algorithm case
than to the random case. For instruction caches, the mean generation with the best string
is 6.8, while for data caches the mean generation is 7.6. Values for each approach are
given in Table 5.9. Overall LRU-History finds it best strings latest. As noted previously,
LRU-History is also generally the best performing of the six techniques tried.

Figure 5.22 shows the distribution of “best strings” across generations. As the mean
values suggest, the vast majority of bests occurred in generations 7, 8, and 9. Note that
these results are in some sense conservative: if two or more generations produced “best
strings” of equal value, and these were the best strings of the whole simulation, then the

earlier generation was used in tabulating these figures.

CHAPTER 5. SIMULATIONS 67

HIST

LRU-FIFO

LRU-CNT

FIFO-CNT
LRU-HIST
FIFO-HIST
ERRRCS SPIRNEN N A AR NN AR et NI e L e s e e R
1 1 -l | 1 1 L - |
0.02 0.04 0.12 0.35 1.00 2.83 8.00 22.63 84.00

% Line Hit Rate

Figure 5.20: Performance of Best and Worst Strings for Suite of Benchmarks for 512 byte
I-cache, 4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 68

HIST

LRU-FIFO

LRU-CNT

FIFO-CNT

LRU-HIST

FIFO-HIST

1 { | I 1 | |
0.1 0.3 0.6 1.6 4.0 10.0 25.1 63.1
% Line Hit Rate

Figure 5.21: Performance of Best and Worst Strings for Suite of Benchmarks for 512 byte
I-cache, 4-way associativity, 32 byte lines.

Generation Number

CHAPTER 5. SIMULATIONS 69

10

2 - instruction

0 L 1 4 | 1
o 3] 9 12 15
Number of Strings

Figure 5.22: Distribution of Generations at which Best Strings Occurred.

CHAPTER 5. SIMULATIONS

70

History | LRU-FIFO | LRU-Cnt | FIFO-Cnt | LRU-Hist | FIFO-Hist
Instruction 5.7 7.1 6.7 6.3 8.6 6.6
Data 1.7 83 79 6.6 7.6 7.6

Ta le 5.9: Mean Generation at which Best String Occurred.

The second method used to check the usefulness of the genetic algorithm approach was
to run simulations using the same basic techniques—History, LRU-FIFO, LRU-History,
etc.—but instead of starting with an initial population and using the genetic algorithm
approach to improve performance, a random population of strategy strings was created.
The size of the population was 800, roughly the number of different strings produced in all

the generations of a genetic algorithm simulation.

In all but 4 of the 84 benchmark/algorithm combinations, the best string produced
using the genetic algorithm approach was superior to the best performance of string found
in a random population. In those 4 cases, the performance of the random string was the

same, not better than the best string found using a genetic algorithm approach.

The percentage difference in line Ait rate between the random and genetic algorithm
approaches are shown in Figures 5.23 and 5.24, for instruction and data caches respectively.
Note that a log scale is employed because of the wide range differences—from 0.01% for an
instruction cache using the History method used on a suite of benchmarks to 12.36% for

an instruction cache using the LRU-Count method on the mcsh benchmark.

Note that the 4 cases with no difference in performance are not depicted. Three cases
occurred with an instruction cache. They are History/whetstone, FIFO-Count/poly, and
FIFQO-Count/kalman. The data cache case occurred for FIFO-Count/mcsh. From this and
from viewing Figures 5.23 and 5.24, it is clear that FIFO-Count and History do not gain
much from the genetic algorithm approach. However, LRU-Count and LRU-History appear
to derive significant benefit. The mean difference in line Ast rates across benchmarks and

between random and genetic algorithm approaches is shown in Table 5.10.

Not surprisingly techniques such as LRU-Count, in which a genetic algorithm approach

finds a much better string than found by random search, tend to show mucn more im-

i CHAPTER 5. SIMULATIONS !
WHETSTONE
[] HIST
L] LRU-FIFO
SR $LRU-CNT
MENNE FIFO-CNT
SN LRU-HIST
s FIFO-HIST
POLY
MCSH
KALMAN
EMACS
CCAL
ALL
_ 1 [l 1 1 1
0.01 0.02 0.08 0.13 0.32 0.80 2.01 5.08 12.68

% Ditference in Line Hit Rate

Figure 5.23: Percentage Differences in Line Hit Hates between Best Strings Generated by
Genetic Algorithm Approach and Best Strings Generated by Random Approach for a 512
byte I-cache, 4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS

72

WHETSTONE HIST
L] LRU-FIFO
—_ LRU-CNT
.] FIFO-CNT
—— LAU-HIST
——— FIFO-HIST
POLY
MCSH
KALMAN
EMACS
CCAL
ALL
1 | 1 1 i
0.9 0.3 0.6 1.6 4.0 10.0

% Difference in Line Hit Rate

Figure 5.24: Percentage Differences in Line Hit Rates between Best Strings Generated by
Genetic Algorithm Approach and Best Strings Generated by Random Approach for a 512
byte D-cache, 4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 73
History | LRU-FIFO | LRU.Cnt | FIFO-Cnt | LRU-Hist | FIFO-Hist
Instruction 0.11 0.69 4.80 0.21 270 0.22
Data 0.84 1.44 2.78 0.56 2.93 0.60

Table 5.10: Mean Percentage Differences in Line Hit Rates between Best Strings Generated
by Genetic Algorithm Approach and by Random Approach.

provement from the first to the last generation than those methods such as History where
the genetic algorithm and random approaches perform more similarly This is graphically
depicted in Figures 5.25 and 5.26.

It is worthwhile reiterating that the choice of parameters makes a difference here. For
example, when a mutation rate of 1% is used instead of 10%, random selection finds a
better string for 3 of the 6 individual benchmarks when using the LRU-FIFO approach on
an instruction cache. However, as already noted, with a mutation rate of 0.1, the genetic
algorithm approach found a better string for all 6 benchmarks. Clearly when the mutation
rate is too low, the genetic algorithm simulation can become mired in a far from optimal
solution. In such a case, randomly selecting strategies can work better, because a more

diverse portion of the solution space is explored.

Finally, use of a large random population gives a good basis upon which to test the choice
of another of the parameters to the genetic algorithm: the population size. After simulating
the initial generation of 800 randomly chosen strings, an additional generation can be
created using the standard genetic algorithm operators. This was done and the performance
measured. In 67 of the 84 benchmark/algorithm combinations, the standard approach of
simulating 100 strings for 9 generations was better. In 5 cases the two approaches produced
strings of equal capability, and in 12 cases, simulating 800 strings for 2 generations was
better. Table 5.11 shows the mean differences in performance. Clearly use of a smaller

population for more generations is a better choice overall.

This is accentuated by the fact that 1600 stringe (2 generations x 800 strings per
generation) were simulated for the large population versus only 900 for the small population

% improvement in Line Hit Rate

CHAPTER 5. SIMULATIONS

14.0

120

DX e 3
OH——N
oA
O —
10.0 - @ e @
Q-0
n—=n

8.0

6.0

74

al

ocal
smacs
kaiman
mcsh

poly

whaetstone

[® 10
Generation Numbes

Figure 5.25: Improvement in Line Hit Rate by Generation using the History Method for a

512 byte I-cache, 4-way associativity, 32 byte lines.

-

CHAPTER 5. SIMULATIONS 75
i s 14.0
3
5 —— @ &
£
12.0
g x all
O ———/\ ocei
A emacs
n O kalman
10.0 & mcsh
O-———0 poly
@ ———— 8 whetstone
8.0 e Ik ~C
8.0
-©- - <
4.0
P e o
20 -
L o A
*y r -\
— L
0.0 1 1] 1
7 8 9 10

for a 512 byte I-cache, 4-way associativity, 32 byte lines.

Generation Number

Figure 5.26: Improvement in Line Hit Rate by Generation using the LRU-Count Method

CHAPTER 5. SIMULATIONS

History | LRU-FIFO | LRU-Cnt | FIFO-Cnt | LRU-Hist | FIFO-Hist
Instruction 0.02 0.19 0.91 0.10 0.36 0.08
Data 0.30 0.58 0.29 0.04 0.32 0.27

Table 5.11: Mean Percentage Differences in Line Hit Rates between Best Strings Generated
by Population of 100 for 9 Generations and by a Population of 800 for 2 Generations.

(9 generations x 100 strings per generation). Actually both the 900 and the 1600 are
somewhat overstated, as some strings survive from generation to generation. Hence the

number of unique strings simulated is somewhat less than 900 or 1600.

5.3 OPT Match Rate

Misses for replacement methods other than OPT can be broken into two groups:

1. Misses at which OPT also missed

2. Misses at which OPT did not miss.

For misses in the first group, the choice of line replacement can be compared to OPT.
The fraction of misses in the first group is often quite large. For these benchmarks and
an instruction cache, a mean of 75% of LRU misses are in the first group. For FIFO the
number is 74%. For data caches the numbers are 80% for LRU and 72% for FIFO.

Note that at each point where OPT misses, LRU also misses [29]. Of course, LRU
misses at many additional points as well. To show that LRU misses every time OPT does,
assume that this is not true; that there are some occasions when OPT has a miss and LRU

does not.

To clarify this, see Figure 5.27 in which the same address stream is depicted under both
LRU and OPT replacement. Assume that at point 2, 4 is accessed and that it results in a

CHAPTER 5. SIMULATIONS 17

Remove A Miss on A
OPT
1 2
LRU
Not Remove A Hiton A

Figure 5.27: Misses under LRU and OPT.

miss for OPT, but a hit for LRU. Thus OPT must have replaced A at an earlier point, I,
at which LRU chose to leave A in cache. However, since OPT chose to remove A at point
1, every other line in the set must be accessed in the interval 7-2. This is because OPT
removes the line whose reference is furthest in the future. If OPT removes A, it must be

because it is referenced further in the future than any other line in the set.

However, if every other line in the set is accessed in the interval 1-2, then there is
insufficient room to hold all of these lines and A. Hence before point 2, LRU must replace
A in the cache as the least recently used line. But if LRU has replaces A, it will have a miss
at point 2, just like OPT. But this contradicts the premise that OPT has a miss, while
LRU does not. Thus it must be the case that LRU has a miss whenever OPT does. Note
that this does not hold true for other replacement methods, such as FIFQ.

Figures 5.28 to 5.31 provide a complete breakdown of how the various methods compare

to OPT. Each histogram bar is broken into four parts:

1. Chosen: Instances where the replacement policy chose the same line to replace as did
OPT.

2. Not Bring: Instances where OPT chose not to bring the new line into cache. This
option of not bringing in a new line is technically possible for other replacement

algorithms, but generally results in decreased performance. Hence other algorithms

CHAPTER 5. SIMULATIONS 78

WHETSTONE

1777

11/, —= Chosen
177117/ Not Bnng
) Available

OPT Miss

|

POLY
11114 —————-1] LRU
1111 —_— FIFO
i HIST
LRU-FIFO
LRU-CNT
FIFO-CNT
LRU-HIST
FIFO-HIST

4)
0.0 20.0 40.0 60.0 80.0 100.0
% Match OPT

Figure 5.28: Behavior of Replacement Policies Compared to OPT. Genetic Algorithm Poli-
cies have OPT Match Rate Maximized. 512 byte I-cache, 4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 79

WHETSTONE
THTITHTITHTT TN, Chosen
= 77777]] Not Bring

Avatlable
= OPT Miss

LRU

FiFO

HIST
LAWU-FIFO
LRU-CNT
FIFO-CNT
LRU-HIST
FIFO-HIST

MCSH

KALMAN -

7717 e
A e, ————
(111/111f (il eS|

EMACS S

CCAL

L 1

20.0 40.0 80.0 80.0 100.0
% Match OPT

Figure 5.29: Behavior of Replacement Policies Compared to OPT. Genetic Algorithm Poli-
cies have OPT Match Rate Maximized. 512 byte D-cache, 4-way associativity, 32 byte

lines.

l CHAPTER 5. SIMULATIONS 80

- WHETSTONE

114 e e———

771 Chosen
717 e 11111/, Not Bring
J272] Available

77 _—_== == OPT Miss
11/,

17/
POLY
‘1114 e LRU
171/ FIFO
1711/ e HIST
11114, LRU-FIFO
771771 — LRU-CNT
1111/, FIFO-CNT
1111/ LRU-HIST
17141 Fe———-——"1 FIFO-HIST
MCSH
Yz
/

Y7171

1
0.0 20.0 400 80.0 80.0 100.0

% Match OPT

Figure 5.30: Behavior of Replacement Policies Compared to OPT. Genetic Algorithm Poli-
cies have Line Hit Rate Maximized. 512 byte I-cache, 4-way associativity, 32 byte lines.

P—

CHAPTER 5. SIMULATIONS

WHETSTONE
P — = Chasen
= 77777/, NotBnng
e — Available
T T, Zoo. OPT Mes
T TT 1171 TTTTTTTT773777, -
POLY

1 LRU

— FIFO

=] HIST

=] LRU-FIFO
. ————) FIFO-CNT
== L RU-HIST
i A —————————— FIFO-HIST
MCSH
KALMAN
i)
EMACS -
CCAL
0.0 20.0 40.0 60.0 80.0 100.0

% Match OPT

Figure 5.31: Behavior of Replacement Policies Compared to OPT. Genetic Algorithm Poli-
cies have Line Hit Rate Maximized. 512 byte D-cache, 4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 82

always bring in the new line.

3. Available: Instances where the line OPT chose to replace is present in cache or as
the new line being referenced. In other words, these are all instances where the
replacement policy can behave as OPT did. The first two instances are subsets of this

one.

4. OPT Miss: Instances where OPT also missed at this point, i.e. the group 1 misses
at the start of this Section. OPT Miss is the overall length of the histogram bar, and
the first three instances are subsets of this one. Since there is an OPT miss for every
LRU miss, the length of the LRU histogram indicates the number of OPT misser

One of the chief goals in this section is to maximize the size of the first part of the
histogram for History, LRU-FIFO, etc, i.e. the goal is maximize the fraction of
misses when the genetic algorithm approaches behave exactly as OPT would.
The fraction of misses when OPT is correctly mimicked is used as the metric in this Section,
as line hit rate was used in Section 5.2. The results of this goal of “matching OPT” can be

seen in Figures 5.28 and 5.29 for instruction and data caches respectively.

Before continuing, it should be pointed out that in this section, results are presented
from individual benchmarks only. None are from the suite of all benchmarks. This was
necessary because of the way in which the simulator was coded. To compare other methods
to OPT, OPT is run and a record of its selections made. Then the other replacement
policies are run and their choices compared to OPT’s. To make this comparison, it must

be possible to align the results from the OPT run and the subsequent runs.

This is no problem for single benchmarks. However recall that in Section 5.2.3, it
was stated that multitasking is simulated by varying the number of addresses processed
for a benchmark in its “time slice” depending on the number of misses. The result is
that different replacement policies process slightly different streams of addresses depending
on when misses occur. These different streams make it impossible to align the address

references of OPT with those of other replacement policies.

Despite this omission, the individual benchmarks provide a variety of useful and inter-
esting results. By looking at the Chosen category in Figures 5.28 and 5.29, it is immediately

clear that the genetic algorithm replacement policies can be tailored to do far better than

y.

CHAPTER 5. SIMULATIONS 83
INSTRUCTION DATA
Maximize Maximize Maximize Maximize
OPT Match Rate | Line Hit Rate | OPT Match Rate | Line Hit Rate
LRU 4.4 4.4 6.4 6.4
FIFO 3.6 3.6 4.0 1.0
e
History 27.6 7.0 12.4 9.8
LRU-FIFO 30.2 7.6 17.0 115
LRU-Count 29.8 6.0 19.5 7.3
FIFO-Count 29.6 6.1 18 7 12.3
LRU-History 29.6 11.8 17.0 9.4
FIFO-History 29.4 8.2 18.5 6.6

Table 5.12: OPT Match Rates: Percentage of Misses in which Different Algorithms Replaced
the Line OPT Would Have.

standard LRU or FIFO. While LRU chooses the line OPT would have 4.4% of the time and
FIFO 3.6% of the time on average for an instruction cache, LRU-FIFO makes this choice

30.2% of the time! When the History method is used on emacs in an instruction cache, the

OPT replacement line is chosen almost every time it is avaslable. (See Figure 528) The

means for each method are displayed in Table 5.12.

For data caches the differences are also large, but not quite as dramatic LRU matches
OPT 6.4% of the time on average, while the best genetic algorithm policy, LRU-Count
matches OPT 19.5% of the time.

Given the vast superiority of the genetic algorithm policies, a natural question arises: Is
their performance in matching OPT an inherent part of these policies or simply the result

of having used genetic algorithms to maximize the OPT Match Rate. The answer appears

to lie somewhere in the middle.

Figures 5.30 and 5 31 show the same replacement policies, but in these Figures the
“genetic algorithm™ policies were optimized for line hst rate, not OPT maich rate The
result is that the genetic algorithm policies do slightly better than LRU and FIFO at

CHAPTER 5. SIMULATIONS 84

matching OPT, but not nearly so well as when they were specifically optimized to match
OPT. For instance, LRU-History is the best policy for instruction caches in this case. It has
an OPT match rate of 11.8% versus 4.4% for LRU. The version of LRU-History optimiae.d
for OPT match rate, matches OPT 29.6% of the time. The mean performance of the
different methods is summarized in Table 5.12.

Reviewing Figure 5.28, where policies are optimized for OPT match rate in an instruc-
tion cache, reveals that although the genetic algorithm replacement policies can do rar
better than LRU and FIFQ at matching OPT’s choice of replacement line, they do uni-
formly worse in making aure that OPT's choice is availablein cache. The genetic algorithm
policies achieve their high rate of matching OPT by almost always choosing the line OPT
would have when it is available, not by making sure that OPT’s choice is available.

Figure 5.30, where policies are optimized for line hit rate, indicates that failure to make
OPT’s choice available is not a basic failing of the genetic algorithia policies. In this Figure,
the OPT line is available approximately as often as it is for LRU or FIFO, but as already
noted, it is chosen at a slightly higher rate.

From Figure 5.28, it is clear that for LRU and FIFO the optimal replacement is available
approximately half the time in an instruction cache, even if the 3% - 4% of instances where
no line should be replaced are excluded. It is somewhat surprising then, that both LRU
(4.4%) and FIFO (3.6%) choose so poorly.

Data caches behave quite differently in terms of whether or not the OPT line is available
for replacement. As can be seen in Figures 5.31 and 5.29, most of the genetic algorithm
policies make the OPT line available approximately as much as do LRU and FIFO. However
when the genetic algorithm policies are optimized to match OPT’s choice, a smaller fraction

of their misses are also Opt Misses.

This difference in data cache behavior may be partially due to the far higher number
of times when it is best not to bring a new line into cache. Under LRU, it is best not to
bring the new line into a data cache 27.3% of the time on average. (As can be seen in
Figures 5.28 to 5.31, the percentage does not vary much from one replacement policy to
another.) For an instruction cache, not bringing in a new line is best only 3.6% of the time
under LRU. The high percentage in data caches is likely due to scratch variables which are
used only once.

CHAPTER 5. SIMULATIONS 85

Given the large cumber times when it is best not to bring a new line into a data cache,
it is worthwhile to briefly re-examine the standard approach of always bringing in the new
line. First note the inherent problem: To know when not to bring in a line is difficult
for simple algorithms working at runtime, especially when they must make use of a brief
summary of past references to the cache. Unfortunately past references are likely to contain

few clues about how an entirely new line will be referenced.

Furthermore the principie of temporal locality assumes that if a line is referenced, it
will soon be referenced again. Very good knowledge is needed to know when this principle
should be violated. (Compiler directives could indicate such “dead” lines, but that is beyond
the scope of this work.)

Because of these difficulties, the easiest cases were tried. The LRU-Count method was
used on the two benchmarks with the highest fraction of lines which are best not brought
into cache: whetstone with 41.3% and poly with 34.3%. The results were slightly worse than
the corresponding results where the line was always brought in. For whetstone, the line hit
rates of the best strings were 36.9% with the new line not always brought in, versus 38.9%
with the new line always brought in. For poly the numbers were 56.0% to 56.9%. However
this line hit rate for whetstone is slightly higher than the LRU line hit rate of 36.3%. For
poly, LRU is slightly better at 56.4%.

Since poly and whetstone are the two “best” cases for not bringing in lines, it does not
seem likely that these approaches are adequate to determine whether or not to bring in
lines. Hence this avenue will not be pursued further.

Thus far, no mention has been made of the hit rate of the genetic algorithm approaches
when optimized to match OPT’s choice of replacement line. Unfortunately, despite their
vastly superior performance in mimicking OPT, the overall hit rate in almost all cases is
lower than LRU. For instruction caches, the overall hit rate is aimost always less than FIFO
88 well. This comparison is made graphically in Figures 5.32 and 5.33 for instruction and
data caches. For each replacement policy, Table 5.13 provides the mean hit rate across
benchmarks.

Since the genetic algorithm approaches can mimic OPT quite well, but have a reiatively
low hit rate, and since LRU and FIFO mimic OPT quite poorly, but Lave a relatively
high hit rate, it appears that mimicking OPT's choice of replacement line is generally not

CHAPTER 5. SIMULATIONS 86

0
50-50 WHETSTONE
g 40-49 POLY
30-39 MCSH
20-20 KALMAN
~ - 10-19 EMACS
<

. S —— . 0-9 CCAL
. — oPT

LAU

FIFO

HIST

LRU-FIFO

LRU-CNT

FIFO-CNT

LRU-HIST

FIFO-HIS T

i

O T T S
R A A T

RGN,

NGRS :‘.'.\.‘d\.\N\‘}\\‘r)‘:-.".):-}I-‘-\."e'-}

| | 1
.0 920.0 94.0 98.0
% Hit Rate

4

20.0 74.0 780 82.0 ae

Figure 5.32: Overall Hit Rates When Genetic Algorithm Policies Maximize OPT Match
Rate. 512 byte I-cache, 4-way associativity, 32 byte lines.

Aigorith

CHAPTER 5. SIMULATIONS

50-509°
40-49;
30-30:

20-29

10-19:

87

WHETSTONE
POLY

MCSH
KALMAN
EM/CS

0-9: CCAL

OoPT
LRU
FIFO
HIST

.........................

RS R AR SR e

................

LRU-FIFO
LRU-CNT
FIFO-CNT
LRU-HIST
FIFO-HIST

i

90.0 74.0 78.0 82.0 86.0 90.0 94.0

98.0
% Hit Rate

Figure 5.33: Overall Hit Rates When Genetic Algorithm Policies Maximize OPT Match
Rate. 512 byte D-cache, 4-way associativity, 32 byte lines.

S

CHAPTER 5. SIMULATIONS 88

INSTRUCTION | DATA

LRU 91.0 88.6
EIFO 90.8 87.1

History 86.6 85.4
LRU-FIFO 89.1 87.3
LRU-Count 88.9 B7.6
FIFO-Count 88.6 87.0
LRU-History 89.9 87.9
FIFO-History 89.0 87.5

Table 5.12. Mean Overall Hit Rates When Genetic Algorithm Policies Maximize OPT
Match Rate.

important in achieving a high hit rate.

5.4 History

In this section three aspects of the history method are explored further:

1. The representation of strings is of great importance. This is explored next in Sec-
tion 5.4.1.

2. The history approach allows at least one simple heuristic to be used as a replacement
policy. A comparison of the performance of this heuristic to the performance of strings

found using the genetic algorithm approach is covered in Section 5.4.2.

3. The history approach allows mary variants. Some were mentioned briefly in Sec-
tion 5.2.2. Section 5.4.3 compares the performance of two variants. In one case the
history iucludes a record of hits and misses as well as lines referenced. In the other
case only the lines refererced are recorded.

CHAPTER 5. SIMULATIONS 89

5.4.1 Canonical Form

As mentioned in Sections 4.1 and 4.4, the Aistory method uses a more natural repre-
sentation for strings than that described in Chapter 4. Use of this natural representation
changes the performance of the genetic algorithm, sometimes for better, sometimes for

worse. This is discussed in more detail later.

The key to this canonical representation i» to note tha. many history sequences are
equivalent. For example, assume in the previous 4 accesses that the history of lines accessed
was 1,3,3,1. For the algorithm this is really no different than if the lines accessed had been
2,44,2 or 2,3,3,2, or many others.

Realizing this, it makes sense to reduce all equivalent patterns to the same pattern and

let the algorithm work with the canonical form. It turns out that the compression ratio,

Total Strings is
Number o? Canonical Strlnga

lim Compression Ratio = K!

m-—+00
See Appendix A.2 for a proof.

Several compression ratios are given in Table 5.14. In particular, note that for the case
used in these simulations, associativity K = 4 and m = 4 previous accesses, the compression
ratio is 17.07. This means that instead of needing strategy strings of 512 bits, strings of
only 30 bits are required!.

The actual number of canonical forms, f(KX,m) is given by

J(K,m)= f: [(:—T) (3_;: .(:ci')i)] (5.1)

r=1 c=0

This equation can be derived using the theory of group actions on a4 set as described in
[35]. Assume an alphabet of K letters and words of length m. Then two words are said to
be in the same orbit if and only if one word can be obtained from the other by a permutation

of letters. An orbit corresponds to the notion of a canonical form above. The goal is then

CHAPTER 5. SIMULATIONS

K | m | Canonical Total | Compression | Tl
L Forms Forms | Ratio Ratio
1] o] 1| 1] 1.00 {100 |

2 1 1 212]

2 2 2 412 2

2 3 4 82 2

2 4 8 1] 2 2
"-{1_ 5 16 32| 2 2

2 8 32 64| 2 2

2 7 64 128 2 2

2 8 128 256 | 2 2

2 8 256 512 | 2 2
2110 512 1024 | 2 2
200 20=2 2

3 1 3

3 2 91450 2.00
3 3 27 | 5.40 2.50
3 4 14 81 | 5.79 2.80
3 5 41 243 1 593 283
3 6 122 729 | 5.98 2.98
3 7 365 2187 { 5.99 2.99
3 8 1094 6561 | 5.997 2.997
3 9 3281 19683 | 5.999 2.999
3|10 9842 59049 | 5.9997 2.9997
3| 3!1=6 3

4 1 4|4

4 2 16 | 8 60 2.00

4 3 64 | 12.80 2.50

4 4 15 256 | 17.07 3.00

4 L3 51 1024 | 20.08 3.40

4 6 187 4096 | 21.80 3.67

4 7 715 16384 | 22.91 3.82

4 8 2795 65536 | 23.45 3.81

41 9 11051 | 262144 | 23.72 3.95

4110 43947 | 1048576 | 23.86 3.98

4] o0 41=24 4

Table 5.14: Number of Canonical Forms for History Replacement.

CHAPTER 5. SIMULATIONS 91

to count the number of different orbits for arbitrary K and m. See Appendix A.l for a

proof.

As an aside, note that the second term in Equation 5.1 is related to e:

(K-r)~o0 =0 c! e

That the number of canonical forms is related to e, is a surprising and beautiiul result.

As noted in Section 4.4 this small number of canonical forms does not help in reducing
the hardware complexity of the history approach. To use this “canonical” method, the
cache would require combinational logic to reduce the history to canonical form, determine
which line to replace based on the canonical form, and map the answer back to the original
form. 't is almost certainly easier to have hardware logic calculate the replacement line

directly from the original history.

Finally it is interesting to note in Table 5.14 for a given KX, that the ratio of the number
of canonical forms of length m to the number of length m + 1 increases by a factor of K as

m — o0o. In other words

Number of Canonical Forms(m + 1)
m—0 Number of Canonical Forms(m)

See Appendix A.3 for a proof of this.

Table 5.15 provides some results of using the canonical form for history. The Table
compares the line hit rates obtained using the canonical form and the non-canonical form. In
both cases, the simulations use the standard parameters described in Sections 5.1 and 5.2.1
were used. (The line hit rates for the canonical form correspond to the simulations described

earlier in Section 5.2.2).

Table 5.15 indicates that the non-canonical representation is the superior choice for
instruction caches, while the canonical representation is best for data caches. Tha\ the
non-canonical form is better for instruction caches is somewhat surprising. The motivation

for developing the canonical form was the equivalency of different histories. Why should a

,
zy

CHAPTER 5. SIMULATIONS 92
INSTRUCTION DATA

Canonical | Non-Canonical || Canonical | Non-Canonical

CCAL 29.8 319 67.3 65.1
EMACS 23.6 25.1 70.3 69.4
KALMAN 31.6 33.1 61.5 59.7
MCSH $5.2 58.8 82.8 80 8
POLY 30.2 32.3 56 3 54.8
| WHETSTONE 37.0 37.0 375 37.2
[Mean 34.6 36.4 62 6 612
[SUITE 42.6 453 73.2 714

Table 5.15: Line Hit Rates using Canonical and Non-canonical Representation 512 byte

Inst.uction and Data caches with 4-way associativity, 32 byte lines.

representation which allows multiple forms of supposedly equivalent histories ever perform
better than a representation which has only one form for each equivalent set of histories?

The canonical form has a much smaller solution space to explore, and chooses replacement

lines consistently.

If the line history is 0,3,1,2 and a string of the canonical form chooses to replace line
1, then if the line history is 2,1,0,3, the string will choose line 0. On the other hand, a
string using a non-canonical representation could replace line 1 in the first case and line 3

in the second.

One possible explanation for the supcrior performance of the non-canonical form is that
supposedly equivalent histories are not actually equivalent. It could be that the genetic
algorithm is sometimes able to develop a replacement policy which dedicates certain cache
lines to certain types of values. For example, from the history of accesses, the algorithm
may sometimes be able to detect that a given line corresponds to an innermost nested loop,
while another corresponds to transient initialization code. In such a case, the cache may
want to manage the inner loop line differently than the snitialization line. To this end, the

cache might try to reserve line 0 for inner loop lines, and line 3 for initialization lines. In

CHAPTER 5. SIMULATIONS 93

such a case, the meaning of 0,3, 1,2 would indeed be different than 2,1,0,3.

This reasoning could also account for the difference between instruction and data caches.
The history of accesses to an instruction cache may be ssmple enough that the genetic
algorithr can determine a need for specializea lines as just described. For data caches,
the history may be more complicated, not allowing the genetic algorithm to dedicate lines
for special purposes. In this case, the consistency and reduced complexity of the canonical

approach could be important to finding good solutions.

There is another possible explanation for the superiority of the non-canonical form
in instruction caches. Certain sets in the cache may tend to use different physical lines
intensively. The non-canonical representation could then be optimized so that different
sets essentially have different replacement policies. However this explanation is sufficient
only for individual benchmarks. Presumably in the multitasking suite of benchmarks the
varied use of sets by the different benchmarks makes this optimization difficult. Since
the non-canonical form is better even for multitasking (45.3% to 42.6% line hit rate), this

explanation is inadequate.

Other explanations undoubtedly exist. More work is needed to determine the precise

causes of the sometimes superiority of the non-canonical form.

Finally not only is the non-canonical form better than the canonical form of history in
instruction caches, it is better than every other approach in Section 5.2.2 as well. The mean
line hit rate for the individual benchmarks using LRU-History is 36.1%. The mean for the
non-canonical form is 36.4%. The multitasking performance of the non-canonical form is
slightly inferior to LRU-History (45.7% versus 45.3% line hst rate), but is superior to every
other approach tried in Section 5.2.3.

5.4.2 Genetic Algorithms versus Least Recent History

Given the general success of LRU as a replacement policy, it is natural to make the
history method attempt to mimic LRU. This can be done by always replacing the oldest
line referenced. If some lines have not been accessed, then the line to replace is chosen

arbitrarily from among those not accessed.

T

CHAPTER 5. SIMULATIONS 94

LRU | GA Historyy m=4 |LRH,m=4 | LRH, m =8
CCAL 29.4 29.8 27.6 288
EMACS 22.6 23 6 20 4 229
KALMAN 30.8 31.6 287 329
MCSH 56.6 552 48 2 55.9
POLY 29.6 30.2 26.9 30.7
WHETSTONE | 30.1 37.0 29.6 351
Mean 33.2 34.6 30.2 34.7
SUITE 43.9 426 383 437

Table 5.16: Line Hit Rates for Least Recent History and other Replacement Policies 512
byte I.cache with 4-way associativity, 32 byte lines.

Note that for associativity, K, only K 1 distinct lines need be accessed to fully simulate
LRU. Also note that to approximate LR, a history need only record which lines have been

accessed in a set. Any hit/miss information is extra and not used by LRU

The performance of this Least Recent History or LRH approach varies. For an instruc-
tion cache and a standard m = 4 deep history, LRH performs significantly worse than LRU.
As is indicated in Table 5.16, the mean lne hit rate for LRU is 33 2%, but only 30.2% for
LRH.

The poor perfurmasce ¢. LRH in this case accentuates the value of the genetic algornithm
approach used in Sections 5.2.2 and 5.2.3 For the same m = 4 deep history, the genetic
algorithm approach is able, for each benchmark individually and for the suite of benchmarks,
to find replacement strategies which do far better than LRH The mean line hit rate for
the genetic algorithm strategies is 34.6% versus 30.2% for LRH. It is worth emphasizing
that LRH appears a plausible heuristic for a replacement policy However, by efficiently
exploring a wider portion of the solution space, the genetic algo....un approach does far
better.

The depth of history appears to be an important factor in obtaining good performance

in instruction caches. If the depth is increased from the previous m = 4 accesses to the

CHAPTER 5. SIMULATIONS 95

LRU | GA History m=4 | LRH, m=4 | LRH,m =8
CCAL 67.7 67.3 65.7 65.4
EMACS 69 3 70.3 69.1 68.3
KALMAN 61.3 61.5 60.3 60.7
MCSH 83.3 828 822 82.6
POLY 56.4 56.3 55.4 54.3
WHETSTONE { 36.3 37.5 35.5 34.7
Mean 62.4 62.6 61.4 61.0
SUITE 73.7 73.2 72,5 72.7

Table 5.17° Line Hit Rates for Least Recent History and other Replacement Policies. 512
by ‘e D-cache with 4-way associativity, 32 byte lines.

set to m = 8, the mean line Ait rate jumps from 30.2% to 34.7%. A reason for this leap
is suggested in Table 5.18. When m = 4, the history on average contains 3 or 4 distinct
lines only 3% of the time. For m = 8 this rises to 26%. With the shorter history, there is

apparently insufficient information on which to make a judgment much of the time.

Note that with K-way associativity, the history can contain at most K distinct linea.
Recall from Chapter 4 that the history records which of the K lines in a cache set have
been accessed, as opposed to which memory lines Hence whether m = 4 or m = 8, the

maximum number of distinct lines is 4, since K = 4.

The behavior of LRH in data caches is quite different:

e As can be seen in Table 5.17, the mean line Ait rate of LRH with m = 4 (61.4%)
is reasonably close to LRU (62.4%) and the genetic algorithm strategies (62.6%). A
likely reason for this is the larger number of distinct lines accessed in data caches than
instruction caches. Table 5.19 indicates that on average the history contains 3 or 4
distinct lines on 30% of data cache misses. Even for an instruction cache with m = 8,
the number is only 26%. Hence a data cache employing LRH has more information

on which to make a decision then an instruction cache.

CHAPTER 5. SIMULATIONS

Lines Accessed
m=4 m=2_8

1l2f3lalf1]2,3]4
CCAL 65133 [2|0(|22{+8]26]4
EMACS 66 |33 (1030 4a0]18]3
KALMAN 58 [38[4|ofl23 46274
MCSH 76 {23 |10 27|58 (13]2
POLY 61|35(5l0fl23 |40 (242
WHETSTONE | 54 |44 |3 |0 || 21 |52 | 225
Mean 63 (3430 24|50 0224
SUITE 68 |30 |2 0 2652|193

96

Table 5.18: Percentage Distribution of Distinct Lines Accessed in Set When Miss QOccurs

using LRH replacement. 512 byte I-Cache with 4-way associativity, 32 byte lines.

Lines Accessed

m=4 m=38

1[2]s]af1[2]s]a
CCAL 33 [38]25] 4 15|20 352
EMACS 68 |18 12| 228 |44 18] 10
KALMAN |33 [29]33| 6] 14|28 [32]2r
MCSH a1 {39 17] 3fl1s[as {35
POLY 43 (26|26 | 5| 1734|2722
| WHETSTONE | 35 [18 | 37 [10 [[26 [14 [20 [32
[Mean 42 [28[25] 519302022
SUITE s 3122 41033 30 19

Table 5.19: Percentage Distribution of Distinct Lines Accessed in Set When Miss Occurs

using LRH replacement. 512 byte D-Cache with 4-way associativity, 32 byte lines.

CHAPTER 5. SIMULATIONS g7

» The mean line hit rate actually goes doum from 61.4% to 61.0% when the depth is
increased from m = 4 to m = 8. As just indicated, this could be partially because an

m = 4 deep history has sufficient information on which to make a decision.

Furthermore, ihere is an increased likelihood that a line is dead if it has not been
accessed in the previous 4 accesses to a set. Even if not dead, recency of usage may not
be the best replacement metric for “old™ lines. If several lines have not been accessed
in the previous 4 accesses to a set, the best policy can be to randomly replace a line
from among them, as LRH with an m = 4 does. This possibility is in accordance
with [39], where it was found that for instruction caches, random replacement can

sometimes be superior to LRU.

5.4.3 Two History Variants

The history approach used in Sections 5.2.2 and 5.2.3 maintained a record only of lines
accessed. The history did not include any hit/miss information. This Section examines the
effect of this choice.

Table 5.20 compares line Ait rates for the two history variants. As has often been the
case, results differ dramatically for instruction and data caches. For instruction caches, the
mean line hit rate improves from 34.6% to 36.0% when hit/miss information is included in

the history. Each benchmark and the suite of benchmarks shows a significant improvement.

The 36.0% mean line hit rate for the individual bepchmarks compares favorably to the
36.1% of LRU-History, the best method found in Section 5.2.2. Thus history with a hit/miss
record may be suitable for an instruction cache in which the replacement policy is stored
in a RAM and is modifiable.

The 43.8% line hit rate for the suite of benchmarks (simulating multitasking), however
is still worse than every other approach tried in Section 5.2.3, except FIFO (43.2%). Thus
neither history variant seems appropriate for an instruction cache in which the replacement

policy is hard-wired into the cache.

As can be seen in Table 5.20, the mean performance in data caches actually declines
when hit/missinformation isincluded in the history! Clearly the genetic algorithm approach

CHAPTER 5. SIMULATIONS 98
INSTRUCTION T DATA

Lines Only | Lines & Hits/Misses || Lines Only | Lines & Hits/Misses

CCAL 29.8 30.6 ﬂ 67.3 66.5
EMACS 23.6 25.7 | 70.3 70.4
KALMAN 31.6 33.4 61.5 61.5
MCSH 55.2 56.4 H 82.8 81.8
POLY 30.2 314 56.3 55.6
WHETSTONE o 38.2 w 37.5 37.5
[Mean 34.6 36.0 | 62.6 62.2
[suitE 42.6 a8l 132 72.1

Table 5.20: Line Hit Rates {for History of Line References and for History of Line References
and Hits/Misses. 512 byte Instruction and Data Caches with 4-way associativity, 32 byte
lines.

is a bit deficient here. Since the Ait/miss record is additional information, it is always

possible to find at least as good a solution by ignoring the additional information.

Since performance improves significantly for instruction caches, it seems likely that
hit/miss information is a useful for instruction caches, but generally not so for data caches,
and merely confuses the genetic algorithm. This is corroborated by the fact that for instruc-
tion caches, LRU-History, i.e. LRU augmented with Ait/miss information, is significantly
better than the other methods used in Sections 5.2.2 and 5.2.3. However for data caches
the performance of LRU-History is comparable to other approaches such as LRU-Count.

Some reasons for this were given on page 56.

Finally, a history depth of m = 4 is used in Table 5.20, as it is throughout this document.
Note that different depths (m; and mj) of history could be kept for hits/misses and lines
referenced. Limited trials were made using different m; and m;, but results did not appear
to differ significantly from those reported in Table 5.20. Still this might make an interesting

area for further inquiry.

CHAPTER 5. SIMULATIONS 99

5.5 Shadow Cache

Shadow cache [33] is a hybrid replacement policy somewhat similar to those described
here. The shadow cache method augments a normal cache using LRU replacement. The
augmentation is for each set to keep a larger number of tags (see Chapter 2), than actual
lines. For example with & K = 4-way associative cache, each set would normally keep 4
lines and their corresponding 4 tags. The shadow cache augments the number of tags kept,
perhaps keeping 4 additional tags in a shadow directory. The cache is then managed as an

8-way associative cache.

By keeping the extra tags, the cache can “distinguish between transient lines that must
be flushed from cache quickly and lines that become active after long periods of inactivity
[shadow misses]...As each new item is loaded into cache, a bit is set to indicate whether the
item was a transient miss or a shadow miss...[The cache manager] can tend to retain the
lines that were in the shadow [directory] in favor of the lines that were transient misses,
and in this way it will tend to flush transients from the cache more quickly than an LRU
algorithm will flush them [41].”

Thus the shadow cache augments normal LRU information with additional historical
information about what lines have been accessed. This is quite similar to some of the meth-
ods used here, such as LRU-History, where LRU information is augmented by information
about the history of hits and misses to the set.

Table 5.21 compares line hit rates obtained using LRU-History to a slightly more ef-
fective variant of shadow cache suggested by Puzak [34]. Under this variant, non-LRU
decisions are limited to the LRU and next-to-LRU entries. Puzak found that using the
shadow replacement policy on the MRU and next-to-MRU eatries reduced performance by

unwisely flushing lines brought in on transient misses.

As can be seen in Table 5.21, the LRU-History method fares very well versus shadow
cache. In every case except a data cache with a multitasking workload, LRU-History
performs better than the shadow cache. In that case, the performance is equal.

LRU-History’s superiority is especially marked for instruction caches. The mean line hit
rate of LRU-Historyis 36.1% versus only 33.5% for the shadow cache. The difference is even

CHAPTER 5. SIMULATIONS 100

INSTRCTION | DATA

LRU | LRU-History | Shadow { LRU LRU-History | Shadow
CCAL 29.4 30.7| 304 || 677 678 | 674
EMACS 22.6 246 | 233 [693 00| 699
KALMAN 30.8 34| 314 613 620 | 610
MCSH 56.6 59.7| 568 | 823 835 | 837
POLY 29.6 3.9 | 286 | 564 56.7 | 56.4
WHETSTONE | 30.1 363 | 306 || 363 86| 363
[Mean [332 361 335 624 63.1] 625
[suITE 43.9 5.7 416 737 739 | 739

Table 5.21: Line Hit Rates for LRU, LRU-History, and Shadow Caches. 512 byte Instruction

and Data caches with 4.way associativity, 32 byte lines.

greater "vhen multitasking is simulated: 45.7% versus 41.6%. Furthermore LR U-History is
superior to LRU in every case, while in 4 cases the shadow cache actually performs worse
than LRU.

5.6 Optimization by Set

If a cache stores its replacement policy in RAM, then it is may be reasonable for each
set in the cache to have its own RAM and consequently its own replacement policy. In this
way, the replacement policy can truly be tailored to a specific program, subroutine, loop,
etc..

To test the potential of such an approach, LRU-History was used to find a good replace-
ment policy for each individual set for each benchmark. The results of this approach are
shown in Table 5.22. They show a significant improvement over the performance obtained
when the entire cache uses the same replacement policy.

CHAPTER 5. SIMULATIONS 101

INSTRUCTION DATA
Line Hit Rate | LRU-OPT Gain | Line Hit Rate | LRU-OPT Gain
Set | Cache | Set Cache Set | Cache | Set Cache
CCAL 323 307] 21 10686 67.8] 11 1
{ EMACS 2.6 | 24.6| 29 14 [704 | 700 19 12
| KALMAN 31| 334 27 17 [632] 620] 22
MCSH 60.4 | 59.7| 21 17(837] 835] 11
POLY 330 319] 23 15 [57.3 | 86.7] 12
| WHETSTONE [385 | 363] 44 33 401] 386] 43] 25
[Mean 36| 361] 27 18 [639] 63.1] 20 9

Table 5.22: Performance of LRU-History with Common Cache Replacement Policy and
with Individual Set Replacement Policies. 512 byte Instruction and Data caches with 4-

way associativity, 32 byte lines.

In Section 5.2.2, LRU-History was the best method overall. Nevertheless the mean
LRU-OPT gain of the line hit rate improves from 18% to 27% for instruction caches and
more than doubles from 9% to 20% for data caches. In other words, instruction caches
obtain more than a quarter of the possible gain in line hit rate from LRU to OPT, while

data caches obtain one fifth.

The overall hit rates show similar improvement. For LRU, the mean overall hit rate
for instruction caches is 91.0%, while OPT achieves 93.2%. The value for LRU-History by
Set is 91.6%, i.e. 27% of the 2.2% difference between LRU and OPT is bridged. For data
caches, the corresponding hit rates are

e 88.6% LRU

e 90.9% OPT

o 89.1% LRU-History by Set

Here 20% of the 2.3% difference is bridged.

PUSN

CHAPTER 5. SIMULATIONS 102

Luckily, the cost of implementing this approach is relatively low. As outlined in Sec-
tion 4.4, each set requires 2, 4-bit RAM’s to specify the LRU rank of the line to be replaced.
In other words, 1 byte per set of additional storage is sufficient to implement LRU-History

by Set.

Chapter 6

Conclusion

Harold Stone has stated, “We are likely to gain only from ten to 30 percent of the
available improvement because the hardware cannot have perfect knowledge of the future
[41]." The results found here bear this out:

1. Improvement was made over traditional replacement policies. When a separate re-
placement policy was used for each benchmark, LRU-History was able to bridge 18%
of the 2.2% mean difference in hit rates between LRU and OPT in an instruction

cache and 9% of the 2.3% mean difference in a data cache.

2. Use of a different LRU-History replacement policy for each benchmark and for each
set allowed 27% of the difference to be bridged in an instruction cache and 20% in a

data cache.

3. Smaller improvements were made when a common replacement policy was used for
all benchmarks while simulating multitasking. LRU-History was able to bridge 9%
of the 2.3% difference between LRU and OPT in an instruction cache and 2% of the

1.7% difference in a data cache.

4. It was found that LRU and FIFO replace the same line as OPT on approximately
5% of misses. Using genetic algorithms, replacement policies were found for each
method (LRU-History, LRU-Count, etc.) which raised this to approximately 30% for

103

CHAPTER 6. CONCLUSION 104

Vot~

instruction caches and 18% for data caches. However, the resulting hit rates were
generally lowyr than those of LRU or FIFO.

5. Performance of LRU-History was significantly better than shadow cache, another

approach which augments LRU information with historical information.

6. Performance of replacement policies found using the genetic algorithm approach was

in all cases equal or better to the performance of policies generated randomly.

7. Representation of strings had a significant effect on the quality of replacement policy
found by the genetic algorithm.

8. The history approach allows both heuristic replacement policies such as LRH, and
replacement policies found by applying genetic algorithms. The genetic algorithm
policies substantially outperformed the LRH heuristic. in many cases history also

performed as well or better than LRU.

9. Allowing the cache not to bring in newly referenced lines was found to be detrimental,

even in the most suitable benchmarks.

The primary goal of using genetic algorithm techniques to improve upon existing cache
replacement policies, has been realized. Since improvement was better in instruction caches,

any future work might best be concentrated there.

There are a number of avenues for future work:

1. More sophisticated genetic techniques could be tried, for example recession and dom-
inance, niche operators, and crossover techniques which permit bit function to be

independent of position.

2. Larger caches and longer address traces could be used. Of particular interest are
benchmarks with a large absolute difference in hit rates between LRU and OPT.

3. The difference in performance between canonical and non-canonical forms of history

could be investigated further.

4. Maximizing the fraction of time a replacement policy chose the same line as OPT to
replace did not improve the overall hit rate. Perhaps maximizing the fraction of time
that the OPT replacement line is avaslabie would yield better results.

CHAPTER 6. CONCLUSION 105

5. The most ambitious project would be to actually implement a system using one of
the methods described here. An instruction cache could be built using a hard-coded
LRU-Hutory replacement policy. Alternatively, a cache could be built with a RAM
based replacement policy. An optimizing compiler could then be eahanced to use

genetic algorithm simulations to find good replacement, policies.

Appendix A

Proofs

A.1 Derivation of Number of Orbits

Assume an alphabet of K characters and words of length m. Then two words are said
to be in the same orbit if and only if one word can be obtained from the other by a
permutation of letters in the alpnabet !. An orbst corresponds to the notion of a canonical
form in Section 5.4.1. The goal is then to count the number of different orbits for arbitrary
K and m.

To this end, start with two more definitions:
W = All words in K letters of length m. Note |W,,| = K™.
Sk = Group of permutations on K letters acting on W,,,. Note |Sx| = K.

Burnside’s Formula then gives the number of orbits {35]:

B%(—-I— Z # of forms fized by o

oeSy

= 7(}-‘- Z # of forms fized by o

: '(Sx

f(K,m)=# of orbits =

! Many thanks to Sheils Sundaram for help in constructing this proof.

106

APPENDIX A. PROOFS 107

Since 0eSk, what words (or canonical forms)

W= ww.. . Uy

are fixed by o?

o(w) = o(w)o(wz)...o(wm)

= WiW3...Wy,

Sowisfixed by o & o(w,)=w, Vi=1,...,m.

So if o has r fixed points, there are r™ words fixed by o. Clearly r can vary from 0 to

the size of the alphabet, K. Thus Burnside’s Formula can be rewritten:

K
f(K,m)= 7}; Z #{permutations with r fized points} x r™

r=0
Now another definition is needed. A derangement is a permutation with no fixed point. Let

d(n) be the number of derangements on n points. It is well known [40], that

n
_ (=1)
d(n)=n!)_ —
c=0
There are ('f) ways to choose the r fixed points. For each of these ways, none of the
other K - r points are fixed. The number of permutations with none of the other K — r
points fixed is just the number of derangements d(K ~ r). Hence Burnside's Formula can

now be re-expressed as

1 & (K
f(K,m) = -I-{-i'gof (r)d(K-—r) (A.l)
Korm d(K-r
= g:——-—éﬁ‘.,)? (42)

Finally substituting formula for the number of derangements gives

APPENDIX A. PROOFS

- £[5) (£52)

which is the same formula given in in Equation 5 1.

A.2 Proof of Compression Ratio

108

The compression ratio follows from Equation A.2 and the fact that with an alphabet of

K characters and words of length m, there are K™ total words.

1 _ f(K,m)
Compression Ratio Km
-yl (5)" k=0
B = (K~-r)!

Note in the sum that r < K. Thus

: r\™
mh_x.nw(K) =0

This makes the summation 0, and hence the compression ratio is K!.

A.3 Proof of Increase in Canonical Forms

(&) o

APPENDIX A. PROOFS 109

As m — oo, there are K times as many canonical forms in a string of length m as in
a string of length m — 1. The approach used to show this is similar to that used above in

Section A.2 to show that the compression ratio is K! and also begins with Equation A.2.

f(K,m)
.f(K)m_l)
K ¢ dK-r
=1 ¢! (K-r)!

[EK 1:'"—13'dKr]+(}_(:_—i_§TﬂTl

Increase Factor =

Dividing both the numerator and denominator by K™~ yields

B ey o S iy ()

(R p—

As before in r < K in both summations so

Increase Factor =

r m
lm (=) =
This makes the summations 0 in both numerator and denominator. The K-th terms are
both m{—ly, and cancel. This leaves only

Increase Factor = ;— =

Bibliography

[1] A. Agarwal, J. Hennessy, and Horowitz M. Cache Performance of Operating Sys-
tem and Multiprogramming Workloads. ACM Transactions on Computer Systems,
6(4):393-431, November 1988.

[2] A. Agarwal, R.L. Sites, and Horowitz M. ATUM: A New Technique for Capturing
Address Traces Using Microcode. In Proceedings of the 13th Annual International
Symposium on Computer Architecture, pages 119-127, June 1986.

(3] C. Alexander, W. Keshlear, F. Cooper, and F. Briggs. Cache Memory Performance in
a UNIX Environment. Computer Architecture News, pages 41-70, June 1986.

(4] E.R. Altman. An Analysis of Architect’s Workbench. ACAPS Technical Note 19,
School of Computer Science, McGill University, Montreal, Que., March 1990.

(5] R. Axelrod. The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In
L. Davis, editor, Genetic Algorithms and Simulated Annealing, pages 32-41. Pitman,
1987.

(6] L.A. Belady. A Study of Replacement Algorithms for a Virtual-Store Computer. IBM
Systems Journal, 5(2):78-101, 1966.

[7] L.A. Belady and F.P. Palermo. On-line Measurement of Paging Behaviour by the
Multivalued MIN Algorithm. IBM Journal of Research and Development, pages 2-19,
January 1974.

(8] R.M. Brady. Optimization Strategies Gleaned from Biological Evolution. Nature,
817:804-806, November 1985. (Letter to the Editor).

110

BIBLIOGRAPHY 111

[9] A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis, University of
Alberta, Edmonton, 1981.

[10] D.J. Cavicchio. Adaptive Search Using Simulated Evolution. PhD thesis, University of
Michigan, Ann Arbor, 1970.

[11] J.H. Crawford. The i486 CPU: Executing Instructions in One Clock Cycle. IEEE
Micro, 10(1):27-36, February 1990.

[12] L. Davis. Job Shop Scheduling with Genetic Algorithms. In Proceedings of the In-
ternational Conference on Genetic Algorithms and Their Applications, pages 136-140,
1985.

[13] L. Davis and D. Smith. Adaptive Design for Layout Synthesis. Technical report, Texas
Instruments, Dallas, 1985.

[14] K.A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, Ann Arbor, 1975.

[15] R.W. Edenfield, M.G. Gallup, W.B. Ledbetter, R.C. McGarity, E.E. Quintana, and
R.A. Reininger. The 68040 Processor: Part 1, Design and Implementation. IEEE
Micro, pages 66-78, February 1990.

[16] R.J. Eickemeyer and J.H. Patel. Performance Evaluation of On-chip Register and
Cache Organizations. In Proceedings of the 15th Annual International Symposium on
Computer Architecture, pages 64-72. IEEE, May 30 to June 2, 1988.

(17] D.M. Etter, M.J. Hicks, and K.H. Cho. Recursive Adaptive Filter Design Using an
Adaptive Genetic Algorithm. In Proceedings of the International Conference on Acous-
tics, Speech and Signal Processing. IEEE, 1982,

(18] S. Forest. Documentation for PRISONERS DILEMMA and NORMS Programs That
Use the Genetic Algorsithm. University of Michigan, Ann Arbor, 1985.

[19] D.R. Frantz. Non-linearities in Genetic Adaptive Search. PhD thesis, University of
Michigan, Ann Arbor, 1983.

[20] D.E. Goldberg. Computer-Aided Gas Pipeline Operation Using Genetic Algorithms
and Rule Learning. PhD thesis, University of Michigan, Ann Arbor, 1983.

BIBLIOGRAPHY 112

[21] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

(22] D.E. Goldberg and R. Lingle. Alleles, Loci, and the Traveling Salesman Problem. In
Proceedings of the International Conference on Genetic Algorithms and Theswr Appls-
cations, pages 154-159, 1985.

[23] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kauffmann, 1990.

[24] J.H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan
Press, 1975.

[25]) W. Hollingsworth, H. Sachs, and A.J. Smith. The Clipper Processor: Instruction
Set Architecture and Implementation. Communications of the ACM, pages 200-219,
February 1989.

[26] A.C. Klaiber and H.M. Levy. An Architecture for Software-Controlled Data Prefetch-
ing. In Proceedings of the 18th Annual International Symposium on Computer Archs-
tecture, pages 43-53. IEEE, May 27-30 1991.

[27] R.F. Krick and A. Dollas. The Evolution of Instruction Sequencing. Computer, pages
5-15, April 1991.

[28] W. Mangione-Smith, S.G. Abraham, and E.S. Davidson. A Performance Comparison
of the IBM RS/6000 and the Astronautics ZS-1. IEEE Computer, pages 3946, January
1991.

{29] R.L. Mattson, J. Gecsei, D.R. Slutz, and LL. Traiger. Evaluation Techniques for
Storage Hierarchies. IBM Systemns Journal, 9(2):78-117, 1970.

[30] B. Maytal, S. Iacobovici, D.B. Alpert, D. Biran, J. Levy, and S.Y. Tov. Design Consid-
erations for a General Purpose Microprocessor. IEEE Computer, pages 66-76, January
1989.

(31] J. Miyake, T. Maeda, Y. Nishimichi, J. Katsura, T. Taniguchi, S. Yamaguchi,
H. Edamatsu, S. Watari, Y. Takagi, K. Tsuji, S. Kuninobu, S. Cox, D. Duschatko,

BIBLIOGRAPHY 113
and D. MacGregor. A Highly Intcgrated 40-MIPS (Peak) 64-b RISC Microprocessor.
IEEE Journal of Soiid-State Circuits, 25(5):1199-1206, October 1990.

[32] R. Olsen. Instructions for Performing Trace-Driven Cache Simulations. ACAPS Tech-
nical Note 20, School of Computer Science, McGill University, Montreal, Que., 1990.

[33] J. Pomerene, T.R. Puzak, R. Rechtschaffen, and F. Sparacio. Prefetching Mechanism
Jor a High-Speed Buffer Store, 1984. Patent Pending.

[34) T.R. Puzak. Cache-Memory Design. PhD thesis, University of Massachusetts, 1985.
[35] J.J Rotman. Theory of Groups. Allyn and Bacon, 1873.
[36] A.J. Smith. Cache Memories. Computing Surveys, 14(3):473-530, September 1982.

[37) A.J. Smith. Cache Evaluation and the Impact of Workload Choice. In Proceedings
of the 12th Annual International Symposium on Computer Architecture, pages 64-73.
IEEE, 1985.

[38] A.J. Smith. Line (Block) Size Choices for CPU Cache Memories. IEEE Transactions
on Computers, pages 1063-1075, September 1987.

[39] J.E. Smith and J.R. Goodman. Instruction Cache Replacement Policies and Organi-
gations. JEEE Transactions on Computers, 34(3):234-241, March 1985.

[40] R.P. Stanley. Enumerative Combinatorics, volume 1. Wadsworth and Bronks/Cole
Advanced Books and Software, 1986.

(41] H.S. Stone. High Performance Computer Architecture. Addison-Wesley, 1987.

[42] J.Y. Suh and D. Van Gucht. Incorporating Heuristic Information into Genetic Search.
In Proceedings of the Second International Conference on Genetic Algorithms and
Their Applications, pages 100-107, 1987.

