
Genetic Algorithms and Cache Replacement

Policy

Erik R. Altman

McGill University, Montreal

October 1991

A Thelil lubmitted to the Fa.culty of Gra.dua.te Studiea a.nd Resaea.rch in pa.rtial

fuHillment of the requirementli for the degree of Muter of Engineering.

@ Erik R. Altman, 1991

1

Î

Acknowledgements

Tha.nks .tart with Jonathan C. Rand, who introduced me to genetic algorithms and kindly

lent, then gave me Goldberg's book on the subject. Anne Brindle's unsolicited donation of

ber ~rbesis further sparked my interest in genetic algorithmli.

ProfesP<Jr Gua.ng R. G8.O'S inspired teaching has stimulated my interest in ma.ny areas

of computer architecture, particularly caches. Professor Vinod K. Agarwa.! hu offered

numerou& insightf • suggestions along the way, and has been extremely patient in waiting

for the final result. Professor P.C.P. Bhatt' •. review of an early, and none too polished,

draCt hali improved this one considerably. AI weIl, the many conversations with my fellow

.tudentl helped crystalize severa.! ideas {or me.

Thi. work also depended on the considerable comput:ing facilities made ava.ilable to me

in the Computer Systems and Circuits Laboratory. Jacek Slaboszewicz insured that system

downtime wu minimized, and was always willing to increase my disk quota when needed.

Thanks alllo to Russell A. Olsen and Yoshiko Fueki, who provided me with a detcious

dinner and merriment more times than 1 can count. Visits and conversation with my family

were a.lwayl fun and helped me keep things in perspective.

Finally &Dd elpecially thanks to my wonderful wife, Sheila Sundaram, who never com­

plained about my odd hours, who gave me encouragement when 1 needed it the most, who

proofread tMs thesi. on a moment'. notice, who translated the abstracto, and who helped

me with the proof. in the Appendix.

1

Contents

Acknowledgements

1 Introduction

2 Cache Basics

3 Genetic Algorithms

4 Genetic Algorithms Applied to Cache Replacement

4.1 Basics ..

4.2 Example.

4.3 Combination Approaches

4.4 Hardware Implementa.tion

5 Simulations

5.1 Methodology and Details

5.2 Li ne Rit Rate . . .

5.2.1 Parameters

5.2.2 Results for Individu&! Benchmarks

5.2.3 Results for a Multitasking Suite of Benchmarks .

ii

1

4

11

11

17

19

21

23

29

29

35

35

42

58

5.2.4 Random Performance

5.3 OPT Ma.tch Rate.

5.4 History

5.4.1 Canonica.l Form .

5.4.2 Genetic Algorithms versus Leut Recent Hiatory

5.4.3 Two History Variants

5.5 Shadow Cache ...

5.6 Optimlzation by Set

6 Conclusion

A Prooes

A.l Dt:rivation of Number of Orbita

A.2 Proof of Compression Ratio ..

A.3 Proof of Increase in Canonica.l Forms .

Bibliography

iii

66

76

88

89

93

97

99

100

lOS

106

106

108

108

110

List of Tables

5.1 Number of TotéJ Addresses and Number of Unique Addresses in Each Bench-

mark. 31

5.2 Overall Hit Rates for 512 byte Instruction and Da.ta. caches with 4-way as-

lociativity, 32 byte lines. 32

5.3 Line Hit Rates for 512 byte Instruction and Da.ta ca.ches with 4-way a..ssocia.-

tivity, 32 byte lines. 32

5.4 LRU-OPT Gam.! for 512 byte I-cache, 4-way associativity, 16 byte tines. 54

5.5 LRU-OPT Gains for 512 byte D-cache, 4-way associativity, 16 byte lines. 54

56 LRU-OPT Gaina for 512 byte l-cache, 4-way associativity, 32 byte lines.. 55

5.7 LRU-OP'I' Gains for 512 byte D-cache, 4-way associativity, 32 byte tines. 55

5.8 IndiV1dual-Suite Rahos for LRU-History. 64

5.9 Mean Generation at which Best String Occurred. 70

5.10 Mean Percent age Differences in Lme Hit Rates between Best Strings Gener-

ated by Genetic Algorithm Approach and by Random Approach. 73

5.11 Mean Percent age Difft'rences in Lme H,t Rates between Best Strings Gener­

ated by Population of 100 for 9 Generations and by a Population of 800 for

2 Generations. 76

5.12 OPT Match Rates: Percent age of Misses in wruch Differen~ Algorithms Re­

placed the Line OPT Wouid Have. .. 83

iv

t
5.13 Meu Overall Hit R..ltes When Genetic Algorithm Policies MaxiItÙze OPT

Match Rate. 88

5.14 Number of Canonical Forms for History Replacement. 90

5.15 Line Hit Rates using Cuo .. ;ca! and Non-cuonica.l Representation. 512 b!'te

Inltruction and Daü caches with 4-way associativity, 32 byte lines. 92

5 16 Line Hit Rate. for Lea.st Recent Historv and other Replacement Polides. 512

byte l-cache with 4-way associativity, 32 byte lines " 94

5.11 Line Hit Rates for LellS! Recent H15tory and other Replacement Policies. 512

byte D-cache with 4-way associativitv, 32 byte Unes. " 95

5.18 Percent age Distribution of Distinct Lines Accessed in Set When Miss Occurs

using LRH replacement. 512 byte 1· Cache with 4-way associativity, 32 byte

lines. .. 96

5.19 Percent age Distribution of Distinct I,ines Accessed in Set When Miss Occurs

uling LRH replacement. 512 byte D- Cache with 4-way associativity, 32 byte

lines. .. 96

5.20 Line Hit Rates for HlStOry of Line References ud for History of Line Ref­

erences and Hits/Misses. 512 byte Inshuction ud Data Caches with 4-way

ulociativity, 12 byte lines 98

5.21 Line Hit Rates for LRU, LRU -Hist,:)ry, and Shadow Caches. 512 byte In­

Itruction and Data cache!! with 4.wa.y associativity, 32 byte lines. 100

5.22 Performance of LR U-History with Common Cache Replacement Policy and

with Indjvidua.l Set Replacement ·PoUcies. 512 byte Instruction and Data

caches with 4-way assodativity, 32, byte lines. 101

v

List of Figures

2.1 Typical Cache Layout

4.1 Block Diagram of Cache Miss Hardware ..

4.2 Ha.rdwa.re for LRU-FIFO Method.

4.3 Hardware for LRU-Count Method on Misses.

4.4 Hardwue for BlStOry Method

5.1 Comparison of Performa.nce of Best String by Genera.tion for a Muta.tion

Rate of 0 1 (solid lines) and 0.01 (dashed lines) for a 512 byte I-cache, 4-way

associativity, 16 byte lines ..

5.2 Comparison of Performance of Best String by Generation for a Mutation

Rate of 0.1 (solid lines) and 0.01 (dashed lines) for a 512 byte D-cache,

5

24

25

26

28

37

4.way associativity, 16 byte lines. 38

5.3 Improvement in Best St'l'a.tegy for kaZman by Gf'neration Solid lines repre­

lent longer h18tory or count record, dashed lines represent ahorter. Results

for 512 byte I.cache, 4-way a.ssociativity, 32 byte lines. 40

5.4 Improvement in Best Strategy for paZy by Generation. Solld lines represent

longer hutory or count record, da.shed lines tepreaent ahorter. Results for

512 byte I.cache, 4-way associativity, 32 byte lines. 41

5.5 Improvement in Best Strategy for ccal by Generation for 512 byte I-cache,

4.way associativity, 32 byte lines. .. 43

vi

6.6 lmprovement in Best Strategy for emac" by Generation for 512 byte I.cache,

4.way ulociativity, 32 byte lines. .. 44

5.7 lmprovement in Best StrAtegy for whetstone by Generation for 512 byte 1.

cache, 4.way a.lsociativity, 32 byte lines. 45

5.8 Improvement in Belit Strategy for ccal by Generation for 512 byte D.cache,

4.way usociativity, 32 byte lines 46

5.9 lmprovement in Bellt Strategy for '-mac" by Generation for 512 byte D.cache,

4-way "'Iociativity, 32 byte lines 47

5.10 Improvement in Beat Strategy for whetstone by Generation for 512 byte D-

cache, 4-way associativity, 32 byte lines. 48

5.11 Lme Bat Ratel for 512 byte l-cache, 4-way associativity, 16 byte lines. 49

5.12 Line Bit Ratel for 512 byte D-cache, 4-way associativity, 16 byte lines. 50

5.13 Lme H.t Ratel for 512 byte I-cache, 4-way a.ssociativity, 32 byte lines. 51

5.14 Lme B,t Ratel for 512 byte D-cache, 4-way aSf.ociativity, 32 byte lines. 52

5.15 ReluIh by Algorithm for a. Multitasking Suite of Ali Benchmarks for 512

byte l-cache, 4-way associativity, 32 byte lines. 59

5.16 Results by Algorithm fot a Multita.sking Sùite of Ali Benchmarks for 512

byte D-cache, 4-way associativitj, 32 byte lines. 60

5.17 Resulta of using the overall best LRU-Hiatory algorithm on individual bench­

marks. Upper Bar is LRU, Lower is LRU-Butory. 512 byte l-cache, 4-way

usociativity, 32 byte lines. .. 61

5.18 ReluIts of using the overa.ll best LRU-Hütory algorithm on individual ben ch­

marks. Upper Bar is LRU, Lower is LRU-Hutory. 512 byte D-ca.che, 4-wa.y

u.ociativity, 32 byte lines " 62

6.19 Belt, Worst, and Mean Performance of LRU-Hutory Strings on Suite of

Benchma.:ks for 512 byte l-cache, 4-way assodativity, 32 byte Unes. 65

5.20 Performance of Belt .uld Worst Strings for Suite of Benchmarks for 512 byte

l-cache, 4-way &8sociativity, 32 byte lines. 67

vii

5.21 Performance of Beat and Worst Stnngs for Suite of Benchmarks for 512 byte

J-cache, 4-way &ssodativity, 32 byte Hnes.

5.22 Distribution of Generations at WhlCh Be"t Stnngs Occurred.

5.23 Percent age Dlffererces ln Lane Hat Rates cetween Best Strings Generatt'd

by Genetic Algorithm Approach and Bebt Strings Gent'rated by Random

68

69

Approach for a. 512 byte l-ca.che, 4-way assonatlVlty, 32 byte hnes .. 71

5.24 Percent age Differences in Lme Hat Rate" belween Best Stnngs Generated

by Genetic Algorithm Approach and Best Strings Generatt'd by Random

Approach for a 512 byte D-cache, 4-way assoclativlty, 32 byte lines

5.25 Improvement in Lme Hat Rate by Generation uaing the Ihstory Method for

a 512 byte l-cache, 4-way associativity, 32 byte lines.

5.26 Improvement in Lme Hlt Rate by GeneratIOn uaing the LR U-Count MethoJ

72

74

for a 512 bite l-cache, 4.way associativlty, 32 byte lines 75

5.27 Misses under LRU and OPT. 77

5.28 Behavior of Replacement Policies Compared to OPT. Genetic Algorithm

Policies have OPT Match Rate Maxlmized. 512 byte I-cache, 4-way a.ssocia.-

tivity, 32 byte Hnes. 78

5.29 Behavior of Replacement Policies Compared to OPT. Genetic Algorithm

Policies have OPT Match Rate Ma.x.:mized. 512 byte D.cache, 4-way asso-

ciativity, 32 byte lin~s .. _

5.30 Behavior of Repla.cement f'(\licies Compared ta OPT. Genetic Algorithm

Policies have Lane Bd Rate Ma.xirruzed 512 byte l-cache, 4-way associativity,

79

32 byte Hnes 80

5.31 Behavior of Replaceoent Policies Compared to 0~T. Gendic Algorithm

Policies have Lane BIt Rate Ma.ximized. 512 byte D-cache, 4-way a.ssodativ-

ity, 32 byte lines _ 81

5.32 Overa.ll Hit Rates When Genetic Algorithm Polides Ma.ximize OPT Match

Rate. 512 byte l-cacbe, 4-way associativity, 32 byte lines. 86

viii

5.33 Overall Hit Rates When Genetic Algorithm Policies Maximize OPT Match

&te. 512 byte D-cache, 4-way a.ssodativity, 32 byte lines. 87

ix

Abstract

The most common and generally best performing replacement algorithm in modern

caches is LRU. Despite LRU's superiority, It is still possible that other feas,bIe and im­

plementable replacement policies could yield still better perforuance [3'i.l found tha'. an

optimal replacement policy (OPT) would often have a miss ra.te 70% that of LRU.

If better replacement policies exist, they may not be obvious One way to find better

policies is to study a large number of address traces for comrnon patterns. Such an under­

taking involves such a large amount of data, that sorne automated rnetbod of gencrating

and evaluating policies i6 required Genette Aigorithms provide such a rnethod, and h.we

been used sueeessfully on a wide variety of tasks [21].

The best replacement poliey found using this approach had a mean improvement in

overall hit rate of 0.6% over LRU for the hE'nchmarks used. This corresponds to 27% of tht'

2.2% mean differenee hetween LRU a.nd OPT. Performa.nce of the best of these replacement

policies was found to he genera.lly superior to "hadow cache [33], an enhanced replacement

policy similat to sorne of those \.\sed here.

Résumé

Le plus performant et le plus utilisé des algorithmes de remplacement dans les systèmes

de cache moderne. e.t l'algori thme LRU. Malgré cette supériorité, il est possible d'implanter

d'autre. algorithmes de remplacement avec une meilleure performance. Dans [34], on ..

trouvé un algorithme optimal qui le plus souvent fait preuve d'un "miss rate" valant 70%

de celui du LRU.

Même li dei algorithmes plus performa.ntfi existent, la question d'en trouver est autrement

difficile. Une technique pour trouver un meilleur algorithme est d'étudier un gra.nd nombre

de traces d'adresses pour le même motif. Cette tâche exige le traitement d'une quantité

énorme de données, et par conséquent n'est pas praticable sans un outil automatique pour

engendrer et évaluer les différents algorithmes. La méthode des Algorithme, Génétique,

fournit un tel outil; les chercheurs s'en lont lervis avec luccès pour une large gamme de

tâches [21).

Le meilleur algorithme de rempla.cement trouvé dans cette thè.e, en utililant cette

méthode, jouit d'une amélioration moyenne de 0,6% dans le "bit rate" global, relativement

à celui de l'algorithme LRU 1 par rapport aux "benchmarks" utili.és. Cette amélioration

correspond à. 27% de la différence moyenne de 2,2% entre les algorithmes LRU et OPT.

La performance du meilleur des algorithmes de remplacement ici présentés s'est révélée

généralement lupérieure à celle du ".hadow ca.che" [33], une règle de remplacement qui

ressemble à certains des algorithmes dans cette thèse.

Chapter 1

Introduction

Thil introduction uaumea a basic familiarity with cachea and genetic a.lgorithms. If

thls il not the case, Chapter 2 reviewa fundamenta.ls of cache operation, and Chapter 3

providea huic motivation and theory of genetic a.lgorithms.

An important aspect in determining cache performance ia the replacement policy uaed.

In a typicalsyltem, main memory may be 10 times Ilower than cache [36] [41] [23]. ln this

eue improving cache bit rate from 90% to 95% reduces the effective memory accesa time

by more the 30%. Furthermore the gap hetween cache speed and main memory apeed il

growing (27].

The problem of increasing bit rate has bee!l handled by:

1. Increuing the cache size

2. Increuing the line size

3. Maintaining aeparate instruction and data caches

4. Increuing the usociativity

5. Prefetchlng

6. Software "hinta" to the cache

1

CHAPTER 1. INTRODUCTION 2

7. Inveltiga.ting alterna.tive replacement policies

The order of this lilt give. lome indicaticn of the relative emphasi. that has been placed

on different .olutions. However) the ranking il not rigid ud lome may prefer a llightly

different order. Neverthelell, the mOlt common repla.cement policies now in u.e, luch as

LRU and FIFO, have been employed at least lince tbe 1960'. [36].

There are aeveral reuons for this. Both LRU and FIFO are relatively .imple to imple­

ment and off'er good performance, with LRU generally having the higher hit rate. Other

replacement methodl have been tried, for example Random, Least Frequently U.ed (LFU),

ud Partition LRU-a .lightly limplified version of LRU [29] [36]. However LRU has gen­

erally been found to have the highest hit rate of all thele replacement policiel [36]. Upon

reflection, the reader wil1likely find that few additional policiel come to mind.

Different cache parametera are most often tested using loftware aimulatorB. A typical

way to do this is to coUed "representative" benchmark progra.ms and execute them on an

architectural .imulator. A. part of the simulation, the .tream of addre •• e. generated by

the benchmark are stored tO a file. This addrell trace file i. then used as input to the cache

.imulator.

Variation. are pOI.ible, .uth as integr.ting the cache .imulator with the architectural

.imulator, thereby eliminating the need for the intermediate &cidres. trace file. Thil i. im­

portant, al acidress trace files are often many megabyte. or even gigabyte •. Unfortunately,

&cidrel' trace filel are needed here for reasons given in Chapter 4.

One of the advantage. of using trace driven cache limulation il that it i. pOllible to

determine the optimal performance achievable by any replacement algorhhm [6]. Thil

optimal replacement poliey i. lometimes called MIN, but here it will be referred to al OPT

following the convention of [29]. It has been found that OPT often has a mi .. rate only 70%

that of LRU [34]. Thua there ia .ignificant room for improvement in replacement policie •.

However, if improved replacement policiea exiat, they may not be obvioUI. One way

to find better poli cie. i. to .tudy a large number of addre'l trace. for common patterns.

Such an undertwng involvea luch .. large &mount of data, that .ome automated method

of generating a.nd evaluating policiea i. required. Genetic Algorithml (GA '1) provide luch

.. method, and have been uled luccessfully on a wide variety of tasb [21].

"

CHAPTER1. INTRODUCTION 3

Some examplel of thele include VLSI circuit layout [13], adaptive filter desisn [17], the

travelling lalesman problem [8] [22] [42], prisoner'. dilemma [5], and job Ihop Icheduling

[12]. Other areas of application range from cellular biolof(Y to demographici.

ln ellence, genetic aJ.gorithma attempt to mimic evolution: different replacement policies

tompete, with the fittelt lurviving and evolving to even fitter policies. Different replacement

polidel are repreaented &1 different bit strings, in a manner analogous to DNA sequences.

AI delcribed here, genetic algorithma would be employed during the design of an archi.

tect/tre or possibly at compile time. They would not be used on the fly by the cache, as the

time and space overhead i. far too prohibitive.

The basic notion is as follows. Start with a popula~ion of randorn strings (replacement

polide.). For each string, run a cache simulation on a benchmark address trace. Record

the bit rate or sorne other performance measure for the string. After all strings have

been limulated, reproduce the better strings in a new generation of strings. Finally apply

additional genetic operators luch as mutation and c:ro.uover between Itrings to find new

and better replacement polides.

The goal of th", work is to tue this genetic algorithm approach to find replacement

palide. which improt1e upon tmditional palidea, in particular, LR U.

Chapter 2

Cache Basics

CPU'. have hiatorically been able to operate at futer dock rate than m&in memory and

thi. imbalance i.Ukely to continue for the foreseeable future. [27]. One means of alleviating

thi. bottleneck has been to employ fast cache memory between the CPU and main memory.

However, in order to achieve this speed, the .ize of caches has been far smaUer than that of

main memory. (Because they are .malI, cache. can employ more expensive, higher power

memory chips than main memory. They can also be placed on the die of modern CPU's,

thereby avoiding the speed penalty caused by the large capacitances on the chip's output

pins.)

Since caches are sma.ller than main memory, some means il required to map main

memory addrenes to cache. There are a multitude of ways to do this, but the basics of

almost all caches are the same. Caches function as an associative memory. AI is illustrated

in Figure 2.1, internal.ly they are aImost aU divided into 3 puta which determine the overall

.ize of the cache:

• N Sets

• K Lines per Set (K il the ASlociativity)

• L Bytes Per Line

• Cache Size = N x K x L

4

CHAPTER 2. CACHE BASICS 5

Cache

1

Sel

t
Klmes

1

~ NSets 1
1

1

.. ..
L bytel/hne

Figure 2.1: Typic&l Cache Layout.

In the literature, the synonym block is often used for line [36].

This structure facilitates quickly fincling whether a particular main memory address

is present in the cache. To see this, consider the steps a sa.mple cache follow8 in fincling

whether an address is present:

1. 16·bit Addresl, ABCDEFGHIJKLMNOP

2. 1024 byte Cache

3. K ::: 4-way associativity

4. L = 8 bytes per line

5 N == Coche Sue == lOl4 flvtu = 32 sets . 1{)cL 4-.... lIvxTlIVtea

6. Addreaa Bita NOP specify which of the 8 bytu in the line

7. Addrell Bits IJKLM specify which of the 32 sets

8. AddreBs Bits A BCDEFGH form a tag

9. UI~ K == 4 comparators to determine if the tag is present in the set

CHAPTER 2. CACHE BASICS 6

Note than every memory address mapa to a specifie cache set, and hence one of K lines.

The c&che must determine whether a value requested by the CPU is present and return it

loi quick1y loi poaaible. Bence the number of tag comparisons (K) performed to check if a

value i. present mUlt be minimized. Even if all the comparilfona are performed in parallel,

there are problem.: a large amount of .pace ia required for the comparatorl and the larger

.pace impliea a reduced ma.x.imum clock frequency. Peak power conlumption il increased.

On the other hand, too ImaIl an "'Iociativity, K, can caule probleml when many memory

addreaae. to map to the .ame .et. The reauit il ChfWhing while the different addressel

compete for .pace in the .et. Typically Ki. 2 or 4, but value. from 1 to 16 have heen uled

[36]. K il typically a power of two, but as can be seen in the example above, it need not

be. [31] for eXaID?le uses a K = 3.way associative cache. N and L must be powers of 2.

A. can abo be .een in the example, the lower order bits w-e used to map addressel

to .eh. As one might expect this acts as a quasi.ra.ndom function to evenly distribute

addre.aes among all lets. A random mapping generally minimizes the number of multiple

ad dresse. competing {or .pace in the .ame set, i.e. it minimizes thrashing. However, since

cache. are lm aller than main memory, conflictll aometimes occur. If each of the K lines in

a let contains a.n address, then one of the K addresses must be replaced, when a new Une

also maps to that let.

There are .evera! common algorithms which are used to decide which Une to replace.

The algorithms mUGt be simple as usually they must open.te in one or two CPU cycle".

• LRU, the LetUt Recently Used line i. replaced.

• Partition LRU, a simplified approximation to LRU. Here the K Unes in a let are

partitioned into lublet-. For example, an 8-way ulociative cache may have 4 aubseta

of 2 Unes each. The order of use of each .ubset is maintained, as il the order within

each lubset. On a mila the lea.at recently used line in the least recently uled lubset

ia replaced. Partition LRU il used mainly in "highly" &Slociative (K ~ 4) caches.

• LFU, the LetUt Frequently U,ed line is replaced.

• FU'O, the First In line is the First Out.

• Random, a pseudo-randomly chosen Une il replaced.

CHAPTER 2. CACHE BASICS 7

• OPT 1 the optimal atrategy where the line which i. ulled furthest in the future i.

replaced [6].

Since future information is unknown to the cache, OPT cannot be u.ed in real caches.

However loftware cache modeh, are eommonly used to test a apecifie cache configuration

[36] [37] [1] [16]. Thele models take al input, a trace of memory addreuea generated by a

particular benchmark or benchmarks. (Me!hods of generating luch a trace are described

below.) A prepa.sa C&Il be done on thia trace to determine how long until each Une i.

referenced aga.in. OPT can then use thi, information on & aecond pus 1.0 expel the line

referenced furthest in the future. The performance acbieved using OPT provides a good

buis against which other strategies can be compared. It is actually possible 1.0 write a

.ingle pus OPT [7]. LRU is the m06t common and generally the best performing of the

(implementable) algorithms above [36]

In order to determine which replacement &Ild which cache parameters are best, 1I0me

mea.sure of cache performance is required. There are aeveral:

• Hst Rate, the percent age of time that the location desired by the CPU is present in

the ca.che. This metric is a good meuure of overall cache performance .

• Line Hat Rate [39], limilar to hat rate, but for a given .et, the only accessea considered

loIe those which are to a. different line than the previous time the set was accessed.

Any series of acceases withm a single line produces bits no matter what replacement

algorithm is used. As a consequence maximizing the lme hit rate &lso maximizes the

overall hit rate. However, the line hit rate more closely reflects the difference between

two replacement policiea.

The behavior of line hit rate c&Il be aurprising. If t1e metric used i. overall hit rate

ud one of the cache Bize parameters-line lize (L), usociativity (K), or number of

aeta (N)-ia increased while the others are held constant, then the otJemli hit rate il

increaaed (or pOlsibly held constant). However if the metric useè is line hat ratel this

i. not true.

Thia i. because the line hit rate considera only thoae references which accesa a different

line th&Il the previoui time a given set wu accessed. When the cache lize i. increued,

the number of references in which & new line ia referenced ia generally decreased. The

CHAPTER 2. CACHE BASICS 8

line hit nde of thi. decreaaed numher of new line references raay he lower than for a

.maller c&ehe with more new line reference •.

• OPT Match Rate, tht. percentage of time that thE" line replaced i. the .ame line that

OPT would have replaced.

• Averoge Acce .. Time, the average number of cycle. the cache take. to return a value

to the CPU. Thi. i. directly related to the hit rate.

• Memo"" Traffi.c, the numher of transfert between cache and main memory. Thi. i.

e.pecially important for a multiprocessor .ystem with global memory and 19'here each

proccssor has a local cache.

• Utilization, the number of times each location in the cache is a.ccelled. Thi. i. a

mealure of the value of a cache compared to alternative uses of the chip or boud .pace.

If utilizabon i. 1019', it may be a better u.e of space to have two .imple processors with

.mall caches, tha.n one complex processor with a .ingle larger cache.

Here we are mo.t intere.ted in the effectiveness of replacement algorithms. Hence hit

rate, lâne hit rate, and OPT match rate are used. Trying to find a replacement poliey which

matches OPT i. one 19'ay of having the cache recognize certain acces. pa.ttern. and respond

to them, hopefully in an optimal 19'ay.

Although most caches arE" orga.nized aa has been described, a .ingle CPU need not have

only one uni~d or combined cache. The CPU may have multiple caches, each contalning

distinct information. Two types of divisions are most often suggested [36]:

• Instruction Cache a.nd Data. Ca.che

• Supervisor Cache a.nd User Cache

Separate supervisor a.nd user caches are designed to increa.ae hit rote and utilization by

keeping u.er code in ca.che during interruph. The.e goals ue not always accomplished.

Thi. i. becau.e two, half·.ize cache. can be too .mail to accommodate the working ,et of

reCerence., whereu one larger cache would be .uffident. The larger cache allo dynamically

.hifta what fraction of it i. uled for one purpo.e Illld what fraction i. used for the other.

For thi. reason, .eparate .upervisor/user caches ue rarely used [36].

CHAPTER 2. CACHE BASICS 9

Separate inltruction and data cachel have two other advantagel. Bandwidth from cloche

to procellor il increaaed-barring cache missel the processor can be continuoully Ced with

inetructionl and data. An instruction cache can also be limpleT (and hence luger a.nd

futer) lince it need uever be concerned with memory writes. (Most modern architectures

ulume that lelf-modifying code is not used.)

A CPU may allO have multiple level. of cache. In a multi-Ievel 'yltem, instead of

pl&cing & lingle cache in between the CPU and main memory, an additional, generally

alower cache il placed between the tint cache and main memory. Thil hierarchy may be

extended arbitr&rily deep, but there il generally not enough difference in Ipeed between

main memory and the CPU to warrant more than two levels of cache [41].

Finally as a.lready noted, most cache Itudy is done using software cache limulators and

addreu traces. Sorne methods of trace collection are

• Special instrumentation and recording hardware for existing systems.

• Software architectural simulators.

• ATUM or Addresi 'l'racing Using Microcode [2]. Patches are made to microcode to

record ail addresB references made by the machine including oper"ting system calls

and interrupts.

Architectural simulators are simplest, but have the drawback that they uBually gener.

ate traces irom ooly a lingle (user) program. Obta.ining and properly mixing addresses

from Iystem code ud interrupts il virtually impossible. Microcode patche8 become les8

viable u RISC (no microcode) and VLSI (microcode not patchable) grow ever Itronger.

Instr!JJllentation hardware il too expensive aud too complicated to be of general use. It is

elpeciaUy diffieult to Bynehronize trace collection with the execution of specifie programs.

Trace simulation allows complete fiexibility as to cache parameters, and even allows the

OPT replacement policy to be used. However, trace simulation il also orden of magnitude

alower than an actual cache and deals with traces that almost always represent very little

computing time. 20 million addressel might repre/lt'nt only one lecond of computing in a.

modern rusc proceSlor, but take up 80 megabytes of disk .pate.

1
CHAPTER 2. CACHE BASICS 10

Thi. luge di.le .pace requirement hu .purred lome researchers to integrate their cache

aimulator more Cully with an architectural.imulator [26]. De.ired benchmarkl ue executed

on the .imulator and &1 &cidresl reCerencell are generated, they &te immediately passed to

the cache .imulator, which mainta.ins the desired statistics. Unfortunately this approach is

not practical here. A. will be .een, the same trace must be reused hundredll and thousands

of time •. The additional overhead of simulating an entire architecture running the desired

benchmule i. prohibitive.

An altern .. tive to trace simulation or architecture/ca.che .imulation i. to have the cache

maintain CPU addre ble counter. for the number of bit. and the number of misse. [4].

The CPU could clear these counters and later record the number of hits and rrusses at any

desired point. Incrementing ofthe counters can be done in parallel with other cache activity

and hence need not slow it down. This method could provide the hit rate for the system

including all interrupts and system code. With a small additional bit of hardware, the line

hit rate could also be ma.inta.ined in this manner. Memory trame could also be accurately

meaaured via onboard counters.

Clearly, thi. counter Icheme could not be uled directIy in developing new architectures.

However if it were genera.lly implemented, cache performance Itatistici would be a.va.ilable

for a mu ch wider variety of ma.chines and workloads than is presently the case.

Chapter 3

Genetic Algorithms

The goal of genetic a.lgorithms is to mimic evolution to find optimal or near optima.!

solutions for a given problem 1. The problem must be well defined, and a function must eJcist

to evaluate proposed strategies. A number of approaches for genetic algorithms have been

proposed. Almost aU modern approacbes use a population of binary strings (or strategies)

[21J, aU of the same length, l.bits Each string represents a possible solution.

Any moderately complex problem has more solutions than can rea.sonably be enumeT­

ated and searched for an optimum. If l = 32, exhaustive searcb requires that 231 ;:::: 4 billion

strategies be evaluated to find the optimum of the function Genetic algorithms attempt to

reduce the lIearch space to a manageable size at the risk of nnding only an approximately

optimal solution.

A simple genetic algorithm, typical of many modern approaches, is outlined below:

1. Generate a random population of l·bit binary $tnng$.

2. Evaluate fitness of aU strings.

3. Use fitness to determine which strings ta reproduce in the next generation.

lThe expo.ïtion in lhi. Chapter borrolu heavily from deICnption. given in Goldber,'. comprehenaive

l~.g book [21]

11

CHAPTER 3. GENETIC ALGORITHMS 12

4. Original generation "clies".

5. Pair off strings in new generation.

6. For ea.ch pair, randomly choose a bit position, p in the string.

7. Swap the bits ta the right of p between the two strings in the pair. (Cro"over)

8. Randomly mutate (with small probability) bits in resulting population.

9. Goto Step 2.

This algorithm uses three operations to systematically seek improvements in the popu­

lation, or in other words to search for an optimum solution.

• Reproduction rewards the fit test strategies.

• Crouover generates new strategies aud rewards good sui:~trings.

• Mutation adds diversity and insures that allstrings may be generated at a.ll times.

To make matters more concrete, consider the following example whlch goes through one

iteration of the basic algodthm above.

1. Initial Population: A = 0111000, 8 = 0101010, C = 1001001, and D == 1010110

2. Assume A, C, and D are best by some criteria and two A's, one C, and one D are

reproduced in the next generation.

3. Assume the pairing is AIC and AI D.

4. Randomly choose 3 as the trossover position for AIC, and 5 as the crossover position

for AI D.

5. This yields: A' == 0111001, B' = 1001000, C' = 0111010, and D' = 1010100.

6. Randomly choose the 2nd bit of C' and the 7th bit of D' to mutate.

7. The new generation is: A' = 0111001, B' = 1001000, C' = 0011010, and D' =
1010101.

------------------------------- -- ----------

CHAPTER 3. GENETIC ALGORlTHMS 13

A simple and innovative use of genetic algorithms was proposed by Axelrod ud Forest

[5] [18] for the game, Prisoner's Dilemma.. In this game, two accompHces are held in separate

rooms by police as suspects in some crime. In truth hoth prisoners are guilty However,

the suspects will receive longer or shorter sentences depending on whether both, neither or

one of them confess. To make the game more interesting, this sequence is repeated for a

large number (150) of moves, therehy a.llowing each of the two prisoner's to learn about the

other's behavior.

At a 1985 computer tourna.ment, a tit·for·tat strategy W&8 victoriou8 over muy more

complicated strategies. (In tit.for-tat, one does what the opponent did in the previous

move.) Using a genetic algûrithm approach, Axelrod and Forest found a strategy that con·

sistently beat tit·for·tat as weil as the other strategies in the tournament Their approach

can be summarized (and slightly simplified) as follows:

1. At each move each prisoner can confess or not. Hence each move can be recorded

with 2 hits.

2. Record the 6·bit history of past 3 moves.

3. Choose the next maye hased on this 6·bit history.

4. 6 bits ~ 26 = 64 possihle histories.

5. For each of the 64 histories, the strategy must indicate whether to confess or not.

6. Goal: Find the optimal 64·bit strategy.

7. Method: Generate a random population of 64·bit strings and use genetic algorithm as

described above. At each generation, play each string against every other. A atring'a

fitness is a (nonlinear) function of the total amount of prison time incurred by that

string.

AlthcJagh genetic algorithms have sorne appeal merely by analogy to nature, it can he

shown in a more mathematicaIly rigorous manner, that the operations of reproduction,

crossover, ud mutation will tend to produce successively more optimal populations [24J.

To begin a pair of definitions are needed.

1 CHAPTER 3. GENETIC ALGORITHMS 14

• A .chemail abinary.tring. but not aU bit positions need be defined. Don't Carel,

., are allowed. For example, H = 011 ... 1 (The plural of .schema is .schemata).

• The d.efining length, 6(H) ofa .chema, H, i. the number of bits between the first and

lut defined bit position. For example, 6(H = OU. 1 ••) = 4.

Theae definitionl can now be u.ed to .bow that over time, rqroduction create. expo­

nential growth in the number of .. bove average Ichemata in the population.

• Let there be a population, P containing n strings of length 1 at time t.

• Let the fitness of string, i be f,.

• Let the average fitness of strings representing Ichema, H in tbis population be f(H).

• Let m(H, t) be the number of strings containing Ichema, H at time t.

• Then the expected number of strings containing H &fter reproduction at time t + 1
. . al .JJ!!J..
11 proportion to l:; l, :

m(H,t+ 1)
nf(H)

=- m(H,t) E~ f,

= m(B,t)f'!)
f

• H strings conta.ining H are a factor c better than average at eath generation, then

m(H,t + 1) = m(H t)a + cï) , 1
= (1 + c)m(B, t)

• Thi. producel exponential growth in number of above average Ichemata and expo­

nential decay for below average Ichemata.

m(B, t) = (1 + c)tm(H, 0)

CHAPTER 3. GENETIC ALGORITHMS 15

Reproduction never produces new strings. Alone it can never improve on the perfor­

mance of the original population. Crollllover does introduce new Itrings, and does 10 in

IUch a. W&y u to reward highly fit, short schema.ta. In other words good, Imal1 building

blocks are favored. To see this, consider an example.

• There are 6 pOllible cronover loca.tions for both Hl ud H..,. Hl is destroyed by

6(Hl) = 5 of the 6 choices. H.., is destroyed by only 6(Ha) = 1 of the 6 crossover

choices.

More generally, this idea can be summarized as follows.

• H crossover occurs with probability, Pc, the probability, P., of schema, H surviving is

6(H)
p.(H) = I- Pc l_

1

• In pure reproduction, Pc = 0 and P. = 1. Allowing crollover changes the number of

occurrences of Ichema, H expected in the next generation:

m(H, t + 1)

• Now the number of schemata, with short defining lengths, 6(H) grows exponentially:

the Iyltem rewards good, Imall building blocks.

Note th&t in thi. deriViLtion, we ignore the amall chance that crossover of two achemata

not containing H will create an instance of H in the new generation. Induding this effect

does not change the main resuIt [21].

Here mutation il usumed to occur u inversion of lingle bita. Multiple bita in a. string

may mutate, but each occurrence is usumed to be independent. M uta.tion hu two roles. It

can a.dd di \'ersity to a. popula.tion, as weil as guarantee that it is always poslible to generate

CHAPTER 3. GENE TIC ALGORITHMS 16

any.tring. Alway. being able to generate any .tring il necelSary to avoid getting Ituck at a

.uboptimallolution when allltrings in the population are identical at certain bit pOlitions.

Mutation al.o hu a danger. If the mutation rate il too high, then the progresB made

through reproduction and crollover can be deltroyed. Formally, the effect of mutation il

u foliowl.

• Let",. be the probability of & bit mutating.

• Define the onkr of a Ichema, o(B) to be the number of fixed pOlition. in H. For

example, if B = 011. 1 •• , then o(H) = 4.

• The probability of H lurviving mutation i.

• The probability of H not lurviving mutation il

Pmdle ::::: 1- [1 - o(H)Pml = o(H)p",

Subtracting the deltruction rate of schemata due to mutation from the previous recur­

rence for number of Ichemata in a generation yields The Fundomental Theoreffl 01 Genetic

Âlgorithm6:

m(H,t + 1) = m(H,t)/';) [1- Pc~,!{ -O(H)p",]

Chapter 4

Genetic Algorithms Applied to

Cache Replacement

4.1 Basics

As noted in Chapter 2, LRU il currently the most common replacement Itrategy uled

in caches. To improve upon it, either more or different information must be kept about the

lines reliding in cache. One way of using more information il to ule both LRU and FIFO

information in deciding which tine to replace. Keeping a "utory of cache ucelses is a way

of uling tlifferent information. A hutory could be kept and used with a genetic algorithm

U followl:

• For the previoul m accelses to a c.che let, record whether the access is a hit or miss.

• If the acceal il a hit, record to which tine it is a hit.

• If the accesi il a milS, recorè which tine wu replaCt~d.

• If K il the cache ulociativity, then a genetic algorithm would require a population

of Itrategy Itringa, each of B bits, where Bi.

17

t CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 18

The deri '(ation of thil il qui te limple. For each of the previoui m aceel.el 1 + log3(K)

bita are uaed to record what happened on that acee... Thui there are 2m [1+loga(K»)

pOilibilitiel for the previous m aceesses. For each of these possibilitiel, the line to be

replaced mUlt be Ipecified. This takel log2(K) bits, which yields the formula for B

givcn above .

• For K = 4 • .,&y u.ociativity and a hiltory of the last 4 aceelsea, ea.ch .tring ia 8192

bih! For comparison [lOI uaed aome of the longest strings in genetic algorithm appli·

cation •. They were the equivalent of lesa than 4000 bita. There are waya to reduee

the complexity here as is diseussed briefly below in Section 4.4 and more fully in

Section 5.4.1.

Rega.rdlell of wh&t &pproach il uled-a combination of LRU and FIFO, hiltof'JI, or

.omething ellt:-.ome meanl il needed to find good lolutions in the myriad of possible

lolution •. AI noted, jf even a relatively Ihort history i. kept, .. brute force method would

entail a aeareh of 2'111:1 pOllibilitiel. Genetic algorithml offer an attractive alterna~~~e to

luch & method.

Note that only 0 le approaeh-an LRU·FIFO combination, hiltory, etc-il tried at a

time. A genetie algorithm tries to fine' a near optimalltrategy within that one approach.

However, for each approach, the same basic method il used to nnd a good replacement

.trategy:

1. Generate a random popu1r·ion of .tntegies (strings) for the approach (LRU-FIFO,

hut~, etc).

2. For each string in the population, perform a cache trace simulation using a particular

benchmark or let of benchmarks.

3. During each limulation, ule the .tring to determine which line to replace when a

cache mi .. oeeura.

4. Alter each limulation, record the Une hit rate or lome other performance meuure for

the Itring.

CHAPTER 4. GENE TIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 19

5. Cllculate the fitnell of the .tring al a nonlinear function of the performance meaaure.

6. J.fter a limulation has been performed for each atring, use reproduction, cr088over,

and mutation to generate a new generation of strategies based on these fitneases.

7. Goto step 2.

4.2 Example

Ta make this more concrete, consider an example using the hùtory method. Let the cach~

have K = 4-way &lisociativity and keep a history of m = 1 previous accesses. This requîres

B = 2 X 21)([1+/0 12(4») = 16 bit6

for each atrategy string. More intuitively

• The hiltory of the previous actess is recorded in 3 bita, H i.tt = B2B} Bo. The 3 bita

refer to the line referenced (2 bits) and whether the accesl wu IL bit or a miss (1 bit).

• The Itrategy must indicate which line to replace on a miss for eath of the 23 = 8

poisible histories.

• 4-way associativity => 2 bits to specify the line to he replaced.

• Since 8 lines must be specified, 8 x 2 = 16 bits are required for each Itrategy string.

Severa! additiona.l aslumptions are required:

• Let B2 = 1 for a hit, 0 for a miS8.

• Let B1 Bo .pecify the line to be replaced.

• Let the Strategy Itring S under consideration be

16543210
S = 01 00 10 00 11 01 11 10

S can be viewed as an array of 8, 2-bit element" one for each poasihle history. Each

element specifies which Une to replace for a given hi.tory.

CHAPTER 4. GENE TIC ALGORlTHMS APPLIED TO CACHE REPLACEMENT 20

• Allume Hi,t :::;: 101 and there il. mis •.

The hiltory method then worka u followi

• The line repla.ced i. that .pecified by the B3B1BO = 1012 = 5th pa.ir in the Itrategy,

102 = 2.

• Thu. the new H i,t = 010: a miss occurred and line 2 w .. repla.ced.

• Next aI.ume there il a bit to line 0 of the set.

• Therefore the new H id == 100.

The Itring S il used in this manner for the entire a.ddress tra.ce, i.e. bued on the put

hl.tory of accesses to a. set, S indicates which line should be replaced when a miss to that set

occurs. Wh en the simulation finishes with the addrell trace, tbe performance of Sil noted.

Then tbe lame procedure is repeated for the Test of the strings in the population. Finally

alter the performance of aIl strings hu been meuured, the reproduction, crossover, a.nd

mutation operatorl are applied in an attempt to produce .. new and hopefully improved gen­

eration. This proce .. continues, generation aIter generation until each generation perform.

approximately u well iLS ih predecessor. (There is no hard and fut rule for determining

when thi. convergence hu occurred [21].)

Clearly the choice of a.ddress tra.ce is critical to this proceas. (The address tra.ce corre­

Iponds to .ome benchmark program or progra.ms.) Some strings perform weIl with some

programs, others with different programs. One goal is find a single Itring which performs

well, although perhapi never optimally for a wide variety of trace •. Weil might be defined

&1 beUer than LRU.

Alternatively the replacement string could be dynamically Ipecified to the cache. This

would allow different applications to ule different replacement policies. Such an approach

ra.ise. the question: how does the application know what is a good replacement policy? One

way is to generate &Il addres8 trace from the application and use the complete gendic alga­

rithm procedure delcribed above. Another pOlSibility il for the compiler to u.e heuriltics

to Ipecify the Itrategy. For example a large number of deeply nested loops might suggest

CHAPTER 4. GENE TIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 21

one replacement Itrategy, and recuraion another. Uaing tbia approach it might even be

pOlsible for each lubroutine or procedure to specify its own replacement Itrategy.

A thlrd alternative would be for the cache ihelf to recognize certain accels patterns.

Upon recognizing & pattern, the cache would ule a correaponrung replacement Itrategy.

Patternl would probably have to be relatively simple in arder that the cache could recagnize

them in real time. (For e.xample, the full blown genetic algorithm approach described above

i. clearly tao complex for a cache to perform in real time.)

4.3 Combinat ion Approaches

ln addition to LRU-FIFO, several "combination" approaches are possible. Those com­

bination appraaches implemented here are listed below &long with number of bitll they

require in each Itrategy Itring. The computation of the number of bita il aimilar to that

described above for hùtory. Note that in aU cases the number of bits B is a multiple of

I092(K), since 1092(K) bits are needed ta specify wbich line is to be replaced.

1. Combination of LRU and FIFO information (LRU-FIFO). In tbis case the replace­

ment algorithm must know the FIFO rank of eacb LRU line. (In this document the

term, "LRU line" is sometimes used to mean a line's rank from most recently used

to least recently used. In such cases it does not mean literally the least recentl1l wed

line. Context should ma.ke clear wbether tbis or the litera! meaning is intended.)

However most LRU to FIFO mappings are impossible. LRU lines 1 and 2 cannot

both correspond to FIFO line 4. For example the following mapping i. lega.1:

While this is not:

1 -) 4

2 -) 2

3 -) 3

4 -) 1

CHAPTER 4. GENE TIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 22

1 -) 4

2 -) 4

3 -) 3

.. -) 1

Formally the LRU to FIFO mapping mUlt be 1:1, i.e. eac.h LRU Une mUlt correspond

to a lingIe FIFO Une and no other LRt' Une may correlp()nd to that l&me FIFO Une.

There are K! .aYI the LRU ordering can map to the FIFO order. Bence B =
K! loga(K). Thil producea relatively Ihort Itrings. For example, if K = 4, then

B = 48 bita.

A more brute force method could be uaed in whlch an explicit LRU to FIFO table

il maintained. Thi. ta.ble would have K entriel each of 10gaK bita or KlogaK bita

total. In thi. method B = 2KIOfl2Kloga(K) = KKloga(K). Using the lame example

.ith K = 4 yield. a far larger B = 512 bita.

2. Com6in4tion of LRU 4nd 4 c.6it count of hiLt to e4ch line (LRU-Count). Note

that the count must atop incrementing when it reaches 2C
- 1. Bere cK bitl are

required to record the number of hitl for aU the Unel, and hence there are ~K pOlsible

combination. of hit. and Unes. Thu. B = 2cK loga(K). Thi. produce •• trings of

intermediate length. For example, if K = 4 and c :;: 2, then B = 512 bita.

3. Combination of LRU and an h-bit hutory (hit/mu.) of IJCceue. to e4ch .et (LRU­

Bistory). With an h-bit hlstory, there are 2" pOlSible historiel, 10 B = 2"log2(K).

Thil producel .hort Itring •. If K = 4 and h = 4, then B = 32 bits.

4. Combination of FIFO and 4 c-bit count of hiLt to elJCh line (FIFO-Count). The

analy.is il the .ame al with LRU and a ",·bit count, hence B = 2cKloga(K). If K = 4

and c = 2, then B = 512 bit •.

5. Combin4tion of FIFO 4nd an h-bit hutory (hit/mil.) of IJCce16e, to elJCh .et (FIFO­

Bi.tory). The analYlil i. the .ame al with LRU and an 1&-bit hi.tory, hence B =
2"loga(K). If K :;: 4 and la :;: 4, then B = 32 bita.

CHAPTER 4. GENE TIC ALGORlTHMS APPLIED TO CACHE REPLACEMENT 23

4.4 Hardware Implementation

The &mount of Ipa.ce and time required for the &pproachel delcribed ilgenerally Imall.

Each method requirel combinationallogic, PROM, or RAM to encode the .tring corre­

.ponding to the replacement policy. When a cache mill OCCUrI, the function mu.t produce

the log2K bit value of the Une to replace, where &1 UIUaJ K i. the cache ulociativity, and

il typically leu than or equal to 4 [36]. Different replacement function. require different

input: hùto'l' require. & record of bita, misses, and Une. a.cce.aed while LRU-FIFO requirel

the mapping from LRU to FIFO. Let the replacement Itrategy be a function of Br bita.

Note BI i. different than B, the number of bits in a Itrategy string. However, the two are

related:

A block diagram ofthe cache replacement hardware is in Figure 4.1.

A more deta.iled hardware description for each method is given below. Note that .tan­

dard cache hardwue il not covered, instead only what i. unuBual or extra for thele methodl

il discusaed.

1. LRU-FIFO.

BI = flog2K!l. H K = 4, then Br = 5 bits. Note that the brute force approach

would require BI = Klo92K bits.

To implement this, the LRU to FIFO mapping must be updated whenever a .et il

referenced. A block wagram of thll il Ihown in Figure 4.2. The mapping mUlt be

updated differently depending on whether the reference results in a hlt or a miSI.

This lait logic must allO know which line il the new MRU. For the mu. logic, the

new MRU il jUlt the replaced line. The replacement line Bpecified on a mi .. is not a

physicalline in the let, but inBtead the LRU ranting of the Une to be repla.ced-Cor

example, replace the 2nd Ieut recentIy uled line. Hence a .econd translation would

be neceslary to obtain the physical cache line.

CHAPTER 4. GENE TIC ALGORlTHMS APPLIED TO CACHE REPLACEMENT 24

Current State

Combina..tional Logic,
PROM,or RAM

.. ~ log K

Line to Replace

Figure 4.1: Block Diagram of Cache Miss Hardware.

The combinationallogic in Figure 4.2 could equally well be PROM or RAM a..a pre­

vioualy noted. All aet. could ahare a .ingle copy of the combinationallogic portion

of the mapping hardware. Each let must however, ma..inta..in the regilter which maps

LRU Unes to FIFO Unes.

2. LRU-Count or FIFO-Count.

BI = cK. If K = 4 and c = 2, BI = 8 bits. The c-bit counter must be updated

whenever there ia a hit to the Une. The counter must also .top when the count

reachea itl ma.ximum and be resettable to 0 when the line corresponding to it, is

replaced. Unlike LRU-FIFO, the actual phyaicalline to be replaced i. output {rom

the combina..tionallogic. Thil il because the combinationallogic requîres the LRU to

phYlical Une mapping in order to determine which LRU Une to u.ociate with ea..ch

c-bit counter. Since the logic alrea..dy uas the phy.ical mapping it makel use of it by

providing the phYlicalUne as output. A block diagra..m of the circuitry required on a

mi •• i •• hown in Figure 4.3. On a hit, aJl that i. required is a demultiplexer to map

the Une with the bit to an increment signal for that Une's counter.

3. LRU-Bistory or FIFO-History.

CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 25

New

MR~
log K

New Mapping

LRU to FIFO
Mapping Register

1
RIT Combinational

Logic

Cache Miss

MISS Combinational
Logic

.. r-log K

Line ta
Replace

Figure 4.2: Hardware for LRU-F1FO Method.

1 CHAPTER 4. GENE TIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 26

PhYlical
Cache Linel

Line 1

Line 2

Line K

c-bit
Counterl

1"'-'

cK

Physical Line

to LRU Mapping

riog K~

Combinational Logic

K

Clear
Counter

log K

Physical Line to
Replace

Figure 4.3: Har~ware for LRU-Count Method on Misses.

CHAPTER 4. GENETIC ALGORITHMS APPLIED TO CACHE REPLACEMENT 27

BI = h. H h = 4, th en BI = 4 bits. Trua method il particularly simple on bath hita

and misses: on a miss, a 0 is shifted into an h·bit sruft register, while on a hit a 1 is

ahifted in. A simple function of h bits specifies which line to replace on a miss. ln

thi. case the LRU ranking of the Une is specified and must be mapped to the physical

line.

4. History.

BI = m(l + I092K). If K = 4 and m = 4, BI = 12 bits. Recall that at the Itart of trus

c.hapter, it wu stated that the complexity of the history method ca.n be lignifica.ntly

reduced. Unfortunately the simplification applies only to genetic algorithms searching

for a good replacement strategy, not to the hardware implementation.

The simplification uses the fact that many histories are actually equivalent. To malle

use ofthat here would require a three step process' 1) Reduce to the equiva.lent form,

2) Determine line to replace, and 3) Tra.nlate the equiva.lent replacement line to the

actual replacement Une. Trus is aImost certainly more complicated than implementing

the function directIy. For more details see Section 5.4.l.

The implementation is simple and similar ta LRU.Hutory. Each time a hit occurs to

a line, this information is shifted into a 1 + I09lK bit wide shift register-the extra. U 1 Il

is for the bit/miss information. Likewise when a line is replaced on a miss, thE' line

number and miss bit are shifted inta the shift register. This is depicted in Figure 4.4.

Since this method manipulates lines directIy without the need of correlating LRU or

FIFO informatioD, the line specified for replacement is the physical line.

As cau be seen the time required for these methods is also genera.l1y amaIl. Actually

there are two separate times, the time for a cache hit and the time for a cache miss. The

cache hit time is most important because most accesses are hits. Most cache studies find

bit rates weB over 80% and often greater than 90% [36] [1] [3] [11). As was seen the methods

proposed here require little time on a hit: generally a. counter must be incremented or a

ahift register updated. LRU-FIFO is the most complicated. Miss time ia genera.lly small

too, consisting of the combinationallogic or PROM delay ta find which line should b~

replaced plus time ta c1ear a. counter or update a shift register.

t CHAPTER 4. GENE TIC ALGORITHMS APPLIED TO CACHE R ":.""LACEMENT 28

Bit ____ -----~

Hit Line _

1 ,
log K

Hit 1 Mi ••
Shift Regilter

Line
Shift Register

.~ m log K

Combina.tiona.l Logic

• ... log K

Physical Line to
Repla.ce

Figure 4.4: Hardware for Hiltory Method.

.~ m

Chapter 5

Simulations

5.1 Methodology and Details

The cache simulator used in this work was developed by R.A. Olsen, a. Itudent in the

Mc Gill Advanced Computer Architecture and Program Structures (ACAPS) Group [32].

The simula.tor hu been extensively modified and lupplemented by the a.uthor. The genetic

algorithm portion of the simulator follows the outline presented in [21].

AU code wu written in the C language. The lource contains over 9000 lines of code,

while the optimized executable SPARC version has a tezt size of 81920 byte •.

Trace. from lix benchmark programs have been used throughout 1. The benchmarka

are drawn from a variety of applications, lome numerically intensive, others not. The six

benchmarks are:

1. ccalt (PASCAL): Simulates a .imple pocket calculatof.

1 AlI IÏmulatioJll were run on Sun-t SPARC (tm) architedurea. The time to complete ln indiYidual mm­
ulation (one benchmark and one ,enetic aliorithm approac:.b) wu typicaUy SO minutea '0 Il houri dependiDi

OD the pU..uletera uaed.

29

1

CHAPTER 5. SIMULATIONS 30

2. emaci 0: The common text editor progra.m.

3. kalmanf (FORTRAN): A blman filter routine.

4. mClh 0: The IIMOUle" Ihell, an enhanced emacI·like UNIX c·shell.

5. polyf (FORTRAN): Symbolic polynomial manipulation.

6. whetatonet (FORTRAN): The Itandard floating point benchmark program.

Iteml with a t are benchmarb di.tributed by Stword Univer.ity with their Architect',

Wor~bench program.

The tracel correlpond to execution ofthe benchmarka on a. SPARC architecture. Bench.

marka were fint compiled using Itanda.rd UNIX C, FORTRAN, and PASCAL compilera.

Trace. were then collected by limula.ting program execution on a SPARC architectural

.imulator developed by Sun Microsysteml.

The cctU, lalman, palJl, and whetltone trace. correspond to complete progra.m execution.

The other two, emac. and mesh correspond to Itart of program execution. Ali tracel are

relatively .mall by modern Itandards, rauging up to a few hundred thouland addrellel

at mOlt. However, the number and duration of the limulationl required that the length

of traeel be kept relatively low. The exact number of addrellel and number of unique

addrellel are given in Table 5.1. Note that in the Table the lum of inltruction addrellel

and data addrellel il llightly lell than the number of combined addrellel. Thi. il beca.u.e

the tracel allO contain a Imall number of 'yltem tra.pl which ~\re not eonlidered to be in

either category.

AlI reluIts given here refer to aeparate inltruction and data cachet of 512 byte cachel

each, and both with 4.way ulociativity. Tb! UN of aeparate inltruction and data cachet

il in keeping with mOit modern arehitecture~1 for example the 68040 [15], the R6000 [28],

the NS32532 [30], the Clipper [25], and the i860 [23].

The choice of 4.way ulociativity refleeh the maximum value used in most modern

caches [36}. Ule of an utociativity le .. than 4 minimizel the effect of the replacement

poliey. With an ulociativity of 1 (direct-mapped), there it no choice for the replacement

poliey, and for au ... ociativity of 2 or 3, the choice of lines to replace is limited.

CHAPTER 5. SIMULATIONS 31

INSTRUCTION DATA COMBINED

Unique Total Unique Total Unique Total

CCAL 4721 53570 880 15128 5602 68803

EMACS 8525 205936 7195 50982 15121 256973

KALMAN 6258 13990 2085 11076 8344 91261

MCSH 2050 309929 2618 18024 4669 388012

POLY 4913 42679 2266 11975 7180 54835

WHE'fSTONE 2154 14046 1530 3811 3685 17914

Table 5.1: Number of Total Addresses and Number of Unique Aà.~res8e8 in Each Bencb­

mark.

A 512 byte cache il qui te amall for modern procellOfl, even for an onchlp cache. Thil

.malI aize wu choaen in order to emphuize the effect of the replacement policy. Uling a

larger (but Itill relatively .mall) 4K cache, reluIt. in little difference in hlt rate. between

different replacement polides. Uaing a 512 byte cache resultl in overall bit ratel ofbetween

85% and 95% for mOlt benchmarks and replacement polides. Table 5.2 give. o1Jerall hat

rote, for caches with 32 byte lines. Table 5.3 gives the corresponding line h&t rate,.

The reluIts from two types of approachel are preaented. First are reluIts where a genetic

algorithm appro&ch wu uled to find a good strategy for each benchm&rk individually. Thi.

il uleful for a cache with a Imall RAM containing the replacement atrategy. The operating

.y.tem could load this RAM with the appropriate .trategy whenever the program i. run.

Thil I.pproach il al.o ulef,ù in providing a. rough upper bound on how weIl the lecond

approach can do.

The .econd approa.ch providea results from using a genetic algorithm to find a good

.trategy for a group of benchma..rks. If thele benchmarks reprelent 1. "typical" workload,

then the be.t Itrategy can be hardcoded into combinationallogic or a PROM in the tache.

The replacement policiellimula.ted, LRU.FIFO, LRU-Count, LRU-Hilto"" FIFO-Count,

FIFO-Buto"" t.nd Hutory are &1 described in Chapter 4, with the exception of Hutory.

AI delcribed in Chapter 4, the Hiltory method maintained for each .et a record of linel

...
CHAPTER 5. SIMULATIONS 32

In.truction Data

LRU FIFO OPT LRU FIFO OPT

CCAL 88.8 88.8 91.0 89.6 88.4 92.1

EMACS 95.0 95.0 95.9 94.3 93.1 95.4

KALMAN 87.4 87.3 90.3 85.7 84.4 88.9

MCSH 92.3 92.1 95.5 94.1 92.7 95.6

POLY 90.7 90.6 92.7 85.5 84.3 88.1

WHETSTONE 91.5 91.2 93.8 82.6 82.3 85.0

Mean 91.0 90.8 93.2 88.6 87.6 90.9

1 SUITE 1 92.2 1 92.1 1 94.5 Il 92.1 1 91.0 1 93.8 1

Table 5.2: Overall Bit Rate. for 512 byte In.truction and Data cache. with 4-way u.ocia­

tivity, 32 byte Une •.

In.truction Data

LRU FIFO OPT LRU FIFO OPT

CCAL 29.4 29.2 43.2 67.7 64.0 75.6

EMACS 22.6 22.5 36.5 69.3 66.0 75.2

KALMAN 30.8 30.2 46.7 61.3 57.6 69.9

MCSB 56.6 55.7 74.8 83.3 79.4 87.5

POLY 29.6 28.5 44.5 56.4 52.8 64.1

WBETSTONE 30.1 27.5 49.0 36.3 35.0 45.2

Mean 33.2 32.3 49.1 62.4 59.1 69.6

1 SUITE 1 43.91 43.2 1 60.5 Il 73.7 1 70.1 1 79.5 1

Table 5.3: Line Bit Rate. for 512 byte Instruction ILIld Data cache. with 4.way associativity,

32 byte line •.

CHAPTER5. SIMULATIONS 33

accelled and hita/mi.Ie •. Except in Section 5.4.3, the BÎ.lto~ .imulation. in thi. Chapter

m&intain no bit/mi .. information.

There are .everal reuon. for thi.. Common replacement method •• uch u LRU and

FIFO maintain information about Une., i.e. receney of Une Ule and arder of Une entry

into the .et re.pectively. No information i. maintained about hit./mille •. Thu. keeping

no bit/mi •• information make. Hi&to~ in .ome .ense more comparable to LRU and FIFO.

Excluding bit/mi •• information al.o mùe. the lent,th of Hutory .tring. 30 bill in.tead of

480 bita. 30 bita i. more comparable to the other methoda wbich genera.lly have .tring

length. from 32 ta 48 bita.

Additional ju.tification for excluding hit/miss information i. given in Sections 5.4.2

and 5.4.3. Section 5.4.3 also investigates the effect of excluding the bit/mi •• information.

The genetic algorithm techniques employed here are quite simple, employing ooly the

buic techniques outlined in Chapter 3. Other techniques are widely used. Population size

can be allowed ta vary between generation., overlap between generation. can be aUowed,

cro.lover can be done between determiniEtica.lly ehosen pairs inltead of riUldomly ('.holen

pain-the b~st performing pairs would generally be crossed in thil eue. Technique. can

also be u.ed ta promote diveraity, particularly early in the simulation when the danger of

nnding a poor local optima i. highest. Simulation of dominant and recelsive g~nes can also

be uled. More lophisticated forml of cr06sover such as PMX (Partially Matched Crossover)

could alla be employed. These additiona.l techniques were not employed primarily for four

reuons:

1. The duration of the simulations is already quite lengthy and the memory requirementa

quite large. This additiona.l overhead would make the simulations prohibitively long

&nd large.

2. The time required to write .oftware and simulate a.ll of these additional techniques

wu judged to be exceuive for the scope of this work.

3. The fundamenta.l operators provide a sufficient buis on which ta test the concept of

applying genetic a.lgorithms to cache replacement policy.

4. Many of the enhiUlcementa leem unUkely ta produce lignificantly better re.ulta. For

example, consider PMX. In aU dilcuision thui far, it hu been ... Iumed that tbe

1
CHAPTER 5. SIMULATIONS 34

pOiition of a group of bita in a .tring determine. the function of iho.e bit •. However,

thil need not be the eue, and i. not in nature. If a gene i. moved to a different

location on a chromo.ome it will continue to perform the .ame function. PMX and

related technique. alIow ~hl. capability to be added to genetic algorithm •.

Bit location i. important. Bits which are highly correlated in function may be widely

aeparated in the .tring. In order to obtain the full bencfit of cro •• over and ita effed

of finding good, small.chemata, the .tring must u.e a repre.entation in which related

bit. are grouped clotely together.

PMX i. e.aentially a more complicated form of crollover [12], that malte. a bit'.

function independent of ita pOlition. It attempt. to find natura! grouping. of bit. in

addition to finding good values for the bits. In thil work, .ome effort was made to

manually find reprelentationl in which correlated bita are grouped together. In mOlt

eue., natura! representations appear to group bita reaaonably well. For example, in

the LRU-CouRt method, bits representing what to do when the leaat recently used line

hu been acce •• ed 1 or 2 time. are grouped adjacently. Given thi. natura.! grouping

(and the added time and .pace requirementa for adding position independence), it

wu decided not to ~mplement position independence. However thil might be a.n

intere.ting area for further .tudy.

Nonethele'l lome of the &dvanced techniques delcribed above could prove uleful in

extending thi. work. For example, dominant and recelSive genet are uleful when the envi­

ronment changes over time. Some criteria may be important at IOme time, then cUle to

be '0, and later become important again. Recessive genel provide a natura! way of Itoring

u.eful information, even in generations where it is not needed [21].

For cache replacement algorithml, receslion and dominance could be useful in the fol­

lowing procedure.

1. Simulate the firai benchmark program for a "few" generationl.

2. Take the population of .trategies from the laat generation of the previou. benchmark

and u.e them as the initia! population in .imulating the next benchmark for a "few"

generation •.

3. Repeat Step 2. until the 1ast benchmark il reached, then go to Step 1.

CHAPTER 5. SIMULATIONS 35

Although thil procedure il reuonable without employing recession and dominance,

uling them could improve performance. This il becau.e certain criteria might be very

important in lome benchmarks, but not important in otherl. Thele criteria would have a

good chance of being prelerved in recessive genes, but might be IOlt otherwi.e. Thil might

mùe an interelting area for {urther Itudy.

5.2 Line Bit Rate

Much of the dilcussion here &lso applies to Section 5.3, Opt Match Rat~. Here the goal

i. to maximize the lin~ hit rate. (Recall from Chapter 2 that maximizing the tine hit rate

allO maxÎmizes the o1Jerall hit rate.) In Section 5.3, the goal il to ma.x.imize the fraction

of milsea in wruch the replacement algorithm replaces the lame line OPT would have. In

particular, much of the Parameters Section below appliea equally to the Section on OPT

Match Rate.

5.2.1 Parameters

A. discuised in Chapter 3, there are four major genetic algorithm parameters in addition

to the many cache parameters. To try all pOlsible reuonable combinations of these would

relult in simulationl taking billions of years, even for these lix small benchmarks. Bence

only a few variations are presented here, aloDJl with discussion on the effect of altering the

value. aelected for the parameters.

The four buic genetic algorithm parametera are

• The probability of crossover

• The probability of mutation (or mutation rate)

• The population size

• The number of generations

CHAPTER 5. SIMULATIONS 36

In addition to theae four pu&metell, there i. an additional important "parameter"

which i. hard-c:oded into the .imulator. Thi. i. the objective function. The objective

function take. the metric uaed to meuure the performance of a atring, .uch &1 the line hit

rate, and return. lome (uaually nonlinear) function of it. The value of the objective function

probablliatïcally determine. the relative number of the .tring that will be reproduced in the

Dut generation.

Here the objective function uled "u 2' lUe r.te. Rence if Itring, A bu a 1% better line

A.t rate than .trinl B, then approximately twice al many of Â will u.ually be produced in

the next generation &1 are produced of B. Sinee the .imulation u.el a fuced finite population,

atring. with 10" line hit rate .. willlikely not be reproduced at all in the next generatioD.

Le.a ateep objective functiona, .uch &1 line hit rate10, "ere tried, but reproduced too

muy poor .tring., re.ulting in Ilow improvement from generation to generation. Steeper

objective function. have tbe opposite problem and tend to lo.e needed population diveraity.

The re.ult i. tbat they often converge at relatively poor local optima.

Returning to the four "major" parametera, the probability of cro.s.otler wu alwa.y. 0.6 in

theae .imulation •. Thi. value hu been found to be .uitable for a wide range of applicationa

by other re.earchera [H}.

A very important parameter in obtaining good relult. in thia .tudy ia the mutation

Nte. Recall from Chapter 3 tbat the mutation rate ia the probability that a aingle bit

will change itl v.lue. Two value. of mutation rate were uled in thil .tudy, 1% and 10%.

Figure. 5.1 and 5.2 compare the performance of LRU-FIFO uling a 1% mutation rate and

a 10% mutation rate. A. can be .een, a mutation rate c.f 10% generaUy provides .uperior

re.ult. to a mutation rate of 1%.

Witb a 1% mutation rate, the .imulationl tend to get .tuck at relatively poor local

optima. Tbe increued mutation rate alloWI the .imulatioD to more readily jump out of

the.e local optima when they oceur. (Thil i •• ome",hat .imilar to raising the temperature

in .imulated annealing.) Becau.e ofita univerla.lly .uperior performance, the 10% mutation

rate i. uaed in all the finding. reported below.

The population .ize wu problematic. A population .ize of 100 wu choaen for aU simu­

lation •. Thil number i. a compromise between the confücting goal. of a diver.e population

and the need to minimize .imulation time. It i. also comparable to wbat other reaearchera

CHAPTER S. SIMULATIONS

138.0 37

i
!
~ M.O :

32.0

•• 0

2 •. 0

28.0

24.0

22.0

- - o€J- - - G - - -[J- - - El - - -0

- - ... - - -. - - -+- - - • - - - .. - - ... - - -.

) ()()()(~ Jo<
~)Eo -x- - - - - -x

~ --~--- --~---* - - ~- --
x--x ocal (01)
X- - -X ocal (0 01)
6,-f:::,. .m.ca (0 1)
t:;,.- - -t:;,. emeca(001)
Â--Â kalman (01)
Â- - -Â kalman (0 01)
.--. poly (01)
.- - -. poly(001)
0--0 whet.tone (0 ')
0- - - 0 whetaton. (0.01)

..f::.- - - ~ - - -L:r- - - -6 - - -t:;,.
_ _ ~- - - Ô - - -t::r'" - -

2O.0!0------~----~------~----~------~----~------~----~-------.------1-0
Generation Humber

Figure 5.1: Compariaon of Performa.nce of Beat String by Generation for a Mutation Rate

of 0.1 (solid lines) and 0.01 (dashed lines) for a 512 byte I-cache, 4-way ocia.tivity, 16

byte linel.

j

.

, 0

1
! •. 0 -

".0

".0

44.0

40.0

CHAPTER5. SIMULATIONS

~(~E)(H)E)(+< _ _ _ >+ _
~ -+<: __ - ~ - - ->E- - - ~- - - ~ - -x

• • • - - "* - - -*" - - :::t- - * ---t
6 A A A A A

~ __ """'z6Ir==--::-:" êr - - -6- - - -ê. - - -à- - - ~- __ ~

• • .- •

x-x ocat(0.1)
x- - -x ocat (0.01)
~-t::. .m_(01)
~- - -t::. .mace (001)
À-À katman(O 1)
À - - -. katman (0.01)
.-. poty(0.1)
.- - -. poty (0 01)
0--0 whetaton. (0.1)
0- - -0 whet.ton. (001)

1 • -t: - - =*= - - - - -.

- - --{J- - - B- - -(30 - - -€J- - - 13 - - -a

38

2 .. 00~------·1------~----~------------.. ------------~----~.------~.----~10
aene,..tlon Humber

Figure 5.2: Compariaon of Performance or Beat String by Generation for & Mutation Rate

of 0.1 (loUd linel) and 0.01 (dashed lines) for a 512 byte D-cache, 4.way usociativity, 16
byte line •.

CHAPTER 5. SIMULATIONS 39

have cho.en [9] [19] (14) (201. Section5.2.4 give. additional empirical evidence that 100 ia &

reaaona.ble choice for population .ize.

Another factor to con.ider "hen chooaing the population aize ia the length of atring. in

the population. 100 appean adequate even for large .tring aize •. For example, if a 2-bit

COU nt i. u.ed in LRU-Count or FIFO-Count, each .tring in the population hu 512 bit..

U.ing & 1-bit count requîres strings of only 32 bits. Likewise if a.n 8-bit mil. hiltory i. uled

in LRU-Hùto"J or FIFO-Huto", each .tring in the population hu 512 bit., "hile a 4-bit

hi.tory requîre. only 32-bit .trings. A. ca.n be leen in Figure. 5.3 and 5.4, the improvement

in the longt'r .tring. i. fiLt' more dramatic. (Re.ulb corre.ponding to longer .trings a11 have

.olid lines, wbile tho.e corresponding to shorter .trings a1l have duhed lines.)

It i. also interesting to note that in th~ early generationl, the performance of the longer

atrings is generally worse tha.n that of the .horter ones. This is because most of the addi.

tional possible actions of long strings are bad. Later, however, the performance of the longer

.trings overtakes that of the shorter ones. This is reassuring. Since the longer strings have

al.l the information available in the shorter ones, plus additioniLl information, they should

always be able to do at least as weIl. As can be seen in Figures 5.3 and 5.4, by the end of 9

generations, the performance of the longer strings is better than that of the corresponding

.horter .tring in a1l but one case, LRU-Count and the poly benchmark.

Even in tbis case, if the number of generations is increased to Il, the performance is

aImost identical to that of the shorter string (3U.92% line bit rate for the shorter strings

versus 30.88% for the longer strings). Furthermore, in Most cases the performance of the

longer strings is still improving &fter 9 generationa while that of the shorter strings is fiat.

Despite the generally better performance when using a deeper history and larger counta,

the .imulations reported below a1l use the ahorter versions, i.e. l·bit counh &nd 4.deep mi ..

hi.torie. when in combination with LRU or FIFO. The stud·a.lone history also ules a 4-

deep record of bits/misses ud lines accessed. Shorter versions require leu hardware to

implement and would likely be sligbtly faster as weil. Furthermore their simplicity does

not lacrifice much overall performance. For the kalman benchmark, the additional da.ta

provides a mean improvement of only 0.08% in overall bit rate from 87.70% to 87.78%,

while for the po:y benchmark the difference is only 0.03% from 90.93% to 90.96%.

The number of generation.s can be determined by viewhg the rate of improvement

1
1
!!
!
~

:M.2

:a:a.:a

U.4

30 ••

28.7

H .•

27 ••

27.0

28.1

CHAPTER5.

C!J

1

~

"

1 ,

"

1
1

SIMULATIONS

"

1
1

1

,
1 ,

1 , , , ,
• 1

, , , , , , , , ,
1

- -~ - -...(>
---<&---<>

• -.. LAU-CNT (2-blt)
.- - -. LAU-CNT ('-bit)
• --. FIFo-CNT (2-blt)
.- - -. FIFo-CNT (1-blt)
-0 --<> LAU-HIST (a-bit)
-0 - - - -0 LAU-HIST (.. -bit)
0-- 0 FIFo-HIST (8-bit)
0- - - 0 FIFo-HIST ("-bit)

40

2e.20~------~1------~2~----~----~4~-----e~-----.~----~7------~.------~.~----~10
Gene,.tlon Humber

Figure 5.3: Improvement in Best Strategy for kalman by Generation. Solid lines represent

longer hutory or count record, dashed lines represent Ihorter. Resulta for 512 byte I-cache,

4-way ulociativity, 32 byte Unes.

CHAPTER 5. SIMULATIONS 41
, 32.2

!
! ~ 31.5

30.)

30.1

28_4

28.7

28.0

27.3

28.8

..,
_Jir --o e--

I~- - - - - - ... - - .. -

..,t"
.., 1

(!J 1 , 1 ____ _

.,- ----
1

~

.. --.. LRU-CNT (2-blt)
Â- - -Â LRU-CNT (l-blt)
.-. FIFO-CNT (2-blt)
.- -. -. FIFO-CNT (t-blt)
<:> --<:> LRU-HIST (8-blt)
<:> - -. - 0 LRU-HIST (4-blt)
0--0 FIFO-HIST (8-b1t)
0- - -0 FïFO-HIST (4-b1t)

2S.80·------.. ----.. ------------.. --------------------------~-------------4·
Gener.tlon Humber

Figure 5.4: Improvement in Beat Strategy for poly by Genera.tion. Solid linel represent

longer hi8tory or count record, dashed lines represent Ihorter. Resulta for 512 byte I.cache,

4.way associativity, 32 byte lines.

1 CHAPTER 5. SIMULATIONS 42

between leneration •. When tittle or no improvement occura, the .imuIation can be atopped.

The improvement over a number of generation. i. illu.trated in Figure. 5.5 to 5.10. Thp..e

depict the improvement over 9 generation. for an in.truction and data cache for tluee of

the benchmarka: caal, em4Ca, and wheutone. The re.uIta from the other benchmarkl are

.imilar.

Note that occuionally performance i. fiat for many generations, then luddenly jumps.

The improvement of FIFO-Count il relatively fiat up to the 5th genera.tion in Figure. 5.6

and 5.7, but make. a .udden improvement in the 6th generation. In moat of the other

eue. the performance improvement i. relatively fiat within IL .mall number of gt'neration •.

De.pite the fact that the overall performance of these gen~tic algorithm techniquel

Wal worle with data cache. than with in.truction cachel, the data cache. generally exhib­

ited marginally more improvement from initial to final generation than did the in.truction

caches. Thil can be .een graphlcally by comparing Figures 5.5- 5.7 to Figure. 5.8- 5.10.

5.2.2 Results Cor Individual Benchmarks

Overall the improvement of thele new approaches over traditional methodl Wal mod­

erate. Figure. 5.11 to 5.14 (page 49) Ihow the line hit Nte' obtained for in.truction and

data cache. for 16 and 32-byte line •. Several pointa can be inferred from thele Figurel.

The mo.t obviou. re.ult il that the genetic algorithm approache. provide .ubltantially

better improvement over LRU and FIFO on instruction caches than on data caches. Possible

reaaons for this are discu •• ed below.

It i. allO clea.r that the performance improvement of the genetic algorithm approachel

i. generally about the .ame for both 16 and 32 byte lines. One u.efuI way to meuure the

performance of the genetic algorithm approac:h i. to meuure how much of the pOllible gain

from LRU to OPT i. attained. Cal.l thi. the LRU-OPT gGin.

For example if LRU hu a line hit rate of 30% and OPT hu a line hit rate of 50%, and

a genetic algorithm approacb achieve. a line hit rate of 35%, then the LRU-OPT gain il

1A=J8 = 25%. LRU-OPT gain can be applied to other meaaurel al well, for example overall

hit rate. However, unIell otherwile indicated it refera to line hit mte. AI a practical ma.tter

CHAPTER 5. SIMULATIONS 43

130 .•

1
~ _ 30 .•

30.:1

30.0

28.7

2 •. 4

0-0 HIST
1:::. --b. LAU-FIFO
• --. LAU-CNT
.-. FIFO-CNT
<> - <> LAU-HIST
0--0 FIFO-Hlsr

2 .. 20~------1~----~----~~----~4------~S------~----~----~~----~----~10
G.n.r.t/Qn Numb.r

Figure 5.5: Improvement in Beat Strategy for ccalby Generation for 512 byte I-cache, 4-way

u.ociativity, 32 byte line •.

1 H.2

~

~ 24 .•
~

24.4

23 .•

23.2

22 .•

22.4

22.0

CHAPTER 5. SIMULATIONS

0--0 HIST
A -6 LAU-FIFO
Â-Â LAU-CNT
.-. FIFO-CNT
<> - <> LAU-HIST
0--0 FIFO-HIST

44

21·.o·------·1------2~----·3-------4------~S------.~----~7------~.------~.-------10
a.neret/on Humber

Figure 5.6: Improvement in Beat Strategy for emac6 by Generation for 512 byte I.cache,
4.way ulociativity, 32 byte Unes.

1
CHAPTER 5. SIMULATIONS 45

, 38.0
!
!
~ /

E3 : : _.0

G-34.0

32.0

: : :
: : :
0--0 HIST
t:::,.-t:::,. LRU-FIFO

• --. LRU-CNT
.--. FIFO-CNT
<:> --<:> LRU-HIST
o ~- 0 FIFO-HIST

• • •

:
:

•
30.0

2 •• 00~------------~----~----~------~----~----~----~~----~-----_ • • 10
Gene,.lIon Humbe,

Figure 5.7: Improvement in Beat Strategy for whetltone by Generation for 512 byte l-cache,

4-way uaociativity, 32 byte line •.

.. ,".4
1
:! .7.
~ .

....
".0

".4

M .•

M.2

.3 ..

CHAPTER 5. SIMULATIONS

0-0 HIST
1':>. - 1':>. LRU-FIFO
• --. LRU-CNT
• --. FIFO-CNT
<> - <> LRU-HIST
0--0 FIFO-HIST

46

. 3.oo1------61------~----~3------~4------~-----.~----~7~----~.------·.-------10
Gen.,..t/on Numb.,.

Figure 5.8: Improvement in Bell Strategy for ccal by Generation for 512 byte D-ca.che,

4-w&y oci&tivity, 32 byte line •.

1

CHAPTER 5. SIMULATIONS 47

1 71
•
4

i
! ~ 70 ••

".4

.7 .•

....
0--0 HIST
6 --6 LAU-FIFO
... --... LAU-CNT
.--. FIFO-CNT
0--0 LAU-HIST
0--0 FIFO-HIST

... oo~----------~~----~----~------~----~----~------~----~----...

Figure 5.9: Improvement in Belt Strategy for emac, by Generation for 512 byte D-cache,

4.way ulociativity, 32 byte Unes.

1

"

1 3
•.

0

1
~ :l8S - .

38.0

37 ••

37.0

•••

•. 0

H.S

35.0

CHAPTER 5. SIMULATIONS

0-0 HIST
b. - b. LRU-FIFO
.-. LRU-CNT
.--'. FIFO-CNT
0-0 LRU-HIST
0--0 FIFO-HIST

48

34.S0~----~----~------~·_--~!~----~!------!~----~~~----~.----~~~--~10
o.n.,..IIon Numb.,

Figure 5.10: Improvement in Belt Strategy for whet.stone by Generation for 512 byte D­

cache, 4.way "Iociativity, 32 byte Unes.

~
1

CHAPTER 5. SIMULATIONS 49

~ 50 S8 WHETSTONE -
40-48 POLY
30-38- MCSH
20-2e KALMAN
10-18 EMACS

= : 0- 8" CCAL - CPT - LRU - FIFO

10 i - HIST

== == - LRU-FIFO - LRU-CNT - FIFo-CNT - LRU-HIST -- FIFO-HIST

40 ~

r-

20 i-

10 r-

-,
l 1 l 1 ~ .1

0.0 •• 0 1 •. 0 27.0 38.0 45.0 54.0 83.0 72.0 .1 o

Figure 5.11: Line Bit Rate, for 512 byte l-cache, 4-way ulociativity, 16 byte linel.

1
CHAPTER 5. SIMULATIONS 50

fiO 58' WHETSTONE
~ -

40-48: POLY
30-38. MCSH
20-28: KALMAN
10-18: EMACS

=='
().. 8: CCAL - OPT - LRU - FIFO

~ - HIST

~ - LRU-FIFO - LRU-CNT - FIFO-CNT - LRU-HIST - FIFO-HIST

== ~

-

==
ao ~

10 ~

1 1 1
.0 10.0 20.0 30.0 40.0 80.0 .0.0 70.0 80.0 -.0.0

Figure 5.12: Lint Hit Rattl for 512 byte D-cache, 4-way ulociativity, 16 byte Une •.

1
CHAPTER 5. SIMULATIONS

=

10 ~

o
0.0 •. 0 1 •. 0 27.0

1

3«1.0
1

54.0

51

60-58. WHETSTONE
4C).48. POL y
3c)'38 MeSH
2C).fi KALMAN
1C).18 EMACS
C). 8 CCAL

OPT
LRU
FIFO
HIST
LRU-FIFO
LRU-CNT
FIFO-CNT
LRU-HIST
FlfO-HIST

1 1 1

.3.0 72.0 .1.0
% Lin. Hit R.f.

Figure 5.13: Lint Hit Ratt. for 512 byte I-c&Che, 4.way usociativity, 32 byte lines.

CHAPTER 5. SIMULATIONS

====
===== = _1-

801-

10 -

0
0 .0 10.0 20.0 30.0 40.0 so.o 80.0

1
70.0

52

&0·50' WHETSTONE
40"0' POLV
30-30' MCSH
20·20. KALMAN
10·10' EMACS
0·8' CCAL

OPT
LRU
FIFO
HIST
LRU·FIFO
LRU-CNT
FIFO-CNT
LRU·HIST
FIFO·HIST

1
80.0

1
80.0

" Lin. Hlt Rat.

Figure 5.14: Line Hit Rate. for 512 byte D-cache, 4-way aa.ociativity, 32 byte lines.

1

..

CHAPTER 5. SIMULATIONS 53

the LRU-OPT gain i. generally about the .ame for the line hit rate and the overall hat rate.

ln the di,cullion below it i. important ta keep in mind that the ab.olute difference in

performance between LRU and OPT i. generally quite .malI. The mean difference in overall

hlt rate i. 2.2% far inltruction caches and 2.3% for data cache •. Thui a (hypathetical) 15%

LRU-OPT gain in overall hit rate would C'orrespond to only a 0.3% absolute improvement

in hit rate.

While 0.3% i •• malI, it represent. 15% of what i. panible. It i. al.o larger than the

mean gap of 0.2% between LRU and FIFO for inltruction cache. in thele benchmarka.

Furthermore, larger, more complex benchmarka may have wider absolute gapl between the

hit ratel of LRU and OPT. For example if the bit rates were 75% for LRU and 85% for

OPT, an LRU-OPT gain of 15% would correspond ta a 1.5% absolute improvement. And

al reported below, the LRU-OPT ga\n is in sorne instances over 40%. Such a gain would

yield a 4% absolute impravement in tbis hypothetical case.
-

Overall the best perfarming genetic algorithm approach, LRU-Hutory, bas a mean LRU-

OPT gain cf 18% and a mean abaolute improvement in overall mill rate of 0.4% for &Il

in.truction cache with 32 byte tinea. Averaging over all the approachel, inltruction cachel

with 16 byte tinel attain a mean LRU-OPT gain of 12% while those with 32 byte Hnes have

a mean LRU-OPT gain of 10%. For data caches with 16 byte tines, mean perfûrmance

adually drops-the LRU-OPT gain is -1% far 16 byte lines and -4% far 32 byte lines.

For more detailed information on the performance of each approach on each algorithm lee

Tablel 5.4 ta 5.7.

The be.t LRU-OPT gain for instruction caches wu 44%. Thil relult occurred uling

the whetltone benchmark: and the hutory method and a cache with 16-byte linel. For data

cachet, the best LRU-OPT gain wu 30%. This wu obtained using the emaca benchmark

and the LRU-FIFO method and a cache with 32 byte lines.

The 44% LRU-OPT gain on whetltone provides a 1.7% increase in the overall bit rate

from 87.1 % ta 88.8%. The 30r, increase on ernac.f corresponds ta 0.3% increue in overall

hit rate from 94.3% to 94.6%. A greater increase in overall rut rate in a data cache ia

utually attained by whetltone using LRU-Count. In a cache with 32-byte tinea the overall

bit rate i. increaaed by 0.7% from 82.6% ta 83.3%.

In viewing Tables 5.4 ta 5.7, there is no dear ranking among the genetic a.lgorithm

1

CHAPTER 5. SIMULATIONS 54

LRU- LR.U· LR.U- FIFO· FlFO·

FIFO Count Rilt Rilt Count Rilt MEAN

CCAL 7% 5% 10% 8% 5% 13% 8%

EMACS 16% 9% 19% 11% 9% 17% 13%

KALMAN 5% 6% 12% 9% .1% 9% 7%

MCSH 14% 16% 29% .2% .4% 2% 9%

POLY 2% 6% 13% 11% 0% 9% 7%

WHETSTONE 26% 23% 42% 44% 13% 39% 31% .
1 Mean 1 12% 1 11% 1 21% 113% 1 4% 1 15% Il 12%J

Table 5.4: LRU-OPT Galm for 512 byte l.ca.che, 4.way associa.tivity, 16 byte lines.

LR.U- LRU· LRU- FlFO- FlFO-

FIFO Count Hist Hilt Count Hist MEAN

CCAL 5% 15% 13% .1% -9% .12% 2%

EMACS 23% 4% 11% -13% .41% -40% ·9%

KALMAN 5% 7% 4% 5% .\7% -29% .4%

MCSH 7% 11% 10% 1% ·42% ·50% ·11%

POLY 4% 6% 6% 1% ·6% ·5% 1%

WHETSTONE 11% 22% 26% 12% 9% 10% 15%

(Mean 9% 1 11% 1 12% 1 1% 1 ·18% 1 .21% Il

Table 5.5: LRU·OPT Gairu for 512 byte D.cache, 4.way associativity, 16 byte Unes.

CHAPTER 5. SIMULATIONS 55

LRU- LRU- LRU- FIFO- FIFO-

FIFO Count Hist Rist Count Rist MEAN

CCAL 9% 1% 10% 3% 2% 6% 5%

EMACS 14% 10% 14% 7% 6% 17% 11%
KALMAN 10% 7% 17% 5% 4% 15% 9%

MCSH 23% 16% 17% -8% 1% 8% 10%

POLY 5% 9% 15% 4% 4% 10% 8%

WRETSTONE 24% 2% 33% 37% -4% 27% 20%

1 Mean 1 14% 1 7% 1 18% 1 8% 1 2% 1 14% \1

Table 5.6: LRU-OPT Gains for 512 byte I-cache, 4-way a.ssociativity, 32 byte lines.

LRU- LRU- LRU· FIFO- FIFO-

FIFO Count Rist Rist Count Rist MEAN

CCAL -1% 3% 1% -5% -29% -35% -11%
EMACS 30% 5% 12% 15% 1% -26% 6%

KALMAN 2% 7% 9% 3% -23% -25% -5%

MCSH .8% 10% 5% -12% -66% -87% -27%

POLY 8% 6% 3% -1% -18% .27% -5%

WHETSTONE 19% 28% 25% 12% 15% 15% 19% -
8% 1 10% 1 9% 1 2% 1 -20% 1 -31% Il

Table 5.7: LRU-CPT Gaim for 512 byte D-cache, 4-way a.8sociativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 56

approache. other than LRU-HutM'fl. The FIFO-Count method i. the molt conliatently

bad, .. hile FIFO-HutM'fl doe. 'luite weU for inltruction euhea, but quite poorly for da.ta.

c&che •. The other three methodl, LRU-FIFO, LRU-Count, and Hiltortl do modera.tely weU

on everything.

A variety of other ob.ervations can ma.de from Table. 5.4 to 5.7 and Figurel 5.11

to 5.14.

Combining LRU and FIFO informa.tion in the LRU-FIFO policy almolt a.lwa.y. yield.

&Il ilDprovement over both LRU and FIFO performance. For an inltruction cache with 32

byte line., LRU-FIFO hu a. mean lme hit rate of 35.6% venui 33.2% for LRU and 32.3%

for FIFO. For data ca.che. the ga.p i. nurower for LRU and wider for FIFO. With 32 byte

Unel LRU-FIFO bu a mean line hit rate of 63.2% venui 62.4% for LRU and 59.1% for

FIFO.

Compa.ring the performance of Hiltory in Ta.bles 5.4 and 5.6 .howi tha.t Hutory il a.n

exception to the general rule tha.t behavior with 16 a.nd 32 byte Unes il qwte limila.r. For

&11 inltruction cache the LRU-OPT gAin fall. from 13% with 16 byte line. to 8% with 32

byte Une •.

Thi. il to be expectei: lince longer Une. exploit Ipatialloca.l.ity, the line reference hlltory

i. more likely to cont&in only ... mall uumber of dutinct Unea when the Une .ile i, longer.

And if only 1 or 2 line. are accesaed in the hi.tory record., it il difficult to choo.e which

line to replace. Surprisingly, d .. ta cache beha.vior defie. thi. logic and .howi an increue in

LRU-OPT gainfrom 1% to 2%.

To a.llevia.te the problem of Hutory {aring more poorly with longer Une .izes, alterna.tivea

could be uled, .uch u recording every other line accealed, or only recording inltancel when

the line referenced il different tha.n the previou. line referenced in the .et. However, thele

meuure. add complexity. Furthermore they grow quite limila.r to LRU: LRU record.

exactly the mo.t recent reference to any given line.

For in.truction cache., combining bit·mi .. hiltory information for the .et with LRU

or FIFO information (LRU-Hilto'1l a.nd FIFO-Hiltory) generally doe. better tha.n com·

bining the counta of hita to ea.ch Une with LRU or FIFO information (LRU-Count and

FIFO-Count). Maint&ining a bit·mi .. biltory givel an indication that the working let i.

1
CHAPTER 5. SIMULATIONS 57

chuging-if .everal mi.sel occur in .uccellion j it i. likely that the program i. moving to

& new phue of work. The hit-miss history providel ihis information. ud ma.y allow the

cache to quickly rid itaelf of line. that it would otherwiae keep.

For data cachel, LRU-Hutory and LRU-Count fare approximately equally when com­

bined with LRU. Bowever, FIFO-Countdoel .omewhat better than FIFO-Huto"J. Perhap.

thi. il becaule LRU hu (recency of) usage information, while FIFO provides no usa.ge in­

form.tion. Bence augment.ing LRU wiib • usage cou nt. a.dds little useful information, while

&ugmenting FIFO provide. ulage inform.tion needed for improvement.

Furthermore the improvement should be p&l'ticularly noticeable in a data cache where

it i. important to be able ta di.tinguish "scratch" variables which are used only once. This

view il lupported by the fraction of millel when it. il belt not ta Itore the newly referenced

Une in cache. This fraction il much higher for data caches than for instruction caches, al

i. dilculled in Section 5.3.

AI can be aeen in Tables 5.4 and 5.6, FIFO-Ristory always olltperforms limple LRU

for inltruction caches. In fact on average FIFO-History obta.ins an LRU-OPT gam of 15%.

ln moat cases FIFO-Count also outperforms simple LRU for instruction caches, although

m&l'ginally, obta.ining an LRU-OPT gaan of 2% to 4%.

However for d.ta caches, both FIFO-History a.nd FIFO-Count do .ignificantly worse

t.han .imple LRU. This ia likely caused by three factors.

1. The line hit rote in data caches is substantially hlgher than in instruction caches-

62.4% on average versus 33.2% for LRU and 32 byte lines Renee existing algorithms

already perform weU in data caches.

(Intereltingly instruction c&ches do alightly better in overall hat rate--88.6% on aver­

age venus 91.0% for the lame LRU, 32 byte line case. To achieve the better overall

performance, the instruction cachel are cle&l'ly exploiting the greater temporallocality

prelent in \he instruction stream.)

2. The next reason il limilar. The ratio of the LRU lme h.t rate to OPT'. lme hat rate

i. higher in data caches than instruction caches. Aga.in taking the example of a cache

having 32 byte lines, LRU's lme h.t rate is 88.8% of OPT on average for iL data cache,

"hile the ratio il 66.6% for an instruction cache.

1
CHAPTER 5. SIMULATIONS 58

3. The lut reuon i. that plain FIFO does better compared to plain LRU in instruction

cacha th&n in data cache •. On avera.ge FIFO'. liM hit Nte i. 94.8% of LRU'. for a

data cache with 32 byte line., while for in.truction cache. the ratio i. 97.2%. Hence

hybrid FIFO technique •• tart at a .ignificant diladvantage with relped to LRU.

However in &lI euel, the two hybrid FIFO techniquel perform better thr.n plain

FIFO.

6.2.3 Reluits for. Multitalking Suite of Benchmarks

The buic parameten used here are the .ame &1 those uled for individua.l benchmarks

in Section 5.2.2. In particullLl' the mutation rate i. 10%, counh are I-bit, &nd hi.torie. are

4-deep. There are three additional plLl'ametera that are required for limulating multiple

trace.:

1. The tuk Iwitch intervaJ i. 20,000 addrealea. Thi. meanl that 20,000 addrelle. from

the tint benchmark are processed, then 20,000 from the .econd, etc. until the .ixth

&nd lut benchmark, &fter which the tint benchmark ia restarted at the point where

it wu left. Thia .imulate. a multitasking operating .y.tem.

There ia actua.lly Ol1e additional nuance to thia .cherne. In order to better .imulate

~qua1 time .lice. in a multituking opera.ting .y.tem, a method originally auggested

in [38] wu u.ed. Whenever a mill OCCUtl, the usumed mi •• latency i •• ubtracted

from the 20,000 addresses to be processed in that interval. Here the miss latency i.

u.umed to be 6 cycles. Hence if a benchmlLl'k had 25 milles during ih interval, only

20000 - 25 x 6 = 19850 addre.sel would &etually be processed.

2. A phy.ical addrell cache i. modelled, and the cache i. not flushed on tuk .witche •.

With a phy.ical addre •• cache it il pOllible to have ditrerent benchmarka ule the .ame

phYlical memory. In luch a eue, &Dy cache entriea correlponding to the overlapping

memory mUit be invalidated. However, the total relident .ize (under 1 megabyte)

of the .uite of benchmarka used here il .uffidently .mail al to ail fit in the phYlical

memory of moat modern machines. Renee the effect of ovcrlapping phYlical addrellel

i. ignored.

•

1
CHAPTER 5. SIMULATIONS 59

OPT(80 5%) - LRU - FIFO .. HIST - LRU·FIFO - LRU-CNT - FIFO-CNT - LRU·HIST

.t~i FIFO-HIST

Figure 5.15: Relulh by Algorithm for IL Multitasking Suite of AU Benchmarka for 512 byte

I-cache, 4-way ulociativity, 32 byte linea.

3. The order of the benchmarks alao has aome effect on the resulting hlt rate. The

or der uaed here ia emac", ccal, mc .. h, kalman, poly, whetJtone. Thia choice ia largely

arbitrary.

Severa! of the genetic algorithm approachel attain a lignificantly higher line hit rate

than achieved by LRU. Reaulh for an inltruction cac:be with 32 byte linea are Ihown in

Figure 5.15, while relulh for IL data cache with 32 byte lines are in Figurt> 5.16.

AI wu the case with the individual benchmarks, LRU-Ol!Jtory is again the best overall

genetit. aJgorithm approa.ch. For an instruction cache with 32 byte lines, it achieves a line

hit rate of 45.7% for the overall luite of benchmarks. This compares to only 43.9% for

.imple LRU. The LRU-OPT gain il 11%.

For a data cache, the numbell are 73.9% line htt rate for LRU-Hutory venue 73.7% for

.imple LRU. The LRU-OPT gain ie 3%, Actually LRU-Cov.nt doe. u weU for data cache.,

alla achieving a 73.9% line hit rate. A. with the individual benchmvks, improvement is

better in instruction cache •.

The overGll hit rate" are, of course, .omewhat closer: Instruction cache. yield IL 92 2%

1
CHAPTER 5. SIMULATIONS 60

OPT (78 5'%) - LRU - FIFO - HIST - LRU-FIFO - LRU-CNT - FIFO-CNT - LRU-HIST .. FIFO-HIST

••
'" LI,.. Hit R.t.

Figure 5.16: Re.ult. by Algorithm for a Multituking Suite of AU Benchmarka for 512 byte

D-cache, 4-way uaociativity, 32 byte lines.

hit rate for LRU and 92.4% for LRU-Buto", giving an LRU-OPT gain of 9%. Data cachea

yield 92.11 % for LRU, and 92.14% for LRU-Hutory, giving an LRU-OPT gain of 2%.

In addition to their performance for the entire auite of benchmarka, it i. important

ta ho. how weU replacement .tring. developed uaing the ,~ite of benchmarka do on the

indi",du4l benchmarks. It ia possible that LRU-Huto", might do much better than aimple

LRU for one benchl"llark, but .ignificantly wone for the othen. If the performance of LRU­

Butory on the one benchmark were .ufficiently hlgh, the poor performance on the other

benchmarka would be muked.

IJuckiIy this il not the eue. The performance of the individual benchmarka with the

beat LRU-Butory algorithm found are .hown in Figure. 5.17 and 5.18, inatruction and

data cache reaulta re.pectively. Actu&lly aeparate algorithma were u.ed for in.tructioD and

data cache.. Aa can be aeen in Figure 5.17, the performance of LR U-Huto", i. auperior

ta .imple LRU on each individua.l benchmark for an in.truction cache. For a data cache,

LR U-Hut""" ia beUer in 4 of the 6 benchmarka, and alightly wor.e in the other two.

Of coune, the LRU-Huto", algorithm wu found by applying a genetic algorithm ta

1

1 1
CHAPTER 5. SIMULATIONS 61

- CCAL. - EMACS - KALMAN - MCSH - POLV - WHETSTONE - SPICE .. LISP

Figure 5.17: Relulta of uling the overall best LR U-Hilto17l algorithm on individual bench·

markl. Upper Bar il LRU, Lower il LRU·Hilto17l. 512 byte I-cache, 4-way ulodativity, 32

byte line •.

1 1
CHAPTER 5. SIMULATIONS 62

- CCAL - EMACS - KALMAN - MCSH - POL.V - WH ETSTONE - SPICE

~ LISP

Figure 5.18: Results of using the overall best LRU-Huto'1l algorithm on individual bench­

markl. Upper Bar i. LRU, Lower i. LRU-Hutory. 512 byte D-cache, 4-way u.ociativity,

32 byte line •.

1
CHAPTER 5. SIMULATIONS 63

U&e,t 6 benchmarb. Hence it might be argued that thia algorithm .hould do weU on the.e

6 benchmarb, but that the algorithm might Dot do weIl on benchma.rh for whlch it wu

not Ipecifically trained. T,) inveltigate thi. pOI.ibility, two additional tracea were u.ed.

Theae tracel wer~ alao uled in [IJ. The two tr&Cel &re

• SPICE, an e.xecution of the circuit modelling progriLIll .

• LISP 1 an e.xecution of IL LISP iote' preter.

SPICE i. IL ftoating point intensive numeric program, while LISP ulea .ymbolic ma­

nipulationl. In Ihort thele are two quite different applications For both benchmarks, the

LRU-Huto", algorithm. proved luperior to .imple LRU-for both inltruction and dah.

caches. Tru. can be leen at the bottom of Figures 5.17 and 5.18.

AI noted in Section 5.1 on Methodology and Detaiu, one of the reasons for using genE'tic

algorithml to optimize hlt rate for individual benchmarka Wal to provide a rough upper

bound on how weU trus overall approach can do. Here with the overall approach, we are

optimizing for the .uite of benchmarka and not any one benchmark. Hence we expect

the relulting algorithm ta perform more poorly th&Il the Ipecially optimized algorithma of

Section 5.2.2.

The performance of the individual and .uite approaches can best be mealured in a

manner limilar to the LRU-OPT gain discussed in Section 5.2.2. For example, the kalman

benchmark hu a lme hit rate of 30.8% using simple LRU, of 33.4% using &Il LRU-Hutory

algorithm optimized spedfically for kalman, &Ild of 32 1 % using the LRU-Huto1'1l algorithm

optimized for the entire luite of benchmarka. Tbe indl",dual-.ude ratio il then Ht=1E.: =
50.0%. In other wordl roughly hall the gain realizable by uling the LRU-Huto", method

i. actually achieved.

The resuIt. for all the benchmarks are presented in Table 5.8. They vary wildly. The

data cache for the mc,h benchmark &etually did better with the overall algorithm tha.n with

the .pecially tailored algorithm. Perhap. it wu able to better leun certain eue. important

to mc.h by .eeing them in the other benchmarka. A. noted previously, a data cache for the

CCGl benchmark and the poly benchmark actual1y doea better with simple LRU tha.n the

1 CHAPTER 5. SIMULATIONS 64

lndividuaJ-Suite Ratio

INSTRUCTION DATA

CCAL 3.0% -816.7%

EMACS 25.6% 11.3%

KALMAN 50.0% 33.8%

MCSH 83.7% 142.1%

POLY 25.9% -42.3%

WHETSTONE 11.3% 23.5%

1 Mean 33.3% 1-108.1% 1

Table 5.8: Indivulual..Suite Ratio. for LR U-Hiltory.

overall LR U-Hilto,"" algorithm. Thil cau lei them ta have large negative individuel· ,uite

nahol.

It il alla interelting ta note that the beat algorithm for inltruction cachel il lignificantly

different than the belt for data cachel. When the belt LRU-Hiltory algorithm for data

cachel (for the luite of benchmarka) il uled with an inltruction cache, the performance i.

worle than limple LRU-43.8% Une hit rate venui 43.9% line hat rate.

Likewile "hen the best LRU-Hilto,"" algorithm for instruction cache. (for the suite of

henchmarks) il uled with a data cache, itl performance is lubstantially wone than limple

LRU-71.3% lane hit rate venus 73.7% line hit rate.

Fina.lly it .hould be noted that there il "ide variety in the performance of different

.trings in a given population. Figure 5.19 .ho". the be.t, waret, and mean performance

by generation of the LR U-Hiltory technique applied ta an in.truction cache for the entire

.uite of benchmarka. Note that the performance of the worat .trategy doe. not Iho" much

improvement over the generationl and &etually often declinel. Thil il largely due ta the

high mutation rate (10%). With luch a hlgh rate, unfit mutanta are likely to be produced

at each genera.tion.

Allo note that the best string from the entire limulation hu a line hit rate almost 3

time. greater than the worat Itring from the entire simula.tion (45.7% venui 16.1%). A

CHAPTER 5. SIMULATIONS 65

1
I! ! 47.0 -

4~.0

.. 0

~ •• O

~1.0

27.0

23.0

1 •. 0

0-0 BESTSTRATEGY
.. - A AVERAGE STRATEGY
• -. WORST STRATEGV

1 .. 00·------------~------------------~------~----~------------~------

Figure 5.19: Best, Worat, and Mean Performance of LRU.Hutof'l/ Strings on Suite of Bench.

mukl for 512 byte I.cache, 4.way usociativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 66

ratio o(3 between belt and worat il actually qui te .mall. The ratiol range from 1.1 for a

data cache with FIFO-Huto~ to 1506 for an in.truction cache with LRU-Cov.nt. In miLny

eue. the lin#! hit rate. are le'l than 1% for the worlt Itring.. In other wordl, when the

cache tries to &cca. a different line in a let than it &Ccealed the previoui time, it i. almolt

never there! The be.t and worat Itring. for each approach are plotted in Figure 5.20 for

inltruction cache. and Figure 5.21 (or data cache •. Note that the X-&XÏ. hu a log .cale.

Curiou.ly LRU-Buto~ and FIFO-Huto"1l have by ordera of magnitude, the .mallest

ratiOi for both in.truction and data cachel. It i. not cleu why the bad .tring. from thele

two approachel .hould do .0 much better than the bad Itring. (rom the other approache •.

5.2.4 Random Performance

In order to corroborate that the performance of the genetic algorithm approacb i. bet·

ter than random chance, two check. were made. Firat, a hiltogra.m wu made charting

the generation. at which the best Itrings occurred. If the genetic algorithm were ideal,

performance would increue at each generation, and the best Itrings for the entire li mu­

lation would alway. occur in the lut generation, i.e. generation 9. On the other hand, if

the genetic algorithm approach behavel u a random .earch, then the occurrence of best

Itring •• hould be uniformly distributed among the generations with a mean in the middle,

generation 5.

Luckily for thi. work, the resuIts fall much closer to the ideal genetic algorithm eue

than to the random cue. For instruction caches, the mea.n generation with the best string

il 6.8, while for data cachel the meiLn generation il 7.6. Values for each approach are

given in Ta.ble 5.9. Overall LRU-Buto~ finds it best Itrings latest. As noted previously,

LRU-Hutory is al.o generally the best performing of the lix techniquel tried.

Figure 5.22 IhoWI the di.tribution of "belt Itring." acrolS generations. A. the mean

valuel .ugge.t, the vaat majority of belta occurred in generations 7, 8, and 9. Note that

theae re.uIta are in lome len.e con.ervative: if two or more generation. produeed "belt

.tring." of equaJ value, &Dd thele were the belt Itringl of the whole .imulation, then the

earlier generation wu used in ta.buIating these figure •.

1
CHAPTER 5. SIMULATIONS 67

Figure 5.20: Performance of Beat and Worst Strings for Suite of Benchma.rlu for 512 byte

l-cache, 4-wa.y uaocia.tivitYI 32 byte lines.

1
CHAPTER 5. SIMULATIONS 68

1.8 4.0 10.0 25.1 83.1

" Lin. Hlt Rat.

Figure 5.21: Performance of Beat and Worat Strings for Suite of Benchmarks for 512 byte

I-cache, 4-way &8sociativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 69

10

_ lnatructlon

_ Data

1

3 e 8 12 15
Humber ot Strings

Figure 5.22: Distribution of Generations at which Best Strings Occurred.

t
CHAPTER 5. SIMULATIONS 70

Hiltory LRU-FIFO LRU-Cnt FIFO-Cnt LRU-Hist FIFO-Hist

Inltruction 5.7 7.1 6.7 6.3 8.6 6.6

Data 7.7 8.3 7.9 6.6 7.6 7.6

Ta:'le 5.9: Mean Genera.tion at whlch Bf!It String Occurred.

The .econd method used to check the usefulnesi of the genetic algorithm approach wu

to run limulatioDa uaing the lame basic techniquea-Huto'l', LRU-FIFO, LRU-Huto'7l,

etc.-but inatead of atarting with an initial population and using the genetic a.lgorithm

approach to improve performance, a random population of Itrategy strings wu created.

The lize of the population wu 800, roughly the number of different Itrings produced in all

the generations of a genetic algorithm limulation.

In aU but 4 of the 84 benchmark/algorithm combinations, the best Itring produced

uling the genetic algorithm approach wu superior to the best performance of string found

in a random population. In those 4 cases, the performance of the random string was the

.ame, not better than the best .tring found using a genetic algorithm approach.

The percent age difference in line hit rote between the random and gent"tic algoritbm

approache. are Ihown in Figurel 5.23 and 5.24, for inltruction and data cachel relpectively.

Note that a log Icale is employed because of the wide range difference.-from 0.01 % for au

in.truction cache uling the Hilto'1l method u.ed on a luite of benchmarka to 12.36% for

an instruction cache using the LRU-Count method on the mcah benchmark.

Note that the 4 cases with no difference in performance are not depicted. Three cues

occurred with an instructïon cache. They are Hutory/wheutone. FIFO-Count/paly. and

FIFO-Count/lcalman. The data cache cue occurred for FIFO-Countjmcsh. From this and

from viewing Figures 5.23 and 5.24, it is clear that FIFO-Count and Hutory do not gain

much from the genetic algorithm approach. However, LRU-Count and LRU-Huto'71 appear

to derive .ignificant benefit. The mean difference in line hit rote, across benchmarks and

between ra.ndom and genetie algorithm approa.ches il shown in Table 5.10.

Not turprilingly techniques luch u LRU-Count, in whieh a genetie a.lgorithm approa.ch

finds a muc~ better string than found by random learch, tend to show mueil more im-

r-------------------------------- ---- - --- -- ------------------------.

CBAPTER 5. SIMULATIONS

~ WHETSTONE

~POLY

-MCSH

- KALMAN

- EMACS

-CCAL

-ALL •
1 1

0.01 0.02 0.05 0.13 0.32

1 1 1

71

HIS T
U-FIFO
U-CNT
O-CNT
U-HIST
O-HIST

LR
LR
FIF
LR
FIF

l
0.80 2.01 8.05 12.68

" Dltler.ne. In Lin. HI. R.,.

Figure 6.23: Percent age Differences in Line Bit Rates between Best Strings Generated by

Genetic Algorithm Approach and Best Strings Generated by Random Approach for a 512

byte I-cache, 4-way a&sociativity, 32 byte lines.

1 CHAPTER 5. SIMULATIONS

.... WHETSTONE

f- POLY

- MCSH

1- KALMAN

~ EMACS

r- CCAL

r- ALL

1 1

0.1 0.3 0.8

~ _1

72

HIST
LRU-FIF o

T
T
T
T

LRU-CN
FIFO-CN
LRU-HIS
FIFO-HIS

1

1.8 4.0 10.0
" Dlff.,..nc. In Lin. Hlt R.t.

Figure 5.24: Percent age Differences in Line Bit Rate" between Best Strings Generated by

Genetic Algorithm Approach and Be8t String. Generated by RandQm Approach for a 512

byte D-cache, 4-way usociativity, 32 byte lines.

1 CHAPTER 5. SIMULATIONS 73

Hiltory LRU-FIFO LRu-ent FIFo-ent tRU-Hilt FIFO-Hiat

Instruction 0.11 0.69 4.80 0.21 270 0.22

Data 0.84 1.44 2.78 0.56 2.93 0.60

Table 5.10: Mean Per<.entage Differences in Line Bat Rate" between Best Strings Generated

by Genetic Algorithm Approach and by Random Approac.h.

provement from the fint to the last generation than thole methods lucb as Hutory where

the genetic ILlgorithm and random approachel perform more limilarly This is graphically

depicted in Figures 5.25 and 5.26.

It i. worthwhile reiterating that the cboice of parameters miLkes a difference here. For

example, when a mutation rate of 1 % il uI~d instea.d of 10%, random selection find. a

better .tring for 3 of the 6 individu al benchmarks when using tbe LRU-FIFO approacb on

an instruction cache. However, u already noted, with a mutation rate of 0.1, the genetic

algorithm approach found a better string for a11 6 benchmarks. Clearly when the mutation

rate is too low, the genetic algorithm simulation can become mired in a far from optimal

solution. In such a case, randomly selecting strategies can work better, because a more

diverse portion of the solution space is explot{!d.

Finally, use of a large randon::. population gives a good buis upon whicb to test the choice

of another of the parameters to the genetic algorithm: the population "ize. After simulating

the initial generation of 800 randomly chosen strings, an additional generation can be

created using the standard genetic algorithm operators. This was done and the performance

meuured. In 67 of the 84 benchmark/algorithm combinations, the standard approach of

simulating 100 strings for 9 generations wu better. In 5 eues the two a.pproaches produced

drings of equa.l capability, and in 12 cases, simulating 800 strings for 2 generations Wall

better. Table 5.11 shows the mean differences in performance. Clearly use of a smaller

population for more generations is a better choice overall.

This il accentuated by the fact that 1600 string! (2 generationa x 800 strings per

generation) were simulated for the largE: population versus ooly 900 for the smali population

1
CHAPTER 5. SIMULATIONS 74

1 1
•.

0

1
~
.Si l"··

10.0

•. 0

•. 0

•. 0

2.0

x--x ail
6--6 ocal

.--. emaca
<> --<> kalman

.-. mcah
0--0 poty
.--. wh •• tone

o.oo1------~1~~~2~~~~3~;;~;4~~~;.~~~.~~~~7~~~~.~~~~.~----~10
G.n.r.tlon Number

Figure 5.25: Improvement in Line Bit Rate by Generation using the Bi8tory Method for a

512 byte I-cache, 4-way usociativity, 32 byte lines.

1 1 14
.
0

1
~ i

10.0

'.0

'.0

4.0

2.0

CHAPTER 5. SIMULATIONS

:J a

x--x eU
6. ---1:'> oc.i

.--. emace
<> -- <> kalm.n
.--. mceh
0-0 po/y
• --. wh •• ton.

a -E1
El

,. • ,.

75

rJ

•
-A

0.00~----~~~~~----~----~------~----~----~~----~'------~8----~10
Gener.'lon Humber

Figure 5.26: Improvement in Line Bit Rate by Generation using the LRU-Count Method

for a 512 byte I-cache, 4-way &8sociativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 76

Hiltory LRU-FIFO LRU-Cnt FIFO-Cnt LRU-mat FIFO-Hiat

ln.truction 0.02 0.19 0.91 0.10 0.36 0.08

Data 0.30 0.58 0.29 0.04 0.32 0.27

Table 5.11: Mean Percent&ge Differencel in Lant! Hat Rate, between Beat Stringl Generated

by Population of 100 for 9 Generation. and by a Population of 800 for 2 Generations.

(9 generations x 100 Itrings per generation). Actually both the 900 and the 1600 ue

lomewhat overstated, aB sorne strings survive from generation to generation. Hence the

number of unaque strings simulated is somewhat less than 900 or 1600.

5.3 OPT Match Rate

Misses for replacement methods other than OPT can be broken into two groups:

1. Milles at which OPT also IDÎssed

2. Misses at which OPT did not miss.

For misses in the first group, the choice of line replacement can be compared to OPT.

The fraction of misses in the fir8t group is orten quite la.rge. For these benchmarks and

an instruction cache, a mean of 75% of LRU misses are in the first group. For FIFO the

number is 74%. For data caches the numbers are 80% for LRU and 72% for FIFO.

Note that at each point where OPT misses, LRU also misses [29]. Of coune, LRU

milles at miLIly additional points as weIl. 1'0 Ihow that LRU misses every time OPT does,

usume that this i. not true; that there are lome occasions when OPT has a miss and LRU

doe. not.

To clarify this, aee Figure 5.27 in which the lame address stream is depicted under both

LRU and OPT replacement. Assume that at point " Â is accessed and that it results in a

CHAPTER 5. SIMULATIONS 77

Remove A Mils on A

1 1
OPT

1 2

LRU

Not Remove A Hit on A

Figure 5.27: Misses under LRU and OPT.

mill for OPT, but a hit for LRU. Thus OPT must have replaced A at a.n ea.rlier point, 1,

at which LRU choie to leave A in cache. However, lince OPT chose to rem ove A at point

l, every other tine in the let must be accessed in the interval 1-2. This il because OPT

removes the tine whose reference is furthest in the future. If OPT removes A, it mUlt be

because it is referenced further in tbe future than any other tine in the set.

However, if every other line in the set is accessed in the interval 1-2, then there i.

in.ufficient room to hold a.ll of these tines and A. Hence before point 2, LaU mUlt replace

A in the cache al the lea.st ':"ecently wed line. But if LaU has replaces A, it will have a miss

at point 2, jUlt like OPT. But this contradicts the premise that OPT hal a miss, while

LaU do es not. Thus it must be the case that LaU has a. miss whenever OPT does. Note

that this does not hold true for other replacement methods, such as FIFO.

Figures 5.28 to 5.31 provide a. complete breakdown of how the various methods compa.re

to OPT. Each histogram bar is broken into four pa.rts:

1. Cholen: Instances where the replacement policy chose the same line to replace as did

OPT.

2. Not Bring: In.tances where OPT chose not to bring the new line into cache .. Thil

option of not bringing in a new line i. technically possible for other replacement

algorithms, but generally results in decreased performance. Hence other algorithml

1 CHAPTER S. SIMULATIONS

20.0

LRU
FIFO
HIST
LRU-FIFO
LRU-CNT
FIFO-CNT
LRU-HIST
FIFO-HIST

18

Choeen
Nol Bnng
Avallable
OPTMt_

1

" Match OPT

Figure 5.28: Behavior of Replacement Policiel Compared to OPT. Genetic Algorithm Poli­

cie. have OPT Match Rate Maximized. 512 byte I-cache, 4-way ulociativity, 32 byte linel.

i
CHAPTER 5. SIMULATIONS

"""",,/. '1/. '1.

79

•
LRU
FIFO
HIST
LAIJ-FIFO
LRU-CNT
FtFO-CNT
LRU-HIST
FIFO-HIST

ChcMen
Nol Snng
A" •• lable
OPTMt_

0.0 20.0 40.0 80.0 .0.0 .0

'" Match OPT

Figure 5.29: Behavior of Replacement Policies Compared to OPT. Genetic Algorithm Poli·

cies have OPT Match Rate Maximized. 512 byte D-cache, 4-way associativity, 32 byte

lines.

1
CHAPTER S. SIMULATIONS

0.0 20.0

80

Choeen
Not Bring
,tvallable
OPTMI_

LRU
FIFO
HIST
LRU-FIFO
LRU-CNT
FIFO-CNT
LRU-HIST
FIFO~HIST

.0 1

" Af.tch OPT

Figure 5.30: Behavior of Replacement Policie. Compared to OPT. Genetic Algorithm Poli­

de. have Line Hit RGte Maximized. 512 byte I-cache, 4-way usociativity, 32 byte Unes.

\

l

CHAPTER 5. SIMULATIONS 81

•
1lililIlIillllllllllilllllllllliilillliiiiiiiliii!!LRU

FIFO
HIST LRU-FIFO LRU-CNT FIFO-CNT LRU-HIST FIFO-HIST

ChGeen
Nol Bnng
A".II.bIe
OPT"' ..

0.0 .0 100.0

" Af.tch OPT

Figure 5.31: Behavior of Replacement Poli des Compared to OPT. Genetic Algorithm Poli·

cies have Line Bit Rate Ma.ximized. 512 byte D-cache, 4-way a&sodativity, 32 byte lines.

1
CHAPTER 5. SIMULATIONS 82

alwayl bring in the new line.

3. AlIailablt: lnltancel where the line OPT chose to replace il prelent in cache or al

the new line being referenced. In other worda, thele are all inltancel where the

replacement policy can behave al OPT did. The fint two instancel are lubset& of this

one.

4. OPT Miu: Inltances where OPT also milsed lot this point, Le. the group 1 misses

at the Itut of thil Section. OPT Mi86 il the overalllength of the hiatogram bar, and

the firat three inltancel are lubset. of thil one. Since thete is an OPT mill for every

LRU miss, the length of the LRU histogram inrucates the number of OPT IDÎsser

One of the cruef goall in trus section is to maximize the size of the first put of the

histogram for Hutory, LRU-FIFO, etc, Le. the goal is maximize the fraction oC

misses when the genetic aJgorithm approaches behave exactly as OPT would.

The fraction of misses when OPT is correctly mimickcd is used al the metric in thls Section,

aa line hit rate wa.a used in Section 5.2. The results of this goal of "matching OPT" can be

aeen in Figures 5.28 and 5.29 for instruction and data caches respectively.

Before continuing, it should be pointed out that in this section, resuIts are presented

from inruvidual benchma.rks only. None ue from the suite of all benchmarks. This wu

neceuary because of the way in which the simulator wu coded. To compare other methods

to OPT, OPT is run and a record of its selections made. Then the other repla.cement

policies are run and their choices compared to OPT's. To make thls compuison, it must

be possible to align the results from the OPT run and the subsequent runs.

This is no problem for single benchmarks. However recall that in Section 5.2.3, it

wu stated that multitasking is simulated by varying the number of addresses processed

for a benchmark in its "time slice" depending on the number of misses. The result is

that different replacement policies process slightly different streams of addresses dept'nding

on when misses occur. These different streams make it impossible to align the address

referE'nces of OPT with those of other replacement policies.

Despite tbis omission, the individual benchmarks provide a variety of useful and inter­

esting resulta. By looking at the Chosen category in Figures 5.28 and 5.29, it is immediately

clear that the genetic algorithm replacement policies can be ta.ilored to do far better than

CHAPTER 5. SIMULATIONS 83

--
INSTRUCTION DA'I'A

Ma.ximize Ma.ximize Ma.ximize Ma.ximize

OPT Match Rate Line Hit Rate OPT Ma.tch Rate Line Hit Rate
-

LRU 4.4 4.4 6.4 6.4

FIFO 3.6 3.6 4.0 4.0

History 27.6 7.0 12.4 9.8

LRU·FIFO 30.2 7.6 17.0 11.5

LRU·Count 29.8 6.0 19.5 7.3

FIFO-Count 29.6 6.1 187 12.3

LRU·Hiatory 29.6 11.8 17.0 9.4

FIFO·History 29.4 8.2 18.5 6.6

Table 5.12: OPT Match Rates: Percent age of Misses in which Different Algori thms Replac ed

the Line OPT Would Have.

standard LRU or FIFO. While LRU chooses the line OPT would have 4.4% of the time and

FIFO 3.6% of the time on avera.ge for an instruction cache, LRU-FIFO make& this choice

30.2% of the time! When the HlStory method is used on emacs in an instruction ca.che, the

OPT replacement line is chosen almost every time it is avaalable. (See Figure 5 28) The

mea.ns for each method are displayed in Table 5.12.

For data. caches the differences are also large, but not quite as dramatic LRU ma.tches

OPT 6.4% of the time on average, while the best genetic algorithm policy, LRU-Count

matches OPT 19.5% of the time.

Given the vast superiority of the genetic algorithm policîes, a natural question a.rises: Is

their performance in mat ching OPT an inherent part of these policies or simply the result

of having used genetic algorithms ta maximize the OPT Match Rate. The answer appears

ta lie somewhere in the midd1e.

Figures 5.30 and 5 31 show the same replacement policies, but in these Figures the

"genetic a.lgorithm tl policies were optimized for lane hlt rate, not OPT match rate The

resuIt is that the genetic algorithm policies do slightly better tha.n LRU and FIFO at

CHAPTER 5. SIMULATIONS 84

mat ching OPT, but not nearly .0 well u wh en they were .pecifically optimized to match

OPT. For instance, LRU-Hûton; is the best policy for instruction caches in this case. It hu

an OPT match rate of 11.8% veraus 4.4% fo: LRU. The version of LRU-Hùton; optimi~ .. :!

for OPT match rate, matches OPT 29.6% of the time. The mean performance of the

different methoda i •• ummarized in Table 5.12.

Reviewing Figure 5.28, where policies t.re optimized for OPT match mte in rut instruc­

tion cache, reveal. that although tbe genetic algorithm replacement policie. can do iae

better than LRU a.nd FIFO at matching OPT'. choice of replac~ment line, they do uni­

formly wOfle in making iure that OPT'. choice il available in cache. The genetic algorithm

polides acrueve their high rate of matching OPT by almost always choosing the Hne OPT

would have when it is available, not by making sure that OPT's cboice is available.

Figure 5.30, where policies are optimized for line hit rate, indica.tes that failure to make

OPT's choice available is not a basic failing of the genetic algorithm policies. ln this Figure,

the OPT line is available approximately a.a often a.a it is for LRU or FIFO, but as already

noted, it is chosen at a slightly higber rate.

F'Tom Figure 5.28, it is c1ear that for LRU and FIF'Q the optimal replacement is avadable

approximately half the time in an instruction cache, even if the 3% - 4% of instances where

no line .hould be replaced are exduded. It is lomewhat surprising then, that both LRU

(4.4%) and FIFO (3.6%) choose so poorly.

Data caches behave 'luite dift'erently in terma of whether or not the OPT line ia available

for replacement. As can be .een in Figures 5.31 and 5.29, most of the genetic algorithm

polide. make the OPT line atJailable approximately as much as do LRU and FIFO. However

when the genetic al.gorithm polides are optimized to match OPT's choice, a smaller fraction

of their mi.ses are also Opt Mùses.

Thi. dift'erence in data cache behavior may be partially due to the far higher number

of times when it i. best not to bring a new line into cache. Under LRU, it is best no! to

bring the new line into a data cache 27.3% of the time on average. (A. can be seen in

Figur • .'. 5.28 to 5.31, the percent age does not vary mu eh from one replacement poliey to

another.) For an in.truction cache, not bringing in a new line il best only 3.6% of the time

under LRU. The high percent age in data caches is likely due to scratch variables which are

u.ed only once.

1 CHAPTER 5. SIMULATIONS 85

Given the large &umber times when it is best not to bring a new line into a data cache,

it i. worthwhile to briefl.y re-examine the standard approa.ch of a.lways bringing in the new

line. Fint note the inherent problem: To know when not to bring in a line is difficult

for simple algorithms working at runtime, especially wh en they must make use of a brief

.ummary of put referencea to the cache. Unfortunatel~, put references are likely to conta.in

few clues about how an entirely new line will be referenced.

Furthermore the principie of temporal locality assume. that if a. line is referenced, it

"mlOon be referenced again. Very good knowlec!ge is needed to 1I:now when this principle

should be violated. (Compiler directives could indicate .uch "dead" lines, but that is beyond

the .cope of this worll:.)

Because of these difficulties, the easiest cases were tried. The LRU-Count method was

u.ed on the two benchmarks with the highest fraction of Hnes which are best not brought

into cache: whet&tone with 41.3% and poly with 34.3%. The results were .lightly worse than

the eorresponding results where the line was !Ùways brought in. For whet&tone, the Une hit

rate. of the best dring. were 36.9% wi th the new line not always brought in, veraus 38.9%

"ith the new line alway, brought in. For poly the numbera were 56.0% to 56.9%. However

this Line hit rate for whetatone il sHghtly bigher than the LRU Line hit rate of 36.3%. For

poLy, LRU is slightly better at 56.4%.

Since poly and whet&tone are the two 'cbest" cases for not bringing in lines, it does not

seem likely that theae approaches a.re &dequate to determine whether or not to bring in

line •. Bence tbis avenue will not be pUfiued further.

Thus far, no mention has been made of the hit rate.of the genetie algorithm approaches

when optimized to match OPT', choice of replacement line. Unfortunately, despite their

vutly superior performance in mimicking OPT, the overall bit rate in &lm ost all eues is

lower thlLll LRU. For instrut.tion cache., the overall bit rate is almost alway.less than FIFO

al well. This eomparison i. made graphieally in Figures 5.32 and 5.33 for instruction and

data caches. For each replacemeut poliey, Table 5.13 providea the mean bit rate acroll

benchmarks.

Since the genetic &lgorithm appro,t.ehes can mimic OPT quite well, but have .. :c:latively

low bit rate, and since LRU and FIFO mimic OPT qui te poorly, but have a relatively

high hit rate, it appear. that mimieking OPT'. choiee of replacement line is generally not

1
<JHAPTER 5. SIMULATIONS

I •• UI 1111111 _ mUllllltuiiillliUUi lilii iii UliElliiillli Ulllliillll!'llliWimllillil1

90.0 74.0 78.0 82.0
1

80.0

--------~

1

.... 0

86

50-SU WI iETSTONE
40 9 POLY
30-31» MCSH
2O-2U KALMAN
10-11» EMACS
O-g CCAL

OPT
LAU
FIFO
HIST
LAU-FIFO
LAU-CNT
FIFO-CNT
LAU-HIST
FIFO-HISr

1
88.0

%HltR.t.

Figure 5.32: Overall Hit Rates When Genetic Algorithm Polides Maximize OPT Match

Rate. 512 byte I-cache, 4-way &8sociativity, 32 byte lines.

t

l'

CHAPTER 5. SIMULATIONS

10 1-

74.0

t !

78.0

1

88.0

=

.1
80.0

87

6O-SQ- WHETSTONE
40-4Q: POLY
30-3Q: MCSH
20-~ KALMAN
10-1Q: EM"CS
(). Q: CCAL

OPT
LAU
FIFO
HIST
LRU·FIFO
LAU-CNT
FIFO-CNT
LRU-HIST
FIFO-HIST

1
M.O

1

88.0
" HltR.t.

Figure 5.33: Overall Bit Rates When Genetic Algorithm Polides Maximize OPT Match

Rate. 512 byte D.cache, 4.way aBsociativity, 32 byte lines.

CHAPTER 5. SIMULATIONS 88

INSTRUCTION DATA -
LRU 91.0 88.6

FIFO 90.8 87.6
'=-

History 86.6 85.4

LRU-FIFO 89.1 87.3

LRU-Count 88.9 87.6

FIFO-Count 88.6 87.0

LRU-History 89.0 87.9

FIFO-History 89.0 87.5

Table 5.1:. Mean Overall Hit Rates When Genetir Algorithm Polides Maximize OPT

Match Rate.

important in achleving a hlgh bit rate.

5.4 History

In this section three aspects of the hùtory method are explored further:

1. The representation of strings is of great importance. This is explored next in Sec­

tion 5.4.1.

2. The hutory approach allows at le ut one simple heuristic to be used as a replacement

policy. A comparison of the performance of this heuriatic to the performance of strings

found using the genetic algorithm approach is covered in Section 5.4.2.

3. The hùtory approach allows many variants. Sorne were mentioned briefly in Sec­

tion 5.2.2. Section 5.4.3 compares the performance of tw~ variants. In one case the

hi.tory iucludes a record of bita and milles OU! weil a.a lines referenced. In the other

case only the lines refererced lire recorded.

1 CHAPTER 5. SIMULATIONS 89

5.4.1 Canonical Form

A. mentioned in Sections 4.1 and 4.4, the huto'71 method uses a more natural repre­

aentation for strings than that described in Chapter 4. Use of this natural representation

changes the performance of the genetic algorithm, lometimes for better, sometimes for

worse. This il discussed in more deta.illater.

The Key to this canonical representation ia. to note tha. many history lequences are

equivalent. For example, us ume in the previous 4 accesses that the history oflines acceued

wu 1,3,3,1. For the a!gorithm tfuS is really no different than if the lines accessed had been

2,4,4,2 or 2,3,3,2, or many others.

Realizing this, it mak€D fu!fiSe to reduce all equivalent patterns to the same pattern and

let the algorithm work with the canonical form. It turns out that the compression ratio,
Total Strang. . s

N"mliêr o} Canon,col Strang. 1

lim Compreuion Ratio = K!
m-ooo

See Appendix A.2 for a proof.

Severa! compression ratios are given in Table 5.14. In particular, note that for the case

uled in these simulations, &Ssociativity K = 4 and m = 4 previous accesses, the compression

ratio is 17.07. This means that instead of needing Itrategy strings of 512 bits, strings of

only 30 bits are required!.

The actual number of canonical forms, J(K, m) is given by

f(K.m)=&.[('~) (~(-cnl (5.1)

Thil equation can be derived using the theory of group actions on do let as described in

[35]. Allume an alphabet of K letters and words of length m. Then two words are la.id to

be in the lame orbit if and only if one word can be obtained from the other by a permutation

of letters. An orbit corresponds to the notion of a canonical form above. The goal is then

CHAPTER 5. SIMULATIONS 90

K m C&Iloni~ 1 Tot&! Compreuion !!l±.l
FOfITUI i ForITUI Ratio Ratio

1 1 1 D 1 1 11.00 1 LOO

2 1 1 2 2

2 ~ 2 4 2 2

2 3 .. 8 2 2

~ 4 8 hl 2 2
1---t-

2 1) 16 32 2 2

2 6 32 64 2 2

2 7 64 128 2 2

2 8 128 256 2 2

2 9 256 512 2 2

2 10 512 10'24 2 2

~ 2 00 2!=2 2

3 1 1 3 3

3 2 2 9 450 2.00

3 3 5 27 5.40 2.50

3 4 14 81 5.79 2.80

3 5 41 243 593 293

3 6 122 729 5.98 2.98

3 7 365 2187 5.99 2.99 -
3 8 109·i 6561 5.997 2.997

3 9 3281 19683 5.999 2.999

3 10 9842 59049 5.9997 2.9997

3 00 3!=6 3

4 1 1 .. 4

4 2 2 16 800 2.00

4 3 5 64 12.80 2.50

4 4 15 256 17.07 3.00
~

4 5 51 1024 20.08 3.40

4 6 187 4096 21.90 3.67

4 7 715 16384 22.91 3.82

4 8 2795 65536 23.45 3.91

.. 9 11051 262144 23.72 3.95

4 10 431147 1048576 23.86 3.98

4 00 4!=24 4

Table 5.14: Number of Canonical Forms for History Replacement.

1
CHAPTER 5. SIMULATIONS 91

to count the number of different orbita for arbitrary K and m. See Appendix A.1 for a

proof.

AI an aaide, note that the aecond term in Equation 5.1 il re1ated to e:

• K-r (-1)c 1
lim L: -=-

(f(-r)-00 c=0 c! e

That the number of canonical forml il re1a.ted to e, i. a lurpri.ing and beautiful re.ult.

A. noted in Section 4.4 thislmall number of canonical fonn. doel not help in reducing

the hardware complexity of the history approach. To use this "canonic&l" method, the

cache would require combinationallogic to reduce the hlstory to canonical form, determine

which Une ta replace ba.sed on the canonical form, and map the answer back to the or~ginal

form. ~t il almost certainly easier to have hardw&te logic cëJculate the replacement Une

directly from the original history.

Finally it il intereating ta note in Table 5.14 for a given K'I that the ratio of the number

of r.anonical forms of lengtb m to the number of length m + 1 increases by a factor of K aa

m - 00. In other words

lim Number of Canonical Form.s(m +- 1) = K
"'-00 Number of Canonical Forms(m)

See Appendix A.3 for a proof of this.

Table 5.15 provide. lame results of using the canonical form for hiltory. The Table

corn parei the line hlt rate.s obtained usinf the canonical form and the non· canonicat form. In

bath cues, the .imulations use the Itandard para.meten des4:ribed in Sectionl 5.1 and 5.2.1

"Rere uled. (The line hit rate! for the canonical form correspond ta the simulations described

earlier in Section 5.2.2).

Table 5.15 indicatel that the non·canonical reprelentation il the luperior cboice for

inltruction caches, while the ca.nonical representation il best for data cachel. Tha\ the

non-canonical form il better for instruction cache. is lomewhat .urprising. The motivation

for developing the canonicat form was the equivalency of different histories. Why should a

CHAPTER 5. SIMULATIONS 92

INSTRUCTION DATA

Canonical Non-Canonica.l C a.noni cal N on-Ca.noniea.l

CCAL 29.8 31.9 67.3 65.1

EMACS 23.6 25.1 70.3 69.4

KALMAN 31.6 33.1 61.5 59.7

MCSH ~5.2 58.8 82.8 808

POLY 30.2 32.3 563 54.8

WHETSTONE 37.0 37.0 37.5 37.2
",

[Mean 34.61 36.4 Il
r SUITE 42.61 45.311 73.21

Tablf' 5.15: Line Rit Rates using Ca.nonical a.nd Non-canonical Representation 512 byte

Inst:uction and Data caches with 4-way associativity, 32 byte Hnes.

representation which allows multiple forms of supposedly equ.ivalent histories ever perform

better than a representation which has only onEl form for each equivalent let of histories?

The ca.nonical form has a much smaller solution space to explore, and chooses replacement

lines consistently.

If the line history is 0,3,1,2 and a string of the canonical form chooses to replace line

l, then if the line history is 2,1,0,3, the Itring will choose line O. On the other hand, a

string uling a non-canonical representation could replace line 1 in the fint case and tine 3

in the second.

One possible explanation for the lup~:;or performance of the non-canonical form il that

lupposedly equÎualent histories are not actually equivalent. It could be that the genetic

algorithm is lometimes able ta develop a replacement poliey which dedicates certain cache

lines to certain types oC values. For example, from the history of acceues, the a.lgorithm

may lometimes be able to detect that a given line correspond. ta an innermoat nested loop,

while a.nother corresponds to transient initialization code. ln luch a case, the cache may

want ta manage the Înner loop line differently than the matialazataon llne. To thia end, the

cache might try ta relerve line 0 {or inner loop tines, and Une 3 for initialization lines. ln

1

•

CHAPTER 5. SIMULATIONS 93

ludl a e&le, the meaIllng of 0, 3, 1,2 would indeea be dHferent than 2, 1,0,3.

Thil re orung could &180 &Cco\mt for the difference h~tween instruction and data caches.

The hiltory of accelses to an instruction ca..:he may be &Imple enough that thE genetic

&lgorithn: can determlne a need for epecializeo Unes a.a just described. For data caches,

the hi.tory may be more complicatf'd, not allowing the genetic algorithm to dewcate lines

for Ipecial purposel. In this case, the consistency and reduced complexity of the cauorucal

approach could be important to finding good solutions.

There il another pOiaible explanation fOl the luperiority of the non-eanonica.l form

in instruction cache.,. Certa.in sets in the cache may tend to use difl'erent physica.l lines

intensively. The non-ca.norucal representation could then be optimized sù that wfferent

letl ellentially have different replacement policies. However thls explanation is sufficient

only for inwvidual benchmarks. Presumably in the multitasking suite of benchmarks the

varied ule of sets by the different benchmarks makes this optimlzation djfficult. Since

the non-canonical form is better even for multitasking (45.3% to 42.6% Lme hit rate), thls

explanation is ina.dequate.

Other explanations undoubtedly exist. More work is needed to determlne the precise

cau les of the sometimes superiol'ity of the non-ca.nonical form.

Finally not only is the non-canonica.l form better than the canorucal form of history in

inltruction caches, it is better than every other approach in Section 5.2.2 as weil. The mean

Lâne hlt rate for the individuaI benchmarks using LRU-History is 36.1 %. The mean for the

non-canonica! form is 36.4%. The multitasking performance of the non-canonica.l form is

llightly inferior to LRU-History (45.7% versus 45.3% Line hat rate), but il luperior to every

other app!:'oach tried in Section 5.2.3.

5.4.2 Genetic Aigorithms versus Least Recent History

Given the generaI luccelS of LRU &1 a replacement policy, it is natura! to make the

hùtory method attempt to mlmlC LRU. Thll can be done by a.lways replacing the oldest

line referenced. H lome linel have not been accelsed, then the line to replace is chosen

arbitrarily (rom among thole not accelsed .

•

CHAPTER 5. SIMULATIONS 94

LRU GA History, m == 4 LRH, m = 4 LRH, m:::-:: 8

CCAL 29.4 29.8 27.6 28.8

EMACS 22.6 236 204 229

KALMAN 30.8 31.6 287 329

MCSH 56.6 552 482 55.9

POLY 29.6 30.2 26.9 30.7

WHETSTONE JO.1 37.0 1 29.6 351

1 Mean 1 33.21 34.61 30.2L

1 SUITE 1 43.91

Table 5.16: Line Hit Ra.tes for Least Recent History and other Repla.cement Policies 512

byte l-cache with 4-way associativity, 32 byte lin('s.

Note that for associativity, K, only K -1 distinct tines need be accessed to fully simula.te

LRU. Also note that ta approximate LRU, a history need vnly record which lines have b~en

accessed in a set. Any hit/mus information is extra and not usél by L RU

T~e performance of this Least Recent HtStory or LRH approach varies. For an matruc­

tion cache and a standard m = 4 deep history, LRH performs significantly worse than LRU.

As is indicated in Table 5.16, the mean lme h.t rate for LRU is 332%, but only 30.2% for

LRH.

The poor pertvi'ma.:.l.e v~ LRH in this case accentuates the value of the ge:letic algonthm

approach used in Sections 5.2.2 and 5.2.3 For the same m == 4 deep history, the genetic

algorithm approach is a.ble, for ea.ch benchmark individu"Ùly and for the SUIte ofbenchmarks,

to find replacement strategies whtch do far better than LRH The mean lme hlt rate for

the genetic algoritbm strategIes is 34.6% versus 30.2% for LRH. It is worth emphasizing

that LRH appears a plausible heuristic for a replacement poücy However, by efficiently

exploring a wider portion of the solution space, the genetic a.lgO ... ~.U1 appruach docs far

better.

The depth of history appears ta be a.n important factor in obtaining good performance

in iMtruction caches. If the depth is increased from the previous m == 4 a.ccesscs to the

CHAPTER 5. SIMULATIONS 95

LRU GA History, m = 4 LRH, m = 4 LRH, m = 8

CCAL 67.7 67.3 65.7 65.4 .-
EMACS 693 70.3 69.1 68.3

KALMAN 61.3 61.5 60.3 60.7

MCSH 83.3 828 822 82.6

POLY 56.4 56.3 55.4 54.3

WHETSTONE 36.3 37.5 35.5 34.7

1 Mean 1 62.4 1 62.61 61.4 1 61.0J

1 73.71 73.21 72.51 72.7]

Table 5.17' Lint T.tit Rates for Least Recent History and other Replacement Policies. 512

b,) .~ D-cache with 4-way associativity, 32 byte lines.

let to m = 8, th ... mean lâne hit rate jumps from 30.2% to 34.7%. A reason for this leap

il luggested in Table 5.18. When m = 4, the history on average contains 3 or 4 distinct

tinel only 3% of the time. For m = 8 this rises to 26%. With the shorter history, there is

appuently insufficient information on which to malte a judgment much of the time.

Note that with K-way ass~ciativity, the history can contain at most K distinct line;;,

R.ecall from Chapter 4 that the history records which of the K Hnes in a cache &et have

been accessed, as opposed to whieh memory Hnes Renee whether m = 4 or m = 8, the

ma.x.imum number of distinct Hnes is 4, since K = 4.

The behavior of LRH in data caches is quite different:

• AI can be leen in Table 5.17, the mean line hit rate of LRH with m = 4 (61.4%)

il reuonably close to LRU (62.4%) and the genetic algorithm strategies (62.6%). A

likely reuon for this is the luger number of distinct lines accessed in data caches than

instruction caches. Table 5.19 indicates that on average the history contains 3 or 4

distinct lines on 30% of data cache misses. Even for an instruction cache with ~ = 8,

the number is only 26%. Hence a. data cache employing LRH has more information

on which to malte a decision thc:.n an instruction cache.

CHAPTER 5. SIMULATIONS 96

Lines Accessed

TU=4 m= 8

1 2 3 4 1 2 3 4

CCAL 65 33 2 0 22 't8 26 4

EMACS 66 33 1 0 30 49 18 3

KALMAN 58 38 4 0 23 46 27 4

MCSH 76 23 1 0 27 58 13 2

POLY 61 35 5 0 23 49 24 4

WHETSTONE 54 44 3 0 21 52 22 5
-

1 Mean 1 63 1 34 1 3 1 0 \1 24 1 50 1 2~
1 SUITE [68 1 30 1 2 1 0 ~ 26 1 5 'l 119 1 3 1

Table 5.18: Percent age Distribution of Distinct Lines AccestJed ~n Set When Miss Occurs

using LRH replacement. 512 byte I-Cache with 4-way a.ssociativity, 32 byte lines.

Lines Accessed

m ::: 4 m=8

1 2 3 4 1 2 3 4

CCAL 33 38 25 4 15 29 35 21

EMACS 68 18 12 2 28 44 18 10

KALMAN 33 29 33 6 14 28 32 27

MCSH 41 39 17 3 15 33 35 17

POLY 43 26 26 5 17 34 27 22

WHETSTONE 35 18 37 10 26 14 29 LE...
1 Mean

1 SUITE

Table 5.19: Percent age Distribution of Distinct Lines Accessed in Set When Miu Occurs

using LaH replacement. 512 byte D-Cache with 4-way associativity. 32 byte lines.

i
CHAPTER 5. SIMULATIONS 97

• The mean line hit rate actually goes down from 61.4% to 61.0% when the depth il

increued from m = 4 to m -= 8. AI just inclicated. thil could be partially becaule an

m = 4 deep history has sufficient information on which to make a decision.

Furthermore, there il an increased likelihood that a line il dead if it hu not been

accessed in the previoui 4 a.cceslea to a let. Even if not dead, recency of ulage may not

be the be.t repla.cement metric for "oId" lines. If aeverallinea have not been acceased

in the previoui 4 acctllel to a let, the belt policy can be to randomly replace a line

from among them, u LRH with an m = 4 doe •. Thil pOllibility il in accordance

with [39], where it wu found that for inltruction cachel, random repla.cement can

lometimes be superior to LRU.

5.4.3 Two History Variants

The hutory approach uled in Sections 5.2.2 and 5.2.3 maintained a record only of lines

accelled. The hutory did not inc1ude any hit/mu, information. This Section examinel the

effect of thil choice.

T~ble 5.20 compares line hit rate .. for the two history variants. As has often been the

case, re.ults differ dramatically for instruction and data caches. For instruction caches, the

mean tine hit rate improves from 34.6% to 36.0% when hit/mu, information is included in

the hiltory. Each benchmark and the luite ofbenchmarlu Iho""1 a .ignificant improvement.

The 36.0% mean line hit rate for the individual bepchmarks compares fa.vorably to the

36.1 % of LRU-Hùtory, the best method found in Section 5.2.2. Thu5 hutory with a hit/mis.s

record may be suitable for an instruction cache in which the replacement policy i. Itored

in a RAM and is modifiable.

The 43.8% line hit rate for the luite of benchmarks (simula.ting multita.aking), however

is Itill worse than every other approach tried in Section 5.2.3, except FIFO (43.2%). Thus

neither hutory variant leems appropriate for an instruction cache in which the replacement

policy il hard-wired into the cache.

AI C&Il be leen in Table 5.20, the mean performance in data ca.ches &etually declines

when hit/mi.s, information is included in the history! Clearly the genetic algorithm approach

CHAPTER 5. SIMULATIONS 98

IN~TRUCTION DATA

LinelOnly Linel" Rita/Misses Lines Only Linea " Rita/Misles

CCAL 29.8 30.6 67.3 66.5

EMACS 23.6 25.7 70.3 70.4

KALMAN 31.6 33.4 61.5 61.5

MCSH 55.2 56.4 82.8 81.8

POLY 30.2 31.4 56.3 55.6

WHETSTONE 37.0 38.2 37.5 37.5

1 Mean 34.61 36.0 " 62.6 1 62.21

1 SUITE 42.61 43.sll 73.2 1 72.1 1

Table 5.20: Line Hit Rates for History of Line References and for History of Line References

ana Rits/Misses. 512 byte Instruction and Data Caches with 4-way associativity, 32 byte

lines.

i. a bit deficient here. Since the hit/miss record il additional information, it is always

possible to find at least as good a solution by ignoring the additional information.

Since performance improves significantly for instruction caches, it looms likely that

hit/mus information is a usefuI for instruction caches, but generally not 10 for data caches,

and merely confuses the genetic algorithm. This is corroborated by the fact that for instruc­

tion caches, LRU-Hastory, i.e. LRU augmented with hit/miss information, is lignificantly

better than the other methods used in Sections 5.2.2 and 5.2.3. Rowever for data caches

the performance of LR U-H~tory is comparable to other approaches such as LR U-Cou.nt.

Some reuonl for thls were given on page 56.

Finally, a hlltory depth of m = 4 il used in Table 5.20, u it il throughout thls document.

Note that difl'erent depths (ml and ma) of history could be kept for hau/misse. and fines

referencetl. Limited trials were made using difl'erent ml and m2, but resuIts did oot appear

to difl'er .ignificantly from those reported in Table 5.20. Still this might make an interestiog

area. for further inquiry.

1 CHAPTER 5. SIMULATIONS 99

5.5 Shadow Cache

Sho.dow cache [33] i. a hybrid replacement policy lomewhat limilar to those described

here. The Ihadow cache method augmenta a normal cache using LRU replacement. The

augmentation i. for each set to keep a 1&r!Jer number of tag. (Iee Chapter 2), than actual

linel. For example with & K = 4-way ulociative cache, ea.c:h let would norma.lly keep 4

linel and their correlponding 4 tagl. The Ihadow cache augmenta the number of tags kept,

perhap. keeping 4 additional tags in a .h.adow darectory. The cache is then managed as an

8-way aslociative cache.

By keeping the extra tags, the cache can "distinguish between tramaent lines that must

be flushed from cache quickly and lines that become active aCter long periods of inactivity

[.hadow mi . ..,e6] ... AI each new item is loaded into cache, a bit il let to indicate whether the

item W&I a tranlient mill or a Ihadow miss ... [The cache managerJ can tend to retain the

linel that were in the Ihadow [directoryJ in favor of the lines that were transient milsel,

and in tbil way it will tend to flush transienh from the cache more quickly than an LRU

algorithm will flush them [41J."

Thu. the shadow cache augments normal LRU information with additional bistorical

information about what lines have been accessed. This is quite limilar to lome of the meth·

ods uled here, such as LRU-Hutory, where LRU information is augmented by information

about the bistory of bits and misses to the set.

Table 5.21 compares Une hat rate" obtained using LRU-Hutory to a slightly more ef·

fective variant of shadow cache suggested by Puzak [34J. Under tbil variant, non-LRU

decilionl are limited to the LRU and next·to-LRU entries. :puza)[found that using the

Ihadow replacement policy on the MRU and next·to-MRU ntriel reduced performance by

unwisely flulhing lines brought in on transient missel.

As can be leen in Table 5.21, the LRU-Hùtory method fares very well veraus .hadow

cache. In every cue except a data cache with a multitasking workload, LRU-Hutory

perform. better than the Ihadow cache. In that case, the performance il equal.

LR U-Hùtory'. luperiority i. elpecially marked for inltruction cachel. The mean line hit

rote of LRU-Hùtory il 36.1 % versui only 33.5% for the Ihadow cache. The difference il even

1
CHAPTER 5. SIMULATlONS 100

INSTRUCTION DATA

LRU LRU-iIistory Shadow LRU LRU-History Shadow

CCAL 29.4 30.7 30.4 67.7 67.8 67.4

EMACS 22.6 24.6 23.3 69.3 70.0 69.9

KALMAN 30.8 33.4 31.4 61.3 62.0 61.0

MCSH 56.6 59.7 56.8 82.3 83.5 83.7

POLY 29.6 31.9 28.6 56.4 56.7 56.4

WHETSTONE 1 30.1 36.3 30.6 36.3 38.6 36.3
-

1 Mean 1 33.21 36.1 1 33.5 ~ 62.41 63.1 1 62.51

1 SUITE 1 43.91 45.71 41.6 Il 73.71 73.91 73.91

Table 5.21: Line Hit Rates for LRU, LRU-History, and Shadow Caches. 512 byte Instruction

and Data caches with ~-wa.y usocia.tivity, 32 byte lines.

greater ~hen multitasking is simulated: 45.7% venus 41.6%. Furthermore LRU-History is

.uperior to LRU in every case, while in 4 cases the shadow cache actually performs worse

than LRU.

5.6 Optimization by Set

If a cache .tores ita replacement policy in RAM, then it is may be reasonable (or each

let in the cache to have its own RAM and consequently its own replacement poliey. In this

"ay, the replacement poliey can truly be ta.ilored to '" IIpecific program, lIubroutine, loop,

etc ..

To telt the potential of such an approach, LRU-Hutory wu used to find a good replace­

ment policy for each individuaI set for each benchmark. The re.ulta of thls approach are

.hown in Table 5.22. They show a lignHicant improvement over the performance obtained

"hen the entire cache uses the lame replacement policy.

"

CHAPTER 5. SIMULATIONS 101

INSTRUCTION DATA
~'

Line Hit Rate LRU-OPT Gain J.ine Rit Rate LRU-OPT Gain

Set Cache Set Cache Set Cache Set Cache

CCAL 32.3 30.7 21 10 68.6 67.8 11 1

1 EMACS 26.6 24.5 29 14 70.4 70.0 19 12 r KALMAN 35.1 33.4 27 17 63.2 62.0 22 9

MCSH 60.4 59.7 21 17 83.7 83.5 11 5

POLY 33.0 31.9 23 15 57.3 56.7 12 3

WHETSTONE 38.5 36.3 44 33 40.1 38.6 43 25

1 Mean 137.6 1 36.l 1 27 1 18 1163.9 1 63.1 1 20 1

Table 5.22: Performance of LRU-Butory with Common Cache Replacement Polic~' and

with Individual Set Replacement Policies. 512 byte Instruction and Data caches with 4·

way usociativity, 32 byte lines.

In Section 5.2.2, LRU-Butory wu the best method overall. Nevertheiesi the mean

LRU-OPT gain of the line hit rate improve. from 18% to 27% for instruction caches and

more than double. from 9% to 20% for data cache •. In other words, instruction caches

obtain more than a quarter oi the possible gain in line hit rote from LRU to OPT, while

data cache. obtain one fifth.

The overall hit rates show similar improvement. For LRU, the mean overa.ll rut raté!

for instruction caches is 91.0%, while OPT achieves 93.2%. The value for LRU-Bistory b1l

Set i. 91.6%, i.e. 27% of the 2.2% difference between LRU and OPT is bridged. For data

caches, the corresponding bit rates are

• 88.6% LRU

• 90.9% OPT

• 89.1 % LR U-Hutory by Set

Here 20% of the 2.3% difference is bridged.

l
CHAPTER 5. SIMULATIONS 102

Luckily, the cost of implementing this approach is relatively low. As outlined in Sec.

tion 4.4, each set requires 2, 4-hit RAM'. to .pecify the LRU réLIlk of the line to he replaced.

In other words, 1 byte per set of additional Itora.ge i. lufficieut to implement LRU-Hutory

6y Set.

..

Chapter 6

Conclusion

Harold Stone has .tated, "We are likely to gain only from ten to 30 percent of the

available improvement because the hardware cannot have perfect knowledge of the future

[41]." The results found here bear this out:

1. Improvement was made over traditional replacement policies. When a separate re­

placement policy was used for each benchmark, LRU-Hütory was able to bridge 18%

of the 2.2% meliLn difference in bit rates between LRU and OPT in an instruction

cache and 9% of the 2.3% Mean difference in a data cache.

2. Use of a different LRU-History replacement policy for eaeh benchmark and for each

set allowed 27% of the difference to be bridged in an instruction cache and 20% in a

data cache.

3. Smaller improvements were made when a common replacement poliey wu used for

all benchmarks while simulating multitasking. LRU-Hütory wu able to bridge 9%

of the 2.3% difference between LRU and OPT in an instruction cache and 2% of the

1.7% difference in a data cache.

4. It wu found that LRU and FIFO replace the same line as OPT on approximately

5% of misses. Using genetic algorithms t replacement policies were found for each

method (LRU-Hi3tory, LRU-Count, etc.) which raised this to approximately 30% for

103

CHAPTER 6. CONeL US/ON 104

inltruction caches and 18% for data caches. However, the resulting hit ratel were

generally low~'r than those of LRU or FIF'O.

5. Performance of LRU-Hutory WéLI lignificantly beUer than ,hadow ctlChe, another

approach which augments LRU information with h.istorical information.

6. Performance of replacement policies found using the genetic algorithm approach wu

in all eues equal or better to the performance of poücies generated randomly.

7. Representation of strings had a significant effect on the quality of replacement policy

found by the genetic algorithm.

8. The hutory approach allows both heuristic replacement policies such as LRH, and

replacement polides found by applying genetic algorithms. The genetic algorithm

polides substantially outperformed the LRH heuristic. in many cases history also

performed as weil or better than LRU.

9. Allowing the cache not to bring in newly referenced lines was round to be detrimental,

even in the most su.itable benchmarks.

The primary goal of using genetic algorithm techniques to improv.e upon existing cache

replacement policies, has been realized. Since improvement was better in instruction caches,

any future work might best be concentrated there.

There are iL number of avenues for future work:

1. More lophisticated genetic techn.iques could be tried, for example rece8llion and dom­

inance, ruche operatofS, and crossover techn.iques whlch permit bit function to be

independent of position.

2. Larger caches and longer address traces could be used. Of particular interest are

benchmarks with a large absolute clifference in bit rates between LRU and OPT.

3. The difference in performance between canonicaland non-canonical forms of hi.tory

could be investigated further.

4. Maximizing the fraction of time a replacement policy chOIe the l&me line éLI OPT to

replace d.id not improve the overall bit rate. Perhaps ma.ximizing the fraction of time

that the OPT replacement line is availabie would yield better results.

t CHAPTER 6. CONCL USION 105

5. The most ~bitious project would be to actually implement a system using one of

the methods described here. An instruction cache could be built using a hard-coded

LRU-Hutorr replacement policy. Al ternatively, a cache eould be built with a RJ .. M

bued replacement poliey. An optimizing compiler could then be eaha.nced to use

genetic algorithm limulations to find good replacement. policies.

1

Appendix A

Proofs

A.1 Derivation of N umber (J f Orbits

Assume an a.lphabet of K characters and words of length m. Then two words are said

to be in the same orb,t if and only if one word can be obtained from the other by a

permutation of letters in the a.Jpnabet 1. An orb,t corresponds to the notion of a canonica.J

form in Section 5.4.1. The goal is then to count the number of different orbits for arbitrary

K and m.

To this end, start with two more defin.itions:

Wm = AU words in K letters oflength m. Note IWml = Km,

SK = Group of rermutations on K letters acting on Wm . Note ISKI = K!.

Burnside's Formula then gives the number of orbita [35J:

I(K, m) = # olorbit., == \Sl 1 L # 01 lorm., fized b1l q
K ,nSK

= :, L # of form~ fized b1l q

, ""SK

1 Muy t.huu t.tJ Sheila Sunduam for help in conlt.rudîng thil proof,

106

APPENDIX A. PROOFS 107

Since UfSK, what word. (or canonical forml)

are fuced by u?

So 1.11 il fixed by U ~ u(w,) = w" "'Ii = 1, ... , m.

So if U hu r fi.xed points, there are rm words fuced by u. Clearly r can vary from 0 to

the lite of the alphabet, K. Thus Burnside's Formula can be rewritten:

K

I(K, m) = ~ }: # {permutation" with r fized point.,} X rm

K·,.=o

Now lLIlother definition i. needed. A derangement is a permutation with no tixed point. Let

den) be the number of derangements on n points. It is weU known [40J, that

ft (l)C
den) = n!}:-=-r

c=o c.

There are (~) ways to ehoose the r fuced points. For eaeh of these ways, none of the

other K - t' pointa are fuced. The number of permutations with none of the other K - r

points fixed is just the number of derangements d(K - r). Renee Burnside's Formula ean

now be re.exprelsed as

J(K,m) = 1 K (K) K!?;,.... r d(K - r) (A.1)

=
K rm d(K - r)
?; -;r (K - r)! !A.2)

Finally lubltituting formula for the number of clerangement.s givel

.'--------------------------------

l

..

APPENDIX A. PROOFS 108

J(K,m) = t. [(rr~) (~(-c~)C)]
"hich i. the lime formula given in in Equation 5 1.

A.2 Proof of Compression Ratio

The compression ratio follows from Equation A.2 and the fa.ct that with a.n alphabet of

K characters and words of length m, there are Km total words.

1 J(K,m)
= C ompre.uion Raho Km

= K J (r) m d(K - r) ?; r! K (K - r)!

= [\=! 1
L..- rI
r=l '

Note in the sum that r < K. Thus

(::)m d(K -...!1] ~ (K)'" d(O)
K (K - r)! + K! K (O)!

(r) m d(K - r)] 1
K (K - r)! + K!

This mùes the lummation 0, and hence the compression ratio is KL

A.3 Proof of Increase in Canonical Forms

i

APPENDIX A. PROOFS 109

A. m -+ 00, tbere are K times as many canonical forms in a string of lengtb m as in

a .tring of lengtb m - 1. The approach used to show this is siInilar to tbat used above in

Section A.2 to show that tbe compression ratio is K! and also begins with Equation A.2.

Increa..,e Fa.ctor = J(K,m)
J(K,m-l)

=

=

~K r"'~
"-=1 -;r JK=!1T
~K t::=': ê(K-»
L.r=l r! K -r !

[~ K-I r",-l 1(K-»] K",-l ci(?)
"-=1 (r-iJ! K-r! + (K-l)! O.

[~K-l r",-2 1'K-,)] Km-2 cirO)
L.r=1 (r-l)' K-r! + (K-I)!Of"

Dividing botb the numerator and denominator by Km-l yields

Increa.se Factor = [~K-l] (r)m-l ê(K-»] 1 (K)m-l
L.r=l (r-l)! 1{ K-r! + (K-I)! 1{

.1- [~K-l --1-- (r)m-:1 ~J . (K)m-:I}
K L..r=l (r-l)! 1{ TJ(.::rJf + ('K-'1J! 1{

As before in r < K in both summationa so

This makes the summations 0 in both numerator and denoIninator. The K-th terms are

both ~ and cancel. This leaves ooly

1
Increa.se Factor = Ir = K

Bibliography

[1] A. Aga.rwal, J. Hennessy, and Horowitz M. Cache Performance of Operating Sys­

tem and Multiprogramming Workloads. ACM Transactions on Computer Systems,

6(4):393-431, November 1988.

[2J A. Aga.rwal, R.L. Sites, and Horowitz M. ATUM: A New Technique for Capturing

Addres8 Traces Using Microcode. In Proceedmgs of the 13th Annual International

Symposium on Computer Architecture, pa.ges 119-127, June 1986.

[3J C. Alexander, W. Keshlea.r, F. Cooper, and F. Briggs. Ca.che Memory Performance in

a UNIX Environment. Computer Architecture News, pages 41-70, June 1986.

[4] E.R. Altman. An Analysis of Architect's Workbench. ACAPS Technical Note 19,

School of Computer Science, McGill University, Montreal, Que., March 1990.

[5] R. Axelrod. The Evolution of Strategies in the Iterated Prisoner's Dilemma.. ln

L. Davis, editor, Genetic Algorithm., and Simulated Annealmg, pages 32-41. Pitmao,

1987.

[6] L.A. Belady. A Study of Replacement Algorithms for a. Virtual-Store Computer. IBM

Systems Journal, 5(2):78-101, 1966.

[7] L.A. Belady and F .P. Palermo. On-line Measurement of Pa.ging Behaviour by the

Multivalued MIN Algorithm. IBM Journal of Research and Development, pages 2-19,

January 1974.

[8] R.M. Brady. Optimization Strategies Gleaned from Biological Evolution. Nature,

817:804-806, November 1985. (Letter to the Editor).

110

1 BIBLIOGRAPHY 111

[9] A. Brindle. Genetic Algorithrru for FUnction Optimization. PhD thesis, University of

Alberta, Edmonton, 1981.

[10] D.J. Cavicchio. Adaptitle Seo.rch U.ing Simulated Etlolution. PhD thesis, University of

Michigan, Ann Arbor, 1970.

[11] J.H. Crawford. The i486 CPU: Executing Instructions in One Clock Cycle. IEEE

Micro, 10(1):27-36, February 1990.

[12] L. Davis. Job Shop Scheduling with Genetic Algorithms. In Proceeding. of the ln­

temational Conference on Genetic Aigorithnu and Their Application.f, pages 136-140,

1985.

[13J L. Davis and D. Smith. Adaptive Design for Layout Synthesis. Technica.l report, Texas

Instruments, Dallu, 1985.

[14] K.A. De Jong. An Analy.iI of the Behatlior of a Cla" of Genetic Adaptitle Sy.terru.

PhD thesis, University of Michigan, Ann Arbor, 1975.

[lSJ R.W. Edenfield, M.G. Ga.llup, W.B. Ledbetter, R.C. McGarity, E.E. Quintana, and

R.A. Reininger. The 68040 Procensor: Part l, Design and Implementation. IEEE

Micro, pages 66-78, February 1990.

[16] R.J. Eickemeyer and J.H. Pate!. Performance Evaluation of On.chip Register and

Cache Organizations. In Proceeding, of the 15th Annuallntemational Sympo,Îum on

Computer Architecture, pages 64-72. IEEE, May 30 to June 2, 1988.

[17) D.M. Etter, M.J. Hicks, and K.H. Cho. Recursive Adaptive Filter Design Using an

Adaptive Genetic Algorithm. In Proceeding, of the Intemational Conference on AcoUl­

tic., Speech and Signal ProcelSing. IEEE, 1982.

[181 S. Forest. Documentation for PRISONERS DILEMMA and NORMS Program.t That

U.e the Genetic Algorithm. University of Michigan, Ann Arbor, 1985.

[19J D.R. Prantz. Non-linearitie, in Genetic Adaptitle Search. PhD thesis, University of

Michigan, A11n Arbor, 1983.

[~O] D.E. Goldberg. Computer-Aided GlU Pipeline Operation U.ing Genetic Aigorithrru

and Rule Leaming. PhD thesis, University of Michigan, Ann Arbor, 1983.

BIBLIOGRAPHY 112

[21] D.E. Goldberg. Genetic Aigorithrru in Search, Optimuation, and Machine Leaming.

Addilon-Wesley, 1989.

[22] D.E. Goldberg and R. Lingle. Alleles, Loci, and the Traveling SaIelman Problem. In

Proœeding, of the Intemational Conference on Genetic Algorithm6 and Thelr Appli­

cationl, pages 154-159, 1985.

[23J J.L. Bennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kauffmann, 1990.

[24] J .B. Bolland. Adaptation in Natural and Artificial S1IItetm. The University of Michigan

Prels, 1975.

[25] W. Bollingsworth, H. Sachs, and A.J. Smith. The Clipper Processor: Instruction

Set Architecture and Implementation. Communicatiom of the A CM, pages 200-219,

February 1989.

[26] A.C. Klaiber ud H.M. Levy. An Architecture for Software-Controlled Data Prefetch­

ing. In Proceeding' of the 18th Annual International S1Impo,ium on Computer Archi­

tecture, pages 43-53. IEEE, May 27-30 1991.

[27] R.F. Krick and A. Dollas. The Evolution of Instruction Sequencing. Computer, pages

5-15, April 1991.

[28] W. Mangione-Smith, S.G. Abraham, and E.S. Davidson. A Performance Comparison

orthe IBM RS/6000 and the Astronauticl ZS-l. IEEE Computer, pages 39-46, January

1991.

[29] R.L. Mattson, J. Gecsei, D.R. S]utz, and I.L. Traiger. Evaluation Techniques for

Storage Hierarchies. IBM System6 Journal, 9(2):78-117, 1970.

[30] B. Maytal, S. Ia.cobovici, D.B. Alpert, D. Biran, J. Levy, and S.Y. Tov. Design Consid­

erationl for a General Purpose Microprocessor. IEEE Computer, pages 66-76, January

1989.

(31] J. Miyake, T. Ma.eda, Y. Nishimichi, J. Katsura, T. Taniguchi, S. Yamaguchi,

B. Edamatsu, S. Watari, Y. Ta.ka.gi, K. Tsuji, S. Kuninobu, S. Cox, D. DUlchatko,

BIBLIOGRAPHY 113

and D. MacGregor. A Highly Integrated 40-MIPS (Peak) 64-b rusc Microproces.or.

IEEE Joum4l of SoiUl-State Circuiu, 25(5):1199-1206, October 1990.

f32] R. Ol.en. In.truction. for Performing Tra.ce-Driven Cache Simulat~onl. ACAPS Tech­

nical Note 20, School of Computer Science, McGill University, Montreal, Que., 1990.

[33] J. Pomerene, T.R. Punk, R. Rechtacha.ffen, and F. Spara.cio. Prefetching Mechanum

for a High-Speed BuJ!er Store, 1984. Patent Pending.

[34] T.R. Puzak. Cache-Memory De,ign. PhD theai., Univer.ity of Musachusetts, 1985.

[35] J.J Rotman. Theory of Group,. Allyn and Bacon, 1973.

[36] A.J. Smith. Cache Memories. Computing SUMJell', 14(3):473-530, September 1982.

[37] A.J. Smith. Ca.che Evaluation and the Impact of Work.load Choice. In Proceeding.

of tAe 1!th ÂnnualIntemational Sympo.ium on Computer Ârchitecture, page. 64-73.

IEEE, 1985.

[38] A.J. Smith. Line (Block) Size Choice. for CPU Cache Memorie •. IEEE 7Nn.Jaction.t

on Computer" pages 1063-1075, September 1987.

[39] J.E. Smith and J.R. Goodman. Instruction Cache Repla.cement Polides and Organi­

lation •. IEEE 7'n:In.taction.t on Computer" 34(3):234-241, March 1985.

[40] R.P. Stanley. Enumerative Combinatoric" volume 1. Wadsworth and Brot)ks/Cole

Advanced Books and Software, 1986.

[41] R.S. Stone. High Performance Computer Ârchitecture. Addison-Wesley, 1987.

[42] J.Y. Suh and D. Van Gucht. Incorporating Heuriltic Information into Genetic Search.

In Proceeding. of tAe Second Intemational Conference on Genetic Aigorithm.t Gnd

Their Âpplicatior&.f, page. 100-107, 1987.

