Visualization of the Dynamic Analysis of Business Models
Based on the Petri Net Formalism

Marianne Ozkan

Department of Computer Science, McGill University, Montreal

July 1993

Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the
requitements of the degree of Master.

Visualizing the Dynamic Analysis of Models Based on Petri
Nets

Marianne Ozkan

Department of Computer Science, McGill University, Montreal

July 1993

Thesis submitted to the Faculty of Greduate Studies and Research in partial fulfillment of the
1equirements of the degree of Master,

Table of Contents

Abstract

Résumé

vi

Introduction

Chapter 1

Background and Related Work 3

Dynamic Analysis and Business Modelling

111 Problem Statement
112 Envisioned Solution

Evolution of Modcllmg Approaches
12 1 Simuation, Queumndg Nutwoks, and Peln Nets

122 Discussion

Support tar Modelling Approaches

1 3.1 Existing Packages
13 2 Towards the Solution

Rescarch Content

July 1993

McGilt University

Contents

Chapter 2 Graphical Simulation 14

2.1 Defimtion and Purpose 14

2.2 Smulaton Back-End 15
221 input Parameters 15
2 22 Erecution Model 15
2 23 Execution Options 17
2 24 Desired Outpuls 19

2.3 Smmlanonu Front-End 20

2 31 Network Edtion 20

2 32 Sunulation Results 23
2 321 Gencral Considerations 23
2322 Scenano 24

Chapter 3 Performance Analysis 31

3.1 Goals 31

3.2 Pertoimance Analysts Back-End 31

321 Required Inputs 31
322 Execution Model 32
323 Execution Ophons 35
324 Rosults 36

3.3 Petlormance Analysts Flomt-End 38

331 Results on Basic Network Components 38
332 Group Restills 42
333 Stale Results 44

Chapter 4 Integrating Graphical Simulation and Performance Analysis -
The Macrotec Example 48

4.1 AboutMaciotec 48

4.2 The Macrotee Mcethodology 49
4.3 The Mactotee Functionalty 51
4.4 The User’s Peispectine 53
4.5 Gupheal Sumulation 55

4.6 Pertormance Analysis 57

4.7 Scenano 59

4.8 Implementation 60

Chapter 5 Graphical Simulation as Algorithm Animation 3

5.1 Foreword 63

5.2 Fundamentals 63

‘ 521 The Viewcer'’s Perspeclive 64
5§22 The Amimator's Perspeclive 67

July 1993 McGill University I

Contents

5.3 Algonthm Ammation Systeims 69
531 MVC-Based Systems 69
532 Anmus 70
533 Balsa 71
534 Tango 72
5.4 Macrotee’s Graphical Simulation as Algonthm Anmation 73
5.5 Extendmg Graphical Sumulation i Mactotee 75
55 1 Extensibility of the Design 75
552 Extending Macrotec's Development Environment 77
Chapter 6 Ongoing and Future Work 79
6.1 Tatloted Modelhng and Dynanuc Analysis Tools 79
6.2 Ammation Extensions to User Interface Frameworks 80
6.3 A Comparative Study of Tools Based on The Petrs Net Formahism 80
Conclusion 82
Acknowledgments 84
Bibliography 85
Appendix A Glossary of Basic Petri Net Terminology A-1
Appendix B Functional Comparison of Various Tools Based on the Pelri
Net Formalism B-1
July 1993 McGill University "

A bstract

Dynamic analysis plays a increasing role in software development as it helps assess
model behaviour. Techniques involved in dynamic analysis include graphical simulation
and performance analysis. While the former principally addresses the qualitative behav-
iour of models, the latter produces quantitative performance indices. The resolution meth-
ods involved in both analyses 1equire formal modelling techniques. Models based on the
Petrt net formalism have been extensively used to assess models, principally due to their

descriptive power,

In this reseaich, we review the Petri net formalism as well as the resolution methods
involved i graphical simulation and performance analysis and introduce generic concepts
that enable users to visualize the results of dynamic analysis through a consistent user
mterface. From the user’s pomt of view, our goal 1$ to facilitate the usage of dynamic anal-
ysis and case the mterpretabihty of its vesults. This is achieved by hiding complex
dynamic analysis resolution methods behind an attractive user interface layer, while pro-
viding the user with full control over both the methods’ execution and the display of their
results. From the designer’s point of view, we introduce generic visualization concepts

that can be tailored to specific application domains.

In the past year, we developed a toolset called Macrotec 1[36], which integrates the
modelling activity and both aspects of the dynamic analysis activity, namely graphical
simulation and performance analysis. Macrotec’s user interface was designed according to
our dynamic analysis visualization concepts. Its development allowed us to validate the

gencricity of these concepts by tailoring them to the business domain.

L. Mactotee was developed as part of a jont CRIM/DMR Group Inc. project, which is part of the IT
MACROSCOPF project.

July 1993 McGill University iv

Abstract

Our experience shows that dynamic analysis promotes system improvement by
enriching the modelling activity and thus, we strongly believe i the benefits of its usage
in software development. To promote this, we undertook the tationahzation of the results
produced by dynamic analysis and the elaboration generie concepts permitting their visu-

alization.

July 1993 McGill Unversity v

Résumé

L'analyse dynamique joue un rdle accru dans le développement de systemes car elle
permet d’évaluerle compoitement de modeles. Paimi les techniques d’analy se dynamique,
on trouve la simulation graphique et 1"analyse de performance. Tandis que la premiere a
tait principalement au comportement qualitatf de modeles, laseconde fournit des mesures
de performance quantitatives. Les méthodes de résolution utilisées dans ces analyses né-
cessitent une technique tormelle de modélisation. Diis principalement a leur pouvoir de-
scriptil, les modeles basés sur le tormalisme des réseaux de Pétrr sont fiéquemment utilisés

afin d'évaluer un systeme.

Dans cet ouvrage, nous exposons les méthodes de 1ésolution de la simulation
graphique et de 'analyse de performance telles quappliquées au tormalisme des réseaux
de Péur. De plus, nous mioduisons des concepts génériques qui permettent la visualisation
des 1ésultats dranalyse dynamique selon une interface usager cohérente. Du pomt de vue de
Fusager, nous tentons daugmenter Iaccessibilité de 1 analyse dynamique et de faciliter
Finterpretation de ses 1ésultats etee, en camouflant ses méthodes de 1ésolution derriere une
interface attrayante, touten laissanta 1Musager le plem contiol sur 1'exéeution de I'analyse
et Maffichage des iésultats. Du point de vue du développeur, nous décrivons des concepts
de visualisation généraux pouvant aisément s’ appliquer & quelconque domaine d*applica-

fion.

Au cours de la dernitre année, nous avons développé 1" outil Macrotec l[36] qui integre
a la fois I'activite de modélisation et les deux aspects ci-haut mentionnés de Panalyse dy-
namuque, soit fusimulation et unalyse de performance. Linterface usager de Macrotec

concretise nos concepts de visualization d'analyse dynamique. Son développement nous a

L Macrotecestissu d'u proget conjomt entie le CRIM ¢t Le Groupe DMR lic. ot fait partic du projet
MACROSCOP 171

July 1993 McGHl University vi

Resume

permis de valider la généralité de ces concepts puisque Macrotee s applique essenticlle-

ment & 1" organization du travail.

Notre expérience démontie (ue, par le fait d enrichir la modehsation de Sysiemes,
Panalyse dynamique promeut leur 1affinement. Amsi, nous sommes profondément con-
vaincu de son effet bénéfique lors du développement de systemres. Dans fe but de Fappli-
quer de facon efficace, nous avons donc entrepus La rationalisation des resultats produtts

par 'analyse dynamique ainsi que des concepts permettant leur visualisation,

July 1993 McGill University Vi

® Introduction

Modelling and model analysis have become an integral part of software engineering.
More particularly, dynamic analysis, which is the study of the behavioural aspects of sys-
tems, 1s a powerful instrument of system design and refinement. Various formalisms and
methodologies have come to support dynamic analysis in system development and evolu-
tion. Advances n Petri net theory [34] have made a significant breakthrough in drawing

together classical analysis methods and powerful modelling formalisms.

We describe in this work widely-used dynamic analysis methods used on Petri-Net-
based models. We focus on two types of analysis, namely simulation and performance
analysts. The fust one is the direct execution of a system as it is virtually “*brought to life™.
The second demonstiates the quantitative aspect of the system’s performance through
time. We suggest in both cases visualization techniques, incorporating state-of-the-art
graphies and ammaton techniques, that make use of dynamic analysis methods and
present model behaviour as high-level graphical abstractions. Furthermore. we present the
design of an integrated environment supporting the tasks of modelling, simulation, and
petformance analysts where a loose coupling between visualization schemes and analysis

models favours reusability and evolution,

Chapters 2 and 3 are dedicated to graphical simulation and performance analysis
respectively, desciibing possible underlying models and visualization techniques. Chapter
4 desciibes the Macrotee toolset [36] which integrates both aspects of dynamic analysis
into A coherent envionment targeted at business modelling. Chapter 5 draws a parallel
between Mactotee simulation and algorithm animation and proposes extensions that
would vltimately enable Macrotec to support visualization of dynamic analysis in the gen-
cral sense of algorithm animation. Finally, the last chapter surveys ongoing and future

. wotk i the dynamic analysis visualization domain.

July 1993 McGill University page 1

.

Introduction

This research provides the following original contributions to the dynamic analysis

visualization domain:

- Generic' visualization concepts are described that reflect the quantitative and qualitative

temporal behaviour of systems through an intuitive graphical user interfuce.

- Generic visualization concepts are described that atlow for the customization of dynamic
analysis resolution methods as well as for the tailoring of the resolution methods” results.
These concepts are illustrated through a graphical user interface that augments the trans-

parency of the underlying analysis engine.

- Simulation and performance analysis visualization concepts are clearly distinguished as
these two complementary aspects of dynamic analysis achieve different goals through

their own specific resolution methods.

- A precise vocabulary describing dynamic analysis results 1s inioduced which promotes
a taxonomy for both dynamic analysis findings, and the visualization repettone addressing

each of them.

- Generic dynamic analysis visualization concepts are validated and tamlored to the busi-
ness modelling domain through the Macrotec toolset which suppotts integrated simulation

and performance analysis.

- Finally, graphical simulation is described in terms of general algorithm animation. This
approach provides a solid base on which to construct, evaluate, and extend graphical sim-

ulation as it promotes synergy with a well-established related discipline.

July 1993 McGill University page 2

Chapter 1
Background and Related Work

1.1 - Dynamic Analysis and Business Modelling

1.1.1 - Problem Statement

Dynamic analysis is being successfully applied at improving the performance and
reliability of computer systems. This technique aims at decreasing a computer system’s
overall uncertainty and cost, and this, by facilitating detection and elimination of unantici-
pated performance and reliability bottlenecks in both its software and hardware compo-

nents.

The term dynamic analysis is used here in a generic way, to include performance
assessment, reliability assessment and fault-tolerance analysis [17]. This research focuses
on performance assessment, both qualitative and quantitative. Moreover, it concentrates

on a particular type of application, namely business modelling.

Business modelling is a technique for specifying and analysing an enterprise’s infra-
structure. Its overall goal is to identify, design and evaluate value-adding opportunities for
business improvement. To this end, business modelling approaches should support the
design and analysis of an enterprise’s architectural structures and their information tech-
nology components as well as the analysis of their dynamic aspects. Moreover, these
approaches should encompass the evolution of the architectural structure of business proc-

esses [S].

July 1993 McGill University page 3

Chapter 1 - Background and Related Work

Dynamic aspects of business modelling address the behaviour of systems, people and
the organization as a whole as well as the process control and physical resource sttuctures
of the business [5]. In the area of business modelling, key performance mdicatons would
therefore include items such as resource utilization, and dynamics ot product and intorma-

tion flow.

1.1.2 - Envisioned Solution

In light of the above problem domain, it is clear that a busmess modelling approach
should provide a formalism with precise semantics. This formahism should be hiphly
expressive, yet intuitive to non-specialists. Moreover, to support the dynanuc aspects of
business modelling, it should be well-suited for 1epresenting concuniency, synchroniza-
tion, communication, and cooperation among model components. A well-defined formal
ism, together with a visually attractive 1epresentation for the resulting models, will
enforce a common language among participants and may further communmication and

training in the enterprise.

Furthermore, such a formalism should support logical and structural assessment, as
well as analytical performance evaluation. Specifically, the methodology and ity formal-
ism should provide support for the analysis of causal relationships between processes, for
the investigation of undesirable system properties such as deadlocks, and for the automatic
generation of quantifiable timed performance measures. Also, the methodology should

favour prototyping to gain scalable optimization of the models.

The next section describes prominent modelling formalisms and details the one we

feel best suited for business modelling.

July 1993 McGill University page 4

Chapter 1 - Background and Related Work

1.2 - Evolution of Modelling Approaches

1.2.1 - Simulation, Queuing Networks, and Petri Nets

Simulation techniques such as Monte Carlo and analytical models such as Markov
chains [S0] are useful in describing phenomena of probabilistic nature. They have been
widely used for modelling systems, evaluating performances, as well as studying sensitiv-
ity to parameter variations. They hold, however, a major drawback in that their usage is
restricted to performance specialists. Clearly, higher-level techniques would bridge the
gap between clients on one side, concerned with the performance of a real system, and

modellers on the other, unfamiliar with the system domain.

These concerns triggered the development of two important abstract formalisms,

namely queuing networks and Petri nets. We discuss these formalisms in the rest of this

section,

A queuing network is a set of interconnected queues in which customers circulate and
possibly arrive from and leave to the outside world [48]. Defined routing probabilities
determine the path followed by customers through the network. Many packages make use
of the queuing theory, presenting resolution techniques such as simulation and exact or
approximate analytical methods. One such tool, AT&T’s Performance Analysis Worksta-
tion [51] makes use of the visual attractiveness of the queuing formalism to simulate and

present performance indices through a graphical user interface.

July 1993 McGill University paye 5
[y
R EEEEEEEEEEEEEEES—— o

Chapter 1 - Background and Related Work

Petri Nets (PNs)! have gained wide acceptance as a powerful modelling tool due to
their descriptive power in presence of phenomena such as concurrency and synchroniza-
tion. PNs, however, do not support temporal specifications, and therefore, no time-related
performance measures can be obtamned from analysis. Since thewr original elaboration in
the 60°s, many extensions of PNs have been proposed in an attempt to associae tnting to
net elements. E-nets [59], for example, introduce fixed tme delays between the enable-
ment of a transition and its firing. Another variation of PNs associates nunimum and max
imum firing time durations to each transition [53]. In this 1esearch, however, we tocus on
yet another class of Petri Nets, namely the Stochastic Petrt Net (SPNs) for 1casons which

will become clear later. At this point, let us formally definc PNs.

Basically, a Petri Net consists of a set of places P, a set of transitions T, a set of
directed input I and output O arcs connecting places to transitions and tansitions to places
respectively, and a marking M. The marking or state of a PN is defined by the number of
tokens in each place. The marking is represented by a vector whose ith component 1epie-

sents the number of tokens in the net’s 1th place. A PN can be formally described as [491:

PN= (P, 1,1,0,M)
P = {Pppy 0y}
=1, ,t}
lcPxT
ocTxp
M = {m'my’, m’}

where M’ is the initial marking of the net.

SPNs are extensions of PNs where random, exponentially distributed firing times are
associated to transitions. An important breakthrough in PN theory occurred when Molloy,
the father of SPNs, proved SPNs to be isomorphic to Continuous Time Markov Chains
(CTMC), SPN markings thus coriesponding to states of this particula type of Markov
chain [56]. This property implies that a« Markovian model can be automatically denved

from a SPN and that, conversely, performance indices produced from the 1esolution of a

1, Readers may refer to Appendix A, “Glossary of Basic Petr Net Terminology ™.

July 1993 McGill University page 6

Chapter 1 - Background and Related Work

Markov chain. The performance indices in question may be the average number of tokens
in a place, the frequency of firing of a transition, the average delay of a token, etc. The
advent of SPNs thercfore bridged the gap between graph models and probabilistic models

famihar to performance analysts.

Extensions of SPNs soon followed Molloy’s initial work They attempt to improve
the expressive power of SPNs by introducing new classes of transitions, while retaining
the behavioural equivalent to continuous-time stochastic processes. Generalized Stochas-
tc Petrt Nets (GSPNs) [50], for example, support timed and immediate transitions. Imme-
diate transitions, by definition, fire in zero time once they are enabled, whereas timed
transitions fire after a 1andom, exponentially distributed time. Deterministically Timed
Petri Nets (DTPNs) support a mix of exponentially distributed ond fixed transition time
delays. Fixed time delays may be useful in evaluating the performance of hardware com-
ponents where transition timings can hardly be imagined to be exponentially distributed

random variables.

1.2.2 - Discussion

Queuing networks have become widely used in modelling stochastic processes due to
the reduced complexity of their solution at the network’s equilibrium state. In effect, the
steady-state solution (ct. Section 2.2.3, “Execution Options™) of most queuing networks

can be factored into the product of the steady-state solutions of individual queues [48].

The major drawback of queuing networks is their lack of expressiveness in modelling
synchronization, blocking and splitting customers. Moreover, these phenomena destroy
the product form property of the queuing network, rendering necessary the conversion of

the simplest queung model mto & continuous time Markov chain.

July 1993 McGill University page 7

Chapter 1 - Background and Related Work

The interest in Petri nets can be justified by their descriptive power. However, they
must be converted into Markovian models which suffer from exponential state-space
explosion [1]. In case of intractable solutions, performance results must be produced by
simulation techniques at high processing cost, due to long programs and large amounts of

input data [1].

SPNs in particular are restricted by the limited-size systems they can graphically e p-
resent and the complexity of their analysis. This last factor is due to the fact that activities
in the same model may execute rapidly compared to others which are cntically time con-
sumimng. Fuithermore, some activities may even be inserted for some pute logic aspects,
making it difficult to define their timing and resulting in a system of equations which 15
difficult to solve [48]. GSPNs and DTPNs have 1educed resolution and tepresentation

complexity due to the introduction of new classes of timed tiansitions.

From the above remarks, we deduce that Petri nets, and i particulat GSPNs and
DTPNS, are the most adequate formalism for business modelling, performance evaluation,

and sensitivity analysis. This research therefore concentrates on Petri nets.

1.3 - Support for Modelling Approaches

1.3.1 - Existing Packages

Dozens of packages have been reported to make use of Petri Net formalisms in the

July 1993 McGill University page 8

Chapter 1 - Background and Related Work

modelling and analysis of real systems. Feldbrugge’s most recent overview [25] ot Petri
nct tools for example, hists 23 such tools, each offering diverse functionalities. In what fol-
lows, we look at three tools which we feel well-suited for business modelling, namely
Design/CPN, GreatSPN and SPNP.

Design/CPN by the Meta Software Corporation [54] makes use of Coloured Petri
Nets (CPNs). CPNs allow tokens to be of different types and to take on values specific to
those types. With CPNs, the size of models can be kept much smaller than with classical
Petii nets [54]. Design/CPN supports hierarchical models and temporal specification. It
has an open architecture and may therefore be expanded to support other types of Petri
nets, new analysis tools, or to interface with other modelling techniques. Design/CPN con-
tams a powerful graphical editor which performs semantic checks. It supports graphical
simulatton as well as the detection of potentially unsafe situations. Design/CPN enables
users to program code segments which are executed when the specified transition fires.
Many predefined functions we available for computing performance-related measures by

means of these code segments, however analytical resolution methods are not supported.

GreatSPN [15], a tool developed at the University of Turin, is based on Generalized
Stochastic Petti Nets. Although GSPNs support two types of timed transitions, immediate
and exponentially distributed, GreatSPN ofters solution algorithms supporting determinis-
tic timed transitions as well. The package includes a graphical editor for net specification.
I permuts vahidation ot the qualitative behaviour of the net by means of invariant compu-
tattons, detection of structural properties, and graphical simulation. GreatSPN supports
exact analytical solutions as well as Monte Carlo simulation to derive performance results.
Results can be computed at steady-state (equilibrium) or at specific time pomts according
to the Matkovian ttansform solution. Results may be displayed on the edited network

under histogram representation.

The Stochastic Petri Net Package (SPNP) [16], developed at Duke University, is a

July 1993 McGill University page 9

———————— .

Chapter 1 - Backgiound and Related Work

tool for the solution of Stochastic Reward Nets (SRN). which are extensions of stochastie
Petri nets. The steady-state and transient solution algorithms make use of the Mwkov
reward chain, a Markov chain in which rewards have been assigned o states and transi-
tions. SPNP also allows resolution by simulation. In addition to the standard set of meas-
ures already available, rewards allow associating custom measntes to markings of the
SRN. Logical assertion of the net can be performed by assoctating loprcal assertions to

specific markings. SPNP also supports sensitivity analysis.

1.3.2 - Towards the Solution

In developing a business modelling approach suppoited by a convenient pertormance
evaluation package, three alternatives command attention. The fitst one is simply selecting
an existing general-purpose package such as the ones desciibed m the precedimg section,
This approach, although advantageous i the short term, implies blurning vut apphcation
specifics, with all the disadvantages we know. The sccond altemative is to develop an
application-specific - business-oriented in our case - formalism while reusing 1esolution
models of existing tools. In this case, a dedicated user inteiface must be developed,
accompanied by a transformation component in order to translate the formalism mto the
formalism of the package used. Benefits of a direct mapping from the model formalism to
the business “jargon” must be carefully weighed agwnst the overhead resultimg from the
additional transformation component. Moteover, this approach imphes another challenge,
that of converting general performance indices into relevant busmess igues. Lastly, the
third alternative 1s to develop a complete methodology tatlored to the particular applica-

tion domain with a formalism and resolution models specific to that domain.

With any of these alternatives, the target system should exhibit thiee important fea-

July 1983 McGill University page 10

Chapter 1 - Background and Related Work

tutes. The first1s a user-friendly user interface that allows both edition and automatic val-
idation of the neiwork as well as the graphical edition of performance results. The second
is the support for structural analysis of the model by means of graphical simulation and pos-
sibly invanant computation. Finally, the thnd feature is the support of an analytical network
resolution method which 'dlspcnse.s users from the overhead of simulation. Furthermore,
these features should be fully integrated at the interface level, allowing access to the full

functionality of the modelling and analysis components in aconsistent and transparent way.

1.4 - Research Content

Chapter 2 addresses the first feature mentioned above by describing a Petri net editor
allowing for both network specification and validation. This editor constitutes the basis for
the visualization concepts subsequently described. Chapter 2 pursues with an extensive dis-
cussion of the second feature mentioned above, namely graphical simulation, whereas
chapter 3 addresses the third feature, performance analysis. Note that chapters 2 and 3 con-
centrate on the dynamic analysis visualisation aspects and do not intend to describe a full

modelling and analysis tool.

Both chapter 2 and 3 describe genetic visualization concepts applied to simulation and
performance analysis and which have been elaborated with two main concerns in mind,
namely easc of tailoring to various application domains and ease of integration into one sin-
gle edition and dynamic analysis tool. These concepts promote customization of simulation
and performance analysis resolution methods, as well as the interpretation of their results.
Furthermore, they are illustiated through a state-of-the-art graphical user interface which
combines the highest abstraction-level features found in various existing tools considered
in this study. tools such as [54]. [14]. and [26]. This user interface is augmented with orig-

inal concepts. identified as such in the research, which we feel furthers the interpretability

July 1993 McGHll University page 11

Chapter 1 - Background and Related Work

of dynamic analysis.

Chapter 4 describes the Macrotec! toolset and in so doing, meets thiee specitic putpos-
es. The first one is the validation of the gencral applicability intended by the generic visu-
alization concepts of the preceding two chapters. Thiough Maciotec, these generie

concepts are sucessfully tailored to the business domamn, the scope of the Macrotec project.

The second purpose of chapter 4 1s the verification of the feasability of integrating
graphical simulation and performance analysts into one single system, under a consistent
user interface. This has effectively been achieved in Macrotec, the 1esulting user interface
being described in chapter 4. By means of such extensible integration, Mactotec surpasses
in some respect the partial functionality offered by various tools consideted m this tesearch

such as RDD100, Eval [73], MetaDesign, Design/CPN [54], and Voltane [60)].

Finally, chapter 4 illustrates the design irade-offs mvolved in developing a busimess
modelling approach supported by a performance evaluation package, as mentioned m the
preceding section. In fact, at an early project stage, we considered the three alternatives de-
scribed above. Since we developed a business-specific methodology, we did not pursue the
first alternative. For lack of resources, we discarded the third alternative. We finally settled
for the middleground, alternative two, and undertook to develop our own original formal-

ism, yet using an existing performance analysis package.

Finally, chapter 5 takes on a new approach to graphical simulation as it describes it in
terms of algorithm animation. This chapter describes Macrotec’s graphical simulation de-
sign in terms of existing algorithm animation packages such as [46] and addresses, accord-
ing to this point of view, the extensibility of Macrotec in order to support to the very detail

the visualization concepts described m chapter 3.

1. Macrotcc has been elaborated as part of the MACroscope Architecture project (MACA), a joint project
between CRIM and the DMR Group Inc.

July 1993 McGill University page 12

Chapter 1 - Background and Related Work

To conclude, chapter 6 outlines the present and future work pursued in the field of dy-

namicanalysis visualization and the last part of this research emphasizes its major findings.

July 1993 McGill University page 13

R R R R R

Chapter 2

Graphical Simulation

2.1 - Definition and Purpose

Graphical simulation, also known as “the token game™, 15 the visual execution of the
network. It promotes comprehensive structural and behavioural assessment ot a networ!
by visuahzation of the causal relatonships between its components. Thus, 1t enables one
to answer questions such as” Which tokens are requued for a uansition fiimg? In which
order do nansitions occur? What outputs are obtiuned? What ate the necessary mtermeds

ate transitions to be performed? What inputs are requued for a specihed output?

In this chapter, we first discuss the back-end of simulation. We define the requned
inputs to the simulation engine, propose a simulation algorithm, and describe its expected
outputs. We then turn to the front-end of graphical simulation as we propose a basic praph-
ical Petri net editor and particularly focus our attention on a set of graphics primitives used

to visualize net behaviour and simulation 1esults.

Our discussion is based on a class of Petri nets with multiphicity, deterministic timed
transitions, and immediate transitions. The visualization concepts introduced, however,
may as well be applied to Coloured Petrt Nets, Generalized Pettr Nets, or any other class
of PNs. Taking into account Petri net elements such as guards, colorsets, mhibitor arcs,
etc. would indeed refine the modelhing approach, but would considerably comphicate the
resulting simulation engme. This would, however, add nothing to the discussion of visual-

ization, the main focus of this chapter.

July 1993 McGill University page 14

Chapter 2 - Graphical Simulation

2.2 - Simulation Back-Eand

2.2.1 - Input Parameters

The imputs of a graphical simulation engine are the followingl:

- the set of places, transitions, and arcs
- the imtial mankang of the network

- the finmg time of transitions

- the werght of transitions

- the multipheity of wes

Figure 1 shows a network ready for simulation. The network consists of four places
pl, p2, p3, and p4, one immediate transition t1, and three deterministic transitions t2. t3. t4
with fixed firmg times of 2, 2, and 4 time units respectively. T2 has a weight of 4 and t3, a

weight of 6. The multiplicity of t2°s output arc is 2.

2.2.2 - Execution Model

The execution of a network from an initial marking is called forward simulation. In a
timed forward simulation, a global clock keeps track of the simulated time units elapsed
since the beginning of the simulation. The global clock starts at time zero and is incre-

mented, each time awransition fires, by the firing time of that transition.

I Readers untamuhar with basic Petn net termmology may refer to Appendix A.

July 1993 McGill University page 15

R R

Chapter 2 - Graphical Simulation

L 4] t4

pl
-
< :54

Figure 1 - A Petri net ready to be simulated

The general algorithm of a timed simulation is the tollowing’

-

While Enable_transitions do {
Adjust_global_time
Resolve_conflicts
Fire_transitions

}

Enable_transitions An inactive transition is enabled if 1ts mput places cach contain a

number of tokens equal to or greater than the multiplicity of the ac jommg that place to

the transition. A transition remains enabled for a number of time units equal to s fining

time.

Adjust_global_time Many transitions may be enabled simultancously. The global

July 1993 McGill University page 16

Chapter 2 - Graphical Simulation

simulated clock is incremented by the shortest firing time of all enabled transitions.

Resolve_conflicts Enabled transitions which have completed their execution become
firable. Conflicts between firable transitions ate resolved according to the weight propor-

tion of the conflicting transitions.

Fire_transitions When a transition is fied, m, tokens are removed from each input
place of the transition and m,, tokens are added to each output place of the transition, m;

and m,, being the multiplicities of the inputand output arcs, respectively.

2.2.3 - Execution Options

The basic simulation algorithm described 1n the previous section may be refined to
account for user-specific goals. We propose here, diffetent facets of simulation which can

be integrated into an interactively-customizable simulation algorithm.,

Timed vs untimed simulations. A first aspect is to allow both timed and untimed
simulations. Timed simulations imply a clear distinction between the enablement of a
transition and its fiung, the former occurring at simulated time 1< 1;- 1, being the simulated
time at which the latter takes place. Clearly, t;-1, is the firing time of the transition.
Untimed simulations execute transitions without delay, therefore, as if they had immediate

firing time.

Manual vs automatic conflict resolution. Conflict resolution may be manual or
automatic. Automatic conflict resolution is performed without user intervention, by me ans
of transition weights, as we have already seen. Conflicts may also be resolved interac-

tively by sclecting the transition for firing from the conflicting set.

July 1993 McGill University page 17

Chapter 2 - Graphical Simulation

Automatic vs step-by-step execurtion. The simulation engine may be left o run unat-
tended in what is called awtomatic execution, or it may be torced to pause and restaried
again upon user reqquest, enabling in this way such manipulations as manual contlict 1eso-
lation and editing. The latter type of e Xxecution is known as step-y-step serniulonon . whee
a step is the interval between consecutive pauses. Intuitively, a step corresponds 1o one
iteration of the central while loop of the simulation algorithm. Logically, a step cone
sponds to thetime lapse between consecutive tramsition firings, since between these fiumg
events, “nothing” is considered to happen at the behaviowal net level, and time Smply

skips to the next transition firing.

Autormnatic execution requites specifying the number of simu Lation ste ps to execute as
wellasthe realtime lapse between each step. Bothexecution modes, antomaue or manual,
should terminate and prompt the user when the network has reached a deadlock (ie no

transitions can be enabled).

Cost analysis. Simulation may be auseful tool for cost analysis. A cost may be aso-
ciated to transitions. The simulation engine adds the cost of a fired transttion to the overall
costofthe process. The transition’s contribution to the ovetall process can be calculated as

a percentage of the total cost and presented as a graph.

Back ward simulation. Backward simulation is used to find il a certain marking is
possible from specified input places and, if it 1, find the different paths leading to this
muarking. Backward simulation helps answer questions such as: Which alteimatives pro

duce aspecified output? Which alternative has lowest delay and 1owest cost?

July 1993 McGill University page 18

Chapter 2 - Graphical Simulation

2.24 Desired Outputs

Simulation promotes comprehensive structural and behavioural assessment of a net-
work. Specifically, simulation helps realize three goals which can be associated to con-

crete simulation results,

[- Stmulation enables users to understand, assess, and debug:

the sequence of transitions
-the requirements of a transition
-the outputs ot a tinsition
-the role of a transition
-the role of the model as a whole

-the diymamics of the model (the possible sequences and parallelism)

The simulation results needed to achieve this goal are of qualitative nature:

-which and when do transttions become firable and enabled

- which makings permit a transition’s enablement and which sequence of firings
leads tothem

-which plices and how many tokens ate involved in transition firings

-which paths Tead to a particular firing or marking

2- Stmulation allows for model evaluation in terms of performance. It helps to iden-
tify model characteristics which are not evident during design. It enables the

identification of dead lock and bottleneck conditions.

July 1993 McGill University page 19

I B R R R IEEE T T TIEEEETTEEEETEEEEE——— - o

Chapter 2 - Giaphical Simulation

To realize this goal. quantitative results ate required such as.

- the average number ot tokens westding ina place duimg a simulition time intetval

- the simulated time requued fora tiring o1 a marking to oceun

- the critical path, time-wise. to achieve a specitic marking

- the average percentage simulation time spent executing a tansttron duting i simula
tion time interval

- the average thioughput of a transitton duning a simulatton ume mterval (e, the aver -

age number of tokens f'owing through the ttansition per simulation time unmt)

As we will see m the following chapter, these and other results can be achieved
through performance analysis. Note however, that the esults computed duting perform-
ance analysis are derived analytically, whercas m graphical simulation, they are updated

incrementally at each simulation step.

3- Smmulation helps develop new models.

To promote this, simulation furnishes ways ot comparing two models both m teims of

functionality and performance, using the qualitative and quantitative results of 1 and 2

2.3 - Simulation Front-End

2.3.1 - Network Edition

We now tackle the front-end of graphical simulation, as we lay out the basic editing
functions of the uset interface. We propose a géncric Petti net editor and suggest editing
concepts we feel important and note-worthy. This section provides the “look and feel™ of
the network, from the user’s point of view, and provides the basss for the visuahization of

simulation results, a topic handled n the following section,

July 1993 McGiH University paqge 20

Chapter 2 - Graphical Simutation

. Basically, the editor provides a four-region window as illustrated in figure 2, The first
region s the drawing areq, the second is a tool palette, the third is & menu bar, and finally,
the fourth 1s an mformation 1egion which provides feedback to the user The palette 15 con-
stituted of 1cons iepresenting the model s basic buildig blocks. The top-most icon, when
selected, allows users to enter text, for example, the labels of places and transitions. The
other rcons 1epiesent the places, the transitions, ttmed and immediate, and the arcs used to
draw the structural component of the net. The menu bar offers standuid file operations
such as New, Open, Save, and Save As, as well as standard editing operations such as
/ndlo. Copy, Cut,and Paste. Moreover, all simulation commands are accessed through the

Strlation command of the menu bar.

File Edit Simulation
A pl
O 5 Place
label[pL_—__]
] nmrkng
—»

STATUS: cdition

Figure 2 - Specification of a place’s label and initial marking

The editor provides different modes of network specification, depending on the user’s
familiarity with the editor. An example of such mode is the attribute specification

described hereafter.

July 1993 McGill University page 21

R R R T O

Chapter 2 - Gr. phical Simulation

The basic building blocks ot the models are charactenized by diverse arttbutes.
Timed transitions are characterized, for example, by a firing time, wes are chatactenzed
by their multiplicity, and places by the number of tokens they mitially contun We name
objects charactetized m this way the owners of their tespective attiibutes The editor sup
ports two modes of attiibute specification. Expertenced users may type mattiibute values
in the drawing area, since attributes we textual objects that, upon cieation ot theun ownet,
are displayed and given default values. Novices, ou the other hand, may specity atnibute
values through the Attribute menu, which, for each potential owner, displavs a dualogue
box prompting the user for attnibute values. The chalogue box shown i figure 2. tor exam

ple, 1s used to spectfy the attnibute of a place object.

The manipulation of graphical objects 15 semantic-dependent. For example, diapping
an owner from position (x,y) to position (x",y") will automaucally redisplay 1ts attributes

from their relative position to (x,y) to the same relative position to (x".y")

Semantic correctness 1s conserved throughout model editton. Arcs. for example, can
not connect two places or two transitions, Constiamts between graphical objects are

enforced.

Displayed objects belong to one of two classes. The first class 1s composed of objects
together with their attributes which are relevant to the simulaton engime. The second class
is composed of pure graphical objects. These objects ae the standard objccts one usually
finds in drawing applications. They enable users to annotate the net in order to merease its

understandability.

Attribute display may easily overload a window, as network complexity increases.
Furthermore, pure graphical objects may possibly lead to visual confusion. ‘The editos

therefore allows for selective display of information (attributes and pure gaphical objects)

July 1983 McGill University page 22

Chapter 2 - Graphical Simulation

through simple Show and Hide commands,

2.3.2 - Simulation Results

2.3.2.1 - General Considerations

The results we expect from a simulation were discussed i section 2.2.4, “Desired
Outputs”™. We now concentrate on their piesentation to the user or, in other words, on visu-
alizing simulation. We fust introduce the baste graphical primitives used to display simu-
fation tesults. Then, we present a scenario wheie snapshots are used to illustrate the

imtegration of these primiiives.

A transition may be in one of three states - inactive, enabled or firable. Furthermore,
firable tansitions may be conflicting. Accordingly, the simulation user interface provides
graphical distinction between these states and depicts conflicting situations. The time
reqquired for a tnsition to become fitable after its enablement 1s also made available to the
user. The user can display this figuie as areal number, as continuous qualitative feedback,
or as both. Continuous qualitative feedback, as described in details 1n the next section, is

applied to graphical simulation in an original way.

Upon transttion firing, tokens removed from the transition’s input place are shown
travelling along the path dictated by the input wic, so as to show they are “absorbed” or
“used” by the fired transition. In the same way, output tokens are shown as travelling

along the output arc to their assigned output place.

July 1993 McGill University page 23

Chapter 2 - Graphucal Simulation

Smoothing out graphical transitons by way ot numerous intermediate displays is
essential in rendering a sense of visual continnity which incteases the overall understand-
ing of model behaviour. For example. contmuous token movement helps to distinguish
which tokens are used and created by transitions, and 15 patticularly usetul 1 those cases
where many firing transitions shate input places. There is, however, a performance tuade-
off between the fiequency of 1cdiawmg and the speed of simulation. Smooth tansitions
necessitate numerous displays and may run stowly, due to imited computing power. On
the other hand, fewer displays produce a quck ammation but may also produce abupt

changes which dazzle inexpenienced users

The simulation user nterface supports two simulation ietresh modes, one showmnyg
continuous movement and the other showing only the ortgm and destination of movenent.
Users may alteinate betwees: these modes duting simulation. Morcover, the speed of sim-

ulation or real ume between subsequent displays. is adjustable via a sciolibar.

2.3.2.2 - Scenario

A scenario of step-by-step simulation is described heicafter. The scenanio 1s illus-

trated with figures 3 to 7.

Different quantitative data may be calculated as stmulation proceeds. Before launch
ing the simulation engine, usets may specily which data to compute through a standard
dialogue box such as that shown 1n Figure 3. Figuie 3 shows examples of different statis
tics such as the throughput and the percentage utilizauon time of tansiions as well as the
percentage time a place 15 empty and 1ts number of tokens. These statistics may be com
puted as an average between the start and st tme pomnts and for specific e pomts

with a constant increment between the startand stop points,

July 1993 McGill University page 24

Chapter 2 - Graphical Simulation

P STATISTICS

Transition Place .

‘m} throughput i} tohens

M % uthzation Q % cmpty
start stopr
| averape 0 tme pomnts

maement |1

1 wne s

Figure 3 - A dialogue box presentng possible statistics to be computed during simulation

The user lwnches simulation on the network as shown in Figure 4. A control box
immediately pop-ups showing the simulated global clock and the number of steps exe-
cuted. The contiol box enables users to take one simulation step forward (PLAY) and back-
ward (REWIND). Users may cancel the sumulation and 1estart it fiom the last network
state. They may also restart the simulation from the network's inttial state. The REWIND
button of the simulation control box, which accomplishes the step backward, is an original
concept which proves useful m highly concurtent networks, wheie action firing is rather
scattered on the screen. Italso seives to redirecta path when a conflicting action has been
chosen to fite. Since multiple rewinds ate possible, the history of simulation must be con-

served. Thas can casily be achieved by storing into memory the history of markings.

In figure 4. immediate tansition t1 is firable since it contains enough entities in its
mput place. This is shown by the thickness of its rectangle’s pen pattern. Transition t4 is
enabled and will become fivable at global time 4 as shown by a full slide bar inside the
transiton. ‘the shde bar decieases contmuously, showmg the time remainng until the

‘ transiton becomes firable. The dide bar can be understood with the thermometer meti-

phot The black portion of the barrepresents mereury on a horizontal thermometer belong-

July 1993 Mc Sl University page 25

R

Chapter 2 - Graphical Simulation

. ing to a transition that fires at “temperature zero”. When the PLAY button s ¢licked, the

entity in pl will be removed and one entity will be created in each ot p2., pd, and pi.

File Edit Simulation
] =
g pl ;.___
I | — S
SR ™ 1

[T
H 3

: ~ Suulation
O
: tl

el tune O step |
T RRIROE

T

*

E‘-. /
N A, A p Z
m

- e e i
H IR | [T
. & i

Q%)

TE N

T

o

pt

" Fana D2, TN
&
«
M
4
»

te 22

N
o
4

STATUS. simulation
.

Figure 4 - Simulation snapshot at step 1

Figure 5 shows the display at step 2, therefore after the PLAY button is chched. Tran
sitions 2 and 13 are conflicting since only ore token 1s present n then cominon mput
place p3 and their firing times are equal. Conflicts can be made apparent by Hashing the
conflicting transitions, for example, or by using a different colow to highhipht them We

also see that t4 has completed half 1ts execution as shown by a half-fudl shde baa.

Figure 6 shows two tokens in pl at simulation step 3. We assume that 12 fined smee its
output arc has a multiphicity of 2. The user muy have selected exphatly 2 for firmg, of the
simulation engine may have automatically selecied 2 tor frinng accordig to the weight

1atios of 2 and t3. T1 is firable since it1s immediate and has precedence over imed ransi-

‘ tions.

July 1993 McGill University puge: 26

Chapter 2 - Graphical Simulation

File Edit Simulation

S AN
63
%

-4 1

p-) Simulation

= o =1
el tune = 2 step =2
SRR A

TPRIRTIDNT JVROINRNEY §
'

[REWIND]

STATUSsmulation h_

Figure 5 - Simulation snapshot at step 2

=l
File Edit Sitnulation
pl I
N —GOg—
, g ~—1) .
ey ¥ 4 .S!mulnnon
§ t time =2 step=13
bbbt v
§Ej§ 9 " il PLAY_] i| rq;wm)li
womeecad | Pz p3 o~
p4
f———
._.>
STATUS: sunulation .

Figure 6 - Simulation snapshot at step 3

Sphtting up steps into substeps would atlow finer-grained graphical simulation, e.g.

smooth tohen movement and smooth thermometer decrease. For example, figure 7a illus-

July 1993 McGill University page 27

Chapter 2 - Graphical Simulation

. trates the network after tl has fired, as it shows a snapshot of the tokens ttay elling in con
tinuous fashion to t17s output places. Figure 7b. shows a snapshot. taken at a laterreal tme
than the preceding one, showing the continuous decrease ot t4's thermometer as the transt-
tion executes. t2 and t3 are enabled, however, they aie not yet lirable w simulanon time 1

v

as shown in figure 7b,

File Edit Simulation
pl —
C‘ ! e
=4 Sunulation
tl tune 0 step |
E: 2 L4 . ¢]il YN :[“"“"‘“li
?‘f..m’-m};% p2 l)" p 4

=

P
X

Bn T e oy

i g 12,4
| —{ 7]
STATUS: simulation

e

13,6
2

Figure 71 - Token movement between step 1 and step 2

In order to free window space, the user has the option to selectively desplay intorma
tion. For instance, the slide bar orlabels of places and transitions may be hidden. Anather
example is the forementioned icons in the status region which expand into files contanimy
statistics the user has chosen to compute during the simulattion The user may speafy
which information to display whenever the simulation engine pauses The feft hand icon
of the status region repiesents a tesult file contumng tables and paphs An example
shown in figue 8 contains a table of the average thioughput of tansinons and a hine praph
of the average throughput versus time. The nght-hand 1con of the status tepion iepresents

’ the simulation ttace where, for each step, the simulated time, the fiable transitions, and

the marking we specified.

July 1993 McGill University phcge 28

Chapter 2 - Graphical Simulation

File Edit Simulation

>

R

Mm&m 3
A

O
I

o 2t 60Dl
R Yt

~ Simulation

SRNCRRMNN
—

time = | step =1

§

LRI WIND]E

]

RO

STATUS simulation
b

Figute 7b - Thermometer decrease

Average throughput
N

0.25
Average Throughput oS
20 &
(-020 0 &
0.15| &
2-015 131 &
0.10
13-0.05
.0
- 0.025 0.0
0 "A»‘va\, OO AR KK X t4 N
0 1 2 3 4 Y
Time

Figure 8 - Simulation results - average throughput of transitions

Finally. the user may split the drawing region into two sub-regions, each containing a
model. Graphical simulation can be performed simultaneously, for example on alternative
maodels of the same system. The user may control the simulation through the same dia-

logue bov as the one shown i figures 4 to 7b. Comparative simulation can be described

July 1993 McGill Unwversity page 29

Chapter 2 - Graphical Simulation

. with the same algorithm we saw at section 2.2.2 “Exccution Model™, contiol boxes being

available for each model compared.

July 1993 McGill University page 30

o Chapter 3

Performance Analysis

3.1- Goals

The goal of performance analysis 15 to obtain quantitative 1esults about a model’s
behaviour inorder to understand and assess its dynamic characteristics. Examples of such
tesults are the waiting time for transitions, the throughput of the model, the bottlenecks,
and resource utihizau o, Performance analysis indicates potential problems in the model
and favouts 1ts improvement, as 1t can be conducted on various scenarios. It helps users

evaluate the impact of change on overall system performance.

This chapter undertakes the second portion of the dynamic behaviour of Petri nets by
looking at performance analysis. In this chapter, we first describe the required inputs to
performance analysis, teview the 1esolution methods for Generalized Stochastic Petri Nets
(GSPNs), and present the expected performance indices resulting from the analysis. The
second part of the chapter addresses the front-end of performance analysis by proposing a

genenie graphical user mterface specific to performance tesults definition and display.

3.2 - Performance Analysis Back-End

3.2.1 - Required Inputs

The inputs ot the performance analysis engine are the followinglz

- the places, transitions, arcs, and initial marking of the net
the firing time of ttansitions

I Readers who are untanuliar with Petrn net tenmumology may refer to Appendis A

July 1003 McGili University page 31

T T

Chapter 3 - Performance Analysis

- the weight of conflicting transitions

3.2.2 - Execution Model

Two types of performance analysis may be conducted. The fitst 1s conducted accord
ing to a simulation method, and the second according to an analytical solution method.
The Monte Carlo simulation [14], for example, uses a pseudo-tandom number penetaton
to implement the stochastic transition timing. A sequence of discrete events sepatated by
time ntervals is stmulated and performance estimates can be obtamed by pathering statis

tics from the execution of the model.

In this work, we focus oyr attention on analytical solution methods based on General
1zed Stochastic Petri Nets (GSPNs). This particular class of Petin nets has heen widely
used in the construction of stochastic models of disciete event systems, due to the memo
ryless property of the exponential distribution of the fining tmes, making the GSPN 150
morphic to continuous-time Markov chains [48]. Particulatly, we ae mterested i GSPNs
which have chatacteristics that reduce the number ot 1cachable matkmgs and thus the

complexity of the solution such as mhibitor arcs and prionties [50].

The associated stochastic model can be detived from the reachability set of @ GSPN
in order to obtain performance indices. In the rest of this section, we tormally define
GSPNs and describe a firing rule used to generate the reachability set and gaph (these are
defined below). Solution methods for the dertvation of the stochastic model and 1ts inter-

pretation may be found in [49].

A GSPN with prionties and inhibitor arcs is defined as follows [S50]:

July 1993 McGill University page 32

Chapter 3 - Performance Analysis

GSPN = (P, T, 11, I, O, H, W, M) where

- (P, T, I, O,M,) 15 the underlying basic PN (cf. Chapter 1),

- H is a set of inhibitor arcs,

-1l 15 an assignment of priornties to transitions, which associates lowest priority (0)
with timed transitions and higher priorities (>= 1) with immediate transitions,

- W= (wl, w2,...,wn) 1s an array whose ith entry is:

- the parameter of the negative exponential probability density function of the transi-
tion firing delay, if ¢, 15 a timed transition (i.e. the rate of the timed transition)
- a weight used for the computation of firing probabuilities of immediate transitions, if

1,15 an immediate transition.

In a GSPN with a given initial marking M", the reachability set is defined as the set of
all markings that can be “reached™ from M™ by means of a sequencé of transition firings
[49]. The reachability graph is a directed graph whose nodes represent the markings, and
ares are labelled with the transition whose firing produces the marking change. The 1each-
ability set and graph are constructed according to a tiring policy, of which we describe an

example below.

A vanishing marking is a marking that enables at least one immediate transition [48].
When such a marking is entered, the weights of the enabled immediate transitions are used
to probabilistically select the transition to fire. A tangible marking is a marking that ena-
bles tumed transitions only [48]. When such a marking is entered, the rates of the timed
transitions ate used to probabilistically select one timed transition to fire. Each timed tran-
sttion 15 assoctated to a timer that is set to a sampled firing delay instance from its proba-
bility distribution, when the transition becomes enabled. All timers of enabled timed

transitions are then decreased at the same speed until one of * .em becomes zero. At this

July 1993 McGill University page 33

Chapter 3 - Petformance Analysis

point, the transition whose timer equals zero fires. Every time a new mathing s entered,
timers are reset to new values sampled from their transition’s probabihity distuibution. Tt s,
in effect, ineseential to keep the values of timers due to the memonviess propeity ot the

exponential distribution [50].

The firing of a transition is considered an atomic operation whete tohens are 1emoved
from the input places of the fired transition and added to 1ts output places n one indivist-

ble step.

t3
p4
po |
ba—O
p8
17
I

9
> (o) @—

Figure 1 - GSPN model of a two-processor system [50)]

An example PN, drawn from [50], and its coriesponding reachability set and graph
are illustrated in Figures 1 and 2. In this example, timed transitions are assumed to have be

random variables with negative exponential distributions.

July 1993 McGill University page %4

Chapter 3 - Performance Analysis

pl | p2 | p3 | pd4|p5|p6|p7 | p8|p9
Mo 2 o o jo 1 1 o o T
M L oo T T To To
M2 o Jo I T o o T
M3 1o oo 1o o1 To
‘M4 1 lo |1 ol 11 o o
Ms [e oo o 1 11T 0 To
M6 ot oo 1T Jo o1 Jo
M7 o To o T To o1 To
M§ olo [t o1 oo 1 o
MO Jo |t fo oo 11T [1 o Jo
Mo Jo lo fo |17 Jo 1110 [o
Mt o Jo [t jo o [T 1 o o

Figuic 2 - Reachability set and graph of the GSPN m Figure 1 [50]

3.2.3 - Execution Options

The Markov chain may be solved at equilibrium conditions or at any arbitrary time
instant ¢ [48]. We refer to a resolution of the former type as a steady-state solution and to
the latter as a rransient solution. In the transient solution, performance indices are calcu-
lated at user-specified time points. Both solutions involve the resolution of a set of linear

equations.

The steady-state solution may use a standard sparse matrix computation algorithm,

adapted to the solution of a set of lincarly dependent equations augmented with the proba-

July 1993 McGill University page 35

Chapter 3 - Performance Analysis

bility normalization condition, as proposed m [14]. In case of matrices larger than

1023x1023, the Gauss-Seidel iterative method is used [29).

The transient solution method may be accomphshed by a matrix exponentiation alpo
rithm, where initial estimates of the opumal integration step ate dynanucally adjpusted
order to keep it as large as possible while keeping control over tound-olt etiors duting

vector additions. This resolution algorithm 1s proposed m [14].

3.2.4 - Results |

The reachability graph permits the computation of the steady-state probabtlities of the
markings. Fot a Iive and bounded SPN [48], the steady-state probabilities of the reachable
markings are used to obtam the steady-state pr ()bilblilly ol an actron bemg enabled. From
this result, the token probability density function of cach place can be obtamed. This 1esult

represents the steady-state probability of having a number of tokens m a place.

From the steady-state distribution over 1cachable maikings, the following aggregate

steady-state performance parameters we commonly and casily computed [47]

- The expected number of tokens in a place can be computed from the tohen probabil-
ity density function.

- The average throughput rate of a transition. This 1esult measutes the flow of tokens
through a transition and is obtained by the product of the transiion’s firmg 1ate and 1ts
probability of being enabled.

- The token utilization or percentage of tme a token 15 used 1n the model

- The average delay of utoken m taversing a subnet can be derived using Little’s for

July 1993 McGill University page 36

Chapter 3 - Performance Analysis

mula [44]:

E(T) = E(N) / E(Y)

whete E(T) 15 the average delay, E(N) 1s the average number of tokens in the process
ol taversing a subnet, and E(Y) s the average input (or output rate) into (or out of) the
subnet.

- The probabihity that an event occurs. This measute is obtained by adding the proba-
biliues of all markings 1n which the condition corresponding to the event holds TRUE.

I'he event of interest must be specitied by the designer.

- The throughput, which 1s the number of output results generated by the model dur-
g a specific time pernod.

- The tesponse time or total tme taken to get an output result,

.

Other performance mdices which are more difficult to compute are the distribution of
the delay incuried by a token in traversing a subnet or in completing a cycle through the
net [47].

Despite the nature of the indices generated by analysis, they must be interpreted in
order to grasp the dynamie behaviour and the impact of changes on the model. For exam-
ple, atoken unlization of close to 100% ndicates the presence of a potential bottleneck. If
the tohen 1epresents i tesoutce, the user may attempt to increase the number of resources
ot decrease the time delay of the activity responsible for treating this resource if its aver-
age throughput 1ate 1s considered low. Depending on the network’s semantic, users may
fine-tune the model until 1ts behaviour meets the performance requirements. The users’
ability to judge and interpret performance indices as well as their comprehension of the

muodel s crucial to the efficient usage of performance analysis.

July 1993 McGill University page 37

Chapter 3 - Performance Analysis

Note that the above performance indices may, in principle, be computed tor transient

solutions as well.

3.3 - Performance Analysis Front-End

The present section proposes a generic uset interface allowing for petformance results
definition and display. Note that the user mtertace described here spectfically addiesses
performance analysis component ot a general modelling and analysis tool. This user mtes
face is based on an otigmal classification of pertormance tesults. The basie puneiples ol
the model editor, on which the visualization ot 1esults 1s based, can be found m section

2.3.1, "Network Edition™ of the preceding chapter.

We describe the basic concepts telated to the presentation of performance analysis
results and illustrate the discusston with a suite of figutes. We distinguish between thiee
different types of performance 1esults characterized by the network component to which

they apply. These results are attitbuted to
- individual basic network components

- groups of similar basic components

- network states

3.3.1 - Results on Basic Network Components

Certain performance indices can be attributed to specific busic components of the net-

work. For example, the expected number of tokens 1n a place is undoubtedly an attribute

July 1993 McGill University page 38

Chapter 3 - Performance Analysis

. of the object type Place (we use the words component and object interchangeably). In the

same way, the average throughput rate is an attribute of the object type Transition.

We restiain the set of indices related to basic components to the following:

For cach place, the indices are:
- the average number of tokens

- the probabulity that it contains at least one token

For each transition, the indices are;
- the probability of enablc.aent

- the average throughput rate

In case of steady-state solutions, performance results are unidimensional, that is to
say, to one object conesponds one real number. In the case of transient solutions, the
tesults we two-dimensional as the time dimension comes into play. The best representa-

tion is therefore a graph such as a line graph, a histogram, or a table.

Figute 3 shows a network upon completion of performance analysis. The results are
computed over the model’s steady-state and appear as reals at default positions beside
then owner object. Figute 3 also exhibits the performance analysis (Perf-Analysis) menu
which enables access to the full functionality of performance analysis, including analysis
options, pertormance results to be computed and displayed, and of course, the perform-

ance engine trigger.

July 1993 McGill University page 39

Chapter 3 - Performance Analysis

File Perf-Analysis

2

prob=0.33 prob= 033
thr=0.167 thr= 0,167

STATUS: performance analysis

JiL

Figure 3 - Steady-state analysis

Transient results are positioned similarly to steady-state results, however, ae imtally
represented as icons. Icons exhibit standard window system behaviow and can be
expanded into resizable windows which, in turn, arc re-iconizable. ‘The wimdow displays

the actual graph computed.

Figure 4 shows the same model as the preceding figure upon completion of a tiansient
performance analysis. The icon representing the average number of tokens of place pls

shown in its expanded state.

July 1993 McGill University page 40

Chapter 3 - Performance Analysis

File

Edit

Perf-Analysis

Y
‘——>'<—“—E

Averaqge

umber ot Intities

Futit ies

A -
" Ob
e

h’%px’hﬂna

p2

NN VNN VN W
O AN WUV OO w

== 12 34 b 6 7 8 9 10
time
a2 T
c05
. [_<"3]
e Ph‘n‘] h]-r prh('xna
STATUS performance analysis —

Figure 4 - Transient analysis

The graphical behaviour of performance indices related to basic network components
is similar to that of objects™ attributes in network edition. They may be dragged with the
mouse and 1etain their relative position to their owner object if this one is dragged. They
are, however, uncditable. Furthermore, graphical objects representing performance results
react to the same principle of selective display as object attributes. That 1, they can be

shown and hidden at will, using a dialogue box provided for this purpose.

July 1993 McGill University page 41

Chapter 3 - Performance Analysis

3.3.2 - Group Results

Group results are performance indices computed over a set of similar basic netw otk
components (1.e. a group of places or a group of actions) which are. ulttmately, relevant
given the semantics of the network Groups consist ot a set ot places o1 a set of tansitions
over which results, similar to the tesults computed on ndiv idual components. wie com
puted. For example, a network 1epresenting a company’s overall activities can be e
tioned by grouping places and nansitions belonging o one patticular branch ot the
company. Results computed over a group, mn this example. a company’s branch, ate a

higher-level indicator of overall petformance.

For a group of places, as for mdividual places. we consider.

- the average number of tokens

- the probability that it contains at least one token

and for a group of transitions, as for individual transitions, we consider

- the probability of enablement

- the average throughput rate

Groups, being context-sensitive, necessitate user spectfication unhhke basic compo-
nent results which may be computed blindly for individual network components. A group
of places, for instance, is defined by selecting the places belonging 1o the group and den-

tifying the group with & unique label. Figure 5 shows a snapshot of the process, where

July 1993 McGill University page 42

Chapter 3 - Performance Analysis

File Edit Pert-Analysis
pl e . \

sy ety —— - © Iransition Group
2 A
%WM'//M’]‘]t)CI ' l (,l
;;W/,w;,w/:/: 41 .
;O ! probabihity of enablement
] B throughput rate
PRz s
:m,’/r?ﬂ/,"/ﬂ 4@ mxue cormawcrresss ¥R wex
: [I i K i
fl-—— p2 i ° :
% H
Lt o vy

2 £ 2RI
3
b

gt‘_"__::!,

(/’%» L

:;.v e - L » -

p : a2 ¢ 05] [¢ 035 a3
52' "‘" & . . - - -

Do v

SIATUS nansiion group defimtion

select transitions belonging to group

Figute § - Transition group definition

transitions a2 and a3 have been selected to form group TG /. The status area prompts users
tor the appropriate actions to take during Place group definition. The dialogue box permuts
group identification as well as the specification of the indices to be computed. The group is
recorded upon a click on the OK button. It can be redisplayed and redefined, as the transi-

tions belonging to a group ate specially wentified upon user 1equest.

Upon completion of pertormance analysis, group results are displayable directly on
the network o through a textual file. The first option, accessed through the Perf-Analysis
menu, mvolves wdenuty g the individual components of the group as well as displaying a
box contining the group label and the computed ndices. The second option is accessed

through the tile 1con tor group shown in the status region, as illustrated in Figuies 3 and 4.

July 1993 McGill University page 43

Chapter 3 - Performance Analysis

‘ When expanded, the icon invokes a text editor which automatically loads a file of the fol

lowing format:

GroupLabel,

Y

Tokens =1

% not empty = j

GrouanbelJ

l

Tokens =k

% not empty =

where ¢, is the set of transitions belonging 1o GroupLabel, and) 15 the set of transt-

tions belonging to GroupLabel - i, J, kand [are real numbers.

Groups of places are defined and displayed in & similar manner than the one just
described.

3.3.3 - State Results

Some performance results are related to states or markings reached by the network.
The probability that a marking occurs, the rewm time to a maiking, and the model’
. response time are examples of such results. Sucha marking conveys particuln meaning to

usets, given the semantics of the network. Results computed over states are context senst-

July 1993 Mc Gl University page 44

Chapter 3 - Performance Analysis

tive, likeresults computed over groups.

The main challenge implied in the visualization of results defined over states, is not
the display of the 1csults butrather the specification of the state itself. We describe, hereaf-
ter, an ougimal user mterface approach which enables interactive specification of network

states.

‘The specificanon of network states is initiated througha command of the PerfAnaly-
sts menu. The mam window enters the state definition mode, as shown in the status area of
ligure 6. The network displayed doesnot contiin the initial marking in order to enable the
display of the usei-defined state. The Stare dialogue box permits to enter the state label as
well o the mdices o be computed for that state. The State box remains tioughout the
state detmition process, the final marking being recorded upon a chick of the OK button.
The state dehnition follows a behaviour idenucal to the initial making defintion of mode
Edimion (el chapter 2). In effect, by double clicking on aplace, a Place dialogue_box, such
as that shown in Figuwie 6 15 displayed which enables the specification of the number of
tohens inthe 1elated place. Like initial marking definition, advanced users may also define
states by editing the detault number of tokens, in this case the wild character <, Places

.-

which contain ™" number ot tokens are not considered in the state definution. The tokens
are displayed inside the place when the OK button of the Place dialogue box 15 clicked to
permit the full wvisualization of the new marking. The process continues until the user

presses OK in the Stare dialogue box,

The bulfer-server example of Figure 7 illustrates the use of a simple interesting state
definition. A buffer with maximum size 1000 blocks accumulates data produced by the
Inpur-component and consumed by the Server component. The designer's performance
indice of interest 1s the probability of reaching the buffer's maximum capacity. given the

tates ot data production and consumption.

July 1993 McGill University page 45

Chapter 3 - Petformance Analysis

File Edit Perf- Analysis

> O =) Stae

label St J

T

B pobibiday

t
.g “%iclirn tinwe

l ----- |
OK {
el Place pl e s ¢\

mathing 3

Ans A m AR A

—
e Lo

Brnmmamwrann

W

ws:’ww‘g

STATUS: state delimtion; select places belongmg to the

state and enter marking

Figure 6 - State definition

Input fF———» Server

Figure 7 - Buffer-server example

The indices computed for user-specified states we displayed directly on the network
or through a textual file. The firstoption is accessed thiough the Perf-Anclysis menu and
involves redrawing the tokens of the network to display the user-specihied nmiarking as well
as displaying a box containing the computed indices. The second o ption enablig the dis-
play of state indices 1s accessed thiough afile 1con shown in the status 1egzron upon com-

pletion of analysis, such as that illustrated m Figures 3 and 4, Double-chicking on the wcon

July 1993 McGill Uruversity e A6

Chapter 3 - Performance Analysis

. invokes a text editor which automatically loads a file of the following format:

StateLabel,
{(pp m])v (pH I mH—l)’“'» (pi-rll’mH-n)}
Piobability =i

Return ¥ime = j

Stutcl‘abelj
{(py, mJ), (p_|+l’ mJ+l)’---a (pj+l’m]+l) >
Probability =y

Return Time=z

where 7, j, y,and z weeal numbers, m; is the number of tokens of place p,, and {(p,

m;)} is the set of pairs (p,, m) defined for muking StateLabel;,

Versionning being an important task of the modelling activity, all performance results
are rewined in memory. Users may therefore modify object attributes or even subnets of
equivalent purpose netwotks and compare performance results. Loading a network over
which performance analysis has been previously run automatically enables the Show com-
mand for performance 1esults and displays the result file icons in the status region of the

main window.

July 1993 McGill Uniwversity page 47

.

Chapter 4

Integrating Graphical Simulation and
Performance Analysis

The Macrotec Example

4.1 - About Macrotec

Performance analysis and graphical simulation are complementary strategies cnabling
network assessment and optimization. We envision a dynamic analysis tool which sup
ports these strategies by offering an integrated enviionment based firstly on a formalism
intelligible to both the performance analysis engine and the simulation engine, and sec-

ondly, on a user interface facilitating alternation between them.

We describe in this chapter Macrotee, & methodology and toolset targeted at business
modelling [6] which realizes the integration of performance analysis and simulation, We
begin with an introduction to the Macrotec methodology [4] and offer a functional over-
view of the Macrotec toolset. We pursue with our two engines of nterest, that is, g aphical
simulation and performance analysis, and describe their design within Maciotee as well as
their user interface. We conclude the chapter by illustrating the miajor Maciotec coneepts

in atypical scenario and by summarizing the main implementation ssucs.

July 1993 McGill University page 48

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Macrotec Example

4.2 - The Macrotec Methodology

Mactotee 15 a methodology and toolset for business modelling. It was developed in a
Joint project between CRIM and the DMR Group Inc. It combines several concepts origi-
nally developed n separate contexts, such as entity-relationship modelling of information.
spectahization and mheritance m the sense of object-oriented languages, event analysis,
and analyas of datu (product) flow as well as tesource utihzation. Theses concepts were
integrated mto a umform modelling framewoik with precise semantics tor the dynamic
aspects, which have been defined through the formalism of Petri nets. We describe this

formalism in what tollows.

CREATE
/CONSUME

Action 1 CHANGE --—

Place
of
entities

Figure 1 - Genetic model for Macrotec

The generic model for the Macrotec formalism is shown in figure 1. Actions (repre-
sented as rectangles) act on places (represented as ellipses) of entities according to the
type of relation between the place and action. The Petri net equivalent to the term “entity”

15 “token”, whereas “actions™ ae equivalent to Petri net “tansitions”.

An action is a unit of wotk which produces a change in the system s state. Acticns are
characterized by a firing time which can be immediate, random exponentially distributed,

ordeterministic. as well as a weight used in situations of conflicts. Entities which reside

July 1993 McGill University page 49

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Macrotec Example

‘ inside places may represent resources, for example. a human actor requued i the accom-
plishment of an activity (action), o products created trom an activity's execution. A place
1s a setting which contains a collection of entities belonging to the same type. a4 notion
equivalent to colours m Coloured Petri Nets [3+4]. The mutial matking detines the places”

initial number of entities.

Relations connect places to actions and are spectalizations of Petrr net “ares™ They
affect the state change of the network when an action fires. Relations aie characterized by
a multiplicity and belong to one of 5 types - Consume, Create, Change, Use, and XUse
Upon action fiting, entities are removed from the input place, added to the output places,
changed, or used, possibly exclusively (XUse) by the action, according to the relation con

necting the place to the action.

Macrotec: Petri net:

C oacr—] O]
COwco— -
C v xus— o= |

~ |
C Owcn— a—_1
I DOw cu— -

- &

COowus—| | T

Figure 2 - Macrotec and Petri net equivalent

. Figure 2 shows the correspondence between the Macrotec and the Petri net formal-

isms. The Create relation corresponds to an output Petri arc and the Consume relation to

July 1993 McGil University page 50

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Macrotec Example

an input Petry are ‘The XUse relation corresponds to a input arc and an output arc connect-
g one place o a nansition, the imput tokens being the same as the output tokens. The
Change 1elation involving two places cortesponds to an input and an output Petri ar,
whete the input token value 1s difterent from the output token value. The Change relation
involving one place only can be considered the special case of the Change relation involv-
ing two places, where the imput and output place are the same. The Use relation does not

have a Petni net equivalent.

4.3 - The Macrotec Functionality

‘The Macrotec methodology is supported by a toolset with the same name. The Mac-

rotec toolset comprises the following wols and facilities:

a tool for the graphical editton and validation of models, complemented with facili-

l

ties for graphical fayout,

a dynanuie analysis tool supporting both graphical simulation and performance anal-

ysis,

a substitution tool for coping with the complexity of models based on a hierarchical

approach and automatic abstraction of model parts into higher-level descriptions,

facilities for data exchange and evolutionary design.

Figue 3 illustrates Macrotec™s overall aichitecture, as implemented in version 1.0
[36]. Note that a unique interface provides external integration of the various tools_and
tacilities. Users interact with the system via a single base window, giving them access to
the tull functionality of the system and allowing for easy switching between the different
tools. Internally, the core representation manages all information manipulated and
exchanged between the user intertace and the various tools. Internal integration is fur-

theted by the underlying storage tacility, an object-oriented database allowing for storage

July 1993 McGill University page 51

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Mactotec Example

and retrieval of the core representation.

Uset Interface and Contiol

1 —
i i ¥ | AR |

quclllng Performance Sunulation Substitution Attomatic
ool Anal Tool Lingine ool Iavout Tool

Iranstormer 1

. .

Itanstormer 2]

—» GXE
- {Mappur f—p\ Representation

Core
Representation

Database

Figure 3 - Macrotec’s overall architecture

Macrotec consists of two categories of tools. In the first category aie the tools that
manipulate graph layout data. Such tools stote their data in the GXI'+ iepresentation,
GXF+ is our customized version of GXF, a standardized graph exchange foomat [52]. Sup-
porting GXF+/GXF allows us to easily exchange data with other, special-pu pose, GX1-
based systems such as the automatic layout tools being developed at the University of
Toronto. Non-GXF+-based systems require data transtormation progiams o1 instance,
integrating our substitution tool (implemented befoiec adopting the GXEFt standard)

required the development of the Transformer2 program,

Tools belonging to the second category manipulate the model data that are not related

July 1993 McGill University pacye H2

[

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Macrotec Example

. to the graph representation. In case these tools are part of the Macrotec process, e.g., the
ammadton tool, they interact with the core directly. Otherwise, a data transfer program to
and from the core 15 requited. For instance, the performance analysis tool, running as a
separate process, interacts with the main Macrotee process via TransfornierI. Mapping of
the core mto the GXI+ 1epresentation and vice versa is cartied out by the Mapper compo--

nent.

The folowing sections discuss the internal and external integration of both simulation
and performance analysis tools. Macrotec’s user interface is an instantiation of the con-
cepts discussed in the preceding two chapters. Developing this user interface allowed us to
validate these concepts and suppott the functionality requited in Macrotec version 1.0.
The comprehension of the system’s external integration necessitates a short introduction

o 1ts user’s perspective which we discuss in the following section.

4.4 - The User’s Perspective

The user interacts with Macrotec through one main window. Figure 4, for example,
shows a main window containing the model of a simple delivery system. The main win-
dow consists of a palette on the left side contaimng the models™ basic building blocks,
where places ae1epresented as ovals, actions as rectangles, and relations as directed arcs
broken by the relation’s actonym. The object attributes relevant for dynamic analysis ave
displayed mside their owner. Thus, a place’s marking 1s shown inside the corresponding
oval as an mteger inside a small circle, and an action’s firing time and weight are shown
instde the corresponding rectangle. The multiplicity of a relation is represented as an inte-

I ger beside the relation’s acronym.,

July 1993 MceGill University page 53

T R R T T S

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Maciotec Examople

StructurcName /PagceName o

File Edit Define Node Group Show Abstraction Performance Simulat:

ABC

Ordered products Shipment prepaattion Products reads for tanspot tation

Action e 10 0
CO ~—— C'R.H O
_———
D !
Products Produdcts at destmation

* .
Consume Clt! CO:l “H F-—-——~—>(@

C
A
—CO ¢ Slchcdulcd ol
shipmeni
Croate Otder Processing ;ctllluc.\tl u Transport
d. 15 e 50 v
SN @) co.— CO
Change -
_cHe— Order forms @ Truchs Delwery
Ch 1 T
ange/' -’CO: CR:l) Col { v l
— CH
N .
XUse

Shipmen iequest Scheduling slpment schedule

— Xy — [
Use @ CH.1+ ORI

—u-

Figure 4 - Macrotec model of a delivery system

Graphical simulation and performance analysis can be directly launched hom within
the main window through menus Simulation and Performance iespecuvely. Graphical
simulation is carried out directly on the edited network, tor instance, all gaphical objects
affected by a simulation step ate refreshed to 1eflect theit new state Performance results

are also displayed directly on the netwoik,

The displayed model is in either of thiee states. animating, editing, o1 analysing per
formance. The control component at the user interface level (see ipure 3) manages the
access to these states and calls on the approprate tool (cither modelling, simulation, or

performance analysis) to take over conttol when requested by the uses

July 1993 McGill University paye 54

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Macrotec Example

. 4.5 - Graphical Simulation

The execution algorithm for simulation is identical to the one described in chapter 2,
“Graphical Stmulation™. Thus, an action can be in one of four graphical states: inactive,
enabled, fnable and conflicung. Figuie 5 illustrates the possible graphical states of an
action, as simulation proceeds. The action shown fires in a deterministic time of 3 time
units and 1ts weightis 1, asnoted by the inscription “*d:3:1”. An enabled action is distin-
guished by the display of a timer which is mitialized to the action’s firing time and

decicased untl the action becomes firable.

timer 7////////////////

d:3:1 d:3:1 z d:3:17
Z 7

A V/

z 7

A A

A A

Z 7

3 z 7/

////////////////

inactive action enabled action firable action contlicting action

Figure 5 - Possible action graphical states during simulation

Figure 6 shows the dialogue box enabling control of step-by-step simulation. The box
displays the global simulationtime as well as the step number (c.f. chapter 2, “Graphical
Simulation™). Buttons Next Step and Cancel permit to pursue one step of simulation or

quit step-by-step simulation altogether.

Simulation

global time =0

step=1

NEXT STEP CANCEL

Figure 6 - Simulation Control

July 1993 McGill University page 55

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Macrotec Example

Figure 7 shows the portion of the system’s architecture that nteracts with the simula-
tion engine. The core and the simulation engine keep diftetent tepresentations of the
model. The core is the stoled, central tepresentation of the uset mtertace tfrom w hich other
architectural components are inttialized. The simutaton engine s data s mititabized o the
core data (ie. the initial marking), aupmented with the simulation parameters specitiesd by
the user and is modified, during simulatton, to heep track of new markings Fhe user intet
face stoies the graphical information relative o the model. recording every change bemg

made to the graphical objects.

From the selection of the simulation command o the graphical display of the first
simulation step, we follow the control flow. First. the cote is updated to the curtently dis
played model (graphical objects). The core and the user mtertace not bemg wlentical at all
times, 1t is necessary to synchronize them prior to simulation. The conttol component
launches the simulation engine, triggermg sty imtialization procedures. The engine updates
its representation, mapping it to the coie’s, and processes one simukation siep “Fhe Control
component requests the new state of the model from the simutation cn}n}w and calls on
graphical objects to update themselves accordingly. All above steps other than mtaliza-

tion procedures are repeated each time the user presses the Ne Step button (see hguie 6).

Ul
and
Control

7

Simulatior
cngine

Figure 7 - Simulation Architecture

July 1993 McGill University page Y6

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Macrotec Example

4.6 - Performance Analysis

The resuits of a prehmimary study of various performance analysis tools conducted in
the scope of the Maciotee project [35] suggested the use of an existing package to help
achieve the dynamice analysis requirements of Macrotec [36]. The report of this study 15
presented m Appendix B, Five packages were evaluated. namely the Great Stochastic
Petnr Net package (GieatSPN) [15] from University of Turin, the Stochastic Petr1 Net
Package (SPNP) [60] from Duke University, Design/CPN [54] from the Meta Software
Corporauon, Fival [73] fiom Venlog, and Voltaire [60] from McGill University. SPNP was
selected tor reuse in Mactotee due to the proximity of 1ts underlying formalism to Macro-

tee’s and 1ts avatlability.

SPNP’s undetlying formalism 1s i fact an extension of the stochastic Petri net,
namely the Stochastue Reward Net (SRN) [18] which is based on the Matkov reward
model pamadigm [63]. SPNP provides a set of custom performance measures which can be
computed either at steady-state or at specific time points. Furthermore, it allows for the
specification ot custom measnes defined in terms of reward rates associated with mark-

mgs o1 rewards assoctated to transitions.

A first prerequisite to the usage of the SPNP package in Macrotec concerns the ability
of converting Macrotec models into SRN models used by SPNP. Secondly, in terms of
performance, SPNP must be accessible not as a whole, but rather its relevant procedures
yieldimg solution methods computable over SRN models must be accessible directly
through Macrotee, and this, with full access to their available options. Finally, a last
tequitement to the use of SPNP s the availability of the packige’s analysis results in such
i format that enables extiaction and, after possible manipulations, integration into the

Mactotec's ditta structures,

July 1993 McGill University page 57

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Macrotec Example

In order to bridge the gap between the Macrotec tormalism and SRNs, 4 ttanstorma
tion unit is requued that converts Mactotec models into SRNs accordmg to the cone
spondence table of figuie 2. The 1esulting model, however, somewhat loses descrpine
power, a4 few “holes™ in the SRN formalism necessitatng approvimate tithings For exam
ple, the Use 1elaton which has no Petii counterpait, 1s teated as a Ntse aelanon, and
deterministic finng times which are not supported m SRNs ate approxmated by random,
exponentially distributed firmg times. Based on our expenence however, this loss ol

descriptiveness is not ovetly severe [76].

The SPNP package has a strictly textual user interface. SRN models are described
using CSPL (C-based SPN language) [16] which 15 a library ot C programmng lanpuape
constructs that facilitate easy descuiption of SRN models. ‘The SRN maodel, the analvses
options as well as the performance measures are contamed in SPNPS mput C file which,
after compilation, 1s run according to the specified solution method. Performance results
are written into an output file with a well-defined format that allows convenient atomu

tetrieval.

Figure 8 shows the major architectural components mvolved in Maciotec’™s petform
ance analysis functionality. Upon selection of the performance analysis command, the
Control component updates the core representation of the model and launches the 7ians
former. The Transformer, containing knowledge about both formalisnis, pernuts the tans
lation from Macrotec into SRN models. The resulting SRN 15 written mto a CSPI, tile
following SPNP format, along with the proper analysis optuons as defined via the user
interface. The Control component titggers the execution of SPNP's 1esolution methods on
the input file and prompts the Extractor to scan the tesulting file, extiact pertinent results,
and nsert them into the core. Finally, Control calls on graphical objects at the user inter-
face level affected by the analysis to update themsclves accordmg to the core, 1.e., to diy

play the 1elevant analysis results.

July 1993 McGill University page S8

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Macrotec Example

ul
and
Control

Transtoriner| g go -a—p| Extractor

Core
representatio

Figure 8 - Pertormance analysis architecture

Mactotee™s current implementation supports performance results attributed to individ-
ual places and actions [39]. These are displayed by default beside their 1elated object and

can be hidden on request.

4.7 - Scenario

One typreal application domain of Macrotec is the modelling of enterprise informa-
tion systems for prescriptive usage. We provide a scenario of this kind of modelling. We
modelled, as an example. a simple dehvery system with products being ordered, trans-
potted, and finally delivered to destination. Note that we have successfully applied Macro-

tee to 1eal business applications [76].

July 1993 McGill University page 59

Chapter 4 - Integrating Graphical S!mulation and Performance Analysis - The Macrotec Example

Figure 4 shows a network loaded by the user, possibly reusing a template m patts ol
an existing model. The user may edit and refine the network, adopting a top-down ot bot-
tom-up approach by respectively decomposmg or abstiacting parts ot the network. The
built-in validation component of the modelling tool makes sute that the ditierent levels of

the network are consistent.

The simulation engine is triggered through the base window. The graphical execution
of the model may be performed at user-specitied hierarchical levels, allowing tor partal
model assessments and permitting the user to define a configmation that cotresponds to

his or her mental model of the system.

Performance analysis generates quantitative results on model behaviow For example,
a comparatively low action throughput and average number of entities 1n an action’s mput
place (“low™ mught have difterent significance depending on the network wmchitectne)
may confirm a bottleneck that has alieady become apparent during simualation In ight of
these results, the user may inciease the number of over-stiined resources o smoothen
execution (in our example, we would increase the number of “Iiucks™, 1f the action
“Transport™ had low throughput). Users may prototyne the model by tunning, i an teta-
tive way, simulation and performance analysis, until the appropriate attnibute values and

configuration for a desired model behaviour are found.

4.8 - Implementation

To conclude this chapter, we provide a few remarks about Macioted’s implementa-
tion. Macrotec is 4 Unix-based system developed mostly m Ct i (minor parts were witten
in C), running under SunWindows, NeWS, and the X 11 window system. fts user intetface
has been implemented with the ET++ application framework [74], [75], as database we

are using Gemstone! [13]. As hardware, we use Sun Sparc-2 workstations. We do not

1. Gemstone 15 a registered trademark of Servio Corporation

July 1993 McGill University page 60

Chapter 4 - Integrating Graphical Simulation and Performance Analysis - The Macrotec Example

‘ mitke use of colour in Macrotec, since this would make us dependable on the availability
of colour monitors. Moreover, we contend that the visuahzation concepts developed in our
project are expressive enough and do not necessitate colour. To date, we have invested

more than four person years in its development.

Performance is a key factor for successful dynamic analysis. Our experience shows
that owr plattorm produces efficient graphical simulations. As for performance analysis,
the efficiency obviously depends on the complexity of the model. With complex models,
the bottleneck of performance analysis is mostly due to the back-end component, namely
SPNP, as opposed to the front-cnd, the user mterface. whose performance is only slightly

degraded by the loading of results from the data base.

The data transformation programs requited to integrate external tools into Macrotec
ate an indicator for the extensibility of the system. According to our experience, those pro-
grams dealmg with the GXF+ representation tend to be considerably longer (4:1 ratio in
lines of code) and more complicated than the ones interacting with the core representation.
However, this will not be a severe limitation, since future Macrotec extensions will most
lihely require a transformation of type Transformer 1 (c.f. figure 3). We do not see the
need for further graph manipulation tools, and hence transformations of type Transformer

2 will not be required.

We have adopted an object-oriented development approuch that has provided signifi-
cant productivity and quality gains. For instance, our user interface software is highly flex-
thle and reusable, in part due to the use of ET++. ET++ 1s a powerful, object-oriented class
libtaty integrating eser interface building blocks with high-level application framework
components. The usually steep learning curve for such applicatton fiameworks has been
alleviated by the use of some powertul C++ development tools, most notably, the Sniff
tool [3]. Another benefit of the object-oriented approach in Macrotec is the use of Gem-
stone together with its C++ interface which has led to an efficient database interface. To

. prototype the user interface of Mactotec, we ran several user interface development

cyeles. The integration of several standalone tools with their own graphical user interface

July 1993 McGill University page 61

R R R R R R R EEEEEEEEEEEEETTTEEEEEEEEEEEEEEEETEEEEEEEEEEEEEETEEE—————

Chapter 4 - Integrating Graphical Simulation and Performance Analysts - The Mactotec Example

was an incentive to meet (or surpass) the usabulity criteria of cach.

Various existing dynamic analysis tools such as Design/CPN support graphical simu-
lation and provide quantitative performance 1esults. However, these tools do not support
performance analysis in the full sense, as descuibed i chapter 3. To ennch behavioural
model comprehension in Macrotec, we chose to support both graphical simulaton and
performance analysis as we developed ow own simulation engme and made practical
reuse of the SPNP performance analysis package. To our knowledge, a smgle algorthm
encompassing all facets of simulation and performance analysis is not, to this day, avala-

ble. Moreover, it is questionable whether such an algonithm would pet form 1easonably.

As our system evolves, with new external tools requiring mtegiation, we will be in a
better position to determine how easily our system can be adapted and hence whether on

not our design and guiding principles we mndeed sound.

July 1993 McGill University pagye 62

Chapter 5

Graphical Simulation as Algorithm Animation

5.1- Foreword

This chapter is concerned with the field of algorithm animation. We first introduce the
domain and then conelate 1its techniques with that of graphical simulation, as studied in
Chapter 2. We will show that graphical simulation can be interpreted as a special case of
algorithm animation. In tact, m algonthm animation, the program’s runtime operations
and data are of ntetest and dictate how the amimation appears. In a simulation instead,
only the simulation data being produced by the executing program are censidered relevant
and displayed graphically, whereas the program itself and its internal data serve only as a
means to produce and display the simulation data. We refer to the term “graphical simula-
tion™ to undetline this distinction!. Based on this finding, we describe the design of graph-
ical stmulation as implemented 1n the Macrotec toolset 1 terms of algorithm animation
systems such as Tango [65] and Balsa [10] and address its extensibility to support multi-

ple-views and muluple-models, as general algorithm animauon systems.

5.2- Fundamentals

Algonthm animation is a form of program visualization which complements tradi-
tional textual communication by using the “technology of interactive graphics and the
crafts of graphics design, typography, animation, and cinematography to enhance the pres-
entation and understanding of computer programs [2]”. Specifically, ammated visualiza-

tons help to evaluate existing programs by monitoring and comparing their performance

1. Note that what we call graphical simulanion 1s sometunes referred to as ammaton.

July 1993 McGili University page 63

Chapter 5 - Graphical Simulation as Algonthm Amimation

with related programs. They support programmers at debugging programs and developing

alternative solutions to problems by studying the dynamic behaviour of algorithms.

Special-purpose software environments for algorithm anmmation ate otten efered 1o
as algorithm animation frameworks or algorithm ammmation systems Such hiamewor ks
provide support for the activities of two types of users, namely vieveers and anmimator s
[10]. Viewers directly interact with the dynamic graphical representations ol the alponthm
which are programmed by animators. We first teveal basic algonthm amimation technigues

from the viewer’s point of view and pursuc by describing the animator s taske.

5.2.1- The Viewer’s Perspective

In this section, we 1llustrate our discussion with figures from the Balsa algorithn ani-
mation system [10]. We provide examples of sorting algorithms since they are widely used

as test-beds for such systems.

Viewers specify the algorithms and views of an animation and we 1esponsible for

managing the layout of views on the screen:

Algorithm. Numerous algorithms may be run simultancously in order 1o compare
solution approaches. Figure 1 shows the Balsa algorithm animation framework tunning on
four sorting algorithms. The Shellsort, Heapsort, Mergesort, and Quicksort cach 1un
simultaneously in separate windows containing a “Dots view” of the algotthm Fach cle-
ment of the artay being sorted is represented as a square whose horizontal cooidinate (1

responds to its position in the array and whose vertical coordinate corresponds to its value.

July 1993 McGill University page 64

Chapter 5 - Graphical Simulation as Algonthm Animation

‘ @ Ffile [dit Aun Windows Aigs Uiews Inputs

Figure 1 - Four algorithms running simultaneously [10]

Views. A view is a graphical display reflecting the algorithm’s behaviour. Numerous
views provided for an algorithm may be opened simultaneously, thus complementing each
other’s piesented information. Views may be opened and closed during the algorithm's
execution. Figure 2 shows multiple views of the Quicksort algorithm running under the
Balsa system. The Dots view 1s shown on the left and the “Partition-Tree” view on the
right. The latter displays each element of the array being sorted as a node in a tree. Its hor-
1zontal coordinate corresponds to its position in the array. Circular nodes are in their final
position in the array, whereas contiguous square nodes represent sublimes waiting to be
processed according to their depths in the tree. The example illustrates the use of state
cues to show changes in the state of the algorithm’s data structure, as the different nodes"

graphical representations distinguish sorted and unsorted elements.

July 1993 McGill University page 65

R R R R R ORI R

Chapter 5 - Graphical Simulation as Algorthm Animation

[& fie Eait

0ui kot Heourvive Tunming

Aun Windows Alas Views 1npuls

Figure 2 - Multiple views of an animated algorithm [10]

Communication between the view and the algorithm 1s bidirectional. Views update
their display according to the algorithm’s state. On the other hand, views may transter user |
input to the algorithm. Such input is based on the current runtime state of the algonthm.,

Figure 3 shows a tree-traversal algorithm which has run through 1ts malization phise
and now pauses, awaiting for the user to select a vertex from where the traversal will
begin. The window’s left side displays the undirected graph view of the algorithm. The
right side shows the adjacency matrix view, where a marker at position (x,y) indicates the

presence of a directed edge between the xth and the yth vertices.

A further task of animation viewers is the control over algorithm execution. Anima-
tion may be carried out at various speeds, the views may be refreshed at specific points in
the algorithm, and the animation can be reset. As an example, Balsa distinguishes hetween
“step-points™ and *“stop-points” at which to update and refresh the views. Step-ponts are
analogous to a conventional debugger’s notion of “single stepping” through the algorithm,
that is advancing to the next line. The animation may also pause when a certain stop-point

in the algorithm has been reached a specified number of times. The determination of algo-

July 1993 McGill University page 66

Chapter 5 - Graphical Simulation as Algorithm Ammation

‘ rithm instructions available as refresh points is accomplished by the animator, as we will

see in the following section.

Select a starting node: .

Depth furst lraversal inputting

Figure 3 - An ammated algorithm awaiting for user input through a view [10]

5.2.2- The Animator’s Perspective

Animators are responsible for the two following main tasks:

Annotating the algorithm. Annotating the algorithm to be animated consists of

mserting into it animation-specific operations which update the algorithm view display.

These operations are sometimes refered to as interesting events since they are the algo-

rithm’s fundamental operations selected for describing the algorithm’s dynamic behaviour

through 1ts views. As a rule of thumb, interesting events are inserted wherever a print or a

‘ read statement might have been placed for debugging, tracing, or generating output of the

algorithm in a non-graphical environment. For example, the Selection Sort algorithm finds

July 1993 McGill University page 67

Chapter 5 - Graphical Simulation as Algorithm Anr ot

the smallest item of an array and swaps 1t with the item in the fitst position. 1t then finds
the second smallest item and swaps it with the item i the second position, continuing m
this way until the sort 1s completed. Two events ot interest which may be reflected i the

views are the Compare and Exchange operations.

Designing views. This task consists of implementing the data structwes which make
up the view as well as their behaviour. Graphical shapes (for example, rectangles or cu-
cles) as well as the operations which reflect a change in then state (for example, move o
highhght) we therefore implemented at this stage. Views, which me updated cach tume an
interesting event is 1eached during the algonthm’s exccution, requue a mapping mecha
nism from the scieen coordinates nto the object displayed, m otder to allow users to
dynamically modify the algonithm’s data sttuctures. Common logical stiuctutes of views
such as graphs and trees, as well as common behaviour such as window-management
aspects, may be stored into libraries: thus the ammator needs only code particulars of the

view which itself may be shared by many algorithms.

Designing views 15 an art which, above all, necessitates a thorough understanding of
the algorithm to be animated. Brown presents in [9] a three-dimensional framework tor
characterizing algorithm animation views. Along the first axis of this framework, views
are characterized according to their content. Animators may choose to design views whose
displays are 1somorphic to the algorithm’s data structuies, so that at any mstant, one can he
reconstructed from the other. On the other hand, ammators may desipn views which dis
play synthetic information of the algorithm, and theretore have no ducct mapping to the
algorithm. The second axis of Brown’s framework presents a characternization of views
according to the type of transition occurring between the states of objects m the view.
Transitions may be inciemental and therefore smooth, or they may he discrete, the later
resulting in abrupt visual changes. Finaily, the third axis charactenizing views 1s the per
sistence of the view. Views may display the current status of the algorithm o1 may show a
history of the each change in information. Animators will design views along this fiame

work depending on the most convenient iepresentation tor end-users.

July 1993 McGill University pane 68

Chapter 5 - Graphical Simulation as Algorithm Animation

Once the annotation of the algorithm and the design of views are completed, anima-
tors must coordinate the algorithms and their related views. This task is highly dependent
on the algorithm animation system’s design. In the following section, we discuss the main
design concepts of four existing algorithm animation systems which, on the basis of the

diversity of their design, we selected to prescnt.

5.3- Algorithm Animation Systems

Algonthm amimation systems provide support for watching, hearing, and interacting
with dynamically changing graphical representations of an executing program. It also pro-
vides tools to constiuct algorithm views and map them to the program. A wide variety of
designs were developed to implement animation algorithm systems that underlie diverse
coupling between their components, as we see below. In this section, we describe the
design of four systems that we feel representative of the diversity in algorithm animation

system design.

5.3.1- MVC-Based Systems

Some algorithm animation systems have been developed using object-oriented meth-
ods. Object-oriented programming techniques are claimed to lend themselves naturally to
animation [46]. a data structwte being an “object™, a program running on the data structure

being a “method™ executed within or upon that object, and the graphical representation of

July 1993 McGill University page 69

Chapter 5 - Graphical Simulation as Algonthm Ammation

the object being a “view". One such system [46] functions within Smalltalh s model view-
controller paradigm [43]. In this paradigm, the model is the program’s data sttuctures and
behaviour. The view displays the program’s state and handles maphical tasks. Uhe control-
ler contains the interface between its associated mode! and view and mput devices, and
schedules interactions with other view-controller pairs. Figute 4 shows the typical model-

view-controller structure.

General purpose animation algorithm systems based on the MVC' patacigm tend to
lack performance in realizing real-time dynamics of programs [46]. This bt led to the
development of application-oriented systems. We describe thiee such systems m the 1ol-

lowing sections.

Controller View
uscr input) '
user mput ol
N) display layon. J——— chisplay output
devices device play ldyou. Dlay ouij
mnteraction
Model
data structurcs
and behaviour
Figure 4 - Model-View-Controller structure
5.3.2 - Animus

Animus [22] is based on Smalitalk, however it uses temporal constiamnts as defined 1n

July 1993 McGill University page 70

Chapter 5 - Graphical Simulation as Algorithm Animation

Thingl.ab [6] to describe the appeatance and structure of displayed objects and their evo-
lution n time, 1esulting 1n incireased performance. In Animus, objects created have their
behaviour desceribed i terms of umed or static constraimnts. When the model executes, time
advances through a global clock tniggering time-dependent events that alter the state of
objects These events may, 1 turn, trigger other events that are dependent on the state of
these objects The treatment of the event queue generated in this way thus maintains and

propagates constraints describing objects states.

5.3.3 - Balsa

In the Brown University ALgorithm and Animation (Balsa) system [10] a modeller
maintams an abstract representation of the information that a renderer diaws on the
screen. A single model may be shawed by multiple 1enderers that simultaneously display
different views of the model. Figure 5 shows Balsa’s basic aichitecture. Rectangles 1epre-
sent components implemented by the amimator, whereas ovals represent part ot the anima-
ton sy..cm that route mformation zimong components. Here. two views noted by
Renderer-1 and Renderer-2 shaie the same model of the algorithm. An Adaprer 1s neces-
sary to tansform data fiom the stream of algonthm output events to the information

needed by the modeller and renderets.

View
Modcller
7]
Algonthm Adapte '—@——P Renderer-1
SR |
Renderer-2

Figure § - The Balsa architecture

July 1993 McGill University page 71

Chapter 5 - Graphical Simulation as Algonthm Animation

5.3.4 - Tango

Stasko’s Tango [65]. [69] 15 a more recent framework for algorithm animaton. 1y gue
6 shows Tango’s basic aichitecture Key operations which aie important to the alporithm’s
semantics are specified following two equivalent methods. The tirst one uses a text editor
to add explicit procedure calls duectly mto the algouthm The second one uses a tool,
Field’s annotation editor [65]. to scan the code and define “algotithm operations™ mteta
tively through a dialogue window. This method has the advautage ol Teaving the ot gl
algorithm 1ntact since no extra code 15 embedded mto 1. Algotithm opetations are o

warded to the mapping component when they are reached duting program execution.

: algo opl(x) <-- sccnvl(yh);: -

. perform scene 1(x) move(y)
algo op1(x) scene2(x) :

: - - — | sceene(y)
algo op2(i) algo ()p?(|)<—- :

) petform scene3(n))

. scene3())

Algorithm Mapping Animation

Figure 6 - Tango’s architecture

The animation component describes giaphical abjects and the operattons on them. It
may reference a hbrary written in C which makes use of four abstract data types that
define a formal methodology, namely the path-tansiton paradigm [66] ‘Uhe mnage type
represents the graphical object. The location type is the object s posttion i (x.y) coords
nates. The path 15 the change m image attiibutes from one ypdate of the display to the
next. Finally, the nansition 1 an animation action which uses a path to maodiy an object’s
position or appearance. With the antmation™s hibrary, users may ciea animation scenes
which are, m fact, procedures msde the antmation componentand which are composed of

predefined Tango instructions from the ammation hibtary that alter the state of objects

July 1993 McGill University page (2

Chapter 5 - Graphical Simulation as Algornthm Animation

' using the tour data types and their methods. Algorithm opetations inserted into the origi-
nal code are mapped to ammation scenes which are performed when they ate 1cached dur-

ing execution,

The mapping component is a contiol file containing the algorithm operations and the
ammation scenes that must be played when an algonthm operation 1s reached during exe-
cutton Algonthm operations may contain parameters (progiam vatiables) that are sent to
and used by the antmation scenes Users need only modity this control file to associate dif-
ferent scenes o an algonthm operation. Many scenes may be associated to an algorithm
animation. a feature lackimg m Balsa which allows only one-to-one mappings between

()P(‘lil(l()n s and scenes,

Anmation within Tango runs via two UNIX processes, namely the animation process
and the alponthm process. The animation process first reads the control file of the map-
pmg component and dynamically loads the animation-specific operations. It then waits for
the alporithm operattons from the ammated algonthm to be dispatched. The algorithm
process s executed and algorthm operations e distributed to the animation process as

they are reached. Interprocess communicanon 1s achieved via the Field environment.

S.4- Macrotee’s Graphical Simulation as Algorithm Animation

In studymg ditterent algonthm anmmation systems, we found ET++ an appropriate
cnvironment for developing graphical simulation - a business-oniented apphication. In
many way s, FUrrs mtemal schemes for managing praphical apphlications are similar to
that ot Smallulk™s MVC paradigm. We theretore chose to construct Macrotee's graphical
sunulation component directly from these available schemes which furthermore lend

‘ themselves well to extensibality, as diseussed 1 the neat sectrion. Morcover, little ettort

was toreseen o mplement the graphical behav tour ot objects as ETHE contains an exten-

Jaly 100a McGilt University page

~1
o

R R R R R EEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEETE———EEEEETTET S o

sive library of graphics behavioural pimitives.

Figuwe 7 reproduces a detiiled picture of Macrotee’s simulation architectue as dis -
cussed inchapter 4. The Uland Contol component reters to MVCS contioller. T picks up
user inputand triggers other architectural comporients, The Simulation Engine reters 1o
MVC’s model. It contains the data stuctures representing the model as well as the behav-

iour of the model. Lastly, the view istesponsible for the praphucal laivyout of objects epre-

senting the model.

Model

?mml.uion()

oplxy)

()1)2('/.)‘;

(‘mLu ollai

Anmate()
{

nstidlize),
}Mn(lcl— -Sunalaton(y;

opligy)

- P | {

Viewl-- Haghlipht(x)]
}VIC\\’2~— Updatety),

View-?2

Figuie 7 - MaciotecC s detailed simulation mchitecture

July 1993

M~ Gl Unive ety

pacyer /4

Chapter 5 - Graphical Simulation as Algorthm Animation

5.5- Extending Graphical Simulation in Macrotec

5.5.1- Extensibility of the Design

We have seen inchapter 4 that Maciotec implements only a subset of the visualization
concepts discussed mchapter 2, We demonstrate in this section the extensibility of Macro-
tee’s grraphical simulaton design to support future modifications encompassing the fea-
tutes 1n chapter 2. These featwres may be categorized into three groups according to the
Macrotec architectuial component they aftect. We identify each gioup below and discuss

the timpactof then integration mto Macrotec on the tool's architectwal components.

The fost group comprises featwes that affect the number of views mvolved in the
simulation Numetous views may be added into Macrotec and managed automatically
using ECTHS internal schemes. The extensibihty of the number of views iy a crucial factor
o the expressiveness of graphical simulatton In particula it enables the 1epiesentation of
the quantitative: behaviour of the netwotk. For example, figure 7 contains two dnferent
views. View | s the qualutatve view of stmulation wheie the Togical behaviour of the net-
work s deseribed though frable avetion higrhlights, action tmer display and other giaphi-
cal coneepts descnbed me chapter 44, View-2 15 an additional view iepresenting one aspect
of the quantitative behaviour of thie network. In this figue, a histogram 15 displayed that

may represent such mdices as the throughput of an action versus time.

The second group of featwres which may be added o Macrotec affects the Model
componentof the tool’s architecture. The simulanon algorithm, as implemented in Macro-
lee’s current version, does not contam mteresting events in the sense of algotithm anima-
ton. "Fhis s due tothe fact that the Model implement « asingle step of simulation and that

the currentview s allered only once execution has reached the end of this step. The need

July 10903 McGill Univer sity page 75

Chapter 5 - Graphical Simulation as Algorithm Ansnation

for adding interesting events becomes obvious in attempting to extend the araphweal simu
lation component to support smooth graphical vatiations as proposed i chapter 2. In taet,
smooth token movement and smooth theimometer decrease that show the ume clapsed
since the beginning of an activity 1equire the msertion mto the Model ol operations atteet
ing the state of views. A simulation step, which 15 stuetly assoctated o an thiciease of the
global simulation ime m Mactotec’s cunent version, may be split into SUDSIEPS SO as (o
permit the graphical repiesentation of intermediary logical opetations such as the execu
tion of an activity and token movement., and this i order to mcrease the network™s com

prehension.

The last group of simulation features which may be added to Mactotec™s functionahty
affect both the Model and the View For example, the addition of mtetesting events nfo
the Model and the addition of views may be proved essental n stmulating hierarchicdl
Petrinets. Hierarchical nets are specified on numerous edition pages, tepresentimy ditles
ent levels ot abstiaction. Each page 15 made to cortespond mternally to a specific view
Interesting events positioned at specitic pomts in the Model where simulation dynaniie ally
affects a ditferent page can be wed to auwtomatcally display the conesponding view
Finally, compaative animation as described in chapter 2, mplies the use of at least (wo
views. Interesting events may be essential 1o display the state of two networ ks under com
parison, independently hom the actual pomt of exccution cached m both Models For
example, both network states may be displayed as soon as one Model ieaches the end of o

simulation step.

Macrotec’s Controller architectural component 15 evidently affected by these thice
groups of features, as it maps the interesting events to the views. A typical sc enario where

all graphical simulation components play a1ole is described hercatier and relers to fipuie
7.

The Controller picks up a request from the user o trigper simulation and surrenders

July 1993 MeGill University frrarye 76

Chapter 5 Grar I Simulation as Algorithm Animation

‘ contol to the Model. When execution reaches interesting: event opl(x,y) which is simply a
procedure call with parameters v and y, the contiol 1s retrieved by the Controller and exe-
cution of the cortesponding procedure takes place. This procedure contains operations that
aftect one or many views. In our example, View-1 15 affected and may call onits graphical

objects to update themselves according to parameter a.

5.5.2- Extending Macrotec’s Development Environment

Wr discuss in this section a potential path along which to augment Maciotecs support
for graphical simulation. Maciotec™s development environment, ET++, povides little
expheit suppott, as 1, for antmating displays m the pure graphical sense. Flexible abstrac-
tions in Arthit [31] which support powerful animation techmques can be added to ET++ 1n
order to case the progiamming of altering graphics states. We desciibe 1 the following
some of the anmmation techniques desciibed in [31] which would help implement the fea-

tures discussed m the previous section and thus 1efine Maciotec™s graphical simulation.

Timing 1cfers 1o the properties of moving objects. A Petii-Net token, for example, can
be shown as migrating fiom the input to the output place of a firable action. Controlled
timing 1s provided to allow objects to migrate m a specific time with as smooth a transition

as the OS and window system petformance and ummg allow.

Tt~ slow-in / slow-out transitions techniquc provides for non-uniform pacing of
movements. Tokens m Macroter's simulation may begin their tiajectory slowly, move
quickly along the input and output arcs, and end slowly. This way, the accent in the move-
ment 18 put on the wput place from which the token oniginates and the output place to

w hich it 1s destined.

July 1993 McGill University page 77

L

Chapter 5 - Graphical Simulation as Algorithm Ammation

Arces describe trajectories for movement as a paramettic curve ot one variable. This
provides a uniform framework for describing token movement along the network ae du-
ing graphical simulation.

Arxtkitis a C++ library butlt on powerful animation abstractions that suppont sophist
cated animation techniques such as these ones. The miegration of Arthit mto LT may

be an approach to enrich Macrotec with duect suppott for ammated presentations.

July 1993 McGill University pane /4

Chapter 6
Ongoing and F uture Work

6.1 - Tailored Modelling and Dynamic Analysis Tools

Formaltsms such as Petri Nets have demystified dynamic analysis and made of per-
formance evaluation a field no more restricted to performance specialists. Results gener-
ated from performance analysis and simulation can be pertinently estracted and presented

mtelhigrbly to diverse users thiough Petri nets and an attractive, easy-to-use interface.

General graphical dynamic analysis tools may be tailoted to application domains of
mteiest. Tools tended for busmess domams, such as Macrotec, may present results and
enable result defimtion i terms of business indices such as raw and net profits, deprecia-
tion, ete. Inthis way, the mterpietation of 1esults 15 furthered and httle analysis is left on
the part of users. End-usets needs, i paucular their terminology, concepts, and model
evaluation cniterias, must be wentfied in ordet o adapt on one hand the performance and
stmulation engines to support ielevant indice computation, and on the other hand, to adapt
the user mterface to present these indices textually following the domain’s terminology

and graphically, tollowing the domain’s concepts.

Improvements along this path have been anticipated in designing the Macrotec tool.
An optional view, for example. displays netwoth components as icons representing busi-
ness coneepts such as reports, human 1esources, machine resources, etc. The detailed

design of such a view, currently under implementation, can be found in [41].

July 1993 McGilt University page 7’9

Chapter 6 - Ongoing and Future Wotk

6.2 - Animation Extensions to User Interface Frameworks

Currently available user mterface fiameworhs otfer little support tor ammuated dis
plays. Flexible animation abstiactions that could be mtegrated nto 2 user mterface frame
work could be exploted using the experience ganed m the object-onented 1111, These

abstractions would support animation scene descriptions, using a inary such as Artkit.

6.3 - A Comparative Study of Tools Based on the Petri Net Formalism

Partly inspired by the MACA project, we ate currently undertaking a study at CRIM
to evaluate and compare tools which ate based on the Petni-Net formalism. Petrr Nets
bemg widely used n software engineering for modethng and analysing systems, the eval-
uation of available CASE tools based on this formalism takes on mcicasing importance.
The mayor achievement sought in this process 15 to develop a methodology for evaluating
Petri net-based tools, apply it, and. n the long term, tansfer our experience The activities

involved in the project are described heteafter.

Pertinent properties of projects benefiting from the Petir Net approach we dentified,
and based on these, evaluation criterias are elaborated. The realiza. on of this task 1s
enriched thiough the experience gained from MACA and another fuashed project at
CRIM, both involving modelling and formal analysis. The projects™ ditterent application
domains, on one hand 1eal-time constaints and on the other, organisational flow, conveys

generality to the identitied properties and wideness then spectium,

Next, a literary review concerning similar studies and Petii-Net based tools in gencral

L]

July 1993 McGill University patyee 40

Chapter 6 - Ongoing and Future Work

serves as a basis to establish a list of such tools, may they be commercial or research.
Those tools that are submuitted to our evaluation are then selected, principally on the basis

of their avalability.

Prototype examples that exhibit the pertinent properties are elaborated, inspired from
the two projects discussed above. Those examples are implemented with the tools selected
for studymg and evaluated according to the identified criterias. Obviously, this is a good
opportunity for evaluating Macrotec which uses the SPNP package. Finally, results are
synthesised mto a comparative repoit of Petri-Net tools, whereas the methodology and

experience developed 11tom the exercise 1s detailed to serve potential users.

The status of this study is currently at the implementation stage. Interested readers
may find 1elated documentation as internal CRIM reports in [19], [20], [21], [27], [28].

July 1993 McGill University page 81

Conclusion

The skills required in the modelling and dynamic analysis of systems through special
ized textual languages such as GPSS is masteted by few, leaving this domain unevploited
due to 1ts evident iestrictive usage. Concerns of this nature puided the elaboration of hi ovh
level formalisms that became the basis of graphical dynamic analvas tools which take
advantage of their visual potential. Petri Nets are widely used m modelling and analysis
activities due on one hand to thew descriptive power of phenomena such as concurrency
and synchronization. and on the other, to thewr applicability to formal performance analy
sis methods. In particular, imed Petri Nets enable duect repiesentation of concepts ke
activities, their inputs, outputs, and duration, making them a favoured approach o busi-

ness modelling.

Major facets of the dynamic analysis of a model are simulation and pe formance anal-
ysis. Both serve to assess, evaluate and find alternatives to a model. Whereas simulation s
mostly a guide towards the model assessmer- formance analysis mostly provides o
model evaluation as it generates quantitative measw.es of the model atits equilibnum state

through formal methods.

Packages exist that offer integrated support for graphical model edition, praphical
simulation, and performance analysis. Wheieas graphical editon 1s a well developed dis
cipline, graphical dynamic analysis gencrally suffers from poor user iteraction and
graphics techniques ' We have attempted in this work to rationalize and stiuc ture hastc vis,
ualization concepts gamed from the study of various existing packages and 1ecommended
certain extensions that we feel augment the tanspaience of the dynamic behavious of
models. Furthermore. we have shown that techmques rom the algonthm anmmation freld
can be apphed to improve dynamic analysts visualization, as both are concerned with state

modifications thiough time.

July 1993 McGill University pracye by

Conclusion

Visualization concepts promote user accessibility to both inputs and outputs of simu-
lation and performance analysis engines. Inputs include the network itself and the options
available for the execution of the engines. Inputs are defined through a state-of-the art
graphical editorand dialogue boxes. Outputs are the results generated from the engines. In
the case of the simulation engine, principal 1esults are displayed on the netwoik itself. As
for the performance analysts engine, 1esults are displayed textually or as graphs, and are
distingurshed according to the network components they refer to, may they be individual
components, groups of components, or states of the network. Performance analysis may
be talored by defining a variety of custom indices 1elevant within the network’s seman-

tics, possibly ina graphical way.

Further directions in the field of dynamic behaviour visualization include talloring the
user-interface to specific application domains. We see in this concept a potential to suppott
usets from interpreting analysis results, that 1s, from the need of computing by hand meas-
ures of interest using basic indices automatically generated. Improvements in this direc-
tion would provide users with high-level performance indices that, ultimately, directly

match thetr measures of interest.

July 1993 MeGill University page 83

R R R RREREEEEEEEEEEEEEEEIIEE T EEEEEEEEEEEEEEEEEETTEEEEEEEEE——.

Acknowledgments

I'thank Ruedi Keller for his sincere encouragements and his diplomatic way ot getiing
me back on the right track when [was digressing, and most ot all to1 his most valuable
resource, his time, of which he was never scarse. Our countless discussions 1esulted not
only in improvements related to my work but also in a personal wothing methodolopy 1

have adopted and will carry on in the {uture.

Working with Macrotec! programmets and Tigers made the most wicked bug seem
inoffensive as the talent and dynamism of our team was almost palpable. Thanks 1o all of
you for easing debugging sessions, and releasing the tension dus g mienstve codimg ses-

stons with your optimism and laughter.

.

Finally, I cannot pass this opportunity of thanking members of the McGhll sectetarial

office without whose patience and understanding, I would never have accomphshed this

1. Macrotee was developed as part ot a joint CRIM/DMR Giroup Inc progect, wineh s pant of the I
MACROSCOPE project.

July 1993 MeGll Univerit L #A

Bibliography

[1]R. Y. Al-Jaar, A. A. Desrochers.Performance evaluation ot automated manutacturing sys-
tems. In Transactions on Rebotics and Auwtomation, pages 621--639, 6(60), December TOY).

[2] Ronald M. Baecker. An application overview of program visealization. Computer Graph-
ics, July 1986.

{3] Walter R. Bischotberger. Sniff - a pragmatic approach to a C1 1 programming environment,
In Usenin C--+ Conference, Portland. OR, August 1992.

[4] Gregor v. Bockmann. Decoupage et simulation d architectues distiibuees. “fechnical
Report CRIM-91/09/20, Centre de Recherche Informatique de Montiéal (CRIM), Montieal,
September 1990.

(51 G. v. Bochmann, A. Debaque, R. Dssouli, AL Jaoua, R. Keller, NLRiwco, and I Saba. A
method for architectural modelling and dynamic analysis of mtormation systems and business
processes. Technical repoit CRIM-92/12/10., Centic de Recherche Intormatique de Montcal
(CRIM), Montteal, December 1992,

(6] A. H. Boming. Thinglab - a constraint-oriented simulation laboratory. FixI) thesys, Stnford
University, March 1979,

[71 Mark H. Brown and Robert Sedgewick. Techniques for algonithm animation. HEEE Soft-
ware, pages 124-135, Junuary 1985.

[8] Gretchen P. Brown, Richard T. Carling, Christopher F. Hetot, David A. Kramlich, and Paul
Scouza. Program visualization: graphical support for softwate development. IEEE Computer,
pages 27-35, August 1985.

[91 Mark H. Brown. Perspectives on algonthm ammation. In Proceedings of Human Factors in
Computing Systems, pages 33-38, 1988.

[10] Mark H. Brown. Exploring algorithms using Balsa-1L IEEE Computer, pages 136-157,
May 1988.

[11] Mark H. Brown. Zeus: A System for algorithm animation and multi-view. Technical
report, Digital, Palo Alto, February 1992.

July 1993 McGilt University page 85

Bibliography

[12] Mark FI. Brown and John Hershberger. Colorand sound in algorithm animation. JEEE
Computer, pages 52-63,December 1992,

[13] Paul Butterworth, Allen Otis, and Jacob Stem, The Gemstone object database manage-
ment system. Communications of the ACM, 34(10), pages 64-77, October 1991,

[14)G. Chiole. A Graphical Peuinet tool for performance analysis. In Modelling Techniques
and Performance Fovaluation, pages 323, 1989- 333, North Holland, 1987.

[15]G. Chiola. GreatSPN users” manual, version 1.3. Technical report, University of Turin,
September, 1987,

[16]G. Ciatdo. Manual for the SPNP Package. version 3.1, Technical report, Duke University,
Muaich 1992,

[17]1G. Crado, J. K. Muppula, and K. S, Trivedi. Analysing concurrent and fault-tolerant soft-
wate using stochastic teward nets. To appear in Journal of Parallel and Distributed Comput-
frg

[18]G. Ciardo, J. K Muppula, and K. S. Trivedi. On the solution of GSPN reward models. In
Petformance Evaluanon, pages 237-254,12(4), July 1991,

[19] Anne-Claine Pébaque and Fayez Saba. Exemple de modélisation d un processus de
demande de prets. Techmeal report CRIM, Centie de Recherche Informatique de Montiéal
(CRIM), Montieal, May 1993,

[20} Anne-Claite Débaque. Paul Freedman, Jean-Michel Goutal, Rudolf Keller, Michel Levy,
Manne Qzkan, and Fayez Saba. Criteres d”evaluation d'outils basés sur les réseaux de PEtri,

“Techmeal wepott CRIM, Centie de Recherche Informatique de Montréal (CRIM), Montreal,
May 1993,

[21] Anne-Claire Débaque . Paul Freedman, Jean-Michel Goutal, Rudolf Keller, Michel Levy,
Marianne O/kan, and Fayez Saba. Liiste d"outils de simulation basés sur les iéseaux de Pétri.

Technicalweport CRIM, Centre de Recherche Informatique de Montréal (CRIM), Montreal,
May 1993,

[22] Robett A, Dunberg. Animatton using temporal constraints: an overview of the Animus
swstemv. Fluman-Computer Interactions, vol. 3, pages 275-307, 1987-88.

123] Thomas Eggenschwilerand Erich Gamyma, ET+ + Swaps Manager: Using Object Technol-

July 1993 McGill University page 86

Bibhography

ogy in the Financial Engineering Domain. In O0PSL.A'92, pages 166-177. Vancouver, B.C,
October 1992.

[24] F. Feldbrugge. Petri nettool overview 1989 In Advances in Petri Nets, pages 152-178,
1989.

[25] F. Feldbrugge. Petri nettool overview 1992, Private Commumcation, 1993.

{26] Ulrich Frank. Designing procedures within an object-oriented enterprse model. In Pro-
ceedings of the Third International Working Conference on Dynamie Modelling of Infor mation
Systems, pages 365-385, Noordwijhethout, The Nethetlands, June 1992.

[27] Paul Freedman and Rudolf Keller, ECORP Etude companative des outils Réseau de Petit,
Project description, Centie de Recherche Informatique de Monnéal (CRIM), Montieal,
December 1993,

[28] Paul Freedman and Michel Levy. Exemple de modélisationd un processus d'ouvertue et
de fermeture automatiqque. Technicalreport CRIM., Centre de Recherche Informatique de Mon-
tréal (CRIM), Montreal, May 1993.

(291 W. H. Hartod and R. J. Plemmons. Comparaison of some direct methods tor computing
stationary distributions of Markov chains. InSIAM jownal Sci. Stat. Comput., June 1984,

[30] Doug Hayes. The XTANGO environment and differences from Tango. Techmeal vepont,
Georgia Institute of Technology,Georgia, 1990.

[317 Scott E. Hudson and John T. Stasko. Animation supportin a uscr interface toolkit: flexi-
ble, robust and reusable abstractions. Technical report, Georgia Institute of Technology,Geor -
gia, 1992,

[32] Daniel H. H. Ingalls. The Smalltalk graphics keinel. Byte, pages 170-194, August [981.
[33] A.Jacua, I.M. Beaulieu, N. Belkiter, A.C. Débaque, J. Deharnais, R. Lelouche, "I Monk-

am,and R. Reging. Rectangular decomposition of object-oriented softwaie architectures. ‘lech-
nical report, Laval University, Quebec, June 1992,

[34] K.Jensen Coloured Petri Nets: A High level language for system design and analysis.
Aarhus University, Denmark, November 1990.

July 1993 McGill University page §7

Bibllography

{35 Rudoltf K. Keltetr, Martanne Ozkan, and Natalie Rico. Compaiaison fonctionelle des outils
de simulation. “Techmeal repoit, Centre de Recherche Informatique de Montiéal (CRIM), Mon-
veal, September 1992

[36] Ridolt K. Keller, Richard Lajoie, Marianne Ozkan, Fayez Suba, Xijin Shen, Tao Tao, and
G. v. Bochmann. The Maciotee toolsct for CASE-based business modelling. Proceedings on
Computer-Mided Software Engineermg, Singapore, July, 1993. To appear.

137} Rudolt K. Keller, Richard Lajoie, Marianne Ozkan , Fayez Saba, Xijin Shen, Tao Tao, and
G. v. Bochmann, User inteiface aspects in the Macrotec toolset for business modelling and
simalation, HCT poster, Orlando, Florida, August 1993, To appear.

[38] Rudolt K. Keller, Richard Lajowe, Marianne Ozkan Fayez Saba, Xijin Shen. Tao Tao, and
G. v. Bochmann, User interface aspects in the Macrotec toolset for business modelling and
simulation Unpublished.

[39] Rudolt K. Keller, Richard Lajose, Mariante Ozkan , Fayez Saba, Xijin Shen, and Tao Tao.
Macrotee version 1LO user mterface spectfication. Technical report, Centre de Recherche Infor-
matique de Montiéal (CRIM), Monteal, May 1993.

[40} Rudolt K. Keller, Richard Lajoie, Marianne Ozkan , Fayez Saba, Xijin Shen, and Tao Tao.
Macrotee version L0 designand implementation. Technical report, Centre de Recherche
Informatque de Montréal (CRIM), Montreal, May 1993,

[41] Rudolf K. Keller and Xijin Shen. Macrotec version 1.0 : icone view specification. Techni-
cal ceport CRIM, Centre de Recherche Informatique de Montréal (CRIM), Montreal, May
1993,

[42] Thomas Kofler. Robust Iterators in ET++. StructProg, 14(2), pages 62-84, April/June
1993,

{431 Glenn E. Krasner and Stephen T. Pope. A Cookbook for using the model-view-controller
user wterface paradigm in Smalltalk-R0. Jowrnal of Object-Oriented Programming, pages 26-
49, August 1988,

(4471 1.D.C. Lutle. A Proof for the quening formula L=lambdaW. Operations Research, vol. 9,
pages 383-387, 1961.

{457 J.C. Llotet). L. Roux, B. Algayres, and M. Chamontin. Modelling and evaluation of a
satelhte systemusing Eval, a Petri net based industrial tool. InApplication and Theory of Petri

July 1993 McGill University page 88

Bibliography

Nets, ed. K. Jensen, 1992,

[46] Ralph L. London and Robert A. Duisberg. Anmmating programs using Smalltalk. JEEE
Computer, pages 61-71, Augut 1985,

[47] M. A. Marsan, A. Bobbio, G. Conte and A. Cumani. Performance analysis of degradable
multiprocessor systems using Generalized Stochastic Petri Nets. Destributed Processing 1-C
Newsletter, no. 6, pages 47-54, 1984.

{481 M. A. Marsan. Stochastic Petri nets: An elementary introduction, Tutonial notes, /1th
International Symposium on Protocol Specification, Testing, and Verification, Stockholm,
1991.

[49]1 M. A. Marsan and G. Conte. A Class of generalized stochastic Petrr nets tor the

performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems,
2(2), pages 93-122, May 1984.

[S0] M. A. Marsan, G. Balbo, G. Chiola, G. Conte, S. Donatelli,and G. Franceschini. An Intro-
duction to generalized stochastic Petri nets. Microelectron. Reliab., 31(4), pages 699-725,

1991,

[51] B. Melamed and R.J. T. Mors. Visual simulatton: The Performance Analysis Worksta-
tion. IEEE Computer, pages 87-94, August 1985.

[52] Alberto O. Mendelzon. Declarative database visualization: recent papers from Fyt/
GraphLog project. Technical report CSRI-285, Computer Systems Rescarch Institute, Untvetr-

sity of Toronto, June 1993.

[53] A. Merlin and D. J. Farber. Recoverability in communications protocols - implications of
a theoretical study. IEEE Trans. Commun. vol. 9, September 1976.

[54] Meta Software Corporation. Design/CPN user manual version 2.0. 1992,

[551 M. K. Molloy. Performance analysis using stochastic Petry nets. IEEE Trans. Comput.,
vol. 9, pages 913-917, September 1982,

[56] M. K. Molloy. On the Integration of delay and throughput measures in distributed process-
ing models. Ph.D. dissertation, University of California, Los Angeles, 1981.

[57] Darren New and Paul D. Amer. Adding graphics and amimation to Estelle Technical

July 1993 McGill University pange £9

Bibliography

report, University of Delaware, Newark.

[58] Darren New and Paul D. Amer. Protocal visualization of Estelle specifications. Technical
repoit, University of Delaware, Newak.

[59]). D. Noe and G. 1. Nutt. Maciro E-nets representation of parallel systems. IEEE Trans.
Comput, vol.8, pages 118-127, August 1973

[6O] Pserre Parent and O. Tamir. Voltaire. a discrete event simulator, IEEE PNPM-9] Confer-
ence Proceedings, Melbourne, Australia, December 1991.

[61]G. J. Ramackers and A. A, Vernyn-Stuart. Fust and second order dynamics in information
systems. In Dynamic Modelling of Information Systems, pages 237-256, North-Holland, 1991.

[62] Yen-Pmg Shan. MoDE. A UIMS for Smalltalk. Proceedings of ECOOP/OOPSLA. pages
258-268, October 1990

[63]R. M. Smuth, K. S. Trivedi, and A. V. Ramesh. Performability analysis: measures, an algo-
rithm, and a case study. IEEE Trans. Comput., pages 406-417, April 1988.

[64] John T. Stasko and Joseph F. Wehrli. Three-dimensional algorithm animation, Private
commiunication,

[65]John T. Stasko. Tango® a framework and system for algorithm animation. IEEE Computer,
pages 27-39, September, 1990.

[66] John T. Stasko. The Path-Transition Paradigm: A Practical methodology for adding ani-
mation to program interfaces. Technical report, Georgia Institute of Technology, Georgia, June

1991.

[67] John T. Stasko and Doug Hayes. XTANGO algorithm animation designer’s package.
Technical report, Georgia Institute of Technology, Geoigia, October 1992,

[68] John T. Stasko and Eileen Kraemer. A Methodology for building application-specific
vismahizations of parallel programs. Technical report, Georgia Institute of Technology, Geor-
gia, June 1992,

[69] John T. Stasko. Simplitying algorithm animation with TANGO. Private communication.

[70] K. S. Trivedi, J. K. Muppula, S. P. Woolet, B.R. Haverkort. Composite Performance and

July 1993 McGili University page 90

Bibhogiaphy

Dependability Analysis. Performance, 14(3-1), pages 197-215, 1992,
[71] Robert Valette. Les Réseaux de Pétrr. L.AA.S/C.N.R.S., Toulouse, France, May 1990,

[721 A. Verbraeck and F. W. Wierda. Interactive modelhing for Information Systems design:
The MOSAIC tool. In Dynamic Modelling of Informarnon Svstems, ¢d . G. Sol and K. van
Hee, pages 189-225, Amsterdam, 1991.

[73] Verilog. Stochastic Petri net solver, telease 1.0. 1990,

[74] Andre Weinand, Erich Gamma.and Rudolph Marty. ETt+ - An object-otiented applica-
tion framework in C++. Object Oriented Programmung Systems, Languages, and Applications
‘88 Conference Proceedings, September 1988.

[75] Andre Weinand, Erich Gamma,and Rudolph Marty. Design and implementation of ET4 1,
a seamless object-oriented application tframework, St uctured Programming, 10(2), pages 63-
87, 1989.

[76] Ghassan Youssef and Fayez Saba. Décomposition et sumulation d archutectures dis-
tribuées. exemple d architecture. Technical report CRIM, Centie de Recherche Informatigue de
Montréal (CRIM), Montieal, July 1993,

July 1993 McGill University page 91

Appendix A

Glossary of Basic Petri Net Terminology

July 1993 McGill University A-1

Appendix A - Glossary of Basic Petii Net Terninology

‘ This appendix defines the basic Petrni net concepts without, however, petiing mto an
exhaustive study of Petri net theory. These nottons e essential to the comprehension ol
this 1esearch. Readers unfamihar with Petrt nets are encoutaged to read the defuntions m

order to subsequently use them as a 1eterence guide.

A token is a marker. It can be an object, a state, or anything we cite to assocrate wath

it. Tokens may take on values belonging to the network’s datatype or colorset

|

)

‘ - -

| A place is a location that may contain zero o1 more tohens. A place may be rvped,

|

| meaning that all its tokens belong to the same colorset. A marking 15 a state of the net. It
can be described by the number of tokens residing i cach place. The tmittal micrking s the

state of the net preceding any action finng.

A transition is an action whose occurrence can change the number and values of
tokens in one or more places. A transition 1s enabled if the necessary conditions pernmt it
to start its execution. A tansition becomes firable when it has fintshed executing. A transy

tion is fnactive if it is not excceutmng and the conditions equited to start execution are

FALSE.

The firing time of a transition is the time lapse between the transition’s enablement
and its actual firing. Transitions may be timed or immediate. Timed tansitions may have
in the case of stochastic nets non-deterministic firing times, typically random, eaxponen
tially distributed firing time or they may have a fixed determimstic firing tme. Immediate
transitions fire in zero time. Firing rates are associated to exponentially distitbuted timed
transitions and may depend on the marking of the netwaoik. Figure 1 shows the dsffeient

. states of a transition as tme mcrea <. Figure 2 shows the distinction between the diffeient

firing times of transitions.

July 1993 McGHll University A-

N

Appendix A - Glossary of Basic Petri Net Terminology

enabled firng (possibly conflicting)

mactive executing mactive

time

Figure 1 - Transition states as a function of time

random, exponentially distributed
timed deterministic
firtng time other

immediate

Figure 2 - Possible firing times of a transition

A guard is a boolcan expression associated to a transition. The guard must be evalu-

ated to TRUE for the transition to become enabled.

An are is a connection between a transition and a place. A tansition may require
more than one token from an input place in order to execute. Modelling one-to-one rela-
tions, in tetms of tokens, between input and output places is combersome and may reduce
overall readability. A notation tc represent many-to-many relations can be used to reduce
diagram size. Such a notation may simply take on the form of an integer associated to each
are specitying the number of tokens that will be removed from the input place of the tran-
sition or added to the output place of a transition when it fires. We use the term multiplicity

to describe the concept of having a certain number of tokens migrating through the arcs.

July 1993 McGill University A-3

Appendix A - Glossary of Basic Petil Net Terminology

Arcs may have associated inscnptions that define the set ot tokens mvolved i the fir-
ing of the connected transition. Furthermore, they may mhibit a tansiton when the
number of tokens in 1ts input place is greater or equal to v. We call this type ol ate, an

inhibiror arc.

The set of places, transitions and arcs as well as the mitial matking ate sometumes
referred to as the structural component of the net as opposed to the dynamic component

which refers to the transitions™ fiting times.

‘When many transitions are simultancously firable and share an mput place that con-
tains an insufficient number of tokens to provide all these transitions, then the tansitions
are said to be in conffict with one another. To contiof conflicts, werghes may be associated

to transitions.

In our work, Petri net elements are graphically 1epresented as follows

- Arcs are represented as uniditectional wrrows,

- Places are represented as ovals,

- Immediate transitions are represented as “flat” rectangles,
- Timed transitions are represented as rectangles,

- Tokens are represented as small filled circles.

Figure 3 shows a network containing four places (p1, p2, p3, p4), two immediate tran-

sitions (t2 and (3) and two timed transitions (t1 and t4). Transition t1 has a 1tandom, expo
. nential firing rate 1. t4 has a deterministic rate d4. Transitions t2 and 13 are confhicting,

they are always enabled simultancously. Weights w2 and w3 are theictore assipned to 12

July 1993 McGill University A4

Appendix A - Glossary of Basic Petri Net Terminology

‘ and t3 respectively. Two ares have a multiplicity of 2. The initial marking consists of a sin-

gle token instde pl.

Figure 3 - An example Petri net

Translation Table

Altemating between languages often distorts and perverts semantics. In an attempt to
. clarify Petri Net terminology and ease communication, we provide the French translations

we adopted to terms that, according to our experience, have caused some controversy

July 1993 McGill University A-5

Appendix A - Glossary of Basic Petti Net Tetminology

. when improperly translated.

Table 1 - English-French translation of common Pectii net termimology

transition firing time

dutée d execution

enabled transition

ansition activee
ou
transition executable

fired transition

transition franchie

firing

fianchissement

July 1993

McGill University

A-6

Appendix B

Functional Comparison of Various Tools Based
on the Petri Net Formalism

July 1993 McGill University B-1

Comparaison fonctionnza!le de queiques outils informatiques basés sur
le formalisme Réseaux de Pétn:
GSPN, SPNP, Design/CPN et Voltaire

Qocument de travaul

Marianne QOzkan
Natalie Rico
Rudolf Keller

Juillet 1992

Le projet MACA (MACroscope Architecture) inclue l'implantation d'un
outii de modélisation et de simulation de systémes d'intormation
("Macrotec tooiset’). Cet outil est basé sur la méthodologie
développée dans le cadre de ce projet [3]. Nous avons évalué la
fonctionalité de plusieurs outils de simulation existants dans le but
de les intégrer 3 Macrotec. Ce rapport résume cette étude.

Les outils évalués sont les suivants:

1- GSPN (1]

2- SPNP [2]

3- Design/CPN (7]
4- Eval (6]

5- Voltaire (4]

Ce rapport compare ces outils selon une liste de critéres
prédéterminés tirds de I'analyse de besoins du volet simulation de
'outii Macrotec. Le lecteur pourra se référer & la section suivante
pour une définition et discussion de ces critdres. Le rapport conclue
avec une recommandation quant & l'outil (ou les outils) apte a
s'intégrer dans MACA.

Notez que nous supposons le lecteur familier avec la théorie des
réseaux de Petri. Dans le cas contraire, le lecteur est prié de se
rétérer & [5).

Comparaison fonctionnelle des outils

Critére GSPN

- Editeur graphique

Il- Modélisation

Type de réseau:

- élémentaire

- hiérarchique

- coloré ou
prédicat-transition

- place/transition

X

Temporisation des transitions:

- déterministe
- exponentielle
- immdédiate

- autre

- variable

Résolution de conflits entre
transitions

Arcs inhibiteurs

*‘Guards® associés aux
transitions

X + X X X

o ¢+ X X ¢

SPNP Design/CPN Eval

o X x X X

Voltaire

x

s X X X

Critére GSPN SPNP Design/CPN Eval Voltaire

.......................................

ili-Anailyse

Analyse quantitative:

- analytique X X - ? -

- simulation X X X ? X

Etat du réseau:

- transient x X X ? X
- a l'dquilibre X X . ?

Analyse qualitative X X - ? -
Animation temporelle X . ? -

Génération automatique
de résultats X X . ? X

IV-Accessiblliité de Ila
représentation Iinterne x X - ? X

Terminoclogle

Modéilisation

Un reseau de Pétri hiérarchique peut étre découpé en plusieurs niveaux
représertant différents degrés d'abstraction.

Un réseau de Pétrr coloré ou prédicat/transition est un réseau dont
es jetons représente différentes entités, a l'instar des vanables.

Un réseau place/transition permet un nombre quelconque de jetons
dans chacune des places.

La temporisation d'une transition peut étre déterministe, immédiate,
exponentielle ou autre. Une transition déterministe a une durée
d'exdcution fixe, soit x unités de temps. Une transition immdédiate
s'exdcute instantanément, donc en un temps 0. Une transition dont la
durée est exponentielle posséde un temps d'exécution f(x) ou f est une
tonction exponentielle. Une transition peut avoir une durée
d'exécution suivant une distribution queliconque. Une transition
variable signifie que sa durée d'exécution peut varier selon les
marquages.

Un contlit se produit lorsque deux ou plusieurs transitions se
partagent les mémes places d'entrée et qu'un nombre insuffisant de
jetons se trouvent dans ces places pour que toutes les transitions se
déclenchent & la fois. La résolution de conflits peut s'effectuer en
associant aux trangitions, des probabilités de décienchement en cas
de contlit.

Un arc inhibiteur permet d'inhiber une transition lorsque e nombre de
jetons dane la place entrée est supérieurs ou égal & x.

Un ‘guard® est une expression booléene associée 2 une transition.
Cette expression doit #tre évaluée & vrai pour que la transition soit
déclenchable.

Analyse

L' analyse quantitative permet d'analyser la performance dynamique
du réseau en procurant des résuitats teis que le debit moyen d'une
action, le temps d'attente d'une transiion et l'utilisation des
ressources. La résoiution du réseau peut se faire analytiquement ou
par simulation (exécution du réseau).

De plus l'analyse quanttative peut étre effecluée a I'état d'dquilibre
Ou a parir d'un temps donné x (analyse transiente).

L'analyse qualitative permet de véritier des propriétés généraies de
tous les comportements possibles du réseau (par exemple, l'absence
de blocage).

L'animation temporeile est i'‘exécution graphique du réseau ou les
durées des transitions sont prises en considération.

Les résuitats des analyses qualitatives et quantitatives doivent étre
générés automatiquement sans aucune programmation de la part de
l'usager.

Représentation Iinterne

La représentation interne d'un outil de simulation est la forme sous
laquelle I'outil lit et sauvegarde Ila description du réseau.
L'accessibilité de cette représentation permet I'échange de données
entre différents outils.

Recommandations

GSPN possede toutes les caractéristiques désirées mais présente des
problemes d’instaliation.

Nous recommendons donc SPNP, qui se rapproche le plus des

fonctionaiités deésirées et qui est disponible sur notre plate-torme. ||
semble étre fonctionnel et bien documenté.

Références

[]' G.Chiola, “GrearSPN's Users' Manual, Version 1.3, Universita di
Torino, Septembre 1987.

(2] G.Ciardo, J.K.Muppala, “Manual for the SPNP Package Version 3.1,
Duke University, Mars 1992.

{3] MACA, Rapport de la phase |l, 1992.
(4] P.Parent, Voltaire Users’'Manual, McGill University, 1990.

(5] R.Valette, ‘Les Réseaux de Pétri’, LA.A.S/C.N.R.S., Toulouse, Mai
1990.

(6] Stochastic Petri Net Solver Release 1.0, Verilog, 1990.

(7] DesignCPN, User Manual Version 2.0, Metasoft, 1992.

