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Abstract

The order G pm? clectio-weak corrections to the decay t — b1t are caleu-
lated, arising essentially fiom virtual radiation of the Higgs boson  For large
m these represent the dominant effect serving to shift the top hfetine from its
tree level value. In practice, for my < 240 CeV” these corrections are typically
0.1%. A comparison with recent caleulations of the complete electro-weak and
strong effccts 1s made.

Several contributions to the branching ratio for the inclusive decay T —
J/#X are calculated using perturbative Q.C.D. to lowest order in the rel-
ative quatk momentum and the strong coupling a,. In addition to the di-
rect transition, decay to J/v thiough the states ¢ and \; is also considered
The following 1esults are obtained: Br(Y — ¢'X) = (0.26 + 0.13) « 1073,
Br(T — \1X) <0.17x 1073, and Br(YT — J/¢X) = (0.444£ 0 15) ¥ 1073, The
latter 1nay just be consistent with the experimental tesult (11 4+04 £02)«< 107}
where the first crror is statistical and the second systematie,




Résumé

Les corrections électro-faibles & la désintégration ¢ — b1V'* sont calculées a
ordre G;.-m? . resnultant essentiellement de la radiation virtuelle d'un boson de
Higgs. Pour des valeurs de m, assez larges, «elles-ci réprésentent I'effet dominant
servant a déplacer la demi-vie du quark t de sa valeur au nivean arborescant.
En practique, pour iy < 240 GV ces corrections sont de N'ordre de 0.1 %. Ceci
est comparé avee des tésultats récents qui considerent les effets électro-faibles
et forts.

Phisicures contributions au rapport de branchement pour fa désintégration
T — J/4.X sont caleulées en utilisant la chromodynamique quantique pertue-
bative au plus bas ordre daus la quantité de mouvenent rélative du guark et
dans la constante de couplage forte a,. En plus de la transition ditecte. les
désintégrations a travers des états ¥’ et \; sont aussi caleulées. Les 1ésultats
suivants sont obtenus: RB(T — ¢'X) = (0.26 £0.13) x 1073, RB(T — ;1 X) <
0.17 x 107, et RB(Y — J/yX) = {044 £ 0.15) x 1073, Ce dernier pourrait
étre consistant avee la valeur expérimentale de (1.1 £ 0.4 £0.2) x 1073 ot la
premicie errenr est statistique et la deuxieie systématique.
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Statement of Originality

This thess is dhivided into two parts. I the first part I have mcluded a
teview of the evidence for the existence of the top quartk With the exeeption
of a diseussion on the extiaction of the b (quatk total weak 1so-<pin fiom an
analyeis of the chiarged enrrent couphng matiix. the matenal of this seetion has
been obtamed from the existing hterature The tommnant of the first part s
conccrned with certam electro weak correetions to the top decay wudth This s
oneinal tescarch and hias been published i Phyacs Letters 2568 533 11991)
The idea to study tlos problem was my own. and the calenlation was nntially
petformed by myself My ecollaborator Howard Trottier and my advisor Dr,
B AMireohs then fonnd several errors m my calonlation, and throueh many
discussions we arrived at the hest chowee of renormabization schamne for ths
particnlar problem

The seeond part of the theas the analy s of the mchiane 70 width of
the T pertwhbatine Q C D L also constitutes oneial 1escarel T amom the
process of prepanng it for pubhcation 1esolving <ome of the questions that
are mentioned mside The deason to study tlus particular problem was mine,
though it was known to Loth Howard Trottier and Dr Margolhs that this wonld
be an wterosting thoneh potentially tedious problem AL of the caleulatnions
presented e this section were performed by myself  The method of compnting,
loop wtegrals that have simgulanties related to <Hheopt.oe cuts was onginally
developed by H Trottier and B Margohs My conttibutions to this nic thod are
a cnitenion for choosimg the tonting of the loop mormenta <sueh that the munber
of sich singulanties s mmmized, and a method for deternummne the nnmmmm
number of Feynman diagrams that must be added to obtam an mfira-red fimte
tesult It was at D Margoh s suggestion that T andertook the study of the
inditect production of J/u's
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Chapter 1

Preface

This thesis describes the tesults of two essentially unrelated studies in standard
model phenomenology.

In the first part. the order Grpm? corrections to the top hifetime are cal-
culated, whiely are essentially due to the virtual 1adiation of the Higgs boson
To motnate the reader as to the usefulness of this exerase, I have included in
the first chapter a mme-review on why we believe the top exists. what hounds
we can piut oroats mass m the standiad model, and what can be smd about
the Higes 1 the standard model During the disenssion T also comment on the
ongra of Gy iy eflect< o general and the seeming violation of the decouplng
theorern The new re~cardis contamed 1 the second ehapter of part 1, and
essentially self contained

I the second part the mnelusinve J /e width of the Y as caleulated using per-
turhative Q C'D Ouragnorance of the meson wave fund tions s cireiunvented by
workimg to lowest orddes o the relative quath momenta Tutegral to tlas approach
i~ the assiumption that the T oand J/o e now relativaictic sy ~tems This pos-
tulate lias been extensively discus et the hterature Furthier, this ealeulanon
schieme onginates hastoneally m the study of posittonimm like systemns, which
may be foun Lin many standard textbooks For these reasons, and the fact rhat
as 1t stands the presentation of the caleulation is alteady somewhat long. only
a very bnef discussion of the historieal context of the study 1s presented in the
secotrd part




Part 1

Top Decay




Chapter 2

Introduction

2.1 The Standard Model

The standard model[l, 2] of high energy physics is a Yang-Mills[3] theory based
on the group SU(3), x SU(2) x U(1)y. The fermions fall into three families,
cach containing 15 hyper-charged ficlds, which transform in the following repre-
sentations of SU(3)e x SU(2): a (3,2) and a (1,2) of left-handed fields, and two
(3,1)’s and a (1,1) of right-handed fields. The SU(3) triplets are called quarks,
the singlets leptons.

It also contains exactly one SU(2) doublet of color singlet, hyper-charged
scalars (which makes four real fields). These are assumed to possess (renor-
malizable) non-linear self-interactions such that the ground state of the theory
prefers a non-zero vacuum expectation value (v.e.v.) for the scalar field. This
simultancously se1ves two purposes:

1. Thiee of four gauge bosons of the electro-weak sector acquire mass via the
Higgs(4] mechanism.

o

Mass terms for the fermions may be generated. The left- and right-handed
parts of the fermion fields trarnsform differently under SU(2), preventing
any Dirac mass terms for them. Since they are (hyper-)charged, Majorana
mass terms are also excluded. But a coupling between a left handed and a
right handed field and a scalar doublet is fully lorentz and gauge invariant,
and becomes a Dirac mass term it the scalar acquires a v.e.v.

As a result of the scalar sector performing these two functions, the spectrum of
physical states of the standard model ends up containing exactly one, neutral,
spin-0 field which ouples to every particle in the model (fermion, gauge boson,
even the Higgs itself) in proportion to the particle’s mass.

The standard model has been tested extensively and seems to be able to
account for a wide variety of phenomena via the tuning of its 15 or so free pa-




rameters (particle masses, mixing angles, coupling constants, etc.). However,
two of the fermions in the model, the top quark and neutrino of the third gen-
eration have yet to be observed directly, though there is much indirect evidence
for both. Further, there is essentially no evidence, direct or mditect for the
existence of the single scalar boson discussed above

(The best indirect evidence for the third generation nentiino consists of the
LEP Z-width measuiement.)

2.2 Theoretical “Evidence” for the Top

We wish to generate the standard model by gauging a global SU(3), x SU(2) x
U(1)y symmetry. However, it turns out the global U(1)y symmetry is broken by
quantum mechanical corrections. A gauge theory based on a broken symmetry is
mathematically inconsistent, it is non-renormalizable and possibly meaningless
Thus this global symmetry must somehow be maintained if we are to heliove
the standaid model [0)].

The simplest way to sce that the U(1)y symmetry is broken is to note that
its associated nocther current is not conserved. Pictorially, the lowest order
feynman dingram causing the effect is given in figure 2 1 (higher order diagrams
do not change the situation [5]) where cach wavy line represents the current
associated with a symmetry. The contribution of this diagram to the divergence
of the U(1)y noether current is given by:

dJy = tr{Y {11, Tu}} = A(}Y12)

where “Y™ is the U(1), hypercharge coupling matrix, and Ty, T, are the coupling
matrices of the other curients There are four possibilities for the two other
currents that result in problems:

o {current 1, current 2} = {SU(3) current, SU(3) current}
e {current 1, current 2} = {SU(2) curtent, SU(2) current}
¢ {current 1, current 2} = {U(1) current, U(1) current}

o {current 1, current 2} = {lorentz current, lorentz current}

If we allow cach of the fermions from one generation to circulate through the
loop, the anomalous divergences in the hypercharge current are proportional to:

A(Y33) = 2Yg + Yie + Yye
A(Y22) = 3Yp+VY

A(Y1l) = 6Y)+3Y) +3Y) +2V} + Y2
A(YLL) = 6Yg +3Y,c 4 3Yy4 +2Y, + Y. (2.1)
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Fignre 2.1: Diagram leading to anomalous non-conservation of hypercharge

where {Q.u,d,L,e} represent the {quark doublet. up quark singlet, down quark
singlet. lepton doublet, lepton singlet} respectively.

Amazingly, the standard model assignments for the quarks and leptons in
cach generation lead to all four of these equations fortuitously vanishing, If any
one fermion in a generation is removed, one or more of the above equations
becomes non-zero, and the standard model becomes inconsistent; thus the the-
oretical argnment for top quark existence. Note that this relies on our belief
that the 7. b quaik, and presumably v, each fall into exactly their expected
positions in the third generation.

I do not find this argument very compelling, because it relies on a nuinber of
assumptions which themselves imply the existence of something very much like
a top quatk. For example, suppose the third generation contains all the usual
fermions, but has in addition a coloured field whose left- and right-handed parts
are SU(2) singlets, and whose hypercharge (= electric charge) = -1/3. Then the
contribution of the “normal” fermions to the anomaly coefficients above still
vanishes, and the extra cffect of the new “D” quark field 1s:

AA(Y33) = Yp+1pe=0

AA(Y22) = 0
AAY1D) = YR +Y2. =0
AAYLLY = Yp+Ype=0 (2.2)

Thus this is also a consistent model from the anomaly standpoint. Now suppose
that the b-quark we have observed is this extra SU(2) singlet field, and the other
quark fields in the third generation are very heavy and have not yet been seen.
The “top" quark that resides in the third generation could now have mass in
excess of a TeV or more; in fact, we might never see it.




This model is ruled out by phenomenological studies of the b, which demon-
strate that the b-quark 1s almost surely not a weak so-singlet Ounce we have
made this assutnption. however, the anomaly argument 15 completely superfiu-
ous: if the b-quark transforms non-trivially under SU(2). 1t must have a charge
+2/3 partuer, which is just the top quarth  Thus as clinmed. one of the un
derlyving ascumptions of the anomaly diseussion s on s ow e sutficient to mmply
top existence. These more basie arguments ate the subjeet of the next section.

2.3 Evidence for the Top from b Quark Analy-
sis

Herein I will review a somewhat model independent argument that the top gquark
exists[7] So for the rest of this section, by the “standard model™ T will mean
the theory described in the section 2.1 with the exception of the assertion that
the third family is a copy of the first two. We will tiy to deduce preeisely how
the b extends the two generation standard model. We will conclude that the
only way to add b onto the existing model 1¢ to include a charge +2/3 partner
with it.

As we go along, T will t1y to identify any model dependence whiel does arise
Of course some assumptions have to be made somewhere along the way, and
here T list the more important ansatzes upon whieli onr conlusions will 1est:

1. The W~ is a gauge boson introduced to loculize i plobal SUC2) synmetry

of the model, with a similar claim concermmng a part of the Z°

o

. The global SU(2) symmetry is not erplicstly hioken ie. the complete
lagrangian of all matter is an SU(2) scalar

3. The light quarks (d,u,s.c) lie in their standard model SU(2) multiplet
positions as desceribed in section 2.1

Assumptions #1,3 essentially summarize a vast body of experimental data. The
remaining one, #2, is very much the weak link and its justification requires
subtler arguments. We return to this point later.

On the basis of assumptions # 1 -3, the argument for the top quark existence
goes like:

o Experimentally, it is inferred that the b quark couples to the W= or the
SU(2) part of the Z°.

e By # 1 above, the b must therefore have non-trivial values of the SU(2)
“weak isospin” quantum numbers i e. of T4 and Ty,

o So by # 2, the b must actually be part of & not-trivial SU(2) multiplet.




e But we have assimed in # 3 that the other known quarks are already all
paired up with each other m the weak iso-doublets and singlets of the two
generation standard inodel  (Alternately, if the b was paired with a lighter
quark, its decay rate would he 400 times that obscrved [§])

o Therefore the b-quark mnst have one or more so far unobe<erved partners.
which is essentially the statement that a top quark must exist

e From that pont, a more detailed analysis of phenomena yields the speafic
weak 1so-spin values Tr o Tap. Tr, Tap of by, aud g

Let us diseuss assumption # 2 for a moment. Its analogue m the effective
theory [9] of the light mesons based on chiral SU(3) x SU(3) global symmetry
would forbid the iuclusion of a term transforming like the generator “Tg™, an
integral part of the model necessary to give masses to the the pscudoscalar
mesons and generate the Gell-AMann Okubo relation The difference here 1s that
our SU(2) symmet1y is gauged, so that assumption 2 is seemingly absolutely
necessary from the standpoint of mathematical consistency: a gauge theory
based on an cxplicitly broken symmetry is not renormalizable.

However, suppose we discard the requitement that the standard model be
tenormalizable, Spe-ifically, it could merely be an effective theory obtained by
integrating out the heavy degrees of freedom of some other. finite, theory. The
existence of a sectot in this effective theory violating assumption 2, like an iso-
doublet b quark without its ¢ quark partner, would result in large corrections
to any observable 1 the standard model which is finite only because of deli-
ate cancelations hetween several amplitudes related by global or local SU(2)
invariance. There would exist an upper cut-off for which the model would be
phenomenologically invalid, indicating that new physics would have to be in-
clided. Whether this physics is the top quark or not 1s another question The
point is that in prmneiple model independent bounds could be placed on the
existence of expheit SU(2) breaking.

I am not famuliar with any such generic study However, an analysis of the
standard model in the hmit m; — oc should give us an idea of what kind of
bounds are to be expected. This will been reviewed in section 2.4.

2.3.1 Dectermining That b Interacts with 147

The argument that the by, or brp (= b) must couple to the W™ proceeds by
contradiction Fust note that quarks can only decay by coupling to a lighter
species of quark; 1e¢  only if there exist flavour non-diagonal couplings be-
tween the quarks. In the first two generations of the standard model. the only
flavour non-diagonal couplings at tiec level occur in the charged emrent sector.
in the couplings of the quarks to the W bosons. This is 1equired to . comnodate
stringent limits on flavour changing neutral currents  So now suppuse that the
(weak-elgenstate) b quark is an SU(2) singlet. Since there are no other charge

10
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Figure 2.2: Charged current decay of a weak iso-singlet b

1+

Figure 2.3: Neutral current decay of a weak iso-singlet b

—1 bosons in the model, the b quark cannot couple to the chiarge +2/3 quarks
u and c¢. This does not mean it cannot decay however, since the mass eigen-
state &', which is what we obscive in our experiments, will in general be some
mixture of the charge —1/3 weak cigenstates d.s,h Thus the mass cigenstate o
will effectively have couplings to the W~ via its s or J component This leads
to the diagram of figure 2.2 for the observed decay of W - ¢l "% The predie-
tion for this rate depends on the magnitude of the unknown b < b-d nixings
Now the problem 1s that it is alco possible for the V' to decay as in figure 2.3,
V' — sI7IF. I the ratio of these 1ates the dependenee of the wnlnown ming,
angles either disappears or may be consttamed. (The 1atio is not sunply 17
because of complications arising from the fact that the parameters of the mning
must be fine tuned to climinate FCNC’s in the hight quatk sector ) Different
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authors[10] estimate:

I'(b—I17I*X) _
> (
r'b—1-vX) — 1

Expernnentally[11]. the branching ratio for this mode is less than .1%. This
establishes that b is not an SU(2) singlet

A few points should he made. One 1s that tlus discussion exactly parallels
the analysis[12] of Br(r~ — ¢~ X)) used to exclude a singlet assignment for the
77 lepton.  Anothier 1s that we should not be surprised to see that the final
contiadiction mvolved properties of flavour changing neutral cuirents  Such
problems always anse when quatks of ke cliarge obtain their masses via two or
mote different mechansms{13]. In the above case, the first two generations of
quatks are chital and can only get their masses from S S B imvolving an SU(2)
doublet of sealars while the singlet b quark admits only “direct”™ gauge mmvanant
Dirac mass terms o1 spontancously generated masses from SU(2) simglet scalars.
Figures 1 and 2 are essentially graphical illustiations of the theorem of [13]

Further, if extia charge —1 bosons exist then T'(b — ¢{77) can oceur via
the analogue of the usual SM W7 exchange decay. with no inphcations on the
existence of FONC's Tlos is one feature of the canomeal “topless™ model[14]
based on the proup Eq. wherem b 1 a singlet under the SN SU(2), and there
s an extra W7 a8 assoctated with a new gauge symmetry SU(2) under which
by transforms as a doublet. This model has many problems in explaining a
host of other phenowena, especially the precision LEP data as diseussed in [15],
wherein 1t is pronounced ruled out.

2.3.2 Dectermining the b’s Weak Iso-spin: General

Having argued that the either by or hg must be part of a non trivial SU(2)
representation, we now turn to trying to determine exactly which representation,
Put another way, now that we believe that there must be other quarks in the
universe other than the five we have observed. we want to find out exactly how
many such fields the existence of the weakly interacting b quark implies, This
information 1s contaned in the coupling matrices of the 1" gauge bosons to the
b quarks. Essentially, since SU(2) is a suinple non-abelian group the generators
obey the following non-linear relation:

[T,,T,] = 10,1 T (2.3)

whete the ¢, are anti-symmetric and not all zero for any fixed value of “”,
say. This non-linearity means that the relative size of the coupling of a given
gauge boson to fernmmons within the same multiplet, and the relative size of
the coupling of the different gauge bosons to the same multiplet, are fixed and
determinable solely by gioup theoretic means. The non-lincarity of 2.3 fixes
the relative notmalization of the interaction strengths and removes much of the
arbitrariness from the model.




- ol

So. suppose by, bp belong to Ty, Tr SU(2) representations, and consider the
gauge part of thc “inetic energy term for the left-handed multiplet (= f).

Lmt = f[yy{"f+gl'85']1-,lf
= %Tm'm +PTTLNPLS 4 TLal T R BY (D

= L{C+LYC (24)
where:
B = B
WE o= (W) ve
T:h = (T]:tITg) {20)

Recall [16]:

T:tf"l'.'f'a = Ci(T, Tz)flfl'.r.tl

Co(T.Ty) = T(T+1)-Ty(Ty £ 1) (26)
Thus:
Tt

L§¢ = _;‘7\/_6_ Z —f_,,H,1 (C{(TL.o)VF + C(Tr .oy 1P) fun

“ om=-T]

Ty
Lilc = Z _fm[wnyva+9'YLB]PLfm (27)

m=-TL

The multiplet f contains the fields (---,Ut,b. D, ). where U,D. ete are
exotically charged quarks. Picking out only the non-exotie terms contimmung the
b quark from equation 2.7 yields:

54 = %C'+(T1,.T§’,,)?ﬂ'+Pl,l) + he
LYC = BlgTH P+ ¢ VLB b (2.8)

We see that LN is sensitive to the Ty, and Tyg values of the b gnark, while
L,C;C “knows™ about T, and Tr also. However, the extraction of these quantities
is complicated by the fact that all like charged fields in the theory can mix after

the S.S.B. We first analyze LN

2.3.3 Ty Values of the b: Neutral Current Analysis

We must assume the gauge group of the non-color sector 15 just SU(2) » U(1) in
order to extract Tyr, T3 p without ambiguity fiom experimental data Under this
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assumnption, the spin-one mass eigenstates Z% and A can only be combinations

of W, and DB

W; = cos,2°+sinb,A4
B —5in8y2° + cos A (2.9)

i

<o that L‘,?(' becomes (s, = sinf,,.. ete. :
LYC =BlgenTt, — ¢'swYL)EOPLb + blgsu Ty + g'cuYL]APLD

There is exactly one known massless color singlet neutral spin-one boson, namely
the photon. Supposing without loss of generality that this 1s the “4” field in
2.9, we must therefore identify the A coupling matnx with «Q:

Q= gswIr + g'cuYL

This relation may be solved by consideriug, the (1..¢7 ) doublet. The repre-
sentation of @ on these fields is diag(0, —1). Since [Tk, Y] = 0, we have that Y
is proportional to the unit matrix on any irreducible representation of the Ty.
Thus' (the A operation subtracts neighbouring diagonal matrix elements)

cAQ = gsinbwAT; = e=gsinfy
=Q = T3+ %Q'YL (2.10)

The relative normalization of ¢' and Y is completely free since the U(1) group
is abelian{17]. A cominon convention is to set g'e,, = ¢. Then:

Q=T1+YL = Tar+1Yr

This leads to the expression for the whole (1.e. left plus right) neutral current:

NG = EQ—E,ZO(Q'}IPL + Q% Pr)b + cBQPAD
Qur = Tir-siQ (2.11)

The parameters ¢, 8, are known from a studies of the two generation model.
Q' has been deduced [18] from the magnitude of “R™ in ¢te™ — hadrons
above threshold for “b" production where the photon exchange is dominant
The quantities T?, and T?, may be extracted fiom two appropriately chosen
ZY expetiments. One is just the Z9 partial b width [19]:

I(Z% — bb) = 664 Mcv x [(Q%)* + (Q%)?] = (360 £ 50) Mer (2.12)
L R

whete the last number is the experimental result.
The other experiment must involve a search for parity violation. This is
hecause all paiity even observables in the theory will be functions of (Q% +

14



Q%). whose value we already know from 212 We choose Ap glete s bb) as
measured at the Z% peak  This is the difference between the number of b quarhs
coming out m a forward dircetion (with 1espect to the « *¢ = beam) from the
number connng out in a backward direction, divided by the sum of the same,
v forward ditection”™ prerees the hemsphere about the « beam A simple
argument yields the formmla for this quantity m the ceutie of momentinn fiame
on the Z' pole where the contiibution of the photon can be neglected for onm
purposes

Setting all fernnon masses to sero, the mntial « T 7 can only wlnlate wto
a Z" af they are ina [1.£1 > total angular momentium state with respect to
the ¢te™ axis  This follows fiom the chirality conservation of the <tandard
Z° mteractions[20], and from the fact that the Z% s spinone The 1/ <
corresponds to right /left handed elections, Sumlarly. the final b bisma |1, + 1
total angular momentum state with 1espect to the b-b axvs The amplitude
must be proportional to the Z°% -charges of the left- or night-lianded ficlds that
annihilate or are produced, and the <pin one representation of the rotation
matrices:

Dl :{:l( ) = (1 £ cost)/2
DL, 1(8) = (1 £ cos8)/2

where 8 is the angle between the ¢ and b axes. Thus [21]

(10’ , 3 )
[(Ql,r QLh)z + (QQO,)'](l + cos8)*
dcos8
F[(QreQr)* +(QreQrr)l(1 - cosB)?
1 1 0 ]
Appg = / U d(cosB) — / - ‘f’«-,mme //
0 (1(()\9 1 ([(()\

[
3 (Qlchb QmQRb Q/(Qm, (Qnre le

4 QL(QM)Z (QreQun)? + QL Q) +(QuaQrp)?

— § Q!:f_;__._ Q Lh Q 103
Q. + QRe Q) + Q%

The number in the final line is the observed value [22]. Combinimg equations
2.11,2.12, and 2.13:

Q% + Q% = 0334008

Q%, - Q%, =065+ 0.57

|Tsr| =0.69 +0.16

|T3/g’ =0.17T4+ 016

These results are consistent with the values [Ty, 1 = 1/2 and Ty = 0. Unforta
nately the sign of T3 may not be determined from this experiment, beeanse

Arp x  (Que — Qrs ) (Qrs + Qrs)




= (T3, - Tsp)(Tap + Tap + 255./3)
D=0 T Ty +255/3) >0 for Ty = +£1/2

sinee 252 /32 1/6 Thus the sign of A7 g on the Z" peak 15 not <ensitive to the
sign of Ty

At lower energies where the mterference of the Z° and photon exchange
graphs is more sigmficant. 4pp does depend on the sign of Ty The formulae
are more comphcated, and the analysis has been performed by several groups
(23] with the typieal result 2Ty, = —(1.15 £ 41) (deduced by setting Ty = 0).
[ conelusion:

TS = - TPr =0 (2 14)

toj—

2.3.4 T Values of the ): Charged Current Analysis

We now return to the charged enrrent portion of the electro-weak b-quark in-
teractions Recall equation 2.8,

LI(P:S, = %C+(TI,-T§L)?Y‘"+PLFI + h.e

In light of the conclusions 2.14. let us make the <implifving assumption that
Tr -0, o that that L,(b.(,{ = 0, but leave T, general:

Ci(TiTy) = VTUTL+1)+1/4 = T+

I

LGC = —g\/—_g—m +1/2)IW*PLb + he. (2 15)
Naively, if we could observe the t-b transition we could deduce immediately into
what 1epresentation of SU(2) the b quark falls. and thus what extra fields the
existence of the b necessanly implies. For example. for T = 1/2 corresponding
to the standard model scenario, the W would couple to the b with the same
strength we have seen it couple to the €7 while for T = 3/2.5/2 it couples
with 2,3, tunes that strength, making the transition rate 4.9, . larger
Unfortunately, such a snmple analysis i1s not posable due to the existence
of mixing between hke charge quarhe This comphicates the diseussaion just as
the minmg between the hke charge gange hosons W and B compleated the
analysis of the neutral enrrent data Smce SU(2) 1s spontancously broken and
its genetators do not commute with the hamiltonman appropriate to our vacuum,
the quartk mass ewgenstates will i general be hinear combinations of the weak
eigenstates  Spectfically, though the T value of the b s curtently arbitrary
while the d and s certainly are in T = 1/2 multiplets, all have charge —1/3 and
can nux  Smmlarly the charge of the t quark1s —=1/3+4+1 = 2/3 and can combine
with the v and e. Letting ¢, ¢/, denote the quark weak, mass, eigenstates, we
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allow for generic nuxing'

il

L= d S = Uk,
= (.,

[.’l(.}(“.(..t).)

1 d
e q - .
LS - “= (i.7.1) 1 e bohoe
- C+ )
1 d'

- —gﬁm'.?’.?)(v“)* 1 \yv*P, vl yohe
- C+ ) I3 y

= L EpteY, 4 he (2 16)

V2

Evidently the T. Ty information becomes absorbed in the effective charged cm
rent coupling matrix

I = YU Ul e (217)
k
1
a = T -3

One ontstanding feature of 2 18 1s that the conphing mattx s not unitary except
for the cace T = 1/2 contesponding to the standard model seenanio of the ¢ KA
(24] mechamsm It 1< not immediately obvious what the best phenomenological
implications of this are However, this effect 15 1 prineiple distinguishable fiom
those produced by the existence of a fourth generation For suppose that ot some
point in the future all mme couphing matnx elements have been imdependently
determined. meludine thenr phases i e with no asaroption of niitanty Then
consider the following observible in the three seenatios. KM, 4™ seneration,
and the general three generation case above:

TR

t)
~ s
L o < 3
3]
- 2 o
}_JV,‘}”‘ = 342 +d*>6>3 (218)
3

Admittedly. this is a very poor observable from the peint of view of it ever heing,
measured, or measured aceurately. A scarch for subtler nuplications of the type
of non-unitarity displayed above is currently being undertaken
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2.4 Constraints on m,; in the Standard Model

2.4.1 Lower Bound on m,

Within the context of the standard model the production rate of the top quark
at hadion colliders can be aceurately predicted [25]. For example, the cross
section at FNAL for the process gg — tf15 about 0.1 n-barn for m, = 100 GeV.
Further, the standard model allows essentially only one decay mechanism for
the top:

ot = bty formy < my + my
ot =+ bVt formy > mu +my

These two facts allow the absence of a top signal at FNAL to be translated [26)
into a 90% confidence level lower bound on my:

me > 89 Gel’ (2.19)

If the standard model is extended to include certain types of new physics,
the bound drops. The 1dea is that the top could really be lighter than 89 GeV
and 15 in fact being “coprously”™ produced at FNAL, but is simply escaping
detection there This could happen if the top decays predominantly through an
exotie mode that the experiments do not search for or are not sensitive to. Two
examples [7] are:

o t -» bH™* in models with extra scalars. [27]
e t — 3 m supersymmetiic extensions.

Since these are two body decays, they would dominate the three body mode
t —— betv appropriate for m, < myw + my.

A sbightly less model dependent bound on my¢ comes from a measurement of
the Wt width, For a top quark with mass sufficiently below my so that phase
space suppression can be ignored, the top quark nakes a 25% contribution to
[y This s of course independent of whether the top is decaying through the
“invisible™ modes desciibed above or not. The idea here is similar to that of
counting the number of nentrinos by measuring the Z° width. An analysis [28]
of data coming from CDF at FNAL yiclds the 90% confidence hmit of:

my > 41 GeV (2.20)

2.4.2 Upper Bound on my

The are several phenomena involving only light particles whose standard model
predictions are very sensitive to m,. This sensitivity arises from the fact that
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radiative cotrections introduce into the standard model formulae picces that are
proportional to:

2 2
m My .
Grm? gzm—-21~ x (_z—> x g} ~x a (2.21)
W '

where ¢, is the Yukawa coupling of the scalar doublet to the third family
ferinions:

ot - R+ H+18%) [t
gitpod! b)+fz.c. = gitr 72‘( L (b>+h,c. (2.22)

Note that as a; = g2/4r becomes as large as 1, there ~ndiative cortections can
rival the tree terms. This is a signal that the perturbative technique used to
compnte the corrections is breaking down: i e, for a; &~ 1 the sealar-fermion

sector of the standard model has entered a strong conpling regune This oceurs
for:

my 2 Varo/V2  ~ 617GV

If we want a “nice” perturbative theory, this gives us our first upper bound
on the top quark mass (see also [29]). In actuality, precision measnrements we
will review below are currently accnrate enough to place significantly hetter
constraints on the top mass:

my < 240G eV (223)

This is equivalent to a coupling constant of &y < 0.11 so that the use of pertur-
bation theory in the derivation of the formulae is consistent.

Violation of Decoupling Theorem

The existence on phenomena whose standard model formulae diverge as my —
oo would seem to violate the decoupling theorem [30]. The latter concerns renor-
malizable theories containing particles with widely separated masses. Roughly
speaking, the argument goes as follows. Consider a process mvolving virtual
heavy particle exchange If all subgraphs containing the heavy particles are
convergent, then the process is suppresscd by mverse powers of M (up to log
arithms). If, on the other hand, the heavy particle ocenrs na primitively
divergent subgraph, then its effect can abcorbed into the counterterm assoct-
ated with this subgraph. In this way, all cffects of the heavy particle are either
suppressed by its mass or absorbed into renormalizations of conphugs involving
only light particles.

In the standard model, there is an important hmitation to this reasonmmng,
Gauge invariance my forbid counterterms corresponding to certiun primitively
divergent graphs. The finiteness of the theory 1esults from delicate cancellations
between different graphs, sometimes between graphs contmning heavy virtual
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Figure 2.4: Diagrams gencrating m? corrections to gauge boson masses.

particles and graphs containing only light virtual particles. In this situation,
the heavy particles certainly do not decouple; on the contrary we should expect
cffects which grow with the heavy-particle mass.

What makes the violation of the decoupling theorem especially significant
in the case of the top is that these effects diverge quadratically. There are
essentially two sources of this type of behsviour:

1. Universal effects due to large mass splitting between the third generation
Ty = -1'—% and Ty = -:15 isospin members. These upset the relation between
the 117t and Z° masses and sinf,, as determined in the neutral current
coupling to any light fermion. (“p parameter™)

o

Non-universal effects due to the top quark as the iso-spin partner of the
b quark, as in the Z%b-b vertex [31].

It is from the first of these that the bound 2.23 is extracted. The second has
not yet been measured to enough accuracy to be sensitive to m? effects, but I
discuss it hecause it is illustrative of the calculation performed in this thesis.

p Parameter Analysis

A shift of the Higgs field in the standard model lagrangian yields the terms:
295va Wi W + (g8 + o) v5 2,2 (2.24)

which leads to the tree level relation:

Mw

P = m =1. (225)

The diagrams in figure 2.4 generate corrections to the W+ and Z° masses that
arc proportional to m?. This induces a change in 2.25 (32]:

AWM Gpm? (2.26)

3
p= 1612n2

It is essentially this equation that leads to the bound 2.23.
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The decoupling theorem is violated here because we cannot just absorb the
radiative corrections into arbitrary gauge boson mass counterterms, for example
like:

SmEW WHE o smiZ) 2

The gauge boson mass terms 1 the standard model arise 1 the very speaifie
fashion of 2.24. and adding these arbitiary extia mass terms in will typically
destroy the (hidden) SU(2) gauge invariance.

Though it is not apparent in 2.26 which was detived setting my = 0, 1t
turns out that 1f if m, = m, then the fermiome corrections to p will vanish
This is linked to the existence of a spurious extra symmetity exhibited by the

standard model scalar sector. The SU(2) doublet Higgs ticld has the most
general potential:

V(é) = A(267¢ - ?)’ (2.27)
and ¢'¢ can be written as:
+ 10 . . ,
¢*¢E¢*<z;+i¢z) = 5 + o1+ 65+ 03 (2 28)

Thus V(4) is invariant under the gioup of SO(4) rotations  SO(4) = SU(2) «
SU(2), and one of these SU(2)’s is the original weak SU(2) that all terms i the
standard model lagrangian must be invariant under, while the other 1 an extia,
spurious, symmetry. It arises because the constraint of renormalizability does
not allow us to write more complicated terms in the scalar potential The three
fields which are absotbed by the gauge bosons.

¢Os ¢1’¢2

transform as a triplet under the extra symmetry, and:
1 &

transforms as a singlet. In the usual way, this global symmetry would lead to
a degeneracy in the eigenstates of the hamiltonian. Specifically, the diagonal
elements of the gauge-boson mixing matrix generated by spontancous synnnetry
breaking that correspond to the three fields:

W3 Wi

are all equal. It is easy to show that this statement is equivalent to the relation
2.26.

Let us now include one generation of quatks [33]:

Ox

_ +
gz(?,E)L(f¢_>tR + gb(i’”l,(io)”‘
__ Ox +
=g/ (1,b), (_‘;_ i") (Z)R + O(ge — gu) (2.30)
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where » = ¢3 + 19 Thus for g, = gp (and ignoring the quarks hypercharge for
a moment), the fermion-scalar sector also has the SO(4) symmetry, since the

transformation: oe 4
o= (‘p @ ) - et

—¢~ °
causes the four fields (¢o, ¢1, 2, ¢3) to transform as a vector representation of
SO(4), as above. So for m; = mp, we have a symmetry which keeps the p

parameter equal to 1. This is the origin of the m?, or more accurately
2 2
(90— gp)° o (my—1my)

corrections to the relation 2 25. Essentially, g: — g5 behaves as the order param-
oter for the custodial symmetry that would otherwise keep relation 2.25 true to
all orders. Recalling the quarks’ different charges, a similar statement applies
to the fine structure constant a.

The Z% - b - b Vertex

The radiative corrections to the Z9 — b — b vertex involves a piece proportional
[31] to m?:

1 1
Iy o< goy® [(a - §)PL + gsfu
2
_ a my
@ = 167282, m?2 (2.31)

{This is the asymptotic, large m,, limit.) Again, the decoupling theorem is
violated because of the bad behaviour of “a” as my — oco. We cannot sim-
ply absorb “a” into a redefinition of the left handed Z°-b-b tree level coupling
strength, because this would destioy gauge invariance: the gange bosons must
couple to all fields with the same strength at tiee level, up to group-theoretic
factors.

It will be instructive for later purposes to identify the particular feynman
diagrams that lead to the formula 2 31. We perform the gauge fixing using the
¢ class of gauges[34], in particular setting € = 1 (feynman-t"Hooft gauge [33]).
Under such a scheme the would-be goldstone bosons appear explicitly in the
lagrangian, and the propagators for them and the W™ bosons are:

G(j)(p) = —2 (pz —m? ) 1

u
) . -1
KD (p) = ~ig"¥ (p* -~ m2)

(Note the negative residue of the ¢ propagator indicating it cannot be an asymp-
totic state.) The two diagrams shown in figure 2.5 are the source of the G pm?




Figure 2.5: Diagrams generating m? corrections to Z¥ decay.

dependence. The first diagram, for example, generates the amplitude:

. 2/ dil
9or9¢ | (= my2(F —m2)

By power counting, this integral can only yield either log(m,) or ;‘;y picces.
Thus for large my, the amplitude behaves as: '

~ go- g7 +log(my)

This is the promised g? = Grm? dependence.

In general, by power counting the only radiative corrections to dimension

four operators going as m? must involve the coupling of a would-be goldstone

boson.

2.5 Indirect Evidence for the Higgs boson

2.5.1 Lower Bound on the Higgs Mass

LEP has recently obtained {36] the following lower limit for the mass of a stan-
dard mode] Higgs:

My > 40GeV (2.32)

The production mechanism is Z® — H ff, where “f” is any fermion. Note that
there are some ambiguities in the arguments that rule out a a very light Higgs,
My < 1GeV, so that this may also be a possibility.
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2.5.2 Sensitivity of Radiative Corrections to the Higgs

:l As for the top. there exist Higgs phenomena which violate the decoupling the-
otemn These are associated with primitively divergent diagrams containing the
Higes whose efferts we cannot simply absorb mto parameter redefimtions, be-
cause of pauge mvariance,
Inn the case of the top, there were two asymptotic forms:

1 log(my)

2
T”l __ 2
2. —1"‘2— = 4,
It was the second type of behaviour which was responsible for the stringent limits
on the top mass. In the casc of the Higgs, the situation is entirely different. Now

the bad large my; behaviour has the forms:
1. log(m?%)

2
my
2. a—H = a)
12
A is the sealar quartic interaction constant, and is the analogue of g, above. We
see that even in the case of a strongly coupled scalar sector corresponding to
A = 1, the second form of behaviour only produces correetions of order . Thus

the mechamsm that led to such abundant information on the top breaks down

¢ in the scalar sector. This is the screening theorem [37]. for large Higgs mass,
4 we have a strongly coupled theory screened off from observation by a factor a.

Here 1 desenibe two observables whose radiative corrections depend on my:

1. Corrections to the p paramecter, as for the top.

2. Corrections to the anomalous magnetic moment of the muen.

p Parameter

The p parameter gave us our best information about the top because of the
quadratic dependence of the radiative corrections, which was due to the fact
that (m, — my) functioned as an order parameter for the global custodial sym-
metry. However, the physical Higgs is a singlet (sce 2.29) under the extra SU(2)
syminetry, so that the custodial symmetry is preserved as myp — oo, Thus
we should not expect m?; behaviour, which is cousistent with the screening

theorern.
The correction to the p parameter coming from figure 2.6 is [38):
Sor M} M} M? Mj
PULZ orsd, MG - M S MY T 00, - M3 F M3
- M?
- 302 log H as My — o (2.33)

167c?, M3Z,
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Figure 2.6: Diagrams generating Higgs dependence of the gange boson masses

which has the promised log(ms) dependence, with an additional suppression of
a. A recent fit to a host of neutral and charged current precision data leads to
the following constraint [39]:

My <1.6TeV

Muon Anomalous Magnetic Moment

The muon anomalous magnetic moment “a,” is defined by:

T
4m,

F:w(q?, = 0,p3 = mf) = 17" + a,

The Higgs boson contributes to a, through the diagram of figure 2.7, yielding
(where r = mj} /m?):

Gpmi ! . z?(2 - z)
8722 Jo 2 +r(l —z)

Grm} m? m?
— 47r2\/§";;zlog m_f. as mp — 00 (234)

H
ay

The factor: ,
m
GFmZ oC "55“-
originates in the Higgs-muon couplings, while the:
2

"

2
my

m

part represents an addstional suppression that can be explained by power count-
ing and the fact that an anomalous magnetic moment is generated by a dimen-
sion six operator. This extra suppression is less important for a light Higgs:

a, = (2 -300) x 1071 for my < 3GeV
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Figure 2.7: Diagram generating Higgs dependence of the muon magnetic mo-
ment

The W+ and Z° make contributions of 200 x 10~!?, and new experiments should
probe a, to order 40 x 10711, Thus this experiment is sensitive to a light Higgs,
though such a scenario is probably ruled out.

In this case, the extreme accuracy to which this observable can be measured
offsets the ubiquitous mass-suppression factor coming from the Higgs-muon cou-

pling.
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Chapter 3

Electro-weak Corrections
to the Top Decay

The research presented in this chapter has been published in Physices Letters

256B, 533 (1991). (reference [40])

3.1 Motivation

(3]

There is little evidence for the standard model physical Higgs boson, As we
have scen, this mostly stems from the fact that the Higgs couples to particles
in proportion to their mass. However, the screening theorem [37] must also be
used to fully understand the smallness of the radiative corrections, as we now

review:
1. In the case of observables involving light external fermions, the 1adiative
2
. . . . m .
Higgs corrections are proportional to g} = 2+, by the mass-coupling
rule.

. In the case of observables with gauge bosons as the external particles, naive

application of the mass-coupling principle would lead us to guess that the
l : .
radiative Higgs corrections are proportional to ¢? = 4%, However, since

the gauge bosons contain the would-be goldstone scalars it 1s possible that
2
the radiative corrections could be proportional to A = %'41, and thus be

large for large mp. This is wliere the sereening theorem comes in; there
are no such cffects. Thus the naive estimate is correct.

I propose another observable which is naively much more sensitive to the
Higgs than any process with light external fermions or gauge bosons, namely
the t-b-W vertex. For consider the Feyninan diagram in figure 3.1. By mass

-
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Fiigure 3.1: Higgs correction to top decay in unitary gauge

coupling arguments, this is suppressed relative to the tree level diagram by:

However, this estimate is complicated by the momentum dependence in the
numerator of the W+ propagator, which also introduces ambiguities into the
renormalization procedure. Thus, consider the description of this piocess in
terms of the §-gauge fixed Lagrangian {34], for the particular choice £ = 1
(Feynman-t'Hooft gauge {35]). The Feynman diagram associated with figure
3.1 in the new £ = 1 language is depicted in figure 32. Now it is easy to
sce that the “suppression” of this radiative correction relative to the tree level
vertex 1s typically:

mi

v?
Since my can be as large as 240 GeV (see 2.23), this is really no suppression at
all. However, since figure 3.2 is a loop diagram, its contribution is down relative
to tree level by an additional ﬁl;f. Thus a first estimate of the correction to
the t-b-W* vertex due to figure 3.2 is:

1 m? 1

1672 v2 5%

This is the typical size of other electro-weak corrections in the standard
model. This in itself is quite surprising from the point of view of our experi-
ence with Higgs corrections to light fermion processes, where its effects could
always be ignored. Nevertheless, a full calculation of all strong and electro-weak
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Figure 3.2: Higgs correction to top decay in Feynman-t'Hooft gauge

contributions would have to be performed if we ever wanted to disentangle the
effects of the virtual radiation of all the standard model bosons. The purpose
of the rescarch presented in this thesis was to study only the magnitude of the
“unsuppressed” Higgs radiative corrections, to see if they really are as large as
naively suspected.

The context in which this study would be phenomenologically interesting is
the following. Suppose that the top quark has been discovered, but that the
Higgs boson has not. It could be that either the Higgs is very heavy or that
perhaps it does not exist at all — something else is breaking the electro-weak
gauge symmetries. Then we will find that the measurement of the top width to
an accuracy of less that a per-cent will yield information distinguishing these
two scenarios. It has been estimated [41] that top production at the SSC will
exceed 10® pairs, so that such an accurate measurement of its width is not
obviously out of the question. By contrast, at a TeV lincar ete™ collider it has
been estimated [42] that the top width could be known to no better than 25%.

Lastly, the final number we compute will represent a well defined, gauge
invariant, portion of the complete set of corrections to the decay width. This
follows from the fact that gauge invariance is satisfied order by order in per-
turbation theory: gauge dependence in the coeflicient of the g2 term cannot
be cancelled by other gauge dependence in the coefficient of the ¢? term, for
example, because both gy and ¢ are free parameters of the model.

The cnsuing discussion is organized as follows. First I will deseribe the
on-shell renormalization prescription as it applics to fixing the values of the
field rescalings. I will spend some time deriving the formulae for the rescalings
because I could not find a proof in the literature. Then we will go on to find
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the general expresaon for the decay width i terms of a general #-0-TV vertex
function. Lastly. the Feynman diagiams are presented and computed. and onr
tesults smnmarized  An appendix is meluded to diseuss how the deviation
the top width can be distinguished fiom the effeets of a KN matnix, until that
point, we shall always set 15, = 1.

3.2 The Renormalized Lagrangian

3.2.1 S-matrix, Greens functions

Our goal is to desenbe the onsshell renormalization prescription. It will be
useful to review the relationslup between Gieens functions and the S-matrix.
For this purpose 1t will suffice to work within the context of scalar field theory.

The S-matnx for n particle scattering is givens in the Hersenberg picture by:

S=<q-q,out|giyr+ gniin > (31)

i > and Jout > are in and out asymptotic states which are eigenstates of
the total hamiltonian and the other conserved charges. They contain a definite
number of particles They are constructed from the vacuumn |0 > by creation
operators, ¢q,(7 ). which satisfy.

(O + 7’7?2)¢a,(1') =0 (3.2)

Here mois the physical, measured, mass of the field. The asymptotic field is
related to the fields ¢ in the Lagrangian according to:

¢(x) — 27 guu(2) ast — 2 (3.3)

(This is actually the so-called weak limit, or LSZ asymptotic condition.) The
factor Z'/? is just the amplitude that the operator ¢(r) create a single particle
state out of the vacuum. Since in general in an iuteracting theory o(r) can
create many other states in addition to just the single particle one, we have:

AL (3.4)

Further analysis using a spectral representation of the propagator or two point

function for the ¢ field tells us that Z1/2 can be calculated: it is the pole residue
1

of the ¢ propagator G) at p? = m?,

GO () = 2 —+/’ L —— (3.5)

2 2 )
p m ¢ hrecsh P g te

The S-matrix is related to the Greens functions G via the reduction for-
mula:

GV = <OITd(z1) - d(z)l0 >= FT.[6¥(pa] (3.6)
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n
S = i"Z‘"/z‘/Hd“’r,(D,+7712)-G(")(.rl....‘.r,,)

— 72 I-I(m2 -p)-GM(pi)- A

= 1"2"/2-052)(“)-43 (3.7)

where A = (27)*6*(Zp,), and we have introduced the tiuncated Greens func-
tions:

G () = [TIGP ()] 6 () (3

=1

o

The perturbative expansion of the truncated Greens functions proceeds m the
usual way, with the ezception that the associated diagrams have no self enerqy
bubbles on the erternal hines.

In future, all Greens functions used will be functions of momentun, <o we
will henceforth not explicitly display that momentum dependence.

3.2.2 Wave Function Renormalization

Now we discuss renormalization conditions concerning the field rescalings or
wave function renormalizations. These conditions are necessaty to compute
Greens functions, but they have no effect on the value of the S-matrix. which
only depends on the fields and the well defined Z'/2 factors  In patticular,
we could proceed without ever rescaling the fields, <o long as we remenmber to
compute the Z'/2 factors to the same order in perturbation theory that we
compute the Giecns functions, and msert our results in the complete equation
3.7 for the S-matrix. This appioach is discussed in [43].

However, it is convenient to work with Greens functions that ate themselves
finite. Tlis can be accomplished by rescaling the fields:

¢(e) = 2%, (1) (39)

This leads to new quantities, namely Greens functions of the rescaled fields (see
3.6 and 3.8):

G = gk/2 G(rk)

GP = zrrgh) (3 10)
where:
GY = < OTge(z1) - delza )]0 >
Gl = fI[G‘f’]"G‘,"’ (3.11)
1
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Finally, the S-matrix 3.7 becomes:

.\ n/f2

Z n
S={ 5 G A (3.12)

Obviously, a particular choice for the rescaling cries out:
Z7=2 (3.13)

With this identification, we have chosen a renormalization scheme. 1t is
charactetized by the equality of the rescalings and the well-defined Z factors,
which we know are the particle propagator residues about their mass poles. This
«heme is simple and convenent since we have to caleulate the Z factors anyway
to obtain the S-matrix elements.

Thete is one more constraint to discuss. We <hall shaft cach mass parameter
m the Lagrangian such that each is equal to the physical mass of the asymptotic
state 1 e, the pole of the full propagator. The effect of this will be evident in
what follows

These two preseriptions may be neatly summarized in terms of the behaviour
of the ecach 1e-scaled field’s two-point function near its pole (see 3.5):

—1 1 1 Z
'(2)(1)2) - 7 16(2)(1,)'2) ey e

2
T
" Z pt —m? —e

as p*—m

?

= I“;{-_"Tm (3.14)

In other words:

In the on-shell renormalization scheme the particle propagators have
poles at the observed particle masses, and the residue about each of
these poles 13 17 tumes the unat.

The mass parameters in the Lagrangian are just the masses of the asymptotic
states, and the field operators create states containing asymptotic states nor-
malized to “1": in terms of the LSZ limit 3.3, the field operators create the
asymptotic states When we turn to the more general case of a field theory
containing different fermions and bosons, it is these expressions of the renor-
malization scheme that we will use.

3.2.3 Formulae for the Field Rescalings

We now have to translate the prescriptions of the last section into formulae for
the Z. This is not quite so straight-forward if the fields are fermions, which is
the case we have to consider in this thesis.
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Let us concentrate on just the kinetic energy and mass terms for a fernuon

field 1. B
L = i,'o(ﬂ — gt + \L e (3 15)

We have introduced the subscript “07 on the imtial ficlds to avoid excesane
occurrences of “r" subseripts later Ina theory wath panty violating interactions,
the left and right handed parts of the field e differently 1elated to the left and
right handed patts of the asyiptotie ficld. Thus it 15 necessary to rescale cach
part sepatately:

, 1/2
o, = 2 1,/ ¥l
1/2
Yor = Z;{”‘#’R
mg = m+dom (3 16)

The following combinations will occur frequently:

0Zrp = Zyr-—1
0Z, = (8Zp+4821)/2
0Z, = (6Zp—0621)/2 (317)
Substituting 3.16 into 3.15:
L = v(@—=m + 6L + AL, (31%)

oL = &7, ;(,2) —-mh + (‘)Z,,_z-;a*,r,z,‘ i Zy e

We will sce below that the piece 6L is proportional to the <mall parameter A
in the on-shell prescription. More accurately, we will first assuine that we can
calculate Greens functions by using 6L and AL to pertarh about the fice particle
solutions, and under this assnmption deduce the aforemnentioned relation. Thus
our approach 15 consistent, in the sense of mean field theory
Inspecting this new form for L. we see that we have gamed o term with
a new lorentz stiucture not present in the mitial Lagrangion, namely @
However, 3 18 still does not have the most general form possible, due to the
absence of expiessions like:
Py (319

The 1eason such terms were not generated under the <afts and resealings m

3.16 is:
1. the term in 3.19 is odd under CP transformations,
2. the free field part of the initial Lagrangian 3.15 is CP even;

3. and the transformations of 3.16 preserve CP.
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cp = ——— + —{ ) b

Figure 3.3: The two-point Greens function

Had we aliowed Zi/z, Z;?/z to have imaginary parts, the term 3.19 would have
arisen. Such a procedure would be necessary if there were CP violating interac-
tions in the theory, co that the a<mptotic left and right handed pieces acquire
a relative phase difference. In the standard model, electro-weak CP violation
only arises in processes that involve all three families of quarks, which is not
a characteristic of our problem. Thus we have 170t the rescaling factors real.
Another way to know if the more general procedure is necessary is if terms of
the form 3 19 appear in the sclf energy function as computed in perturbation
theory,

We return to the problem of obtaining formulae for the Z. The final state-
ment of the on-shell prescription was that GY must have a pole at m and a

residue of “1" about that pcle. So we must compute G, Diagramatically,
this is doue in figure 3.3. The diagrams containing the “cross™ and the “blob”
1epresent the contributions of the §L and AL, ¢ pieces of 3.18 respectively. We
will see that it is consistent to assume that the L terins are of the same order
as AL, ... We represent the formula for the blob by X(p).

G2 = (p-m)”

+ (p-m)N[E(P) + 6Zu(p-m) + 8Zapys - Im](F-m)T" + O(A?)
(3.20)
In the absence of CP violation, E(p) has the 1nost general form:
S(p) = TP + Sa(@®)prs + mT,(0%)
= Sy(p")pPL + Sr(p?)pPr + mE,(p?) (3.21)

where in the case of massless particles, “m” may have to be replaced with the
mass paramecter of some other particle in the theory. Note that p# is the only
four-vector in the problem, so that other terms with o#¥ etc. in them are absent
or may be transformed to this form using dirac algebra. A term proportional
to just 45 has opposite CP transformation properties from those above and will
not occur in our problem as discussed.

We arc now going to taylor expand £(p) about p?> = m?.  Due to our
parametiization 3.21 of £(p) this turns out to be somewhat messy. Surpris-

ingly, we will find that it 13 not necessary to ezpand L,; the higher order terms
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in 1ts expansion affect nesther the pole nor the residuc.

v o= __a_._ <,
z apz m?
L, = L, + S, -m?)  + 0p - m?)?
= X, 4+ 2mT,(p-m) + O(p-m)® (3.22)
Dop = [So(m®) + Ty = m?) + O(p* = m*)?] x [m + (B~ m)]

= mZ,(m?) + Ty(mH) (P~ m) + mTL(p+m)(p-m) + O(p—m)®
= mI,(m?) + [Ev(mz) + 217122',,] (p—-m) + O@p—-m)? (3.23)

Taprs = {mEa(mz) + Ta(mH(p—-m) + mE(p—m)Pp+m)}ys + O@FP —m)
= {mEa(7n2) + Sa(m?)(p - m)} 5 — mIL(p~m)ys(p — ) (3.24)
We now substitute all this into equation 3 20 for G(rz):

GO = (p—m)™" + (p=m) " [Sren)(p~m)"" +0(1) +0(\%) (3.25)

Tren = [M(Ts+ )z —m] + [Sv +2m’E! 4 2m%E! 4 6Zy] (p - m)
+m [ua(m + 62 ] vs + [Ea(m2) + 6Z“] (p—m)ys
—(p = m) [mEyys] (p — m) (3.26)

No matter what happens, we do not want any vs’s to infect the propagator near
its pole. This leads to the first condition:

87, = -% (m ) (3.27)

The piece in 3.26 involving ¥/ represents a correction of O(1) near the pole,
so the further condition ¥/ = 0 is not implied. It is surprising that the one
condition 3.27 simultancously eliminates the 43 dependencies to zeroth and first
order in p. This only happens because we are neglecting CP violating effects.
By contrast, the implications of the on-shell prescription to the non-vs parts
will yield two such constraints.

1 1
@ _ b}
G, o ’5 - {m(Z, + Zy)pm2 — dm} i m
+ ;—6?17; {E 4+ 2m2% 4 2mPEl + 62, } = mELys
1+ B
= Z——_:TTZ + 0(1) 4 O(M\) (3.28)
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The on-shell scheme demands that the A and B pieces be zero:

A = m(E,+5),.-6m =0

B = T,+2mL, +2m?S + 6Z, =0 (3.29)

Thus we sce that 6Z,, 8Z,. and ém are cach proportional to the ¥ functions,
whicl: represent the effects of AL, Thus 8Z cte. are proportional to A, as
promised. Finally, we obtain the formulae for Z;, Zg, and é§m, returning to the
more convenient second form for L(p) in 3.21:

ZL = 1 - {EL + 1 2a—i-7' [ZL + SR + 22,]}'“2
Zn = 1-— {SR + in[ZL + Xp + 22,]}
ap? m?
bm = m+{L,+(Z; + Zr)/2},,» (3.30)

Recall that the Z’s were purely real; but what if the self energy functions have
imaginary parts? We now address this issue.

Comments on Absorptive Phases

The self energy function £(p) can have an imaginary part if the associated field
is unstable. It is possible to demonstrate from unitarity that this imaginary part
15 essentially the particle width, up to kinematic factors. Since the imaginary
patt of the self energy is therefore an observable, it can never be regulator
dependeut and we do not need to renormalize it. It is only the real part of
the sclf-encrgy whose regulator dependence has to be eliminated by the field
re scalings (if we want regulator independent Greens functions that is). Thus
the appropriate formulae for the Z's and ém should really be:

Z; = 1~ RelZ_ + 1n2—6——[EL + Lr + 25,]
ap? m?
, 0
Zp = 1~ ResZp+m*—[ZL + Zr + 2%,]
dp? m?
fm = m tRe{Z,+ (T + Tr)/2},.2 (3.31)

3.2.4 Effects of Wave Function Renormalization

I would like to comment on the mechanisms by which our re-scalings, ete. will
affect the outcome of a calenlation. At this point, the only effect of our ma-
nipnlations has been the generation of exira terms in the Lagrangian 3.18, and
the rule that we no longer have to divide the truncated Greens functions by the
propagator 1esidues to obtain the S-matrix (see 3.14 and 3.13). Since the latter
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Figure 3.4: Manifest effect of wave function renormalization

on its own manifestly produces a change, there must be Feynman diagiams to
which those extra terms contribute so that final result remains the same.

One class of problems in which the extra tenms appear are processes de-
scribed by Fevnman diagrams that admit self energy bubbles on internal lines
(Diagrams with self-energy bubbles on external lines are i1relevant sinee the S-
mattix depends solely on the truncated Greens functions 3.8). Such a situation
is depicted in figure 3.4, where the extra terms have been depicted by a cross.
The sum of the two diagrams will be of the form:

(Z(p) + 64) -

This combination will be regnlator independent, which is a convenient but not
necessary propetty for a Gieens function to have.

What about a Gieens function that does not have these types of diagrams?
Such is the case for the three peint function G'¥ in Q.E D. and many other
theories. Since the extra terms do not enter in the formulae, where is the
compensating effect effect postulated above? The answer lies the Ly, part of
the Lagrangian 3 18 that we have so far ignored. In the example of Q.E.D. we
have:

ALyt = oo foto = €02 25 P Ay

The effective coupling of the interaction has become:
A = €022

Using this everywhere in place of A, we will obtain the same answers as if we
had done no field re-scalings at all. The situation is complicated, however, by
the convention of replacing this combination with the measured quantity “e”,
which is the coefficient of the “4#” part of the e-e-y form factor measured at
¢’ =

e=Bxegd 2y’

“B” is customarily denoted “1/Z,”. The situation is further complicated in
Q.E.D. by the subtlety that the gauge invariance of the theory results in “B”
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being, to all orders in perturbation theory, equal to:

1
B=7

Thus, in Q.E.D., usc of the coupling e = egZ:‘/2 everywhere yields the same
answers as 1if no rescalings had been done at all. Thus, in the computation of
the three point function of Q.E.D. to one loop order, the fermion field rescaling
factor never appears.

In this sense, our calculation is less subtle. We are computing one loop
corrections to the t-b-W vertex. so consider:

9

ALp¢ = \/é—{OLWObOL = —9\70—5(2:LZIJLZW)1/2 tLWby

The SU(2) gauge invariance is broken so the fermion field rescalings bear no

/

simple relation to the gange boson rescaling Z:‘,z, no matter what convention
we choose to define a new coupling constant “g”, the analogue of “¢” discussed
above. The Z,; and Z, will occur all over the place in our final formula. Their
presence there reflects the fact that we have cleverly removed the propagator
residue factors fiom the formula for the S-matrix.

3.2.5 The Renormalized Lagrangian

We will only have to renormalize the portion of the standard model Lagrangian
containing the fields that are present at tree level in the process under study,

namely t,b, and W+, Also, recall two simplifying assumptions that have been
made:

1. m(,EO
2. Vp=1

The relevant Lagrangian is thus:

L =1o( — mo)te + boPbo + %zowbo + he (3.32)
We peiform the following re-scalings and shifts:
tor = Z‘l[{?fl,
tor = Z4te
bg], = Z;£2bl,
boR = Z;I/:b}z
+ 1/2v37+
Wy = Zy'W
myp = m¢+émy (3.33)
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Given that the interaction part of the Lagrangian 3 32 only involves the left
handed fields, it is impossible for a b-quark mass to be radiatively generated.
Thus we do not perform any renormalizations to keep it zero, 3 32 now becomes,

L = #@-m)t + bPb + %(Z,LZ,,LZu WEIRD b oLa 4+ b
8Ly = 8Zupd(P—mt + 0ZatPyst — dmngtt + (\Z(,,.I}()b + AZ;,.,M)-,,,I;

(330

As we will discuss, it will also be necessary to know the renormalized portion
of the standard model Lagiangian containing ¢ and v, which is:

L =t)c + v P, + g\/o—s(zc,,zmzw)‘/i' e + oL, + h.e (3.35)

-~

3.3 Comparison with W+ — ety

3.3.1 Why We Compare to W+ — ¢ty

We are going to compute the standard model prediction for the top width T,
to beyond lowest order in the scalar top conpling ¢,. If that were all we were
going to calculate, we would have two problems,

1. Ow result would be regulator dependent e, meammngless

2. The study would be non-predictive. we have one nuknown patanieter, g,
and one experimental result Ty,

The fundamental idea of renormalization is that these two problems have a
common solution. We must use the model to compute another formula for @
second observable to the same perturbation order. After ehiminating, the un
known parameter between these two formulae, we have left an unambiguous
prediction for the relative outcome of two expeniments. which must be idepen-
dent of any regulator introduced in the intenmediate steps Given the results of
the experiments, the model may then be accepted or dicearded

To be more specific, our final result will be a formmla expressing the top
lifetime as a function of the following Lagiangian parameters:

my Mz, My, M. q0

In our renormalization preseription, the mass parameters appeanimg i the La-
grangian are the actual masses of the asymptotic states: they alteady represeut
the results of experiment. However the parameter g stands in a compheated
relation to physical phenomena. This is where B -5 ¢ Y comesin Tt s from
this experiment that we will extract gg, and use the value to miake predictions
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for t — bW as a function of my, etc. In fact, parametrizing the W-e-v vertex
as measured in this decay by:

ey

" 2 .2 2 _ - .9
r“"eu(q = My, P, "'O) =1

V2

we will compute a formula for the top width as a function of:

YPL + fao*Pq, + (3.36)

myw,mgz,my,my, g’ (3.37)

The viability of this approach relies entirely on the fact that the underlying
model is a gange theory based on a non-abelian group. This means that the
W must couple universally to all matter with the same bare coupling strength
90, up to group-theoretically determined factors. (Note that we have deferred
considerations involving mixing between like sign quarks till section 3.7).

It might be argued that W+ — ety is a crude source of information about
the electro-weak coupling, since this decay is poorly known. This is not impor-
tant to our study for the following reasons:

1. By the time the top decay width is known to sufficient accuracy to be
sensitive to radiative cortections, W'+ — ety and thus ¢°“ will also be
known to great accuracy.

2. There already exist [44] detailed standard model calculations that predict
what value of ¢¢ will be measured in W' — etv, using existing precision
information like acm, Gy, Mz, ete. as input. Were we so inclined, we
could insert these predicted values into our formulac and thus obtain a
prediction of the top width as a function of that input data.

An alternate calculation working directly from the precision data mentioned
in 2 would be extremely complicated, entailing as it would a careful study of the
neutral current sector of the standard model. On the one hand, this would oblit-
erate the simplicity of the study. More importantly, in that appioach the zeroth
order top width is computed using ¢o as determined fromn tree level relations
between parameters ike a ., measuted at very low energy scales. Going to the
next order, many of the radiative corrections would produce large logarithms
of the ratio of the top mass and the low energy scale, in essence describing just
the running of a¢,, up to the top quatk scale. (There may also be terms pro-
portional to m?). Even at LEP energies such effects are known to be about 8%,
which would dwaif the 1% corrections that we expect. These sort of renormal-
ization phenomena, the running of coupling constants, are well understood and
thus boring. In our scheme all the inputs are measured at the same scale, and
the contributions we find will thus involve only the “interesting” physics.

3.3.2 Summary of Renormalization Scheme

We use an on-shell renormalization scheme, characterized by:
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. The mass parameter for each field identically equals the mass of the cor-

responding asymptotic field.

. The two point function of each fermion field must satisfy

! 2

(:(2)(‘0) == m as pt— IN') (3 38)

where m is the mass of the asymptotic fermion feld.

. The two point function of each physical hoson ficld must satisfy

G(2)(p2) = ! as P - m’ (3 39)

P2 —m? — e

where m is the mass of the asymptotic boson field

. The primary, input, phenomena that we will express all other observables

in terms of are:
mw,mz,mymy.g" (3 40)
where the masses all refer to the asymptotie fields, and ¢*” is defined m

terms of the I F-e-v vertex function at the point where the W o4 Jand
v are all on-shell:

il

1 p g 1 «
Tiyen(@® =miy pl = 0) ?';/—‘_;‘1’ P+ - (341)

-
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3.4 The Formula

3.4.1 Matrix Element and Vertex Function

The invariant amplitude for t — W' is given in terms of the vertex function
I\[l

thw-

AP = Ta(ps) (T )7 ws(pe) (3.42)

The transition starts with a t quark. The b-quark can only be obtained from this
initial state via a charged current interaction. Such interactions only produce
left-handed quarks. Further, we are everywhere assuming my = 0. This means
that the produced left-handed b-quark can never oscillate into a right-handed
b-quark. Thus we know that the outgoing b-quark produced in the top decay is
completely left-handed. Thus we can make the replacement:

u(py) — Pru(ps) (3.43)

in the previous equation.

M* = Ta(py) (PRI, ) ws(pe) (3.44)

The most general form for the vertex function that does not vanish when pro-
jected on from the left by Pp is:

" u
14 p
{ F:‘bw =ay'P, + ¥ (;1—:) Prp + ¢ <—9‘) Pr (3.45)
where we have used the usual Gordan [45) decomposition to convert possible
o"?p, terms into the forms above. We can throw away terms proportional to
¢*, the W four-momentum, appearing in I, There are two cases to consider:
1. Decay to a real W+, The amplitude is M,ek. but for a massive on shell
vector boson, g€ is identically zero by the equations of motion.

o

Decay tlinough a virtual W+ to light particles. The amplitude is propor-
tional to:

Mu(g" - a"¢" /Mu)JTL

where J} is the left-handed current of the light particles to which the W+
couples. A ¢* picee in M* thus makes a contribution to the amplitude
proportional to ¢,J¥, which is in turn proportional to the light particle
masses that we are neglecting.

Thus the most general form for the vertex function becomes:

n
T =ay"Py + b (%—) Pr (3.46)
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3.4.2 Decay Rate and Spectrum
Here we present formulae for the decay rate and spectrum in terms of the most

general vertex function derived in the last section. Combining 3.44 and 3 46:

1 ‘) I 1 2
5 Z AI;;\I,, = a? [p¥py +pEpl — pe-pog™) + ab[pipy + piplk) 4+ O
“ gpol

= a’ [2p'p{ — pc-ppg"’] + 2abpip;  + O(?) (3.47)

The second line follows from the first by discaiding ¢* pieces, as discussed.

Decay Rate for ¢ — blV'*
Recalling that:

oy

S et = g + T (3.48)
W pol W
we obtain:
2 2
1€t 2 2 2 my ., my 2
9§|M L8 )% = (m? —m?) [a (2 4 m%)) + ab(m,fv 1)] +O(b%) (3.49)

The rate for a two-body decay is given in terms of || by [46):

_Llrel MG

87 m?
“ pol

and so:

1 m? \? m? m?2

nmy

Decay Spectrum for t — betv

Now we turn to the decay t — betr. We will consider this since the lepton

spectrum for this decay is probably a more casily measured quantity than the ¢

width. Graphically, it is given in figure 3.5. The amplitude for this process is:
At = betv) = M,D!JLa

—g"" + ¢"q"/mi,

g2 —m? —ilymy

Jro = Upu)vePrv(pe) (3.51)

pa
DLy =

Squaring and summing over polarizations:

ZlA(t ._.)bc+y)|2 = ZM‘IAI‘;'D;,““D;ﬂ'Lﬂﬁ(pl”pc)

pol q pol
LBk, 1) 2 (k18 + kP1% — g"Fk - 14 1”700k 1, ]

I
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Figure 3.5: The decay t — betv

Inserting 3.47 for MM into this:

25
Y At = cx-re(l—me){<1+2a+2b)—;‘fniu}lnw(mw)lz
pol ¢
ID.(2)| = [(m2, — %)+ T2mi] ™
:re = 2Ee/mt
Mey = (pe +pu)? (3.52)

where “m” denotes “m/m," for each m, and C; is a numerical constant that
does not concern us. The decay width is obtained by multiplying 3.52 by the
three body phase space [46] (see also section 6.5):

@Toer = ) |A(ze,m?,)Pd(3BPS,ps,pe,py)
pol

dsrtbcu Te A2 N2 a2
Topr = OL [ Meamt Pt (3.53)

pol

where we have neglected all final particle masses in 3.53, and Cj is another
inconscquential numerical constant.

3.4.3 TI''” and the Equivalence Theorem

Let us now discuss the top width at tree level. To lowest order, we may extract
the paranicters “a” and “b” in 3.46 from the non-renormalized Lagrangian 3.32:

b=0 (3.54)
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Figure 3.6: The top width to lowest order
The general formula 3.50 thus becomnes:

(0) 1 Oem m'f‘, 2 m? .-
F' = i—ém(—sa“ 1-— m2 ;‘n‘{ + 2 (3 '-"))
t w

where we have used the zeroth order, tree, relation:

€ =gsinfy,

This zeroth order width for the decay t — bWt i griaphed in i, © 3.6 Ew-
dently, the top width becomes very large.

. . 0
For my large in comparison to my, I'\"’

in equation 3 55 hecomes:
3

0 1 aey M )

Y ==-=<2. L (3 56)
16 s2, g
As a decaying particle mass becomes larger that all other ma. ses in the problem
we expect on the basis of dimensional analysis that the particie width behave
as:
['~aM

where a is the coupling strength of the interaction mediating the decay  So
what is going on here, where the decay width is going as m} rather than m?
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Figure 3.7: Equivalence theorem view of top decay

This behaviour may be understood [47) by recalling the equivalence theoiem of
spontancously broken gauge theories [48]. It asserts that any process involving
longitudinally polatized gauge bosons is well approximated by replacing these
bosons with the associate would-be Goldstone bosons that they mix with, n
the lunit that the energy of the gauge boson 18 large compared to the mass of the
gauge boson For large mng, the W* energy Ey, approaches m/2. so that the
Eu/my doves indeed become much larger than 1.

Toward an equivalence theorem calculation of the top width, 1ecall how ¢
and b conple to ¢+ and the Higgs (sce 2 22)

- H N -
gt¢+tb+g¢(-—\;;>tt (3.57)

Thus (recalling the analogous formula for my,):

1 1
my = ——\/_—Q—g,v My = 59V (3.58)
We now use 3.57 to compute the rate for the decay ¢t — bgt, depicted in
figure 3.7:

| —

— 1
L Mgl = gt 5“‘{(16: + mq)py}
pol

2
my, .
= gi%cp = gimi + O(—%) (3.59)
t

By comparison, the large m limit of equation 3.49 for the zero order (sce cqua-
tion 3.54) t — bW decay amplitude squared is:




Figure 3.8: The t-b-W™ vertex to first order

m?

2
29 2.2
= My —ees = gim 3 60

t 2 9202/4 gy ( )
These two equations are identical. Thus the m} behaviour of the top width
makes sense in the context of the equivalence theorem, if we assume that the

decay width for a heavy top is dominated by longitudinally polarized W *'s in
the final state.

3.4.4 Vertex Function to First Order
t-b-"W* Vertex Function

The t-b-W™ vertex to first order is depicted in figure 3 8. The particulsr 1-Joop
vertex correction diagram shown there is generic; the precise combination of
such diagramns relevant to our process will be presented in the next chapter
Right now I only want to write a general expression for the second diagiam(s)
to the righit of the “=" sign in figure 3.8. Anticipating the results of the next
chapter, each of these loop diagrams which generate the leading in? dependence
1s proportional to:
90 2

“ 9y
V2
Combining ti.is with the discussion of section 3.4 1 wherein we deduced the most
general form of vhe vertex function, we can say that expressione associated with
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these one-loop diagrams will always have the form:

it
AP = % AHPy + Q%PR (3.61)
Z {
\'.'1](‘1('

Aa ~ g2

Now consider the first diagram to the left of the “=" sign in figure 3.8. It 1ep-
resents the tree level $-5-1V coupling obtained from the renormalized Lagrangian
3.34 of the last chapter:

LY =1 — mt + bPb + L2(Z2,, 2,020 ) /2 TD
V2
We will 1equire formulae for the Z's beyond zeroth order, where they were = 1.
This will be done using equations 3.31, in the next chapter. For now, we nced
only note:

Z'V = (14+62)V% =1 +0Z/24+ 0627%) (3.62)

where:

82 ~ g;

Putting all this together, we obtain an expression for the vertex function
trom the diagrams of figure 3.8.

n
P = (20,202,011 Py + [A‘ “Py + a2l pp
thu \/é( ! \/é ! My
gOZ,]‘,/z 0211 + 6Zyy,

14

1
" g0 Py 2
7 5 + /\] ~H P, + ?:u'mgPR +  0(6Z2°)

(3.63)

(sce equaiioa 3.69). This contains the annoying bare parameter go, whose elim-
ination we now discuss.

IWt-c-r Vertex Function

To proceed further. we must compute W+t — ety decay to the same order in
perturbation theory, since this is one of the input experiments in our renor-
malization scheme (see 3.40). More precisely, in equation 3.41, we defined the
quantity ¢* via

ey

g
V2
The right hand side 1epresents the experimental data, and we assume it known

(see section 3.3.1). The left hand side is the Wt-c-v vertex function, which is
deseribed in our model to first order by the diagrams in figure 3.9.

T o (a® = miy.pl = 0) = 15=y"Pr + fao"qy + -+ (3.64)
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w = w + W
Figure 3.9: The W*-et-v vertex to first order

Proceeding analogously to the t-b-W™ case above, we 1ecall the tenormalized
W*-e-v Lagrangian (3.35):

g0
V2

Also, the arguments of section 3.4.1 for the general form of the vertex fuuoton
are applicable here, so we obtain:

LY = €Pe + DePve + “=(Zer Zur, 2w ) ? Ve

M
I‘E}ygs = 'QJJ"(ZL:LZeLZw)l/Z‘Y“PL + io‘; A(eU),Yupl + n(ru)l)_lgpu 365

V2 \/: Ty

M) and al¥) represent the results of a one loop caleulation, but there are uo
irreducible one loop feyniman diagrams for the WH-c-1 vertes that even contia,
the top quark. Hence they can have no m, dependence and nimst be proportiona:
to:

/\(M)‘Q(W) -~ gg
Similarly, the lepton self-energies to one loop order cannot be functions of i,
so that 6Z., 6Z, arc also of order:

62.1,,6Z,1 ~ gt

Hence the vertex function becomes:

rid =i——\/~'—§—— Y*PL +  O(g}) (3 66

49




Comparison with equation 3.64 yields the relation between go and the observable
g(’ U:

g =g Z* + 0(g}) (3.67)

Final Formula for t-b-1V'* Vertex

Using 3.67 to eliminate gq from 3.63 we finally obtain:

pooe 97y 82u + 62

LT oL M g (P
w = : +A]7 P+ a(m>PR (3.68)

t

whiere we used the fact that

9 =g0 + O(62y) (3.69)

to replace gp by g¢¥ in the terms already of order g2, even if go 18n’t accompanied
by the factor Zi*, Equation 3.68, when combined with 3.50 for 'y, tells us
almost everything we need to know. All that remains is to compute the feynman
diagrams.

As an aside, I would like to point out the Z,, does have an mf dependent
part, coming from the diagram in figure 2.4. Its contribution drops out in our

scheme, though. because in both our decay and the reference experiment, the
It is on-shell.

3.4.5 Deviations from Tree Level
Decay Rate Deviation

Using our expression 3.68 for the vertex function, and equations 3.50, 3.55 for
the first and zetoth order ¢t — bIVY decay widths respectively, we obtain:

2N\N2% /2
1y _ ploy 1 My Gev
P =T = 32#"‘(1 m’;’> (2)

m? m?

X |(2A+8Zu +82Zs1)(—5 +2) + a(— —1)| (3.70)
Ff” —Pﬁ") m? — m?
20+ 6 6 ———
ri® Foduk S+ (m? +2mi’;,) *

m?
= 23+ a+8Z,,+62y;, + O(—n—ﬁ,’-) (3.71)

t
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Decay Spectruin Deviation

We now consider deviations in the lepton energy spectrum produced by radiative
corrections. Note that we may set:

d’p./2E. = 2xE.dE,

since the et solid angle just describes the overall orientation of the decay plane,
and we are averaging over the top polarizations. Thus we may wiite:

AT, /dre  _ 5,12,/d — dl'yy), /dr
dryy), /dz. dry), /dr.

-1
[£%]

Cferd), e, AT, -
- (IBPC/QE(' (131)(‘/2E€ (131)"/213" ( )

We can now use our equations 3.53 and 3 08 to obtain:

dATgey /dze [ d0RZ)Du(RZ )P A+ a + (624, + 8Zb1)/2 — afr.]

= = N A
ﬁgzu/drc Jo (2| Dy (1h? )lz
(3.73)
Further making the “narrow width” approximation:
-1
|Dy(m?,)] = [(ﬁ)z —m2)? 4+ T4 m?
T o . -
= —6mt, —mk) + O(1) (3.74)
w

(which just asserts the majority of the time the W* is on-shell), we obtain:

(lAF,be,,/d:ce _ [Ha L2 48201 _g] » (re ) g{i)

(0) 92
tbeu/d‘re - Te

[N]
~3
o




3.5 Feynman Diagrams

We have obtained formulae 3.71,3.75 for the observable guantities in terms of
824162, A, and @ These are in turn expressed in terms of Feynman diagrams
via eqquations 3 31 and 3.46:

5]
Z, = 1-— R(:{EL + 1772-——,-[21‘ + Zp + QS,]}
sz 2
m
2 0
Zp = 1 - Re{Zp +m*= [ + Tp + 2%,]
ap? m?

w90 [\ Py
A= NG [/\'y P + a (W) PR]

These quantities are in turn computed perturbatively using Feynman diagram
techniques.

3.5.1 Leading m, Dependence

The identification of the Feynman diagrams which aie leading order in:

2

(2 . 2 my
gy = Dy 2
My,

is sumplest in the Fevnman-t'Hooft, or € = 1 gauge. where the degree of diver-
genee of a diagram may be determined by naive power counting. As discussed
in the decoupling theorem [30], the large mass behaviour of an amplitude “A4”
is in general related to its degree of divergence “d” by:

A4 x m? ford#0
A x log(m) ford=0 (3.76)

However, the above neglects the possibility of couplings proportional to the
heavy particle mass. Thus in the case of the standard model with my also bemg
essentially the scalar-top coupling, we finally obtain the following 1ule:

The leadimg my dependence originates in the most divergent Feyn-
man diayrams contmming the most scalar bosons coupled to top quarks.

In our problem, we will have two types of diagrams:
1. fermion self energy diagrams
2. vertex coriection diagrains

Simple analysis 1eveals that in both cases, the associated amplitudes can be at
most logarithmueally divergent. Thus our problem is now reduced to finding and
computing the logarithmically divergeut diagrams containing the most number
of scalar-top vertices.




3.5.2 Feynman Rules

With the following choice of paramecters:
1. Vu, =1
2.my =0
here are the standard model tree level vertex functions [49] that we will need.

o H-t-T. 19t

V2

® d)"-t-?: :gi‘ys

V2
o ¢—-t-b: 19, P

o ¢t-1-b: 19, Pp

r+ Fp I e
o WH-t-b z\/{}'y P
o Wt-¢~-H: %‘I(Pw - pn)t
o 670 L(py- — poo)*

3.5.3 Self Energy Diagrams
Define the two functions “4, B” [50):

i

d” 1 1
2 2 2
Alp .mf,"?,) / (2m) (p— 1)? — m% — € 1?2 — m} — 1€

1
= 1617;'2 {CUV - '/(; dr l()g[D'Z(pZ"”3"7”3)/][2]}

1
B(pQ,m"},mz)p" = /(;w;“ (p—I()I;:I::"j—ze l'z—n:'} —~ 1¢
B(pz,m?,,mg) = 1617r2 {';‘CU\' - /01 dr(l —r)- l"g{Dz(Pz,"li»7”3)/112]}
Dg(pz,m},mg) = m?r + mf(l-—.r) — plr(l —r) —te
Cuv = é — g + log(4r)
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Figure 3.10: mn? contribution to b quark self energy

Thus we have:

9 2.2 2 ~2(1 — z)
ap2 A(p am[ﬂnn) - 1671’2 D2 P mj,mg)
a 2 2 2y z(1 — z)?
0[)2 B(P afnf)ma) - 167|'2 D2 p ’nl’mz)

b-quark Self Energy

There is only one b-quark self energy diagram that is of order g2, shown in
figure 3.10. Using the couplings in section 3.5.2:

- 2 d*l Pp(p—1+m )P
) = 9 | G = b S =)

= _QCB(meh w)}sPL

t-quark Self Energy

There are three t-quark self-energy diagrams of order g2, shown in figure 3.11.

2'(p) = S (p) + £ (p) + T"(p)
where, using the couplings in section 3.5.2, we obtain:
—1g¢ 2 d'l ($—T+my)
f (2r)* {(p — 1) — m}] [12 — mi]

= 2 B( ,mf,m'f,)

il

()

2 A(p m‘,nlh)
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Figure 3.11: m? contribution to t quark self energy

Thp) = (:21)2/ d'l (B - fHmos
V3 ) | @eoflip =12 — w1t - my]

1 . 1, 2 2
= -—é-g;*’B(pz,mf,mf)ﬁ + ‘—)ng(pz.mf,m;)mr

-~

' ; d*l Pr(p ]+ m
s - . ] ______,L_“__- _— .ﬁ-._t.
(P (=191) / ("7') (p=1)2 — w12 ~mz]

= 9?B(p?.0.m%)pPg

Collecting these results and writing them in the form 3.21:

“b = —g?B(p*, m? . m?) =0 b0
1 . 1 .
E'L" = =59 2B(p*, m2.m%) S‘,{‘ = E'L" L:h = -§g,2.4(p2,mf.mfl)
1 2 1
T = ~5 91 2B(p*, m?,m?) T =X nit = +§g;"A(p?,mf.mf)
L =0 S = -¢glB(p?,0,m?) £!*=0

3.5.4 Computation of Z,;, Z;;

We now compute the §Z's, using equations 3 31 quoted at the beginning of this
section.

Zy+ 624 = [“”' + L+ S0 4 Re E)

1
= Eg? [B(m?,mf,mf,) + B(mf,mf,mf) + 2B(0. mf.mfp)] - R K

2 1
B lg;z [CUV - ./0 dI(l - I)]Og (F/#‘) e R(’E (3 "‘7)
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) ‘ 1
I —"135;)7 [S'/' + 8+ T+ B +5ER|
= -y{,mf-a-a-i [B(I)l’,mf,m'f,) + A(m3) + B(m?) - A(m?) + B(pz.O,mf‘,)]
P
2 ]
¢ l—z+1 1—-r-1 1—1r
= = lr.o(l -
rorz f dred=7) [02(1,1,7573,) T D) T Dyl0.m2)

Note that:

D,(1,1,m%) = z* + 31 -1)
Dg(l,(),r?zﬁ,) = (1—1‘)(7713‘,—1)——

The first is positive definite for 0 < x < 1, but the second has a zero within the
integration interval. Using:

L = P(%) + 1wé(x)

I — €

we obtain:

2 1 9 __ -
gi 2—-r r
ReE = —— (1 -
‘ 1csr.'2/0 el -2 [Dg(l,l.rh:,’;) + 02(1.1.1513)]
2
gy ___1_ _ 52 -
+ 162 [ 5 + mE 4+ w2 0n% — 1) log(l - o )] (3.78)

3.5.5 Vertex Correction Diagrams

There are only two vertex correction diagrams that are proportional to g.
shown in figure 312, All other diagrams are either manifestly convergent by
powert counting and thus & n—]ly, or are proportional to g2 or g5 = 0.

t

From “H™ part of diagram 3.12 we obtain:

u -1t 19¢ d Pr({+my) - 2(1 = p)*
Al I m e g ey

i
= :/51: [,\h'y“PL + ay (p !) PR]
2
vo= s / / dr dyylog (Da(m)4") |

g y(1 —y)ay —y—-1)
= lﬁ;"_/ / dr dy D3(m})/m? (3.79)
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Figure 3.12: m? contributions to ¢t-8-1V1 vertex
g t

From ¢° part of diagram 3.12 we obtain:

=9, )gz_/ d*l Pr(f + mo)ys - 2(1 —p)t
V2 % | et (B = md)[( = po)? — mil[ - pi) — mi]

_ tg “ Br_
- Fpore ()

—gi 1 ! ! 2 2
A, = m{—iCuv+/o /o drdyylog(Da(m.)/#)}

2 1 a1 _ _
gg_/ drdy Y3 =Wy —y +1)

= 3.80
a, 1672 Jo Jo Dy(m?)/m? (3.80)
where:
mi2DY = Dy(md)m? = (1-y) + y*(1—2) = y*2(1 - )@
+zym: + y(1 — r)(m? - 1)
Finally, A, a of 3.61 are given by:
A= /\h + Aaz
a = ap+a, (3.81)
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3.6 Results
3.6.1 Cutoff Independence

Inspection of the formulae of the last section reveals that some of the quantities
A o, 821, b7y contain the regulator:

1
Cuy = P g + log(47)

and the meaningless scale parameter u?. We will now see that both of these
disappear in the expressions for the observables. To do so, first note that aj
and ar; in 3.79 and 3 80 are already free of such dependence. Next, observe that
both of the observables 3.71 and 3.75 are functions of only the combination:

X = 204621 + 621,

whose regulator dependent parts we now study.

2
9
A = Pt 2[ Cuv+/ / dr dy y log (D“"D‘ )i )]
82y, + 02, = l(g):r2 [Cuv -—j dr(1 -z)log (F(z)/u*) -RC’E]
0

Therefore:
1
. o= (h) p(2)
rT IW [/ /d’dyyk’g {DPDf /)~ / dyylog{F(l—y)/u“}—ReE]
h
= o U /d””“’g{D; D" /F(1 - v)} - RCE] (3.82)

Thus, as claimed, the regulator Ciyv and the scale p? will completely drop out
of the final formulae.

3.6.2 The Final Result

We now make the replacement:

2 2 2
91 — gcunml

1672 ~ 3272 m?,

(3.83)

in all our formulae: 3.71, 3.75, 3.77, 3.78, 3.79, 3.80, 3.81 3.82, to obtain the
summary:

Al g2, mi [;( + (m? -m? )d]
- 2,2 |° 2 2
p(':t)v 3272 m?, m? +2m?,




——

dAI‘u,e,,/dxe g2, mi X 1Y) . m?
—_— = — 4+ {1-—}al 0{r, - 4
o) /dz. 3972 m2 [ 2 I, m?

lbeu

D()

- = " __g_’_
= //dl‘dJJl()g[D(hD( )/Fl—u] R E
i = / /dxdyyl—J) (—“g({.)—l) +(”’:—y+”}

ReE = / r(l -r) 2o + -1 |
—Jo Dy(1,1.00%) 7 D,(1,1.102)

1
-5+ ml 4+ w2 Rk - 1) log(1 — mZ?)

DY = (1 ——y) + (1~ 1) - (1~ 0)g?
+ rymd + y(1 - o)(h? - 1)
Flr) = [Da(1.1,m2)Dy(1,1,m%)]"* Dy(0,1.m2)
Dio(a,bye;r) = ar + 1l —-1) — cx(l-1r) (3 84)

To obtain the answer, we now require the value of ¢?,. We will use the
tree level relation ¢ = €/ sin ., since the deviations in this relation show up as
deviations to our deviation, and thus are unimpor tant

What remains is to evaluate the integrals, which I have done numerieally,
with the results shown in figure 3 13 and figure 3 14. We see the corrections are
typically about about a tenth of a percent for a Higgs of mass greater than 100
GeV. The case of a 25-GeV Higgs is also included tollustrate that the 1/2%
order of magnitude estimate we made in section 3 1 was essentially correct, of
course, this value of my is ruled out by experiment

The above expressions take a simple form when my becomes large: Case 1.
my > my:

- 13 m?
X(mi>mim?) = Y -log(ﬁ)
a(m?>miml) = 1
o m? [17 m?
AT/T = S —Li—_-log| —& 3.85
/ 8ns2 m? [ g B (mi)] (3.85)
Case 2: mp > my
N 9 1 mn?
- 2 2 2 t
X(mi >mj,m,) = 2 - 7log (;;;;:)

a(mi >mji,my) = -
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(o)
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Figure 3.13: m? corrections to the tree level t — bW+ width as a function of
my, for various values of my: (a) my=25 GeV, (b) = 1 TeV, (c) = 100 GeV.
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Figure 3.14: m} corrections to the lepton energy spectrum for the decay t —
be*v of a 150 GeV top quark, for various values of m: (a) mp =25 GeV, (b)
= 500 GeV. (A, = dAT/dX,, X. = 2E./m, where E, is the electron energy).
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en 2[5 1 m?
AT/T = Dom !t [— - S log (F)} (3.86)

2
8msd m? |8 1y

It turns out that this approximation is valid only for a very heavy top,
my ~ 1e V. as was determined by computer. Thus the the non-leading terms

iinplicitly contained 1 the integrals are making sigmficant contributions for
my < 240G V.

3.6.3 Comparison with Other Work

The first-order Q.C.D. corrections to the ¢ — bW+ decay have been known for
some time [31] and are about -10%.

Subsequent to publication of this work. two groups [52, 53] have performed a
complete calenlation of all electro-weak corrections. Their results are in agree-
ment. They perform the computation in two on-shell schemes:

1. Using etvn. 52, Mz, and fermion and Higgs masses as input. ( “a-scheme™)

2. Using Gp, My, My, a.d fermion and Higgs masses as input. (“Gp-
scheme™)

The results are given in figure 3 15 taken from Denner and Sack [33). In the
case my > my, Denner and Sack also provide the leading order behaviour in
my and mony,. Theit expression agrees with the one we have derived in 3.83.
except for the mygmy, terms which we do not consider.

a-scheme

In the first <cheme. there is large variation with m,. This comes not from the
type of ¥ corrections that we have computed, but fiom another mn? contr.bu-
tion which was not present in our renormalization scheme (which is more like
the second scheme) This extra effect is associated with the running of the gauge
coupling from the low scale at which a,,, is measured to the W+ scale  This

would shift our results by the amount:

« Nt m?
Ap = Dy my 3.87
' 4ms? ( 482 rnf‘,) (3.87)
Note that the original definition of Ar comes fiom:
M2, TQ 1
Vi (1-E) = —— 3.88
e ( A3 V2G, 1= Ar (9:88)

This contribution 18 cssentially the ubiquitous m? effect discussed in section
92.4.2.

The anthors in references [53, 54] find that these new formulac 101 the leading

order m? corrections in scheme 1 approximates the full electro-weak corrections




RELATIVE CORRECTIONS

0.10 - — )
- ——
- S—
~—
0.05} ~ - 1
~
~
= ~ ()
or ~
~
~
~
Ny
-0.05¢ N ;
AN
AN
e Nooorenns
S0L10F T " \ ]
\
* N
-0.18% — 4. A F
100 150 200 250 300 350
AT (Cev)

Figure 3.15: Results of a complete calculation of all first order Q.C.D. and
electro-weak corrections to the top width: (a) Q.C.D. contributions, (b) electro-
weak contributions in the “a” scheme, and (c) in the “GF” scheme. Taken from
reference {53].
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(which are of order several per cent, see figure 3.15) to within a factor of two.
However, the 1eason for such good agreement is due to the fact that the “boring”
correction Ar itself dominates all the electro-weak corrections.

G -scheme

The second scheme corresponds most closely to the scheme we have used, be-
cause the coupling con<tant mformation essentially comes from the W+ mass
input, which 1s at the same «cale that our SU(2) coupling ¢°¥ is measured at.
Iuspection of figure 3 15 indicates the complete result is 4-5 times larger than
ours, and changes httle over the indicated region of top quark mass. By con-
trast, our results in figure 3 13 vary sigmficantly  Thus we must conclude that
though we have computed the leading order contributions to the top width,
within the interval of top quark mass allowed by experiment they 1 fact do not
dominate

Recently, Yuan and Yuan [54] have also computed the leading m? term in
the top width, uang the equivalence theorem from the outset They work in
both the o and G sehemes, and obtain the same 1esults as us in the latter
scheme.

After submission of this work for publication, we became aware of a sinular
analysis by L and Yao [85]  However their quoted asymptotic limit differs
from onrs. that of Yuan and Yuan, and of Denner and Sack

3.7 Appendix: Effects of Like-Charge Quark
Mixing

Till now we have neglected the effects of the KM mechianism [24] of the standard
model, in essence assuimng that Vi = 1. In fact, Vi, is a completely free param-
cter of the theory, with some bounds on its values coming from the observation
of Vi, and Vyp and the unitarity of the charged cuirent coupling matrix o the
KM scenario

The introduction of this extra parameter, however, stuips our study of its
predictiveness., Previously, after measuring the SU(2) couphing constant in the
W vertex, we could prediet the top width at tree level, and any difference
between this tice level prediction and the observed value could be converted
mto information about the Higgs mass (pethaps poorly. given the logarithmic
dependence of the formulae). However, now we do not know how much of the
deviation of the top width fiom its tree level prediction 1s due to radiative
cotrections and how much is due to mixing between the quaiks.

The best way to get around our ignorance of Vi is to consider the inclusive
decay rate:

T(t = WHX)=T(t = bIVH) + T(t = sWH) + T(t = dWWH)  (3.89)
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Let T(t — 8157 denote the rate prediction under the assumption that the KM
mat1ix is the unit. We have:

Tt — W40 = [V T 134, (390

where b, represents b, 5. d. Now note that
PO — WHp) — T4 W*e,) « - 0t (3 91)
where the mass dependence enters through the fact that the volume of phase

space is different for the different quarks, We are ever ywhere negleeting such
mass cffects, so that:

I'O% - 11+ )

il

DR O Sty opn?)
Tt s b1 (392)

It is just T(t = b1+ that we have computed. Thus our calenlition is really
1elevant to the prediction of the deviation of the imeliag e width From o phe
nomenological point of view this 1s a muel better situation anyway, beeanee i
is that quantity which is all that we will probably ever be able to hiow about
the top.

The results hicre ean be understond genetally I all three quarkhs were degen

crate i mass, the standard model Lagrangian wonld have a larger syminetny
which would allow us to abaorh the KAL matiix into the defimtion of the guanh
ficlds. The charge current couphng matnix would become the nnit This 1. -
tirely analogous to the situation mn the leptome sector, where the depeneraey of
the neutrino masses (they are all ze10) makes a KAL matyis there meanmglos
Now allowing the quarks to have mass the change i o predictions fron the
case of a unit KM matiix must be propottionad to the quatk misses, anee they
are funetioning as order parameters for the symmetry s s what we fonnd
('l])()\'(‘.
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T Decay
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Chapter 4

Introduction

4.1 The Decay T — J/yX

Recently [56] the “semi-inclusive” decay:
T - J/0X
has been observed, with the branching ratio;
Br(T - J/eX) = (11+ 44.9) 10 °

where the fitst error is statistical and the <ccond systematie: In tas second pont
of the thesis T compute the perturhative Q C.D prediction for this process The
results ate presented in chapter 8,

We will work to lowest order in the strong coupling a. which we will extiact
from the perturbative Q C D predictions of the hadione widthe of the Varion -
wesons. This approach yields [37] a typical value e ~ 02 and has the featue
that a¢is dedueed i an conastent faslion witly Lespoct to onr model

The pertihative Q C'D estimate of transit 1o 1atos for mesans relies o the
assumption that the constituent quarks move 1o relativistically Thae allows
us to perform an expansion in the average relative quath momentum, <o thit
the end we need only know the value of the win e function or s denvative at
the origin. These 1 turn ean be dedueed consistently from a leptonn width of
tha meson. Given the validity of tie non-1elativie asstption, this expan
sion makes just as much sense as the expansionan a, the typical romentnm
particles bound by a coloumb type force of strength ag s [pl ~ g

One attiactive featuie of the process T o I/e X s that we oapect the
assnmption of nou relativistic motion to he reasonably well <atichied for endh
of the mesons m the transition A sign of this 15 the relatively sinadl level
splittings between the different quark anfi-quath hound states i the Y and
J/ e systems. Many of these states differ (58] from each other only m the way
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that the total quark spin and the orbital angular momentum are combined
to produce the total meson spin - Thus we can interpret the level splittings
hetween such states as being produced by spin-orbit coupling, such effects are
proportionil to the relative momentum of the constituents and various powers
of the couphng constant

Another attractinve feature abont the T — J/¢°X rate 1s that it mvolves
gquark-oma of two ditferent types Al previous uses of perturbative Q.C.D. to
desenibe heavy meson physics have mvolved inelusive decay widths of only a
angle type of meson. or do not yet have expenmental data to compare the
precdhictions with Examples of these two situations are the decays T — 4.\ and
Y — J/w 1y, 1espectively. The predicted branching ratio for the latter decay is
~ 1075 [39] A survey of single meson inclusive tates may be found i reference
[57].

The rescatch to be 1eported herein constitutes the first study of a transition
hetween two different species of quark-onia, for which there exists experimen-
tal data to compare the prediction with, and for which both systems can be
reasonably approximated as non-relativistic

A related point of interest in this process concerns the posaibility [60] that
the T(1S) state decays to J/¢'s an anomalously large number of times, in
companson to the decay Y(15) -» J/X. Onc [61] proposed explanation of
tlus {possaible) anomaly postulates that the T(45) has a large width for decay to
some other b b bound state, which m turn has a large J /o wadth If perturbative
Q C D s cuecessful i desenibing the measured Y(185) — J/v X decay, then we
conld tiust 1t to miake a host of predictions about the J/o» widths of the other
h-quark states, and thus confinm or refute thus importaut aspect of the proposed
explanation

[ will not attempt to review the extensive literature that exists on the subject
of perturbative desciiption of transitions between non-relativistic bound states.
Some particularly good 1eferences are:

o [G2] and {16] apply the method to the decay of positroninm to two or three
photons, which was the original context in which it was developed. [63]
was the first paper to apply the method to mesons, computing the leptonic
widths of vector states.

e [58] and [G4] contain more sophisticated discussions of the conditior  mder
which we can expect the technique to be reliable.

e [65] contauns many useful formulae applicable to transitions involving P-
WAve esons.

e [606], [67) apply the method to compute the decay of heavy esons to
electro-weak particles hike the Higgs, ete.

However, m appendix B T do detive the covariant form of a non-relativistic
bound state wave function, which should suffice to justify the Feynman rules
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for vertex functions associated with mesons in Feynman diagrams

This decay was considered usiug perturbative Q C D about a decade ago
[68]. However, m those studies no attempt was made to cortelate the final chaim
quarks into defimte meson states - Rather the tate for T — (¢flgg was computed,
under the constraint that the nnvanant mass of the charm quatk ant quank pan
lic between My and the tlneshold for DD production The anthors argue that
this method yields the complete branching ratio for T -+ J/ v, mecluding, the
cffeets of caseade production throngh the \, ete states. A branchmg fraction of
about 15 is obtained. with no error estimate, to be compared with the recently
obtaiued experimental tesult of 0 1%

The diseussion of the T - J/0 X wadth s organzed as follows Fast |
will discuss how inchisive hadronic widths ate computed 1 general nang pes
turbative Q C D. I will next 1oview the rules for calenlating the S matnix and
mvariant amplitnde for transitions imvolving mesous, and T will disenss ow the
conservation of eharge-panty m Q O D leads to a reduction w the number of
Feynman diagrams that desetibe such amphtudes Chapter< 2, 6. 7 then consty
tute the bulk of the calenlation. wheremn the Feynman diagrams are computed,
Lastly T will summanize the results of the study m chapter 8

4.2 Decays Contributing to the Inclusive Rate

Herein T diseuss the general plan of attack for our problem,

The meluaive tate T(T = J/vX) 15 computed by sunuming up the partial
widths for all decay modes that eventually contion a J/v This summation
may be broken mto two parts:

1. Decays direetly to J/u plus anything,

2. Decays directly to naitow resonances “I" plhis anything, where the state
Y subsequently decays to a J/u .

Pictorially, this is described in figute 4.1. The mode labeled 1 corresponds to
case 1, while the modes labeled 2 and 3 are examples of case 2
4.2.1 Direct Decays to J/y

The rate for Y to decay to J/y plus any light hadron is the sum of the squares
of the projections of state < Y| against any hadronie state containing J/4

r‘par: Z ‘( T‘L/')I>12 :<T| Z‘UI"L > lf/'hl ‘T> (4 1)

h=had had

where the sum is over the complete set of hadionic states in the part of the
Hilbert space that is cnergetically allowed. Perturbative .C D. euters in the
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Figure 4.1: Decays contributing to inclusive J/¢ production
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following way There 15 an equally good basis for this subspace of hadiome
states, namely the set colour-neutral many-quark and -gluon states

Z lh >< v hl = Z [Ligeg S gy
had 99
=gy >< vqgg| + lvggg >< vaqy| b olegy o vyl
4 lvgge >< vqqyl ¥ lvgggg s vgguqt (1N

Note that no particuler hadronie mass elgenstate is necessantly well approy
imated by any one multi-quatk and -ghion state, the above wdentity follows
beecause we are considening an inclusiee 1ate

The important pomt is that now the projection of < Y| agmnst cach of
these new statesis casily charactenized by a unique power of the strong couphng,
constant a,  We can re-organize the sum into an ascending seties may - Finally,
to the extent to which patubative Q C D as valid, we can obtain o good
approximation to the sum of overlaps in 4 1 by truncatimg the teoreameed seres

at the lowest order tetn
< Ve Xp >
\ ~had

= < Tlogg >1* + 1< Yiegggg 17 1 Ol (13

I

r])fll

Here we hiave anticpated future results, that the dommant terms are of order

a and consist of the Juegg > and jugggg > ~tates The evalnation of the

ovetlap of | > with these two states wall constitute the bulk of this study
Note that at the «cale of the Y | a, ~ 02 [57]. Thus we shounld not eapeet

our prediction to agiee with experiment to any better than 20%.

4.2.2 Indirect Decays to J/v

If the T decay proceeds through a nartow intermediate resonance “Y 7 then to
a very good approximation:

TY »YX' = pX) = (Y - YA - T =) (14)

aud thus:
Br(Y - Y - yX) = Br(YT - YX') Br(Y -» 0X) (15)

where “Br"™ denotes the branching ratio

I have made a survey of all the intermediate resonances throngh which the
T could reach the J/i . We will only be interested m those modes that conld
compete with or dominate the “direct”™ decay to J/3) discussed i the previons
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weetion  The following decay sequences all warrant discussionn:

T — my— J/uX (1.6)
- X = J/eX (47)
- X' = JX * (49%)
— yoX' = J/vX (4.9)
- X' = J/eX * (4.10)
- XN - J/eX (4.11)
o WX - JfeX (412)

“I," s the 177, L=1. S=0 ¢-7# meson. This list has been arrived at by:

1. Ignonng all mtermediate ¢-T states that lie above the threshold for decay
to open chaim (eg. D-D). These have infinitesimal branching 1atios to

J/

2 Notig that the only b-b <tate lying below the T is the 1. (States con-
taanmg a single b-quark can only be reached from T via weak decay. and
thus have tiny branching ratios.)

3 Ienoring possible D oo higher wave ¢ bound states. due to out current
ipnotance of their nature,

It turns ont that m perturbative Q.C.D.. the transition of T to ecach of

Nea\0s L1512 Ntc

v one order a, lower than the T to J/3» transition This is essentially because
the former mesons all have positive charge parity and can couple to just two
ghions, as we will disenss in section 4.4, Thus their potentially larger rates could
offset the suppression coming from the branching ratio factor in 435 A rule of
thumb s that then branding fraction to J/3's should be larger than oy, which
v about 0.2 at this scale [57)

In tins thesis, we shall only consider the contributions of the indirect decays
4 8 and 4 10, marked with a “*”, which have the following observed branching

ratios to J/ ¢ [16]

Br' - J/vX) = (55 xT)% (413)
Br(y; — J/vy) = (27.3+1.6)% (4.14)

The rate for the decay through the ¢

will be easily obtained from our calcu-
lation of T(Y — J/uv.X). The branching ratio 4.14 associated with the second
mode 4 10 1= actually larger than ay,. and thus this mode might be producing
mote J/u's than the direct Jdecay. Detailed analysis (chapter 7) shows that the

predicted branching fraction for Y to \y is in fact not enhanced with respect to
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the T to J/¥' mode, so that in the end this mechamsm is responsible for only
about 10% of the signal

We have not considered the other decays here beeause

1.

o

Modes 4 6.4 7 and 412 Prinanly T have not looked at these modes he
cause none of the eesons g0 phoor by have been observed Thus we hinve no
way of knowing what themr appropriate wave-function at the ongin facton
is, or thenr branching tatios for decay to J/o In prnaple. thus mforma
tion could be obtamed from some potential model study, at the cost of
expanding the undetlying assumptions of the predicnon Sueli considera
tions are reserved for later study, Also. there 1s no teasonn to expect that
the 5, or the h. would lisve appreciably lage J/o Inanching ratios

Mode 4 6: We can say more about the decay through the iy, Its non
observationin T decays can be trauslated into an uppet bound on (Y »
Ney) [GO]

DBr(T -+ npy) < 1/2%

Thus to make more than a 10 contnibution to the J/o signal, we would
have to have: Br(ny — J/u) ~ 25 This would he 20 tunes as large as
the observed T — J/u branchmg ratio, which does not scem ikely

Modes 4 9 and 4 11: The observed branching 1atios are:

Br(xg— =) = 0069
Brix;»uvy) = 1354

On the one hand, these are both below the o, ~ 2 enhiancement fieton
that Br(T — \) might experience over Br(Y -» J/v), cettainly in the
case of the \¢ On the other hand, we will «ee in owr study of the ) mode
that other factors eliminate such enhancements anyway  Our calenlation
of Br(T — \1) will seive ac a benchmark that justifies onn negleet of these
modes. Nevertheless i study of the  processs anrently bemy, nade

4.2.3 Summary

To summarize, we will use perturbative Q.C D. to compute the following decay
widths:

1. T — J/¢'gg, the dominant (as we will see) part of the diteet decay

e

3
4

T — J/¥'gggg, another part of the ditect decay.
T — gy, v'gygg, iivially obtained from the tesults of 1 and 2.

T — \1999¢. the most promising indirect production mode.

The first three are computed in chapters 5 and 6 and the summary 8, and the
last in chapter 7.
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4.3 Matrix Elements of Weakly Bound States
4.3.1 Normal Feynman Rules

I will assume that the reader is fammliar with all the rules for computing the
S-matrix and invarant amplitude for processes involving free quarks and gluons.
Reference [70] provides a thorough discussion of this subject

Here T just want to pomt out that I will everywhere suppress the factors of
“"and 1" that typically appear in expressions for the particle propagators
and vertex factors, with the exception of section §.4.3 where the relative sign
between two completely different types of Feynman diagrams must be carefully
computed  The rest of the time, the set of Feynman diagrams that must be
added to obtam the amplitude will generate ezactly the same overall combination
of I’s and -1's, and tlus combination will always disappear when we square the
amplitude to obtain the rate. This approach is adopted in the interests of
notational simplicity, to avoid a proliferation of such factors. It is only the
relative phase between Feynman diagrams that I will make a point of writing,.

For example, the vertex function for the coupling of a gluon to a quark I set
cequal to:

gsTar"

where T, are the 3 representation of SU(3). Similaily, for a fermion propagator
I employ:

1

p-m
The precise tules including factors of “4” ete. are mentioned in sections 5.4.3
and 5.6.3.

4.3.2 Meson Wave Functions

The casiest way to understand the formulae for processes involving weakly

bound states 1s to compare the equations for diffetent particle wave functions.
I 1

Single Fermion: This 1s a one-lorentz-spinor-index object. Normalized

such there 1s exactly one fermiion in a box of volume “17" the wave function is:

o lipol, e

where Tu = 2m, m the fermion mass.

Single Massless Vector Boson: This is a one-lorentz-vector-index object.
Normalized such there is exactly one massless vector boson in a box of volume
“1™ the wave function is:

1
2EV

¢ (p,\)e'? ®
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where "¢, = 1.

Non-relativistic Vector Bound State: This is a two-lorent z-spinor-
object, since it consists of two fermions. Normalized such there is exactly one
vecetor bound state in a box of volume “1™ the wave function is:

w(0) 1 tpg ry tpg I
7V TET Wt e

where pg, m, are the quark four-» menta and mass. This formula is valid only
to lowest order in the quark 1elative momentum. To this same order:

1

pg = -‘-)-P‘l my = M (4 1-))

ISRy

where P, Al are the bound state four momentum and mass. The momentum
and vector polarization label dependence of the vector bound state polarization
vector has been suppressed:

e = (P A)

By working to lowest order in the 1elative quark momentum, the formulae no
longer depends on the entire relative position wave function, ouly its value at
the origin.

The latter formnulae concerning the veetor bound state are detived in ap
pendix B.3. What is somewhat swiprismg is that there are no lorentz spimors
to describe the two constituent fermions, only the objeet (g Fmy)d This s a
ditect result of the fact that the two fermion spins i the bound state are cor-
related, and the correlation function is given by the Clebsch-Gordan coeflicients
in the bound state wave function.

A similar formula for an axial vector meson wave function is diseissed i
chapter 7, which is the only place we will use it.

4.3.3 S-Matrix and Transition Rate

Given these formulae, we can now deduce the equation for the S-matrix in the
usual way:

s = @n'¢En-|]] \/Q‘E%«? H | :j/(lgf) 4 (4.16)
where the invariant amplitude “A" is calenlated according to the rules:
1. a factor of u(p, o) for each external fermion;
2. a factor of €*(p, A) for cach external massless vector;

3. a factor of (pg + my)f for each external vector bound state;
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4 plus all the other rules concerning propagators, vertex functions, loop
integrals ete. familiar from Q.E.D.

3

The formmla for a *“m” particle to “n” particle transition rate is thus:

, ] w(0)?
2 _ . AT 2,
1si2ay = vT (][] T I1 57| AR da(LIPS)
k=1 B S's
~y - 11 —
A (LIPS) = (2n)46(2p)H(~0.;)—f;Fk- (4.17)
k:l -— it Pay

4.3.4 Color Rules

If we were only going to calculate transitions between leptonic bound states,
the rules we have seen so far would be sufficient. Since we are investigating
gquark anti-quatk bound states, we must also introduce the rules for handling
the color part of amphtudes involving mesons. These rules are very siinple

Suppose we have a Feynman chagram in which quark of color state “i" emits
thiee gluons with color octet labels "a”™. *b™, “¢". thereby changing into a quark
of color state =), The total invariant amplitude for the process is:

Mpree = \T.TTAM Mya (4.18)

where Myeq cotresponds to the usual “lorentz” part of the amplitude and is
calenlated according to the rules above, and the T, are essentially the Gell-
Mann matiices.

If these two quarks now belong to v+ same meson, the invariant amplitude
becomes:

Mpunda = == 17 LT} Myed (4.19)
V3

This new formula comes about becanse the color values of the quark and anti-
suark in a meson are correlated. The correlation function is the color Clebsch-
Gordan coefficient that combines a color triplet and anti-triplet into a color
singlet, namely &,,. In fact, the entite meson color wave function, including
notmalization is,

1

Y
/3

4.4 TImplications of the C-Parity Symmetry

Both the strong and electro-magnetic interactions conserve C-parity (neglecting
non-pertutbative effects)  We will make frequent use of this conservation prin-
ciple in our study, and in this section I present a general discussion of why it
proves so useful.




g

4.4.1 Meson C-Parities

A Dbound state with relative orbital angular momentum “L™ and total quatk
spin *S" is automatically in a state of definite parity *P" and charge-parity,
given by {61]:

P - (-1 C = (-n'*s (4 20)

We will often employ the spectioscopic notation of atomie physies to deseribe a
meson:
(25+1)r
L],

) ——
Thus. a 35) state has JPC values 177, wlhile a 3P state cortesponds to 14
and transform as vectors and axial vectors respectively,

4.4.2 TImplications for Feynman Diagram Construction

Let us first 1eview the constraints that C-parity conservation puts on the number
of photons that a vector me<on can couple to A photon s a *-1" parity
cigenstate, and the total C-parity of a mmlti photon state 1s just the prodnet of
the individual photon C-parities Thus, for an n-photon state

C'n:( ‘1)“- (421

Since avector meson has C-parity *-17. this means that 1t can only couple to
an odd munber of photons.

When we turn from photons to gluons, the sitnation becomes more complh-
cated. This is becanse the gluons carry colour charge, and are not in general
charge-conjugation eigenstates. The precise charge-panty of a colour-singlet
multi-gluon state depends on how these gluons are combined into a singlet The
following rules apply:

e If n gluons are combined symmettically in color space, their C-parity is
(=1)" i.e. they behave as photons with 1espeet to charge conjngation

o If n gluons are combined anti sy mmetrically in color space. their C-parity
is (—1)"*1,

This has the following implications:

o A colour-singlet two-gluon state can only have positive C-parity. This
is because there is only one two-index function to combine them into a
colour-singlet (é45) and it is symunetiic

o A colour-singlet three gluon state can have either positive o1 negative C-
parity. In the former case, their colour space*wave function” is fupe, and
in the latter it is dgpe.-

These thiee functions are discussed in appendix A. The above rules lead to:

-3
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ToA vector meson which s C-oddl ecanmot conple to two ghions,

2 Any C even meson {psendo-sealar, sealar, axial-veetor. ) can couple to
two ot three ghions In the latrer easel the gluons must be combined into
a smglet with the fo,, function

3 A vector nweson can couple to thiee gluons, whicll are combined into a
siuglet with the d,y, finction

Note that no meson can conple to one glion, by colour conservation  This
means that i all of our Feynman graphs, the vector meson must toneh thiee o1
more ghions and the C even mesons must touch two ot more glions,

Using these ales) an exhanustive sunvey was made of all posaible Feynman
diagrams contannng an T and a J/u o and any number of radiated hight quarks
and plnons 1Honnd that the lowest order diaprams of this sort were proportional
to " and cortespond to the processes T - s J5 g and T - J/ugqgqy These
two decavs ate comnputedan chapters 5 and 6

4.4.3  Tmplications on Equality of Feynman Diagrams

We Liave seen the conservation of charge panity predicts that the amplitudes for
sotne meson transitions are exactly 2ero Howeser, this does not mean that the
indimdual Feynman diagrams for these provesses are zeto The vamshing of the
amplitude occurs beeanse certain Feynman diagrams are equal and opposite
to other Fexnman dhagrams It tarus out that 1t < the operation of charge
congngation winel converts one Feynman diagram expression mto another  times
a ncgatine sign. The demonstiation of the equal and opposite nature of two
Feynman diagrams for a fotbhidden process proceeds i fashion snnilar to the
demonstration that the thiee photon vertex i Q E D vanishes [16]. due to a
cancelation hetween one Feynman diagram with a fernmon triangle and the other
obtained fiom it by exchangime two of the photons,

In the case of amphtudes for allowed meson tran<itions, the charge conjuga-
tion opetation will still convert the mdividual Fevnman diagrams for the process
imto one another, but now thers 18 no relative negative sign In this way the gen-
eral discussion of the precise amplitude zeroes mmplied by chaige-conjugation
svinmetiy has led to a further siaplication  that the number of distinet Feyn-
man praphs that need to be evaluated can be significiatly less than it navely
appears  An exaple of thisin Q E D, is the four-photon vertex. Many of the
distinet Feynman diagiams can be <hown to be equal to cach other. and in the
cud there are only five diagrams that must be computed to lowest order [62].

[ will demonstiate explicitly how this works in section 3 3.1, and employ the
results in each of the other chapters 6 and 7.
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Chapter 5

T — J/4¢gg

5.1 Decay Rate and Spectrum

The formula for the spin averaged. and color and spin sumined, decay ate of
an T toa *J" plus two gluons follows from equation 4 17,

1 1

! [y (0)f?
ret._1 1 L s r
= T100, \!r Y r%,“"' d(LIPS 51

where the first factor takes account of the fact that there are two identical pas
ticles in the final state, and 44 is the qnark level invariant amplitude caleulated
with the 1ules of section 4.3.3.

Labeling the two gluons with *1" and "2, the 3-body phase space s given
by [71]:

1 dky Pk Pk
dx3(LIPS) = - oM hky =y~ k b,
/ o ) (27:)5/ 2E, 3E, 3E, TR Rk
1
= ——= 1F,dE. 02
3‘2”3 [c()sGX;ISI( 15 () |
Introducing:
1
mg = ‘E“IT
= l\f
myg = ‘:‘2‘1 J
2
c = 1- 4
m?
El/'Z = In/bnlo (5 3)




Figure 5 1: Allowed region of phase space for the T — J/v'gg decay

Then the constraint | cos 82| < 1 may be restated:

0< 1y <c¢

c—z
c—-11 %X I _1__11‘ (5.4)
Thus we have finally:
1 c =Ty
da(LI = ——m? | d 1 .
(LIPS) = 55 m°/o I’ /M, e (5:5)

The integiation 1egion, i e. the allowed region of phase space for a decay to one
massive and two massless particles, is shown in figure 5.1.
This leads to the following formula for the decay rate:

L= 353 G W OP R OF [duds 3 147 (56)

= 35127 M, ot

In the ensuing sections, we shall compute the invariant amplitude. We will
find that the lowest order purely strong contributions are of uider g8, that they
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s

contain a loop, and that the color part of the amplitude s propottional to &,
where Y, b” are color octet gluon labels  Thus Tnow introduce the dinensionless
quantity M,

o= s Fes Lou Vi
- B _“-_—)- l‘(h ; .
! 1674 ' mg ! )
pIRE VTR CL RS0 ool I S : |M¢
7 R A IR TTT
rol ah 0
N B
1_2 62 2 _—
= 2 a%a k1M (H =)
‘\!T

The width becomes;

. 4 5 . |"‘J(0)‘12]‘0'T(O)|2 ~ 2 .
rj = §;Fr (N ——"3'1—‘]"‘\“1‘.}"'“-' /l{.]";ll): L l"‘l' {0 .))

l)()l

The parameters a, and ©(0) can be extracted from the total hadione and
leptonic widths of the mesons {57, as discussed in section B3 For xample,
recall {64) the equation for the hadionic width of a vector meson to lowest opdey
m o

V- ggg) = 2e000)y ()7 ‘\}‘_,-
80(7?% - 9)
i L B 0 10
cq 81 ) (0 10)

Rather than invert such formulae for a, and +(0), and then sabshitute the
results into equation 5.9, we will express the J/y branching tatioin such a way
that the unknown parameters drop out naturally:

(Y= Jgg) _ DY = Jgg)Ty LY = qag) LT gyq)
Ty  T(Y - g99)T(J = ygg) Ty I';
(had) ihad)  F2 MLy = w2 e
= By""B, e -‘-@«-}_‘ dryd e M* (511
pol
where:
B = Br(X — had) (512)

The hadronic branching ratios “Br(XX — had)” we known ftom expeniment.
Thus we must now turn to the evaluation of the sum of the imanant amplitnde
squared over the polatizations of the vector fields.
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5.2 Numerical Evaluation of Helicity Ampli-
tudes

Let e hegin this secnion by stating that thoantewial of the ampiiode squuated
over phiase <pace and another, loop, iutegral that we sall enconnter wll all be
computed mirrecneally The expressions we will obtin for the imvanant amph-
tde are sufticiently compheated that anahine computation of either rvpe of
itepral 1s essentiadly ont of the questions With this i mand, we now tarn to
a disenissien of the ments and mothod of working diectly with the invanant
amphtude of o transthion. tather than the mvanant amphitide squared

The elnef advantage hies m the fact that the number of terms i Moas much
~maller than the munber of termes of (M 50 Tnoowr caser Mowall typically be
desenibed as o sum of anywhere hetween 10 and 50 Fey nman diagrams, so that
the munber of terms in JAM P beeomes 1idiculonsly L ge,

The mmn disadvantage to computing =M™ diectly 15 that we can no longe
miahe se of the well known techmques for computing the spmsumedtate For
example,m ont case, the amphitudes a funcion of fonr hehaty Tabels through
the fonr polatization vectors

Fl).Ef.Fl.(‘g

Ihe nsual method of sumnning the 1ate over any one of these labels,

FXZ
A

(M yvrn :
€, M i

15 to emmploy the identity:

-
A
2 ¢! )e“,’\)' = —Guv for masslrss vectors

I

\
. ku ku
= ~fuv + =

M2

for massive vectors

One then contracts the above expressions into the quantity:
J‘]‘t 4\[,,

to obtain the spin summed rate.

Since we do not want to work with J\I“:M,,. we must find a way to compute
M(Xo. Ag. A A2) for cach possible set of vector meson and gluon helicity labels.
Assuming we succeed in domng so, we will then separately compute M a total of

3«3 x2x2 = 36

times. as the mesons have three polarization states and the gluons two. With

these 36 complex numbers in hand, we can then “manually” square and sum
. il .

them to obtain S|M |2, The problem of computing M(Ag, A, A1, A2) for each set




of hielicity labels 1 colved if we can find a way of constineting a set of polanization
four-vectors at cach pot in phase space for cach combination { Ny \g, \;o\;)
To this we now turn

Each pomt 1 phase space descubes o particular contignration of partiele
four-momenta

Iy.Ir) == ‘"(). ,\j;‘l . }\‘;

We always work in the decaying patticle test frame. <o the final thiee decay
product three-momenta lie i a plane. We can detine this to be the v 2" plane,
and without loss of generality as<cume that by hes along the 27 anis, ance we
are averaging over all polanizations and there are no preferted directions Then

the four-momenta are all well defined fundctions of vy and ) (see tigure 5 2)

k() = (7”().().().0)

kp o= (Ep0,0,]k])

by = ri{l.cos8,.0.51118)

) = .l'z(l. - ('()\62.0.‘*1“9;) (v.) 13}
Ly

1
R - 1,_‘ :;)‘(.I'] + J‘Z)

Frl =+ JEf -

Iy [E] - |Ef[00391]

1 '-I;l} i ]
I [Ef - |Ef|00592] = 1 —17:} - I

The negative sign in the formula for &y follows from the faet that we shall always
take:

0< 6, <.

Thus, we see that at cach point in phase space we can re-constinet the
patticle four-momenta. We now wish to define a set of particle polatization
vectors for each phase space point. E«sentially, these may be chosenin any way
consistent with the coustiaint of orthogonalty: ¢ . k = 0, with the further
condition that €k = 0 in the case of the gluons. The latter condition actually
constitutes a chowee of gauge. so we are choosing a different gange at cach
point in phase space. Thete is of course nothing wiong with this hecause the
amplitude at cach point in phase space is an in prineiple observable quantity
and thus gauge independent. The following definitions are consistent with the
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L=

-t

k2

Figure 5 2. Three-momentum vectors of the final products in ¥ — J/y'gg

aforementioned constraints:

eV = (0,6x1,6x2,623)

c(,'\) = (0,6x1,622,0) A=1,2
= (|ks,0,0,Ef)/my;  A=3

5(1)‘) = (0,-siné,,0,cos6,) A=1
= (0,0,1,0) A=2

eV = (0,5in 6;,0,cos 6;) A=1
= (0,0,1.0) A=2

Given the polarization vectors, the method of computing the spin-summed rate
becornes:

¢ We will find an expression for the invariant amplitude, which is necessarily
a function of kg ky, ky - €3, and ¢, - ep, “a,b” € {0, f,1,2}.

e The numernical integiator that is doing the sum over phase space will
generate a pair of phase space co-ordinates (z,,1,). These will in turn be
used to generate the particle four-momenta and thus the &k, - ky

e For cach possible set of helicity iabel values, the particle polarization vec-
tors will be generated. The invariants kg - € and €, - €4 may then be
computed, and thus the invariant amplitude, and thus the invariant am-
plitude squared.
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o At this particular point in phase space, the program will sum the squares
of the imvariant amplitude over the possible <ets of valunes for the helierty
labels

e Lastly. the numerical mtegrator will move to o new pomt m phase space,
1epeat the above procedures and sum the values of the spin summed
vatiant amphtude squated over the phase space

Thus we have a well defined algontlun for converting expressions fin the
invariant amplitude mto a number for the mtegral of the sum of the wvanant
amphtude squated over polarizations, and thus for the partial width of the T
imto J/vqg

We now tuin to detiving expressions for the mvanant amphitude  The lowest
otder purely stiong contribution to Y = Jgg 1s of order g2, and contams a loop
The lowest order electiomagnetic contribution is of order g2, and 15 a tree
diagram Sinec loop diagrams are ty preally suppressed by a factor of 1/(16z)
relative to tree diaprams, these two contnbntions may be comparable

5.3 Purely Strong Part

5.3.1 Feynman Diagrams

The lovwest order Fesnman diagrams contnibuting to T » Jyq are of order ¢f
This follows from the fact that vector mesons must conple to at least three
sluons, as disenssed i section 44 2 Nine of these are depicted an fignre 5 3
The remaimug dingrims are obtinned from these by exchangimg the two gluons
in the loop, and by exchanging the tworadiated gluons, for a total of 9 - 4 .. 36

Denote the nine amplitudes i figuie 53 by Ay, and the amphtades cor-
responding to the diagrams with crossed loop gluons by Ax - Formally, 1 will
denote the sum of these 18 dingrams by

.-113 = .41 +-‘12+ ‘i-‘il -t :iz-{»-
A A A A A
= YA A A+ ) | A A A4 (5 1)
A As A A Adp Ay

Each amplitude in the fitst array desciibes the appropnately positioned diagram
in figure 5.3.
Separate the amplitudes into a color and lorentz (normal Q E D.) parts:

Ap = FPPAL (515)

where F* is one of the following two color traces:

a 1 : ” e
F) b = (-\7_5) ZtT{TG [,-Td} tr {Tb FFT,I}
cd
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L \?
Fito= (-——) tr {T,T.T3} tr {TyT4T,)
5) X

(5.16)

As disenssedn section 4.3 4 the trace anises because the quark color spinors are
contelated m the color smglet mesons. and the 1/v/3 factor is the notmalization
factor for the meson color wave function  For example. mspecting figure 5.4
where only the color Tabels have been shown, F*? i the color portion of ampli-
tude Ay, while £ 15 that of amphtude A,.

The amphtudes Ag and Ay necessarily have opposite color wave functions.
due to the permutation of the loop ghions, Thus we have.

[ Ao oAy Ay ] [ F) Fz Fy ]

.-h .‘*‘5 A = FZ Fl FZ

Az Ag Ao 4 color L F’ FZ Fl J
[ :il .'ig .‘i; 1 i F2 F] F2 ]

.‘ig .‘i{. .‘io = Fl F2 F] (:)17)
L ,‘i,' .’ig .‘ig J color L F2 Fl F’l j

I now demonstrate that the lorentz or Q.E.D paits of the amplitudes, the My,
satisfy:

My My A My My AL
1\[4 J\Ir, .\fﬁ = J\Is .‘15 1\[4 (:)18)
My Ma M, My My M,

Proof- It will suffice to show that M; = M;. The Feynman diagrams for these
amplitudes are displayed in figure 5.5, where a particular routing for the loop
momentum has been chosen  Using the usual rules of Q.E D. and the rules
of section 43 3 to account for the correlated spins of the quarks in the vector
eSOl

My = Koz Kgp/P(1~1)?
My = Ko - Kp/i%d-1t)?
ol = tr {(Fo + mo)or® (ko — F2 = F=m0) " '4°(Fo — F2 — mo) "2}

KoY = tr {(ko + mo)fofa(F2 = Fo —ma) ' 9 (J+ F2 = ko — mo) ' 47}
o= 2yt ks = 2k — kg (5.19)

I have suppressed the integral over the loop momentum “I”, because it does not
affect the equality. The precise form of the final cutrent Ky does not concern
us because it is the same in both diagrams The problem is 1 re wced to
demonstiating the equality of ]\'(‘,’f and I;'SJS. This is accomph-!...l by charge
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Figure 5.3: 9 of the 36 purely gluonic Feynman diagiams for T -+ J/4gg
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b d sb

\:‘

Figure 5.4: Colour labled diagrams for the amplitudes 4, and 4,

conjugation, as discussed qualitatively in section 4.4.3. We will insert the fol-
lowing unit matrix:

cCct'=cCclc =1
mto the trace for I;'m, where:
T -
Cy=-7,C (5.20)

We then use this last identity to push the “C” matrix from one end of the trace
to the other, where it then 1ecombines with €71 and disappears:
Kor = tr{(ko + mo)fofa(f2 — fo —mo) ' 1°(J+ K2 - fo — mo) ' 4PCC ')
= (=)' tr {(-kg +moofi (~F + k5 —ma) Ty T - B R —mo) T
= tr{2+%(fo —F2 = J=mo) 9%k — k2 = m0) " fafo(~Fo + o))

= N3

(4
(8]

The second last equality follows fiom the fact that ¢r{B} = tr{B7}, and the
last line relies on the cyclicity of the trace and the identity:

Fofo = —fofo

since kg - €g = 0. Thus we have shown M; = AM,.
The proof of the other equalities involves similar manipulations, but ulti-
mately relies on the charge conjugation invariance of Q.E D. O
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Figure 5 5: Momentum labeled diagrams for the amphtndes X, and A,

Combining equations 5.14, 5.17, 5 18:

- F]AI} FQA\I') P‘l,\f;; - Fz‘\!; F;A\[g 1'*1“\[1
Ais = Y | BMy RMs F | o+ Y| My RAL R,
RiM; FMs FiAM, FMy Fi Mg KM,
[ A M A
= (R+F)™)Y | M M M (522)

A Mg My

Since the two radiated gluons must be i a total color singlet, (£} + F. )" nust
be propottional to ¢7°. In fact-

(Fi + F)*® = 5 Y daceddye = Foet
ce
1 o '
F. = S#E?z Aacidacq = 9132 (5 23)
acd

as I derive in appendix A.

We have so far reduced the number of Feynman diagrams we need to com
pute by a factor of 2. Of the initial 36, only 18 remam the mne amplitudes
M, .My, and those obtained from them by exchanging the radiated glion
labels. This was accomplished by charge conjugating the fmtial quark curoont
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We have one more operation to exploit, namely charge conjugation of the final
quark current. This will further 1educe the number of terus o the sum by
essentially another factor of 2.

The lorentz paits of the first nine amplitudes satisfy

M, AL A, Y PRV FEEAY B
M, Mg A = My M. M (24
Al Me A My M M

Proof: 1 will demonstrate that M; = M;. The Feyuman diagram for M- in

cluding momentum labels is given in figure § 6. and My we have alicady seen
in figure 5.5. Using the same techniques of inserting CC ™Y, transposition, and
cyclicity of the trace. we obtain-

My = Ko - ]\'_,'3/12(1 - 1)2
M; = Kor Kpjif(1—1)*
Kor = tr{(Fo+moofa(kz — o —mo) "y (f2 = o+ 1 - ,”“)47.1[(.(,—-1”

= tr{(—FJ +molds ¢3 (~K3 + K5 ~mo) T (=] +HS 1" —mar 57T
= tr {(Fo +mo)for’(Fo = K2 = ¥= mo) 714 ko — k2 - i)' 1)

Ny3
I\'f-; = {r {(—l’f + mf){f‘/a(kf o mf)wl*,”(——[(‘f -~k - mf)"ldl [('('—l]}
= tr {(“’kf +mp )i (Fy+ F - lnf)_‘)‘i((/— Fpl - mf)‘]*,"}
= Kp (1 25)

Thus we are done. The other equalities follow <imilarly. O
Combining 5.22 and 5.24 we now have for the purely strong invanant am-

plitude “A3™:
A; = Ajig + 12
= OF My + My +My+My+M;/2 + 122] (526

and thus M/ as defined in equation 5.7 is:

M = 2|My+ Mo+ M+ M+ M2+ 1(,2} (5.27)

2. 2
M o= 200 (5 28)
95

Note that the extra terms represented by “1 « 2" will not lead to any extia
work for us. The sum of the first five amplitudes constitute a function

G(kl,él;kz,ﬁz) = 1\‘[1 + J\AIQ + Ahfg + A‘[,; + AAIV)/Z (0 29)
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ky

ka

ko - kO

Figure 5.6: Momentum labeled diagram for amplitude M-
of the gluonic momenta and polarizations. Once we have a general formula for
“G", the teims “1 « 2% can be easily computed from this one function:
“1 2" = G(ka,eq;,k1,€1)

Thus our problem is reduced to finding a procedure for calculating *G™ as a
1 gap g
function of the four vectors ky, ks, €1, €7.

Expressions for Five Amplitudes

The momentum labeled Feynman diagrams for the first five amplitudes are
shown in figure 5.7. T have used “kg, kp " and “eq, €” to denote the final gluon
momenta and spin, 1ather than “ky, k2" and “e;, €2”. to facilitate the exchange
*1 ¢4 2" discussed in the last section. We obtain:

- 11
Ay o= m? / &t h
N 41
Ny = m? / L M-
- 4I
My = ml / (-i-——m.._hf}_._.ﬁ._

1&4 2 / fiql._m_.f.‘_____

li
3
<
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Figure 5.7: Momentum labeled diagrams for the first five ampitudes
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) [ dV
M, = 7ngJ/ fs (5.30)

72 ABCDEF

f = Jor - le

f2 = Jouo-Jdp

fz = Ju-Jdn

fi = Ju- -]js

fs = Jos-Jgs
IO = tr {(Fo + mo)fofs(fs — o + mo)y (F—Fo + Fs + mo)v’}
Jef = tr{(Fo+mo)for™(J = ko + mo)y” (ko = Fs + malfs}
I8 = tr{(Fo+ mo)oy*(f— ko + mo)fs(J—Fo + Ko + mo)y”}
I50 =t {(kprmpffa(ls + Fa +mp)y (ks + Fo =1+ mpn?}
J58 =t {(=Fprmp "y = P Ampfalky e -1+ my)y"}

t = 2kp4ky = 2ko — ks

A = PP —ae

B = (I-1t)? -z

C = (I—-Fk¢) —my—1e

D = (I—Ir()+k1,)2 ——mg—-ie

E = (I—ky)? ——m}—-ze

F = (I- kf——ka)z—mzf——te

Pa = (kf+k,,)2——m2I=2kf-ka

po = (ko= k) - me = —~2ko - kyp

I will not present the formulae for the fi, obtained by evaluating the above
traces. These expressions are quite long and not particularly illuminating (see
figure 5.8). They have been computed using the symbol manipulation program
called REDUCE [72] The expressions obtained from this program were directly
cubstituted into a numetical integration program that computed the loop inte-
grals, which were converted into integrals over a unit hypercube using Feynman
parameter techniques discussed extensively in the section 5.6.

5.3.2 Infrared and Ultraviolet Finiteness

There are no ultiaviolet divergences in this problem. All the loop integrals are
finite by power counting.

I now discuss possible infrared divergences in the loop integrals. Naively,
the presence of the massless gluons in the loop would lead us tc expect an
infiared divergence. However, a general argument implies that there can be
none.  The tesult is casily established from an intermediate -tep in the proof
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Figure 5.8: The function “f3” as compnt«.1 by REDUCE
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of the cancellation of infrared divergences hetween radiative cotrections and
bremsstrabbng [62].

The point is that the O(a}) loop diagiams for T — Jgg can be thought of
as tadiatne corrections to an O(a?) amplitude: but this just happens to vanish
becase of the 1ule that each vector meson must couple to at least three glaons,
a consequence of C-panty wmvantance, Let us use .\I[I;]R to denote the wnfrared
droergemt part of the O(a}) amphtude. and My to denote the amplitude at
O(a*)  One can show [62] that ‘Vi[‘]“ 15 given by an mfimte factor (which can
be repnlated by a suitable infrared cutoff, such as 4 glion mass Ay times Ay,
On the other hand, My is identically zero, as discussed Henee

M~ adog A My =0 (531)

However, winle the entine amphtude 1s infiaved fimte the individnal Feyn-
man diagrams usually are not This is heecause typically several diagiams have
to e combimed to put the mtermediate, loop. glhons ma state of defimte C-
panty. which was an unportant angredient i the preceding proof of fimteness.
Specifically. note that cach of the amphitudes (except My) contain the three
propagators B D, and F, which can be expressed as:

B = (I-1)°
D = (l—-t-*}-ko)z——mg
ko (1 —t) + (1 —t)?
F = 2kp-(I=-t)+ (-1t (5.32)

Note that the other propagators A, C. E are non-zero at [ = t. Thusnear [ = ¢,

the integials behave as:
[ [ -
BDF (t = D1 (5.33)

which is logarithmically divergent. This is an infrared divergence that we know
st not exist.

This bad behaviour only disappears when several of the amplitudes are
summed, and then it depends most crueially on a “zero™ that a certain combi-
nation of the currents has:

(Jor + Joa)*? (I =t) = 0 (5.34)
Un+Jp)*Pi=t) = 0 (5.35)

Proof: Fiist we substitute [ = ¢ into the above formulae for the currents:

(Jor + Joa)*P(l = t) =
tr {(Fo + modo [fs(ks ~ Fo +mo)r™ + 7% (Fo ~ Kb + mo)fs] (ko + mo)’}
(5.36)
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Now note that:

(Fo +mon?(fo+mo) = 6%(Fo +mo)v’(Fo + ma)
27770530”0 + mp) = alfe+my) (5 37)

since kg = (my,0). Using this and inserting 1= CC %

(Jo + Jo3) (U =t) = (3 3N
a-tr{(Fo +mo)folls(Fs = Fo +ma)y™ + 1Ko — Fy + mal] CC 1Y
=a(=’tr {(=Fg +molfg [ (=K + K + 1m0+ R4 B 4l |
—a-tr{[v"(fo — ks + molfs + fu(fs — Fo + mo)y ) dol(~Fo + my))
~(Jor + Jo3)*? (1 = t) PRl

fi

It

Thus (Joy + Jo3)*2 (1 = 1) = 0 as claimed Here we used the same techniques as
in section 5.3.1, where we were concerned with demonstiating the equality of
diagtams. As there, this identity is a consequence of C-panity mvarinnee of the
theory The other identity is proved via sinular manipulations 0

This proofis demonstiated pretonally in fignre 59 We will nee thas identity
in the later sections to motivate the construction of mamfestly infrared fimte
combinations of the amphtudes,

5.3.3 Reduction to Four Propagators

To compute the loop integrals in 5 30, we will introduce Fe yuman patimeters
according to the usual methods [16, 45]. An amplitude with “n” propagators 1n
the denonunator will be converted mto an integial over an *n-1" dinensional
unit hypercube. Obvioudy, 1t is desiralile to keep the dimension of this cube as
low as possible This may be accomplished by multiplying amplitudes containing
3 o1 more propagators in the denomimator by one of the following factors of 17

A+B-C-D

1 = 2 D - (O 4())
A+B -~ FE~F
_ _i,.T.w~~_~ (5.41)
tc — pg
- gj_g.:_p.:_f (5 42)
Pb — Pa

These may be verified by direct computation; for example:

A+B-C-D = 12+(1—t)2-— [(l—kg)Q—-m?J (= ky 4 ch)2~mf,}
= -—21' (t - ,\'0 - ko + kb) + t2 - [(ko - kb)z — 7"3]
= t*—p (5 43)
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Figure 5.9: Pictorial demonstration that Jo; + Jos has a zero at [ = ¢.
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We now use these identitics to express the sum of the amplitndes in terms
of four-propagator integrals. Note that under the operation:

l —t—-1
we have,
A « B
C - D
E o F
']5’35 - J 633]
Ify e Il (5.44)

These last two imply that:

fs(l) = fs{t =1y

Thus the integrand of Ms is invariant under the change of variable I = ¢ -. [,
and we have:

_}\.[ . / (141 '_—f‘,
mé2° T ABDF2CE
d‘l s C+D- E-F

ABDFE ~  p=p
/ ) dil _fg, _C - E
a ABDF CE py - p,
Therefore:

(G - ,\}2)

i

. ) . 1 .
My + M; + Ay + ‘:)‘,\!5

-2 71
2 [ 770d I{ i fa fi fs fs }
= m t b e S L
°J ABDF \p.ps " pC ' Epy Clpa =) E(pa =)
2 ~2dll y o L
L /.’L (LS LY [ VRS CSUN PN IO O
Pa =y ) ABDF {(py pa = C Pa E b C L
s (xR R
Pa—pyJ) ABDF | C E

it

i = fi+fi~-(ppfa+ Cfi)/pa
B = fot+ fi~(pafa + Ef1)/py (5 46)

Thus at | = t we have:

Cly = (t=k)?-m} = p
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Ei’ = (f——kf)z—mg = Pqa

. )
Froty ~ [f',*nfs—l)*b(ff*fl)]
a t
= .]us [Jf] +Jf;](1=f) — i':'—'.]ﬂ {-]n] *-71;;11['—'“

= 0
. Pa
F,(t) = [fs+f1'-“(f4+f1)}
P ,

= ‘]ﬁ'[‘]‘“ +']U3](l:” - Ei‘-]()l ‘[Jf] +J”}([.-:f)
= 0

where we have nsed 5.35. Thus cach of the twe terms in equation 3.43 15 sepa-
1ately infrared fimte

The expresaon 545 for G contams S propagators in the denonnnator
Further use of the identities 5.42 Jeads to a formula with just four propagators
m the denonnnator

.‘3( ¥ /11’1-})1 . /(l‘l h, | /(7"1'113
ceidpy =G = —— ——— e
g DT 4ABCE " ] ADEF ACDF

s / (AL / Al b / d b
" | iBCF ACEF | 4cpE WY

hy = —(hs+hg)
~F,
hy = =
2 7
F
hy = ——
’ 15—y
hs = —(hs+hs) + Po T~ Pt 2
Pa Db
_[3‘2
hy = ———"
s t? — DPa
F
he = —-L .
’ t2—py
) = F(t-1) (5 48)

Note that [ have made the the change of variable I' = t ~ I whete necessary to
ensure that one of the four propagators in each integrand is:

A ="~ ¢

The evaluation of such integrals will is discussed in section 5.6.
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5.4 Electromagnetic Part

5.4.1 Feynman Diagrams

The twelve leading Fey nman diagranis for this process are of order ol and are
depreted m fivure 5100 These are all the diagiams consistent with the 1ule that
avector meson nrist conple to ather an odd number of photons or at least thiee
clions (see section 4 12) We see that welusion of ¢ anele phaton lowers the
total number of vertices and thus conphug constants in the Feynman diagrim,
with respeet to the purely gluone contitbutions of section 3 3

The clecttomagnetic amphitnde is the «um of the twelve diagrams

‘401'771 ~4¢.,Hl ‘4;1"
fem {em fem
4(‘"1 — Z ‘4] ‘42 ‘4" (") lq)
‘g - em em em ' .
A At e

-'fV" ~(’"1 ~f7n
Amooqgm A

Each amplitude in the array cotresponds to the appropriately positioned dia
gram in figure 3 10, Separating the amphtudes ito color and lorents parts

‘42.171 — 1::1:‘ ‘\Il:m
1 2
anvt)z (\_/§) “‘{13-‘3} t {TuTb} = F, m‘h“h
1 - -
Fem = 5 {(H00)

where T have used the identities of appendix A, Each of the diagrams have the
same color factor.
By charge conjugating the single fermion current, it is possible to show that:

™ o= A (551

The proof is exactly analogous to what we did 1 section 5 3 1, with the purely
strong amplitudes. In fact, the demonstrationin that <ection that Ky, - K™
constitutes the escence of the proof Thus the amplitude becomes.

‘4;'" — QFG,”bi [.\[{'WI + ‘\];"l + ‘\I;Wl + .\[:Vll + “I;YH _+_ 1\[("l (:—) 5:)

6

Define the unitless quantitiy Mg™ (the analogne of MY m equation 5 7). by
extracting the coupling constants, color factor, and powers of mass:

9

Qc = 2/3
@y = -1/3

g 1 -
A" = gl QuQp - Femd™ - — AT (553)
LA

100




ky

k2

Figure 5.10: The twelve Feynman diagrams for the electromagnetic contribution

to T =+ J/¢gg
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-k k k ky
2k, ky by \s /
% -k ) by + b /
v

Figure 5.11. Momentum labeled diagrams for M{™ and M¢™

Figure 5 11 depicts the momentum-labeled form of the Feyninan diagrams
corresponding to amplitudes M{™ and M{™ These are tree diagrams, and
there is no ambignity in the momentum which flows through each line Sunilar
diagrams for the other amiplitudes yields the formulae (note that defimtions of

the *J" are local to this section; simnilarly labeled objects in other sections will
generally describe different currents):

Jos = tr
']70 = tr

Fo + mo)fov”(fo — ky = ka2 + mo)fa(Fo — Fi 4 mo)fs )
—ky +mo)fyr°} = dmye§

ME™ = 2(M™ 4 M NG 4 ME™ 4 NME™ 4 M
Mi™ = md-Jor Jp/(qop2ps)
Mz™ = mb-Joz - Jp/{qopip2)
M§™ = mi-Joa- Jo/(qop1ps)
M{™ = mi-Joo Jpn/(pogags)
Mi™ = mi-Joo I/ (Poqiaa)
Mg™ = md-Joo Jps/(poqias) (5 54)
Joo = tr{(fo+mo)foy®} = 4mee
Jor = tr{(fo + mo)lofa(F2 — ko + mo)fi(Fi + F2 = Fo + mo)y°)
Joa = tr{(ko +mo)fofa(f2 — ko + mo)y° (ko — ki +mo)fi}
{(
{(
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Jo = tr{{=Fr+mp)fifalfs + k2 +mp) 1 (kg + Fy+ f2 + mp)y®)

Ip, = tr{(=fy+mng)fealky + k2 +mpn® (kg — kv + my)fr}
Jps = r{(=ky+mprhafo(=Fr = F1 = F2 + mpf(—F; — b +my)f}
p o= (2kg)? = 4m}

m o= (ko — ky)? ~ m?, = -2r

pr = (kg —k2)f —=mi = =2

py = (ko — ki —=k2)? —m]

q = (2kg )2 = dmy

n = (1\‘[+’t‘1)2'—m"} = 2(c~— 1)

qe = (kf+1\‘2)2 —77'13 = 2(c—z9)

g = (ky+ki+k)? = m%

(5.55)
The above expressions are in a form appropriate for numerical caleulation
as they stand Procceding as in the purely strong case, the traces are evalnated
with the symbol manipulation program REDUCE [72]. The amplitudes may
then be 1eadily evaluated for each set of helicity labels at each point in phase
space, as disenssed m section 5 2
This clectromagnetic amplitude must be added to the purely stiong amph-
tude of section 5 3. after which we can square the sum and integrate it over
phase space  Thus the telative sign between these the two contributions must
he carefully computed: this is the topic of section 5 4.3  Fuither, in the next
section we will roughly estimate the relative maguitude of the purely strong and
clecttomagnetic contributions, and find that they are comparable; this makes
the task of computing the relative phase of the two parts all the more unportant.

5.4.2 Relative Size of Strong and Electromagnetic Parts

The invariant amplitude for the process T — J/ibgg is the sum of the strong
and clectromagnetic contributions (see 5 7 and 5.27):

A, = A;+A;m

- gg F.5ab _L A"Ia + 232@ Q.- F §ab _}__ J\/“Iem

e 1672 8 7773 q N4, cb em 772(2} q
gb b 1 re

= T et = [y 4 nparem 5
1672 ~° mi U719 tupd, (5.36)

_ Qem 5_”_‘_ i

p = d4n [ ¥ ] [Qch][ Fc] (5.57)

“1n"is the relativ » phase between the two amplitudes. We saw in appendix 5.6.2
that all Feynman diagrams yield the same number of explicit factors of “2”. (i.e.
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those coming from vertices, propagators, and loops) Thus it is only the sign of
“n"which is currently uncertain. In the next section we will see that in fact:

sgn(n) = +1.
We estimate “p” by setting:

@y 0.2, aem 1/(100vV2), 7 =x~3 (

[ds §
e 4
on
~—

and recalling equations 5.23, 5.50 for F, and F,,:

3 (5.59)

Thus the electromagnetic contribution scems to make the larger effect, On the
other hand, there are more diagrams contributing to the purely strong amplitude
than to the electromagnetic. Thus we should expect these two mechanisms for
the transition to make roughly equal contiibutions In section 55 T will present
the results of the full numerical calenlation and we will see that thus 1s ronghly
the case.

5.4.3 Relative Phase of Strong and Electromagnetic Parts

The fermion and massless vector boson propagators are:

p?
12

p-m

The negative sign in the numerator of the gauge boson propagator originates
in our use of the metric diag(+1,—1,—1,~1). It causes the residue of the
propagator for the spatial modes of the vector field to be “27. just like the
fermion, and consistent with the rule that all physical degrees of fieedom of a
field must have a propagator 1esidue of “”. The time-like mode of the gange
boson is nn-physical and has residue “—1”.

Previously I have everywhere neglected these explicit factors of 17 and those
coming from vertex functions (sce section 4.3.1). Now we st count them
carefully to ensure that we get the relative sign of the strong and electromagnetic
contributions correct. We could ignore such considerations before becanse the
relative phase between the amplitudes in each type of contribution was just
“4+1”, and the overall phase of the amplitude disappeared 1u the rate. Sinee
all diagrams in each group have the same phase, it will suffice to determine

gauge boson :

fermaon :
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Figure 5.12: Typical purely gluonic and electromagnetic diagrams indicating
sources of “4”

the relative phase between two randomly chosen diagrams from the strong and
clectromagnetic parts.

These explicit factors of
Using the notation:

“4" are labeled on two such diagrams in figure 5.12.

(i)(#vcrhcu) . (‘-)(#]crm props) (__")(#boo props) (')(#foopj) (560)
we obtain:
strong: () () (=)F () =i
electromagnetic: (). (i)? - (=)' - (1)® =i

Note that each Feynman diagram is proportional to “1”, as discussed in appendix
5.6.2.

Thus the strong and electromagnetic contributions have the same phase, and
the formulae as presented in sections 5.3 and 5.4 should be simply added.

5.5 Results

Recall equations 5.11, 5.56, 5.57:
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BriY = J/ygg) = BYOpied. o 20 ype
3zci M ‘
< .\Yg' > = Z/(l.rl(l.rgl.\ﬂl,,l“
pol
My o= 2+

Qe Fen

= d4r |10, tam

p ”[Qg][c’()b][ﬂ}

M3 is given in equations 5.27, 5.29, 9.47, and 5.30; M™ is given in equation
5.54.
We require the following data:

M; = 310GV
[y = (68+10)x107°GV

BYY = 0,692 4 0.044
My = 940GeV
(had) -

By = 079440014

The hadronic widths are taken from an analysis in teference [57], and the other
munbers are from the Particle Data Book [46]. Thns:

Br(Y — J/¢gg) = (0.82440.101) < M2 > <107

The error here is mostly from nncertainty in the J/v width.

The parameter integrals contained in the fortmla for M were compnted
using the IMSL numetical integration program DQUAND [73]. and the cibee
quent integration over phase space was done using the program \ EGAS 7]
To get an idea for the relative size of the electiomagnetic, dispersive strong. and
absorptive strong contributions, consider the valne of the matiix element .\’1,, at
a typical point in phasc space for a typical set of helicity labels

T = O:)
ro = 0.6
{Aoy Ap A1, 0) = {1.1.1.1})
using the notation of section 5.2. The result:
Myri,22) = 311 + 87.4
= pM{" + Re M + 11Im MY
pM;™ = -16.3

Re Alq’ = 474
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Upon integration over phase space and summation over the 36 helicity con-
figurations, the result is:

<M?> = (206+0.06)x 10°

Thie cource of error here originates in the quantity a, contained in p above. The
value of o, used was:

ay, = 0.175+ 0.015 (5.61)

as determined in reference [57] from a survey of inclusive decay widths of the
T. (Thus it is determined within the same model as we have used.) The errors
on the result for < A2 > were obtained by running the program at the two
extreme values of a,. There 1s also a small error of about 1% in this result,
which was the accuracy to which the numerical integrator was asked to evaluate
the integrals. This parameter was chosen such that the computation could be
performed n a reasonable amount of time.

Further, T have peiformed the following check of the computer program.
Instead of the gluon polarization vectors given in section 5.2, I had the program
use the four-momenta of the coriesponding gluons Cuirent conservation means
that the answer should be zero. The results were:

(1 =h1) : < M}>=082x10°
(& = ki) & (e =k2) : < M?>=3.12x10°
which are consistent with zero given the 1% accuracy to which the numerical
integrator was working.

Thus we finally obtain:

Br(Y — J/ygg) = (0.170%0.045) x 10~2 (5.62)
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5.6 Appendix: Evaluation of Four Propagator
Integrals

We now 1equire expressions for integrals of the form:

_ f(hd*l
B frZ-P, PP
P, = (I=p)° —m? - e
= 1* -2 p, 4+ (pf—-m?) — e (5.63)

“I” can be converted into an integral over a umt hypercube in the nsual way
[62, 16). The four propagators are combined using the identity.

n—1

1 ! u
pn =n du ) n+1
Q 0 [Pv+ Q1 - u))
Then the integrals over loop-momenta for a general numerator function may

then be performed by shifting the origin, symmetuizing the numerator, and
using the two results:

(1 + a)t " 6a?’

dtl 12 d*l 1t .
/ e ”*)5 = 5 (5.64)
My goal in this section is not to obtain analytic expressions for the general
four-propagator mtegral; 1ather, T wish to manipulate the basie formnla for
“I" until I reach a form that is easily comrputed numerieally One might think
that once the loop integral has been ~~- -iied mto a patameter integral over
a hypereube. that our goal has been achieved. For example. this approach
suffice in the calculations of multi-loop contitbutions to the electron anomalons
magnetic moment [75). However, it will not work mn our cace, due to the presence
of non-removable singularities that exist in the parameter integials The origin
of these “divergences” lies in the fact that all of our diagrams contain a so-
called “absorptive cut™, wherein some of the fields in the loop becone on shell
in certain regions of the integration variable. (Such cuts are necessarily absent
in the clectron magnetic moment calculations, stennmmug from the fact that the
clectron is the lightest charged lepton and that the calenlations are performed
at q."; = 0.) The best way [ have found to handle such poles of the mtegrands is
to perfoun the integral over one of the patameters analytically  The resulting
expressions are then amenable to numerical integration

5.6.1 “Singularities” in the Parameter Integrals

Start by converting “I” into parameter integral formn:
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fttyd* _
h= / /’d'/uz (P 2 dr ey = /dl"lyy”‘r‘”)

d = [ +(1—I)[)2 y+\1-J)P1

= [.l(pl ”’”1 + (1= 1) 1)2—111 )]J-{-(l —J)([)J 7722)-—16

Now. for the simple case of:

fi)y = fo+ £

consider the integrand of the “z,y” integral. in parameter form:

dlfo+f )
Iry) = /1/
(a,9) : TR
_ 6/ st [ A fu+:f:‘d,,>
; (12 4 z¢2 — z242)"

— / d= 2f()+f1(lu~
0

[z¢2 - z247)°
= 2 / f°+f1“‘1u~
0 [d2 z — cz]
It is at this peint that the problem is evident. It is quite possible that:
e*(z,y)
0< =<
d*(r.y)

for some value(s) of “z" and “y”. Thus the “z" integral appears to have non-
removable singularities in the foz m of double dIl(l xmgle poles. The resolution of
this problem stems from the presence of the “1¢” in “¢2”. This pushes the poles
off the real axis so that the integral is well defined. In the process, the integral
preks up animaginary part, via the identity:

1 1 .
=P (_) Find(z) (5.65)
2 - z
: s 1 1 1 L1
0 @ [(12: — (2 _— 25]2 - (12 (12 — C2 — 1€ 62 — 1€
| 1 1 62 — ]2 62 62
Trme e = — - sgn(d® — -
A d (07 T et o 7 [log + 27 sgn(a )('D(d2 )O(1 p7 )]
Thus:
fO -+ f 1l 1 1
= x? 1 4 .
Iey) = d? [d2 T e T ze]
2 — d?

y
+ ir? ldi' [log

e? e?
' + iwsgn(dz)@(a‘z‘)@(l - d—z)]
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Though we have now performed the “z™ mtegral, and the “simgulanty™ 1s no
longer a problem. the poimnt s that we had to resort to analytic methods to do
so. Had we s1 pply 1eqnested a numenical mtegrator to perform the mtegral over
all three vanrables “r, y. 27, the program would hive retured nonsense It s
unfortunate that this latter approach s msufficient, because it s preferable to
the analytic method from the standpoint of amplieaity We sl tind the analytie
formulae ascociated with a more general funetion ()" somewhat daunting

Note that I Lave retained the 17 i the expressions for the “r™ and =y"
integrand; this 1s because there may exist further “divergences™ of exactly the
sort that we just encountered. Specifically, the terms.

1 1

d? — €2 — 1€’ €2 — 1€

(5.60)
are singular if either:
d2—-e2=0 or =0 (5 67)

I will introduce a different method for handling such problems when they oceur
in the “2” and “y" integrations. This is discussed helow in section 5.6.4.
Also, note that the vanishing of ¢ or d® — ¢? in

c? —d*
log T
constitutes an wntegrable singulaiity. A good numetical integrator can compute
this intcgial as it stands.

Lastly, note that there is a method that would allow us to peifoim the
integral over all three variables numerically Using Cauchy’s theorem, we can
deform the coutour of integiation for the “z" variable off of the real axis (in
a direction determined by the “1€") such that there are no longer any poles
lying on it This contour integral in the complex plane could then be performed
numerically In fact, this is the method we shall use (see section 5 6 4) to handle
further singularities of this type when they occur in the “y” mtegral, becanse
analytic methods become prohibitively complicated for the type of non-trivial
integrands that appear in the “r” and “y" mtegrals. And it 1s just beeanse we
will sometimes have to analytically continue the “y" vaniable into the complex
plane that we may not employ this same method to to handle the singnlanties i
the “z” integral. The actual contour in the complex “z" plane would necessanly
become a function of *r” and the complex variable *y”, 1t then becomes diffienlt
to ensure that this contour is not passing over any poles of the wtegrand when
both the contour and integrand are functions of a complex patameter. Such
considerations aie the domain of the theory of complex fundctions of several
complex variables.

110




5.6.2 Origin of Imaginary Parts in Feynman Diagrams

In the previons section we found that the loop integrals yielded both real and
magnary parts Here Iieeall the decision er.tena whieh allows one to tell from
a glance at the assoaated Feynman diagram it patameter mtegral singul es”
will aniee

First 1ecall that for cach vertex, propagator {(fernuon or boson). and loop
(vee 561 m a Q ED/QC D Feynman diagram there 15 associated an explicit
factor of *¢°  Thus the amphtude corresponding to a Feynman diagram with
“177 vertices, “E7 anternal lines (propagators), and “L” loops is proportional

to:
2E-{-V«}-L

Further tecalling Euler's equation for planar graphs.
V—-E+L=1

this proportionality factor becomes:

P2EHL o .

The S-matiix 15 1elated to the invariant amplitude by a another factor of “i™.
Should we conclude that the S-matrix is always purely 1eal? We know this
cannot be the case because general arguments [16] based on unitarity relate the
imagmary part of *S™ to observable quantities which we know do not vanish in
all cases:

ImS x Z < fln><nfi >
n

Here “|n > is any eneigetically allowed “real” state (i.e. consisting of on-shell
particles) In perturbation theory, the imaginary part of “S” thus first arises at.
order "t if “< fln > and “< 1jn >" are of order ¢' and g¢7.

What then have we overlooked that could produce a non-tiivial phase in
the S-matrix? The answer is the type of parameter mtegral singularities that
we encountered in the last section. We saw there that the value of the loop
integral acquires both real and imaginary parts m such a situation  Since this
is the only such source of non-trivial phase in the amplitude, it must be linked
to the presence of the encigetically allowed states “n >” discussed in the last
paragraph.

Now. inspection of the Feynman diagrams can tell us if such states exist. If
a hine can be diawn through the Feynman diagram such that:

1 a cut along the line would split the diagram into two disjoint parts, and

2. it is possible for both the initial and final states to make a transition to
the set of ficlds that the “cutting” line intersects

111




Figure 5.13: Absorptive cuts in the T — J/v'gg dingrams

then this latter set of fields is just the intermediate state “jn >" mentioned
above. Certainly the product of the perturbative orders of “< fln >" and
“< i|ln >” must equal the order to which we are caleulating the amplitude and
thus the S-matrix. There exist two such cuts iu the case of our process, shown
in figure 5.13. The intermediate state is the three ghion state “|ggg > in the
left diagram, and the state “|ccgg >" in the right.

In suramary, if there exists such a cut in a Feynman diagram, then the
S-matrix must have a non-tiivial phase at the order we are working to in per-
turbation theory, and thus the parameter integrands must have poles, since this
is the only way to introduce non-trivial phases into the expression for a Feynman
diagram.

Conversely, if the Feynman diagrams have no such cuts, and we have properly
identified all of the relevant diagrams for the transition, then there can be none
of the states “|n >” described above, and the S-matrix mmst be purely real;
thus the parameter integrals cannot have any poles.
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5.6.3 Formulae for the Four Propagator Integral

Heremn I present a parameter integral formula for a loop mtegral of the form:

Po = 1F =2 pe+ (pi—mi) — e (5.69)
‘The mumerator has the general form:
f”) = f() + f]lllu + f.’alz f“ul;tl + f” 12 ;1 + f“”/\lulu[\ + ft(”

where fy(l) tepreseuts a possible quartic piece Note that if fi(!) behaves as I
for large *I". [ dYfi (1)1 Py Py Py diverges logatithmically We ate thus faced
with a shelit paradox. since on the one hand we know that cach of onr Feynman
diagrams generated an amplitude that was onits own ultiaviolet finite by power
countimg. hut nevertheless scome of the numerator functions 1 equation 5 3¢
(specifically: f1) certaanly do contain quartic patts

In fact. the appeatance of these naively divergent expressions s an artifact
of our 1eduction of the mnlti-propagator mtegrals to four-propagator integrals,
A small amonnt of analvtie mampulation of the final results <hows that the
quartic preces of each of the mnuerator functions really only increase as 3" for
large =", That is, fi(!) always has the form:

f) = L)L+ R ),

where | have introduced the notation:

ny = ww 23.5:.
), = e -rd
,uuaﬁ
I O TS
g;wnd = g;wgaﬁ + gua v + ng va

Thus. it will suffice to now present formulae for the following integrals:

1
/ - @l {1 PR B R ) [P Y (5 70)
2-pP-P, '
As in section § 6.1, I first convert each into parameter integral foim, and then
analytically perform the mtegration corresponding to the parameter which is
used to combine the propagator “I2” with the other three propagatore (This is
the “last™ parameter introduced.) The detivation of each equation proceeds in a
fashion completely analogous to the derivation of the equations in section 5.6.1
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for the simple numerator function fy + . Lastly, it should be understood

f that a factor of
1wt /<I.rr1yy

must multiply the left hand side of each of the wteegral formulae

1 1
(ol . = =
/‘ P -P, P, 2 - d?
A S
P, - P, P, PRRE
dil [1“1‘,] _ [(]“ (_{u]r
P P) P3 - €2~ d?
1 1 1 1 1
4 _ S . o
/‘”1 PP, Py A a) T @ [(lz-fz 'He]
" 1 1 1
Al S 1 . S s
/‘ "r P, D [a( Zan toantomt ’}
i 1 2a 1 qg*v /4
1 _ L L ST A PR
'/(III'Z P Pz I) - DZ [(2((2«(3)+(1‘ 1()!-"’(1!)] t IR od?
gl 1 3a? ] Qred g
L - = opitA Y e s
/‘ *-P, P, D ’ [c'z( PTan “"“*‘n)} g
l“I"l“l’] [ 1 dal 1 Qroed g
{ [ _______ — pvad L 0 ;[ ) 2
/" NS N o P e s 1”’“*((1’} P
; (H71)
d = [epr+ (1 -0)p)'y+ (1 -y
€2 = [.r(pf - m(f) + (1~ )(p - mz] y+ (1 - y)(pz, - ”‘2;) re
a = e?/d?
Dgu — d)ldl/ _ d2g;w/4 — [dudu]r
DA = grdvdr - dPQrN 6
Dy**? = [d"d*d*d®) - d*Qred )8
pr\ = guudz\ + g;u\du + guAd;A
Quunﬂ - g;ngﬂ + :]poD;ﬂ + gﬂﬂD’rn + guand + g“”D;‘" 4 ’Iudl);zw
1 1
loge(z) = log(l—1z)+ z + §r2 + o 4 ;1‘" + arO(r - 1)

= _5‘-"— for x| < 1 (.

n=k+1

ot

-J

]
N




In summary, I Lave reduced the loop-integral of four propagators and a
general momentuin dependent numerator function, to & set of two-dimensional
mtegrals that can be readily evalnated numerically, and such that the correct
absorptive contribntion to the integral will be obtained  (See also the next

.

seetion for a diseussion of further singularities in the “y™ wmtegral )

"

5.6.4 Further Singularities in the “x” and “y” Integrals

The formulae of the last section contams three potential “divergence” problems,
associated with the following expressions:

1
Loz
o 1
w1
€2 - 2

d* = 0 “Divergences”

Recall that “d” is given by the expression:
d* = [rpr + (1= 2)p2]" y + (1 = y)py. (5.73)

As “r” and *y” vary from 0 to 1, the tip of the four-vector “d” traces out a
two dimensional triangle in Minkowski space, whose vertices are py, pg, and p;3.
Henee 1f one of the pg is space-like, while the other two are time-like (or visa-
versa), there must exist some value of “r” and “y” for which “d” is time-like,
e, for which,

d? = 0.

Note that d* does not contain an 1€ term to push any such singularities off the
teal axis and keep the integrals well defined. Thus d? = 0 cannot really be a
singnlarity of the mtegrand.

To see this, note that the only terms proportional to 2’7 are:

(k+ l)ikl 1
dl OBk a

As d? — 0,
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(we will see below that for all our diagrams we can always choose the routing of
the loop momenta such that €2 —~ d2 # 0 over the integration region.) and thus:

(k 4+ 1)a* 1 (k + 1)a* -1 1
d? log, a - dt (h + 1)ak+? +0 (JE’)
1 1
= 7 + 0 ;—5)
— 0

using equation 5.72.

Next, consider the other two sources of singularity. It 1s quite possible that
cither ¢ or ¢? — d? vanishes for some valucs of “r" and "y, However, sinee
¢? contains the 1¢ factor, these poles will just lead to the type of “divergences”
discussed in section 5.6 1, which there lead us to perform one of the parameter

mtegrals analy tically,

9 ) .
¢ —d* =0 “Divergences”

[ present here a criteria to tell immediately if €2 — d? vanishes or not. Reeall
cquation 3 71,

1 1
— § . . 2 . I
. :/dll—);'Pz'P—; = a7 /(hdyy(z_dz

The left-hand side is the expression associated with a triangular loop of sealars
in a Feynman diagramn. Recalling section 5 6 2, the patameter mtegral form
of “A” has singularitics if and only if this associated Feynman diagram has a
“cut™. Thus we need only inspect the associated Feynman dinginm to determine
if €2 - d® vanishes in the integration 1egion or not,

This rule can be used to choose momentum rontings in Feynman dingram
loops which climinate these types of poles in the © r-y" ntegrals This s illus
trated in figures 5.14, 515 Figme 5.14a depicts the Feymman diagram for the
amplitude Ay, with the same 1outing of momentum m the loop that we waed
insection 5.3 1 Figure 5 14h depicts the Feynman diagram assocnted with the
three propagators Py, Py, Py It s clear that this latter dingram has no ont
((kog = k1)? < (g + m )2, always), so that we need never worty that ¢4 2
vanish m our “r-y™ mtegral If we had 1outed the loop momenta for amphtude
Ay as in figwe 5.15a the associated Feynman tnangle diagiam (fignure 5 10h)
would admit a cut, as shown in fignre 5.15b  Thus onr “roy” mtegrand wonld
have a pole that would have to be dealt with somchow, perhaps analytically
Since ¢ — d? is a general quadratic in both “2" and “y", this would constitute
a very complex, tedious exercise.
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(a)

Figure 5 14: (a) Feynman diagram M; with the momentum routing we have
used, and (b) its associated triangle diagram

2
(3) (+)

Figure 5.15: (a) Feynman diagram M; with an alternate momentum routing,
and (b) its assoriated triangle diagram with absorptive cut
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e? = 0 “Divergences”

e? will in general vanish at some point in the “r-y™ integral. As stated, this does
not mean the integral diverges, because the ie pushes the position of the pole
off the rea! axis, which is the current integration contour for the “y" integral.
We have:

e = a(x)y + B — ¢
afz) = z(p? —md)+(1-z)(p? —m?) - (p? —m?)
Blz) = (p5—m3)

11 1

2 a(r) y—u(r)—e/sgn(a)

B
u(r) = (@)
Doing the “y” integral analytically, using the formula:
1 1 -
Je P(;) +imé(y),

similar to the way we did the “:" integral in sections 56.1 and 56 3 is pro-
hibitively complicated now. This is because the ;’7 termis 1 our formulae me
multiplied by quite complicated functions of “r™ and “y", such as d‘—,— (see equa-
tion 5.71).

To handle this problem, the following method was employed By Canechy’s
theorem, the integral of y along the two paths in figure 516 must yield the
same answer, if there are no further poles lying between them (thas is easly
verified). Note that the direction we must deform the contour is deternmmed
by “¢/sgn(a)”. The integration may now be performed numenically by simply
choosing some convenient parameterization of the contonr For example, T used
a semi-circular path parameterized by the angle 6:

y(é) = e 6efon

BN
o] —

Singularities in the “x” Integral

The badly behaved terms in the “2” integral consisted of single and double
poles. Those in the “y" integral were only single poles, which were derived from
the integral of the double pole terms in the “2” integral The remaining “r”
integral contains no poles All singulatities associated with the vanishing of €2,
etc. are at most integrable, logarithime, singularities.
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Figure 5.16: Contour used to perform the “y” integral
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Chapter 6

T — J/vgg9g

6.1 Decay Rate, Helicity Amplitudes
6.1.1 Decay Rate

The formula for the spin averaged, and color and spin summed, decay rate of
an T to a “J” plus four gluons follows from equatiou 4.17.

11 1 [y (0))? [wg(0))?

dl’ = =~ ME
r 4'2Jy + 120y My M,

Y |4, Pdy(LIPS) (6.1)
40’,]?()'

where the first factor is the symmetry factor associated with the four identical
gluons, and Ag is the quark level invariant amplitude caleulated with the rules
of section 4.3.3.
In section 6.5 we discuss the 5-body phase space, and define a set of variables
“r" € R? such that:
1 d3kj (lzkl (13’»‘2 dsk;; (l’}kg

_ 40, L, XN
ds(LIPS) = (27)77 3E, 3, 3E, 3E, 254‘5 (ky = kg =3 k)

1 ™Y | 6 8
= G (3) a8 [ (6.2)

The boundaries of the integration region are discussed there also.
We now extract the color factor, coupling constants, and powers of the quark
mass to define the dimensionless quantity Af,:

Ay = g8 Fobed. —17 .M, (6.3)

my

Note that the color factor is now a function of four octet labels, one for cach
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gluon. We will see that:

Qaoc 1
Fc bed = i; Z dabedcde
= €
and using the identities of appendix A:
2 abed? 52
F? = Y [FP] = AT (6.4)
abed -

Returning to the decay rate, we have:

Py (0)2 | 1(0)? .
I=o Ff ‘j' T(z\)fljluj( ) /dSrZ;M,,P (6.5)

pol

Expressing the branching ratio in the same way that we did in the T — J/ygg¢
case (see equation 5.11) we finally obtain:

Y — Jgggg) (had) n(hady F2 ML — -
= BY )B(J )'1 c . '/dsrLquF

I'y 87!‘0% (6.6)

pol

where ¢ is given in equation 5.10.

6.1.2 Numerical Computation of Helicity Amplitudes

As in the T — Jgg case we will compute the amplitudes directly, for each set
of helicity labels. Note that there are:

IxIx2x2Ix2x2 = 144

such quantities. Both the summation over amplitudes and the integration over
phase space will be done numerically. In section 6.5 where the 5-body phase
space variables are defined, it is shown how to reconstruct the 5 particle’s four-
momenta fiom each set of phase space co-ordinates. Following the discussion of
section 5.2 of the T -+ Jgg decay, we must now give a prescription for the par-
ticle polarization fow-vectors if we want our computer program to numerically
compute the helicity amplitudes. T Lave used the following definitions:

(A)

(0,6a1,6a2,813)
‘,*’ = (0,6x1,6x2,0)
(
(0,

lkfl 0 0,Ef)/mg
)

ffz\.)
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N,

>
x.

=i

T > g

Figure 6.1: Polarization vectors for the gluons generated by the computer pro-
gram

where:
é'“) - g, X Ef
' IE. x E!|
€(2) - ’-C‘, X (l-c‘. X Ef)
' |k, x (B, x kp)|

According to these definitions, E',m, ?,(2) is respectively perpendicular, parallel

to the plane defined by the momentum vectors of the J/4 and gluon “i™. (Sce
figure 6.1).

Now that we have explicit expressions for each paiticle’s momenta and polar-
ization vector at cach point in phasc space, we may proceed with the numerical
evaluation of the integral over phase space. All that remains is to derive the
formulae for the invariant amplitude.

6.2 Feynman Diagrams
The lowest order Feynman diagrams contributing to T — Jgggg are of order

gS. This follows from the fact that vector mesons must couple to at least three
gluons, as discussed in section 4.4.2.

122




There are a total of 216 Feynman diagramns contributing to this process, 9 of
which are depicted in fignre 6 2. The label “a”. for example. is short for “p,. €,.
2", respectively the particle momentum, polanzation, and octet color label. To
cach of these 9 diagrams must be added the 23 graphs obtained by permuting
the four labels {a. b, e, d}.

To these 9 chagrams cortespond the 9 amplitudes:

Ay Ay A;
Ay As  Ag
A7 As  Ag
I will use the notation:
Ag—b

to denote the amplitude obtained from Ay by exchanging the labels “a” and
“B" 1 Ag s Feynman diagram. Using the techniques of charge conjugation first
cmployed in section 5.3 1, we can show that the amplitudes Ay, A3, A7, and Ay
all have the same lorentz (or Q.E.D.) parts. Thus:

A+ A+ A4+ 4 =
1 2
(_> tr{TaT. T} tr {TYT. T, } + tr {T.T Ty} tr {T, T, T.}

V3
+ tr {TT. T tr {T.T. Ty} + tr {T.T.Ts} tr {T.TaTp}) M,

1
= 'i'r; I:Z dnbrdcde] 1\’11 = FcadeA-{l
- e
Similarly:
Az + Ag + (‘42 + Ag )cHd = FcadeAIQ
Ay + Ag + (."h + As)awb = Fé’deA[‘I
a~b
As + AP 4 Agmd 4 Agmd = FRbedpyy

I now define the quantity Mqp)(.q), which is the sum of the lorentz parts of:
1. the 9 Feynman diagrams in figure 6.2;

2. the 9 Feynman diagrams obtained from those in figure 6.2 by exchanging
the labels “a” and “b",

3. the 9 Feynman diagrams obtained from those in figure 6.2 by exchanging
the labels “¢” and “d™;

4. the 9 Feynman diagrams obtained from those in figure 6.2 by simultane-
ously exchanging the labels “a" and “b”, and the labels “¢” and “d”.
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Figure 6.2: 9 of the 216 Feynman diagrams for the decay T - J/vggg9

-
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a—)
Mabycay = [AI] + 4\f]a~b + Aflcmd + M= + M, + AI;Hb

+ My + M7+ M)
= g3 [(Jm + jox)"(Jfl + jjl)u + (Jo1 + Jo1)*Jsa

+ Jél'z(']fl + jfl)u + ng*’ﬂn} /Sab

= g5 [Jm +Jor + Joz]“ [Jn +Jn+ sz]” /Sab (6.7)
where:
Jboo= ghet
jho= e
and:
Jgy = tr{(Fo+mo)fofe(ks — Fo + mo)fa(Ra + ks — Fo + mo)v*} /(Pspat)

-~

Jo1 = tr{(Fo+mo)fofa(Fa — Fo + mo)fs(Ka + Kb — Fo + m0)v"} /(PaPas)
J(;‘:Z = tr {("0 + TnO)/U/b("b - "0 + n20)7”("‘”a - ”u + nlo)fla} /(papb)

Jey = tr{(=Fs+mpfpfa(ka+ Fg+mp)fe(be + Fa+ Fr+mp)r*} [(qegea)
I o= tr{(=kp A mpffelKa+ by + mp)fe(be + Fa+ Fp +me)v*) /(qaged)

Jra = (ks +mp)ofa(ka+ Fg+mp)y" (=K = Fr +mp)fe} /(geqd)
Sab = (21\0 — ko — kb)2

Pa = (ko —ka)? - mg = 2ko - ka
pp = (ko—k)* —mj = 2ko- ks
Pab = (ko —ka—ky)? —m]
gc = (ko—=ke)?—m) = 2kg ke
ge = (ho~- kq)? - mg = 2ks. kq
gea = (ko = ke~ ka)® — mj

Further defining:
" ~ i -~
Mabyeay = mj- [Jm + Jo1 + Joz] [Jn +Jn+ sz] /3ab (6.8)
p
we see that the expression:

1 N
Agze = ¢SFP—— . Miapy(cd)
my

represents the sum of 36 diagrams, To obtain all 216 diagrams, we must now
distribute the gluon labels {1,2,3,4} cver the labels {a,b, ¢, d}, taking care to
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note that Miapy(-qy is symmetric in {a,b} and {c.d}.

M, = |Manay + Manen + Magey

+Monan + Minan + Moanan (6 9)

This 1s now in a form readily computed numerically. and when combined with
cquation 6.3 yields the final result

6.3 Results

Recall the equation for the branching ratio 6 6:

F2 oMy ~ -
BriT — Jaq _ B(hnd)B(had) L S g 8 ‘ )
r 9999) T By fgr? A2 dr Y NP (6.0

pol
1 alues v {had) . . .
The values of the parameters My, By, ete are given and were discussed in
section 5.5, Inserting these into the above, and wsimg equation 6.4, we obtain

Br(Y — Jgggg) = [(4.39 £ 1.03)~ 1077 -/d%-}_: VAL (G.11)

pol

M, is given in equation 6.3. 6.7, and 6.9. The phase space mtegral is performed
using the program VEGAS [74]. The result is:

{ .
jdf‘er,,V = 1.77 x 10} (6.12)
pol

There is essentially no error in this number, since there are no parameters like
a, in M,. We finally obtain the prediction:

Br(Y — Jgggg) = (0.0777 £ 0 0206) x 107* (613)
This result is about 46% as laige as the Br (T - Jgg) (sce section 5.5). The

fact that these two numbers are compatable is discuseed in the next seetion,

6.4 Estimate of Relative Size of Jgg and Jgggyg
Decays
We have seen that the decay probability of the T to the Jgg state is of the

same order as that for the decay to Jgggg. This is somewhat counter-intuitive
since typically the wmany factors of (27)7% associated with mnlti particle phase
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space tend to greatly suppress the effects of a decay to many particles. Herein
I present a crude estimate of of the relative factors to see that in our case this
rule of thumb does not apply.

The ratio of the decay widths for ¥ — Jgg and T — Jgggg follows from
equations 5 11 and 6.6:

F(T:—'_.ﬁjggg) 1 fﬁs_ Zpolfdgrl.K?q‘5|2

i = —. . 6.14
LY — Jgg) 6 F023 EpazfdrlerMIqJ'z ( )
where from equations 5 23 and 6.4:
52 52
2 _ 9 2 _
Fc3 - 26_32 FCS - 232 (615)

To make a crude estimate of the phase space integrals, first recall [71] the
formula for the volume of the n-body phase space in the case that all the final
particles are massless:

r — — T\ 1 2n—4
Va(my = 0) = (‘3) ‘(n-1in-2) Mo (6.16)

=~

This should also hold reasonably well in the case of massive final particles if
2
;"1,13 < 1, which is the case here: M3/A2 ~1/9.

Note that we have already extracted the (7/2) and My factors in 6.16 from
the general phase space expressions to arive at e quations 5.11 and 6.6, and hence
6.14. Thus rather than 6.16 we must use:

. 1

r

v, =
" (n - 1){n-2)!
for our estimate of the size of the domains of each of the integrals in 6.14.
Next, let us assume that in both decays each Feynman diagram for each set
of helicity labels is exactly equal to “17. Our crude estimate of each integral
becomes:

Z/ |f(!,,]2 ~ (# helicity scts) - (# Feynman diagrams)? - V,
PSs

pol

The Jgg decay has 36 helicity amplitudes and 36 Feynman diagrams; the Jgggg
decay has 4 - 36 helicity amplitudes and 6 - 36 Feynman diagrams. Thus we have:

L(Y — Jgggg) LR [, a2 ¥
I(Y — Jgg) 6 F2% Va
1 2
= =.95.4.6%. —
6 4-6 4'3!
25
= 3 (6.17)
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Thus the 5-body decay naively dominates over the 3-body decay This eaty
mate is admittedly extremely crude, but 1t serves to demonstiate that there s no
reason to expeet that the usual suppression that multi-body decays experence
1s at play here Usually 1t as the many factors of 7 that make a5 hody decay
small 1in companson to a 3-hody decay, this e hanism 1= nrelevent Liere he
canse the 3-body decay m our problemiis descnbed by a Fey nnan drastan withy
a loop. while the 5-hody decay has none Becanse of thns hotlr the Y gy
and the T -+ Jgqqy decay wadths »ud np heme proportional to the same power
of 7 (sce cquations 5 11 and 6 61 T fact. we can dedinee mmediately that this
must be so by noting that any two processes compnted to the same order
pertubation theory will have the <ame number of werall factors of 7w there
final formulae  tins is Just the teason that 1t makes sense to use the combmastion
as = gi/td7) a~ the perturhation parameter

Given that thein 15 no relative suppression cormng from factors of 7, we have
seen that the funther smallness of the mult body pliase space volume (the 1)
15 offset a larger color factor. and by the mereased unmber of diagrames ad
helicity amplitudes for the Jyggg final state with tespect to Jyq.

6.5 Appendix: Multi-Body Phase Space

Here T ieview one of the simplest posable teenrsion relations for mmlti-partiele
phase space. It 15 based on the phy«cal preture of o <equential decay, exlinbited
in figure 6 3

Spearfically. suppose we have n-hody pliace <pace viewed as desenibing the
a decay from state of momentum “h¢™ to n particles of momentum Yk
1...n:

d*ky d*k,

Ruolko— k] = :)_El ;)—-b (ko — Sk

$hy o Dk ~
= TZ—E; . H _-)LT, o {(L'U ~ky) - Lal‘"]

Bk,
= S Ry (ko = ky) - &y

Now we introduce the quantities m%_; and p,—y, defined by:

1 = /dmi_lé (m_, —pi_,)- /J‘pn_164(kg —ky = pn-1) (6 18)

Multiplying the phase space by this factor of “1”:

3k,
Rulko = k] = /dm?,__lﬁ- [d4pn_16 (m’f,_‘1 - I’?.~|)]
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Figure 6 3: Sequential picture of an n-body decay used to generate the recursion
formula

x 61 (ko —ky - Pn-—l) "Ry [(kO - kn) — kl]
Bk, [d3p,_
h /dmﬁ_, 2E, [5—1%_-—:—] 6% (ko — kn = pa-1) Ra-1{pn-1 = ki

= /dm?,_,Rg ko = kn,Pn—-1] Ru—1 [Pa-1 — k]

The limits on m,~; are casily deduced from physical considerations. On the
one hand, the particle “0” is decaying to the particle “n” and the hypothetical
particle of mass my,—1; thus

Mn-1 < My — M,

where equality corresponds to threshold production, with the particle “n” and
the system desciibed by m,_; both at rest. On the other hand, the hypothetical
patticle is decaying to the collection of particlesi = 1... n-1; thus:

M+ -+ Mpog <mpy

where again equality corresponds to the situation where all the particles i =
1... n-1 are at rest.
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Figure 6.4: Equivalent sequential decay for 5 hody phase space

Thus we have finally obtained the desired reenrsion formula.

(Mo~-M,)?

R, (ko — ky) = /(” s a dmi_le (ko — knypn-1] Rn_y [Pr—y - k)
Ay Moy

(6.19)
Now recall that;:
d®py d°p.
Rilpa = poope] = ——=—=6"(pa - ps—pc)
2[Pa = Pb.Dc] E, E O (Pa=po-p
= i’_/i(”_ﬁv_”ﬁ:_f ig_l dQy,
8m?

A(z,y,z) = I2+y2+22"‘21‘y—21‘2 -—Qy: (6201

in the “a” particle rest frame. “dQ;.” is the solid angle of the b-¢ paitiele axis
in the a particle rest fiame. Thioughout this thesis, we shall always define
this solid angle with respect to the ditection we have to boost to return to
the “actual” fiame that the particle “” is . If we are alicady i the “a”
particle rest frame, then thete is no preferred direction and the sohid angle may

be replaced with “4x".

5 Body Phase Space
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A< an example, consider the decay of a scalar particle to 5 scalars, 4 of which
are massless, with momenta k. by koo ks, By respectively. (We are considering
sealars so that there are no preferred directions except the relative orientation
of the final particle momenta ) We ehain the phase space in the arder described
m figure 6.4

(Mg - A’J,z mZ mg
R, = / (]71:3/ (/m%/ dm% x
Jo 0 0

Ry [ky — py kJ] Ry Lm — p3ky4) - Ra[py — paks): R [p2 — kiky)
(Mo=M,)2 1/2
= / dm‘/ dmg/ dm 2 A (A[O’T““UJ)({Q:
0 811,

/\]/2(7”1,”13, )lQ‘ _/\]/2(m3,7773.0)d93 _ /\'/2(17752,0,0)
8mn? Sni3 8mj

Qs

Now note that the angle €y just desciibes the overall orientation of the decay
products in the initial particle rest frame No physical quantity can depend on
it. Similarly, wiiting:

dQs = d{cos8;3)do; (6.21)
we note that the angle “é37 desciibes the azimnthal orientation of all of the
massless patticles abont the massive particle momentum axis; again no physical

quantity can depend on this. Thus the thice variables 2}, ¢3 may be integrated
nnmediately, to obtain:

47 1 A(Mo—My)? m3 m3
(—-—) / dmi/ dmg/ dind NV (MZ . m?, M3 AL
8 0 0 0
_mj L m3\ d(cos 83) dQ3 d;
m3 m? 2 47 4r
4 (1-My)? m? w2
(——) ,’\Ig’/ (11?12;/ din? / dind A2 (1, w2 M)
2 0 0 Jo
~ 2 L L
( B r{}%) (1 _ mg) d(cos 63) d} dQy (6.22)
m mj 2 4 4m
The § body phase space was initially an integral over (3)% —4 = 11 variables,

but thiee of the integrations were trivial, so that our final formula is an 8-

dimensional integral In general, n-body phase space is an integral over a set of
dimension:

Ry

i

1

polarized to polarized - 3" — 4 = 3" -4
unpolarized to polurized: 3" -4 -2 = 3" -6
unpolarized to unpolarized : 3" — 4 -3 = 3" -7

since the triviality of first solid angle integral follows from the un-polarized
nature of the decaying particle, and the tiiviality of the azimuthal angle integral
relies on the un-polarized nature of all the final particles.

131




S

Lastly, I present formulac to reconstruct the particle four-momenta from the
& integration variables:

m2,m3, m?, cos 63,05,

for the case of one massive and four massless particles in the final state. The

method is to work along the decay chain fiom the initial particle to the final
massless particles “1” and 2",

1y
0
ke = My 0
0/
( 1
0
Py = 7724L(~,.94) 0
0
1
. 0
= 7"3L(994)[Rr:(93)L(‘P43)] 0
0
1
* * * 0
P2 = maL(ps)[R::(85)L(013)] [Rey(93)R::(83) L{032)] 0
] 0
1
m * . . . . 0
b= 2L(p0) [Rea(83)E(540)] [Rey (65 R Lo} Ry (0] Rur(8])] |
1
where
coshg 0 0 sinhe
0 10 0
Liy) = 0 01 0
sinhep 0 0 coshy
1 0 0 0
0 cosf O sind
B® = 19 0 1 o0
LO —sinf 0 cosé
1 0 0 0
0 cos¢ sing O
R:y(0) = 0 0 1 0
0 —sing cos¢ 0
o 0o 0 1
132




&

o

M2+ m?2 - M3

coshey = 4 =
¥ 2Mormis
b mi + mg
cos = e
P43 2myms

h m% + mé
5 = —_—=
cORTt P32 2mamo

These formulae correspond to the definitions:

e 6} is the polar angle in the “k 4 17 rest frame between the momentum
veetor py, and the axis along which we must boost this frame to reach the
“truc” “k 4+ 17 frame.

e ¢} is the azimuthal angle in the “&k 41" rest frame of the momentum vector
P with respect to the plane defined by the “k + 2" momentum vector as
viewed in this frame and the axis along which we must boost this frame
to reach the “true” “k + 1”7 frame.
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Chapter 7

T — x1999

We now turn to the calculation of inclusiverate T — \; X as discussed in section
4.3.2, where x; is the 3Py ¢-¢ bound state. We will find that the lowest order
perturbative Q.C.D. description of this width is the decay T — \,ggg, and 1s
of order 3. This will follow from the fact that vector mesons must couple to at
least 3 gluons, while the even charge paiity \; state can couple to two gluons
(one of the ghions must be off-shell to avoid the constraint of Yangs theoremn
[76], discussed Lelow).

Till now, I have only presented the 1ules for computing Feynman diagrams
containing vector mesons. Below we shall first review the analogous rules for
L=1, S=1 3P, states. We shall then discuss the hadronie widths of such states,
for which the situation is complicated somewhat due to an infra-red type loga-
rithmic divergence of the width for the process 3P, — ¢fg with 1espect to the
quark binding energy. Finally, we will estimate the T — \,ggg 1ate, and thus
the width for J/4 production in Y decay throngh this channel.

7.1 Feynman Rules for ?P, States

Following the discussion of scction 4.3.2, we first present the wave function of
an axial vector, 3Py, state, derived in appendix B.4:

1 P'(0
T(xy,12) = 55{;'\/%—1)‘

[21’]\1/75 + Paege®®™ - (g + my)y” Em
t=0

(7.1)
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where T have made the definitions:

3 1 dR{r)
il - e
VO = Ve Tar |,
1
Py = '.;;P
1
my = ’é‘]\’f

where “P”, “e”’and “M” are the meson four-momentum, polarization, and mass.
and “t” is an arbitrary four-vector. Processes involving P-wave mesons are
propottional to the derivative of the radial wave function at the origin, for
reasons discussed in the appendix B, chiefly stemming fiom the fact that the
wave function of L = 1 states vanishes at the origin.

The analogue of equation 4.16 for the S-matrix becomes:

. I ¥(0) $'(0)
= 154(%p) - . il YA, 2
§ = (2m)¢%(Zp) [IMI,\/ SEV 13511 VAT ,,I,,I‘ vz | A 12

where the invariant amplitude “A,” is calculated according to the previous rules
of section 4.3.3, with the following additional rules for the 3 P; vertices:

1. The quark and anti-quark comprising the axial vector bound state are
given momentun %P +t.

2. The amplitude “Mg(t)” for the process is calculated by applying the usual
Feynman diagram rules, with the exception that no “u” or “v” spinors are
written for the quark and anti-quark coming from the axial vector meson.

3. My (0) and dA1,(0)/0t* are computed; the amplitude is then given by:

OM,(0
A = 200 (Mo O)frs) + Parseo?® - tr{ 208D g )

3P, Decay to Two Gluons

I illustrate this process with the example of an axial vector meson decaying to
two possibly off-shell photons (to avoid the complications of color factors for
the moment). This is discussed in reference [65]. We will use the 1esults of this
analysis later in sections 7 2, 7.3.

The two diagrams for the decay are shown in figure 7.1. We have:

1

~y? ¥+ 9" ol
Po+1—Fa—my ~Pg 1+ F —my

M) = ¢?
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Bt AVACA VAVY R aYa vV, Vava
ke

Y Pla-t-kq +

S—

Aoy e
~Fhrt k‘ -P+t

Figure 7.1: Coupling of a *P; state to two photons

After lengthy manipulation, and by discarding picces with a (=g, + 1ny) factor
on the left or a (pq +my) factor on the right (which it is readily seen vanish in
the above trace):

M(0) e [v*7"ka — Far*") ;1
OM,(t)
Oty

]

1 1
— P H A7
t=0 [ l‘q"”a — Mg Isq_ﬁa —m,

[ 5]

p

+ 7" . - ! v
—pgt+ka—myg ~py+Fa—my
= e [(ka-ks)g"?y" — k! (g""py + k§¥" — k1v®)] /p}

pro= (P[2—k)? —m?

Inserting this into the formula for the complete amplitude, we obtain the siinple
expression:

A = 4% eqe? P [k2ky + kika]” /9 (7.3)
Note that the part proportional to 1/p; has disappcared. We see that the for
both gluons on-shell, i.e. for k2 = k? = 0, the amplitude vanishes This is

an example on Yang's thcorem [76]: a spin-one particle cannot decay to two
identical massless spin-one particles.
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7.2 Hadronic Width of the x;

As discnssed in section 4.2 1. the inclusive hadronic width is estimated in per-
turbative Q.C.D by computing the transition rate of the y; to the color singlet
quark and gluon state to which it couples at lowest order. Were it not for Yang's
theotem, this wonld be the [gg > state at order a?. The transition of a \; to
two gluons does not violate charge parity  Indeed, we saw in the last section
that if one or both of the gluons is off chell. the transition rate is non-zero.
However, both the gluons in the [gg > state are on-shell so we must proceed to
states coupling at higher order

The y; can couple to both the |g9g > and [gFg > state, at order ad. Now it
turns out that the transition to the |ggg > state has a problem: it diverges if we
assmme, as we have all along. that the mass of the quarks in the \; is one half
of the \; mass. The origin of this divergence lies in the fact that the formula
7.3 for the \-¢*-g amplitude is proportional to:

r

1 4 1
[(P/2 - kg2 —m2)* AP [E;—b/2]
b = M—2m,

where kg is the four-momentum of the radiated gluon in the |ggg > state, and
“J" is essentially the binding energy of the meson. In the integral over the three
body phase space, this factor generates a whopping infra-red type divergence at
the poiut E; = 0. if we set b = 0. Quark cuirent symmetries and charge-parity
identities soften this divergence, but the final result is that the decay rate is

proportional to:
dE,
[525 ~ o)

The arguments of section 5.3 2 that rule out such infra-red divergences break
down here because the next lowest order amplitude is not zero because of charge
symmetry arguments, but instead because of Yang’s theorem. For similar rea-
sons, this divergence does not disappear when the contributions of soft brem-
strahlung diagrams is included The logarithinic dependence on the binding
energy has a physical origm. which is similar to that of the lamb shift in the
hydrogen atomn [77).

This problem was first noted in teference [77], where the contribution to the
\1 width from both the |ggg > and |¢ggg > states was computed. The authors
found that the decay to the |ggg > does not have a similar divergence problem.
They also found, speaking in the context of an expansion in the binding energy
“b", that the leading contribution to the decay width is given by:

010 1

n M -
TC(\1 — qq9) = —31-5—-a§|¢’(0)|2-Mz log [-——’L] (7.4)
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where “ns" is the nunber of light quark flavours. The non-leading paits of the
decay to |¢fy > and the contribution of the decay to {ggg > are presumably
negligible, though no precise statement of then size is given m reference [77)

We will find, numerically, a sinular divergence in our estimate of the the
T — \1999 rate. When we normalize the branching ratio to the \; width,
however, the dependence on the binding energy 6" will essentially disappear,
the logarithmic dependence in our rate and that in the hadronic wadth will
cancel. We now turn to the estimate of I'(T - y,999).

7.3 Decay Rate

The formula for the spin averaged, and color and spin summed, decay rate of
an YT to a y; plus three gluons follows from equation 7.2:

ar-L 1 1 [ (0) AOF
3120y + 120y My AL

Y |4 Pdy(LIPS) (7.5)

col. pol

where the flist factor is the symmetry factor associated with the three identical
gluons, and A, is the quark level invariant amplitude caleulated with the tules
of section 7.1.

In appendix 6.5 we discussed multi-body phase space. Four body phase
space has dimension 3, and may be co-ordinatized with a subset of the variables
we used in the five body decay of chapter 6. Doing so, we obtain:

1 3
GWLIPS) = o (g) m/d% (7.6)

The boundaries of the integration region may also be taken explicitly from the
five body formulae.

We now extract the color factor, coupling constants, and powers of the quark
mass to define the dimensionless quantity M,:

. 1 .
A, = g) F =M, (7.7)

My

Note that the color factor is now a function of three octet labels, one for cach
gluon. We will sce that:

aoc 1 "
Fcb = adabc (‘8)
and using the identities of appendix A:
— = abc]? 2-5
F! = Y [ = = (7.9)
abe
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Returning to the decay rate, we have:

% _ 8 2 5 ’J)T(O)IQ!UL',\(O)P / 5 “r 12
[==.Fla} A d°r Y |y (7.10)

pol

We now express the braching ratio in a fashion similar to that in sections 5.1
and 6.1.1, towards the goal of ellininating the unknown parameters. However,
in this case “a,” will appear in our final formula, due to the fact that the x;
hadronic width is proportional to an extra power of «, with respect to the
X1 — gg° rate:

(T — \1999) _ (Y — x1999)0'x (Y —g99) TOa — qqg)

Ty LY — 999)T(1 — q79) Ty Ty
2
_ plhad) pehedy  Fe M\Ty 5N (yy 12 M
= BB e S dr Y 1) [ log | T2

pol

(7.11)

where ¢y is given in equation 5.10. The amplitudes 4, are computed numerically
for cach helicity set as described in section 6.1.2 of the T — J/1'gggg decay.

7.4 Feynman Diagrams

The lowest otder Feynman diagrams contributing to T — x19gg are of order
g7, This follows fiom the fact that vector mesons must couple to at least three
gluons, while the axial vector can couple to just two if one or more of them is
off-shell, as discussed in sections 4.4.2 and 7.2.

There are a total of 36 Feynman diagrams contributing to this process. 6 of
these are depicted in figure 7.2. The label “a”, for example, is short for “p,, €q,
a”, respectively the particle momentum, polarization, and octet color label. To
each of these 6 diagrams must be added the 5 graphs obtained by permuting
the three labels {a. b, ¢}.

To these 6 diagrams correspond the 6 amplitudes:

Ay Ay A
Ay As Ag

Using the notation A¢~? as in section 6.2, and the usual techniques of charge
conjugation, we obtain:

A+ A3+ A+ 46 =

(—\%) S [ (T} + tr {T.T)] - [t (BT + tr {TTLT) - M,y

e

- %dabCM, = Foep (7.12)
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and:

Ay + Ay + (4o 4+ 4920 = Frbeyy,
N, = gf\]ol,u]}’/-sab

1\.[2 = gf.]og,‘.]}l/sab

Sab = (2kg — kg — kb)2 = (2ky; + k)?
J}L — 25ap - Eﬁnde;kgff

i)
[2ky - ke — mygb/2)°
where J; comes essentially from equation 7 3. and Jg, and Jy, are given exactly
as in section 6.2 (Usually this is not the case  though similatly denoted, the
currents “J™ differ fron section to section.) Introducimg the quantity:
Maye = M+ MY 4+ AL
5 7 #
= 4, (Jm + Jo1 + Juz) Jrulsab (713)

and distributing the numbers {1.2.3} over the labels {a,b.¢} we finally obtam:

f‘lq = Fcabr [.\1(12)3 + J\I(QJ)] + 1‘1(51)2] (711)

7.5 Results

Recall equation 7.11 for the branching ratio:

F? AL, T .
Br(Y — B(ha(i)B(hnd) - § R S < 1 21,
(Y — x1999) T N ¥ eia A Al
-~ . ~ ~ ¢ \I
pol -

Mg is given in equations 7.7 and 7.14, and the color factor in equation 7.9. We
require the following data:

M, = 351GV
Ty, € (1.3x107%)GeV
B{ted = 0.73+0.02

. . had) . . .
All this data is from reference [46). B(\," )is obtained by subtracting the branch-
ing ratio for the mode y; — J/uy from “1" and neglecting all other observed
decay modes, whose branching ratios are of order 1073, As we can see, Ty 18
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Figure 7.2: 6 of the 36 diagrams for the decay T — y;¢99g
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not known. However, we expect it to be of the order of the upper limit quoted,
since the widths of \¢ and \3 are 14 MeV and 2.6 MeV” respectively. The other
information necessary for the evaluation of the brancling 1atio may be found in
scction 5 5. We obtain:

Br(Y —\1g999) < (0.278 x 107%) < |21}

>

where T have not included errors, since the dominant source of ertor is in the
\1 total width which is not yet known. The phase space integral is performed

using VEGAS [74], with the result:
< |} > = 593 < 10° (7 16)

Note that this is a function of the binding energy b= M, - 2my both thiough

M, and through the explicit logaithmic factor in the defimtion 715, The
quoted number was obtained by using the naive, Bohr model, estimate for the
binding cnergy:

b = olm,

In fact the value of < ])\?ﬂ >. and thus the branching ratio, is essentially
independent of the value of “b". This may be seen from fignre 7 3, where the
ratio Br(YT — \)(b)/Br(T - \,)(ugmq) has been plotted  Note that we
expect b7 to be small if onr assumption of non relatinastic motion is to he
valid, and we can see that for (h/my) < 2 the plot 15 essentially flat

In fact. the "b" independence of the branehimg 1at1o was one of the reasons
that the forn 711 was employed, despite present agnotance of the total \1
width. This independence tells us that our decay 1ate, T(Y =+ y1¢¢y), contains
the snme loganthmic divergence with respect to “b” that I'(\, — ¢ijq) has, This
in turns leads us to expeet that an analytic formula in the small *6" Lmit might
be easily obtained. Such considerations are topies for further study

Finally, we have:

Br(T — \ig999) < 0.165 x 107? (

=1
[N,
-1
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Figure 7.3: Br(T — x1g999) as a function of b, normalized to its value at b = a?

143




Chapter 8

Summary

8.1 Direct T — J/¢¥X Decay Width

The branching ratio for the “direct” transition (i e. not through a reconance) of
the T to J/y is obtained simply by adding the results of sections 5.5 and 6 3.

Br(T — J/yvX)

= DBr(Y — J/yyg) + Br(T -+ J/ygygg)
= (0248+0065) +107* (8.1)

drr

To obtain the quoted error, we do not add the errors of the individual 1esults
This is because the error in the separate results originates from uncertainty in
the same combination of experimental observables.

BY‘-(T-,'ad) .Brf]had) . FJ

Consider the following approach for computing the decay width, We could
have worked directly from equation 5.9, mannally inserting the values for the
wave-functions-at-the-origin and the stiong couphng, as determined fiom the
leptonic widths (sce section B.5) and the hadrone widths tespectively The error
in the leptonic width (and thus |1(0)[*) is typically 10%, wlule from 1eference
[57] we have.

a, = 0.175 4+ 0.015

from various T inclusive decay widths, so that the eirror on a, is about 8%,
(Actually, this reference compared a, as determined from many sources, so that
the error on a, as computed purely from the hadronic width is <lightly smaller,
about 4%.) Since our rate is proportional to a8, the final cr1o1 obtaned using
this method ends up being abont the same as that quoted above

When we turn to the decay to ¥’ in the next section, we will see that the
latter approach is in fact the preferable one. due to the uncertainty to which its
width, etc. is known.
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8.2 I(T — ¢'X)

We now use the 1esults of chapters 5 and 6 to compute the rate of ¥' production
in T decay The forinulae of those chapters are valid for any final vector meson,
not just the J/%. Thus no further Feynman diagrams need to be evaluated
to compute I(T -+ ¥'gg) and I(T — ¥'gggg). We only need to replace the
parameters Ay, Ty, and Br(Jh"d) with their appropriate values for the ¥'. Recall
equations 5.11 and 6.6 for decays to J/y»:

Br(Y — J/{gg)

fl

. . F?2  M,T, "
B(h d)Bf,’ dy  fe I /d:r] drs Z IJ;\[q,Slz

3mc? .M“ -
a a F? AT
Br(Y - Joggg) = BYOpfed. Lo i [ Y st 82)
C1

pol

The two integrals change by only small amounts under the replacement Mj; —
My Thus the branching ratio for 3’ production in T decay may be simply
obtained from the J/y results:

A’Iw: qu Brf;:ad)
A!J I‘J 13,‘?])10(1)

Br(T - y'X) = - Br(Y — J/¢X) , (8.3)

The branching ratio Bri,ﬂ"d) may be deduced from information in the Particle

Data Book by subtracting from “1” the branching fractions for the following
modes:

o Y — J/iy;
o ' — iy, k=123;
o Y = o X

which are the dominant decay modes not proceeding through three gluons. Us-
ing this method, and quoting the values of the other parameters:

My = 3.69GeV
Ty = (243443) x107%GeV
Bri’*¥ = 0.163 +0.098 (8.4)

we obtaln:
Br(T — ¥'gg +¥'99g99) = 1.11.Br(YT — J/¥X) ]

Note that I do not include the error on the proportionality factor, because they
are quite large, and because when I present the final result it will have been
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computed working directly from expressions like 5.9 as discussed at the end of
the last section. The preceeding discussion was included to pomnt out that we
can conclude fairly generally that there are about as many 4 mesons bemg
produced mn T decays as there are J/ v mesons, as one would expeet.

Finally. wotking direetly from the formulae 539 and 6.5, wsing a, from [57)
and [2(0)]? as determined from o' = 17 (see section B.3) and tecomputing
the above integrals at the o' mass, we have:

Br(Y = v'qg+v'gggg9) = (0.26340126) » 107} (

o
[aid }
—

8.3 Final Results

In sections 7.5 and 8.2 we have scen:
Br(T = \ig99) < 0.165x 107?
Br(Y - ¢'gg+v'g999) = (0.263+0.126) x 10 **
Recalling the equations 4 13 and 4.14;
Bre' — J/ypX) = (
Br(xy = J/wy) = |

and equation 4.5 we finally obtain:

g
-~ Ct
w H
-1
2

fi

Br(Y — J/u _\')]l (0.248 + 0 065) » 10~
air

Br(Y ' = J/wX) = (0.14540.088) « 107} (86)
Br(Y —-\;—=J/vX) < 0045~ 107}

Thus, for a \; width equal to its upper bound. we obtain for the production of
J /v via these 3 mechanisms:

Br(iY - J/vX) = (0.438+0133) <107}

Note that there is also an additional uncertamty of 20% in this predieted resnlt.,
coming from the farct that the above number only represents the first term inoa
perturbation seties i1 a, ~ 0.2

This 1> to be compared with the experimental result [56)

Br(Y —=J/vX) = (1.1£0.4£02) 1077

where the first error is statistical and the second is systematic

Evidently, these two numbers agree to within one standard deviation, if we
add the statistical and systernatic in the expenimental result  If instead we
combine the two crrors in quadiature, obtining an effective error of £0.45.
then the prediction lies below the one sigma limit by 0 06 This s within the
uncertainty of the perturbation expansion. Alteruately. a combination of other
modes such as T -+ yo = J/¥X or T — 5y — J/1w X might make up this small
(10%) amount.

146




FIs—y

8.4 Comments

The agreement between the theory and experiment is reasonable but not over-
whelining: if we consider only the central valies of these results, the pertuibative
Q.C D prediction 1s too small by over a factor of two We expected agreement
to within an, = 20%. Never the less, as discussed above, the e1rvors on both
the expenmental and theotetical results are <till too laige to diaw any defini-
tive conclusions concerning the madequacy of applyving pertirbative Q C D, to
meson transitions at this scale. Interpreting the result optunistically, we could
conelude that i fact this calculation represents another sneess of the model,

The approach Lhave adopted of workimmg with the ratioshke 5 11 and 7 11 has
the following advantage. Intuitively, these combinations may be less sensitive to
radiative cotrections than if we had worked directly with thie gquantities a, and
[1h(0)]?* as discussed in section 8 2 Looking at the vaiious Feynman diagrams for
our process, the effeet of adding an extra gluon 1s often to produce a 1adiatively-
corrected hadrome decay diagram for one of the external mesons in a part of
the new diagram.

The central value of the result 8 7 corresponds to the value of a, as deter-
mined from the melusive hadronic width of the T, which is a, = 0.175. Now
suppose we had worked ditectly with a, and [2(0)]?, as described above, and left
ay a free parameter, essentially using the J/4 expenmental result to deduce ag.
Since the dommant contiibutions to the theoretical prediction are proportional
to uf,j, this means that a,1s given by

2t EYE 045408
0175 5 +0.89

c\ L1404
(O ) T 045

using only the statistical uncertainty in the experimental result. Thus:
0.188 < a, < 0.214

This is to be compared with a, as determined in a general survey of many
inclusive T decay widths [57):

a, = 0.175£0.015

Again. these 1esults just overlap, and more so if the systematic error is combined
with the statistical error. Again, improvement in the accuracy of the experi-
mental data is requited to diaw any definite conelusions about the validity of
perturbative Q.C.D in this transition between mesons

Finally, the decay through the \o should also be considered. Though its
branching ratio to J/u is smaller than that of the . it has more helicity states
to sum over. and its hadronic width is somewhat larger. Thus it could contribute
as much as or more that the ;. which constituted a 10% effect. This and a
mot e detatled error analysis is currently underway.
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Appendix A

Color Identities

l)
Al Td&=40/3
The purpose of this section is to prove the identity.

o 40
}_‘ d/ll)( (,abr' =
3
abe
for the group SU(3).

I proceed generally. Let “T,” denote the N? — 1 generators of SUEN) m
the fundamental or defining representation. These matiices, plas the wmt. for
a basis for the space of N x N special umitary matiices, A statement of this
p1roperty is:

1 1
(Ta)u(Tb)mn = 5 [61116)111 - ;\76”‘(\,””] (A1)

This identity does not follow from the stucture contants of the gronp. it 1 vahd
only for the fundamental representation.
Note the following SU(N) relations and definitions:

HTL) = Stw

-

[TasTb] = 1 qubrTr

€

1 — .
[TasTb]+ = K;‘Sab + Lduhf-rr
From these we obtain:
dape = 2-tr{T,[Ts.T.], }
N2 -1
2 .
za: . = ON
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Now we have:

X(Jabc)Q

abre

Note that:

4 tr{Ta|Ty, Te) 4} - tr{Tu[Ts, Tc]4 )

abc

83 (Ta)o(T)mn [T Te + TeTh),, (TyTe)n

abe

42 [6:116]m = A, !] mn] [TbT + T Tb] TbI

r)
42 [tr{TchTch} + tr{TET?} - —;—,tr{T,,T,}z]

4) tr{TT.LT.} + 4N
be

N -1} N
2N N

Zt!‘{TbTCTch} = Z(Tb)u(Tc)Jk(Tb)kl(Tc)lt

c

1 1
= 3 [5,,6k1 - ——5,;‘6,,} (T)1y)(To)rt

N
-1 2 -1
= :?-]Vtr{Tb} = Z‘]‘V:
Thus:
— . Nt-1 (]\72——1)2 N2 1
: _ 9
%:((labc) N -+ N N
_ (N2 ~1)(N? -~ 4)
N

Substituting N=3 in this yiclds the desired result.

Other results

From this basic identity follows:

and:

>

abed

— 5
Ldaefdbcf = '3‘6ab

2
Zdabedrde] = Z dabedcdcdabfdcdj

e abcde f

w2 2
§) Z 8-5
- [5} J; s = 3?2
[
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Appendix B

Appendix: Bound State
Wave Functions

Herein 1 will detive a covariant expression of the Schiddinger wane function of
a non-relativistic bound-state, used in sections 4 3 3 and 7 1 to deduce the 1ules
for the construction of the invaiiant amphtude and S-matrix  Note that we
require such covanant formmlae in our study becanse the J/u» o1 \; mesons are
in general produced with with large velocities, it is only m their rest frame that
they look non-relativistic
Throughout this section we will be using “Bjorken-Diell” spinors u(p, o)
which satisfy.
u =1 u’uz‘y (B.1)

These are the most convenient here because of their simple form iu the particle

rest frame: \
()
0

in the Dirac representation.

B.1 Normalization
Recall one {45] description of a single fermion state:
v =Nu(p,o)el?*. (B2)

[ wish to discuss the normalization of this state carefully, to estabhish a method
for the more complicated task of normalizing the bound state later,

Suppose the fermion is part of same process taking place in a box of volume
“V". The probability of finding the electron somewhere in the box must he
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ity

E
/dqwf”' = N . V.,y=N.VZ
m

Vo= _é'{ u(p.o)e? (B.3)

Let us now deduce that same formula by first going to a frame where the electron
is at rest. The wave function there reads:

o =N, (1} ) P (B.4)

.0

sice (1. 0) is the non-relativistic limit of a Bjorken-Drell normalized spinor. To
what size box should we confine the fermicn in its rest frame, such that it is
naturally confined to a box of volume “V™ when we return to the frame in which
the whole experiment is taking place? The answer is “17. = 4V in order to
offset the contraction the volume will experience 1 the boost to the lab frame.

Thus:
/dsraf': y = N2V, = N2V (B.5)

which yields the same answer as we obtained before.

Next, suppose we have a fermion - anti-fermion bound state (meson) moving
at some velocity in the same box of volnme “V" We want the probability of
observing this object in this box to be exactly one. In contrast to the single
particle case. we will proceed immediately to the bound state 1est frame, where
as above we must choose the confinement volume 1 to be.

V, =~V

Now I will present the Schrédinger wave function of two non-relativistic
fermions in a box of volume V.. For the moment, we will ignore the details of
how the o1bital @ 1 spin parts of the wave function are combined to produce a
state of total angular momentumn. However, we wnill combine the fermion and
anti-fermion spins into a state of total spin 1. This is because the two cases we
are going to consider, vector and axial-vector mesons, both are § = 1 states.
The properly normalized bound state wave function is:

1 .
Y(§), Fart) = _17_#'(;)_6—1(21n—Ea) . Sl.k (B.6)
gtk (1yk101-02)x(m)®k(02)

Jamp = 1

where Ep « mn is the binding energy and () is a Pauli two-spinor. Note
also that we are using “cartesian” labels for the different spin one polarization
states: A =1,2,3.
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This formula has only one factor of V'7V/2 (as opposed to the two that a
generic two fermion wave packet type state would have)  Tlis is st what we
need to make the S-matiix seale with the volume as if the meson w hete o single
particle In essence, sealing up the volume only changes the probabiliny density
of one of the ferimons, hecause the position of the other 1s correlated to the st
by the wave function

B.2 Covariant Wave Function

. ng . R —
Introducing “¢7, the relative momentum of the constituents, and (), the asso
ciated probability amplitude distribution function:

o _ dt_‘ -t _”"~
L(T‘) = (27{)373 (,f)(f)(
/dﬂé(mz = /dﬁw-(;);l = (B 7)

-

we have the following identity ( f(#) arbitiany ):

df T — dt 0
M“—W{(f) )f(i)"‘/r‘”"'— ){ fn 0,”"/|F . t }

a?‘ < e
= (0)- f(O N
#(0) f( ) 0’ m =g 0 tin l . < '”,'; ) His)

This expansion is a good approximation to the extent that o(F) 15 <mall for Jaroe
f]. In fact, the asseition that the bound state is non relatiistic 1o equin alent
to the statement:

\/< i"' > & my

For non-relativistic bound states the average imomentum s typieally am, where
“a”is the fine stiucture constant chatacterizing the strength of the bindimg -
teraction. Thus this approximation is just as valid as those we make m the om
petturbative evaluations of the transition amplitudes

Equation B.6 becomes:

- 1 2 E df N
T(Fy, Fa,t) = -‘7r*( HZm "u“'/zg;jz/z o(t)e (gl

1 -1 (ry+4 1) d{‘ Iy —it{ry—-r,;) 1A
= ,/-—-.c ool e S

V/__”—;j}' F) e~ HPI2AO oy lP]2-1) 1y ght (B.9)
7
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where I have defined:

e = (4, T%)
P = (2my — Ey.0)
t* = (0,0

This is almost a covariaat expression describing two particles with four-momenta
P/2 4+ t. What remains is to identify which lorentz covariant will reduce to the
Pauli-spinor factor S, The Pauli-spinor corresponding to the fermion we
replace in the fashion:

VO s w(P/2 + t,0y) (B.10)

The other two-spinor deseribes an anti-fermion which is leaving the interaction
region (and entering the bound-state) so we set:

Y T(P/2 —t,0,) (B.11)

Note that we now have relative momentum dependence f in the spinor part of the
wave funiction. Thus we have embodied some of the effects of spin-orbit coupling
(more aceutately spin dependence of the Hamiltonian) which are typically put
in “by hand” i the non-relativistic thcory. These are also the same effects that
atise naturally in the Foldy-Wouthuysan momentum expansion of the Dirac
equation in a background field. We will see the effects of this dependence when
study the axial vector, P-wave states.
Now recall the identities [78]:
p+m

u(p) = €70 = mu(ﬂ)

_15+m

V2m(E + m)
u(0) = (Z‘)) c(0)=(3)

Thus ST'* can be written as the limit of the covariant;

t(p) = v(0)

Sl-k — S‘l'k = (],kldl,dg)ll(P/Q'thal)F(P/Q_t’("?)
(3P + 1+ mqg) w(0,01)F(0,2) (-3 P + # + my)

= (1,’\'|U]902) 2n7q(Eq +mq)
E, = W = mg + O(P)
my = -;—)\I (B.12)

153




The Clebsch-Gordon sum is most easily reduced by momentaiily using the Ditac
representation for “4#" matiices:

\(01)
(1. kloy.o2)u(0.01)F(0, 03) = (1,&!01_02)( ; )(\(amn)

0 (o) (ea)t
= (1sk|01-02)( Vo )

0 0
_ 1 0 ot
- ’"‘é(o 0)
_ 110\ / 0 o
B 7§<00>(--o* 0)

1+49°
= e—— P = 2
> /2 v k=1,2.3 (B.13)
Thus $'* becomes, to order “™
N 1 0
SYE = (1440 +/my) ['3%'7 ] (1=9"+f/m,)
_ 1+‘) k 1 1+‘)’0 i 1+‘]0 i =
= [,,\/- ] + J\I[VQQ ,)”,:2'“7f+()(f)
— 1+" k 1 0 Mx Y
——[2\/_-72—7] + ‘;2—\;[ +%M ]+ 0?)
1
o = [y (B.14)

We now return to formula B.9 for the wave function:

[ 1 df -
T(Il.l‘-)_) = oEV : \/—/ ‘)ﬂ' 1/2 ¢(t)

{[I‘q+rnq)’7 + + % bt ]'6"'”’/"“)"("'“'/"'“””}

up to terms or order < {2 > /mg

Till now we have been ignoting the Clebsch-Gordan factors that conple any
orbital angular momentum the state might Lave with its total spin to put the
bound state in an cigenstate of total angular momentum.  Introducing such
labels on the relative position wave function

W) = 1."1,,,(7‘)

- dt e iy
éL,(t) = /rﬁkld()

the final formula for the bound state wave function becomes:

11 df -
TJ"(‘T]9T2) = \/.;EV'—.\'/‘T-[‘(J‘IIL’]‘I,A) (6')1/2 21, )( )
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P

x {[(ﬁq +mg)yt + t* 400 ] T P/ m1 el P20 “}(B.l:'))

We now turn to using equation B.8 to simplify this formula, eliminating the
relative momentum wave function of which we have no knowledge, by expanding
it to lowest order in f.

B.3 Vector Bound States

The vector mesons are total spin S=1, relative orbital angular momentum L=0,
total angular momentum J=1 bound states, denoted in spectroscopic notation
by 3S;. The Clebsch-Gordan factors which combine the orbital and total quark
spin are tiivial.  The relative position wave function of such states does not
vanish at the origin. Thus the leading term of formula B 8 will suffice to expand
and simphify equation B 15 for the bound state wave function (Note that we
introduce a (cartesian) three-vector €,, to specify the polarization state of the
total angular momentun of the meson ):

1 (0 - _
T(ry,ry) = \/‘)E‘,~-tf7(_{-}-(154+7nq)(-e Wri/2gP12/2 (B 6

where:
e = (0,6 (B.17)

This expression is fully covariant and, though we have been working exclusively
in the bound state rest frame, its form in any other frame is now trivially
obtained.

B.4 Axial Vector Bound States

Axial veetor mesons are total spin S=1, relative orbital angular momentum L=1,
total angular momentum J=1 bound states, denoted in spectroscopic notation
by *Py The Clebsch-Gordon factor which combines two spin-1's into another
spin-11s essentially the thiee-index Levi-Civita tensor:

1
k _ EGuk — HP“E;u;k (B18)

o

where the last equality follows because we are still in the meson rest frame. The
relative position wave function of these L=1 states vanishes at the origin. Thus
we must go bevond the leading term of formula B.8 to simplify equation B.15.

To this end cousider:
VoY, (8. 9)R(r)
F=0 8‘” D
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/3 0 R(r)
8= a’m r F=0

/T fo 0 4 [ B 00

8w OT'm
3

- ) mo -
SR 0 + 0

[) ]

(B 19

Thus, using € as in equation B 17 to denote the meson polarization:

T— R,(O) _aduy 0
T(.l'l..l"g) - IEV ' V ST \I\/_— P v€3E '(;);: l

{(~:(I’,/2+r) Iy = P[2=1) 14 [

=0
(ﬁq + ’”q)7u +t, + 7“‘71/1,!,’]}
Noting that:
P(\E/J "B‘“I')OO'V“ — 2’ Pnfd.)’naﬂﬂ‘)r)
= 27"Pfys = 2N, (B 20)

We finally obtain the standard form for the wave function of a 3P, state-

(ria2) =y, ‘7EV Vsr 87' \1\/"'
0

[224\I¢75 + Pafdé_nﬂ;w . (]Sq + 7”9)‘7u , _a_t_;‘_ « (,-n(}’/’z—H) .r,c~|(l'/g -ty 2,
=0

(B21)

This is now in a fully covariant form.

B.5 Wave Functions at the Origin

The final formulae cach contain an unknown: ¥(0) or R'(0), respectively the
value of the relative position wave function of the two quarks and the derivative
of its radial part, evaluated at the ongin We must speaify the values of these
to complete our discussion of the meson wave function

It is in principle possible to calculate +(0) and R'(0) using some potential
model. However, 1ather than intioduce the new set of assumptions associated
with a another model, what is usually done is to thmk of (0) and R'(0) as free
paramcters Each parameter is then chosen sueh that the perturbative Q.C.D
prediction of one meson transition agrees with expennment  The lowest order
perturbative Q.C.D prediction of the leptome widths of mesons contims no
unknown parameters other than the wave-function-at-ongin factors, <o these




are the transitions usually used. For example, the decay of a vector to a lepton-
anti-lepton pair is given by [63]:

r — o — . 2.2 . I'l/)(o)l2
DV = 1717) = 167 Q%al, 5

(B.22)

where Q" is the quark charge in units of “e¢”. Similar formulae can be derived

for the decay of psendoscalar or P-wave states into two photons,
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