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Abstract

Harmonic weak Maass forms are instances of real analytic modular forms which

have recently found applications in several areas of mathematics. They provide a

framework for Ramanujan’s theory of mock modular forms ([Ono08]), arise naturally

in investigating the surjectivity of Borcherds’ singular theta lift ([BF04]), and their

Fourier coefficients seem to encode interesting arithmetic information ([BO]). Until

now, harmonic weak Maass forms have been studied solely as complex analytic objects.

The aim of this thesis is to recast their definition in more conceptual, algebro-geometric

terms, and to lay the foundations of a p-adic theory of harmonic weak Maass forms

analogous to the theory of p-adic modular forms formulated by Katz in the classical

context. This thesis only discusses harmonic weak Maass forms of weight 0. The

treatment of more general integral weights requires no essentially new idea but involves

further notational complexities which may obscure the main features of our approach.

This more general theory is presented in the article [CD], to which this thesis may

serve as a motivated introduction.

Abrégé

Les formes de Maass faiblement harmoniques ont récemment trouvé des applica-

tions dans plusieurs domaines des mathmatiques. Elles fournissent un cadre pour la

thorie des “Mock Modular forms” de Ramanujan ([Ono08]), surviennent naturellement

dans l’étude de la surjectivité de la correspondance de Borcherds ([BF04]), et leurs co-

efficients de Fourier semblent donner des informations arithmétiques sur les dériveées

des tordues quadratiques de certaines fonctions L associées aux formes modulaires

([BO]). Jusqu’à présent, les formes de Maass faiblement harmoniques ont uniquement

été étudiées en tant qu’ objets analytiques sur les nombres complexes. L’objectif de

cette thése est de les décrire dans un cadre algébrique plus conceptuel, et de jeter les

bases d’une théorie p-adique des formes de Maass faiblement harmoniques, par analo-

gie avec le point de vue géomeétrique de Katz sur la théorie des formes modulaires

p-adiques. Cette thèse traite uniquement du cas des formes de Maass faiblement har-

moniques de poids 0. Le traitement plus gééral des formes de poids entier négatif,

qui ne nécessite aucune idée essentiellement nouvelle, sera décrit dans l’article ([CD]),

auquel cette thèse peut servir d’introduction.
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Introduction

The theory of harmonic weak Maass forms has its roots in Ramanujan’s work on the partition

function p(n). This arithmetic function is defined on Z≥1 by:

p(0) = 1

p(n) = #{non increasing sequences of positive integers whose members add up to n}.

Leonhard Euler was the first to consider the generating function

P (q) =
∞∑

n=0

p(n)qn = 1 + q + 2q2 + 3q3 + 5q4 + . . . ,

for which he derived the formal identity

P (q) =
∞∑

n=0

p(n)qn =
∞∏

n=1

1

1− qn
.

If we let q = e2πiτ for τ ∈ H a variable in the complex upper half-plane, then the Euler

product expansion of P (q) ties together this purely combinatorial object with the classical

theory of modular forms. More precisely, we have

1

η(τ)
=

∞∑

n=0

p(n)qn−
1

24

where

η(τ) = q
1

24

∞∏

n=0

(1− qn)

is Dedekind’s eta function, a weight 1/2 modular form of level 1.

Almost two centuries after Euler, Srinivasa Ramanujan became interested in the combi-

natorics of the partition function. He derived the identity

P (q) =
∞∑

n=0

p(n)qn = 1 +
∞∑

m=1

qm
2

(1− q)2(1− q2)2 · · · (1− qm)2
, (0.1)

whose proof can be found, for example, in Ken Ono’s survey [Ono08]. Just as the Euler prod-

uct expansion connects the partition function to the theory of modular forms, Ramanujan

expected the right-hand side of (0.1) to belong to a meaningful family of complex analytic

functions. In his last notebook, he began studying q-series of the form

Ω(t, q) = 1 +
∞∑

m=1

qm
2

(1− tq)2(1− tq2)2 · · · (1− tqm)2
,

9
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in search of an underlying theory analogous to that of modular forms. He named these

infinite series, which do not in general satisfy the transformation laws of modular forms,

mock modular forms.

After Ramanujan’s premature death the notion of mock modular forms continued to

baffle mathematicians for several decades. The resemblance with the theory of modular

forms suggested a relation between the two, but there was no obvious way to relate the

transformation properties of one family to another. It was Sanders Zwegers, in his 2002

Ph.D. thesis written under the supervision of Don Zagier, who first saw a way to relate mock

modular forms to the classical theory of modular forms. Roughly speaking, Zwegers takes

a mock modular form and adds to it a suitable anti-holomorphic period integral of a cusp

form. The result is a non-holomorphic, but still smooth modular form which satisfies certain

hyperbolic Laplacian differential equations. These harmonic modular forms turn out to be

examples of harmonic weak Maass forms, which were first introduced by Bruinier and Funke

[BF04] in 2004.

Zwegers’s work was seminal in establishing the first connection between mock modular

forms and classical modular forms. Subsequently, the theory of harmonic weak Maass forms

has found several applications, described in the survey article [Ono08]. In particular, Bruinier

and Ono discovered in [BO] that the Fourier coefficients of the holomorphic part of certain

harmonic weak Maass forms of weight 1/2 associated to a weight 2 cusp form f encode

information about the vanishing of the derivatives of L-series attached to f . These kind of

results motivate a further study of the arithmetic properties of the Fourier coefficients of

harmonic weak Maass forms, which is the aim of this thesis.

In Chapter 1 we state the background notions from algebraic geometry that are necessary

to understand our geometric theory of harmonic weak Maass forms. The reader who is

not familiar with those notions is encouraged to look at the numerous references provided,

especially those about the Hodge filtration and the Hodge decomposition Theorem. Chapter

2 is devoted to the complex analytic theory of harmonic weak Maass forms of weight 0. In

Section 2.2 we present our geometric point of view, and then proceed in re-interpreting some

known results in the literature under this new point of view. In particular, Theorem 2.6 and

Theorem 2.25 answer in the affirmative two conjectures made by the authors of [BOR08]. In

10
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Chapter 3 we systematically develop a theory of p-harmonic weak Maass forms of weight 0.

These forms are a subspace of the space of overconvergent p-adic modular forms of weight

0. As an application, we re-prove a theorem of [GKO09] in the weight 2 case. In the final

chapter, titled ’Further directions’ we indicate how our geometric theory of harmonic weak

Maass forms can be extended to more general weights and what kind of applications would

such a theory entertain. The contents of this final chapter will also be the subject of further

joint work with Henri Darmon.
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1 BACKGROUND NOTIONS

1 Background notions

In this chapter we recall basic facts from algebraic geometry. In particular, we recall the

Hodge filtration on the de Rham cohomology of algebraic curves and the Hodge decompo-

sition Theorem for compact Riemann surfaces. These will be the main ingredients of our

description of harmonic weak Maass forms.

1.1 Algebraic de Rham cohomology

Let X be a nonsingular algebraic variety defined over a field k of characteristic 0 (by this we

mean a smooth integral scheme of finite type over Spec(k)). If F is a sheaf on X and U ⊂ X

is a Zariski open subset we denote by F(U) the sections of F over U and by H i(X,−) the

usual sheaf cohomology functors. Sometimes we will denote by Γ(X,−) the global sections

functor.

Denote by OX/k the structure sheaf of X and by Ωi
X/k the sheaf of regular differential

i-forms on X. The de Rham complex

0 → OX/k
d→ Ω1

X/k
d→ Ω2

X/k → . . .

gives rise to the algebraic de Rham cohomology groups (k-vector spaces, in fact)

H i
dR(X/k) := (RiΓ(X,−))(0 → OX

d→ Ω1
X/k

d→ Ω2
X/k → . . .)

obtained by applying the i-th right hyperderived functor to the global sections of the de

Rham complex.

In practice, we can compute these groups as follows. Fix an affine Zariski open cover

U = {Uα} for X. For each sheaf Ωi
X/k denote by (C•(Ωi

X/k), δ) the Cech resolution of Ωi
X/k

with respect to U . The exterior derivative d induces differentials

d : Cj(Ωi
X/k) −→ Cj(Ωi+1

X/k)

for all i and j and we obtain a double complex of abelian groups (C•(Ω•
X/k), d, δ):

13



1.1 Algebraic de Rham cohomology 1 BACKGROUND NOTIONS
...

...
...

C2(OX/k) C2(Ω1
X/k) C2(Ω2

X/k) . . .

C1(OX/k) C1(Ω1
X/k) C1(Ω2

X/k) . . .

C0(OX/k) C0(Ω1
X/k) C0(Ω2

X/k) . . .
d

δ

Given C•(Ω•
X/k), define the total complex Tot(C•(Ω•

X/k)) to be the complex of abelian

groups

Totn(C•(Ω•
X/k)) :=

⊕

i+j=n

Cj(Ωi
X/k)

with differentials D = d+ (−1)pδ. We have the following basic theorem:

Theorem 1.1. Let X/k be an algebraic variety over a field k and let Ω•
X/k be its de Rham

complex. Then

H i
dR(X/k) =

ker(D : Toti(X) → Toti+1(X))

im(D : Toti−1(X) → Toti(X))
.

Proof. See, for example, Chapter 8 of [Voi02].

Using the description given by Theorem 1.1, it is easy to compute explicitly the first two

de Rham cohomology groups of X/k. When i = 0, we have:

H0
dR(X/k) = ker

(
H0(X,OX/k)

d→ H0(X,Ω1
X/k)

)
.

When i = 1,

H1
dR(X/k) =

Z1(X/k)

B1(X/k)

where

Z1(X/k) =

{
({ωα}, {fαβ}) ∈

∏

α

Ω1(Uα)×
∏

α<β

OX(Uα ∩ Uβ) : dωα = 0, ωα − ωβ = dfαβ

and fβγ − fαγ + fαβ = 0}

14



1 BACKGROUND NOTIONS 1.2 The Hodge filtration

and

B1(X/k) = {({dgα}, {gα − gβ}) : gα ∈ OX(Uα ∩ Uβ)} .

Example 1.2. When X/k is a complete curve we can always find an open affine cover of X

by two open subsets U = X − {P} and V = X − {Q} and so for i ≥ 2 all the i-th algebraic

de Rham cohomology groups vanish. Using Theorem 1.1 we have:

H1
dR(X/k) =

{(ωU , ωV , fUV ) ∈ Ω1(U)× Ω1(V )×O(U ∩ V ) : ωU − ωV |U∩V = dfUV }
{(dxU , dxV , xU |U∩V − xV |U∩V ) : xU ∈ O(U), xV ∈ O(V )} .

1.2 The Hodge filtration

As with any double complex, the total complex T := Tot(C•(Ω•
X/k)) appearing in the state-

ment of Theorem 1.1 comes equipped with a natural structure of a filtered complex. The

filtration F is defined by:

F r(T n) :=
⊕

i+j=n,i≥r

Cj(Ωi
X/k).

The Hodge to de Rham spectral sequence:

Ei,j
1 = Hj(X,Ωi

X/k) ⇒ H i+j
dR (X/k)

is the spectral sequence associated to the filtered complex (T, F ) (see [Voi02] Section 8.3 for

details).

Theorem 1.3 (Deligne-Illusie). Let X/k be a complete algebraic variety over a field k of

characteristic 0. Then the Hodge to de Rham spectral sequence of X degenerates at the E1

term.

Proof. See the original article [DI87].

As a result of Theorem 1.3 we get an exact sequence

0 → H0(X,Ω1
X/k) → H1

dR(X/k) → H1(X,OX/k) → 0 (1.1)

of k-vector spaces called the Hodge filtration of X/k, and an isomorphism

H2
dR(X/k) ≃ H1(X,Ω1

X/k).

15



1.3 Residues and duality 1 BACKGROUND NOTIONS

Example 1.4. In terms of the description of H1
dR(X/k) given in Example 1.2 the two maps

in the exact sequence (1.1) are given by

ω ∈ H0(X,Ω1
X/k) 7−→ [ω|U , ω|V , 0] ∈ H1

dR(X/k)

[ωU , ωV , f ] ∈ H1
dR(X/k) 7−→ [f ] ∈ H1(X,OX/k).

1.3 Residues and duality

Let X be a complete nonsingular curve over a field k of characteristic 0 and assume for

simplicity that k is algebraically closed. Let k(X) be the function field of X and let Ωk(X)

be the 1-dimensional k(X)-vector space of meromorphic differentials. For each closed point

P let OX,P denote the stalk of OX at P . If t ∈ OX,P is a uniformizer, then any element

η ∈ Ωk(X) can be written as:

η = (
∑

n<0

ant
n + h) · dt

with h ∈ OX,P . One can prove that the coefficient a−1 is independent of the choice of

uniformizer t.

Definition 1.5. The residue of η at P is the unique element of k given by resP (η) := a−1.

We have the following important local-global theorem, the so called ’Residue Theorem’.

Theorem 1.6 (Residue Theorem). For any η ∈ Ωk(X) we have
∑

P∈X resP (η) = 0.

Proof. See [Har77] III.7.14.2

A regular differential ω will have resP (ω) = 0 for all P . However, a meromorphic differ-

ential might have zero residues everywhere and not be regular.

Definition 1.7. If resP (η) = 0 for all P ∈ X then η is called a differential of the second

kind. We denote the vector space of all such differentials by ΩII
k(X).

Consider a cover U, V of X as in Example 1.2 and take any class [ωU , ωV , fUV ] ∈
H1

dR(X/k). The regular differential ωU ∈ Ω1
X/k(U) can be uniquely extended to a mero-

morphic differential in Ωk(X) and we can compute its residue at P . By definition, near

16



1 BACKGROUND NOTIONS 1.3 Residues and duality

P

ωU = ωV + dfUV

from which it follows that the residue of ωU at P is zero, since both regular and exact

differentials have zero residues everywhere. Since ωU is regular on U = X − {P} and it has

zero residue at P , projection on the first component gives a linear map:

H1
dR(X/k) −→

ΩII
X/k

dk(X)

[(ωU , ωV , fUV )] 7−→ [ωU ]

into classes of differentials of the second kind. Using the Riemann-Roch Theorem we can

show that this map is in fact an isomorphism.

Proposition 1.8. There is a canonical isomorphism:

H1
dR(X/k) ≃

ΩII
X/k

dk(X)

Proof. Given any differential of the second kind φ on X, we can invoke the Riemann-Roch

Theorem to find exact differentials dg, dh regular on U ∩ V such that φ+ dg is regular on U

and φ+dh is regular on V . The inverse map is then given by [φ] 7→ (φ+dg, φ+dh, g−h).

Given any differential of the second kind φ, and a point P on X, consider the localization

φP ∈ (ΩII
k(X))P . Since the residue of φ at P is zero, we can find a local antiderivative φ̃P in

the complete local ring k(X)P .

Definition 1.9. Let φ1, φ2 ∈ ΩII
X/k. For each point P , let φ̃1

P ∈ k(X)P be such that

dφ̃1
P = φ1

P . We define the Poincaré pairing by

〈
φ1, φ2

〉
:=
∑

P∈X

resP (φ̃1
P · φ2

P )

Remark 1.10. Since φ1 and φ2 are regular at all but finitely many points of X the sum

on the right is finite. Also, a different choice of local antiderivative for φ1 yields the same

17



1.3 Residues and duality 1 BACKGROUND NOTIONS

pairing, since any two antiderivatives differ by a constant and resP (φ
2
P ) = 0. Therefore the

pairing is well-defined.

By the residue Theorem, adding a global exact differential to either φ1 or φ2 leaves the

pairing unchanged and therefore the Poincaré pairing gives a well-defined pairing

〈., .〉 : H1
dR(X/k)×H1

dR(X/k) −→ k

on the first algebraic de Rham cohomology group. This pairing in fact endows H1
dR(X/k)

with a symplectic structure, as the two following theorems show.

Theorem 1.11. The Poincaré pairing is alternating.

Proof. Let φ1, φ2 be differentials of the second kind representing classes in cohomology. Let

φ̃i
P be the local antiderivative of φi at P for i = 1, 2. Then

〈
φ1, φ2

〉
+
〈
φ2, φ1

〉
=
∑

P∈X

resP (φ̃1
P · φ2

P ) + resP (φ̃2
P · φ1

P )

=
∑

P∈X

resP (φ̃1
P · φ2

P + φ̃2
P · φ1

P )

=
∑

P∈X

resP (d(φ̃1
P · φ̃2

P )) = 0

as any exact differential must have zero residue. This shows that the pairing is alternating.

The non-degeneracy of the pairing is part of the Serre duality Theorem, which we now

state without proof.

Theorem 1.12 (Serre Duality). Let k be a field and X/k a complete curve. Then

(a) H1(X,Ω1
X/k) ≃ k.

(b) The Poincaré pairing induces a perfect pairing of k-vector spaces:

〈., .〉 : H0(X,Ω1
X/k)×H1(X,OX/k) → H1(X,Ω1

X/k)

18



1 BACKGROUND NOTIONS 1.4 Splitting the Hodge filtration

Proof. This is in [Har77] Section III.7.

Combined with part (a), part (b) says that there is an isomorphism

H0(X,Ω1
X/k)

≃→ H1(X,OX/k)
∨

where the symbol ∨ indicates the linear dual of a vector space. If we let g := dimH1(X,OX/k)

be the genus of X/k then by Serre duality we immediately deduce that

dimH0(X,Ω1
X/k) = g, dimH1

dR(X/k) = 2g

as k-vector spaces.

1.4 Splitting the Hodge filtration

The exact sequence (1.1) gives a canonical isomorphism of H0(X,Ω1
X/k) with a subspace

V ⊂ H1
dR(X/k). This space is isotropic (i.e. the form 〈., .〉 is identically 0 on V × V ) as one

can see from the explicit description of the Poincaré pairing, and of dimension g, which is

half the dimension of H1
dR(X/k). By the general theory of symplectic vector spaces, given

such a V it is always possible to find a k-linear isomorphism:

H1
dR(X/k) ≃ V ⊕ V ∨. (1.2)

By Serre duality, this amounts to finding a linear map Φ:

Φ : H1(X,OX/k) → H1
dR(X/k) (1.3)

splitting the exact sequence (1.1). As the following example shows, there are many ways of

finding Φ.

Example 1.13. Suppose g = 1. Then any choice of a nonzero ω ∈ H0(X,Ω1
X/k) gives

a basis for this space. Corresponding to ω we can find a dual element α ∈ H1(X,OX/k)

characterized uniquely by 〈ω, α〉 = 1. The splitting map Φ is completely determined by a

choice of Φ(α).

Now if we view ω ∈ H1
dR(X/k) then we can find a basis ω, η for H1

dR(X/k). By rescaling

we can assume 〈ω, η〉 = 1. Under this choice of basis, Φ is uniquely determined by the value:

Φ(α) = aω + bη

19



1.5 The Hodge decomposition 1 BACKGROUND NOTIONS

for a, b ∈ k. However, we also require that Φ is a splitting homomorphism for (1.1) which in

this case means

〈ω,Φ(α)〉 = 1 ⇐⇒ b = 1.

On the other hand, any value of a will give a splitting map. In other words, adding to Φ an

element a ∈ Homk(H
1(X,OX/k), H

0(X,Ω1
X/k)) ≃ k gives another splitting map Φ′.

Remark 1.14. Generalizing example 1.13 to any g, if Φ is a linear map splitting the exact

sequence (1.1), then so is Φ + a, for any a ∈ Homk(H
1(X,OX/k), H

0(X,Ω1
X/k)) ≃ Mg×g(k).

Conversely, any two splittings of (1.1) differ by an element of Homk(H
1(X,OX/k), H

0(X,Ω1
X/k)).

For general X and k there is no natural choice of a splitting map Φ. However, in special

circumstances we can exploit extra structures on the de Rham cohomology to find a canonical

splitting of the Hodge filtration.

1.5 The Hodge decomposition

Suppose now that k = C is the field of complex numbers. If X is a projective algebraic curve

over C then the points X(C) are a compact complex analytic manifold of dimension 1, i.e. a

compact Riemann surface. By Serre’s GAGA theorems the global sections H0(X,Ω1
X/C) are

precisely the holomorphic 1-forms on X(C). We also have a notion of de Rham cohomology

in terms of smooth (i.e. infinitely differentiable, or C∞) differential forms. Denote by A1(X)

the space of such forms and define:

H1
dR(X(C)) :=

{ζ ∈ A1(X) : dζ = 0}
{ζ ∈ A1(X) : ζ = df for some f ∈ C∞(X)}

By the following theorem, this notion coincides with the algebraic de Rham cohomology of

the curve X/C.

Theorem 1.15. There is a canonical isomorphism:

H1
dR(X/C) ≃ H1

dR(X(C))

where the left-hand side is the algebraic de Rham cohomology of the curve X/C and on the

right-hand side is the de Rham cohomology of the Riemann surface X(C).

20



1 BACKGROUND NOTIONS 1.5 The Hodge decomposition

Proof. See [Voi02] Remark 8.31.

The isomorphism can be used to obtain an analytic formula for the Poincaré pairing.

Proposition 1.16. Let η1, η2 be two classes in H1
dR(X/C). Let ζ1, ζ2 be smooth closed 1-

forms on X(C) such that ηi = [ζi] for i = 1, 2. Then:

〈η1, η2〉 =
1

2πi

∫

X(C)

ζ1 ∧ ζ2. (1.4)

Proof. Write ζi = φi + dFi for some differential of second kind representing ηi and some

meromorphic function Fi and apply Cauchy’s residue formula.

Let z denote the coordinate map of a complex analytic chart of X(C) at a point x.

Viewing X(C) as a (real) differentiable manifold of dimension 2, the cotangent space T ∗
X,x

at x decomposes as:

T ∗
X,x = R · dz ⊕ R · dz (1.5)

into eigenspaces for the action of multiplication by i. The pullback of the conjugation map

z 7→ z on T ∗
X,x interchanges these two spaces.

Define:

A1,0(X) = {ζ ∈ A1(X) : ζ(x) = a · dz for all x ∈ X(C)}

A0,1(X) = {ζ ∈ A1(X) : ζ(x) = a · dz for all x ∈ X(C)}.

Note that if ζ(x) = a · dz in a neighborhood of x, then the same must be true for every

x ∈ X(C). This is because the charts of X(C) are holomorphic, i.e. they preserve the

decomposition (1.5) of the cotangent space at a point. Consequently, the action of i and

of conjugation can be glued to give global endomorphisms of A1(X) and the decomposition

(1.5) induces a decomposition:

A1(X) = A1,0(X)⊕ A0,1(X)

where we can also write A0,1(X) = A1,0(X).

Define:

H1,0(X/C) =
{ζ ∈ A1,0(X) : dζ = 0}

{ζ ∈ A1,0(X) : ζ = df for some f ∈ C∞(X)}

H0,1(X/C) =
{ζ ∈ A0,1(X) : dζ = 0}

{ζ ∈ A0,1(X) : ζ = df for some f ∈ C∞(X)}
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1.5 The Hodge decomposition 1 BACKGROUND NOTIONS

A deep theorem of Hodge shows that these two spaces are complementary insideH1
dR(X/C).

Theorem 1.17 (Hodge Decomposition). Let X be a compact Riemann surface. There is a

canonical decomposition

H1
dR(X/C) = H1,0(X/C)⊕H0,1(X/C)

and H0,1(X) = H1,0(X).

Proof. See [Voi02] Chapter 2. Note that conjugation acts on H1
dR since its action on A1(X),

defined via pullback, commutes with d.

Remark 1.18. The proof of the Hodge decomposition uses the Hodge Theorem, which

identifies H1
dR(X/C) with the space of harmonic 1-forms on X. The need for these harmonic

representatives for the classes in H1
dR(X/C) makes it impossible to translate the proof into

the algebraic setting, since the condition of being harmonic is purely analytic.

We can relate the spaces H1,0(X) and H0,1(X) to sheaf cohomology using the following

theorem:

Theorem 1.19 (Dolbeaux). Let X be a compact Riemann surface. Then, for 0 ≤ i, j ≤ 1,

there is a canonical isomorphism:

H i,j(X) ≃ Hj(X,Ωi
X/C)

where the right-hand side is sheaf cohomology.

Proof. See [Voi02] Corollary 4.37.

In particular, we have

H1,0(X) = H0(X,Ω1
X/C)

H0,1(X) = H1(X,OX/C) = H0(X,Ω1
X/C)

and so the Hodge Decomposition gives a canonical splitting linear map

ΦHodge : H
1(X,OX/C)

≃−→ H0(X,Ω1
X/C) ⊂ H1

dR(X/C)

of the Hodge filtration over C.
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Example 1.20. Let g = 1 and let ω, α as in Example 1.13. If we let

η =
ω

〈ω, ω〉
then η ∈ H0(X,Ω1

X/C) and therefore {ω, η} form a basis for H1
dR(X/C) such that 〈ω, η〉 = 1.

Setting

ΦHodge(α) = η

gives a canonical splitting of the exact sequence (1.1) when k = C, called the Hodge splitting.

1.6 CM abelian varieties

In Section 1.5 we used the complex structure of a compact Riemann surface X to find

a canonical splitting of the Hodge filtration of H1
dR(X). In general, this construction is

not available for projective varieties over an arbitrary field. For a special class of abelian

varieties, however, namely those possessing ’extra’ endomorphisms, it is possible to define a

decomposition analogous to the Hodge decomposition.

Consider first the case when X = E/L is an elliptic curve defined over a number field

L/Q. Assume further that E has complex multiplication by an order O of a quadratic

imaginary field K/Q, and that K ⊂ L. If a ∈ O, we denote by [a] the corresponding element

of EndL(E).

The ring EndL(E) acts via [a]∗ on the L-vector spaces H0(E,Ω1
E/L), H

1
dR(E/L) and

H1(E,OE/L) in a way which is compatible with the Hodge filtration. The action onH0(E,Ω1
E/L)

gives an embedding K →֒ L such that:

[a]∗(ω) = a · ω (1.6)

where ω is a generator for H0(E,Ω1
E/L). Using this fact we can also compute the action of

[a]∗ on H1(E,OE/L).

Proposition 1.21. Let α be a generator of H1(E,OE/L). For each a ∈ O such that a /∈ Z

we have:

[a]∗(α) = σ(a) · α.

where σ is the generator of Gal(K/Q).
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1.6 CM abelian varieties 1 BACKGROUND NOTIONS

Proof. The key fact used here is that [a]∗ acts on H2
dR(E/L) ≃ L as multiplication by the

degree of [a]. With this in mind, recall from Theorem 1.12 that there is a perfect pairing:

H0(E,Ω1
E/L)×H1(E,OE/L) → H2

dR(E/L)

which we also denote by 〈., .〉 since it coincides with the Poincaré pairing when lifted to

H1
dR(E/L). Let α ∈ H1(E,OE/L) be nonzero. Since H1(E,OE/L) is 1-dimensional there is

a λ ∈ L such that [a]∗(α) = λ · α. We need to show that λ = σ(a). Let ω ∈ H0(E,Ω1
E/L) be

nonzero. Then

deg([a]) · 〈ω, α〉 = [a]∗ 〈ω, α〉 = 〈[a]∗ω, [a]∗α〉 = aλ · 〈ω, α〉 .

But now

deg([a]) = N(a)K/Q = a · σ(a)

and therefore λ = σ(a). In other words, [a]∗ acts by σ(a) on H1(E,OE/L).

The action of EndL(E) on the 2-dimensional L-vector space H1
dR(E/L) forms a ring of

commuting linear operators [a]∗. Therefore, for any a ∈ O, we can study the eigenspace

decomposition of H1
dR(E/L) with respect to [a]∗. If a ∈ Z we obtain nothing new, since

the characteristic polynomial of [a]∗ (i.e. the minimal polynomial of a) has a as a root with

multiplicity two. But when a /∈ Z then the characteristic polynomial of [a]∗ has a and σ(a)

as distinct roots. Hence H1
dR(E/L) decomposes canonically as:

H1
dR(E/L) ≃ H1,0(E/L)⊕H0,1(E/L) (1.7)

where H1,0(E/L) is the a-eigenspace of [a]∗ and H0,1(E/L) is the σ(a)-eigenspace. We

know from Equation (1.6) that H0(E,Ω1
E/L) ⊆ H1,0(E/L) and since they are both 1-

dimensional spaces H0(E,Ω1
E/L) = H1,0(E/L). Similarly by Proposition 1.21 we know that

H1(E,OE/L) = H0,1(E/L). We therefore obtain a canonical splitting:

ΦCM : H1(E,OE/L)
≃−→ H0,1(E/L) ⊂ H1

dR(E/L)

of the Hodge filtration of H1
dR(E/L). This splitting map is defined over L and does not

require any embedding of L into C.
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One can, however, embed L ⊂ C and consider the space H1
dR(E/L) ⊗ C = H1

dR(E/C),

which is now equipped with two canonical decompositions: one coming from the Hodge

splitting ΦHodge of Theorem 1.17 and one given by ΦCM ⊗ C. It is natural to ask then

whether the two coincide, a question that is answered by Katz in [Kat76].

Proposition 1.22. Let E/C be the curve obtained from E/L by embedding L ⊂ C. Then:

H1
dR(E/L) ∩H0,1(E/C) = H0,1(E/L)

where H0,1(E/C) is the space of anti-holomorphic representatives appearing in the Hodge

Decomposition (Theorem 1.17) and H0,1(E/L) is the σ(a) eigenspace appearing in the de-

composition (1.7).

Proof. See [Kat76] Lemma 4.0.7.

Remark 1.23. Proposition 1.22 shows that if E/C has complex multiplication, then its

Hodge decomposition is induced by an algebraic decomposition of H1
dR(E/L), where L is

any field large enough to contain both the field of definition of E and the ring of complex

multiplication. In [Kat76] Question 4.0.8., Nick Katz asks whether the converse is true,

i.e. whether any elliptic curve E/C whose Hodge decomposition is induced by an algebraic

decomposition has complex multiplication. The question is still open.

Next, we want to generalize to the case when X = A/L is a simple abelian variety

of dimension d defined over a number field L, chosen to be large enough to contain all

endomorphisms of A. In this case we know that [EndL(A) ⊗ Q : Q] divides 2d ([Shi98],

Section 5, Proposition 2). When the degree equals 2d then EndL(A) ⊗ Q is an imaginary

quadratic extension K of a totally real number field ([Shi98], Chapter 5, Propositions 5 and

6). We then say that A has complex multiplication by K, and one can show that H1
dR(A/L)

has a canonical decomposition similar to (1.7).

Henceforth, assume that A is simple and it has complex multiplication by K and that L

is large enough so that K ⊂ L. Denote by ρ1, . . . , ρ2d all the automorphisms of Gal(K/Q).

Since K is a quadratic imaginary extension of a totally real number field K0 of degree d,

the ρi are conjugate in pairs, say ρi = σ ◦ ρi+d for 1 ≤ i ≤ d, where σ is the generator of

Gal(K/K0).
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1.6 CM abelian varieties 1 BACKGROUND NOTIONS

As before, the action of EndL(A) on the d-dimensional L-vector space H0(A,Ω1
A/L) gives

an embedding K →֒ L and this action can be simultaneously diagonalized.

Proposition 1.24. Let A/L have complex multiplication by K. Then there exists a basis

ω1, . . . , ωd for H0(A,Ω1
A/L) such that, for any a ∈ EndL(A) ⊂ K, we have:

[a]∗(ωi) = ρi(a) · ωi

for all i such that 1 ≤ i ≤ d.

Proof. See [Shi98] Section 3.2.

The action of EndL(A) as commuting operators on H1
dR(A/L) gives a decomposition:

H1
dR(A/L) = H1,0(A/L)⊕H0,1(A/L) (1.8)

where H1,0(A/L) is the direct sum of the ρi(a)-eigenspaces of [a]
∗ and H0,1(A/L) is the direct

sum of the σ(ρi(a))-eigenspaces, for 1 ≤ i ≤ d and any a ∈ EndL(A). By Proposition 1.24

and the analog of Proposition 1.21 we then obtain a canonical splitting

ΦCM : H1(A,OA/L)
≃−→ H0,1(A/L) ⊂ H1

dR(A/L)

of the Hodge filtration of A/L and over C, this decomposition will agree with the Hodge

decomposition.
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2 THE COMPLEX ANALYTIC THEORY

2 The complex analytic theory

In this chapter we present the geometric construction of harmonic weak Maass forms. We

will construct harmonic weak Maass forms of weight zero, which present the least technical

difficulty. We then proceed to analyze some of their arithmetic properties and recover some

of the results in [BOR08] and [GKO09].

Throughout this chapter, we let Y := Y1(N)/Q be the affine modular curve corresponding

to the modular group Γ1(N) (this is defined in Section 2.1 below). This curve has the property

that for any subfield K ⊂ C, the K-points of Y parametrize K-isomorphism classes of pairs

of the form:

(E,P ), E = Elliptic curve over K, P ∈ E(K) such that P has exact order N.

We also denote byX := X1(N)/Q the complete curve which contains Y1(N) as a (Zariski)

open set. The complex points of X have the structure of a compact Riemann surface.

Moreover, by Serre’s complex analytic GAGA, there are canonical isomorphisms:

Hj(X(C),Ωp
hol) = Hj(X,Ωp

X/C)

for all j and p, where Ωp
hol is the sheaf of holomorphic p-forms on X(C). Therefore we will

tacitly identify the two spaces throughout. Similarly, by the comparison isomorphism of

Theorem 1.15, we will identify the algebraic de Rham cohomology group H1
dR(X/C) with its

complex analytic counterpart.

2.1 Modular forms

Write τ = u + iv, with u, v ∈ R and v > 0, for an element of the complex upper half-plane

H. For any such τ we also let q = e2πiτ . We have the operators

∂

∂τ
=

1

2

(
∂

∂u
− i

∂

∂v

)

∂

∂τ̄
=

1

2

(
∂

∂u
+ i

∂

∂v

)
.

Under the identification C ∼= R2 these two operators span the real tangent space of C. The

cotangent space of R2 is spanned by du, dv or by the complex differentials

dτ = du+ idv , dτ = du− idv

27



2.1 Modular forms 2 THE COMPLEX ANALYTIC THEORY

which are the dual basis of ∂
∂τ

and ∂
∂τ̄
. A smooth (i.e. infinitely differentiable, C∞) function

F : H → C is said to be holomorphic if ∂F
∂τ

= 0, which is equivalent to F satisfying the

Cauchy-Riemann equations. A smooth function satisfying the conjugate equation ∂F
∂τ

= 0 is

said to be anti-holomorphic.

Fix an integer N ≥ 1 and consider the level N congruence subgroups:

Γ0(N) :=






 a b

c d


 ∈ SL2(Z) : c ≡ 0 mod N



 ,

Γ1(N) :=






 a b

c d


 ∈ SL2(Z) : c ≡ 0 mod N and a, d ≡ 1 mod N



 .

Let k ∈ Z be an integer.

Definition 2.1. A weakly holomorphic modular form of weight k on Γ ∈ {Γ0(N),Γ1(N)} is

a smooth function f : H → C satisfying the following conditions:

(i) ∂f
∂τ

= 0 for all τ ∈ H (i.e. f is holomorphic on H).

(ii) f(γτ) = (cτ + d)kf(τ) for all γ =


 a b

c d


 ∈ Γ.

(iii) For any γ =


 a b

c d


 ∈ SL2(Z) there exists a positive integer h, a polynomial

Pf,γ ∈ C[q−1/h] and an ǫ ∈ R>0 such that:

∣∣(cτ + d)−kf(γτ)− Pf,γ

∣∣ ∈ O(e−ǫv)

as v → ∞.

The set of all such f is a complex vector space denoted by M !
k(Γ). The polynomials Pf,γ are

called the principal parts of f .

Putting extra conditions on the Pf,γ cuts out familiar subspaces of M †
k(Γ).

Definition 2.2. A f ∈ M !
k(Γ) is said to be a cusp form of weight k on Γ if Pf,γ = 0 for all

γ ∈ SL2(Z).
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Denoting the space of all cusp forms by Sk(Γ), we have a natural inclusion:

Sk(Γ) ⊂ M !
k(Γ)

valid for all k.

Consider now the space M !
k(Γ1(N)). For any γ =


 a b

c d


 ∈ Γ0(N) the assignment:

f 7−→ (cτ + d)−kf(γτ) (2.1)

induces an endomorphism 〈d〉 of M !
k(Γ1(N)) which only depends on the class of d modulo

N . These endomorphisms are the diamond operators. Since a · d ≡ 1 mod N , we get an

action of (Z/NZ)× on M !
k(Γ1(N)) by commuting linear operators. Consequently, there is an

eigenspace decomposition:

M !
k(Γ1(N)) ≃

⊕

χ

M !
k(Γ1(N))χ

where the direct sum runs through all the complex characters χ : (Z/NZ)× −→ C×.

Definition 2.3. A weakly holomorphic modular form of weight k on Γ0(N) with Nebentypus

χ is an element of M !
k(Γ1(N))χ. Namely f is a form in M !

k(Γ1(N)) satisfying:

f(γτ) = χ(d)(cτ + d)kf(τ)

for all γ =


 a b

c d


 ∈ Γ0(N).

We denote the space of all such forms by M !
k(Γ0(N), χ).

The χ-decomposition of M !
k(Γ1(N)) induces a decomposition of the space Sk(Γ1(N)) and

consequently we get analogous spaces Sk(Γ0(N), χ) of cups forms of weight k on Γ0(N) with

Nebentypus χ and inclusions:

Sk(Γ0(N), χ) ⊂ M †
k(Γ0(N), χ)

for all k and χ. Note moreover that when χ = 1 is the trivial character, we have

M †
k(Γ0(N), 1) = M †

k(Γ0(N)).
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For k = 2, these vector spaces of modular forms arise naturally as spaces of differential

1-forms on modular curves. The complex points Y1(N)(C) of the affine modular curve can

be uniformized:

Y1(N)(C) ≃ H/Γ1(N)

as the quotient of the upper-half plane by the action of Γ1(N) via linear fractional transfor-

mations. Its compactification:

X1(N)(C) ≃ H ∪ P1(Q)/Γ1(N)

corresponds to the complex points of the complete modular curve X1(N) and is a compact

Riemann surface. We will use the notation introduced at the beginning of this chapter by

letting Y (C) := Y1(N)(C) and X(C) := X1(N)(C).

The points of X(C)−Y (C) are called the cusps and they are indexed by the equivalence

classes of P1(Q)/Γ1(N). For each cusp s, there is a positive integer h such that q1/h = e2πiτ/h

is a local parameter near s. For any differential form ω on X(C), a local expression near

s for ω in terms of q1/h is called the q-expansion at s of ω. Note that property (iii) of the

definition of a weakly holomorphic modular form (Definition 2.1) puts growth conditions

on each of its q-expansion, which allows one to view weakly holomorphic modular forms in

terms of the sheaf of holomorphic differentials of the Riemann surface X(C). Denote by

Ω1
X/C the sheaf whose sections on U ⊆ X(C) consist of the meromorphic differentials on X

that are holomorphic on U .

Proposition 2.4. Let q = e2πiτ . The assignment

f 7−→ ωf := 2πif(τ) · dτ = f(q) · dq
q

induces a canonical isomorphism:

M †
2(Γ1(N)) = H0(Y,Ω1

X/C).

Proof. By direct computation, the form ωf is invariant under the action of Γ1(N). Moreover,

f is holomorphic on H so ωf is holomorphic on Y (C). In fact, ωf is meromorphic at the cusps.
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This follows at once from property (iii) of a weakly holomorphic modular form (Definition

2.1), since the property states that the q-expansion of f at the cusps is a finite tailed Laurent

series in q1/h for some h corresponding to the cusp.

Remark 2.5. Recall by the introductory discussion that we are tacitly identifying the space

of global sections of holomorphic 1-forms on X(C) with the space of global regular 1-forms

on X defined over C.

Corollary 2.6. The assignment f 7→ ωf of Proposition 2.4 induces a canonical isomor-

phism:

S2(Γ1(N)) = H0(X,Ω1
X/C).

Proof. By definition, all the q-expansions of the cusp form f begin with a linear term at

least. Therefore the form ωf = f(q)dq/q has a Laurent series expansion with no negative

powers everywhere on X(C) and it defines a holomorphic 1-form on X(C).

The modular curve X = X1(N) has the structure of an algebraic curve defined over Q in

such a way that the cusp at ∞ is also defined over Q. Using the isomorphism of Corollary

2.6 we can try to carry over this rational structure to the space of cusp forms. For any field

K ⊂ C, we can consider the space of regular differential forms on X/K:

H0(X,Ω1
X/K) := H0(X,Ω1

X/Q)⊗K.

All these spaces sit inside H0(X,Ω1
X/C) and in particular inside the space of weight 2 cusp

forms S2(Γ1(N)). The following theorem identifies their images in S2(Γ1(N)).

Theorem 2.7 (q-expansion principle). Let f ∈ S2(Γ1(N)) and let ωf be the correspond-

ing element of H0(X,Ω1
X/C) under the isomorphism of Corollary 2.6. Then ωf belongs to

H0(X,Ω1
X/K) if and only if all the coefficients of the q-expansion of f at ∞ belong to K.

Proof. See [Kat73] Corollary 1.6.2.
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We will denote by S2(Γ1(N), K) the subspace of S2(Γ1(N)) consisting of those cusp forms

whose coefficients of the q-expansion at ∞ belong to K. The q-expansion principle can then

be rephrased as saying that the assignment of Corollary 2.6 gives a canonical isomorphism:

H0(X,Ω1
X/K) = S2(Γ1(N), K).

Going back to the complex points X(C) we make the operators 〈d〉 act on H0(X,Ω1
X/C)

via the isomorphism of Corollary 2.6. As before we get a decomposition

H0(X,Ω1
X/C) ≃

⊕

χ

H0(X,Ω1
X/C)χ

into χ-eigenspaces. Consequently we have canonical isomorphisms:

H0(X,Ω1
X/C)χ = S2(Γ0(N), χ).

Moreover, the operators 〈d〉 act by duality on the space H1(X,OX/C) and on H1
dR(X/C). In

particular, we have a decomposition

H1
dR(X/C) ≃

⊕

χ

H1
dR(X/C)χ

into χ-eigenspaces for the action of the diamond operators.

2.2 Harmonic weak Maass forms

We now present the basic geometric construction of harmonic weak Maass forms of weight

zero. This construction will have to be refined later for arithmetic applications, but for

clarity we describe the basic idea first without worrying about the rational structures on the

spaces of modular forms involved.

Let f ∈ S2(Γ0(N), χ) and let ωf be the associated holomorphic 1-form ωf ∈ H0(X,Ω1
X/C)χ.

Using the Hodge filtration (1.1) of X(C) we can view ωf as an element of H1
dR(X/C). By

the Hodge decomposition (Theorem 1.17), this space decomposes canonically as:

H1
dR(X/C) ≃ H0(X,Ω1

X/C)⊕H0(X,Ω1
X/C).
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Therefore, the anti-holomorphic differential ωf associated to ωf represents a class inH1
dR(X/C)

such that:

span(ωf ) ∩H0(X,Ω1
X/C) = 0.

On the other hand, from the algebraic description of Proposition 1.8 we have

H1
dR(X/C) ≃

ΩII
X/C

dC(X)

so that the class corresponding to ωf ∈ H1
dR(X/C) can be represented by a differential of

the second kind φ. As ωf lies in the χ-eigenspace of H1
dR(X/C), the differential φ can be

chosen to be a χ-eigenvector for the action of the 〈d〉’s. Moreover, by Proposition 1.8, this

φ can be chosen to be regular everywhere outside the cusps of X(C).

The class of φ−ωf vanishes in H1
dR(X/C) ⊂ H1

dR(Y/C). We can therefore find a smooth

function F ∈ C∞(Y (C)) such that:

dF = φ− ωf . (2.2)

The Fourier expansion of F at ∞ has finitely many negative powers of q. These can be

computed as the Eichler integral (formal antiderivative obtained by integration term by

term) of the principal part of φ at ∞, and similarly at the other cusps. Moreover, F is

harmonic by construction, being a linear combination of holomorphic and anti-holomorphic

functions. In fact, F is the prototypical example of a harmonic weak Maass form of weight

0 and Nebentypus χ. To characterize these forms among all the smooth functions on Y (C)

we follow Bruinier and Funke [BF04]:

Definition 2.8. A harmonic weak Maass form of weight 0 on Γ0(N) with Nebentypus χ is

a smooth function F : H → C satisfying the following conditions:

(i) ∂2F
∂τ∂τ̄

= 0 for all τ ∈ H (i.e. F is harmonic on H).

(ii) F (γτ) = χ(d)F (τ) for all γ =


 a b

c d


 ∈ Γ0(N).
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(iii) For any γ =


 a b

c d


 ∈ SL2(Z) there exists a positive integer h, a polynomial

Pf,γ ∈ C[q−1/h] and an ǫ ∈ R>0 such that:

∣∣χ(d)−1f(γτ)− Pf,γ

∣∣ ∈ O(e−ǫv)

as v → ∞.

We denote the C-vector space of such harmonic weak Maass forms of weight 0 and char-

acter χ by H0(Γ0(N), χ). Note that the definition differs from that of weakly holomorphic

modular forms only in that the property of being holomorphic has been relaxed to that of

being harmonic. Consequently we have natural inclusions:

M †
0(Γ0(N), χ) ⊂ H0(Γ0(N), χ).

Equation (2.2) associates to ωf a smooth function F ∈ C∞(Y (C)) such that:

dF = φ− ωf

where φ is a differential of the second kind on X(C) which is regular outside the cusps

and ωf is the differential 1-form on X(C) corresponding to f under the isomorphism of

Proposition 2.6. We claimed that F belongs to H0(Γ0(N), χ). To prove it, choose any base

point P ∈ Y (C) and write

F (τ) =

∫ τ

P

φ− ωf .

From this expression it is immediate to check that F is harmonic. Moreover, it is modu-

lar of weight 0 by construction and the principal parts of F at the cusps are simply the

local antiderivatives of the principal parts of φ, a weakly holomorphic modular form. The

differential φ was chosen to represent a class in the χ-eigenspace of H1
dR(X/C), and the

form ωf also represents a class in the same eigenspace, since f ∈ S2(Γ0(N), χ). Therefore

F ∈ H0(Γ0(N), χ).

Harmonic weak Maass forms arise naturally as ’anti-derivatives’ of cusp forms, as Equa-

tion (2.2) suggests. Namely, if we define the differential operator:

ξ0 := 2i · ∂

∂τ

(the reason for the 2i factor will be clear) then we have:
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Theorem 2.9. The map

ξ0 : H0(Γ0(N), χ) −→ S2(Γ0(N), χ)

is surjective.

Proof. Let F be an element of H0(Γ0(N), χ). To see that the map is well-defined, we need

to check three properties of ξ0(F ).

(i) ξ0(F ) is holomorphic on H. This follows by noticing:

∂ξ0(F )

∂τ
=

∂

∂τ

(
2i · ∂F

∂τ

)
= 2i · ∂2F

∂τ∂τ̄
= 0

since if F is harmonic so is F .

(ii) ξ0(F ) is modular of weight 2 on Γ0(N) and Nebentypus χ. The function F is modular

of weight 0 and Nebentypus χ, therefore:

F (γτ) = χ(d) · F (τ)

for all γ =


 a b

c d


 ∈ Γ0(N). Applying ∂

∂τ
to both sides of the equation we get:

(cτ + d)−2∂F

∂τ
(γτ) = χ(d)

∂F

∂τ
(τ)

which shows that ∂F
∂τ

= ∂F
∂τ

is modular of weight 2 and Nebentypus χ. The same then

holds for the operator ξ0.

(iii) The principal parts of ξ0(F ) at the cusps vanish. The principal parts of F are formal

antiderivatives of the tails of the Laurent expansions of the differential of the second

kind φ. As such, they are annihilated by the operator ∂
∂τ

and therefore by ξ0.

To show surjectivity, we can follow the construction done at the beginning of this section

to find a harmonic weak Maass form F ∈ H0(Γ0(N)) such that:

dF = φ− ωf .
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for a differential of the second kind φ. By construction, F has an holomorphic part (whose

Fourier expansion is the formal antiderivative of the Fourier expansion of φ) and a anti-

holomorphic part (whose Fourier expanions is the formal antiderivative of the Fourier expan-

sion of ωf ). The operator ξ0 annihilates the holomorphic part and conjugates ωf . Throwing

in the constants, we see that ξ0(
1
4π
F ) = f , and surjectivity follows.

Remark 2.10. Note that ξ0(F ) = 0 if and only if F is holomorphic, i.e. F is a weakly

holomorphic modular form of weight 0. Therefore, we have an exact sequence:

0 → M †
0(Γ0(N), χ) −→ H0(Γ0(N), χ)

ξ0−→ S2(Γ0(N), χ) −→ 0.

Remark 2.11. Theorem 2.9 is the weight k = 0 case of [BF04] Theorem 3.7.

Note that around the cusp ∞ we can write F = F+ + F− where

dF+ = φ

and

dF− = −ωf .

We recall the terminology of [GKO09].

Definition 2.12. The Laurent series F+ is called the holomorphic part of F . The cusp form

ξ0(F ) is called the shadow of F . We write:

F+ =
∑

n≫−∞

c+(n)qn

for the q-expansion at ∞ of F+.

Remark 2.13. The holomorphic part F+ is simply the local antiderivative of the weakly

holomorphic modular form corresponding to φ. As such, it does not in general extend to

give a weight zero modular form on all of X(C), since the class of [φ] is not necessarily trivial

in cohomology. It is however an example of Ramanujan’s mock modular forms as described

in the introduction.
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In [BO] the authors relate the arithmetic properties of the c+(n) to the vanishing of the

first derivatives of L-series attached to ξ0(F ), which suggests that these coefficients may carry

valuable arithmetic information. The geometric point of view of this section can be refined

to study some of these properties. The refinement is described in Section 2.5, Theorem 2.18,

but before we take on that task we need to recall a few notions about the hermitian structure

of S2(Γ0(N), χ) and the action of Hecke and diamond operators on these spaces.

2.3 The Petersson and Poincaré pairings

Classically (see for example [Ser73]) the Petersson scalar product, which we denote by (·, ·),
is defined by:

(f, g) =

∫

w∈F

f · g · dx ∧ dy

for f, g ∈ S2(Γ1(N)), where w = x + iy and F is a fundamental domain for H/Γ1(N). It is

a non-degenerate hermitian inner product on S2(Γ1(N)). For each f ∈ S2(Γ1(N)), let

‖f‖ :=
√
(f, f)

be the Petersson norm of f .

Using the isomorphism of Proposition 2.4 we can also take the 1-form ωf ∈ H0(X,Ω1
X/C)

corresponding to f , find its ’complementary’ element ωf in H1
dR(X/C) using the Hodge

decomposition, and compute the Poincaré pairing 〈ωf , ωf〉. By the formula of Proposition

1.16 for the Poincaré pairing on a Riemann surface, we have

〈ωf , ωf〉 =
1

2πi

∫

X(C)

ωf ∧ ωf .

The relationship between the two pairings can be stated as follows

Lemma 2.14. Let f ∈ S2(Γ1(N)) and let ωf be its corresponding holomorphic 1-form on

X(C). Then

〈ωf , ωf〉 = −4π · ‖f‖2
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Proof. By direct computation:

〈ωf , ωf〉 =
〈
2πif · dτ,−2πif · dτ

〉

= −(2πi)2
〈
f · dτ, f · dτ

〉

= −2πi

∫

X(C)

f · dτ ∧ f · dτ .

This integral can be evaluated by choosing a fundamental domain F for X(C). Letting

w = x+ iy be a variable in F , we have:

−2πi

∫

X(C)

f · dτ ∧ f · dτ = −2πi

∫

F

f · f(−2i · dx ∧ dy)

= 2πi · 2i · ‖f‖2.

2.4 Hecke and diamond operators

The Hecke operators Tℓ, for ℓ a prime with ℓ ∤ N , are linear endomorphisms of the space

S2(Γ1(N)). If f ∈ S2(Γ1(N)) has q-expansion at ∞ given by
∑∞

n=1 an(f)q
n then the action

of Tℓ is given by the formula:

Tℓ(
∞∑

n=1

an(f)q
n) =

∞∑

n=1

anℓ(f)q
n + ℓ ·

∞∑

n=1

an(〈ℓ〉f)qnℓ (2.3)

where 〈ℓ〉 is the diamond operator of Equation (2.1). By this explicit formula we see

that the diamond and Hecke operators commute and therefore the Tℓ’s preserve the spaces

S2(Γ0(N), χ) of modular forms with Nebentypus.

In Section 2.3 we saw how the space S2(Γ1(N)) is equipped with a non-degenerate her-

mitian pairing (·, ·). The hermitian adjoints of the operators Tℓ and 〈d〉 are given by:

〈d〉t = 〈d−1〉 (inverse taken mod N)

and

T t
ℓ = 〈ℓ−1〉Tℓ (2.4)
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from which we conclude that the Tℓ’s and the 〈d〉’s commute with their adjoints, i.e. they are

normal operators. From the classical theory of hermitian vector spaces, this means that each

Tℓ and 〈d〉 can be diagonalized, and since they commute this can be done simultaneously.

Therefore each space S2(Γ0(N), χ) has a basis of cusp forms f such that, for all ℓ ∤ N ,

Tℓ(f) = cℓ · f

for some cℓ ∈ C. We call these cusp forms eigenforms. The set {cℓ} is a system of eigenvalues

for the eigenform f .

Definition 2.15. Let f ∈ S2(Γ0(N), χ) be an eigenform with corresponding system of

eigenvalues {cℓ}. We say that f is a newform if any other eigenform in S2(Γ0(N), χ) with

the same system of eigenvalues is a scalar multiple of f . We say that f is normalized if

a1(f) = 1.

If f ∈ S2(Γ0(N), χ) is a normalized newform with q-expansion at∞ given by
∑∞

n=1 an(f)q
n,

then:

Tℓ(f) = aℓ(f) · f

or, in other words, the coefficients aℓ(f) are the system of eigenvalues of f .

Proposition 2.16. Let f =
∑∞

n=1 anq
n ∈ S2(Γ0(N), χ) be an eigenform and let Kf be the

field generated by the an(f) and by χ(d) for (d,N) = 1. Then Kf is a finite extension of Q,

and it is generated by the an(f) alone.

Proof. See [Rib04] Corollary 3.1.

If f is a normalized newform as in Proposition 2.16, the q-expansion principle gives:

ωf ∈ H0(X,Ω1
X/Kf

)

where ωf is the regular differential attached to f . Moreover, by definition the Tℓ and 〈d〉
operators preserve the field of definition of the coefficients of the q-expansions of modular

forms, so they preserve the space H0(X,Ω1
X/Kf

). One can then speak of the f -isotypical

component

H0(X,Ω1
X/Kf

)f ⊂ H0(X,Ω1
X/Kf

)
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attached to f . This is the space of differential forms corresponding to the 1-dimensional Kf -

subspace of S2(Γ0(N), χ) of all eigenforms with coefficients in Kf and system of eigenvalues

{ap(f)}.

The Hecke and diamond operators extend naturally to H1
dR(X/C) and H1(X,OX/C) and

they respect the Hodge filtration. For a newform f ∈ S2(Γ0(N), χ) defined over Kf we

therefore get a Hodge filtration associated to the f -isotypical component of H1
dR(X/Kf ):

0 → H0(X,Ω1
X/Kf

)f −→ H1
dR(X/Kf )f −→ H1(X,OX/Kf

)f −→ 0. (2.5)

As a sequence of Kf vector spaces, we can always find a splitting of this exact sequence.

Fix such a map and denote it by:

Φalg : H
1(X,OX/Kf

)f −→ H1
dR(X/Kf )f . (2.6)

The subscript ’alg’ reminds us that Φalg, albeit non-canonical, is always defined over Kf .

2.5 Good lifts

By Remark 2.10 we know that the kernel of the differential operator ξ0 is an infinite di-

mensional vector space corresponding to the space of weakly holomorphic modular forms of

weight 0. It is then reasonable to ask whether we can find a specific set of preimages of f

which encode useful arithmetic information.

Recent work of Bruinier, Ono and Rhoades ([BOR08]) suggests that the following class

of ’good’ harmonic weak Maass forms can indeed be useful for arithmetic applications.

Definition 2.17. Let f ∈ S2(Γ0(N), χ) be a normalized newform. A harmonic weak Maass

form F ∈ H0(Γ0(N), χ) is good for f if it satisfies the following properties:

(i) The principal part of F at the cusp ∞ belongs to Kf [q
−1].

(ii) The principal parts of F at the other cusps are constant.

(iii) ξ0(F ) = (f, f)−1 · f

The existence of such ’good’ lifts is guaranteed by the following theorem.
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Theorem 2.18. Let f ∈ S2(Γ0(N), χ) be a normalized newform. Then there is a harmonic

weak Maass form F ∈ H0(Γ0(N), χ) which is good for f .

Proof. The construction of F is similar to the one in the proof of Theorem 2.9. For ease of

notation, let K := Kf , the field obtained by adjoining the coefficients of the q-expansion of

f at ∞.

Since f is a newform defined over K, the corresponding regular differential ωf generates

the f -isotypical component H0(X,Ω1
X/K)f , which fits in the exact sequence

0 → H0(X,Ω1
X/K)f −→ H1

dR(X/K)f −→ H1(X,OX/K)f −→ 0.

described in (2.5).

Let αf ∈ H1(X,OX/K)f be the element dual to ωf , i.e. 〈ωf , αf〉 = 1. Using the algebraic

splitting (2.6) we can lift αf inside H1
dR(X/K)f as Φalg(αf ). Using the algebraic description

of Proposition 1.8 we can find a differential of the second kind φ such that:

[φ] = Φalg(αf ) ∈ H1
dR(X/K)f .

Moreover, by Proposition 1.8 we can always choose a representative for the class [φ] so that

φ has a pole at ∞ and it is regular everywhere else on X/K.

We now extend scalars to C and apply the transcendental methods of Section 1.5. The

Hodge decomposition gives a canonical decomposition of H1
dR(X/C):

H1
dR(X/C) = H0(X,Ω1

X/C)⊕H0(X,Ω1
X/C)

and gives a canonical basis ωf , ωf for H1
dR(X/C)f . Using the notation of Example 1.20, let

ηf := ΦHodge(αf ) =
ωf

〈ωf , ωf〉

be the unique element in the line spanned by ωf such that 〈ωf , ηf〉 = 1. Viewing [φ] =

Φalg(αf ) as representing a class inside H1
dR(X/C)f , we can write the class [φ] in terms of

the basis ωf , ηf :

[φ] = a · [ωf ] + b · [ηf ]

for some a, b ∈ C. The relationship 〈ωf , φ〉 = 1 gives b = 1, but the value of a cannot be

determined exactly: each value of a corresponds to a choice of a splitting Φalg.
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The class of φ− a · ωf − ηf is trivial in the cohomology group H1
dR(X/C) ⊂ H1

dR(Y/C),

so there exists a F ∈ C∞(Y (C)) such that

dF = φ− a · ωf − ηf .

We claim that F is good for f . To show that F belongs to H0(Γ0(N), χ) we appeal to the

proof of Theorem 2.9, which goes through unchanged in this case. For properties (i)-(ii)

of Definition 2.17, note that the principal parts of F correspond to the principal parts of

φ. This differential of the second kind φ is defined over K so its principal parts must have

coefficients in K. Moreover, φ was chosen to be regular everywhere but at the cusp ∞.

Finally, for property (iii) we compute directly using Lemma 2.14:

ξ0(F ) = 2i
∂F

∂τ
=

2i

〈ωf , ωf〉
∂

∂τ

∫ w=τ

w=τ0

2πif · dw =
f

(f, f)

Remark 2.19. Theorem 2.18 is the k = 2 case of [BOR08] Proposition 5.1.

2.6 Vanishing of Hecke eigenvalues

In the next two sections we show how the geometric construction of Theorem 2.18 can be used

to analyze some of the arithmetic properties of harmonic weak Maass forms. In particular,

in this section we improve upon [BOR08] Theorem 1.4 for the weight 2 case and in the next

section we improve upon the weight 2 case of [BOR08] Theorem 1.3.

Recall from Definition 2.12 that we write:

F+ =
∑

n≫−∞

c+(n)qn

for the q-expansion at ∞ of the holomorphic part of some F ∈ H0(Γ0(N), χ) which is good

for f , a normalized newform in S2(Γ0(N), χ).

The following theorem relates the arithmetic properties of the coefficients c+(n) with

those of f .
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Theorem 2.20. Suppose that f =
∑∞

n=1 b(n)q
n ∈ S2(Γ0(N), χ) is the q-expansion at ∞ of

a normalized newform and suppose that F ∈ H0(Γ0(N), χ) is good for f . If ℓ ∤ N is a prime

for which b(ℓ) = 0 then c+(n) belongs to Kf whenever ordℓ(n) is odd.

Proof. This follows directly from the construction of F given in Theorem 2.18. Using the

same notation, write:

dF+ = φ− a · ωf

where φ is a differential of the second kind whose q-expansion at ∞ is of the form

h =
∑

n≫−∞

h(n)qndq

and all the h(n) belong to Kf . For any prime ℓ ∤ N ,

c+(ℓ) =
h(ℓ) + a · b(ℓ)

ℓ

and since h(ℓ) ∈ Kf the theorem follows once we apply the multiplicative properties of the

coefficients of the q-expansion of f .

Remark 2.21. In [BOR08] Theorem 1.4 the authors prove an analogous statement which

holds for cusp forms of arbitrary integer weight. Namely they show that the c+(n) are

algebraic and they belong to an abelian extension of Kf . They further raise the question of

whether the c+(n) belong in fact toKf . Theorem 2.6 answers this question in the affirmative,

at least in the weight 2 case.

The formula expressing the c+(n) in terms of the coefficients of f and φ immediately

gives the following theorem, which is the case k = 2 of [GKO09] Theorem 1.1.

Theorem 2.22. Let Kf ({c+(n)}) be the field obtained by adjoining all the coefficients c+(n)

to Kg. Then the transcendence degree of Kf ({c+(n)}) over Kf is at most 1.

Proof. This is a simple consequence of the formula:

c+(n) =
h(n) + a · b(n)

n

derived in the proof of Theorem 2.6.
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Remark 2.23. Using the notation of the proof of Theorem 2.18, the value of a is determined

by a choice of splitting Φalg. This was explained in detail in Example 1.13. Following the

same argument, we can see that:

a ∈ HomC(H
1(X,OX/Kf

)⊗ C, H0(X,Ω1
X/C)) ≃ C.

2.7 Modular forms with CM

Let L = Q(
√
D) be a quadratic imaginary field of discriminant D < 0. Denote by OL the

ring of integers of L and let χL :=
(
D
•

)
be the quadratic character attached to it. Let c ⊂ OL

be an integral ideal of L and denote by I(c) the group of all fractional ideals prime to c.

Consider a Hecke character:

c : I(c) −→ C×

such that c(αOL) = α for all α ∈ L× such that α ≡ 1 mod c. Let ωc be the Dirichlet

character modulo N(c), the norm of c, defined by:

ωc(n) :=
c(nOL)

n
.

The power series:

fL,c =
∑

a

c(a)qN(a)

taken over all integral ideals a ⊂ OL prime to c, is a cusp form ( [Zag04] Page 93)

fL,c ∈ S2(Γ0(|D| ·N(c)), χL · ωc).

Definition 2.24. The cusp form fc,L is called a cusp form with complex multiplication by

L, or CM by L in short.

The interesting property of CM forms is that the harmonic weak Maass forms which are

good for them have holomorphic parts with algebraic coefficients.

Theorem 2.25. Let f ∈ S2(Γ0(N), χ) be a normalized newform with complex multiplication.

If F ∈ H0(Γ0(N), χ) is good for f , then all of the coefficients of F+ belong to Kf .
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Before we begin the proof, we need to recall the basics of the Eichler-Shimura construc-

tion, which associates to f an abelian variety Af defined over Q. For details see [Dar04]

Chapter 2. Let J := J0(N) be the Jacobian of the modular curve X. The algebra T of

Hecke operators acts via correspondences on J . For a normalized newform f ∈ S2(Γ0(N))

let

I(f) := {Tn ∈ T : Tn(f) = 0}

be the ideal of T generated by the Hecke operators which annihilate f . Define:

Af :=
J

I(f)J
.

This is an abelian variety defined over Q with End(Af ) ⊗ Q ≃ Kf , in such a way that the

action of an(f) ∈ Kf corresponds to the action of Tn on Af . Moreover there is a canonical

isomorphism, compatible with the Hodge filtration, given by:

ES : H1
dR(Af/Kf )

≃−→
⊕

ρ

H1
dR(X/Kf )fρ (2.7)

where ρ runs through all the elements of Gal(Kf/Q) and fρ is the normalized newform

obtained by applying ρ to the coefficients of f . We will denote by H1
dR(Af/Kf )f the

2-dimensional subspace of H1
dR(Af/Kf ) corresponding to the f -isotypical component of

H1
dR(X/Kf ) under the isomorphism ES.

Proof of Theorem 2.25. For ease of notation, let K := Kf . Let ωf ∈ H0(X,Ω1
X/K) be the

regular differential associated to f and let αf be the unique element of H1(X,OX/K) such

that 〈ωf , αf〉 = 1. Now if f has CM by L, then K is a CM field and the abelian variety

A := Af associated to f has CM by K. This is because the field K necessarily contains the

values of the character χL · ωc associated to f (see [Rib04] Corollary 3.1). By the Eichler-

Shimura isomorphism of Equation (2.7) one can view Ωf := ES−1(ωf ) inside the f -isotypical

component H1
dR(A/K)f of H1

dR(A/K).

By the theory of CM abelian varieties, described in Section 1.6, there is a canonical

decomposition (Equation 1.7)

H1
dR(A/K)f = H1,0(A/K)f ⊕H0,1(A/K)f .
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Let Θf be the unique element of H0,1(A/K)f with 〈Ωf ,Θf〉 = 1. The element:

ηf := ES(Θf )

is a class in H1
dR(X/K)f with 〈ωf , ηf〉 = 1, and the assignment αf 7→ ηf gives a canonical

splitting:

ΦCM : H1(X,OK)f −→ H1
dR(X/K)f

of the Hodge filtration of H1
dR(X/K)f , and this splitting is defined over K. Therefore, one

can choose a differential of the second kind φ with poles only at the cusp at ∞, and such

that:

[φ] = ηf = ΦCM(αf ).

Moreover, since ΦCM is defined over K, all the coefficients of φ belong to K. The theorem

follows by constructing F as in the proof of Theorem 2.18.

Remark 2.26. A similar statement was proven in [BOR08] Theorem 1.3 for arbitrary

weight. The authors show that F+ must have coefficients in some abelian extension of

K, analogous to their Theorem 1.4, and they further conjecture that this abelian exten-

sion is in fact trivial. Theorem 2.25, just like our result in the previous section about the

vanishing of Hecke eigenvalues, confirms their conjecture in the weight 2 case.
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3 The p-adic theory

In the previous chapter we saw how harmonic weak Maass forms arise naturally from the

canonical complex analytic splitting

ΦHodge : H
1(X1(N),OX1(N)/C) −→ H1

dR(X1(N)/C)

of the Hodge filtration of the complete modular curve X1(N)(C). The existence of the

map ΦHodge depends on the Hodge decomposition of the de Rham cohomology of X1(N)(C),

viewed as a compact complex analytic manifold.

In this chapter we switch our attention to Cp, the completion of the algebraic closure of

Qp. We fix a valuation v on Qp such that v(p) = 1 and an absolute value |.| on Cp which

is compatible with v. For simplicity, we assume that χ = 1 is trivial, so that we will work

with the Γ0(N) modular curve

X := X0(N).

The set X(Cp) is naturally endowed with the structure of a rigid analytic space and we

can define sheaves of rigid analytic modular forms on it analogous to the sheaves of smooth

modular forms found in the complex analytic case. For a newform f ∈ S2(Γ0(N)), the

f -isotypical component of the de Rham cohomology H1
dR(X/Cp)f admits a canonical decom-

position analogous to the Hodge decomposition. The analog of ΦHodge in the rigid analytic

context then gives rise to a notion of p-harmonic weak Maass forms.

We assume a basic knowledge of rigid geometry at the level of Bosch’s Lectures on formal

and rigid geometry ([Bos05]). Only the basic definitions of affinoid subdomains and affinoid

algebras are required, and any specific result needed will be stated as a proposition, with

references provided to its proof. In particular, we will make use of the following terminology:

• A closed disk is a rigid analytic space isomorphic to {x ∈ Cp : |x| ≤ 1}

• An open disk is a rigid analytic space isomorphic to {x ∈ Cp : |x| < 1}

• An open annulus is a rigid analytic space isomorphic to {x ∈ Cp : r1 < |x| < r2} for

some r1, r2 ∈ |C×
p |.
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Throughout the chapter, we assume that p is a rational prime such that p ∤ N . Moreover,

it will be convenient to assume p > 3, although the theory can be extended with minor

modifications to the cases p = 2, 3. We will point to references on how to do this as we go

along.

3.1 p-adic modular forms

We start by recalling the definition of p-adic modular forms as first introduced by Katz in

[Kat73] and further developed by Coleman in [Col96].

When p ∤ N the modular curve X = X0(N)/Q has good reduction at p (i.e. it has a

smooth and proper model X over Zp) and there is a natural map:

red : X(Cp) −→ XFp
(Fp)

where XFp
is the specialization of X mod p. Denote by P1, . . . , Pt the points of XFp

(Fp) which

correspond to supersingular elliptic curves under the modular interpretation of X0(N).

Proposition 3.1. The subsets Di = red−1(Pi) ⊂ X(Cp) are open disks. Each Di is called

the residue disk of Pi.

Proof. From [Col89] Lemma 3.2, this is the case if the Pi are smooth, which they are since

XFp
is smooth.

The set

Xord = X(Cp)− {D1 ∪ . . . ∪Dt}

obtained by removing from X(Cp) the residue disks corresponding to the Pi, is an affinoid

space.

The affinoid algebra A(Xord) has a norm inherited from the supremum norm on all p-

adically convergent power series and consists of limits of rational functions on X(Cp) with

poles supported inside the Di. Similarly, we can consider the A(Xord)-module Ω1(Xord) of

rigid analytic differentials of Xord.

Now we can also express Xord as:

Xord = {x ∈ X(Cp) : |Ep−1(x)| ≥ 1}
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where Ep−1 is the Eisenstein series of weight p − 1. This is because, mod p, Ep−1 is equal

to the Hasse invariant, whose zeroes are precisely the supersingular points. Let R = |Cp| be
the value group of Cp. Pick any r ∈ R, 0 < r ≤ 1, and consider the sets

Xr = {x ∈ X(Cp) : |Ep−1(x)| ≥ r}.

These spaces are also affinoids and we can consider the ring A(Xr) of rigid analytic functions

on Xr and the A(Xr)-module Ω1(Xr) of rigid analytic differentials.

Definition 3.2. A p-adic modular form of weight 0 (resp. weight 2) and growth rate r is an

element of A(Xr) (resp. Ω
1(Xr)).

For any r such that 0 < r < 1 we have obvious inclusions Xord = X1 ⊂ Xr ⊂ X

and corresponding inclusions of p-adic modular forms going in the opposite directions. In

particular,

S2(Γ0(N),Cp) ≃ Ω1(X0) ⊆ Ω1(Xr)

for any such r, so that p-adic modular forms contain the classical spaces of cusp forms in a

natural way. Moreover, since the cusps of X are contained in Xr for any r, p-adic modular

forms have q-expansions, just by considering the power series expansion of a rigid analytic

differential in terms of local parameters at the cusps.

3.2 The U and V operators

Let k be a field of characteristic p > 0. Any such k possesses an injective endomorphism σ,

the Frobenius endomorphism, defined by:

σ :k −→ k

x 7−→ xp.

If C is an algebraic variety defined over k, denote by Cσ the variety obtained by base change

with respect to σ. For example, if C is affine then Cσ is obtained by raising to the p-th power

all the coefficients of the equations defining X. In characteristic p, there is a morphism:

Fr : C −→ Cσ (3.1)
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which we refer to as the relative Frobenius morphism of C. On local coordinates (x1, . . . , xn),

Fr acts simply by xi 7→ xp
i . Note that if k = Fp then Fr is an endomorphism of C.

For example, when C = XFp
is the special fiber of X at p, then the relative Frobenius

is an endomorphism of XFp
. The goal of this section is to describe a ’canonical lift’ of

Fr : XFp
→ XFp

to the affinoid Xord.

Consider first an elliptic curve E defined over a complete discretely valued subfield K ⊂
Cp with residue field k. Suppose E has a smooth proper model E over the ring of integers

OK and that the special fiber Ek is ordinary. In this situation, we are able to find a canonical

subgroup scheme of E which only depends on the isomorphism class of E .

Theorem 3.3. Let E/K be an elliptic curve with good ordinary reduction. Then there is a

unique connected subgroup scheme H ⊂ E , finite and flat of rank p. We call H the canonical

subgroup of E.

Proof. We sketch the proof, which can be found in [Kat73] Section 3.1. If the special fiber

Ek is ordinary, then the dual of the relative Frobenius morphism (3.1) is separable of degree

p, so its kernel can be lifted to OK (Hensel’s Lemma). One then takes H to be the Cartier

dual of this lift.

Remark 3.4. By construction, when reduced to Ek the canonical subgroup H coincides

with the scheme-theoretic kernel of the relative Frobenius morphism.

Now the points of Xord classify pairs (E,C) of ordinary elliptic curves with a cyclic

subgroup of order N . The map:

ϕ : (E,C) 7−→ (E/H,C +H/H)

where H is the canonical subgroup of E, defines an endomorphism ϕ : A(Xord) → A(Xord)

of Xord, since p ∤ N .

Definition 3.5. Define the V operator to be the pullback V := ϕ∗ on the space Ω1(Xord)

of rigid analytic differentials.
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Remark 3.6. By Remark 3.4, the endomorphism ϕ is a canonical lift to the ordinary locus

Xord of the Frobenius endomorphism acting on XFp
. The existence of such canonical lift is

peculiar to modular curves, and no such canonical lift is available for curves in general.

Proposition 3.7. At the level of q-expansions, V acts by:

V

(
∞∑

n=1

anq
n

)
=

∞∑

n=1

anq
np.

Proof. In the modular interpretation of X0(N), the cusps correspond to pairs of generalized

elliptic curves (Tate(q) := Gm/q
Z, αN) of Tate curves with level N structure. For these, the

canonical subgroup is just µp and therefore V acts by q 7→ qp at the cusps.

The theory of canonical subgroups can be extended (see [Kat73] Chapter 3) beyond

ordinary elliptic curves to elliptic curves E for which |Ep−1(E)| is large enough. One can

then extend ϕ to the larger affinoids Xr in the following way:

Proposition 3.8.

(a) For any r ∈ R with r < p
p+1

, the morphism ϕ extends to a morphism

ϕ : A(Xrp) −→ A(Xr)

of affinoid algebras, and to a corresponding linear map V : Ω1(Xrp) → Ω1(Xr).

(b) If r < 1
p+1

, then ϕ is finite and flat of degree p.

Proof. See [Kat73] Section 3.10. This is one of the points where the assumption p ≥ 5 is

used.

Remark 3.9. Note that V is not an endomorphism of Ω1(Xr), but it can only be defined on

the smaller space Ω1(Xrp) ⊂ Ω1(Xr). This can be seen directly from q-expansions. In fact,

if f =
∑

n anq
ndq ∈ Ω1(Xr), then we must have |an|rn → 0 as n → ∞. This convergence

condition does not suffice to ensure convergence of V (f), and must be replaced with the

condition |an|rpn → 0 as n → ∞.
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From part (b) of Proposition 3.8, we see that whenever r < 1
p+1

we have a trace morphism

trϕ : A(Xr) −→ A(Xrp)

corresponding to ϕ.

Definition 3.10. ([Kat73] 3.11.6) The U operator is defined to be the composite:

U : A(Xrp) −→ A(Xr)
1

p
trϕ

−→ A(Xrp)

where the first map is induced by the inclusion Xr ⊂ Xrp . The operator U also acts via

pullback on the spaces Ω1(Xr) and we also denote this action by U .

Proposition 3.11. The action of U on q-expansions is given by:

U

(
∞∑

n=1

anq
n

)
=

∞∑

n=1

anpq
n.

Proof. See [Kat73] 3.11.6.

In Section 2.4 we defined the Hecke operators Tℓ for ℓ ∤ N . In particular, the operator Tp

is an endomorphism of the space Ω1(X) of weight 2 cusp forms. Its action on q-expansions

is given by

Tp

(
∞∑

n=1

anq
n

)
=

∞∑

n=1

anpq
n + p

∞∑

n=0

anq
np.

Therefore on the space Ω1(X) of classical weight 2 cusp forms, we have the fundamental

relation:

Tp = U + p · V. (3.2)

In particular, if ω ∈ Ω1(X) is a normalized newform for Tp, we have:

ap · ω = U(ω) + p · V (ω).

Moreover, by direct computations with q-expansions, one sees that:

UV (f) = f. (3.3)

and

V U(f) = f −
∑

(n,p)=1

anq
n. (3.4)
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Let θ be the operator acting on q-expansions by
∑

n anq
n 7→ ∑

n n · anqn. Then we can

express the above relationship as:

V U(f) = f − lim
n→∞

θ(p−1)·pn(f). (3.5)

3.3 Wide open spaces

We now recall the definition of wide open spaces and state a few facts about them. The

main reference is Coleman’s Reciprocity laws on curves ([Col89]).

Definition 3.12. Let X/Cp be a smooth curve. A diskoid subdomain is a subdomain of

X(Cp) which is non-empty and it is a finite union of disjoint closed disks. A wide open space

is a rigid analytic space which is isomorphic to the complement of a diskoid subdomain.

In other words, just as affinoids are rigid analytic spaces isomorphic to the complement

of finitely many disjoint open disks, wide opens are complements of finitely many closed

disks. Following [BDP09] it will be convenient for us to consider wide open spaces as open

neighborhoods of affinoids.

Definition 3.13. Let A be an affinoid on a smooth curve X(Cp). Thus, A can be realized

as the complement of finitely many open disks in X(Cp). A wide open neighborhood W of A
is any wide open space containing A, obtained by attaching to A an open annulus to each

disk lying in the complement of A.

For a wide open space W , define

H1
dR(W) :=

Ω1(W)

dA(W)

where A(W) is the algebra of rigid analytic functions on W and Ω1(W) is the A(W)-module

of rigid analytic differentials. Then we have the basic comparison theorem:

Theorem 3.14. Let X be a smooth curve over Cp and let W be a wide open space on it.

Let S ⊂ X(Cp) be a finite subset obtained by picking exactly one point in each disk lying in

the complement of W, and consider the algebraic variety X −S defined over Cp. Then there
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is a canonical isomorphism:

H1
dR(W) ≃ H1

dR(X − S/Cp)

where the right-hand side is the algebraic de Rham cohomology of the algebraic variety X−S.

Proof. See [Col89] Theorem 4.2

In particular, we see that the de Rham cohomology of wide open spaces is finite-dimensional,

in contrast to the de Rham cohomology of affinoids.

Corollary 3.15. Let A be an affinoid and let W ⊂ W ′ be wide open neighborhoods of A.

Then the natural map

H1
dR(W ′) −→ H1

dR(W)

induced by inclusion is an isomorphism.

Proof. By Theorem 3.14, both spaces are naturally isomorphic to H1
dR(X − S/Cp) as long

as S is chosen to be in the complement of W ′.

Going back to the case when X = X0(N), pick an s ∈ |Cp| such that p−1/(p+1) < s < 1

and consider the wide open space:

Ws = {x ∈ X(Cp) : |Ep−1(x)| > s}

obtained by removing from X(Cp) all the closed residue disks of radius s around the super-

singular points P1, . . . , Pt. The space Ws is a wide open neighborhood of the ordinary locus

Xord and is contained in X. In particular, by Theorem 3.14:

S2(Γ0(N),Cp) = Ω1(X) ⊂ H1
dR(X/Cp) −→ H1

dR(X/Cp − {P1, . . . , Pt}) ≃ H1
dR(Ws)

we can embed the space of weight 2 cusp forms with coefficients in Cp inside the de Rham

cohomology of Ws. Moreover, we can endow H1
dR(Ws) with an action of U and V .

Proposition 3.16. The U, V operators induce linear operators on the finite-dimensional

vector space H1
dR(Ws), and UV = V U = Id on H1

dR(Ws).
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Proof. By choice of s the U operator defines an endomorphism of A(Ws) satisfying p ·Ud =

dU . As such, it respects the classes of exact differentials and it has a well-defined action in

cohomology. However, the V operator is only defined on the subspace A(Wsp) ⊂ A(Ws) so

it is not a priori obvious why it gives a well-defined endomorphism of H1
dR(Ws). Now, by the

relation p · V d = dV we deduce that V does extend to a linear map H1
dR(Wsp) → H1

dR(Ws)

in cohomology. But the space Wsp is also a wide open neighborhood of the affinod Xord so

by Corollary 3.15 there is a natural isomorphism:

H1
dR(Ws) ≃ H1

dR(Wsp).

which allows us to view V as an endomorphism of H1
dR(Wsp) (or H

1
dR(Ws)).

For the relation between U and V note that UV = Id by Equation (3.3). Since df =

θf · dq/q Equation (3.4) also shows that V U = Id in cohomology.

3.4 Residues

In this section we recall the notion of a p-adic annular residue, following [Col89] Section II.

Recall that an open annulus is a rigid analytic space isomorphic to {x ∈ Cp : r < |x| < s}
for some r < s ∈ R∗, where R = |Cp| is the value group of Cp. Any such isomorphism is

called a uniformizing parameter for the open annulus. If V is an open annulus, denote by

A(V ) the space of rigid analytic functions on it and by Ω1(V ) the module of rigid analytic

differentials.

Proposition 3.17. Let V be an open annulus and let z be a uniformizing parameter for it.

Then there is a unique Cp-linear map R : Ω1(V ) → Cp such that:

R(dg) = 0 R(dz/z) = 1

for any g ∈ A(V ). Moreover, for any other uniformizing parameter z′, R(dz′/z′) = ±1.

Proof. As in the algebraic case, one defines R(ω) to be the a−1 coefficient in the Laurent

expansion of ω. For details, see [Col89] Lemma 2.1.
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From the proposition we see that for any given V there are two possible residue maps.

We call a choice of such function an orientation of V and denote the residue map by

resV : Ω1(V ) −→ Cp.

Let now W be a wide open space. Define the set of ends of W to be:

E(W) = proj limCC(W −A)

where CC(W−A) are the connected components (for the Grothendieck topology) of W−A,

where A runs over all affinoid subdomains of W . The set of ends is finite, and given any end

e and an affinoid subdomain X we call the image of e in CC(W −X ) an open neighborhood

of e. If ω ∈ Ω1(W) is a differential on W , and e is an end of W , define

rese ω = resV ω

where V ∈ CC(X − Y ) is the open annulus containing e for some sufficiently large affinoid

Y .

Recall now from the previous section that for X a smooth curve over Cp we have an

embedding:

H1
dR(X/Cp) →֒ H1

dR(W).

For any class [ω] ∈ H1
dR(W), one can speak of the residue of [ω], since each member in

the class differs by an exact differential, which has zero residue. By computing residues in

cohomology, we can then give a criterion for when a class inH1
dR(W) comes fromH1

dR(X/Cp).

Theorem 3.18. Let X/Cp be a smooth curve and W be a wide open space on X. Then the

image of H1
dR(X/Cp) in H1

dR(W) consists of those classes [ω] with

rese(ω) = 0

for all ends e of W.

Proof. See [Col89] Proposition 4.4.

Corollary 3.19. Let ω ∈ Ω1(W) be such that its class in H1
dR(W) lies in H1

dR(X/Cp). Let

e be an end of W and let De be the disk in the complement of W corresponding to e. Then
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there exists an open disk Ue containing the disk De and no other connected component of the

complement of W and a rigid analytic function λe on the open annulus Ve = Ue −De such

that dλe = ω on Ve.

Remark 3.20. The rigid analytic function λe serves the purposes of a ’local antiderivative’

at e for ω.

Using this notion of local antiderivative, rigid analytic residues can be employed to com-

pute the Poincaré pairing on H1
dR(X/Cp).

Proposition 3.21. Let η1, η2 denote two classes in H1
dR(X/Cp). Let ζ1, ζ2 be two differential

forms in Ω1(W), for a wide open space W ⊂ X, such that [ζi] = ηi for i = 1, 2 Then:

〈η1, η2〉 =
∑

rese λeζ2

where λe is a local antiderivative of ζ1 around e and the sum runs through all ends of W.

Proof. This is Proposition 4.5 of [Col89].

Remark 3.22. This formula for the Poincaré pairing in terms of rigid analytic residues is

the rigid analytic analog of the formula given in Proposition 1.16.

3.5 p-harmonic differentials

We now turn to our original question of finding a p-adic analog of the Hodge Decomposition

for the f -isotypical component of the de Rham cohomology H1
dR(X/Cp). In the complex

analytic theory, the key is to define canonical ’harmonic’ representatives for the classes in

H1
dR(X/C). It is natural then to begin by understanding what the right notion of ’harmonic

representative’ is in the p-adic setting.

Definition 3.23. A form η ∈ Ω1(Ws) is p-harmonic if

η ∈ Ω1(X)⊕ V (Ω1(X)).

In other words, η ∈ Ω1(Ws) is p-harmonic if it can be written as a linear combination of ω1

and V (ω2) for ω1, ω2 regular differentials on X.
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We restrict our attention to a newform f ∈ S2(Γ0(N)) with rational coefficients which

is ordinary at p, i.e. its p-th Fourier coefficient is a p-adic unit. The differentials ωf and

V (ωf ) are examples of p-harmonic differentials. Moreover, by looking at their q-expansions,

we deduce that they are linearly independent. The 2-dimensional subspace Wf of Ω1(Ws)

generated by ωf and V (ωf ) has the property that the action of U on it can be diagonalized

nicely.

Proposition 3.24. Let f =
∑

n>0 anq
n be a newform in S2(Γ0(N)) with coefficients in Q

and let T 2−apT+p = (T−α)(T−β) be its corresponding Frobenius polynomial at p. Assume

that 0 = vp(α) < vp(β) = 1 (i.e. f is ordinary at p). Then the rigid analytic differentials:

ηαf := ωf − α · V (ωf )

ηβf := ωf − β · V (ωf )

form a basis for Wf of eigenvectors of U .

Proof. We first write down the matrix of U acting onWf with respect to the basis {ωf , V (ωf )}.
This can be done using the relations (3.2) and (3.3) and noting that Tp(ωf ) = ap · ωf . We

get:

U =


 ap 1

−p 0




which shows that U has eigenvalues α and β on Wf . These are distinct by our assumption on

their valuations and therefore the matrix can be diagonalized. A short computation shows

that ηαf , η
β
f are the eigenvectors corresponding to α and β respectively.

In the complex analytic theory, harmonic differentials give rise to classes in cohomology.

Similarly, we want to understand how the p-harmonic differentials ηαf and ηβf behave under

projection onto cohomology.

Proposition 3.25. Consider the projection map:

[·] : Ω1(Ws) −→ H1
dR(Ws).

Then [ηαf ] 6= 0.
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Proof. Let ηαf =
∑

n cnq
n dq

q
and suppose that there exists a rigid analytic function g =

∑
bnq

n ∈ A(Ws) such that dg = ηαf . In terms of q-expansions this means that θ(
∑

bnq
n) =

∑
cnq

n. Since ηαf is an eigenvector for U with eigenvalue α, we have:

cpn = α · cn = α · n · bn.

But α is a p-adic unit, and therefore the coefficients of ηα would not converge to zero, which

is a contradiction.

It would be reasonable to hope that [ηβf ] 6= 0 as well, but this is not always true.

Conjecture 3.26 (Coleman). With the notation of Proposition 3.25, [ηβf ] = 0 if and only

if f has CM.

In [Col96] Robert Coleman proves that if f has CM then [ηβf ] = 0, but the converse it

not known.

Armed with these two facts, we are ready to give a rudimentary analog of the Hodge

decomposition for H1
dR(X/Cp)f .

Theorem 3.27. Let f ∈ S2(Γ0(N)) be a normalized newform with coefficients in Q and

ordinary at p. Assume moreover that [ηβf ] 6= 0. Then any class in the f -isotypical component

H1
dR(X/Cp)f has a unique representative which is p-harmonic.

Proof. Let ωf be the regular differential corresponding to f . We claim that any class in

H1
dR(X/Cp)f has a representative which is a linear combination of ωf and V (ωf ). First we

need to check that ωf and V (ωf ) define classes in H1
dR(X/Cp)f , and not just in the larger

space H1
dR(Ws). For ωf , this just comes from the Hodge filtration. For V (ωf ), we appeal

to Theorem 3.18 and note that V (ωf ) has zero residues everywhere, therefore it defines a

class in H1
dR(X/Cp)f . Next, we need to show that [ωf ] and [V (ωf )] are linearly independent

in H1
dR(X/Cp)f . By assumption, [ηβf ] 6= 0 and therefore it is an eigenvector of U acting on

H1
dR(X/Cp)f with eigenvalue β. Similarly the class [ηαf ] is an eigenvector of U with eigenvalue

α. As α 6= β, these two classes must be linearly independent, and so must [ωf ] and [V (ωf )],

since ηαf and ηβf are linear combinations of ωf and V (ωf ). Now the space H1
dR(X/Cp)f is

2-dimensional, so [ωf ] and [V (ωf )] span the whole space.
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Remark 3.28. The canonical basis {ωf , V (ωf )} of H1
dR(X/Cp)f can be viewed as the p-adic

analog of the canonical basis {ωf , ωf} of harmonic representatives for H1
dR(X/C)f which is

obtained from the Hodge Decomposition.

Corollary 3.29 (Frobenius Decomposition). Let f ∈ S2(Γ0(N)) satisfy the hypotheses of

Theorem 3.27. Then there is a canonical decomposition:

H1
dR(X/Cp)f ≃ H1,0(X/Cp)f ⊕H0,1(X/Cp)f

where H1,0(X/Cp)f = H0(X,Ω1
X/Cp

)f is the subspace generated by [ωf ] and H0,1(X/Cp)f is

the subspaceb generated by [V (ωf )].

Remark 3.30. If Conjecture 3.26 were true then the decomposition would hold whenever

f does not have CM. On the other hand, we know from the previous chapter that if f has

CM there is an algebraic decomposition of H1
dR(X/Cp)f . It would be interesting to give a

general construction that encompasses both decompositions at the same time.

The Frobenius decomposition enables us to find a canonical splitting:

ΦFrob : H1(X,OCp
)f −→ H1

dR(X/Cp)f

of the Hodge filtration of H1
dR(X/Cp). This splitting will enable us to produce p-harmonic

weak Maass forms.

3.6 p-harmonic weak Maass forms

In the complex analytic case, we used the splitting ΦHodge to find harmonic weak Maass

forms of weight 0 over C. In the p-adic analytic case, we can repeat the same construction

using the splitting ΦFrob given by Corollary 3.29.

Namely, let f ∈ S2(Γ0(N)) satisfy the hypotheses of Theorem 3.27. As usual, consider

the corresponding regular differential:

ωf ∈ H0(X,Ω1
X/Q)f

and let αf ∈ H1(X,OX/Q)f be the unique element such that 〈ωf , αf〉 = 1.

60



3 THE P -ADIC THEORY 3.7 Recovering the shadow

The p-adic f -isotypical Hodge filtration:

0 −→ H0(X,Ω1
X/Cp

)f −→ H1
dR(X/Cp)f −→ H1(X,OX/Cp

)f −→ 0.

has a canonical splitting:

ΦFrob : H1(X,OX/Cp
)f −→ H1

dR(X/Cp)f

which is a consequence of Corollary 3.29. This is defined by:

ηf := ΦFrob(αf ) =
V (ωf )

〈ωf , V (ωf )〉
.

where the pairing is evaluated using Proposition 3.21. Using Proposition 1.8, we find a

differential of the second kind φ ∈ ΩII
X/Cp

(X) such that:

[ηf ] = [φ]

and such that φ has poles only at the cusps of X. The class of φ − ηf is then zero in

H1
dR(X/Cp). Using the rigid analytic embedding:

H1
dR(X/Cp) →֒ H1

dR(Ws)

we also have that φ−ηf is zero inH1
dR(Ws). It follows that there exists an element F ∈ A(Ws)

such that

dF = φ− ηf .

The rigid analytic function F is the prototypical example of a p-harmonic weak Maass form

of weight 0.

3.7 Recovering the shadow

We conclude our discussion by applying the techniques developed in this chapter to prove a

special case of Theorem 1.2(1) of [GKO09], which ties together the complex analytic theory

of harmonic weak Maass forms and the p-adic analytic theory.

Let f ∈ S2(Γ0(N)) satisfy the hypotheses of Theorem 3.27 and suppose its q-expansion

is given by

f =
∞∑

n=1

anq
n.
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In particular, recall that the Frobenius polynomial of f at p has roots α and β with p-adic

valuations 0 and 1 respectively.

Going back to the complex analytic theory, Theorem 2.18 ensures that we can find a F

in H0(Γ0(N)) which is good for f . In the terminology of [GKO09], f is called the shadow of

F , and can be recovered from F by

ξ0(F ) =
f

‖f‖2

where ‖f‖ is the Petersson norm of f ,

The harmonic weak Maass form F has a holomorphic part F+ with the property that

dF+ = φ− a · ωf

for some differential of the second kind φ ∈ ΩII
X/Q(X) regular on Y and some a ∈ C. In

[GKO09], the authors ask whether one can recover the coefficients of the shadow f from the

coefficients of F+. This is the content of Theorem 1.2 of [GKO09], which we reprove here in

a special case using the p-adic techniques developed in this section.

Define:

f̂ := f(z)− α · f(pz)

and let

Fa = F+(z)− a · Ef (z)

where Ef (z) is the q-expansion given by:

Ef (z) =
∞∑

n=1

an
n
qn.

Let D := 1
2πi

· d
dz

and write:

D(Fa) =
∑

n≫−∞

ca(n)q
n.

Theorem 3.31 (Guerzhoy,Kent,Ono). Suppose f satisfies the hypotheses of Theorem 3.27.

Then

lim
w→+∞

Uw(D(Fa))

ca(pw)
= f̂
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Proof. First of all, note that dFa = φ, a differential of the second kind with coefficients in

Q, and therefore the element D(Fa) is a weakly holomorphic modular form of weight 2 with

rational coefficients and φ defines a class in H1
dR(X/Cp)f . Now by our assumptions on f the

space H1
dR(X/Cp)f has a basis {ηαf , ηβf } of eigenvectors for U . Therefore we can write

φ = t1 · ηαf + t2 · ηβf + dh (3.6)

for some meromorphic function h ∈ Cp(X) and constants t1, t2 ∈ Cp. Applying U to both

sides of the equation gives:

U(φ) = t1 · α · ηαf + t2 · β · ηβf + U(dh)

and therefore by induction

Uw(φ) = t1 · αw · ηαf + t2 · βw · ηβf + Uw(dh).

Dividing by αw

α−wUw(φ) = t1 · ηαf + t2 ·
(
β

α

)w

ηβf + α−wUw(dh).

and taking the limit as w → ∞ gives:

lim
w→∞

α−wUw(φ) = t1 · ηαf .

This is because vp(β/α) > 0 by the hypotheses and because the differential Uw(dh) has

bounded denominator but its coefficients have arbitrarily high valuation as w → ∞. In fact,

each application of U to dh multiplies each coefficient by p.

To determine the value of the constant t1, write down the p-th coefficient of Equation

(3.6):

ca(p) = t1 · (ap − α−1p) + t2 · (ap − β−1p) + dh

= t1 · α + t2 · β.

By applying the multiplicative properties of the Fourier coefficients of newforms we get:

ca(p
w) = t1 · αw + t2 · βw

and taking the limit we obtain:

lim
w→∞

α−wca(p
w) = t1

which gives the result.

63



3.7 Recovering the shadow 3 THE P -ADIC THEORY

64



4 FURTHER DIRECTIONS

4 Further directions

In this final chapter we sketch how to extend the geometric theory of harmonic weak Maass

forms to arbitrary integer weight. The main tools come from Katz’s theory of algebraic mod-

ular forms ([Kat73]) and from Section 1 of [BDP09], where the authors produce differential

operators on modular forms from splittings of the Hodge filtration of modular curves.

Let Y := Y1(N) and X := X1(N) be the Γ1(N) modular curves of Chapter 2 and consider

them as algebraic curves defined over a field K ⊂ C. In the weight 2 case, the assignment:

f 7−→ f(q) · dq
q

gave a natural isomorphism M †(Γ1(N), K) ≃ H0(Y,Ω1
X). We want to find an analog for

arbitrary integer weight. Following Katz, let π : E → Y be the universal elliptic curve with

Γ1(N)-level structure and let

ω := π∗(Ω1
E/Y )

be the sheaf of relative differentials on E/Y . We then have an isomorphism:

M !
k(Γ1(N), K) = H0(Y, ω⊗k)

which plays the analog of the isomorphism in Proposition 2.4.

Consider now the relative de Rham cohomology sheaf:

L1 := R1π∗(0 → OE → Ω1
E/Y → 0).

For each point x of Y , the fiber of L1 is the algebraic de Rham cohomology of the elliptic

curve corresponding to x under the modular interpretation of Y . The Poincaré pairing on

each fiber induces a pairing:

〈·, ·〉 : L1 × L1 → OY

and the Hodge filtration on the fibers induces a filtration of sheaves:

0 → ω → L1 → ω−1 → 0.

The sections of ω⊗k, which are modular forms of weight k, can then be naturally embedded

in the space of sections of L⊗k
1 .

65



4 FURTHER DIRECTIONS

On L1 we also have a canonical integrable connection, the Gauss-Manin connection:

∇ : L1 −→ L1 ⊗ Ω1
Y

which can be used to obtain an isomorphism of sheaves over Y (the Kodaira-Spencer iso-

morphism)

σ : ω2 ∼−→ Ω1
Y

σ(ω2) = 〈ω,∇ω〉 .

When K = C, we can view L1 as a real analytic sheaf Lra
1 on the differentiable manifold

X(C) and the Hodge decomposition gives a real analytic splitting:

ΦHodge : Lra
1 → ω.

Combining ΦHodge with the Gauss-Manin connection (see [BDP09]) gives rise to differential

operators ξk which are generalizations of the ξ0 operator on harmonic weak Maass forms of

weight 0 and which correspond to the operators of Bruinier and Funke ([BF04]).

When K = Cp, one can view L1 as a rigid analytic sheaf on X(Cp) and the rigid analytic

splitting:

ΦFrob : Lrig
1 → ω.

coming from the Frobenius decomposition also gives rise to ’differential’ operators. Finding

antiderivatives to these operators yields p-harmonic weak Maass forms of arbitrary integer

weight.

Finally, one would like to develop a geometric description of harmonic weak Maass forms

of half-integral weight. Perhaps the most immediate application of such a theory would be a

geometric understanding of the results of Bruinier and Ono ([BO]) relating the coefficients of

the holomorphic parts of harmonic weak Maass forms of half-integral weight to the vanishing

of derivatives of L-series of cusp forms of weight 2. At present, however, there is no analog

in the literature of Proposition 2.4 for modular forms of half-integral weight, and therefore

the cornerstone of our geometric theory of harmonic weak Maass forms is still missing in the

half-integral weight case.
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