
0
3 0 8 - 6 8 1 B

A P P L I C A T I 0 N P R 0 J E C T II

V 0 I C E I D I G I T A L A N D D I G I T A L I V 0 I C E

C 0 N V E R S I 0 N 0 N A M I C R 0 C 0 M P U T E R

(A P P L E II

c

J 0 K T J I E yAp

S E P T E M B E R , 1 9 8 7

c

.,-
.'-'

c

TABLE OF CONTENTS

Chapter 1 Introduction

Chapter 2
2.1

Theory and Design•••

Chapter

Chapter

2 .1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.2

3
3.1

3.2
3.3
3.3.1
3.3.2

3.4
3.4.1
3.4.2
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8

4
4.1
4.2
4.3

Reference

Basic Theory . . • . ••..••.••
Analog to Digital and Reverse Conversion
sampling Rate • • • • . • . • . • . • . •
Speech Encoding Methods • • • • • . •
AID and D/A converters of Apple II . . • • •
Packing and Unpacking of Data .••.....
Noise During Playback • • • • • • • •

Design Intent • . . . • • • • . . • • .

User Manual • • . • . • . • • . . . • • .
Procedures of Voice/Digital and Digital/Voice
Conversion on a Microcomputer Project • • .
Interface Part • . • • • • • . . • . . • •
Processing • • • • • • • • • • • . • • • •

Available Operations and Related Units •..
Programming Examples of All Available
Operations • • . • . . • • . •

System Configuration • • • • • • • . • • • • •
Floppy Diskette supplied • • • . • • • • -. .
Hardware configuration • . • • • • • • •

Listing of Words in the Sample Dictionary •
Description and Listing of Procedures •.•••

GLOBAL Unit • • . . . • • • . • . • • • . .
UTILITY Unit • • • ••••
MODULEl Unit •••••••••
MODULE2 Unit ••••
MODULE3 Unl t . • •
DIGITAL EXTERNAL PROCEDURE
ANALOGl EXTERNAL PROCEDURE
ANALOG2 EXTERNAL PROCEDURE

.
Some Special Features of UCSD Pascal

External Compilation Units ••.
UNIT : Pascal to Pascal Linkage • • ~ . • • •
Pascal to Assembly Language Linkage • • •

1.1

2.1
2.1
2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1

3.1
3.4
3.9
3. 9 .

3.10.1
3.23
3.23
3.24
3.25
3.26
3.26
3.29
3.50
3.62
3.92
Cl
C7
Cll

4.1
4.1
4.1
4.3

0

c

CHAPTER 1

INTRODUCTION

Nowadays, speech synthesis has shown up ln personal computers,
but the synthesis schemes ln common use have llmltatlons (ln .expense,
vocabulary, or lntelllglblllty) whlch have restricted thelr use. However,
any personal computer whlch ls equipped wlth an analog-to-dlgltal (A/D)
converter and a dlgltal-to-analog (D I A) converter would theoretically be
capable of both speech synthesis and recognltlon, lf only lt had the neces
sary software.

A practical, rellable and affordable method for computers to recog
nize and synthesis speech would yleld at least two benefits to computer
users:

(1) Maximum user friendllness - Speech ls our most natural mode of
comm unlcatlon.

(2) New appllcatlons - Speech lnteractlon does not Interfere wlth most
human activities, especially those that require the use of the hands;
therefore, speech interaction could allow computers to be used for
tasks that are now impractical.

In thls Volce/Dlgltal and Dlgltal/Volce Conversion on a Microcom
puter project, the maln objective ls a set of routines in the Apple II
UCSD Pascal System which digitize the sound lnput of spoken Engllsh
words, store them ln memory speech buffer (RAM or diskette) and then
play them back on request. Therefore, ln addition to the routines whlch
perform the above tasks, a simple data base must be built to keep track
of the .digltlzed data and character strings of words. The baslc operations . .
of data base must be provided, namely: create dictionary, erase entire
dlctlonary, entry retrieval keyed wlth word string, add entries, update
entrles, delete entries and perlodlcal malntalnance operations.

The name dictionary is used instead of data base in the documen
tation. Although the dictionary is the bookkeeper of sound and text, it
does not have any knowledge of the encoding to the speech buffer and
the decodlng from the speech buffer. It just manages a warehouse of
sounds and word strings on the diskette.

- 1.1 -

..

----------.. ~--.r.:-:;..'--r:::..·:;:.;.....;.:-··-·- ·---------

l ...
~
~
0
;11>

50

Jl

2.5

TIMt:-0~~--

A/D-coNY!ITt:lt
"SAMPLES"

MElt I

u
CONYEitTI

TO DIQITAI.
YAI.Ut:

u
111110 ololololol 110000•41••1/IS•IVOI.TS•JIYOI.TS ...__ ______ '--"'

I IITIIVAI.UE DUMMY IITS

Fipn 1: An ADC converts mr ekctriCIIlmralog. such 111 voltage, to a binlley Vlllwt .
. ____ ltDC..~ ___ Ij l!!_ __ ~nvert:.er_ __ .. __

•

• "'

' r
I

•

0

c

c

11 SAMI't.INI

l2 SAMI'LIIII

.. ... ,

OltiiUUL
IIIII'UT

,

0 IYN1'MESIZED"
0111'1'U1'

Figure 2: Th6 S~Zmpling rat~ and number of bits in the ADC determine how douly the input signal can be reproduced.

7 6 5 • J I J 0 AID COI'IIVEitl'llt
6-IIT VALUE

1--
t--
1--
t--
t--
1--
t--
r--
r---....__

0 0 VALUE N
0 0
0 0
0 0

10 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

"'--"
"WASTED"
I ITS

Ill• 1
N• I
ETC.

Figure 3: Although 25 percent of the
storage space is wasted in storing 6-bit ,
ADC values in B·bit byta. it is efficient in
temu of storage speed.

5

< 11PPLE Jr. :1

IAMPU:O
II .. UT

SAMII'I.l

'" 1111101¥'

0
1
2
I
4
5

DIA•
CONVEIITU
OUTI'UT

0'--------

u
I

u
0 0 1 1 0 0 0
0 1 0 0 l 0 0
1 0 0 0 1 0 0
1 0 0 0 1 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0

I

0'--------

0 12 161 •
0 ia 1a1 •
0 14/Q.
0 14161•
0 12 Ill •
0 11161•

}

5 • O.IISY
5 • 1.&2
5. 2.611
I • 2.H
I • 2.14
s. 2.54

o:]~
AUOIO~
OUTI'UT

Fisunr 4: Brutt~-forn voice synthesis Sllmples input to digitize it. stortts the ADC
vtllua in m•mory. and thm outputs the t.•alua from memory to a DAC.

.j

r"'\._ .. '
: \

\(;f
AUDIO III .. UT

•

0

c

--

c

CHAPTER2

THEORY AND DESIGN

2.1. BASIC THEORY

2.1.1. ANALOG TO DIGITAL AND REVERSE CONVERSIONS

Usually, an Analog_to_Digital converter (AID) Is used to convert
the analog voice Input signal to digital value form as lllustrated in FIG
URE 1 [REF 3]. The larger the number or blts In the sample, the finer
the resolution In the digital representation of the analog value. It the
AID converter gives slx bits of data, each dlgltal value wlll be within
1164 of the analog lnput value. A five blts AID converter wlll glve value
within 1132 of the analog lnput value, and so on. When replaying the
digital form or the Input, the output waveform wlll approximate the ori
ginal waveform by a series of squ~re steps. The higher the sampling rate
and the resolution of the AID converter, the more the output will resem
ble the original, as shown In FIGURE 2 [REF 3].

When a six bits AID converter Is used, for convenience and speed
reasons, the slx blts value ls put ln each byte and Ignore the two unused
bits, as shown In FIGURE 3 [REF 3]. Wlth the sampling rate or 7000
Hz, one second or recorded sound wlll fill 7000 bytes or memory.

To play back the digltlzed sound, a Dlgital_to_Analog converter
(D I A) ls used. It the data was captured by a slx blts AID converter, then
a slx bits D I A converter Is needed. It takes in each digital value and pro
duces an output voltage level proportional to that value. A sequence or
all these voltage levels wlll simulate an analog waveform.

The simple process of volce capture and synthesis as lllustrated ln
FIGURE 4 [REF 3] and described above ls a brute force method. It takes
an analog voltage as Input form from the audio source, samples lt 7000
tlmes or more per second with an AID converter, stores the digltlzed
AID output values ln the computer memory, and then plays back the
values from memory wlth a DIA converter.

- 2.1 -

THEORY AND DESIGN

The process of using a. A/D converter to record snatches of sound,
lnltla.lly held ln a. sound butier, as a. sequence of numbers ls called speech
encoding. The opposite process of converting a. sequence of numbers ln a.
sound butier Into audible sounds uslng a D I A converted ls called speech
decoding.

2.1.2. SAMPLING RATE

Human speech ls much llke music played from a complex Instru
ment. It ls composed of many dlt!erent notes played simultaneously,
Interacting In complex ways. The volce ls very versatlle, lt ca.n be as per
cussive as a. snare drum at a moment or as melodious as a tlute Just a
traction or a second later.

The frequencies of human speech ca.n range from 20,000 Hz
(cycles/sec) down to 10 Hz. The signal strength range ls ln the ratlo of
over 16,000 to 1, respectively, between a shout and a quiet whisper. The
sampllng rate must meet the Nyqulst crlterla [REF 5]. That ts, the rate
of sa.mpllng must be at least twice the frequency of the desired highest
voice harmonic. To detect every nuance of all the sound ln human
speech, we would have to measure the sound signal over 40,000 tlmes per
second and store each measurement, using many blts of Apple II RAM.
Exactly capturing one second of such speech would require 40K of RAM,
thls ls more than the Apple II has. Even a tloppy diskette would hold
only four to tlve seconds or sound, and the data. transmission rate could
not keep up.

For• reproduced speech sound to be acceptable and understandable,
fortunately, lt ls not necessary to do lt wtth that much prectston. The
telephone system only transmits sounds from 30 Hz to 3500 Hz, wlth
volume ratios or less than 1000 to 1, and the clarity or volce sut!ers
surprisingly llttle [REF 8]. It ls true that people's voices do not sound the
same ln person as on the phone, but lt ls usually easy to recognize a fa.m
lllar volce over the phone and the speech ls easlly understood. What .con
stitutes acceptable speech qua.llty ls a subJective Judgement on the part
of the listener.

From the discussion In the above paragraphs, a conclusion ca.n be
drawn that ln order to reproduce acceptable votce, capablllty of playing
back frequencies up to 3500 Hz Is needed and sampllng rate must be at
least twlce the maximum frequency to be recorded. Hence voice must be

- 2.2 -

•

•

•

c

-~,. .
-~

~-

~~·~
-!!-
~:.

~- . ~ ..

.. .
-.

c

THEORY AND DESIGN

recorded at rates of 7000 Hz or better. In other words, the votce Input
must be converted to digital form at a rate of 7000 samples per second or
better.

At the higher sampllng rate of an expensive A/D converter, the
computer memory required to store the dlgltal data exceeds the memory
or the Apple II computer after only a few seconds of actual operation.

2.1.3. SPEECH ENCODING METHODS

The methos of encoding speech fall Into two broad catagorles: tlme
domain and frequency domaln approach.

Time domain encoding approach seeks to measure and record the
amplltudes of the sound waveforms, whlch vary ln tlme, and to recon
truct the speech waveforms from thelr recorded history. All the three
most popular techniques of tlme domain encoding measure the exact
amplltude of the speech waveform frequently enough so that when lt ts
played back, a reasonable facstmlle of the orlglnal wave results:

(1) PCM- ?ulse Code Modulation. Thls requires no special knowledge
about speech signal, except the bandwidth. It uses the most

. memory for a gtven amount of signal, but lt ls the simplest. In fact,
virtually no computing at all Is required beyond the storage and
retrieval or the data.

(2) DPCM- Dlfferentlal Pulse Code Modulation. Thls Is a variation or
PCM that utlllzes the fact that speech signals are not random but
are closely related to sinusoidal functions. Thus, at each successive
sample tlme the signal value ls not random. It Is llkely to be rela
tively close to lts preceding value. Therefore, DPCM stores a value
lndtcattng the change from the last recorded sample, rather than a
value representing the sample Itself, lt has the advantage In
efficiency of storage.

(3) ADPCM - Adaptive DUierentlal Pulse Code Modulation. This Is a
further development that cures the Slope Overloading defect of
DPCM. Optlmtzed for speech storage, ADPCM offers better compll
ance wtth the lnput waveform and better 1ntelllg1blllty of the repro
duced volce stgnal at lower data rate [REF 4].

A speech sample before encoding ls shown In FIGURE Sa [REF 4].
The FIGURE Sb, Se and Sd [REF 4] show the speech sample after

- 2.3 -

•

•

•

c

c

THEORY AND DESIGN

encoding, respectively, using PCM, DPCM and ADPCM techniques.

· The comparison of FIGURE Se and 5d shows larger errors for
ADPCM encoding method. This Is not lndlcatlve of actual results achiev
able ln a system set up specifically for ADCPM method. Usually, the
sampllng rate Is two to four times what PCM or DCPM encodlngs mlght
use, but the storage required Is stlll only 25 to 50 percent more with com
parable sampllng errors. One further problem: ADPCM ls characterized
by hlgh frequency error nolse whlch must be filtered out to produce
acceptable quallty speech reproduction [REF 4].

Frequency domain encoding approach seeks to measure the frequen
cies present In a volce waveform and how they vary through time In dis
tribution and In amplltude. Typically, lf three or tour dominant pitches
are recorded, acceptable speech can be reproduced. The most popular
technique of or this approach Is Linear Predictive Coding (LPC), whlch Is
used ln the Texas Instruments Speak & Spell toy.

LPC ls the most compact encoding. Only 300 bytes are required to
store one second of speech. However, the price In computational complex
Ity for LPC ls prohlbltlve In small scale use. Converting a few seconds of
PCM' speech to LPC or the reverse conversion can take several minutes
on a large computer without the aid or a dedicated VLSI circuit [REF 4].

2.1.4. A/D AND D /A CONVERTERS OF APPLE U

Apple II computer has a cassette Input port, whlch can be utlllzed to
dlgltlze the volce Input which comes from a standard cassette recorder.
The principle Is only monitoring the zero crossing of any analog signal,
Including voice. We make a recording or the signal on a cassette tape,
then plug the recorder Into the Apple cassette Input port and play the
tape back whlle monitoring memory location C060 (hexadecimal), blt
seven. Above a certain level or Input signal, the cassette Input port wlll
read hlgh; below this level lt wUl read low. The level or thls transition Is
called the threshold.

Each tlme the slgnal crosses the threshold, the state or the cassette
Input blt changes. A history of these changes contains all the frequency
characteristics or the original analog Input, assuming two thresholds per
cycle.

- 2.4 -

THEORY AND DESIGN

There ls a good reason that the lndlrect votce lnput from a cassette
recorder Is prefered over the dlrect microphone Input. An Ideal cassette
recorder should have a volume and a tone control so that the user can
Input . the correct amplitude and control the frequency range. In this
way, the glven volce can be reproduced wlth minimal noise and the mid
point of the Input slgnars peak to peak a.mplltude can be set at the polnt
where the Apple threshold occurs. For each lndlvidual, the quallty of
speech recorded wlll vary a lot with changes In these parameters. The
only way to find out the correct setting 1s by experimentation.

Two things should be noted:

(1) Slnce thls method of data gathering really amounts to a one blt
A/D conversion, amplitude lntormatlon Is not present and the
stored volce wlll be reproduced at a constant volume depending on
the hardware used for the actual playback.

(2) The sampllng rate must meet the Nyquist criterion. That ts, the
rate at which the cassette Input port Is read must be at least twlce
the frequency of the highest voice harmonic that we wlsh to store.

The on board speaker or Apple IT computer can be toggled by a read
or write to memory location C030 (hexadecimal). A click wlll be pro
duced on the output speaker every time memory location coao ls tog
gled. A large amount of cllcks can reconstruct the human voice, but the
reproduced voice wlll not have any tones or ampUtudes related to the ori
ginal volce Input.

It may be dimcult to Image how these cllcks can reconstruct the
human volce. Try not to thlnk about the Indtvldual click, but think
Instead or a series or clicks being output at a varying frequency which ts
a tunctton or the orlglnal votce lnput. Thls varying frequency ts an FM
(frequency modulated) reproduction or that orlglnal Input signal. The
astonishing thlng 1s that thls crude method works falrly well. It Is actu
ally a special case or PCM encoding approach.

2.1.5. PACKING AND UNPACKING OF A/D DATA

By uslng the Pulse Code Modulation (PCM) technique, If each eight
blts or A/D data Is stored Into each memory byte location, the whole
RAM of Apple n can only handle a few seconds or digitized data. There
fore, the DPCM encoding approach ls chosen by uttllzing the method of

- 2.5-

•

•

•

c

0

THEORY AND DESIGN

packing and unpacking A/D data described ln thls section.

The data which ls stored does not always change from sample to
sample. Thls wlll always happen when low frequency signals are being
Input and also during the times when no lnput ls being sensed at the
cassette Input port. Therefore data can be stored such that the flrst bit
(leftmost bit) of each memory location (byte) represents the state or the
A/D Input and the next seven blts represents a counter Indicating the
number or samples collected while that Input remained unchanged. If the
counter overflowed the allocated seven bits, the same A/D state bit
would be stored In the next memory location with a new counter value.
Thls solution wlll flU up RAM of Apple II with one to three minutes of
reasonably understandable human volce.

In the processes or storing and playing back the voice, the tlme Is a
function of voice pltch and the settlng or the Input on the tape recorder.
Certain voice sound such as ssss and sh tend to cause a great deal of
change ln the A/D data relatlve to the sampling rate, with the result of
less voice recording tlme for a given amount of computer memory.

In the unpacking of A/D data byte, when the logical AND operator
ls applled to the data byte wlth X'80' value as the second operand, the
result ls the state. of the original A/D Input. On the other hand, the

. counter value for the total number or samples ls obtained by the same
logical AND operator, but with X'7F' value a.S the second operator.

The software routine which does thls unpacking wlll decrement the
counter by one ln each loop or program flow. The output speaker wlll be
toggled each time that the data counter reaches zero and the A/D blt
changes 'state. Thls amounts to producing a click on the output speaker
each time the orlginal input volce signal had a zero crossing.

2.1.6. NOISE DURING PLAYBACK

Although bad quality of the onboard speaker contributes noise dur
Ing the analog slgnal reproduction of voice, the method of sampllng and
reproducing the data Is the main source of noise. It Is Important to sam
ple the A/D converter at a constant rate and to make the corresponding
D/A conversion at the same uniform rate. Any difference In these rates
wlll cause a hlgh nolse level which wlll have to be filtered [REF 6].

- 2.6-

THEORY AND DESIGN

The assembly language routines which are written to sample or
reproduce the Input data both have dUirent logical paths to follow. Take
the routine of Input data sampllng (DIGITAL). Its logical paths test
whether the counter ls being lncremented or whether the counter plus the
data blt are being stored, and whether the least or most slgnlftcant bit of
the storage location has to be lncremented. Each case requires a dltferent
number of machine cycles to complete and thus affects the ttme required
to go back to read the cassette Input port.

The solution Is to make each logical path use the same number of
machine cycles, by utlllzing various delay cycles (whlch do nothing) on
all logical paths except the slowest path. Thls leads to a lower sample
rate, thus reducing the bandwidth or the Input signal maklng volce
recognition more dltrlcult.

There are two possible methods to reduce this bad effect :

(1) Dlgltal ftlterlng techniques.

(2) Hardware filters ot the cassette recorder.

The ftrst technique Is applled to stored data to remove the nolse. It"
ls rejected ln thls project, because lt Involves the designing of a bandpass ,,,
ftlter ot hlgh cG>mplextty. Thls type or filter requires the use of complex
multlplylng coetrlclents and Is not practical for real_tlme Apple U micro
computer operations on large amount or data.

In the second technique, the reproduced analog data ls sent to the
cassette recorder to be either recorded on tape or output ln the P A (pub
llc address) mode. To achieve this purpose, the memory location C020
(cassette output) Is toggled Instead of C030 (Apple Speaker). The cassette
recorder tone control ls used to fl.lter out unwanted nolse. The result ls
qulte satisfactory.

2.2. DESIGN INTENT

The dictionary ls contained In a diskette wtth defined volumename
STORE:. It consists or two types or data files, namely, Index data file
and blnary data file. Any word whlch ls stored In the dlcttonary has two
data records, one record ln each type or data file.

- 2.7 -

•

•

c

c

THEORY AND DESIGN

Each data record in the binary data file is an array of byte strings
and lt ls called blnary sound data record. The array's slze ls five and the
capaclty of each byte strlng ls 255. The content of thls record ls the
blnary data of the dlgltlzed sound of the associated word.

In the lndex data file, each data record consists of four elements,
which are:

(1) The character string of a word.

(2) The number of sound units. This tells the total number of elements
(out of a maxlmum of five) of each binary data record which holds
the dlgltlzed sound data.'

(3) A value which ls used to access the binary data record from the
associated binary data file directly. Actually, this is the record
number of the binary data record in the binary data file.

(4) Status element of boolean value. Thls ls always TRUE for a word
which exists in the dictionary. After a word has been deleted from
the dictionary, the value is FALSE.

All the words In the dictionary are separated Into three sets and
each set of words is associated with a distinct set of starting characters.
This arrangement makes the sequential search of words in the dictionary
easier by reducing the maximum number of words to be searched to one
third of all the words in the dictionary. Therefore, six data files are
needed, three each for the index and binary data files.

In the sample dictionary, all the words are formed by upper case
alphabet letter. The· three sets of startlng characters are: ['A' . .'H'],
['I' . .'P'] and ['Q' . .'Z']. The index records in each Index data file are
keyed by the word string element in alphabetical ascending order. For
the first, second and third set of the above starting characters, respec
tively, the names of the associated pairs of index and blnary data files
are:

(1) INDEXl.DATA and BINARYl.DATA

(2) INDEX2.DATA and BINARY2.DATA

(3) INDEX3.DATA and BINARY3.DATA

For each pair of associated index and binary data files in a new dic
tionary, the record numbers of a pair of index and binary data records
for a word entry In their respectively data files are the same, but after
one or more additions of entrles in the dictionary, the similarity In the
record numbers is not valld anymore. The addition of index records is

- 2.8-

THEORY AND DESIGN

performed as tnsertlon ln various part of the Index data files, ln order to
keep the word string elements In alphabetical ascending order and
preserve the valldity or sequential search on the tndex data records.
Unllke lndex data records, the addition of blnary data records can be
placed at the end of the associated blnary data files. The reason ls that
each Index data record always contains the record number of lts associ
ated binary data record.

For the character string of a word, after lts existence ln the diction
ary has been verified, the process of accessing the blna.ry data record ln
order to reproduce the sound ot thls word requires the following three
Information. They are all elements ot a record type called ELEM:

(1) The number of sound unlts.

(2) The record number of the binary data record.

(3) An Index points to the exact btnary data. file whlch contains the
binary data record.

The values of the first and second elements of an ELEM type record
are obtained from the second and tl:llrd elements of the associated lndex
data record respectively. The third element ls determined by the start
Ing character of word string, the value ls either one, two or three depend
Ing whether lt ls an element of the first, second or third set of starting
characters.

The documentation on the Interface part (GLOBAL unlt) gives more
lnstght on the data structure of thts project.

- 2.Q -

•

•

USER MANUAL

c
CHAPTER 3

USER MANUAL

3.1 PROCEDURES OF THIS PROJECT

All the Pascal language procedures are grouped in four UNITs : UTILITY,
MODULEl, MODULE2 and MODULE3.

In this section, the Pascal procedures which are available to the user
who USES the units are listed. For more description of each procedure, please
refer to section 3.6.

There are four procedures inside MODULEl unit :
(1} BLD_DIRECTORY - builds all index data files.
(2) PRT_ENTRIES - displays the content of index data records in all the index

data files. An option is available to display only one specified index
data file.

(3) BLD_VOICE - builds all binary data files.
(4) CLR_DIRECTORY - deletes all the index and binary data files in the storage

diskette. In other words, the whole dictionary is cleared.

There are seven procedures inside MODULE2 unit :
~~, ADD_XENTRIES- builds temporary index data files to store the new addition
~ of index data records. This is the first part of adding new index data

records into the dictionary.
(2) CMB_XENTRIES - combines (sort merges) each temporary index data file to

its related permanent index data file. This is the second and last part of
adding new index data records into the dictionary.

(3} ADD_BENTRIES - builds temporary binary data files to store the new addition
of binary data records. This is the first part of adding new binary data
records into the dictionary.

(4) CMB_BENTRIES - combines (sort merges) each temporary binary data file to
its related permanent binary data file. This is the second and last part
of adding new binary data records into the dictionary.

(5) DO_DELETE - deletes entries from the dictionary in the storage diskette.
Each entry is a pair of index and binary data records, respectively, from
the related index and binary data files. The entries are not removed phy_
sically, only the STATUS element of each entry is set to FALSE value.

(6) DO_CLNUP - periodical cleanup of the dictionary, all the deleted entries
with FALSE value in the STATUS elements are removed permanently.

(7} IMPROVE_SOUND - improve or update the binary sound data of existing words
in the dictionary.

c
3.1

USER MANUAL

The MODULE3 unit has three procedures :
(1) SPEAK - speaks a word, its binary sound data has already been placed in

the global VOICE buffer. The sound ouput is at the connected speaker of
Apple II or casette recorder. The choices of speaker and analog delay
constant have already been done.

(2) SPEAK_WORD - speaks a specified word which is passed as parameter. The
sound output speaker and analog delay constant should have been chosen.

(3) LISTEN - listens to a word and get the binary sound data from the con
nected casette recorder. The global VOICE buffer is used to store the
result of binary sound data.

The UTILITY unit has ten procedures :
(1) D06_RESET - opens all six index and binary data files.
(2) D06_CLOSE - closes all six index and binary data files.
(3) DISKETTE_ONLINE - verifies and requests that the storage diskette online

by creating or opening a specified data file.
(4) CNT1_ELEM - counts the total number of data records in a specified index

data file.
(5) CNT2_ELEM - counts the total number of data records in a specified

binary data file.
(6) BLDIDX - builds all the index data records of a specified index data

file.
(7) GETVOICE - builds all the binary data records of a specified binary data

file.

•

GET_WORDUNIT - gets a word string and its number of sound units from the.
user interactively.

(9) WORD VERIFY - verifies that a specified word exists in the dictionary.
When-the existence has been confirmed, the information to access the bi_
nary data record is returned. This procedure can be used to update the
number of sound units of a word when the special option is chosen.

(10) FILE_SORT - processes file sort merge on two index data files. Sorting
is on the alphabetical ascending order of the word element in each index
data record.

The three Assembly language routines (external procedures) which process
the sound data directly reside in the system library called SYSTEM.LIBRARY.
In order to call any one of them from a host program, the related declaration
of the following three lines must appear right after the end of VAR declara_
tion section

PROCEDURE DIGITAL (VAR BDATA:SOUND; TEMPO, UNITT:INTEGER) ; EXTERNAL ;
PROCEDURE ANALOG! (VAR BDATA:SOUND; TEMPO, UNITT:INTEGER) ; EXTERNAL ;
PROCEDURE ANALOG2 (VAR BDATA:SOUND; TEMPO, UNITT:INTEGER) ; EXTERNAL ;

For the example of preceding declaration, please check the listing of

3.2 •

USER MANUAL

c
MODULE3 unit in section 3.6.

It is not necessary to use the three external procedures mentioned above
in a host program, the equivalent Pascal language procedures are available
in MODULE3 unit :
(1) Procedure LISTEN - for the DIGITAL external procedure.
(2) Procedure SPEAK - for the ANALOGl and ANALOG2 external procedures.

-

c
3.3

USER MANUAL

~.2 INTERFACE PART OF THE PROJECT

In order to make INTERFACE part of this Voice/Digital and Digital/Voice
Conversion on a Microcomputer easily used, it is defined as a UNIT of
Apple Pascal System and called GLOBAL. All the global constants, types and
variables are defined in here, the default values of some global variables
are assigned. The CODE file of this GLOBAL unit is placed in the System
Library of routines called SYSTEM.LIBRARY, so any Pascal host program which
has a declaration using this GLOBAL unit can access and manipulate the
content of this INTERFACE part.

Placing the interface part in one unit lets the user changes the values
of global constants, data types and variables without having the require_
ment to modify any unit of V/0 and D/V Conversion on a Microcomputer. After
the modification and successful compilation of this GLOBAL unit, the user
only needs to link the codes files of all units with the new code file of
this GLOBAL unit.

•

Each one of the four UNITs (UTILITY, MODULEl, MODULE2 and MODULE3) of this
project has a declaration using the GLOBAL unit at the beginning of ~he
program.

CONSTANT

--MAXFILE = 3 ;
MAXUNIT = 5 i
UNITSIZE = 255 ;
BUFFUNIT = 20 ;
MAXCHAR = 20 ;
MAXWORD = 25 ;
TOTALWORD = lOO ;
FILENMLEN = 40 ;
VOLNMLEN = 8 ;

MAXFILE - maximum number of index data files or binary data files to store
all the available words of dictionary in this project.

MAXUNIT - maximum number of sound units of each word.

UNITSIZE - the total number of bytes for each sound unit.

BUFFUNIT - the total number of sound units of a buffer which is used in
testing the sound input and output of several words.

MAXCHAR - maximum number of characters in each word.

3.4

•

•

USER MANUAL

~

~
MAXWORD - maximum number of words in each sentence.

TOTALWORD - the capacity of each index or binary data file.

FILENMLEN - the maximum length of a filename character string.

VOLNMLEN - the maximum length of a volumename character string, including
the colon character.

TYPE

WORDRANGE = l .. MAXWORD;
TWORDRANGE = O •. TOTALWORD;
FILERANGE = l .. MAXFILE;
UNITRANGE = l .. MAXUNIT;
SPEAKEROF = (CASETTE,APPLE) ;
WORD = STRING[MAXCHARJ ;
FILENAME = STRING[FILENMLENl i
VOLNAME = STRING(VOLNMLENl ;
IDXELEM = PACKED RECORD

STRG : WORD i
UNITT : UNITRANGE ;
IDXX : TWORDRANGE ;
STATUS : BOOLEAN

END ;
ELEM = PACKED RECORD

WUNIT : UNITRANGE ;
WIDX TWORDRANGE ;
WSET : FILERANGE

END ;
SOUND = ARRAY[UNITRANGE] OF STRING[UNITSIZEl ;
SENTENCE = ARRAY[WORDRANGE] OF WORD ;
ELEMARRAY = ARRAY[WORDRANGEJ OF ELEM ;
INDEXFILE = FILE OF IDXELEM ;
BINARYFILE = FILE OF SOUND ;
STRGFILE = FILE OF STRING ;

WORDRANGE - the range of possible number of words in a sentence.

TWORDRANGE - the range of possible record number of a binary data file or
the range of possible number of index data records in an
index data file.

FILERANGE - the range of total number of index data files or binary data
files in the storage diskette.

c
3.5

USER MANUAL

UNITRANGE - the range of possible number of sound units in a word.

SPEAKEROF - the possible speaker destination for the output sound.

WORD - defines the character string size of a word.

FILENAME - defines the character string size of a filename.

VOLNAME - defines the character string size of a volumename for the storage
diskette.

•

IDXELEM - this is the record type of each index data record in the index data
file. The first element is the character string of a word, the se_
cond element is the number of sound units of this word. The binary
sound data is in one of the three binary data files, the third ele_
ment is the index number (record number) of this binary data record
in the associated binary data file. The existing status of this word
in the dictionary is in the STATUS (last) element of this structured
record type.

ELEM - it defines the record type of each element in the ELEMARRAY array type.
The first element of the record is the number of sound units of a word
and the second element is the index number (record number) of the bina_
ry data record in one of the three binary data files. The WSET (last)
element tells which one of the three binary data files has the binar.
data record.

SOUND - it defines the maximum size of binary sound data that a word can
have in the dictionary.

SENTENCE - defines the maximum number of words in a sentence.

ELEMARRAY - each array of this data type associates with a sentence. Each ele_
ment of this array corresponds to a word from the sentence, it
contains all the required information in order to access the bina_
ry data record from a binary data file.

INDEXFILE - file type of index data file.

BINARYFILE - file type of binary data file.

STRGFILE - file type of character string data file.

VARIABLE

IFILEl, IFILE2, IFILE3 INDEXFILE ;

• 3.6

USER MANUAL

-\..
BFILEl, BFILE2, BFILE3 BINARYFILE ;
YFILE : STRGFILE i
VOICE : SOUND ;
SPKER : SPEAKEROF ;
DTEMPO, ATEMPO : INTEGER ;
IlFNAME, I2FNAME, I3FNAME FILENAME ;
BlFNAME, B2FNAME, B3FNAME : FILENAME ;
YFNAME : FILENAME ;
SETlCHR, SET2CHR, SET3CHR, SET4CHR : SET OF CHAR ;
SETlSTCHR, SETCHRS : SET OF CHAR ;
VOLUMENAME : VOLNAME ;
CHRSl, CHRS2, CHRS3, CHRS4, CHRSALL : FILENAME ;
VOICEBUFF : ARRAY[l •• BUFFUNIT] OF STRING[UNITSIZEJ ;
LENWORDS : ARRAY[l .• BUFFUNIT] OF UNITRANGE;
TOTWORDS : INTEGER ;

IFILEl, IFILE2, IFILE3 - file window variables for all three index data files.

BFILEl, BFILE2, BFILE3 - file window variables for all three binary data
files.

YFILE - file window variable for a data file of character string record~.

~ICE - buffer of binary sound data of a word. It is used for the purpose of
~ either speaking or listening a word.

SPKER - it contains the choice of voice output on the speaker of Apple II or
a casette recorder. The default value is Apple II's speaker.

DTEMPO - it contains the delay constant in the process of digitizing the
input sound to get the binary sound data. The default value is one.

ATEMPO - it contains the delay constant in the process of analoging the
binary sound data into the output sound frequency. The default
value is four.

IlFNAME, I2FNAME, I3FNAME - filename variables of all three index data files.

BlFNAME, B2FNAME, B3FNAME - filename variables of all three binary data files.

YFNAME - filename variable of a character string data file.

SETlCHR, SET2CHR, SET3CHR - sets of valid starting characters, respectively,
for the words in the first, second and third index data files.

SET4CHR - a set of digit characters for the valid total numbers of sound
units of a word.

3.7

USER MANUAL

SETlSTCHR - a set of all the valid starting characters of the words in the
dictionary.

SETCHRS - it contains the current set of starting characters.

•
VOLUMENAME - it has the volumename character string of the data storage dis_

kette, the default value is STORE: •

CHRSl, CHRS2, CHRS3, CHRS4, CHRSALL - valid starting characters message
strings, respectively, for SETlCHR, SET2CHR, SET3CHR, SET4CHR and
SETlSTCHR sets of characters.

VOICEBUFF - a big buffer to store the binary sound data of several words,
for the testing purpose of either sound input or output.

LENWORDS - each element of this array contains the number of sound units of
the associated word's binary sound data in the VOICEBUFF buffer.

TOTWORDS - total number of words which have the binary sound data in the
va icz f31,l.Ff b~A.fj~r.

3.8

•

•

http:I3I"l.FF

USER MANUAL

3.3 PROCESSING

r-
'-!.3.1 AVAILABLE OPERATIONS AND RELATED UNITS

In order to do any one of the available operations, the calling Pascal
language host program must have the following statement before the LABEL
or CONSTANT definition section to indicate which UNITs of the five are
used :

USES GLOBAL, [UTILITY], MODULEx [, MODULEy, MODULEz] ;
the ending letter 'x' of MODULEx is either digit characters 1, 2 or 3. It
is similar for ending letters 'y' and 'z' in MODULEy and MODULEz respect_
lvely. The UTILITY unit is used only when at least one of its procedures
is needed by the host program in the processing.

There are three operations involving speaking and listening which are
grouped in MODULE3 unit, therefore, for one or more of these operations,
the host program must have the following statement :

USES GLOBAL, UTILITY, MODULE3 ;

The three operations are :
(1) Basle speak - call procedure SPEAK
(2) Speak a specified word - call procedure SPEAK_WORD
(3) Basic listen - call procedure LISTEN

The UTILITY unit is used because its D06_RESET and D06_CLOSE proce_
dures are called by the host program to open and close all index and

~~inary data files. If the host program opens and closes each data file
~rectly by calling the build in file I/0 procedures RESET and CLOSE

respectively, the UTILITY unit is not needed.

The operations which work on the database of words or dictionary are
(1) Create a new dictionary - call procedures BLD_DIRECTORY and BLD_VOICE.

USES GLOBAL, MODULE! ;
(2) Purge the whole dictionary - call procedure CLR_DICTIONARY •.

USES GLOBAL, MODULE! i
(3} Display content of all index data files (index data records) - call

procedure PRT_ENTRIES.
USES GLOBAL, MODULEl i

(4) Add new entries to the dictionary- call procedures ADD_XENTRIES,
ADD_BENTRIES, CMB_XENTRIES and CMB_BENTRIES.
USES GLOBAL, MODULE2 ;

(5) Delete entries from the dictionary - call procedure DO_DELETE and
DO_CLNUP.
USES GLOBAL, MODULE2 i
For a speedy deletion only procedure DO_DELETE is required. The phy_
sical removal of the deleted records can be carried out later with
the periodical maintainance procedure DO_CLNUP.

(6) Periodical maintainance on the dictionary - call procedure DO_CLNUP.
USES GLOBAL, MODULE2 ;

c 3.9

USER MANUAL

It does the physical removal of deleted records {index and binary
data records) from the dictionary. These data records have been de •
leted previously with the SPEEDY DELETION option.

{7) Update binary data records - call procedure IMPROVE_SOUND.
USES GLOBAL, MODULE! ;

For any one of the above seven operations, one or more procedures of
UTILITY unit might be called but the related unit of the operation
already has an USES statement with UTILITY unit, therefore the host pro_
gram does not need to USES the UTILITY unit. it is assumed that the host
program does not call any procedure of UTILITY unit, otherwise the USES
statement must include the UTILITY unit.

There are two sample programs in the following pages, the first sample
shows the operations of MODULE! and MODULE2 units and the second sample
shows the operations of MODULE3 unit.

3.10

•

0

c:J3.2 PROGRAMMING EXAMPLES OF ALL AVAILABLE OPERATIONS

'* -- *)
This is the example of using SPEAK, SPEAK_WORD and LISTEN procedures

\ 4 of MODULE3 module.
(*
·c *
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
<*
(*
(*
(*
(*
(*
(*

Several procedures are built, each of them either calls SPEAK,
SPEAK_WORD or LISTEN to complete the task, some procedures of
UTILITY module are called during the processing.

The main program must call D06_RESET and D06_CLOSE at the beginning
and at the end of the program. These two procedures are from the
UTILITY module, opening and closing all six index and binary data
files respectively.

This example USES three modules :
GLOBAL - must be USED by all application program
MODULE3 - this is the example of using it
UTILITY - several procedures of this module are called

The compiler option $S++ is used in this example, it slows down the
speed of compilation but more memory space is available.

The following global variables from the GLOBAL module are used in
this example : .

VOICE - storing buffer of the digitized voi'ce data of a word
ATEMPO - analoging delay constant, used in SPEAKing procedure
DTEMPO - digitizing delay constant, used in LISTENing procedure
SPKER - for chasing the speaker of Apple II or cassette recorder

in speaking (playback the voice of) words
(* --

PROGRAM USER_MANUAL_MODULE3 (INPUT, OUTPUT) ;

(*$S++*) (* compiler option *)

USES GLOBAL, UTILITY, MODULE3 ;

VAR WRD : WORD ;
STRG : STRING ;
FN : FILENAME ;
CONFIRM : BOOLEAN ;

C* this example only uses *)
(* these three modules *)

(* variables of the main program *')

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

(*
(*
(*
(*
(*
(*
(*

-- *)

(*
. (*
''t

l *

This procedure speaks a word. The character string of the word to be
spoken is passed in the parameter WRD.

Input :
WRD - parameter, word to be spoken.

Output :
Sound of
attached
variable

the word which is output on the speaker of Apple II or
casette recorder depending on the value of the global
SPKER.

(* The following procedures are called

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

3 .1(

•

•

•

0
t 11:

(*
(*
(*
(*
(*
(*
(*
(*

WORD_VERIFY - module UTILITY, verifying whether the passing para_ *)
meter WRD is in the dictionary. When it exists, return all *)
required information in FNDREC parameter in order to access the *)
binary sound data from the related binary data file. *)

SPEAK_WORD - module MODULE3, speaks the word in WRD *)
LENGTH - string built in function, get the length of the character *)

string *)

The following global variables of the GLOBAL unit are used :
None

*)
*)
*)
*)

PROCEDURE WORD_SPEAK (WRD : WORD) ;

VAR FOUND, CHANGE BOOLEAN ;
L : INTEGER ;
FNDREC : ELEM ;

BEGIN

c

L := LENGTH{ WRD) ;

IF (L > 0,
BEGIN

THEN

CHANGE := FALSE ;
FOUND := FALSE ;

(* process only when the word is not NULL *)

(* regular verification of word *)

WORD_VERIFY(CHANGE, FOUND, WRD, FNDREC) ; (* verify existence *)
(* of word & get all *)
(* needed information*)

IF (FOUND)
SPEAK_WORD

ELSE
WRITELN ('

END

THEN
(FNDREC (* exist, speak it *)

WORD ':7,WRD:L,' IS NOT IN THE DICTIONARY')

END ;

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

c
t *
(*

-- *)
This procedure speaks a sentence. The character string of the sen_
tence to be spoken is passed in the parameter STRG.

Input
STRG - parameter, sentence to be spoken.

Output
Sound of the sentence which is output on the speaker of Apple II
or attached casette recorder depending on the value of the global
variable SPKER.

The following procedures are called :
ANALYZE_SENTENCE - assume this procedure exists, it gets all the

*)
*)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
*)

3.11

3 .1·

words of a sentence and places them in a word buffer WBUFF. *> •
WORD_ VERIFY - module UTILITY, verifying whether the passing para_ *) ·· ..

(* meter WRD is in the dictionary. When it exists, return all *)
(* required information in FNDREC parameter in order to access the *)
C* binary sound data from the related binary data file. *)
(* SPEAK_WORD - module MODULE3, speaks the word in WRD *)
C* LENGTH - string built in function, get the length of the character *)
(* string *)
(* *)
(* The following global variables of the GLOBAL unit are used : *)
(* None *)

(* -- *)

PROCEDURE SPEAK_STRING (STRG : STRING) ;

VAR WBUFF : SENTENCE ;
IDX, I, L, TOT : INTEGER ;
WRD : WORD ;
EOS, CHANGE, FOUND BOOLEAN ;
FNDREC ELEM ;
EARRAY : ELEMARRAY ;

BEGIN

TOT := 0 ;

\NALYZE_SENTENCE(STRG,WBUFF,IDX) ; (* get all the words *)
(* of the sentence *)

CHANGE := FALSE ; (* regular verification of word *)

(* Loop, verifies all the words in WBUFF buffer. Processes only one *)
(* word in each pass of the loop. The IDX variable is the total num_ *)
(* ber of words in the sentence (WBUFF buffer). *)

FOR I := 1 TO IDX DO
BEGIN

WRD := WBUFF[IJ i
FOUND := FALSE ;

WORD_VERIFY(CHANGE, FOUND, WRD, FNDREC) ; C* verify each word *)

IF (FOUND) THEN
BEGIN

TOT := TOT + 1
EARRAY[TOTl :=

END
ELSE
BEGIN

.
' FNDREC

L := LENGTH(WRD) ;

(* only keep & process those words *)
(* which exist in the dictionary. *)
(* TOT is the total number of words*)
(* which exists in the dictionary. *)

WRITELN('> WORD ':7,WRD:L,' IS NOT IN THE DICTIONARY')
END

END ;

•

•

O
IF (TOT > 0) THEN
lEGIN

FOR I := 1 TO TOT DO
BEGIN

FNDREC := EARRAY[I] i
SPEAK_WORD(FNDREC)

END
END

END ;

(* speak only when the sentence has *)
(* one or more valid words. *)

(* speak each word separately *>
(* speak the word *)

(* -- *)
(* This procedure speaks all the sentences of a text data file. The *)
(* name of the text file is passed in the parameter FN. The parameter *)
(* must be declared as VARiable, otherwise the file window pointer *)
(* of this file can not be advanced by the GET procedure. *)
(* *)
<* A volume name should accompany the filename, otherwise the boot *)
(* diskette is assumed to contain the text data file. *)
(* *)
(*Input: *)
(* FN - parameter, data file of sentences to be spoken. *)
(* *)
(*output : ·*>

.. - Sound of the sentences which are output on the s-peaker of Apple II *)
or attached casette recorder depending on the value of the global *)
variable SPKER. *)

(* *)
(* The following procedures are called : *)
(* CLOSE - build in file I/O procedures, open an existing data file. *)
(* SPEAK STRING - defined procedure in this exam~le program, speaks a *)
(* sentence. *)
(* GET - build in file I/O procedure, get next element from the file *)
(* CLOSE - build in file I/0 procedures, close the file *)
(* *)
(* The following global variables of the GLOBAL unit are used *)
(* YFILE - file window variable of a data file of character strings. *)

(* -- *)

PROCEDURE SPEAK_FILE

VAR L, IDX : INTEGER ;
STRG : STRING ;
EOS : BOOLEAN ;

BEGIN

RESET(FN, YFILE) . ,

VAR FN : FILENAME) ;

(* open the text
(* exists and no

OWHILE(NOT(EOF(YFILE))) DO (* process
EGIN (* file in

STRG := YFILE"" ; (* get the

file, assume the file *)
error in the file I/0. *)

one ~entence of the *)
each pass of the loop *)

sentence from the *)

3.13

3.14

SPEAK_STRING(STRG, IDX, EOS) ;
(* file window pointer *)

(* speak the sentence *) • GET(YFILE) (* advance the file window pointer *)

END ;

CLOSE(YFILE) (* close the text data file *)

END ;

•

•

c
l *
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(* r
~

-- *)
This procedure stores the digitized voice data of one or more words
into a buffer. The voice of each full word is input separately. Each
full word may consist of several words, as long as the total unit of
sound is not greater than MAXUNIT (5). The capacity of this buffer
VOICEBUFF is 20 (BUFFUNIT) units of sound.

The delay constant of digitizing (DTEMPO) can be chosen and input by
the user interactively. Therefore, this procedure is useful for the
user to find out the best value of delay constant in the digitizing
process of his/her own voice.

Input :
Voice of one or more words.

Output :
Digitized binary voice/sound data in the VOICE global buffer.

The following procedure is called :

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

LISTEN - MODULE3 unit, digitize the input voice and place the
tized binary voice data into global buffer VOICE.

digi_*)
*)
*)

The following global variables of the GLOBAL unit are used : *)
TOTWORDS - total number of words in the VOICEBUFF buffer. *)
DTEMPO - delay constant in digitizing process. *)
MAXUNIT - maximum number of sound units of each word. *)
BUFFUNIT - maximum capacity of VOICEBUFF buffer. *)
LENWORDS - contains the number of sound units of each word in the *)

(* VOICEBUFF global buffer. *)
(* VOICE - buffer of binary sound data of a word. *)
(* VOICEBUFF - buffer of binary sound data of several words. *)
(* -- *)

PROCEDURE LISTEN_BUFFER ;

VAR I,PTR,VAL : INTEGER ;
EOLB : BOOLEAN •i
INPKEY : CHAR ;
NUNIT : UNITRANGE i

BEGIN

PTR := 0 ;
TOTWORDS := 0 ;
EOLB := FALSE ;
PAGE(OUTPUT) ;
WRITELN(' STORE VOICE OF WORDS IN A BUFFER ') ;
WRITELN('---------------------------------- 1

) ;

WRITELN ; (* get the delay constant of digitizing interactively *)
WRITELN('> INPUT DELAY CONSTANT OF DIGITIZING: ') ;

c:;READLN(DTEMPO) ;

REPEAT (* process each full word separately *)

3.15

WRITELN ; C* get the total units of sound interactively *)
WRITELN('> INPUT TOTAL SOUND UNITS OF WORD [1, .• ,5] ') ;
WRITE(' INPUT 0 TO QUIT, UNIT: ') ;
READLN(VAL) ;

IF ((VAL>O) AND (VAL<=MAXUNIT) AND
((PTR+VAL)<=BUFFUNIT)) THEN

BEGIN

TOTWORDS := TOTWORDS + 1 ;
LENWORDS[TOTWORDSJ := VAL ;
NUNIT := VAL ;
WRITELN ;

(* process additional word *)
(* only when the capacity *)
(* of the buffer is not *)
(* exceeded *)

WRITELN('> HIT RETURN KEY

LISTEN (NUNIT) i
(*
(*
(*

WHEN READY FOR SOUND INPUT') ;
digitizing the input sound,
the digitized voice data is

*)
returned *)

*) in the global buffer VOICE
READLN(INPKEY} ;
FOR I := 1 TO NUNIT DO

VOICEBUFF[PTR+Il := VOI~E[I) ;
PTR := PTR + NUNIT

END

(* transfer data of each *)
(* word into the destina *)
(* tion buffer VOICEBUFF *)

ELSE IF (VAL = 0) (* normal ending of input sound *)

ELSE IF
THEN
BEGIN

THEN EOLB := TRUE

(PTR+NUNIT) > BUFFUNIT

EOLB := TRUE ;
WRITELN ;

(* exceed buffer capacity, *)
(* end of input with a *)
(* message *)

WRITELN('> BUFFER HAS< ',NUNIT:l,' UNITS VACANT')
END

UNTIL EOLB

END ;

(* -- *}
(* This procedure speaks the digitized voice data of one or more words *)
(* from buffer VOICEBUFF. The capacity of this buffer is 20 (BUFFUNIT) *)
(* units of sound. *)
(* *)
(* The delay constant of analoging (ATEMPO) can be chosen and input by *)
(* the user interactively. Therefore, this procedure is useful for the *)
(* user to find out the best value of delay constant in the playback *)
(* process of his/her own digitized voice data. *)
(* *}
(* This procedure is used after the preceding LISTEN_BUFFER procedure *)

•

•

'* has been called. The combination of these two procedures gives the *) •
user his/her own best & unique pair of digitizing and analoging *)

,A delay constants. The reason for this unique pair of constants is *)
(* that each person has distinct voice. *)

r:ft *>
'-"' Input : *)

<* CONFIRM- parameter, wait for the user to press the RETURN key to *)
(* indicate that he/she is ready to listen. *)
(* VOICEBUFF - buffer of binary sound data of several words. *)
(* *)
(* Output : *)
(* Sound of the words in VOICEBUFF buffer which are output on the *)
(* speaker of Apple II or attached casette recorder depending on the *)
(* value of global variable SPKER. *)
(* *)
(* The following procedure is called *)
(* SPEAK - MODULE3 unit, analog (playback) the digitized binary voice *)
(* data which resides in the global buffer VOICE *)
(* *)
(* The following global variables of the GLOBAL unit are used *)
(* TOTWORDS - total number of words in the VOICEBUFF buffer. *)
(* ATEMPO - delay constant in digitizing process. *)
(* LENWORDS - contains the number of sound units of each word in the *)
(* VOICEBUFF global buffer. *)
(* VOICE - buffer of binary sound data of a word. *)
(* VOICEBUFF - buffer of binary sound data of several words. *)
(* -- *)

PROCEDURE SPEAK_BUFFER (CONFIRM : BOOLEAN) ;
~'

_RI, J, PTR, STRTPTR, ENDPTR : INTEGER;
. INPKEY : CHAR ;

NUNIT : UNITRANGE ;

BEGIN

c

WRITELN ; (* get the delay constant of analoging interactively *)
WRITELN('> INPUT DELAY FACTOR OF ANALOGING: 1) ;

READLN(ATEMPO) ;

IF (CONFIRM) THEN (* confirm that user is ready to listen *)
BEGIN

PAGE(OUTPUT) ;
WRITELN('> HIT RETURN KEY WHEN READY') ;
READLN(INPKEY)

END ;

STRTPTR := 1 ; (* speak each full word separately *)
FOR I := 1 TO TOTWORDS DO
BEGIN

NUNIT := LENWORDS[Il ; (* total unit of sound of each full word *)
ENDPTR := STRTPTR + NUNIT - 1 ;
J : = 0 ;

FOR PTR := STRTPTR TO ENDPTR DO
BEGIN

J := J + 1 ;
VOICE[J] := VOICEBUFF[PTR]

(* transfer digitized data of *)
(* each word into the global *)
(* buffer VOICE *)

3.17

END ;

SPEAK (NUNIT) ;

STRTPTR := ENDPTR + 1

END

END ;

(* speak the full word *)

(* The main program of USER_MANUAL_HODULE3 sample program starts here *)

BEGIN

D06_RESET ; (* open all index & binary data files of the dictionary *)

SI?KER := APPLE i (* utilize the Apple II speaker for voice output *)

(* Speak the word 'MILLION' ten times, each time varies the value of *)
(*the analog delay constant ATEMI?O in the sequence of 1, •• ,10. Try *l
(* to decide which value of ATEMPO gives the best quali,ty of play_ *)
(* back voice. · *)

WRD := 'MILLION' ;
FOR ATEMI?O := 1 TO 10 DO

3 .lt

•

WORD_SPEAK (WRD) ; 4lt
(* Speak the following sentence in STRG variable ten times, each *>
(* time varies the value of the analog delay constant ATEMI?O in the *)
(*sequence of 1, •. ,10. Try to decide the best value of ATEHPO. *)
(* *)
(* The combination result of this test and the preceding test gives *)
(* a good estimation of the most suitable value of ATEMPO, to be *)
(* used in speaking any word of the existing dictionary from the *)
(* Apple II speaker. The reason for these two tests is that diffe_ *)
(* rent Apple II (especially clone) micro computers might not have *)
(* exactly similar speaker. *)

STRG := 'TUESDAY, THE FIFTH DAY OF MAY,· YEAR OF ONE THOUSAND NINE
HUNDRED AND EIGHTY SEVEN' ;

FOR ATEHPO := 1 TO 10 DO
SPEAK_STRING (STRG) ;

(* Speak all the sentences of a text file. Use the speaker of a con_*)
(* nected casette recorder for voice output, employ a fixed value *>
(* for the analoging delay constant ATEMPO. *)

SPKER := CASETTE ;
ATEMPO := 4 ;
FN := 'fS:TEST.TEXT' ;

SPEAK_FILE (FN) ;

(* choose speaker of casette recorder *)
(* fixed value for the delay constant *l
(* text file from the 15: disk drive *)

(* speak it *)

(* Digitize a set of several speaking words of an individual user *) •

(* C(*
(*
(*
(*
(*
{*
(*
(*

five times, similar or different set of words can be used in each *)
time but different value of DTEMPO delay constant is chosen. *)

*)
After each digitizing process, the digitized voice data in the *)
VOICEBUFF buffer is spoken (played back) five times, using a *)
different value of ATEMPO delay constant in each speaking process.*)

In both processes, the choice of delay constants ATEMPO and
DTEMPO is done interactively.

CONFIRM := TRUE ;
FOR I := l TO 5 DO
BEGIN

LISTEN_BUFFER ;

FOR J := l TO 5 DO
SPEAK_BUFFER (CONFIRM

END ;

(* need confirmation before speaking *)

(* listen, get the digitized voice data *)

; (* speak it, still using the *)
(* speaker of casette recorder *)

*)
*)
*)

D06_CLOSE (* ending, close all data files of the dictionary *)

END.

-

c

3.19

--- *)
This is the example of utilizing MODULEl and MODULE2 units to *)

(* create, update and delete the dictionary in the storage diskette. *)
*)
*)
*)
*)
*)
*}
*)
*}
*}
*)
*)
*)
*)

*)
*)

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

This example USES four units :
GLOBAL - must be used by all application host program.
MODULEl - this is the example program of using it.
MODULE2 - this is the example program of using it.
UTILITY - several procedures of this unit are called.

The compiler option $S++ is used in this example, it slows down the
speed of compilation but more memory space is available.

The following global variables of the
VOLUMENAME, DTEMPO, ATEMPO, SPKER,
IlFNAME, I2FNAME, I3FNAME, BlFNAME,
IFILEl, BFILEl.

GLOBAL unit are used

B2FNAME, B3FNAME,

PROGRAM USER_MANUAL_MODULEl_MODULE2 (INPUT, OUTPUT } ;

(*$S++*) (* compiler option *}

USES GLOBAL, UTILITY, MODULEl, MODULE2 ; (* declare the units ~)
(* used in here. *)

- ·~ CHOICE, CNTl, CNT2 : INTEGER i

BEGIN

(* --- *)
(* Build the dictionary in the default storage diskette STORE: • *)
(* --- *)

(* Part 1 - Build the index data files. Directory of all the words *>
(* and indices. The creation and closing of data files are *)
(* done in the following called procedure. *)

'

BLD_DIRECTORY i

(* Part 2 -
(*
(*
(*
{*

BLD_VOICE ;

Build the binary data files, voice input of all words.
The creation and closing of data files are done ln the
following called procedure.
Use the default value 1 of the delay constant in the
voice digitizing process.

*)
*)
*)
*)
*)

(* --- *)
(* Update on the dictionary. The default storage diskette STORE: has *)
(*all the entries (index and binary data files). *)
(* --- *)

(* Insertion of entries. *)

3. 21

•

•

•

0 'DD_XENTRIES .
I <* insertion of index data records *)

ADD_BENTRIES

CMB_XENTRIES

CMB_BENTRIES

(* Deletion

DO_DELETE ;

DO_CLNUP .
I

.
I

.
I

.
I

of entries.

(* insertion of binary data records, *)
(* use default value 1 of delay constant*)
(* combine new & old index data records *)

(* combine new & old binary data records *)

*)

(* speedy deletion *)

(* clean up the deleted records physically *)
(* and permanently from the dictionary *)

(* Improve the sound of entries. *)

DTEMI?O := 2 ;
D06_RESET ;

IMI?ROVE_SOUND;

D06_CLOSE ;

(* use new value of delay cocnstant *)
(* open all data files *)

(* close all data files *>

(* Print the directory of the dictionary, content of all index data *)
~· (* records from the theree index data files. *)

'-" CHOICE := 4 i
I?RT_ENTRIES (CHOICE) ;

(* --- *)
(* Deleting the whole dictionary in the default storage diskette *)
(* STORE: • *)
(* --- *)

CLR_DICTIONARY ;

(*
(*
(*
(*
(*

--- *)

(*
(*
(*
(*

Modify the default values of some global variables.

The change of values only applies to the current processing of
all procedures in the project. After the Apple II UCSD Pascal
system is rebooted, it is back to the default values.

*)
*)
*)
*)
*)
*)

(*
(*
(*

0<*

If change of default values must be used in every processing, it *)
is a good practice to define a special procedure which USES GLOBAL*)
unit. All the change of default values is defined in this special *)
procedure, the main program of application host program must call *)
this special procedure in the beginning. *)
--- *)

VOLUMENAME := '15:' ; (* treate any diskette in drive *)
(* 15: as the storage diskette. *)

3.21

'TEMPO : = 5 ;
OTEMPO := 5 ;

(* change the delay constants for *)
(* analoging & digitizing processes. *)

SPKER := CASETTE ; (* use the speaker of attached casette *)
(* recorder for voice output. *)

C* Change the filenames of all index and binary data files. *)

IlFNAME . -.-
I2FNAME . -. -
I3FNAME ·-.-
BlFNAME . -. -
B2FNAME ·-.-
B3FNAME ·-. -
D06_RESET ;

CNTl_ELEM

CONCAT(VOLUMENAME,'IDXl.DATA') ;
CONCAT(VOLUMENAME,'IDX2.DATA') .

CONCAT(VOLUMENAME,'IDX3.DATA') ;
CONCAT(VOLUMENAME,'BINl.OATA') .

CONCAT(VOLUMENAME,'BIN2.DATA') ;
CONCAT(VOLUMENAME,'BIN3.DATA') .

I

(* open all data files in the new *)
(* storage diskette in drive 15: .*)

IFILEl, CNTl) ; (* count the total I of index data *)
<* records in the new first index *)
(* data file. *)

CNT2_ELEM (BFILEl, CNT2) ; (* count the total I of binary data *)
(* records in the new first binary . *)
(* data file. *)

CHOICE := 3 ;
PRT_ENTRIES (CHOICE) ;

D06_CLOSE

END.

"(* print the content of all index *)
(* data records in the new third *)
(* index data file. *)

(* close all data files *)

3.2

•

•

•

USER MANUAL

<:).4 SYSTEM CONFIGURATION

3.4.1 FLOPPY DISKETTES SUPPLIED

Three floppy diskettes are supplied in this project. The volumename of
these three diskettes are AUDIO:, UNIT: and STORE:.

There are five files inside the AUDIO: diskette, they are :
(1) SYSTEM.APPLE, SYSTEM.PASCAL, SYSTEM.MISCINFO, SYSTEM.CHARSET - these

four system files are needed to boot the Apple UCSD Pascal System.
(2) SYSTEM.LIBRARY - it is the system library of this project.

There are seven library units inside the SYSTEM.LIBRARY library :
(1) PASCALIO - Apple Pascal System Linked Intrinsic routines for file I/0.
(2) GLOBAL -· It is the interface part of this project. The user must

'USES' it in the host program in order to call any Pascal language
procedure of this project.

(3) DIGITAL - It contains the three Assembly language routines for the
tasks of voice digitizing and analoging. The routine names are DIGITAL,
ANALOG! and ANALOG2.

(4) UTILITY - code file of UTILITY unit.
(5) MODULE! - code file of MODULE! unit.
(6) MODULE2 - code file ~f MODULE2 unit.
(7) MODULE3 - code file of MODULE3 unit.

~ Inside the UNIT: diskette, the code and text files of all five units can
be found. There are twelve files :
(1) DA.TEXT and DA.CODE - they are the files of DIGITAL, ANALOG! and

ANALOG2 external procedures.
(2) GLOBAL.TEXT and GLOBAL.CODE - files of GLOBAL unit.
(3) UTILITY.TEXT and UTILITY.CODE - files of UTILITY unit.
(4) MODULEl.TEXT and MODULEl.CODE - files of MODULE! unit.
(5) MODULE2.TEXT and MODULE2.CODE files of MODULE2 unit.
(6) MOOULE3.TEXT and MODULE3.CODE - files of MODULE3 unit.

The STORE: diskette has all the data files. There are three index data
files, three binary data files and one character string data file. In
other words, the STORE: diskette is the dictionary of this project. The
filenames are :
(1) INDEX1.DATA - it is the index data file for those words with starting

characters in the range of A, .• ,H.
(2) INDEX2.DATA - it is the index data file for those words with starting

characters in the range of I, •• ,P.
(3) INDEX3.DATA - it is the index data file for those words with starting

characters in the range of Q, •. ,z.
(4) BINARYl.DATA it contains the binary sound data of all the words in

INDEXl.DATA file.
(5} BINARY2.DATA it contains the binary sound data of all the words in

INOEX2.DATA file.

0 3.23

USER MANUAL

(6) BINARY3.DATA- lt contains the binary sound data of all the words in ·~
INDEX3.DATA file.

(7) STRING.DATA - this is a data file of character string record for demon
stration purpose, each string (sentence) has one or more
words. Some of the words in a string record might not
exist in the dictionary.

The supplied diskettes AUDIO: and STORE: must be available at the same
time. It is not advisable to do program development on the STORE: dis_
kette, disk space is available in the AUDIO: diskette for programming
purpose.

3.4.2 HARDWARE CONFIGURATION

This project is intended to run on the Apple II and Apple II Plus
computers with a CRT, although the development was carried out on an
Apple II Plus compute!:.

The following extl:a items are needed :
(1) Apple Pascal system
(2) Apple Language system with the requil:ed language card
(3) 48K or more bytes of installed RAM
(4) Two or more Apple Disk II disk drives

The previous 3.4.1 subsection states that the supplied diskettes
AUDIO: and STORE: must be available at the same time, therefore the
above requirement of two or more disk drives is justified.

A cassette recorder with RCA plugs connected to the Apple II compu_
ter's cassette input and output ports is optional. A connected cassette
recorder gives the following advantages :
(1) Input (listen) - digitizing input sound. This is better than the

direct microphone input. The volume and tone control of the ea_
sette recordel: can be used to input the correct amplitude and con_
trol the frequency range. In this way, the given voice can be re_
produced with minimal noise. At the same time, the best of the re_
corded voices can be chosen and replayed repeatedly.

(2) output (speak) - analoging binary sound data. Voice is recorded on
the cassete tape or output in the public address (PA) mode. The
cassette recorder tone control is used to filter out unwanted noise .

3.24

~

•

USER MANUAL

-~S. LISTING OF WORDS IN THE SAMPLE DICTIONARY

There are 47 words in the sample dictionary. For the groups of words
which have the starting character in the sets of ['A', •• ,'H'J, ['I', •. ,'P'l
and ['Q', •• ,'Z'l, respectively, the total number of words are 15, 13 and
19. The following table is a listing of all the words with the units of
sound of each word.

UNITS OF UNITS OF UNITS OF
WORD SOUND WORD SOUND WORD SOUND

-------- -------- --------
APRIL 2 JANUARY 3 SATURDAY 3
AUGUST 4 JULY 2 SEPTEMBER 3
DECEMBER 4 JUNE 2 SEVEN 2
EIGHT 2 MARCH 2 SEVENTEEN 3
EIGHTEEN 2 MAY 1 SEVENTY 3
EIGHTY 2 MILLION 3 SIX 2
ELEVEN 3 MONDAY 2 SIXTEEN 3
FEBRUARY 3 NINE 1 SIXTY 3

"" FIFTEEN 2 NINETEEN 2 SUNDAY·.· 2
FIFTY 2 NINETY 2 TEN 1
FIVE 2 NOVEMBER 3 THIRTEEN 3
FORTY 2 OCTOBER 3 THIRTY 2
FOUR 1 ONE 1 THOUSAND 3 - 2 ~.JRTEEN THREE 2
c.vNDRED 2 THURSDAY 3

TUESDAY 4
TWELVE 2
TWENTY 2
TWO 1

' .

0
3.25

3.6 DESCRIPTION AND LISTING OF PROCEDURES

•

•

-

~-- *> <* This is the GLOBAL unit of Voice/Digital and Digital/Voice Conver
<* sion on a Microcomputer project.
<*
<*
<*
C*
<*
<*
<*
<*
<*
<*
<*
<*
<*

All the constants, variable types
in this unit and will be utilized
project. Any Pascal language host
access and manipulate the content

and global variables are declared
by all the procedures of this
program which USES this unit can
of this GLOBAL unit.

In the IMPLEMENTATION section of this unit, some global variables
are initialized with defaul values.

The compiler option $S++ is invoked here, more memory space is
available for the compiling process but the speed of compilation is
decreased.

<* compiler option *>
UNIT GLOBAL ;

INTERF'ACE

._::'1NST

'-' MAXUNIT = 5 ;
MAXF'ILE = 3 ;
MAXCHAR = ·20 ;
MAXWORD = 25 ;
UNITSIZE = 255 ;
TOTALWORD = 100 ;
BUF'F'UNIT = 20 ;
F'ILENMLEN = 40 ;
VOLNMLEN = 8 ;

TYPE

0

WORDRANGE = l •• MAXWORD;
TWORDRANGE = O •• TOTALWORD ;
F'ILERANGE = 1 •• MAXF'ILE;
UNITRANGE = 1 •• MAXUNIT;
SPEAKEROF' = CCASETTE,APPLE)
WORD = STRINGCMAXCHARJ ;
F'ILENAME = STRINGCF'ILENMLENJ ;
VOLNAME = STRINGCVOLNMLENJ ;
IDXELEM = PACKED RECORD

STRG : WORD ;
UNITT : UNITRANGE
IDXX : TWORDRANGE ;
STATUS : BOOLEAN

END ;
ELEM = PACKED RECORD

WUNIT : UNITRANGE
WIDX : TWORDRANGE ;

*)
*>
*)
*>
*>
*)
*>
*>
*>
*>
*)
*>
*>
*>
*>

3.26

WSET : riLERANGE
END ;

SOUND = ARRAYCUNITRANGEJ Or STRINGCUNITSIZEJ ;
SENTENCE = ARRAYCWORDRANGEJ Or WORD ;
ELEMARRAY = ARRAYCWORDRANGEJ Or ELEM ;
INDEXriLE = riLE Or IDXELEM ;
BINARYriLE = riLE Or SOUND ;
STRGriLE = riLE Or STRING ;

VAR

IriLEl, IriLE2, IriLE3 : INDEXriLE ;
BriLEl, BriLE2, BriLE3 : BINARYriLE ;
YriLE : STRI3riLE ;
VOICE : SOUND ;
SPKER : SPEAKEROr ;
DTEMPO, ATEMPO : INTEGER ;
IlrNAME, I2rNAME, I3rNAME : riLENAME ;
BlrNAME, B2rNAME, B3rNAME : riLENAME ;
YrNAME : riLENAME ;
SETlCHR, SET2CHR, SET3CHR, SET4CHR : SET Or CHAR ;
SET1STCHR, SETCHRS : SET Or CHAR ;
VOLUMENAME : VOLNAME ;
CHRSl, CHRS2, CHRS3, CHRS4, CHRSALL : riLENAME ;
VOICEBUrr : ARRAYCl •• BUrrUNITJ Or STRINGCUNITSIZEJ
LENWORDS: ARRAYCl •• BUrrUNITJ Or UNITRANGE;
TOTWORDS : INTEGER ;

PROCEDURE DO_NONE ;

IMPLEMENTATION

PROCEDURE DO_NONE ;

BEGIN

END

BEGIN

VOLUMENAME := 'STORE:' ;

DTEMPO : = 1 ;
ATEMPO := 4 ;

SPKER := APPLE ;

SET1STCHR . -. - C'A' •• 'Z'l
~TlCHR := C'A' •• 'H'l . ,
..::T2CHR . -.- C'I' •• 'P'l ;

SET3CHR . - C'Gl' •• 'Z'J . .- ,
SET4CHR . - ('1' •• '3'J . .- ,

. ,

<* dummy procedure declaration *>

<* at least one pr•:-cedure must reside *>
<* in this section, therefore the *>
<* dummy procedure is used here *>

<* storage diskette *>
<* delay constants *>

<* use Apple II speaker *>
<* define sets of *>
<* starting characters *>

3.27

0

•

•

d~fin~ fil~nam~s of all ind~x and binary data fil~s.

I1FNAME . -.- CDNCATCVOLUMENAME,'INDEX1.DATA')
I2FNAME . -.- CONCATCVDLUMENAME,'INDEX2.DATA')
I3FNAME . -.- CDNCATCVOLUMENAME,'INDEX3.DATA')
B1FNAME := CDNCATCVOLUMENAME,'BINARY1.DATA')
B2FNAME := CONCATCVDLUMENAME,'BINARY2.DATA'>
B3FNAME := CQNCATCVOLUMENAME,'BINARY3.DATA'l

YFNAME := CONCATCVDLUMENAME,'DEMO.DATA') ;

CHRS1 . -.- 'A •• H'
CHRS2 := 'I. • P' ;
CHRS3 := 'Q. • Z' . ,
CHRS4 . - , 1 •• 5' . . - ,
CHRSALL := 'A •• Z'

END .

' .

c

; . , . ,
. ,

C* d~mo data file*>
<* of s~n~t~nces *>

3.28

<~ --- *>
<* This is the UTILITY unit of Voice/Digital and Digital/Voice Conver_ *>
<* sion on a Microcomputer project. *l
<* *>
<* This unit contains all the Pascal language utility procedures, each *>
<* utility procedure may be called by one or more prcu:edures of *>
<* MODULE!, MODULE2 and MODULE3 units. *>
<* *>
<* Only the GLOBAL unit is used here. *l
<* *)
<* The compiler opti•::m SS++ is invoked he-re, more memory space is *>
<* available for the compiling process but the spee-d of compilation is *>
<* decreased. *> '* --- *>

<* compiler option *>

UNIT UTILITY

INTERFACE

USES GLOBAL ;

"* declare all the procedures of this module here *>

PROI:EDURE DOE._RESET ;
PROCEDURE DOE._CLOSE ;
PROCEDURE DISKETTE_ONLINECIDX:INTEGERl ;
PROCEDURE CNTl_ELEM CVAR XFILE:INDEXFILE; VAR COUNT:INTEGER) ;
PROCEDURE CNT2_ELEM <VAR XFILE: BINARYFILE; VAR COUNT: INTEt3ER) ;

PROCEDURE BLDIDX < VAR XFILE:INDEXFILE; CHRS:FILENAME;
STRTIDX:INTEGER) ;

PROCEDURE GETVOICE < VAR XFILE:BINARYFILE; VAR YFILE:INDEXFILE;
CHRS: FILENAME> ;

PROCEDURE GET_WORDUNIT < VAR STRG:WORD; VAR UVAL:INTEG~:) ;
PROCEDURE WORD_VERIFY (VAR WCHANGE, WFOUND:BOOLEAN; WRD:WORD;

VAR FNDREC:ELEM) ;
PROCEDURE FILE_SORT (VAR XlFILE, X2FILE, YFILE:INDEXFILE > ;

IMPLEMENTATION

<* declare all the assembly language routines to be called he-re *'
PROCEDURE DIGITAL<VAR BDATA:SOUND; BTEMPO, BIDX:INTEGERl; EXTERNAL ;

3. 2*3

•

•

•

~---
(:t

(*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
(:t
<*
<*

'

This procedure opens all existing index data files and binary data
files. ror each data file, an error message is displayed when there
is error in the opening process.

The process of opening a specified existing data file is accom_
plished by calling the build in RESET procedure.

Input :
All index data files and binary data files.

Output :
Opened index data files and binary data files.

The following procedures are called :
DISKETTE_ONLINE - UTILITY unit. It checks and requests that the

storage diskette STORE: be on line. At the same time, the first
index data file is opened.

RESET - build in file I/0 procedure. It opens the specified
existing file.

The following global variables from the GLOBAL unit are used in
this pr•::>•:edure :

IORESULT - UCSD Pascal system variable. It is the error code of
the latest I/0 operation, the value is zero for a
success completion I/0 operation.

IriLE2 - file window variable of the second index data file. *>
<* I2rNAME - filename of the second index data file. *>
<* IFILE3 - file window variable of the third index data file. *>
<* I3rNAME - filename of the third index data file. *>
<* BriLEl - file window variable of the first binary data file. *>
<* B1rNAME - filename of the first binary data file. *>
<* BriLE2 - file window variable of the second binary data file. *>
<* B2rNAME - filename of the second binary data file. *>
<* BriLE3 - file window variable of the third binary data file. *>
<* B3rNAME - filename of the third binary data file. *>
<* --- *>

PROCEDURE DOG_RESET ;

VAR IDX : INTEGER
rN : riLENAME ;

BEGIN

IDX := 3 ;
DISKETTE_ONLINE(IDX)

<*$1-*)

<* verify that the storage diskette*)
<* is on line. The first index data *>
<* file is opened in the process. *>

O ESET(IriLE2, I2rNAME) ; (* open second index data file *)
.r < IORESULT <> 0) THEN

WRITELN<'> ERROR IN OPENING INDEX DATA riLE ',I2rNAME) ;

RESET(IriLE3, I3rNAME) ; (* open third index data file *)

3.30

3.31

r < IORESULT <> 0) THEN
WRITELN<'> ERROR IN OPENING INDEX DATA F"ILE ',I3F"NAME> . , •

RESET <SF"ILE1, Slf"NAME> . <* open first binary data file *' ,
IF" (IORESULT <> 0) THEN

WRITELN<'> ERROR IN OPENING INDEX DATA F"ILE , ,Blf"NAME) ;

RESETCBF"ILE2, S2F"NAME) ; <* open second binary data file *'
IF" (IORESULT <> 0) THEN

WRITELN<'> ERROR IN OPENING INDEX DATA F"ILE ' , S2F"NAME > ;

RESET<BF"ILE3, S3F"NAME> ; <* open third binary data file *'
IF' < IORESULT <> 0) THEN

WRITELN<'> ERROR IN OPENING INDEX DATA riLE ', B3F'NAME)

<*SI+*)

END ;

•

•

c
' --- *) <* This procedure closes all existing opened index data files and
C* binary data files. The process of closing a specified data file is
<* accomplished by calling the build in CLOSE procedure.
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
C*
<*
<*
<*
<*

'* '* <*

Input :
All opened index data files and binary data files.

Output :
Closed index data files and binary data files.

The following procedure is called :
CLOSE- build in file I/0 procedure. It closes the specified

existing opened file.

The following global variables from the GLOBAL unit are used in
this procedure . .

I FILE! - file window variable of the first index data file.
IFILE2 - file window variable of the second index data file.
IFILE3 - file- window variable of the third index data file.
BFILE1 - file window variable of the- first tfinary data file.
BFILE2 - file window variable of the second binary data file.
BFILE3 - file window variable of the third binary data file.

*' *>
*>
*>
*>
*>
*>
*>
*>
*>
*' *' *>
*)
*>
*>
*)
*)
*>
*>
*>
> <

<* --- *>
'-'JCEDURE 006_CLOSE ;

BEGIN

CLOSE< IFILE1) ;
CLOSECIFILE2) ;
CLOSECIFILE3)

CLOSE<BFILEl) ;
CLOSECBFILE2) ; .
CLOSE<BFILE3>

END ;

c

<* index data files processing *>

<* binary data files processing *'

3.32

\
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*.
(*
(*
(*
(*
,~

(*

--- *)
This procedure verifies that the storage diskette is on line. When *)
the verification fails, the user is requested to put the diskette *)
on line. The verification is accomplished by creating or opening a *)
data file, either the first index or binary data file. The filename *)
is defined with the volumename, therefore, when failure occurs in *)
the verification, it usually means that the diskette is not on line.*)

The processing of this procedure is only ended when the correct
storage diskette is on line. When the error and request message is
still displayed but the storage diskette has already been inserted
in the disk drive, check the following possibilities :
(l) The global variable VOLUMENAME has been altered and the related

storage diskette is not on line.
(2) Diskette I/0 errors
(3) Disk drive I/0 errors

Input :
IDX - parameter. It tells the procedure whether to use index or

binary data file in order to accomplish the objective. The
data file may be created or opened. The possible values of

(l)
(2)
(3)
(4)

this parameter are :
Creates new first index data file
Creates new first binary data file
open existing first index data file
open existing first binary data file

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

(* output :

*J
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

(* One of the following four possibilities :
(* (l) A new and empty first index data file
(* (2) A new and empty first binary data file
(* (3) An opened existing first index data file
(* (4) An opened existing first binary data file

The following procedures are called : *)
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

REWRITE - build in file I/O procedure.
data file.

It creates a new and empty *)

RESET - build in file I/O procedure. It opens an existing data
file.

The following global variables of the GLOBAL unit are used :
IORESULT - UCSD Pascal system variable. It has the result code

the latest I/O operation, the value is zero for a
success completion I/0 operation.

IFILEl - file window variable of the first index data file.
IlFNAME - filename of the first index data file.
BFILEl - file window variable of the first binary data file.
BlFNAME - filename of the first binary data file.
VOLUMENAME - volume name of the storage diskette, the default

name is STORE:

*)
*)
*)
*)
*)

of *)
*)
*)
*)
*)
*)
*)
*)
*)

--- *)

PROCEDURE DISKETTE_ONLINE ;

VAR RTN : CHAR ;

3.33

•

•

•

0 IOR:

BEGIN

(*$!-*)

INTEGER i

IOR := l i

WHILE (IOR <> 0) DO
BEGIN

CASE IDX OF

(* compiler option, disable I/0 checking *)
(* initialize local copy *)
(* of IORESULT variable *l

(* end of loop processing when the sto_ *)
C* rage diskette is on line. *)

1: REWRITE(IFILEl,IlFNAME) . (* create first index file *) I

2: REWRITE{BFILEl 1 BlFNAME) . (* create first binary file *) I

3: RESET(IFILEl,IlFNAME) . (* open existing index file *) ,
4: RESET(BFILEl,BlFNAME) (* open existing binary file *)

END ;

IOR ·- IORESULT . . - I

/'~

~ IF (IOR <> 0) THEN (* unsuccessful preceding create *)
BEGIN (* file or open file operation *)

WRITELN ; WRITELN ;
WRITE('> PUT ' 1 VOLUMENAME,' DISKETTE IN DRIVElS THEN RETURN KEY') ;
READLN(RTN)

END

END

(*$I+*) {* compiler option, resumes I/0 checking *)

END. ;

0

3.34

3.35

--- *) ~
(* This procedure counts the total number of index data records in an *)
(* index data file. The data file has been opened by the calling *)
(* procedure. *)
(* *)
(* Input : *l
(* XFILE - parameter, it is the file window variable of the index *)
(* data file. *)
(* *)
C* Output : *)
(* COUNT - parameter, total number of index data records. *)
(* *)
(* The following procedures are called : *)
(* EOF - build in file I/0 function. It indicates whether the end of *)
(* the specified data file has been reached. *)
(* GET - build in file I/0 procedure. It advances the file window *)
(* variable to the next record and moves the content of this *)
(* record into the file buffer variable. *)
(* *)
(* The following global variables of the GLOBAL unit are used : *)
(* None *)

(* --- *)

PROCEDURE CNTl_ELEM ;

iiN

COUNT := 0 ;

WHILE (NOT(EOF(XFILE))) 00
BEGIN

COUNT := COUNT + 1 ;

GET(XFILE)

END

END ;

(* initializes the counter parameter *)

(* loop, counts one record *)
(* in each pass *)

(* increments the counter by 1 *)

(* moves to the next data record *)

•

•

~· --- *)
(* This procedure counts the total number of binary data records in a
(* binary data file. The data file has been opened by the calling
(* procedure.
(*
(*
(*
(*
(*
(*
(*
(*
(*
C*
(*
(*
(*
(*
(*
(*
(*
(*

Input :
XFILE - parameter, it is the file window variable of the binary

data file.

Output :
COUNT - parameter, total number of binary data records.

The following procedures are called :
EOF - build in file I/O function. It indicates whether the end of

the specified data file has been reached.
GET - build in file l/0 procedure. It advances the file window

variable to the next record and moves the content of this
record into the file buffer variable.

The following global variables of the GLOBAL unit are used :
None

PROCEDURE CNT2_ELEM ;
,-.
~IN

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

COUNT := 0 ; (* initializes the counter *)

WHILE (NOT(EOF(XFILE))) DO
BEGIN

COUNT := COUNT + 1 ;

GET(XFILE)

END

END ;

0

C* loop, counts one *)
(* record in each pass *)

(* increments counter by 1 *)

C* moves to next data record *)

3.36

--- *'
This procedure builds the content (all index data records) of an
index data file. The data file has been created and opened by the
calling procedure.

Each index data record consists of :
word element - character string of a word
total number of sound units of the word element
index element - index number <record number) of a digitized bina_

ry data record in the associated binary data file.
status element - indicates whether this is an existing data re_

cord or deleted data record, respectively, with boolean TRUE
or F'ALSE value.

The word elements of all the index records in this data file must
use the specified set of starting letters.

Input :
XF'ILE - parameter, file window variable of the index data file to

be built which was just opened by the calling procedure.
CHRS - parameter, message string of the curr,nt set of starting

letters.
STRTIDX starting index number for the first index record.

c .. · Output :
The content (all index records) of an index data file.

*' *' *' *)

*' *' *' *' *' *' *' *' *' *' *' *' *' *' *' *' *' *)

*' *' *' (~ *' <* The following procedures are called : *'
<* GET_WOROUNIT - UTILITY unit. It obtains a word and its total num_ *>
<* ber of sound unit from the user interactively. *>
<* LENGTH - build in string function. It returns the length of a cha_*>
<* racter string. · *'
<* PUT - build in file I/0 procedure. It advances the file window va_*>
<* riable to the next record and moves the content of the file *>
<* buffer va~iable into this re~ord. *'
'* *' <* The following global variables of the GLOBAL unit are used : *'
<* None *' '* --- *'
PROCEDURE BLDIDX ;

VAR IDX, UVAL, L : INTEGER ;
WRD : WORD ;

BEGIN

IDX := STRTIDX ;
WRITELN('SECTION OF' WORDS STARTING WITH ',CHRS:6) ;
WRITELN<'-------------------------------------'> ;
. RITELN ;

GET_WOROUNITCWRD,UVAL> ;

L : = LENGTH (WRD) ;.

<* get a word & its number *'
<* of sound units *'

<* get the length of input word string *'

3.37

•

•

•

--'-"
WHILE C L > 0 l DO
BEGIN

XfiLEA.STRG := WRD ;
XfiLEA.UNITT := UVAL
XfiLEA.IDXX := IDX ;
XfiLEA.STATUS := TRUE ;

PUTCXfiLE) ;

IDX : = IDX + 1 ;

GET_WORDUNITCWRD,UVALl ;
L := LENGTHCWRD>

END

END ;

' .

c

<* loop, proc~ss on~ word in ~ach
<* ~nd of loop wh~n null word was
<* null word has z~ro l~ngth.

pass, *'
ir1put,*>

*>
<* assign word to fil~ buff~r var *l
<* assign numb~r of unit sound *l
<* assign r~cord number *>
<* assign ~xisting record status *>

<* put all data into data r~cord *>

<* n~xt record/ind~x number *>

3.38

--- *'
(:t: This procedure builds the content (all binary data records) of an
<* binary data file. The data file has been created and opened by the
<:t: calling procedure.

*)
*' ::fO

<* The associated index data file of the current binary data file is *' ;f.:)

<* used because the sequence of binary records input must be similar :t:l
C:t: with the sequence of related index records input. Before each voice :t:l
C:t: input, get the current index data record, displaying the word and :t:)
<* its number of sound units. In this way, the user is reminded to *'
<* input the correct voice data for the current word. :t:)
(:t: *>
(:t:

(:t:
(:~

(:t:
et:
(:t:

(:t:
(:t:

et:

Input :
Y~ILE - parameter, file window variable of the binary data file

X~ILE

to be built. It was just opened by the calling procedure. *l
parameter, file window variable of the index data file

which is associated with the current binary data file to be *'
built. It was opened by the calling procedure. :t:l

CHRS - parameter, message string of the current set of starting *'
letters. :t:)

Ct: Output :
The C•:=tt1tent Call binary data records) of a binary data file.

r• The following procedures are called : *)

<*
<*
(:t:

et:

PUT - build in file I/0 procedure. It advances the file window va_*l
riable to the next record and moves the content of the file :t:)
buffer variable into this record. *l

GET - build in file I/O procedure. It advances the file window va_*l
riable to· the next re-cord and move-s the- content of this. &cord *>

· int•:t th• file buffE'r--·.variable. ~~~~··. ·.~.. *>-~
EO~ - build in file I/0 proce-dure. It indicate-s whe-ther the end *>

of a specified file has been reache-d. *>
DIGITAL - assembly language routine. It is the digitizing process *>

of the input voice. :t:l
:~::)

<* The following global variables of the GLOBAL unit are used : *)
:t:) <* VOICE- It is a buffer which contains the digitized_binary data

(:t:

<*
(:t:

of the input voice.
DTEMPO - delay constant of the digitizing process of the input

:t:)

*>
' < --- *'

PROCEDURE GETVOICE

VAR KEYIN : CHAR ;
UVAL : I NTEf~ER

BEGIN

. 1~: I TELN (' SECT I ON OF WORDS ST A~:T I N13 WITH ' , CHF.:S: 6) ;
JRITELN('-------------------------------------'l ;
WRITELN

WHILE (NOTCEO~(YFILE))) DO
C* loop, processes one word in *)
(% each pass when index data *>

3. 3'3

•

•

•

<* still has data records. *)

<* Get current index data record, display the word and its number *>
C* of sound unit. In this way, the user is reminded to input the *l
C* proper voice data for the current word. *l

UVAL := YFILEA.UNITT ;
WRITELNC'WORD: ',YFILEA.STRG,' UNIT: ',UVAL> ;
WRITELN<'> PRESS A KEY WHEN VOICE INPUT IS READY') ;

C* digitizing input *l
DIGITALCVOICE, DTEMPO, UVAll ; C* voice data *l

XFILE" := VOICE
PUTC:XFILE) ;

GETCYFILE)

READCKEYIN)
WF.: I TELI\i

C* assign result of DIGITAL process *'
<* to the current binary data record *)

<* get next index record *>

C* for the key pressed in DIGITAL process *>

END ;

WRITELN ;
WRITELNC'> END OF SECTION ',CHRS:6) c <:ITELN

END ;

c

3.40

(~ This procedure prompts user to input a word and its total numb~r of
<* sound units interactiv~ly. Th~ starting l~tt~r of th~ input word
<*must b~ a m~mber of th~ specified s~t of lett~rs.
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*

<*
<*

When no more word input is r~quired, a null word is input by just
pr~ssing the RETURN key. In this cas~, the r~turn~d number of sound
units paramet~r is assigned with zero value.

Input :
rrom th~ us~r int~ractiv~ly a word and its numb~r of sound units.
Th~ starting letter of the input word must be in the specified
set of lett~rs.

Output :
STRG parameter, it contains the word.
UVAL - parameter, the total number of sound units of the word.

The following proc~dures are called :
LENGTH - build in string function. It r~turns the l~ngthh of a

character string.
ORD- build in string function.~It r~turns th~ ASCII value of a

•:haracter.

The following global variables of th~ GLOBAL unit are us~d :
SETCHRS - current s~t of starting l~tters for ~11 the word ~1~

m~nts of curr~nt index data file.
SET4CHR set of digital character5 for all the possible values

of the number of sound unit.

'* ---
PROCEDURE GET_WORDUNIT ;

VAR CHR:CHAR ;
ENDINPUT:BOOLEAN ;

BEGIN

ENDINPUT := rALSE ;
WRITELN ;
WRITELN<'> PRESS RETURN KEY ONLY Ir NO MORE WORD INPUT !') ;
WRITELN<' ---') ;

*' *>

*' *>

*' *>

*' *>
*>

*' *' *>

*' *>
*)
*>
*>
*>
*)

*' *>
*>

*' *' *' *>

*' *>

*' *)

<* This is a loop to get a word from the user interactively. The *'
<* loop is only ended when a valid word or null word has been input. *>

REPEAT

WRITELN ;
WRITE<'WORD: ')
READLN (STRG) ;

Ir (LENGTH<STRG)=t))
THEN ENDINPUT := TRUE

<* get the input word *)

<* end of loop when a null *'
C* word has been input *>

3.41

•

•

c ELSE
BEGIN

Ir (STRGC1l IN SETCHRS)
THEN ENDINPUT := TRUE
ELSE

<* end of loop when the word *>
<* has valid starting letter *>

BEGIN <* invalid word input *>
WRITELN<'> WORD MUST START WITH CHARACTER ',

'IN DEriNED CHARACTER SET') ;
WRITELN<' PRESS RETURN KEY ONLY Ir NO MORE ',

'WORD INPUT')
END

END

UNTIL ENDINPUT ;

Ir C LENGTHCSTRG) > 0) THEN
BEGIN

WRITELN ;

<* no need to get the number *>
C* of sound units when a null*>
<* word has been input *>

WRITELN<'UNITS Or SOUND IS ',CHRS4,' ONLY !') ;
WRITELNC'--'> ;
WRITELN ;

REPEAT

WRITEC'UNIT Or SOUND: ') ;
READLNCCHR>

<* loop for number of sound units input*>
<* until valid value has been input *>

Ir (NOTCCHR IN SET4CHR>) C* input is not a valid digit *>

3.42

THEN WRITE~~<'> UNIT Or SOU~~~~UST BE, ~,~~~r1N~~~~~~7 ! 'c~;~~<:· ~

UNTIL CHR IN SET4CHR ;

UVAL := ORDCCHR> - ORDC'O') <* get value from digital char *>

END

ELSE UVAL := 0 <* null word has zero sound unit *>

END·;

0

(:J;

<*

--- *'
This proc~dur~ verifi~s that a given word exists in the dictionary, *'
in other words, exists in any one of the thre~ index data files of *'
the storage diskette. Th~ ~xistenc~ of this word implies that its *'
binary data record also exists in the corr~sponding binary data. *'
When a word ~ntry had b~~n delet~d but th~ dictionary clean up pro_ *>
cedure has not been called to do periodical maintainanc~ on all th~ *>
data files, the index data record of this word still exists in th~ *>
index data file but the STATUS el~m~nt has F'ALSE value. *'

*' After the exist~nce of the input word has been confirmed, there are *'
two possible continuing processings : *>
(1) Get all the required information in order to access the related *'

binary data record. This is needed in 'speaking a word'. *>
(2) Update the number of sound units of the input word. This is *'

need~d when 'improve sound of the input word' is being processed*)
and the improve process changes the number of sound units. *'

The index/record number of the binary data record in the associated *>
binary data file is needed in both cases above. *'

' The three index data file have been opened by the calling procedure.)

*' Input :
WCHANGE - paramet~r, it indicates wh~th~r the first or second

purpose of this proc~dure must be processed.
WRD - param~ter, it has the charact~r. string of th~ input word.
All index data files.

*' *" *' *' *>
F'NDREC - parameter, a structured variable

is us~d to pass the new value of
(for the second case only>

where the WUNIT element *'
number of sound units. *>

Output :
*' *>
*' WF'OUND - parameter, it indicates whether the in~ut word exists

the specifi~d index data fil~. The value is TRUE when
the word exists.

in *>

F'NDREC - param~ter, a structured variable containing the informa
tion which is required to access the associated binary
data record of the input word. (for first case only>

The following proc~dures ar~ called :
DOVERIF'Y - local proc~dure which implements the main processing

of the calling procedure.
EOF' - build in fil~ 1/0 function, it indicates whether th~ end of

a sp~cified file has b~en reach~d.
SEEK - build in file I/0, it allows randow access to records. The

file window variable is moved to a specified record in a fil~
with th~ record number provid~d.

*' *' *' *' *' *' *' *' *' *' *>
*' *>
*' GET - build in fil~ I/0, it advances the file window variable

the n~xt record and moves the cont~nt of this record to the
buffer variabl~.

to *>

PUT - build in fil~ I/0, it advanc~s th~ file window variable to
the next r~cord and m•:.ves th~ cont~nt of th~ file buff~r varia_
bl~ to this r~cord.

*' *>
*' *' *>

<* Th~ following global variabl~s of th~ GLOBAL unit ar~ used : *' *'

3.4~

•

•

•

SETlCHR - s&t of starting l&tt&rs for the words elements of all *' '* index data records of the first index data file. *'
<* SET2CHR - s&t of starting letters for the words el&m&nts of all *)
'* index data records of the second index data fi 1 e. *'
C* SET3CHR - set of starting letters for the words elements of all *'
<* index data records of the third index data file. *'
<* IriLEl - file window variable of the first index data file. *'
<* IFILE2 - file window variable of the second index data file. *'
C* IFILE3 - file window variable of the third index data file. *'
'* --- *'
PROCEDURE WORD_VERirY ;

VAR CHRSET, PSET, PIDX, PUNIT : INTEGER ;
FIRSTCHR : CHAR ;
SWRD : WORD ;
CHANGE, FOUND, NOTIN : BOOLEAN ;

'* --- *'
<* For a specified and opened index data file, this local procedure *'
<* searches through the data file to find out the index record which *>
<* has matched word element with the input param&ter WSTRG. All the *'
<* information required by the WORD_VERirY pro•:edure .are obtained *)

-'* and return&d through PSET, PUNIT and PIDX variables. *'
) L '* Input : *' <* WSTRG parameter, a word which is used in the se-aching of the *' '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '*

X riLE
specified index file.

- parameter, file window
third index data file.
meter (a word) is done

*)
variable of the first, second or *>
The searching offpreceding para_z::;*>,;c;·_
in the related index data file. *>

*>
Output *'

PSET - variable, the possible values are 1, 2 or 3. It indicates*>
whet~1er the first, second or third binary data file has *'
the associated binary data record of the input word. *'

PUNIT - variable, it has the total number of sound units of the *)
input word. It is also the size of the as~ociated binary*l
data record. *)

PIDX - variable, it contains the index number (record number) *l
of the associated binary data record in the related *>
binary data file. *>

The following procedures are called :
EOr, SEEK, PUT, GET

*' *' *' *)
<* The following global variables of the GLOBAL unit are used : *' *' *)
C:t: None

(* ---

~OCEDURE DOVERIFY (WSTRG:WORD; VAR XriLE:INDEXriLE) ;

VAR RECIDX : INTEGER

3.44

. EGIN

RECIDX := 0 <* index number to access the index data file,*>
<* to be used by the random access SEEK proc *>

WHILE< CNOTCNOTIN>> AND CNOTCEOrCXFILE))) AND CNOTCrOUND>>) DO
BEGIN

<* round because matched word element and the ·word (index record>*>
<* exists in the index data file. *'

Ir C CWSTRG=XFILEA.STRG> AND CXFILEA.STATUS)) THEN
BEGIN

FOUND := TRUE ;
PSET := CHRSET ;

Ir <CHANGE) THEN
BE•3IN

XFILEA.UNITT := PUNIT ;
SEEKCXriLE, RECIDX> ;
PUT<XriLE>

END
ELSE PUNIT := XriLEA.UNITT ;

PIDX := XriLEA.IDXX

END

ELSE Ir (WSTRG < XriLEA. s·rRG)
THEN NOTIN := TRUE ;

GETCXFILE) ;
RECIDX := RECIDX + 1

END

END ;

·BEGIN

CHANGE := WCHANGE ;
SWRD := WRD ;

FOUND := FALSE ;
NOTIN := FALSE

IF C CHANGE) THEN
F'UNIT : = rNDREC. WUNIT ;

<* Value of CHRSET is from *>
<* the calling procedure *>
<* Second purpose *>
<* Assign new number of sound *>
<* units into the index record*)
<* These 2 procedures make *>
<* the modification permanent*>
<* in the index data file *'

<* main purpose, get the *>
<* number of sound units *'

<* get index/record number *>

<* get next index data record *>
<* for random access of *>
'* next index data record *'

<* local copy *>
<* local copy *>

<* second case, get the new *>
<* number of sound units *>

·* from the first letter of the word, determine which one of the
<* three index data files that the word belongs to.

FIRSTCHR := WRD[1J ;

3.45

•

•

•

c F (FIRSTCHR IN SET1CHR) '* 1st se-t ·~f starting le-tte-rs *'
THEN CHRSET := 1
ELSE IF (FIRSTCHR IN SET2CHR) <* 2nd set of starting letters *' THEN CHRSET := 2

ELSE IF (FIRSTCHR IN SET3CHR) '* 3rd set of starting letters :to
THEN CHRSET := 3
ELSE CHRSET . -.- 4 ; '* others :to

CASE CHRSET OF

1: BEGIN '* belong to first index file *'

DOVERIFYCSWRD, IFILE1> . , '* do the veri fi •:at i •::m *'

SEEK< IFILE1, ()) ; '* move the file window varia *'
GET< IFILEl> <* ba•:k to the beginning of *'

<* the index data file, for *'
END . , '* processing of next word *'

2: BEGIN etc. second index data file *'

DOVERIFYCSWRD, IFILE2> . , et: veri fb:ation *)
~

'·

SEEK<IFILE2, 0) ; (:t: ffiCIVe back t•::> the beginning *>
(:t: of the index data *' ,.~·.

6ET<IFILE2) file

'-"'

c

END ;

3: BEGIN

DOVERIFY<SWRD,

SEEKCIFILE3, I))

GET<IFILE3>

END ;

IFILE3)

;

<* third index data file *>

(%verification *l

(%.move to the beginning of*'
<* the index file %)

4: BEt3IN <* input word does not have valid starting letter *>

Wj;: I TE < ' > 1ST CHARACTER OF WORD IS NOT IN THE DEFINED') ;
WRITELNC' SET OF CHARACTERS !') ;

END

END ;

WFOUND := FOUND ;
FNDREC.WIDX := PIDX
FNDREC.WSET := PSET
IF (NOT CHAN13E) THEN

FNDREC.WUNIT := PUNIT ;

C* Assignning information to *>
<* the output paramete-rs. *'
(;tc The number of sound units *'
<* is only ne-eded when pro_ *>
C* cessing the first case. *>

3.46

(:t

<*
<*
'* <*
'* '* '* '* <*
<*
<*
'* <*
<*
(:t

'* <*
C*

'* et

'*

..

rhis procedure does merge sort on two index data files, th& result
is plac&d in a combined index data file. All three preceding data
files have been opened by the calling procedure. The key of the
merge sort process is the word elements of th& index data records,
they must be in alphabetical ascending order.

Input :
X1F'ILE

X2F'ILE

YF'ILE -

Output :

parameter, file window variable of an index data file
be me-rge sorted, first entry in the parameter list.

- parameter, file window variable of an index data file
be merge sorted, second entry in the parameter list.

parameter, file window variable of the combined index
data file.

content of the resulting combined index data file

The following procedures are called

to

to

ASSIGN_ELEM - local pr•:-cedure, it assigns the content of a
index data record to a destination index data record.

source

EOF' - build in file I/0 function, it indicates whether the end of
a specified file has be'en read1ed. ,•

<* The following global variables of the GLOBAL unit ~re used :
(N•::>ne

--·-------------------
PROCEDURE F'ILE_SORT ;

VAR WRD1, WRD2 : WORD ;

<*
<*
<*
<*
'* <*
<*
(:t

'* <*
<*
(:t:

<*
(:t:

<*
<*
<*
<*
* ,,_(*

<*
<*

--- *)
This lo•:al procedure- copie-s curre-nt data r&c•::>rd .;d the s•:-urce- in_
dex data file t•::> the current data re-cord •:tf the destination index
data file. Both data files have be-en opene-d by the- calling proce_
dures, the file window variables point to the respective current
data records.

*>
*>
*' *>
*>
*>

Input : *'
SRCE - parameter, file window variable of either one of the two *>

index data files to be merge sorted. It points to the :t:)
index data record which is going to be copied to an index:t:)
record of the combined index file. *'

DSTN - parameter, file window variable of the combined index *)
data file. *>

Output :
an index data record of the combined index data file

The following procedures are called :
GET - build in file I/0, it advances the file window variable

the- next record and moves the content of this record to the
buffer variable.

*)

*' *' *' *>

3.47

•

•

•

,
'-"" " (:t

(:t
(:t
(:;

PUT - build in file I/0, it
the next record and moves
riable to this record.

advances the file window ~ariable to:t)
the- conte-nt of the file buffe-r va_ ;t)

*' :t)
The following global variables of the GLOBAL unit are used : *)

None *' '* (:t --- *)

PROCEDURE ASSIGN_ELEMC VAR SRCE, DSTN : INDEXFILE) ;

BEGIN

DSTNA.STRG := SRCEA.STRG ;
DSTN"".UNITT := SRCE"'.UNITT ;
DSTNA.IDXX := SRCE"'.IDXX ;
DSTN .. ". STATUS : = SRCE"'. STATUS ;

PUTf.DSTNl ;

GETCSRCE)

END ;

e::-=liN

C* assign various data elements :t>
<* of an index data re•:ord *>

<* move to next data record of the *>
<* destination index data file. *>
<* same f•:Jr the source index file. *>

~:

....

\...,
<* Loop, each pass processes two data re-cords, one record from each *'
C* index data file but only one data re-cord will be- chosen to build *'
C* the content of the combined index data file. This combined file *'
<* requires that the word elements of all its index data records in *'
<* alphabetical ascending order. Therefore, the data record with the *)
<* smaller word ele-ment is chosen. *'

(;t *' <* End of loop processing occurs whe-n anyone of the two index data *)
<* files has ~o more data records~ *>

WHILE (CNOTCEdFtXlFILE))) AND CNOTCEOFCX2FILE)))) DO
BE•3IN

WRD1 := X1FILE"".STRG ;
WRD2 := X2FJLE"".STRG ;

IF C WRD1 <= WRD2)
THEN ASSIGN_ELEMCXlFILE, YFILE>
ELSE ASSIGN_ELEMCX2FILE, YFILE)

END ;

<* get the word elements of *>
C* both current index records.*)

C* choose the data record *'
<* with smaller word elem *>
C* then assign it to the *'
C* combined index file. *'

C* When •:Jne o;::,f the two index data files has no mc•l"e data records, *>
C:t assign the l"emaining index data records of the other data file to *>

~* the c•:Jmbined index data fi 1 e. *'
~ <* first it1dex file of the parameter ;t)

IF C EOF<XlF"ILE)) Ct list has no more data recot"ds *'
THEN

WHILE C NOT<EOF"(X2F"ILE))) DO . C* assign remaining of the *>

3.48

ASSIGN_ELEMCX2FILE, YFILE>

ELSE
WHILE C NOT<EOFCX1FILE))) DO

ASSIGN_ELEMCXlFILE, YFILE)

END ;

BEGIN

END.

' .

<* second index data file. *>

<* assign rema1n1ng of the *)
<* first index data file *'

. .
. · .

3.4S

•

•

c --- *)
This is th~ MODULEl unit of Voic•/Digital and Digital/Voic• Conv•r

<:t sion on a Microcomputer project.
(:*

<*
<*
<*
<*
<*
<*
(:fe

<*

The Pascal language procedur•s h•re create, print and purg• the
dictionary.

Th~ GLOBAL and UTILITY units are us•d h•re.

Th~ compiler option $S++ is invoked her•, more m•mory spac• is
available for the compiling process but the speed is decr•ased.

<* compiler option *)

UNIT MODULE! ;

INTERFACE

*)
*)
*)

*' *)
*)

*' :tc)
*)
*)
%)

USES GLOBAL, UTILITY ; <* d•clare the units used here *)

<* declare all th• procedures of this module here *>

c.PFi:OCEDURE BLD_DIRECTORY ;
,- ROCEDURE PRT ENTRIES (CHOICE
I -

I NTEGEFi:) ;
"-"-.. ROCEDURE CLFi:_D I CT I ONAFi:Y

~ROCEDURE BLD_VOICE

IMPLEMENTATION

3.50

--- *>
This procedure builds the directory of all index elements of the *>

<* dictionary, in other words, the three index data files of the whole *>
<* dictionary in the STORE: storage diskette are created. *'
(:tc :t:)
<:t: The actual process of creating an index data file is accomplished :t:)
<* by calling the BLDIDX procedure of UTILITY unit, providing the *'
C:t: index data file has been opened. The first letters of all the *'
C:t: word elements in an index data file belong to same set of alphabet *'
C:t: letters, each one of the three index data files is associated with *'
C* a distinct set of alphabet letters. *'
C:t: *>
<* Input : *'
C* None *'

'* *' C:t: Output : *>
C* Three index data files of the dictionary *>
<* *>
<* The following procedures are called : *>
C* DISKETTE_ONLINE - UTILITY unit, checks whether the STORE: dis_ *>
C:t: kette is on line. Creates new and empty first index data file *'
C:t: when diskette on line status has been confirmed. :t:)
C:t: BLDIDX - UTILITY unit, builds the content of a given index data *>
C:t: file where the first letters of all the word elements belong *>

3.51

•

(t•:~ a spe•:ific se-t of alphabet letters. *>
CLOSE - build in fi 1 eo I /0 pr.::u:edure, •: b::.ses a 9i ve-n file and *> •

makes it perman•nt. :t:)
<* REWRITE - build in file I/0 procedure, creates a new and empty :t:)
C* index data file- with the given fil•name. :t:)

(* *' (* The following global variables of the GLOBAL unit are used : :t:)
C* SET1CHR - set of the first letters of all the word elements of *'
(* the first ind•x data file. *>
<* IFILEl - file window variable for the first index data file. *>
(* SETCHRS - contains the current set of first letter. :t:)
<* CHRSl - display message for the SET1CHR set of letters. *>
<* I2FNAME- filename of the second index data file. :t:)
<* SET2CHR - s•t of the first letters of all the word elements of :t:)
<* the s•cond index data file. :t:)
<* IFILE2 - file window variable for the second ind•x data file. *>
<* CHRS2 - display message for the SET2CHR set of letters. *'
<* I3FNAME - file-name of the third index data file. :t:)
C:t: SET3CHR - set of the first letters of all the word eleme-nts of *>
C:t: the third index data file. *>
<* IFILE3 - file window variable for the third index data file~ *)
(* CHRS3 - display message for the SET3CHR set of letters. *>
(:~ --- *'
PROCEDURE BLD_DIRECTORY;

CHECKNUM, STRTIDX : INTEGER 0
.... .:.GIN

PAGECOUTPUT) . . ,

,__..
'--" .~ITELNC'--') ;

~RITELN<' BUILD THE DIRECTORY Or INDEX RECORDS Or THE DICTIONARY') ;
WRITELNC'--')
WRITELN ;

C% First ind&x data file with the words elements start with letters *>
C% in the range of A, •• ,H. New index file, therefore the index *'
<* number starts from zero. *'
CHECKNUM := 1 ;
DISKETTE_ONLINECCHECKNUM)
SETCHRS := SET1CHR ;
STRTIDX := 0 ;
BLDIDXCIFILEl, CHRSl, STRTIDX) ;
CLOSECIFILE1, LOCK) ;

first index data file indicator %)
creat& new and empty file *>
first set of starting letters *'
first index number %)
C% create content of this fil& *>
C% close this index data file *'

C* Second index data file with the words elements start with letters *'
<*in the range of I, •• ,P. New index file, therefore the index %)
<* number starts from zero. *>
REWRITECIFILE2, I2FNAME> ;
SETCHRS := SET2CHR ;
STRTIOX := 0 ;
BLDIDXCIFILE2, CHRS2, STRTIDX> ;

~-·-::LOSE (IFILE2, LOCK) ;

C% create new and empty file %)
<* with given filename %)

~<* Third index data file with the words elements start with letters
(%in the range of O, •• ,z. New index file, therefore the index
C% number starts from zero.

REWRITECIFILE3, I3FNAME> ;
SETCHRS := SET3CHR ;
STRTIDX := 0 ;
BLD~DXCIFILE3, CHRS3, STRTIDX) ;
CLOSECIFILE3, LOCK>

. END ;

3.52

3.53

-~ --- :t:) • ·* This is a local procedure. :t:)
<:t: It displays the content of an index data file- in a table- f•:>rm :t:l
C:t: after the- related index data file has been opened and the file :t:)
<* window variable is provided. :t:>

'* *' '* Input : *'
<* XFILE parameter, file window variable of an index data file *'
<* which has been opened by the calling procedure. *'

'* *> <* Output : *'
<* Content of index data files on the screen %)

<* *' <* The following procedure is called : %)
C% GET - bu~ld in file I/0 procedure, advances the file window va %)
C% riable by one record, in other words, get next index record. *>
'* --- *'
PROCEDURE DO_PRINT< VAR XFILE:INDEXFILE) ;

BEGIN

WHILE< NOTCEOFCXFILE>>) DO
BEr3IN

WRITECXFILEA.STRG:20) ;
WRITECXFILEA.UNITT:3) ;
WRITECXFILEA.IDXX:6) ;

IF (XFILEA.STATUS) THEN
WRITELN<'T': 6)

ELSE
WRITELN (' F': 6)

'* process one index record *'
C:t: in each pass of the loop *'
<* display the word *'
Ct: the total Wli t •:>f sound *>
'* the index number *'
'* the existence status *l

GETCXFILE) <* get next index record *>

END ' •

END ;

'* --- *'
<* This procedure displays the content of index data files in a table *>
<* form. The actual process of displaying an index data file is *'
C:t: carried out by calling the loc~l procedure DO_PRINT by providing %)
(% the file window variable, after the related index data file has been*>
C:t: opened in this procedure. %)

et: *' (:t: The value
f·.Jt played :

6f parameter CHOICE determines the index file to be dis_

1 -first index data file STORE:INDEX1.DATA
2- second index data file STORE:INDEX2.DATA
3- third index data file STORE:INDEX3.DATA
4 -.all three index data files

*' *' *' *' *' *' *'

•

-~ The display table consists of four columns : *>
Cl) the word *>

<* C2) total number of sound unit of this word *)
<* (3) index of this word element in its index data file *l
<* (4) status of this word element, letter T or ~, respectively, re_ %)
<* presenting whether this word element exists in or has been de_ %)
C* leted from the dictionary *l
<* *>
C* Input : *>
<* CHOICE - parameter *>
<* *>
<* Output : *'
<* Content of index data files on the screen *)

<* *' <* The f•:::>ll•:twing pro•:edures are called : *>
<* DISKETTE_ONLINE - UTILITY unit, •:hecks whether the STORE: dis_ *>
<* kette is on line. Open the existing first index data file when *>
<* diskette on line status has been confirmed. *'
<* DO_PRINT - local procedure, it carries out the actual processing *'
<* of displaying the content of an index data file when.the file ~)
<* has been opened and the file window variable f~ pro¥ided. "*)
C* RESET - build in file I/O procedure, open an existing index data -.,
(:~ file. *'
C:t: CLOSE - build in file I/0 procedure, closes a given file. *'

*' "-'The f•:•ll•::Jwing global variables of the GLOBAL ut1it are used : *)
Il~NAME - filet1ame of the first index data file. *'

<* I~ILE1 - file window variable for the first index data file. *'
<* I2FNAME - filename of the secot1d index data file. %)
<* I~ILE2 - file window variable for the second index data file. *>
C* I3~NAME - filename of the third index data file. *'
C% I~ILE3 - file wit1dow variable for the third ind~x data file. *>
'* --- *'
PROCEDURE PRT_ENTRI~S ;

VAR: CHECK INTE(3ER ;

BEGIN

PAI3ECOUTPUT) ;
WRITELNC'***********************************')
WRITELNC' USE CRTL-S TO STOP OUTPUT STREAM'> ;
WRITELNC' ANOTHER CRTL-5 TO RESUME PRINTING') ;
WR I TELN C ' *********************:~*************') ;
WRITELN;
WRITELNC'
WRITELN C'
WRITELNC'

WORD
VOICE') ; ;

UNIT INDEX STATUS')
------')

QHECK := 3; C:t: existing first index data file
~ISKETTE_ONLINEC CHECK) ; <* check STORE: diskette on

CLOSE (I~ILE1)
C:t: opet1it1g first index data
(:~ •:l•::.se it *>

indicatol" *'
line by *)
file :to

3.54

<* compiler option, no I/0 checking *>

<* First index data file with the words elements start with letters *>
<*in the range of A, •• ,H. *)

IF < CHOICE = 1 OR CHOICE = 4) THEN
BE•3.IN

<* it is the choice or *>
<* display all three *>

RESETCIFILE1, I1FNAME) ; <* open the existing index file *>

IF (IORESULT = 0 > THEN
DO_PRINT<IFILEll

ELSE

<* process only after the file *>
'* is ojpened su•:cessfully *'

WRITELNC'> ERROR IN OPENING FIRST INDEX DATA FILE') ;

CLOSE< IFILEl > <* close the file *>

END ;

<* Second index data file with· the W•:)rds elements start with letters *)
<*in the range of I, •• ,P. *>

IF C CHOICE = 2 OR CHOICE = 4 > THEN
BE13.IN

RESETCIFILE2, I2FNAME> ;

IF (IORESULT = 0) THEN
DO_PRINTCIFILE2)

ELSE
WRITELN<'> ERROR IN OPENING SECOND INDEX DATA FILE') ;

CLOSECIFILE2>

END ;

<* Third index data file with the words elements start with letters *>
<*in the range of Q, •• ,z. *'

IF C CHOICE = 3 OR CHOICE = 4) THEN
BEGIN

RESETCIFILE3, I3FNAME> ;

IF < IORESULT = 0) THEN
DO_PRINTCIFILE3)

ELSE
WRITELNC'> ERROR IN OPENING THIRD INDEX DATA FILE ') ;

CLOSECIFILE3)

:No

<* compiler option, resume I/0 checking *>

3.55

•

•

•

3.56

-

0

--- %)
This procedure deletes the dictionary, in other words, all the
index data files and binary data files are deleted permanently from
the STORE: storage diskette.

Output :
None

The following procedures are called :
DISKETTE_ONLINE - UTILITY unit, checks whether the STORE: dis

kette is on line. Open the existing first index data file when
its on line status has been confirmed.

CLOSE- build in file I/0 procedure, closes a given file and then
deletes it permanently from the diskette.

RESET - build in file I/0 procedure, opens an existing file with
the given filename.

'* The following global variables of the GLOBAL unit are used :
VOLUMENAME - contains the storage diskette name which is STORE:
IlFNAME - filename of the first index data file.
IFILE1 - file window variable for the first index data file.
I2FNAME - filename of the second index data file~
IFILE2 - file window variable for the second index data file.
I3FNAME - filename of the third index data file.
IFILE3 - file window variable for the third index data file.
B1FNAME - filename of the first binary data file.
BFILE1 - file window variable for the first binary data file.
B2FNAME - filename of the second binary data file.
BFILE2 - file window variable for the second binary data file.

::!;:)

:n
:t:)
:t;)
;t)

:t:)

:~::)

:f::)
:~::)

:t:)
:t:)

*)
:t:)

:t:)

*>
%)
*>
:t:)

*>
*>
*>
:~o

;to

*>
:to
:~::)

*>
:to
%)
%)
::!;:)

B3FNAME - filename of the third binary data file. :t:)

<* BFILE3 - file window variable for the third binary data file. :t:)

(% --- :t:)

PF::OCEDURE CLR_DICTIONARY ;

VAR IDX : INTEGER ;
YN : CHAR ;

BEGIN

PAGE<OUTPUT) ;
WRITELN<' > CLEAR ALL DATAFILES Or DICTIONARY ON DISt<ETTE ', VOLLIMENAME> ;
WRITELN ;
WRITE<' ALL CLEAR TO GO? CY/NJ ') ;
READLN < YN) ;
WRITELN ;

r (YN = 'V') THEN
8Et3IN

IDX : = 3 ;
DISKETTE_ONLINECIDX> ;

(:~ existing first index data file indicator *>
<* check & request STORE: diskette *>

3.57

•

•

-
CLOSE<IFILEl, PURGE> ;

RESET< IFILE2, I2FNAME) ;
IF C IORESULT = 0) THEN

CLOSECIFILE2, PURGE> ;

<* third index data file *>
RESET< IFILE3, I3FNAME) ;
IF C IORESULT = 0) THEN

CLOSECIFILE3, PURGE) ;

<* first binary data fil& *>
RESET< BFILEl, B1FNAME > ;
IF C IORESULT = 0) THEN

CLOSECBFILEl, PURGE) ;

<* s&cond binary data fil& *>

~ RESET< BFILE2, B2FNAME) ;
IF (IORESULT = 0) THEN

CLOSE(BFILE2, PURGE) ;

<* third binary data fil~ *'
RESET< BFILE3, B3FNAME) ;
IF C IORESULT = 0) THEN

CLOSECBFILE3, PURGE) ;

<* disk~tt~ on lin~, op~n th& fil& *'
<* clos~ and d~l~t• th& fil• *>

<* compiler option, no l/0 ch&cking *>

<* op&n th& fil& *'
C* d&l&t& it p&rman&ntly *'
<* wh&n it ~xists *'

<* compiler option, resum~s I/0 ch~cking *l
' .

WRITELN (' > ALL DATA FILES OF DICTIONARY HAS BEEN CLEARED')

END

ELSE WRITELNC'> OPERATION IS ABORTED!!!'>

END ;

0

3.58

--- *'
<*
<*
<*
'* <*
'* <*
'*

This procedure builds all binary data el~ments of th~ dictionary,
in other words, the thr~e binary data files of the whol~ dictionary
in the STORE: storage disk~tt~ ar~ cr~ated.

The actual process of cr~ating
is accomplish~d by calling the
providing the binary data fil~
been opened.

the cont~nt of an binary data file
GETVOICE proc~dur~ of UTILITY unit,
and the r~lat~d ind~x data fil~ hav~

<* The first l~tt~rs of all the words which associate with a binary
<* data fil~ b~long to the same set of alphabet l~tt~rs, ~ach one of
<* the thr~e binary data files is associat~d with a distinct set of
<* alphab~t lett~rs.
<*
<* Input :
<* Non~

'* <* Output
<* Thr~e binary data fil~s of· the dictionary
<*
<* Th~ following proc~dur~s are call~d :
<* DISKETTE_ONLINE - UTILITY unit, checks wh~ther the STORE: dis_
<* kett~ is on lin~. Creat~s n~w and ~mpty first binary data fil~

when its on lin~ status has b~~n confirm~d.

*)

*' *>
*' *>
*>
*' *' *' *' *' *' *' *' *' *' *' *' *' ~)

,*)

*' *' *)
GETVOICE - UTILITY unit, builds th~ cont~nt of

file wher~ th~ first l~tt~rs of all the word
a giv~n binary data*>

l*
(:~

<*
'* '* '* <*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*
<*

'* <*
(.

<*
<*

~l~m~nts b~long *'
to a sp~cific set of alphab~t l~tt~rs.

CLOSE - build in fil~ I/0 proc~dur~, closes a given file and
mak~s it perman~nt.

REWRITE - build in file I/0 procedure, creat~s a n~w and ~mpty
binary data file with the given filename.

RESET - build in file I/0 procedur~, op~ns an existing index data
file.

The following global variabl~s of the GLOBAL unit are us~d :
BFILE1 - file window variabl~ for the first binary data fil~.
I1FNAME - filenam~ of the first ind~x data fil~.
IFILE1 - file window variabl~ for th~ first index data file.
SET1CHR - s~t of the first l~tters of all the word ~l~ments of

th~ first index data file.
SETCHRS - contains th~ current s~t of first l~tt~rs.
CHRS1 - display messag~ for th~ SET1CHR s~t of lett~rs.
B2FNAME- fil~name of the s~cond binary data file.
BFILE2 - fil~ window variable for the s~cond binary data fil~.
I2FNAME - fil~nam~ of the s~cond index data fil~.
I~ILE2 - file window variabl~ for th~ second index data fil~.
SET2CHR - s~t of th~ first l~tters of all th~ word el~ments of

the s~cond index data file.
CHRS2 - display m~ssage for th~ SET2CHR s~t of l~tters.
B3~NAME - filenam~ of th~ third binary data file.
BFILE3 - fil~ window variabl~ for th~ third binary data fil~.
I3FNAME - fil~name of th~ third index data fil~.
IFILE3 - fil~ window variabl~ for th~ third index data fil~.
SET3CHR - set of the first l~tters of all th~ word eleMents of

*)
*)
*)

*' *' *' *' *' *' *' *>
*' *' *' *)
*)
*' *' *' *' *' *' *' *' *>
*)

*' *)

3.59

•

•

•

c
the third inde-x data file-. *)

CHRS3 - display n\essage for the SET3CHR set of letters. :t.)

<* --- *)

PROCEDURE BLD_VOICE ;

VAR CHECKNUM : INTEGER ;
KEYIN : CHAR ;

BEGIN

~AGECOUTPUT> ;
GOTOXYCO, 5) ;
WRITELNC'------------------------------------'>
WRITELNC' BUILD THE VOICE PART OF DICTIONARY'> ;
WRITELN(' VOICE INPUT DEVICE CONNECTED?') ;
WRITELNC' STORAGE DISKETTE ON LINE?') ;
WRITELNC' PRESS A KEY WHEN READY TO GO') ;
WRITELNC'--------------------~--------------- 1) ;

WRITELN ;
READLN CK~YIN> ;

<*first ~inary data file which associates with the first index data-*>
<* file. having starting le-tters •:. f all w•::.rd e-1 ements in the range of ;4'> --"-" * A, •• ;H. *>
CHECKNUM := :2 ;
DISKETTE_ONLINECCHECKNUM)

RESETCIFILE1, I1FNAME) ;

SETCHRS := SET1CHR ;

C:t. new first binary ~ata file indicator *'
C:t. check ~ request STORE: diskette on *'
C* line, create the ne~ binary data file*)
<* open existing first index data file *'

13ETVOICE CBFILE1, IFILE1, CHRSO ;
C* first set of starting le-tters :t.)

<* create content of this *'
C* new binary data file *'

<* make this new file permanent & close- it *'
C:t. close the index data file :t.)

CLOSECBFILE1, LOCK) ;
CLOSECIFILEU ;

C:t. second binary data file which associates with the s~cond index *'
C:t. data file having starting letters of all word elements in the *'
<*range of I, •• ,P. *>

REWRITECBFILE2, B2FNAME) ;

RESETCIFILE2, I2FNAME) ;

C* create new second binary data file *>

SETCHRS := SET2CHR ;
GETVOICECBFILE2, IFILE2, CHRS2> ;

CLOSECBFILE2, LOCK) ;
~CLOSECIFILE2> ;

<* third binary data file which
"<* file having starting le-tters
<* Q, •• , z.

associates with the third index data *'
of all word elements in the range of *'

*'

3.60

~EWRITE<BriLE3, B3rNAME> ;

RESET<IriLE3, I3rNAME> ;

SETCHRS := SET3CHR ;
GETVOICE<BriLE3, IriLE3, CHRS3) ;

CLOSE<BriLE3, LOCK) ;
CLOSE< IriLE3) ;

WRITELN ;
WRITELN<'> END Or THE VOICE INPUT PART') ;
WRITELN<' ---------------------------') ;
WRITELN

END ;

<* The main program is empty. No need to define any process here. *>

BEGIN

END

3. 6:

•

•

•

C*$S++*>

UNIT MODULE2 ;

~· ERF'ACE

'-' USES GLOBAL, UTILITY ;

C* compiler op~ion *l

<* declare the units used *l

C* declare all the procedures of this module her~ *)

PROCEDURE ADD_XENTRIES ;
PROCEDURE ADD_BENTRIES ;
PROCEDURE CMB_XENTRIES
PROCEDURE CMB_BENTRIES ;
PROCEDURE DO_DELETE ;
PROCEDURE DO_CLNUP ;
PROCEDURE IMF'ROVE_SOUND ;

IMPLEMENTATION

C* declare the assembly language routine to be called here *l

PROCEDURE DIGITALCVAR BDATA:SOUND; DTEMPO,DUNIT:INTEGER) ; EXTERNAL;

0

3.62

--- *>
This procedure inserts new index data records to the index data *)

<* files. ~or each index file, the new index data records will have *'
<* index numbers in a sequence starting with the total number of data *'
(* record in the associated binary data file. The first data record of *>
<* the binary file is associated with zero index number. *>
<* *>
<* ~or each index data file, a temporary index file is created to store*>
<* the new index data records. The word elements of these new index *'
<* records must be input in alphabetical ascending order• The actual *'
<* process of creating the contetlt of a temporary index file with new *'
<* index records is accomplished by calling the BLDIDX procedure of *'
<* UTILITY unit. *>

'* *' <* Input : *'
<* N•::>ne· *>

'* *' <* Output : *'
Ct Three tenlp•:.ray index data files called Xl.DATA, X2.DATA and *'
<:t X3. DATA *>

'* .. . *' <* The following procedures are called : ~*>
<* CNT2_ELEM - UTILITY unit, it counts the total number of digitizedi*>
<* binary data records in a binary data file providing the data ~!~=>

\ .. ~
<*

file has been opened by the callihg procedure and the file win_ *'
dow variable is given. *'

BLDIDX - UTILITY unit, builds the content of a given index data *'
file providing the file has been opened by the calling procedu_ *>
re and the file window variable is given. *'

DISKETTE_ONLINE - UTILITY unit, checks and requests that the *>
STORE: diskette be on line. *'

CLOSE - build in file I/0 procedure, closes a file. *'
RESET - build in file I/0 procedure, opens an existing binary *'

data file. *>
REWRITE - build in file I/0 procedure, creates a new and empty *>

temporary index data file. *'
CONCAT - build in string function, concatenates two or more cha_ *'

racter strings. *'
The following global variables of the GLOBAL unit are used :

I~ILEl - file window variable for the first index data file. It
is also used for the three tempo:~rary index data files, one at a
time.

B1rNAME - filename of the first binary data file.
BriLEl - file window variable for the first binary data file.
SETCHRS - contain the current set of starting letters.
SET1CHR - set of the starting letters of all the words elements

of the.first index data file.
CHRS1 - display message string for the SETlCHR set of letters.
B2~NAME - filename of the second binary data file.
BriLE2 - file window variable for the second binary data file.
SET2CHR - set of the starting letters of all the words elements

of the second index data file.
CHRS2 - display message string f•:tr the SET2CHR set of letters.
B3~NAME - filename of the third binary.data file.

*' *' *' *' *' *' *' *' *' *' *' *' *' *>

*' *' *'

3.6:::

•

•

c
BFILE3 - file window variable for the third binary data file. *' SET3CHR -set of the starting letters of all the words elements

C* of the third index data file.
<* CHRS3 - display message string for the SET3CHR set of letters.
'* VOLUMENAME - contains the storage diskette name STORE: *l

'* *' '* --- *>
PROCEDURE ADD_XENTRIES ;

VAR CHECKNUM, STRTIOX : INTEGER ;

BEGIN

PAGECOUTPUT) ;
WRITELNC'----------------------------') ;
WRITELNC' INDEX DATA FILES INSERTION '> ;
WRITELNC'----------------------------') ;
WRITELN ;

<* Check and request the STORE: storage diskette be on line by open_ *)
<* ing the existing first index data file. ~*>

CHECKNUM := 3 ; c ISKETTE_ONLINECCHECKNUM) ;
~LOSE< IFILE1) ;

'* existing first index file indicator-~)
<* open the index data file *'

<* close it *'
(% insert new index data records to the first index data file, in *'
C% other words, create the associated temporay index data file. The *'
<* word elements of the new index records have starting letters in *'
C* .the range of A, •• ,H. *'
RESETCBFILE1,B1FNAME> ;
CNT2_ELEMCBFILE1, STRTIDX) ;

' .
CLOSECBF'ILEl) ;

C% open the existing first binary file *'
<* counts the data records to get %)
(% the new records' 1st index number%)

C* clos• the binary fil• *'
REWRITE<IFILE1,CONCATCVOLUMENAME,'X1.DATA'>> ; <* create new tempo_ *>

<* ra~y index file *'
set of starting letters %)
build the content %)

SETCHRS := SET1CHR ;
BLDIDXCIFILE1, CHRS1, STRTIOX)
CLOSECIFILEl, LOCK) ;

<* first

'* <* close the new index fi~e *>

<* insert new index data records to the second index data file, in *)
C* other words, create the associated temporay index data file. The %)
(% word elements of the new index records have starting letters in %)
<*the range of I, •• ,P. *'

RESETCBFILE2, B2FNAME) J
~~NT2_ELEMCBFILE2, STRTIDX) ;
.., LOSE C.BFILE2) ;

REWRITECIFILE2,CONCATCVOLUMENAME,'X2.DATA')) ;
SETCHRS := SET2CHR ; <* secorid set of starting letters *'
BLOIDX<IFILE2, CHRS2, STRTIOX) ;

3.64

;LQSE<IFILE2, LOCK> ;

<* insert new index data rec•:>rds t•:> the third index data fi 1 e, in
<* other words, create the associated temporay index data file. The '* word elements of the new index records have starting letters in
<*the range of Q, •• ,z.
RESETCEFILE3, E3FNAME> ;
CNT2_ELEMCEFILE3, STRTIDX> ;
CLOSECEFILE3> ;

REWRITECIFILE3,CONCAT<VOLUMENAME,'X3.DATA'))
SETCHRS := SET3CHR ; C* third
ELDIDX<IFILE3, CHRS3, STRTIDX) ;
CLOSE<IFILE3, LOCK>

END ;

. ,
set of starting letters *>

3.65

•

•

•

~ ---
This proc~dure inserts new binary data records to the binary data
files. For each binary fil~, the new binary data records will be
inserted starting at the end of the binary data file. The input of
each digitized binary data record must be in the same sequence num_
ber as its associated index data record.

For each binary data file, a temporary binary file is created to
store the new binary data records. The actual process of creating
the content of a temporary binary data file with new binary records
is accomplished by calling the GETVOICE procedure of UTILITY unit.

Input :
None

Output :
Three temporay binary data files called Bl.DATA, B2.DATA and
B3.DATA

The following procedures are called :
GETVOICE - UTILITY unit, builds the content of a

file providing the file has been opened by the
re and the file window variable is given.

given binary data*)
calling procedu_:*)

DISKETTE_ONLINE - UTILITY unit, checks and requests that the
STORE: disk~tte be on line.

REWRITE - build in file I/0 procedure, creates~ new and empty
temporary binary data file.

RESET - build in file I/0 procedure, opens an existing temporary
index data file.

CLOSE - build in file I/0 procedure, closes a file.
CONCAT - build in string function, concatenates two or more cha_

rao:ter strings.

. *>
.*>
:to
:t:)

*' :t;)

:t:)

:t:)
:t:)
:t:)
:t:)

The following global variables of the GLOBAL unit are used : :t:>
IFILE1 - file window variable for the first index data file. It :t:)

is also used for the first temporary index data"file. :t:)
BFILEl - file window variable for the first temporary binary file.:t:)
SETCHRS - contain th~ current set of starting letters. :t:)
SET1CHR - set of the starting letters of all the words elements :t:)

of the associated first index data file. :t:)
CHRS1 - display message string for the SETlCHR set of letters. :t:)
IriLE2 - file window variable fo:;.r the se•:ond temporary index file.:;)
BFILE2 - file window variable for the second temporary binary file:t:)
SET2CHR - set of the starting letters of all the words elements :t:)

of the associated second index data file. :t:)
CHRS2 - display message string f•::.r the SET2CHR set of letters. . :t:)
IFILE3 - file window variable for the third temporary index file. :t:)
BFILE3 - file window variable for the third temporary binary file.:t:l
SET3CHR - set of the starting letters of all the words elements :t:)

of the associated third index data file. *'
CHRS3 - display message string for the SET3CHR set of letters. *'
VOLUMENAME - contains the storage diskette name STORE: *'

~ --- *'
PROCEDURE ADD_BENTRIES ;

3.66

~ CHECKNUM, STRTIDX : INTEGER ;

BEGIN

PAGE<OUTPUT> ;
WRITELN<'--') ;
WRITELN<' APPENDING NEW BINARY DATA RECORDS INTO BINARY DATA FILES') ;
WRITELN<'--') ;
WRITELN ;

<:t: Check and request the STORE: storage diskEttte bEt on line by open_ *'
<* ing the existing first index data file. · *'

CHECKNUM := 3 ;
DISKETTE_ONLINE<CHECKNUM> ;
CLOSE< IFILE1) ;

'* existing first index file indicator *'
'* open the index data file *'

<* close it *'

<* Append new binary data records to the first binary data file, in *' '* other words, create the associated temporay binary data file. *'
..:;

<* •:reate new
REWRITE<BFILE~,CONCATCVOLUMENAME,'Bl.DATA')) ;

'* open Etxisting
ESETCIFILEl, CONCATCVOLUMENAME,'Xl.DATA')) ;

tempor~ry binary file~*'

3ETCHRS := SET1CHR ;
GETVOICE<BFILEl, IFILE1, CHRSl> ;

CLOSECBFILEl, LOCK) ;
CLOSE< IFILE1) ;

<* •:b;:,se thEt
<* cl•:-se the

temporary index file *'

<* cr~ate contEtnt of *'
<* temporary binary file *'
temporary binary filEt *'
temporary index file *'

<* Append new binary data records to the second binary data file, in *'
<* other words, create thEt associated temporay binary data file. *'
REWRITECBFILE2,CONCATCVOLUMENAME,'B2.DATA')) ;
RESET<IFILE2, CONCAT<VOLUMENAME,'X2.DATA'>> ;

SETCHRS := SET2CHR ;
GETVOICE<BFILE2, IFI~E2, CHRS2) ;

CLOSE<BFILE2, LOCK> ;
CLOSEUFILE2) ;

<* Append new binary data records to thEt third binary data file, in ~)
<* other words, crEtate the associatEtd temporay binary data file. *'
REWRITECBFILE3,CONCATCVOLUMENAME,'B3.DATA')) ;
RESET<IFILE3, CONCATCVOLUMENAME,'X3.DATA')) ;

JETCHRS := SET3CHR ;
~ETVOICE<BFILE3, I~ILE3, CHRS3) ;

CLOSECBFILE3, LOCK) ;
CLOSECIFILE3>

3.67

•

•

.·

3.68

c. ... ;

Input . •
DEST ~arameter, file window variable of th.:- destination index

data file.
SRCE parameter, file window variable of the source index data

file.

PROCEDURE COPY_XFILECVAR DEBT, SRCE:INDEXFILEl ;

BEGIN

WHILE C NOTCEOFCSRCE>>) DO
BEGIN

' .
DEST"'. STRG : = SRCE''·. STRG ;
DESTA.UNITT := SRCEA.UNITT ;
DESTA.IDXX := SRCEA.IDXX ;
DESTA.STATUS := SRCEA.STATUS ;

<* loop processing one record at *)
<* a time until the end of file *>

C* assigning word element *>
C* total number of sound unit *>

<* index number *>
<* valid and existing status *>

PUTCDEST> ;
13ETCSRCE)

<* advancing the file window variable *>
<* advancing the file window variable *>

END

END ;

<* --- *'

3.6

•

•

This procedure is the secc•nd and last step of inserting new index ::10 o~·
data records into the index data files. For each pair of index data *'

.. file and its asso•:iated temp•:.rary index data file, they are combined*)
<* and the result is a bigger index data file. In each file of the pair*>
<* of index data .files, the word elements of all the index data records*)

0
(:t:;

are in ascending alphabetical order. In the resulting index data
file, the alphabetical order is kept.

C* The actual process of combining a pair of index data files is car :t::)
<* ried out in three substeps : :t:;)
C:t:: (1) Merge Sort this pair of index data files in alphabetical as_ *l
C* cending order, the result is a combined index data file. *l
<* This substep is accomplished by calling the ~ILE_SORT procedure.*>
<* (2) Delete the pair of index data files. *l
C* Create a new index data file with the same filename as the ori *'
C:t:: ginal index data file which was just deleted. *>
<* C3) Copy the content of the combined index data file into this *'
<* new and empty index data file. This substep is accomplished by *>
<* calling the COPY_X~ILE local procedure. *>
<* *)
<* Input : *>
<* Three pairs of index data files and temporary index data files. *>
<* INDEX1.DATA and Xl.DATA *>
C* INDEX2.0ATA and X2.DATA *>
<* INDEX3.DATA and X3.DATA *)
C* *)
C* Output : ;*>

<*
<*
(:~

C*
(::le
(:~

<*
<*
<*

Three index data files,· ead1 of them is the c•;:,mbination result of~~*)
its original index data file and the associated temporary indei ~)
data fi 1 e. *l

The following procedures are called :
COPY_X~ILE - local procedure, it copies the content of a combina

tion index data file into an empty index data file. The data
files have been opened by the calling procedure and both file
window variables are provided.

~ILE_SORT - UTILITY unit, builds the content of a combined
index data file from a pair of index data file and temporary
index data file, the word elements of all index records are in
alphabetical ascending order. All three data files have been

*)
*>
*>
*>
*>
*>
*>
*)
*>
*>

opened and the file window variables are provided. *>
CLOSE- bui1'd•fr1 file I/0 pro•:edure, •:l•:.ses an itldex data file. :f::)

RESET - build in file I/0 procedure, opens an existing index data *>
file. *>

REWRITE - build in file I/0 procedure, creates a new and empty
it1dex data file.

CONCAT - build in strit1g fut1ction, concatenates two or more cha_
racter strings.

*' ::j::)

C* The following global variables of the GLOBAL unit are used :

*' *' *' ::to
C* I~ILE1 file window variable for the three index data files, it
C* is used for only one data file at a time.
C* I~ILE2 file window variable for the three temporary index data
C* files, it is used for only one data file at a time.·

C*
C*

I~ILE3 file wind•::.w variable f•:>r the thr'ee •:•:>mbined index data
files, it is used for only one data file at a time.

Il~NAME filename of the first index data file.
I2~NAME - filename of the second index data file.
I3~NAME - filename of the third index data file.
VOLUMENAME - contains the storage diskette name STORE:

*' *' *' *' *> *)
;f::)

*' *>
*>

3.70

--- *)
PROCEDURE CMB_XENTRIES ;

VAR I : INTEGER ;
FN1, FN2 : FILENAME ;

BEGIN

PAGECOUTPUT> ;
WRITELN<'> DOING SORT MERGE ON INDEX DATA FILES NOW')
WRITELN<' PLEASE BE PATIENT') ;
WRITELN<' --') ;

FOR I := 1 TO MAXFILE DO
BEGIN

IF (I = 1) THEN
BEf3IN

FN1 := I1FNAME ;

<* loop, each pass processes only one *>
'* pair of related index data files *>

'* first pass :40

FN2 := CONCATCVOLUMENAME,'Xl.DATA')
END

<* uses first pair of *>
<* related index files *>

ELSE IF < I = 2) THEN C* second pass *>

3.71

0

- BEGIN
FN1 : = I2FNAME ; <* uses second pair of *> •
FN2 := CONCATCVOLUMENAME,'X2.DATA') C% related index files%)

END
ELSE <* third and last pass *>
BEGIN

FN1 := I3FNAME ; <* uses third pair of *>
FN2 := CONCATCVOLUMENAME,'X3.DATA') <*related index files*>

END f

RESET<IFILE1, FN!) ;
RESETCIFILE2, FN2)

<* open existing index data. file *'
<* open existing temporary index data file *'
<* create a new combined index data file *>

REWRITECIFILE3, CONCATCVOLUMENAME,'V.DATA')) ;

FILE_SORTCIFILE1, IFILE2, IFILE3l ; <* merge pair of *>

CLOSECIFILE1, PURGE) ;
CLOSECIFILE2, PURGE) ;
CLOSECIFILE3, LOCK> ;

* index data files *>

<* delete original index data file *'
<* delete the temporary index file *)
<* close & keep the combined file *)

<* open existing combined index data file *>
RESETCIFILE3, CONCATCVOLUMENAME,'Y.DATA'l) ;
REWRITE<IFILE1, FNl) ; <* create a new index data file *'
COPV_XFILECIFILE1, IFILE3) ;

CLOSE<IFILEl, LOCK) ;
CLOSE<IFILE3, PURGE>

<* copy content of index file *'
<* close & keep the index data file *>
<* delete the combined index file *>

•

3.72

END · ,

0

* ,:t:
(:t:
(:t:
(:4;:

(:t:
<:te
(:t:
<:te
(:t:
(:t:
(:t:

'* (:f::

'* (:t:

'* (:t:
o:
(:t:

'* '* (:t:
(:f::

(::t;:

.·

This local procedure appends a binary data file by copying each
consecutive binary data record into the end of another binary
data file. Both binary files have been opened by the calling pro_
cedure and the file window variables ar~ provided.

Input :
DEST - parameter, file window

SRCE

Output :

binary data file.
parameter, file window
data fil~.

variable of the destination

variable of the source binary

Content of the destination <DEST) binary data file

The following procedur~s ar~ called :
EOF build in file I/0 function, checks whether the end of a

sp~cified file has been reached.
PUT build in fil~ I/0 function, advances th~ fil~ window va_

riabl~ to the next r~cord and puts the content of file buffer
variable into this record.

GET - build~in file I/0 function, advanc~s th~ file window va_
riabl~ to th~ next r-e:;:.:.rd and m•:.ves the content of this
record into the file buffer variable.

•:t: Th~ following global variabl~s of the GLOBAL unit ar~ us~d :
. :t: N•:.t1~

(::tc --·-------------------

PROCEDURE COPY_BFILECVAR DEST, SRCE:BINARYFILE>

BEGIN

:f::)

*)
*)
;f::)
:f::)

:f::)

:to
;f::)

:t:)

;f::)

;f::)
;f::)

*'
*'
*' *>
*>
;f::)

*> *)
' :)

:*)
~)
;f::)
:f::)

*>
:t:)

WHILE (NOTCEQF(SRCE))) DO
BEGIN

<* loop processing one r~cord at *>
<* a time until the end of file *)

DEST'' : = SRCE··'· ;

PUT<DEST) ;
GET<SRCE)

END

END ;

C:t: assigning the digitized binary data *>
<:t: advancing both file :t:)
C:t: window variables :f::)

(;f:: --- :f::)
C:t: This procedure is the second and last step of inserting new binary *>

3. 7~

•

(:f:: data r~cords into the binary data files. For each binary data file, *>
C* its associated t~mporary binary data fil~ is app~nded at th~ ~nd of :f::)
t* th~ file and the result is a bigger binary data file. :f::)

;f::) •
- The actual process of combining a pair of binary data fil~s is car_ :f::) ·.

<* ried out in four substeps : :t:)
C:t: (1) Create a new and empty combined binary data file. By calling *)

http:r-e:;:,;:.rd

0
'(:tc

(:t:

'* (:t

'* <*
'* '* '* (:t
(:t
(:t

'* <*
(:t

'* '* '* <*
(:tc

'* (::1:: .-
~

(2)

the COPY_B~ILE procedur~, the binary data fil~ of th~ pair is *l
copied into this combin~d fil~. *)
By calling the COPY_B~ILE procedure again, the t~mporary binary *'
data file of the pair is copied at the end of this combined *'
file. *'

(3) Delete the pair of binary data files. *>
Create a new binary data file with the same filename as the
original binary data file which was just deleted.

(4) Copy the content of the combined binary data file into this
new and empty binary data file. This substep is accomplished
by calling the COPY_B~ILE local pr6cedure.

It is possible that the preceding combining process doe• not need
the combined binary data file. The t~mporary binary data file can
be copied (appended) dir~ctly at the end of its associated binary
data file by calling the COPY_B~ILE procedure only once. Apple II
disk file needs contigous storage ar~a, if the original binary data
file has an•::>ther disk file right after it in the disk, no expansion
can be made. Therefore, the preceding simple method will not work
most •::>f the tin\e. ·

Input :
Three pairs of

BINARY1.0ATA
BINARY2.0ATA
BINARY3.0ATA

binary data file and temporary binary data files •
and Bl.DATA
and B2.0ATA
amd 83. DATA

;t)

*>
*>
*>
*' *' *>
*>
*>
*>
*>
*>
*>
*)
*)
~*)

. *'
:~o

*' *)

et Output :
*)
*)
*)
*)

<* Three binary data files, each of them is the combination result
<* of its original binary data file and the associated temporary
<* binary data file. *' :t) '* (:t:

'* et
<*
'* '* '* (:t:.

(:t:

(*
<*
<*
(:t

The f•::>l b::>wing procedures ar~ called : *'
COPV_B~ILE - local procedure, it copies the content of a source *>

binary data tile into the end of a destination binary data file.*>
Both data files have been opened by the calling procedure and *'
the file window variables are provided. *>

CLOSE build in file I/0 procedure, closes a binary data file. *>
RESET - build in file I/0 procedure, opens an existing binary *'

data file. *'
REWRITE - build in file I/0 procedur~, creates a new and empty *'

binary data file. *'
CONCAT - build in string function, concatenates two or more cha_ *'

racter strings. *)
*)

C* The following global variables of the GLOBAL unit are used : *' <* BFILEl - file window variable for the three binary data files, it :tc)
<* is used for only one data file at a time.
<* B~ILE2 - file window variable for the three temporary binary data

e ..
files, it is used for only one data file at a time.

B~ILE3 - file window variable for the three combined binary data
files, it is used for only one data file at a time.

Bl~NAME - filename of the first binary .data file.
B2~NAME filename of the second binary data file.
B3FNAME fileraa.r.·ae of the third binary data file.

*>

*' *' *)
*' *>
*l

*'

3 .. 74

VOLUMENAME - contains th~ storage disk~tt~ nam~ STORE: *>
--- *'

.PROCEDURE CMB_BENTRIES ;

VAR I : INTE.:3ER ;
FN1, FN2 : FILENAME 1

BEGIN

PAGECOUTPUT> ;
WRITELNC'> MERGEING BINARY DATA FILES NOW') ;
WRITELN<' PLEASE BE PATIENT') ;
WRITELNC' ------------------------------') ;

FOR I := 1 TO MAXFILE DO
BE13IN

<* loop, ~ach pass processes only a *'
<* pair of r~lated binary data files *'

IF (I = 1) THEN
BE•3IN

FN1 := BlFNAME ;
FN2 := CONCATCVOLUMENAME,'Bl.DATA'l

END

<* first binary file *'
<* first temporary *}
<* binary data file *)

ELSE IF C I = 2) THEN
BEGIN

C% second pass *'
FN1 := B2FNAME ;
FN2 := CONCAT<VOLUMENAME,'B2.DATA')

END

c:: s~c.:,t1d binary file *>
C* second temporary *>
<* binary data fil~ *>

ELSE <* third pass *'
BEt3IN

FN1 := B3FNAME ;
FN2 := CONCATCVOLUMENAME,'B3.DATA'l

END ;

<* third binary file *'
<* ~hird temporary *'
<* binary data fil~ *>

<* create new combin~d binary data
REWRITECBFILE3, CONCATCVOLUMENAME,'Z.DATA')) ;
RESETCBFILE1, FN1) ; <* open existing binary data
COPY_BFILECBFILE3, BFILE1) C* copy into combined binary
CLOSE<BFILE.l, PURGE) ; <:t: del~te tr1e binary data

RESET<BFILE2, FN2> ; <* op~n existing temporary binary
COPY_BFILECBFILE3, BFILE2) ; <* append to the end of

CLOSE<BFILE2, PURGE> ;
CLOSECBFILE3, LOCK> ;

<* combined binary file
<* delete the t~mporary binary

<* close & ke~p the combin~d binary

<* open ~xisting combin~d binary data
RESET<BFILE3, CONCATCVOLUMENAME,'Z.DATA'l) ;
F.:EWRITE<BFILE1, FN1) ; u: •::r~·at~ n~w binary data
COPY_BFILE<BFILE1, BFILE3) ; <* copy into empty binary

file *)
file *>
file *'
file *'
file *' *>.
*' file *' file *>
file *'
file *' file *'

CLOSECBFILE1, LOCK) ;
CLOSE<BFILE3, PURGE)

<* close & k~~p the binary data file *'
<* delete. th~ combined binary file *>

•

0

3.76

c ...::No

END ;

.-

<* --- *'
<* This is a local procedure. For each index data file with the file *'

'* (:4;:

'* <*

'* (:4;:

<*
<*·
<*
'*
~:4;:

;::t:

window variable provided, this procedure prompts the user to *>
input the words to be deleted from the dictionary, pressing of *'
RETURN key ends the process. All the input words must be in alpha_*>
betical ascending order and in the same set of starting letters. *'

For each input word, if it is found as the word elenlent of an
index data record in the current index data file, this index re_
cord is deleted from the index file. Actually, only the status
element's value of the index record is changed to FALSE boolean
value. The real deletion of index data records is accomplished by
calling the DO_CLNUP procedure. Each call of this procedure dele_
tes words from the same index data file, in order words, words
with starting letters in the same set of letters are deleted.

*' *' *' *' *)

*' *' *' *' *' Input : *'
IFILEl - parameter, file window variable of an index data file *'

Output :
N•::.ne

*' *' *' -*)
The following procedures are called : *'

LENGTH - build in string function, gets the length of a charac_*)
ter string. The returned value is zero for NULL string. *)

EOF - build in file I/0 function, indicates whether the end of *>
a specified file has been reached. *)

PUT - build in file I/0 procedure, advances the file window ~a-*>
riable to the next record and puts the content of file buffer*)
variable into this record. *'

GET - build in file I/0 procedure, advances the file window va_*)
riable to the next record and moves the content of this re_ *'
cord into the file buffer variable.· *l

SEEK - build in file I/O pr.:)cedure, all•::.ws rar1d•::.m a1:cess to *)

record. The file window variable (file pointer) is moved to *'
a specified record in a file. The record number <index num_ *'
ber) of the specified record is provided. *'

The following global variables of the GLOBAL unit are used :
N•:one

*)
*>
::10

--- *'
PROCEDURE GO_.DELETE<VAR IF'ILE1:INDEXFILE) ;

VAR WRD : WORD ;
IDXl, L : INTEGER ;
FOUND, NOTIN : BOOLEAN

BES:3IN

WFi:ITELN ;
L : = 1 ;
IDX 1 : = 0 ;

<* loop, each pass deletes ':•nly one W•:JYd. The input w•:Jrds must be *'

3.77

•

,....,
~

-

<* in alphab~tical asc~nding ord~r with starting l~tt~rs
<* sam~ s~t of lett~rs. Th~ proc~ssing of this proc~dur~
<* pl~t~d when th~ end of file has been ~ncounter~d or a
<* has been input.

in the :t:)
is •:•:.m_ ::to
null word *)

::tO

WHILE C CL<> 0) AND CNOTCEOrCiriLEl)))) DO
BE•3IN

rOUND := rALSE ;
NOTIN := rALSE ;
WRITEC'WORD: ') ;
READLNCWRD> ;

'* word is yet not found in dictionary *'
<* assume word is in the dictionary *)

C:t: prompts user to input *>
C:t: the word to be deleted :t:)

L := LENGTHCWRD) ;

IF C L <> 0) THEN
BE13IN

C:t: only non null word input *)

WHILE C CNOTCEOFCIFILE1))) AND
CNOTCFOUND)) AND CNOTCNOTIN))) DO

BEGIN

IF (WRD = IriLE1A.STRG) THEN
BEGIN

FOUND := TRUE ;
IFILE1A.STATUS :=.FALSE
SEEKOF"ILE1, IDXU ;
PUT (IFILE1)

END
ELSE Ir (WRD (IFILE1A.STRG)

THEN NOTIN := TRUE ;

GET C IFILEl) ;
IDX1 := IDXl + 1

END

END ;

IF" C NOTIN) THEN
WFU TELN (' > WORD DOES NOT EXIST ! ')

ELSE Ir C EOFCiriLE1)) THEN
WRITELNC'> END Or riLE !') ;

WRITELN

END

'* find the match :t:)

'* updat~ the status element*)
C:t: of th~ index data r~cord :t:)

'* in the- ind~:" data file *'
C* input word is not in :t:)
<* the dictionary, base :t:)
(:t: Qn the alpha. ascend.:t:)
C:t: order characteristic *'

<* g~t next index record :t:)

END ;

.c;) --- *'
.. This pro:u: edur& pro•: esses the del et i•::on of w•::.rds fr•::om the diet io:::mary, :t:)

<* in other words, related index data records are deleted from the :t:)
C* index data file of the dictionary. :t:)

3.78

The three index data files are processed in sequence, •:me after
(:t. another. After an index file has been opened, the task of deleting
<* index data records which associate with the same set of starting
C:t: letters is passed to GO_DELETE local procedure, providing the file
C* window variable is available.
(:t:
(:t:
<*
C:t.
(:t:
<*
(:~

(:~

(:~

(:t:
(:t.

(:t.

(:t;:

(:t.

<:t.

Ir1put :
Three index data files of the dictionary

Output :
None

The following procedures are called :
GO_DELETE - local procedure. It does the deletion of index data

records from a specified index data file when the file window
variable is given.

RESET - build in file I/0 procedure, open an existing index data
file.

CLOSE - build in file I/0 procedure, close an index data file.

C:t. The following global variables of the GLOBAL unit are used :
C:t: I1FNAME - filename of the first index data file.
C:t: IFILE1 - file window variable for the first index data file.

CHRS1 - display message for the SET1CHR set of letters.
I2FNAME - filename 6f the second index data file.
IFILE2 - file window variable for the second index data file.
CHRS2 - display message for the SET2CHFi: set of letters.
I3FNAME - filename of the third index data file.

::t:)
:t;:)
:t.)
:t.)
:t.)

*>
*>
:~o

*>
*>
:t.)

*>
*)
:t.)

*)
*' :to
*>
:t:)
:t:)
*>
*>

·.*)

*)
::JO
:t:)
:t:)
*)
:t:)

C:t: IFILE3 - file window variable for the third index data file. *>
C:t: CHRS3 - display message for the SET3CHR set of letters. :t:)
(:t. --- *)

PROCEDURE DO_DELETE ;
' .

VAR FN, CHRS : ~ILENAME ;
I : INTEGER ;
INPKEY : CHAR ;

BEGIN

PAGECOUTPUT) ;
WRITELN('------------------------------------')
WRITELN<' DELETE ENTRIES FROM THE DICTIONARY '>
WRITELN('------------------------------------') ;
WRITELN ;

FOR I := 1 TO MAXFILE DO
BEGIN

IF C I = 1) THEN
BE13IN

CHRS := CHRS1 ;
FN := IlFNAME

END

(:t: loop,
(:~ index

(:t. first

only process one *' file in ea•:h pass :t.)

index data file *>

3.7

0

•

•

c

-

ELSE IF (I = 2) THEN
BEGIN

1:HF.:S : = CHRS2 ;
F'N := I2FNAME

END

ELSE
BEGIN

CHRS := CHRS3 ;
F'N := I3F'NAME

END ;

<* second index data file *>

<* third index data file *'

WRITELNC'WORDS START WITH ',CHRSl ;
WRITELNC'END OF' INPUT, RETURN KEY ONLY') ;
WRITELNC'-----------------------------'l ;

RESETCIFILEl, FNl ; <* open the index data file *>

) THEN IF (IORESULT <> 0
WRITELN<'> ERROR

ELSE
GO_DELETECIFILEll

IN OPENING INDEX DATA FILE ',F'N)

CLOSE (IF ILEl)

WRITE 1: ' F.:ETUF.:N KEY: ')
READLN(INPKEY>

<* process deletion of *'
<* index data records *'
C* close the file *>

END

END ;
' .

0

3.80

(:~

(:4'
(:f:;
(:.t;
(;f:;

(:t:
(:4'
(:f:;

(:t:
(:t:
(:.j(

(:.t;

(:t:
(:f:;
(:f:;

(:f:;
(:t;

--- :.t;)
This is the second and last step of deleting WC11'"ds fyom the di•:tio
nayy. The temporary deleted index data records and their associate~
binary data records are deleted permanently, respectively, from the
index data files and binary data files of the dictionary.

:~o

:.t:)
:t:)
:t;)
:.t;)

The data records deletion process is accomplished by copying the *l
non deleted data records into a temporary data file. After the ori_ *l
ginal data file has been deleted and recreated with empty content, *l
the content of the temporay data file is copied into the empty data *)
file by calling COPY_X~ILE or COPY_B~ILE procedure, respectively, *>
for the index or binary data file. *>
Input :

Three pairs of index and binary data files.

Output :
Clean up version of the three pairs of index and binary data

*>
:to
:to
*)
*>

fi les:t:)
:t:)

C:t: The following procedures ar~ called : *' :t:)

et:
et:
(:f:;

. (:f:;

(:t:
(:f.

(:f:;

et:

EO~ - build in file I/0 procedure, it indicates whether the end
of a specified file has been r'ached.

GET - build in file I/0 procedure, it advances the file window
variable to the next record and moves the content of this
record to the file buffer variable.

PUT - build in file I/0 procedure, it advances the file window
variable t•:. the ne:.-;t r e•:•:ord and puts the c•:•nt ent •:.f the file
buffer variable into this record.

RESET - build in file I/0 procedure, open an existing data file.
CLOSE - build in file I/0 procedure, closes a given file.
REWRITE - build in file I/0 procedure, creates a new and empty

data file with the given filename.
GO_ACT1 local procedure, it goes through an opened index data

file and marks down all the deleted index data records using
the IARRAY array.

GO_ACT2 - local procedure, it goes through an opened binary data
file and copies all the non deleted binary data records into a
temporary binary data file. ~or each copied binary record, the
associated element in the LARRAY array contains its new record
number <index numbey) in the temporary data file.

GO_ACT3 - local procedure, it goes through an opened index data
file and copies all the non deleted index data records into a
temporary index data file. ~or each copied index record, its
index element is assigned with the record number of its asso_
ciated binary data record in the temporay binary data file.
This new record number is •:Jbtained from the LARRAY array using
the old record number (index number element) as index.

COPY_X~ILE - local procedure, it copies the content of a source
index data file into a destination index data file.

COPY_B~ILE - local procedure, it copies the content of a source
binary data file into a destination binary data file.

~~ The following global variables of the GLOBAL unit are used :
I1~NAME - filename of the first index data file.
I2~NAME - filename of the second index data file.

. *' :.t;)

;t:)
:to
*>
:t:)
*)
*)

*' *)
*)
:t:)
*)
:t:)
:t:)
:f:;)

*>
:f:;)

;f:)

:.t;)
;f:)

*)
*)
:t::)

*' :.t;)

*)
%)
*)
*' *' *>
:t:)

:.t;)

3.81

•

0

http:r.spectiv.ly

0

PROCEDURE DO_CLNUP ;

CONST OELETEWORD = -1 ;
KEEPWORD = 0 ;

VAR IARRAY: ARRAYC0 •• 100J OF INTEGER;
IFNX, BFNX, FN : FILENAME ;
I,J,K,IDX1,IDX2,IDX3 : INTEGER;
INPKEY : CHAR ;
BFREAOY : BOOLEAN ; -
--· -·------------------ *)

C:t. This is a local procedure, it goes through an opened index data
<* file and marks down all the deleted index data records using the
(:f. IARRAY integer array. The size of preceding aYray is the maximum
C:t. capacity of index data file, its index starts from zero which is
(:f. also the first record number of the index file.

*' :f.)

;:J::)

:f.)
*)

*' (:t
(:t There is a relationship between data records and array elements :t.)
(:f. of current index data file and IARRAY array. The index element of :f.)
C:t. an index data record is exactly the same with the index number of *'
C:t. its associated array element in the IARRAY array. When an index *'
C* data record is supposed to be deleted, its associated array ele_ *>
(* ment is assigned -1 value, otherwise the value is 0. *l '* --- *'
PROCEDURE GO_ACT1 ;

BEGIN

IDX1 : = 0 ;

WHILE C NOTCEOFCIFILEl))) DO
BEGIN

IF C NOTCIFILElA.STATUS)) THEN
BEGIN

IDX2 := IFILE1A.IDXX ;
IARRAYCIDX2J := OELETEWORD ;

<:t in si de DO_CLNUP pn:>cedur e :f.)

C:t: counter of deleted records *'

(:t: loop, processes one index *l
(:t: data record in each pass *>

<:t: a deleted index record *l

<:t: get the index element, *>
C:t: uses it to index the array*>
(:f. and assigns a -1 value *>

3.82

IDXl := IDXl + 1 <* increment the counter *'

END ;

GET C IFILE1) <* get next index data record*)

END

END ;

<* --- *'
<* This is a local procedure, it goes through an opened binary data *>
'* file and copies all the non deleted binary data records into a *>
C* temporary binary data file. *>
<* *>
<* There is a one to one relationship between data records and array *>
<* elements of •:urret'\t binary data file and IARRAY array. The record *'
<* number of a data record is exactly the same with the index number *'
<* of its associated array element in the !ARRAY array. *>

'* ;*)
C:t F•='r ead'\ binary data re•:ord, the record number is used t!o index -·*)
<* an element of !ARRAY array. When the preceding array el~ment has ~)
<* 0 value then the current binary data record must tie copied, other_*>

3.83

•

:t: wise it is a deleted re•:ord. For each •:•:opied bfnary re•:•:oYd, the *> •
·*associated element in the !ARRAY arYay has a ~ifferent function *' ·
<* now, it contains the new Yecord number (index number) in the tem_ *'
<* porary data file. *>
<* --- *>

PROCEDURE GO_ACT2 ; <* inside DO_CLNUP procedure *'

IDX2 := 0 ;
IDX3 := 0 ;

<* old record number *l
<* new YecoYd number *l

. WHILE C NOTCEOFCBFILE1))) DO
BE13IN

C* loop, each pass processes *l
C* one binary data Yecord *l

IF C IARRAYCIDX2l = KEEPWORD) THEN
BE13IN

<* a copied Yecord *l

IARRAYCIDX2J := IDX3 ;

IDX3 := IDX3 + 1 ;

BFILE2A := BFILE1A ;
PUTCBFILE2)

END ;

GET CBFILEU ;
IDX2 := IDX2 + 1

C:t: assigned with new record # *'

<* incYement new YecoYd *'
<* number for t1ext usage *'

<* assignning binaYy data recoYd ~ *'
C* put in the temporaYy binary file *l

C::~ get t1ext data rec•:>rd of binaYy data*)
<* file & increment the YecoYd numbeY *)

c
END

END ;

(% --- %)
(% This is a local proc~dur~, it go~s through an op~n~d index data %)
<* file and copies all the non del~t~d index data records into a *'
C% temporary index data file. *>
(% *' (%
(%

<*
<*
(;f::

<*

~or each copied ind~x data record, its index element is changed
and is assigned with the r~cord number of its associated binary
data record in the temporay binary data file. This new record
number is obtained from the IARRAY array using the old record
numb~r in the index number element as index.

:t:)
*>
;f::)

*>
%)

--- %)

PROCEDURE GO_ACT3 ; C:t: inside DO_CLNUP procedure *'
BEt:3IN

.. ,......
WHILE < NOTCEO~CI~ILEl))) DO
BEGIN

'-"' IF < !FILEt··'. STATUS) THEN
BEt:3IN

IDX2 := IFILElA.IDXX;

IF I LE2"'. STATUS : = TR:UE ;
IFILE2"'.STRG := I~ILEt"'.STRG ;
IFILE2A.IDXX := IARRAYCIDX2J ;
IFILE2A.UNITT := IFILE1A.UNITT ;

<* l•;,op·,' each pass processes *'
<* one index data record ~)

<* a copied data record *>

<* get th~ old record number *l

C* set up data record of *>
C% the temporary index file%>
<* using new record number %)

' .
F·UTC I~ILE2) <* put in the t~mporary index file *)

END ;

GETC I~ILE1) <* get next record of the index file *>
END

END ;

BEGIN

<* set up filenames of th~ temporary index and binary data files *'
O::Nx := CDNCATCVOLUMENAME,'IDX.DATA') ;

~~NX := CONCATCVOLUMENAME,'BIN.DATA'l ;

C% loop, each pass only processes one pair of related index and %)
C* binary data files. *'

3.84

rOR I := 1 TO MAXFILE DO
BEGIN

BrREADY := FALSE ;
FOR J := 0 TO 100 DO

IARRAYCJl := KEEPWORD ;

IF (I=1) THEN
FN := I1FNAME

ELSE rr- (I=:2) THEN
FN := I:2FNAME

ELSE
rN . - I3FNAME . .- ,

C* the binary file is not ready *'
<* assume all words are copied *>

'* use first index data file *'
C* use second index data file *>
<* use third index data file *'

<* compiler option, no I/0 checking *'
<* marks the deleted index data records and count them *'
RESETCiriLE1, rN) ;
Ir < IORESULT = 0)

THEN GO_ACT1
ELSE IDX1 := 0 ;

CLOSE c:IriLEU ;

'* •:.pen the index data file *' (::j:: ·=•t1 1 y pr·~cess when the *' (::j:: index file exists, *' (::j:: othe-rwise- •: •::aun t eo r is 0 *'
C* compiler option, resume I/0 checking *>

<* only process when the current index data file has index data *'
<* records to be deleted, the counter value is non zero. *>

Ir (IDX1 > 0) THEN
BEGIN

IF (I=1) THEN
r-N := B1rNAME

ELSE IF (I=2) THEN
rN := B2~NAME

ELSE IF (I=3) THEN
FN . -.- B3FNAME

C*$I-:to

RESETCBFILEl, rN)
IF C IORESULT = 0

THEN BFREADY :=
CLOSE C IF I LE 1)

END ;

. ,
)

TRUE

<* use first binary data file *'
C* use second binary data file *'
'* use third binary data file *>

<* open the binary data file *'
<* process only when the *'
<* binary file exists *'

C* only process when the current index data file has index data
C* records to be deleted (counter value is non zero) and the *' *' <* associated binary data file exists. *'

3.85

0

•

0

0 IF C CIDX1 > 0) AND CBFREADY>) THEN
BEGIN

--

REWRITECBFILE2, BFNX> ;
RESETCBFILE1, FN) ;

IF (IORESULT = 0)
THEN GO_ACT2 ;

CLOSECBFILE2, LOCK> ;
CLOSECBFILE1, PURGE> ;

IF (!=1) THEN
FN := I1FNAME

ELSE IF (1=2) THEN
FN . -.- I2FNAME

ELSE IF (I=3) THEN
FN . -.- I3FNAME ;

CJ::$I-::to

'-"' REWRITEUFILE2, IFNX)
RESETCIFILE1, FN)

IF C IORESULT = 0)
THEN GO_ACT3 ;

CLOSECIFILE2, LOCK) ;
CLOSECIFILE1, PURGE> 1

REWRITEC IFILE1, FN> ;
RESET<IriLE2, IrNX) ;

IF (IORESULT = 0) THEN
COPY_XFILECIFILE1, IFILE2l ;

CLOSECIFILE1, LOCK) ;
CLOSECIFILE2, PURGE> ;

IF C !=1) THEN
FN := BlFNAME

ELSE IF < 1=2) THEN
FN := B2FNAME

ELSE IF C 1=3) THEN
FN := B3FNAME ;

REWRITECBFILE1, FN> ;

<* cr~at~ n~w t~mporay binary fil~ *>
<* op~n ~xisting binary data fil~ *'

C* copy all the non *>
<* deleted data record *>

C* keep t~mporary fil~ *>
C* delete the original file *>

'* use first index data file

<* use se•:•:.nd file *'
o: us~ third file *'

(:t: •:rea.t~ new temporay index file
<::+: •::opet1 ~:.-;isting index data file

<* C•:.py _'\ll the t10t1 del~ted

<* index data .rec•::ords

(:f. keep the t~mporary file
<* d~let~ th~ original fi ~~

(:f. r~·=r~at~ C•l"iginal ind~~; fi l~
(:t: •::tp .;:.~, t e-mp•:.r ar y fi 1.;:.

(:f. •:•:>py c;ont~nt I;) f fil~

<* k~~p th~ original ind~x fi 1 ~
C* del et~ t~r.-.porary fi l~

*'

*'
*'
*' *>
:4::)

*'
:t:)

*'

*'
*' *'

C* use first binary data fil~ *>

<* use s~cond fil~ *>

<* us~ third file *)

C* r~creat~ original binary fil~ *'

3.86

http:t~mpora.ry
http:se.:.:.nd

RESETCBFILE2, BFNX) ;

IF (IORESULT=O) THEN
COPV_BFILE<BFILEl, BFILE2) ;

CLOSECBFILE1, LOCK> ;
CLOSECBFILE2, PURGE)

END

END

END ;

<* open temporary file *'

<* copy content of file *>

<* keep the original index file *)
<* delete temporary file *)

3.87

0

•

•

\:;, ___ _
~ .his is a local procedure. It accesses directly a data record of
~ a specified binary data file, the digitized binary data of this
k data record is replaced by the improved digitized binary data
k whidt has be-e-11 placed in the VOICE global variable.
t

" t
t
t
t:
t
t
t
t

* * le
:t
:;

* :;

* *

I11put :
X~ILE - parameter, it is the file window variable of a binary

data file.
IDX - parameter, index (record) number of the data record to be

updated.
VOICE - global variable, it has the new digitized binary data.

Output :
Updated binary data record of the specified binary data file.

The following procedures are called :
SEEK - build in file I/0 procedure, allow random access to a

data record. The file window variable (file pointer) is
moved to a specified data record with record number IDX.

GET - build in file I/0 procedure, advance the file window va_
riable to the next record and move the content of this
re•:.:>rd int•;:~ the file buffer variable.

PUT - build in file I/0 procedure, advance the file window va_
t;,- riable t•;:~ th~ next re•:•;,rd and puts the content of file

"'-" buffer variable int.:1 this re•:•::.rd. ·

* The following global variable of the GLOBAL unit is used :
t: VOICE *> * -- *)
·ROCEDURE DOIMPROVE (VAR X~ILE:BINARY~ILE; IDX:WORDRANGE) ;

SEEKCX~ILE, IDX) ;
(3ET <X~ I LE) ;

C* access the binary data *>
C% record directly t:>

XFILEA := VOICE ; <* assignning with improved data %)

SEEKCX~ILE, IDX> ;
PUTCX~ILE)

~ND ;

et: place into the binary *>
et: data file permanently *)

--- *'
This pr•::>cedure improves the S•;:JUtld •::.f w•::.rds. The digitized binary
data records of the words to be improved are replaced with new di
g~zed bir1ary data re•:•::>rd.

'-'is n•:.t necessary to input all the w•::;~rds to be impn:wed in alpha_
~~tical ascending order.

Requirement : call D06_RESET & D06_CLOSE procedures by the calling

%)
%)

*' :to
%)
%)

*' *'

3.88

j

"

_,

http:re,:,::.rd

C:t:

program, respectively, before and after the process of this proce_
dure. *' *' *' C:t: The

(:t (1)
processing steps for one word to be improved are : :t.)
Prompts user to input the word and its total number of unit ;t:)

et sound. :t.)
(;t: (2) Verifies whether this word exists in the dictionary. Only con_ *'

tinues the following two steps when the word exists. *'
prompts user to input the sound of this word and get the digi_ ;t:)

tized binary data record. %)
Accesses the associated binary data record from the binary data %)
file and replaces it with the new digitized data for improvement%)

'* <*
(:~

(:~

'* '* '* '* '* (:~

'* (:~

(3)

(4)

Input :
words and the improved sound of words

(:~ The fc)llowing pr•;:)Cedures are •:alled :
C* GET_WORDUNIT - UTILITY unit, prompts user and get a word and its
C% total number of sound unit interactively. _
C% WORD_VERIFY - UTILITY unit, verifies whether an input word exists

in the di~tionary.
DIGITAL - ~ssembly language routine which does the digitizing

process on the input voice.
DOIMPROVE - local procedure, accesses the binary

the related binary data file and replacing t~1e

binary data with the improved digitized binary

data re•:ord of
•::.ld digitized
data.

LENGTH - build in string function, get the length of a character
string.

:4::)

*' *' *' *' *' *' *' *' *)
*>
:~::)

*)
*' *' *' *' *' :to

' < The following global variables of the GLOBAL unit "are used : *'
C* CHRSALL - display message for all the starting letters of words *'
C* in the dictiQnary. ;t:)
C* SETCHRS - contains the current set of starting letters. %)
<* SETlSTCHR - set of all the starting letters of the words in the *'
C% dictionary. :t.)
C* VOICE - a buffer which contains the digitized binary data of the %)
<* input voi~e for the word to be improved %)
<% DTEMPO - delay constant of the voice digitizing process. *'
(% BFILE1 file window variable for the first binary data file. %)
C% BFILE2 file window variable for the second binary data file. *'
<* BFILE3 - file window variable for the third binary data file. *)
<* VOLUMENAME - contains the storage diskette volumename, the default*)
C% name is STORE:. *'
<* --- *'
PROCEDURE IMPROVE_SOUND ;

IDX, UNITVAL:INTEGER ;
CHANGE, FOUND:BOOLEAN ;
WRD:WORD ;
FNDREC:ELEM ;
CHR:CHAR ;

3.8'3

•

•

•

0
.o3IN

CHANGE := TRUE ;
PAGECOUTPUT> ;
WRITELN<'---1) ;

WRITELN<' UPDATE THE VOICE DATA 0~ WORDS') ;
WRITELN<' PRESS RETURN KEY A~TER SOUND INF·UT DEVICE IS ONLINE') ;
WRITELN<'--- 1)

READLN<CHR) ;
WRITELN J

WRITELN<'> 1ST CHARACTER OF WORD MUST BE ',CHRSALL) ;

C* Loop, ~ach pass proc~ss~s only on~ word. Th~ ~nd of this loop *'
<* occurs wh~n n•:::> word is input aft~r th~ pr•:::>mpt, only RETURN key is *>
(:t: pr~ss~d. *>

SETCHRS := SET1STCHR ;
REPEAT

--
~OUND : = ~ ALSE ;·
GET_WORDUNITCWRD, UNITVAL)
WRITELN ;

'-" I~ CLEI\Ir3THCWF.:D) > 0) THEN
BEr3IN

FNDREC.WUNIT := UNITVAL ;

<* g~t a word & its total:*)
C* numb~r of sound ~nit *>

<* process only wh~n a *>
<* word has b~~n input *)

WORD_VERIFYCCHANGE, ~OUND, WRD, FNDREC)
<* v~rify wh~th~r th~ *>
<* input word exists *'
C* in the dictionary *'

0

I~ CFOUND) THEN <* process only wH~n th~ word ~xists *)
BEr3IN

WRITELNC~>'PRESS ANY KEY WHEN READY FOR SOUND INPUT') ;

DIGITALCVOICE,DTEMPO,UNITVAL> ; <* digitizing proc~ss *>

READLN ; C:t. f•::.r th~ key press~d bef•:::>re sound input :to
WRITELNC'> END 0~ SOUND INPUT !')

IDX := FNDREC.WIDX ;
CASE FNDF.:EC. WSET 0~

1: DOIMPROVECB~ILE1, IDX);

2: DOIMPROVECBFILE2, IDX)

3: DOIMPROVECBFILE3, IDX)

END C:t:: CASE *)

END

(:t. update binary data rec•::.rd *l

<* first binary data file *)

C* s~cond data fil~ *)

<* third data fil~ *>

3.90

http:rec.::.rd

ELSE
BEGIN

WRITE<'> THIS WORD: ',WRD,' DOES NOT EXIST IN')
WRITELNCVOLUMENAME,' DISKETTE')

END

END

UNTIL LENGTHCWRD> = 0 ;

WRITELN ;
WRITELNC'> END OF SOUND IMPROVEMENT ON WORDS IN STORE: DISKETTE') ;
WRITELNC' --')

END ;

C* Empty main program. No n~~d to d~fin~ any proc~ss in h~r~.

BEGIN

r -' •

3. ':11

•

0

c --- ::j::)
This is the MODULE3 unit of V..:1ice/Digital ar1d Digital/Voi•:e

<* sion on a Microcomputer project.

'* (:~

'* '* '* '* '* '* '* '*

The Pascal language procedures here do the digitizing of the input
voice and the reverse proce-ss of speaking (analoging) it back
through a connected speaker. The actual processing of digitizing
and analoging are ac•:omplished by calling the related assembly
language routines. For digitizing, the DIGITAL routine is called.
The ANALOG1 and ANALOG2 routines are- called for the speaking pro_
cess, respectively, through the speaker of Apple II or casette re_
c:order.

Only the GLOBAL unit is used here.

The compiler option $S++ is invoked here, more memory space is
available for the compiling process but the speed is decreased.

::j::)

:t:)

::j::)

::j::)

::j::)

::j::)

*)
:to

*>
::j::)

*> *)
::j::)

*>
*)
::j::)

'* '* '* '* '* --- ::j::)

<* compiler option *>

UNIT MODULE3 ;

INTERFACE

~ ..JSES GLOBAL (::j:: declare the unit to be used here ::j::)

<* declare all the procedures of this module here ::j::)

PROCEDURE SPEAK C UNITT : UNITRANGE) ;
PROCEDURE SPEAK_WORD (FNDREC : ELEM) ;
PROCEDURE LISTEN (UNITT : UNITRANGE) ;

IMPLEMENTATION

<* declare the assembly language routines to be called here *l

PROCEDURE DIGITAL< VAR VOICE: SOUND; DTEMPO: INTEt3ER;
DUNIT:UNITRANGE); EXTERNAL ;

PROCEDURE ANALOG1< VAR VOICE:SOUND; ATEMPO:INTEGER;
~UNIT:UNITRANGE); EXTERNAL ;

PROCEDURE ANALOG2C VAR VOICE:SOUND; ATEMPO:INTEGER;
AUNIT:UNITRANGE); EXTERNAL ;

0

3.'32

--- *>
This procedure calls the assembly language routine- DIGITAL to:;) do::;,

<* the actual process of digitizing (liste-ning) the input voice.
(:f:

*>
:4;:)

*>
<*
<*
(:f:

Input : *>

'* <*

UNITT - parameter, total number of sound units of the input voice. :t:)
DTEMPO - global variable, delay constant of the digitizing pro_ *)

cess where the value was assigned in the calling program *)
*>

<* Output : *>
<* VOICE - global variable, it is a buffer which contains the *>
<* digitized binary data of the input voice *>
<* *)
(:f: The following procedure is called : *>
<* DIGITAL - external pr•:;)cedure, 1 istening the input voice. *>
<* *> <* The following global variables of the GLOBAL unit are used : *>
<* VOICE *>
<* DTEMPO *>
<* --- *>
PROCEDURE LISTEN ;

BE•3IN

IGITALC VOICE, DTEMPO, UNITT)

E::ND ;

3.9S

•

•

•

c
·<*

'* <*
<*
(;t::

'* <*
<*
<*

'* <*
<*
<*
<*
<*
<*
<*

'* <*
'* '* (:t -·

--- *)
This procedure-calls the assembly language routines ANALOG! or *)
ANALOG2 to do the actual process of analoging <speaking) the digi_ *l
tized binary sound data. :t:)

*)
Input : *>

UNITT - parameter, total number of sound units of the digitized *>
binary sound data. *>

ATEMPO - global variable, delay constant of the analoging process *>
where the value was assigned in the calling program. :it)

VOICE global variable, it is the buffer which contains the *>
digitized binary data. *>

SPKER - global variable, it decides whether the speak•r of Apple *>
II or casette recorder is used in the voice output, the *>
value was assigned in the calling program. *>

*>
Output : *>

Voice at the chosen speaker *>

*' The following procedures are called : *>
ANALOGl external procedure, speaking on the Apple II speaker. *>
ANALOG2 - external procedure, speaking on the attached casette *>

recorder speaker. *>
.*>

The following global variables of the GLOBAL unit are used : *>
VOICE, ATEMPO, SPKER. *>

--- ·------------------- *>
PROCEDURE SPEAK ;

BE(3IN

I~ (SPKER > CASETTE)

END ;

0

THEN ANALOGl < VOICE, ATEMPO, UNITT)
ELSE ANALOG~ (VOICE, ATEMPO, UNITT) . . Ct: Apple II *>

<* casette recorder *l

This procedure calls the assembly language routines ANALOG! or

<* ANALOG2 to do the actual process of speaking a specific word which
<* exists in the dictionary. The digitized binary data of this word is
C* obtained from the related binary data file by using the information
<*
<*

'* C*

'* (*
<*
<*
<*
<*
'* (:f{

in the parameter.

Input :
FNDREC - parameter, information to access the related binary data

file in order to obtained the digitized binary data of
the related word to be spoken

ATEMPO - glt::)bal variable, delay constant of the analoging process
where the value was assigned in the calling program

SPKER - global variable, it decides whether the speaker of Apple
II or casette recorder is used in the voice output, the
value was assigned in the calling program

<* Output :
<* Voice at the chosen speaker
<*
<*
<*
.C:~
(:f{

The foflowing procedures are called
ANALOGl external procedure, speaking on the Apple II speaker.
ANALOG2 - external procedure, speaking oh the speaker of the

attached casette recorder.
SEEK - build in file I/0 procedure, allow ramdow access of a spe_

cific record with index (record) number BIDX. The file
window variable (file pointer) is moved to a specified re_
~ord in the data file.

GET - build in file I/0 procedure, advance the file window varia
ble to the next record and move the content of this record
into the file buffer variable.

<* The following global variables of the GLOBAL unit are used :
SPKER, A TEI"IPO
VOICE - buffer contains the binary sound data of the word.
BFILE1 file window variable of the first binary data file.
BFILE2- fi!e•window variable of the second binary data file.
BFILE3 - file window variable of the third binary data file.

*)

*' *)
*)
*)
*)
*)
*)
*)
*)
*' *' *)

*' *)

*' *' *' *' *' *)
~*)
~ *' ~)

*' *' *>
*>
*)

*' *)

*' *)
*)
*)

*' *>
*)

--- *>

PROCEDURE SPEAK_WORD ;

VAR BIDX, BUNIT, BSET : INTEGER ;

BEGIN

BIDX := FNDREC.WIDX ;
BSET := FNDREC.WSET ;
BUNIT := FNDREC.WUNIT ;

;ASE BSET OF

1:BEGIN
SEEKCBFILE1, BIOX)
GET CBFILED ;

<* index in the related binary data file.*>
<* set # of words in the dictionary.*>

<* total number of unit sound.*)

C* member of the 1st set of words, *'
<* move the file pointer directly *'
<* to the desired reco~d. *'

<* obtain the record of digitized data.*)

3. '3::5

•

•

VOICE := BF"ILEl"'
END ;

2:BEGIN
SEEKCBF"ILE2, BIDX)
GET(BF"ILE2) ;
VOICE := BF"ILE2"'

END ;

3:BEGIN
SEEKCBF"ILE3, BIDX> ;
GETCBF"ILE3) ;
VOICE := BF"ILE3"'

END

END ; C:t:CASE*)

IF C SPKER > CASETTE)

<* assign data to the global buffer.*)

<* it is a member of the 2nd set *>
<* of words in the dictionary *>

C* it is a member of the 3rd set *'
<* of words in the dictionary *'

<* speak the word *>
THEN ANALOG1< VOICE, ATEMPO, BUNIT>
ELSE ANALOG2C VOICE, ATEMPO, BUNIT>

<* use Apple II speaker *l
<* use casette record~r *'

END

-- The main program is empty, no need to define any process in here. *>
"-"'
t3eGIN

END.

0

3.'36

There are 3 Assembly Language routines in this ftle, they are:
DIGITAL, ANALOG and ANALOG2.

The POP and PUSH macros are called by all 3 routines.

In this listing, the dollar($) sign is used instead of 'AT' sign for
the indirect index addressing mode.

This POP macro pops a 2 bytes address of a returned parameter
from the stack .

.MACRO POP

PLA
STA
PLA
STA
.ENDM

%1

%1+1

: get lower byte address from stack
; assign to lower byte of a variable
; get higher byte address Crom stack
; assign to higher byte of a variable

This PUSH macro pushs a 2 bytes address of a returned parameter
from the stack; .

. MACRO PUSH

LDA %1+1
PHA
LDA %1
PHA
.ENDM

; get the higher byte address
; push it into the stack
; get the lower byte address
; push it into the stack

Obtain the digitized binary data of input sound and place it into the VOICE array
buffer parameter which ls passed by the Pascal calling routine.
The VOICE array has capacity of 1280 (X'04FF') bytes, depending on the value of
parameter IDX (1, 2, 3, 4 or 5), respectively, only 255 (X'OOFE') bytes, 510 (X'OlFD')
bytes, 765 (X'02FC') bytes, 1020 (X'03FB') bytes or 1275 bytes of this array will be
ftlled with binary sound data .

. PROC DIGITAL,3

-Cl-

•

•

c

0

DIGITAL APPLE_ VOICE

Zero page variables definition

RET .EQU 0 ; store return address

ADRL .EQU 2 ; store lower 81:. upper bytes of

ADRH .EQU 3 ; VOICE array starting address

INIL .EQU 4 ; store lower 81:. upper bytes of

INIH .EQU 5 ; VOICE array starting address

CNTL .EQU 6 ; lower 81:. upper bytes of a counter,

CNTH .EQU 7 ; store the size of VOICE to be used
ADVAL .EQU 8 ; 0 or 1, state of the A/D sampling

ENDL .EQU 9 ; last byte of the subset of VOICE
ENDH .EQU OA ; array used, these are the address
IDX .EQU OB ; store the unit of sound
TEMPO .EQU OC ; store the delay loop constant
TMP .EQU OD ; temporary storage
WVAL .EQU OE ; temporary var for delay cycles
KEYBO .EQU ocooo ; loc to get keyboard input
KEYBl .EQU OCOlO ; loc to clear keyboard input
SPKER .EQU OC030 ; loc to toggle Apple speaker
INPJK .EQU OC060 ; loc to sample the digital input

Save the return address and get the all the parameters

POP RET ; get the return address in RET
PLA ; get the value or unit sound
STA IDX ; parameter and store it in IDX
PLA ; ignore the higher byte
PLA ; get the value or delay constant
STA TE:MPO ; parameter and store it in TE:MPO
PLA ; ignore the higher byte
PLA ; get the starting addr of VOICE array
STA INIL ; parameter, lower byte, store it in
STA ADRL ; INIL 81:. ADRL ·
PLA ; similar but higher byte, store it
STA INIH ; in INIH & ADRH

' STA ADRH

From the value of sound unit (IDX), get one or the 5 sizes of
VOICE array to be utilized and place its value in lower and
higher bytes of counter, respectively, CNTL and CNTH.

CNTER LDA #OFE ; LSB of any size always ends with
STA CNTL ; OF A, OFB, OFC, OFD or OFE
LDA #Ol
C:MP SIZE ; 1 unit size ?
BNE !TWO
LDA #OO
STA CNTH ; Yes, 255 = X'OOFE' bytes
JNlP ZEROY

ITWO LDA #02
C:MP SIZE ; 2 units size ?

• C2-

DIGITAL APPLE_ VOICE

BNE ITHRE
OEC CNTL
LOA #01
STA CNTH ; Yes, 510 = X'01FD' bytes
JMP ZEROY

ITHRE LOA #03
CN1P SIZE ; 3 units size ?

BNE IF OUR
OEC CNTL
LDA #02 ; Yes, 765 = X'02FC' bytes
STA CNTH
JMP ZEROY

IF OUR LOA #04
CN1P SIZE ; 4 units size ?
BNE IFIVE
DEC CNTL
LDA #03 ; Yes, 1020 = X'03FB' bytes
STA CNTH
JMP ZEROY

IFIVE OEC CNTL
LOA #04 ; 5 units size, thus
STA CNTH ; 1275 = X'04F A' bytes

For the.subset of VOICE array to be used, initialize each element
with 0 value. The variables ADRL & ADRH have the starting address
or the array originally. After the initialization or each element,
the value or ADRL is lncremented by 1, and the value of CNTL is
decremented by 1. The task of initialization is ended when the
values in both CNTL & CNTH are zero.
After the increment of ADRL, when it is overflow (becomes 0 value),
the higher byte ADRH is lncremented by 1.

After the decrement of CNTL, when it is underflow (becomes 0 value),
the higher byte CNTH is decremented by 1 and X'FF' value is
assigned to CNTL.

ZEROY
IZERO

COUNT

HZERO

AGAIN

LDY
LOA
STA
INC
BNE
INC
LDA
CN1P
BEQ
DEC
JMP
CNIP
BEQ
DEC
LDA
STA
JMP

#OO
#OO
$ADRL,Y ; lnlt element pointed by ADRL & ADRH
ADRL ; increment lower byte
COUNT
ADRH ; overflow, incre higher byte
#OO
CNTL ; check lower byte of counter, if it
HZERO ; is zero, check higher byte
CNTL ; decrement is nonzero
AGAIN
CNTH ; check higher byte of counter
STRT
CNTH ; decrement if nonzero and assigns
#OFF ; X'FF' to lower byte of counter
CNTL
IZERO

• C3-

•

•

0

c

0

DIGITAL APPLE_ VOICE

Initialize state of A/D sampling with X'FF'. which is none of the
sampling state values of x·oo• or X'Ol'.
For the subset of VOICE array, stores the address of the last byte
into ENDL & ENDH.
Makes ADRL 8l ADRH points to the start of VOICE array again.

STRT LDA #OFF ; init state of A/D sampling
STA ADVAL
LDA ADRL ; ADRL 8l ADRH have the address of the
STA ENDL last byte used, assign to ENDL 8l

LDA ADRH ; ENDH respectively.
STA ENDH
LDA INIL ; get the starting address of VOICE
STA ADRL array from INIL 8l INIH and assign
LDA INIH ; back to ADRL 8l ADRH.
STA ADRH

Continue replays the digitized A/D binary data on the Apple ll
speaker without analyzing it until a key on the keyboard has
been pressed to start the process.

...
STA KEYBl ; clear keyboard input

LEAD IN LDA INPJK ; get digital data from input port
AND #SO ; leftmost bit is the state of sampling
CMP ADVAL
BEQ WASTl
STA ADVAL ; toggle speaker if current 8l
STA SPKER previous A/D data are different,
JMP GKEY ; store the current data.

WASTl STA WVAL ; delay cycles if both states of
STA WVAL ; sampling are the same
STA WVAL

GKEY LDA KEYBO ; get keyboard input, if any, the
AND #SO ; leftmost bit is nonzero
BEQ LEAD IN

Delay loop.
Slow down the sampling rate with a delay constant, the
default value is 1.

LDX #OO
LDY TEMPO

LDELAY DEY
BNE LDELAY

Analyze the digitized input data.
Toggle the speaker if current and previous A/D sampling state
are different, otherwise, increment the counter in register X.

- C4-

DIGITAL APPLE_ VOICE

GET AD LDA INPJK ; get the digitized data., the state
AND #SO of A/D sampling is in the left • CMP ADVAL ; most bit.
BNE WAST2

INX ; increment counter X
CPX #7F ; store the counter value if its
BNE WAST3 ; capacity X'7F' ha.s been reached
BEQ WAST4
JMP BSOUND ; go to speaker toggling

WAST2 STA WVAL ; delay cycles
STA WVAL
NOP
JMP BSOUND ; go to speaker toggllng

WAST3 INC WVAL ; delay cycles
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC "WVAL
INC WVAL
INC WVAL
INC \VVAL • INC WVAL
INC WVAL
STA WVAL
STA WVAL
JMP LDELAY-2 ; back to delay loop before next

sampling

BSOUND STA SPKER ; toggle speaker
STA ADVAL ; store the current A/D state value
JMP BSTORE ; go to store the counter value of

previous A/D state value

WAST4 STA WVAL ; delay cycles
STA WVAL
STA \VVAL

Store the value of counter X to a byte pointed by ADRL & .'\DRH.
Afterward, increment ADRL by 1, if result is overftow then
increment ADRH by 1. The new address in ADRL & ADRH now point
to the next vacant byte.

BSTORE STX TMP
LDA TMP ; place the A/D state value into
EOR ADVAL ; the leftmost bit of X counter 0 STA $ADRL,Y ; assign to current byte

- C5-

DIGITAL APPLE_ VOICE

INC ADRL ; get addr of next vacant byte

c BNE WAST5
INC ADRH
NOP
J?viP NOVFL

WAST5 STA WVAL ; delay cycles
STA WVAL
STA WVAL

Cheek whether the last byte address of the array subset has
been reached. Current byte address ls ln ADRL & ADRH, the last
byte address is ln ENDL & ENDH.
Endlng when (ADRL ENDL) and (ADRH ENDH).

NOVFL LDA ADRL ; compare ADRL with ENDL
CMP ENDL ; not equal, no need for further
BNE WAST6 ; comparison
LDA ADRH
CMP ENDH ; compare ADRH with ENDH
BEQ FINI ; end of routine if equal
J?viP NEXTL

WAST6 INC WVAL ; delay cycles
INC WVAL

~~ INC WVAL

~ INC WVAL
NOP
NOP

NEXTL LDX #OO ; init counter or reg X
NOP
NOP
J?viP LDELAY-2 ; back to delay loop before

next sampling

FINI LDA INIH ; push starting address of the
PHA VOICE array buffer lnto the
LDA INIL ; stack, return parameter.
PHA
PUSH RET ; push return address into stack
RTS

0

- C6-

ANALOG! APPLE_ VOICE

Sound is reproduced at the speaker of Apple II using the binary
sound data in array parameter VOICE. The size of this array is
1275 (X'04FA') bytes, but only a subset of this array contains
the binary sound data.
Depending on the value of parameter IDX (1, 2, 3, 4 or 5),
respectively, only 255 {X'OOFE') bytes, 510 (X'OlFD') bytes,
765 (X'02FC') bytes, 1020 (X'03FB') bytes or 1275 bytes of
this array contain binary sound data .

.PROC ANALOG1,3

Zero page variables definition

RET .EQU 0 ; return address storage
ADRL .EQU 2 ; storage of VOICE array
ADRH .EQU 3 parameter's starting address
INIL .EQU 4 ; ADRL, IJ.'IIL - LSB
INni .EQU 5 ADRH, INni - MSB
CNTL .EQU 6 ; counter,# of bytes of VOICE array
CNTH .EQU 7 ; which contain binary sound data
ADVAL .EQU 8 ; current A/D state value
ENDL .EQU g ; address of the last byte which
ENDH . EQU OA ; has binary sound data
SIZE .EQU OB ; # of sound units
TEMPO .EQU oc ; delay loop constant
WVAL .EQU OD ; temporary var for delay cycles
OUTL .EQU OC030 ; loc to toggle Apple II speaker

Save the return address and get the all the parameters

POP RET ; get the return address in RET

' • PLA ; g;et the value of unit sound
STA SIZE ; parameter and store it in IDX
PLA ; ignore the higher byte
PLA ; get the value of delay constant
STA TEMPO ; parameter and store it in TEMPO
PLA ; ignore the higher byte
PLA ; get the starting addr of VOICE array
STA INIL ; parameter, lower byte, store it in
STA ADRL ; INIL & ADRL
PLA ; similar but higher byte, store it
STA INrn in INrn & ADRH
STA ADRH

From the value of unit sound parameter (SIZE), determines
the total number of bytes in VOICE array parameter which
have been filled with binary sound data.
The number of bytes are stored in: CNTL - LSB & CNTH - MSB

- C7-

•

•

ANALOG! APPLE_ VOICE

c CNTER LDA #OFE ; LSB of any size always ends with
STA CNTL ; OFA, OFB, OFC, OFD or OFE
LDA #Ol
CMP SIZE ; 1 unit size ?

BNE ITWO
LDA #OO
STA CNTH ; Yes, 255 = X'OOFE' bytes
JMP GPOS

ITWO LDA #02
CMP SIZE ; 2 units size ?
BNE ITHRE
DEC CNTL
LDA #Ol
STA CNTH ; Yes, 510 = X'OlFD' bytes
JMP GPOS

ITHRE LDA #03
CMP SIZE ; 3 units size ?
BNE IF OUR
DEC CNTL
LDA #02 ; Yes, 765 = X'02FC' bytes
STA CNTH
JMP GPOS

!FOUR LDA #04
CMP SIZE ; 4 units size ?
BNE IFIVE

,.-......... DEC CNTL

""""
LDA #03 ; Yes, 1020 = X'03FB' bytes
STA CNTH
JMP GPOS

!FIVE DEC CNTL
LDA #04 ; 5 units size, thus
STA CNTH ; 1275 = X'04FA' bytes

Find the address of the last byte in VOICE array parameter which
has binary sound data by decrementing CNTL or CNTH, also increment
ADRL or ADRH. Ending of searching if both content of CNTL & CNTH
Is zero.
The value of ADRL & ADRH now is the required address, save it at
ENDL • LSB and ENDH- MSB. Assign back the starting address of
VOICE parameter array to ADRL & ADRH from INITL & INIH respectively.

GPOS LDA #OFF ; initialize A/D state value, use any
STA ADVAL : value except X'OO' or X'Ol'

DOPOS INC ADRL ; increment lower byte ADRL
BNE COUNT
INC ADRH ; increment higher byte ADRH if ARDL

COUNT LDA #OO ; overflows
CNIP CNTL
BEQ HZERO ; decrement lower byte CNTL if
DEC CNTL ; it is nonzero
JMP AGAIN

HZERO CNIP CNTH ; CNTL=O , is CNTH=O ?

-CS-

ANALOG I

BEQ
DEC
LDA
STA

AGAIN JMP

STRT LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDY

STRT
CNTH
#OFF
CNTL
DOPOS

ADRL
ENDL
ADRH
ENDH
INIL
ADRL
INIH
ADRH
#OO

APPLE_ VOICE

; yes, end of searching
; no, decrement CNTH &

add X'OFF' to CNTL

; address of last byte
LSB • store in ENDL
MSB • store in ENDH

; ADRL & ADRH contain the starting
address or VOICE array again

Analyze the byte value pointed by ADRL & ADRH, get the A/D state
value and the counter value.
Leftmost bit is A/D state value, either 0 or 1.
2nd-> 8th bits is counter value.

VALGET LDA $ADRL,Y
AND #7F
TA..X
LDA ADRL,Y
AND #SO
CMP ADVAL
BEQ WASTE!
STA. ADVAL
STA OUTL
JMP DECINX

WASTE! STA WVAL
STA WVAL
STA WVAL

; get the byte value
; get the counter value and
; store it at register X

; get A/D state value
; compare with previous A/D state value
; same, do delay loop

; toggle speaker if different

Delay loop, default value of delay loop constant is 4.

DECINX LDY TEMPO ; get delay loop constant
DEY
BNE DECINX+2
DEX ; decrement counter value
BMI NLOC ; initial counter value is 0
BEQ NLOC ; go to get next byte value

WASTE2 NOP ; delay cycles
INC WVAL
INC WVA.L
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL

• C9 •

•

•

ANALOG I APPLE_ VOICE

INC WVAL

c INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL
JMP DECINX

Get address of the next byte by incrementing ADRL or ADRH by 1.

Last byte of binary sound data has been reached if :
(ADRL=ENDL) and (ADRH=ENDH)

NLOC INC ADRL ; increment lower byte
BNE WASTE3
INC ADRH ; increment higher byte if lower
NOP ; byte overflows
JMP NFULL

WASTE3 STA WVAL ; delay cycles
STA WVAL
STA WVAL

NFULL LDA ADRL
C?v1P ENDL ;is

~-- BNE WASTE4 ; no, get next byte value

'-"
LDA ADRH ; yes, is ADRH = ENDH ?
C?v1P ENDH
BEQ FINI ; yes, end of binary sound data
JMP VALGET

WASTE4 STA WVAL ; delay cycles
STA WVAL
STA WVAL
JMP VALGET ; no, go to get next byte value

FINI PUSH INIL ; push starting byte address of the
PUSH RET VOICE array parameter and return
RTS address in the calling routine

into the stack

0

- CIO-

ANALOG22 APPLE_ VOICE

Sound is reproduced at the speaker of cassette recorder using the binary sound data in array
parameter VOICE. The size of this array is 1275 (X'04FA') bytes, but only a subset of this array
contains the binary sound data.
Depending on the value of parameter IDX (1, 2, 3, 4 or 5), respectively, only 255 (X'OOFE') bytes,
510 (X'01FD') bytes, 765 (X'02FC') bytes, 1020 ()C03FB') bytes or 1275 bytes or this array con·
tain binary sound data .

.PROC ANALOG1,3

Zero page variables definition

RET .EQU 0
ADRL .EQU 2
ADRH .EQU 3

INU. .EQU 4

INIH .EQU 5
CNTL .EQU 6
CNTH .EQU 1

,,ADVAL .EQU 8

ENDL .EQU g

ENDH .EQU OA
SIZE .EQU OB
TEMPO .EQU oc
WVAL .EQU OD
OUTL .EQU OC020

; return address storage
; storage or VOICE array

parameter's starting address
; ADRL, INn.. - LSB

ADRH, INIH- MSB
; counter, # or bytes or VOICE array
; which contain binary sound data.
; current A/D state value
; address of the last byte. which
; has binary sound data
; # of sound units
; delay loop constant
; ·temporary var for delay cycles
; loc to toggle cassette recorder speaker

Save the return address and get the all the parameters

POP RET ; get the return address in RET
PLA ; get the value of unit sound
STA SIZE ; parameter and store it in IDX
PLA ; ignore the higher byte
PLA ; get the value or delay constant
STA TEMPO ; parameter and store it in TE:MPO
PLA ; ignore the higher byte
PLA ; get the starting addr of VOICE array
STA INn.. ; parameter, lower byte, store it in
STA ADRL ; INU. 81:. ADRL
PLA ; similar but higher byte, store it
STA INIH in INIH 81:. ADRH
STA ADRH

From the value of unit sound parameter (SIZE), determines
the total number of bytes in VOICE array parameter which
have been filled with binary sound data.
The number or bytes are stored in: CNTL - LSB 81:. CNTH - MSB

CNTER LDA #OFE ; LSB of any size always ends with

- cu-

•

•

ANALOG22 APPLE_ VOICE

STA CNTL OF A, OFB, OFC, OFD or OFE

c LDA #Ol
CMP SIZE ; 1 unit size ?

BNE !TWO
LOA #OO
STA CNTH ; Yes, 255 = X'OOFE' bytes
JMP GPOS

ITWO LOA #02
CMP SIZE ; 2 units size ?

BNE ITHRE
DEC CNTL
LDA #Ol
STA CNTH ; Yes, 510 == X'OIFO' bytes
JMP GPOS

ITHRE LOA #03
CMP SIZE ; 3 units size ?

BNE IF OUR
DEC CNTL
LDA #02 ; Yes, 765 == X'02FC' bytes
STA CNTH
JMP GPOS

!FOUR LDA #04
CMP SIZE ; 4 units size ?

BNE !FIVE
DEC CNTL
LDA #03 ; Yes, 1020 = X'03FB' bytes -- STA CNTH

"-"' JMP GPOS
!FIVE DEC CNTL

LDA #04 ; 5 units size, thus
STA CNTH ; 1275 = X'04F A' bytes

Find the address of the last byte in VOICE array parameter which
has binary sound data by decrementing CNTL or CNTH, also increment
ADRL or ADRH. Ending of searching if both content of CNTL & CNTH
is zero.
The value of ADRL & ADRH now is the required address, save it at
ENDL -'LSB and ENDH- MSB. Assign back the starting address of
VOICE parameter array to ADRL & ADRH Cram INITL & INIH respectively.

GPOS LDA #OFF ; initialize A/D state value, use any
STA ADVAL ; value except x·oo· or X'Ol'

DOPOS INC ADRL ; increment lower byte ADRL
BNE COUNT
INC ADRH ; increment higher byte ADRH if ARDL

COUNT LDA #OO ; overftows
CMP CNTL
BEQ HZERO ; decrement lower byte CNTL if
OEC CNTL ; it is nonzero
JMP AGAIN

HZERO CMP CNTH ; CNTL=O , is CNTH=O ?

0 BEQ STRT ; yes, end of searching
DEC CNTH ; no, decrement CNTH &

• Cl2-

ANALOG22 APPLE_ VOICE

LDA #OFF add X'OFF' to CNTL
STA CNTL

AGAIN JMP DOPOS

STRT LDA ADRL ; address of last byte
STA ENDL LSB - store in ENDL
LDA ADRH MSB- store in ENDH
STA ENDH
LDA INU.
STA ADRL ; ADRL & ADRH contain the starting
LDA INIH address or VOICE array again
STA ADRH
LDY #OO

Analyze the byte value pointed by ADRL & ADRH, get the A/D state
value and the counter value.
Leftmost bit is A/D state value, either o or 1.
2nd - > 8th bits is counter value.

VALGET LDA $ADRL,Y
AND #7F
TAX
LDA ADRL,Y
AND #SO
CMP ADVAL
BEQ WASTEl
STA ADVAL
STA OUTL
JMP DECINX

WASTEl STA WVAL
STA WVAL
STA WVAL

; get the byte value
; get the counter value and
; store it at register X

; get A/D state value
; compare with previous A/D state value
; same, do delay loop

; toggle speaker if different

Delay loop, default value of delay loop constant is 4.

DECINX LDY TEMPO ; get delay loop constant
DEY
BNE DECINX+2
DEX ; decrement counter· value
BMI NLOC ; initial counter value is 0
BEQ NLOC ; go to get next byte value

WASTE2 NOP ; delay cycles
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL
INC WVAL

- Cl3-

•

•

0

~"'.

'-"

0

ANALOG22

INC
INC
INC
INC
INC
JMP

WVAL
WVAL
WVAL
WVAL
WVAL
DECINX

APPLE_ VOICE

Get address of the next byte by lncrementing ADRL or ADRH by 1.
Last byte of binary sound data has been reached if :

(ADRL ENDL) and (ADRH=ENDH)

NLOC INC ADRL
BNE WASTE3
INC ADRH
NOP
JMP NFULL

WASTE3 STA WVAL
STA WVAL
STA WVAL

NFULL LDA ADRL
CMP ENDL
BNE WASTE4
LDA ADRH
CMP ENDH
BEQ FINI
JMP VALGET

WASTE4 STA WVAL
STA WVAL
STA WVAL
JMP VALGET

FINI PUSH INU.
PUSH RET
RTS

-Cl4-

; increment lower byte

; increment higher byte if lower
; byte overflows

; delay cycles

;is
; no. get next byte value
; yes, is ADRH == ENDH ?

; yes, end of binary sound data

; delay cycles

; no, go to get next byte value

; push starting byte addreSs of the
VOICE array parameter and return
address in the calling routine
into the stack

CHAPTER4

SPECIAL FEATURE OF UCSD PASCAL.

4.1. EXTERNAL COMPILATION UNITS

The UCSD Pascal System supports a facUlty for Integrating exter
nally complled and assembled routines and data structures. Use or
separately complled or assembled structures allows the user to create files
or frequently used routines. The user does not have to insert thls new
structure lnto each program whlch calls the structure and then complle
the combined text; rather, the LINKER of the Pascal System coples the
structure's code dlrectly Into the host program's code file.

After a structure ls complled or assembled, the user can use the
LINKER expllcltly to Integrate that structure lnto any program which
correctly calls the structure. Alternatively, the user can add the new
structure to a llbrary, using the LffiRARIAN of the Pascal System.
When user later RUNs any program which calls . a structure ln the
llbrary, the LINKER wlll automatically find and llnk in that structure.
Separate compllation or assembly is supported ln these areas:

(1) Between portions of programs written in Pascal language.

(2) Between Assembly language routines and Pascal language host pro
gram.

(3) Between Assembly language routines.

4.2. PASCAL TO PASCAL LINKAGE: UNIT

An UNIT ls a special group of Interdependent procedures, functions,
and associated data structures whlch perform a speclallzed task. The unlt
ls placed ln the System Library, and whenever this task ls needed wlthln
a program, the program Indicates that lt USES the unlt. For example, to
use any of the procedures ln the GLOBAL UNIT, the host program
would slmply start as follows:

PROGRAM DEMO_GLOBAL (INPUT, OUTPUT) ;
USES GLOBAL ;

- 4.1 -

•

•

0

c

c

0

SPECIAL FEATURE OF UCSD PASCAL

Each UNIT consists of two parts:

(1) INTERFACE

(2) IMPLE~NTATION

The INTERFACE part lmmedlately follows the UNIT's name llne.
It declares constant, types, variables, procedures and functlons that are
PUBLIC. These Items can be used by the host program just as lf they
appear ln the expllclt declarations at the top of the host program Itself.
The INTERFACE portion ls the only part of the UNIT that Is visible
from the outside, lt specifies how a host program can communicate with
the UNIT. The actual workings of the UNIT can be changed at any time,
but the UNIT wlll appear to be the same as long as the INTERFACE
portion ls unchanged.

The IMPLE~NTATION part Immediately follows the last declara
tion ln the INTERFACE part. It begtns by declaring those constants,
types, variables, procedures and functions that are PRIVATE. Items
whlch are declared ln the IMPLE!v1ENTATION part are not avallable to
the host program and are used only by the UNIT Itself. The IMPLE
MENTATION part defines how the UNIT wlll accompllsh Its task. Thls
part gives the detalls of the various procedures and functions declared ln
the INTERFACE part, and also the prlvate procedures and functions
declared In the IMPLEMENTATION part.

At the end of the IMPLE!v1ENTATION part, following the last
functlon and procedure, there ls a main program portion. Thls program
runs automatically when the host program begins, before the host pro
gram ls run. It allows user to Inltlallze the system and the host program.
The declaration of routlne headings ln the INTERFACE part Is slmllar
to forward declarations; therefore, when the corresponding bodles are
defined ln the IMPLEMENTATION part, formal parameter speclficatlons
are not repeated.

The properly completed UNIT would then be complied. Any exter
nal Assembly language procedures or functions would then be linked ln,
using the LINKER. Finally, the unlt would b.e Installed ln a llbrary,
SYSTEM.LIBRARY for example, uslng the LIBRARIAN utlllty. Once ln
the llbrary, the unlt could then be used by any Pascal host program.

A host program must lndlcate the UNITs that lt USES before the
LABEL or CONSTANT declaration part of the program. At the occu
rance of an USES statement, the Complier references the INTERFACE

- 4.2-

SPECIAL FEATURE OF UCSD PASCAL

part of the unit as though lt ls part of the host text Itself. Therefore, all
constants, types, variables, functions and procedures publlcly defined ln
the unlt are global. Name con:tHcts may arise If the user defines an
ldentlfler which has already been publlcly declared by the unit. Pro
cedures and functions may not USES unlts locally.

4.3. PASCAL TO ASSEMBLY LANGUAGE LINKAGE
PROCEDURE

EXTERNAL

External procedures are separately assembled Assembly language
procedures, often stored In a LIBRARY or diskette. The host program
whlch requires external procedures must have them linked lnto the com
piled code file. Typlcally, the users write external procedures ln Assem
bly language, to handle low level operations that the Pascal language ls
not designed to provide. External assembly language procedures are also
used for their comparative speed ln real time appllcatlons.

A host program declares that a procedure ls external ln much the
same way as a procedure ls declared FORWARD. A standard heading ls
provided, followed by the keyword EXTERNAL. Calls to the external
procedure use standard Pascal syntax, and the comptler checks that calls
to the external agree ln type and number of parameters wlth the external
declaration. It ls the user's responslblllty to assure that the Assembly
language procedure respects the Pascal external declaration. The Llnker
checks only that the number or words of parameters agree between the
Pascal and Assembly language declarations.

NOTE: For complete Information on topics mentioned ln tills chapter,
please refer to:

APPLE PASCAL
LANGUAGE REFERENCE MANUAL
APPLE COMPUTER INC.

- 4.3-

•

•

0

0
REFERENCES

(1) APPLE PASCAL
OPERATING SYSTEM REFERENCE :MANUAL
APPLE COMPUTER INC.

(2) APPLE PASCAL
LANGUAGE REFERENCE :MANUAL

. APPLE COMPUTER INC.

(3) VOICE SYNTHESIS FOR THE TRS-80 COLOR COMPUTER
BYTE, FEBRUARY 1982
WILL!A.J.\1 BARDEN JR.

(4) VOICE LAB
BYTE, Jl.i'L Y 1983
JOHJ.'l' E. HOOT

(5) DIGITAL REPRESENTATIONS OF SPEECH SIGNALS
PROCEEDINGS OF THE IEEE
VOLUME 63, APRIL 1975
SCHAFER, LAWRENCE R. At'l'D RONALD W. SCHAFER

(6) AN E..'CTRE!v'IEL Y LOW COST COMPUTER VOICE RESPONSE SYSTEM
BYTE. FEBRUARY 1981
JAMES C. ANDERSON

(7) APPLE ANALOG TO DIGITAL CONVERSION IN 27 MICROSECONDS
BYTE, OCTOBER 1981
MICHAEL A SEEDS AND HAROLD F LEVISON

(8) THE ATARI TUTORIAL
PART 7 : SOUND
BYTE, MARCH 1982
BOBFRASER

(9) APPROACHING FILTERING DISCRETELY
COMPUTER DESIGN
APRIL 1982

MAZOR, STAN

http:WILLlA.J.VI

