O

308

APPLICATI

VOICE/DIGITAL
CONVERGSTION o

(APP

0

6 8 1B

N PROJECT II

AND DIGITAL/VOICE
a MICROCOMPUTER

E II)

J O K TJIE

SEPTEMBER,

YAP

1987

)

C

TABLE OF CONTENTS

———— o ———— —— ——

Chapter 1 Introduction ¢ ¢ ¢ ¢ ¢« ¢ 4 0 v e s e e
Chapter 2 Theory and Design . . « ¢ ¢+ ¢« v v ¢« & o o o &
2.1 Basic Theory . . . ¢« ¢ ¢ ¢« ¢ o o« o o o o o «
2.1.1 Analog to Digital and Reverse Conversion .
2.1.2 sampling Rate ¢« .« ¢ ¢ ¢ ¢ 4 v .
2.1.3 Speech Encoding Methods
2.1.4 A/D and D/A Converters of Apple II
2.1.5 Packing and Unpacking of Data
2.1.6 Noise During Playback . .« « « ¢« ¢ & « ¢ o &
2.2 Design Intent o . & 4 . .
Chapter 3 User Manual . ¢« ¢ ¢ ¢« ¢ o o o « o o o o o o o @
3.1 Procedures of Voice/Digital and Digital/Volce
Conversion on a Microcomputer Project
3.2 Interface Part « « ¢« « v o ¢+ . .
3.3 Processing ¢ ¢ ¢« ¢« ¢« o ¢ 4o ¢« e s
3.3.1 Available Operations and Related Units . .
3.3.2 Programming Examples of All Available
Operations e e e e e .« s e
3.4 System Configuration
3.4.1 Floppy Diskette Supplied
3.4.2 Hardware Configuration « « ¢« .« .
3.5 Listing of Words in the Sample Dictionary . .
3.6 Description and Listing of Procedures
3.6.1 GLOBAL Unit e ¢ e e e e s s s s e e e s
3.6.2 UTILITY Unit e e e s e s e & & e s & o o
3.6.3 MODULEl Unit s e e s s s s s e e e o =
3.6.4 MODULE2 Unit e 6 e e o e & s s e s & o =
3.6.5 MODULE3 Unit s e e e 2 e e s s s s e e
© 3.6.6 DIGITAL EXTERNAL PROCEDURE e e s s s e s
3.6.7 ANALOG1l EXTERNAL PROCEDURE e e s s e s s
3.6.8 ANALOG2 EXTERNAL PROCEDURE « e e s e e
Chapter 4 Some Speclal Features of UCSD Pascal . e e e
4.1 External Complilation Units e e 4 e s e e
4,2 UNIT : Pascal to Pascal Linkage e e e e e
4.3 Pascal to Assembly Language Linkage . e e .
Reference

e o o = . " e e . v

=
[

NN NNNDNON
L) . . L) L
SO W

w
[)

wwww

O WO b

3.10.1
3.23
3.23
3.24
3.25
3.26
3.26
3.29
3.50
3.62
3.92
(03
c?
Cll

[Y - - S Y
W

(‘

O

CHAPTER 1
INTRODUCTION

Nowadays, speech synthesis has shown up In personal computers,
but the synthesls schemes In common use have llmitations (In .expense,
vocabulary, or Intelligibility) which have restricted thelr use. However,
any personal computer which Is equlpped with an analog-to-digital (A/D)
converter and a digital-to-analog (D/A) converter would theoretlically be
capable of both speech synthesis and recognition, If only 1t had the neces-
sary software.

A practlcal, rellable and affordable method for computers to recog-
nize and synthesis speech would ¥yleld at least two beneflts to computer
users:

(1) Maximum user frlendllness - Speech Is our most natural mode of
communlcatlon.

(2) New applications - Speech Interaction does not Interfere with most
human actlvitles, especlally those that requlre the use of the hands;
therefore, speech Interaction could allow computers to be used for
tasks that are now lmpractlical.

In this Volce/Dlglital and Digital/Volce Conversion on a Milcrocom-
puter project, the maln objlectlve Is a set of routines In the Apple II
UCSD Pascal System whlch digltize the sound Input of spoken English
words, store them In memory speech buffer (RAM or diskette) and then
play them back on request. Therefore, In addition te the routines which
perform the above tasks, a simple data base must be bullt to keep track
of the dlgitlzed data and character strings of words. The basic operations
of data base must be provided, namely: create dlctlonary, erase entire
dlctlonary, entry retrieval keyed with word string, add entrles, update
entrles, delete entrles and periodical malntalnance operations.

The name dictionary Is used Instead of data base In the documen-
tatlon. Although the dlctlonary is the bookkeeper of sound and text, 1t
does not have any knowledge of the encoding to the speech buffer and
the decoding from the speech buffer. It just manages a warehouse of
sounds and word strings on the diskette.

-1.1-

A

vOoLTS —»

TIME ——o

A/ZD-CONVERTER
"SAMPLES®
MERE

Dahirtia

N

CONVERTS
TO DIGITAL
VALUE

[1]1]0 o [o]o]o]o] 110000.48-48/6305v0LTS - 38 vOLTS

6 BITS/VALVE DUMMY TS

e s e RIS A K 5 N

Figure 1: An ADC converts an electrical analog, such as voltage, to a binary value.
_ADC: A/D Converler

X1 SAMPLING

X2 SAMPLING

X4 SAMPLING

Figure 2: The sampling rate and number of

ORIGINAL
INPUT

the input signal can be reproduced.

765 43210 A/O CONVERTER
§-8ITVALUE [0 0| VALUE N
00 Ne
e 2
00 ETC.
% 0
50
0 0
00
0 0
G 0
00
00
00
00
~——
WASTED
8ITS

Figure 3: Although 25 percent of the
storage space is wasted in storing 6-bit |
ADC values in 8-bit bytes, it is efficient in

terms of storage speed.

“SYNTMESIZED"
ouTPUT

LT

Ay

bits in the ADC determine how closely

ORIGINAL
INPUT

SAMPLED
INPUT

SAMPLE
MEMORY

2
Newn~oO

D/A=~
CONYERTER
ouTPUT

]
S
[}
0 1 2 3 4 5
0 0 1 1 0 o0 O 12763 »
0 1 0 0 1 o0|l0 O 18763 »
1 0 0 0 1 0|0 O 34/63 =
1 0 0 6 1 o]0 O 34763 =
] 0 0 0 0 0O O 32/63 =
1 0 0 0 0 0|0 O 32763 =
8-

Mk

/ RECORDER
1
»

APPLE II

0.95v
1.42
2.69
2.69
2.54
2.54

—

i(

QUTPUT

—
lUOlO\

cox il dbbid il & kil 1‘1"‘1 S adh it Lo v

Figure 4: Brute-force voice synthesis samples input to digitize it, stores the ADC
values in memory, and then outputs the values from memory to a DAC.

AUDIO INPUT

MICROPHONE

CASSETTE

ADC: AJD converter
DAC: D/ Converler

o

CHAPTER 2
THEORY AND DESIGN

2.1. BASIC THEORY

2.1.1. ANALOG TO DIGITAL AND REVERSE CONVERSIONS

Usually, an Analog_to_Digltal converter (A/D) 1s used to convert
the analog volce input signal to digital value form as lllustrated in FIG-
URE 1 [REF 3]. The larger the number of bits ln the sample, the finer
the resolutlon In the dliglital representation of the analog wvalue. If the
A/D converter glves slx bits of data, each dlgltal value wlll be within
1/64 of the analog Input value. A flve blts A/D converter will glve value

within 1/32 of the analog lnput value, and so on. When replaylng the

digital form of the lnput, the output waveform wlill approximate the orl-
ginal waveform by a serles of square steps. The higher the sampling rate
and the resolutlon of the A/D converter, the more the output will resem-
ble the original, as shown In FIGURE 2 [REF 3|.

When a six blts A/D converter Is used, for convenlence and speed
r‘easons, the six blts value 1s put 1ln each byte and lgnore the two unused
bits, as shown In FIGURE 3 [REF 3]. WIith the sampling rate of 7000
Hz, one second of recorded sound will flll 7000 bytes of memory.

To play back the digitized sound, a Digltal_to_Analog converter
(D/A) 1s used. If the data was captured by a six bits A/D converter, then
a six bits D/A converter Is needed. It takes in each digital value and pro-
duces an output voltage level proportional to that value. A sequence of
all these voltage levels will simulate an analog waveform.

The slmple process of volce capture and synthesis as illustrated In
FIGURE 4 [REF 3] and described above 1s a brute force method. It takes
an analog voltage as Input form from the audlo source, samples it 7000
tlmes or more per second with an A/D converter, stores the digltized
A/D output values In the computer memory, and then plays back the
values from memory with a D/A converter.

-21-

THEORY AND DESIGN

The process of using a A/D converter to record snatches of sound,
initlally held In a sound buffer, as a sequence of numbers is called speech
encodlng. The opposite process of converting a sequence of numbers In a
sound buffer into audible sounds using a D/A converted Is called speech
decodling.

2.1.2. SAMPLING RATE

Human speech 1s much like music played from a complex lnstru-
ment. It Is composed of many dlfferent notes played slmultaneously,
interacting In complex ways. The volce Is very versatile, it can be as per-
cusslve as a snare drum at a moment or as melodlous as a flute just a
fractlon of a second later.

The frequencles of human speech can range from 20,000 Hz |
(cycles/sec) down to 10 Hz. The signal strength range is In the ratlo of
over 16,000 to 1, respectlvely, between a shout and a qulet whisper. The
sampling rate must meet the Nyquist criterla [REF 5]. That Is, the rate
of sampling must be at least twice the frequency of the desired hlghest
volce harmonlc. To detect every nuance of all the sound In human
speech, we would have to measure the sound slgnal over 40,000 times per
second and store each measurement, using many bits of Apple II RAM.
Exactly capturlng one second of such speech would require 40K of RAM,
this 1s more than the Apple II has. Even a floppy diskette would hold
only four to flve seconds of sound, and the data transmission rate could
not keep up.

For: reproduced speech sound to be acceptable and understandable,
fortunately, 1t 1s not necessary to do 1t with that much precision. The
telephone system only transmlits sounds from 30 Hz to 3500 Hz, with
volume ratlos of less than 1000 to 1, and the clarity of volce suffers
surprisingly little [REF 8]. It Is true that people’s volces do not sound the
same In person as on the phone, but 1t 1s usually easy to recognize a fam-
illar volce over the phone and the speech Is easlly understood. What con-
stitutes acceptable speech quallty 1s a subjectlve Judgement on the part
of the listener.

From the discusslon In the above paragraphs, a conclusion can be
drawn that ln order to reproduce acceptable volce, capabllity of playlng
back frequencles up to 3500 Hz Is needed and sampling rate must be at
least twice the maxlmum frequency to be recorded. Hence volce must be

-22-

ARt
v

w

‘.'gj-{?' Kl

R ‘!‘,gi‘.ri‘ i ";
o

O

-

@) Ambgwhmwfmmﬂ.mdbdnnbrbd;ﬂlm

¢
{

(b) Speech wavgform digitized by simple pulse-code modulation.

%

(C) Speech waveform digitized by differential pulse-code modulation,

(d) Speech waveform digitized by adaptive differential pulse-code modulation.

THEORY AND DESIGN

recorded at rates of 7000 Hz or better. In other words, the volce Input
must be converted to digital form at a rate of 7000 samples per second or
better. '

At the hlgher sampling rate of an expenslve A/D converter, the
computer memory required to store the digital data exceeds the memory
of the Apple II computer after only a few seconds of actual operation.

2.1.3. SPEECH ENCODING METHODS

The methos of encoding speech fall Into two broad catagorles: tlme
domaln and frequency domaln approach.

Time domaln encoding approach seeks to measure and record the
amplitudes of the sound waveforms, which vary In time, and to recon-
truct the speech waveforms from thelr recorded history. All the three
most popular techniques of time domaln encodlng measure the exact
amplitude of the speech waveform frequently enough so that when 1t Is
played back, a reasonable facsimlile of the orlginal wave results:

(1) PCM - Pulse Code Modulatlon. This requires no speclal knowledge
about speech slignal, except the bandwidth. It uses the most
“memory for a glven amount of signal, but 1t Is the simplest. In fact,
virtually no computing at all Is required beyond the storage and
retrieval of the data.

(2) DPCM - Differentlal Pulse Code Modulatlon. This Is a varlation of
PCM that utlllzes the fact that speech slgnals are not random but
are closely related to slnusoldal functions. Thus, at each successlve
sample time the signal value 1s not random. It Is llkely to be rela-
tlvely close to Its preceding value. Therefore, DPCM stores a value
Indlcating the change from the last recorded sample, rather than a
value representing the sample ltself, It has the advantage in
efficlency of storage.

(3) ADPCM - Adaptive Differential Pulse Code Modulation. This is a
further development that cures the Slope Overloading defect of
DPCM. Optimized for speech storage, ADPCM offers better compli-
ance with the Input waveform and better intelligibllity of the repro-
duced volce signal at lower data rate [REF 4].

A speech sample before encoding Is shown In FIGURE 5a [REF 4].
The FIGURE 5b, 5¢ and 5d [REF 4] show the speech sample after

R

-23-

O

O

THEORY AND DESIGN

encoding, respectlively, using PCM, DPCM and ADPCM technlques.

" The comparison of FIGURE 5c¢ and 5d shows larger errors for
ADPCM encoding method. This Is not 1ndicative of actual results achlev-
able In a system set up specifically for ADCPM method. Usually, the
sampling rate 1s two to four tlmes what PCM or DCPM encodlngs might
use, but the storage required is stlll only 25 to 50 percent more wilth com-
parable sampling errors. One further problem: ADPCM Is characterized
by high frequency error noise which must be flltered out to produce
acceptable quality speech reproductlon [REF 4].

Frequency domaln encodlng approach seeks to measure the frequen-
cles present In a volce waveform and how they vary through time In dls-
tribution and 1n amplitude. Typlcally, If three or four dominant pltches
are recorded, acceptable speech can be reproduced. The most populag‘
technlque of of this approach Is Linear Predictive Codlng (LPC), which Is
used 1n the Texas Instruments Speak & Spell toy.

LPC Is the most compact encoding. Only 300 bytes are requlred to
store one second of speech. However, the price In computational complex-
1ty for LPC Is prohibltive In small scale use. Converting a few seconds of
PCM speech to LPC or the reverse conversion can take several minutes
on a large computer without the ald of a dedicated VLSI circult [REF 4].

2.1.4. A/D AND D/A CONVERTERS OF APPLE Il

- Apple I computer has a cassette Input port, which can be utllized to
digitize the volce Input which comes from a standard cassette recorder.
The principle I1s only monitoring the zero crosslng of any analog signal,
Including volce. We make a recording of the signal on a cassette tape,
then plug the recorder Into the Apple cassette Input port and play the
tape back while monltoring memory locatlon C080 (hexadeclmal), bit
seven. Above a certain level of Input slgnal, the cassette Input port will
read high; below thls level 1t wlll read low. The level of this transition Is
called the threshold.

Each tlme the signal crosses the threshold, the state of the cassette
iInput blt changes. A history of these changes contalns all the frequency
characteristlcs of the original analog Input, assumlng two thresholds per
cycle.

-24-

THEORY AND DESIGN

There 1s a good reason that the Indlrect volce Input from a cassette
recorder 1s prefered over the dlrect microphone Ilnput. An ldeal cassette
recorder should have a volume and a tone control so that the user can
’ input the correct amplitude and control the frequency range. In this
way, the glven volce can be reproduced with minimal noise and the mid-
polnt of the Input signal’s peak to peak amplitude can be set at the point
where the Apple threshold occurs. For each Individual, the quallty of
speech recorded will vary a lot with changes In these parameters. The
only way to find out the correct setting 1s by experimentatlion.

Two things should be noted:

(1) Since thls method of data gathering really amounts to a one blt
A/D converslon, amplitude Information 1S not present and the
stored volice will be reproduced at a constant volume depending on
the hardware used for the actual playback.

(2) The sampling rate must meet the Nyqulst criterion. That 1s, the
rate at which the cassette Input port 1s read must be at least twlce
the frequency of the highest volce harmonlc that we wish to store.

The on board speaker of Apple II computer can be toggled by a read
or write to memory locatlon C030 (hexadecimal). A click wlll be pro-
duced on the output speaker every tilme memory location C030 Is tog-
gled. A large amount of clicks can reconstruct the human volce, but the
reproduced volce will not have any tones or amplitudes related to the oril-
ginal volce Input.

It may be difficult to lmage how these clicks can reconstruct the
human volce. Try not to think about the Indlvidual click, but think
Instead of a series of clicks belng output at a varylng frequency which Is
a functlon of the original volce lnput. This varylng frequency is an FM
(frequency modulated) reproduction of that original lnput slgnal. The
astonlshing thing is that thls crude method works falrly well. It Is actu-
ally a speclal case of PCM encodlng approach.

2.1.5. PACKING AND UNPACKING OF A/D DATA

By using the Pulse Code Modulation (PCM) technlque, If each elght
bits of A/D data Is stored Into each memory byte locatlon, the whole
RAM of Apple II can only handle a few seconds of digitized data. There-
fore, the DPCM encoding approach 1s chosen by utlllzlng the method of

-25-

O

THEORY AND DESIGN

packing and unpacking A/D data described In thls sectlon.

The data which 1s stored does not always change from sample to
sample. This will always happen when low frequency slgnals are being
input and also during the times when no Input 1s belng sensed at the
cassette lnput port. Therefore data can be stored such that the first bit
(leftmost bit) of each memory location (byte) represents the state of the
A/D Input and the next seven blts represents a counter Indlcating the
number of samples collected whlle that input remalned unchanged. If the
counter overflowed the allocated seven blts, the same A/D state blt
would be stored ln the next memory locatlon with a new counter value.
This solution will flll up RAM of Apple II with one to three mlnutes of
reasonably understandable human volce.

In the processes of storlng and playlng back the volce, the time Is a
function of volce pitch and the setting of the Input on the tape recorder.
Certaln volce sound such as ssss and sh tend to cause a great deal of
change In the A/D data relatlve to the sampling rate, with the result of
less volce recording time fér a glven amount of computer memory.

In the unpacking of A/D data byte, when the loglcal AND operator
Is applled to the data byte with X'80' value as the second operand, the
result 1s the state of the origlnal A/D Input. On the other hand, the

~counter value for the total number of samples 1s obtalned by the same

logical AND operator, but with X'7F* value as the second operator.

The software routine which does this unpacking will decrement the
counter by one In each loop of program flow. The output speaker will be
toggled each tlme that the data counter reaches zero and the A/D bit
changes State. This amounts to producing a click on the output speaker
each tlme the original Input volce signal had a zero crossing.

2.1.6. NOISE DURING PLAYBACK

Although bad quallty of the onboard speaker contributes noise dur-
Ing the analog slgnal reproduction of volce, the method of sampling and
reproducing the data 1s the maln source of nolse. It Is important to sam-
ple the A/D converter at a constant rate and to make the corresponding
D/A conversion at the same uniform rate. Any difference in these rates
will cause a high nolse level which will have to be filtered [REF 8].

-2.6-

THEORY AND DESIGN

The assembly language routlnes which are written to sample or
reproduce the Input data both have diffrent logical paths to follow. Take
the routine of Input data sampling (DIGITAL). Its logical paths test
whether the counter 1s being Incremented or whether the counter plus the
data blt are belng stored, and whether the least or most significant bit of
the storage location has to be lncremented. Each case requires a different
number of machine cycles to complete and thus affects the time required
to go back to read the cassette Input port.

The solution 1s to make each logleal path use the same number of
machlne cycles, by utllizing varlous delay cycles (which do nothing) on
all loglical paths except the slowest path. This leads to a lower sample
rate, thus reducing the bandwlidth of the Input signal makling volce
recognltion more difficult.

There are two possl‘qle methods to reduce this bad effect :
(1) Digital flltering technlques.
(2) Hardware filters of the cassette recorder.

The first technlque 1s applled to stored data to remove the nolse. It.
is rejected In thls project, because It Involves the deslgning of a bandpass?:;-
filter of high complexity. This type of fliter requires the use of complex
multiplylng coefliclents and 1s not practical for real_tlme Apple II mlcro-
computer operatlons on large amount of data.

In the second technique, the reproduced analog data Is sent to the
cassette recorder to be elther recorded on tape or output in the PA (pub-
lilc address) mode. To achleve thls purpose, the memory locatlon C020
(cassette output) Is toggled Instead of C030 (Apple Speaker). The cassette
recorder tone control 1s used to fllter out unwanted nolse. The result Is
qulte satlsfactory.

2.2. DESIGN INTENT

The dictlonary s contalned 1n a dlskette with deflned volumename
STORE:. It conslsts of two types of data flles, namely, Index data flle
and blnary data flle. Any word which Is stored In the dlctlonary has two
data records, one record In each type of data flle. o

-2.7-

)

THEORY AND DESIGN

Each data record in the blnary data flle Is an array of byte strings
and 1t Is called blnary sound data record. The array’s slze 1s five and the
capacity of each byte string Is 255. The content of thls record Is the
bilnary data of the digitized sound of the assoclated word.

In the Index data flle, each data record consists of four elements,
whlch are:

(1) The character string of a word.

(2) The number of sound untts. This tells the total number of elements
(out of a maximum of flve) of each binary data record which holds
the digitized sound data.”’

(3) A value which Is used to access the blnary data record from the
assoclated blnary data flle directly. Actually, thls 1s the record
number of the blnary data record In the blnary data flle.

(4) Status element of boolean value. This Is always TRUE for a word
which exists in the dictlonary. After a word has been deleted from
the dictionary, the value 1s FALSE.

All the words In the dlctlonary are separated Into three sets and
each set of words Is assoclated with a distlnct set of starting characters.
Thils arrangement makes the sequentlal search of words In the dictionary
easler by reducing the maximum number of words to be searched to one
third of all the words In the dictlonary. Therefore, slx data files are
needed, three each for the Index and blnary data flles.

In the sample dictionary, all the words are formed by upper case
alphabet letter. The three sets of startlng characters are: ['A’.."H’|,
[T.'P’] and ['Q’..’Z’]. The Index records In each Index data flle are
keyed by the word string element In alphabetical ascending order. For
the first, second and third set of the above starting characters, respec-

tlvely, the names of the assoclated palrs of Index and blnary data files
are: :

(1) INDEX1.DATA and BINARY1.DATA
(2) INDEX2.DATA and BINARY2.DATA
(3) INDEX3.DATA and BINARY3.DATA

For each palr of assoclated Index and blnary data files In a new dlc-
tlonary, the record numbers of a palr of Index and blnary data records
for a word entry In thelr respectlvely data flles are the same, but after
one or more addltions of entrles In the dlctionary, the simllarity ln the
record numbers Is not valld anymore. The additlon of index records is

- 28 -

=
3

*)Hu

sk WIS b,

THEORY AND DESIGN

performed as Insertlon In varlous part of the Index data flles, In order to
keep the word string elements in alphabetical ascending order and
preserve the valldity of sequentlal search on the Index data records.
Unlike Index data records, the additlon of binary data records can be
placed at the end of the assoclated blnary data flles. The reason Is that
each Index data record always contalns the record number of lts assocl-
ated binary data record.

For the character string of a word, after lts exlstence In the dlctlon-
ary has been verlfled, the process of accesslng the binary data record In
order to reproduce the sound of thls word requires the followlng three
Informatlon. They are all elements of a record type called ELEM:

(1) The number of sound unlts.
(2) The record number of the binary data record.

(3) An Index polnts to the exact blnary data flle which contalns the
blnary data record.

The values of the first and second elements of an ELEM type record
are obtalned from the second and third elements of the assoclated Index
data record 'respectlvely. The third element 1s determlined by the start-
ing character of word string, the value Is elther one, two or three depend-
Ing whether 1t 1s an element of the flrst, second or third set of starting
characters. \

The documentation on the Interface part (GLOBAL unlt) glves more
Insight on the data structure of this project.

-29-

USER MANUAL

CHAPTER 3

USER MANUAL

3.1 PROCEDURES OF THIS PROJECT

All the Pascal language procedures are grouped in four UNITs : UTILITY,
MODULEl, MODULE2Z and MODULE3.

In this section, the Pascal procedures which are available to the user
who USES the units are listed. For more description of each procedure, please
refer to section 3.6.

There are four procedures inside MODULEl unit :

(1) BLD_DIRECTORY - builds all index data files.

(2) PRT_ENTRIES - displays the content of index data records in all the index
data files. An option is available to display only one specified index
data file. ’

(3) BLD_VOICE - builds all binary data files. ’

(4) CLR_DIRECTORY - deletes all the index and binary data files in the storage
diskette. In other words, the whole dictionary is cleared.

. There are seven procedures inside MODULE2 unit :

Q:;\ ADD_XENTRIES - builds temporary index data files to store the new addition
of index data records. This is the first part of adding new index data
records into the dictionary. 2

(2) CMB_XENTRIES - combines (sort merges) each temporary index data file to
its related permanent index data £ile. This is the second and last part of
adding new index data records into the dictionary.

(3) ADD_BENTRIES - builds temporary binary data files to store the new addition
of binary data records. This is the first part of adding new binary data
records into the dictionary.

(4) CMB_BENTRIES - combines (sort merges) each temporary binary data file to
its related permanent binary data file. This iIs the second and last part
of adding new binary data records into the dictionary.

(5) DO_DELETE - deletes entries from the dictionary in the storage diskette.
Each entry is a pair of index and binary data records, respectively, from
the related index and binary data files. The entries are not removed phy_
sically, only the STATUS element of each entry is set to FALSE value.

(6) DO_CLNUP - periodical cleanup of the dictionary, all the deleted entries
with FALSE value in the STATUS elements are removed permanently.

(7) IMPROVE_SOUND - improve or update the binary sound data of existing words
in the dictionary.

USER MANUAL

The MODULE3 unit has three procedures :

(1) SPEAK - speaks a word, its binary sound data has already been placed in
the global VOICE buffer. The sound ouput is at the connected speaker of
Apple II or casette recorder. The choices of speaker and analog delay
constant have already been done.

(2) SPEAK_WORD - speaks a specified word which is passed as parameter. The
sound output speaker and analog delay constant should have been chosen.

(3) LISTEN - listens to a word and get the binary sound data from the con
nected casette recorder. The global VOICE buffer is used to store the
result of binary sound data.

The UTILITY unit has ten procedures :

(1) DO6_RESET - opens all six index and binary data files.

(2) DO6_CLOSE - closes all six index and binary data files.

(3) DISKETTE_ONLINE - verifies and requests that the storage diskette online
by creating or opening a specified data file.

(4) CNT1_ELEM - counts the total number of data records in a specified index
data file.

(5) CNT2_ELEM - counts the total number of data records in a specified
binary data file.

(6) BLDIDX - builds all the index data records of a specified index data
file.

(7) GETVOICE - builds all the binary data records of a specified binary data
file.

) GET_WORDUNIT - gets a word string and its number of sound units £rom the’
" user interactively.

(9) WORD_VERIFY - verifies that a specified word exists in the dictionary.
When the existence has been confirmed, the information to access the bi_
nary data record is returned. This procedure can be used to update the
number of sound units of a word when the special option is chosen.

(10) FILE_SORT -~ processes file sort merge on two index data files. Sorting

is on the alphabetical ascending order of the word element in each index
data record.

The three Assembly language routines (external procedures) which process
the sound data directly reside in the system library called SYSTEM.LIBRARY.
In order to call any one of them from a host program, the related declaration
of the following three lines must appear right after the end of VAR declara_
tion section :

PROCEDURE DIGITAL (VAR BDATA:SOUND; TEMPO, UNITT:INTEGER) ; EXTERNAL

PROCEDURE ANALOGl (VAR BDATA:SOUND; TEMPO, UNITT:INTEGER) ; EXTERNAL

PROCEDURE ANALOG2 (VAR BDATA:SQOUND; TEMPO, UNITT:INTEGER) ; EXTERNAL

Ne “e %o

For the example of preceding declaration, please check the listing of

USER MANUAL

O

MODULE3 unit in section 3.6.

It is not necessary to use the three external procedures mentioned above

in a host program, the equivalent Pascal language procedures are available
in MODULE3 unit :

(1) Procedure LISTEN - for the DIGITAL external procedure.
(2) Procedure SPEAK - for the ANALOG1l and ANALOG2 external procedures.

3.3

USER MANUAL

3.2 INTERFACE PART OF THE PROJECT

In order to make INTERFACE part of this
Conversion on a Microcomputer easily used,
Apple Pascal System and called GLOBAL. All
variables are defined in here, the default
are assigned. The CODE file of this GLOBAL
Library of routines called SYSTEM.LIBRARY,

Voice/Digital and Digital/Voice
it is defined as a UNIT of

the global constants, types and
values of some global variables
unit is placed in the System

so any Pascal host program which

has a declaration using this GLOBAL unit can access and manipulate the
content of this INTERFACE part.

Placing the interface part in one unit lets the user changes the values
of global constants, data types and variables without having the require_
ment to modify any unit of V/D and D/V Conversion on a Microcomputer. After
the modification and successful compilation of this GLOBAL unit, the user
only needs to link the codes files of all units with the new code file of
this GLOBAL unit.

Each one of the four UNITs (UTILITY, MODULEl, MODULE2 and MODULE3) of this
project has a declaration using the GLOBAL unit at the beginning of the
program. -~
CONSTANT

“MAXFILE = 3 ; °
MAXUNIT = 5 ;

UNITSIZE = 255 ;

BUFFUNIT = 20 ;

MAXCHAR = 20 ;

MAXWORD = 25 ;

TOTALWORD = 100 ;

FILENMLEN = 40 ;

VOLNMLEN = 8 ;

MAXFILE - maximum number of
all the available

MAXUNIT - maximum number of
UNITSIZE - the total number

BUFFUNIT - the total number

Index data files oxr blnary data flles to store

words of dictionary in this project.
sound units of each word.
of bytes for each sound unit.

of sound units of a buffer which is used

testing the sound input and output of several words.

MAXCHAR - maximum number of

characters in each word.

in

USER MANUAL

faﬂk

"~

MAXWORD - maximum number of words in each sentence.

TOTALWORD - the capacity of each index or binary data file.

FILENMLEN - the maximum length of a filename character string.

VOLNMLEN - the maximum length of a volumename character string, including
the colon character.

TYPE

-

WORDRANGE = 1..MAXWORD ;

TWORDRANGE

FILERANGE

UNITRANGE

SPEAKEROF
WORD = STRING[MAXCHAR] ;

FILENAME
VOLNAME =
IDXELEM =

= 0..TOTALWORD ;
1..MAXFILE ;
1..MAXUNIT ;
(CASETTE, APPLE) ;

STRING(FILENMLEN] ;

STRING[VOLNMLEN] ;

PACKED RECORD
STRG : WORD ;
UNITT : UNITRANGE
IDXX : TWORDRANGE
STATUS : BOOLEAN

END ;

e %o

ELEM = PACKED RECORD

WUNIT : UNITRANGE ;

WIDX : TWORDRANGE ;

WSET : FILERANGE
END ;

SOUND = ARRAY[UNITRANGE] OF STRING[UNITSIZE] ;

SENTENCE

ELEMARRAY
INDEXFILE
BINARYFIL

STRGFILE

E

ARRAY([WORDRANGE] OF WORD ;
ARRAY[WORDRANGE] OF ELEM ;
FILE OF IDXELEM ;

= FILE OF SOUND ;

FILE OF STRING ;

WORDRANGE - the range of possible number of words in a sentence.

TWORDRANGE - the range of possible record number of a binary data file or

the range of possible number of index data records in an
index data file.

FILERANGE - the range of total number of index data files or binary data

c

files in the storage diskette.

3.5

USER MANUAL

ﬁNITRANGE - the range of possible number of sound units in a word.
SPEAKEROF - the possible speaker destination for the output sound.
WORD - defines the character string size of a word.

FILENAME - defines the character string size of a filename.

VOLNAME - defines the character string size of a volumename for the storage
diskette.

IDXELEM - this is the record type of each index data record in the index data
file. The first element is the character string of a word, the se_
cond element is the number of sound units of this word. The binary
sound data is in one of the three binary data files, the third ele_
ment is the index number (record number) of this binary data record
in the associated binary data file. The existing status of this word
in the dictionary is in the STATUS (last) element of this structured
record type. ~ '

ELEM - it defines the record type of each element in the ELEMARRAY array type.
The first element of the record is the number of sound units of a word
and the second element is the index number (recotd number) of the bina_
ry data record in one of the three binary data files. The WSET (last)
element tells whlch one of the three binary data files has the binar

- data record. '

SOUND - it defines the maximum size of binary sound data that a word can
have in the dictionary.

SENTENCE - defines the maximum numbé: of words in a sentence.

ELEMARRAY - each array of this data type associates with a sentence. Each ele_
ment of this array corresponds to a word from the sentence, it
contains all the required information in order to access the bina_
ry data record from a binary data file.

INDEXFILE - file type of index data file.

BINARYFILE - file type of binary data file.

STRGFILE - file type of character string data file.

VARIABLE

IFILEl, IFILE2, IFILE3 : INDEXFILE ;

USER MANUAL

-
BFILEl, BFILE2, BFILE3 : BINARYFILE ;
YFILE : STRGFILE ;
VOICE : SOUND ;
SPKER : SPEAKEROF ;
DTEMPO, ATEMPO : INTEGER ;
I1FNAME, I2FNAME, I3FNAME : FILENAME ;
B1FNAME, B2FNAME, B3FNAME : FILENAME ;
YFNAME : FILENAME ;
SET1CHR, SET2CHR, SET3CHR, SET4CHR : SET OF CHAR ;
SET1STCHR, SETCHRS : SET OF CHAR ;
VOLUMENAME : VOLNAME ;
CHRS1, CHRS2, CHRS3, CHRS4, CHRSALL : FILENAME ;
VOICEBUFF : ARRAY[1l..BUFFUNIT] OF STRING[UNITSIZE] ;
LENWORDS : ARRAY[1l..BUFFUNIT] OF UNITRANGE ;
TOTWORDS : INTEGER ;
IFILEl, IFILE2, IFILE3 - file window variables for all three index data files.
BFILEl, BFILE2, BFILE3 - file window variables for all three binary data
files.
YFILE - file window variable for a data file of character string records.
VOICE - buffer of binary sound data of a word. It is used for the purpose of
Q_, either speaking or listening a word.
SPKER - it contains the choice of voice output on the speaker of Apple II or
a casette recorder. The default value is Apple II's speaker.
DTEMPO - it contains the delay constant in the process of digitizing the
input sound to get the binary sound data. The default value is one.
ATEMPO - it contains the delay constant in the process of analoging the
binary sound data into the output sound frequency. The default
value is four.
I1FNAME, I2FNAME, I3FNAME - filename variables of all three index data files.
B1FNAME, B2FNAME, B3FNAME - filename variables of all three binary data files.
YFNAME - filename variable of a character string data file.
SET1CHR, SET2CHR, SET3CHR - sets of valid starting characters, respectively,
for the words in the first, second and third index data files.

SET4CHR - a set of digit characters for the valid total numbers of sound
units of a word.

-

USER MANUAL

SET1STCHR - a set of all the valid starting characters of the words in the
dictionary.

SETCHRS - it contains the current set of starting characters.

VOLUMENAME - it has the volumename character string of the data storage dis_
kette, the default value is STORE: .

CHRS1, CHRS2, CHRS3, CHRS4, CHRSALL - valid starting characters message
strings, respectively, for SET1CHR, SET2CHR, SET3CHR, SET4CHR and
SET1STCHR sets of characters,.

VOICEBUFF - a big buffer to store the binary sound data of several words,
for the testing purpose of either sound input or output.

LENWORDS - each element of this array contains the number of sound units of
the associated word's binary sound data in the VOICEBUFF buffer.

TOTWORDS - total number of words which have the binary sound data in the
VOiCE BUufF buffer.

http:I3I"l.FF

USER MANUAL

3.3 PROCESSING

[M
&-5}3.1 AVAILABLE OPERATIONS AND RELATED UNITS

In order to do any one of the available operations, the calling Pascal
language host program must have the following statement before the LABEL
or CONSTANT definition section to indicate which UNITs of the five are
used :

USES GLOBAL, [UTILITYJ), MODULEx [, MODULEy, MODULEz] ;
the ending letter 'x' of MODULExX is either digit characters 1, 2 or 3. It
is similar for ending letters 'y' and 'z' in MODULEy and MODULEz respect_
ively. The UTILITY unit is used only when at least one of its procedures
is needed by the host program in the processing.

There are three operations involving speaking and listening which are
grouped in MODULE3 unit, therefore, for one or more of these operations,
the host program must have the following statement :

USES GLOBAL, UTILITY, MODULES3 ;

The three operations are :
(1) Basic speak - call procedure SPEAK
(2) Speak a specified word - call procedure SPEAK_WORD
(3) Basic listen - call procedure LISTEN

The UTILITY unit is used because its DO6_RESET and DO6_CLOSE proce_
dures are called by the host program to open and close all index and
~~inary data files. If the host program opens and closes each data file
irectly by calling the build in file I/O procedures RESET and CLOSE

respectively, the UTILITY unit is not needed.

The operations which work on the database of words or dictionary are :
(1) Create a new dictionary - call procedures BLD_DIRECTORY and BLD_VOICE.
USES GLOBAL, MODULEl ;
(2) Purge the whole dictionary - call procedure CLR_DICTIONARY.
USES GLOBAL, MODULE1l ;
(3) Display content of all index data flles (index data records) - call
procedure PRT_ENTRIES.
USES GLOBAL, MODULEl ;
(4) Add new entries to the dictionary - call procedures ADD_XENTRIES,
ADD_BENTRIES, CMB_XENTRIES and CMB_BENTRIES.
USES GLOBAL, MODULE2 ;
(5) Delete entries from the dictionary - call procedure DO_DELETE and
DO_CLNUP.
USES GLOBAL, MODULE2 ;
For a speedy deletion only procedure DO_DELETE is required. The phy_
sical removal of the deleted records can be carried out later with
the periodical maintainance procedure DO_CLNUP.
(6) Periodical maintainance on the dictionary - call procedure DO_CLNUP.
USES GLOBAL, MODULE2 ;

USER MANUAL

It does the physical removal of deleted records (index and binary
data records) from the dlctlionary. These data records have been de_
leted previously with the SPEEDY DELETION option.

(7) Update binary data records - call procedure IMPROVE_SOUND.
USES GLOBAL, MODULEl ;

For any one of the above seven operations, one or more procedures of
UTILITY unit might be called but the related unit of the operation
already has an USES statement with UTILITY unit, therefore the host pro_
gram does not need to USES the UTILITY unit. it is assumed that the host
program does not call any procedure of UTILITY unit, otherwise the USES
statement must include the UTILITY unit.

There are two sample programs in the following pages, the first sample
shows the operations of MODULEl and MODULE2 units and the second sample
shows the operations of MODULE3 unit.

03.2 PROGRAMMING EXAMPLES OF ALL AVAILABLE OPERATIONS

T T T T T T T T e e e e e e e e e e e ——— e - *)
This is the example of using SPEAK, SPEAK_WORD and LISTEN procedures %)
< of MODULE3 module. *)
(* ')
(* Several procedures are built, each of them either calls SPEAK, %)
(* SPEAK_WORD or LISTEN to complete the task, some procedures of %)
(* UTILITY module are called during the processing. *)
(* %)
(* The main program must call DO6_RESET and DO6_CLOSE at the beginning *)
(* and at the end of the program. These two procedures are from the %)
(* UTILITY module, opening and closing all six index and binary data *)
(* files respectively. %)
(* *)
(* This example USES three modules : %)
(* GLOBAL - must be USED by all application program %)
(* MODULE3 - this is the example of using it %)
(* UTILITY - several procedures of this module are called %)
(* %)
(* The compiler option $S++ is used in this example, it slows down the *)
(* speed of compilation but more memory space is available. *)
(* *)
(* The following global variables from the GLOBAL module are used in *)
(* this example : %)
(* VOICE - storing buffer of the digitized voice data of a word. *)
(* ATEMPO - analoging delay constant, used in SPEAKing procedure T %)
(* DTEMPO - digitizing delay constant, used in LISTENing procedure *)
SPKER - for chosing the speaker of Apple II or cassette recorder *)
. in speaking (playback the voice of) words x)
(F e e e e e e e e e *)
PROGRAM USER_MANUAL_MODULE3 (INPUT, OUTPUT) ;
(*$S++%) (* compiler option *)
USES GLOBAL, UTILITY, MODULE3 ; (* this example only uses ¥)
(* these three modules *)
VAR WRD : WORD ; ; (* variables of the main program *%*)
STRG : STRING ;
FN : FILENAME ;
CONFIRM : BQOLEAN ;
(* —— *)
(* This procedure speaks a word. The character string of the word to be *)
(* spoken is passed in the parameter WRD. *)
(* *)
(* Input : *)
(* WRD - parameter, word to be spoken. *)
(% *)
(* OQutput : *)
(* Sound of the word which is output on the speaker of Apple II or *)
‘ attached casette recorder depending on the value of the global *)
variable SPKER. *)
(* *)
{* The following procedures are called : ‘ %)

LX WORD_VERIFY - module UTILITY, verifying whether the passing para_
(:} meter WRD is in the dictionary. When it exists, return all :
(= required information in FNDREC parameter in order to access the
(* binary sound data from the related bilnary data file.
(* SPEAK_WORD - module MODULE3, speaks the word in WRD
(* LENGTH - string built in function, get the length of the character
(* string
(*
(* The following global variables of the GLOBAL unit are used :
(* None
(* ——
PROCEDURE WORD_SPEAK (WRD : WORD) ;
VAR FOUND, CHANGE : BOOLEAN ;
L : INTEGER ;
FNDREC : ELEM ;
BEGIN
L := LENGTH(WRD) ; (* process only when the word is not NULL *)
IF (L > 0) THEN
BEGIN
= CHANGE := FALSE ;
Qﬂw FOUND := FALSE ; (* regular verification of word *)
WORD_VERIFY(CHANGE, FOUND, WRD, FNDREC) i (* verify existence

SPEAK_WORD (FNDREC) (* exist, speak it *)
EngITELN(' WORD ':7,WRD:L,' IS NOT IN THE DICTIONARY')
END
END ;

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

*)

(* of word & get all *)
(* needed information*)

IF (FOUND) THEN

——— - —— —— — - — T ———— — — — —— — . —————— - — —————————————————— —————— — i ——

* This procedure speaks a sentence. The character string of the sen_

tence to be spoken is passed in the parameter STRG.

Input :
STRG - parameter, sentence to be spoken.

Output :
Sound of the sentence which is output on the speaker of Apple II
or attached casette recorder depending on the value of the global
~ variable SPKER. '

The following procedures are called :
ANALYZE_SENTENCE -~ assume this procedure exists, it gets all the

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

*)

o words of a sentence and places them in a word buffer WBUFF, *)
WORD_VERIFY - module UTILITY, verifyling whether the passing para_ *) @
(* meter WRD is in the dictionary. When it exists, return all *)
(* required information in FNDREC parameter in order to access the *)
(* binary sound data from the related binary data file. *)
(* SPEAK_WORD - module MODULE3, speaks the word in WRD %)
(* LENGTH - string built in function, get the length of the character *)
(* string *)
(* %)
(* The following global variables of the GLOBAL unit are used : %)
(* None *)
(¥ crmrmmrrc e e - *)

PROCEDURE SPEAK_STRING (STRG : STRING) ;

VAR WBUFF : SENTENCE ;
IDX, I, L, TOT : INTEGER ;
WRD : WORD ;
EOS, CHANGE, FOUND : BOOLEAN ;
FNDREC : ELEM ;
EARRAY : ELEMARRAY ;

BEGIN
TOT := 0 ;
ANALYZE_SENTENCE(STRG, WBUFF, IDX) ; (* get all the words *)
(* of the sentence *)
CHANGE := FALSE ; (* regular verification of word %)

(* Loop, verifies all the words in WBUFF buffer. Processes only one %)
(* word in each pass of the loop. The IDX variable is the total num_ *)
(* ber of words in the sentence (WBUFF buffer). %)

FOR I := 1 TO IDX DO
BEGIN

WRD := WBUFFI[I] ;
FOUND := FALSE ;

WORD_VERIFY(CHANGE, FOUND, WRD, FNDREC) ; (* verify each word *)
IF (FOUND) THEN (* only keep & process those words *)
BEGIN (* which exist in the dictionary. ¥)
TOT := TOT + 1 ; (* TOT is the total number of wordst*)
EARRAY([TOT] := FNDREC (* which exists in the dictionary. *)
END
ELSE
BEGIN

L := LENGTH(WRD) ;
WRITELN('> WORD ':
END

7,WRD:L,' IS NOT IN THE DICTIONARY')

END ;

‘IF (TOT > 0) THEN (* speak only when the sentence has %)
./ JEGIN (* one or more valid words. *)
FOR I := 1 TO TOT DO
BEGIN (* speak each word separately %)
FNDREC := EARRAY[I] ;
SPEAK_WORD(FNDREC) (* speak the word ¥*)
END
END
END ;
(* ——

(* This procedure speaks all the sentences of a text data file. The
(* name of the text file is passed in the parameter FN. The parameter
(* must be declared as VARiable, otherwise the file window pointer

(* of this file can not be advanced by the GET procedure.

(* A volume name should accompany the filename, otherwise the boot
(* diskette is assumed to contain the text data file.

(* Input :
(* FN - parameter, data f£ile of sentences to be spoken.

(* Output :

(* Sound of the sentences which are output on the speaker of Apple II
or attached casette recorder depending on the value of the global

Newr variable SPKER.

(* ’

(* The following procedures are called

(* CLOSE - build in file I/0 procedures, open an existing data file.

(* SPEAK_STRING - defined procedure in this example program, speaks a
(* sentence.

(* GET - build in file I/0 procedure, get next element from the file

(* CLOSE - build in file I/0 procedures, close the file

(% : .

(* The following global variables of the GLOBAL unit are used :

(* YFILE - file window variable of a data flle of character strings.

PROCEDURE SPEAK_FILE (VAR FN : FILENAME) ;
VAR L, IDX : INTEGER

STRG : STRING ;
EOS : BOOLEAN ;

“e

BEGIN

RESET(FN, YFILE) (* open the text file, assume the file

(* exists and no error in the file I/0.

“e

WHILE(NOT(EOF(YFILE))) DO (* process one sentence of the
o SEGIN (* file in each pass of the loop

STRG := YFILE" ; (* get the sentence from the *)

*)
*)

*)
*)

3.13

(* £file window pointer *)

SPEAK_STRING(STRG, IDX, EOS) ; (* speak the sentence *)
GET(YFILE) (* advance the file window pointer %)

END ;

CtOSE(YFILE) (* close the text data file *)

END ;

O

This procedure stores the digitized voice data of one or more words *)
into a buffer. The voice of each full word is input separately. Each *)
full word may consist of several words, as long as the total unit of %)
sound is not greater than MAXUNIT (5). The capacity of this buffer %)
VOICEBUFF is 20 (BUFFUNIT) units of sound. %)

I~ N o~
» % ¥ ¥

*
*
~

(* The delay constant of digitizing (DTEMPO) can be chosen and input by *)

(* the user interactively. Therefore, this procedure is useful for the *)
(* user to find out the best value of delay constant in the digitizing *)
(* process of his/her own voice. x)
(* *)
(* Input : %)
(* Voice of one or more words. %)
(* *)
{* Output : J %)
(* Digitized binary voice/sound data in the VOICE global buffer. %)
(* *)
(* The following procedure is called : *)
(* LISTEN - MODULE3 unit, digitize the input voice and place the digi_*)
(* tized binary voice data into global buffer VOQICE. . *)
(* _ x)
(* The following global variables of the GLOBAL unit are used : %)
(* TOTWORDS - total number of words in the VOICEBUFF buffer. . %)
(* DTEMPO - delay constant in digitizing process. S k)
(* MAXUNIT - maximum number of sound units of each word. *)
o BUFFUNIT - maximum capacity of VOICEBUFF buffer. *)
gt LENWORDS - contains the number of sound units of each word in the #*)
(* VOICEBUFF global buffer. %)
(* VOICE - buffer of binary sound data of a word. *)
(* VOICEBUFF - buffer of binary sound data of several words. *)
(

%
i
|
]
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
i
]
|
]
!
]
|
|
I
]
i
]
I
!
I
|
i
|
|
i
|
|
i
I
|
]
|
|
|
1
{
|
|
1
[
t
1
1
|
|
]
|
i
]
]
]
|
]
1
1
*
A

PROCEDURE LISTEN_BUFFER

e

VAR I,PTR,VAL : INTEGER
EOLB : BOOLEAN
INPKEY : CHAR ;
NUNIT : UNITRANGE ;

e

BEGIN
PTR := 0 ;
TOTWORDS := 0 ;

EOLB := FALSE ;
PAGE (OUTPUT) ;
WRITELN(' STORE VOICE OF WORDS IN A BUFFER ')
WRITELN('=-======= o= mm oo e e ')

AT TY

WRITELN ; (* get the delay constant of digitizing interactively *)
WRITELN('> INPUT DELAY CONSTANT OF DIGITIZING : ') ;
€:>READLN(DTEMPO) H

REPEAT .(* process each full word separately *)

3.15

WRITELN ; (* get the total units of sound interactively %)
WRITELN('> INPUT TOTAL SOUND UNITS OF WORD [(1,..,5]1 ') ;
WRITE(' INPUT 0 TO QUIT, UNIT : ') ;

READLN(VAL) ;

IF ((VAL>0) AND (VAL<K=MAXUNIT) AND (* process additional word
((PTR+VAL)<=BUFFUNIT)) THEN (* only when the capacity
BEGIN (* of the buffer is not
(* exceeded
TOTWORDS := TOTWORDS + 1 ;
LENWORDS[TOTWORDS] := VAL ;
NUNIT := VAL ;
WRITELN ;
WRITELN('> HIT RETURN KEY WHEN READY FOR SOUND INPUT') ;
(* digitizing the input sound, %
LISTEN (NUNIT) ; (* the digitized voice data is returned *
(* in the global buffer VOICE *

READLN(INPKEY) ;

FOR I := 1 TO NUNIT DO (* transfer data of each *
VOICEBUFF[PTR+I] := VOICE[I] ; (* word into the destina_ *

PTR := PTR + NUNIT (* tion buffer VOICEBUFF ¥

END

ELSE IF (VAL = 0)
THEN EOLB := TRUE

(* normal ending of lnput sound *)

ELSE IF ((PTR+NUNIT) > BUFFUNIT) (* exceed buffer capacity,
THEN ' (* end of input with a *
BEGIN » (* message *
EOLB := TRUE ;
WRITELN ;

WRITELN('> BUFFER HAS < ',NUNIT:1,' UNITS VACANT')
END

UNTIL EOLB

. — - — - - — —— A > VS TS W . . M ve - G S S S - D D S . —— T — . T . —— — - —————— - —— —— - —

This procedure speaks the digitized voice data of one or more words
from buffer VOICEBUFF. The capacity of this buffer is 20 (BUFFUNIT)
units of sound.

The delay constant of analoging (ATEMPO) can be chosen and input by
the user interactively. Therefore, this procedure is useful for the
user to find out the best value of delay constant in the playback
process of his/her own digitized voice data.

This procedure is used after the preceding LISTEN_BUFFER procedure
has been called. The combination of these two procedures gives the
user his/her own best & unique pair of digitizing and analoging
delay constants. The reason for this unique pair of constants is
that each person has distinct voice.

*)
*)
*)
*)

¥ *)

w Input : *)
(* CONFIRM - parameter, wait for the user to press the RETURN key to *)
(* indicate that he/she is ready to listen. %)
(* VOICEBUFF - buffer of binary sound data of several words. *)
(* *)
(* Output : %)
(* Sound of the words in VOICEBUFF buffer which are output on the %)
(* speaker of Apple II or attached casette recorder depending on the *)
(* value of global variable SPKER. %)
(* *)
{* The following procedure is called : %)
(* SPEAK - MODULE3 unit, analog (playback) the digitized binary voice %)
(* data which resides in the global buffer VOICE %)
(* *)
(* The following global variables of the GLOBAL unit are used : %)
(* TOTWORDS - total number of words in the VOICEBUFF buffer. %)
(* ATEMPO - delay constant in digitizing process. %)
(* LENWORDS - contains the number of sound units of each word in the ¥*)
(* VOICEBUFF global buffer. *)
(* VOICE - buffer of binary sound data of a word. %)
(* VOICEBUFF - buffer of binary sound data of several words. %)
(B m e e e e e X))

PROCEDURE SPEAK_BUFFER (CONFIRM : BOOLEAN) ;

C::R I, J, PTR, STRTPTR, ENDPTR : INTEGER ;
~ INPKEY : CHAR ;
NUNIT : UNITRANGE ;

BEGIN
WRITELN ; (* get the delay constant of analoging interactively *)
WRITELN('> INPUT DELAY FACTOR OF ANALOGING : ') ;
READLN (ATEMPO) ;
IF (CONFIRM) THEN {* confirm that user is ready to listen %)
BEGIN :
PAGE(QUTPUT) ;
WRITELN('> HIT RETURN KEY WHEN READY') ;
READLN (INPKEY)
END ;
STRTPTR := 1 ; (* speak each full word separately *)
FOR I := 1 TO TOTWORDS DO
BEGIN
NUNIT := LENWORDSI[I] ; (* total unit of sound of each full word *)
ENDPTR := STRTPTR + NUNIT - 1 ;
J :=0 ;
<:; FOR PTR := STRTPTR TO ENDPTR DO (* transfer digitized data of ¥*)
' BEGIN (* each word into the global ¥)
J :=J +1; (* buffer VOICE *)
VOICE[J] := VOICEBUFFI[PTRI

END ;

SPEAK (NUNIT) ; (* speak the full word %)
STRTPTR := ENDPTR + 1
END

END ;

(* The main program of USER_MANUAL_MODULE3 sample program starts here *)
BEGIN
DO6_RESET ; (* open all index & binary data files of the dictionary ¥*)
SPKER := APPLE ; (* utilize the Apple II speaker for voice output ¥*)

(* Speak the word 'MILLION' ten times, each time varies the value of *)
(* the analog delay constant ATEMPO in the sequence of 1,..,10. Try *¥*)
(* to decide which value of ATEMPO gives the best quality of play_ *)
(* back voice. - *)

WRD := 'MILLION' ;
FOR ATEMPO := 1 TO 10 DO
WORD_SPEAK (WRD) ;

(*-Speak the following sentence in STRG variable ten times, each *)

(* time varies the value of the analog delay constant ATEMPO in the %)
(* sequence of 1,..,10. Try to decide the best value of ATEMPO. %)
(* *)
(* The combination result of this test and the preceding test gives *)
(* a good estimation of the most suitable value of ATEMPO, to be *)
(* used in speaking any word of the existing dictionary from the %)
(* Apple II speaker. The reason for these two tests is that diffe_ *)
(* rent Apple II (especially clone) micro computers might not have *)
(* exactly similar speaker. %)

STRG := 'TUESDAY, THE FIFTH DAY OF MAY, YEAR OF ONE THOUSAND NINE
HUNDRED AND EIGHTY SEVEN' ;
FOR ATEMPO := 1 TO 10 DO
SPEAK_STRING (STRG) ;

(* Speak all the sentences of a text file. Use the speaker of a con_ *)

(* nected casette recorder for voice output, employ a fixed value *)
(* for the analoging delay constant ATEMPO. %)
SPKER := CASETTE ; (* choose speaker of casette recorder *)
ATEMPO := 4 ; (* fixed value for the delay constant *)
FN := '"§5:TEST.TEXT' ; (* text file from the #5: disk drive *)
SPEAK_FILE (FN) ; (* speak it *)

(* Digitize a set of several speaking words of an individual user *)

(* five times, similar or different set of words can be used in each ¥*)
(:}(* time but different value of DTEMPO delay constant 1s chosen. %)

(* *)

(* After each digitizing process, the digitized voice data in the *)

(* VOICEBUFF buffer is spoken (played back) five times, using a *)

(* different value of ATEMPO delay constant in each speaking process.¥*)

(* *)

(* In both processes, the choice of delay constants ATEMPO and %)

(* DTEMPO is done interactively. %)

CONFIRM := TRUE ; (* need confirmation before speaking *)

FOR I := 1 TO 5 DO

BEGIN

LISTEN_BUFFER ; (* listen, get the digitized voice data *)

FOR J := 1 TO 5 DO

SPEAK_BUFFER (CONFIRM) ; (* speak it, still using the %)
(* speaker of casette recorder *)
END ;
DO6_CLOSE (* ending, close all data files of the dictionary *)
END.
"

This is the example of utilizing MODULEl and MODULE2 units to
(* create, update and delete the dictionary in the storage diskette.

(* This example USES four units :

(* GLOBAL - must be used by all application host program.
(* MODULEl - this is the example program of using it.

(* MODULEZ2 - this is the example program of using it.

(* UTILITY - several procedures of this unit are called.

(* The compiler option $S++ is used in this example, it slows down the
(* speed of compilation but more memory space is available.

(* The following global variables of the GLOBAL unit are used :
(* VOLUMENAME, DTEMPO, ATEMPO, SPKER,

(* I1FNAME, IZ2FNAME, I3FNAME, B1FNAME, B2FNAME, B3FNAME,

(* IFILEl, BFILELl.

PROGRAM USER_MANUAL_MODULE1l_MODULE2 (INPUT, OUTPUT) ;

(X$S++%) (* compiler option %)

USES GLOBAL, UTILITY, MODULEl, MODULE2 ; (* declare the units
(* used in here.
° 'R CHOICE, CNT1l, CNT2 : INTEGER ;

BEGIN

(* ———

(* Build the dictionary in the default storage diskette STORE: .
(* ———

(* Part 1 - Build the index data files. Directory of all the words
(* and indices. The creation and closing of data files are
(* done in the following called procedure.

BLD_DPIRECTORY ;

(* Part 2 - Build the binary data files, voice input of all words.

(* The creation and closing of data files are done in the
(* following called procedure.

(* Use the default value 1 of the delay constant in the

(* voice digitizing process.

BLD_VOICE ;

(X mm e e e e e e e

(* Update on the dictionary. The default storage diskette STORE: has
(* all the entries (index and binary data files).

(* Insertion of entries.

*)
*)

*)
*)
*)

*)

*)

*)
*)
*)
*)
*)

*)
*)
*)
*)

*)

O ADD_XENTRIES

-

“~

ADD_BENTRIES

“e

CMB_XENTRIES

“e

CMB_BENTRIES ;
(* Deletion of
DO_DELETE ;

DO_CLNUP ;

(* Improve the

DTEMPO := 2 ;
DO6_RESET ;

IMPROVE_SOUND;

DO6_CLOSE ;

(* insertion of index data records *)

(* insertion of binary data records, x)

(* use default value 1 of delay constant*)

(* combine new & 0ld index data records *)

{* combine new & o0ld binary data records *)

entries. *)

(* speedy deletion *)

(* clean up the deleted records physically ¥*)
(* and permanently from the dictionary *)

sound of entries. %)

(* use new value of delay cocnstant *%)
(* open all data files *)

(* close all data files *)

(* Print the directory of the dictionary, content of all index data *)
~ (* records from the theree index data files. ’ *)

CHOICE := 4 ;

PRT_ENTRIES (CHOICE) ;

(& oo e e e *)
(* Deleting the whole dictionary in the default storage diskette *)
(* STORE: . *)
(K e oo e e)
CLR_DICTIONARY ;

(F m oo~ —————— e e *)
(* Modify the default values of some global variables. *)
(* *)
(* The change of values only applies to the current processing of *)
(* all procedures in the project. After the Apple II UCSD Pascal x)
(* system is rebooted, it is back to the default values. *)
(* ' *)

(* If change of default values must be used in every processing, it *)
(* 1s a good practlice to define a special procedure which USES GLOBAL*)
(* unit. All the change of default values is defined in this special *)
(* procedure, the main program of application host program must call *)
(* this special procedure in the beginning. - %)

__ *)

"§5:' ; (* treate any diskette in drive *)
(* #5: as the storage diskette. *)

3.21

ATEMPO := 5 ; (* change the delay constants for x)

DTEMPO := 5 ; (* analoging & digitizing processes. %) ‘

SPKER := CASETTE ; (* use the speaker of attached casette *)
(* recorder for voice output. *)

(* Change the filenames of all index and binary data files. *)

I1FNAME := CONCAT(VOLUMENAME, 'IDX1.DATA') ;

I2FNAME := CONCAT(VOLUMENAME, 'IDX2.DATA') ;

I3FNAME := CONCAT(VOLUMENAME, 'IDX3.DATA') ;

B1FNAME := CONCAT(VOLUMENAME, 'BIN1.DATA') ;

B2FNAME := CONCAT(VOLUMENAME, 'BIN2.DATA') ;

B3FNAME := CONCAT(VOLUMENAME, 'BIN3.DATA') ;

DO6_RESET ; (* open all data files in the new %)

(* storage diskette in drive #5: .%)

(* count the total # of index data *)
(* records in the new first index x)
(* data file. *)

CNT1_ELEM (IFILEl, CNT1)

e

(* count the total # of binary data *)
(* records in the new first binary . *)

CNT2_ELEM (BFILEl, CNT2)

s

(* data flle. *)
CHOICE := 3 ; (* print the content of all index %) .
PRT_ENTRIES (CHOICE) ; (* data records in the new third ¥%)
_ (* index data file. *)
DO6_CLOSE (* close all data files ¥*)

END.

USER MANUAL

< }.4 SYSTEM CONFIGURATION

3.4.1 FLOPPY DISKETTES SUPPLIED

Three floppy diskettes are supplied in this project. The volumename of
these three diskettes are AUDIO:, UNIT: and STORE:.

There are five files inside the AUDIO: diskette, they are :
(1) SYSTEM.APPLE, SYSTEM.PASCAL, SYSTEM.MISCINFO, SYSTEM.CHARSET - these
four system files are needed to boot the Apple UCSD Pascal System.
(2) SYSTEM.LIBRARY ~ it is the system library of this project.

There are seven library units inside the SYSTEM.LIBRARY library :

(1) PASCALIO - Apple Pascal System Linked Intrinsic routines for file I/O.

{2) GLOBAL - It is the interface part of this project. The user must
'USES' it iIn the host program in order to call any Pascal language
procedure of this project.

(3) DIGITAL - It contains the three Assembly language routines for the
tasks of voice digitizing and analoging. The routine names are DIGITAL,
ANALOGl1 and ANALOG2.

(4) UTILITY - code file of UTILITY unit.

(5) MODULEL code file of MODULEl unit.

(6) MODULE2 code file of MODULE2 unit.

(7) MODULE3 code file of MODULE3 unit.

ki

\wr Inside the UNIT: diskette, the code and text files of all five units can
be found. There are twelve files :
(1) DA.TEXT and DA.CODE ~ they are the files of DIGITAL, ANALOGl and

ANALOG2 external procedures.

GLOBAL.TEXT and GLOBAL.CODE -~ files of GLOBAL unit.

UTILITY.TEXT and UTILITY.CODE - files of UTILITY unit.

MODULEl.TEXT and MODULEl.CODE - files of MODULEl unit.

MODULE2.TEXT and MODULE2.CODE - files of MODULE2 unit.

MODULE3.TEXT and MODULE3.CODE - files of MODULE3 unit.

P P SR, gy P
AW N
T N Nt Nt Nt

The STORE: diskette has all the data files. There are three index data
files, three binary data files and one character string data file. In
other words, the STORE: diskette is the dictionary of this project. The
filenames are :

(1) INDEX1.DATA - it is the index data file for those words with starting
characters in the range of A,..,H.
(2) INDEX2.DATA - it is the index data file for those words with starting
characters in the range of I,..,P.
(3) INDEX3.DATA - it is the index data file for those words with starting
characters in the range of Q,..,Z.
(4) BINARY1.DATA - it contains the binary sound data of all the words in
INDEX1.DATA file.
(5) BINARY2.DATA - it contains the binary sound data of all the words in
INDEX2.DATA file.

O 3.23

USER MANUAL

(6) BINARY3.DATA - 1t contalns the blnary sound data of all the words in
INDEX3.DATA file.

(7) STRING.DATA - this is a data file of character string record for demon_

stration purpose, each string (sentence) has one or more
words. Some of the words in a string record might not
exist in the dictionary.

The supplied diskettes AUDIO: and STORE: must be available at the same
time. It is not advisable to do program development on the STORE: dis_

kette, disk space is available in the AUDIO: diskette for programming
purpose.

3.4.2 HARDWARE CONFIGURATION

This project is intended to run on the Apple II and Apple II Plus
computers with a CRT, although the development was carried out on an
Apple II Plus computer.

The following extra ltems are needed :
(1) Apple Pascal System
(2) Apple Language System with the required language card
(3) 48K or more bytes of installed RAM
(4) Two or more Apple Disk II disk drives

The previous 3.4.1 subsection states that the supplied diskettes
AUDIO: and STORE: must be available at the same time, therefore the
above requirement of two or more disk drives is justified.

A cassette recorder with RCA plugs connected to the Apple II compu_
ter's cassette input and output ports is optional. A connected cassette
recorder gives the following advantages :

(1) Input (listen) - digitizing input sound. This is better than the
direct microphone input. The volume and tone control of the ca_
sette recorder can be used to input the correct amplitude and con_
trol the frequency range. In this way, the given voice can be re_
produced with minimal noise. At the same time, the best of the re_
corded voices can be chosen and replayed repeatedly.

(2) Output (speak) - analoging binary sound data. Voice is recorded on
the cassete tape or output in the public address (PA) mode. The
cassette recorder tone control is used to filter out unwanted noise.

USER MANUAL

s~
Q.VS. LISTING OF WORDS IN THE SAMPLE DICTIONARY

There are 47 words in the sample dictionary. For the groups of words

which have the starting character in the sets of ('A',..,'H'],

['I',..,'P']

and ['Q',..,'2'], respectively, the total number of words are 15, 13 and
19. The following table is a listing of all the words with the units of

sound of ea

WORD

APRIL
AUGUST
DECEMBER
EIGHT
EIGHTEEN
EIGHTY
ELEVEN
FEBRUARY
FIFTEEN
FIFTY
FIVE
FORTY
FQUR

" JRTEEN
= NDRED

ch word.

UNITS OF
SOUND

NNONENDNDNNNWWNNDN S &N

UNITS OF

WORD

- - —— o ————

JANUARY
JULY
JUNE
MARCH
MAY
MILLION
MONDAY
NINE
NINETEEN
NINETY
NOVEMBER
OCTOBER
ONE

3.25

SOUND

HWWNNNERENWHEHENDNDNODW

WORD

- -

SATURDAY
SEPTEMBER
SEVEN
SEVENTEEN
SEVENTY
SIX
SIXTEEN
SIXTY
SUNDAY:~
TEN

THIRTEEN -

THIRTY
THOUSAND
THREE
THURSDAY
TUESDAY
TWELVE
TWENTY
TWO

UNITS OF
SOUND

FRON&EWNWNWHNDWWNWWNWW

3.6 DESCRIPTION AND LISTING OF PROCEDURES

g:;

Xk
(X
Ck
k
%k

This is the GLOBAL unit of Voice/D
sion on a Microcomputer project.

All the constants, variable types
in this unit and will be utilized

igital and Digital/Voice Conver_

and global variables are declared
by all the procedures of this

(% project. Any Pascal language host program which USES this unit can’
(¥ access and manipulate the content of this GLOBAL unit.
Ck
(¥ In the IMPLEMENTATION section of this unit, some global variables
(k¥ are initialized with defaul values.
(K
(¥ The compiler option $S++ is invoked here, more memory space is
(¥ available for the compiling process but the speed of compilation is
(kX decreased.
¥
(k$S++XK) (¥ compiler option ¥
UNIT GLOBAL ;
INTERFALCE
- INST
= MAXUNIT = S ;
MAXFILE = 3 ;
MAXCHAR = 20 ;
MAXWORD = 25 ;
UNITSIZE = 255 ;
TOTALWORD = 100 ;
BUFFUNIT = 20 ;
FILENMLEN = 40 ;
VOLNMLEN = 8 3
TYFE
WORDRANGE = 1..MAXWORD j;
TWORDRANGE = Q..TOTALWORD ;
FILERANGE = 1..MAXFILE 3;
UNITRANGE = 1..MAXUNIT ;
SPEAKEROF = (CASETTE,APPLE) ;
WORD = STRINGLMAXCHAR] ;
FILENAME = STRINSLCFILENMLEN] ;
.VOLNAME = STRINGLVOLNMLEN] ;
IDXELEM = PACKED RECORD
STRG : WORD ;
UNITT : UNITRANGE ;
IDXX 1 TWORDRANIGE ;
o STATUS : BOOLEAN

END ;
ELEM = PACKED RECZORD
WUNIT : UNITRANGE
WIDX : TWORDRANGE

¥
)
X
¥
*)
X
X
¥)
X
X
X
¥)
X)
*)
X)
L)

SOUND =

ELEMARRAY
INDEXFILE

WSET :

END ;
ARRAYLUNITRANSGE] OF STRINGCUNITSIZE] ;
SENTENCE = ARRAYLWORDRANGE] OF WORD ;

STRGFILE = FILE OF STRING

VAR

IFILE1,
BFILE1,
YFILE
VOICE
SPKER 3
DTEMPO,
11FNAME,
B1FNAME,
YFNAME :
SET1CHR,

SET1STCHR,
VOLUMENAME :
CHRS1, CHRSZ, CHRS3, CHRS4, CHRSALL :
VOICEBUFF : ARRAYC1..BUFFUNIT] OF STRINGLUNITSIZE] ;
LENWORDS

TOTWORDS

PROCEDURE DO_NONE

IFILE2,
BFILEZ,
STREFILE
SOUND ;

IFILEZ :
EFILES :

SPEAKEROF ;

ATEMPO :
I2FNAME,
B2FNAME,

INTEGER ;

IZFNAME
BSFNAME

FILENAME ;

SET2CHR,

SETCHRS
VOLNAME ;

SET3CHR,

14

INDEXFILE ;
BINARYFILE ;

FILERANGE

ARRAYLWORDRANGE] OF ELEM ;
FILE OF IDXELEM
BINARYFILE = FILE OF SOUND

H

FILENAME
FILENAME

SET4CHR : SET OF CHAR ;

: SET OF CHAR ;

FILENAME ;

ARFAYL1..BUFFUNITI OF UNITREANGE ;

: INTEGERE

?

t= 'STORE:’ ;

IMPLEMENTATION
PROCEDURE DO_NONE ;
BEGIN
END ;

BEGIN
VOLUMENAME
DTEMFO := 1 ;

ATEMPO := 4 ;
SFKER := APPLE ;
SETISTCHR := [’A’..72'1 ;
TTICHR := ['A’..'H']
ET2CHR = ['I'..'P’1
SETECHR := ['Q7..7271
:= [

SET4CHR

r1’..75%1

¥k dummy procedure declaration ¥X)

(¥ at least one procedure must reside X)
(¥ in this section, therefore the *2
(¥ dummy procedure is used here *)

(% storage diskette %)

(k delay constants %

(X use Apple II speaker ¥

(¥ define sets of

*)
(k¥ starting characters %)

2
o

-—'7
P

o~

i_;; define filenames of all index and binary data files. *)
- T1FNAME := CONCAT (VOLUMENAME, ' INDEX1.DATA’) ;
IZFNAME := CONCAT(VOLUMENAME, ' INDEXZ2.DATA’) ;
ISFNAME := CONCAT (VOLUMENAME,’ INDEXZ.DATA') ;
B1FNAME := CONCAT(VOLUMENAME,'BINARY1.DATA’) ;
BZFNAME := CONCAT(VOLUMENAME,'BINARYZ.DATA’) ;
B3FNAME := CONCZAT(VOLUMENAME, ?BINARYZ.DATA’) ;
YFNAME := CONCAT(VOLUMENAME, ' DEMO.DATA’)J ; (X demo data fileXk)
(X of senetences %)
CHRS1 := 'A..H’ ;
CHRS2Z := 'I..F? ;
CHRSS := "Q..Z' ;
CHRS4 = '1,.5" ;
CHRSALL := 'A..Z’'
END .
N

Q]
8
u

. -

(¥ This is the UTILITY unit of Voice/Digital and Digital/Voice Conver_ %)

(X sion on a Microcomputer project. ¥
Ck *)
(¥ This unit contains all the Fascal language utility procedures, each ¥X)
(kX utility procedure may be called by one or more procedures of %)
(X MODULE1l, MODULEZ and MODULEZ units.)
€k %)
(X Only the GLOBAL unit is used here. E S
k ®)
(X The compiler option $5++ is invoked here, more memdry space is X
(X available for the compiling process but the speed of compilation is %)
(¥ decreased. E 9]
% £
(RES++X) - (kX compiler option %)

UNIT UTILITY ;

INTERFACE
USES GLOBAL j;

‘¥ declare all the procedures of this module here ¥)

PROCEDURE DOE_RESET ;

FROCEDURE DO&_CLOSE ;

PROCEDURE DISKETTE_ONLINECIDX:INTESGER) ;

FROCEDURE CNT1_ELEM (VAR XFILE: INDEXFILE; VAR COUNT: INTESER) ;
PROCEDURE CNTZ_ELEM (VAR XFILE:BINARYFILE; VAR COUNT: INTEGER) ;

FROCEDURE BLDIDX (VAR XFILE:INDEXFILE; CHRS:FILENAME;
_ STRTIDX: INTESER) 3
FPROCEDURE GETVOICE (VAR XFILE:BINARYFILE; VAR YFILE: INDEXFILE;
CHRS:FILENAME) ;

PROCEDURE GET_WORDUNIT (VAR STRG:WORD; VAR UVAL:INTEGER) ;
PROCEDURE WORD_VERIFY (VAR WCHANGE, WFOUND:BOOLEAN; WRD:WORD;
VAR FNDREC:ELEM) ; _
PROCEDURE FILE_SORT (VAR X1FILE, X2FILE, YFILE:INDEXFILE) ;
IMPLEMENTATION

(k declare all the assembly language routines to be called here %)

PROCEDURE DISITAL (VAR BDATA:SOUND; BTEMFO, BIDX:INTEGER); EXTERNAL ;

C

ESETC(IFILEZ, I2FNAME} j;

(¥ This procedure opens all existing index data files and binary data
(% files. For each data file, an error message is displayed when there
(X ig error in the opening process.
(@
(¥ The process of opening a specified existing data file is accom_
(X plished by calling the build in RESET procedure.
(€
(¥ Input :
(X All index data files and binary data files.
Xk
¢k Output :
Ck Opened index data files and binary data files.
k
(X The following procedures are called :
(kx DISKETTE_ONLINE - UTILITY unit. It checks and requests that the
x storage diskette STORE: be on line. At the same time, the first
(@3 index data file is opened.
X RESET -~ build in file I/0 procedure. It opens the specified
¥ existing file.
%k
(¥ The following global variables from the SLOBAL unit are used in
(X this procedure :
Xk IORESULT - UCSD Pascal system variable. It is the error code of
[the latest I/0 operation, the value is zero for a
g;; success completion I/0 operation.
: IFILEZ - file window variable of the second index data file.
Ck IZFNAME - filename of the second index data file.
@ 3 IFILES - file window variable of the third index data file.
Xk ISFNAME — filename of the third index data file.
(X BFILEl - file window variable of the first binary data file.
Ck B1FNAME - filename of the first binary data file.
(k BFILEZ - file window variable of the second binary data file.
kx BZFNAME —~ filename of the second binary data file.
(X BFILEZ - file window variable of the third binary data file.
Xk B3FNAME —~ filename of the third binary data file.
(X == e
PROCEDURE DO&_RESET ;
VAR IDX : INTEGER j;
FN : FILENAME j
BEISIN
IDX := 3 ; (¥ verify that the storage diskette
DISKETTE_ONLINEC IDX > ; (¥ igs on line. The first index data
(¥ file is opened in the process.
(X$I-%)

+F C TORESULT <> O > THEN

WRITELN(? > ERRORE IN OFENING INDEX DATA FILE ', IZFNAME) ;

¥
¥
*)
)
*2
¥
X
¥
)
*)
*)
k9
X)
¥
X
¥
¥*
*)
X)
¥
¥
¥
*)
¥
X
¥
X3
¥
*)
¥
E)
O
¥
X))
)
*)
¥)

¥
E)
*)

(¥ open second index data file X%)

RESET(IFILES, I3FNAME) ; (¥ open third index data file %)

3

)

O

a]
0]
[e

& ¢ IORESULT <> O > THEN @
WRITELNC?’ > ERROR IN OFPENING INDEX DATA FILE ',ISFNAME) ;

FEESET(BFILEl, BI1FNAME) ; (X open first binary data file ¥
IF ¢ IORESULT <> O) THEN
WRITELNC’ > ERROR IN OPENINS INDEX DATA FILE ',BIiFNAME) ;

RESET(BFILEZ, B2FNAME) ; (X open second binary data file ¥X)
IF (IORESULT <> O > THEN
WRITELNC? > ERROR IN OPENING INDEX DATA FILE ’,BZFNAME) ;

RESET(BFILES, B3FNAME) ; (¥ open third binary data file X
IF ¢ IORESULT <> 0O) THEN

WRITELNC? > ERROR IN OFENINS INDEX DATA FILE ?,B3FNAME)
Ck$I+¥K)

END ;

(X
Ck
(X%
(&3
(X
¥
(X
(X
(X
(&3
(X
(%
(X
(X
Xk
(¥
(X
X
(X
(@
(¢4
(X
(&4

This procedure closes all existing opened index data files and
binary data files. The process of closing a specified data file is
accomplished by calling the build in CLOSE procedure.

Input :

All opened index data files and binary data files.
Qutput :

Closed index data files and binary data files.
The following procedure is called :

CLOSE - build in file I/0 procedure. It closes the specified
existing opened file.

The following global variables from the GLOBAL unit are used in
this procedure :

IFILELl - file window variable of the first index data file.
IFILEZ - file window variable of the second index data file.
IFILES - file window variable of the third index data file.

BFILEL - file window variable of the first Hﬁnary data file.
BFILE2 - file window variable of the second binary data file.
BFILEZ - file window variable of the third binary data file.

-
Qh,)CEDURE DO&_CLOSE ;

BEGIN

(Xs$

CLOSECIFILEL)
CLOSECIFILER)
CLOSE(CIFILES)

CLOSE(BFILE1)

c

I-%)

(¥ index data files processing %)

-y ws e

(¥ binary data files processing %)

“-s wa

LOSE(BFILE2)

CLOSE(BFILEZ)

(ks

END

I+%)

¥)
#®
*
¥
*)
X
¥
¥
¥
X)
X
*)
¥
X)
*¥)
*¥)
¥
*)
X))
X)
X3
x)
*x
¥*

o}

(0]
)

(*
(*
(*
(*
(*
(*
(*
(*x
(*
(*
(*
(*
(*
(*
(%
(*
(%
(
(%
(&
(*
(%
(%
(%

This procedure verifies that the storage diskette is on line. When
the verification fails, the user 1Is requested to put the diskette
on line. The verification is accomplished by creating or opening a
data file, either the first index or binary data file. The filename
is defined with the volumename, therefore, when failure occurs in

*)
*)
*)
*)
*)

the verification, it usually means that the diskette is not on line.*)

The processing of this procedure is only ended when the correct

storage diskette is on line. When the error and request message is

still displayed but the storage diskette has already been inserted

in the disk drive, check the following possibilities :

(1) The global variable VOLUMENAME has been altered and the related
storage diskette is not on line.

(2) Diskette I/0 errors

(3) Disk drive I/0 errors

Input :

IDX - parameter. It tells the procedure whether to use index or
binary data file in order to accomplish the obJjective. The
data file may be created or opened. The possible values of
this parameter are :

(1) Creates new first index data file
(2) Creates new first binary data flle
(3) Open existing first index data flle
(4) Open exlisting first binary data file

Output :
One of the following four possibilities :
(1) A new and empty first index data £file
(2) A new and empty first binary data flle
(3) An opened existing first index data file
(4) An opened existing first binary data file

The following procedures are called :
REWRITE - buflld in file I/0 procedure. It creates a new and empty
data file.
RESET - build in f£ile I/0 procedure. It opens an existing data
file.

The following global variables of the GLOBAL unit are used :

IORESULT - UCSD Pascal system variable. It has the result code of
the latest I/0 operation, the value is zero for a
success completion I/0 operation.

IFILEl - file window variable of the first index data file.

I1lFNAME - filename of the first index data file.

BFILEl ~ file window variable of the first binary data file.

B1FNAME - filename of the first binary data file.

VOLUMENAME - volume name of the storage diskette, the default

name is STORE:

PROCEDURE DISKETTE_ONLINE ;

VAR RTN : CHAR ;

*)
*)
*)
*)
*)
*)
*)

- 3.34

c:}

IOR ¢ INTEGER ;

BEGIN
(XSI-%) (* compiler option, disable I/O0 checking *)
(* initialize local copy ¥*)
IOR := 1 ; (* of IORESULT variable *x)
WHILE (IOR <> 0) DO (* end of loop processing when the sto_ *)
BEGIN {* rage diskette is on line. %)

CASE IDX OF

1: REWRITE(IFILEl,I1FNAME) (* create first index £ile ¥*)

“~e

2: REWRITE(BFILEl,BlFNAME) (* create first binary file *)

“~e

3: RESET(IFILEl,I1FNAME) ; (* open existing index £ile *)
4: RESET(BFILEl,B1lFNAME) (* open exlsting binary file ¥)
END ;
IOR := IORESULT ;
K.,, IF (IOR <> 0) THEN (* unsuccessful preceding create *)
BEGIN (* £file or open file operation %)
WRITELN ; WRITELN ;
WRITE('> PUT ',VOLUMENAME,' DISKETTE IN DRIVE#5 THEN RETURN KEY') ;
'READLN(RTN)
END
END
(XSI+%) ' (* compiler option, resumes I/0O checking *)
END ;

PROCEDURE CNT1_ELEM
JIN
COUNT

WHILE (NOT(EOF(XFILE))) DO
BEGIN

END

END

This procedure counts the total number of index data records in an
index data f£ile. The data file has been opened by the calling
procedure.

Input
XFILE - parameter,
data file.

Output
COUNT - parameter, total number of index data records.

The following procedures are called
EOF - build in £ile I/0 function.
‘the specified data file has been reached.
GET - build in f£ile I/O procedure. It advances the file window
variable to the next record and moves the content of this
record into the file buffer variable.

The following global variables of the GLOBAL unit are used

COUNT

GET(XFILE)

;

it is the file window variable of the index

It indicates whether the end of

(* loop, counts one record ¥*)
(* in each pass

COUNT + 1 (* increments the counter by 1 ¥*)

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

*)
*)

*)‘

(* initializes the counter parameter *)

(* moves to the next data record *)

3.35

3.36

(* This procedure counts the total number of binary data records in a *)

(* binary data file. The data file has been opened by the calling %)
(* procedure. %)
(* *)
(* Input : x)
(* XFILE - parameter, it is the file window variable of the binary %)
(* data file. %)
(% , x)
(* Output : %)
(* COUNT - parameter, total number of binary data records. *)
(* x)
(* The following procedures are called : %)
(* EOF - bulld in file I/0 function. It indicates whether the end of *)
(* the specified data f£ile has been reached. *)
(* GET - build in file I/0 procedure. It advances the f£ile window %)
(* variable to the next record and moves the content of this %)
(* record into the file buffer variable. *)
(* *)
(* The following global varlables of the GLOBAL unit are used : *)
(* None . ®)
(* --- t)

PROCEDURE CNT2_ELEM ;

C o
COUNT := 0 ; (* initializes the counter %)
WHILE (NOT(EOF(XFILE))) DO (* loop, counts one %)
BEGIN (* record in each pass ¥*)

COUNT := COUNT + 1 ; (* increments counter by 1 %)
GET(XFILE) (* moves to next data record ¥*)
END
END ;

0]
0]
~

\ *) e"

(¥ This procedure builds the content (all index data records) of an x)
(kX index data file. The data file has been created and opened by the *)
(¥ calling procedure. X3
(& XJ
(X Each index data record consists of : %)
(X word element — character string of a word %)
Xk total number of sound units of the word element *)
(€ 3 index element — index number (record number) of a digitized bina_ %)
Ck ry data record in the associated binary data file. X)
X status element - indicates whether this is an existing data re_ x)
Ck cord or deleted data record, respectively, with boolean TRUE)
k or FALSE value. x)
Ck ¥
(kX The word elements of all the index records in this data file must ¥)
(¥ use the specified set of starting letters. ¥
<k *)
(¥ Input : X)
Ck XFILE - parameter, file window variable of the index data file to %)
x be built which was just opened by the calling procedure. #¥)
Ck CHRS - parameter, message string of the currént set of starting %)
Ck letters. %)
k STRTIDX - starting index number for the first index record. X))
(X *)
(* Qutput : ¥

The content (all index records) of an index data file. *)
CK ¥
(¥ The following procedures are called : X)
€ 3 GET_WORDUNIT - UTILITY unit. It obtains a word and its total num_ ¥)
Ck ber of sound unit from the user interactively. X)
k LENGTH - build in string function. It returns the length of a cha_x%)
(X racter string. ' *)
Xk PUT - build in file I/0 procedure. It advances the file window va_¥x)
(&3 riable to the next record and moves the content of the file *)
% buffer variable into this record. A %)
(& 3 *)
(k¥ The following global variables of the GLOBAL unit are used : ¥
k¥ None *)
<k - : ¥

PROCEDURE BLDIDX

VAR IDX, UVAL, L : INTEGER ;
WRD : WORD ;

BEGIN

IDX := STRTIDX ;
WRITELN(?SECTION OF WORDS STARTING WITH ’,CHRS:8) ;

WRITELNC? ')
RITELN ;
GET_WORDUNIT (WRD, UVAL) ; (¥ get a word % its number X%

(¥ of sound units X))

L 2= LENGTH(WRD) ; (k get the length of input word string %)

L
WHILE ¢ L > ©) DO (f lowop, process one word in each pass, #)
. BEGIN (% end of loop when null word was input, ®)
{¥ null word has zerao length.)
XFILE™~.STRG 1= WRD j tk assign word to file buffer var ¥
XFILE~.UNITT := UVAL ; (¥ assign number of unit sound #)
XFILE™~. IDXX 2= IDX ; (¥ assign record number %)
XFILE~.STATUS := TRUE ; (¥ assign existing record status *)
PUTCXFILEY (k put all data into data record ¥
IDX := IDX + 1 ; (¥ next record/index number *)
GET_WORDUNIT(WRD,UVAL)> ; (¥ get next word etc)
L := LENSTH(WRD)
END
END ;
(M
-

0]
W

——— *) e"

(¥ This procedure builds the content (all binary data records) of an)
(¥ binary data file. The data file has been created and opened by the 3D
(% calling procedure. K
(3 k)
(% The associated index data file of the current binary data file is E-)
(¥ used because the sequence of binary records input must be similar %)
(k¥ with the sequence of related index records input. Before each voice #)
C¥ input, get the current index data record, displaying the word and ¥
(¥ its number of sound units. In this way, the user is reminded to ¥
Ck input the correct voice data for the current word.]
(&4 _ %)
(k Input @ E]
Ck YFILE - parameter, file window variable of the binary data file ED)
Ck to be built. It was just opened by the calling procedure. ®)
(¥ XFILE - parameter, file window variable of the index data file *2
(% which is associated with the current binary data file to be #)
Ck built. It was opened by the calling procedure. *3
¥k CHRS - parameter, message string of the current set of starting ¥
¥ letters.)
¥ *)
€k OQutput = ¥
CE The content (all binary data records) of a binary data file. e
CE kS
(¥ The following procedures are called : - k)
FUT —~ build in file I/0 procedure. It advances the file window va_%kD
C riable to the hext record and maves the content of the file *)
Ck buffer variable into this record. %)
X GET - build in file I/0 procedure. It advances the file window va_#)
X riable to the next record and moves the content of this.record %)
¢4 " into the file buffer variable. R R Rt S RO
(X EQF - build in file I/0 praocedure. It indicates whether the end *)
4 of a specified file has been reached.)
Cx DIGITAL — assembly language routine. It is the digitizing process #)
(1 4 : of the input voice. *)
Ck E
(k The following global variables of the GLOBAL unit are used :]
L VOICE = It is a buffer which contains the digitized binary data)
¥ nf the input voice, £
Ck DTEMFO - delay constant of the digitizing process of the input *)
¥k vialce. £
Ck - e e e e e e e e e e e e *2
FROZEDURE SETVOIZE ;
Vak EEYIN : CHAR ;
uval : INTEGER 3

BEGIN

RITELNC'SECTION OF WORDS STARTING WITH ! ,CHRES:6)

ARITELNC e e e e e e e e e Ty o

WRITELN 3

(¥ loop, processes one word in XD
WHILE ¢ NOTC(EOF(YFILE>? > DO (¥ each pass when index data ¥

3.0

o
(¥ still has data records. K
BEGIN
(¥ Get current index data record, display the word and its number %)
(¥ of sound unit. In this way, the user is reminded to input the *)
(£ proper vioice data for the current word. ¥3
UvAaL := YFILE™.UNITT ;
WRITELNC(?*WORD: !',YFILE™~.STRG,* UNIT: ’,UVAL)> ;
WRITELNC? > PRESS A KEY WHEN VOIZE INFUT IS READY?’) ;
' Cf digitizing input)
DISITAL(VOIZE, DTEMFO, UVAL> ; (¥ voice data)
XFILE™ := VOICE ; (¥ assign result of DIGITAL process #)
FUT(XFILE)Y ; tf to the current bimnary data record %
SETCYFILEDY ; (¥ get hext index record %)
READCEEYINJ ; ¢ for the key pressed in DIGITAL process %)
WRITELN
END ;
WRITELN 3
ﬂ,yRITELNC’} END OF SECTION ?,CHRS:E&)
b TITELN
END ;

(x This procedure prompts user to input a word and its total number of

(X sound units interactively. The starting letter of the input word

(X must be a member of the specified set of letters.

Ck

(X When no more word input is required, a null word is input by just

(¥ pressing the RETURN key. It this case, the returned number of sound

(X units parameter is assighned with zero value.

x

Ck Input :

K From the user interactively a word and its number of sound units.

Ck The starting letter of the input word must be in the specified

(X set of letters.

k

(X Output :

(X STR3 - parameter, it contains the word.

Xk UVAL - parameter, the total number of sound units of the word.

Xk

(k The following procedures are called :

K LENGTH - build in string function. It returns the lengthh of a

k character string. g

K ORD - build in string function. It returns the ASCII value of a

x character. :

k.

(X The following global variables of the GLOBAL unit are used :
SETCHRS - current set of starting letters for all the word ele_

N ments of current index data file.

Ck SET4CHR — set of digital characters for all the possible values
x of the number of sound unit.

Ck

PROCEDURE GET_WORDUNIT ;

VAR CHR:CHAR ;
ENDINPUT: BOOLEAN ;

BEGIN
ENDINPUT := FALSE 3
WRITELN ;
WRITELNC’ > PRESS RETURN KEY ONLY IF NO MORE WORD INPUT !7) ;
WRITELNC’ ——1) ;

(k¥ This is a loop to get a word from the user interactively. The

(¥ loop is only ended when a valid word or null word has been input.
REPEAT

WRITELN ;

WRITEC('WORD: 73 ;

READLN(STRGE) ; (k¥ get the input word ¥

IF (LENGTH(STRGY=0) (¥ end of loop when a null

THEN ENDINFUT := TEUE (¥ word has been input

¥
*)
X)
*)
¥
X3
*)

)
%)

*)
*)

S.41

L

C ELSE

BEGIN
IF ¢ STRGL11 IN SETCHRS) (k end of loop when the word %)
THEN ENDINPUT := TRUE (k has valid starting letter %)
ELSE
BESIN (¥ invalid word input X
WRITELNC? > WORD MUST START WITH CHARACTER ',
*IN DEFINED CHARACTER SET') 3
WRITELN(? PRESS RETURN KEY ONLY IF NO MORE 7,
'WORD INPUT?) ‘
END
END

UNTIL ENDINPUT ;

IF (LENGTH(STRG> > O) THEN (k no need to get the number ¥)
BEGIN (¥ of sound units when a nulli)
(¥ word has been input X)
WRITELN ;
WRITELNCTUNITS OF SOUND IS ',CHRS4, ONLY !'7) ;
WRITELNC(C? ')
WRITELN ;
REFEAT (¥ loop for number of sound units input*5
— (¥ until valid value has been input ¥)
(- WRITEC(’UNIT OF SOUND: ?) ;
READLN(CHR) ;
IF ¢ NOTC(CHR IN SET4CHR)) (kX input is not a va11d d1g1t X)
THEN NRITELN(’> UNIT aF SGUND MUST BE IN DEFINED‘RANGE
. 3 g, ®
UNTIL CHR IN SET4CHR : Y P
UVAL := ORD(CHR)> — ORDC(’0O’) (k% get value from digital char #)
END
ELSE UVAL = 0 ' (¥ null word has zero sound unit %)
END 3

X)
(% This procedure verifies that a given word exists in the dictionary, %)
(k¥ in other words, exists in any one of the three index data files of ¥)
(¥ the storage diskette. The existence of this word implies that its %)
(¥ binary data record also exists in the corresponding binary data. *)
(k¥ When a word entry had been deleted but the dictionary clean up pro_ %)
(¥ cedure has not been called to do perinodical maintainance on all the %)
(% data files, the index data record of this word still exists in the %)

(X index data file but the STATUS element has FALSE value. X)
&3 ¥
(k¥ After the existence of the input word has been confirmed, there are ¥
(X two possible continuing processings @)
(k¥ (1) Get all the required information in order to access the related %)
Ck binary data record. This is needed in ’speaking a word’. %)
(¥ (2) Update the number of sound units of the input word. This is XD
Ck needed when ’improve sound of the input word’ is being processedk)
(€ and the improve process changes the number of sound units. X)
(¥ The index/record number of the binary data record in the associated %)
(¥ binary data file is needed in both cases above. *)
(% ' X
(X The three index data file have been opened by the -a111ng procedure.X)
1§ 3) . %)
(kX Input : - X)
(X WCHANGE - parameter, it indicates whether the first or second *)
¥ purpose of this procedure must be processed. *)
WRED — parameter, it has the character string of the input word. X)
\ All index data files. *)
1 4 FNDREC - parameter, a structured variable where the WUNIT element ¥*)
(X is used to pass the new value of number of sound units. %>
(X (for the second case only) X)) -
k - *) FEe

¢k Output : X
Xk WFOUND - parameter, it indicates whether the input word exists in ¥%)

Ck the specified index data file. The value is TRUE when ¥)
Ck ' the word exists. *)
(X FNDREC ~ parameter, a structured variable Lontaxnzng the informa_ %)
X tion which is required to access the associated binary X7
Xk data record of the input word. (for first case only) X3
Ck *)
(% The following procedures are called : : %)
(k DOVERIFY — local procedure which implements the main processing b3
% of the calling procedure. %)
k EQF - build in file I/0 function, it indicates whether the end of X)
Xk a specified file has been reached. XD
(€ SEEK - build in file I/0, it allows randow access to records. The X}
(& file window variable is moved to a specified record in a file Xx)
(k with the record number provided. x)
(¥ GET - build in file I/0, it advances the file window variable to %)
(X the next record and moves the content of this record to the ¥
Ck buffer variable. X)
* PUT — build in file I/0, it advances the file window variable to X @
the next record and moves the content of the file buffer varia_ ¥
(K ble to this record. Xx)
k ‘ *)

(¢ The following global variables of the GLOBAL unit are used : ¥

€::¥ SETICHR - set of starting letters for the words elements of all X)
(x index data records of the first index data file. *)
k SET2CHR ~ set of starting letters for the words elements of all ¥)
(X index data records of the second index data file. *)
Ck SETSCHR ~ set of starting letters for the words elements of all X2
X index data records of the third index data file. *)
(¥ IFILEl - file window variable of the first index data file. *)
(X IFILE2 - file window variable of the second index data file. *)
X IFILEZ ~ file window variable of the third index data file. X
Xk *)
PROCEDURE WORD_VERIFY ;
VAR CHRSET, PSET, PIDX, PUNIT : INTEGER j
FIRSTCHR : CHAR ;
SWRED : WORD ;
CHANGE, FOUND, NOTIN : BOOLEAN ;
(&4 L)
(¥ For a specified and opened index data file, this local procedure X
(¥ searches through the data file to find out the index record which %)
(X has matched word element with the input parameter WSTRGE. All the ¥
(k information required by the WORD_VERIFY procedure are obtained X
(¥ and returned through PSET, PUNIT and PIDX variahles.)
COX %)
M‘"\x Input : %)
k WSTRE — parameter, a word which is used in the seaching of the %)
[specified index file. x)
Ck XFILE — parameter, file window variable of the first, second or X)
<k third index data file. The searching oégp%ecedlng para_:
Ck meter (a word) is done in the related index data file. ¥
(§ 3 X
(¥ OQutput : X
¥ PSET - variable, the possible values are 1, 2 or 3. It indicates¥)
[whether the first, second or third binary data file has X)
¥ the associated binary data record of the input word.)
Ck FUNIT — variable, it has the total number of sound units of the *)
Gk input word. It is also the size of the associated binary¥)
(X data record. %)
¥ FPIDX - variable, it contains the index number (record number) %)
(X _ of the associated binary data record in the related %)
¥ binary data file. X)
¥ %)
(¥ The following procedures are called : ¥
(% EOQOF, SEEK, FPUT, GET ¥
& 2 £)
(¥ The following global variables of the GLOBAL unit are used @ *)
(X% None %)
&3 ¥

e:DROCEDURE DOVERIFY (WSTRG:WORD; VAR XFILE: INDEXFILE) ;

VAR RECIDX : INTEGER ;

3.44

IF 3 O

EGIN

RECIDX = 0 ; (% index number to access the index data file,%)

(¥ to be used by the random access SEEK proc &)

WHILEC (NOTCNOTIN>> AND (NOTC(EQF(XFILE))>) AND (NOTC(FOUND>)> > DO
BEGIN

(¥ Found because matched word element and the word (index record)X®)
(X exists in the index data file. : %)

IF ¢ (WSTRE=XFILE”~.STRG> AND (XFILE~.STATUS) > THEN
BEBIN

FOUND := TRUE ;

PSET := CHRSET ; (k Value of CHRSET is from ¥
(k¥ the calling procedure %)

IF (CHANGE) THEN (¥ Second purpose X)

BEGIN (¥ Assign new number of sound ¥
XFILE®~.UNITT := PUNIT ;)k units into the index record¥)
SEEK (XFILE, RECIDX)> ; (¥ These 2 procedures make %)
FUT(XFILED (¥ the modification permanentik)

END ¥ in the index data file ¥

ELSE PUNIT := XFILE~.UNITT ; (X main purpose, get the #)

(¥ number of sound units #*)

PIDX := XFILE™.IDXX ¥ get index/record number ¥X)

END

ELSE IF ¢ WSTRG < XFILE~.STRG)
THEN NOTIN := TEUE ;

GET(XFILEY ; (k¥ get next index data record %)

REZIDX := REZIDX + 1 (¥ for random access of *)
: (¥ next index data record ¥)
END , ‘ -
END ;
"BEGIN
CHANGE := WCHANGE 3 (k% local copy %)

SWED := WED ; (¥ local copy ¥

FOUND := FALSE ;
NOTIN := FALSE ;

IF ¢ CHANGE > THEN (¥ second case, get the new ¥X)

FUNIT := FNDREC.WUNIT ; (X number of sound units *)
¥ from the first letter of the word, determine which one of the *)
(¥ three index data files that the word belongs to. ¥

FIRSTCHR := WRDLC11 ;

c:: F ¢ FIRSTCHR IN SETI1CHR
THEN CHRSET := 1

ELSE

THEN CHRSET := 2

ELSE IF (FIRSTCHR IN SETZCHR)

THEN CHRSET := 3
ELSE CHRSET := 4 ;

CASE CHRSET OF
1: BEGIN
DOVERIFY (SWRD,

SEEK(IFILEL, Q) ;
GETC(IFILEL)

END ;

BEGIN

(3]

DOVERIFY (SWRD,

SEEK(IFILEZ, Q) ;
SETC(IFILEZ)

- END

.
’

BEGIN

(O]

DOVERIFY (SWRD,

SEEKC(IFILEZ, 0) ;
GET(IFILES)

END ;

4: BESIN

IFILEL)

IFILEZ)

IFILES3)

IF ¢ FIRSTCHR IN SETZCHR)

-a

L 1Y

-

& <

@ 3
X
k
X

CE

€K
Ck

Ck

Ck

1st set of starting letters ¥
2nd set of starting letters k)
3rd set of starting letters %)
others %3
belong to first index file ¥
(¥ do the verification ¥
move the file window varia %)
back to the beginning of -
the index data file, for %)
processing of next word X2

second index data file X)

verification ¥)

1T R

move back to the beginningﬁ*)
of the index data file %)

third index data file X)
verification #)

(£ move to the beginning of %)
(k the index file k)

(k¥ input word does not have valid starting letter ¥

WRITEC’> 1ST CHARACTER OF WORD fS NOT IN THE DEFINED’) ;

WRITELNC(?
END
END ;
WFOUND := FOUND ;
FNDREC.WIDX := PIDX ;
FNDREC.WSET := PSET
IF ¢ NOT CHANGE) THEN
6:; FNDREC.WUNIT := PUNIT ;

‘AD;

SET OF CHARACTERS

17

(X
K
Ck
CK
& 4

Assignning information to ¥

the output parameters. ¥
The number of sound units ¥)
is only needed when pro_ ¥
cessing the first case. ¥)

- ¥

This procedure does merge sort on two index data files, the result %
(¥ is placed in a combined index data file. All three preceding data #)

(X files have been opened by the calling procedure. The key of the E'D)
(¥ merge sort process is the word elements of the index data records, %)
(X they must be in alphabetical ascending order.)
(X ' *2
(X Input :)
k X1FILE - parameter, file window variable of an index data file to ¥
(k be merge sorted, first entry in the parameter list. x)
Ck X2FILE - parameter, file window variable of an index data file to %)
kK be merge sorted, second entry in the parameter list. *)
&3 YFILE - parameter, file window variable of the combined index *)
Ck data file.])
Ck E D)
(k OQutput : X))
Ck content of the resulting combined index data file x)
& X
(k¥ The following procedures are called : X3
[ASSIGN_ELEM - local procedure, it assighs the content of a source %)
Ck index data record to a destination index data record. ¥
Ck EOF — build in file I/0 function, it indicates whether the end of %)
&4 a specified file has been reached. . X)
K . ’ K
(¥ The following global variables of the SLOBAL unit are used XD
r None ,)

- —————= - - —————————— ¥

PROCEDURE FILE_SORT ;

VAR WRD1, WRD2 : WORD ;

Ck
Ck
Ck
& S
4 3
3
Ck
(&
& 4
¥
Ck
k
ck
ck
¥k
K
&
Ck
. *
. C¥
(@
X

- K2
This loscal procedure copies current data record of the source in_ #)
dex data file to the current data record of the destination index ¥)
data file. Both data files have been opened by the calling proce_ ¥X)
dures, the file window variables point to the respective current X)

data records. : ¥)
, %)

Input : 4 ¥
SRCE - parameter, file window variable of either one of the two ¥
index data files to be merge sorted. It points to the X2
index data record which is going to be copied to an indexi)
reczord of the combined index file. b
DSTN - parameter, file window variable of the combined index k)
data file. X2
®)
Qutput : £)
an index data record of the combined index data file X)
. £
The following procedures are called : ¥)

GBET - build in file I/0, it advances the file window variable toX)
the next record and moves the content of this record to the *)
buffer variable. %)

()

~

< ;K FUT - build in file I/0, it advances the file window variable toxk)

(& the next record and moves the content of the file buffer va_ %)
(k riable to this record. ®)
Gk . %)
(¥ The following glombal variables of the SLOBAL unit are used : %)
Ck None %)
($3 - -)

PROCEDURE ASSIGN_ELEM(VAR SRCE, DSTN : INDEXFILE) ;

BEGIN
DSTN~.S8TRG := SRCE~.STRG ; (k¥ assign various data elements %)
DSTN”.UNITT := SRCE™~.UNITT ; (X of an index data record ¥
DSTN™. IDXX := SRCE~.IDXX ;
DSTN™.STATUS := SRCE~.STATUS ;
FUTCDSTN) 3 (X move to next data record of the X
(¥ destination index data file. *)
BET(SRCE) ¥ same for the source index file. X)
END ; §
PCSIN
K—i
(¥ Loop, each pass processes two data records, one record from each %)
(¥ index data file but only one data record will be chosen to build %)
(¥ the content of the combined index data file. This zombined file)
(% requires that the word elements of all its index data records in ¥
(¥ alphabetical ascending order. Therefore, the data record with the X)
(¥ smaller word element is chosen. ' XD
(k X)
(k End of loop processing occurs when anyone of the two index data k)
(¥ files has no more data records. ¥)
WHILE ¢ (NDTCEﬁFtXlFILE))) AND C(NOTC(EQF (XZFILE>>> 3 DQ
BESIN
WEDL := XIFILE™.STRGE ; (k% get the word elements of ¥
WEDZ := X2FILE™.STRS ; ¥ both current index records.®)
(¥ choose the data record %)
IF ¢ WRD1 <= WRD2) (X with smaller word elem ¥
THEN ASSIGN_ELEMCX1FILE, YFILE)D (¥ then assign it to the Xx)
ELSE ASSIGN_ELEM(X2FILE, YFILE) (fk combined index file. *)
END ;
(X When one of the two index data files has no more data records, x)
(¥ assign the remaining index data records of the other data file to %)
% the combined index data file. *)
' (k first index file of the parameter k)
IF ¢ EQOF(XIFILE)) (¥ list has no more data records %)
THEN |
WHILE (NOTCEDF(X2FILE))> > DO . (¥ assign remaining of the ¥)

ASSIGN_ELEM(XZFILE, YFILE) (¥ second index data file. ¥ a
- ELLSE
WHILE ¢ NOTC(EQF(X1FILEY>) DO (¥ assign remaining of the #
ASSIGN_ELEM(X1FILE, YFILE) ¢k first index data file)
END ;
BESIN
END.

This is the MODULELl unit of Voice/Digital and Digital/Voice Conver_ X

(¥ sion on a Microgcomputer project. %)
(& ¥
(¥ The Pascal language procedures here create, print and purge the)
(¥ dictionary. Ly
L4 S : 2
(X The SLOBAL and UTILITY units are used here. *)
(% *)
(X The compiler option $S++ is invoked here, more memory space is ES]
(X available for the compiling process but the speed is decreased. ¥)
3 E Y
(k$S++%K) Ck compiler option ¥X)

UNIT MODULEL 3

INTERFALCE
USES ELOBAL, UTILITY ; (¥ declare the units used heré kS
(¥ declare all the procedures of this module here ®)
_FROCEDURE BLD_DIRECTDEY ;) |

~~ ROZEDURE FRT_ENTRIES ¢ CHOIZE : INTEGER) ;

\e“ROCEDURE CLR_DICTIONARY ;
*ROCEDURE BLD_VOICE ;

IMPLEMENTATION

0}
h

CkK
X
(4
(44
Xk
Ck
¥k
(& 3
&3
(<
(X
(X
(¥
(€3
(¥
X
K
(44
Ck
T <
(¥

CF
Ck
Ck
CE

S

This procedure builds the directory of all index elements of the
dictionary, in other words, the three index data files of the whole
dictionary in the STORE: storage diskette are created.

The actual process of creating an index data file is accomplished
by zalling the BLDIDX procedure of UTILITY unit, providing the
index data file has been opened. The firgt letters of all the
word elements in an index data file belong to same set of alphabet

letters, each one of the three index data files is associated with
a distinct set of alphabet letters.
Input :
None
Output :
Three index data files of the dictionary
The following procedures are called @

DISKETTE_ONLINE — UTILITY unit, checks whether the STORE: dis_
kette is on line. Creates new and empty first index data file
when diskette on line status has been confirmed.

BLDIDX - UTILITY unit, builds the content of a given index data
file where the first letters of all the word elements belong
t2 a specific set of alphabet letters.

CLOSE - build in file I/0 procedure, closes a given file and
makes it permanent. ‘

REWRITE = build in file I/0 procedure, creates a new and empty
index data file with the given filename.

The following global variables of the GLOBAL unit are used

(9 4 SETICHR — set of the first letters of all the word elements of
L 4 the first index data file.

ck IFILEL - file window variable for the first index data file.
CE SETCHRES - contains the current set of first letter.

CE CHRS1 — display message for the SETICHR set of letters.

(¥ IZFNAME - filename of the second index data file.

B 3 SETZCHR — get of the first letters of all the word elements of
¥ the second index data file.)

(3 IFILE2 - file window variable for the second index data file.
L 4 CHRESZ - display message for the SETZCHR set of letters.

4 ISFNAME ~ filename of the third index data file.

Ck SETICHR - set of the first letters of all the waord elements of
(K the third index data file.

(¥ IFILES - file window variable for the third index data file.
%3 CHRS3 — display message for the SET3CHR set of letters.

(e e - -

FROCEDUREE BLD_DIRECTORY;

SHECKNUM, STRTIDX : INTESER ;

PAGE (OUTPUT) ; -

¥)
¥
*)

£
)
L)
)
X)
X)
X)
)
)
X)
X
X3
)
)
X2
XD
X
E)
X)
¥
¥
X)
kS
£
k)
%)
K]
%3
*)
%2
b)
X2
)
k9
kD)
E D
*)
X)
x)
)
*)

=

x)

3.91

-

#

& RITELNC’)
ARITELNC’ BUILD THE DIRECTORY OF INDEX RECORDS OF THE DICTIONARY ’)

- ‘as ‘es

WRITELNC(C? ')
WRITELN ;
(k First index data file with the words elements start with letters ¥
(k¥ in the range of A,..,H. New index file, therefore the index ®)
(k¥ number starts from zero. %)
CHECKNUM = 1 ; (X new first index data file indicator %)
DISKETTE_ONLINEC(CHECKNUM) ; (¥ create new and empty file ¥
SETCHRS := SETICHR j; (% first set of starting letters %)
STRTIDX = O ; (k first index number ¥*)
BLDIDXCIFILELl, CHRS1, STRTIDX) ; (k% create content of this file ¥
CLOSECIFILEL, LOCK) ; (kX close this index data file %)
(kX Second index data file with the words elements start with letters ¥
(¥ in the range of I,..,P. New index file, therefore the index %)
(¥ number starts from zero. %)
(¥ create new and empty file X)

REWRITECIFILEZ, IZFNAME) ;

SETCHRS := SETZCHR ;

STRTIDX := O ;

BLDIDX(IFILEZ, CHRS2, STRTIDX) ;
_CLOSEC(IFILEZ, LOCK) ;

(¥ with given filename %)

%"T* Third index data file with the wBrds elements start with letters ¥)
(¥ in the range of 0,..,Z. New index file, therefore the index ¥
(¥ number starts from zero. *)

REWRITECIFILES, IZFNAME) ;
SETCHRES := SETICHR ;

STRTIDX = O ;

BLDIDXCIFILEZ, CHRSZ, STRTIDX) ;
CLOSECIFILE3, LOCK)D

_END ;

O]

4

-

3.33

£ ¥)
X This is a local procedure. %)
(¥ It displays the content of an index data file in a table form ¥
(k after the related index data file has been opened and the file %)
(¥ window variable is provided. XD
(¥)
(kX Input : ¥
Ck XFILE - parameter, file window variable of an index data file *
Ck which has been opened by the calling procedure. %)
(k)
(¥ Qutput : X))
(X Content of index data files on the screen ' *)
X %)
(¥ The following procedure is called : %)
k GET — build in file I/0 procedure, advances the file window va_ %)
(&4 riable by one record, in other words, get next index record. %)
(¥ - ¥

FROCEDURE DO_FRINT(VAR XFILE: INDEXFILE) ;

BESIN _

WHILEC(NOT(EQOF (XFILEY)> > DO (¥ proceés one index record ¥X) %.

BEISIN (¥ in each pass of the loop %) =,
WRITEC(XFILE~.STRG: 20) ; (k display the ward %) @
WRITECXFILE~.UNITT:3) ; C¥ the total wunit of sound %)

WRITECXFILE™, IDXX:6) ; - (¥ the index number X)

IF ¢ XFILE~.STATUS > THEN (¥ the existence status ¥

WRITELNCY'T’ 262
ELSE
WRITELNC*F?::6) ;
GETCXFILE? ok get next index record X
END T
END 5

k - x)
(¥ This procedure displays the content of index data files in a table X
(k form. The actual process of displaying an index data file is S
(¥ carried out by calling the local procedure DO_FPRINT by providing LS
(% the file window variable, after the related index data file has beenX)
(¥ opened in this procedure.)
Ck . £
(k The value of parameter CHOIZCE determines the index file to be dis_ %)
(¥ played = x)

1 - first index data file STORE: INDEX1.DATA . ¥ Q

2 — gecond index data file STORE: INDEXZ.DATA X)

- S - third index data file STORE: INDEXZ3.DATA X)

¥ 4

- . all three index data files . *)

(&3 ¥

-
k‘“ The display table consists of four columns : ®)
€1) the word :)
(¥ (2) total number of sound unit of this word)
(k¥ (32) index of this word element in its index data file %)
(k% (4) status of this word element, letter T or F, respectively, re_ £
(¥ presenting whether this word element exists in or has been de_ %)
k leted from the dictionary *)
Ck 9]
(k¥ Input : XD
(k CHOICE - parameter ®)
(XK ¥
(¥ OQutput : ‘ X))
Ck Content of index data files on the screen ¥)
¢ 3 ' *3
(¥ The following procedures are called : %)
K DISKETTE_ONLINE - UTILITY unit, checks whether the STORE: dis_ ¥
Xk kette is on line. Open the existing first index data file when %)
K diskette on line status has been confirmed. X)
Ck DO_PRINT - local procedure, it carries out the actual processing %)
(% of displaying the content of an index data file when the file X
3 has been =pened and the file window variable i's provided. %K)

Ck RESET - build in file I/0 procedure, open an existing index data E3

(5 4 file. : X
(k CLOSE - build in file I/0 procedure, closes a given file. X
- . ¥
- The following global variables of the GLOBAL unit are used : X
I1IFNAME - filename 2f the first index data file. %)
(XK IFILElL - file window variable for the first irndex data file. ES]
Ck IZFNAME -~ filename of the second index data file. K
(K IFILEZ - file window variable for the second index data file.)
(¥ ISFNAME = filename of the third index data file. ¥2
[3 IFILEZ - file window variable for the third index data file.)
(f —mmm—m e e - - e e e — - -)
FPROCEDURE PRT_ENTRIES ;
VAR CZHECE : INTEGER ;
BEGIN
FPAGECQUTFUT)Y 3
WRITELN (7 kkskkiokdokkkk iRtk aiigRiikikr)
WRITELNC(’ USE CRTL-S TO STOF QUTFUT STREAM’) ;
WRITELNC' ANOTHER CRTL-S TO RESUME FRINTING?) ;
WRITELN C? kKRR KRRE R KRR R KRR R KRR R)
WRITELN;
WRITELNC? VOIZE?) ; ;
WRITELNC? WORD UNIT INDEX STATUS’) ;
WRITELNC(? ———— | e e ————— 'y ;
o/ HECH, 2= 32 ; (¥ existing first index data file indicator %)
DISKETTE_ONLINEC CHECK 3 ; (¥ check STORE: diskette on line by ¥
‘ Ck opening first index data file £ 9]

CLOSE ¢ IFILELl » ; (k close it %

(O]

©
o
a

%) Ck¥ compiler option, no I/0 checking %)

(¥ First index data file with the words elements start with letters &)

(k in the range of A,..,H. 2
IF ¢ CHOICE = 1 OR CHOICE = ¢ > THEN (k it is the choice or %)
BESIN (X display all three E
RESETC(IFILELl, IiFNAME) ; (¥ open the existing index file %)
IF ¢ IORESULT = O) THEN (kK process only after the file %)
DO_PRINTC(IFILE1) (k¥ is opened successfully £
ELSE
WRITELNC(? > ERROR IN OFENING FIRST INDEX DATA FILE 7) ;
CLOSECIFILEL) . (¥ close the file %)
END ;

(¥ Second index data file with the words elements start with letters %)
(k in the range of I,..,P. ¥)

IF ¢ CHOICE = 2 OR CHOICE = %) THEN -
BEIGIN

RESETC(IFILEZ, IZFNAME) ;

IF ¢ IORESULT = O) THEN
DO_FRINTCIFILEZ)
ELSE :
WRITELNC? > ERROR IN OFPENING SECOND INDEX DATA FILE *) ;

CLOSECIFILEZ)

END 3

(% Third index data file with the words elements start with letters X)
(k in the range of 8,..,Z. %)

IF ¢ CHOICE = 3 OR CHOICE = 4) THEN
BESIN

RESET (IFILEZ, SFNAME) ;

IF (IORESULT = 0) THEN
DO_PRINTC(IFILES)

ELSE
WRITELNC’ > ERROR IN OFENING THIRD INDEX DATA FILE ') ;

’

CLOSECIFILES)

‘ND

CESI+E) (¥ compiler option, resume I/0 checking %)

B}
®

(X
(XK
(@3
(€3
k¥
Xk
X
Xk
Xk
(X
(€ 3
(@S
Ck
I
k
(&3
¥
(&4
[4
(o <
¥

(¥

&
(&3
Ck
(¥
X
Ck
Ck

This procedure deletes the dictionary, in other words, all the

index data files and binary data files are deleted permanently from

the STORE: storage diskette.

Input :
None

Qutput :
None

The following procedures are called :

DISKETTE_ONLINE -~ UTILITY unit, checks whether the STORE: dis_
_kette is on line. Open the existing first index data file when

its on line status has been confirmed.

CLOSE - build in file I/0 procedure, closes a given file and then

deletes it permanently from the diskette.

RESET - build in file I/0 procedure, opens an existing file with

the given filename.

The following global variables of the BLOBAL unit are used :

VOLUMENAME - contains the storage digskette name which is STORE:

IIFNAME - filename of the first index data file.
IFILE1l = file window variable for the first index data file.
IZFNAME - filename of the second index data file.

IFILE2 — file window variable for the second index data file.

IZFNAME - filename of the third index data file.
IFILES - file window variable for the third index data file.
BiFNAME - filename of the first binary data file.

BFILElL - file window variable for the first binary data file.

2FNAME - filename of the second binary data file.

BFILEZ - file window variable for the second binary data file.

SFNAME - filename of the third binary data file.

BFILEZ - file window variable for the third binary data file.

(K ——————m ' - -

PROCEDURE CLR_DICTIONARY j

VAR IDX : INTERER ;

YN : CHAR ;

BEGIN

FPAGECOUTPUT) ;
WRITELNC’ > CLEAR ALL DATAFILES OF DICTIONARY ON DISKETTE ’, VOLUMENAME)
WRITELN ;

WRITEC(? ALL CLEAR TO 50 2 CY/N] 7)) ;
READLNCYN) ;

*)
*)
¥
*)
*)
)
¥)
%)
)
£
x)
)
X
k)
)
®)
£)
ES)
KD
X))
£

¥

X2
)
X)
£
)
*)
X3
X
)
)
*)
*)
*2

WRITELN ;
F ¢ YN ="'Y’) THEN
BESIN
IDX == 3 ; (¥ existing first index data file indicator ¥

DISKETTE_ONLINECIDX) ;

(¥ check % request STORE: diskette ¥

6]

otm—,

‘v,

CLOSECIFILEL, PURGE) ;

CRST—%)

(¥ second index data file X)

RESET(IFILE2, IZFNAME) ;

IF ¢ IORESULT = O) THEN
CLOSECIFILEZ, PURGE) ;

(X third index data file Xx)

RESET(IFILEZ, I3FNAME) ;

IF ¢ IORESULT = O) THEN
CLOSE(IFILEZ, PURGE) ;

(¥ first binary data file %)

RESET(BFILE1, BIFNAME) ;

IF (IORESULT = O) THEN
CLAOSE(BFILELl, PURGE} ;

(¥ second binary data file #2

(¥ diskette on line, open the file ®)
(k zlose and delete the file %)

(X compiler option, no 1/0 checking %)

(X open the file X
(k delete it permanently %)
(X when it exists X)

ey e

[T ¢
.

|-
e RESET(BFILEZ, BIFNAME) ;
IF ¢ IORESULT = O) THEN
CLOSE(BFILEZ, FPURGE) ;
(¥ third binary data file #%?
RESET¢ BFILEZ, BIFNAME) ;
IF (IORESULT = O) THEN
CLOSECBFILEZ, FURBE) ;
CkpI+k) (¥ compiler option, resumes 1/0 checking ¥
CWRITELNC’> ALL DATA FILES OF DICTIONARY HAS BEEN ZLEARED’)
END
ELSE WRITELNC’> OPERATION IS ABORTED !'!!?")
END ;

e:}

14

3

4

%)

. This procedure builds all binary data elements of the dictionary, %)
(k in other words, the three binary data files of the whole dictionary %)
(% in the STORE: storage diskette are created. ®)
(K £

(K The actual process of creating the content of an binary data file *5
(k¥ is accomplished by calling the GETVOICE procedure of UTILITY unit, #*)
Ck providing the binary data file and the related index data file have %)

(¥ been opened.)
(&3 3
(k¥ The first letters of all the words which associate with a binary X)
(k data file belong to the same set of alphabet letters, each one of %)
(k the three binary data files is associated with a distinct set of ¥
(% alphabet letters. X
Ck X))
(X Input : X)
Ck None %)
Ck ¥
(X Output : : ' %
& 2 Three binary data files of the dictionary K
(K ' X
(¥ The following procedures are called ¢ . K
Ck DISKETTE_ONLINE - UTILITY unit, checks whether the STORE: dis_ X)
% kette is on line. Creates new and empty first binary data file %)
! : when its on line status has been confirmed. k]
’ GETVOICE -~ UTILITY unit, builds the content of a given binary datak)
file where the first letters of all the word elements belong ¥
T to a specific set of alphabet letters. £ 9]
Ck CLOSE — build in file I/0 procedure, closes a given file and k)
(K makes it permanent. %)
Ck REWRITE - build in file I/0 procedure, creates a hew and empty E
Ck binary data file with the given filename. .)
i FEESET — build in file I/0 procedure, opens an existing index data ¥
C file. : %)
Ck v : *)
(¥ The following global variables of the GLOBAL unit are used @ *)
(% BFILEL - file window variable for the first binary data file. ¥
(XK ILIFNAME - filename of the first index data file. ®)
Ck IFILEl - file window variable for the first index data file. X))
& SETICHR - set of the first letters of all the word elements of *)
(K the first index data file. *)
(¥ SETCHRS — contains the current set of first letters. . %)
C CHRES1 - display message for the SETICHR set of letters. ¥
Ck BZFNAME — filename of the second binary data file. ¥)
(XK BFILEZ - file window variable for the second binary data file. %)
Ck IZFNAME - filename of the second index data file.)
Ck IFILEZ - file window variable for the sezond index data file. ¥
(¥ SETZCHRE - set of the first letters of all the word elements of ¥)
CE the second index data file. 2
re CHRS2 — display message for the SET2CHR set of letters. k) @
B3FNAME - filename of the third binary data file, X
BFILES - file window variable for the third binary data file. E)
o IZFNAME - filename of the third index data file. *)
Ck IFILES - file window variable for the third index data file. k9

Ck SET3ZHR - set of the first letters of all the word elements of *x)

3.80

the third index data file. 'S
CHRS3 - display message for the SETSCHR set of letters. Y
Cx = - ——-— %)

PROCEDURE BLD_VOICE ;

VAR CHECKNUM : INTEGER ;
KEYIN : CHAR ;

BEGIN

PAGE (QUTPUT)
EOTOXY (O, S
WRITELNC’ 'y
WRITELNC’ BUILD THE VOICE FART OF DICTIONARY’) ;
WRITELNC’ VOICE INPUT DEVICE CONNECTED 27) ;
WRITELN(’ STORAGE DISKETTE ON LINE 7’) ;
WRITELN(’ FRESS A KEY WHEN READY TO 3507) ;
WRITELN (7 = o e e e e e e e e e e e 'y
WRITELN ;

READLNC(KEYIN) ;

-e ws

¢k first binary data file which associates with the first index data- %)
L file having starting letters of all word elements in the range of %)
:# A,--’H- :k)

CHECENUM == 2 3 ¥k new first binary data file indicator %)
DISKETTE_ONLINE(CHECENUM)> ; (¥ check % request STORE: diskette on ¥
' (% line, create the new binary data fileXk)

RESETC(IFILELl, I1FNAME} ; (¥ open existing first index data file %)
SETCHRS = SETICHE ; (¥ first set of starting letters ¥
GETVOICEC(BFILEL, IFILE1, CHRS1) ; (k% create content of this %)
: (¥ new binary data file ¥)
CLOSECBFILEL, LOCK) ; (k make this new file permanent & close it *)
CLOSECIFILEL) j; (¥ close the index data file #)
(¥ gecond binary data file which asséciates with the second index kS
(¥ data file having starting letters aof all word elements in the £
¥ range of I,..,P. ¥
REWRITEC(BFILEZ2, B2FNAME) ; (% create new second binary data file %)

RESET(IFILEZ, IZFNAME) ;

SETCHRS := SETZ2CHR ;
GETVOICE(BFILEZ, IFILEZ, CHRSZ) ;

CLOSE(BFILEZ, LOCK) ;
@CLUSEC IFILEZ) ;

‘C* third binary data file which associates with the third index data %)
Lk file having starting letters of all word elements in the range of %)
(¥ Ryea,Z. ‘)

<EWRITEC(BFILE2, B3FNAME) ;
RESETCIFILEZ, I3FNAME) ;

SETCHRS := SET3CHR ;
GETVOICE(BFILE3, IFILE3, CHRS3) ;

CLOSE(BFILEZ, LOCK> ;
CLOSECIFILE3) ;

WRITELN ;
WRITELNC(’ > END OF THE VOICE INFPUT PART?) ;
WRITELNC? - ')
WRITELN

END ;

(k The main program is empty. No need to define any process Here.

Rd K4

BESIN

END .

O]
m

£

/ y -= ¥
c:; This is the MODULEZ2 unit of Voice/Digital and Digital/Voice Conver_ %)
(¥ sion on a Microcomputer project. %)
Ck e : %)
(k% The Pascal language procedures here do update, insertion and dele_ %
(¥ tion processes on the dictionary. *)
Ck ¥
(k The GLOBAL and UTILITY units are used and the assembly language *)
(¥ routine DIGITAL is called here.)
Ck %)

(¥ The default volumename of the storage diskette is STORE: and it is %)
(k the value of VOLUMENAME global variable. When user wants an alter_ X
(¥ native storage diskette name, it should be assigned to VOLUMENAME ¥

(% variable in the initialization section of the application program)
(¥ and the GLOBAL unit must be USED by the program.)
(%)
(¥ The compiler option $S5++ is invoked here, more memory space is ¥
(¥ available for the compiling process but the speed is decreased. *)
(@3 —-——— - £
(k$S++K) (k compiler option %)

UNIT MODULEZ ;

A= TERFACE
N '
USES GLOBAL, UTILITY ; (k declare the units used %)

(k declare all the procedures of this module her= ¥X)

FROCEDURE ADD_XENTRIES
FROCEDURE ADD_BENTRIES
FROCEDURE CMB_XENTRIES
FROCEDURE CMB_BENTRIES
FPROCEDURE DO_DELETE j;

FROCEDURE DO_LCLNUP ;

FPROCEDURE IMFPROVE_SOUND ;

e WE w3 wWs

IMPLEMENTATION
(k% declare the assembly language routine to be called here X)

FROCEDURE DISITAL (VAR BDATA:SOUND; DTEMPO,DUNIT: INTEGER) ; EXTERNAL ;

C

3
r

Ck
(K
Ck
Ck
(x
Ck
Ck
Ck
Ck
(K
Ck
Ck
Ck
ok
ok
K
K
(4 4
Ck
Cx
ok
Ck

LE
Ck
k
Ck
(kK
(= 4
CE
(¥
i
%k
Ck
Ck
Ck
1§ 4
Ck
Ck
K
(k
Ck
L 3
(3
k

CE

1§ 3

%)
This procedure inserts new index data records to the index data %3
files. For each index file, the nhew index data records will have b))

index numbers in a sequence starting with the total number of data %)
record in the associated binary data file. The first data record of %)

the binary file is associated with zero index number.)
E)

For each index data file, a temporary index file is created to storek)
the new index data records. The word elements of these new index)
records must be input in alphabetical ascending order. The actual %)
process of creating the content of a temporary index file with new ¥
index records is accomplished by calling the BLDIDX procedure of ®)
UTILITY unit. *)
*

Input : *)
None x)
*)

Qutput : %)
Three temporay index data files called X1.DATA, X2.DATA and X
X3.DATA %)

. . , X)

The following procedures are called :) ¥
CNT2_ELEM = UTILITY unit, it counts the total number of digitizedi¥)
birnary data records in a binary data file providing the data “X)
file has been opened by the calling procedure and the file win_ ¥

dow variable is given. X)
BLDIDX — UTILITY unit, builds the content of a given index data ¥
file providing the file has been opened by the calling procedu_ ¥)

re and the file window variable is given. ¥
DISKETTE_ONLINE - UTILITY unit, checks and regquests that the X)
STORE: diskette be on line. . %)
CLOSE - build in file I/0 procedure, closes a file. *)
RESET - build in file I/0 procedure, opens an existing binary R
data file. . .)
FEWRITE ~ build in file I/0 procedure, creates a new and empty X
temporary index data file. } ' *®)
CONCAT - build in string function, concatenates two or more cha_ %)
racter strings. _ X)

*)

The following global variables of the GLOBAL unit are used 3 ¥
IFILE1 -~ file window variable for the first index data file. It k)
is also used for the three temporary index data files, one at a ¥
time. ¥
B1FNAME - filename of the first binary data file. - K
BFILEl - file window variable for the first binary data file. X))
SETCHRS ~ contain the current set of starting letters. ¥
SETICHR - set of the starting letters of all the words elements k3
of the first index data file. ¥
CHRS1 - display message string for the SETICHR set of letters. E 9]
BZFNAME - filename of the second binary data file. X)
BFILEZ2 - file window variable for the second binary data file. ¥
SET2CHR - set of the starting letters of all the words elements X)
of the second index data file. £
CHRS2 - display megssage string for the SET2CHR set of letters. ¥x)
SFNAME - filename of the third binary.data file. E 9]

C

BFILE3 - file window variable for the third binary data file.)
SETECHR — set of the starting letters of all the words elements %
(k of the third index data file. $)
(kK CHRS2 - display message string for the SET3CHR set of letters.)
(¢ VOLUMENAME - contains the storage diskette name STORE: ¥
Ck)
(* - - ———)
PROCEDURE ADD_XENTRIES ;
VAR CHECKNUM, STRTIDX : INTEGER ;
BEGIN
PAGE(OUTPUT? ;
WRITELN(? —— =) ;
WRITELN(®* INDEX DATA FILES INSERTION ') ;
WRITELN(? =——-— -=?3 3
WRITELN ;
(¥ Check and request the STORE: storage diskette be on line by oben_'%)
(¥ ing the existing first index data file. . -%)
CHECKNUM == 3 ; e existing first index file indicator-X)
<:;ISKETTE_ONLINECDHECHNUM) ; (¥ open the index data file ¥%)
~LOSEC IFILEL) ; (¥ close it %)
(£ insert new index data records to the first index data file, in *)
(¥ other words, create the associated temporay index data file. The X))
(¥ ward elements of the new index records have starting letters in *)
(X the range of A,..,H. £)
FESET(BFILEl,B1FNAME) ; (k open the existing.first binary file %)
CNT2_ELEMC(BFILELl, STRTIDX)> ; (X counts the data records to get)
v, (¥ the new records?! 1st index numberk)
CLOSECBFILEL) ; _ (k close the binary file %)

&/ LOSE (BFILE2) ;

FEWRITECIFILELl, CONCAT (VOLUMENAME, ’X1.DATA’)) ; (¥ create new tempo_ X
tf rary index file - #%)

SETCHRS := SETICHR ; (k first set of starting letters %)
BLDIDXCIFILEl1, CHRE1, STRTIDX) ; (k build the content %)

CLOSECIFILEL, LOCK)Y 3 (¥ close the new index file ¥
(X insert new index data records to the second index data file, in £

(¥ other words, create the associated temporay index data file. The #)
(% word elements of the new index records have starting letters in x)
(¥ the range of I,..,PFP. ¥

RESET(BFILE2, BZFNAME) ;
CNTZ2_ELEM(BFILEZ, STRTIDX) ;

REWRITECIFILEZ2, CONCAT (VOLUMENAME, ' X2.DATA')) ;
SETCHRS := SETZ2CHR ; (¥ second set of starting letters %)
BLDIDX(IFILEZ, CHRS2, STRTIDX) ; :

JLOSE(IFILEZ, LOCK) ;

(¥ insert new index data records to the third index data file, in
(¥ other words, create the associated temporay index data file. The
(k word elements of the new index records have starting letters in

(X the range of @,..,2Z.

RESET(BFILE3, B3IFNAME) ;
CNT2_ELEM(BFILE3, STRTIDX) ;
CLOSE(BFILE3) ;

REWRITE(IFILEZ, CONCAT (VOLUMENAME, ’ X2.DATA’)) ;
SETCHRS := SET3CHR ;

BLDIDXCIFILE3, CHRS3, STRTIDX) ;
CLOSECIFILEZ, LOCK)

END ;

¥
¥
¥
*)

(X third set of starting letters %)

2
o

&

n

¢k
k
(K
Ck
K
(k
Ck
Ck
(X
¥
Ck
(k¥
Ck
x
Ck
& 4
¥
¢k

k.

(3
kK
Ck

st

(4 4
(¥
Ck
¥
(4
Ck
(4
[3
& 4
¥
&
CE
Cx
K
(¥
(¥
Cf
(€3
(&3
Ck
(S
(¥
4 4

T S S T e T T TS S e s e T T T - X

This procedure inserts new binary data records to the binary data %)
files. For each binary file, the new binary data records will be X)
inserted starting at the end of the binary data file. The input of %)
each digitized binary data record must be in the same sequence num_ %)

ber as its associated index data record. 9]

E)
For each binary data file, a temporary binary file is created to)
store the new binary data records. The actual process of creating X)

the content of a temporary binary data file with new binary records %)
is aczomplished by calling the SGETVOICE procedure of UTILITY unit. %)

B3]

Input : :))
None 9]
¥

Output : %)
Three temporay binary data files called B1.DATA, BZ.DATA and ¥)
B3.DATA ¥

E)

The following procedures are called @ X))

FETVOICE - UTILITY unit, builds the content of a given binary datakx)
file providing the file has been opened by the calling procedu_.)

re and the file window variable is given. = %)
DISKETTE_ONLIME - UTILITY unit, checks and requests that the x
STORE: diskette be on line.)
FEWRITE ~ build in file I/0 procedure, creates a new and empty £
temporary binary data file. ‘)
RESET — build in file I/0 procedure, opens an existing temporary X))
index data file. E)
CLOSE - build in file I/0 procedure, closes a file. £
CONCAT - build in string function, concatenatss two or more cha_ XD
racter strings. %)

E Y

The following global variables of the GLOBAL unit are used : ¥
IFILEL - file window variable for the first index data file. It *)
is also used for the first temporary index data file. ¥)
BFILEl - file window variable for the first temporary binary file.X)
SETCHRS - contain the current set of gtarting letters. X
SETICHRE - set of the starting letters of all the words elements ¥)
of the associated first index data file. X7
CHES1 - display message string for the SETICHR set of letters. ¥

IFILEZ - file window variable for the second temporary index file.¥k)
BFILEZ = file window variable for the second temporary binary filek)
SETZ2CHR - set of the starting letters of all the words elements E9)

of the associated second index data file. £)
CHRES2Z -~ display message string for the SET2CHR set of letters. - K)
IFILES - file window variable for the third temporary index file. ¥
BFILEZ - file window variable for the third temporary binary file.¥)
SETECHR - set of the starting letters of all the words elements X2

of the associated third index data file. £
CHRSZ ~ display message string for the SETICHR set of letters. ¥
VOLUMENAME - contains the storage diskette name STORE: *)
------- - ————— —— — k)

PROCEDURE ADD_BENTRIES ;

3.€6

< CHECKNUM, STRTIDX : INTEGER j; *
BEGIN)

PASE CQUTPUT) ; ,
WRITELNC(? 'y 3
WRITELN(®” APPENDING NEW BINARY DATA RECORDS INTO BINARY DATA FILES ?) ;
WRITELNC(? 'y ;
WRITELN ; S
(k Check and request the STORE: storage diskette be on line by open_ %)
(X ing the existing first index data file. %)
CHECKNUM 2= 3 ; (%X existing first index file indicator %)

DISKETTE_ONLINE(CHECKNUM) ; (k open the index data file %)
CLOse(IFILEL) ; (¥ close it X)

(¥ Append new binary data records to the first binary data file, in %)
(¥ other words, create the associated temporay binary data file. *)

(¥ create new temporary binary f11e-*)
REWRITE(BFILELl, CONCAT (VOLUMENAME, 'B1.DATA’)) ; =

‘ (k open existing temporary index file x)
ESET(IFILELl, CONCAT(VOLUMENAME,’X1.DATA’)) ;

JETCHRS := SETICHR ;

GETVOICE(BFILELl, IFILEi, CHRS1)> ; (¥ create content of £
' (X temporary binary file ¥

CLOSE(BFILEL, LOCK) ; (X close the temporary binary file ¥

CLOSECIFILEL) (¥ close the temporary index file ¥

Ck Append new binary data records to the second binary data file, in %)
¥k other words, create the associated temporay binary data file.)

REWRITE(BFILEZ, CONCAT (VOLUMENAME, ’ B2.DATA’)) ;
RESET(IFILE2, CONCAT(VOLUMENAME,'®XZ2.DATA’)) ;

SETCHRS 1= SET2CHR ;
GETVOICECBFILE2, IFILE2, CHRS2) ;

CLOSE(BFILE2, LOCK) ;
CLOSE(IFILE2) ;

(¥ Append new binary data records to the third binary data file, in %)
(¥ other words, create the associated temporay binary data file. X

REWRITE(BFILE3, CONCAT (VOLUMENAME, ' B3.DATA’)) ;
RESET(IFILE2, LCONCAT(VOLUMENAME,'’X3.DATA’)) ;

JETCHRS := SET3CHR ;
3ETVOICE(BFILES, IFILES, CHRSZ) ;

CLOSE(BFILEZ, LOCK) ;
CLOSECIFILE3)

'168

x - v @

<% This local procedure makes an exact copy of an index data file by #%)
(¥ copying each consecutive index data record to an empty index data #)
(¥ file. Both index files have been opened by the calling procedure %)

(¥ and the file window variables are provided.)
S *)
Ck Input : . X3
Ck DEST - parameter, file window variable of the destination index %)
k data file. E)
(€3 SRCE - parameter, file window variable of the source index data ¥%)
(K file. k3]
Ck %)
(k¥ Qutput : ' X3
(& Content of the destination (DEST) index data file)
(X *)
(¥ The following procedures are called @ *)
Ck EOF - build in file I/0 function, checks whether the end of a ¥
(3 specified file has been reached. %)
Ck PUT - build in file I/0 function, advances the file window va_ %)
k riable to the next record and puts the 'Jnteﬂt of file buffer *X)
Ck variable into this record. . 3]
C# BET - build in file I/0 function, advances the file window va_ -¥)
(¥ riable to the next record and moves the content of this - KD
Ck reczord into the file buffer variable. %)
Ok X7
¥ The following global variables of the GLOBAL unit are used : k)
ok None)
gk — —_— - - - - ¥

FROCEDURE COFY_XFILE(VAR DEST, SRLCE: INDEXFILE)Y ;

BEGSIN
WHILE ¢ NDT(EDF(SRLE)) Y DO (¥ loop processing one record at %)
BEGIN (k¥ a time until the end of file *)
DEST~.STRE := SRCE™~.STRG ; (¥ assigning word element)
DEST*.UNITT := SECE™.UNITT ; ¥k total number of sound unit %)
DEST™. IDXX := SRCE™.IDXX ; (¥ index number %)
DEST™.STATUS := SRCE™.STATUS ; (¥ valid and existing status %
FUTC(DEST)Y ; (% advancing the file window variable %)
GBET(SECE) t¥ advancing the file window variable ¥) -
END -
END ;
Ck - - - - . ES
This procedure is the second and last step of inserting new index E) Qz’

data records into the index data files. For each pair of index data %)
file and its associated temporary index data file, they are combined¥)
L# and the result is a bigger index data file. In each file of the pair¥k)
(k of index data files, the word elements of all the index data records¥)

(kK
Gk
(¢
Ck
¥
Ck
(¥
(k
(kK
(XK
Xk
Ck
(¥
(¥
g
(¥
Ck
(XK
(84
(@
(%
£§

Mvﬂ

(%
(%
(¥
(¥
(g 4
Ck
(k
4
4 3
L
(3
Ck
(¥
Ck
L4 4
(¥
(€4
(¥
(K
(4
¥
(%
P Sl

Ck
Ck

are in ascending alphabetical order. In the resulting index data
file, the alphabetical order is kept.

The actual process of combining a pair of index data files is car_

ried out in three substeps :
(1) Merge Sort this pair of index data files in alphabetical as_
cending order, the result is a combined index data file.

¥
*)
*)
*)
E)
¥
E)

This substep is azcomplished by zalling the FILE_SORT procedure.¥)

(2) Delete the pair of index data files.
P
ginal index data file which was just deleted.

(3) Copy the content of the combined index data file into this

new and empty index data file. This substep is accomplished by

calling the COPY_XFILE local procedure.

Input :
Three pairs of index data files and temporary index data files.
INDEX1.DATA and X1.DATA
INDEX2.DATA and X2.DATA
INDEXZ.DATA and X2.DATA

Output :

®)

Create a new index data file with the same filename as the ori_ %)

)
x)
X)
%)
*)
)
£
®)
X
®)
X)
k)

Three index data files, each of them is the combination result pf?*)

its original index data file and the assorciated temporary index
data file.

The following procedures are called @

CORPY_XFILE - local procedure, it copies the content of a combina_

tion index data file intos an empty index data file. The data
files have been opened by the calling procedure and both file
window variables are provided.

FILE_SORT - UTILITY unit, builds the content of a combined
index data file from a pair of index data file and temporary

index data file, the word elements of all index records are in

alphabetical ascending order. All three data files have been
opened and the file window variables are provided.
CLOSE =~ build:in file I/0 procedure, closes an index data file.

FEESET - build in file I/0 procedure, opens an gxisting index data

file.
FEWRITE - build in file I/0 procedure, creates a new and empty
index data file.

CONCAT = build in string function, concatenates two or more cha_

racter strings.

The following global variables of the GLOBAL unit are used :
IFILEl - file window variable for the three index data files, it

is used for only one data file at a time.

IFILEZ = file window variable for the three temporary index data

files, it is used for only one data file at a time.
IFILES - file window variable for the three combined index data
files, it is used for only one data file at a time.
I1IFNAME - filename of the first index data file.
IZFNAME - filename of the seczond index data file.
ISFNAME - filename of the third index data file.
VOLUMENAME - contains the storage diskette name STORE:

X)
x)
x)
¥
)
%)
£)
%)
%)
%)
%)
X
*)
X)
¥)
X)
)
*)
X)
X)
£
$)
%)
*)
%)
)
)
)
X)
¥
)
%)

3.70

PROCEDURE CMB_XENTRIES ;

VAR I : INTEGER ;
FNi, FN2 : FILENAME ;

BEGIN
PAGE(OUTPUT)Y ;

WRITELNC? > DOING SORT MERGE ON INDEX DATA FILES NOW’)
WRITELN(’' FLEASE BE PATIENT?) ;

-s

WRITELNC? ')
FOR I := 1 TO MAXFILE DO (X loop, each pass processes only one %)
BESIN (X pair of related index data files E D)
IF ¢ I =1) THEN (k¢ first pass %)
BEGIN
FN1 := IiFNAME ; . (¥ uses first pair of ¥
FNZ2 := CONCAT(VOLUMENAME,?” X1.DATA?? t¥ related index files ¥
END -
ELSE IF ¢ I = 2) THEN (% second pass %)
“- BEIGIN
FN1 := IZFNAME ; (¥ uses second pair of ¥)
" FNZ := CONCAT(VOLUMENAME,? XZ.DATA’) ¢k related index files %)
END ‘
ELSE (¥ third and last pass ¥
BESIN
FN1 3= IZFNAME ; (¥ uses third pair of %)
FN2 = CONCAT(VOLUMENAME,?’ X3.DATA') (¥ related index files #
END 3

RESETC(IFILEL, FN1) ; (k open existing index data file #®)
FEESETC(IFILEZ, FNZ» ; (¥ open existing temporary index data file #%)

(¥ create a new combined index data file %)
RFEWRITECIFILEZ, LCZONCAT(VOLUMENAME,'Y.DATA')) ;

FILE_SORT(IFILEL, IFILEZ, IFILEZ) j; K mérge pair of ES
¥ index data files %)

CLOSECIFILEL, PURGE) (k delete original index data file %)
CLOSECIFILEZ, PURGE) (% delete the temporary index file ¥)
CLOSECIFILES, LOCE) ; (¥ close % keep the combined file ¥)

¥ open existing combined index data file *)
RESET(IFILEZ, LCONCAT(VOLUMENAME,'’Y.DATA’)) ;

REWRITECIFILELl, FN1) ; (¥ create a new index data file ¥)
COFY_XFILECIFILEL, IFILE3) ; (¥ copy content of index file ¥)
CLOSECIFILEL, LQACK) ; (k close % keep the index data file %)

CLOSECIFILEZ, FUREGE) (¥ delete the combined index file ¥%)

\ -ND

END ;

()

*
N 4
(%
(k
Ck
(k
Ck
Ck
Xk
Ck
€ 9
(k
(%
k
(&4
Ck
(€
Ck
Ck
&3
ck
(kK
X
ck
Ck
a
4
Ck

This local procedure appends a binary data file by copying each
consecutive binary data record into the end of another binary

data file. Both binary files have been opened by the calling pro_

cedure and the file window variables are provided.

Input :
DEST - parameter, file window variable of the destination
binary data file.
SRCE - parameter, file window variable of the source binary
data file.

Qutput :
Content of the destination (DEST) binary data file

The following procedures are called s
EQF — build in file I/0 function, checks whether the end of a
specified file has been reached.
FUT = build in file I/0 function, advances the file window va_

riable to the next record and puts the content of file buffer

variable into this recard.

GET - build:in file I/D,function, advances the file window va_
riable to the next record and moves the content of this
record into the file buffer variable.

The following global variables of the SLOBAL unit are used @
None : : .

%)
‘K

FROCEDURE COPY_BFILE(VAR DEST, SFIZE:BINARYFILE) ;

BEGIN
WHILE ¢ NOT(EOF(SRCE)> > DO (¥ loop processing one record at
BEGIN . . (k¥ & time until the end of file
DEST™ := SECE™ ; ' {¥ assigning the digitized‘binary data %)
FUT(DEST) ; (% advancing both file ¥)
EET (SRCE) (¥ window variables k)
END
END 3
Ck - -
(¥ This procedure is the second and last step of inserting new binary

(¥ data records into the binary data files. For each binary data file,
(k¥ its associated temporary binary data file is appended at the end of

¥ th

The actual process of combining a pair of binary data files is car_

(X ri

e file and the result is a bigger binary data file.

ed out in four substeps :

(¥ (1) Create a new and empty combined binary data file. By calling

)
)
x
¥
#)
)
)
ED
¥
¥
k)
£
X))
£
)
£
kY
kY
E)
)
£

¥
*)
®)
X
®)

)
*)

*)

%)
)
¥
*)
K)
%)
*
)

3.7¢

http:r-e:;:,;:.rd

C

Ck
(¥
(¥
(¥
(¥
Ck
k
&4
(&4
(€3
Ck
(&4
X
&4
(3
(X
Ck
(&3
(&
(¥
¥
Ck

/m.

ck
& 3
(x
& 3
Ck
(&
Kk
Ok
(K
3
R
Ck

Ck

CE
€K
(¥
(kK
g 4
Ck
Ck
(X
Ck

Kk
k¥

the COPY_BFILE procedure, the binary data file of the pair is
copied into this combined file.

(2) By calling the COPY_BFILE procedure again, the temparary binary
data file of the pair is copied at the end of this combined
file.

(32) Delete the pair of binary data files.

Create a new binary data file with the same filename as the
original binary data file which was just deleted.

(4) Copy the content of the combined binary data file into this
new and empty binary data file. This substep is accomplished
by calling the COPY_BFILE local procedure.

It is possible that the preceding combining process does not need
the combined binary data file. The temporary binary data file can
be copied (appended) directly at the end of its associated binary
data file by calling the COPY_BFILE procedure only once. Apple II
disk file needs contigous storage area, if the original binary data
file has another disk file right after it in the disk, no expansion
can be made. Therefore, the preceding simple method will not work
most of the time.

Input : .
Three pairs of binary data file and temporary binary data files.
BINARY1.DATA and Bl.DATA
BINARYZ.DATA and BZ.DATA
BINARYZ.DATA and B3Z.DATA

Output :
Three binary data flle:, each of them is the combination result
of its original binary data file and the associated temporary
binary data file.

The following procedures are called :

COPY_BFILE - local procedure, it copies the content of a source
binary data file into the end of a destination binary data file.
Both data files have been opened by the calling procedure and
the file window variables are provided.

CLOSE — build in file I/0 procedure, closes a binary data file.

RESET - build in file I/0 procedure, opens an existing binary

data file.

FEWRITE — build in file I/0 procedure, creates a new and empty
binary data file. ‘ .

CONCAT = build in string function, concatenates two or more cha_
racter strings. :

The following global variables of the GLOBAL unit are used :
BFILEL - file window variable for the three binary data files, it
is used for only one data file at a time.

BFILEZ - file window variable for the three temporary binary data
- files, it is used for only one data file at a time.

BFILEZ ~ file window variable for the three combined binary data
- files, it is used for only one data file at a time.

BIFNAME ~ filename of the first binary data file.

BZFNAME - filename of the second binary data file.

B3FNAME - filename of the third binary data file.

*)
#*)
®
£
E)
L)
£
¥
E)
¥
¥)
¥
¥)
k)
*¥)
£)
X
kD
®)
x)

X
JK)
%)

)
)
)
)
%)
)
)
)
)
)
)
%)
E S
)
%)
)
)
*)
%)
%)
%)
&)
%)
%)
)
%)
%)
)
*)
%)
)
%)

(0]

VOLUMENAME - contains the storage diskette name STORE:)
- E)
FPROCEDURE CMB_BENTRIES ;
VAR I : INTEGER ;
FN1, FN2 : FILENAME ;
BEGIN
PAGE (OUTFUT)Y ;
WRITELN(? > MERSGEING BINARY DATA FILES NOW?) ;
WRITELN(’ FLEASE BE PATIENT’) ;
WRITELNC(? 'y
FOR I := 1 TO MAXFILE DO (¥ loop, each pass processes only a %)
BEGIN (k pair of related bhinary data files %)
IF ¢ I =1) THEN (X first pass %)
BESIN , : , ‘
FN1 := BIFNAME ; (f first binary file %)
FNZ := CONCAT (VOLUMENAME,’E1.DATA’) ' (¥ first temporary XY
END (% binary data file %X
ELSE IF ¢ I = 2) THEN t} second pass ¥
- BEGIN
FN1 := BIFNAME ; (¢ second binary file ¥
FNZ := CONCAT(VOLUMENAME,'BZ.DATA’) C+ second temporary #)
END ¥ bimnary data file %)
ELSE (k¥ third pass %)
BESIN
- FN1i := B3FNAME ; (¥ third binary file %)
FNZ = CONCAT(VOLUMENAME, *B3S.DATA’) ¥ third temporary %2
END ; ‘ (k binary data file %)
- T (X create new combined binary data file X
REWRITE(BFILEZ, CONCAT(VOLUMENAME,?®Z.DATA?)) 3 :
RESET(BFILEL, FN1> ; Ck open existing binary data file #)
CORPY_BFILE(BFILEZ, BFILEl) ; (¥ copy into combined binary file #)
CLOSE(BFILEL, PURGE) ; (f delete the binary data file %)
RESET(BFILE2, FN2) 3 (¥ open existing temporary binary file %)
COPY_BFILE(BFILE3, BFILEZ) ; (¥ append to the end of ¥)-
(¥ combined binary file X)
CLOSE(BFILEZ, FURGE) ; (k¥ delete the temporary binary file X)
CLOSE(BFILEZ, LOCK) ; (¥ close % keep the combined binary file ¥)
(¥ open existing combined binary data file %)
RESET(BFILEZ, CONCAT(VOLUMENAME,'Z.DATA')>) j;
FEWRITEC(BFILEL, FN1) ; (¥ create new binary data file %)
CORPY_BFILE(BFILEL, BFILE3) ; (¥ copy into empty binary file %)
CLOSE(BFILE1l, LOCK) ; (¥ zlose % keep the binary data file %)

CLOSEC(BFILEZ, FURGE)

(¥ delete the combined binary file %)

3.7S

o

2.76

=ND

END

-

Ck
(k
X
Ck
Ck
(k
Ck
(k
¥
1€ 3
Ck
(£
k
Ck
Ck
Ck
Ck
Ck
Cx
Gk
(k
Ck

CE.

Ok
-
g 4
B 4
Ck
(K
K
(K
1 4
%
(4
Ck
Ck
Ck
(4
Ck
(4
¥

FR

- - ———

This is a local procedure. For each index data file with the file
window variable provided, this procedure prompts the user to
input the words to be deleted from the dictionary, pressing of

)
£)
X))
£

RETURN key ends the process. All the input words must be in alpha_¥)

betical ascending order and in the same set of starting letters.

For each input word, if it is found as the word element of an
index data record in the current index data file, this index re_
cord is deleted from the index file. Actually, only the status
element’s value of the index record is changed to FALSE boonlean
value. The real deletion of index data records is accomplished by
calling the DO_CLNUP procedure. Each call of this procedure dele_

tes words from the same index data file, in order words, words
with starting letters in the same set of letters are deleted.
Input :
IFILE1l - parameter, file window variable of an index data file
Dutput :
Niohe
The following procedures are called :

%)
®)
%)
*)
%)
)
®)
%)
%)
%)
®)
%)
%)
%)
%)
E3
)
%)

LENSTH - build in string function, gets the length of a charac_%)

ter string. The returned value is zerno for NULL string.
EQF - build in file I/0 function, indicates whether the end of
a specified file has been reached.

kY
®)
*)

FUT - build in file I/0 procedure, advances the file window va_#¥)
riable to the next record and puts the content of file buffer®)

variable into this record.

*)

GET — build in file I/0 procedure, advances the file window va_¥)

riable to the nhnext record and moves the content of this re_
cord into the file buffer variable.

SEEK - build in file I/0 procedure, allows random access to
record. The file window variable (file pointer) is moved to
a specified record in a file. The record number (index num_
ber) of the specified record is provided.

The following global variables of the GLOBAL unit are used :
Nonhe

OCEDURE G0O_DELETE(VAR IFILELl: INDEXFILED

-e

VAR WRED : WORD ;

BE

IDX1, L : INTEGER ;
FOUND, NOTIN : BOOLEAN ;

3IN
WRITELN ;
L:t=13;
IDX1 = O ;

(¥ loop, each pass deletes only one word. The input words must be

)
£
£
X3
*)
)
XD
KD
XD
¥

X)

C
(g
CE

Ck

WH
BE

in alphabetical ascending order with starting letters in the kS
same set of letters. The processing of this procedure is com_)
pleted when the end of file has been encountered or a null word #%)
has been input. x)
ILE ¢ (L <> 0) AND C(NOTC(EOF(IFILEL1>>)) DO
GIN
FOUND := FALSE ; (% word is yet not found in dictionary %)
NOTIN := FALSE ; (¥ assume word is in the dictionary %
WRITECTWORD: ?3 3 (k% prompts user to input *x)
READLN(WRD) ; (¥ the word to be deleted %)
L := LENGTHC(WRD) ; '

IF ¢ L <> O) THEN (X only non null word input %)
BEGIN

WHILE ¢ (NOT(EOFCIFILE1))) AND
(NOTCFOUND2 > AND C(NOTCNQTINIY > DO

BEIGIN
IF ¢ WRD = IFILEL~.STRSE) THEN (¥ find the match #*2
BESIN :
FOUND := TRUE ; -
IFILE1L~.STATUS := FALSE ; (¥ update the status element¥k)
o SEEK(IFILEL, IDX1)> ; (% of the index data record ¥)
f— FUTCIFILELD (X in the index data file £
END
ELSE IF (WRD < IFILE1~.STRG) (KX input word is not in #
THEN NOTIN := TRUE ; (¥ the dictionary, base ¥
¥ on the alpha. ascend.¥)
(¥ order characteristic %)
SETC IFILEL 3 3 _ (¥ get next index record ¥
IDX1 := IDX1 + 1
END
END ;
IF ¢ NOTIN > THEN
WRITELNC(? > WORD DOES NOT EXIST !'?)
ELSE IF (EOFCIFILELl> > THEN.
WRITELNC?> END OF FILE !')> ;
WRITELN
END
END ;

0 —— - - ®)
—~ This procedure processes the deletion of words from the dictionary, ¥
(¥ in other words, related index data records are deleted from the %)
(¥ index data file of the dictionary. ¥)

[ON

¥
The three index data files are processed in sequence, one after kD)
(¥ another. After an index file has been opened, the task of deleting %)
(k% index data records which associate with the same set of starting)
(k letters is passed to GO_DELETE local procedure, providing the file %)
(¥ window variable is available. %)
(¥]
Ck Input = *)
Ck Three index data files of the dictionary %)
(&4 %)
Ck Qutput : %)
Ck None £)
(4 ®)
(k¥ The following procedures are called : %)
Ck GO_DELETE - local procedure. It does the deletion of index data £
Ck records from a specified index data file when the file window X
Ck variable is given. X))
Ck RESET - build in file I/0 procedure, open an existing index data %)
Ck file. %)
Ck CLOSE - build in file I/0 procedure, close an index data file.)
Ck : *)
(¥ The following global variables of the GLOBAL unit are used : 9
(4 S ILFNAME - filename of the first index data file. ¥
Ck IFILEL - file window variable for the first index data file. ¥
CHRES1 - display message for the SETICHR set of letters. *)
IZFNAME —~ filename of the second index data file. x)
IFILEZ - file window variable for the second index data file.)
kK CHRSZ — display message for the SETZCHE set of letters. x)
¥ SFNAME —~ filename of the third index data file.)
Ck IFILEZ - file window variable for the third index data file. K
Ck CHRSZ - display message for the SETICHR set of letters.)
(o e e e e e e e e e e e e e e e e e e e - #)
FROZEDURE DO_DELETE ;
VAR FN, CHRS : FILENAME ;
I : INTESGER ;
INPKEY : CHAR ;
BEEIN
FASE(OUTRUT) 3
WRITELNC? 'Y ;
WRITELN¢? DELETE ENTRIES FROM THE DICTIONARY ') ;
WRITELNC? - A
WRITELN ;
FOR I := 1 TO MAXFILE DO (k% loop, only process one ®)
BESIN : (¥ index file in each pass #)
IF (I =1 > THEN (¥ first index data file ¥)
BEGIN

CHRS :1= CHRSE1 ;
FN := I1FNAME
END '

ELSE IF ¢ I = 2) THEN (¥ second index data file %)
BESIN
CHRES := CHRSZ2
FN == IZFNAME
END

-e

ELSE (¥ third index data file %)
BESIN
CHRS := CHRES3
FN := I3FNAME
END 3

-

WRITELN(?’ WORDS START WITH ',CHRS) ;
WRITELNC’END OF INPUT, RETURN KEY ONLY’)

-n ‘s

WRITELNC? -— ™
CEsI-%)
FRESETC(IFILEL, FN) ; Ck open the index data file *x)

IF ¢ IORESULT < O) THEN A
WRITELNC? > ERROR IN OFENING INDEX DATA FILE T,FN)

- ELSE :
E G0_DELETECIFILELY j; (¥ process deletion of X)
- (¥ index data records %

CLOSECIFILELY 3 (¥ clogse the file ¥
CESI+KD

WRITEC'RETUREN KEY: ') ;
READLNCINFKEY?)

END

END ;

(K
Ck
(€
Ck
(XK
(kK
(€ 4
€4
L 3
X
Ck
Kk
Ck
Ck
Ck
ck
CK
&3
Ck
CE
L4 3
(44

T
CK
(k
(¥
(X
(XK
(44
CE
(XK
1
&4
-k
1 4
(i
Ck
XK
Ck
[4
(4
(¥
(kK
L4 4
1 4

[d

~f
43
K

Ck

IZFNAME ~ filename of the sezond index data file.

- - - XD

- This is the second and last step of deleting words from the dictio_ %)
nary. The temporary deleted index data records and their associated #)
binary data records are deleted permanently, respectively, from the #)
index data files and binary data files of the dictionary. ¥
S

The data records deletion process is accomplished by copying the)
non deleted data records into a temporary data file. After the ori_ #)
ginal data file has been deleted and recreated with empty content, ¥
the content of the temporay data file is copied into the empty data %
file by calling COPY_XFILE or COPY_BFILE procedure, respectively,)
for the index or binary data file. ®)
¥

Input :)
Three pairs of index and binary data files. £
®)

Output : X
Clean up version of the three pairs of index and binary data files¥)
¥

The following procedures are called : :)
EQF - build in file I/0 procedure, it indicates whether the end E D]
of a specified file has been réached. - %)

GET - build in file I/0 procedure, it advances the file window *)
variable to the next record and moves the content of this X
record to the file buffer variable. %)
FUT - build in file I/0 procedure, it advances the file window E)
variable to the next record and puts the content of the file E)
buffer variable into this record. XD
RESET - build in file I/0 procedure, open an existing data file. &)
CLOSE - build in file I/0 procedure, closes a given file. k)
FREWRITE - build in file I/0 procedure, creates a new and empty ¥2
data file with the given filename. X3

GF0_ACTL - local procedure, it goes through an opened index data ES)
file and marks dowh all the deleted index data records using E)
the IARRAY array. %2
GO_ACTZ - local procedure, it goes through an cpened binary data k)
file and copies all the non deleted binary data records into a #0
temporary binary data file. For each copied bimnary record, the %)
associated element in the LARRAY array contains its hew record %)
number (index number) in the temporary data file. £
E0_ACTE — local procedure, it goes through an opened index data ®)
file and copies all the non deleted index data records into a k]
temporary index data file, For each copied index record, its ¥
index element is assighned with the record number of its asso_ %)
ciated binary data record in the temporay binary data file. £
This new record number is obtained from the LARRAY array using %)

the old record number (index number element) as index. *)
"COPY_XFILE - local procedure, it copies the content of a source x)
index data file into a destination index data file. X
COFY_BFILE - local procedure, it copies the content of a source £ D)
binary data file into a destination binary data file. *)

*)

The following global variables of the GLOBAL unit are used : *)
ILFNAME - filename of the first index data file. x)
®)

3.81

http:r.spectiv.ly

<:> IZFNAME - filename of the third index data file. *)

B1FNAME - filename of the first binary data file. +)
(& B2FNAME - filename of the second binary data file. %)
L 3FNAME - filename of the third binary data file. 3
K IFILEL - file window variable for the three index data files, *)
Ck only one at a time. ¥
Ck IFILEZ - file window variable for any temporary index data file, %)
3 only one at a time. %)
(&3 IFILEl - file window variable for the three binary data files, *)
(€3 only one at a time. 3]
Ck IFILE2 - file window variable for any temporary binary data file, #*)
¥ only one at a time. %)
(f ———m—rr e e e - - X3
FROCEDURE DO_CLNUP ;

CONST DELETEWORD = -1 ;

VA

-

KEEFWORD = 0O ;

R IARRAY : ARRAYLOQ..1001 OF INTEGER ;
IFNX, BFNX, FN : FILENAME ;
1,J,K,IDX1,IDX2, IDX3 : INTESER ;
INPKEY : CHAR ;

BFREADY : BOOLEAN ;

T e — e e e e e o e e e e - —-——= %
¢k This is a local procedure, it goes through an opened index data X
(k% file and marks down all the deleted index data records using the #)
(¥ IARRAY integer array. The size of preceding avray is the maximum k)
(¥ capacity of index data file, its index starts from zero which is ¥

(¥ alsa the first record number of the index file, k]
(4 ®
(% There is a relationship between data records and array elements ¥

t¥ of current index data file and IARERAY array. The index element of ¥
(¥ an index data record is exactly the same with the index number of %)

(¥ its associated array element in the IARERAY array. When an index ¥)
(¥ data record is supposed to be deleted, its associated array ele_ #)
(¥ ment is assigned -1 value, otherwise the value is (. %)
(§ —————— - - e - - *)
FROCEDURE GO_ACTL ; (X inside DO_CLNUFP procedure X
BEGIN
IDX1 = 0 ; (% counter of deleted records %)
WHILE (NOTC(EQF(IFILE1)>)> > DO (¥ loop, processes one index ¥X)
BEGIN (¥ data record in each pass %)
‘:; IF ¢ NOT(IFILE1~.STATUS)) THEN (¥ a deleted index record ¥)
BESIN
t¥ get the index element, ¥)
IDX2 := IFILEL1~,IDXX ; Ck uses it to index the array¥)

IARRAYLIDXZ] := DELETEWORD ; (¥ and assigns a -1 value x)

2.82

EN

(&
Ck
K
X
kR
€
Ck
R
Ck
K
ik
4 S

IDX1 =z= IDX1 + 1 Ck increment the counter #)

END ;
GETC(IFILEL) (¥ get next index data recordk)
END
D ;
¥
This is a local procedure, it goes through an opened binary data %)
file and copies all the non deleted binary data records into a)
temporary binary data file. X)
£
There is a one to one relationship between data records and array %)

elements of current binary data file and IARRAY array. The record %)
number of a data record is exactly the same with the index number %)
of its associated array element in the IARRAY array. ¥

: -
For each binary data record, the record number is used to index %)
an element of IARREAY array. When the preceding array element has X

(k O value then the current binary data record must be copied, other_%)
¥ wise it is a deleted record. For each copied binary record, the ¥
.¥ associated element in the IARRAY array has a different function k9
(¥ now, it contains the new record number (index number? in the tem_ $
t¥ porary data file. .)
(¥ — — ———— — e e e e e e e e e e e e e e)
FROCEDURE G0O_ACTZ2 ; (¥ inside DO_CLNUP procedure #)
BESIN
IDXZ 2= O 3 (¥ old record number %)
IDX3 := 0O ; (¥ new record number ¥
. WHILE ¢ NOT(EQFC(BFILE1>> > DO . (¥ loop, each pass processes K)
BESIN (¥ one binary data record ¥
IF (IARRAYLIDX21 = KEEFWORD > THEN (¥ a copied record %)
BEGIN
IARRAYLIDXZ2]1 := IDX3 ; (¥ assighned with new record # %)
IDXZ := IDX3 + 1 ; (¥ increment new record X
(¥ number for next usage %)
BFILEZ™ z= BFILEL"™ ; (k¥ assignhning binary data record & ¥
PUT(BFILEZ) (k put in the temporary binary file %)
END ;
GETC(BFILEL) ; (k¥ get next data record of binary data¥k)

IDX2 = IDX2 + 1 (¥ file &% increment the record number ¥X)

3.83

jﬁ..
.
END
END ;
(€ X)
(% This is a local procedure, it goes through an opened index data k9]
(¥ file and copies all the non deleted index data records into a X)
(¥ temporary index data file. - 9}
Ck E D
(¥ For each copied index data record, its index element is changed X2
(k and is assigned with the record number of its associated binary 3
(k¥ data record in the temporay binary data file. This new record $)
(¥ number is obtained from the IARRAY array using the old record £
(¥ number in the index number element as index. E D)
k - %)
FROCEDURE B0_ACT3 ; (% inside DO_CLNUP procedure ¥)
BESIN .
WHILE ¢ NOTC(EOFC(IFILE1)>) > DO (k% loop, each pass procésses:*)
BESIN (¥ one index data record x)
o~ ’
N IF ¢ IFILEL~.STATUS) THEN (¥ a copied data record ¥)
BEGIN
IDXZ := IFILE1~.IDXX ; (k get the old record number ¥
IFILE2~.STATUS := TRUE ; ' (% set up data record of %)
IFILE2~.8TRE := IFILE1".8TRG j; (¥ the temporary index file¥k)
IFILEZ™.IDXX := IAREAYLIDXZ] ; (¥ using new record number %)
IFILE2™.UNITT := IFILEL1™.UNITT ;
F'UTCIFILE‘.Z:)i ‘ Ck put in the tempa?ary index file ¥
END ; -
BETC IFILEL (¥ get next record of the index file %)
END
END ;
BESIN

(¥ set up filenames of the temporary index and binary data files %)

CONCAT (VOLUMENAME, ' IDX.DATA’)

-2 e

NX =
3FNX 1= CONCAT(VOLUMENAME,’BIN.DATA’)

(¥ loop, each pass only processes one pair of related index and
(X binary data files.

¥
*)

2.84

)

=
-t . .l

FOR I := 1 TO MAXFILE DO

BEGIN

BFREADY := FALSE ; (¥ the binary file is not ready %)

FOR J = © TQ 100 DO (¥ assume all words are copied ¥)
IARRAYLJ1 := KEEPWORD ;

IF ¢ I=1) THEN (¥ use first index data file %)
FN := I1FNAME

ELSE IF (I=2 3 THEN (X use second index data file ¥)
FN := I2FNAME

ELSE - (¥ use third index data file %)
FN 2= IZFNAME ;

(kBI-¥) (¥ conpiler option, no I/0 checking %)

(¥ marks the deleted index dgta records and count them ¥)

RESETC(IFILEL, FN> ; ¥ open the index data file %)

IF ¢ IORESULT = O (¥ only process when the %)
THEN G0_ACTL (k index file exists, ®)Y -
ELSE IDX1 := 0O ; (% otherwise counter is O %) -

CLOSECIFILEL) ;

(ksI+%) t¥ compiler option, resume I/0 checking %)
(¥ only process when the current index data file has index data £
(# records to be deleted, the Zounter value is non zero. x)

IF ¢ IDX1 > O) THEN

BESIN
IF ¢ I=1 > THEN (¥ use first binary data file X)
FN := BI1FNAME ,
ELSE IF ¢ I=2) THEN (¥ use second binary data file %)
FN := BIZFNAME
ELSE IF ¢ I=3 » THEN (¥ use third binary data file %)
FN := B3FNAME ; . ‘
CHBI-%)
RESET(EBFILEl, FN) ; (¥ open the binary data file #*)
IF ¢ IORESULT = O) (¥ process only when the X)
THEN BFREADY := TRUE ; (¥ binary file exists ¥)
CLAOSECIFILEL)
CRS I+
END ; ‘
(k only process when the current index data file has index data *)
(¥ records to be deleted (counter value is non zero) and the *)

(¥ associated binary data file exists. %)

‘:}

CkeI-%)

REWRITE(BFILEZ, BFNX) j
RESET(BFILEL, FN J 3

IF ¢ IORESULT = 0)
THEN GO_ACTZ ;

CLOSE(BFILEZ, LOCK) ;
CLOSEC(BFILELl, PURGE) ;

CRBI+XK)

IF ¢ I=1) THEN

FN = I1FNAME
ELSE IF (I=2) THEN
FN := IZFNAME
ELSE IF ¢ I=3 3} THEN
FN := I3FNAME ;

Am(*$I—*)

-

REWRITECIFILEZ, IFNX)
RESETCIFILEL, FN) ;

-z

IF ¢ IORESULT = 0)
THEN E0_ACTS ;

CLOSECIFILEZ, LOCK) ;
CLOSECIFILELl, FURGE)

REWRITECIFILEL, FN)
RESETC(IFILEZ, IFNX>

- e

IF ¢ IORESULT = O) THEN
COFPY_XFILECIFILELl, IFILEZ)

CLOSEC(IFILEL, LOCK) ;
CLOSE(IFILEZ, PURGE) ;

CRSI+K)

IF ¢ I=1) THEN
FN := B1lFNAME

ELSE IF (I=2) THEN
FN := B2FNAME
ELSE IF ¢ I=3) THEN
‘:} FN := B3FNAME ;
CRS L%

FEWRITE(BFILEL, FN) ;

IF ¢ ¢IDX1 » O) AND (BFREADY)) THEN
BEGIN

(% create new temporay binary file #)
(¥ open existing binary data file

(¥ copy all the non
(¥ deleted data record

(X keep temporary file %)
(% delete the original file ¥

(k use first index data

(¥ use gecond file X)

(¥ use third file %3

{f create new temporay index

£
*)

file

file

(¥ open existing index data file

(¥ copy all the non deleted

(¥ index data records

(¥ keep the temporary file

(% delete the original

(¥ recreate original index
(¥ open temporary

(k copy content of

(k keep the original index
(K delete temporary

(% use first binary data

(K use second file %)

(¥ use third file %)

(¥ recreate original binary

file
file
file
file

file
file

file

file

®)

¥)

x)
*)

k3]
*)

E)
*)

*)

#)

¥)

*
¥

*)

*

http:t~mpora.ry
http:se.:.:.nd

RESET(BFILEZ, BFNX) ; (k% open temporary

IF ¢ IORESULT=0 > THEN

COPY_BFILE(BFILE1l, BFILE2) ; (¥ copy content of
CLOSE(BFILE1l, LOCK) ; (¥ keep the original index
CLOSE(BFILEZ, PURBEE) (¥ delete temporary

(¥SI+X)
END
END
END ;

file %)

file %

file X)
file %)

C. . e

£ «his is a local procedure. It accesses directly a data record of

kK a specified binary data file, the digitized binary data of this

k data record is replaced by the improved digitized binary data

kK which has been placed in the VOICE global variable.

K

¥ Input :

XFILE - parameter, it is the file window variable of a binary

data file.

IDX - parameter, index (record) number of the data record to be
updated.

VOIZE - global variable, it has the new digitized binary data.

Output :
Updated binary data record of the specified binary data file.

The following procedures are called

SEEK - build in file I/0 procedure, allow random access to a
data record. The file window variable (file pointer) is
moved to a specified data record with record number IDX.

SET = build in file I/0 procedure, advance the file window va_
riable to the next record and move the content of this
record into the file buffer variable.

FUT - build in file I/0 procedure, advance the file window va_
riable to the next record and puts the content of file
buffer variable into this record. '

IE FE I I I K I I AW KN R

()

ﬁ The following global variable of the EGLOBAL unit is used :
k4 VOICE

'g —————— - —— ——

'ROCEDURE DOIMFROVE ¢ VAR XFILE:BINARYFILE; IDX:WORDRANGE) ;

'ESIN
SEEK(XFILE, IDX) ; (X access the binary data %)
FET(XFILE)Y 3 , (¥ record directly E)
XFILE~ :b= VOICE 3 (k assighning with improved data
SEEK(XFILE, IDX) ; (X place into the binary %)
FUT (XFILE? (X data file permanently ¥)

IND ;

This procedure improves the sound of words. The digitized binary
data records of the words to be improved are replaced with new di_
g};&zed binary data record.

is not necessary to input all the words to be improved in alpha_
wetical ascending order.

Fequirement : call DO6_RESET % DO6_CLOSE procedures by the calling

*2
)
£
%)
)
)
D)
X))
x)
¥)
)
X))
)
*)
X
X
*®)
k9
X2
£

) 0
)

¥)
¥
¥
K]
*
*
)

)

x)

¥
*)
0
)
L)
*)
kD)
¥

- - d—

P

o TRE SRBE K da ¢ aen s e

http:re,:,::.rd

(4 4
1
(X
(%K
(XK
(%
(X
(& 4
(kK
(X
(X
Ck
(kK
Ck
Ck
Ck
Ck
(k
(XK
Ck
(¥
(k

(K
Ck
CE
Ck
(X
(%
(K
Ck
(4
¢k
(¥
Ck

(4 o

K
CE
<
Ck
Ck
(4 4
Ck

program, respectively, before and after the process of this proce_ %)
dure. =]
k3]

The processing steps for one word to be improved are :)
(1) Prompts user to input the word and its total number of unit ¥
souhd. £

(2) Verifies whether this word exists in the dictionary. Only con_ %)
tinues the following two steps when the word exists. *)

(3) prompts user to input the sound of this word and get the digi_ k)
tized binary data record. XD

(4) Accesses the associated binary data record from the binary data %)
file and replaces it with the new digitized data for improvement¥)

' ¥

Input : %)
words and the improved sound of words XD
Y

OQutput : X
None ®)
ES)

The following procedures are called £)
GET_WORDUNIT - UTILITY unit, prompts user and get a word and its ¥
total number of sound unit interactively. . ¥)
WORD_VERIFY - UTILITY unit, verifies whether an input word exists %)
in the dictionary. ¥)
DISITAL - ‘assembly language routine which does the digitizing ¥
process on the input voice. *)
DOIMFRAOVE - local procedure, accesses the binary data record of)
the related binary data file and replacing the old digitized k)
binary data with the improved digitized binary data.)
LENGTH - build in string function, get the lerngth of a character %)
string.)

kS

The following global variables of the GLOBAL unit are used : E 3]
CHESALL - display message for all the starting letters of words)
in the dictionary. . ¥
SETCHRES -~ contains the current set of starting letters. X
SETISTCHRE - set of all the starting letters of the words in the *)
dictionary. %)
VOIZE - a buffer which contains the digitized binary data of the %
input voice for the word to be improved ¥
DTEMPO - delay constant of the voice digitizing process. £
BFILEL - file window variable for the first binary data file. ¥)
BFILEZ — file window variable for the second binary data file. ¥)
BFILES - file window variable for the third binary data file. %)
VOLUMENAME - contains the storage diskette volumename, the defaulti)
name is STORE:. E D)
————————————————————— - ——)

FROCEDURE IMPROVE_SOUND ;

 IDX, UNITVAL:INTEGER ;

CHANGE, FOUND:BOQLEAN ;
WRD: WORD ;

FNDREC:ELEM 3

CHR:CHAR ; ’

C

23IN

CHANGE := TRUE 3

PAGE (QUTPUT) ;

WRITELNC(? - ')
WRITELN(’ UFDATE THE VOICE DATA 0OF WORDS’) ;

WRITELN(’ FRESS RETURN KEY AFTER SOUND INFUT DEVICE IS ONLINE?) ;

WRITELNC? 'y
READLN(CHR) ;
WRITELN ;
WRITELNC(' > 1ST CHARACTER OF WORD MUST BE ’,CHRSALL) ;
(k Loop, each pass processes only one word. The end of this loop E)
(¥ occurs when no word is input after the prompt, only RETURN key is %)
(% pressed. X)
SETCHRS := SETISTCHE j
FREFEAT
FOUND := FALSE ;' : :
GET_WORDUNITC(WRD, UNITVAL) ; , (% get a word % its total- %)
WRITELN ; (¥ number of sound unit X
N IF (LENGTHCWRD) » O) THEN (¥ process only when a ¥)
BEGIN (¥ word has been input ¥

C

FNDREC.WUNIT := UNITVAL ;
¢l verify whether the ¥%)
WORD_VERIFY (ZHANGE, FOUND, WRD, FNDREZ)Y ;3 (# input word exists #)
(% in the dictionary ¥

IF (FOUND?) THEN (% process only when the word exists #)
BEGIN .

WRITELN(” »*FRESS ANY KEY NHENAREADY FOR SOUND INPUT?) ;

DISITAL(VOICE, DTEMFO, UNITVAL) ;

(¥ digitizing process ¥)

FEADLN ; (¥ for the key pressed before sound input #®)
WRITELNC? > END OF SOUND INRUT !?) ;

IDX := FNDREC.WIDX ;
CASE FNDREC.WSET QF ¥ update binary data record #

1: DOIMPROVE(BFILEL, IDX> (¥ first binary data file ¥

-

<: DOIMFROVEC(BFILEZ, IDX?» (¥ second data file X)

-3

3: DOIMFROVE(BFILEZ, IDX) (k¥ third data file %)
END (& CABE #)

END

http:rec.::.rd

EL.SE

BEGIN
WRITE(’> THIS WORD: ’,WRD,” DOES NOT EXIST IN ’) ;
WRITELN(VOLUMENAME,’ DISKETTE’)

END

END

UNTIL LENSTHC(WRD) = O

.
4

WRITELN ;

WRITELNC(?> END OF SOUND IMFROVEMENT ON WORDS IN STORE:
WRITELNC(? -

END ;

(¥ Empty main program.

BESIN

No need to define any process in here.

DISKETTE’)

')

14

Ky

0]

(71

€:; This is the MODULES unit of Voice/Digital and Digital/Voice Conver_
(¥ sion on a Microcomputer project.
Ck
(k The Pascal language procedures here do the digitizing of the input
(¥ voice and the reverse process of speaking fanaloging) it back
(k through a connected speaker. The actual processing of digitizing
(k¥ and analoging are accomplished by calling the related assembly
(¥ language routines. For digitizing, the DIGITAL routine is called.
(¥ The ANALOS1 and ANALOG2 routines are called for the speaking pro_
(k cess, respectively, through the speaker of Apple II or casette re_
(¥ corder.
Ck
(¥ Only the GLOBAL unit is used here.
Ck
(¥ The compiler option $S++ is invoked here, more memory space is
(% available for the compiling process but the speed is decreased.
Ck -

(k$S++k) (¥ compiler option %)

UNIT MODULES ;

INTERFALCE

-

: I

{ }
e SES 5LOBAL ; ' (% declare the unit to be used here

y
(% declare all the procedures of this module here X)
FROCEDURE SFEAK ¢ UNITT : UNITRANZSE » ;

FROCEDURE SFEAK_WORD ¢ FNDRELZ : ELEM) 3
FROCEDURE LISTEN ¢ UNITT : UNITRANGE) j

IMPLEMENTATION

(% declare the assembly language routines to be called here %)

FROZCEDURE DISITALC VAR VOICE:SOUND; DTEMPO: INTEGEFR;
DUNIT:UNITRANIZEY; EXTERNAL ;

FROCEDURE ANALOGL(VAR VOICE:SOUND; ATEMPO: INTESER;
AUNIT:UNITRANSE) ; EXTERNAL ;

FROCEDURE ANALOGZ(VAR VOICE:SOUND; ATEMFPO: INTEGER;
AUNIT:UNITRANGE); EXTERENAL ;

(e

¥
%)
®)
)
¥
®)
X)
k3]
*)
D]
)
k9]
£
%)
kS
)
x
X)

RN RETIN

£

-3

T T T T T e e ¥
This procedure calls the assembly language routine DISITAL to do)
(% the actual process of digitizing (listening) the input voice. %)
(K oK)
& Input : %)
Ck UNITT - parameter, total number of sound units of the input voice.¥k)
(¥ DTEMPO - global variable, delay constant of the digitizing pro_ #)
Ck cess where the value was assigned in the calling program %)
(K kD
(¥ Output : X)
(k VOICE - global variable, it is a buffer which contains the £
Ck digitized binary data of the input voice _ %)
X *
(¥ The following procedure is called : : ¥)
Ck DIGITAL - external procedure, listening the input veoice. ¥
(X , ¥)
(k The following global variables of the SLOBAL unit are used : X3
(¥ VOICE X))
Ck DTEMFO : ¥
Ok —-— ¥
PROCEDURE LISTEN ; ey =
BESIN

END

IGITALC VOICE, DTEMFO, UNITT)

’

0}

5]

c:; *)

This procedure-calls the assembly language routines ANALOGL or £)

(¥ ANALOGZ to do the actual process of analoging (speaking) the digi_ %2
(¥ tized binary sound data. E S
Xk K]
(% Input : £ 9]
(K UNITT — parameter, total number of sound units of the digitized)
X binary sound data. KP)
Ck ATEMPO — global variable, delay constant of the analoging process ¥)
Ck where the value was assigned in the calling program. *)
€k VOICE - global variable, it is the buffer which contains the X
(X digitized binary data. %)
& 3 SFKER — global variable, it decides whether the speaker of Apple ¥
(k Il or casette recorder is used in the voice output, the ¥
k value was assigned in the calling program. XD
Ck K]
(X OQutput : XD
k Voice at the chosen speaker . 9]
Ck X)
(k¥ The following procedures are called : X)
¥ ANALOG1 ~ external procedure, speaking on the Apple II speaker. %)
Ck ANALOSZ2 - external procedure, speaking on the attached casette ;*)
(K recorder speaker. * %)
k0 X3
™ The following global variables of the GLOBAL unit are used : ¥)
\w. VOICE, ATEMPO, SFKER. *)
——————————————————————————————— - ———— e %)

FROCEDURE SFEAK ;

BEGIN
IF ¢ SFKER > CASETTE)
THEN ANALOGL ¢ VOICE, ATEMFO, UNITT O (% Apple II %)
ELSE ANALOGZ, (VOICE, ATEMPO, UNITT) (¥ casette recorder X
END ;

[8

- x)

- This procedure calls the assembly language routines ANALOGL or)

(3
&
K
Xk
(K
L S
Ck
(& 3
(%
kK
Kk
€ 3
Ck
X
CK
¢k
@ 3
(kK
Ck
Xk
(X
i

(8 4
(¥
(4 4
C#
(K
C¥
C¥
CE
(¥
Ck
Ck
¥k

ANALDGZ to do the actual process of speaking a specific word which &)

exists in the dictionary. The digitized binary data of this word is %)
obtained from the related binary data file by using the information %)
in the parameter. ®)
¥)

Input = x)
FNDREC - parameter, information to access the related binary data ¥
file in order to obtained the digitized binary data of)

the related word to be spoken E 3]

ATEMPO - global variable, delay constant of the analoging process ¥X)
where the value was assignhed in the calling program ¥

SPKER - global variable, it decides whether the speaker of Apple)
IT or casette recorder is used in the voice output, the X

value was assigned in the calling program x)

X3

Qutput : . £
Vnice at the chosen speaker , X
¥

The foflowing procedures are called : %)
ANALOGL - external procedure, speaking on the Apple II speaker. ;*)
ANALOE2 - external procedure, speaking onh the speaker of the - %)
attached casette recorder, : *)

SEEK - build in file I/0 procedure, allow ramdow access of a spe_ %)
cific record with index (record) number BIDX. The file ®)

window variable (file pointer) is moved to a specified re_ ¥

zord in the data file. £

GET - build in file I/0 procedure, advance the file window varia_ %)
ble £to the next record and move the content of this record ¥K)

into the file buffer variable. £)

X))

The following global variables of the GLOBAL unit are used : K’
SFKER, ATEMFO , : ¥)
VOICE - buffer contains the binary sound data of the word. X2
BFILEL - file window variable of the first binary data file. #)
BFILEZ - file: window variable of the second binary data file. ¥
BFILEZ - file window variable of the third binary data file. ¥
———————————— - - - ——— - %)

FROCEDURE SFEAK_WORD ;

VAR BIDX, BUNIT, BSET : INTESER ;

BE

SIN

BIDX := FNDEEC.WIDX ; tf index in the related binary data file.¥)
BSET := FNDRELC.WSET ; (¥ gset # of words in the dictionary.¥)
BUNIT := FNDREC.WUNIT ; (k% total number of unit sound.X)

JASE BSET OF
(¥ member of the lst set of words, X)
1:BEGIN (¥ move the file pointer directly X)
SEEK(BFILE1, BIDX) ; (¥ to the desired record. %)
BET(BFILELl) ; (¥ obtain the record of digitized data.¥)

A VOICE := BFILEL" (k% assign data to the global buffer.®)
END 3

2: BEGIN (k it is a member of the Znd set %)
SEEK(BFILE2, BIDX) ; (¥ of words in the dictionary £ D)
GET(BFILEZ2) ;

VOICE == BFILE2"
END ;

S:BEGIN (k it is a member of the 3rd set ¥
SEEK(BFILEZ, BIDX) ; (k% of words in the dictionary %)
GET(BFILE2) ;

VOICE := BFILEZ2"
END
END ; C(4%CASEX)
IF (SPKER > CASETTE) (¥ speak the word ¥)
THEN ANALOGL(VOICE, ATEMFO, BUNIT) (¥ use Apple II speaker ¥
ELSE ANALOG2¢ VOICE, ATEMPO, BUNIT) (k use rcasette recordér ¥)
END ; :
: The main program is empty, no need to define any process in here. %)
-
BEGIN
END.

O]

W

There are 3 Assembly Language routines in this flle, they are:
DIGITAL, ANALOG and ANALOG?2.

The POP and PUSH macros are called by all 3 routines.

In this listing, the dollar ($) sign is used instead of *AT" sign for
the indirect index addressing mode.

»

This POP macro pops a 2 bytes address of a returned parameter

; from the stack.

MACRO POP
PLA ; get lower byte address from stack
STA %1 ; assign to lower byte of a variable
PLA ‘ ; get higher byte address from stack
STA %1+1) ; assign to higher byte of a variable
ENDM

This PUSH macro pushs a 2 bytes address of a returned parameter

; from the stack.

MACRO PUSH

LDA %1+1 ; get the higher byte address

PHA ; push it into the stack

LDA %1 ; get the lower byte address

PHA ; push it into the stack !
.ENDM :

Obtain the digitized binary data of input sound and place it into the VOICE array
buffer parameter which is passed by the Pascal calling routine.

The VOICE array has capacity of 1280 (X'04FF’) bytes, depending on the value of
parameter IDX (1, 2, 3, 4 or 5), respectively, only 255 (X’00FE’) bytes, 510 (X'01FD’)
bytes, 765 (X'02FC’) bytes, 1020 (X'03FB’) bytes or 1275 bytes of this array will be
fillled with binary sound data.

PROC DIGITAL,3

-C1 -

O

DIGITAL APPLE_VOICE

; Zero page variables definition

>

RET EQU 0 ; store return address

ADRL EQU 2 ; store lower & upper bytes of
ADRH EQU 3 ; VOICE array starting address
INIL EQU 4 ; store lower & upper bytes of
INIH EQU 5 ; VOICE array starting address
CNTL EQU 6 ; lower & upper bytes of a counter,
CNTH EQU 7 ; store the size of VOICE to be used
ADVAL EQU 8 ; 0 or 1, state of the A/D sampling
ENDL EQU 9 ; last byte of the subset of VOICE
ENDH EQU OA ; array used, these are the address
DX EQU OB ; store the unit of sound

TEMPO EQU oC ; store the delay loop constant
T™P EQU oD ; temporary storage

WVAL EQU OE ; temporary var for delay cycles
KEYBO EQU 0C000 ; loc to get keyboard input
KEYB1 EQU 0Co10 ; loc to clear keyboard input
SPKER EQU 0C030 ; loc to toggle Apple speaker
INPJK EQU 0C060 ; loc to sample the digital input

;
; Save the return address and get the all the parameters

»

POP RET ; get the return address in RET
PLA ; get the value of unit sound

STA DX ; parameter and store it in IDX
PLA ; ignore the higher byte

PLA ; get the value of delay constant
STA TEMPO ; parameter and store it in TEMPO
PLA ~; ignore the higher byte

PLA " : get the starting addr of VOICE array
STA INIL : ; parameter, lower byte, store it in
STA ADRL ; INIL & ADRL

PLA ; similar but higher byte, store it
STA INTH ; in INTH & ADRH

¢ STA ADRH
; From the value of sound unit (IDX), get one of the 5 sizes of
; VOICE array to be u_tillzed and place its value in lower and
; higher bytes of counter, respectively, CNTL and CNTH.

.
»

CNTER LDA #OFE ; LSB of any size always ends with
STA CNTL ; OFA, OFB, OFC, OFD or OFE
LDA =~ #o01
CMP SIZE ; 1 unit size ?
BNE ITWO
LDA #00
STA CNTH ; Yes, 255 = X’00FE’ bytes
JMP ZEROY
ITWO LDA #02
CMP SIZE ; 2 units size ?

DIGITAL APPLE_VOICE

BNE ITHRE
DEC CNTL
LDA #01
STA CNTH ; Yes, 510 = X'01FD’ bytes
JMP ZEROY
ITHRE LDA #03
CMP SIZE ; 3 units size ?
BNE IFOUR
DEC CNTL
LDA #02 ; Yes, 765 = X’02FC’ bytes
STA CNTH
JMP ZEROY
IFOUR LDA #04
CMP SIZE ; 4 units size ?
BNE IFIVE
DEC CNTL
LDA #03 : Yes, 1020 = X'03FB’ bytes
STA CNTH
JMP ZEROY

IFIVE DEC CNTL
LDA #04 . ; 5 units size, thus
STA CNTH ; 1275 = X'04F A’ bytes

; For the subset of VOICE array to be used, initialize each element

; with 0 value. The variables ADRL & ADRH have the starting address
; of the array originally. After the initialization of each element,

; the value of ADRL is incremented by 1, and the value of CNTL is

; decremented by 1. The task of initialization is ended when the

; values in both CNTL & CNTH are zero.

; After the increment of ADRL, when it is overflow (becomes O value),

; the higher byte ADRH is incremented by 1.

; After the decrement of CNTL, when it is underflow (becomes 0 value),
; the higher byte CNTH is decremented by 1 and X'FF’ value is

; assigned to CNTL.

ZEROY LDY #00
IZERO LDA #£00 :
STA $ADRL,Y ; init element pointed by ADRL & ADRH

INC ADRL ; increment lower byte
BNE COUNT '
INC ADRH ; overflow, incre higher byte
COUNT LDA #00
CMP CNTL ; check lower byte of counter, if it
BEQ HZERO ; is zero, check higher byte
DEC CNTL ; decrement is nonzero
JMP AGAIN
HZERO CMP CNTH ; check higher byte of counter
BEQ STRT
DEC CNTH ; decrement if nonzero and assigns
LDA #OFF ; X'FF’ to lower byte of counter
STA CNTL _
AGAIN JMP IZERO

-C3 -

-

DIGITAL

APPLE_VOICE

Initialize state of A/D sampling with X’FF’, which is none of the
sampling state values of X'00’ or X’01’.

For the subset of VOICE array, stores the address of the last byte
into ENDL & ENDH.

Makes ADRL & ADRH points to the start of VOICE array again.

STRT LDA

»

’

»

STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA

STA

LEADIN LDA

AND
CMP
BEQ
STA
STA
JMP

WAST1 STA

STA
STA

GKEY LDA

»
’

»

AND
BEQ

Delay loop.

LDX
LDY

LDELAY DEY

»
»

’

BNE

#OFF ; init state of A/D sampling

ADVAL

ADRL ; ADRL & ADRH have the address of the
ENDL ; last byte used, assign to ENDL &
ADRH ; ENDH respectively.

ENDH

INIL ; get the starting address of VOICE
ADRL ; array from INIL & INIH and assign
INTH ; back to ADRL & ADRH.

ADRH

; Continue replays the digitized A/D binary data on the Apple II
; speaker without analyzing it until a key on the keyboard has
; been pressed to start the process.

w

KEYB1 ; clear keyboard input

INPJK ; get digital data from input port
#80 ; leftmost bit is the state of sampling
ADVAL

WAST1

ADVAL ; toggle speaker if current &
SPKER ; previous A/D data are different,
GKEY ; store the current data.

WVAL ; delay cycles if both states of
WVAL h ; sampling are the same

WVAL

KEYBO ; get keyboard input, if any, the
#80 ; leftmost bit is nonzero

LEADIN

; Slow down the sampling rate with a delay constant, the
default value is 1.

#00
TEMPO

LDELAY

Analyze the digitized input data.

; Toggle the speaker if current and previous A/D sampling state

are different, otherwise, increment the counter in register X.

-C4 -

DIGITAL

GETAD

WAST?2

WAST3

BSOUND

»

WAST4

LDA
CMP
BNE

CPX

STA
STA

STA
STA
STA

INPJK
#80
ADVAL
WAST2

#7F
WAST3
WAST4
BSOUND

WVAL
WVAL

BSOUND

WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
LDELAY-2

SPKER
ADVAL
BSTORE

WVAL
WVAL
WVAL

APPLE_VOICE

; get the digitized data, the state

; of A/D sampling is in the left n
; most bit. -

; increment counter X
; store the counter value if its
; capacity X'7F’ has been reached

; go to speaker toggling

; delay cycles

; g0 to speaker toggling

; delay cycles

; back to delay loop before next
sampling

; toggle speaker

; store the current A/D state value
; g0 to store the counter value of
previous A/D state value

; delay c};cles

; Store the value of counter X to a byte pointed by ADRL & ADRH.

; Afterward, increment ADRL by 1, if result is overflow then

; inecrement ADRH by 1. The new address in ADRL & ADRH now point
; to the next vacant byte.

»

BSTORE

STX
LDA
EOR
STA

TMP
TMP
ADVAL
$ADRL,Y

-C5 -

; place the A/D state value into
; the leftmost bit of X counter
; assign to current byte @

DIGITAL

WASTS

INC
BNE
INC
NOP
JIMP

STA
STA
STA

ADRL
WASTS
ADRH

NOVFL
WVAL

WVAL
WVAL

APPLE_VOICE

; get addr of next vacant byte

; delay cycles

; Check whether the last byte address of the array subset has
; been reached. Current byte address is in ADRL & ADRH, the last

; byte address is in ENDL & ENDH.

; Ending when (ADRL=ENDL) and (ADRH=ENDH).

NOVFL

WASTS6

NEXTL

FINI

LDA
CMP
BNE
LDA
CMP
BEQ

JMP

INC
INC
INC
INC
NOP
NOP

LDX
NOP
NOP

LDA
PHA
LDA
PHA
PUSH
RTS

ADRL
ENDL
WASTS6
ADRH
ENDH
FINI
NEXTL

WVAL
WVAL
WVAL
WVAL

#00

LDELAY-2

INIH

INIL

RET

-C6 -

; compare ADRL with ENDL
; not equal, no need for further
; comparison

; compare ADRH with ENDH
; end of routine if equal

; delay cycles

; init counter of reg X

; back to delay loop before
next sampling

; push starting address of the
;. VOICE array buffer into the
; stack, return parameter.

.

; push return address into stack

ANALOG1 ' APPLE_VOICE

Sound is reproduced at the speaker of Apple II using the binary
sound data in array parameter VOICE. The size of this array is
1275 (X'04FA’) bytes, but only a subset of this array contains
the binary sound data.

Depending on the value of parameter IDX (1, 2, 3, 4 or 5),
respectively, only 255 (X’00FE’) bytes, 510 (X’01FD’) bytes,
765 (X’02FC’) bytes, 1020 (X'03FB’) bytes or 1275 bytes of
this array contain binary sound data.

PROC ANALOG1,3

; Zero page variables deflnition

RET EQU 0 ; return address storage

ADRL EQU 2 ; storage of VOICE array

ADRH EQU 3 ; Darameter’s starting address

INIL EQU 4 ; ADRL, INIL - LSB

INTH EQU 5 ; ADRH, INIH - MSB

CNTL EQU 6 ; counter, # of bytes of VOICE array
CNTH EQU 7 ; which contain binary sound data
ADVAL EQU 8 ; current A/D state value

ENDL EQU 9 ; address of the last byte which
ENDH EQU OA ; has binary sound data °
SIZE EQU 0B ; # of sound units

TEMPO EQU oC ; delay loop constant

WVAL EQU oD ; temporary var for delay cycles
OuUTL EQU 0C030 ; loc to toggle Apple II speaker

; Save the return address and get the all the parameters

.
>

POP RET ; get the return address in RET

. ., PLA ; get the value of unit sound
STA SIZE ; Darameter and store it in IDX
PLA ; ignore the higher byte
PLA . ; get the value of delay constant
STA TEMPO ; parameter and store it in TEMPO
PLA ; ignore the higher byte
PLA ; get the starting addr of VOICE array
STA INIL ; parameter, lower byte, store it in
STA ADRL ; INIL & ADRL
PLA ; similar but higher byte, store it
STA INIH ; in INTH & ADRH

STA ADRH ;

; From the value of unit sound parameter (SIZE), determines

; the total number of bytes in VOICE array parameter which

; have been filled with binary sound data. @
; The number of bytes are stored in: CNTL - LSB & CNTH - MSB

-C7 -

-

ANALOG1

CNTER LDA

STA
LDA

BNE
LDA
STA

ITWO LDA

BNE
DEC
LDA
STA

ITHRE LDA

BNE
DEC
LDA
STA
JMP

IFOUR LDA

CMP
BNE
DEC
LDA
STA
JMP

IFIVE DEC

»

.
»

LDA
STA

APPLE_VOICE

#0FE ; LSB of any size always ends with
CNTL ; OFA, OFB, OFC, 0FD or OFE
#01

SIZE ; 1 unit size ?

ITWO

#00

CNTH ; Yes, 255 = X’O0FE’ bytes
GPOS .

#02

SIZE ; 2 units size ?

ITHRE

CNTL

#01

CNTH ; Yes, 510 = X'01FD’ bytes
GPOS

#03

SIZE ; 3 units size ?

IFOUR

CNTL

#02 ; Yes, 765 == X'02FC’ bytes
CNTH

GPOS

#04

SIZE ; 4 units size ?

IFIVE

CNTL

#03 ; Yes, 1020 = X’03FB’ bytes
CNTH

GPOS

CNTL

#04 : ; 5 units size, thus

CNTH ; 1275 = X'04FA’ bytes

Find the address of the last byte in VOICE array para.ineter which
has binary sound data by decrementing CNTL or CNTH, also increment
ADRL or ADRH. Ending of searching if both content of CNTL & CNTH

is zero.

The value of ADRL & ADRH now is the required address, save it at
: ENDL - LSB and ENDH - MSB. Assign back the starting address of

GPOS LDA

STA

DOPOS INC

BNE
INC

COUNT LDA

CMP
BEQ
DEC
JMP

HZERO CMP

: VOICE parameter array to ADRL & ADRH from INITL & INIH respectively.

#OFF ; Initialize A/D state value, use any
ADVAL ; value except X'00’ or X’01’
ADRL ; increment lower byte ADRL
COUNT ;

ADRH ; increment higher byte ADRH if ARDL
#00 . overflows

CNTL ;

HZERO ; decrement lower byte CNTL if
CNTL ; it is nonzero

AGAIN ;

CNTH ; CNTL=0 , is CNTH=0 ?

-C8 -

ANALOG1

BEQ

DEC

LDA

STA
AGAIN JMP
STRT LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDY

APPLE_VOICE

STRT ; yes, end of searching

CNTH ; no, decrement CNTH & »
#OFF ; add X'OFF’ to CNTL
CNTL ;

DOPOS ;

ADRL ; address of last byte

ENDL ; LSB - store in ENDL

ADRH ; MSB - store in ENDH

ENDH ;

INIL ;

ADRL ; ADRL & ADRH contain the starting

INIH ; address of VOICE array again

ADRH ;

#00 ;

; Analyze the byte value pointed by ADRL & ADRH, get the A/D state
; value and the counter value.

; Leftmost bit is A/D state value, either 0 or 1.

; 2nd —-> 8th bits is counter value.

VALGET LDA
AND
TAX
LDA
AND
CMP
BEQ
STA
STA
IMP
WASTE1 STA

STA

STA

$ADRL,Y ; get the byte value
#7F ; €et the counter value and

; store it at register X
ADRL,Y ;
#80 ; get A/D state value
ADVAL ; compare with previous A/D state value @
WASTE1 ; same, do delay loop
ADVAL '
OUTL
DECINX
WVAL
WVAL
WVAL

; toggle speaker if different

; Delay loop, default value of delay loop constant is 4.

DECINX LDY
DEY
BNE
DEX
BMI
BEQ
WASTE2 . NOP
INC
INC
INC
INC
INC
INC
INC

TEMPO ; get delay loop constant
DECINX+2 ;
; decrement counter value
NLOC ; initial counter value is 0
NLOC ; €0 to get next byte value
; delay cycles
WVAL ;
WVAL ;
WVAL ;
WVAL ;
WVAL ;

WVAL ;
WVAL ; @

-C9-

ANALOG1

»

WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
WVAL
DECINX

APPLE_VOICE

; Get address of the next byte by incrementing ADRL or ADRH by 1.
; Last byte of binary sound data has been reached if :
; (ADRL=ENDL) and (ADRH=ENDH)

NLOC
WASTE3
NFULL
—
\-»’
WASTE4
FINI

INC
BNE
INC
NOP
JMP

STA
STA
STA

LDA

BNE
LDA

BEQ

STA
STA
STA

PUSH
PUSH
RTS

ADRL
WASTE3
ADRH

NFULL

WVAL
WVAL
WVAL

ADRL
ENDL
WASTE4
ADRH
ENDH
FINI
VALGET

WVAL
WVAL
WVAL
VALGET

INIL
RET

- C10 -

’

’

»
1)
.
»
.
’
’

»

»

’

’
’
»

>

increment lower byte

increment higher byte if lower

; byte overflows

delay cycles

is
no, get next byte value
yes, is ADRH = ENDH ?

yes, end of binary sound data

delay cycles

; No, go to get next byte value

; push starting byte address of the

; VOICE array parameter and return
; address in the calling routine

; into the stack

ANALOG22 APPLE_VOICE

Sound is reproduced at the speaker of cassette recorder using the binary sound data in array
parameter VOICE. The size of this array is 1275 (X'04FA’) bytes, but only a subset of this array
contains the binary sound data.

Depending on the value of parameter IDX (1, 2, 3, 4 or 5), respectively, only 255 (X’00FE’) bytes,
510 (X'01FD’) bytes, 765 (X'02FC’) bytes, 1020 (X'03FB’) bytes or 1275 bytes of this array con-
tain binary sound data.

PROC ANALOGY,3

; Zero page variables definition

RET EQU () ; return address storage
ADRL EQU 2 ; storage of VOICE array
ADRH EQU 3 ; Darameter’s starting address
INIL EQU 4 ; ADRL, INIL - LSB
INTH EQU 5 ; ADRH, INIH - MSB
CNTL EQU] ; counter, # of bytes of VOICE array
CNTH EQU 7 ; which contain binary sound data
. ADVAL EQU 8 ; current A/D state value
ENDL EQU 9 ; address of the last byte which
ENDH EQU OA ; has binary sound data
SIZE EQU 0B ; # of sound units
TEMPO EQU oC ; delay loop constant
WVAL EQU oD ; temporary var for delay cycles
OUTL EQU 0C020 ; loc to toggle cassette recorder speaker

; Save the return address and get the all the parameters

.
»

POP RET ; get the return address in RET
PLA ; get the value of unit sound

STA SIZE , ; parameter and store it in IDX
PLA . ; ignore the higher byte

PLA ; get the value of delay constant
STA TEMPO ; parameter and store it in TEMPO
PLA ; ignore the higher byte

PLA ; get the starting addr of VOICE array
STA INIL ; barameter, lower byte, store it in
STA ADRL ; INIL & ADRL

PLA ; similar but higher byte, store it
STA INTH ; in INIH & ADRH

STA ADRH ;

; From the value of unit sound parameter (SIZE), determines

; the total number of bytes in VOICE array parameter which

; have been fllled with binary sound data.

; The number of bytes are stored in: CNTL - LSB & CNTH - MSB

CNTER LDA #OFE ; LSB of any size always ends with

-C11 -

ANALOG22

ITWO

ITHRE

IFOUR

IFIVE

STA
LDA

BNE
LDA
STA

LDA

BNE
DEC
LDA
STA

LDA

BNE
DEC
LDA
STA
JMP
LDA
CMP
BNE
DEC
LDA
STA
JMP
DEC
LDA
STA

CNTL
#01
SIZE
ITWO
$#00
CNTH
GPOS
#02
SIZE
ITHRE
CNTL
#01
CNTH
GPOS
#03
SIZE
IFOUR
CNTL
#02
CNTH
GPOS
#04
SIZE
IFIVE
CNTL
#03
CNTH
GPOS
CNTL
404
CNTH

APPLE_VOICE

; OFA, OFB, OFC, OFD or OFE

; 1 unit size ?

; Yes, 255 = X'O0FE’ bytes

; 2 units size ?

; Yes, 510 = X'01FD’ bytes

; 3 units size ?

; Yes, 765 = X'02FC’ bytes

; 4 units size ?

; Yes, 1020 = X’03FB’ bytes

; 5 units size, thus
; 1275 = X'04FA’ bytes

; Find the address of the last byte in VOICE array parameter which
; has binary sound data by decrementing CNTL or CNTH, also increment
; ADRL or ADRH. Ending of searching if both content of CNTL & CNTH

; is zero.

; The value of ADRL & ADRH now is the required address, save it at
: ENDL -‘LSB and ENDH - MSB. Assign back the starting address of
; VOICE parameter array to ADRL & ADRH from INITL & INTH respectively.

GPOS

DOPOS

COUNT

HZERO

LDA
STA
INC
BNE
INC
LDA
CMP
BEQ
DEC

CMP
BEQ
DEC

HOFF
ADVAL
ADRL
COUNT
ADRH
#00
CNTL
HZERO
CNTL
AGAIN
CNTH
STRT
CNTH

-C12-

; initialize A/D state value, use any

; value except X'00’ or X'01°

; increment lower byte ADRL

; increment higher byte ADRH if ARDL
; overflows

; decrement lower byte CNTL if

; it is nonzero

; CNTL=0, is CNTH=0 ?

; yes, end of searching

; no, decrement CNTH &

ANALOG22

AGAIN

STRT

APPLE_VOICE

LDA #OFF ; add X’OFF’ to CNTL
STA CNTL ;
JMP DOPOS ;

LDA ADRL ; address of last byte

STA ENDL ; LSB - store in ENDL

LDA ADRH ; MSB - store in ENDH

STA ENDH :

LDA INIL H

STA ADRL ; ADRL & ADRH contain the starting
LDA INIH ; address of VOICE array again

STA ADRH ;

LDY #00 ;

; Analyze the byte value pointed by ADRL & ADRH, get the A/D state
; value and the counter value.

; Leftmost bit is A/D state value, either 0 or 1.

; 2nd —> 8th bits is counter value.

.
’

VALGET

WASTE1

; Delay loop,

DECINX

WASTE2

LDA $ADRL,Y ; get the byte value

AND #7F ; get the counter value and

TAX ; store it at register X

LDA ADRL,Y ;

AND #80 ; get A/D state value

CMP ADVAL ; compare with previous A/D state value
BEQ WASTEL1 ; same, do delay loop

STA ADVAL

STA OUTL ; toggle speaker if different

IMP DECINX
STA WVAL
STA WVAL
STA WVAL

default value of delay loop constant is 4.

LDY TEMPO ; get delay loop constant
DEY . ;

BNE DECINX+2 ;

DEX ; decrement counter value
BMI NLOC ; Initial counter value is 0
BEQ NLOC ; €0 to get next byte value
NOP ; delay cycles

INC WVAL ;
INC WVAL ;
INC WVAL :
INC WVAL ;

INC WVAL ;
INC WVAL ;
INC WVAL ;
INC WVAL ;

-C13 -

N

ANALOG22

; Get address of the next byte by incrementing ADRL or ADRH by 1.

INC
INC
INC
INC
INC
JMP

WVAL
WVAL
WVAL
WVAL
WVAL
DECINX

; Last byte of binary sound data has been reached if :
; (ADRL=ENDL) and (ADRH=ENDH)

.
»

NLOC

WASTE3

NFULL

WASTE4

FINI

INC
BNE
INC
NOP
JMP

STA
STA
STA

LDA

BNE
LDA

BEQ

STA
STA
STA

PUSH
PUSH
RTS

ADRL
WASTE3
ADRH

NFULL

WVAL
WVAL
WVAL

ADRL
ENDL
WASTE4
ADRH
ENDH
FINI
VALGET

WVAL
WVAL
WVAL
VALGET

INIL
RET

- Cl4 -

; increment lower byte

APPLE_VOICE

; increment higher byte if lower

; byte overflows

; delay cycles

; is
; NO, get next byte value
; yes, is ADRH = ENDH ?

’

; Yes, end of binary sound data

; delay cycles

; o, go to get next byte value

; push starting byte address of the
; VOICE array parameter and return
; address in the calling routine

’

into the stack

CHAPTER 4
SPECIAL FEATURE OF UCSD PASCAL .

4.1. EXTERNAL COMPILATION UNITS

The UCSD Pascal System supports a facllity for Integrating exter-
nally complled and assembled routines and data structures. Use of
separately complled or assembled structures allows the user to create flles
of frequently used routlnes. The user does not have to Insert this new
structure Into each program which calls the structure and then complle
the comblned text; rather, the LINKER. of the Pascal System coples the
structure’s code dlrectly Into the host program’s code flle.

After a structure 1s complled or assembled, the user can use the
LINKER. expllcltly to Integrate that structure Into any program which
correctly calls the structure. Alternatively, the user can add the new
structure to a library, using the LIBRARIAN of the Pascal System.
‘When user later RUNs any program which calls.a structure in the
Iibrary, the LINKER will automatlcally find and llnk In that structure.
Separate compllation or assembly Is supported In these areas:

(1) Between portlons of programs written In Pascal language.

(2) Between Assembly language routlnes and Pascal language host pro-
gram.

(3) Between Assembly language routines.

4.2. PASCAL TO PASCAL LINKAGE : UNIT

An UNIT 1Is a speclal group of Interdependent procedures, functions,
and assoclated data structures which perform a speclalized task. The unlt
1s placed In the System Library, and whenever this task is needed within
a program, the program Indlcates that 1t USES the unlt. For example, to
use any of the procedures In the GLOBAL UNIT, the host program
would slmply start as follows:

PROGRAM DEMO_GLOBAL (INPUT, OUTPUT) ;
USES GLOBAL ;

-4.1-

k)

O

SPECIAL FEATURE OF UCSD PASCAL

Each UNIT coansists of two parts:
(1) INTERFACE
(2) IMPLEMENTATION

The INTERFACE part lmmedlately follows the UNIT’'s name llne.
It declares constant, types, varlables, procedures and functlons that are
PUBLIC. These items can be used by the host program Just as if they
appear In the expliclt declaratlons at the top of the host program ltself.
The INTERFACE portlon Is the only part of the UNIT that Is visible
from the outslde, 1t speclfles how a host program can communlcate with
the UNIT. The actual workings of the UNIT can be changed at any tlme,
but the UNIT will appear to be the same as long as the INTERFACE
portlon Is unchanged.

The IMPLEMENTATION part lmmedlately follows the last declara-
tlon In the INTERFACE part. It begins by declaring those constants,
types, varlables, procedures and functlons that are PRIVATE. Items
which are declared in the IMPLEMENTATION part are not avalliable to
the host program and are used only by the UNIT ltself. The IMPLE-
MENTATION part defines how the UNIT will accomplish its task. This
part glves the detalls of the varlous procedures and functlons declared in
the INTERFACE part, and also the private procedures and functlons
declared In the IMPLEMENTATION part.

At the end of the IMPLEMENTATION part, followlng the last
function and procedure, there Is a main program portion. This program
runs automatlcally when the host program beglns, before the host pro-
gram Is run. It allows user to inltlallze the system and the host program.
The declaration of routine headings In the INTERFACE part 1s simllar
to forward declaratlons; therefore, when the corresponding bodlies are
defined In the IMPLEMENTATION part, formal parameter specifications
are not repeated.

The properly completed UNIT would then be complled. Any exter-
nal Assembly language procedures or functions would then be linked In,
using the LINKER. Flnally, the unlt would be Installed In a llbrary,
SYSTEM.LIBRARY for example, using the LIBRARIAN utllity. Once In
the llbrary, the unlt could then be used by any Pascal host program.

A host program must Indicate the UNITs that 1t USES before the
LABEL or CONSTANT declaration part of the program. At the occu-
rance of an USES statement, the Compller references the INTERFACE

-4.2-

SPECIAL FEATURE OF UCSD PASCAL

part of the unlt as though 1t 1s part of the host text ltself. Therefore, all
constants, types, varlables, functions and procedures publicly defilned In
the unlt are global. Name conflicts may arise If the user defines an
ldentifler which has already been publicly declared by the unit. Pro-
cedures and functions may not USES units locally.

4.3. PASCAL TO ASSEMBLY LANGUAGE LINKAGE : EXTERNAL
PROCEDURE

External procedures are separately assembled Assembly language
procedures, often stored In a LIBRARY or diskette. The host program
which requires external procedures must have them linked into the com-
plled code fille. Typlecally, the users wrlte external procedures In Assem-
bly language, to handle low level operations that the Pascal language Is
not deslgned to provlide. External assembly language procedures are also
used for thelr comparative speed 1n real time applications.

A host program declares that a procedure 1s external In much the
same way as a procedure Is declared FORWARD. A standard heading Is
provided, followed by the keyword EXTERNAL. Calls to the external
procedure use standard Pascal syntax, and the compller checks that calls
to the external agree In type and number of parameters with the external
declaration. It is the user’s responslbllity to assure that the Assembly
language procedure respects the Pascal external declaration. The Linker
checks only that the number of words of parameters agree between the
Pascal and Assembly language declaratlons.

NOTE: For complete Information on toplcs mentioned In thls chapter,
please refer to:

APPLE PASCAL

LANGUAGE REFERENCE MANUAL

APPLE COMPUTER INC.

-4.3-

REFERENCES

(1) APPLE PASCAL
OPERATING SYSTEM REFERENCE MANUAL
APPLE COMPUTER INC.

(2) APPLE PASCAL
LANGUAGE REFERENCE MANUAL
" APPLE COMPUTER INC.

(3) VOICE SYNTHESIS FOR THE TRS-80 COLOR COMPUTER
BYTE, FEBRUARY 1982
WILLIAM BARDEN JR.

VOICE LAB
BYTE, JULY 1983
JOHN E. HOOT

(4

~—

DIGITAL REPRESENTATIONS OF SPEECH SIGNALS
PROCEEDINGS OF THE IEEE

VOLUME 63, APRIL 1975

SCHAFER, LAWRENCE R. AND RONALD W. SCHAFER

(5

~—

(6) AN EXTREMELY LOW COST COMPUTER VOICE RESPONSE SYSTEM
BYTE, FEBRUARY 1981
JAMES C. ANDERSON

(7) APPLE ANALOG TO DIGITAL CONVERSION IN 27 MICROSECONDS
BYTE, OCTOBER 1981
MICHAEL A SEEDS AND HAROLD F LEVISON

(8) THE ATARI TUTORIAL
PART 7 : SOUND
BYTE, MARCH 1982
BOB FRASER

(9) APPROACHING FILTERING DISCRETELY
COMPUTER DESIGN
APRIL 1982
MAZOR, STAN

http:WILLlA.J.VI

