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ABSTRACT

Combined free and forced-convection inside inclined cireular tubes
is studied theorstically. The case considered is that of fully developed
laminar flow with constant pressure gradient, and constant heat flux. Fluid
properties are considered constant except for the variation of density in
the buoyancy terms. Upward flow only is considered. Velocity and
temperature fields are calculated by perturbation analysis in terms of poWer
series of Rayleigh numbers. A detailed analysis of the final equations is
made to determine the range of values of non-dimensional parsmeter such
as Rayleigh and Reynolds numbers over which the mabhematical results are
valid, .Nusselt numbers are caleulated based on bulk temperature difference
and in final form are also expressed in terms of power series of Rayleigh
numbers. Rayleigh number appears to be the most dominant barameter in
equétions of velocity and temperature fields and Nusselt number, However,
Rayleigh and Reynolds rnumber product and Prandtl number also influence bhe
~equations independently. As the tube inclination_variés f;om horizeontal,

the Nusselt number increases up to a maximum which may occur before the
vertical position is reached. The angle at which this maximum occurs appears
to be a function of Rayleigh, Reynolds and Prandtl number, and in most

instances lies between 20° and 60° of tube inclination,
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NOMENCLATURE

Roman Letter Symbols

A = axfal temperature gradient (assumed comstant), nt/> x p/ft,
. & =  tube radius in feet,

¢ = (vp/dx +ge), axlal pressure gradient in fluid, 1b/ft>.
A )

CP = specific heat of fluid at constant pressure,BTUflbo Og
g = acceleration due to gravity, ftiseczg
Byr8p28g =  coOmponents of acceleration due to gravity in three coordinate
directions, ft/sec®,
; !
B h = qf(Iy = Ty) = heat transfer coefficient for fully developed flow
based on bulk tempersture difference, BTUfsecnftz °F,
. & )
NGr = Pgﬁa /~J° Grashof number, dimensionless,
N = 2ah/k Husselt number, dimensiohless. -,
NN =  HNusselt number based on bulk temperature difference, dimension~-
i, U less,
NPr. = cppfk, Prandtl number, dimensionless.
N = N, x N = gA34 2 cp/Mk, Rayleigh number, dimensionless
Ra Gr Pr _ﬁ P cplpk; Raylelg 5
NRe = wC&3/(4ﬁ\)2), Reynolds number based on pipe diameter, dimension-
less,
P = p's+ P{r,§), static fluid pressure; lb/ft2=
g . = wall.heat flux density, average over the circumference BTU!sec,ft2,
3 = rfa, radigl distance from the centre line of the tube, dimension-
less.
r = radial distance in cylindrical coordinate system, measured from

the centre line of the tube, ft.



ROMENCLATURE

-

Romsn Letrter Symbols

A = axial temperature gradient (assumed constant), »t/d x °F/ft.

a = tube radius in feet.

c = (‘h?fb-x + gng), axial pressure gradient in fluid, 1bfft3.
ey = specific heat of fluld at constant pressare,BTU!lba oF.
g = acceleration due to gravity, ft;’seczo
By 8p38g =  Components of acceleration due to gravity in three ccordinate
directions, ft/sec”,
i h = qf/(Ty = Ty) = heat trensfer coefficient for fully develcped flow
.based on bulk temperature difference; ETUfsec.,ft2 °F.
: 4, 2 N
HGr = ﬁgAa f~ < Grashof number, dimensionless.
HNu = 2ah/k Husselt number, dimensionleds. .. -
NH =  HNusselt number based on bulk temperature difference, dimension-
7, Y less, '
Mo =, c#ﬁfk; Prandtl number, dimensionless.
& 2 .
Ny = Moo x Ny ==°ﬁgAa & ep/Pk, Rayleigh number, dimensionless
Noo =" =Ca3f(ﬁﬁjgz)3 Reynolds number based on pipe diameter, dimension-
less,
p = p'x+ P(x,§), static £luld pressure, lb!ftzn
q = - wall heat flux density, average over the circumference BTUfsecoftzo
R = r/a, radial distance from the centre line of the tube, dimension-
less.
r = radial distance In cylindrical coordinate system, measured from

the centre line of the tube, ft.

A




T+

T

Al

temperature of the fluid at any point, “v.

bulk temperature of the,prid'at any section, oF.

temperature of the tube wall at beginning of the fully
develeped flow, °F.

(T, - D/ a Nbr}, difference between the wall temperature and .

any peoint of the fluld at same section, dimensionless.

(g = Tb)!(A ] NPr),-difference between the wall temperature and

bulk temperature of the fluid g; the same secticn, dimensicnless.

velocity.of a fluid particle, ft/sec.
fluid velocity measured along the radial coordinate of tube, ft/sec.
axial velocity of fluld meaSu¥ed along the x-axis of tube, ft/sec,

angular velocity of fluid measured alomg the angulaf cocrdinate
of tube, ft/sec. '

averdge velocity along the x-axis of tube, ft/sec.
vg/ (v /a), axial velocity, dimensiomnless.
Vx

av/{Vv /a), average axial velecity, dimensionless.

axial coordinate of the tube measured in upward direction
(divection of flow), ft,

Greek Letter Symbels

oL

I

tube inclination measured from the horizontal position, degrees.

volumetric coefficient of thermal expansion of the fluid, k/oF.
¢
difference between two points.

Laplacian in cylindrical coordinates.
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thermal conductivity of f£luid, BIU/sec.sq.ft. °F/ft,

angular position in ¢ylindrical coordinate system, measured from
the top point of the tube cirecumference, degrees,

dynamic viscosity of fluid, lb/ft.sec,
kinematic viscosity of fluid, ftzfsec.

masa density of the fluild, lb.seczlfth._

+

 mass density of the f£luid at wall, lh.secsztk.

Stokes stream function, dimensionless,

4
- refer to zero, lst and 2Znd order perturbatioms.

= refer to points st varicus positione along the axis of
the tube.



INTRODUCTION

-

In any convective heat transfer process, density differences
arise due to differences in temperature, and under the influence of =2
gravitational force field natural-convection effects result. In a
fcrced—conVectiOn case, asscolated with large Reynolds numbers comnected
with large flow velocities, where the forces and momentum transport rates
are very large, the effects of natural-convection are negligible. If,
on the other hand, buoyancy forces arising from density differences are
relatively large, (as exemplified by large Grashof numbers) the forced
convection effects may be ignored. However, in many cases of practical
interest, both the effects of forced-convection and natural-convection
may be of comparable order. An indication of the relative magnitude of
the two effects can be obtained from the differential equations describing
the flow, With the comparatively small velocities associated with laminar
motion, the heat transfer is substantially affected by buoyancy forces
and the resulting velocity fields. In this cireumstance, in addition to
Grashof, Reynolds, and Prandtl numbers, the parameters describing the
geometry of heat transfer surface and flow orientation to the gravitational
field are slso important. The problem that has been most exteneively
studied is that of ?ertical round tubes, where gravitationsl force is
parallel tolthe tube axis. Varlous aspects of combined free and forced-
cdnvectien ineide vertical cireuwlar tubes, ducts and channels were

studied in references [;—20}1. References 121-2?] deal with the influence

1 Numbers in brackets refer to gimilarly numbered references in bibliography
at end of paper,. .



of free-convection on forced flow in horizontal cireular tubes and
charnels, Numerous studies of the influence of free-convection on
forced-flow for external flows of boundary layer type are also available
in the literature cited [28*31]. The case of pure free-convection inside
vertical and inclined tubes, with both ends closed or open, has been
investigated by references [32—3&],

The present analytical study of combined free and forced-
convection inside inclined tubes springs from an interest in its
applications to flat plate solar collectors, which are normally placed
at an inelined position. It is desired to know the influence of tube
inclination on heat transfer. The case considered is that of uniform
heat flux, which results in uniform temperature gradient along the wall.
This happens to be approximately so¢ in solar collectors. The analysis,

however, is a generalized one,

FORMULATION CF THE PROBLEM

Consider a tube of radius "a inclined at an angle 7 to the
horizontal, as shown in Fig, 1. There is a uniform heat flux Hg! around
the circumference and per unit length of the tube., This heat flux covld
be due to solar energy absorbed by the flat plate collector iﬁ solid
contact with the tube, or resistance hegﬁing of the tube, este. On-the_
slow laminar motion of the fluid, flowing under external pressure,
buoyaﬁéy'forces are superimpased due to differences in density arising
out of differences in temperature. These bucyancy forces create a

secondary flow, distorting the normal Poiseuille flow to a form of heliecal



motion as shown in Fig. 2. Due to the bucyancy effects and the sircu-
lation of the fluid inside the tube, the circumferential distribution

of tube temperature at any section will be no longer constant. The fact,
however, that the thermal conductivity of the tube material is usually
much higher than that of the fluid, will tend.to minimize the circum-
ferential temperature variation, so that a constant tube wall temperature
at any section may be assumed. In addition, the speeific heat, thermal
conductivity and viscosity can be considered constant throughout the fluid.
Density is also considered constant throughout except for its variatien in
the buoyaney term. Pressure gradient is assumed constant. For the case
of uniform heat flux and under the above conditions, the temperature
~gradient within the fluid and at the tube surface becomes constant beyond
the entrance length, as shown in Fig. 3. Also the temperature difference
(Tw - T), between tube wall and fluid at any section, is constant along
the tube, barring the entrance length. Since this  femperature difference
creates buoyancy forces, resulting in secondary flow that gives rise to

' radial and angular velocities, therefore Vps Vg and v,., (the radial,
angular and sxial velocities respectively) become independent of the axial

distance x.
ANALYSTS

Using the cylindrical polar coordinate system where @ is measured
from the top vertical position'of the circumference, x is measured from the
point of fully developed flow, and with the assumptions made in the previous

seclion, the governing equations for laminar flow can be written as:



Continuity Eguation
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Momentum Eguations

Momentum equations :Ln'r, 0, and x directions are respectively:
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In the above equations, density in the buoyancy terms is to be

expanded as ;‘9 = ;”W {1 + P (TW - T)}, Whereﬁ is the coefficient of

thermal expansion of fluid. Buoyaney force is caleulated ﬁsiﬁg the

difference between fluid temperature T and the temperature of the wall Tw

Gravitational components gps &, and g, are g CosK CosO , g Cosd 8ind and

g Sind respectively. Pressure gradient along the tube is considered

constant, while across a section it is a function of r and@. Temperature

of the wall at any section is calculated as TW =T, + (2t/px)x. Where

To is the wall temperature st the point starting the fully developed flow,

and ®T/bx = 4 being a constant,



Energv HBquation

The energy dguation is:

_+—..._+ —.|.—.... o m—— —

8T % T 2T ¥l 1 ‘ﬁT 1 T
k : A -4
cp( T3r = a0 xhx,) ( Yré  r ‘br rZ 302)

In this equation, conduction along tube axis, dissipation and pressure
terms are ignored.

The pressure terms from equation (2) and (3) can be eliminated
by differentiating equation (2) with respect to § and equation {3) with
respect to r and then reducing them to one eguation. The resulting
equation, along with equations (1), (L) and {5) can now be reduced and

non—-dimensiconalized with the help of the stream functiou‘f expressed as;

rv Ay o= 0P/ L L L L L L L ()

w/iv = =N . . . . ... (&)

and the parameters,

-dimensiornless radius R = r/a . . . . . . . {74
" dimensionless axial velocity Vx = vx/vaa) B 4 )
dimensionless temperature  T¥ _ (T - T)/(A a Npr) N ¢ ()

The momentum equations (2} and (3) become:

Wov W %
R

v <335 5 5w 9O

"-?.\T%‘L' . l\c'.iT* '
NRa( ST Sin® +E-€5- Cosﬁ) Cosel A € :))



Equation (L) is reduced to:

2 1/ o ‘E_.__hi 3 _
TV (“aR'bo w'm]"x*“‘ﬂe‘

and the energy equation becomes:

Merfay 2 ¥ B
VETﬁ'*_RE(‘ﬁR 20730 hn) eV, = 0

The boundary conditions for the above

™ - v - WAR = W/ - 0 at

x
T V., B7L W /Ae , OYAR  are finite; at

and

NRaT*‘Sina('_ =0 . (%)

N X o)

equations are:

R =1 ., . . {11

R =0 . . . (@2

- Equations (8), (9) and (10) are non-linear, simultanecus partisal

differential equations. Their sclutlon is extremely difficult, however a

perturbation approach similar to Mbrtonk[?é] is

made.

In the absence of any exact solution for the dependent variables

W, V, and T* in equations (8), (9) and (10), these wmknowns are expanded

in a power series of Nﬁaf In literaturq Rayleigh number is generally

chosen for such an expansion, since this is the

significant parameter

indicative of velocity and temperature fields with free-convection effects.

2 3 :
kf/ - kf/'r;:r+I‘IR,ELK]V].JFNR;J. Y/2+Nﬁa (!U3+".
= 3
Vx = ?xo + * NR N V x, +
R ¥og Zp¥ g 3%

P )

T R 1Y

Y 1.



Tc ensure convergence of the series, the numerical value of NRa
must be smsll. For a desired accuracy of the result, number of terms chosen
in the series depends upon the numerical value of NRa

The equations (13) to (15} are now substituted in equations (8)
to {1Q) and the terms of the like powers of NRa are grouped together. Taking
the tefms up to Secendxorder of Rayleigh number only, the three groups of

equations are:
The terms with szerg order of NRa are!

g21;xo+hmRe=0............(16}

¥* :
vaO -+ vXO = O . . » ) " » . [ - . - - ( l ? )

The terms with first power of NHa are: -

'ET E D%? -. '
‘W‘|J ( 'TSJ_HO +%~OT@ Gos 0 ).-Gosaf. T 1))
2 1 .b‘fl hth:r ?ﬁ/l DVx ) * . :
Npo W1 BT, dY; T *)
2w _Prl YT 1 o 71 o ) . _ . . ) ‘
v R“‘oR-‘w 0 ' DE vxl 0 (20)

The terms with 2nd power of NR& are:

M D (g \@‘\Vl b (3°)
VLW"*R{ Y- W T LR

\GTI lhf )

Coso(.( S B S5in@ +EBO Cos 6 . . . . (21)
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The boundary conditions, equations {11) and (12) apply to all
equations (16} through {23).

Equations (16} and (17) are for normal Poiseuille flow, withoub
free-convection effects. Their solution is available in standard texts.
The remaining equations are solved by subsfituting the forced flow solution
in the equations of first order in Rayleigh number and proceeding step by
step. T
The final equations up to second order in NRa are rather lengthy
and are given in the Appendix 4 as eguations (A1), (A2) and {43).

For the case of c[ = 0, these equations reduce to those of
Morton (P6) except:  for some slight numerical differences and more

importantly, differences in some minus sighs in the temperature equations

which will probably affect his final expression for the mean Nusselt number.



..-'13_.

CATCULATTION OF NUSSELT NUMBER

Nusselt number is the dimensionless parameter indicative of the

rate of energy convection from a surface.

Neo = % h v . 0L L. e

Where h, the convective heat transfer coefficient is based on bultk
temperature of the fluid.

Nusselt number can also be expressed as:

= E q . . - 4 - -
e, TR T o
A
f{ T{r,a) v, (7,0) rdrde :
.Wh.ere Tb = 02 iR L} . + - + - + (26)
‘ijrka(r,ﬁ} rdrde
Al
- & -
| f T™(R,0) V_(R,0) RRdO
And in dimensionless form, T*£ = 2.9 - .. )
[ v_(R,0) RdRaG
0 o

From the eguation (A2) the dimensionless average axial velocity is

evaluated as:
25/ :

A eoree

x ]
av. T f " RRG®
., G

QNRE {1/1; - (h.125/576) N Sind - 0.052&86(NR3 NRE cosoc/h608)2 '

+ b5ho. BN, Sind/U608)2 3+ mmmm—mm } . (29)

Volume flow = Cros_..-_sr—?ection i Average Hﬂ'a"UVx _ ' . (30)
through tube crareatof Ttubkd  welocity av



Making an energy balance over two eross-sectlons of the tube, A x

apart gives,

LA eV op Uy, (Tp, - Th )
2R a Ax

(lf’E}-UFcpAVx;w T N T O I

- From equation (25) and (31},

N:a"......-.....uz)
Nu.bTb-n-

Equation (32) is given in detail in Appendix B,



DISCUSSION

Equations Al, A2 and A3 indicate that the thres veloeity
components as well as the temperature at any location on a cross—seetion
of the tube are a function of NRa’ NRE, NPr and of the tube inclinatien.

In order %o obtain z clear ﬁhysical pictire of the limitations of these
equations, numerical caleculations were performed to study the convergence

of these equations for various barameters. It should be stressed here

that the criterion. used was that of reasonably rapid convergence, considering
that the solutions obtained are developed only up to the second order in

Mra-

The analysis showed that comwvergence limits for the velocity,
temperature and Nusselt number equations may be considerably different,

In the present case, for instance, limits of convergence of the Nusselt
number and temperature Equation; may, in some cases (higher Npr),be
considerably lower than those of the veloclty equation. This alsc appears
to be the case in Morton's analysis (Ref. 26 s which considers the problem
of horizontal tubes), A detailed check of his resﬁlts indicates, morsover,
that his final Nusselt nimber equation is convergent in a range of values
of Np, x Np, in which the temperature equation is divergent, and therefore
his results have doubtful physical meaning in this range. It was to avaid
this mathematical pitfall that a study of validity limits of equations A1,
42, A3 andlBl_was made’.

i This study reveszled that, for inclined tubes, both the Nusselt
number and the temperature equations were convergent wibhin praetically
the same limits of the dimensionless parameters, while for the veloclty

equation the limits were ¢congidersbly higher.



Figure ! shows quantitatively the results obtained for-.
temperature and Nusselt number equations at two values of Prandtl
number (0.75 and 5.0), To interpret these figures, the reader should
select a radial_line'corresponding to the tube inclination, The
intersection of this line with the limit lipes will give the upper
limit of Ny, (read on the vertical axis) and Np, * Vg {on the
horizontal axis)., At large inclinations (nearly vertical tubez},
Nﬁa is the only controlling parameter and all the equations are valid
within the same limits. Ab lower inclinations (nesrly horizontal),
the significant parameters are the Prandtl number and the mroduct NRa x NRe‘
The upper limit of Np, x NRe for temperature and Musselt number equations
dec;eases.répidly as Npp increases, as clearly shown in Figure 1.

The dependence on Prandtl number is not so pronounced in the
velocily expression. In Figure 5, the Rayleigh number limitations are
about the same as in the case of Np, and ™ equation. The range of
Nﬁa s NRe is, however, much higher,

Figures & ~ 9 show the variationslof temperatore and axial
velocity at the vertical tube centre line for Prandtl numbers 5.0 and
0.75. Figure 10 is a contour'map showing a typilcal temperature distribution .
asross the tube. These.plots show that Prandtl number has a strong influence
on distortion of temperature and velocity profiles. Maximum temperature and
velocity ocour below the centre line for the horizontal positicn, but as.
tuba inclingtion increases, the location of the maximum values shifts upward,
Depending upen the valve of Prandtl number, this maximum sould be located
above the centre line for some tube inclinations. As the inclination is

inereased, the distortion of the profiles is reduced until they become



symmetrical about the cehtre line in the vertical position. Exact solubions
[5, lBj]available for this case (heating in vertical upward flow) indicate
that the effect of natural convection is to decrease the centre line
veloclty and temperature, A similar result is also obtained by the present
perturbation analysis.

Equation Bl in Appendix B shows the influence of the variocus
parameters on the Nusselt number. For the horizontal case (&L= 0°),
Nusselt number depends on the Rayleigh number only.

Figures 11 and 12 éhow the plots of Nusselt number sgainst Rayleigh
number for varicus values of Np, x Np,. Figure 11 gives the results for
NP; = 5.0 and Figure 12 for Np, = 0.75. At low Prandtl numbers, the heat
transfer is affected orly slightly by the product NRa X NRe’ but at higher
values this dependence is very significant for low tube inclinations. The
influence of both Np, and Np, x NRe-diminishes with tube inclination, unfil
it disappears completely at o = 90° (vertical tubes).

Figures 13 and 1L show that for any combination of Rayleigh,
Reynelds and Prandtl numbers, there is an optimum value of tube inelination
that gives the maximum value of Nusselt number. For most instances this
meximum appears to lie between 20° and 60° of tube inclination. This is
gomewhat similar tc Larson and Hartnett's [33:]findings for free conveetion
inside inclined tube closed at both ends.

The optimum tube inclination mentioned in the preceding paragraph
is plotted against the ﬁroduct Ny, x Npo in Figures 15 and 16, The curves
are similar at both Prandtl numbers investigated, but an interesting effect
of Rayleigh number can be observed. At high velues of Np, x Np, (for a
given Np,), the optimum tube inclination increases slightly when Ng, is

increased, but the reverse is true in the low Np, x Np, rangs,



CONCLUSIONS
]

The analysis shows that for inclined tubes, the velocity and
temperature profiles as well as Nusselt numbers are functions of Rayleigh,
Reynolds and Prandtl numbers. At loyw values of these parameters, for the
horizontal and vertical case, the results seem to be in agreement with other
theoretical work already published. Nusselt number increases with tube
inclination, compared to the horizontal case. For most combinations of
LY Np, and NPr’ the maximum value of Nusselt number seems to lie between

- 20° and 60° of tube inclination.



APPENDIX A

it ers e AP

The three equations in dimensionless form, up to second order in
Rayleigh number ares

Equation of Stokes Stream Fupction

2
¥ = '-‘Po + Haa?l + HRaf"z R whare 'f-"o = Q
"N, N, Cos él L
Ra " Re : 3 5 7 2
. iag— (~10R + 2IR° » 12> + R') Sin &
2 2 2 :
- N, “ N ¢ Cos ol _ : : - 10
+ Ra _Re 7 ' -(1,20410332 - 2,0517353".‘.&}0..150036 + 1.1035 - 0.425!{10 '
(4608) | 12 14 -
+0,034285R" =-0,0016078 ) Sin 26
2. 2, 2.
N N Cos &l
; BB N, (3.75643R° - 9.1607158" + 7.58° - 2.6R® +-0.562581°
(460_8) - 12 . 14 '
-0, 06R "4 0.001785R ) 8in 29
NRaz N.. Sin 2« , 3 5 7
+ (1.244166R - 2.652083R™ + 1.583333R"--0,1875R
. 36804 _ 1
+-0.01258% ~.0.000416R ") Sing + -— ceeer (AD)

- Yelocity Wquation im Axisl Direction

= 2 o

vV, = on-i- Moo Vxl + N vxz +. f———
2, Maa e 008 4 -- 3 5 79
= Np (=R + feas0 . C°° §(-49R + 100R” - 70R” + 20R - R)

N. N, Sine
+ 2 ??a (-19 + 2782 - 92* + %

2 3 2 '
N, S Cos ‘ol
v 22 NRE b {Cos 26) (0.1153561{2 - 0,3‘&09521&4 + '0‘.4327231".6
. (4608) . ‘0
*Ga31}.25R + Up13].25R.

- 0.0294648Y2 + 0,00241R%%

- 0,000?3316)



NNub

Whare

1EN

RN

1RD

ZRD

Where

1RD1

1RD2

2RDT .

2RD2

48 (1 + IRN + 2RN + ---)7

AFPENDIX B

Detailed expression for Nusselt number.

fTb . . . . . . . . . - . - {32)

Xav

——— .. {B1)
11 {1 + 3b.905116 (1RD + 2RD) + -\
= First order effect in Rayleigh number in the numerator
= - (N, 8indl) 16.5/576 ., (B2)

Second order effect in Rayleigh number in the numerator

[L - 0.20994h (Np, Np, Cos& )2 + 18163.2 (Np. Sint )& /(1,608)2
oo (B3}

= First order effect in Rayleigh number in the denominator

= 1RED1 + 1RD2 ' , cvees (BL)

= Second order effect in Rayleigh number in the denominatﬁr

= ZED1l + 2RD2 + 2RD3 + 2RDY4 + 2RDS ..., (BS)

= 63.06666 N Sin /3686l + 5h3.04821h (N Sind /4608)?

1l

(0.00105 + 0.003281" Wp,) (Mp, Mo CosL /LE08)2..... (B7)
| 1086.096428 - 32.L736) Ny, Sind
+ 10308L6kL. 2 (NRa Sin« /héOS)}{NRa he Sing /LE0B)2
,,,,, (B8}

If

1

(0.0003h - 0,000618 Np, + 0.000255 Ny, ?) x

X Ny Sind (W, N, Gosk /608)° ..., (89)



o .
U

ZRD3

2RD)

2RD5

n

- (196,290 - 276.6L018Y Np, + 128.267224 Np 2) x

x (Npe Sin Coset )7 (Np /W60 . ... (B10)
- (0.016054 + 0.003028 Np, + 0.009552 Np.2) x

x (Wp, Np, Cos< /W608)Y2 ... (B11)
{0,005553 + 0,001188 Np . + 0.003826 NPI_Q + 0,000095 ¥, 3) x

x (Np, N, Cose /1608)4 ceee.  {B12)
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