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Abstract 

One of the primary challenges facing the mining industry is the geological uncertainty 

associated with the variability of minerals within deposits. This variability can have significant 

implications for every stage of the mining process, from exploration and resource estimation to 

mine planning and mineral processing. The purpose of this research is to enhance the 

implementation of data-driven frameworks for evaluating mining projects, incorporating 

stochastic simulation to develop digital tools that support management decisions. The aim is to 

create a quantitative framework that integrates geological and geometallurgical models, enabling 

a deeper understanding of how various variables influence the overall performance of mining 

systems. A common practice in mining is to generate a single mining plan based on a deterministic 

resource model, where all inputs and outcomes are derived from a single prediction of values at 

unsampled locations on a grid, often overlooking the inherent random variability of in-situ grades 

and other geology-dependent variables. One of the main limitations of this approach is its inability 

to assess the risks caused by geological uncertainty, such as variability in ore grade and tonnage. 

Significant changes in the geological characteristics of the ore can also severely affect the 

efficiency and outcomes of mining operations. Minerals are inherently complex and exhibit 

significant variability due to their geological and mineralogical characteristics, which directly 

influence plant performance. Consequently, a mine is expected to experience significant variations 

in mineral characteristics over its lifetime. Understanding these problems and their impacts is 

crucial for optimizing the operations involved in the value chain, thereby reducing costs and 

minimizing potential environmental impacts. These insights enable the development of predictive 

models that anticipate how minerals will behave, thereby reducing the risks associated with 

variability and improving overall operational efficiency in mining projects. 

In mining companies there is a justified effort in the characterization and grades control, 

where a large amount of economic and human resources are focused on the characterization and 

quantification of the metal contained, but in concrete terms, this represents a small part of the total 

mass that will enter the processing plant - in the best of cases 3 to 5% of the total ore mined; 

underestimating the potential problems for the process in the remaining portion of mass that enters 

the process. This dissertation presents a quantitative approach to take advantage of the information 
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obtained from geometallurgical sampling campaigns to optimize reagent consumption and the 

overall performance in gold and silver ore processing plants in the context of underground mining. 

Based on a clear and intelligent definition of mineral classification and stockpile control policies, 

changes in modes of operation are triggered by observed variation and forecasted inventory levels. 

The resulting modes of operation provide an integrated response to geological and 

geometallurgical variability; demonstrated through the simulation of discrete events/rates. It is 

critical that strategic decisions in the evaluation of mineral deposits take into account this 

geological uncertainty. The mining systems dynamics framework uses mass balance in 

conjunction with discrete event/rate simulation, a subset of Monte Carlo simulations, to connect 

geological data with alternative downstream resource configurations. The use of discrete rate 

simulation assays in combination with stochastic simulations can provide a better understanding 

of the dynamics of geological variability and mineral processing variables within a mining system 

by optimizing the balance of incoming ore. The use of simulations provides reliable inputs for 

modeling geological uncertainty by testing the possible values of the sample dataset while 

respecting their probability of occurrence (histogram distribution). This approach allows the 

benefits of each configuration to be compared, along with the corresponding capital investments, 

for example to calculate the net present value (NPV). This research emphasizes that stockpiles 

management policies are crucial to maximizing plant yield and metal production, and therefore the 

bottom line in the cash flow of a specific project. Additionally, highlights that these policies should 

be considered in long- and medium-term mine planning due to their potential benefits to system 

performance. However, these policies need to be carefully estimated, as the beneficial effects of 

increasing the target stock level are limited. A high target level can restrict the system, reducing 

its flexibility and potentially having a negative effect on overall mining system performance. 
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Resumé 

L’un des principaux défis auxquels fait face l’industrie minière est l’incertitude géologique 

associée à la variabilité des minéraux dans les gisements. Cette variabilité peut avoir des 

répercussions importantes à chaque étape du processus minier, de l’exploration et de l’estimation 

des ressources à la planification et au traitement des minéraux. Cette recherche vise à améliorer la 

mise en œuvre de cadres axés sur les données pour l’évaluation des projets miniers, en intégrant 

la simulation stochastique afin de développer des outils numériques soutenant les décisions de 

gestion. L’objectif est de créer un cadre quantitatif qui intègre des modèles géologiques et 

géométallurgiques, permettant une compréhension plus approfondie de la façon dont diverses 

variables influencent la performance globale des systèmes miniers. Une pratique courante dans le 

secteur minier consiste à générer un seul plan d’exploitation minière basé sur un modèle de 

ressources déterministe, où toutes les entrées et tous les résultats sont dérivés d’une seule 

prédiction de valeurs à des emplacements non échantillonnés sur une grille, négligeant souvent la 

variabilité aléatoire inhérente des teneurs in situ et d’autres variables dépendantes de la géologie. 

L’une des principales limites de cette approche est son incapacité à évaluer les risques causés par 

l’incertitude géologique, comme la variabilité de la teneur et du tonnage du minerai. Des 

changements importants dans les caractéristiques géologiques du minerai peuvent également 

affecter gravement l’efficacité et les résultats des opérations minières. Les minéraux sont 

intrinsèquement complexes et présentent une variabilité importante en raison de leurs 

caractéristiques géologiques et minéralogiques, qui influencent directement le rendement des 

plantes. Par conséquent, on s’attend à ce qu’une mine connaisse des variations importantes dans 

les caractéristiques minérales au cours de sa durée de vie. La compréhension de ces problèmes et 

de leurs impacts est cruciale pour optimiser les opérations impliquées dans la chaîne de valeur, 

réduisant ainsi les coûts et minimisant les impacts environnementaux potentiels. Ces informations 

permettent de développer des modèles prédictifs qui anticipent le comportement des minéraux, 

réduisant ainsi les risques associés à la variabilité et améliorant l’efficacité opérationnelle globale 

des projets miniers.  

Dans les entreprises minières, il y a un effort justifié dans la caractérisation et le contrôle de 

la teneur du minerai, où une grande partie des ressources économiques et humaines est concentrée 

sur la caractérisation et la quantification du métal contenu, mais concrètement, cela représente une 



iv 

 

petite partie de la masse totale qui entrera dans l’usine de traitement - dans le meilleur des cas 3 à 

5% du minerai total extrait ; sous-estimer les problèmes potentiels pour le processus dans la partie 

restante de la masse qui entre dans le processus. Cette thèse présente une approche quantitative 

permettant de tirer parti des informations obtenues lors des campagnes d’échantillonnage 

géométallurgique afin d’optimiser la consommation de réactifs et la performance globale des 

usines de traitement de minerai d’or et d’argent dans le contexte de l’exploitation minière 

souterraine. Grâce à une classification claire et rigoureuse des minéraux et des politiques de gestion 

des stocks, les changements de modes de fonctionnement sont déclenchés par les variations 

observées et les niveaux de stock prévus. Les modes de fonctionnement qui en résultent apportent 

une réponse intégrée à la variabilité géologique et géométallurgique ; démontré par la simulation 

d’événements/taux discrets. Il est essentiel que les décisions stratégiques dans l’évaluation des 

gisements minéraux tiennent compte de cette incertitude géologique. Le cadre de dynamique des 

systèmes miniers utilise le bilan de masse en conjonction avec la simulation d’événements/taux 

discrets, un sous-ensemble des simulations de Monte Carlo, pour relier les données géologiques à 

d’autres configurations de ressources en aval. L’utilisation d’analyses de simulation à taux discrets 

combinée à des simulations stochastiques peut fournir une meilleure compréhension de la 

dynamique de la variabilité géologique et des variables de traitement des minéraux au sein d’un 

système minier en optimisant l’équilibre du minerai entrant. L’utilisation de simulations fournit 

des données fiables pour modéliser l’incertitude géologique en testant les valeurs possibles de 

l’ensemble de données de l’échantillon tout en respectant leur probabilité d’occurrence 

(distribution de l’histogramme). Cette approche permet de comparer les avantages de chaque 

configuration, ainsi que les investissements en capital correspondants, par exemple pour calculer 

la valeur actuelle nette (VAN). Cette recherche souligne que les politiques de gestion des stocks 

sont essentielles pour maximiser le rendement de l’usine et la production de métaux, et donc le 

résultat net dans le flux de trésorerie d’un projet spécifique. De plus, souligne que ces politiques 

devraient être prises en compte dans la planification minière à long et à moyen terme en raison de 

leurs avantages potentiels pour le rendement du système. Cependant, ces politiques doivent être 

évaluées avec soin, car les effets bénéfiques d’une augmentation du niveau de stock cible sont 

limités. Un niveau cible élevé peut restreindre le système, réduire sa flexibilité et avoir un effet 

négatif sur les performances globales du système de minage. 
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Chapter 1 

 

Introduction 

 

 

1.1 Overview 

Mining is an interconnected sequence of systems and sub-systems involving geological, 

mining and mineral processing variables. One of the most challenging problems for managers is 

developing a process that effectively provides the information on key performance indicators 

necessary to evaluate a project, plan strategically, and improve operational efficiency (McGrath, 

2005). The assessment of a mining project begins with the collection of geological, mining, and 

mineral processing data to obtain the economical parameters of the global process. As well as to 

establish the economic metrics that will help determine whether the project is viable. These 

information is related; therefore, the variables that can influence project results- both positively 

and negatively - can be at different stages and impact level on the final cash flow (Bassan & 

Knights,2008). The mining industry is facing a new cycle for metal prices, wind tailed by the world 

demand to obtain raw materials useful to developed new technology to fight against carbon 

emissions and climate change. Concerns associated with the attempt to reduce greenhouse gas 

emissions by changing fossil fuels in favor of cleaner energies, have driven steady progress 

towards to environmentally friendly technologies. In this context, the mining industry will be the 

main pillar in meeting this growing demand for green technologies metals which are essential 

components for electric vehicles, energy storage systems, and other applications crucial to the 

transition to a future low-carbon economy. 

As the demand for greener technologies is rising fast, the challenge for the mining sector is 

how scale up operations to ensure a steady supply of these critical materials. Expanding mines 

currently in production, opening new mines (slow and costly process), requires investing in 

technologies to increase efficiency. In parallel, operations must reduce energy consumption, water 

usage, and greenhouse gas emissions in the extraction and processing for the obtention of green 

technology metals. A key challenge of the low carbon transition with respect to the minerals and 
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metals requirement, is understanding the scope of this growing demand, and ensuring the supply 

of these materials while minimizing any negative environmental, social and economic impacts 

(Laing & Pinto, 2023). Some of the key green metals include lithium, cobalt, nickel, copper, rare 

earth elements (REE), and precious metals. For example, lithium, nickel, manganese, and cobalt 

are critical for electric vehicle batteries for lithium-ion batteries (Mills, R, 2023), while copper is 

a fundamental component in electric wiring, and silver is a key component for solar panels. 

However, expected supply from existing mines and projects under construction is estimated to 

meet only half of projected lithium and cobalt requirements and 80% of copper needs by 2030 

(Birol, 2022). 

Ore deposits exploited by traditional mining methods remain the main source for obtaining the 

raw materials needed, but currently worldwide, mining is suffering from depletion of its large 

shallow deposits. This implies that mining is migrating into new sources for the obtention of the 

materials need to the electromobility and the evolution of the global energy market. From the 

mining industry perspective large open pit operations will be replaced by underground extraction 

methods (Vives, 2015) for increase the current global production rates, opening an opportunity to 

medium and small-scale mining be another player in the “Low- Carbon Revolution”. In the search 

for new extraction areas, whether deeper or farther from depleted zones—and consequently more 

distant from existing facilities in operational mines—drastic changes in geology are to be expected. 

These can significantly impact mineral processing, requiring a rigorous evaluation to ensure 

continued operational efficiency and profitability. 

Within modern mines, there is an emerging need for intelligent coordination and the 

development of interdisciplinary expertise with increasing automation (Navarra, 2019). Therefore, 

innovation in specialized digital tools development to simulate mining operations and project 

evaluation are an attractive alternative, considering the green economy context. These 

developments can help to plan, design, and optimize faster several aspects of mining by 

incorporating real-time data and historical data patterns to improve mining operations. This 

integration allows for more accurate and dynamic simulations and through this companies can 

better predict future trends, potential risks, project outcomes and new business opportunities. 
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1.2 Mining Dynamics Simulation Frameworks 

Mining Dynamics Simulation frameworks are software tools designed to model and analyze 

complex systems. These platforms can provide a comprehensive and dynamic representation of 

several aspects of mining operations, including equipment performance, worker activities, and 

environmental conditions. They can be utilized to design and test alternative approaches to 

integrated management, encompassing aspects such as scheduling, resource allocation, and 

operational planning over different timeframes. Furthermore, these simulation platforms facilitate 

scenario analysis, allowing mining companies to evaluate the potential impacts of various 

operational strategies before been implemented. Simulation frameworks in mining are used to 

model mining processes including the simulation of drilling, blasting, loading, hauling, and other 

operations. The frameworks can model equipment performance, workforce efficiency, and the 

impact of different mining methods and mineral processing. Furthermore, are useful to evaluate 

the economic feasibility of mining projects by considering factors like commodity prices, capital 

and operational costs, and expected revenues and also, for the assessment of environmental impact 

of mining operations, including land disturbance, water usage, and pollution. Likewise, can 

incorporate geological information allowing for the assessment of resource potential and 

exploration strategies and the assessment random natural variability associated to mineral 

resources also known as geological uncertainty. For mining and mineral processing systems, these 

platforms can be initially developed using mass balancing in conjunction with discrete event/rate 

simulation (DES/DRS), and then detailed in later engineering phases by hierarchically embedding 

models and sub-models to represent critical risks and opportunities (Navarra, 2023). 

One of the main challenges confronting the mining industry is the geological uncertainty 

associated with increased variability and complexity of mineral distributions within the deposits. 

A common practice in mining is generate a single mine plan based on a deterministic resource 

model, where all mine plan inputs and outcomes are based on the calculation of a single prediction 

of values in the unsampled location in a grid, ignoring the random variability in-situ of grades 

(Goovaerts, 1997; Chiles and Delfiner, 1999). One of the main limitations of this approach is the 

inability to assess the risk caused by geological uncertainty (i.e., the variability of ore grade and 

tonnage). Significative changes in mineralogy can affect severally the efficiency and outcomes of 

both mining and plant operations. Understanding these changes and their impacts is crucial for 
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optimizing mineral processing operations, reducing costs and potential environmental impacts. 

Minerals are inherently complex and exhibit significant variability due to their geological and 

mineralogical characteristics, which influence plant performance. Therefore, it is expected indeed 

that a mine can experience significant variations in mineral characteristics over its life in 

production. These insights also enable the development of predictive models that anticipate how 

minerals will behave in various processing scenarios, thereby reducing the risks associated with 

variability and improving overall operational efficiency in mining projects. It is therefore critical 

that strategic decisions to develop a mineral deposit evaluation take this geological uncertainty 

into account (Navarra et al., 2018). Navarra (2016) developed a mining systems dynamics 

framework were by using mass balancing in conjunction with discrete event simulation (DES) a 

sub-from of Montecarlo simulations (MCS), connecting geological data to alternate configurations 

of the downstream resources, hence comparing the benefit of each configuration, and the 

corresponding capital investments to finally calculate the net present value (NPV). With this 

approach it is possible to address the geological uncertainty by incorporating stochastic modelling 

and mine planning algorithms as they simultaneously consider several geological scenarios 

generated by conditional simulation in an open pit mine. With the advancement of knowledge, 

new approaches to ore prospecting have been incorporated, including the evaluation of variables 

that can affect mineral processes and plant performance (e.g. hardness and reagent consumption). 

The aim of this research is the development of quantitative tools that enable informed decisions to 

address the complexities related to abrupt changes in the characteristics of the minerals entering 

the processing plant. 

1.3 Research Objectives and Thesis Structure 

The emergence of new digital technologies has opened the door to opportunities for developing 

new tools to accelerate the process of re/evaluation of mining assets effectively and in a context of 

constant economic uncertainty. The nature of the mining industry is closely related to risk; 

nevertheless, identifying the uncertainties of a given project, estimating and analyzing its impact, 

establishing controls are vital to find new business opportunities. The present research delves into 

the implementation of digital frameworks for data-driven mining project evaluation, incorporating 

stochastic simulation to develop digital tools that support management decisions. The objective of 

this research is to develop a quantitative framework for mining project evaluation that incorporates 
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geological, geometallurgical, and economic models to understand the influence of various 

variables on the overall performance of mining systems. This report includes a preliminary 

literature review with a general overview of the methodologies that support the present research 

providing an immersion of all the pertinent topics addressed in this thesis. This includes a broad 

introduction into mineral deposits and related underground methods, a Montecarlo simulations 

overview, the principles of conditional simulation in geostatistics, mining systems dynamics, and 

introduction to mining project evaluation (Chapter 2). Description of the main methodologies 

applied to the DRS framework implementation (Chapter 3). This is followed by different case 

studies in the context of underground mining, which evaluates the influence of different geological 

contexts on throughput, head grades and reagent consumption (Chapter 4); a discussion based on 

the case studies to relate the simulation frameworks and the effects on the performance outcomes 

of the different mining systems presented, and considerations for future work and the evolution 

alternatives for the developed framework and the incorporation of supplementary methods 

(Chapter 5). Lastly, the summary and final conclusions (Chapter 6). The overall thesis structure 

and chapters overview are shown in Figure 1.3.1. 

 

Figure 1.3.1: Schematic flow chart of overall thesis structure and chapters overview. 

 

1.4 Contribution to Original Knowledge 

The current thesis has made a number of contributions to original knowledge through the 

development of a series of case studies focused on the integration of Montecarlo Simulations, 

Conditional Simulation and Mining Systems Dynamics. Following the earlier work by Navarra et 

al. (2019): 



6 

 

(1)  The DRS framework was extended to input new variables, with this in addition to 

evaluating the feed tonnage and final yield, it is also possible to calculate the output 

statistics of head grades, reagent consumption. 

(2) Probability distribution models and data analysis for a variable have been 

incorporated based on the simulation framework extension previously developed. 

This study applies data-driven simulation modeling, to represent standardized 

operational modes and the impact of the variable on the operational performance. 

(3)  The scope of the simulation framework has been extended to be able to impute the 

added variables, but in this case, based on block models generated by stochastic 

simulation. This contribution is a significant improvement; allows to feeding 

simulation frameworks with spatially located information. Therefore, this extension 

allows high-cost geological information to be processed through advanced 

geostatistical methodologies and can be used as a source of information for mining 

project evaluations. This has a high potential impact on the mining industry, as it 

allows the identification of possible risks associated with the execution of a mining 

project, anticipating problems in the plant such as unexpected variations in 

processing parameters and reagent consumption caused by the mineralogical 

variability of different ore types.  

(4) This research aims to show that quantitative frameworks based on Monte Carlo 

simulation are a suitable way for the development of digital tools that can contribute 

to automation and Mining Industry 4.0. These tools can be applied in project 

optimization and the development of process controls, which make decisions based 

on data. In addition, the fact that the data feed is linked to a spatial location means 

making it possible to use it in different time horizons of mine planning. 
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Chapter 2 

 

Literature Review 

 

 

2.1 Monte Carlo Simulations (MCS) 

Monte Carlo simulation is a mathematical technique that allows for the modeling of complex 

systems and the assessment of uncertainty in various scenarios based on random experimentations. 

Emerged from the researchers on the Manhattan Project, named after the Monte Carlo Casino in 

Monaco due to its use of randomness. Monte Carlo simulations have been applied in several fields 

such as finance, engineering, and even in areas like climate modeling. For engineering disciplines, 

a common use is estimating reliability of mechanical components, effective life of pressure vessels 

in reactors (Raychaudhuri, 2008). MCS is helpful to understand how probable a phenomenon is to 

happen, due to is possible to run various virtual experiments giving a stochastic insight of a 

process. Monte Carlo simulation is one of the main applications involving the use of random 

number generators (RNG). By the use of random numbers, we can get sampled values based on 

the distribution of one or more variables, and then calculate the function by putting these samples 

into the model. Also, is one of the best technics for randomness testing generators properties, 

through the comparison of results from simulations using different generators. Many widely used 

generators that perform well in standard statistical tests are shown to fail these Monte Carlo tests 

(Coddington, 1993). 

The method uses repeated random sampling to obtain numerical results for problems that 

might be deterministic in principle. The aim of the method is to determine how the lack of 

knowledge, random variation, or error affects the sensitivity or performance of the system that is 

being modelled (Wittwer, 2004). MCS method is a powerful modelling tool for the analysis of 

complex systems, due to its capability of achieving a closer adherence to reality (Zio, 2013). Real-

world data not always fit perfectly into a gaussian distributions (a.k.a. Normal), for this reason, 

Monte Carlo method is very powerful because a wide variety of distributions can be inputted into 

the simulation framework (e.g., uniform, triangular, binomial, etc.). This methodology 
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incorporates variability and uncertainty directly into the calculations, which makes Monte Carlo 

frameworks a suitable tool for model phenomenon that have a high unpredictability, instead of 

giving a single deterministic answer to a problem. Monte Carlo methods provide a range of 

possible outcomes and the probabilities they will occur, a good approach for risk analysis and 

decision-making. One of the disadvantages of this method is simulations require many iterations 

to get accurate results, this implies are computationally expensive, time-consuming and may not 

be feasible for all problems. Also, not always is the optimal choice for some problematics, 

deterministic technics or other forms of simulations might be a more suitable and efficient 

alternative. The quality of the results strongly depends on the quality of the data used for 

modelling, poorly controlled samples, incorrect assumptions, or biased data, will result in a likely 

incorrect output or not informative (garbage in, garbage out). Figure 2.2.1 summarizes the 

principles of the Monte Carlo methods.  

 

Figure 2.1.1 Principles of the Monte Carlo methods scheme. 

In the mining industry, is widely spread the use Monte Carlo methods in risk modelling, 

perform sensitivity analysis and optimizing parameters (Kleijnen, 2012). In literature, there is 

several applications of this technic in mining related research, in areas such as resource geology, 

mine operation and equipment assessment, geotechnics and ground support, mineral processing 

and mine safety, all pointing towards support managers for decision-making. 

Samis and Davis (2014) evaluated a financing proposal in a small gold project KuisebSun in 

Africa. The mine used traditional static (single value) and Monte Carlo discounted cash flow 

methods to evaluate the proposal and then compare it with a real option of the proposal which 
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relies on market-based signals of price risk. The Monte Carlo method was performed to quantify 

the effect of technical default risk and the ability of creditors to recover lost cash flows via a loan 

shortfall facility. The Monte Carlo simulation was also able to produce default probabilities and 

expected creditor losses. Kumral and Sari (2017) propose an extraction sequencing approach in 

which the net present value of a mining project was maximized. They combine chance-constrained 

programming with MCS to solve the gold mine extraction sequencing of an open-pit mine in a 

context of financial and technical uncertainties generated by grades. Mathey (2022) used the 

Monte Carlo technique to production planning and daily economic decision making in mine 

production management, with an example of underground production with miners and truck 

haulage. The study was based on the availability of equipment and personnel are the predominant 

variables influencing mine output and productivity and that those variables be represented by 

binomial probability distributions. Cardozo et al. (2022) present an application of the Monte Carlo 

method as a procedure of risk analysis in the economic evaluation of a gold mine project in Brazil, 

exploited through the long hole underground mining method. Deterministic evaluation 

methodologies were compared with the probabilistic output generated by MCS, evaluating the 

impact of different variables (e.g., ore content, tonnage, metal price) input into the economic 

model. The proposed methodology was applied to the conceptual and pre-feasibility studies for 

underground mining, evaluating the impact of uncertainty as varying parameters (reserve, 

production, and depth) related to CAPEX and OPEX. 

Bueno et al. in 2011 used geometallurgical information to minimize the risk in the design of 

a comminution circuit. They use Monte Carlo simulations to analyze the effects that orebody 

variability has on the circuit performance and the probabilities they will occur, i.e; the likelihood 

of achieving design throughput or not. This methodology is an alternative way of applying 

geometallurgy and multi-scenario simulation in the design of a circuit featuring AG/SAG mills. 

The method relies in using statistics to analyze geometallurgical and mining data to model the 

variability of specific energy requirements of SAB (SAG and ball mill) and SABC (SAG and ball 

mill with-pebble crushing) circuits for mill design purposes. Ultimately, an example was presented 

to demonstrate the application of this method, and that it can be used to evaluate and minimize 

design risks. 
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Monte Carlo simulation is an effective alternative for analyzing processes where the 

probability of the occurrence of the phenomena studied can help to assess risks and make better 

informed and data-driven decisions. Within simulation frameworks, integrating techniques based 

on the Monte Carlo method marks a substantial evolution in project evaluation and in obtaining 

solutions to potential challenges that may arise over the life of a mine. This approach and every 

method based on the Monte Carlo approach improves the ability to predict and manage the 

complexities and uncertainties inherent in mining operations. 

2.2 Conditional Simulation Principles 

Mining projects are a risky endeavor, due to the significant initial investment capital and a 

series of unpredictable external factors such as global economy and metal prices. A large number 

of different concepts should be weighed to find the optimal alternative for developing a mining 

project. The viability of an investment depends on a series of complex engineering decisions based 

on the information provided from a geological model, constructed with limited information derived 

from geological field work, surface sampling and drilling campaigns. 

The most common approach used in the mining industry to mineral resources evaluation is 

block scale grade estimation using a deterministic model (Chiquini, 2018), mineral resources 

calculated with this method are a smooth representation of the actual distribution of grades at block 

scale (Journel & Kyriakidis, 2004). During deterministic modeling and variable estimation, 

geologists and engineers use their previous knowledge of a deposit for describing and interpreting 

its geological controls, to understand geometry and grades distribution. In contrast, stochastic 

simulations take into account the uncertainty of the related input parameters, considering them as 

a variable. From the simulation point of view the input variables and outcomes have an expected 

value with a maximum and minimum possible. This leads to a high level of unpredictability 

regarding grades and other variables within ore body, therefore, the uncertainty associated with 

the material to be extracted is not adequately informing the decisions of a mining project. In 

contrast, stochastic models take into account the uncertainty of the related input parameters 

considering them a variable. In this context, conditional simulations (based on the deterministic 

methods with additional considerations) appear as a better geostatistical approach to addressed this 

problematic. 
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Conditional simulation (a.k.a. stochastic interpolation, stochastic simulation or stochastic 

imaging) is a technic for describing the variability in spatial fields (Journel, 1974; Journel, 1996) 

often used in geostatistics, hydrology, environmental science, and other fields to generate spatial 

or temporal distributions. Matheron, G. (1963) is considered the founder of geostatistics, in the 

1960s laid the foundation for many geostatistical techniques, including kriging and conditional 

simulation. Journel and Huijbregts (1978) presents a seminal book in geostatistics titled "Mining 

Geostatistics", providing a comprehensive treatment on conditional simulation methodologies. 

Like the kriging estimation method, simulations theory has been detailed by authors such as 

Deutsch and Journel (1997) and Chilès and Delfiner (2012). Conditional simulation is widely used 

in the oil and gas industry for modeling reservoir properties such as porosity, permeability, and 

saturation; groundwater modeling to generate spatial distributions of hydraulic conductivity or 

contaminant concentrations. Recently, with the growing capability of computers to generate many 

millions of calculations, is gaining more space in the mining industry with a variety of simulation 

techniques for obtaining conditionally simulated models. 

Geostatistical simulation aims to reproduce the variability of the real underlying phenomena 

(Ortiz & Deutsch, 2004). Kriging algorithm generates a single representation of the modeled 

variable, with conditional bias, and underestimation of high values and overestimation of low ones; 

conversely, conditional simulation provides multiple, equally likely realizations of a spatial 

phenomenon, given known values at certain locations in the same form the values are randomly 

drawn emulating the Monte Carlo simulation (Matheron, 1973; Journel, 1974;Goovaerts, 

1997).This mathematical procedure constructs synthetic realizations of a random function that 

holds the same spatial statistics (first and second order moments) as the sampled data of a specific 

variable (Dungan, 1999). Therefore, is a suitable algorithm for spatial modelling because 

emphasizes the main statistical attributes of a spatial field, such as histogram and variance, to find 

the hidden spatial pattern in a given dataset. The main pilar of simulation (as well for estimation) 

is the random function, any variable distributed in space and described in two or three dimensions 

is called a regionalized variable, and regionalized variables are often modeled as realizations from 

a random function. The main idea is constructing the different realizations that will share a spatial 

structure governed by the relationships of pairs of points (two-point statistics) imposed by the 

variogram or infer pattens from multiple points (multiple-point statistics) (Ortiz, 2020). 
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Understanding the mathematical background of these methods is critical to making informed 

choices when selecting a technique for a specific application, for example risk-characterization 

(Vann et al. 2002). There is a long list of different simulation methods, each of these methods has 

its own strengths and is suited to specific types of problems. The choice of method depends on the 

characteristics of the data and the specific objectives of the analysis. The most important 

simulation methods will be described:  

1) Turning Bands (TB) was the first large-scale 3D Gaussian simulation algorithm 

implemented (Journel, 1974). The technique was developed in the early 1980s, with 

foundational contributions by Matheron (1982). The Turning Bands technique is 

based on the decomposition of a 2D or 3D random field into a superposition of 1D 

random functions, oriented in various directions. The turning bands method generates 

3-D simulation results from several independent 1-D simulations along lines that can 

be rotated in 3-D space (Ren, 2005). By turning these bands or profiles in various 

directions, the spatial variability of the field can be simulated. The method is very 

efficient for generating non-conditional simulations and particularly good at 

replicating the variogram, due to a clear geometrical interpretation allowing for the 

simulation of anisotropic fields. Some limitations of this technique are related to the 

non-exact reproduction of the variogram (which can be addressed asymptotically by 

increasing the number of bands) and to the production of high contrasts artifacts if 

not enough bands are used. 

2) Sequential Gaussian simulation (SGS) is a pixel-based gaussian method. This technic 

is widely used in the mining industry. Journel, A. G., & Huijbregts, C. J. (1978) 

published "Mining Geostatistics" which provides foundational theory of this method. 

SGS is a stochastic simulation methodology that aims to create multiple equiprobable 

representations of a spatial variable based on its statistical properties (mean, variance) 

and spatial continuity (defined by the variogram or the covariance function). The 

implementation of this methods proceeds sequentially, at every unsampled point in 

the grid or node, the sample values within a neighborhood as well as the previously 

simulated nodes in the neighborhood, are used to compute the kriging estimate and 

variance (in Gaussian transformed units). To avoid artifacts due to the use of a regular 
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grid of simulation points (and the screening effect of kriging), a random path is 

created to visit the nodes in a random order in each realization (Ortiz, 2020). 

3) Sequential indicator simulation (SIS) is a pixel based non- parametric method for 

simulating categorical variables. This method is based on the concept of indicator 

kriging, where continuous variables are transformed into categorical indicators 

before simulation. The SIS is appropriate when there is uncertainty in the geometry 

of the geological body, and the continuity is well described by variograms (Pyrcz & 

Deutsch, 2014). Conditional simulation generates equiprobable realizations that 

honor the data inputs. Each realization is a possible outcome of the random function 

(Mizuno & Deutsch, 2022). The method involves the use of indicator variograms and 

the conditional cumulative distribution functions (ccdf) to simulate the presence or 

absence of a particular class at unsampled locations, then build a model using one of 

the indicator kriging approaches. 

4) Truncated Gaussian simulations (TGS) is a method that is used for simulating 

sequentially ordered lithofacies by truncating a Gaussian random function (GRF) 

(Galli et al., 1994). The bounds of the interval are calculated to match the proportions 

of the various lithotypes, following the spatial characteristics of the GRF are related 

to those of the lithotype indicators which are described by their experimental 

variograms. When the lithotype organization is not ordered by a sequence is 

necessary to consider several GRFs, in that case, the method called pluriGaussian 

(Beucher & Renard, 2016). They also have other possible applications for grade 

simulation, when the grade distribution is highly correlated to lithotype. 

5) Lower-Upper Decomposition (LUD) is a methodology to solve linear systems of 

equations systematically. In geostatistics, LU decomposition is an important 

mathematical tool for efficiently solving linear systems, especially in Kriging and 

geological simulations. If the Kriging matrix satisfies the condition of being 

symmetric and positive definite, by applying the LUD it is possible to obtain a 

numerically stable and simple solution for simulating problems with large number of 

data (Davis, 1987). With a low number of samples, the number of unsampled points 

in the grid to be simulated is small (less than a few hundred) and a large number of 
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realizations wants to be computed, the fastest solution is simulated through the LU 

decomposition of the covariance matrix (Alabert, 1987; Davis, 1987; Fogg et al., 

1991; Glacken, 1996), in other words, these method suffer from efficiency limitations 

related to the size of the matrices to be handled and essentially used for small 

simulations. 

6) Simulated annealing (SA) is multiple point geostatistical simulation, that has gained 

ground over the past decade, especially in the petroleum industry (Deutsch & 

Cockerham, 1994). Was proposed by Deutsch in his Ph.D. thesis (Deutsch, 1992 

Simulated annealing is a probabilistic technique for find the closest approximation of 

the global optima of a given function. The first step is generating an initial image 

based on the prior knowledge (sampled data points) and all remaining nodes are 

inputted by random values from the user-specified histogram (Deutsch and Journel, 

1997). The initial image is slightly perturbed by redrawing the value at a randomly 

selected grid node, and an objective function is defined to evaluate the quality of any 

solution between desired spatial and features and those of the realization (Ortiz and 

Peredo, 2010). The acceptance criteria is founded on a decision rule to accept non 

favourable perturbations based on the Boltzmann distribution (Wells, 2002). The 

Simulated Annealing process appears to be inefficient, in that up to a million 

perturbations may be required to obtain an image that contains the prespecified spatial 

structure (Deutsch & Cockerham, 1994). 

Conditional simulation can provide grade statistics at the highly selective scale required, for 

example, by narrow vein mining, which makes it a more useful tool for short to medium term 

planning than linear estimation methods such as kriging (Khosrowshahi & Shaw, 2001). Fowler 

and Davis (2011) perform a conditional simulation, of the Augusta mine in central Victoria in 

Australia, using grade and width of narrow-vein deposits reproduce the observed features of the 

mineralization, they model these variables using SGS in 2D to produce realizations of veins from 

a reference plane. This study allows calculate grade statistics at the highly selective scale required 

by narrow vein mining. The uncertainty in ore body geometry, where thickness and grade were 

quantified in terms that can be used directly for mine planning. Richmond (2012) uses conditional 

simulation to simulate the spatial distribution of gold grades controlled by quartz vein sets in a 
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folded lode-style gold deposit. For this case study, lithology was dealt with using a modified SIS 

algorithm that accounts implicitly for interpreted locally varying anisotropy, due to the financial 

implications that relies in locate and define spatially the individual lodes. By considering lode 

geometry uncertainty, significantly greater downside risk and upside potential was present in the 

gold deposit than previously recognized by simply considering gold grade uncertainty within a 

deterministic wireframe. 

Jackson et al. (2003) presents a case study that quantifies both geological and grade risk in 

an underground gold mine at Stawell in western Victoria, Australia. Assessing the size and 

geological controls of the Golden Gift deposit at an early stage previous to an extensive 

underground drilling program. In addition, the project needed quantified characterization of the 

main resource risks, in a context of high dislocated complex structurally controlled shear-hosted 

quartz-pyrite-arsenopyrite veins. They demonstrated that whilst the risk derived from geological 

interpretation and geological risk at early stages could easily have a dramatic impact on financial 

outcomes. Murphy et al. (2004) quantifies the resource risk based on constraining envelopes for 

resource classification nickel grade and ore-thickness (a proxy for ore tonnage) for Koniambo 

nickel laterite project in New Caledonia. Ore-thickness intercepts were created from vertical 

drilling and converted to 2D point data. One hundred 2D sequential indicator conditional 

simulations were generated for each attribute on a 10 m by 10 m grid for the three deposit areas. 

Tonnages were computed for each panel from the mean simulation thickness and deposit-average 

bulk density. The drilling grid adequately defined the nickel grade; however, tonnage risk was 

considered to be high on a panel-by-panel basis. Rescaling the risk to quarterly and annual 

production periods revealed that the annual risk was acceptable, but that close-spaced drilling 

would be required to increase the confidence in tonnage. 

2.3 Discrete Event/Rate Simulation (DES/DRS) 

Discrete event simulation (DES) is probably the most widely used simulation technique in 

operational research, considered a subclass of Monte Carlo simulation (Altiok and Melamed, 

2007). DES conceptualizes a process as a sequence of discrete events, wherein entities transition 

between different states over time, in other words, this means that entities are thought of as moving 

between different states as time passes (Maidstone, 2012). DES models systems as a network of 
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queues and activities, where state changes occur at discrete points of time (Brailsford & Hilton, 

2001). A key characteristic of DES is that state changes occur at discrete time points, enabling 

precise control over the timing and sequencing of events. Objects are individually represented and 

can be tracked through the system and specific attributes are assigned to each individual and 

determine what happens to them throughout the simulation. DES allow researchers and engineers 

to study the behavior of complex systems under different conditions and scenarios, evaluating 

system performance, and make predictions. DES are commonly used to model and analyze 

queueing systems, where entities (e.g., customers) arrive, wait in a queue, and are served by one 

or more service providers. Discrete Event Simulation has evolved as a powerful decision-making 

tool after the appearance of fast and inexpensive computing capacity (Upadhyay et al., 2015). 

Another key characteristic of DES is that incorporates randomness or stochastic processes. This 

randomness can be used to model uncertainties, variability, or probabilistic events within the 

system, helping capture real-world complexity and randomness. 

This methodology has many applications such as health care, financial, manufacturing and 

many others and started to be adopted by the mining industry from the late 1950’s when a train 

transportation system was modeled and investigated by hand calculation for the Kiruna 

underground iron ore mine (Panagiotou 1999). In modern mining operations, maximizing 

productivity by effective decision making is essential. Discrete event simulation is used to conduct 

“what if” analysis supporting mining engineers and management in decision making (Fahl, 2017). 

Discrete event simulations are typically used to analyze queuing problems, but fits to many 

applications in mining, for example optimization of the load-haul-dump cycle, one of the most 

important activities in mining production chain and is critical to optimize for achieving higher 

efficiency and cost reduction (Fahl, 2017). The purposes of DES include the improvement of 

equipment utilization, reducing waiting and queuing time, to evaluate cost reduction initiatives, to 

minimize the effects of breakdowns, to understand the impact of mixed fleet interactions (Price, 

2014). Additional areas in mining operations and mineral processing that can be modeled with 

DES will require further research (Dindarloo & Siami-Irdemossa, 2016). New applications are 

found in the literature such as energy efficiency in mining, which can be achieved by optimized 

shovel utilization (Awuah-Offei 2012). Moreover, there are equipment subsystems investigated by 

the use of availability and reliability data of mining equipment (Gbadam et al. 2015) and geological 
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uncertainty on production scheduling is examined by means of DES (Shishvan & Benndorf 2014). 

Pamparana et al. (2017) evaluated the benefits of coupling solar radiation energy with a semi-

autogenous grinding (SAG) mill and Navarra et al. (2017), consider discrete event simulation 

(DES) an appropriate framework for the plant-wide analysis of copper smelters. 

A powerful aspect of DES is the ability to simulate hundreds or thousands of days of 

operation in order to analyze various processes and identify any potential deficiencies (e.g., 

bottlenecks) (Navarra, 2020). As a result, tactical decisions can be made to introduce operational 

buffers, such as stockpiles, ore blending or pre-treatment processes. Additional simulations are 

then run to observe any potential effects from the adjusted policies. DES essentially creates a form 

of ‘virtual reality’ of the operations that can help identify and mitigate risk prior to investing 

significant resources into a sub-optimal or possibly unviable project (Navarra, 2020). 

Another type in the field of simulation is Discrete rate simulation (DRS). DRS is used to 

model linear continuous systems, hybrid systems, and any other high speed/large volume system 

that involves the rate-based movement or flow of material from one location to another (Damiron 

and Krahl, 2015). The primary objective of DRS is to increase the movement as much as possible 

through the system, essentially aiming to 'maximize' the flow. (Damiron & Nastasi, 2008). Instead 

of focusing on a single occurrence like traditional discrete event simulations (DES), DRS considers 

the rates at which materials are in movement through a system (Muravjovs et al., 2016), in other 

words, continuous processes in which the rate of change of the continuous variables (for example, 

liquid in a tank, coal in a barge) was constant or changed at discrete points in time.  

This approach becomes necessary when dealing with a process that involves a large number 

of fast-moving objects and for reasons of efficiency calculation fails discrete approach (Giel et al. 

2017). Speed improvements in comparison to discrete event simulation (DES) can be achieved, 

when the model perform flows-based calculations rather than in individual entities, this approach 

helps to prevent the emergence of invalid system states, a challenge often faced in system 

dynamics. (Reggelin and Tolujew 2011). The primary characteristic of discrete rate modeling lies 

in the stationary nature of the flows. (Muravjovs et al., 2016). This new method developed in 

1990’s, simulates continuous-linear flow, rate-based systems, and hybrid systems (combining 

continuous and discrete event) (Damiron & Nastasi, 2008), where continuous and discrete event 
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simulation were not suited or not adaptable to those issues (Damiron & Krahl, 2015). Numerous 

physical systems can be classified as hybrids, especially in scenarios involving the manufacturing 

or transfer of bulk or liquid products among containers. This approach can be particularly useful 

for systems such as chemical processes, manufacturing, traffic, pipelines, and high speed/large 

volume processes and other scenarios where flow rates play an important role. In mining for 

example, haulage and bulk material handling can be modeled through this methodology. 

The steps for the Implementation of a DES/DRS framework are (1) Outline the system, 

defining the flows and levels (i.e. in chemical processing “rates" and "tank levels"; (2) System 

initialization, setting initial conditions, such as timers, levels and rates and define the event list or 

priority queue to manage future events; (3) Main simulation loop in which retrieve the next event 

from the event list, update the simulation clock to the time of this event, update system state based 

on this event, schedule new events if necessary and add them to the event list(4) Data collection 

and result analysis of system related variables statistics like average waiting times, throughput, or 

any other metric of interest; (5)After the simulation completes, analyze these statistics to derive 

insights. 

 

Figure 2.3.1: Workflow for the Implementation of a DES/DRS framework. 

Muravjovs et al. (2016) develop an inventory control system model on the basis of “discrete 

rate” paradigm. Employing fragments built on the discrete event principle, supply chain uses the 

same elementary strategy for inventory control. The structure of simulated system comprises four 

elements that are interconnected with material flows: supplier, transportation channel, warehouse, 

and customer. There are information flows shown in the structure of the system such as the pull of 

demand for simulated daily demand, information about the inventory level in stock, and 

information, which the supply manager, sends to the supplier as a replenishment order. Pull of 

demand was simulated as a uniform random variable, reorder level, namely threshold level of 
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inventory – allows to make a purchase order when this level reached a specific unit number level, 

for an operation simulation run length for 30 days. The aim was not to study a certain inventory 

control system, but to demonstrate the method can be implemented with different paradigms for 

simulation modelling of processes, which includes DRS. Terlunen et al. (2014) expanded this 

simulation approach by incorporating modeling and material flow control mechanisms. This 

enhancement facilitates straightforward implementation and simulation of various tactical supply 

chain planning tasks. To effectively assess different planning decisions within this framework, 

numerous simulation runs are required, highlighting the demand for rapid simulation methods. The 

researchers formally demonstrate that models based on discrete rate-based simulation can typically 

be computed faster than the more traditional discrete event-based simulation models. 

2.4 Mining Systems Dynamics (MSD) 

System dynamics (SD) is a computer simulation modeling technique and methodology for 

framing, understanding, and discussing complex issues and problems. Originally developed in the 

1950’s to help corporate managers improve their understanding of industrial processes (Radzicki 

& Taylor, 2008). This methodology studies the dynamic behavior of a complex system by 

considering that each process is part of the whole system rather than in isolation. SD is a field of 

knowledge that encompasses the change and complexity over time of a dynamic system, in other 

words, this approach helps to represent and understand, simulate, and observe trends over time. 

Systems thinking must consider all the components and variables that interact and influence the 

dynamics of the complex system. This methodology is based on the feedback concepts of the 

control theory developed by Forrester (1968), is considered the most proper technique to handle 

and improve systemic thinking and learning (Bala et al., 2017). SD deals with interaction of various 

elements within a system in time, capturing the dynamic characteristic by incorporating concepts 

such as stock, flows, feedback and delays, and thereby provides an insight into the dynamic 

behavior of systems over time (Tang and Vijay, 2001). Figure 2.3.1 summarized the workflow for 

system dynamics methods development. 
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Figure 2.4.1: Workflow for implementation of system dynamics. 

 

The foundation of this methodology relies on the feedback systems derived from control 

theory and is able to manage the non-linearity and time-delay and the multi-loop structures of the 

complex and dynamic systems (Bala et al., 2017). The objective of system dynamics is 

comprehending the fundamental structure of a system, and followed, understand the potential 

behaviors it can generate (Radzicki & Taylor, 2008). The principles of system dynamics are 

predicated on two major systems principles, (1) The first is that stocks, flows, and delays determine 

system behavior and (2) the second is bounded rationality (Simon, 1957), to perform a simulation 

with realistic parameters. 

The implementation of system dynamics in the mining industry is not a novel concept, 

Montaldo (1977) publish a study applying this methodology in underground mining operation. The 

model includes an underground operation with milling sectors, together with cash flow and 

finances. Likewise, pay attention to the feedback relation between all the components, showing 

how individual processes interact and affect the overall system performance. The use of feedback 

theory differentiates the model from a “basic” econometric simulation and helps to design a 

stronger management policy towards improving mining company performance.  

Alpagut and Çelebi (2003) present research about two different applications of system 

dynamics in the mining industry. They provide examples for the usage of this methodology in the 

mining sector to illustrate SD as an alternative approach to system comprehension. Like most other 

systems, mining systems can be represented as complex information-feedback systems, in a 

manner that the result of each mining operation affects itself back at the next point in time. The 

first example was a SD mine planning model, that identifies the colliery as a feedback system, in 

which the coalfaces and their associated development works are operated to reach a target output, 

under geological and manpower availability fluctuations. The second model presented was the 

application of SD in equipment selection to choose the optimum blinker- conveyor belt system for 
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haulage in a coal longwall mine. The two study cases described suggest that a mine can be 

described as a dynamic feedback system.  

O’regan and Moles (2006) research the impact of environmental policy on the investment 

and development strategies of the mining industry within the broader context of government 

minerals policy. They developed a computer simulation model grounded in system dynamics for 

a quantitative evaluation of existing data within the context of sustainable development, the 

underlying assumptions used as a basis for corporate decisions. They constructed several 

interlinked system dynamics sub-models where the mining firm is viewed as a particular case of a 

typical business entity, which is assumed to have the objective of maximizing profits. These sub-

models are designed to understand the critical decision-making frameworks of the company, 

particularly in terms of reinvestment of profits into new exploration and development activities. 

Navarra et al. (2017) present a hierarchical discrete event simulation (DES) framework to 

analyze copper smelter operation of the Hernán Videla Lira (HVL) smelter (a major asset of the 

Empresa Nacional de Minería which is National Mining Company, under the acronym in Spanish 

ENAMI), located in the small town of Paipote in the north of Chile. The DES framework integrates 

thermochemical aspects of copper smelters to examine the analyze the operational system 

dynamics, especially in the context of sulfur dioxide (SO2) emissions and meteorological factors 

that adversely impact air quality. The model was developed in phases due to the complexity of the 

problematic, incorporating feedback from personnel who have different perspectives The mass and 

heat balancing parameters were used to estimate converter cycle time so that the DES framework 

could assess the tradeoff between copper production and environmental risk. 

Lui et al. (2019) incorporate an SD application to extend real options (RO) valuation for the 

decision-making of a mining project, using the methodology in Hongwei uranium deposit in China. 

SD hybrid simulations were used to visualize numerous techno-economic factors that are 

contained in mining operation systems and their interactions during the valuation process of 

mining projects. The simulation results were able to accurately estimate influencing factors and 

provide a deeper assessment for mining investment decision-making projects. The methods 

presented improve the accuracy of valuation of mining projects and help decision-makers make 

science-based decisions for mining investment projects. 
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Chapter 3 

Foundation for stochastic and dynamic mass balancing of 

underground mines 

 

 

The foundation for stochastic and dynamic mass balancing in underground mines is to 

develop a data-driven and responsive framework that can adapt to the inherent uncertainties, 

constantly changing conditions and complex dynamics of underground mining operations. In 

mining, mass balance is crucial, as it provides assurance that the tracking and accounting of 

materials entering and leaving the process are accurately executed. Mass balance miscalculations 

can result in erroneous estimations of vital operational metrics, such as production rates, recovery 

and economic losses. These imprecisions could cause the misallocation of vital resources and 

operational inefficiencies, which could lead to substantial operational failures and financial and/or 

environmental consequences for the mining project(e.g. incorrect estimates of the amount of 

recoverable mineral, affecting the profitability of the mining operation; faster depletion of the ore 

reserve/resources than anticipated, potentially shortening the life of the mine (LOM); increase the 

footprint of the waste disposal areas, potentially leading to more severe environmental 

contamination and increased risk of tailings dam failures, and a long etc.). Herein lies the value of 

extensible simulation frameworks focusing on mass balance. They can be developed initially to 

support broad ranges of realistic data (Boom et al., 2015; Mittal et al., 2008) and then successively 

detail the operational aspects that are the most critical for attaining support for sampling campaigns 

and metallurgical studies. DRS is perhaps the simplest approach for encapsulating dynamic mass 

balances (Navarra et al., 2019; Peña-Graf et al., 2021; Peña-Graf et al., 2022; Wilson et al., 2022a), 

from which context-specific feed variations can be developed in phases so that the corresponding 

risks can be quantified, as well as opportunities for improvement. As Figure 2.3.1 describes, DRS 

is a particular type of DES in which incoming and outgoing material flows undergo discrete jumps 

over the simulated timeline. DES/DRS frameworks are also extensible, i.e., they can be 

successively extended in response to management concerns (Figure 3.1) via the incorporation of 

models, sub-models, ‘sub-sub-models’, etc. For example, if an existing gold mine experiences 
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feeds with increasing portions of copper sulfides, there may be a case for building a flotation circuit 

that would produce a copper concentrate parallel to the cyanidation process; however, management 

would be uncertain about the partitioning criteria that would divide marginal ore into the flotation 

feed versus the cyanidation feed (Hedley & Tabachnick, 1958). In this case, the DES/DRS 

framework can be extended with models using published data (Hedley & Tabachnick [1958] 

and/or Guo et al. [2014], for example), demonstrating the potential benefits of the processing 

upgrade so that management can ideally approve a detailed metallurgical study to refine the model 

parameters with site-specific data. Suppose that the proposed metallurgical study is not approved 

due to a series of criticisms from management. These criticisms are used to guide the next iteration 

of model development (Figure 3.1a), which is then integrated into the next version of the 

simulation. 

 

Figure 3.1:Development of an extensible simulation framework prior to the approval of metallurgical studies: (a) interaction with 

management leading to approval; (b) simulation framework detailing via the incorporation of models and sub-models. 

3.1 Dynamic mass balancing and data-driven sensitivity analysis 

Mass balance (a.k.a. material balance [MB]) is a method for continuously tracking and accounting 

for materials in a system (Himmelblau, 1967). MB for materials accounting requires that the 

system boundary be defined in space and time, stocks and flows be expressed in consistent physical 
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units, and mass and energy be in balance across transformation, distribution and storage processes 

in the system (Baccini & Brunner, 1991; Brunner & Rechberger, 2004). Essentially, MBs are 

accounting procedures: the total mass entering must be accounted for at the end of the process, 

even if it experiences heating, mixing, drying, fermentation or any other operation (except nuclear 

reaction) in the system (Doran, 2013). Traditional mass balancing is typically conceptualized as 

an optimization problem; the aim is to minimize the residual by modifying the assay values to 

achieve MB; in other words, MB is the requirement that the adjusted values are as close to the 

measured values as possible (Anderson, 2021). Currently, data acquisition and mass balancing are 

increasingly computerized and automated. Mass balancing techniques have been improved from 

the well-known two-product formula to advanced computerized statistical algorithms that can 

handle different scenarios and problems when engineers perform an MB calculation (Wills & 

Finch, 2016). In the mining context, MB aims to control the movement through various stages of 

the material extraction, transport and ore processing operations (Simony et al., 2023). MB is a 

powerful tool in engineering analysis for solving and simplifying many complex calculations by 

investigating the movement of mass and relating what comes out to what goes in (Doran, 2013). 

MB plays a crucial role in mining processes’ design and operation, closely interacting with every 

aspect of a mining operation’s development (e.g., mine design, environmental impact and business 

economics) (Figure 3.1.1). This methodology is essential for controlling and optimizing the 

efficiency of mining processes, ensuring resource utilization and meeting a business’s key 

performance indexes (KPI), as well as environmental and regulatory requirements.  

 

Figure 3.1.1: Interactions of a mass balance in mining project. 
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A mining operation is a unified system in which each component functions synergistically to 

form a whole. To perform an efficient MB, this structure must be subdivided into different levels. 

At the highest level, there is the breakdown of the entire system into sub-processes (in mining 

blasting, excavation, haulage and plant), allowing engineers to prioritize what should be included 

in the MB and establish appropriate boundaries (Simony et al., 2023). At a more detailed MB level, 

there are analyses of each sub-system’s key data and characteristics, such as ore tonnage processed, 

overburden hauled, tailing mass flow and other relevant data. Such analyses may reveal the key 

factors affecting the performance of each sub-process as well as highlight which to prioritize when 

allocating resources for more detailed investigation or additional evaluation. Moreover, a detailed 

analysis of mass flows for specific plants and equipment, modelling the effects of changes in 

loading, vehicle mass, speeds, tunnel slopes (in underground mining), drilling capacity and plant 

production rates (to calculate comminution energy, tailing dam capacities and potential 

environmentally harmful elements) and waste dump capacity. 

Performing an MB is similar in principle to accounting; this methodology accounts for what 

happens in each of the system's components. Through this methodology, which is possible tally 

for materials entering and exiting a system, MB techniques enable the identification of material 

flows that might have previously been unknown or difficult to measure. MBs are applicable to any 

system with defined boundaries, regardless of whether its nature is physical, chemical, or abstract. 

These balances serve as fundamental tools in systems analyses; when studying a system, or a 

portion of a system, it is essential to establish the system's boundaries. The extent to which a unit 

or part is included or excluded from the system under consideration must be delineated based on 

the process or processes being analyzed. 

The underlying principle common to all these applications revolves around the fundamental 

concept of mass conservation (Himmelblau, 1967). The ‘conservation of mass’ law states that 

mass cannot be created or destroyed (Lavoisier, 1789), therefore the total mass of materials 

entering a system must be equal to the total mass of material leaving the system, less any 

accumulation. In other words, mass within a system must remain constant over time, forming the 

basis for accurate and effective MB analyses. The principle of mass conservation is utilized as a 

comprehensive material balance equation to account for the total mass of all the components 

involved in the process. 
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Figure 3.1.2: Principle of mass conservation in material balance. 

Generalizing for MB, it is crucial to recognize that the variables characterizing process streams 

are diverse in nature (volume flows, temperatures, composition, pH, electric conductivity, etc.). 

Therefore, it is important to transform the primary data into balancing variables, which allows for 

a more uniform and coherent analysis within the mass balance framework. In general, a mass 

balance can be calculated as follows: 

  Input= Accumulation + Generation - Output- Consumption (3.1.1) 

Based on how the process varies with time, MB can be classified into the following two types: 

(1) A steady-state process is one that does not change over time. This means that the variables 

have the same values at every snapshot of the system. A general balance equation can be 

written for any material that enters or leaves any system, and it can be applied to the total mass 

of this material or to any molecular/atomic species involved in the process. Mathematically, 

the mass balance for a system in a steady state (with no chemical reaction occurring) is as 

follows: 

  Accumulation=Input -Output (3.1.2) 

(2) An unsteady-state (or transient) process deals with time-variant system conditions. 

Variables have different values from the initial ones, depending on where a snapshot is taken. 

For transient balances, the quantities involved in a given system are a function of time. MB for 

a transient system is as follows: 
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 ∫ 𝑑𝑀
𝑚𝑡

𝑚𝑖

= ∫ 𝑚𝑖𝑛𝑑𝑡⁡
𝑡𝑓

𝑡𝑖

−∫ 𝑚𝑜𝑢𝑡𝑑𝑡⁡
𝑡𝑓

𝑡𝑖

 (3.1.3) 

Where: 

min, mout, are the mass flows in and out of the system. 

M  is the total mass in the system at a given time. 

To effectively perform a dynamic MB, whether in the context of reservoir engineering, 

chemical processing or any industry in which fluid or material flow dynamics are crucial, you can 

follow a systematic procedure. (1) Define the system boundaries (area or equipment being 

analyzed, volumes, levels, etc.) and identify system components or systems that will be included 

in the balance (clearly define the relevant parts of the system, such as a single reactor, a production 

facility or one or a series of stockpiles). (2) Collect data on inputs, outputs and internal transfers 

of mass or volume over time (production rates, feed compositions and operational changes). (3) 

Develop the balance equations for each component or stream and write equations that represent 

the conservation of mass, including accumulation stages. (4) Establish the system’s degrees of 

freedom for determining whether it is solvable and identify whether the number of unknowns in a 

system can be determined based on the available equations and specified conditions. (5) Solve the 

equations by choosing an appropriate method (analytical methods, numerical simulations or 

computational software). 

3.1.1 Dynamic Mass Balance for mining systems 

In the context of mining operations, mass balancing (MB) is critical for monitoring the mass 

flows of ore and waste, as well as metal content and ore grades. This process ensures that all 

materials are accurately reported throughout the mining and plant processing stages. To achieve 

effective mass balancing in mining operations, it is essential to integrate temporal changes into the 

material balance equations, continuously updating the balance equations to reflect the dynamic 

nature of mining activities over time. This involves tracking variations in mined mass over time 

and meticulously accounting for the diverse inflows and outflows of materials. The 

implementation of an MB equation in the mining process is outlined as follows: 

 

Run of Mine Ore (Input)= Plant Feed (Output) + Stockpiles (Accumulation) (3.1.4) 
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The dynamic material balance equation for an ore stockpile can be generally expressed as a 

function of time, where the rate of change in mass in a mining system is equal to the mass added 

minus the mass removed: 

Where: 

𝑀(𝑡) = Mass of ore at time 𝑡. 

𝐼(𝑡) = Mass inflow rate at time 𝑡 (from mining or other sources). 

𝑂(𝑡) = Mass outflow rate at time 𝑡 (to processing plants). 

These equations are crucial for optimizing ore handling and processing schedules, managing 

stockpile size, waste and tail dams, and planning future mining and processing activities. There 

are some detailed considerations when an DMB is performed in the mining context. (1) Inputs can 

vary based on mining production rates, which might be influenced by operational schedules, 

equipment constraints and/or geological variability (may also include material transferred from 

other stockpiles), which in an underground mining context can be enhanced by several operational 

considerations such as ventilation, ground support, material handling (ore and back fill). (2) 

Outputs are controlled based on the processing plant’s capacity and ore quality requirements; 

therefore, adjustments might be made to manage the blending of different ore grades to optimize 

mineral process performance. 

3.1.2 Data Driven Sensitivity Analysis 

SA is defined as the study of how variations in input variables affect the outputs of numerical 

models and reliability by identifying which inputs have the most significant impact on the results 

(Iooss & Saltelli, 2017). This analytical approach is increasingly used in different research areas, 

highlighting its importance in enhancing the interpretability and credibility of complex models, 

making it a fundamental tool in scientific and engineering research (Saltelli, 2002; Pianosi et al., 

2015). The system can be developed by single or a set of mathematical models, employing 

computer software, that simulates a real-world system (Razavi et al., 2021). Such mathematical 

models can be data-driven (also called statistical), directly mapping inputs to outputs (Engelbrecht 

et al., 1995; Rodriguez et al., 2010). In an advanced stage, is possible to assess these input data 

distributions through a data-driven sensitivity analysis gaining insights into which variables are 

 

𝑑𝑀(𝑡)𝑑𝑡=𝐼(𝑡)−𝑂(𝑡)dt (3.1.5) 
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most influential, instead of relying on analytical or model-based approaches by the use of actual 

data to understand the relationships and sensitivities (Figure 3.1.4). By employing statistical 

random distributions in combination with sensitivity analysis (SA), analysts can effectively 

simulate a wide range of possible scenarios. This process not only highlights the most sensitive 

parameters but also guides efforts in data collection and model refinement, ensuring that the 

analysis focuses on the most impactful areas. 

 

Figure 3.1.3: Schematic diagram of global sensitivity analysis (Based on Saltelli et al., 1999) 

Data-driven sensitivity analysis is a method used to understand how variations in input 

parameters impact the outputs of a model. Using real-world data, this approach provides insights 

into the relationships between various factors and helps identify the most influential variables 

affecting a system’s performance. DDSA is a modern approach that leverages large datasets and 

computational techniques used in modeling of systems and in support of decision making (Razavi 

et al., 2021). This technique is foundational for understanding the robustness of a model and 

identifying key variables that significantly impact the outcomes of any given system. By 

understanding which inputs have the most influence on the results, decision-makers can prioritize 

where to focus their efforts, refining certain measurements, improving processes, or making other 

strategic decisions. In particular, data-driven analysis is useful when the relationship between 

inputs and outputs is not easily captured by simple analytical expressions. Moreover, data-driven 



30 

 

modeling carries along a number of advantages, (1) Closeness to the real system: data-driven 

models tend to more accurately reflect the actual systems that they model (Wang et al., 2021). (2) 

Possibility to use other techniques such as Machine Learning (ML) and Artificial Intelligence (AI) 

for model enhancement: (Cavalcante et al., 2019). 

Sensitivity analysis methods can be divided into three categories, namely screening methods, 

local sensitivity analysis methods, and global sensitivity analysis methods (Ascough et al., 2005; 

Emanuele, 2006). The first category, the screening method, is helpful in examining the relationship 

between input and output variables. This is used as a preliminary phase of analysis and is 

advantageous when the model requires a large number of parameters, allowing with a limited 

number of calculations the quick identification of those parameters that generate significant 

variability in the model output (Rivalin, 2018). By understanding these relationships is possible to 

reduce the complexity and computational cost of the model, helping to select an appropriate 

methodology that aligns with the specific requirements and characteristics of the model (Li et al., 

2023). The local sensitivity method focuses on stablish the impact of a singular input parameter 

on a model result while the other input parameters are fixed, providing a detailed understanding of 

the individual contribution of each parameter to the overall output. Lastly, the global sensitivity 

analysis method is to study the collective influence of multiple input parameters on the model 

output and analyze the influence of the interaction between each parameter on offering a 

comprehensive view of how these combined influences shape the model output (Cai et al., 2008). 

Data-driven sensitivity analysis often involves statistical methods such as correlation, multiple 

linear regression, nonparametric regression, among others (Iooss & Saltelli, 2017), these methods 

help in quantifying the sensitivity of the results to changes in the input variables. In advanced 

scenarios, techniques like Monte Carlo simulations can be used to model uncertainties and perform 

SA. The advantage of the data-driven approaches is that they are rooted in real-world scenarios, 

making the findings more relevant, identifying critical design parameters that affect the 

performance and reliability of a system. In a deterministic framework, models are inputted with 

specific values, exploring uncertainty by statistical approaches. In another hand, with a stochastic 

approach, inputs are considered as random variables X = (X1; : : : ; Xd) ∈⁡ℝd , with random vector 

X has a known joint distribution, which represent the uncertainty of an input variable by the model 

function Y= G(x). This can denote a system of differential equations, a program code, or any other 
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correspondence between X and Y values that can be calculated for a finite period. Therefore, the 

model output Y is also a random variable. In advanced approaches, when in a SA framework is 

dealing with models with a large number of inputs or when precise sensitivity results are required, 

is commonly employed MCS. With this methodology is possible to obtain more accurate 

sensibility results (Iooss & Saltelli, 2017). Finally, in dealing with real-geological data and 

computational techniques, empirically assessing the sensitivity of a model through SA becomes a 

more practical approach. This is particularly relevant in scenarios characterized by complex data 

relationships and where theoretical assumptions are difficult to substantiate. Sensitivity analysis 

can be integrated with other methods, such as Maximum Likelihood Estimation (MLE) and 

Goodness of Fit (GOF), to improve the robustness and interpretability of a statistical model. This 

integration is beneficial in several ways, due to helps to find potential weaknesses within the 

models, evaluates the impact of data variability on the estimates, and provides guidance in the 

process of model selection and refinement. By doing so, it ensures that the models are not only 

statistically robust but also resilient to variations in input data, thereby increasing their reliability 

and applicability in real-world scenarios. 

3.2 DRS with parcel-based Monte Carlo Orebody Representation 

Monte Carlo simulations (MCS) use probability distributions to represent input parameters, 

rather than deterministic values. This creates a more realistic representation of the system being 

simulated (Órdenes et al., 2022). The execution of an MCS consists of running numerous replicas, 

each based on a distinct instance of random number generation. This results in a distribution of 

possible behaviors, which can be used to understand the uncertainty associated with the system. In 

summary, Monte Carlo simulation (MCS) frameworks use random number generation to relate 

input probability distributions to output probability distributions. In broad terms, a Monte Carlo 

simulation framework considers: 

o A set of input parameters that configure the system that is to be simulated; 

o That one or more of the inputs are to be represented by probability distributions rather 

than deterministic values; 
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o That the execution of the simulation consists of numerous replicas, each based on an 

independent generation of random numbers following the input probability 

distributions; 

o That the collection of outputs from the replicas approximate the distribution of 

possible system behaviors; 

o Typically, the overall system performance can be assessed through the output 

distributions and quantified by so-called key performance indicators (KPIs). 

Essentially, a Monte Carlo simulation uses random number generation (RNG) to convert 

input parameters and distributions into output distributions and KPIs. As illustrated in Figure 3.2.1, 

some of the input parameters can be used to parametrize the input distributions as well as for 

configuring the internal aspects of the framework. Similarly, certain KPIs can be drawn as 

summative evaluations of the output distributions, while others may be directly computed by the 

framework. 

 

Figure 3.2.1: General representation of a Monte Carlo simulation framework. 

Moreover, a discrete event simulation (DES) framework represents a dynamic system via 

input parameters and distributions as well as a collection of state variables that are updated at 

discrete points along a simulated timeline, hence, discrete events. Indeed, it is the simulated clock 

jumps from one discrete event to the next without explicitly representing the behavior between the 

events. An activity or condition that extends over a duration is represented by a discrete event that 

signals its beginning and a later discrete event that signals its end; within this duration, there may 
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be a series of discrete events, and possibly sub-activities, “sub-sub-activities”, etc. depending on 

the level of detail. DES models can therefore be developed in iterative phases that incorporate 

hierarchical complexity, as per Figure 3.1, which define additional state variables and 

incrementally detail the system’s activities, conditions, processes, etc. There are cases in which a 

purely deterministic DES may be of interest (e.g., for initial conception or later verification), but 

in practice, DES is seen as a type of Monte Carlo simulation (Figure 3.2.2), considering that the 

time between events can be the result of RNG and that the updating of state variables that occur at 

the events are generally the result of RNG. 

 

Figure 3.2.2: Relationship between Monte Carlo, discrete event, and discrete rate simulation. 

Furthermore, a discrete rate simulation (DRS) is a particular kind of DES in which the state 

variables consist of pairs of levels and rates (lj,rj), and the discrete events consist of threshold 

crossings. Each level-rate pair represents a continuous variable that follows piecewise linear 

dynamics. The occurrence that such a continuous variable crosses a threshold is, itself, a discrete 

event (e.g., an ore stockpile level crossing below a critical value). When the ith threshold crossing 

event occurs at time ti, the levels lj are updated as per: 

𝑙𝑗 = 𝑙𝑗 + (𝑡𝑗 − 𝑙𝑖−1)𝑟𝑗 (3.2.1) 

and, subsequently, the corresponding rates, rj, are updated by model-specific formulas for j ∊ {1,2 

. . . ,nCSV}, in which nCSV is the number of continuous state variables. The model-specific 

updating of rj can incorporate RNG, particularly in a mineral processing and extractive 

metallurgical context, when representing geological variation (Navarra et al., 2019; Ordenes et al. 

2021; Peña-Graf et al., 2022, Peña-Graf et al., 2021; Wilson et al., 2022). These rate updates can 

also be the result of an operational policy that depends on the current configuration of the plant, 

as well as current and forecasted stockpile levels. Also, depending on the particular event, there 



34 

 

can also be discrete jumps in lj as well as in rj, for example, a corrective action can include an 

immediate injection of a certain reagent, as well as a change in the continuous feeding rate. 

In DRS with parcel-based Monte Carlo orebody representation, the modelling is computed 

in the form of “parcels”. Each parcel may be considered to represent a composite of several 

excavation zones, whereby at any given time a single “parcel” is being excavated containing a 

combination of waste rock and various types of ore. The depletion of this so-called parcel 

corresponds to a threshold crossing event (i.e. there is zero tonnes remaining in the current parcel), 

at which point the next parcel is randomly generated, containing a new blend of waste rock and 

ore; if the new parcel consists of the same blend of waste rock and ore, then the change in 

geological character is in comparison to the previous parcel based on local statistical variation, 

otherwise the contribution of new facies is generating using parcel is generated using global 

statistics. Previously, the parcels had been generated by elementary random number generation, 

without reference to an explicit orebody model and mine plan (Figure 3.2.3). 

 

Figure 3.2.3: Simple Monte Carlo approach, which does not explicitly consider the spatial distribution of geological 

data. Within this approach, subsequent incoming tonnages (parcels) are generated during each DRS. 

3.2.1 Maximum Likelihood Estimation of Distribution Parameter 

Maximum likelihood estimation (MLE) is foundational to the data-driven parameterization 

of probability distributions (Altiok & Melamed, 2007; Montgomery & Runger, 2010) and precedes 

each of the goodness-of-fit (GOF) methods described in the following section (Figure 3.1.5). 

Supposing that a given set of numerical measurements, x1, x2, … xn, follow a probability 

distribution, having density distribution 𝒇, MLE determines the parametrization of 𝒇that would 

have been the most likely to have produced said measurements. 
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Using standard notation, the probability density function (pdf) can be expressed as a function 

𝒇(x) in which x is a possible value; by definition, ∫ 𝑓(𝑥)
∞

−∞⁡
dx = 1. To explicitly cite the distribution 

parameters, we may write 𝒇(x|θ), in which θ is a tuple containing the list of parameters of the 

distribution. For example, a Gaussian distribution (also known as Normal distribution) can be 

expressed as 𝒇(x|μ,σ2), in which the parameters θ = (μ,σ2) are the mean and variance. MLE applies 

the principles of mathematical optimization and calculus to determine appropriate formulas (also 

known as “estimators”) for estimating parameter values, as a function of the observed values. In 

the case of a Gaussian distribution, the parameter values are commonly taken to be μ ≈ (Σ xi/n) = 

𝑋̅ and σ2 ≈ (Σ (xi – 𝑋̅)2/(n – 1)); however, industrial measurements of head grade and other process 

variables do not follow a Gaussian distribution, hence requiring the broader concepts of MLE and 

goodness-of-fit testing (Altiok & Melamed, 2007,Devore, 2011; Massey, 1951; Anderson & 

Darling, 1954). Especially for gold head grades, it is advised that the distribution of the grade be 

represented, rather than using averages to define a deterministically constant grade since the 

variation effects process decisions and outcomes. Moreover, it is important to implement a truly 

representative distribution since the erroneous usage of a Gaussian process can again effect process 

decisions and outcomes. 

 

Figure 3.2.4: Maximum likelihood estimation is incorporated into common goodness-of-fit statistics, including Chi-

Square (χ2), Kolmogorov–Smirnov, and Anderson–Darling. 

Anecdotally, professionals within the mining and metallurgical industries are reluctant to 

consider distributions other than the familiar Gaussian; they are often unfamiliar with the concepts 

of MLE and goodness-of-fit testing, unless they have had particular training in continuous 

improvement methodologies, such as Six-Sigma or related statistics or industrial engineering. The 

current treatment is intended to be adequately brief but self-contained. Alternatively, many 

practitioners are prone to using group averages to represent the plant behavior, which does not 

represent lost productivity from a sudden departure away from the operating tolerances or, in the 

case of gold processing, spikes in cyanide consumption. 
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Consider a series of random measurements: X1, X2, …, Xn, which are made and are found to 

have values of x1, x2, … xn, and have some degree of precision: δ > 0. More explicitly, it has been 

found that X1 ∈ [x1 − ½δ, x1 + ½δ] and X2 ∈ [x2 − ½δ, x2 + ½δ], etc., and finally, that Xn ∈ [xn − 

½δ, xn + ½δ] for a small value δ > 0. Supposing that these measurements follow a hypothetical 

distribution described by f, the probability that X1 would have landed within the interval [x1 − ½δ, 

x1 + ½δ] is estimated by the area of a rectangle of width δ and height f(x1), and similarly for the 

other measurements; hence, P(X1 ∈ [x1 − ½δ, x1 + ½δ]) ≈ δ⋅f(x1), P(X2 ∈ [x2 − ½δ, x2 + ½δ]) ≈ 

δ⋅f(x2), …, P(Xn ∈ [xn − ½δ, xn + ½δ]) ≈ δ⋅f(xn). Assuming that the n samples are independent, the 

joint probability is given by the product: 

𝑃(𝑋1 ∈ [𝑥1 −½δ, 𝑥1 +½δ], … , 𝑋𝑛 ∈ [𝑥𝑛 −½δ, 𝑥𝑛 +½δ]) ≈ 𝛿𝑛∏𝑓(𝑥𝑖)

𝑛

𝑖=1

 
 

(3.2.2) 

 

MLE maximizes this joint probability by adjusting the parameters of f, asking the question: 

which parameter values would have maximized the probability of having measured X1 ≈ x1 and 

X2 ≈ x2 and … and Xn ≈ xn? 

Assuming that the degree of precision, δ, is sufficiently small, then it does not affect the 

maximization and can be ignored. Thus, as a proxy for the joint probability (Equation 3.2.2), we 

define the likelihood L(x), in which x = (x1, x2,…xn) is the tuple of measured values: 

𝐿(𝒙) =∏𝑓(𝑥𝑖)

𝑛

𝑖=1

 (3.2.3) 

To explicitly cite the distribution parameters θ = (θ1, θ2, … θp), we write: 

𝐿(𝒙|𝜽) =∏𝑓(𝑥𝑖|𝜽)

𝑛

𝑖=1

 
(3.2.4) 

It is common to maximize the natural logarithm of L, rather than L itself, which converts the 

product of Equation (3.1.8) into a summation. The log-likeliness function is thus given by: 

𝑙(𝒙|𝜽) =∑ln(𝑓(𝑥𝑖|𝜽))

𝑛

𝑖=1

⁡ (3.2.5) 

and indeed, the maximization of l = ln (L), rather than L, does not change the result, considering 

that ln is a strictly increasing function. This transformation slightly simplifies the calculus to 
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parameterize common distributions, such as the Gaussian and exponential (Montgomery and 

Runger, 2010). 

Moreover, it is standard to use a “hat” to denote the MLE estimates, i.e., the 𝜽̂ =

(𝜃1, 𝜃2, . . , 𝜃𝑝) are the particular values of θ = (θ1, θ2, … θp) that maximize the joint probability (or 

equivalently the likelihood or log-likelihood) of having measured X1 ≈ x1 and X2 ≈ x2 and … and 

Xn ≈ xn. The MLE-parametrized density function is also denoted with a ”hat”, as in 𝑓(𝑥) =

𝑓(𝑥|𝜽̂), and similarly for the cumulative distribution function 𝐹(𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
𝑥

−∞
; the MLE-

parameterization is expressed as 𝐹̂(𝑥) = 𝐹(𝑥|𝜽̂) = ∫ 𝑓(𝑢|𝜽̂)𝑑𝑢
𝑥

−∞
. 

Depending on the distribution, there may be constraints on certain parameter values, e.g., 

only positive σ2 values are allowed in the case of a Gaussian distribution. Therefore, the exercise 

of MLE is in general a constrained optimization: 

𝜽̂(𝒙) = argmax
𝜽∈Θ

𝐿(𝒙|𝜽) = argmax
𝜽∈Θ

𝑙(𝒙|𝜽)⁡ (3.2.6) 

in which Θ is the feasible parameter space, Θ ⊂ ℝp, yet there are many practical cases in 

which the constraints do not affect the optimization. In practice, Θ can be taken as ℝp to apply 

unconstrained optimization techniques (calculus), and only if the resulting parametrization is 

infeasible is it necessary to consider a specialized constrained approach. 

If L(x|θ) varies continuously with θ, then elementary differential calculus can be applied. For 

distributions with only one parameter, 𝜃 is determined by setting ∂L/∂θ to zero and solving for θ. 

Nearly all of the distributions under consideration, regarding the Minera Florida data, consist of 

two parameters, in which case 𝜽̂ = (𝜃1, 𝜃2) is determined by setting ∂L/∂θ1 = 0 and ∂L/∂θ2 = 0 

and solving for two unknowns: θ1 and θ2. More generally, for p-parameter distributions, the 

calculus consists of solving p equations to obtain p unknowns (Montgomery & Runger, 2010). 

However, prior to selecting a particular standard distribution to represent a particular variable 

(e.g., log-normal to represent the head grade), a litany of other potential distributions are also 

considered, which are each parameterized according to Equation (3.2.6), leading to distribution-

specific estimation formulas. The idea is to compare the best Log-normal distribution to the best 

Gaussian distribution, and to the best Gamma distribution, and so on. In this case, “best” means 
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optimally parametrized in the sense of MLE. The distribution-specific estimators are usually 

programmed within software such as the input analyzer that is available with Rockwell Arena or 

the commonly used easy fit by Math Wave Technologies. In typical applications, it may not be 

necessary to derive or to work directly with the distribution-specific estimation formulas, relying 

instead on the software; however, the detailing of the DES/DRS framework has required that we 

directly program these estimators as an essential part of the data processing (Figure 4). It is prudent 

(and strongly recommended) to derive the formulas for any of the MLE estimators that are 

programmed into such a framework to be precisely sure of what the parameters represent. These 

calculus exercises are fairly basic and avoid errors that would later be very difficult to detect. As 

an example, once again, Equation (3.2.6) demands the mean of the logarithm rather than the 

logarithm of the mean. Consider further that an unapologetically deterministic simulation may be 

preferred over such an ill-conceived probabilistic model that gives false confidence. 

In summary, MLE is the rigorous mathematical basis for data-driven parameterization. It 

provides the formulas to channel industrial measurements into the DES/DRS framework of 

Órdenes et al. (2021). The approach and experience that we have gained in the context of Minera 

Florida can be adapted to other mining contexts. 

 

Figure 3.2.5: Data-driven representation of process variable distributions within a DES/DRS framework, using 

maximum likelihood estimation and goodness-of-fit ranking. 

3.2.2 Chi-Squared, Kolmogorov–Smirnov, and Anderson–Darling Statistics 

Critical process variables, such as head grades, recoveries and others can be observed with 

histograms and clearly do not follow Gaussian distributions. Yet, statistical concepts that are 

erroneously adapted to the Gaussian distributions are still commonly used. Even when 

metallurgical operators and engineers recognize this “non-Gaussianity”, they are left with the task 

of selecting other standard distributions which might be more appropriate, but without knowledge 

of a rigorous approach, the Gaussian distribution is nonetheless retained. This erroneous 
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application of the Gaussian process makes it difficult to justify a budget for detailed metallurgical 

studies (Figure 3.1). Particularly, in responding to critical variation, such as with gold head grade, 

any deterministic approach is inadequate, but an ill-adjusted probabilistic approach may be even 

less desirable since it provides false confidence. 

In other industrial contexts, the typical approach is to rank the MLE parametrization for a 

list of candidate distributions according to goodness-of-fit (GOF) statistics (Figure 3.2.3). Given 

several hundred gold head grade measurements, for example, the preference to model these data 

as log-normal rather than as Gaussian involves a comparison of GOF metrics from the MLE-

parameterized log-normal together with the GOF metrics of the MLE-parameterized Gaussian, 

with both parameterized with respect to the same given data. More broadly, software such as the 

Rockwell input analyzer and easy fit (of Math Wave Technologies) tabulate the GOF metrics for 

an extensive list of candidate distributions. The user of the software may then select the best-

ranked distribution but, alternatively, may select another highly ranked distribution if it has fewer 

parameters and/or can be more effectively implemented or studied in computational experiments. 

This shall be further discussed below. 

The chi-squared (χ2) is the most widely known statistic that is used for GOF. Indeed, the χ2 

is described in elementary statistics textbooks such as (Ferguson and Erickson, 1988). Anecdotally, 

practitioners of extractive metallurgy may have a vague familiarity with χ2, possibly for the 

construction of variance intervals of Gaussian-distributed variables or embedded within ANOVA 

tables in the evaluation of the F statistics (that compares variances of Gaussian-distributed 

variables (Devore, 2011)). In its classic use as a GOF statistic (dating to 1900, [26]), it is evaluated 

as a weighted sum of squares over k categories: 

𝜒2 =∑(
1

𝑛𝑗
Dist

) (𝑛𝑗
Obs − 𝑛𝑗

Dist)
2

𝑘

𝑗=1

 (3.2.7) 

in which 𝑛𝑗
Obs is the number of observed measurements that fall within category j, and 𝑛𝑗

Dist 

is the number of measurements predicted by the MLE-parametrized hypothetical distribution, 

noting that the 
1

𝑛𝑗
Dist factors act as weighting; alterations of the classic χ2 may consider different 

weightings. In general, according to Equation (3.2.1), distributions whose MLE-parametrization 
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have smaller differences (𝑛𝑗
Obs − 𝑛𝑗

Dist) over the k categories will give smaller 𝜒2 values and are 

hence, a better fit. 

One drawback of this use of chi-squared is the ambiguity in the definition of the k categories. 

Ad hoc approaches for evaluating discrete distributions are described in (Devore, 2011), including 

mergers of smaller categories resulting in larger categories that are adequately sampled and 

(ideally) are equiprobable. For continuous distributions such as Gaussian, log-normal, etc., the k 

categories correspond to a set of intervals, {(aj−1,aj]|j = 1… k}, and the equiprobable condition 

(𝑛𝑗
Dist =

𝑛

𝑘
) is strictly enforced by setting: 

𝑎𝑗 = 𝐹̂−1(𝑗/𝑘) (3.2.8) 

in which 𝐹̂−1 is the inverse of the MLE-parameterized cumulative distribution function. 

Thus, for continuous distributions, 𝜒2 is expressed in terms of the number of samples n: 

𝜒2 = (
𝑘

𝑛
)∑(𝑛𝑗

Obs −
𝑛

𝑘
)
2

𝑘

𝑗=1

 (3.2.9) 

Yet, even for continuous distributions, there is generally no optimal approach for fixing k 

since the optimal number of categories depends on the (unknown) distribution that underlies the 

data. A commonly used formula is: 

𝑘 = ⌊1 + log2 𝑛⌋ (3.2.10) 

Alternatives to the χ2 include Kolmogorov–Smirnov (KS) and Anderson–Darling (AD) 

statistics, both of which avoid the artificial construction of categories. KS and AD both make use 

of the empirical cumulative distribution, 

𝐹𝑛(𝑥) =
|{𝑥1, 𝑥2, … 𝑥𝑛}⋂(−∞, 𝑥]|

𝑛
 (3.2.11) 

Fn(x) is thus the portion of observed measurements whose value is smaller or equal to x, 

which forms a step function graph as illustrated in Figure 5. Herein the KS statistic is the largest 

absolute distance between 𝐹𝑛 and 𝐹̂. Formally: 

KS = sup
𝑥∈ℝ

|𝐹𝑛(𝑥) − 𝐹̂(𝑥)| (3.2.12) 
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KS is an unweighted metric, i.e., there is no weighting w(x) that multiplies the absolute 

difference. A supremum operation (sup) is more appropriate than a maximum (max) to ensure the 

largest interpretation of |𝐹𝑛(𝑥𝑖) − 𝐹̂(𝑥𝑖)| when evaluating the distance at the sample points xi, i.e., 

|𝐹𝑛(𝑥𝑖) − 𝐹̂(𝑥𝑖)| is taken to be the larger of either the left limit lim
𝑥→𝑥𝑖

−⁡
|𝐹𝑛(𝑥) − 𝐹̂(𝑥)| or the right 

limit lim
𝑥→𝑥𝑖

+
|𝐹𝑛(𝑥) − 𝐹̂(𝑥)| (Massey, 1951). 

 

Figure 3.2.6: Kolmogorov–Smirnov statistic (KS) is the supremal distance between an empirical cumulative 

distribution and an MLE-parametrized cumulative distribution. A small KS indicates a good fit. 

The Anderson–Darling statistic is conceived as a weighted integral of the squared difference 

of 𝐹𝑛 and 𝐹̂(𝑥), 

AD = 𝑛∫
(𝐹𝑛(𝑥) − 𝐹̂(𝑥))

2

𝐹̂(𝑥)(1 − 𝐹̂(𝑥))
𝑑𝐹̂(𝑥)

∞

−∞

 (3.2.13) 

in which the weighting 
1

𝐹̂(𝑥)(1−𝐹̂(𝑥))
 preferentially penalizes the deviations in the tails; in practice, 

AD is indeed more sensitive to tail deviations than either the χ2 or the KS. Through a partial 

fraction decomposition of the integrand and the articulation of 𝐹𝑛 as piecewise constant intervals, 

and a change of the integrating domain such that 𝑑𝐹̂(𝑥) = 𝑓(𝑥)𝑑𝑥, Equation (3.2.7) is resolved 

as: 

AD = −𝑛 − (
1

𝑛
)∑(2𝑖 − 1)[ln 𝐹̂(𝑥(𝑖)) + ln[1 − 𝐹̂(𝑥(𝑛+1−𝑖))]]

𝑛

𝑖=1

 (3.2.14) 
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in which {x(1), x(2),…x(n)} is the sorting of the sample data {x1, x2,…xn} in ascending order, i.e., 

x(1) ≤ x(2) ≤ … ≤ x(n). 

In developing data-driven industrial simulations, the χ2, KS, and AD statistics are used to 

rank the MLE-parametrized distributions, indicating which distributions are representative of the 

various process variables. However, they often provide conflicting results, including the χ2 

rankings, which can change depending on how the categories are constructed. Moreover, common 

software such as easy fit and the Rockwell input analyzer consider an extensive list of distributions, 

many of which are obscure. For example, the top-ranked distribution according to KS may be a 

Johnson SU, which is a four-parameter transformation of the standard Gaussian; if a more 

commonly used distribution is nearly as good in KS ranking and is also favorable in the χ2 and AD 

rankings, then the more common distribution is a better choice. Firstly, the more common 

distributions are prolific in published studies across many disciplines, allowing for cross-

disciplinary comparisons. More importantly, the common distributions are better received in 

preparation for detailed studies (Figure 3.1a) that would ultimately allow more detailed modelling; 

the fitted distributions that are most impactful to the simulation may (or should) ultimately be 

replaced by mechanistic models (Figure 3.1b). The application of an obscure multiparameter 

distribution may be counter-productive since either (1) the process variable is critical and should 

genuinely be represented through a sub-model rather than an obscure distribution, or (2) the 

variable is not so critical and should rather be represented by a common distribution instead of 

being a point of unnecessary scrutiny for management. 

An existing nuance is that the χ2, KS, and AD rankings of MLE-parameterized distributions 

are descriptive in the sense of descriptive statistics; this is in contrast to inferential statistics, which 

relies on hypothesis testing to infer the properties of an underlying process, given a set of sample 

data. In the current context, it is understood that the process variables do not actually follow any 

of the idealized distributions listed by the fitting software; the task is to decide which of these 

distributions are best suited to argue for the next phase of simulation modelling, with the objective 

of efficiently directing the resources for further study (Figure 3.1) and ultimately for process 

improvement. 
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In a different context, whereby a systematic sweep of numerous candidate distributions is 

not involved, a GOF hypothesis test is applied when there is a hypothetical distribution that is 

specifically observed to be a possible description of the underlying process. For χ2, KS, and AD 

tests, a null hypothesis is formulated as: 

H0: the measured sample data {x1, x2… xn} follows a distribution whose cumulative 

probability function is described by F0(x|θ) having parameters θ. 

The observed χ2, KS, and AD can then be computed by applying Equations (3.2.9), (3.2.12), 

or (3.2.14), respectively, to the MLE-parametrized hypothetical cumulative probability function 

𝐹̂0. For a significance level α ∈ (0, 1], the null hypothesis is rejected if the observed statistics 

exceed a critical value; such a rejection indicates a minimal confidence (1−α) level in which the 

underlying process does not follow the hypothetical distribution. For the χ2 test, the test is 

formulated as: 

(𝜒2 > 𝜒1−𝛼,𝑘−𝑚
2 ) ⇒ (Reject⁡𝐻0) (3.2.15) 

in which the critical value is 𝜒1−𝛼,𝑘−𝑚
2  can be obtained from textbooks or from software (Excel, 

Minitab, etc.) considering (k−p) degrees of freedom; p is the number of parameters within the 

hypothetical distribution, e.g., p = 2 for Gaussian and log-normal. The critical KS1−α and AD1−α 

are both distribution-specific (Massey, 1951; Anderson & Darling, 1954) and consider 

multiplicative adjustment factors that depend on the number of samples n. 

(KS > 𝜙𝑛
KSKS1−𝛼) ⇒ (Reject⁡𝐻0) (3.2.16) 

(AD > 𝜙𝑛
ADAD1−𝛼) ⇒ (Reject⁡𝐻0) (3.2.17) 

For a hypothetical Gaussian distribution, the adjustment factors are 𝜙𝑛
KS = (√𝑛 − 0.01 +

0.85

√𝑛
) and 𝜙𝑛

AD = (1 +
4

𝑛
−

25

𝑛2
). For certain distributions, such as the exponential, the n-dependent 

adjustment includes an additive shift as well as a multiplicative factor (Massey, 1951). It is indeed 

customary to apply the tests of Equations (3.2.9) – (3.2.11) for the selected distribution, which 

incidentally may not be the top-ranked of all GOF metrics. But particular caution is required when 

interpreting the rejection of these hypotheses, especially when communicating to management 
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(Figure 3.1). In the descriptive statistical context of GOF ranking to support simulation modelling, 

the null hypothesis, H0, is moot a priori unless there is a genuine expectation that the underlying 

process could follow the proposed distribution. The ultimate decision to accept a distribution-based 

representation of a process variable, or to replace it with a more detailed sub-model (i.e., to truly 

reject the distribution), must depend on how significant the process variable is to the engineering 

decision-making. Otherwise, the tendency is to focus erroneously on irrelevant aspects of the 

model that justifiably have a large statistical deviation from the observed data; in practice, it is 

typical that the unimpactful aspects (as determined by the approach in Figure 2) of the model 

remain less developed in favor of the more impactful aspects that should indeed be more 

developed. Therefore, simulation modelers must understand the notion of inferential statistical 

significance, especially to distinguish it from engineering decision-making significance. It is likely 

that all distribution-based representations should ideally be replaced by sub-models, “sub-sub-

models”, etc. (Figure 3.1b) from a statistical point-of-view with α ≈ 0. Yet, in practice, the 

budgetary and human resource limitations cause the modelling effort to prioritize those aspects 

which are truly critical to the advancement of the project (Figure 3.1a). This engineering-oriented 

prioritization is not reflected within the weightings of Equations (3.2.7), (3.2.12), and (3.2.13). 

3.3 DRS with geostatistical modelling and geometallurgical input 

The quantitative framework developed in this research aims to improve our understanding 

of geological variability by incorporating spatial uncertainty using geostatistical simulation 

methods. As mentioned in Chapter 2, these methods generate a series of equiprobable realizations 

that reflect the spatial variability of each variable, providing a solid basis for assessing the 

uncertainty inherent in mineral deposits. In addition, taking advantage of three-dimensional 

geological data collected early in the value chain, allowing to have for a simulated mineral 

processing stage response, contributing to the expansion of the capabilities of discrete event/rate 

frameworks. The SGS-DRS approach developed in the current work can be an important step 

within improvement projects in preparation for more elaborate efforts in which either SGS or DRS 

are eventually replaced by more advanced frameworks. In particular, the current research uses 

Sequential Gaussian Simulation to generate geospatially distributed variables, which is an 

adaptation of the discrete rate simulation (DRS) framework that was initially developed by Navarra 

et al. (Navarra, et al., 2019). 
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Figure 3.3.1: (a)State variable with linear dynamics evolution during simulation time frame (b) Discrete numerical 

state variable evolution during simulation time frame (c) Categorical state variables evolution during simulation 

time frame. 

DRS is a kind of MC simulation that represents dynamic systems whose state variables have 

piecewise linear dynamics (Figure 3.3.1a). The state variables are represented over time by pairs 

of levels and rates (lj, rj), for j = 1, 2, … nSV in which nSV is the number of state variables. The 

simulation progresses through a series of discrete events, whereby the ith event causes an updating 

of the levels in accordance with continuous piecewise linear dynamics, 

 lj ≔ lj + (ti – ti-1)rj (3.3.1) 

as illustrated by the first five segments of Figure 3.3.1a, and can consider a discontinuous jump as 

described by 

 lj ≔ lj + (ti – ti-1)rj +⁡Δj (3.3.2) 

as illustrated by the vertical dotted line that leads into the sixth segment Figure 3.3.1a. The 

updating of the rates rj and the discrete jumps Δj are based on model-specific formulas that 

consider the values of state variables (lj’, rj’) possibly in conjunction with random number 

generation depending on other defined dependencies in a particular system. Figure 1b illustrates a 

discrete numerical state variable (i.e., with rj ≡ 0), and the changes are entirely due to discrete 

jumps Δj. This approach is easily adapted to consider categorical state variables which have a 

discrete range of values, e.g., the operating mode can have values of “A”, “B”, etc. as illustrated 

in Figure 3.3.1c, which may be interpreted as a mapping from numerical values, 1, 2, and so on.  

Within equations (3.3.1) and (3.3.2), ti denotes the time of event i, whereas ti-1 represents 

the time of the preceding event. In general, the time between events (ti – ti-1) can be the result of 
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random number generation. The formulation of (Navarra, et al., 2019) places particular emphasis 

on threshold crossing events, e.g., when a certain type of feed is exhausted, and the cyanidation 

process is therefore adjusted to accommodate a different blend. (Navarra, et al., 2019) and 

subsequent work such as (Wilson et al., 2021), (Wilson et al., 2022a), (Wilson et al., 2022b), 

(Órdenes et al., 2021), (Órdenes et al. 2022) and (Quelopana et al., 2023), used threshold crossing 

events to model geological variation. 

In the geostatistical approach, the generation of the parcels is informed by the statically 

defined mine plan in conjunction with the corresponding block model constructed from Sequential 

Gaussian Simulation (SGS) generations (Figure 3.3.2). Each SGS replica produces a different 

scenario of what the orebody might be, which is then used within a DRS replica to simulate the 

operational response. 

 

Figure 3.3.2: Geostatistical approach, in which geological data is generated prior to the execution of the DRS, through 

Sequential Gaussian Simulation. 

Within the current model, the loading of a subsequent parcel immediately changes the mass 

balance and is observed as slope changes (i.e., changes in rates rj) in the progression of feed 

stockpile levels. A high-resolution representation would consider parcels containing low tonnages, 

e.g., 1,000 t, which would be rapidly excavated to allow a frequent succession of randomly 

generated parcels while retaining the ability to represent the geospatial aspects of the orebody as 

the excavation progresses from one zone to another and may be set up in such a way to inform or 

verify the mining sequence. This approach can be used to model mine phases starting from even 

the earliest stages of orebody development to examine approaches for minimizing grade variability 

and/or deleterious element variability. 

The incorporation of SGS within DRS has relevance for the early phases of mining 

improvement projects. This relationship can be explained by on one hand; SGS is a well-known 

extension of variography and kriging (which are foundational to geostatistics), and on the other 

hand; DRS is arguably the most basic approach to dynamic and stochastic mass balancing. In the 
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case where SGS is poorly representative of the orebody, then an alternate conditional simulation 

such as SIS or higher order techniques may then take the place of SGS in the later phases of an 

improvement project. Similarly, DRS is a distinct form of Discrete Event Simulation (DES). The 

more general DES structure can support increasingly intricate operational dynamics including the 

discrete actions of individual equipment (e.g., load-haul-dumpers, scoops, etc.), thus addressing 

questions of fleet sizing and coordination. Application of DES are described within the mining 

context, e.g., by (Peña-Graf et al., 2022). However, these approaches do not make an explicit 

connection to geostatistical techniques.  

 

Figure 3.3.3: Monte Carlo Frameworks. On the left side, Discrete Event Simulation contains Discrete Rate Simulation 

as a subcategory, and on the right side, Conditional Simulation includes Sequential Gaussian Simulation as a 

subcategory. 

3.3.1 Sequential Gaussian Simulation (SGS) 

Sequential Gaussian Simulation (SGS) is a common method to stochastically populate a grid 

with a Gaussian random realization (Journel, 1989) and (Deutsch & Journel, 1992). This method 

is an efficient means of modelling spatial heterogeneity and has long been utilized in the oil 

reservoir and orebody modelling communities (Dimitrakopoulos & Fonseca, 2003). Sequential 

Gaussian Simulation has been pivotal within modern resource estimation, and from an 

epistemological perspective, it is the merger of DRS with the principles of Monte Carlo Simulation 

adapted to Normal (a.k.a. Gaussian) distributions. Indeed, there are computationally efficient 

methods for randomly generating data using a normal distribution N[μ , σ], such as the Box-Muller 

transform and the ziggurat algorithm (Driss, Addaim, & Abdessalam, 2018), which are 

incorporated into SGS. The current discussion is intended to be a concise overview of SGS, noting 

that more rigorous treatments are available. 
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Suppose there are nS sample points located in space {(xi,yi,zi)| i =1, 2, …,nS} where 

numerical measurements have been made resulting in so-called “hard data”, and an additional nU 

unsampled points located at {(xi,yi,zi)| i = (nS+1), (nS+2), …, (nS + nU)} at which measurements 

have not been made. SGS creates nG equiprobable geological scenarios by utilizing the nS 

measurements of a geological attribute to simulate values at the remaining nU sample points. The 

hard data is maintained within each of the nG scenarios, while the nU randomly generated data 

will each be different for each of the scenarios. The steps for SGS are: 

• Normalize the sample data 

• Model the variogram using the normalized data 

• For j = 1 … nG 

• Construct a random sequence to visit the nU unsampled points 

• For i = (nS+1)…(nS+nU) 

1. Use the variogram model to extend and solve the kriging system of equations 

2. Use kriging interpolation weights to compute the mean μi and variance σi
2 

3. Randomly generate a value from N[μi,σi] and assign it to the point (xi,yi,zi) 

4. Include the newly simulated point value into the conditioning data 

5. Denormalize the data, hence completing scenario j 

In this context “normalize” implies redistributing the data with respect to a standard Normal 

distribution N[0,1] and after each of the nU data have been generated, “denormalize” implies 

distributing the data back into the original scale. Moreover, the generated data is sensitive to the 

sequence in which the points are visited, as each generated value successively conditions the 

subsequent values; therefore, rather than having a fixed (hence biased) order in which the nU points 

are simulated, a different random sequence (permutation) is used in each of the nG scenarios, by 

applying a permutation method such as the Knuth shuffle (Roy et al., 2014). 

SGS depends on kriging which, in turn, depends on variography, i.e., the plotting of inter-

sample variation versus inter-sample distances a.k.a. lags (Figure 3.3.1). The SGS algorithm 

requires a variogram model which describes how a value at a specific location is conditioned 

(influenced) by neighbouring values. For instance, in an anisotropic field the value at a point may 

be more influenced by neighbours along a particular direction, hence favouring neighbourhoods 
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having an ellipsoidal character rather than spherical. For certain geological structures such as veins 

or domes, a variogram model may be more representative if the inter-sample distances are 

quantified within in a geometrically transformed (“folded”) space, rather than the natural Cartesian 

space. A more complete discussion on variography is presented by (Wilson, et al., 2021) for 

example, but in general a variogram includes (1) an innate localized variation which constitutes 

the so-called nugget effect, (2) a range of inter-sample lags beyond which two sample points are 

deemed independent, and (3) a concave down curve used to model the transition from the localized 

variation toward the far field variation. Variogram modelling is something of an art form; 

nonetheless a proposed variogram can be validated through SGS if the data within the resulting 

scenarios capture the essential features of the orebody. In practice, this validation includes a visual 

assessment of the geological scenarios, and an inspection of histogram plots and other numerical 

and graphical aids. 

 

Figure 3.3.4: Sequential Gaussian Simulation variography and kriging dependency. 

There are two main forms of kriging that are commonly used within SGS, namely simple 

kriging (SK) and ordinary kriging (OK), both of which rely on least-squares optimization to attain 

an interpolated attribute value μi at a point (xi,yi,zi ) that, if appended to the previously available 

values (i.e. the conditioning data) at points {(xi’, yi’, zi’)}|i’=1, 2… (i-1)}, will yield minimal 

variance σi
2. Both SK and OK produce a system of linear equations in order to establish the kriging 

weights however, OK enforces an additional constraint that these weights should sum to 1 and is 

thus a form of constrained least-square optimization (which features a Lagrangian multiplier). 

More details for the SK, OK, and other kriging formulations are described in (Wilson et al., 2022a).  

Given the kriging weights, the interpolated value μi is a weighted sum of the neighbouring 

conditioning data. As indicated in the preceding algorithm, these results (μi,σi) are used to 

parametrize a Gaussian random generation, and the resulting randomly generated value is 

considered as conditioning data for each of the remaining points {(xi’, yi’, zi’)}|i’=i+1, nS+nU}. 

An important nuance within the SGS algorithm is that the system is extended by one linear 

equation for each newly simulated point that is incorporated into the conditioning set. By applying 
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specialized matrix techniques, only a marginal amount of computational effort is required to solve 

the ith kriging system as partial results from the preceding (i-1)th kriging system are successively 

utilized. These partial results constitute a lower triangular matrix known as a Cholesky factor Ki, 

and for SK, the ith Cholesky factor contains the (i-1)th Cholesky factor Ki-1 as a submatrix, which 

in turn contains the (i-2)th Cholesky factor Ki-2, and so on. As described by (Deutsch and Journel, 

1992), Cholesky decomposition is a particular form of the so-called LU decomposition (a.k.a. 

Lower–Upper decomposition) that allows efficient solution of symmetric linear equations, such as 

the SK and OK systems which are present within the SGS algorithm. Practical implementations of 

SGS depend on computationally efficient approaches to solving the kriging system. Notably, 

Generalized Sequential Gaussian Simulation (GSGS) arranges the kriging systems according to 

groups of points (Quigley, 2016), which reduces the computation time by a factor of 10, but also 

biases the sequence and results in a visual artifact known as the screening effect. 

3.3.2 Turning Bands Method (TBM) 

This technic was first presented in a strict mathematical format by Matheron (1973) and after 

was developed by Journel (1974; 1978). The TBM is used in geostatistics for simulating spatial 

random fields, the foundational concept is that a multidimensional spatial random field can be 

modelled by the superposition of several independent one-dimensional (1D) random profiles. 

These 1D functions are conceptually 'turned' in several directions across the multidimensional 

space, and they are distributed equally to represent the multidimensional field (Brooker,1985). By 

turning these bands or profiles in different directions, the spatial variability of the field can be 

captured, this method effectively simplifies the problem of simulating a spatial field in multiple 

dimensions by reducing it to the task of simulating several one-dimensional bands (Biermé et al., 

2015). To jointly simulate the components of a vector RF, the field can be split into its constituent 

components. (Paravarzar, et al., 2015): 

 ∀𝑥 ∈ 𝐷⁡, 𝑌(𝑥) =∑𝑦𝑆(𝑥)

𝑠

𝑠=1

 (3.3.3) 

In accordance with the linear coregionalization model, Y1,. . ., Ys are considered as 

independent vector Gaussian random fields. Each of these fields has associated matrices B1ρ1,. . ., 

Bsρs that represent their direct and cross-covariance functions. Since each coregionalization matrix 
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is positive semi-definite, non-conditional simulations are carried out by decomposing each co-

regionalization matrix, 𝐁𝒏, as follows (Emery, 2008; Paravarzar, et al., 2015): 

 B𝑛 = 𝐴𝑛A𝑛
𝑇 = 𝑄𝑛Δ𝑛Q𝑛

𝑇  (3.3.4) 

Where 𝑄𝑛 is an orthogonal matrix eigenvectors, Δ𝑛 is a diagonal matrix of eigenvalues, and 

𝐴𝑛 =⁡𝑄𝑠√Δ𝑠.⁡The generated non-conditional realizations are converted through a kriging step into 

conditional realizations (Journel & Huijbregts, 1978). Let {YS(x), x ∊ R3} be a non-conditional 

simulation, in the stationary case (finite variance models), the random field defined by (Emery, 

2006): 

 ∀𝑥 ∈ 𝑅3⁡, 𝑦𝑐𝑠(𝑥) = 𝑦𝑠(𝑥) + [𝑦(𝑥) − 𝑦𝑆(𝑥)]
𝑠𝑘 (3.3.5) 

Which reproduces the distribution of [Ys(x), x ∊ R3] conditional to the Y-data. To summarize, the 

conditional simulation implementation is as follows: 

(1) Draw a non-conditional realization at the target location x and at the data locations, 

via the turning bands method; 

(2) Compute the deviations (residuals) between the data values and simulated values at 

the data locations; 

(3) Perform a simple kriging of the residual from its values at the data locations 

(4) Add the result to the non-conditional realization, in accordance with Equation (3.3.5). 

This method has proven to be very efficient in the interpretation of ore body geometry, 

allowing simulated anisotropy with higher accuracy. Indeed, the TBM is often recognized for its 

efficiency in simulating spatial fields with a large number of points (Mantoglou, & Wilson, 1982). 

The limitations related to the TBM is firstly does not reproduce the exact variogram, and secondly, 

even though the use of more bands improves the approximation of the variogram (asymptotically) 

reducing artifacts, computational demands are increased. Therefore, a trade-off between achieving 

a more accurate simulation and maintaining computational efficiency needs to be performed. 

3.3.3 Sequential Indicator Simulation (SIS) 

Classical geostatistical simulation methods, such as Sequential Gaussian Simulation 

(SGS), introduced by Journel in the late 1980s (Gomez-Hernandez & Srivastava, 2021), rely on 



52 

 

the assumption that the underlying data follows a multivariate Gaussian distribution. In this 

algorithm, values are sequentially simulated conditioned on the original data and previously 

simulated values. The assumed Gaussian nature of the local conditional distributions significantly 

simplifies the process, as the mean and covariance derived from an ordinary or simple kriging 

system are sufficient to fully determine these distributions, which are subsequently randomly 

sampled to generate unique simulated point-scale values. However, this assumption can be 

problematic when dealing with non-gaussian random functions, such as continuous variables with 

spatially correlated extreme values, non-linear geological features or categorical variables 

representing lithological facies. In such cases, the assumption of Gaussianity is not suited since 

the local conditional distributions cannot be expressed analytically. Moreover, SGS tends to 

produce maximum-entropy solutions, which may not adequately capture the complex variability 

and patterns observed in geological systems (Journel and Deutsch, 1993). 

The Sequential Indicator Simulation algorithm was introduced by Journel and Alabert in 

1987 (Gomez-Hernandez & Srivastava, 2021) as a non-parametric statistical framework that can 

handle the complexity and variability inherent in geological systems without defaulting to 

assumptions of multiGaussianity. This simulation technique is variogram-based and categorical in 

nature, and as in SGS, follows the principle of sequential simulation (Journel 1993), where the 

joint probability distribution of a stationary ergodic random vector 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑁)
𝑇, 

associated with probability triple (Ω,ℱ, 𝑃), a set of categories 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑁}  such that 𝒁:Ω →

𝐶𝑁and defined on a grid  𝐷 = {𝒙1, 𝒙2, … , 𝒙𝑁}, 𝒙 ∈ ℝ𝑛, 𝑛 = 2,3, can be decomposed into the 

product of univariate conditional distributions as follows: 

𝑃(𝑍1 = 𝑐1, 𝑍2 = 𝑐2, … , 𝑍𝑁 = 𝑐𝑁|𝒅𝑛) =∏𝑃(𝑍𝑖 = 𝑐𝑖|𝑍1 = 𝑐1, 𝑍2 = 𝑐2, … , 𝑍𝑖−1 = 𝑐𝑖−1, 𝒅𝑛)𝑃(𝑍1 = 𝑐1|𝒅𝑛)

𝑁

𝑖=2

 (3.3.6) 

Here, 𝒅𝑛 = {𝑧1, 𝑧2, … , 𝑧𝑛} denotes a set of conditioning data where lowercase z implies a 

realization of random vector Z. As such, the difficulty in SIS is in deriving the conditional 

distributions of Z at one node of grid D given the available data at other nodes. This can be done 

using the indicator formalism introduced in Journel and Alabert (1989). Without loss of generality, 

let 𝑐𝑘 = 𝑘, 𝑘 = 1,… , 𝐾 represent K different rock types. A categorical variable is encoded as a 

vector of K indicator variables: 
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𝑖𝑘(𝑍𝑖) = {
1,⁡⁡⁡⁡⁡𝑍𝑖 = 𝑘
0,⁡⁡⁡⁡⁡𝑍𝑖 ≠ 𝑘

⁡⁡ (3.3.7) 

Then, any conditional probability for 𝒁 to the previously simulated nodes and given data within 

the local neighborhood of 𝑍𝑖, represented by set 𝝀𝑖, can be written as a conditional expectation:  

𝑃(𝑍𝑖 = 𝑘𝑖|𝝀𝑖) = 𝐸[𝑖𝑘𝑖(𝑍𝑖)|𝝀𝑖]⁡ (3.3.8) 

Estimates of the conditional distributions at each grid node are given by indicator kriging using 

corresponding indicator variograms. To compute the conditional expectation in equation 3.3.8, the 

first-order linear approximation in equation 3.3.9 is used, where 𝛼0and 𝛼1 are weights determined 

using simple or ordinary indicator kriging, and the covariance structure of the data (Hansen, 1992). 

𝑃(𝑍𝑖 = 𝑘𝑖|𝝀𝑖) = 𝐸[𝑖𝑘𝑖(𝑍𝑖)|𝝀𝑖] = 𝛼0 + ∑ 𝛼1(𝛽) × 𝑖𝑘𝑖(𝑍𝛽)

𝛽∈𝝀𝑖

⁡⁡ (3.3.9) 

Note that since there are 𝐾 different rock types, kriging systems must be solved 𝐾 times for each 

𝑍𝑖 ⁡associated with location 𝒙𝑖. 

 

Unlike SGS, SIS enables the incorporation of class-specific spatial continuity patterns by utilizing 

different indicator variogram models for each considered rock type k. Prior to variogram model 

fitting, experimental variograms are calculated from the indicators as follows: 

𝛾(𝒉)𝑘 =
1

2𝑁(𝒉)
∑[𝑖𝑘(𝒁(𝒙)) − 𝑖𝑘(𝒁(𝒙 + 𝒉))]

2

𝑁(𝒉)

⁡𝑘 = 1, … , 𝐾⁡⁡ (3.3.10) 

Where 𝑁(𝒉)⁡denotes the number of pairs of data points distanced by 𝒉 units. The indicator 

variogram functions can vary depending on 𝑘. This allows for the modeling of different degrees 

of spatial correlation for each rock type, enabling a more precise representation of geological 

variability than with Gaussian methods.  As described, the fundamental concept of SIS involves 

breaking down a multivariate spatial distribution into a series of conditional distributions. While 

the sequence by which nodes in the grid are visited can be arbitrary, a random order is usually 

adopted to prevent artifacts. At each visited node, conditional distributions are determined using 

indicator kriging, incorporating both the original data and previously simulated values (equation 

3.3.9). To enhance computational efficiency, a search neighborhood restricts the conditioning data. 

A category is assigned to each location by randomly sampling from the local uncertainty model, 
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represented by a probability mass function of the possible rock types. This process continues until 

all nodes are simulated. Multiple equiprobable realizations can be generated by using different 

random numbers when sampling the distributions. Figure 3.3.5 summarizes the procedure. 

 

(a) (b) (c) 

Figure 3.3.5: Summary of the SIS procedure of a grid, (a) random path, generated local uncertainty model at location 

(3,3) (b) a rock type k=1 is randomly sampled from the local uncertainty model based (c). Modeled node at the location 

(3,3). 

The algorithm for generating conditional cumulative distribution functions (CCDF’s) 

particularly in the context of conditional simulation offers several significant advantages (Alabert, 

1987; Deutsch & Journel, 1992). SIS is particularly beneficial in scenarios where the geometry of 

geological bodies is not distinctly defined, and where the spatial continuity of the variables can be 

effectively characterized by variograms, i.e. geological formations that have significant diagenetic 

alteration (Pyrcz & Deutsch, 2014). By sequentially simulating each location or node, based on 

the local probabilistic framework provided by the variogram, SIS generates realistic and 

geologically likely representations of the spatial distribution of categorical variables, generating 

equiprobable realizations that honor a pre-defined structure and the data inputs (Mizuno & 

Deutsch, 2022). 

3.3.4 Multiple Point Statistics (MPS) and Higher Order Stochastic Simulation (HOS). 

The multiple-point statistics (MPS) was proposed in the early 1990s, and widely used in the 

petroleum industry (Srivastava, 2018). MPS is an advanced technique aimed at understanding the 

spatial relationship between multiple points in a given sample data. Variogram-based methods rely 

on two-point statistics, which only consider the relationship between pairs of data points at a time. 
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However, by describing only the correlations between two spatial locations, a variogram cannot 

capture mathematically the complexity of curvilinear geological features (Caers and Zhang 2004). 

In the MPS methods, the spatial statistics are not either extracted using variogram (two-point 

statistics paradigm), instead a conceptual tool named training image (TI) is used, which is an 

example of the spatial structure to be modelled by the available data (Tahmasebi, 2018). The role 

of the training images (TI, the most important input in this techniques) is to act as a conceptual 

model that captures the spatial patterns and structures expected in geological formations. Many of 

the major oil companies funded detailed quantitative studies of outcrops that could serve as good 

geological analogs for input in simulations (Srivastava, 2018). The concept of a training image 

(TI) in geostatistical modeling, particularly in the context of MPS, is centered around its role as a 

conceptual interpretation of the major spatial variations present in the studied area, which can be 

based on actual data, or on other exhaustive data set considered to be representative (Strebelle, 

2000; Zhang, 2006). Three main methods are presented for constructing a TI: 

(1) Outcrop Data: Outcrops are indeed one of the most valuable sources of information in 

geological surveys and field studies. Outcrops provide a direct and tangible view of the 

geological characteristics of an area, offering a firsthand look at the geology. They can 

show the layering, folding, faulting, and other structural aspects of rock formations, 

which are crucial to construct the geological model. By the information provided by 

outcrops, it is possible to interpret the three-dimensional arrangement, understand spatial 

patterns and structural relationships that can guide the creation of the training images that 

finally are inputted into the simulations. 

(2) Object-based Methods: Another method for build structured categorical models is the 

object-based (or Boolean) method (Deutsch & Wang 1996; Skorstad et al. 1999). In this 

case, the trained image is defined based on geological features, such as shape, size, 

direction, and sinuosity. The results can be used within an iterative algorithm to provide 

any further alterations, but not always the best option (Srivastava, 2018). 

(3) Process-based Methods: Process-based methods (Lancaster & Bras, 2002; Pyrcz et al. 

2009) develop 3D models emulating the physical processes that generate a porous 
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medium. Even though the realism, they are computationally expensive and additive 

models, their result is oriented to a specific geological formation. 

The comparison between pixel-based and pattern-based MPS methods highlights the trade-offs 

encountered in geostatistical modeling, particularly in the context of simulating complex 

geological structures. In the case of pixel-based methods have good precision on matching sample 

data, honoring the values at specific data points (e.g., well locations), ensuring that the simulated 

model aligns perfectly with the observed data at those points. Conversely, in complex geological 

scenarios, pixel-based may struggle to realistically replicate the intricate structures, producing 

artifacts or overly simplistic representations that do not capture the true complexity of the geology. 

In the other hand, pattern-based techniques accurately represent the subsurface model by the use 

of the training image, capturing the spatial relationships and structural complexities, leading to 

more realistic simulations, they may not always perfectly honor the data at specific locations (such 

as well data), leading to discrepancies between the model and observed data points. 

A important technic in the MPS is the High-order stochastic simulation (HOS), these 

methods are amongst the latest developments in geostatistical simulation (Journel and Huijbregts 

1978; Goovaerts 1997), developed in recent years, aiming to reproduce complex spatial patterns 

from the available data that cannot be efectibly captured by traditional two-point geostatistics. 

Initial simulation methods in geostatistics assumed that the variables being modeled followed a 

Gaussian (or normal) distribution and the use of second-order statistics, which involve the mean 

(first-order) and variance and covariance (second-order). (Journel & Huijbregts 1978; Goovaerts 

1997). The most crucial second-order statistic in geostatistics is the variogram or the covariance 

function, which describes how spatial correlation changes with distance, this statistics provide a 

comprehensive statistical framework for Gaussian processes, but they fail when it comes to 

modeling geological phenomena, which commonly deviate from Gaussianity and exhibit complex, 

non-linear spatial patterns (Dimitrakopoulos et al. 2010). The spatial attributes of certain 

geological features among multiple locations can be characterized by the high-order spatial 

statistics defined by spatial cumulants or spatial moments (Dimitrakopoulos et al., 2010; De Iaco 

& Maggio 2011). Cumulants are combinations of statistical moments that allow the 

characterization of non-Gaussian random variables which are used to evaluate the dependence 
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structure of a spatially distributed random variable at an unsampled location, based on values at 

some sample locations in the neighborhood (Billinger & Rosenblatt, 1966; Rosenblatt 1985). 

Let (Ω,ℑ, P) be a probability space and Z(x) be a real random field in Rn defined at the 

locations, xi ∈ D ⊆ Rn(n = 1, 2, 3) for i = 1 . . .N, where N is the number of points in a discrete 

grid D ⊆ Rn(Dimitrakopoulos et al., 2010). Assuming Z(x) is a zero-mean ergodic stationary 

random field in Rn, then the cumulants of Z(x) are defined by the MacLaurin expansion of the 

cumulant generating function (Rosenblatt, 1985): 

 𝐾(𝜔) = ln⁡(𝐸[𝑒𝜔𝑍]) (3.3.13) 

The high-order spatial moment of order r is: 
 

𝑀𝑜𝑚[𝑍(𝑥), 𝑍(𝑥⁡ +⁡ℎ1), . . . , 𝑍(𝑥⁡ + ℎ𝑟−1)] = ⁡𝐸⁡[𝑍(𝑥)𝑍(𝑥⁡ +⁡ℎ1)⁡. . . 𝑍(𝑥⁡ + ℎ𝑟−1)] (3.3.14) 

Similarly, the cumulants of the random field Z(x) up to order r can be expressed as 

 𝑐𝑟
𝑧(ℎ1, … , ℎ𝑟−1)] = ⁡𝐶𝑢𝑚⁡[𝑍(𝑥)𝑍(𝑥⁡ +⁡ℎ1)⁡. . . 𝑍(𝑥⁡ + ℎ𝑟−1)] (3.3.15) 

For example, cumulant order 1 is a mean of random field Z(x) 

 𝑐𝑟
𝑧 = ⁡𝐸⁡[𝑍(𝑥)] (3.3.16) 

Second-order cumulant of the random field Z(x) is known as covariance 

 𝑐2
𝑧(ℎ)] = ⁡𝐸⁡[𝑍(𝑥)𝑍(𝑥⁡ +⁡ℎ1)] (3.3.17) 

Its third-order cumulant is given by 

 
𝑐3
𝑧(ℎ1, ℎ2)] = ⁡𝐸⁡[𝑍(𝑥)𝑍(𝑥⁡ +⁡ℎ1)𝑍(𝑥⁡ + ℎ2)] ⁡− ⁡𝐸⁡[𝑍(𝑥)]𝐸⁡[𝑍(𝑥⁡ +⁡ℎ1)𝑍(𝑥⁡ +⁡ℎ2)]

− ⁡𝐸⁡[𝑍(𝑥⁡ +⁡ℎ1)]𝐸⁡[𝑍(𝑥)𝑍(𝑥⁡ + ⁡ℎ2)] ⁡− ⁡𝐸⁡[𝑍(𝑥⁡ + ℎ2)]𝐸⁡[𝑍(𝑥)𝑍(𝑥⁡
+ ⁡ℎ1)] ⁡− ⁡𝐸⁡[𝑍(𝑥)]𝐸⁡[𝑍(𝑥⁡ + ⁡ℎ1)]𝐸⁡[𝑍(𝑥⁡ +⁡ℎ2)] 

(3.3.18) 

Some studies have highlighted limitations in the use of traditional geostatistical methods, 

particularly in the context of modeling complex geological phenomena that exhibit nonlinear and 

non-Gaussian behaviors, their shortcomings become evident when dealing with the intricacies of 

geological patterns (Journel & Zhang, 2006). In that context, multiple-point geostatistical 

simulation methods (MPS) were developed to counter the mentioned drawbacks for the traditional 

geostatistical methods becoming a suitable alternative for modelling complex scenarios 

(Mariethoz et al., 2010; Strebelle, 2002; Zhang et al., 2006). 
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Chapter 4 

 

Underground Mining Systems DRS Applications 

 

 

4.1 Incorporation of geometallurgical input into gold mining system simulation to control 

cyanide consumption. 

 

In the last ten years, historic surges in precious metal prices have led to abundant mining 

opportunities, particularly in the gold sector. This increase in production directly impacts the 

consumption of sodium cyanide in the metallurgical extraction of precious metals. With gold 

mining companies investing capital into new grassroots exploration projects, re-evaluating low-

grade deposits and prolonging activities at existing mines, there is an expected increase in market 

demand for sodium cyanide, which will likely result in increased cyanide prices (Verbrugge et al., 

2021).  

Understanding the metallurgical behaviour of ore and gangue material in plant feed is crucial to 

optimizing reagent consumption, process cost control and cash flow. Increases in required reagent 

dosages due to the presence of cyanide-consuming elements, such as copper and iron, can cause 

significant increases in plant operating costs. As a result, the development of tools to predict and 

simulate the system response to increases in reagent consumption is critical to identify and mitigate 

potential risks to gold mining operations. 

In Chile, there are a large number and variety of gold deposit types, including porphyry copper-

gold, iron-oxide-copper-gold (IOCG), and high-grade gold and silver hydrothermal veins 

(Sepúlveda, 2004). The Alhué gold mining district is located near the small village of Alhué in the 

Costa range of central Chile, approximately 70 km to the southwest of Santiago and 40 km 

southeast of Melipilla (Figure 4.1.1). 
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Figure 4.1.1: Location of the Alhué mining district in relation to the Chilean capital Santiago. 

The Alhué deposit is a high-grade Au-Ag-Zn(-Pb) system in which veins exhibit mineralized 

gradients of base metal sulphides and are subject to faults that intersect the underground workings 

of the mine. Similar deposits can be found in the central zone of Chile, hosting polymetallic veins 

(Au, Ag, Cu, Pb and Zn) related to subvolcanic intrusive events, development of collapsed calderas 

and extensive hydrothermal alteration and pre- and syn-tectonic structural controlled veins, such 

as Bronces de Petorca, the Chancón mining district and Cerro Cantillana (Camus et. Al, 1991; 

Diaz, 1986). More specifically, the Florida Mine is located within the Alhué district. The quantity 

of copper (II) and iron (II) sulphides (CuS-FeS) entering the Florida plant is difficult to predict 

based on the actual mineral stockpile distribution due to heterogeneities inherent to the orebody. 

These base minerals are considered harmful to the extraction of precious metals as they are 

aggressive consumers of cyanide, thereby affecting the viability of the metallurgical process. 

Previous classification methods were based solely on head grade and did not consider the potential 

for high concentrations of impurities, such as CuS and FeS. Subsequent analysis showed that the 

geometallurgical variation and its impact on the beneficiation process can be managed by 

alternating between modes of operation that balance process mineralogy with strategic key 

performance indicators (KPIs) (Navarra, 2019). These modes of operation, each governed by 

separate operating policies and triggered by established thresholds, can then apply the necessary 

adjustments to effectively manage reagent addition. 
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The definition of appropriate geometallurgical units is paramount to properly plan and 

implement alternate modes of operation in response to imbalances of CuS-FeS contents in the ore 

feed. Furthermore, geometallurgical information should be routinely collected to complement the 

strategic planning of the mining process. Interpretation of this data can help define key criteria 

from which appropriate modes of operation and plant parameters can be established. From the 

experience at Florida Mine, the main factors that control copper and iron cyanide-soluble content 

include concentration, mineralogy and the oxidation-reduction (redox) state of the ore upon 

mining. These processed data are then converted into defined programs and decision-making 

criteria to implement changes in the plant's operational modes. 

The current paper presents a quantitative approach to leverage the information obtained from 

process mineralogy to optimize cyanide consumption, in which mode changes are triggered by 

observed and forecasted changes in stockpile levels. The resulting operational modes provide an 

integrated response to the geological and geometallurgical variation; this is demonstrated through 

discrete event simulation (DES) following the two-mode formulation of Navarra et al. (Navarra, 

2019).  

4.1.1 Geological setting of the Alhué District 

The Alhué district is known for gold-silver vein systems (Gómez, 2019). The veins are mainly 

hosted by volcanic rocks of the Las Chilcas Formation (Thomas, 1958; Carter, 1962), which are 

intruded by a batholith of monzogranitic composition and several minor subvolcanic bodies (e.g. 

andesitic domes and dykes). The Las Chilcas Formation is discordant to the underlying Lo Valle 

Formation. The Lo Valle Formation is comprised of an alternating succession of pyroclastic (tuffs 

and breccias) and lava flows, emplaced in a subaerial-continental setting (Thomas, 1958; Carter, 

1962). The composition of the volcanic rocks varies from andesitic to dacitic, with the more acidic 

lavas dominant in the upper member of the stratigraphic sequence. Andesitic lavas are aphanitic 

to feldspar-porphyritic with variably clay-altered plagioclase phenocrysts. Common alteration 

minerals include chlorite and epidote, as well as later vuggy and vein-controlled zeolites. 

The mineralized structures typically consist of a central vein composed of multiple types of 

quartz (grey, grey-green, green and lesser translucent white phases). The margins of the central 

vein tend to be flanked by hydrothermal breccia consisting of white to translucent-white quartz 
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with varying proportions of silicified (± epidotized) wall-rock fragments (Sepúlveda, 2004). An 

abundance of gold and silver-rich quartz veins occur in the district, with a total of 76 identified to 

date. The lengths and widths of these structurally controlled mineralized veins vary throughout the 

region (Gómez, 2019). The deepest levels of the hydrothermal system correspond to north-south 

trending structures (Maqui-type, Figure 4.1.2), which are dominated by calc-silicate minerals, 

magnetite and iron-rich sphalerite, and indicate a high-temperature deposition stage (Cotton, 

1998). 

 
Figure 4.1.2:Schematic map of the Alhué district faulting and vein systems. 

Veins such as Pedro Valencia, Cantillana and Circular represent earlier stages of mineralization 

that occurred at slightly lower temperatures, but still within the range of epithermal deposits 

(Cotton, 1998). Moreover, the vein-controlled gold mineralization occurs primarily as free 

electrum and native gold grains in quartz or associated to sulphides. The mineralization is 

commonly associated with magnetite and sulphides, including pyrite ± sphalerite-galena-

chalcopyrite (Araya, 2001). The alteration assemblage in the veins mainly consists of quartz-

epidote-chlorite-actinolite with lesser smectite, amphibole, and calcite-kaolinite-garnet 

(Matthews, 2018). 

The process mineralogy can be subdivided based on redox conditions, which reflect the spatial 

interaction of the ore with the paleo-water table. This level indicates the depth to which oxygen 

affected the primary vein mineralogy by altering sulphides, leaching base metals, and transporting 



62 

 

them to lower levels. The geometry of the paleo-phreatic level has two main controls: 1) the 

landscape, along which the under-ground water level follows the shape of the surface topography; 

and 2) the intersection of veins with major faults. In both cases, this level is modified by these 

features reaching deeper levels. An example of this mineralogical contrast due to the reshaped 

paleo-water table level is the Flor vein, which interacts with the Del Medio fault system. Within 

just a few meters in the horizontal, there is a remarkable change in redox and related mineralogy 

due to the high permeability generated by the intersection of the vein with the fault system (Figure 

4.1.3). 

 
Figure 4.1.3: Flor vein workfaces, 975 level, Florida Mine. A difference in the oxidation state of the ore is observed 

within the same vein and level. The West workface is partially or completely oxidized compared to the East workface 

where the sulphides are preserved. 
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According to the regional scale deposit model proposed by Matthews (Matthews, 2018), base 

metal concentrations in the Alhué district increase at deeper levels and to the east. This increment 

is mainly due to a high temperature copper-iron rich fluid interpreted to have migrated through a 

listric fault system, acting as a feeder channel for these elements (Figure 4.1.4). This generates two 

main types of mineralization: 1) polymetallic suites in the western part of the district, characterized 

by the presence of Zn-Pb-Fe base metal sulfides, with Ag-Au-bearing quartz veins ± epidote-

hornblende-magnetite chlorite, garnet, rhodonite, and tourmaline; and 2) Cu-Au sulfide-bearing 

quartz veins, with magnetite, chlorite, hornblende, epidote and zoisite, to the east. 

 
Figure 4.1.4: Schematic flow model of mineralizing solutions, Alhué district (Matthews, 2018). 

These geological controls divide the deposit into four main domains (Oxide, Mixed, Low Cu 

Sulphide and High Cu Sulphide zones), each with different geometallurgical responses based on 

the resulting mineralogy (Figure 5). The primary (sulphide) zone is the largest and most important 

domain within the Alhué district, and consists of predominantly sphalerite, galena, chalcopyrite, 

and pyrite mineralization. Silver occurs as native silver, electrum, argentite, pyrargyrite and 

polybasite, and is strongly associated with vein-controlled quartz and sulphides (Araya, 2001). 

Silver has also been identified as inclusions in sphalerite and hessite grains. Iron oxide can also 

occur locally as magnetite in this zone, but is related to primary host-rock formation and/or 

epigenetic hydrothermal alteration (Gómez, 2019). This zone can be further subdivided into two 

subdomains, as a function of depth and Cu-Fe content (low vs. high). 
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Figure 4.1.5: Schematic profile model of Alhué veins. Spatial relationship of base metals and mineralogical domains 

with the hydrothermal feeder, faults, and topography. 

4.1.2 Mineral Processing and Process Mineralogy Alhue District 

The mineral processing complex at Florida Mine is composed of two plants(Yamana Gold Inc., 

2020): the concentrator-leaching plant that occupies the upper half of Figure 4.16, and the tailings 

treatment plant that occupies the lower half; this so-called ‘tailings treatment plant’ was initially 

for the reprocessing of historic tailings (fed by repulping and subsequent grinding), but since 2017 

has been integrated with the main concentrator-leaching plant as depicted in Figure 4.1.6. Indeed, 

the adsorption–desorption recovery (ADR) operation now feeds into the electrowinning operation, 

as the barren solution is sent into the so-called tailings leach process, which itself leads into the 

carbon-and-pulp (CIP) operation and cycles back through the ADR. This process configuration 

(Figure 4.1.6) allows communal detoxification (de-cyanidation), prior to transmission into the 

tailings dam. 
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Figure 4.1.6: Simplified flowsheet of the mineral processing at the Florida Mine. 

The nominal processing capacity of the concentrator-leach plant is 2400 t/day of ore, producing 

variable rates of dore metal and Zn-Pb concentrate (Yamana Gold Inc., 2020). The crusher is fed 

with three different size classes of run-of-mine ore: oversize (5–20 inches), middle size (1–4 

inches), and small size (less than 1 inch); each of these streams is treated according to 

predetermined regimens within a series of primary, secondary, and tertiary crushing, resulting in 

fragments that are 100% below 0.39 inches, which form the feed stockpiles for subsequent 

grinding and bulk flotation. The grinding circuit is composed of three mills which can collectively 

exceed the nominal throughput by 25%; this provides operational flexibility to control 

recirculating loads, such that the bulk flotation feed has a P80 size of 120 microns. The bulk 

flotation consists of 15 cells, producing (1) a gold-rich concentrate that is subject to cyanidation 

leaching in tanks, and (2) a non-cyanided tailings stream that is send to the tailings dam. Following 

the concentrate leaching and subsequent electrowinning, the precious metals are precipitated as 

cathodic mud, which is then filtered and dried prior to smelting and final conversion into doré 

metal bars. Subordinately, the underflow of the concentrate-leaching thickener is filter-pressed to 

produce a 10% humidity cake and is subsequently fed into the zinc-lead flotation plant to produce 

a sulphide concentrate that is 40% Zn and 8% Pb. Moreover, the reprocessing of barren solution 

within the so-called tailings leaching has resulted in a 60% recovery of combined gold and silver 

value, which contributes to an overall recovery at the Florida Mine that exceeds 90% (Yamana 

Gold Inc., 2020). 
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4.1.3 Copper and iron minerals in cyanide solution` 

Cyanide can leach different metals, with the resulting ions grouped into several categories 

depending on the type and strength of the bond (Mardsen & House, 2006). This interaction defines 

its stability in a solution, wherein iron and gold have a high affinity with the CN ion, generating a 

strong bond. On the other hand, copper can have different stability bond levels, from weak to 

medium intensity. The majority of the copper minerals are highly soluble in cyanide solution 

(Table 4.1.1) except for chalcopyrite, which has limited solubility (Massoud, 1997). Copper is 

indeed one of the major cyanide consumers because it forms various cyanocomplexes (Mardsen 

& House, 2006). As a result, the dissolution of copper is generally undesirable during gold and 

silver leaching extraction processes. This can cause higher cyanide consumption, slow the 

dissolution rate of gold and silver, interfere with subsequent recovery processes from the pregnant 

solution, and ultimately contaminate the final product. In addition, some copper minerals (e.g. 

chalcopyrite) are capable of removing gold from solution by reduction at the mineral surface, 

exhibiting reversible preg-borrowing characteristics in cyanide-deficient solutions (Mardsen & 

House, 2006). Chalcopyrite is the least soluble sulphide mineral that is commonly found in gold 

and silver deposits. Chalcocite, bornite, enargite and covellite have medium to high solubilities, 

and copper oxides and carbonates are all highly soluble. In addition to copper cyanide complexes, 

the copper sulphide minerals (e.g. chalcocite) react with cyanide to form soluble sulphide ions (S2-

). These ions may react with cyanide to form thiocyanate ions or form protective coatings on 

particle surfaces and thus hinder the cyanidation process (Mardsen & House, 2006). 

Table 4.1.1:Copper mineral solubilities in 0.1% NaCN (Hedley & Tabachnick, 1958) adapted to Alhué mineralogical zones. 

Mineral Formula 
Percentage of dissolved copper 

Alhué Mineralogical Zones 
at 23°C at 45°C 

Azurite 2CuCO3⋅Cu(OH)2 94.5 100 

Oxide Chrysocolla Cu2 H2 Si2O5(OH)4 11.8 15.7 

Malachite CuCO3⋅Cu(OH)2 90.2 100 

Chalcocite Cu2S 90.2 100 
Secondary Sulphide 

Covellite CuS -- -- 

Bornite Cu5FeS4 70 100 

Primary Sulphide Tetrahedrite 4Cu2S4⋅Sb2S3 21.9 43.7 

Chalcopyrite CuFeS2 5.6 8.2 



67 

 

On the other hand, iron-bearing sulphides that are commonly associated with gold 

mineralization include pyrite, marcasite, and pyrrhotite. Weathering and oxygen action can result 

in the formation of different iron oxides, hematite and jarosite being the most common. Oxidized 

iron minerals, such as hematite, magnetite and goethite, as well as the Fe-rich carbonate mineral 

siderite, are considered refractory to a cyanide solution. However, complex iron carbonates such 

as ankerite decompose to some extent in weakly alkaline (<10 pH) cyanide solutions, and form 

ferrocyanides Mardsen & House, 2006). Therefore, hematite, magnetite, goethite, siderite, and iron 

silicates are virtually insoluble in alkaline cyanide solutions Mardsen & House, 2006). Though 

some Fe-rich and other complex carbonates decompose in low-alkalinity solutions, they are mostly 

unreactive at the higher pH values usually applied for leaching (Hedley & Tabachnick, 1958). 

Iron sulphides such as marcasite and pyrrhotite are more reactive than pyrite in a cyanide 

solution. Though pyrite is the most common sulphide mineral occurring in gold ore, it thankfully 

interferes less with the cyanidation process (Haque, 1992). Marcasite and pyrrhotite will react with 

cyanide and form iron cyano-complexes, soluble sulphide ions (S2-) and thiocyanate ions as major 

undesirable products. It has also been reported that ferrocyanide ions have an inhibiting effect on 

gold cyanidation (Nicol, 1980). This can be explained by the additional consumption of oxygen 

and cyanide required for the formation of ferrocyanide ions. Moreover, soluble sulphide ions at 

very low concentrations can retard gold dissolution almost completely (Weichselbaum et al.,1989). 

Increased cyanide (CN) consumption related to ores containing elevated concentrations of copper 

and iron minerals has been a primary concern for process engineers at the Florida Mine in recent 

years. This has led to a restructuring of geometallurgical units to better predict consumption rates 

through an assessment of incoming ore feed attributes. These new geometallurgical units are (1) 

in alignment with the four geological domains illustrated in Figure 5, namely the Oxide, Mixed, 

Low Cu Sulphide and High Cu Sulphide domains, and (2) are further grouped by a combination 

of metallurgical behaviour, field-observed copper and iron mineralogy coupled with interpreted 

redox states and process impurities including CuS and FeS, all of which relate to sodium cyanide 

consumption. In practice at the Florida plant, it has been especially challenging to optimize plant 

operations when feeds are coming in simultaneously from two different geometallurgical units. 

Such circumstances are confronted, for example, as the Flor Vein intersects with the Del Medio 

Fault (Figure 4.1.3), causing discontinuities in the redox state and an extreme increase in cyanide 
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consumption. This has caused a rethinking of the approach to stockpile management, so that the 

plant can be fed only by blends that are well understood by the operators. Following the approach 

of Navarra et al. (Navarra, 2019), these stabilized feed blends are directly related to system-wide 

operational modes. 

4.1.4 Data-Driven Simulation of the Minera Florida Cyanidation Process 

For aging gold mines in particular, it often happens the process continues to run according to 

longstanding guidelines and settings, even when the nature of the incoming feed has changed; for 

the case of Minera Florida this has resulted in increases in cyanide consumption as increasing 

amounts of certain copper sulphides are entering the feed (Órdenes, 2021), as described below 

(Figure 4.1.7).  

 

Figure 4.1.7: Summative data from Minera Florida from June 2020 to February 2021, regarding the processing of 

ores from the Alhué district, demonstrating that spikes in cyanide consumption (expressed in kg of cyanide per tonne 

of feed) are associated with higher quantities of cyanide-soluble copper carried by the feed. “Cyanide-soluble copper” 

includes copper from chalcocite/digenite, covellite, and bornite, but not chalcopyrite and tetrahedrite/tennantite. 

The status quo tends to be maintained within aging mines because any substantial modification 

in processing strategy is perceived as risky, unless it is supported by metallurgical studies and 

potentially pilot tests, to obtain the necessary data to parametrize operational changes and possibly 

to justify equipment upgrades. Furthermore, these metallurgical studies require a budget (often 

tens of thousands of dollars) and a time-commitment of personnel, e.g. a special projects team 
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and/or outside consultants. Gaining support from management for experimentation and piloting 

can be difficult, unless we can demonstrate that we would know what to do with the data once we 

had it; this is a “chicken-or-the-egg” problem. 

In the case of Alhue mine, how was showed on Figure 4.1.5, it had been observed that certain 

copper sulphides within the feeds, especially bornite Cu5FeS4, chalcocite Cu2S and tetrahedrite 

4Cu2S4⋅Sb2S3, cause spikes in cyanide consumption (Ordenes, 2021). The faulting at Minera 

Florida (and presumably in similar mines) is such that within a single drift, there can be tens of 

meters of low-cyanide-consuming (LCC) ore, interrupted by a few meters of high-cyanide-

consuming (HCC) ore, followed by a long extent of LCC ore. The LCC and HCC ores can have 

dramatically different visible appearance along the drift walls, and were therefore easily linked to 

the downstream requirement of increased cyanide. Figure 4.1.7 is a plot of operational data 

obtained from June 2020 to February 2021, showing the effect of the aforementioned cyanide-

soluble copper (a.k.a. “cyanicidal copper”). A linear or quadratic regression is not forthcoming 

due to the corrective actions of expert operators and metallurgists, with R2 values of 42.51% and 

43.65% respectively. However, a comparative Student T test (see Devone, 2011 or similar) of the 

929 points below 600 ppm cyanide-soluble copper and the 41 points above 1200 ppm gives over 

99.99% statistical confidence that cyanide-soluble copper minerals are associated to spikes in 

cyanide requirement; indeed the cyanide consumption can be roughly triple on a per-tonne of feed 

basis. Essentially, beyond ~600 ppm of cyanide-soluble copper, the system is overwhelmed, 

causing surges cyanide requirements, despite the metallurgical operators’ best efforts.  

The analysis illustrated by Figure 4.1.7 merely confirms what was being observed by 

geologists and operators, but is somewhat crude, since it does not detail the dynamic responses of 

the operators, and therefore does not adequately support the integration/standardization of these 

responses. However, it motivated the quantitative approach of Órdenes et al. (2021) that could 

indeed represent dynamic operational responses, which itself was an adaptation of the more 

general DES/DRS framework of Navarra et al. (2019). Yet although the framework successfully 

illustrated the spiking of cyanide consumption, and was thus generally well-received, management 

questioned the “parametrizibility” of the model. From their perspective, the framework had only 

qualitatively captured the dynamical aspects of their operational challenge, and they had hoped for 

a statistical treatment that would be “in the same spirit” as the analysis of Figure 4.1.7, including 
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hypothesis testing. The DES/DRS framework is ultimately a composition of probabilistic 

distributions, as described in Section 3.2; the management would question how well these 

distributions could be (optimally) parametrized to best represent the actual real data from their 

process. These interactions have been a confluence of interdisciplinary expertise, which 

established the following consensus: 

• There are numerous process variables that ideally should be represented within the 

framework as probability distributions, rather than fixed deterministic values.  

• Process data must be used to determine which standard distributions are most 

representative, and what their parameter values should be.  

• In the context of Minera Florida, the process variable that is currently perceived to be 

the most important is the head grade of the incoming ore, measured in gold-equivalent 

ounces per ton. 

The methods presented in Section 3.2.1 are of general interest for system simulation (Altiok, 

2017), and are applicable to the entire set of process variables identified by Minera Florida. The 

specific list is not explicitly given here, in the interest of confidentiality, but contains typical 

measures such as base metal grades and acid potentials, which are a common concern throughout 

the gold industry (Dominy et al., 2001; Ferguson et al., 1988). To balance the interests of generality 

and confidentiality, the sample computations of Section 4.1.7 consider the parametrization only of 

head grade distributions, and similar approaches can be used for other variables. 

The DES/DRS framework of Navarra et al. (2019) was successfully adapted to represent spikes 

in cyanide consumption at Minera Florida (Ordenes et al., 2021), considering the following 

threshold crossing events: 

• Stockout of HCC ore; 

• Stockout of LCC ore; 

• Reestablishment of target level for total stockpile (LCC + HCC); 

• Transition to the next geological parcel. 

As will be described in Section 3.2, stockouts trigger contingency processing modes. The 

notion of a “geological parcel” is described in (Peña-Graf, et al. 2022) and provides a basic 
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representation of geostatistical variation; each parcel contains a balance of HCC and LCC ore, 

which is the result of RNG. When detailed geospatial data (i.e., drill core samples) are available, 

the balance of HCC/LCC can be the result of a sequential Gaussian simulation (Pearson, 1900), 

which is the subject of ongoing work (Bai & Tahmasebi, 2021). For the current study, it is 

sufficient to consider: 

• In the event that the parcel, k - 1, is completely excavated, a following parcel, k, is 

generated that will contain the next mk tonnes of ore to be excavated; 

• There is a 70% chance that parcel k is within the same facies as k - 1; if so, then the 

weight fraction of LCC in parcel k, denoted as 𝒘𝒌
𝑳𝑪𝑪 , is generated according to a 

Gaussian distribution centered at 𝒘𝒌−𝟏
𝑳𝑪𝑪 , with the small standard deviation, 𝜎interfacies;  

• Otherwise, if parcel k is in a new facies, then 𝒘𝒌
𝑳𝑪𝑪 is generated independently of the 

previous parcel, according to a Gaussian distribution centered on the orebody average 

and with a comparatively large standard deviation 𝜎orebody > 𝜎interfacies.  

This basic representation considers only two ore classes (also known as geometallurgical 

units), such that the weight fraction of HCC is given by 𝑤𝑘
HCC= 1 - 𝑤𝑘

𝐿𝐶𝐶. The DES/DRS framework 

can consider a higher number of ore classes, depending on the context, but these two classes have 

been sufficient to represent the Minera Florida context. Moreover, the mass mk of parcel k is 

generated according to a uniform distribution; other distributions have been tested for this purpose, 

but they have no significant effect. 

Following the approaches for the DES of manufacturing systems (Altiok & Melamed, 2007), 

the parameterization of process-variable distributions is an extension of standard exploratory data 

analysis (EDA). Depending on the context, standard EDA usually includes a listing of descriptive 

statistics such as mean, standard deviation, extreme observations (maxima and minima), and 

quartile data, as well as histograms and possibly other graphical constructions (Komorowski et al., 

2016). The quartile data are often used to establish criteria for outlier filtering. Figure 4 illustrates 

the use of maximum likelihood estimation (MLE) and goodness-of-fit statistics (GOF) in order to 

enhance a DES/DRS model; this type of detailing can be situated within the improvement cycle of 

Figure 2 if we consider that a data-driven probability distribution of a process variable is itself a 

submodel that replaces the deterministic representation. The conversations that followed the first 
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collaboration with Minera Florida (Ordenes et al., 2021) have emphasized the practical relevance 

of the data-driven parametrization of probabilistic distributions within gold extractive metallurgy 

(and ostensibly in other areas of mining and metallurgy). Without developing a convincing 

connection to the available plant data, the simulations may be rightly criticized for lacking a 

connection to production metrics, even if the most critical phenomena are well represented. Yet 

there seems to be an underrepresentation of journal articles detailing the contextualized application 

of MLE and GOF techniques within extractive metallurgical simulations. With the exception of 

the current work, we have failed to find such a paper. 

4.1.4.1 Exploratory Data Analysis and Fitting of Gold Head Grade Distributions 

Based on its current mineral processes flow sheet, Minera Florida had previously ran a detailed 

geometallurgical characterization program to link the vein mineralogy to the metallurgical 

behavior of the ore fed into the cyanidation process. This sampling campaign included 1214 ore 

samples from different workfaces, classified in situ and tested at the on-site metallurgical 

laboratory. The samples were analyzed by a shaker test to determine a range of process parameters 

and related cyanide consumption (Table 4.1.2). 

Table 4.1.2: Summary of shaker test analytical conditions. 

Parameters Quantity 

Ore Mass (g) 30 

Granulometry (µm) 100% -200# 

Solution Volume (ml) 60.00 

Solid Percentage (%) 33.00 

NaCN Concentration (g/l) 10.00 

Pulp pH 11.00 

Head Grade Assay Au, Ag, Cu, *Fe 

Leached Solution Assay Cu, Fe, Free CN, *Au, *Ag 

Tail Grade Assay *Au, *Ag 

From the information collected during the sampling campaign and the analytical results from 

the tested samples, a new geometallurgical ore classification was defined. This new ore 

classification is (1) in alignment with the four geological domains presented by Órdenes et al. 

(2021), namely the oxide, mixed, low-Cu sulfide, and high-Cu sulfide domains, and (2) are further 

grouped by a combination of metallurgical behavior, field observed copper, and iron mineralogy, 

coupled with interpreted redox states and process impurities, including CuS and FeS, all of which 



73 

 

relate to sodium cyanide consumption [2,11]. The presence of processed impurities (such as 

copper, iron, and sulfur) within the different orebodies exploited by Minera Florida, has a high 

potential of generating undesired reactions including the formation of thiocyanate and the 

dissolution of the transition metals, Cu, Fe, and Zn. Consequently, this new mineralogical scenario 

can inflict extra operational costs and diminished profits resulting from high levels of cyanide 

consumption (Hedley & Tabachnick, 1958; Habashi,1967). Following from the understanding at 

Minera Florida and previously published work (Órdenes, 2021), the head grades from the tested 

samples have been separated into two geometallurgical units; these are high-cyanide-consuming 

(HCC) sulphides and low-cyanide-consuming (LCC) sulphides. This is an enhancement over the 

previously published work which did consider the two units but did not consider the head grade 

distribution data. The basic descriptive statistics for the HCC and LCC geometallurgical units are 

given in Table 4.1.3, as part of the initial exploratory data analysis (EDA). The samples describe 

the ore that is forecast over the medium term, originating from sampling campaigns that were 

extended from production tunnels. 

Table 4.1.3: Cyanide consumption per geometallurgical unit. 

Variable Statistics 
High CN Consuming 

Sulphides  

Low CN Consuming 

Sulphides 

Cyanide soluble 
copper (ppm) 

N° Samples 739 308 

Mean 310.26 176.22 

Standard Deviation 456.80 218.73 

Minimum 6.50 8.20 

Q1 80.60 65.05 

Q2 160.50 105.25 

Q3 319.65 204.53 

Maximum 3169.50 2480.20 

Cyanide 
consumption (kg/t) 

N° Samples 739 308 

Mean 2.24 1.75 

Standard Deviation 1.21 0.90 

Minimum 0.31 0.20 

Q1 1.40 1.10 

Q2 1.90 1.60 

Q3 2.80 2.20 

Maximum 7.40 5.70 
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The EDA was then extended to incorporate the gold head grade. A critical aspect of data 

analytics is handling the anomalous data adequately (Komorowski et al., 2016); this takes 

particular relevance when commodities grades are assessed, especially in gold (Filiben, 2003). 

Geostatisticians have proposed and used different techniques to mitigate the impact of high-grade 

data on mineral resource estimation; hence the same procedures can be utilized in simulations to 

manage head grades. Various methods generally involve some form of capping and/or high-grade 

influence restrictions to mitigate the disproportionate influence of true outlier values on the 

contained metal in a resource.  

High values may arise because of sampling errors or reflect distinct geological sub-

environments or domains within a mineral deposit (Kehmeier, 2022). Efforts must be directed to 

examining these high values and their geological context to distinguish errors from “real” high 

grades, investigate their characteristics, and how they relate to the mineral inventory estimates 

(Kehmeier, 2022). In calculating the descriptive statistics for gold head grade, a data cleansing 

procedure was applied to the Minera Florida data given by: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿𝑜𝑤𝑒𝑟⁡𝑙𝑖𝑚𝑖𝑡 = ⁡𝑄1 − 1.5 ⋅ (𝑄3 − 𝑄1) (4.1.1) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑈𝑝𝑝𝑒𝑟⁡𝑙𝑖𝑚𝑖𝑡 = ⁡𝑄3 + 1.5 ⋅ (𝑄3 − 𝑄1) (4.1.2) 

These criteria have resulted in the elimination of 49 outliers from High Cyanide Consuming 

(HCC) Sulphides and 24 outliers from Low Cyanide Consuming (LCC) Sulphides, entirely from 

the upper limit in both cases. The summary of the preprocessed statistics for the gold head grade 

of the geometallurgical sample set is summarized in Table 4.1.4. The data in this table, and 

throughout the remainder of the paper, were computed subsequent to the aforementioned 

elimination of outliers (Equation4.1.2). 
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Table 4.1.4:Gold head grade statistics by geometallurgical unit. 

Variable Statistics High CN Consuming Sulphides Low CN Consuming Sulphides 

Gold Head Grade 
(g/t) 

N° Samples 673 278 

Mean 5.07 3.56 

Standard Deviation 2.92 1.88 

Kurtosis 0.29 0.46 

Skewness 0.99 1.00 

Minimum 0.24 0.18 

Q1 2.81 2.11 

Q2 4.29 3.22 

Q3 6.61 4.55 

Maximum 14.39 9.04 

Gold grades in vein-style gold deposits are highly variable, are often complex and erratic, but 

commonly show skewed positive grade distribution (Dominy et al., 2001). Their complexity is 

typically reflected in two components: (1) low-grade continuity and (2) diversity of ore trends. 

Gold grades are commonly related to variably sized ore shoots of high-grade mineralization 

surrounded by lower grade areas; yet ore shoots may account for a relatively small proportion of 

the total mineralization (Dominy et al., 2001). For the Minera Florida dataset, the histogram of 

gold-grades for both geometallurgical units shows a positive skewness (Sk >0.5, Table 3) and low 

kurtosis (Table 4.1.4), and a platykurtic shape (Figure 4.1.8). The histograms for both 

geometallurgical units show high variability, and high-grade tail.  

Table 4.1.5 lists the candidate distributions in terms of their goodness-of-fit metrics for several 

candidate distributions, indicating that the Log-Normal could be an acceptable choice for 

representing the gold head grades, noting that it ranked highly in χ2 and KS, third and fourth, 

respectively, and was the top-ranked distribution in both cases for AD; these results were obtained 

using the Easy Fit software developed by Math Wave Technologies. 
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(a) (b) 

Figure 4.1.8:Gold grades histograms for (a) the HCC geometallurgical unit, and (b) the LCC geometallurgical unit. 

Looking at the HCC data, a consideration may be given to the Pearson 5 distribution, for having 

ranked well in terms of χ2, but its ranking was very low in KS and AD; perhaps a better case can 

be made for the Fatigue Life distribution (a.k.a. Birnbaum-Saunders distribution), which surpassed 

the Log-Normal for χ2 and KS for HCC, although it did not perform especially well in KS and AD 

for LCC and is a somewhat obscure; to be fair, the Fatigue Life distribution is represented to model 

equipment failure times, and a flash occurrence of cyanide-consuming minerals is (debatably) like 

a spontaneous equipment breakdown.  

Nonetheless, the case for Log-Normal is clearly the strongest candidate for HCC. Although the 

Inverse Gaussian and General Extreme Value distributions could be considered for LCC, these 

distributions are comparatively difficult to since they are not commonly used, and the more 

common Log-Normal was the highest ranked in AD. For general interest, the poorly ranked 

Gaussian distribution was included in Table 4.1.5. 

The choice of the Log-Normal is further corroborated by the χ2 and Kolmogorov-Smirnov 

GOF hypothesis tests, as summarized in Table 4.1.5. However, in the case of the HCC 

geometallurgical unit, the null hypothesis that the data is characterized by Log-Normal is rejected 

according to the Anderson-Darling (AD) test at the 95% significance but is nonetheless accepted 

by the χ2 and Kolmogorov-Smirnov tests. As noted in Section 3.2.2, the AD emphasizes (and 

possibly over-penalizes) the extreme values; even after the preprocessing described by Equations 
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4.1.1 and 4.1.2, the HCC data includes unusually high grades exceeding 13 g/t, but this corresponds 

to only 1.2% of the samples. 

Table 4.1.5: Ranking of distributions in accordance with GOF metrics. 

High Cyanide Consuming Sulphides 

  Chi-Square Kolmogorov-Smirnov Anderson-Darling 

Distribution Statistics Rank Statistics Rank Statistics Rank 

Pearson 5 8.15 1 0.050 22 4.04 25 

Fatigue Life 12.09 2 0.030 3 1.46 2 

Log-Normal 12.41 3 0.032 4 1.41 1 

Pearson 5 (3P) 14.19 4 0.059 28 9.84 33 

Dagum 14.94 5 0.040 8 2.54 10 

Dagum (4P) 18.17 6 0.043 14 2.56 11 

Log-Logistic (3P) 19.14 7 0.042 9 2.71 12 

Log-Logistic 19.77 8 0.048 18 3.06 14 

Fatigue Life (3P) 20.86 9 0.040 7 1.97 4 

Gaussian 170.21 42 0.116 40 18.89 38 

Low Cyanide Consuming Sulphides 

  Chi-Square Kolmogorov-Smirnov Anderson-Darling 

Distribution Statistics Rank Statistics Rank Statistics Rank 

Pearson 5 (3P) 7.64 1 0.053 18 3.67 30 

Inv. Gaussian 7.93 2 0.044 9 0.98 11 

Fatigue Life 9.40 3 0.065 25 1.32 17 

Frechet 10.52 4 0.080 30 4.65 34 

Pearson 5 11.23 5 0.070 26 3.12 29 

Log-Normal 11.80 6 0.044 8 0.62 1 

Gamma 17.24 7 0.055 19 1.28 16 

Gen. Extreme Value 17.37 8 0.041 1 0.83 2 

Log-Logistic 17.44 9 0.045 10 0.84 3 

Gaussian 70.27 42 0.125 39 7.10 36 

But the rejection of the top-ranked AD distribution (Table 4.1.5) when subjected to the AD 

hypothesis (Table 4.1.6) is moot, since the actual head grades that will be received by the Florida 

plant will follow a distribution that is more complex than the Log-Normal and any other commonly 

available distribution; it depends on both the geospatial distribution of the minerals as well as the 

excavation sequence. This will be further discussed in Section 4.1.8 Interestingly, the Log-Normal 

is accepted in the case LCC for all three GOF tests. 
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Table 4.1.6: Summary of goodness of fit tests for the Log-Normal, α = 0.05. 

High CN Consuming Sulphides Critical Value Observed Value Null Hypothesis 

Chi-Squared (Degrees of Freedom= 8) 15.51 12.41 H0 is accepted for Log-Normal Distribution 

Kolmogorov – Smirnov 0.034 0.031 H0 is accepted for Log-Normal Distribution 

Anderson-Darling 0.87 1.40 H0 is rejected for Log-Normal Distribution 

    

 Low CN Consuming Sulphides Critical Value Observed Value Null Hypothesis 

Chi-Squared (Degrees of Freedom= 7) 14.07 11.80 H0 is accepted for Log-Normal Distribution 

Kolmogorov – Smirnov 0.053 0.045 H0 is accepted for Log-Normal Distribution 

Anderson-Darling 0.87 0.61 H0 is accepted for Log-Normal Distribution 

The GOF computations of Tables 4.1.5 and 4.1.6 considered the MLE parametrization of the 

solutions, computed from the cleansed data described by Table 4.1.4. Considering that the Log-

Normal distribution has been selected for geometallurgical units, the corresponding parameter 

values are given in Table 4.1.7. As been described in this Section, the gold head grades are best 

represented by a log-normal distribution, for which the MLE estimation formulas (also known as 

“estimators”) have been found to be: 

 𝜇̂(𝒙) =
1

𝑛
∑ln 𝑥𝑖

𝑛

𝑖=1

 (4.1.3) 

 𝜎2̂(𝒙) =
1

𝑛
∑(ln 𝑥𝑖 − [𝜇̂(𝒙)])2
𝑛

𝑖=1

 (4.1.4) 

Both expressed as a function of the observed measurement values, x, to emphasize that the 

parametrization is data-driven. Furthermore, it is data-driven in a dependable (rigorous) sense, i.e., 

the sense of maximum likeliness. Alternatively, for example, log-normal could be erroneously 

fitted with the logarithm of the mean, rather than the mean of the logarithm; the MLE formulation 

resolves these potential pitfalls. These results were provided by Easy Fit, and were verified by 

Equations 4.1.3 and 4.1.4 prior to being programmed into the discrete rate simulations that will 

now be described. 
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Table 4.1.7: Maximum likelihood estimation results 

Maximum Likelihood Estimation (MLE) Gold Head Grade Estimator HCC Gold HeadGrade Estimator LCC 

𝝁̂ 4.29 3.09 

𝝈̂2 1.42 1.35 

4.1.5 Discrete Rate Simulation of the Alhue Mine Cyanidation Process 

The mineralogical variation confronted by mines within the Alhué district may be managed by 

alternating between modes of operation. These modes provide an integrated response to changes 

in feed mineralogy and other operational conditions within the mineral value chain. Processing 

plants are generally designed to maximize profits while respecting technological limitations, 

environmental norms, and tactical constraints that align operational objectives with long-term 

strategic goals. The decision to alternate between modes depends on current and forecasted 

stockpile levels. Interestingly, the selection of thresholds that would trigger a mode change is 

related to the classic reorder-quantity (RQ) problem from inventory theory (Winston and 

Goldberg, 2004), as described in (Navarra, 2019). Most importantly, operational modes are 

conceived with respect to system-wide performance rather than local metrics that only consider 

isolated unit operations. 

Even within relatively short timeframes, it is uncertain whether the decreasing feedstocks will 

be replenished by the incoming mined material; unexpected changes in ore feed characteristics can 

occur abruptly and lead to shortages of a particular ore type from a particular geometallurgical 

unit. For an underground mine, this variation in stockpile levels is typically intensified due to a 

variety of factors, including: 1) a large number of concurrent active workfaces (ore type 

variability); 2) ore grade-driven mine planning that does not consider geometallurgical inputs; and 

3) the uncertainty caused by complex extraction methods, which rely on the coordination of many 

variables (e.g. ventilation, drainage, equipment availability) to meet planned production. 

Specifically, at the Alhue Mine, the most significant risk to the metallurgical process is the 

variability in cyanide consumption related to a production imbalance from sectors with varying 

concentrations of impurities. The risk of stockout of a feed class is mitigated through the 

alternation of operational modes; that is, when a stockpile falls below a critical level, the system 

changes to a different (possibly less productive) mode so that the stockpile may be replenished, 
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prior to resuming the original mode. The approach of Navarra et al. (Sepúlveda, 2004) is to use 

discrete event simulation (DES) as a dynamic representation of feed stockpiles that are continually 

fed by mining operations, while also being continually drawn upon by the plant. The DES 

framework is capable of simulating extended operating periods in order to optimize the trigger 

points that would induce a change in operational mode, as described in the following section. 

Within the current context, the objective of the framework is to maximize throughput while 

avoiding spikes in cyanide consumption. This is in agreement with the experiences at the Florida 

Mine, in which a moderate decrease in throughput can be justified, if it reduces the risk of surges 

in cyanide consumption. 

Moreover, the current sample computations consider geometallurgical units characterized as 

“Sulphide with high CN consumption” and “Sulphide with low CN consumption”, which shall be 

referred to as ores 1 and 2, respectively. These tend be observed within the deeper intrusive-

influenced zones of the Alhué district (Figure 4.1.5), however the actual classifications of Minera 

Florida consider additional attributes including the prevalence of the different copper-bearing 

minerals listed in Table 4.1.1. 

For the deterministic analysis of operational modes, Navarra et al. developed the following 

equation to describe the expected mass balance (Navarra, 2019). It considers two configuration of 

operation, A and B, and computes the anticipated portion of time that the system should spend in 

under each of the configuration, 

 (
𝑡𝐴
𝑡𝐵
) = ⁡ (

𝑤2𝐵⁡𝑤1𝐷 −⁡𝑤1𝐵⁡⁡𝑤2𝐷⁡

−𝑤2𝐴⁡𝑤1𝐷 +⁡𝑤1𝐴⁡⁡𝑤2𝐷
) (
𝑟𝐵
𝑟𝐴
) (4.1.1) 

in which, 

tA = duration of time devoted to mode A 

tB = duration of time devoted to mode B 

rA = ore processing rate under mode A 

rB = ore processing rate under mode B 

w1A = weight fraction of high CN (Ore 1) consuming ore within the feed of mode A 

w2A = weight fraction of low CN (Ore 2) consuming ore within the feed of mode A 

w1B = weight fraction of high CN (Ore 1) consuming ore within the feed of mode B 
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w2B = weight fraction of low CN (Ore 2) consuming ore within the feed of mode B 

w1D = weight fraction of low CN (Ore 1) consuming ore that is expected from the deposit 

w2D = weight fraction of high CN (Ore 2) consuming ore that is expected from the deposit 

Indeed, the alternation between configuration A and B provides the mining system with a 

degree of freedom to accommodate the balance of ore that is coming from deposit, i.e. the deposit 

(w1D, w2D) is balanced by a combination of (w1A, w2A) and (w1B, w2B). 

The overall throughput is determined by time-averaging, 

 

𝑟 = (
𝑡𝐴

𝑡𝐴 + 𝑡𝐵
) 𝑟𝐴 + (

𝑡𝐵
𝑡𝐴 + 𝑡𝐵

) 𝑟𝐵

= (
(
𝑡𝐴
𝑡𝐵
)

(
𝑡𝐴
𝑡𝐵
) + 1

)𝑟𝐴 + (
1

(
𝑡𝐴
𝑡𝐵
) + 1

)𝑟𝐵 
(4.1.2) 

which, upon substitution with Equation 1, can be expressed as 

 𝑟 = (
𝑤1𝐴⁡𝑤2𝐵 −⁡𝑤2𝐴⁡⁡𝑤1𝐵⁡

(𝑤2𝐵⁡⁡ (
𝑟𝐵
𝑟𝐴
)−⁡𝑤2𝐴⁡⁡)⁡𝑤1𝐷 −⁡(𝑤1𝐵⁡⁡ (

𝑟𝐵
𝑟𝐴
)−⁡𝑤1𝐴⁡⁡)⁡𝑤2𝐷

)⁡𝑟𝐵 (4.1.3) 

Table 4.1.8 contains data that is typical of the Florida Mine in confronting the boundaries 

between typical high and low CN consuming ores, which we take to be ore types 1 and 2, 

respectively. Based on these parameters (Table 4.1.1), Equation 4.1.2 gives tA/tB = 1.8 from which 

it can be determined that the system will (ideally) be in Mode A for 64% of the time, and Mode B 

for 36% of the time. Moreover, Equation 4.1.3 indicates an average throughput of 2.6 kt/d. 

The alternating configuration provide an integrated response to changes in feed mineralogy 

and other operational conditions within the mineral value chain. Processing plants are generally 

designed to maximize profits while respecting technological limitations, environmental norms, and 

tactical constraints that align operational objectives with long-term strategic goals. For an 

underground mine, the variation in stockpile levels is typically intensified due to a variety of 

factors, including: 1) a large number of concurrent active workfaces (ore type variability); 2) ore 

grade-driven mine planning that does not consider geometallurgical inputs; and 3) the uncertainty 

caused by complex extraction methods, which rely on the coordination of many variables (e.g. 

ventilation, drainage, equipment availability) to meet planned production (Órdenes et al.,2021). 
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All of these factors add to the variability of feeds being received by the Minera Florida cyanidation 

plant district, which has motivated the adaptation of a DES/DRS to improve decision-making and 

evaluate the effects of the stockpile management in the plant performance. 

To achieve the best performance of the mining system under study, alternating configurations 

and modes are represented within the current framework to help maintain consistency in ore 

feeding. The selection of a configuration depends on the forecasted timing of stockouts in HCC 

and LCC given their requirement for feed blending. In the case of Alhué ore, the operational 

policies were designed to maximize tonnage and stabilize cyanide consumption, within the regular 

mode of configuration A (Table 4.1.8). This mode (called “A-regular”) brings the plant to its 

maximum productive capacity while minimizing the cyanide consumption. Nonetheless, if at the 

end of a production campaign the LCC stockpile is below a predetermined threshold, the plant is 

then reconfigured into configuration B, whose regular mode (called “B-regular”) is designed to 

rebuild the LCC stockpile while still avoiding the risks of spikes in cyanide consumption. If a 

stockout occurs during a production campaign, a contingency mode is applied in which only the 

available type of ore is consumed to allow the depleted ore type to accumulate again before 

returning to the regular configuration. Thus, the mode changes from A-regular to A-contingency 

if there is an LCC stockout during a campaign of configuration A; similarly, the mode changes 

from B-regular to B-contingency if there is a HCC stockout during a campaign of configuration 

B. 

For the current set of simulations, A-contingency consumes only HCC ore which allows the 

LCC stockpile to rebuild as quickly as possible, while B-contingency consumes only LCC ore 

which allows the HCC stockpile to rebuild (Table 7). Because contingency modes are less 

productive than the regular configuration, the duration of contingency segments has been set at 1 

day, causing the plant to alternate between regular and contingency until the next planned 

shutdown. In reality, the contingency durations can be longer than a day depending on how much 

longer is remaining in the current production campaign. (Some discussions have been made 

regarding how to better represent the contingency durations, to capture the actual operational 

decisions that are taken, but an improved sub-model has yet to be developed in this regard). 
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Table 4.1.8: Description of operational configuration in relation to possible deposit forecast, including gold grades. 

 
Deposit Configuration A Configuration B 

 Parameters Average Regular Contingency 
Mine 

Surging 
Regular Contingency 

Mine 

Surging 

Throughput (kt Ore/day) - 2.7 2.3 - 2.4 1.2 - 

HCC -Ore 1 in feed (%) 60 55 100 55 70 0 70 

LCC -Ore 2 in feed (%) 40 45 0 45 30 100 30 

Cyanide Consumption (kg/t) 2.04 2.02 2.24 2.02 2.09 1.75 2.09 

Gold Head Grade (g/t) 3.81 3.75 4.29 3.09 3.93 3.09 4.29 

In practice, attaining a throughput of 2.6 kt/day would require stockpiles that act as a buffer 

against geological variation, and to maintain stable feeds, especially avoiding feed shortages. 

Intuitively, larger stockpiles provide greater protection against the risk of stockout. However, 

larger stockpiles also require larger storage pads and handling equipment, as well as increased 

operating costs to manage the lifting and moving of material (Wilson, 2021). Furthermore, a 

deterministic analysis cannot determine the tradeoff between stockpile sizes and the risk of 

shortages of the different ore types. 

From the data in Table 4.1.8, it can be observed that Mode A draws upon the low CN 

consuming feed (Ore 2) at a faster rate than is replenished by the deposit on average (i.e. 45% > 

40%). In case there is a stockout of Ore 2 while the system is configured for Mode A, then a 

contingency mode is applied. Specifically, the system runs with only the high CN consuming ore 

(Ore 1), which allows the Ore 2 to be replenished, before reverting to the regular balance of 45% 

Ore 1 and 55% Ore 2. However, the contingency mode can only process 2.4 kt/day which equates 

to 85% of the regular mode capacity and causes an undesirable 30% spike in per-ton cyanide 

consumption. Conversely, Mode B presents a risk of stockout of the high CN consuming ore, 

which coincides with a 30% decrease in cyanide consumption; however, the throughput is reduced 

to 50% so as not to “waste” the low CN consuming ore. 

The data in Table 4.1.8 demonstrate the conflicting objectives of maintaining a high throughput 

(close to 2.7 kt/day), while mitigating the risk of cyanide consumption spikes. Although Mode A 

is more productive under regular operation, it presents risks of significant spikes in cyanide 
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consumption in case of Ore 2 shortages. Ideally, with sufficiently large and appropriately managed 

stockpiles, the contingency configuration would never be applied, and the deterministically 

balanced value of 2.7 kt/day can be attained. Indeed, the tradeoff between the two objectives is 

more pronounced with smaller stockpile levels, as demonstrated in the following section, and 

becomes increasingly sensitive to the triggering condition of Mode B. 

4.1.6 DES Computations 

The main mine, as well as other mines in the Alhué district, must consider the possibility of 

expanding into new areas that have greater mineralogical variability, and which are increasingly 

dominated by ores with high contents of cyanicidal impurities (Matthews,2018; Massoud, 1997), 

particularly copper. Thus, the current computations consider the low cyanide consuming ore (Ore 

2) to be in shorter supply. The current framework considers a forecasted average of 40% type 2, 

and there would in fact be variation surrounding this average, hence the need to manage stockpiles 

and alternate between operating modes, as described in the previous section. Over a longer 

timeframe, as new depths are reached, the portion of Ore 2 may continue to decrease, as suggested 

by Figure 4.1.5, causing Configuration B to be increasingly favored over Mode A. For 

demonstrative purposes, the current simulations consider a sufficiently short timeframe such that 

the average of 40% Ore 2 is regarded as stationary (although it would be possible to test different 

values, e.g. 35%, 30%, etc., or to implement a declining trend). In particular the 40% average 

should result in a 2.6 kt/day throughput as predicted by Equation 4.1.3, but only if the stockpile 

levels are sufficiently high to absorb the geological variation, and if there is an appropriately tuned 

trigger point to decide when to apply Mode B. 

In adapting the DES framework of Navarra et al. (Navarra et al., 2019), geological variation is 

represented as follows: 

At any moment in time, the stockpiles of Ore 1 and Ore 2 are being fed from rockfaces that are 

collectively called a “parcel”. 

 Within each parcel, a fixed portion of the ore is Ore 1, and the remaining ore is Ore 2. 

 Each parcel contains a total of between 10 and 40 kt of ore, following a uniform 

distribution. 
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 When the excavation of a parcel is completed, a subsequent parcel is randomly generated, 

considering a 40% chance that the new parcel is a continuation of the same lithofacies and 

a 40% chance that the parcel is of a new lithofacies. 

 If the new parcel is a continuation of the previous lithofacies, then it contains a portion of 

Ore 2 that is only slightly deviated from the previous parcel; this deviation is randomly 

generated according to a gaussian distribution with mean 0 and standard deviation of 5. 

 If the new parcel corresponds to a new lithofacies, then it contains a portion of Ore 2 that 

is randomly generated according to a gaussian distribution with mean 0 and standard 

deviation 1. 

The framework supports more elaborate representations of geological variations, including the 

confluence of geostatistical simulations and mine planning (Wilson, 2021), which is beyond the 

scope of the current paper. The completion of a parcel is itself a discrete event. Additional discrete 

events occur within the framework, including the shutdowns which are simulated to occur every 

thirty days, and last for one entire day. In actuality, the shutdowns at the Florida Mine can last for 

longer than one day, and the campaign cycles are not always regular. The DES framework can 

represent random variation in the cycling of shutdowns and production campaigns, including 

equipment breakdown. For simplicity however, the current computations consider a regular cyclic 

schedule of twenty-nine days of production followed by a one-day shutdown. At the moment of 

shutdown, a decision is made as to whether the system should be configured for Mode A or for 

Mode B, which is then maintained for the entirety of the subsequent production campaign. If the 

level of Ore 2 (i.e. the low CN consuming ore) is sufficiently low so as to present a stockout risk, 

then Mode B is selected; otherwise, the more productive Mode A is chosen. As indicated by Table 

4.1.8, a campaign of Mode A is at risk of stockout because it consumes Ore 2 faster than the 

(expected) replenishment rate; similarly, a campaign of Mode B is at risk of stockout because it 

consumes Ore 1 faster than the (expected) replenishment rate. If the actual replenishment rates are 

lower than anticipated, resulting in shortages of either ore type, then the contingency modes are 

applied, as illustrated in Figure 4.1.9. 
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(a) (b) 

 

Figure 4.1.9: Discrete Event Simulations Alhue mining system (a) Stockpile evolution during simulations with control 

parameters set at 10,000 t for the Target Ore Stockpile Level (TOSL) and 2,000 t for the Critical LCC Stockpile Level, 

which shows some stockpile shortages and long timeframes without stockouts. (b) System entering in Mode A-

Contingency and B-Contingency in cyclic time intervals, due to the repeating shortages of HCC and LCC ores 

affecting the operational stability of the plant and the final KPI results at 6,000 t for the Target Ore Stockpile Level 

(TOSL) and 4,000 t for the Critical LCC Stockpile Level (i) Cyclical jagged saw-tooth pattern showing the alternation 

between Configuration A and Configuration A Contingency. (ii) Cyclical jagged saw-tooth pattern showing the 

alternation between Configuration B and Configuration B Contingency. (iii) System entering in Configuration A Mine 

Surging, wherein the level of ore 2 type (LCC) increases above the total ore stockpile target level to provide feed 

directly to the plant in response to a sustained stockout of the other ore type. 

Following the approach of Navarra et al. (Navarra et al., 2019), there are two operational policy 

parameters, a.k.a. control variables, that characterize the decision-making: 

X = Target Ore Stockpile Level (TOSL) 

Y = Critical Ore 2 Stockpile Level (COSL) 

The Target stockpile level, computed as the sum of the available ore types (i.e. the levels of 

HCC and LCC). More elaborate operational modes are supported by the framework, including 

mid-campaign decisions to hasten or postpone the shutdown. However, the original two-parameter 

formulation of Navarra et al. (Navarra et al., 2019) is sufficient for demonstrative purposes. Table 

4.1.9 is the result of simulating 5,500k t of excavated ore, or roughly 2000 days, under various 

combinations of X and Y values; each case shows the average value of 100 replicas, ± one standard 

deviation. For all cases it is observed that deterministically optimal throughput of 2.6 kt/day is 

attained, given sufficiently large Y values, as predicted in the previous section using Equation 3. 

Critical Ore Stockpile Level 

(i) (ii) 

(iii) 

Ore 1 Stockpile Level Ore 2 Stockpile Level Total Ore Stockpile Level 

Configuration A Regular 

Configuration B Regular 

Configuration A Contingency 

Configuration B Contingency 

Shutdown 

Configuration A Mine Surging 

Configuration B Mine Surging 
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The approach toward 2.6 kt/day is better illustrated in Figure 8, which includes additional 

simulations. 

 

 
(a) (b) 

 
(c) (d) 

Figure 4.1.10: Discrete event simulations main statistics as a function of policy parameter target stockpile levels X = 

10,000 t (Yellow line), 8,000 t (Blue line), 6,000 t (Red line), 4,000 t (Green line), considering critical stockpile levels 

Y = 1,000 t, 2,000 t, 3,000 t, 4,000 t. (a) Mean Average Throughput. (b) Mean average time in Mode A. c) Mean 

average time in Mode A Contingency. (d) Mean average time in Mode B. 

The decision to alternate between modes depends on current and forecasted stockpile levels 

(Órdenes et al.,2021). This research follows the approach proposed by Navarra et al. (Navarra et 

al., 2019) wherein two operational policy parameters, a.k.a. control variables, characterize the 

decision-making: X = Target Ore Stockpile Level and Y = LCC Critical Stockpile Level. To 

coincide with the formulation of Navarra et al. (Navarra et al., 2019), the high-cyanide consuming 

ore is considered to be Ore 1 whereas the low-cyanide consuming ore is Ore 2; thus, when the 

stockpile of LCC falls below the user-specified Y value, the decision is made to convert the system 
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into configuration B at the following shutdown. The simulated gold head grades and the average 

of the gold ounces fed into the plant are presented in Figure 8. These consider the variation of the 

stockpile levels of the two sulphide geometallurgical units of the Alhué district (Figure 4.1.11). 

 

 

(a) (b) 

Figure 4.1.11: Discrete event simulations gold head grades statistics as a function of policy parameter target stockpile 

levels X = 10,000 t (Yellow line), 8,000 t (Blue line), 6,000 t (Red line), considering LCC critical stockpile levels Y 

= 1,000 t, 2,000 t, 3,000 t. (a) Gold head grades average under different Target Ore Stockpile Level. (b) Gold ounces 

average fed into plant under different Target Ore Stockpile Level. 

By verifying the results, it is possible to establish that the optimal configuration for the control 

variables for the modelled mining system is X = Target Ore Stockpile Level = 10,000 t and Y = 

LCC Critical Stockpile Level= 2000 t. The dynamics reaches its best performance achieving the 

highest throughput (2594.79 t, Table 8) and the second-best result in fed ounces (315.35 oz/day, 

Table 8). Under this system configuration the key performance indicators (KPI) are maximized, 

as throughput and gold head grades reach values that are close to those predicted by the orebody 

average. Additionally, a stable sodium cyanide dosage is attained despite the process being subject 

to heterogeneous fed (Órdenes et al.,2021). 

As for cyanide consumption, the simulation results show that it is possible to stabilize this 

process parameter by applying the policies of operating modes, where in most cases, the system 

achieves an average consumption of approximately 2.04 kg/t (Table 4.1.9).The analysis of the 

dynamics of the mining system, based on the inventory management strategies and modes of 

operation, shows that the orebody average of 3.81 g/t is attainable (considering 60% HCC ore and 
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40% LCC ore, Table 4.1.9). The highest production of ounces of gold is obtained when the total 

target inventory level is set to 10,000 tons and the critical LCC stockpile level is set to 1,000 tons, 

where the maximum production of 315.39 oz/day.  

Table 4.1.9: Summary of discrete event simulation throughputs, cyanide consumption, simulated gold grades. 

Target Stockpile Level Critical Ore Stockpile Level 1,000 t 2,000 t 3,000 t 4,000 t 

6,000 t 

Mean Average Throughput (t) 2,549.51 2,541.28 2,525.46 2,503.90 

Mean Average CN Consumption (kg/t) 2.044 2.042 2.040 2.038 

Max Average Gold Head Grades (g/t) 4.03 3.96 4.02 4.00 

Mean Average Gold Head Grades (g/t) 3.73 3.72 3.72 3.72 

Min Average Gold Head Grades (g/t) 3.40 3.44 3.43 3.42 

Max Average Gold in metal (oz/day) 333.88 327.35 328.27 325.86 

Mean Average Gold in metal (oz/day) 305.69 304.24 301.34 299.54 

Min Average Gold in metal (oz/day) 276.37 278.81 275.16 272.37 

8,000 t 

Mean Average Throughput (t) 2,581.31 2,579.32 2,572.19 2,554.89 

Mean Average CN Consumption (kg/t) 2.047 2.046 2.045 2.045 

Max Average Gold Head Grades (g/t) 4.00 4.02 3.98 4.00 

Mean Average Gold Head Grades (g/t) 3.76 3.75 3.74 3.74 

Min Average Gold Head Grades (g/t) 3.41 3.43 3.47 3.46 

Max Average Gold in metal (oz/day) 334.60 336.12 332.48 331.50 

Mean Average Gold in metal (oz/day) 312.11 310.81 309.63 307.10 

Min Average Gold in metal (oz/day) 281.19 282.80 284.60 280.67 

10,000 t 

Mean Average Throughput (t) 2,592.84 2,594.79 2,592.99 2,588.51 

Mean Average CN Consumption (kg/t) 2.047 2.046 2.045 2.045 

Max Average Gold Head Grades (g/t) 4.01 4.03 4.02 4.02 

Mean Average Gold Head Grades (g/t) 3.78 3.78 3.77 3.76 

Min Average Gold Head Grades (g/t) 3.41 3.46 3.39 3.41 

Max Average Gold in metal (oz/day) 336.56 337.82 337.25 336.64 

Mean Average Gold in metal (oz/day) 315.39 315.35 314.29 312.80 

Min Average Gold in metal (oz/day) 282.40 286.57 281.37 282.47 
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This outcome is due to the greater availability of ore, and to a less constrained system due to 

decreased occurrences of LCC shortages. Conversely, the configuration that minimizes the 

available stock (X = 6000 t and Y = 4000 t) with a head grade result of 3.72 g/t (one of the lowest 

head grade results, Table 8) and throughput result of 2503.90 t (the lowest tonnage result), this 

system configuration produces the second lowest value of the average ounces, 299.54 oz/day. In 

this case the system is constrained due to the continuous LCC ore shortages under configuration 

A and HCC shortages under configuration B, causing decreases in throughput and lower recovery. 

With a low target ore stockpile level, the system is forced to constantly change operational 

mode, which means that the cyanide dose must be adjusted frequently over short periods (Figure 

4.1.12a) to handle the varying ore type proportions and related cyanide requirements (recall Table 

4.1.8). The system achieves higher stability by maximizing the time spent in Mode A. With the 

exception of a few events requiring higher CN consumption due to a shortage of ore 2, this scenario 

allows for a stable cyanide dose over more extended periods (Figure 4.1.12.b).  

Figure 4.1.12. cyanide consumption simulation plots based on modes of operation, relative ore 

proportions and average consumption requirement for each ore type (Ore1= 2.24 kg/t, Ore 2=1.75 

kg/t). (a) Simulation trial using a TOSL of 4,000 t and COSL of 3,000 t, showing the constant 

cyanide dose adjustment as a function of the short time frames between each operational mode 

change due to system instability. (b) Simulation trial using a TOSL of 10,000 t and COSL of 2,000 

t, showing a flat cyanide dose (greater system stability) as a function of the longer time frames 

spent in Mode A. Moreover, additional benefits from an appropriate set of the target ore stockpile 

level allows longer operational plant stability timeframes, supported by more extended periods in 

configuration A (with time in configuration A > configuration B, Figure 4.1.13a) in comparison 

with lower Target Ore Stockpile Level (Figure 4.1.13 b). In this context, minimizing this control 

variable is an operational decision that mine managers must face, considering the effects on the 

KPIs. For instance, having a low ore stockpile level available, the system is at risk of suffering 

constant ore shortage events. 
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(a) 

 
(b) 

 

Figure 4.1.12: Cyanide consumption simulation plots based on modes of operation, relative ore proportions and 

average consumption requirement for each ore type (Ore1= 2.24 kg/t, Ore 2=1.75 kg/t). (a) Simulation trial using a 

TOSL of 4,000 t and COSL of 3,000 t, showing the constant cyanide dose adjustment as a function of the short time 

frames between each operational mode change due to system instability. (b) Simulation trial using a TOSL of 10,000 

t and COSL of 2,000 t, showing a flat cyanide dose (greater system stability) as a function of the longer time frames 

spent in Mode A. 
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(a) (b) 

 

Figure 4.1.13: Time distribution of operational modes in response to geometallurgical units with CN consumption 

variability, for (a) Target ore stockpile level critical of 10,000 t and LCC threshold of 2,000 t, and (b) enhanced 

configuration using a critical value of 6,000 t and target total stockpile level of 4,000 t. 

Another adverse effect generated by low mineral stockpiles is the continuous changes of modes 

of operation within a production campaign, from A-regular to A-contingency and B to B-

contingency in cyclic time intervals, caused by the frequent stockouts (Figure 4.1.9 a). This causes 

lower head grades, and at the same time, adversely affects the mill productivity (Table 4.1.9). The 

optimal configuration of 10,000 t target ore stockpile level and 2,000 t LCC critical stockpile level, 

in which the ore shortage events are more likely (Figure 4.1.9 b), is compared with other stockpile 

levels with lower target ore stockpile level. As a result, the system occasionally enters the less 

productive contingency modes. This can be estimated as a 5% loss of benefit in daily ounces 

production, comparing the best result with the 6000 t target ore stockpile level and 4000 t LCC 

critical stockpile level configuration. 

4.1.7 Conclusions 

For the Alhué mining district, the distribution of metallurgical domains is influenced by 1) the 

topography of the area where the structure is located, and 2) the permeability of the host rock as a 

function of the major fault systems that interact with the veins. Both of these factors affect the 

location of the paleo-water table, which conditions the nature of mineral-groundwater interactions, 
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and thus, the in situ oxidation-reduction state of the minerals. Most importantly for the Florida 

Mine, transitioning into high CuS-FeS areas can lead to spikes in cyanide consumption, but this 

can be mitigated through blending in coordination with pre-established operational modes. 

Furthermore, a continually successful operation may require the periodic revision of 

geometallurgical units and reconfiguration of the operational modes, thus integrating updated 

geological interpretations into system-wide quantitative analyses. In particular, this study 

demonstrates the use of DES/DRS trials to optimize the balance of incoming high and low cyanide-

consuming ores at the Alhué mining district and provide better insight into cyanide consumption 

dynamics within the mining system. Using blending and stockpiling practices as control measures 

to mitigate potential operational risks, two control variables (target total stockpile and critical 

levels of low CN consuming ore) were adjusted to stabilize the mass balancing of incoming plant 

ore feed. The logical decision would normally be to increase the target total stockpile level, 

particularly with respect to the critical ore level; this typically allows the system to reach higher 

throughputs that approach the deterministic value, thereby increasing the revenue potential and 

overall efficiency by optimal use of the milling plant capacity. Nevertheless, it is also possible to 

achieve the deterministic throughput by the opposite approach of decreasing both control variables, 

with the potential benefit of reduced operational costs related to stockpile storage and handling. 

The target total ore stockpile parameter is vital as an operational buffer to mitigate the risk of 

ore shortages under geological uncertainty, which can have a direct impact on reagent consumption 

for mining systems subject to heterogeneous ore feeds in this stabilizing the cyanide consumption, 

avoiding extreme variability in this parameter. By stabilizing plant feed and target ore blends, the 

system benefits from extended periods of operation under the most productive set of operating 

policies (i.e. Configuration A), and longer time frames without adjusting the cyanide dose. This 

has a positive influence on plant operations by steadying process parameters and avoiding constant 

modifications to reagent dosages caused by rapid changes in ore feed blends. This highlights the 

importance of stockpile management, with a strict but balanced critical stockpile threshold, 

towards attaining optimal throughput for the system, minimizing the likelihood of potential ore 

shortages, maximizing mill productivity and improving overall reagent consumption. 

Also, another objective reach with this work was to demonstrate the data-driven incorporation 

of gold head grades into the DES/DRS framework developed to represent the operations at Minera 
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Florida, and to visualize the dynamics in the system of the new variable under study. This research 

also confirms that the critical variable Target Ore Stockpile Level is crucial in maximizing gold 

head grades and tonnage, and indeed metal production. This same approach is being used to 

represent other process variables in simulating the Minera Florida process, in addition to gold head 

grades. The incorporation into the DRS framework of key performance indicators (KPIs), in 

conjunction with gold head grades and other process variables, helps managers to improve the 

decision-making under the successive detailing of system simulations (Figure 3.1). In the same 

direction, with a better understanding of the dynamics of the different parameters within each 

system, it is possible to identify potential risks that may affect these critical variables, as much as 

at the strategic level (long term planning) as at the tactical level (short term planning). Finally, a 

complement to this research in discrete rate simulation frameworks (Figure 3.1) is the parallel 

development of programmed routines that allows the simulation platform to draw geological 

attributes directly from block models and mine plans. This points toward the experimentation with 

the incorporation of geostatistical techniques (e.g. stochastic ore body modelling, Sequential 

Gaussian Simulations, kriging estimation, etc.) that allow the linking of feed variability with the 

geospatial aspects of the orebody and the mine plan. 

4.2  Sequential Gaussian Simulation Incorporated into Dynamic Mass Balance for 

Simulation-based Control of Cyanide Consumption 

Epithermal deposits are significant sources of gold and silver (Simmons, White, & John, 2005). 

Mineralization in epithermal systems can be produced from chemically distinct fluids; those of 

low, high, and intermediate sulphidation. These terms refer to the oxidation state of sulphur in the 

mineralizing fluid (Robb, 2005). Low sulphidation epithermal gold deposits are products of dilute 

fluids which have been reduced and have a pH of ~7, which are developed by the entrainment of 

magmatic components within deep circulating groundwaters and are characterized by sulphur 

species reduced to H2S (Corbett & Leach, 1998). For low-sulfidation epithermal deposits, one of 

the most distinctive features are their open-space vein-fill textures (Herrington,2011). The mineral 

assemblage in low sulphidation veins is quartz ± calcite ± adularia ± illite. Electrum, acanthite, 

silver sulphosalts, silver selenides, and Au-Ag tellurides are the main gold- and silver-bearing 

minerals; in conjunction with variable amounts of chalcedony, pyrite, and/or rhodochrosite 

(Simmons et al., 2005). 
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Due to this geological interaction, supergene Cu-bearing sulphides (a.k.a. secondary 

enrichment copper sulphides i.e., chalcocite, digenite, covellite) can occur in the portion of the 

orebody that interacts with the upper limit of the water table. Critically from the metallurgical 

point of view, these supergene Cu-bearing sulphides result in high cyanide consumption when 

processed which results from their high solubility in cyanide solutions (Órdenes et al., 2021) and 

can therefore be called cyanicidal. This is in contrast to chalcopyrite, for instance, which is not 

particularly reactive to cyanide. Another consequence of this post-mineralization processes is that 

the original mineralogy of the deposit can be affected by weathering. This drastic change is found 

when the portion of the orebody located above the water table is fully oxidized.In this case, base 

metal ore minerals are absent because they are unstable under this redox condition and the cyanide 

consumption in this zone is considerably lower when the copper is absent (Órdenes, 2014). This 

variability can affect the process by causing spikes in cyanide consumption as related to different 

zones. High base metal sulphide concentrations may be subject to continual dose adjustments, lost 

throughput, and the accumulation of large stockpiles of complex ore. In this context, the difficulties 

in the mineral process can be exacerbated if the resource is excavated using underground as 

opposed to surface methods, due to the inflexibility inherent in underground mining operations. 

This inflexibility is comprised of tactical considerations such as the location of future and pre-

existing mine developments, ventilation, drainage, communications, among others and in addition 

to site specific complex logistics that may exist in underground mining. 

In 2014, Órdenes studied the impact of sulfide ore on the cyanidation of the El Peñón Au-Ag 

epithermal deposit in the mineral processing performance. Sulphide-rich veins which contain 

refractory minerals and impurities that affected the Au-Ag leaching by NaCN, effecting negatively 

gold and silver recoveries while significantly increasing cyanide consumption to historical levels. 

Moreover, this increment was attributed to the higher concentration of process impurities, 

remarkably copper (Cu) and manganese (Mn), in plant solutions. These impurities triggered 

undesired reactions, further reducing the overall process efficiency (Figure 4.2.1). To counteract 

the refractoriness of silver sulfosalts and stabilize Au-Ag recovery, sodium cyanide (NaCN) 

concentrations were increased. However, this results in the solubilization of more impurities that 

generate new operational problems across different process cycles and equipment. 
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Figure 4.2.1: Results Au and Ag recovery and cyanide dose used between January 2004 to May 2013. The trend 

towards low recoveries is observed in September 2008 and from June 2010 onwards, which coincides with the entry 

into production of sulphide-rich ore veins. Also, the constant increase in the NaCN dose used, in particular since the 

end of 2010(Órdenes, 2014). 

At El Peñón mine, veins from deeper levels entered production in 2010. Sulphide ore with 

higher base metals, such as Cu, Sb, Pb and Zn, and also manganese carbonate had never been 

processed. This radical mineralogical change led to a noticeable increase in impurities 

concentration of plant solutions, specially copper, which primarily impacted silver recovery 

(Figure 4.2.2). Copper concentration in plant solutions reach historical levels, about 1,150 ppm 

(Figure 4.2.2) with a peak of 1,273 ppm. 

 

Figure 4.2.2: Soluble copper concentration in solution versus silver recovery period 2004 -2013 (Órdenes, 2014). 
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An industrial-scale test was carried out at the plant, which consisted of three stages. The results 

are summarized in Table 1. The first was the six-day feeding of ore from veins in oxidized zones, 

whose mineralogical and metallurgical characteristics were suitable for the cyanidation leaching 

process design, where Ag recoveries had results above 85% with NaCN addition of 1.38 kg/t in 

average, which is considered optimal and is also closer to results in previous years (Figure 1). In a 

second stage the plant process exclusively ore from veins sulfide zones, which had unfavorable 

metallurgical characteristics. As consequence, Au-Ag recovery declined severely with a marked 

increase in cyanide consumption, reaching a consumption spikes of 3.86 kg/t and a restriction in 

throughput. Finally, the ore blending was restored to a maximum limit for sulfide minerals of 30% 

(Table 4.2.1), Under these conditions, process performance stabilized, achieving what was 

considered “normal” results within the new mineralogical context. 

Table 4.2.1: Results of the industrial test conducted at El Peñón processing plant in 2010, including a summary of the 

recoveries achieved and variation of the cyanide consumption (NaCN) during the three stages of the test (Órdenes, 

2014). 

 Day  
Oxide Ore 

(t) 

Sulphide 

Ore (t) 
Marginal %Sulph Ore Tonnage Au (g/t) Ag (g/t) 

Rec Au 

(%) 

Rec Ag 

(%) 

NaCN 

(kg/t) 

1 3,868 0 553 0% 4,421 7.51 178.76 94.40% 83.83% 1.81 

2 3,810 0 544 0% 4,354 5.76 156.79 94.44% 86.25% 1.38 

3 3,924 0 512 0% 4,436 4.50 142.83 93.23% 86.28% 1.35 

4 3,903 0 634 0% 4,537 4.02 136.53 93.42% 85.53% 1.32 

5 2,659 0 443 0% 4,120 3.90 150.25 92.56% 85.97% 1.46 

6 3,734 0 622 0% 4,356 3.57 149.89 92.99% 86.46% 1.84 

7 0 3630 0 100% 3,630 4.79 164.16 94.05% 88.22% 3.86 

8 0 2932 0 100% 2,932 6.17 186.38 93.35% 86.97% 3.41 

9 0 2723 0 100% 2,723 9.47 208.37 93.15% 84.06% 3.67 

10 0 3483 0 100% 3,483 9.32 188.42 90.23% 76.69% 3.73 

11 541 2848 0 84% 3,389 10.09 185.61 91.61% 74.83% 2.95 

12 1,824 729 0 29% 2,553 10.89 237.88 91.73% 82.47% 3.13 

13 2,253 901 0 29% 3,154 8.62 214.06 93.02% 85.52% 2.54 

14 2,513 1043 64 29% 3,620 9.41 204.59 91.90% 84.22% 1.93 

The goal of this report is to optimize mill performance through discrete rate simulation (DRS), 

which incorporates geological variation into decision-making based on the mining plan, including 

the establishment of trigger points to induce operational mode changes, in a context of a direct 
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cyanidation leaching process which is designed to process oxide Au-Ag ore. The simulated 

scenarios are sample calculations of different cyanide consumption situations controlled by 

geological features and mineralogy, which is then modelled by the well-known geostatistical 

technique, sequential Gaussian simulation (SGS). The current paper appears to be the only instance 

in which SGS is embedded within DRS, even though DRS may be the most straightforward 

approach to dynamic and stochastic mass balancing. 

4.2.1 Geometallurgical Considerations 

4.2.1.1 Low Sulphidation Au-Ag Vein Hosted Deposits 

Hydrothermal deposits that form in the shallow crust are referred to as epithermal gold-silver 

deposits and are found typically at depths of less than 1,500 meters below the water table. They 

are mined for their concentrations of gold and silver, and some deposits also contain significant 

quantities of other metals including lead, zinc, copper, and manganese. Epithermal deposits can be 

high-grade or low-grade, and they can be mined using a several different methods or a combination 

thereof, including underground and open-pit mining. Currently, many such deposits with less than 

1 part per million (ppm) of gold are mined using surface mining methods (John, et al., 2018). 

Hydrothermal deposits that form in the shallow crust are referred to as epithermal gold-silver 

deposits and are found typically at depths of less than 1,500 meters below the water table. They 

are mined for their concentrations of gold and silver, and some deposits also contain significant 

quantities of other metals including lead, zinc, copper, and manganese. Epithermal deposits can be 

high-grade or low-grade, and they can be mined using a several different methods or a combination 

thereof, including underground and open-pit mining. Currently, many such deposits with less than 

1 part per million (ppm) of gold are mined using surface mining methods (John, et al., 2018).  

Epithermal deposits are significant sources of gold, silver, lead, and zinc. This deposit type 

forms close to the surface and at relatively low temperatures (less than 300°C) in mainly 

continental hydrothermal environments. Epithermal deposits can be classified by the degree of 

alteration, sulfide and gangue assemblages, metal content, and sulphide content (Simmons et al., 

2005). Epithermal gold-silver deposits have been categorized into various subtypes based on their 

metal content, presence of various ore and gangue minerals, and inferred composition of 

hydrothermal fluids required for ore formation. Traditionally, two primary categories of epithermal 
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deposits are distinguished in the literature: acidic and alkaline (Sillitoe, 1977). The first type of 

deposit is referred to as enargite-gold, alunite-kaolinite, acid-sulfate, or high sulphidation. The 

second type is called an epithermal deposit of adularia-sericite or low sulphidation (Camprubí et 

al., 2006). 

A low sulphidation Au-Ag epithermal deposit, specifically, consists of quartz-adularia 

accompanied by ore minerals such as electrum (mostly 40-60 % by weight Au), native gold, rarely 

pyrite, silver sulphides and sulphosalts, and base metal sulphides (mainly lead-zinc and minor 

copper). Cu-sulphides are commonly present in this type of mineral deposit, note that chalcopyrite 

is refractory to cyanidation and closely related to the hypogenic zone. These deposits have a 

vertical zoning, being rich in Au-Ag and poor in base metals in the top of the mineralized zone, 

followed by a portion rich in silver and base metals. This is then followed by an area rich in base 

metals, and finally reaching a pyrite zone poor in nonferrous metals where both gold and silver are 

absent (Camus et al., 1991). The precipitation of gold occurs when the fluid boils as it approaches 

the surface generating mineralization in veins. The mineralogy of these deposits consists mainly 

of gold, silver, sphalerite, electrum, chalcopyrite, argentite, tetrahedrite, silver sulphosalts, pyrite, 

and galena. Gangue minerals such as quartz, adularia, and carbonates of different metal ions, such 

as Mn, Fe, and lesser amounts of Pb and Zn are associated with ore (White & Hedenquist, 1995). 

4.2.1.2 Gold and Silver Extraction by Cyanidation 

Cyanidation is the primary leaching process to separate the gold and silver in the ore. In 

general, the optimal concentration of cyanide is dictated by the properties of the ore and commonly 

used levels are from 0.05% to 0.30% NaCN (0.45~2.0 kg of NaCN per ton) (Azañero, 2001). The 

use of low concentrations of cyanide is recommended considering the low operating and technical 

costs due to a lower dissolution of impurities that may affect the extraction of Au and Ag 

(Cárdenas, 1993).  

Knowing the exact mechanism of gold dissolution within a cyanide solution is of considerable 

importance because of the numerous reactions that take place in the dissolution of the precious 

metal in agitated solutions of cyanide. These reactions sometimes cause an unwanted consumption 

of cyanide and lime, as well as complicating the chemical processes involved (Domic, 2001). The 

total dissolution of gold in alkaline cyanide solutions exposed to oxygen, considering both anodic 
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and cathodic semi-reactions, is described more precisely by the following reactions, which occur 

simultaneously: 

 4Au + 8NaCN + O2 + 2H2O → 4Na[Au(CN)2] + 4NaOH (4.3.1) 

Silver sulphides react in an analogous way to gold in aqueous cyanide solutions with the 

following general equation: 

 2Ag2𝑆 + 4NaCN + H2O → 2Na[Ag(CN)2] + NaSH + NaOH (4.3.2) 

The majority of gold deposits occur as native metal and are nearly all present with varying 

quantities of silver. Early studies on the dissolution of gold in cyanide solution have shown that if 

the ore contains both heavy metal components (i.e., Cu, Fe, and Zn) and sulphide minerals, more 

cyanide and oxygen is consumed during the dissolution (Habashi, 1967). Due to the high solubility 

of these sulphide minerals, the concentration of cyanide used to dissolve gold in ores is usually 

greater than the expected value obtained from the stoichiometric ratio (Parga et al., 2012).  

Gold is often associated with specific minerals, notably the following: pyrite, galena, zinc 

blend, arsenopyrite, stibnite, pyrrhotite, and chalcopyrite. Gold and silver predominantly occur in 

nature as native metals and are occasionally associated with various sulphide minerals, and 

interactions with these minerals can often delay the rate of gold dissolution in a cyanide solution 

(Aghamirian, 1997). Free cyanide forms complexes with several transition metal species which 

vary widely in stability and solubility via the following reaction: 

 Mx+ + yCN− → M(CN)y
(y−x)−

 (4.3.3) 

Based on the low sulphidation gangue mineralogy, it has been found that it is likely that the 

presence of metallic ions in a process solution consumes more cyanide due to undesired reactions.  

Copper-silver cyanide complexes form during the first phase of the leaching process, which can 

reduce the amount of cyanide available for gold recovery (Medina and Anderson, 2020). Cyanide 

consumption from copper could be as high as 2.3 kg of NaCN per kilogram of metal leached 
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(Stewart & Kappes, 2012). As mentioned in previous sections, the following reaction shows how 

copper sulfides can react with cyanide to form complexes: 

 ⁡⁡⁡⁡⁡⁡⁡⁡4Cu2S + 22NaCN + 5O2 + 2H2O → 4Na[Cu(CN)2] + 4Na2[Cu(CN)3] + 4NaCNS + Na2SO4 + 2NaOH (4.3.4) 

Another example of parasitic reactions with this reagent is Mn2+ contained in rhodochrosite 

(manganese carbonate, very common gangue mineral present in low sulphidation veins). This 

mineral transforms the cyanide ion into cyanate, impairing the leaching process of Au and Ag, 

according to the following reaction. 

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡2MnCO3 + 7NaCN + 2NaOH → 2Na3Mn(Na)3 + 2Na2CO3 + NaCNO− + H2O (4.3.5) 

As cyanide consumptions continues to be one of the main economic considerations for gold 

mining (Hill, 1986) (Kianinia, et al., 2018) (Medina & Anderson, 2020), the operating cyanidation 

cost increases significantly with the sustained incremental consumption of this reagent in the 

forecasted ore due to impurities. Copper is a major cyanide consumer because it forms cyano-

complexes. This can lead to higher cyanide consumption, slower dissolution rates of gold and 

silver, interference with successive recovery activities, and contamination of the final product 

(Marsden & House, 2006). Cyanide complexes can be broadly categorized into three main 

groupings, which are based on their thermodynamic stability constants k, from least to most stable: 

(1) Free cyanide (HCN, CN-). 

(2) Weak acid dissociable cyanide (WAD) complexes, for which log k ≤ 30 approximately: 

(Zn(CN)4
2−, Cu(CN)2

−, Cu(CN)4
2−, Cu(CN)4

3−, Ni(CN)4
2−, Ag(CN)2

−). 

(3) Strong cyanide complexes, for which log k>30 approximately Au(CN)2
−), (Fe(CN)6

2−, 

(Fe(CN)6
4−, Co(CN)6

3−). 

Cyanide forms ionic complexes with metals (Kuyucak & Akcil, 2013) and virtually all metal ions 

present in a solution are associated with cyanide ions. This means that at high concentrations of 
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metals in solution, the presence of free cyanide is inconsequential due to the occurrence of sulphide 

species in the mined ore (e.g., sphalerite, galena, Cu-bearing sulphides such as chalcopyrite, 

chalcocite, and covellite). While low-stability cyanide complexes could behave like free cyanide, 

albeit with slower reaction kinetics, this type of cyanide is called available cyanide. This occurs in 

the presence of other species with a tendency to form more stable complexes, and thus disfavors 

the gold extracting reactions (free cyanide + WAD cyanide). In practice, the spiking of cyanide 

consumption can be modeled empirically or semi-empirically, leading to gold mines 

experimenting with different feed and reagent blends, in the formulation of different operational 

modes.  

Órdenes et al., (2021) proposes a simulation-based procedure to optimize the balance of 

incoming high and low cyanide-consuming ores in the Alhué mining district. The results of the 

simulations offer a more thorough understanding of cyanide consumption dynamics within the 

mining system and the importance of blending and stockpiling practices as control measures to 

mitigate potential operational risks related to unexpected rises in cyanide consumption. An 

increasing comprehension of geometallurgical relationships brings value to a mine, insomuch as 

it is incorporated in the actual operational decisions. 

4.2.2 Case Study 

The goal of this study is to build a model that can predict the effects of a radical change in the 

mineralogy of a leaching plant due to variations in redox conditions caused by geological features 

within the ore deposit. Geometallurgical data, derived from a low sulphidation gold and silver 

deposit, is presented in the context of a leaching process using cyanide solutions and is assessed 

for the potential to increase consumption of the sodium cyanide (NaCN) consumption. In quartz 

adularia veins, there are several sin-genetic minerals with gold-silver deposits that can be 

deleterious to the leaching process by cyanide, specifically mineral assemblages located below the 

paleo water table within the deposit (Figure 4.2.3).  
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Figure 4.2.3: Schematic profile of the mineralogical distribution in low sulphidation veins and their location respect 

the paleo water table. Below this limit which conserve the original mineralogical species at the formation of low 

sulphidation system dominated by quartz + adularia > carbonates (rhodochrosite + calcite +ankerite)> and Zn-Pb 

Sulphides (Sphalerite + Galena)>> hypogenetic copper sulphides (chalcopyrite +tetrahedrite). Also copper from oxide 

zone is transported to lower levels generating supergene Cu-sulphides (chalcocite-covellite -digenite). 

 

This mineralogical zone contains numerous potential cyanide consumers, such as copper and 

manganese (the two most significant described in Section 4.2.3.2), especially with the occurrence 

of copper primary sulphides chalcopyrite, tetrahedrite (Figure 4.2.4a) and bornite (Figure 4.2.4b), 

also, chalcocite, covellite (Figure 4.2.4c). For manganese the main mineral specie is rhodochrosite 

(Figure 4.2.4d), very common in Au-Ag low sulphidation systems. 
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(a) (b) 

  

 (c) (d) 

Figure 4.2.4: Cyanide consumer mineralogy (a) Chalcopyrite (Cpy) intergrow with tetrahedrite (Tetra) ; sphalerite 

(Sph) and Galena (b)Chalcopyrite (Cpy) intergrow with sphalerite (Sph) and bornite (Bn) (c)Chalcopyrite (Cpy) 

replaced by covelline (Cv) and chalcocite (Cc) (c) (d)Rodocrosite(Rd) inter growed with hydrothermal Quartz (Qz) 

(Ordenes, 2014). 

Feeding this ore type directly into a leaching plant results in a high increment of cyanide 

consumption, generating a series of parasitic chemical reactions and process inefficiencies. 

Furthermore, operational problems related with high concentrations of manganese in the sulphide 

ore (Table 4.2.2) can occur in different stages, such the precipitation of gels into plant pipelines 

(triggered by the undesired dissolution different metallic ions due to spikes in the cyanide dosage 

and reacting with the lime of the process water), and/or affecting the physical and/or chemical 

quality of the Dore bars in the refinery (Órdenes, 2014). Additionally, supergene copper sulphides 

(e.g. chalcocite, digenite, covellite) have a high solubility in cyanide solutions (with more than 

90% of recovery with this leaching reagent Table 4.1.1) in combination with a fast-leaching 

Bn 

Gal 

Sph 
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kinetics of covellite and chalcocite/digenite (Órdenes et al., 2021), which also cyanide 

consumption. 

Table 4.2.2: Comparison in the concentration of elements harmful to cyanidation between mineralogical zones in low 

sulphidation deposits (Órdenes, 2014). 

  Copper (ppm) Manganese (ppm) Lead (ppm) Zinc (ppm) 

  Oxide Sulphide Oxide Sulphide Oxide Sulphide Oxide Sulphide 

Average 112 951 2,665 16,163 702 7,428 677 10,159 

P10 12 39 77 554 30 234 12 463 

P90 210 2,476 9,990 44,431 1,811 21,670 1,533 29,280 

Conversely, even though rhodochrosite (a Mn-rich carbonate) has a moderate solubility, in 

some areas can be highly concentrated. As shown in Section 3, this gangue mineral can oxidize 

cyanide to cyanate (Equation 4.3.5), which has no leaching capability and is not recovered by the 

process downstream (Órdenes, 2014). In contrast, oxide ore (located above the water table level) 

generally contains low concentrations of cyanicides (Table 4.2.1) and carbonates, most of which 

were leached by a post-mineral geologic process that can lead to changes in the geochemical 

stability under new redox conditions. Over this level, acid rain and dissolved oxygen from 

groundwater react with pyrite and other sulphides, generating iron oxyhydroxides and sulphuric 

acid. This acid seeps down into the orebody removing copper, lead, and other base metals and 

dissolving carbonates as it moves downwards (Habashi, 1967). Therefore, the presence of 

carbonates, especially Cu-sulphides, is essential in assessing cyanide utilization in the plant. For 

the current calculations, a bench and fill mining method (which is an adaptation of cut and fill) 

was computed for the mineral extraction to obtain the mining extraction sequence. 

This research focuses on finding alternative options to deal with unexpected problems 

caused by the mineralogical variation and the potential effects on key performance indicators 

(KPI), specifically cyanide consumption. Furthermore, the dosage control of cyanide consumption 

using ore blending strategies and stockpile management policies outlined in a discrete rate 

simulation framework performed in Rockwell ARENA ©. Finally, it contributes to evaluating 

process alternatives and improving production planning, reducing uncertainties in the prediction 

of reagent consumption such as sodium cyanide. 
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4.2.3 Cyanide Consumption Simulation 

Geometallurgical data was utilized for the Sequential Gaussian Simulation (SGS) to compute 

a hundred equiprobable sodium cyanide consumption scenarios. This database contains 338 ore 

samples, classified in situ (Figure 4.2.5). The samples were analyzed to determine the cyanide 

consumption by a roll test and the data was grouped by ore type (oxide-sulphide) based on 

workface observations.  

 

(a) 

 

(b) (c) 

Figure 4.2.5:(a) Profile showing the location of the geometallurgical sampling data. The boundary between the two 

mineralogical zones was constructed by oxide-sulphide classification made from the in situ mineralogical assemblage 

in each sampling point. (b) Workface in oxide zone with quartz (Qz), adularia (Ad), and oxides such as jarosite(jar), 

hematite(hem) and manganese-oxide (Mn-Ox). (c)Workface in sulphide zone with quartz (Qz), adularia (Ad) mixed 

with and rhodochrosite (Rod), and sulphides such as galena (Gal), sphalerite (Sph). The black dashed line marks the 

limits of the oxide-sulphide zone as reference (Órdenes, 2014). 
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The geometallurgical sample database was statistically described for the cyanide consumption 

variable for the entire data set and by ore types. The NaCN average consumption for the ore body 

is 2.53 kg/t and a 2.26 kg/t declustered average. The result revealed that there is a strong influence 

from the mineralogical zone, with a notable difference in the sodium cyanide dosage based on the 

significant disparity in the average consumption of this reagent between the two geometallurgical 

units (1.61 kg/t in the oxide ore vs 3.22 kg/t of the sulphide). The result is summarized in Table 

4.2.3. 

Table 4.2.3: Cyanide consumption statistical summary. 

Variable Statistics All-Data Normal Score Oxide Ore Sulphide Ore  

Cyanide 

Consumption 

(kg/t) 

N° Samples 338 338 143 195 

Mean 2.53 0.22 1.61 3.22 

Standard Deviation 1.26 1.02 0.84 1.08 

Minimum 0.06 -2.70 0.064 0.63 

Q1 1.55 -0.45 0.98 2.57 

Q2 2.55 0.23 1.55 3.18 

Q3 3.47 0.96 2.23 3.95 

Maximum 5.61 3.14 3.49 5.61 

To perform the Sequential Gaussian Simulation (SGS), a series of realizations from a random 

function that shares spatial continuity features from the collected data is generated. From the 

available geometallurgical information, a histogram of the raw data can be inferred (Histogram, 

Figure 4.2.6a). Following this, the simulated variable, in this case cyanide consumption, were 

translated into the Gaussian space through a normal score transformation using SGEMS (Figure 

4.2.6b). The subsequent step in the SGS (Sequential Gaussian Simulation) procedure involves 

generating variograms of the weighted standard samples. This process is crucial for calculating the 

parameters required to estimate the block model and uncover hidden patterns within the samples. 

  

(a) (b) 
Figure 4.2.6: (a) Declustered NaCN consumption raw data Histogram. (b) Normal Scored NaCN consumption. 



108 

 

The subsequent step in the SGS (Sequential Gaussian Simulation) procedure involves 

generating variograms of the weighted standard samples. This process is crucial for calculating 

the parameters required to estimate the block model and uncover hidden patterns within the 

samples. The histograms are shown in figure 4.2.7. 

  

(a) (b) 

Figure 4.2.7: (a) Normal Scored NaCN consumption major range direction Variogram. (azimuth 0°, dip 35°) (b) 

Normal Scored NaCN consumption minor range direction Variogram (azimuth 0°, dip 125°). 

The simulations were carried out in the SGEMS and GSLIB, where 100 realizations were 

computed based on the modelling parameters and then assessed in the variography calculation and 

sequential gaussian simulation algorithm. Block models were built with a common parent block 

size of 1m × 1 m × 1m and re-blocked to 4m × 5m × 4m. The summary of the estimation parameters 

for the SGS are summarized in Table 4.2.4. 

Table 4.2.4: Cyanide consumption Normal Scored Variogram Parameters. 

    Ranges [m] 

  Sill Major (Az 0°/ Dip 35°) Minor (Az 0°/ Dip 125°)  

Nugget Effect 0.15 
  

Spherical 0.29 15 10 

Spherical 0.56 150 95 

Each simulation estimates values in the in the Gaussian space, which needs to be back 

transformed to the sample distribution to obtain the final simulated cyanide consumption scenarios 

(Figure 4.2.8a). These realizations represent different equiprobable cyanide consumption 

possibilities for the mineral body that relies on the same sample distribution histogram. 
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(a)  (b) 

 

 

(c) (d) 

Figure 4.2.8: (a)Cyanide consumption estimated by Kriging. (b) Cyanide consumption back transformed simulations. 

(c)Cyanide consumption back transformed simulation 12 histogram and summary statistics. (d) E-type Cyanide 

Consumption. The black dashed line marks the limits of the oxide-sulphide zone as reference. 

The histograms of the estimated blocks in each realization were also generated (Figure 4.2.8c) 

with their corresponding statistics. Unlike estimation, where a best map can be generated under 

some quality parameter definition (e.g. minimization of the mean square error in the case of 

kriging), realizations are accepted or rejected based on their ability to honor the data, geology, 

histogram, variogram, and any secondary information (Ortiz, 2020). The histogram of each 

scenario shows that each realization respects the distribution of the sample set, and, in addition, its 

statistical parameters are also very similar to those of the cyanide consumption test database. The 

new contribution of the approach of the Monte Carlo simulations framework for decision making 

under uncertainty is that the information generated from the geostatistical simulation and mine 

planning will feed the discrete rate simulations developed in the ARENA Rockwell © software. 

This report proposes a new method of evaluating the influence of stockpile management policies 

to stabilize plant reagent consumption (in specific sodium cyanide) while maintaining mine 

production levels. This novel contribution tries to integrate geostatistical methods (e.g., Sequential 

Gaussian Simulation) into operational simulations from the different scenarios to be able to 

evaluate a specific variable, stochastically, into the mining system. 
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(a) 

 

(b) 

Figure 4.2.9: Geometallurgical mine plan summary (a) Ore feeding profile for fifty periods and their oxide-sulphide 

ore type ratio. (b) Stochastic Cyanide Consumption profile. 

Based on the mining sequence, which was generated from the ore production scheduling, the 

result was a 50-month feeding plan, during mining periods where the oxide-sulphide ratio varies 

depending on the mineral zone being mined (Figure 4.2.9a). Additionally, the cyanide 

consumption profile was constructed, but for this variable the projected future consumption is 

stochastic, based on the one hundred realizations computed under the Sequential Gaussian 

Simulation procedure. Therefore, the cyanide dose takes the expected value (P50) of stopes 

extracted in a single period of production measured in the simulated block model under the 

different scenarios. Another advantage of stochastic modeling is that, in addition to the expected 

value, the 10th and 90th percentiles can be used as a potential range of variation of the consumption 

value (Figure 4.2.9b). 

4.2.4 Sample Calculations DRS Framework 

The current methodology uses Discrete Rate Simulation (DRS), a relatively simple approach 

to dynamic mass balancing, including spikes in cyanide consumption. The resulting framework 

demonstrates how spikes in cyanide consumption can be mitigated by balancing the feed from 
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zones with supergene Cu-bearing sulfides soluble in cyanide solutions or other consumers of this 

reagent. As explained in earlier sections, the transition from oxide to sulfide ore assemblages can 

severely affect the cyanide leaching process. During this transition, cyanide consumption can 

increase significantly, leading to increased processing costs and operational problems. In this 

context, a suitable approach might be to implement ore blending practices in conjunction with 

alternate modes of operation to maximize plant throughput, stabilize reagent consumption, and 

achieve process stability.  

This study demonstrates the use of a DRS framework as an appropriate tool to reach the 

objectives of maximizing plant throughput, stabilizing reagent consumption, and achieving 

process stability. The framework is also a useful tool to evaluate and control consumption of 

certain reagents (e.g., sodium cyanide, flocculants, energy, lime), improve future production 

planning and cost projections, and reduce uncertainty in metallurgical parameters (Órdenes et al., 

2021).  

The framework is designed to manage the bottleneck created by the processing plant, which 

has a lower capacity than the mining rate. To address this, campaign cycles are set up in a regular 

schedule of 29 days of production followed by a one-day shutdown. During the shutdown phase, 

decisions are made on whether to change the operational configuration. If the level of Ore 2 

(Oxides) is low enough to present a potential stockout risk during the next campaign, a mode 

change is triggered from Configuration A to Configuration B. On the other hand, if Ore 2 levels 

are above a defined threshold following a production campaign in Mode B, the operational mode 

returns to Configuration A. Contingency configuration is applied for one day in case a stock 

shortage occurs during an operating campaign. A contingency mode implies that the plant only 

utilizes the available ore type (refer to Table 4.2.4 & Table 4.2.5). 

The characteristics of the operational configurations, described in Table 4.2.5, were used for 

the present set of computations. Configuration A is designed to maximize the mill capacity, using 

all the oxide available and feeding all the ore to the plant that is mined in the period. In this first 

stage, the stockpile management policies were designed to handle the sulphide ore that would be 

reached in the early mine development. The mine productivity shows an increment in the latter 

half of the mining schedule (Stage 2, period 27 onwards) due to a larger number of active 
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production workfaces and bench stopes prepared for extraction. For this stage the blending 

strategies (Table 4.2.6) increase the tonnage of the Configuration A and B (due to the higher ore 

production rate), with a different proportion of oxide-sulphide (60% - 40% for config. A), but in 

this case Configuration B is designed to consume a larger portion of sulphide and at the same time 

help to recover the level of the critical ore in a short time frame (55% sulphides – 45% oxide). 

Table 4.2.5: Stockpile Blending Strategy Stage 1. 

 Configuration A Configuration B 
 Regular Contingency Mine Surging Regular Contingency Mine Surging 

Throughput (kt /day) 2,000 1,300 - 1700 850 - 

(%) Sulphide Ore 20 100 20 45 0 45 

(%) Oxide Ore 80 0 80 55 100 55 

Table 4.2.6: Stockpile Blending Strategy Stage 2. 

 
Configuration A Configuration B 

 Regular Contingency Mine Surging Regular Contingency Mine Surging 

Throughput (kt /day) 2,750 1790 - 2,340 1170 - 

(%) Sulphide Ore 40 100 40 55 0 55 

(%) Oxide Ore 60 0 60 45 100 45 

Configuration A is a more productive operational state that exhibits roughly the same 

throughput of the processing plant before encountering the mineralogical change. Configuration B 

is considered more stable and allows for stockpile replenishment. Both operational modes consider 

blends of Ore 1 (sulfide ore) and Ore 2 (oxide ore) in different proportions. Since the plant is better 

adapted for oxide mineralogy, Mode A utilizes a larger proportion of Ore 2 compared to 

Configuration B. Configuration B is an operational policy designed to re-establish the levels of the 

critical ore (oxides show lower average cyanide consumption and are more stable using a direct 

leaching process). Furthermore, this configuration avoids large accumulations of this ore type, 

generating a non-processable ore stock and avoiding a potential loss. A simplified (deterministic) 

analysis of the optimal throughput of the simulated processing plant considers two operational 

policy parameters to characterize decision-making following the approach of Navarra et al. 

(Wilson et al., 2021), based on the following system variables: 

X = Target Ore Stockpile Level 

Y = Critical Ore 2 Stockpile Level 

The aspired ore stockpile level is determined by the sum of the accessible ore types, and the 

critical Ore 2 stockpile level is analogous to the oxide ore availability. 
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4.2.5 Discrete Rate Simulations Results 

To assess the potential impact of the new operational policies on cyanide consumption in 

response to the mineral transition, 100 scenarios were tested with different values for the two 

policy parameters, which are described in Tables 2 and 3. In the case of stage 1, the critical ore 

level (Y) ranging between 1,000 t and 2,000 t is considered; with target ore stockpile level (X) 

values of 4,000 t, 5000 t and 6,000 t. For stage 2, critical ore stockpile levels vary between 2,000 

t and 6,000 t, while the target ore considers three different levels for the stockpile of 8,000 t, 10,000 

t and 12,000 t. Each scenario was simulated for approximately 1,500 days of operation using 

reagent consumption scenarios generated by the SGS Figure 4.2.10 summarizes the results. 

 

 

 

(a)  (b) 

 

 

 

(c)  (d) 

 

Figure 4.2.10: Results simulations based on system variables (X = Target Ore Stockpile Level and Y = Critical Ore 

2 Stockpile Level) (a) Average daily throughput for first production stage. (b) Average daily throughput for second 

production stage. (c) Daily cyanide consumption average for first production stage. (b) Daily cyanide consumption 

average for second production stage. 
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The analysis of the mining system dynamics, based on stockpile strategies, shows that cyanide 

consumption is reached when no critical ore ha low availability in some cases reaching a maximum 

value of 2.38 kg/t. The result also show that is possible control the cyanide average consumption 

increasing the level of critical ore, in this case oxide (low cyanide consumer ore). The summary of 

the results is shown in tables 4.2.7 and 4.2.8. 

Table 4.2.8: Summary of discrete event simulation throughputs, cyanide consumption, stage 1 

Target Stockpile Level Critical Ore Stockpile Level 0% 10% 25% 50% 75% 90% 100% 

4,000 t 

Mean Average Throughput (t) 1,786 1,754 1,718 1,716 1,679 1,660 1,371 

Max Average CN Consumption (kg/t) 2.34 2.31 2.30 2.30 2.33 2.33 2.35 

Mean Average CN Consumption (kg/t) 2.23 2.22 2.19 2.19 2.22 2.22 2.24 

Min Average CN Consumption (kg/t) 2.09 2.09 2.03 2.03 2.07 2.08 2.10 

5,000 t 

Mean Average Throughput (t) 1,770 1,806 1,760 1,749 1,753 1,711 1,398 

Max Average CN Consumption (kg/t) 2.35 2.35 2.36 2.31 2.31 2.31 2.35 

Mean Average CN Consumption (kg/t) 2.23 2.22 2.24 2.20 2.20 2.22 2.24 

Min Average CN Consumption (kg/t) 2.09 2.08 2.09 2.04 2.05 2.08 2.10 

6,000 t 

Mean Average Throughput (t) 1,807 1,776 1,797 1,764 1,752 1,749 1,398 

Max Average CN Consumption (kg/t) 2.35 2.34 2.35 2.31 2.31 2.30 2.35 

Mean Average CN Consumption (kg/t) 2.23 2.22 2.23 2.21 2.21 2.20 2.24 

Min Average CN Consumption (kg/t) 2.09 2.09 2.09 2.04 2.05 2.05 2.10 

Table 4.2.9: Summary of discrete event simulation throughputs, cyanide consumption, stage 2 

Target Stockpile Level Critical Ore Stockpile Level 0% 10% 25% 50% 75% 90% 100% 

6,000 t 

Mean Average Throughput (t) 2,578 2,546 2,508 2,496 2,496 2,483 2,031 

Max Average CN Consumption (kg/t) 2.45 2.37 2.21 2.16 2.16 2.16 2.51 

Mean Average CN Consumption (kg/t) 2.32 2.26 2.13 2.07 2.07 2.07 2.37 

Min Average CN Consumption (kg/t) 2.16 2.17 1.93 1.94 1.94 1.94 2.25 

8,000 t 

Mean Average Throughput (t) 2,590 2,551 2,531 2,491 2,488 2,446 2,014 

Max Average CN Consumption (kg/t) 2.45 2.34 2.33 2.17 2.17 2.17 2.51 

Mean Average CN Consumption (kg/t) 2.35 2.25 2.21 2.09 2.09 2.10 2.40 

Min Average CN Consumption (kg/t) 2.21 2.19 2.11 1.97 1.96 1.97 2.26 

10,000 t 

Mean Average Throughput (t) 2,591 2,553 2,549 2,531 2,510 2,451 2,031 

Max Average CN Consumption (kg/t) 2.50 2.39 2.37 2.23 2.22 2.23 2.51 

Mean Average CN Consumption (kg/t) 2.36 2.28 2.26 2.12 2.13 2.14 2.40 

Min Average CN Consumption (kg/t) 2.25 2.15 2.13 1.97 1.96 2.04 2.27 
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The simulation results show that it is possible to stabilize cyanide consumption by applying 

the new operational policies. The system achieves optimal performance in the scenario with a 

throughput of 1,772 tonnes per day (tpd) and an average consumption of approximately 2.23 

kilograms per tonne (kg/t) for stage 1, and 2,525 tpd and 2.26 kg/t for stage 2 (Figure 4.2.11). 

Applying stockpile management policies is possible to find the variables values that maximize the 

throughput and minimize the reagent consumption. 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 4.2.11: Time distribution of operational modes in` response to geometallurgical units with CN consumption 

variability, for (a) Target ore stockpile level for stage 1 of 6,000 t and Critical Ore Stockpile Level threshold of 1,500 

t (25%), and (b) Stage 1 system variable configuration using a target value of 6,000 t and critical stockpile level of 

4,500 t (75%). (c) Target ore stockpile level for stage 2 of 10,000 t and Critical Ore Stockpile Level threshold of 2,500 

t (25%), and (ii) Stage 2 system variable configuration using a target value of 10,000 t and critical stockpile level of 

7,500 t (75%). 
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Figure 4.2.12 summarizes the average amount of time spent in Configuration A (highly 

productive) versus Configuration B (replenishing mode). An appropriately set target ore stockpile 

level can provide additional benefits, such as longer operational plant stability periods, supported 

by longer periods in mode A (with time in Configuration A greater than Configuration B, Figure 

4.2.9a for stage 1 and c for stage 2) compared to a lower Target Ore Stockpile Level (Figure 

4.2.10b for stage 1 and d for stage 2). In this context, minimizing this control variable is an 

operational decision that mine managers must make, considering the effects on key performance 

indicators (KPIs). For instance, having a low ore stockpile level available increases the likelihood 

of the system experiencing frequent ore shortages. 

     

(a) (b) 

           

(c) (d) 

 

Figure 4.2.12: Cyanide consumption simulation plots are based on modes of operation, relative ore proportions, and 

average consumption requirement for each ore type. (a) Stage 2 simulation trial using a X= 6,000 t and Y= 4,500 t 

(75%), showing the continual cyanide dose adjustment (small stairs shape, dashed ovals) as a function of the short 

time frames between each operational mode change due to a constant shortage of one operational stockpile generating 

system instability. (b) Stage 2 simulation trial using a X=10,000 t and Y= 2,500 t (25%), showing a static cyanide 
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dose for longer periods (indicating greater system stability) as a function of the increased time spent in Configuration 

A. 

A low target ore stockpile level forces the system to constantly change its operational 

configuration. This means that the cyanide dosage must be adjusted frequently over short periods 

(Figure 4.2.11a) to accommodate the changing ore type proportions. The system achieves greater 

stability by maximizing the time spent in Configuration A. This scenario allows for a stable 

cyanide dose over longer periods (Figure 4.2.11b), with the exception of events that require higher 

CN consumption due to a shortage of ore 2 (oxide ore). The lack of one of the operational 

stockpiles (ore 1 or 2) in combination with a low target stockpile level forces the system to enter 

contingency configuration more frequently, which has negative effects on throughput and 

uncontrolled cyanide consumption (Figure 4.2.12). 

The use of stockpiles to mitigate geological variability has economic implications. In Stage 1, 

the total stock level has a significant influence on reagent consumption costs. As shown in Figure 

4.2.13a, managing the total stockpile level can lead to lower reagent consumption, which in turn 

reduces overall process costs. Importantly, this reduction in stockpile levels in stage 1 does not 

severely impact on the performance of the plant, as shown in Table 6, and can help to decrease the 

operating stockpiles managing cost. For Stage 2, the total stockpile level has a lesser impact, while 

the critical ore stocks play a more significant role in cost reduction. By increasing the proportion 

of critical ore stocks to up to 50% of the total stockpile, substantial savings can be achieved, 

particularly in cyanide consumption. For instance, as depicted in Figure 4.2.13b, increasing the 

level of the critical ore can save approximately $KUSD 500 annually (assuming a cyanide price 

of $2.5 USD/kg of NaCN) from $MUSD 5.25 to $MUSD 4.75. This demonstrates the strategic 

importance of managing critical ore stockpiles to optimize costs and improve the overall efficiency 

of the plant. 
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(a) (b) 

 

Figure 4.2.13: Annual sodium cyanide cost plots based on modes of operation, average throughput, and average 

cyanide consumption. (a) Stage 1 (b) Stage 2. 

4.2.6 Conclusions and Future Work 

Using discrete-rate simulation (DRS) trials in combination with stochastic simulations can 

provide better insights into cyanide consumption dynamics within a mining system by optimizing 

the balance of incoming ore. The use of simulations provides a reliable input to model the 

geological uncertainty by testing possible values from the sample dataset while honoring its 

probability of occurrence (histogram distribution). The addition of a mine plan schedule following 

the requirements of a defined mining method enables a significant contribution to improve the 

optimization with more realistic data that responds to the spatial variability and geological 

uncertainty. This can be a useful tool for decision making, especially to calculate the minimum 

stockpile requirements for mineral process plant stability and giving more degrees of freedom to 

the mine operation stages.  

The target ore stockpile level (control variable X) is a significant parameter for mitigating the 

risk of ore shortages under geological uncertainty. It acts as a "buffer" against geological 

variability by providing a reserve of ore that can be used to maintain production when ore supplies 

are disrupted. Therefore, is important in the mine planning stages to consider the stockpile policies 

and include this parameter as an input of the planning process. Additionally, it is of use to take this 

further and consider a minimum stockpile volume which is calculated in the mine evaluation or 

planning stages. The Critical Ore Stockpile Level (control variable Y) is also relevant in avoiding 
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cascading delays in the event of an ore stockout and contributes to mineral process stability, also 

is vital to control the cyanide average consumption of the system. It is important to find the level 

that stabilizes the mining system, based in the simulations this number is at least 25% of the total 

stock, without this stockpile policy the system enters a constant instability that especially affects 

the consumption of cyanide. At the other extreme only having mineral of the critical type (in this 

case oxide) the system has few degrees of freedom that mainly affect the throughput. 

Blending and stockpiling are effective control measures that can be used to mitigate potential 

operational risks, maximize mill productivity, improve overall reagent consumption, and help the 

plant maintain a stable process. All combined, decreasing the likelihood of unexpected events 

generated by harmful impurities or other geological features. This tool can be used to model 

reagent consumption for a mining project under evaluation, but in this case using stochastic 

modelling technics, it will help to make decisions based on a probabilistic input instead of a 

deterministic one (conventional estimation methods). 

The future work is to feed the DES/DRS framework with the new modeled variables from the 

block model estimated (e.g., head Grades, metal recovery, hardness, filtration rates, etc.), 

experiment with other geostatistical technics such as direct block support simulation (DBSIM) and 

incorporate processing cost into the evaluation framework. Finally, evaluate this new information 

into the DES/DRS framework in order to obtain a simulated net present value (NPV) or cashflow. 
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Chapter 5 

 

DRS Framework applied to Mining Project Evaluation 

5.1 Discrete Rate Simulation for Geostatistically Informed Economical Evaluation of 

Narrow Vein Au-Ag Mining and Processing. 

Mine project development includes irreversible long-term decisions with high costs 

(Savolainen et al., 2021). Additionally, price fluctuations and restricted production plans are 

difficulties that mining companies must face in the development of a mining project. New mining 

projects face several challenging risk-related aspects related to uncertainty about mineral 

resources, which are not present in other engineering projects (Al-Bakri, et al., 2023). The success 

or failure of a mining prospect is often determined by how key variables are managed and 

optimized while levels of risk and uncertainty are minimized. The geological characteristics of the 

mineral deposit, such as its size, shape, grade, and depth, play a crucial role in determining the risk 

of a mining project due to the high percentage of uncertainty present. Hence, implementing 

intelligent decision-making tools (supported by investments in data acquisition and processing) 

can be critical to ensuring the competitiveness of mines and new projects. In this context, 

developing digital platforms that incorporate stochastic simulation techniques can help to evaluate 

potential business opportunities, in the project evaluation (e.g. between the Exploration and 

Prospecting stages, Figure 5.1. 1). 

Mine development includes irreversible long-term decisions with high costs (Savolainen et 

al., 2021). Additionally, price fluctuations and restricted production plans are difficulties that 

mining companies must face in the development of a mining project. New mining projects face 

several challenging risk-related aspects related to uncertainty about mineral resources, which are 

not present in other engineering projects (Al-Bakri, et al., 2023). The success or failure of a mining 

prospect is often determined by how key variables are managed and optimized while levels of risk 

and uncertainty are minimized. The geological characteristics of the mineral deposit, such as its 

size, shape, grade, and depth, play a crucial role in determining the risk of a mining project due to 

the high percentage of uncertainty present. Hence, implementing intelligent decision-making tools 

(supported by investments in data acquisition and processing) can be critical to ensuring the 
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competitiveness of mines and new projects. In this context, developing digital platforms that 

incorporate stochastic simulation techniques can help to evaluate potential business opportunities, 

in the project evaluation (e.g. between the Exploration and Prospecting stages, Figure 5.1.1). 

 

Figure 5.1.1: Mine life cycle and uncertainty related to levels of information. 

The aims of the present study are to model the effects of orebody geometry in the cash flow 

of a mining project developing within Au-Ag narrow veins hosted in different lithologies, to 

estimate ore tonnage production using ore blending strategies and stockpile management policies. 

This is outlined in a discrete rate simulation framework implemented within the software Rockwell 

ARENA ©, evaluating the influence of blending and processing policies in the Net Present Value 

variation. This research focuses on finding alternative options to deal with unexpected variations 

in plant throughput. 

5.1.1 Mining Economic Evaluation 

Mining project evaluation assesses the performance, outcomes, and overall effectiveness of 

a mineral resource. Evaluations occur at different stages throughout the project lifecycle, such as 

during planning, production, and after project completion. In the mining project evaluation, 

assessing the feasibility, profitability, and potential risks associated with a deposit under study is 

crucial to making informed decisions and ensuring economic viability. This process involves 

collaboration of different technical disciplines (geology, mining, geometallurgy, and metallurgy) 

to obtain the economical parameters of the global process as well as to establish the viability of a 

business plan. Also, it is possible to incorporate sensitivity analysis into the main variables that 
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affect the project outcome, such as metal prices, constrained outbound supply chains, and 

shortages of key consumables (Bassan & Knights, 2008). 

Mining project evaluation must consider quantifying and qualifying the mineral resource 

present in the mining project area and assessing the technical aspects, such as evaluating different 

mining methods based on the orebody characteristics, equipment requirements, and project 

infrastructure. Additionally, a comprehensive financial analysis must be completed to determine 

the economic viability of the project by estimating the capital costs, operating costs, and revenue 

projections. This financial analysis includes variables such as commodity prices, market demand, 

and potential risks. For a mining project evaluation, strong economic knowledge is an important 

complement to technical mining knowledge, in every step of the mining process (Runge, 2011). 

This stage demands a multidisciplinary approach, involving fields such as geology, mining 

engineering, economics, environmental engineering, law, and other relevant subjects. In summary, 

the evaluation process varies depending on the characteristics of the orebody, location, and other 

deposit-specific factors, and qualified professionals with expertise in mining project evaluation 

must be involved to ensure a thorough assessment. A feasibility study takes into account various 

aspects of the proposed mining project, including market analysis, technical feasibility, financial 

projections, operational requirements, legal and regulatory considerations, and environmental 

impact. Herein lies the importance of developing digital tools that can process a larger amount of 

data to facilitate and accelerate the process of evaluation of new projects, expansion of capacities, 

and re-evaluation of mineral bodies previously left out of the reserve inventory.  

The standard principles of economics used generally on a broad scale are also applied to the 

mining industry. Four standard metrics that are well understood by economists and commonly 

applied to mining project evaluation are: (1) Net Present Value (NPV), (2) Rate of Return on 

Investment (IRR), (3) Payback Period, and (4) Competitive Cost (De la Vergne, 2008). Net Present 

Value is the most widespread valuation method for resource stocks and, in theory, is best suited to 

non-producing resource companies, given the nature of the development timeline (Perrott-

Humphrey, 2011). The first step in analyzing a mining project is to determine the present value of 

the future cash flows it will generate and to compare this present value with the required investment 

[9] (Perrott-Humphrey,2011). NPV may be described as a rational attempt to put a dollar value on 

the mineral property (Brennan & Schwartz, 1985). An accurate definition is that NPV is the 
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difference between the present value of the positive and negative cash flows (also described as a 

measure of liquidity), discounted to the present time at a predetermined interest rate (De la Vergne, 

2008).For the case study presented in this section, the calculation of the net present value 

incorporated results from discrete rate simulations, which extends the original variables 

incorporated into the framework developed by Navarra (2019) and complemented by Órdenes et 

al. (2022) that integrates head grades. 

5.1.2 Case Study 

Epithermal deposits are shallowly formed vein, stockwork, disseminated, and replacement 

deposits that are mined primarily for their gold and silver content, and are typically known for 

their high gold grades amenable to mining by underground methods. Indeed, many bulk tonnage 

deposits with as little as 1 part per million (ppm) gold or less are presently being exploited by 

open-pit mining (John et al., 2018). Epithermal Au-Ag deposits are a very important source of 

noble metals, commonly developed in association within volcanic arcs at convergent plate 

margins, as well as in intra-arc, back-arc, and post-collisional rift settings. Many important 

deposits are tertiary and younger in age and are concentrated mainly around the Pacific Rim 

(Simmons et al., 2005). Epithermal veins are a product of hydrothermal systems, which involve 

hot water, or other hydrothermal fluids heated by geological internal heating processes. Veins had 

a strong structural control, so fluids rich in gold and silver move through fractures, faults, and other 

permeable pathways in the host rock, forming ore bodies at relatively shallow depths, typically 

within 1-2 km below the surface. When these structures have suitable chemical conditions, 

valuable minerals like gold and silver precipitate lead to the formation of epithermal veins. 

In general, epithermal deposits are associated with areas with volcanism related to active 

continental margins and island arches. Therefore, the rocks that commonly host this type of deposit 

are volcanic rocks of varied composition, as precious metal mineralization develops in zones of 

high paleo-permeability, hosted within sequences of coeval volcanic and underlying basement 

rocks (Órdenes, 2014). Also, other geological structures such as anticlines and synclines can create 

traps and conduits for hydrothermal fluids, concentrating mineralization in specific areas or zones. 

For example, the intersection of faults and folds may provide favorable sites for the formation of 

ore shoots. A fictional Au-Ag sub-vertical vein was modeled by SIS, and the gold and silver 

content was modelled using the traditional kriging estimation method. An Au-Ag leaching plant 
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will be fed with two different ore types (geometallurgical units classified based on host rock 

lithology) from the ore body, rhyolitic and andesitic hosted ore (Figure 5.1.2). 

 

Figure 5.1.2: Schematic Geological profile of gold and silver epithermal veins hosted in volcanic complexes (Órdenes, 2014). 

Based on tests of filtration and sedimentation rates (Table 5.1.1), a remarkable difference in 

behavior can be established between ore hosted in different types of volcanic rock. The source of 

clay minerals in epithermal vein systems is a combination of the alteration produced by 

hydrothermal fluids and their interaction with the host rock (Pirajno, 1992). The presence of 

hydrothermal clays will depend on the type of rock that hosts the Au-Ag-rich fluids. Warren et al. 

(2004) mentioned that in epithermal deposits, the replacement minerals form from conversion of 

precursor phases (from the host rock composition) and reflect the interaction of these precursor 

phases and hydrothermal fluids. 

Table 5.1.1: Solid-liquid separation tests summary results. 

Variable Statistics Andesitic Host Rock Rhyolitic Host Rock 

Filtration Rates 

[Ton/m2*h] 

N° Samples 299 1070 

Mean 1304 2320.4 

Standard Deviation 1432.7 1930.2 

Minimum 5 5 

Q1 189 675.6 

Q2 686.3 1852.9 

Q3 2098.4 3474.2 

Maximum 5558.7 7940.9 

Sedimentation 

Velocity [Ton/h] 

N° Samples 294 1029 

Mean 10.0 18.6 

Standard Deviation 7.4 12.3 

Minimum 0.2 0.2 

Q1 4.2 9.4 

Q2 7.7 16.8 

Q3 14.3 24.1 

Maximum 31.2 53.4 
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Excessive clay content can hinder the flow of materials in various processing equipment 

types, such as pipes, chutes, and conveyors, and the subsequent processing of ores with a high 

percentage of clay is a significant challenge for mineral processing engineers (Cheng & Peng, 

2018). Clay properties vary widely depending on mineral composition, particle size, and surface 

charge. These minerals have high water absorption properties, which can lead to excessive water 

consumption during mineral processing. Lower settling rates of clay minerals can be attributed to 

their fine particle size, anisotropic particle shape, and low density, resulting in very low terminal 

velocities of solids. In separation methods, the presence of clay minerals can reduce the separation 

efficiency of minerals due to their fine particle size and adhesive nature. The presence of even a 

small amount of clay minerals has the potential to exacerbate the reduction of the filtration rates 

significantly due to the unique properties of clay minerals, such as anisotropic shape, very fine 

particle size, and swelling characteristics (Basnayaka et al., 2018). Clay minerals, such as 

montmorillonite, kaolinite, and bentonite, have small particle sizes and high surface areas, which 

can lead to a reduction in permeability caused by deposition of colloidal particles in porous media 

(a.k.a. clogging in mineral filtration systems), reducing filtration efficiency and flow rates. Very 

fine particles inhibit the filtration rate as they reduce the porosity and permeability of the build-up 

filter cake, resulting in low filterability (Besra et al., 1999). Furthermore, tailing slurries of 

hydrometallurgical processes can potentially reduce the efficiency of the thickening process, 

attributing to the lower settling rates of clay particles (McFarlane, 2005). It has been reported that 

smectite-group clays are detrimental due to the swelling of clay particles since swelled smectite 

clays have meagre settling rates and increase the viscosity of thickener underflow, causing 

pumping difficulties (Mpofu, 2005). Dealing with the negative effects of clays in processing can 

lead to lower throughput and higher operating costs. This variability can lead to inconsistent 

filtration performance, making achieving reliable and predictable results challenging. These costs 

may arise from increased maintenance, downtime for cleaning, and the need for additional 

filtration media or equipment. 

5.1.3 Host Rock Vein Lithology Simulated by SIS 

Lithology data was utilized for the application of Sequential Indicator Simulation to model 

the rocks that host the vein and compute thirty equiprobable realizations. The outcomes of this 

modeling exercise were instrumental in drawing meaningful conclusions regarding the variability 
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of the geometallurgical behavior observed during the solid-liquid separation stage across various 

ore types within the plant. In the present case study, the lithology of two veins was stochastically 

modeled using SIS. The first ore body is predominantly hosted in rhyolitic rock, with 61% of 

samples confirming a rhyolitic composition. The second ore body is primarily hosted in andesitic 

rock, with 57 % of samples indicating an andesite rock. To perform Sequential Indicator 

Simulation, a series of realizations from a random function (that shares the spatial continuity 

features from the collected data) are generated. These realizations are constructed by transforming 

measurements of rock types into binary code representations. Subsequently, variograms are 

computed for each distinct category, facilitating a comprehensive understanding of the spatial 

correlation and variability present within the lithological formations, which allowed for 

determination of the kriging estimation parameters necessary for the estimation of the block mode 

for each modelled structure. This approach enhances the predictive capabilities of the modeling 

process and aids in optimizing operational strategies within the plant environment. The 

variography of the lithology for both veins is presented in Figure 5.1.3. 

  

(a) (b) 

  
(c) (d) 

Figure 5.1.3: Lithology Variograms (a) Major range direction Variogram Vein A. (b) Minor range direction Variogram Vein B. 

(c) Major range direction Variogram Vein B. (d) Minor range direction Variogram Vein B. 
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The host rock simulations were computed using the SGEMS software, where 30 realizations 

were generated based on the modelling parameters assessed in the variography calculation (Figure 

5.1.4) and sequential indicator simulation (SIS) algorithm. The estimation parameters for the SIS 

are summarized in Table 5.1.2. 

Table 5.1.2: Variograms parameters host rock lithologies for vein A and B 

 Vein A 

Major Minor  

Ranges [m] 192 60 

Azimuth/Dip [°] 0/5 180/85 

 Vein B 

Major Minor  

Ranges [m] 315 60 

Azimuth/Dip [°] 0/5 180/85 

  

(a) (b) 

 
 

(c) (d) 

Figure 5.1.4: Veins modeled by Sequential Indicator Simulation (a) Vein A - simulation 5 (b) E-type host rock vein A (c) Vein B 

- simulation 1 (d) E-type host rock vein B. 
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Geological data was used to create a detailed resource model of two Au-Ag veins, including 

3D geological and block model, in which the grades were estimated by ordinary kriging. 

Table 5.1.3: Statistic summary for Au and Ag grades for vein A and B 

Statistics Vein A Au (g/t) Ag (g/t) Au (g/t) caped (p95) Ag (g/t) caped (p95) 

N° Samples 129 129 122 122 

Mean 3.60 125.68 3.48 116.62 

Standard Deviation 3.19 126.64 2.83 99.13 

Minimum 2.48 87.04 2.48 87.04 

Q1 0.10 5.63 0.10 5.63 

Q2 1.55 49.66 1.55 49.66 

Q3 2.46 87.04 2.46 87.04 

Maximum 4.16 138.75 4.16 138.75 

Statistics Vein B Au (g/t) Ag (g/t) Au (g/t) caped (p95) Ag (g/t) caped (p95) 

N° Samples 123 123 117 117 

Mean 4.79 140.28 4.27 125.29 

Standard Deviation 2.52 116.20 2.92 106.05 

Minimum 0.18 1.41 0.21 1.41 

Q1 1.31 69.71 1.41 68.94 

Q2 2.52 116.20 2.92 116.20 

Q3 5.67 178.87 5.79 171.45 

Maximum 63.43 571.90 16.87 355.60 

The main parameters for the sub-level stoping mining method (described in Appendix A) 

were chosen at regular levels in intervals of 20 m. A density of 2.50 g/cm3 was used for the volume 

– tonnage conversion. A 4-year feeding plan was developed based on the mining sequence for ore 

production scheduling, during which the rhyolitic-andesitic ore type ratio varies depending on the 

vein zone being mined. The cut-off grade utilized was 2.80 g/t of Aueq for reserve inventory 

determination. Table 4 summarizes the financial parameters used to be inputted in the discrete rate 

simulation framework: 

Table 5.1.4: Net Present Value calculation input parameters. 

Parameter Value 

Discount Rate (%) 8 

Gold Price [US$/Oz] 1,150.0 

Silver Price [US$/Oz] 14.00 

Gold Refinery Cost [US$/Oz] 11.20 

Silver Refinery Cost [US$/Oz] 0.13 

Mine Cost [per ton] 63.32 

Plant Cost [per ton processed] 29.42 

General & Administrative Cost [per ton processed] 6.75 

Gold recovery (%) 94.5 

Silver recovery (%) 86.5 

Initial Investment [MUSD$] 100 
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Block models were constructed with a standardized parent block size of 5m × 5m × 5m. Each 

simulation aimed to model the geometry of the two distinct geological units, as illustrated in Figure 

5.1.4. These realizations depict various equiprobable distributions of lithology that serve as the 

host formations for the orebody under study. Simulations generate a range of lithological 

distributions, reflecting the inherent variability and uncertainty present in geological formations. 

These diverse realizations provide valuable insights into the potential spatial configurations of the 

host lithologies within the orebody, aiding in geological interpretation and resource estimation 

efforts. SIS supports a comprehensive characterization of geological units and underpins a robust 

modeling of orebody geometry, allowing informed decision-making in mining and exploration 

activities. The new contribution of the approach of the DRS framework will use stochastically 

generated models, as mine planning inputs will feed the discrete rate simulations developed in 

ARENA Rockwell © software. This paper presents a new approach to evaluating the influence of 

stockpile management policies to stabilize the performance of solid separation equipment such as 

bulk thickeners and tail filtration while maintaining mine production levels. This novel 

contribution tries to integrate conditional simulation techniques (Sequential indicator simulations) 

into long-term dynamic evaluation, and from the different scenarios, to be able to evaluate a 

different variable stochastically into the mining system. Based on the mining sequence, which was 

generated from ore production scheduling, the result was a 4-year feeding plan. During mining 

periods (Monthly), the rhyolitic-andesitic ore ratio varies depending on the mineral zone being 

mined (Figure 5.1.5). 

 

Figure 5.1.5: Deterministic ore profile based on host rock type simulated (ore types) with 48-months. 
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Additionally, the tonnage profile was constructed, but for this variable the projected future 

throughput is stochastic, based on the realizations computed under the SIS procedure. Therefore, 

the throughput takes the expected value (P50) of stopes extracted in a single production period 

measured in the simulated block model under the different scenarios. Stochastic modeling can 

provide a complete vision about the modelled parameter, as the 10th and 90th percentiles can be 

used as a potential range of variation of the ore type (Figure 5.1.6). 

 

(a) 

 

(b) 

Figure 5.1.6: Mine Production Risk profile showing 10th (Lower solid), 50th (dashed) and 90th (Upper solid) percentiles for Ore 

percentage. (a)Rhyolitic hosted ore. (b)Andesitic hosted ore. 

5.1.4 Application of the DRS Framework 

The current methodology features Discrete Rate Simulation (DRS), a simple approach to 

dynamic mass balancing to model throughput behavior and the performance of the plant. In this 

context, a suitable approach might be to implement ore blending practices in tandem with alternate 

modes of operation to maximize plant throughput.  This study highlights the implementation of a 

framework using discrete rate simulations as a digital tool to optimize the uncertainty related to 

significant mass fluctuations in ore feeds and additionally with the opportunity to directly visualize 

the effects in the cash flow. The framework is designed such that the processing plant acts as a 
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bottleneck with mining rates exceeding plant capacity. As such, monthly campaign cycles are 

configured in a regular schedule of 29 days of production followed by a one-day shutdown. The 

characteristics of the operational configuration that were used for the current set of calculations 

are described in Table 4. Configuration A is designed to maximize the mill capacity, using all the 

rhyolitic ore available (i.e. the ore with high filtration and sedimentation rate) and feeding all the 

ore produced in the period. In this first stage, the blending policies are designed to handle the 

andesitic ore that will be reached in the early mine development. Configuration B is designed to 

consume a larger portion of low filtration and sedimentation rate ore and at the same time help to 

recover the level of the critical ore in a short time frame (52% andesitic - 48% rhyolitic). 

Operational level decisions on when to change operational modes are made during the shutdown 

phase. If the level of rhyolitic ore (Ore 2) is low enough to present a potential stockout risk during 

the next campaign, a mode change is initiated from Configuration A to Configuration B. On the 

other hand, if rhyolitic ore levels are above a defined threshold following a campaign in 

Configuration B, the operational mode reverts to Configuration A. If stock shortage occurs during 

a campaign, contingency configurations are applied with a one-day duration. A contingency 

configuration involves that the plant can be fed with the only ore type available, depending on if 

the shortage is from rhyolitic or andesitic ore (Table 5.1.5).Configuration A has the highest 

productivity while Configuration B is considered stable and allows for stockpile replenishment 

and is particularly designed to allow the rhyolitic-hosted ore stockpile to recover to a higher level 

so that subsequently the plant can return to the most productive configuration. Both operational 

configurations consider blends of andesitic ore (Ore 1) and rhyolitic ore (Ore 2) in different 

proportions. Considering the filtration stage adapted to a high-rate filtration ore, Configuration A 

utilizes a larger proportion of Ore 2 compared to Configuration B. Configuration B is an 

operational policy designed to reestablish the levels of the critical rhyolitic ore, and this operation 

mode is designed to prevent large accumulation of this low filtration rate ore (Andesitic type) 

generating a stock of non-processable ore, decreasing the risk of a potential loss of throughput. 

Table 5.1.5: Stockpile Blending Strategy for the low-rate filtration ore. 

 Configuration A Configuration B 

  Regular Contingency Mine Surging Regular Contingency Mine Surging 

Throughput (kt /day) 2,600 1,300 2,600 2,210 1,105 2,210 

(%) Andesitic Hosted Ore 45 100 100 45 0 0 

(%) Rhyolitic Hosted Ore 55 0 0 55 100 100 
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A simplified (deterministic) analysis of the optimal throughput of the simulated processing 

plant considers two operational policy parameters to characterize decision-making following the 

approach of Navarra et al. [11], based on the following system variables: 

X = Target Ore Stockpile Level 

Y = Critical Ore 2 Stockpile Level 

The target ore stockpile level considers the sum of both ore types, and the critical Ore 2 

stockpile level corresponds the level of rhyolitic ore below which Mode B will be activated at the 

next shutdown. 

5.1.5 Results and Discussion 

The results of this integrated framework that includes net present value (NPV) demonstrate 

its potential to evaluate the economic implications and related risk factors, under different 

operational configurations and stockpile management policies. Table 5.1.6 summarizes the 

resulting statistics produced from the stochastic simulations performed in the DRS framework 

developed for the study case. All dollar quantities can be taken as US dollars. 

Table 5.1.6: Discrete Rate Simulations Results Summary. 

Target Stockpile Level (X) Critical Ore Stockpile Level (Y) 10% 25% 50% 75% 90% 

8,000 TOSL 

Mean Average Throughput (t) 2,363  2,359  2,347  2,344  2,337  

Mean Average Gold Head Grades (g/t) 2.14 2.17 2.19 2.16 2.17 

Mean Average Silver Head Grades (g/t) 59.85 60.66 61.24 60.45 60.72 

Percentile 90 NVP (MUSD$) 319.11 329.18 351.48 321.16 321.66 

Average NVP (MUSD$) 258.97 260.49 265.73 262.72 263.59 

Percentile 10 NVP (MUSD$) 258.97 260.49 265.73 262.72 263.59 

10,000 TOSL 

Mean Average Throughput (t) 2,386  2,382  2,370  2,361  2,359  

Mean Average Gold Head Grades (g/t) 2.18 2.18 2.23 2.21 2.21 

Mean Average Silver Head Grades (g/t) 60.68 61.25 62.27 61.83 61.98 

Percentile 90 NVP (MUSD$) 307.59 316.66 336.73 309.30 309.75 

Average NVP (MUSD$) 262.18 263.77 272.67 271.93 271.59 

Percentile 10 NVP (MUSD$) 215.50 216.51 218.74 214.43 214.48 

12,000 TOSL 

Mean Average Throughput (t) 2,387   2,388   2,377   2,363   2,357  

Mean Average Gold Head Grades (g/t) 2.20 2.21 2.25 2.24 2.24 

Mean Average Silver Head Grades (g/t) 61.66 61.89 62.98 62.95 62.77 

Percentile 90 NVP (MUSD$) 322.74 323.64 348.64 343.12 350.14 

Average NVP (MUSD$) 272.25 269.36 278.59 277.71 275.61 

Percentile 10 NVP (MUSD$) 222.34 222.44 221.53 220.92 221.70 
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The analysis of the dynamics of this study shows that based on the control variables, this 

mining system reaches the maximum throughput when the total target stockpile level is set to 

12,000 tonnes (Figure 5.1.7), and the critical high filtration rate ore (Ore 2) stockpile level is set 

to 25% with respect to the Target Level (Y=3,000 t). Conversely, the configuration that minimizes 

the available stock is Target Level set on 8,000 [t] and a Critical Ore Level of 90% with respect to 

X (Y = 7,200 [t]). 

 

Figure 5.1.7: Throughput average results under different Target Ore Stockpile Levels. 

Gold and silver head grade DRS simulation results show that the system maximize the grades 

in both metals when the total target inventory level is set to 12,000 tonnes (Figure 10), and the 

critical Ore 2 stockpile level is set to 50% with respect to the Target Stockpile Level (Y= 6,000 t). 

With this configuration, the mining system has an average head grade of 2.25 g/t (Figure 5.1.8a), 

Au and 62.98g/t Ag (Figure 5.1.8b). 

Figure 5.1.8: (a)Gold head grade average results under different Target Ore Stockpile Levels. (b) Silver head grade average 

results under different Target Ore Stockpile Levels. 
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Configuration A can suffer stockout because it consumes higher tonnages of Ore 2 faster 

than the replenishment rate. Likewise, a campaign in Configuration B is at risk of stockout because 

it consumes Ore 1 faster than the replenishment rate. If the actual replacement rates are lower than 

anticipated, resulting in shortages of either ore type, then the contingency modes are applied, as 

illustrated in Figure 11. The depletion in the inventory of one of the operational stockpiles (Ore 1 

or Ore 2) in combination with a low target stockpile can make contingency configurations more 

likely, which can result in reductions in throughput and other complex scenarios for mineral 

processing like uncontrolled reagent consumption (Quelopana et al. 2023).  

 

 

 

Figure 5.1.9 (a) Simulation trial using a X= 12,000 t and Y= 3,000 t (10%), %), showing longer periods (greater system stability) 

as a function of the longer time spent in Configuration A (b) Simulation trial using a X= 8,000 t and Y= 7,200 t (90%), showing 

shorter periods (lower system stability) as a function of the switching Configuration A and B, and more frequent activation of the 

Configuration B Contingency 

Establishing an appropriate target ore stockpile level and critical ore reserve level can extend 

plant operational stability periods, providing complementary benefits to the mining system 

performance. A higher frequency of consecutive production campaigns in which the plant is 

configured in configuration A (total production time in configuration A > configuration B) can be 

achieved if a high total ore reserve is obtained with a low stock of critical ore. This combination 

of control variables gives the system more degrees of freedom, allowing for a longer total time in 

(a) (b) 

Ore 1 Stockpile Level Ore 2 Stockpile Level Total Ore Stockpile Level 

(X) 

Total Ore Stockpile Leve(Y) 

Configuration A Regular 

Configuration B Regular 

Configuration A Contingency 

Configuration B Contingency 
Shutdown 

Configuration A Mine Surging 

Configuration B Mine Surging 
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configuration A. In contrast, setting a low target ore stockpile level in combination with a high 

critical ore level (90% of the total), the degrees of freedom of the system are reduced, reducing 

plant performance. With this setting of control variables, the system is extremely constrained and 

obligated to constantly change its operational configuration (Órdenes, 2022), which can lead to a 

lower average plant throughput (Table 5.1.6). 

The maximum net present value (NPV) occurs when the system parameters are set with the 

Target Stockpile Level to 12,000 t and a Critical Inventory Level of 10% with respect to the target 

inventory level (Y = 6,000 t). With this configuration, the system reaches a maximum NPV of 

MUSD$278.59(Figure 12). In contrast, the configuration that obtains the lowest NPV of 

MUSD$258.97 is with a target inventory of 8,000 t and a critical inventory level of 90% with 

respect to the target inventory level (Y = 7,200 t). Results show that the NPV reaches the maximum 

value with a X= 12,000 t, for every Critical Ore Level (Y) value. 

 

Figure 5.1. 10:(a) Net Present Value (NPV) average with different Target Ore Stockpile Levels in in $MUSD. (b) Internal Rate 

of Return (IRR) average under different Target Ore Stockpile Levels. 

In this particular case, the critical ore stockpile level (X) impacts the average grade of ore 

processed in the plant. When the critical stockpile level is high represents the 50% of the total 

stockpile the system reaches the maximum ore grade. In the other hand, when the X level is low, 

the average grades of gold and silver are affected, typically resulting in a detrimental impact on 

the NPV. This is particularly pronounced when the critical ore level constitutes 25% or less of the 

total stockpile. 
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5.1.6 Case study Conclusions 

The DES/DRS framework was developed to represent underground mining operations at an 

Au-Ag mine and evaluate the financial impact of the change of the ore metallurgical behavior in 

the solid - liquid stage. With this update, a new capability was added to the DRS framework 

developed by Navarra et al. (2019), directly connecting the factors that influence the NPV 

computations that can be used for resource evaluation and mine planning process. This new 

approach is especially practical for evaluating a new ore type and assessing the potential of 

incorporating new sectors into the mining plan. Additionally, this framework can assist in 

evaluating the integration of a new process in the plant and comparing its performance with the 

current process. 

A series of simulations were run to observe the effects of the selected control variable levels 

on throughput and potential stockout risk, in response to geological uncertainty generated by the 

ore types. Within these computations the system control variable Target Ore Stockpile Level (X) 

is crucial in maximizing the NPV, performance of a mining project, and metal production. This 

variable indeed must be considered in long and mid-range mine planning due to the potential 

impact for mining system performance. However, the Target Stockpile Level (X) needs to be 

carefully estimated because the beneficial effects of increasing the target level are limited. In the 

A high target level can constrain the system, reducing its degrees of freedom and potentially 

generating a negative effect on throughput.  

On the other hand, the variable of the Critical Ore 2 Stockpile Level (Y) system turns out to 

be relevant to maximize NPV and IRR. By controlling this level, it is possible to reach the 

maximum head grades; however, their increase can have negative effects on throughput. This 

means that the best option is to find a balance between performance and head laws to determine 

the optimal system configuration. If this level is too high, it will adversely affect both throughput 

and grades and consequently NVP. On the other hand, If the level is low, the plant can increase its 

throughput, but this implies meeting the higher throughput demand lower grade ore needs to be 

fed, rising the processing costs, reducing the revenue thereby affecting the NPV negatively. 

Assessing stockpile levels by decision makers can be crucial to improving the performance 

of the processing plant, avoiding unexpected changes in ore behavior in the process. With an 
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accurate setup of these parameters, anomalous events in the process can be mitigated, such as 

unexpected changes in the filtration rates, and sudden increases in process impurities. The future 

work is related to adapting this framework to different mining systems, for example, to evaluate 

new technologies incorporated into a mining system such as an ore sorter or new cycles into the 

plants. With this new framework, it will be possible to conduct a comprehensive economic 

analysis, allowing for a trade-off evaluation between the current process performance and the 

proposed new capacity. This analysis will provide valuable insights into the overall economic 

benefits and potential costs associated with implementing changes to the mining operation. 
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Chapter 6 

 

Discussion and Final Conclusions 

 

 

6.1 DRS Frameworks applied to Underground Mining Systems 

Geological variability affects mine operation and mineral processing efficiency, making its 

understanding essential to mining. When an engineering team begins evaluating the potential of a 

mining asset, ore characterization is the first and  fundamental step in mining project evaluation. 

Variability manifests through a diversity of potential sources, including orebody geometry, 

mineralogical composition, lithology, rock texture, and geochemistry. Variability is particularly 

significant to when decisions regarding geological exploration, mining method selection, and 

mineral processing design. Also, directly influences the estimation the quality, quantity, and 

distribution of the available resources. A comprehensive understanding of these variables is vital, 

as it enables better management of technical issues and identification of new opportunities in 

developing mining projects. 

The integration of different techniques, such as geological mapping, deposit sampling, three-

dimensional geological modeling, and numerical simulation, allows geologists and engineers to 

understand the complexity of ore deposits. This understanding enables mine planning teams to 

develop strategies for sustainable and profitable mining and mineral processing activities, allowing 

for informed decisions at all stages of the mining cycle. By enhancing the understanding of an 

orebody's main characteristics, mining companies can improve their processes to maximize 

resource profitability, minimize environmental impacts, and ensure long-term operational 

viability. Developing tools to improve knowledge of geological variability is essential not only for 

resource geologists but also for all stakeholders in the mining value chain. The integration of 

quantitative methods into a DRS/DES framework makes it feasible to evaluate issues arising from 

variations in future ore body characteristics, thereby maximizing plant performance. 
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In the initial part of this research, Navarra’s (2019) quantitative framework was expanded by 

introducing additional variables into the evaluation framework. This development enabled two 

significant contributions: (1) the integration of new data, such as geological inputs (head grades, 

lithology) and geometallurgical (mineral process reagents) into the DES/DRS framework (2) the 

visualization of the dynamics of the system of the incorporated variables. The first case study was 

conducted in a real operational context, specifically the Alhue Au-Ag (Pb-Zn) deposit in Chile. 

This study underscored the critical role of feed-blending in mitigating an unexpected increase in 

cyanide consumption. In this particular case, it was crucial when an increased weight fraction 

containing a high proportion of cyanicidal sulphides could imbalance the cyanide dosing. A 

proactive tactic for preventing spikes in cyanide consumption was proposed, based on 

geometallurgical input data, to maintain a well-defined feed strategy. Additionally, operating 

modes were controlled by varied blending based on operational stockpiles and clear policies for 

alternating between these configurations. Specific operational modes were also included in case a 

particular ore stockpile was not being replenished as anticipated (due to lower yields from the 

orebody), thus preventing the stockpile level from dropping below a critical threshold. This 

triggered a temporary shift to another operating mode designed to allow for stockpile 

replenishment while avoiding additional process complications, such as spikes in cyanide 

consumption. Such measures were demonstrated to lead to fewer unexpected high cyanide 

consumption events, thereby reducing the likelihood of these occurrences, promoting a stable feed 

with minimal stockout events, reducing fluctuations in reagent consumption, and enhancing 

operational stability at the beneficiation plant. 

The second stage of this research focused on integrating the quantitative framework with 

block models developed using stochastic simulation methods. As detailed in Chapters 2 and 3, this 

approach, derived from the Monte Carlo method, enabled the generation of multiple equiprobable 

realizations of geometallurgical variables, notably cyanide consumption and other 

geometallurgical variables that can have a detrimental effect in the mineral process, as 

demonstrated in this thesis. This integration allowed the DES/DRS framework to be directly 

informed by simulated block models, representing an expansion of Navarra’s (2019) framework 

by incorporating data from three-dimensional geological models. 
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The current work also incorporated financial variables, specifically net present value (NPV) 

and internal rate of return (IRR), into the framework presented in this thesis. This new integration 

allows for the early visualization of how different geometallurgical variables influence key 

financial performance indicators. By utilizing this digital development, it becomes possible to 

iterate and identify the areas where the greatest risks affecting the mining business lie. As a result, 

the tool enables a more informed allocation of resources, allowing for targeted and efficient 

characterization of the deposit, thereby optimizing decision-making and mitigating risks in mining 

projects. In this same context, having a virtual model of the process that incorporates financial 

indices provides a powerful tool for iterating in response to fluctuations in uncontrolled variables, 

such as metal prices, which could jeopardize a project's profitability. With this framework, 

potential adjustments to the project—such as re-evaluating production plans or modifying 

processes in response to new metal price projections—can be quickly and effectively evaluated. 

The integration of financial indices into the DRS framework not only enhances adaptability to 

volatile market conditions but also ensures that projects under evaluation can be optimized 

efficiently. 

Additionally, this study demonstrated the utility of DRS/DES simulations, informed by 

different data sources, in optimizing the balance of incoming ores with varying metallurgical 

behaviors. This approach not only improves the efficiency of mineral processing but also 

contributes to more informed and strategic decision-making in mining operations, effectively 

addressing operational concerns. The ability to visualize a variable dynamic directly from the 

block model offers a significant comparative advantage, enhancing the understanding of the 

variable behavior under a specific (or deterministic) mining plan. This facilitates management 

through simulations to explore better alternatives and make informed decisions regarding 

geometallurgical or other variables. 

Moreover, it enables feedback on stockpile management policies and ore blending strategies, 

which is crucial to maintaining overall system performance or ensuring that any necessary 

adjustments are based on solid technical foundations. This enhanced quantitative framework can 

now incorporate data from different sources, for instance early-stage sampling campaigns and use 

this information for pre-feasibility studies, and also incorporate more detailed geological 

information from block models developed through different stochastic simulation methods, such 
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as sequential Gaussian simulations (SGS), sequential indicator simulations (SIS), the turning 

bands method (TBM), or block support simulation (DBSIM). Such simulations enable the 

evaluation of different scenarios, significantly reducing the risks associated with processing ore at 

the beneficiation plant. Utilizing these detailed analyses allows for the development of effective 

control strategies along the mine-plant profile, thus optimizing the performance of the mineral 

processing stage. Incorporating additional variables, such as energy consumption, that 

significantly impact economic profitability enhances the utility of simulation techniques. These 

simulations enable the exploration of various system scenarios, aiding in the visualization of risks 

that encompass multidisciplinary aspects, which is crucial for evaluating the sustainability of 

mining projects. Understanding system dynamics can help improve the handling of harmful 

contaminants, optimize mineral process reagents (e.g., cyanide consumption as studied in this 

sequence of works), improve process water management, and decrease carbon footprint (i.e., 

optimize energy consumption). 

The integration of predictive models from geometallurgical sampling can significantly 

enhance decision-making and planning processes in mining operations. To generate these 

predictive models, systematic sampling campaigns and detailed laboratory analyses are essential. 

However, these processes are often time-consuming and costly, requiring substantial resources to 

achieve a degree of predictive accuracy that allows for informed decision-making. In many cases, 

these models are generated deterministically, which can introduce potential risks, especially when 

decisions are made, and the project is already underway. Such risks may arise from unforeseen 

variability or inaccuracies in the models. With the development of this digital tool, it becomes 

possible to model different scenarios, offering a more flexible and risk-aware approach. 

By utilizing an extensible simulation framework prior to the approval of metallurgical 

studies, this tool raises a better interaction with management, which can lead to the approval of 

additional resources for new studies. Moreover, this approach allows for continuous improvement 

of the simulation framework, as it can incorporate new models and sub-models over time. As a 

result, decision-makers benefit from more detailed and accurate simulations, reducing risk and 

improving the overall planning and execution of mining projects. In context, here lies the value of 

this contribution, with the possibility of compute different and more complex scenarios while the 
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amount of information grows during the drilling campaigns and geological sampling, a making 

decision related of the following campaigns, exploration or mine expansions. 

A promising direction for future research linked to these developments is the utilization of 

simulation results as inputs for automated control and dosing systems for reagents (e.g., cyanide, 

sulfuric acid, lime). A refined understanding of the dynamics of various key system indicators 

makes it possible to identify potential risks affecting these critical variables, both at the strategic 

level (for long-term planning) and at the tactical level (for short-term planning). Furthermore, the 

scope of simulations can be expanded to include estimates of a plant’s projected operating costs.  

Future work involves incorporating additional variables, modeled from block model 

estimates, such as metal recovery, hardness, and seepage rates, into the current framework. Many 

of these geometallurgical variables are more complex to model, and traditional geostatistical 

methods like kriging may not be sufficient to capture their intricacies. Kriging, being a linear 

estimator, has limitations when it comes to modeling nonlinear interactions and multifractal 

behaviors that are often observed in natural geological phenomena. To enhance the capabilities of 

the framework presented in this thesis, it will be necessary to explore alternative geostatistical 

modeling methods, such as higher-order statistics. Unlike traditional kriging, higher-order 

geostatistics incorporates higher-order moments (such as skewness and kurtosis) and considers 

complex, nonlinear spatial relationships between variables. These methods can capture intricate 

spatial patterns and interactions that kriging might miss, providing a more accurate representation 

of geological and geometallurgical variability. 

This holistic approach not only ensures economic efficiency but also enhances environmental 

sustainability and operational stability. This model can be improved by incorporating 

methodologies that account for mining operation uncertainties such as equipment performance 

failures and equipment scheduling (including drilling, loading and hauling, underground rock 

support, etc.). For instance, the output from a stochastic mine plan can be integrated into a discrete 

event/rate simulation framework to evaluate its performance under various operational scenarios. 

This integration can help identify potential bottlenecks or inefficiencies within the mine plan. 

Although stochastic mine planning and discrete event simulations focus on different aspects—the 

former on broader strategic planning and the latter on detailed operational processes—they work 
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synergistically to provide a comprehensive approach to managing mine operations under 

uncertainty. This whole picture point of view approach not only improves operational efficiency 

but also enhances decision-making, ensuring more resilient and adaptive mining operations.  

The integration of artificial intelligence (AI) and automation in mining operations is of 

increasing interest within the mining industry and represents a new field of research. The 

integration of the framework developed for the mining context with artificial intelligence (AI) 

opens up a wide range of possibilities for enhancing efficiency in planning, operations, 

occupational safety, and environmental sustainability. By leveraging artificial intelligence 

analytical and predictive capabilities, this relationship can lead to smarter, resilient, and 

environmentally responsible mining operations. AI is particularly useful in mining, allows utilizing 

extensive amounts of data from diverse sources such as sensor readings, engineering reports, and 

maintenance logs to improve operational efficiency and decision-making. For instance, Wilson et 

al. (2022) implemented an artificial neural network within a DES framework to assess system 

performance across a conceptual regionalized mine-to-mill profile, specifically targeting marginal 

underground gold mining operations. Similarly, Peña-Graf et al. (2022) developed a framework 

that combines discrete event simulation with a customized machine learning (ML) model for ore 

type classification, which subsequently informed the design of stockpile management policies and 

discrete event simulations. While the potential for AI and automation in mining is substantial, the 

actual implementation of these technologies is still in development. Many mining companies are 

currently in the experimental phase of adopting AI applications. The successful integration of AI 

in mining will require significant investments in data management, computer capability, training, 

and potential changes to mining processes. 

6.2 Final Conclusions 

Ore is a multi-component, inherently complex and exhibits great variability due to their 

geological characteristics. Changes in mineralogy during mineral processing can have significant 

effects on the efficiency and results of the plant. For instance, rock texture and the presence of 

some mineral phases affect flotation circuits, clays are complex in the dewatering because their 

water-holding properties that decrease the efficiency of the solid-separation process; impurities 

can lead to higher reagent consumption affecting the leaching stage. Understanding these changes 
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and their impacts is crucial to optimizing mineral processing operations, reducing costs and 

potential environmental impacts. It is highly likely that in an operating mine there will be 

significant variations in the ore characteristics during its mine life. This information is critical to 

designing more effective and efficient processing methods, which can be tailored to the specific 

requirements of each type of ore. These insights also enable the development of predictive models 

that anticipate how minerals will behave in various processing scenarios, thereby reducing the 

risks associated with variability and improving overall operational efficiency in mining projects. 

Herein lies the main objective achieved in this thesis, it is the development of quantitative tools 

that allow informed decisions to be made to deal with the complexities related to significative 

changes in the characteristics of the minerals that will enter the processing plant. 

The quantitative discrete events/rates framework developed in this research was linked with 

block models using geostatistical techniques such as stochastic simulation (Sequential Gaussian 

and Sequential Indicator Simulations). This integration enables a dynamic system evaluation 

informed by three-dimensional data, honoring the spatial distribution and geological 

characteristics of the ore body. This framework also allows for more flexible use of different types 

of data, which are often underutilized due to a lack of adequate processing tools. Additionally, it 

can be used to evaluate critical variables for mining operations and mineral processing. The 

framework facilitates the processing of geological data and enables the use of the results for 

operational decision-making, with the potential to extend to higher decision-making levels. 

This platform has the potential to merge different methodologies, relate results to various 

stages of the process, identify bottlenecks in the production chain, and visualize future risks due 

to significant changes in the geological characteristics and mineral processing variables of the ore 

body. The integration of technologies that efficiently, quickly, and reliably process a mining 

operation’s data can significantly impact business outcomes, process optimization, and contribute 

to reducing the environmental impacts of mining activities. 

The DES/DRS framework can serve as a valuable tool for guiding exploration, continuous 

improvement, and reengineering projects. Its results can facilitate informed decision-making for 

drilling campaigns, the purchase of new equipment or the resizing of existing equipment, and/or 

significant modifications in the mineral process. As mentioned, the global transition to clean 
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energy sources and the projected costs of the necessary materials have initiated a race to obtain the 

various primary materials needed to achieve the ambitious goal of carbon neutrality. Therefore, 

the diversity of materials (different elements, types of deposits) and the prospect of a growing 

number of new projects—whether in exploration, operation, or re-evaluation of old mines—give 

this framework significant potential to expand in multiple directions. This scenario necessitates 

flexible tools that enable faster decision-making to greenlight projects. In this context, quantitative 

tools like the one presented in this thesis can be instrumental in helping mining companies 

streamline and enhance their analysis and evaluation of mining projects. 
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Appendix A 

 

 

A.1 Cut and Fill 

Cut-and-fill is an open-stope mining method that is considered ideal for steeply dipping and 

irregular high-grade deposits found in weak host rock (which is an advantage for dilution control 

and mining flexibility). The idea is excavating small stopes of high-grade ore and then backfilling 

with cemented tailings to artificially support the rock and nearby mine openings. Concrete forms 

are built at the entrance to each room, followed by filling the recently excavated stope with 

cemented mill tailings slurry, which is pumped into the mine (Brackebusch, 1992). Cut-and-fill 

mining is extremely flexible, and several combinations of mining methods and fill materials can 

be used to cope with specific mining situations (Stephan, 2011). 

 

 

Figure A.1.1: Schematic profile of the Cut and Fill mining method. 

 

This method presents high ore recovery and is the most selective and flexible underground 

mining method available. Most of the work requires excavating stopes and backfilling them, while 
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a small labors portion is utilized by developing and connecting passageways and tunnels. Is 

suitable for orebodies with irregular geometry and scattered mineralization, where high grade 

sections can be mined separately, and low-grade rock left in the stopes (Copco, 2007), therefore, 

it is easy to bypass a section of low-grade ore and target the areas with higher revenue potential 

(high grades). If prices rise in the future, the operators can always return to unmined blocks to 

recover what was left behind. Cut-and-fill is preferred in specific scenarios, particularly where the 

ore value is high, and the primary objective is to achieve a high ore recovery rate with minimal 

dilution. (Stephan, 2011). In cut and fill mining, the operation is highly mechanized, labor-

intensive and some tasks are conducted on top of freshly blasted rock. The operating cost is quite 

high due in large part to the backfill, low productivity and development rate (Darling, 2011). 

Additionally, ventilation systems and massive ground control measures are required increasing the 

potential operation cost, therefore, cut-and-fill mining can be unsuitable for low-grade orebodies 

(Hamrin, 1980). 

For the current work, a bench and fill mining method (which is an adaptation of cut and fill) 

was computed for the mineral extraction to obtain the mining extraction sequence. The spatial 

characteristics (e.g., size, shape, orientation) and the degree of boundary uniformity of the orebody 

are the initial aspects to consider when opting for a cut-and-fill method (Stephan, 2011). The right 

mining method selection imply ensure the revenue surpass the costs of extraction and the recovery 

process of a saleable metal and narrow-vein type deposits are particularly challenging to mine 

profitably (Drake et. Al, 2020). For narrow high-grade veins, cut and fill and its adaptations (e.g., 

bench-and-fill, long hole-stopping, and drift-and-fill) are the most common methods selected for 

this orebody geometry. The main economic downside is the cost of backfill production and 

placement (Darling, 2013). The main parameters for the mining method and ore development 

(production tunnels of 4m x 4m workface area) at regular levels in intervals of 20 m (Figure A.1.2). 
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Figure A.1.2: Schematic profile of the bench-and-fill mining method. 

A.2 Sub-level Stoping 

Sub-level stoping is an underground mining method used to extract ore from a steeply 

dipping or vertical ore body. It involves the extraction of ore in a series of horizontal slices (a.k.a. 

sublevels) within the deposit. The method is widely used for mining narrow, high-grade ore bodies, 

particularly those with a significant dip and is commonly used to extract gold and silver. Once the 

development is completed, sublevels are established at regular vertical intervals within the ore 

body. These sublevels are typically accessed by ramps or raise boreholes. The distance between 

sublevels depends on the height of the ore zone and the desired size of the mining blocks (stopes). 

Ore is extracted using a cycle of drilling and blasting, followed by mucking of the ore by a loader 

and transported the crushed ore to either an ore-pass or a truck to carry the ore further to a crusher, 

before it is sent up to the surface via the shaft. A typical longitudinal and cross-sectional view of 

the sublevel stoping method is shown in Figure A-1. This mining method offers several 

advantages, including high ore recovery rates, the ability to mine high-grade ore bodies 

economically, and the flexibility to adapt to variable orebody geometries. Overall, sublevel stoping 

is a widely used underground mining method that allows for efficient and selective extraction of 

ore from steeply dipping or vertical deposits. However, it also presents challenges such as the need 

for proper ventilation, ground control measures, and efficient material handling systems. 
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Conveyors and ore passes can be used in conjunction with a truck-loader configuration to ensure 

a streamlined material handling system. If the rock mass is jointed or weak, the stopes are 

backfilled once all of the material is extracted to promote stability throughout the mine. Backfill 

also allows for tailings of the processed ore to be used as a component of paste backfill, allowing 

it to be disposed of underground instead of a tailings pond that could fail and contaminate nearby 

water sources. Otherwise, sublevel stoping, in the absence of consolidated backfill, employs pillars 

to separate the individual stopes to reduce the potential for wall slough (Pakalnis & Hughes, 2011). 

An extraction pattern based on sublevel stoping mining method was utilized to obtain an extraction 

sequence. 

 

Figure A.2.1: Schematic profile of the sublevel stoping mining method. 

 

 


