
Characterization of epigenetic changes and their 

connection to gene expression abnormalities in clear cell 

renal cell carcinoma  

 

 

 

 

 

 

 

Pubudu Manoj Nawarathna Nawarathna Mudiyanselage 

 

Department of Human Genetics 

McGill University 

Montreal, Quebec 

July 2019 

 

 

 

A thesis submitted to McGill University in partial fulfillment of the requirements of the 

degree of Master of Science 

 

© Pubudu Nawarathna, 2019



II 

 

DEDICATION 

This thesis is dedicated to my parents, sister and brother for their unfailing support 

throughout my life. 

Thank you so much!!! 

  



III 

 

ABSTRACT 

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer subtype 

comprising 70-75% of all adult kidney malignancies. Although the genetic mechanisms of 

ccRCC have been widely studied, the mechanisms underlying its epigenetic modifications are 

not yet well understood, despite the evidence on genome-wide epigenome abnormalities in 

ccRCC. Therefore, we identified and investigated the ccRCC-associated epigenetic 

alterations on cis-regulatory elements, including distal enhancers and proximal regulatory 

elements that are close to transcription start sites (TSSs), and their contribution to gene 

expression changes in ccRCC. 

Using a machine-learning approach to combine ChIP-seq and whole genome bisulphite 

sequencing data of tumors and adjacent normal kidney tissues of ccRCC patients, we 

identified thousands of gained and lost cis-regulatory elements. Amongst them, ~71% are 

novel elements that had not been reported in ccRCC. Using a second machine-learning 

classifier, we showed that the dysregulated cis-regulatory elements are predictive of the genes 

with abnormal expression patterns in ccRCC (minimum area under ROC curve: 0.88, P-value 

< 2.59 x 10-73). As such, gained and lost enhancers are significantly associated with up-

regulated and down-regulated genes in ccRCC, respectively. 

Our analysis of the binding sites of 161 regulatory factors, including transcription 

factors and specific epigenome modifiers, revealed several regulatory factors whose binding 

sites were enriched in gained or lost enhancers. The target genes of these regulatory factors 

were enriched among up or down regulated genes in ccRCC consistent with the status of the 

associated enhancers (gained or lost). Among the top-ranked activated regulatory factors 

identified in our analysis, FOXM1, SPI1, IKZF1, JUNB, JUN, FOS, BCL11A and STAT3 

are significantly enriched in gained enhancers, while EZH2, FOXA1, FOXA2, GATA3, 

ESR1 are significantly associated with lost enhancers (FDR < 0.05). The target genes of these 

activated regulatory factors are involved in biological pathways that are central to the biology 

and function of ccRCC cells. For example, HIF1α and HIF2α transcription factor network, 

VEGF and VEGFR signaling network and immune system-related pathways are enriched in 

up regulated target genes in ccRCC, associated with gained enhancers (FDR < 0.01). 

Finally, we sought to examine potential involvement of von Hippel-Lindau (VHL), the 

most frequently mutated gene in ccRCC, in these epigenome alterations, given the recent 

reports on VHL function as a regulator of the epigenome. Our analysis of VHL-deficient 
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ccRCC cell lines and their wild-type VHL- reconstituted counterparts revealed that ~10% of 

gene expression changes in ccRCC can be recovered by VHL-driven epigenome alterations 

on enhancers. We uncovered several regulatory factors that could be regulated by VHL-

mediated DNA methylation and that are associated with dysregulated enhancers, including 

BATF, BCL11A, IKZF1, JUN, SPI1, STAT3 and EZH2. 

In conclusion, our study proposes a new method to identify active (gained) and inactive 

(lost) cis-regulatory elements by combining histone modifications and DNA methylation data 

through machine-learning. In addition, our results provide new insights into the functional 

consequences of dysregulation of cis-regulatory elements on gene expression patterns in 

ccRCC. These findings will improve our understanding of the epigenetic mechanisms 

underlying transcriptome aberrations in ccRCC, which may eventually lead to the 

development of new preventive or therapeutic interventions.  
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RÉSUMÉ 

Le carcinome à cellules claires du rein (ccRCC) est le sous-type de cancer du rein le 

plus répandu, représentant 70 à 75% de toutes les tumeurs malignes du rein chez l'adulte. 

Bien que les mécanismes génétiques du ccRCC aient été étudiés considérablement et qu’on 

puisse observer des anomalies de l'épigénome à l'échelle du génome dans le ccRCC, les 

mécanismes responsables de ses modifications épigénétiques n’ont pas encore été établis. Par 

conséquent, nous avons identifié et étudié les altérations épigénétiques associées au ccRCC 

situées sur les éléments cis-régulateurs, y compris les amplificateurs (enhancers) distaux et 

les éléments régulateurs proximaux proches des sites d'initiation de la transcription 

(transcription start site, TSS), et leur contribution aux changements d'expression génique dans 

le ccRCC. 

En utilisant une approche d’apprentissage automatique pour combiner les données de 

ChIP-seq et de séquençage bisulfite de l'ADN génomique provenant de tumeurs et de tissus 

rénaux normaux adjacents de patients atteints du ccRCC, nous avons identifié des milliers 

d’éléments cis-régulateurs acquis et perdus. Parmi ceux-ci, environ 71% sont des éléments 

nouveaux qui n’avaient pas été signalés dans le ccRCC auparavant. En utilisant un deuxième 

classificateur d’apprentissage automatique, nous avons démontré que les éléments cis-

régulateurs peuvent prédire les gènes présentant des profils d’expression anormaux dans le 

ccRCC (aire minimale sous la courbe ROC : 0.88; p < 2.59 x 10-73). Ce faisant, les 

amplificateurs acquis et perdus sont associés de manière significative aux gènes régulés 

positivement et négativement dans le ccRCC, respectivement. 

Notre analyse des sites de liaison de 161 facteurs de régulation, y compris des facteurs 

de transcription et des modificateurs de l’épigénome, en a révélé plusieurs dont les sites de 

liaison sont enrichis en amplificateurs acquis ou perdus. Les gènes cibles de ces facteurs de 

régulation sont enrichis parmi les gènes sur- ou sous-régulés dans le ccRCC, conformément 

au statut des amplificateurs associés (acquis ou perdus). Parmi les facteurs de régulation 

activés les mieux classés dans notre analyse, FOXM1, SPI1, IKZF1, JUNB, JUN, FOS, 

BCL11A et STAT3 sont enrichis de manière significative en amplificateurs acquis, tandis 

que EZH2, FOXA1, FOXA2, GATA3, ESR1 sont associés de manière significative aux 

amplificateurs perdus (FDR < 0.05). Les gènes cibles des facteurs de régulation activés sont 

impliqués dans des voies biologiques qui jouent un rôle central dans la biologie et la fonction 

des cellules du ccRCC. Par exemple, le réseau de facteurs de transcription HIF1α et HIF2α, le 
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réseau de signalisation VEGF et VEGFR et les voies liées au système immunitaire sont 

enrichis en gènes régulés à la hausse dans le ccRCC, qui sont associés à des amplificateurs 

acquis (FDR < 0.01). 

Finalement, nous avons examiné l'implication potentielle de Von Hippel-Lindau 

(VHL), le gène le plus fréquemment muté dans le ccRCC, dans ces altérations de 

l'épigénome, étant donné les récents rapports sur la fonction de VHL en tant que régulateur de 

l'épigénome. Notre analyse des lignées cellulaires du ccRCC déficientes ou reconstituées en 

VHL a révélé qu'environ 10% des changements dans l'expression des gènes dans le ccRCC 

peuvent être renversés par des changements de l'épigénome induits par VHL sur des 

amplificateurs. Nous avons découvert plusieurs facteurs de régulation pouvant être régulés 

par la méthylation de l'ADN via VHL et associés à des amplificateurs dérégulés, notamment 

BATF, BCL11A, IKZF1, JUN, SPI1, STAT3 et EZH2. 

En conclusion, notre étude propose une nouvelle méthode d'identification des éléments 

cis-actifs (acquis) et inactifs (perdus) qui combine des données de modifications d'histones et 

de méthylation de l'ADN par apprentissage automatique. De plus, nos résultats font lumière 

sur les conséquences fonctionnelles de la dérégulation des éléments cis-régulateurs sur 

l'expression génique dans le ccRCC. Ces découvertes amélioreront notre compréhension des 

mécanismes épigénétiques sous-jacents aux altérations du transcriptome dans le ccRCC, ce 

qui pourrait éventuellement mener à la mise au point de nouvelles approches cliniques et 

thérapeutiques. 
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CHAPTER 1. LITERATURE REVIEW, HYPOTHESIS AND 

OBJECTIVES 

1.1 Introduction 

Epigenetics is “the study of mitotically and/or meiotically heritable changes in gene 

function that cannot be explained by changes in DNA sequence”1. Epigenetic gene control is 

involved in modulation of gene expression without any modifications to DNA sequence itself 

but by remodelling the structure of the chromatin and altering chromatin accessibility through 

various mechanisms2,3. Moreover, tissue-specific gene expression is mainly influenced by 

epigenetic regulation, which is an essential feature in development, differentiation and 

maintenance4. 

Epigenetic regulation largely involves specific modifications that mainly include DNA 

methylation and post-translational histone modification, and play a central role in the 

regulation of global and local gene expression5. Alteration of epigenetic modifications is one 

of the main mechanisms that cause drastic deregulation of the normal gene expression 

programmes, which can lead to disruption of normal cellular processes6. Because these 

different epigenetic modifications often work together in order to regulate the gene 

expression, it is important to study the whole set of epigenetic modifications to correctly 

explain the aberrant gene expression observed in diseases like cancers7.  

The human genome approximately consists of ~20,000 protein-coding genes, which 

encode ~80,000 transcripts that can be translated into proteins8. However, protein-coding 

genes only account for less than 2% (less than 60 million bases of DNA) of the whole 

genome9,10. Cis-regulatory elements (regulatory elements), including promoters and 

enhancers, are non-coding DNA11 that regulate the expression of the genes, and comprise a 

sizeable fraction of the non-coding genome. These regulatory elements are bound by different 

trans-acting DNA-binding proteins such as transcription factors (TFs) and are essential for 

proper spatiotemporal expression of nearby genes or those connected to them through long-

range chromatin interactions8,11. These regulatory elements are the main functional targets of 

epigenetic modifications3,12. 

Cancer is a complex disorder in which cells undergo uncontrolled cell division and thus 

gain the ability of invading neighbouring tissues. The uncontrolled cell division accompanies 

various molecular abnormalities that imbalance the normal cellular homeostasis. Importantly, 
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epigenetic aberrations play a crucial role in initiation, progression and metastasis together 

with genetic alterations13,14. Recent studies support this notion by showing that genes coding 

for regulators of epigenetic pathways are often dysregulated not only by mutations but also 

by amplifications, deletions and rearrangement of DNA in cancer cells15. Therefore among 

different diseases, malfunction of epigenetic machinery is linked most unambiguously to 

cancer and is considered as a putative driver and hallmark of cancer16. These findings 

highlight the need to understand the role of epigenetic modifications in cancer. Given that 

epigenetic aberrations are reversible and they represent attractive candidates for development 

of therapeutic strategies.  

Renal cell carcinoma (RCC) is one of the ten most common cancers accounting for 

2.4% of all adult cancers and 90% of all kidney cancers17. The rates of diagnosing RCC and 

RCC-related deaths are increasing each year worldwide. Diverse tumor heterogeneity leads to 

several histological subtypes of RCC with varying clinical outcomes and diverse therapeutic 

responses. The most common sub-type is clear cell RCC (ccRCC), comprising 70-80% of all 

RCC cases18. Despite the fact that the relative 5-year survival rate of localized ccRCC (stages 

I or II) is 91% with radical or partial nephrectomy, 20-30% of the patients are in the 

metastasis state at the time of diagnosis19. Metastatic ccRCC is incurable due to the inherent 

resistance to chemo- and radio-therapies20. Therefore, it is essential to improve knowledge of 

the molecular biology of tumor initiation, progression and metastasis to develop novel 

diagnostic and therapeutic tools to better manage and treat ccRCC patients. 

In our study, we focused on epigenetic modifications of regulatory elements 

specifically on enhancers and promoters in ccRCC, and their relationship with gene 

expression changes. The regulatory state of enhancers and promoters are determined by a 

combination of epigenetic marks21. Therefore, we employed a machine learning approach to 

integrate ChIP-seq (chromatin immunoprecipitation with massively parallel DNA 

sequencing) data of histone modifications and whole genome bisulphite sequencing (WGBS) 

data (DNA methylation profiles) to identify the enhancer activity changes (i.e gain or loss of 

enhancers/promoters) in tumors in comparison to normal renal tissues. Then we investigated 

the correlation of these activity changes with gene expression changes of ccRCC. We also 

analysed the TFs that specifically bind these altered enhancers and their association with gene 

expression changes. In addition, we investigated the possible drivers of these epigenetic 

changes, specifically the Von Hippel-Lindau (VHL) tumor suppressor, because mutations of 
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the VHL, which is detected in ~75% of sporadic cases, are considered as the main drivers of 

ccRCC.  

1.2 Epigenetic regulation of gene expression 

DNA methylation and post-translational modifications of histone proteins are the two 

main types of epigenetic modifications22,23. In this section, I will briefly introduce these 

modifications and their role in regulating gene expression.  

1.2.1 Histone modification 

The nuclear DNA is packaged around octamers of histone proteins (consisting of two 

H3-H4 and two H2A-H2B dimers), in units referred to as nucleosomes, which are then 

compacted into a higher order complex structure called chromatin. This multi level chromatin 

organization occurs through a hierarchy of histone-dependent interactions (Figure 1). DNA 

and nucleosomes are often referred to as “beads on a string”, where the string is the DNA and 

beads represent nucleosomes3,4. Chromatin structure is mainly divided into heterochromatin 

(condensed) and euchromatin (open chromatin or relaxed) based on the nucleosome 

positioning. Generally, regulatory factors (RFs) like TFs can access the euchromatin DNA; 

hence genes in euchromatin are transcriptionally active. On the other hand, heterochromatin 

state is associated with gene silencing4.  

Amino acids of the highly basic N-terminal tails of histone proteins (the amino-

terminal ends of the histone protein chains) protrude from nucleosomes and are chemically 

modified by regulatory proteins and enzymes. These chemical modifications are often called 

histone tail modifications or simply histone modifications. The inter-nucleosomal interactions 

and recruitment of other chromatin remodelling factors (Chromatin Remodelling Complexes; 

CRCs) are affected by these histone tail modifications, thus regulating nucleosome movement 

and unwinding. These changes allow inaccessible regulatory elements on DNA become 

accessible to influence gene expression, or accessible regions become inaccessible, 

depending on the type of histone modification24-26.  

There is an ever-growing list of histone modifications which includes acetylation, 

methylation, phosphorylation, deamination, ADP ribosylation, ubiquitination and 

sumoylation. The combination of all these post-translational chromatin modifications is the 

major determinant of the chromatin structure and, thus, gene expression27. Amongst these 
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modifications, acetylation and methylation are the two best-characterized histone 

modifications. 

 

Figure 1: Multiple levels of chromatin folding: The nuclear DNA is packaged around 

nucleosome core particles consisting of histone proteins, and is compacted into a higher order 

complex structure called chromatin through a hierarchy of histone-dependent interactions. 

Adapted from Fyodorov, D. V., et al. Nature Reviews Molecular Cell Biology 19.3 (2018): 

192. (https://doi.org/10.1038/nrm.2017.94) with permission from Springer Nature28 

1.2.1.1 Histone acetylation 

Histone acetylation is considered as a transcriptional activator (leading to high DNA 

accessibility) and its highly dynamic state is regulated by the opposing activity of two 

families of enzymes, histone acetyltransferases (HATs) and histone deacetylases 

(HDACs)26,29,30 (Figure 2).  The HATs catalyse the acetylation process. In contrast, HDACs 

reverse this process by removing the acetyl group, hence predominantly considered as 

transcription repressors26.  

1.2.1.2 Histone methylation 

Histone methylation is governed by histone methyl transferases (HMTs) that catalyse 

the transfer of a methyl group to specific amino acids in histone tails, such as lysine and 

arginine in H3 histone26. Depending on the type, HMTs can either mono-, di- or tri-methylate 

(degree of methylation) a residue on the histone tail. For instance, lysine can be mono-, di- or 

tri-methylated31,32. Unlike acetylation, transcriptional activity of methylation depends on the 

https://doi.org/10.1038/nrm.2017.94
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specific degree of methylation and the residue affected. For example, H3K4me3, H3K4me1 

and H3K36me3 are associated with transcriptional activation while H3K9me3, and 

H3K27me3 are leading to transcriptional repression33,34. These methylation patterns are 

reversible; histone demethylases (HDMTs) catalyze the removal of methyl group from the 

affected residues 4,18.  

 

Figure 2: Histone modification: Histone tails can be modified by the addition and removal 

of acetyl and methyl groups on specific residues. These modifications are catalyzed by 

specific enzymes; HAT and HDAC regulate histone acetylation and deacetylation, 

respectively, while HMT and HDMT catalyse histone methylation and demethylation, 

respectively. Each type of histone modification has a specific effect on transcriptional 

activity. Repressive histone modifications facilitate the dense packaging of DNA and restrict 

the accessibility for RFs. Activating histone modifications loosen DNA packaging and result 

in transcriptional activation. Abbreviations: histone acetyltransferase (HAT); histone 

deacetylase (HDAC); histone demethylase (HDMT); histone methyltransferase (HMT).  

Adapted from Meddens C.A., et al., Gut 2019;68:928-94135 (http://dx.doi.org/10.1136/gutjnl-

2018-317516) under the Creative Commons Attribution Non Commercial License. 

1.2.2 Histone code and the cross talk between different histone modifications 

The histone code is a hypothesis describing the cross talk and combinatorial effect of 

different histone modifications that function as a molecular “code”, recognized and used by 

http://dx.doi.org/10.1136/gutjnl-2018-317516
http://dx.doi.org/10.1136/gutjnl-2018-317516
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other non-histone regulatory proteins to possibly regulate chromatin state and gene 

expression. These modifications include all the possible histone modifications, which are 

regulated by various histone modifying enzymes36,37. Deciphering how the histone code could 

be translated into biological response is essential to accurately predict the consequences of 

histone modifications. Depending on the set of histone modifications deposited at a specific 

region, distinct “readouts” of the epigenetic information will occur (e.g. active, inactive, or 

posied)38. In addition, different histone combinations are associated with different genomic 

features (i.e: promoters or enhancers), which means that a combination of histone 

modifications can be used to identify these functionally distinct genomic regions39. Figure 3 

illustrates an example of chromatin states and features encoded by different combinations of 

histone modifications. 

 

Figure 3: The histone code at different levels of genomic features. The combinations of 

histone modifications and their associations to various genomic states. (i.e: promoter states, 

transcribed states). Each genomic state is associated with a combination of histone marks. 
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The frequency which they occur showing the relative degree of association is indicated by a 

colour scale spanning values between 0 and 1; light blue: acetylation marks, pink: 

methylation marks, brown: CTCF/Pol2/H2AZ. Adapted from Ernst, J., & Kellis, M., Nature 

biotechnology, 28(8), 817. DOI: 10.1038/nbt.1662, with permission. 

1.2.3 Chromatin remodelling 

RFs (e.g: sequence-specific activators and repressors, mediator complexes, and general 

transcription factors) need to interact with DNA to regulate gene expression. Therefore, 

higher order compacted chromatin should be remodelled to a more loosely packed structure 

to allow regulatory factors to access DNA. In this regard, chromatin remodeling complexes 

(CRCs) play an ensemble of crucial roles associated with nucleosome dynamics, including 

the continuous shuffling of the nucleosome positions (nucleosome sliding), transforming the 

conformation of nucleosomal DNA, nucleosome assembly and disassembly, and facilitation 

of the RF interaction with DNA40-43. Not only activation of genes but also gene repression 

can be mediated by CRCs, e.g. by establishing proper density and spacing of nucleosomes 

leading to compacted higher order chromatin structures44. 

1.2.4 DNA methylation 

While DNA methylation is not limited to 5-methylcytosine (5mC), the term DNA 

methylation is often used for this particular type of modification, in which the fifth carbon of 

the pyrimidine ring of cytosines becomes methylated. In most cells, 5mC modification 

largely takes place at sites in which the cytosine is followed by a guanine residue (CpG), 

which is called CpG methylation. Overall, 70-80% of all CpGs are methylated in 

mammals45,46. DNA methylation is generally associated with transcriptional silencing, 

particularly in repression of endogenous repeat elements such as transposons, as well as some 

tissue-specific genes during development and differentiation. Furthermore, it also plays a 

vital role in genomic imprinting and X-chromosome inactivation in female cells47.  

CpGs are predominantly found in endogenous repeat elements, promoter CpG islands, 

and intergenic regions46,48,49. The methylation status of many of these regions is associated 

with the expression of nearby genes. For example, CpG methylation in promoters and 

enhancers are negatively correlated with gene expression, since methylation of these regions 

often results in heterochromatin46,50,51. The correlation between CpG DNA methylation and 

gene expression was first shown in a study of CpG islands (CGIs)45. CGIs are regions with at 

least ~200 bp in length and over 50% GC composition52,53. CGIs are dispersed across the 

https://dx.doi.org/10.1038%2Fnbt.1662
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genome, with ~45-50% of all human promoters associated with CGIs. The majority of CGIs 

are unmethylated throughout the development, hence leading to transcriptional 

activation50,53,54.  

DNA methylation at CpGs is carried out by a specific set of enzymes called DNA 

methyltransferases (DNMTs) including DNMT1, DNMT3A, DNMT3B45. DNMT3a and 

DNMT3b are de novo methyltransferases, DNMT1 predominantly maintains the established 

DNA methylation pattern during cell replication55. DNA methylation can be actively reversed 

through TET family enzymes, or passively reversed through DNA replication without de 

novo methylation46. 

1.2.5 Interplay of different epigenetic modifications, TFs and gene expression 

 Usually, a cross-talk or an interplay of different types between epigenetic 

modifications (shown in Figure 4) is required to regulate various nuclear processes including 

DNA repair and gene expression in a well coordinated manner. Histone modifications and 

DNA methylation are dependent on each other and their combinatorial effect may drive gene 

expression56. For instance, histone modifications such as H3K27me3 and H3K9me3 may 

influence DNA methylation, which in turn may serve as a template for the deposition of 

certain histone modifications after DNA replication57. This is exemplified by direct 

interactions between histone-modifying enzymes like HMTs and DNA methylation enzymes 

such as DNMTs58. However, the chronological sequence of these relationships is still 

unknown. HP1 (heterochromatin protein 1) also represents a connection between DNA 

methylation and histone modifications59. HP1 binds to both H3K9me3 and DNMT1 and 

influences DNA methylation patterns56. Of note, it regulates transcription of genes in both 

open chromatin and heterochromatin60. In addition, site-specific histone modifications 

usually attract CRCs toward a particular genomic region and/or modulate the efficacy of their 

enzymatic reactions. Likewise, CRCs can also influence and sometimes directly regulate 

histone modifications7. 

DNA methylation and repressive histone modifications usually mediate the transition 

from active to silent chromatin states, whereas DNA demethylation and active histone marks 

generally direct conversion of silent chromatin to the active state61. There seems to be many 

ways in which silent chromatin can repress transcription. Restriction of the binding of 

proteins like TFs and RNA Polymerase II is a common mechanism62, since these proteins 

initiate gene transcription upon binding63. Another mechanism can be through recruitment of 
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specific repressor proteins – for example, binding of MeCP2 and other methyl-CpG binding 

domain proteins (MBDs) is strictly dependent on DNA methylation64. These proteins often 

function as transcriptional repressors65; for example, MBDs recruit repressor complexes to 

methylated DNA. These repressor complexes interact with other HDACs and CRCs, leading 

to the formation of a more compact and transcriptionally inactive chromatin66. Moreover, 

transcriptional repressors compete with TFs for binding to methylated CpG thereby 

repressing transcription67. 

 On the other hand, TFs interact with a variety of proteins that methylate or demethylate 

DNA and modify histones63. A few of them are highlighted here: TFs can recruit and form 

complexes with DNMTs and thus modulate promoter methylation68. In addition, TFs function 

as recruiters of histone-modifying enzymes to nucleosomes. For instance, specific TFs 

repress or activate gene expression through recruitment of HDACs or HATs during histone 

acetylation69. The role of TFs in recruitment of chromatin modifying proteins provides a 

mechanistic explanation for region-specific epigenetic modifications: TFs usually recognize 

specific patterns of DNA sequence70, and therefore each TF binds to a specific set of genomic 

regions. In fact, histone marks can be predicted accurately from TF-binding patterns71, 

supporting the notion that epigenetic modifications are guided by the binding of TFs to DNA. 

Overall, the cross-talks between epigenetic modifications and TFs form a complex and 

dynamic network whose abnormalities can lead to many diseases, including cancer7,72 
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Figure 4: Interplay of different epigenetic modifications: i) DNA methylation, ii) histone 

proteins and iii) chromatin remodeling are three main specific epigenetic modifications, and 

regulation of gene expression depends on the well coordinated interactions between these 

modifications. Dysregulation of these interactions results in several diseases including cancer. 

DNMT: DNA Methyl Transferase, HAT: Histone Acetylation Transferase, HDAC: Histone 

Deacetylase, HMT: Histone Methyltransferase, HDM: Histone Demethyl Transferase. 

Adapted from Sahar, O. S. and Nussler. A. K., Epigenetic Diagnosis & Therapy 1.1 (2015): 

5-13 (https://doi.org/10.2174/2214083201666150220233430)72 with permission of Bentham 

Science Publishers Ltd. 

1.3 Regulatory elements and their connection with epigenetic 

modifications and gene expression 

Enhancers and promoters are the most well characterized types of DNA elements involved in 

transcriptional regulation73. In this section, I will briefly introduce these regulatory features of 

the genome, their role in mediating gene expression, and their interplay with each other. 

1.3.1 Promoters 

Promoter is the fundamental unit of regulation required for the transcription of a 

particular gene, and is located typically upstream of the TSS of a gene74. The transcription 

initiation involves the recruitment of transcriptional co-activators, general TFs, and RNA 

polymerase II to the promoter8. Generally, a promoter is composed of three main portions: 

core promoter, proximal promoter and distal promoter75.  

The core promoter encompasses the TSS and the minimal stretch of DNA sequence that 

directs the RNA polymerase II to the transcription initiation site. Mainly four DNA elements 

have been found to be associated with the function of core promoter:  the TATA box, the 

TFIIB recognition element (BRE), the initiator (Inr), and the downstream promoter element 

(DPE). TATA box is found in some promoters and bears the binding site for TATA-binding 

protein (TBP), which is a subunit of the TFIID general TF complex. The BRE is located 

immediately upstream of the TATA box of some promoters and increases the binding affinity 

of TFIIB for the promoter. The Inr is located in the immediate region surrounding the TSS 

and is sufficient to direct accurate initiation in TATA-less promoters. DPE, which is a 

functional analogous of TATA-box, is located downstream of TSS and allows TFIID to bind 

cooperatively with Inr in the absence of TATA element in order to initiate transcription76,77. 

https://doi.org/10.2174/2214083201666150220233430


11 

 

However, the operational range of a DPE is yet to be discovered. In addition, proximal 

promoter regions usually extend up to 1Kb upstream from TSS and contain many TF binding 

sites necessary to increase the binding affinity of RNA polymerase II to core promoter. 

Moreover, distal promoter is located beyond the proximal promoter and its function is largely 

unknown, but it shows comparatively weaker influence on gene transcription than the 

proximal promoter75,77,78. 

Active promoters are characterized by co-occupancy of H3K4me3 and H3K27ac 

histone marks79. In contrast, poised (bivalent or inactive) promoters, which are essential for 

germ cell identity, are delineated by concurrent presence of H3K4me3 and H3K27me3. Even 

though poised promoters are not associated with active gene expression, they are not marked 

by DNA methylation and can transit into the active form through temporal and special 

regulation. 

1.3.2 Enhancers 

Enhancer is a type of distal and cell type-specific regulatory element. Enhancers can 

regulate one or many genes in varying distances from the TSS, and at different orientations 

(enhancer can be located either upstream or downstream of TSS), or at different genomic 

locations (e.g. inter-genic or intra-genic regions)80-82. A central feature of enhancers is their 

ability to act as integrated TF binding platforms by providing clustered recognition sites for 

multiple TFs83. However, several factors influence the binding of TFs to enhances. For 

example, DNA hyper-methylation at enhancers mostly restricts TF binding, whereas hypo-

methylation favours the binding of TFs84. The most distinctive feature of enhancers is the 

presence of specific histone modifications: Enhancers are commonly flanked by H3K4me1/2 

histone modifications, and active enhancers are distinguished from poised enhancers by the 

presence of H3K27ac85,86. 

Currently, different models have been proposed to explain the mechanisms by which 

enhancers regulate gene expression (Figure 5). Amongst them, the looping model is the most 

widely accepted model to date, as it can explain many features of the enhancer-mediated gene 

expression87,88. This model proposes a direct physical contact between an enhancer and a 

target promoter through the creation of a DNA loop, following the binding of regulatory 

factors including TFs and co-activators89,90. In response to environmental or developmental 

signals, TFs bind enhancers, often followed by recruitment of transcriptional co-activators. 

These co-activators, for instance, CBP/p300 and MLL3/MLL4, have been shown to modulate 
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acetylation of histone H3K27 or monomethylate histone H3K4 on enhancers, respectively. 

Then, enhancer-promoter interaction is formed and stabilized by factors such as cohesin and 

the mediator complex through formation of a DNA loop. This allows interaction of enhancer-

bound TFs and the co-activators with the basal transcription machinery on promoters and 

stimulation of transcription80. 

 

Figure 5: Existing models for the function of enhancers: The four existing models that 

explain how enhancers regulate gene transcription are depicted. A. The tracking model: a 

protein like transcription factor (TF) (purple hexagon) recruited onto the enhancer and tracks 

along the DNA strand towards the promoter. Then the TF associates with RNA polymerase 

(pink oval) when it reaches the promoter and stimulates transcription. B. The linking model: a 

TF is loaded on to the enhancers and drives protein polymerization towards the promoter. C. 

The relocation model: a gene relocates to sub compartments in the nucleus (pink halo) 

facilitating the interaction with correspondent promoter and enhancer and then initiate the 

transcription. D. The looping model: the enhancer is bound by TFs and recruit other 

regulatory factors. Then it forms a DNA loop and comes closer to the correspondent 

promoter and interact with basal transcription machinery in order to initiate the transcription. 

Adapted from Kolovos, P., et al., Epigenetics & chromatin 5.1 (2012): 1 

(https://doi.org/10.1186/1756-8935-5-1)81 under Creative Commons Attribution License. 

1.3.3 TFs and gene expression 

TFs are one of the major classes of proteins that regulate the expression of genes 

followed by binding to the DNA. TFs usually compete with nucleosomes in order to access 

DNA. The binding affinity of TFs depends on several factors, including DNA methylation 

and histone modifications in or around binding regions91. TFs use their DNA binding 

domains to bind specific DNA sequences within gene promoters or enhancers and recruiting 

https://doi.org/10.1186/1756-8935-5-1
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regulatory co-factors using their effector domains – the effector domain of a TF can lead to 

activation or repression of expression depending on its molecular function and interacting 

partners (Figure 6). Trans-activating domains recruit transcription machinery, including 

RNA polymerase II, and other TFs or protein complexes such as CRCs to promote 

transcription, whereas repressive domains recruit chromatin silencing proteins92,93,94. TFs are 

often classified based on the three dimensional structure of their DNA-binding domains95. 

For example, zinc finger, helix-turn-helix (homeodomain), helix-loop-helix and leucine 

zipper are types of DNA-binding domains that are commonly found in TFs95.  

 

Figure 6: A Schematic of a TF and its domains. Adapted from Lambert, S. A., et al. 

(2018). Cell 172(4): 650-665 with permission (DOI: https://doi.org/10.1016/j.cell.2018.01. 

029) 70 

The majority of protein-coding genes show tissue- and signal-specific expression, 

mediated by a large set of DNA sequence-specific TFs. This sequence specificity is mediated 

by the different sequence and structural elements of the DNA binding domains of TFs96. 

Among TFs, transcription activators can bind to the enhancer regions and physically interact 

with the promoter regions through DNA looping. Then, they facilitate the recruitment of 

basal transcription machinery or pre-initiation complex, which is composed of RNA 

polymerase II and a large number of general TFs (e.g. TFIIB, TFIID and TFIIF), to the core 

promoter region. Of note, some TFs directly bind to the promoter region and recruit the basal 

transcriptional machinery and other proteins such as co-factors. The recruitment of basal 

transcriptional machinery is an essential step in transcription since RNA polymerase II cannot 

independently bind to the DNA. After the recruitment to the core promoter, RNA polymerase 

initiates the transcription of the gene in the presence of other general TFs97,98. On the other 

hand, repressor proteins can inhibit transcription by obstructing the assembly of transcription 

machinery on the promoter98. In addition, repressor TFs inhibit transcription through other 

https://doi.org/10.1016/j.cell.2018.01.%20029
https://doi.org/10.1016/j.cell.2018.01.%20029
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mechanisms for example, establishing a repressive epigenetic environment (e.g. KRAB 

proteins)99.   

Chromatin remodeling by eviction or sliding nucleosomes provides transcription 

machinery access to regulatory regions in promoters, which is often required for the 

activation of transcription 100. The SWI/SNF family of CRCs can disassemble nucleosomes to 

promote gene expression, while the ISW1 family closely assembles nucleosomes leading to 

transcriptional repression43. TFs often facilitate the recruitment of these CRCs to the DNA. 

For example, SWI/SNF complexes are recruited to target genes through association with c-

Myc and CCAAT/enhancer-binding protein β101. 

1.4 Epigenetic modifications in cancer 

The epigenetic landscape created by the interplay of epigenetic modifications regulates 

the formation and maintenance of different cell types, preserving the cellular identity 

throughout developmental stages of an organism. Therefore, alterations of epigenetic 

landscape in cells can contribute to a spectrum of diseases, in particular to cancer5,16,102, 

which manifest their effect through global or local dysregulation of gene expression 

profiles5,14. For example, epigenome abnormalities can result in silencing of a tumor 

suppressor gene (TSG) or activation of a proto-oncogene, independently from genetic 

alterations or in conjunction with them. These dysregulations may act as drivers in cancer 

initiation that confer growth advantage to cancer cells, and therefore are positively selected 

during cancer evolution103. However, it is important to note that we are still at the door step 

of understanding epigenome alterations in cancer, and more studies are required to explore 

hidden territories in cancer epigenetics compared to cancer genome alterations that have been 

studied for decades. 

1.4.1 DNA methylation aberrations in cancer 

Aberrant DNA methylation was the first type of epigenetic abnormality identified in 

cancer5,104. Global hypo-methylation (reduction of DNA methylation levels in tumor tissues 

relative to the corresponding normal tissue from which the tumors were derived) and hyper-

methylation (increase of DNA methylation levels in tumor relatively to normal tissues) are 

two distinguished characteristics of the cancer epigenome. 

1.4.1.1 DNA hypo-methylation in cancer 
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The reduction of methylation occurs at genome-wide level and specifically at various 

genomic locations including promoters, enhancers and gene bodies105-107. Some gene 

promoters transition to a hypomethylated state in cancer, which is associated with an increase 

in gene expression. The demethylated genes mainly accommodate functions that are essential 

for cancer progression and metastasis, including cell growth, cell adhesion and 

communication, cell signaling, cellular migration, and invasion of normal tissue108. For 

example, the promoter of the engulfment and cell motility 3 (ELMO3) gene undergoes 

demethylation followed by over-expression of the gene in lung cancer. ELMO3 is involved in 

cellular migration and it is suggested to be associated with metastatic spread of lung cancer 

cells109.  

Hypo-methylation of enhancers is also associated with elevated gene expression in 

many cancers. For instance, Xiong et al. showed that recurrent hypo-methylation of enhancer 

of C/EBPβ gene activates a self-reinforcing enhancer-target loop, therefore overexpressing 

this gene in hepatocellular carcinoma, which is associated with poor prognosis110. However, 

DNA hypo-methylation alone is insufficient for enhancer activation and requires other 

histone modifications such as H3K27ac and H3K4me186,111.  

In addition, hypo-methylation within the transcribed regions or gene body is usually 

negatively correlated with gene expression112, and can also lead to activation of alternative 

transcription start sites within the gene body and, therefore, aberrant transcripts113. 

Even though the exact mechanisms of loss of DNA methylation in cancer and its 

functional consequences are not yet fully understood, we have already started to dissect these 

mechanisms. One leading possibility of global hypo-methylation is that, malfunction of 

DNMTs and TETs due to mutations114.  

1.4.1.2 DNA hyper-methylation in cancer 

Hyper-methylation of one or few specific regions are observed in some cancers. 

Among those, hyper-methylation of promoter CGIs is widely studied in many malignancies. 

Hyper-methylation of a gene-associated CGI was first reported in the calcitonin gene 

promoter in two malignancies in the mid-1980s: small cell lung carcinoma and lymphoma115. 

Since then, CGI hyper-methylation has been reported in almost every tumor type116 and it is 

integrally associated with transcriptional silencing of TSGs114. TSGs that are repressed by 

promoter hyper-methylation are involved in crucial cellular processes such as DNA repair, 

cell cycle progression, cell adhesion, apoptosis and angiogenesis5. Hyper-methylation of TSG 
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promoters, such as BRCA1, APC, MLH1 and CDKN2A, has been reported in multiple cancers 

including glioblastoma, pancreatic, breast, colorectal and ovarian cancers8. 

In most of the cancer types, hyper-methylation is observed in ∼5%–10% of genes 

associated with CGIs114. However, in some specific cancers, including low-grade gliomas and 

certain colorectal cancers, extensive and frequent hyper-methylation of thousands of GCIs is 

a characteristic feature. This phenomenon is known as CpG island methylator phenotype 

(CIMP)117,118. Similar to hyper-methylation of promoter CGIs, some enhancer regions are 

hyper-methylated and thereby lead to gene silencing113. On the other hand, gene body 

methylation is usually associated with elevation of gene expression level119.  

1.4.2 Histone modification aberrations in cancer 

1.4.2.1 Histone acetylation in cancer 

Histone acetylation is mostly localized at enhancers, promoters, and the gene body120, 

and is associated with active gene expression. As such, hyper-acetylation of histones on 

regions such as enhancers and promoters that are associated with proto-oncogenes may play a 

role in activating the expression of these genes79,114. Conversely, hypo-acetylation of 

histones, which often co-occurs with DNA methylation, may contribute to gene 

silencing27,114. Among many potential mechanisms for hyper- and hypo-acetylation of 

histones, genetic or epigenetic aberrations in the HAT and HDAC genes are mostly studied. 

These enzymes also acetylate/de-acetylate a broad range of non-histone proteins, including 

p53, Rb, and MYC, which often form complexes with multi-subunit chromatin-modifiers. 

Abnormal modifications of these non-histone proteins often lead to alterations in many 

cellular pathways that support tumorigenesis27,121. 

1.4.2.2 Histone Methylation in cancer 

It has been reported that many HMTs are associated with cancer27. Among them, the 

MLL family of HMTs is affected by genetic abnormalities, either via loss of function, 

translocation or rearrangements in many forms of cancer27,122. For example, MLL1, which is 

specifically responsible for H3K4 methylation, is frequently translocated in myeloid and 

lymphoid leukemias27,122. Enhancer of zeste homolog 2 (EZH2), which is the catalytic 

component of the Polycomb repressive complex 2 (PRC2), is a HMT responsible for di- and 

trimethylation of H3K27. PRC2 involved in transcriptional repression by reducing the 

accessibility of both TFs and CRCs such as SWI/SNF to DNA123. EZH2 has been reported to 
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have both oncogenic and tumor suppressor functions in numerous cancers124. For example, in 

several cancers including breast, prostate, and bladder cancers, EZH2 is overexpressed and is 

considered as an oncogene, leading to H3K27me3 accumulation125. In contrast, loss-of-

function mutations of EZH2 suggests a potential tumor-suppressor role in myeloid 

malignancies126 and KRAS-driven lung adenocarcinoma124. 

On the other hand, numerous types of HDMTs are implicated in cancer. LSD1, a type 

of HDMT, is frequently overexpressed in many cancers including acute myloid leukemia126, 

ER-negative breast cancer127, and neuroblastoma128, and therefore is considered a classic 

oncogene126. 

Additionally, global changes of histone methylation are also reported in several 

cancers. For example, lower levels of H3K9me3 in non-small cell lung cancer129, H3K4me2 

in adenocarcinoma130, H3K4me1, H3K9me2, and H3K9me3 in prostrate cancer131 were 

observed. These alterations are associated with poor survival and worst prognosis in these 

cancers132. 

1.4.3 Accumulations of epigenetic alterations at enhancers 

Genome-wide profiling of histone modifications has helped with the discovery of 

novel enhancers. The loss and gain of enhancers, relative to normal cells, which can be 

determined by the presence or absence of histone marks in a locus-specific manner, is a 

prominent feature in several cancers including ccRCC79, colorectal cancer133 and acute 

myeloid leukemia111. This differential activity of enhancers results in altered cancer gene 

expression. For example, in colorectal cancer, enhancers that are active in cancer cells but not 

in normal cells are found near the up-regulated genes133.  

What drives these locus-specific gain and loss of enhancers remains an outstanding 

question. One possibility is that these regions are affected by somatic mutations that 

introduce transcription factor binding sites. In support of this hypothesis, gained enhancers in 

colorectal cancer are commonly occupied by a set of RFs including AP-1 and cohesin 

factors134. Another example is recruitment of MYB to the TAL1 enhancer in T-cell acute 

lymphoblastic leukaemia as a consequence of a somatic mutation at the enhancer135,136 

In addition, many other mechanisms and models have been suggested, related to 

epigenetic modifications underlying the dysregulation of enhancer activity. One hypothesis 

suggests that genetic alterations in chromatin remodeling factors and/or co-activators may 
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play a role. In support of this, ARID1A, EP300 (P300), and MLL3/4 genes are frequently 

mutated in bladder cancer, hepatocellular carcinoma, non-hodgkin lymphoma, 

medulloblastoma, breast cancer and colon cancer8. For instance, mutations in MLL3/4 are 

thought to destabilize the MLL3/4 protein, thereby impacting the methylation of histone 

proteins at enhancers137. Other proteins whose dysfunction may result in aberrant enhancer 

activity in cancer include HDACs, HDMTs, HMTs and HATs, DNA methylation/de-

methylation enzymes such as DNMT3A and TET, and enhancer-promoter interaction 

stabilizers such as cohesion 138-141. 

1.4.4 Identification of regulatory elements 

Alterations of activity of regulatory elements is one of the critical epigenetic features of 

tumorigenesis79,114,142. Therefore, many studies focused on detecting these activity changes in 

cis-regulatory elements. Chen et al. performed one of the largest enhancer activation studies 

using TCGA RNA-seq data across different cancer types. The premise of this study was that 

enhancers often produce RNAs called enhancer RNAs (eRNAs), which can serve as a proxy 

for enhancer activity. This study provided a systematic view of enhancer activity in different 

cancers based on expression of enhancer RNAs143. However, one limitation of their study 

was that, not all activated enhancers act as transcriptional units to produce enhancer RNAs144. 

Amongst the other methods to detect activity of regulatory elements, combination of specific 

histone marks, for instance H3K4me1 and H3K27ac for active enhancers, is widely used85,145. 

The first indication that active regulatory elements may be distinguished by specific histone 

modifications came from analyses of the data from the pilot phase of the ENCODE 

project145,146. Currently, ChromHMM147 and Segway148 are two widely used method to 

predict chromatin states such as active promoters and active enhancers by integrating 

different histone marks. The former uses a multivariate Hidden Markov model and latter uses 

a dynamic Bayesian network model to integrate data12. Some studies integrate histone 

modification data with other data types such as regulatory protein binding sites149 and 

chromatin accessibility149 in order to improve the prediction accuracy of detecting activity 

changes of regulatory elements.  
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1.5 Epigenetic abnormalities in ccRCC 

1.5.1 Loss of histone modifiers and chromatin remodeler genes 

Although ~80% of ccRCCs exhibit loss-of-function mutations in the VHL gene, VHL 

knockout in mice is not sufficient for inducing ccRCC150. Therefore, other genes must also be 

required for the development of this malignancy. Chromosome 3p hosts three frequently 

mutated genes that encode epigenetic modifiers: PBRM1, BAP1 and SETD2, along with 

VHL151. Interestingly, a deletion of ~50 Mb on chromosome 3p with one or more of those 

genes is detected in 90% of sporadic ccRCCs16. In addition, other histone modifier genes, 

including KDM5C and KDM6A are mutated in ccRCC. These observations suggest a key role 

for epigenomics aberrations in ccRCC tumorigeneses and/or progression. Table 1 

Summarizes the functions of these genes. 

Table 1: Functions of frequently mutated epigenetic modifiers in ccRCC 

Gene Main Functions of the protein 

PBRM1 Chromatin remodelling, regulating replication and transcription by interact with 

numerous TFs152. 

BAP1 Regulate the expression of polycomb target genes in ccRCC153. 

SETD2 Tri-methylate histone H3K36154, repair DNA mismatches155 and double-strand 

breaks156, recruitment of DNMT3A to non-promoter regions154, maintenance of 

constitutive and facultative heterochromatin157 

KDM6A Demethylate H3K27me3158 

KDM5C Demethylate H3K4me1-3159,160 

 

Other than the frequent mutations in well-known histone modifier and chromatin 

remodeler genes, dysregulation of many other genes have been reported. Some of these are 

briefly described below. JMJD3, a HDMT involved in the demethylation of H3K27, is over-

expressed in ccRCC resulting in decreased H3K27 methylation level in tumors relative to 

adjacent non-tumor tissues161. Mixed-lineage leukemia protein 2 (MLL2), an HMT which 

directs H3K4 tri-methylation, exhibits altered expression in ccRCC tumors158. KDM6A 

interacts with MLL2, which also associates with KDM5C162. Nevertheless, the role of MLL2 

in ccRCC tumorigenesis is currently unknown. As another example, over-expression of 

EZH2 is associated with metastasis and worse clinical outcome in ccRCC 163. 
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1.5.2 Other histone modification aberrations in ccRCC 

Several studies reported alterations of histone modification in RCC by profiling of 

histone marks. Mosashvilli and collogues164 profiled several histone marks including 

H3K9Ac and H3K18Ac in 193 RCC patients (including 142 ccRCC cases) using 

immunohistochemistry in a tissue microarray and found that global deacetylation of histone 

H4 was positively correlated with pathological stage and nuclear grade. In addition, they 

found that acetylation of histone H3 is associated with systemic metastatic spread and RCC 

progression. Moreover, low H3K18ac levels were associated with tumor progression164,165. 

Another study which profiled histone methylation in same patients described that global 

H3K4me1-3 levels were inversely correlated with lymph node involvement and distant 

metastasis in RCC165. In addition, another study showed that lower H3K27me3 levels were 

observed in patients with distant metastasis166. They also reported that the lower level of 

global methylation levels of H3K27me1-3 is associated with advanced pathological stage, 

higher Fuhrman grade and vascular invasion in RCC tumors166. 

1.5.3 DNA methylation aberrations in ccRCC 

Many genes have been found to be inactivated through tumor-specific promoter hyper-

methylation in ccRCC167. Among these genes, some have been suggested to play a role in 

ccRCC tumorigenesis, including genes that are involved in regulating essential cancer-

associated pathways such as metastasis (e.g. RAP1GAP and CYTIP), cell cycle (e.g. 

RASSF1, KILLIN, and BTG3), Wnt signalling pathway (e.g. SFRP5 and WIF-1), DNA 

mismatch repair (e.g. MSH2)168, and Keap1/Nrf2 pathway (e.g, Keap1)16. In addition, Xing et 

al. reported a comprehensive list of genes that were silenced by promoter methylation in 

ccRCC tumors34. 

Specifically, the CIMP has been observed in 20% of ccRCC tumors18,169,170. Arai et al. 

have identified methylation in 17 genes including FAM150A, GRM6, ZNF540, ZFP42, 

ZNF154 that are hallmarks of CIMP in ccRCC171. CIMP-positive ccRCCs are relatively more 

aggressive and are associated with worse patient outcome. These tumors also exhibit 

increased activity of anaerobic glycolysis pathway, which provides energy to tumor 

cells16,172. 

In addition to the promoter hyper-methylation, Caroline et al. have shown that many 

kidney-specific intronic enhancers in RCC are targeted by aberrant methylation changes 

which impact TF binding, resulting in transcriptional dysregulation173. In ccRCC, the 
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overexpression of JAGGED1 (JAG1), a ligand in the NOTCH signaling pathway, is another 

example of how aberrant hypomethylation at enhancer region, co-existing with H3K4me1, is 

associated with stimulation of gene expression174.  

Furthermore, changes in 5hmC, regulated by TETs, are also associated with changes in 

gene expression. ccRCC tumors show global 5hmC reduction compared to adjacent, normal 

kidney tissue175. However, further studies are required to understand the mechanisms 

underlying for 5hmC reduction and their role in tumorigenesis. 

1.5.4 Functions of VHL and its role in epigenetic modifications in ccRCC 

VHL is a multi-functional protein, whose best known function relates to the regulation 

of the hypoxia signalling pathway by targeting hypoxia inducible factors (HIFs) for 

proteasomal degradation. Nevertheless, given the multi-functional nature of VHL, it has been 

noted that the consequence of VHL inactivation in ccRCC is much broader than the 

activation of HIFs176.  

1.5.4.1 Characteristics and general function of VHL 

Alternative splicing of the VHL gene transcript results in two VHL proteins of different 

sizes (213 residues with ~30 kDa and 160 amino acids with 18-19 kDa), which have similar 

capacities for tumor suppression177-179. In most ccRCC tumors, both proteins are inactivated 

by genetic or epigenetic mechanisms; Most related genetic changes are caused due to loss of 

function mutations. 16,154. VHL can act as a multi-functional protein – it acts as an adapter 

that recruits different effector proteins180,181. In ccRCC, VHL is best known as the substrate-

binding subunit of a SCF-type E3 ubiquitin ligase complex181. VHL regulates the 

ubiquitylation of HIF subunits (HIF1 and 2) for proteasomal degradation, thereby regulating 

the HIF stability in an oxygen dependent manner. 

1.5.4.2 HIF-VHL gene regulation 

HIF TFs are heterodimers composed of two of five HIF protein subunits: HIF1α, 

HIF2α, HIF3α, HIF1β and HIF2β. HIF1α is constitutively expressed while HIF2α is mainly 

restricted to endothelial, lung, kidney and hepatic cells. Both HIF1α and HIF2α are stabilized 

at hypoxic conditions and thereby form a dimer with stable HIF1β. This protein-dimer binds 

with DNA elements called hypoxia-response elements (HREs), subsequently activating the 

transcription of hundreds of target genes (hypoxia responsive genes). HIFs mainly activate 

the transcription of HRGs as an acute or chronic adaptive response to hypoxic (low oxygen) 
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tension16,180,182. Furthermore, HIFs (specially HIF1α and HIF2α) regulate genes associated 

with many cellular pathways including proliferation and survival (e.g: EGFR, TGFR-1) and 

angiogenesis (e.g. VEGF and PDGF)18,180,183.  

HIF1α exists in hydroxylated and non-hydroxylated forms under normal and hypoxic 

conditions, respectively. VHL specifically recognizes the hydroxylated form of HIF1α and 

targets it for degradation. Because VHL function is lost in the majority of ccRCCs, HIF is 

constitutively active in these cancers independent of the normaxic/hypoxic condition of the 

cell, thereby driving the transcriptional activation of the hypoxia responsive genes182,184,185. 

1.5.4.3 VHL-mediated DNA methylation  

Recently, our lab in collaboration with another research group at University of Toronto 

investigated the DNA methylation patterns in ccRCC cell lines in which VHL has been stably 

reconstituted, comparing the changes relative to VHL-deficient ccRCC cell lines, as well as 

the relationship between these changes and those seen in patient tumor samples vs. normal 

kidney tissues (using 450k methylation microarrays). The authors found that VHL 

reconstitution rescues a modest proportion of the methylation patterns observed in normal 

kidney cells. Interestingly, they also found that VHL-mediated methylation changes are 

hypoxia-independent186. However, the extent of these methylation changes, the specific 

affected areas, their functional consequences, and the mechanisms that drive them as a 

response to VHL are yet to be determined. 

1.5.4.4 Epigenetic remodeling in VHL-deficient ccRCC 

In a recent study, Yao and colleagues79 investigated the consequences of VHL 

deficiency on chromatin alteration at cis-regulatory elements, specifically promoters and 

enhancers/super-enhancers. This is the most comprehensive study that reports multiple 

epigenome profiles in ccRCC with more than 10 samples using ChIP-seq data. They found 

substantial chromatin level changes in these cis-regulatory elements by profiling H3K4me3, 

H3K4me1 and H3K27ac histone marks in both tumor and normal samples. Interestingly, a set 

of gained and lost promoters and enhancers in ccRCC were identified in the study. They also 

investigated the effect of VHL on these alterations and found that they are mediated by both 

HIF-dependent as well as HIF-independent manner. The study found that the genes 

associated with enhancers are enriched in ccRCC specific processes such as HIF and pro-

angiogenic pathways and metabolism. Moreover, they discovered a set of oncogenes that 

were affected by epigenetic modifications at super-enhancers, including VEGFA and EPAS1. 



23 

 

Intriguingly, they also found a master regulator of ccRCC, ZNF395, which is associated with 

a gained super enhancer that leads to overexpression of that gene – the authors reported that 

knock-down of ZNF395 results in decreased cell proliferation and viability both in vitro and 

in vivo in ccRCC79,187. 

1.6 Transcriptome changes in ccRCC and their drivers 

Other than the studies of epigenetic modifications and associated gene expression 

changes, a number of studies reported the transcriptome changes in ccRCC. For example, 

Scelo and colleagues used 94 patient samples from four European countries and analysed 

transcriptomic changes in tumor relative to normal samples188. They highlighted significant 

alterations in several pathways including focal adhesion and phosphatidylinositide 3-kinase 

(PI3K) pathways mainly due to genetic modifications (i.e somatic mutations)188. 

Interestingly, several other studies reported that epigenetic modification is also responsible 

for a substantial fraction of these gene expression changes in ccRCC. For instance, a study by 

Bhagat et al. revealed that both genetic (i.e: copy number alteration) and epigenetic 

alterations (i.e DNA methylation changes) lead to NOTCH pathway activation in ccRCC189. 

Another study by Wozniak et al. reported that down-regulated genes are enriched in many 

pathways including metabolic and catabolic processes. Simultaneously, upregulated genes 

were associated with pathways such as immune and hypoxia responses. However, they 

proposed that only 7% of these gene expression alterations could be explained by epigenetic 

changes190. As I will discuss in the next chapters, this number is likely a gross under-

estimation of the role of epigenetic alterations in mediating gene expression changes in 

ccRCC. 

1.7 Mapping of epigenetic modifications and data generation 

Over the last few years, epigenetics has become a major focus of scientific research, 

with a growing number of studies examining genome-wide aberrations of epigenetic 

modifications across diseases. Of the many assays used, chromatin immunoprecipitation and 

bisulphite treatments are the two most common techniques for assessing the genome-wide 

profiles of histone modifications and DNA methylation, respectively191. In combination with 

these assays, microarray (e.g: 450K microarrays) and high-throughput sequencing 

technologies have provided the capability to produce genome-wide high-resolution maps of 

DNA methylation and histone modifications in normal tissues and diseases such as cancer192.  
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ChIP-seq and WGBS are widely used high-throughput sequencing methods that have 

are used towards comprehensive studies of epigenetic modifications.  

i. ChIP-seq has been used not only to map genome-wide epigenetic modifications, 

specifically histone marks, but also TF binding maps. Chromatin immunoprecipitation 

enriches DNA fragments that are bound by specific protein or nucleosomes with 

specific histone marks. After crosslinking and pull-down of the protein of interest, 

DNA fragments are sequenced and analyzed to identify the protein binding sites193. 

ii. WGBS determines the genome-wide DNA methylation status of cytosines by treating 

the DNA with sodium bisulphite followed by high-throughput sequencing193. This 

method directly estimates the absolute methylation levels at single-CpG resolution. 

However, WGBS requires deep coverage of the entire genome,194 and therefore comes 

with a significant experimental cost. 

Many large-scale initiatives have been established for systematic mapping of epigenetic 

and related data in normal tissues and across diseases12. These include projects by the 

Alliance for the Human Epigenome and Disease (AHEAD) Task Force195, the ENCyclopedia 

Of DNA Elements (ENCODE) Project Consortium196,197, the Human Epigenome Project 

(HEP) Consortium198, RoadMap Epigenome Project Consortium21 and the International 

Human Epigenome Consortium (IHEC)199. The Cancer Genome Atlas (TCGA)200 and 

International Cancer Genome Consortium201 provide many data types including gene 

expression and epigenomic specifically for cancers. Moreover, Cistrome is a centralized 

database of histone modifications202, which integrates TCGA gene expression data with 

public ChIP-seq data in cancer. Different types of datasets such as DNA microarrays, ChIP-

seq and WGBS generated by these projects are freely available to the scientific community. 

1.8 Applications of machine learning on epigenetic data analysis 

Machine learning is a rapidly developing field based on pattern recognition203. It is an 

automated process of detecting patterns in large-scale datasets using computer-based 

statistical models, where a fitted model may then be used for classification of previously 

unseen patterns on new datasets204. Two major machine-learning approaches that have been 

used in biological data analysis include supervised and unsupervised learning. Supervised 

algorithms are used when there are labeled training data of two or more classes of interest and 

unsupervised algorithms are used when the samples are not labeled205. Algorithms that are 

widely used for supervised learning include but are not limited to support vector machines, 
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regression, artificial neural networks, decision trees, and random forests. Some of the most 

commonly used unsupervised algorithms include non-negative matrix factorization, principal 

component analysis, K-mean clustering, and hierarchical clustering among many others 

203,205. 

In supervised learning, the goal is to predict the (unobserved) label of an object given 

its (observed) properties206. For example, we might want to predict whether a particular 

genomic region represents an enhancer or not (unobserved label), based on the histone marks 

that are present in that region (observed properties). A supervised machine-learning algorithm 

can use a “training set”, e.g. a set of genomic regions with known labels and histone marks to 

learn a model that connects the histone mark patterns to the labels, and then uses this model 

to predict the labels of other genomic regions that are potentially uncharacterized. The 

process of training a supervised machine-learning model usually consists of several steps 

such as data gathering and preparation (which depends on the problem that is being 

addressed), training207 and hyper-parameter tuning of the machine-learning model208, and 

validation of the model to ensure that its performance is acceptable and that the model is 

generalizable (i.e. it performs well even on cases that are not included in the training set, such 

as a held-out validation set or an independent test set) 207-209. 

Machine learning is widely used in various biological domains including genomics, 

epigenomics and proteomics210. Examples include a large number of studies that have shown 

the power of different machine learning algorithms for the analysis of epigenetic data and 

predicting gene expression. For example, support vector machines have been used for 

genomic mapping of methylation patterns for all 22 human autosomes211 and prediction of 

methylated CpGs205. Orozco et al., introduced a DNA methylation based random forest 

classifier to aid in the diagnosis of brain metastases212. Moreover, multiple linear regression 

and multivariate adaptive regression splines have been utilized to build predictive models of 

gene expression as a function of histone modifications213. 

1.9 Hypothesis 

Abnormal epigenetic alterations in ccRCC affect cis-regulatory elements, and therefore 

contribute to abnormal gene expression in ccRCC. 
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1.10 Objectives 

1. To characterize epigenome changes in ccRCC and investigate their role in mediating 

gene expression changes. 

2. To identify potential drivers of these epigenetic changes and their connection to gene 

expression in ccRCC. 
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CHAPTER 2. MATERIALS AND METHODS 

In order to understand the epigenetic changes in ccRCC and its connection to gene 

expression changes, we began by analyzing the genome-wide maps of three histone 

modifications (H3K27ac, H3K4me3 and H3K4me1 as well as DNA methylation (WGBS 

data) in the primary tumors of four ccRCC patients as well as matching normal tissues. We 

used a machine-learning approach to combine these maps and identify enhancers and 

proximal regulatory elements that are gained or lost in tumor compared to normal tissue. We 

also used machine-learning to connect gain or loss of enhancers/promoters to gene expression 

changes in ccRCC. We then investigated the TFs that bind these gained/lost elements and, 

therefore, may mediate the associated gene expression changes. Finally, we performed RNA-

seq on ccRCC cell line models in two oxygen conditions (i.e: hypoxic and normoxic) that are 

deficient of VHL or express an ectopically reconstituted VHL, in order to understand the role 

of VHL in mediating these epigenetic and gene expression changes. The following sections 

describe the details of the methods we used to obtain and analyze these data. 

2.1 Patient Information 

The ccRCC patient samples that underwent epigenome profiling were provided by 

CAGEKID consortium. Epigenome and gene expression profiling experiments of these 

samples were performed by McGill Epigenome Mapping Centre (EMC) as described 

previously214-216. Refer to Supplementary Table S1 for detailed patient information. 

The data were downloaded from the EMC data portal. 

(https://genomequebec.mcgill.ca/nanuqMPS/project/ProjectPage/projectId/9015) 

2.2 Histone ChIP-seq Analysis 

ChIP-seq raw reads of eight patient samples (four pairs of normal and tumor tissues) 

were filtered by phred quality score (phred33>=30) and length (>=32), followed by adapter 

trimming using Trimmomatic217 (version 0.22). Single end sequencing tags were mapped 

against the human reference genome (GRCh38) using bowtie2218 (version 2.2.9) with default 

parameters. Reads with mapping quality (MAPQ score) >30 were chosen using Samtools219 

(version 1.3) for subsequent analysis. Significant broad peaks were called using MACS2220 

(version 2.1.1.20160309) with a FDR threshold of 0.05. 

https://genomequebec.mcgill.ca/nanuqMPS/project/ProjectPage/projectId/9015
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2.3 RNA-Seq differential gene expression Analysis 

RNA-Seq raw reads that were obtained from RCC4 cell lines (2 replicates per each 

oxygen condition) or ccRCC patients (four sample pairs) were filtered by phred quality score 

(phred33>=30) and length (>=32), and adapters were removed by Trimmomatic217 (version 

0.22). Paired end sequencing tags were mapped against the human reference genome 

(GRCh38) using HISAT2221 (2.0.4). Only reads with mapping quality >30 were used for 

subsequent analysis. HTSeq-count222 (version 0.9.1) was used to count reads using 

“intersection-strict” and “reverse” parameters and genome annotation from Gencode223 

(GRCh38). The resulted raw counts were used for differential gene expression analysis using 

DESeq2224.  

In parallel, raw read counts of 29 matched tumor-normal paired samples of ccRCC 

patients with VHL mutations were obtained from the CAGEKID cohort188 and differential 

gene expression analysis was performed using DESeq2224 similar to what is described above. 

2.4 Defining proximal regulatory elements (PREs) 

Overlapping H3K4me3 and H3K27ac broad peaks were extracted from tumor and 

normal samples. Their width was extended by 100bp from both sides to reach a total width of 

200bp. Only regions within ±10kb of TSS were retained. All the regions identified across 

samples were then pooled together and overlapping regions between normal and tumor 

samples were merged using Bedtools225 merge (version 2.26.0). The length of each element 

was normalized to 1kb or 10kb for downstream analyses. 

2.5 Defining enhancers 

Same procedure of defining PREs was followed except that the overlapping H3K27ac 

and H3K4me1 broad peaks were obtained from all the samples, removing regions within 

±10kb of any gene body.  

2.6 Average DHS signals at the centre of enhancers 

Kidney DHS data of 89-day old female fetus obtained from chromatin accessibility 

assays using DNase I hypersensitivity were downloaded as a wig file from the Gene 

Expression Omnibus (GEO)226 repository (GEO Accession number GSM1027338227). The 

file was then converted to bigWig format using “wigtobigwig” utility from ENCODE 
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portal228. All enhancers from normal and tumor samples were centre aligned. We then 

calculated the average DHS signal value at different distances from the centre of enhancers 

using bwtool229 aggregate (version 1.0). Random genomic coordinates with the same amount 

of enhancers were produced by Bedtools225 random (version 2.26.0). Random regions and all 

enhancers from Yao et al.79 were used to generate average DHS signals for comparison with 

our enhancers.  

2.7 Overlapping enhancers from tumor and normal samples with 

GenoSTAN enhancers 

GenoSTAN230 enhancer data were downloaded from https://i12g-

gagneurweb.in.tum.de/public/paper/GenoSTAN/. Bedtools225 intersect (version 2.26.0) was 

used to calculate the percentages of overlapping coordinates of GenoSTAN enhancers230 with 

our enhancers (pooled from both normal and tumor samples), along with two sets of random 

coordinates (as negative control) as well as enhancers from a previous study79. Overlapping 

percentages were calculated by incrementing the number of cell types in which GenoSTAN 

enhancers were identified.  

2.8 WGBS data analysis 

Raw reads were filtered based on their quality (phred33 >= 30) and length (n >= 50). 

Illumina adapters were then trimmed using Trimmomatic217 (version 0.36). The trimmed 

reads were aligned per sequencing lane to the pre-indexed reference genome by Bismark231 

(version 0.18.2) with bowtie2218 (version 2.3.1) in paired-end mode and with default 

parameters. BAM files from different lanes were merged using Picard (version 2.9.0). We 

then removed duplicated reads using the Bismark231 function “deduplicate_bismark”. 

Methylation calls were obtained using the Bismark231 function 

“bismark_methylation_extractor”. Finally, methylKit232 was used to find differentially 

methylated CpGs using extracted methylation values (FDR <0.05; hyper-methylated: Δβ > 0; 

hypo-methylated : Δβ < 0).  

2.9 Classification of gained and lost elements of ccRCC 

Two separate supervised random forest machine learning models, generated by R 

package “randomForest”233,234 (version 4.6-14), were used for the gain/loss classification of 

enhancers and promoters. The following predictor variables were included in each model 

https://i12g-gagneurweb.in.tum.de/public/paper/GenoSTAN/
https://i12g-gagneurweb.in.tum.de/public/paper/GenoSTAN/
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(query location corresponds to the genomic region that we want to classify as either gained or 

lost): 

• The number of hypo- or hyper-methylated CpGs within 1kb or 10kb of each query 

location (four features). 

• The number of total CpGs with 1kb or 10kb of each query location (two features; 

included in order to control for the effect of CpG number). 

• The total number of regulatory elements that were detected across normal samples 

within 1kb or 10kb of each query location (two features). 

• The total number of regulatory elements that were detected across tumor samples 

within 1kb or 10kb of each query location (two features). 

As the gold standard or target for training, gained and lost events of regulatory elements 

identified in a previous study79 were used. Model performance was determined by cross-

validation (leaving one chromosome out in each round, training the model on the remaining 

chromosomes, and testing the performance on the left-out chromosome). Trained models 

were then used to classify gained and lost elements in ccRCC tumors across the whole 

dataset. 

2.10 GSEA pre-ranked test 

Log2fold change of gene expression in tumor vs. normal samples and their base mean 

expression values were used to calculate IHW235 weights. All genes with IHW weight more 

than the 10% of maximum IHW weight in the matrix were extracted and ranked by their log2 

fold change. This ranked gene list was used for the pre-ranked test using GSEA236 software to 

identify enriched gene sets from a custom Gene Matrix Transposed (GMT) database file 

created using target genes of enhancer-associated regulatory factors. 

2.11 450k methylation microarray data analysis 

Raw 450MD files of patients (from 79 VHL mutated patients) and cell lines (RCC4 and 

786-O; three sample pairs per each cell line) were obtained from a previous study by 

Robinson et al.186, and the Minfi237 Bioconductor R package (version 1.20.2) was used to 

analyse 450k methylation data. Raw methylation data was normalized using functional 

normalization (preprocessFunnorm function238) and all the loci with single nucleotide 

polymorphisms (SNPs) were dropped. Beta values were calculated using the formula 

M/(M+U+100); where M and U denote the methylated and unmethylated signals, 
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respectively, and 100 is a pseudo count added to prevent division by zero and stabilize the 

ratio for probes with low signal. 

2.12 RCC4 cell culture and reagents 

RCC4 ccRCC subclones stably expressing HA-VHL (RCC4-VHL; VHL+) or empty 

plasmid (RCC4-MOCK; VHL-) cells were kindly gifted by Prof. William G. Kaelen, Harvard 

University, USA in collaboration with with Prof. Janusz Rak, McGill University, Canada. 

They were maintained in DMEM (Gibco) supplemented with 1 μg/ml G418, 100 µg/ml 

penicillin/streptomycin and 10% (vol/vol) heat-inactivated FBS (Sigma), and incubated at 37 

°C and 5% (vol/vol) CO2 in a humidified incubator. For hypoxia treatment, cells were 

maintained at 1% O2 for 3 days in a humidified hypoxia chamber at 37 °C. 

2.13 RNA isolation and RNA-Seq of RCC4 cells 

Total RNA was extracted from cultured cells in both oxygen conditions using 

miRNeasy kit (Qiagen). Briefly, cells were washed with PBS and lysed with 700µl QIAzol 

reagent for each well in a 6-well plate. Lysates were processed according to the supplier 

protocols for total RNA isolation. RNA Quantification was done using the Nanodrop 

spectrophotometer. The isolated RNA was used to generate rRNA-depleted first-strand 

cDNA libraries using TruSeq Stranded Total RNA-LT (Ribo-Zero Gold, Illumina). The 

libraries were then sequenced on an Illumina HiSeq 4000 PE100 platform, producing a 

minimum of 50 million paired-end 100-bp reads per sample. 

2.14 The enrichment analysis of regulatory factor binding sites 

Coordinates of the binding sites of 161 known regulatory factors (RFs) from 

ENCODE196 (using Regulation “Txn Factor ChIP” track”) were downloaded from the UCSC 

Genome Browser239, and normalized to a total width of 400bp from the centre. Four 

background sets were used to examine the relative enrichment of each RF within 1kb of the 

lost or gained enhancers, as follows: i) the union of gained and lost enhancers, ii) the union of 

gained and lost enhancers that have at least one binding site for at least one RF iii) the set of 

all the enhancers irrespective of their gain or loss score, and iv) all enhancers with at least one 

binding site for at least one RF. Hypergeometric test was performed for each RF and the 

significance of the enrichment was calculated, followed by p-value correction for multiple 

hypothesis testing (FDR).  
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CHAPTER 3. RESULTS 

3.1 Epigenome aberrations on regulatory elements can be identified by 

histone modifications 

To investigate the epigenetic alterations on regulatory elements and their connection to 

dysregulation of gene expression in ccRCC tumors, we first generated histone chromatin 

immunoprecipitation sequencing (ChIP-seq) profiles (three histone marks associated with 

active transcription: H3K27ac, H3K4me3, and H3K4me1) in four primary tumor/normal 

matched pairs (refer to Supplementary Table S1 for detailed information of patients). In 

total, we produced 684,392,482 uniquely mapped ChIP-seq reads (mapping quality >30; refer 

to Supplementary Table S2 for ChIP-seq statistics).  

Since histone modifications are best represented by broad peaks, we then obtained 

broad peaks from our ChIP-seq samples (using MACS2220). On average, 91.2% of H3K27ac, 

98.9% of H3K4me1 and 93.3%of H3K4me3 broad peaks that we obtained from normal 

kidney tissues overlapped with respective peaks from adult kidney tissues in the Roadmap 

Epigenomics dataset21, which was substantially higher than expected by chance 

(Supplementary Figure S1A). This observation suggests that overall the histone marks we 

identified are consistent with other datasets from similar tissues. 

We further examined our ChIP-seq data for enrichment of histone marks at the 

upstream flanking region, gene body and downstream flanking region of genes in normal 

tissue samples in order to investigate the distribution of different histone modifications 

relative to gene structure and their relationship to gene expression. Based on RNA-Seq data 

that we generated from the same tumor/normal samples, we found that histone marks 

associated with active transcription (H3K27ac, H3K4me1 and H3K4me3) are enriched near 

the TSS of highly expressed genes and depleted in genes with low expression 

(Supplementary Figure S1B), providing further support that our ChIP-seq-based epigenetic 

measurements mirror gene expression.  

To investigate whether epigenetic differences between tumor and normal tissues reflect 

gene expression differences, as suggested in previous studies240,241, we first compared ChIP-

seq signals of histone marks around transcription start sites (TSSs) between tumor and 

normal tissue samples to identify cancer-associated alterations in histone modification 

patterns. We then performed a differential gene expression analysis using RNA-Seq data of 
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same tumor and normal samples to identify up- and down-regulated genes (using DESeq2224) 

in tumors. A comparison between cancer-associated alterations in histone marks and gene 

expression patterns revealed that up-regulation in tumors accompanies gain of activating 

histone marks near TSS (Supplementary Figure S1C). Overall, these analyses confirm the 

expected relationships between (differential) gene expression and (differential) histone 

modification in ccRCC tumor and matching normal samples, paving the way for a more 

detailed analysis of the expression and epigenetic landscapes of ccRCC, as described in the 

next sections.   

3.2 Active distal and proximal regulatory regions in ccRCC 

To further understand the contribution of epigenome abnormalities to cancer-associated 

gene expression patterns in ccRCC, we focused our analysis on regulatory elements. 

Different categories of regulatory elements are characterized by co-occurrence of specific 

histone modifications. For example, active distal enhancers (i.e. enhancers that are away from 

TSS) are specifically delineated by co-occurrence of H3K4me1 and H3K27ac, while active 

promoters are associated with the simultaneous presence of H3K27ac and H3K4me379,85,242. 

Therefore, we defined active distal and proximal regulatory elements (PREs) in ccRCC by 

integrating patterns of the three histone mark broad peaks from our ChIP-seq data as 

described below. In each normal or tumor sample, we identified regions within ±10kb 

distance from TSSs that showed overlapping H3K27ac and H3K4me3 peaks and labelled 

them as PREs. These PREs include core promoter elements that are usually located within 

hundreds of base pairs from TSS243, as well as other regulatory elements in their vicinity that 

may contribute to gene expression. Similarly, active distal enhancers were defined as regions 

with co-occurring H3K27ac and H3K4me1 marks in areas outside of ±10kb vicinity of any 

gene (refer to Figure 7A-C and methods section for complete details of the procedure). 

Overall, we found 24476 putative active enhancers, of which 2347 and 15571 were 

exclusively detected in normal and tumor tissues, respectively (normal-exclusive enhancers, 

for example, are defined as those that are not within 1kb of any enhancer found in tumor 

samples). Also, 6558 enhancers were common in both tissue types. Likewise, from a total of 

20824 PREs identified in our analyses, 2506 and 3884 were specific to normal and tumor 

tissues, respectively, while 14434 were shared in both (Figure 7D).  

Notably, the defined enhancers (either from normal or tumor sample) exhibited high 

enrichment in regions with kidney-specific open chromatin status (DNase I hypersensitive 
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site (DHS) signals227) as compared to randomly selected regions on the genome (Figure 7E). 

Moreover, a majority of the identified enhancers (72.7%) coincided with GenoSTAN 

enhancers230 from 127 cell lines whereas percentage greater than expected by chance (Figure 

7F). In addition, over a third of enhancers and promoters (37.7%) identified in our study had 

also been found in a recent paper79 reporting on the epigenome landscapes of ccRCC 

(Supplementary Figure S1D). Lastly tumor-specific and normal-specific active regulatory 

elements identified in our study were significantly enriched for gained and lost elements, in 

ccRCC, respectively, as reported by Yao et al. (Supplementary Figure S1E). Overall, these 

observations confirmed that our defined enhancer and promoter elements are consistent with 

available data on gene regulatory elements of kidney tissue, but also contain a substantial 

number of new regulatory regions that have not been previously identified.  

3.3 Differential DNA methylation correlates with differential activity of 

regulatory elements 

To investigate DNA methylation patterns at the regulatory elements and their 

contribution to the activity of regulatory element, we generated WGBS profiles for three 

tumor/normal sample pairs (for which DNA samples were available) that were profiled for 

histone modification marks and one additional pair (refer to Supplementary Table S1 for 

detailed information of patients). We obtained methylation data for 13,492,181 CpGs (see 

Supplementary Table S3 for WGBS statistics), among which 855,694 and 133,383 loci 

were hypo- and hyper-methylated, in tumors compared to normal samples, respectively (FDR 

< 0.05). 

By superimposing differentially methylated CpGs (hypo- or hyper-methylated in 

tumors) with coordinates of our regulatory elements (both enhancers and PREs) we identified 

1816 and 95 enhancers (out of 24476) with a statistically significant excess of hypo- and 

hyper-methylated CpG dinucleotides, respectively, while the equivalent figures for PREs are 

1071 and 212 (binomial test; IHW-adjusted FDR < 0.1). This analysis suggests that 

enhancers and PREs are hotspots for differential methylation, although our statistical power 

is limited by the number of CpGs that are present in each regulatory element. 
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Figure 7: Cis-regulatory elements of the genome are characterized by histone 

modifications: A. Proximal Regulatory Elements (PREs) are defined by the co-presence of 

H3K4me3, H3K27ac, and proximity to TSS within 10 kb. Putative distal enhancers are 

defined by the co-occurrence of H3K4me1, H3K27ac, and mutual exclusivity with PREs; B. 

Overlapping H3K4me3 and H3K27ac broad peaks are obtained from both tumor and normal 

samples and their width is extended by 100bp from both sides (total width becomes 200bp). 
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Only regions within ±10kb of TSS are retained. All the regions are then pooled together and 

overlapping regions are merged. For downstream analyses, in order to identify overlapping 

features (such as DNA methylation), the length of each element is normalized to 1kb (core 

element) or 10kb; C. Defining enhancers follows the same procedure as Figure 7B by 

obtaining overlapping H3K4me1 and H3K24ac broad peaks from both tumor and normal 

samples, with the difference that regions within ±10kb of any gene body are removed; D. The 

Venn diagram shows the number of enhancers and PREs identified in tumor (T) and normal 

(N) tissues and their overlap. Overlapping elements are identified based on 1kb length 

extension (core elements); E. Enrichment of enhancers from this study, randomly selected 

regions and enhancers identified in ccRCC from a previous study (Yao et al.,79) in regions 

with kidney-specific open chromatin status (DNase I hypersensitive site (DHS) signals227) 

obtained from left kidney of 89 days old female fetus (GEO Accession number 

GSM1027338227); F. Number of overlaps of enhancers from T and N, two random genomic 

coordinates and enhancers from a pervious study (Yao et. al.,79) between GenoStan230 

enhancers (from 127 ENCODE and Roadmap Epigenomics cell types) with the accumulation 

of number of cell types. Percentage values show the number of overlaps in each comparison 

at 127 cell lines. 

Next, we examined the relationship between activity status of regulatory elements, as 

defined by active histone marks, and their DNA methylation patterns (refer to 

Supplementary Figure S2 for the relationship between number of CpGs and statistical 

power). Regulatory elements with significant excess of hypo-methylated CpGs were more 

frequently found in tumor samples, whereas regulatory elements with excess of hyper-

methylated CpGs were more likely to be found in normal samples, suggesting that DNA 

hypo-methylation is in fact a strong indicator of tumor-specific regulatory elements (Figure 

8A). To verify these findings, we examined the distribution of hypo- and hyper-methylated 

CpGs in a list of gained and lost regulatory elements in ccRCC, which has been identified in 

a recent study79. We observed that regulatory elements that are marked predominantly with 

hyper-methylated CpGs in our data are also enriched for lost regulatory elements reported by 

Yao et al. while those regulatory elements that are characterized by hypo-methylated CpGs in 

our study show enrichment in their gained elements (Figure 8B). Taken together, our 

findings corroborate previous data about epigenetic alterations in ccRCC, and suggest that 

abnormal DNA methylation patterns along with alterations of histone marks may be involved 

in dysregulation of active regulatory elements in ccRCC. 
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Figure 8: DNA methylation is a good indicator of gain and loss of regulatory elements: 

A. Distribution of significantly hypo- and hyper-methylated (binomial test; IHW-adjusted 

FDR < 0.1) regulatory elements with respect to the frequency of their observation in tumor 

and normal samples. The x- and y-axes correspond to the number of times an overlapping 

element is observed in any normal and tumor sample, respectively. The color of each box 

denotes the enrichment of the regulatory element type indicated on top of each panel (red: 

enrichment; blue: depletion). For example, the red box at x=0 and y=4 in the left graph 

indicates that hypo-methylated PREs are enriched among those that overlap zero elements in 

normal samples and four elements in tumor samples (relative to what would be expected by 

chance). The box size corresponds to the P-value of enrichment or depletion, and the color 

gradient corresponds to logarithm of odds (Fisher’s exact test); B. Distribution of gained and 

lost regulatory elements, as defined by a previous study79, with respect to their methylation 

status in our data. The x- and y-axes correspond to the number of hyper- and hypo-

methylated CpGs that overlap each element, respectively. Annotations are similar to panel 

(A).  
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3.4 Integrative analysis of histone modifications and DNA methylation 

uncovers the landscape of gain and loss of active regulatory elements 

in ccRCC  

Since ChIP-seq and DNA methylation patterns from our data were well correlated with 

previously reported gained and lost active regulatory elements, we hypothesized that the 

employment of a supervised machine learning model (random forest) that integrates 

information across histone modifications and DNA methylation should provide more power 

for the identification of gain and loss events in ccRCC. We utilized our ChIP-seq and WGBS 

data from patient samples as predictor variables to train separate random forest models for 

enhancers and PREs in order to distinguish gain events from loss events (using gain and lost 

events identified in a previous study79 as the gold standard for training; see Methods for 

details). Receiver operating characteristic (ROC) curve analyses revealed high sensitivity and 

specificity for our approach in identifying regulatory elements (leave-one-chromosome-out 

cross-validation), with area under the curve (AUC) values of 0.995 and 0.999 for enhancers 

and PREs (P-value < 2.59 x 10-73), respectively (Supplementary Figure S3A). When we 

applied this random forest classifier to the entire set of regulatory elements, at a score cutoff 

of 0.95 the classifier identified 5345 gained enhancers, 2466 lost enhancers, 11503 gained 

PREs and 694 lost PREs in ccRCC tumors. Notably, we identified 4066 gained enhancers, 

1747 lost enhancers, 7866 gained PREs and 575 lost PREs in ccRCC that have not been 

reported in previous epigenetic studies of ccRCC79. 

To investigate whether the random forest model has learned biologically meaningful 

rules for classification of regulatory elements, we examined the properties of regulatory 

elements that were identified by the classifier as gained, lost, or stable (i.e. not changed 

between tumor and normal). As Figure 8A shows, enhancers that have mostly hypo-

methylated CpGs and few hyper-methylated CpGs are mostly labeled as “gained enhancers” 

by the classifier, as expected, and the opposite pattern is observed in lost enhancers. 

Comparably, regions that have balanced hypo- and hyper-methylated CpGs are mostly 

labeled as “stable enhancers”. The same pattern is observed in PREs that are identified as 

gained, lost or stable by the PRE-classification model (Supplementary Figure S3B). 

Moreover, the regulatory elements status that is identified by the random forest models are 

well correlated with their sample of origin. For example, as Figure 9B, shows, the regions 
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that have more overlap with tumor sample enhancer elements are more likely to be labeled as 

gained enhancers, and vice versa (see Supplementary Figure S3C for PREs). 

Would it be possible to identify gained or lost regulatory elements simply based on 

their sample of origin? Our analyses highlight cases where the sample of origin alone is not 

informative about gain or loss of active regulatory elements, but the model uses additional 

information from DNA methylation to make an informed decision. For example, in cases 

where an enhancer overlaps one element identified from a tumor sample and one element 

identified from a normal sample, the model classifies it as a gained enhancer when there are 

substantial number of hypo-methylated CpGs in the enhancer (Supplementary Figure S3D). 

Similarly, there is a case in which an enhancer overlaps multiple elements identified from 

tumor samples and no elements identified in normal samples (perhaps due to lack of 

statistical power or due to sample preparation issues), but the model still classifies it as a "lost 

enhancer" due to the presence of a large number of hyper-methylated CpGs (Supplementary 

Figure S3E). These observations suggest that our classifier utilizes information across 

histone marks and CpG methylation data to accurately predict a comprehensive and reliable 

set of gained and loss cis-regulatory elements. 
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Figure 9: Investigating the inner working of machine learning classifier: A. Distribution 

of hypo- and hyper-methylated CpGs among enhancers that are classified as gained, lost, or 

stable by the random forest classifier. The size of each box denotes the number of enhancers 

(with the label that is indicated on top of the panel) that overlap the specified number of 

hypo- and hyper-methylated CpGs. The color gradient represents the logarithm of fold 

enrichment relative to what would be expected by chance (i.e. what would be expected from 

the null hypothesis that enhancers from all three classes have the same distribution of hypo- 

and hyper-methylated CpGs); B. Similar to panel (A), but x- and y-axes correspond to the 

number of overlaps of each region with the enhancer elements identified from normal and 

tumor samples, respectively.  

3.5 Gain and loss of active regulatory elements can predict the differential 

expression of associated genes  

Changes in enhancer and promoter activity state (i.e gain or loss of active marks) alter the 

gene expression of nearby genes244. Therefore, we sought to investigate whether the status 

(gain or loss) of active enhancers and PREs that we identified in ccRCC is associated with 

ccRCC gene expression patterns. To identify ccRCC-associated gene expression patterns we 

preformed a differential gene expression analysis using RNA-seq data of 29 patient-matched 

primary ccRCC tumor and normal kidney sample pairs from the CAGEKID cohort188. 

Overall, we obtained 5685 and 5689 significantly up- and down-regulated protein coding 

genes, respectively (FDR < 0.05; refer to Supplementary Figure S4A for distribution of 

expression changes). We then assigned each enhancer and PRE to its closest protein-coding 

gene, and examined the relationship between status (gained or lost) of active regulatory 

elements in tumors and ccRCC-associated expression (up- or down-regulation) of their closet 

gene. 

As shown in Figure 10A, up- and down-regulated genes in ccRCC are more likely to 

be associated with gained and lost active regulatory elements, respectively. This observation 

is valid for both enhancers and PREs, and points to the notion that alterations in the activity 

state of regulatory elements are associated with changes in expression of nearby genes, and 

may serve to predict their expression patterns.  

To test this possibility, we employed a machine learning strategy to predict changes in 

the expression of genes from alterations in the activity status of their nearby regulatory 
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elements. To train the classifier, we used gain/loss scores, which we had calculated through 

integrating data from ChIP-seq and WGBS for each regulatory element, and the distances 

between the regulatory elements and their associated TSS as predictors. The target was the 

ccRCC-associated changes in expression of the gene in each given regulatory element-gene 

pairs (significant up-regulation, significant down-regulation, or no change, based on the 

results of differential gene expression). We used cross-validation to evaluate the performance 

of the classifier, following leave-one-chromosome-out strategy. ROC analyses indicates AUC 

values of 0.95 and 0.88 for predicting up-regulated genes based on enhancer and PRE 

activity, respectively, and AUC values of 0.966 and 0.9 (P-value < 2.59 x 10-73) for predicting 

down-regulated genes based on enhancer and PRE activity, respectively (Supplementary 

Figure S4B), indicating high accuracy of our classifiers. These results suggest that a large 

fraction of gene expression changes in ccRCC can be explained by the gain or loss of active 

enhancers and/or PREs. 

To examine whether our classifier has learned meaningful relationships between 

regulatory element activity and gene expression, we visualized the gain/loss scores of 

regulatory elements associated with genes that our model classifies as up-regulated, down-

regulated, or no-change. Interestingly, genes that are labeled as up-regulated by our model 

show an enrichment of gained enhancers near their TSS. In contrast, we can observed an 

enrichment of lost enhancers near the TSS of genes that the classifier labels as down-

regulated, and genes that are predicted to have no differential expression are more likely to be 

associated with stable enhancers, i.e. those that have neither a strong gain or loss score 

(Figure 10B). Overall, these results suggest that our machine-learning classifier has 

identified biological relevant and interpretable rules to identify up-regulated, down-regulated, 

or stable genes based on the activity and distance of nearby enhancers. Similar analyses on 

the PREs also revealed interpretable connections between PRE activity and differential gene 

expression (Supplementary Figure S4C).  

3.6 Gained and lost enhancers harbor binding sites for specific regulatory 

factors 

Enhancers harbor binding sites for TFs, and the interaction of these TFs with co-factors 

such as transcriptional co-activators, RNA polymerase, and other regulatory factors mediate 

the effect of enhancer on gene expression. Therefore, we examined the regulatory factors 
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(RFs) that are likely involved in causing and/or mediating the effect of gain or loss of 

enhancers on gene expression. 

 

Figure 10: Relationship of gene expression changes and gain or loss of active regulatory 

elements: A. Visual representation of the relationship between differential gene expression 

genes and regulatory element activity in ccRCC. The x- and y- axis represent the regulatory 

element gain score and log2 fold-change of the expression of the associated gene (in tumor 

vs. normal), respectively. Note that a gain score of 0.5 depicts stable regulatory elements 

(gained regulatory elements have scores that range from 0.5 to 1 and lost regulatory elements 

have scores that range from 0.5 to 0). The color gradient shows the enrichment of genes at 

each region of the scatterplot relative to what would be expected if the x and y variables were 

independent of each other. Therefore, for example, the red color at the upper-right quartile of 

the left graph indicates that gained enhancers are more likely to be associated with up-

regulated genes than would be expected by chance, and the blue color at the lower-right 

quartile means that gained enhancers are less likely to be associated with down-regulated 

genes; B. Visualization of the enhancer status for predicted up-, down-regulated and non-

differentially expressed genes relative to the enhancer location from TSS. Enhancer gain 

score is shown on the y axis while distance from TSS is shown on the x axis. Red indicates 

enrichment and blue shows depletion. Therefore, for example, the red color at the top middle 

part of the left graph shows an enrichment of gained enhancers near the TSS of genes that are 

predicted to be up-regulated. 
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To perform this analysis, we obtained the coordinates of the binding sites of 161 known 

RFs from ENCODE196 for 91 cell types, including human embryonic kidney cells (HEK293). 

We then examined the enrichment of these binding sites within 1kb region of the gained or 

lost enhancers. To ensure that the enrichment analysis is not confounded by unseen biases in 

RF binding site mapping or in identification of enhancers, we focused on RFs that are 

significantly enriched in our gained or lost enhancers relative to four different background 

sets; i) the union of gained and lost enhancers, ii) the union of gained and lost enhancers that 

have at least one binding site for at least one RF binding sites iii) the set of all the enhancers 

irrespective of their gain or loss score, and iv) all enhancers with at least one binding site for 

at least one RF (hypergeometric test; refer to method section for details of each test). Overall, 

we identified 32 RFs that were significant in all four enrichment analyses (FDR < 0.05; 

Figure 11A). Of these 32 RFs, 25 were enriched in gained enhancers and the remaining 

seven were enriched in lost enhancers. Consistent with these results, the target genes of all 

gain-associated RFs are significantly up-regulated in tumor relative to normal, and the targets 

of four out of seven loss-associated RFs are down-regulated (Supplementary Figure S5; 

GSEA pre-ranked test236; FDR < 0.05).  

Next, we sought to investigate the biological and cellular processes that may be 

affected by target genes of these RFs. Using CPDB245, we performed pathway enrichment 

analysis for up-regulated genes that are associated with at least one gained enhancer and that 

have a binding site for at least one gain-associated RF. Similarly, we performed this analysis 

for down-regulated targets of loss-associated RF that have a nearby lost enhancer. To test 

robustness of the results, we performed three enrichment analyses for each gene set using 

three background gene sets: i) background 1: default CPDB background, ii) background 2: all 

genes with significant differential expression between tumors and normal samples, iii) 

background 3: all genes associated with at least one enhancer. Then, we identified pathways 

that were significantly enriched in the examined gene set in all three analyses (FDR < 0.01; 

Figure 11B shows the significant pathways in all three tests). Interestingly, results revealed 

that HIF transcription factor network, which is frequently dysregulated in ccRCC81, is a top 

up-regulated pathway associated with enhancer dysregulation. Among genes affected by HIF-

enhancer reprogramming are VEGFA, EDN1 and SLC2A1, which are well-established 

overexpressed genes in ccRCC, suggesting that enhancer activation plays a key role in 

mediating the effect of HIFs in inducing the expression of hypoxia-responsive genes. In 

addition, our results showed that pathways associated with immune system, including 
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interferon gamma signaling, cytokine signaling, and T-cell receptor signaling pathways, are 

also positively regulated by enhancer activation in ccRCC. Taken together, our results show 

that cooperation between enhancer remodeling and RFs whose binding sites coincide with 

enhancers may play a key role in ccRCC-associated gene expression patterns, and may 

underlie dysregulation of ccRCC pathways such as HIF signalling.  

 

Figure 11: Regulatory factors whose binding sites are enriched in gained or lost 

enhancers: A. Enrichment of Regulatory factors (RFs) whose binding sites are enriched in 

gained/lost enhances and enrichment of their target genes in differentially expressed genes of 

tumor relative to normal samples. Only the RFs whose binding sites are significantly enriched 

in 1kb region of gained or lost enhancers relative to four different backgrounds are shown 

(background 1: all gained and lost enhancers, background 2: all gained and lost enhancers 

with at least one RF binding site, background 3: all enhancers, background 4: all enhancers 

with at least one RF binding site). Overall, 32 RFs are significant in all four enrichment 

analyses (hypergeometric test, FDR < 0.05). The circle size indicates the log2 odds of 

enrichment and the color of circles indicates the significance (log10 of FDR). The bar plot on 

the right shows the enrichment of the targets these RFs among up- or down-regulated genes  

(GSEA236 pre-ranked test). The x-axis of the bar plot corresponds to the GSEA normalized 

enrichment score, and the color of each bar represents the statistical significance of the test 
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(FDR). BG; background; RFBS: RF binding site; B. Pathways that are enriched among up- 

and down-regulated targets of gain-associated or loss-associated RFs. Significantly enriched 

pathways are obtained from CPDB245 by performing pathway enrichment analyses using up-

regulated target genes assigned to gained enhancers and down-regulated target genes linked 

with lost enhancers as the test gene sets. Three background gene sets were used (background 

1: default CPDB background, ii. background 2: all significant differentially expressed genes, 

iii. background 3: all the target genes associated with at least one enhancer), and only the 

significant pathways common in all the three analyses (FDR < 0.01) are shown in this figure 

(for the full list of significant pathways refer to Supplementary Table S4).  

3.7 Altered enhancers and associated gene expression changes can be 

partially reversed by VHL 

A recent study186 has shown that introducing the wild type VHL to VHL-deficient 

ccRCC cell lines can trigger the reprogramming of DNA methylation patterns toward the 

normal kidney tissue state in a hypoxia-independent manner. This observation suggests a 

direct link between VHL deficiency and ccRCC epigenome patterns, which may also affect 

enhancer malfunction. Therefore, we sought to examine possible roles of VHL in enhancer 

reprogramming in ccRCC. 

First, to investigate the effects of VHL on DNA methylation reprogramming, we used 

available data to analyze DNA methylation patterns in two ccRCC cancer cell-lines carrying 

VHL loss-of-function mutations (RCC4 and 786-O) and their derivatives in which wild-type 

VHL is stably re-expressed to restore the function of VHL. We obtained genome-wide DNA 

methylation profiles, which were generated using 450K DNA methylation microarray data 

(Infinium HumanMethylation450 BeadChip/ 450K MD) for both VHL reconstituted (VHL+) 

and VHL-deficient (VHL-) versions of the two cell lines, which were maintained in 21% O2 

(normoxic)186. The 450K arrays can probe the methylation state at 485,764 annotated 

cytosine positions across the genome246. We compared the genome-wide status of 5mC levels 

in VHL+ cells relative to VHL- cells in both RCC4 and 786-O cell lines by a differential 

methylation analysis. This analysis uncovered 109268 and 110191 significantly hyper-

methylated (Δβ > 0, FDR < 0.05) loci and 45310 and 81808 hypo-methylated (Δβ < 0, FDR < 

0.05) loci in RCC4 and 786-O, respectively (Supplementary Figure S6A). The results 

indicate that the extent of DNA hyper-methylation in VHL reconstituted cells, particularly in 
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the RCC4 cell line, is greater than the hypo-methylation, suggesting that reconstitution of 

VHL may promote DNA methylation in ccRCC cells.  

To investigate the distribution of VHL-mediated DNA methylation changes across the 

genome, we analyzed the prevalence of the identified differentially methylated CpGs with 

respect to different genomic region annotations, focusing on the CpGs that behave 

consistently in both the RCC4 and 786-O cell lines in response to VHL reconstitution. We 

observed that the prevalence of hyper-methylated loci is higher than hypo-methylated loci in 

all genomic regions in both cell lines (Supplementary Figure S6B), suggesting that the 

effect of VHL on the DNA methylation pattern is global (genome-wide), and results 

predominantly in hyper-methylation in ccRCC cells. 

We examined whether DNA methylation changes that are driven by VHL in ccRCC 

cell lines mirror the DNA methylation changes that are observed in patient tumors compared 

to normal tissues. We first looked at the overall correlation between VHL-driven DNA 

methylation changes in ccRCC cell lines and differential DNA methylation between tumor 

and normal. As shown in Figure 12A, there is an overall negative correlation, suggesting that 

loss of VHL may drive part of the DNA methylation differences between tumor and normal 

tissue. This negative correlation is most prominent when we focus on VHL-mediated 

methylation in RCC4 cells, suggesting that this cell line may more faithfully recapitulate the 

VHL-driven epigenetic changes in ccRCC. This can also be seen when we look at the 

significant differentially methylated CpGs in cell lines and their overlap with significant 

differentially methylated CpGs in ccRCC tumors (Fisher’s Exact test; P-value < 2.2 x 10-16; 

Figure 12B), which shows a particularly significant overlap between CpGs that are hyper-

methylated after VHL reconstitution in RCC4 cells and those that are hypo-methylated in 

patient tumors compared to normal tissue. Therefore, we focus on the RCC4 cell line in the 

rest of our analyses.  

To understand the relationship between these methylation changes with REs, we 

investigated the distribution of hyper- and hypo-methylated CpGs around TSS, as well as 

around DHS’s that were obtained from kidney tissue. As shown in Figure 12C, there is a 

marked depletion of both hypo- and hyper-methylated CpGs at TSS’s, both in RCC4 cells 

and in patient samples. In contrast, when we focus on DHS’s that are far away from genes 

(which are likely distal regulatory elements such as enhancers), there is a sharp enrichment of 

CpGs that are hyper-methylated after VHL-reconstitution in RCC4 cells, and similarly a 



47 

 

sharp enrichment of hypo-methylated CpGs in tumors vs. normal tissues (Figure 12D). These 

observations suggest that in RCC4 cells VHL largely affects distal regulatory elements such 

as enhancers, in a manner that mirrors differential CpG methylation in tumors. 

Interestingly, we found that the binding sites of certain regulatory factors are enriched 

near hypo- or hyper-methylated CpGs. Specifically, we performed a systematic analysis of 

161 regulatory factors (using their binding sites from ENCODE196), in order to identify RFs 

whose binding sites are significantly enriched with hypo- or hyper-methylated CpGs, 

separately, relative to all differentially methylated CpGs in the methylation array. We 

performed this analysis separately for differentially methylated CpGs in RCC4 and 786-O 

(VHL+ vs. VHL-) as well as patient samples (tumor vs. normal). Overall, we identified 14 

RFs that are associated with hypo-methylation after VHL reconstitution and hyper-

methylated in tumors, compared to 13 RFs that are associated with hyper-methylation after 

VHL reconstitution and hypo-methylated in tumors (Figure 12E). Intriguingly, a 

considerable number of RFs that are enriched near tumor hypo-methylated CpGs (and VHL 

hyper-methylated CpGs) overlap those that we found to be enriched in tumor-gained 

enhancers (Figure 11A). Also, we found EZH2 to be associated with tumor hyper-methylated 

CpGs, VHL hypo-methylated CpGs, and tumor-gained enhancers. These results suggest that 

these RFs may be involved in mediating the effect of VHL-driven epigenetic changes in 

ccRCC. 

Finally, we examined the extent to which VHL-driven epigenetic changes contribute to 

transcriptome remodelling in ccRCC. To do this, we performed RNA-sequencing on VHL+ 

and VHL- RCC4 cell lines. We examined each of these cell line versions in two oxygen 

conditions (hypoxia and normoxia) in order to understand hypoxia-dependent and hypoxia-

independent effects of VHL on gene expression. After measuring the differential expression 

of each gene in VHL+ relative to VHL- cells in each growth condition, we focused on genes 

that are up-regulated in ccRCC tumors due to gain of enhancer activity (i.e. those identified 

in section 3.6). As Figure 12F shows, genes that are up-regulated in ccRCC due to enhancer 

gain are significantly enriched among genes that are down-regulated after VHL reconstitution 

in RCC4 cells. Interestingly, this pattern can be seen in both hypoxic and normoxic 

conditions, although the enrichment among down-regulated genes appears to be stronger in 

the normoxic condition, suggesting that there might be a mixture of hypoxia-dependent and 

hypoxia-independent effects. Despite this statistically significant enrichment, overall only 

10% of the genes that are up-regulated in tumors due to gained enhancers are inhibited by 
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VHL, suggesting that enhancer-mediated up-regulation of genes can only be partially 

reversed by VHL reconstitution, and therefore a large majority of ccRCC epigenetic changes 

are likely caused by factors other than VHL. 
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Figure 12: VHL reconstitution partially recovers the changes occurred in ccRCC: A. 

Correlation between differentially methylated CpGs in cell lines and patients. The scatter plot 

shows the density and distribution of Δβ values of all CpGs for 786-O (top) and RCC4 

(bottom); B. Number of VHL specific, ccRCC specific and CpG loci consistently 

differentially methylated among cell lines and patients. Number of differentially methylated 

CpGs (0.05 < FDR; |Δβ| > 0) only found in cell lines (RCC4 and 786-O) and patients CpGs 

differentially methylated in patients consistently methylated in reverse direction in cell lines 

are listed in Venn diagrams. P-value < 2.2e-16 (Fisher’s exact test); C. Distribution of the 

fraction of differentially methylated loci around TSSs. Distribution of the ratio between 

number of hyper- hypo-methylated CpGs and all the CpGs at a position around TSSs for 

RCC4 and the same overlapping CpGs in patients (left to right). The CpGs and their 

respective distances from a TSS are grouped into bins and average number of CpGs and 

average distance per bin were calculated. Finally, the mean CpG ratio plotted against the 

mean distance separately for hyper- and hypo-methylated CpGs; D. Distribution of VHL-

mediated differential CpG methylation with respect to DHSs (DHS data from fetus kidney 

tissue; DHS regions that are within 5kb of a gene body were removed to retain only distal 

REs). In each graph, the x-axis shows the distance relative to the center of DHS, and y-axis 

shows the fraction of CpGs at each given distance that are either significantly hyper-

methylated (Δβ > 0, FDR < 0.05, red) or hypo-methylated (Δβ < 0, FDR < 0.05, blue). 

Analysis was done in RCC4 cell lines (VHL+ vs. VHL-) and patient samples (tumor vs. 

normal) separately, including only CpGs that were common in both datasets; E. Enrichment 

of regulatory factor binding sites (RFBSs) near differentially methylated CpGs in 

tumor/normal samples or VHL+/VHL- cell lines. The analysis was performed separately for 

the cell lines (RCC4 and 786-O) and patient samples. Only RFs with significant enrichment 

in all three analyses are included. The circle size indicates the log2-odds of enrichments, 

while the color gradient represents the logarithm of P-value (Fisher’s exact test); F. The 

density plot shows the enrichment and depletion of genes that are up-regulated in ccRCC 

tumors (FDR < 0.01) due to enhancer gain (random forest classifier score > 0.95) with 

respects to differential gene expression in VHL+ vs. VHL- cells in two oxygen conditions. 

The contours represent the probability density function for all genes. Red indicates the 

enrichment and blue shows the depletion of enhancer-mediated up-regulated genes. 

 

  



50 

 

CHAPTER 4. DISCUSSION 

In this study, we explored the landscape of epigenome aberrations in ccRCC, and 

investigated the relationship between alterations in gene expression and epigenetic 

fingerprints of cis-regulatory elements (regulatory elements), specifically distal enhancers 

and proximal regulatory elements (PREs). In addition, we examined the possible role of 

VHL, the major driver of the disease, in enhancer reprogramming and the associated 

transcriptome remodelling in ccRCC. 

4.1 Discovery of gained and lost regulatory elements in ccRCC 

Several studies showed that enrichment of specific combination of histone 

modifications, such that H3K4me1 and H3K4me3 occurring simultaneously with H3K27ac 

are associated with active enhancers and promoters, respectively85,86,247. In addition, the 

interplay between histone modifications and DNA methylation in human cancers has been 

reported in numerous studies.248-250 Moreover, the reciprocal relationships between active 

regulatory elements and DNA methylation patterns have also been used to identify activity 

changes in regulatory elements in the genome86. Considering those, in this study we 

integrated information across histone modifications and DNA methylation (by utilizing two 

separate supervised machine learning models - random forest, for enhancers and PREs) as 

together, they provide more power for the identification of gain and loss events in ccRCC. 

We identified thousands of gained and lost regulatory elements and interestingly, among 

them, 71.2% of gain and lost events were novel and had not been previously reported in 

ccRCC, based on comparison to the only other study that we are aware of that has tried to 

comprehensively characterize regulatory elements and their epigenetic state in ccRCC79. 

Although, we did not perform experiments to identify optimum number of samples for better 

performance, we suggest that performance of active regulatory element identification is 

positively correlated with the number of samples. Capabilities of using this method in other 

tissues and cancer types merit further exploration. 

4.2 Relationship between gain and loss of regulatory elements with gene 

expression changes in ccRCC 

Several studies have shown that enhancers affect gene expression independently of 

their orientation (can be located either upstream or downstream of the gene TSS) and at 
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various distances from their target promoters251,252. The effective distance of enhancer-

promoter interactions can be highly variable. For example, while most enhancers often act on 

the closest gene promoter, some enhancers can bypass neighbouring genes and regulate more 

distantly-located genes along the chromosome. Also, a single enhancer may regulate multiple 

genes252,253. Therefore, following a simple ad hoc procedure254, we assigned each enhancer 

and PRE to its closest protein-coding gene and examined the relationship between cancer-

associated changes in enhancer activity status (gained or lost) and differential expression (up- 

or down-regulation in tumors relative to normal tissue) of the closet gene. Using a supervised 

random-forest based machine learning strategy, we showed that the gain and loss of 

regulatory elements in ccRCC are predictive of the changes that happen in the expression 

patterns of nearby genes. Our results are consistent with previous studies which show 

enhancer activation positively correlated with gene up-regulation in several cancers including 

breast cancer142 and adult T-cell leukemia255. 

4.3 Regulatory factors-enhancer complexes drive activation of ccRCC 

pathways  

Enhancer activity depends on binding of regulatory factors, including transcription 

factors and co-activators to the enhancer region and their interactions with RNA polymerase. 

Out of the 161 regulatory factors examined in our study, binding sites of 25 and 7 were 

significantly enriched in gained and lost enhancers, respectively. Consistent with these 

results, the target genes of the RFs associated with gained enhancers were significantly up-

regulated in tumors, whereas target genes of RFs associated with lost enhancers were down-

regulated in tumors relative to normal samples, but only four of them reached statistical 

significance after multiple testing correction.  

In our study, we also investigated the biological pathways and cellular processes that 

were affected by target genes of regulatory factors that we had identified. Notably, most of 

the target genes were involved in cellular processes that have previously been connected to 

ccRCC. For example, cellular responses to stress and immune system pathways were 

enriched in up-regulated genes associated with gained enhancers. Among up-regulated genes, 

we observed the HIF1α and HIF2α transcription factor network genes, which are associated 

with the hypoxia signalling pathway, the main driver pathway of ccRCC256,16. It is 

noteworthy that although the data set of regulatory factor binding sites that we analyzed did 

not include binding sites for HIF1α and 2α, both HIF1α and HIF2α transcription factor 
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networks were enriched in up-regulated target genes that were associated with TFs whose 

binding sites were enriched in gained enhancers in tumors. In other words, when we looked at 

the target genes of TFs that are enriched in gained enhancers (excluding HIFs), we still 

observed that these genes are significantly enriched for the HIF signalling pathway. This 

suggests that while HIFs directly regulate expression of several genes (e.g. VEGF) through 

binding to hypoxia responsive elements (HRE)257, they may also contribute to the function of 

other TFs whose target genes are involved in cellular process that are affected by hypoxia 

signaling258 (Supplementary Table S5). Abnormal activation of hypoxia signaling is 

involved in angiogenesis, glycolysis, cell proliferation, invasion and metastasis in ccRCC19. 

In addition, both innate and adaptive immune system related pathways, including interferon 

gamma signaling, T-cell receptor signaling pathway, Toll-like receptors cascades, and the 

AP1-transcription factor network were among those enriched in enhancer-associated up-

regulated genes in ccRCC. Abnormal innate and adaptive immune responses are involved in 

oncogenesis by facilitating the selection of aggressive clones, and stimulating cancer cell 

proliferation and metastasis259. Further investigations on these specific pathways may prove 

to be of value for prognostic and diagnostic purposes in ccRCC. Overall, our study suggests 

that enhancer dysregulation plays a major role in over-expression of pathways that are 

integral to ccRCC biology. Interestingly, however, we did not observe any significant 

association between lost enhancers and genes that are enriched in main pathways that are 

inactivated in ccRCC. This may suggest that while upregulation of driver genes in ccRCC is 

mediated by specific TF-enhancer complexes, down-regulation of genes is caused by other 

mechanisms.  

4.4 Changes of enhancer activity status affects expression of cancer-

related genes in ccRCC  

We also observed that expression of several well-established dysregulated genes in 

ccRCC is associated with abnormal changes in the activity of enhancers. For example, MYC, 

VEGFA and EGFR were significantly up-regulated in ccRCC tumors and are associated with 

gained enhancers. MYC is an oncogenic TF that is essential for promoting cell cycle 

progression, angiogenesis, cell growth and proliferation in ccRCC260,261. VEGFA, a hypoxia 

responsive gene, is responsible for inducing proliferation and migration of vascular 

endothelial cells and angiogenesis in ccRCC262. EGFR is a receptor tyrosine kinase that 

mediates numerous important aspects of cell biology that are related to ccRCC 



53 

 

tumorigenesis263,264. On the other hand, GATA3, a protein that is responsible for inhibiting 

adipocyte differentiation, is down regulated in ccRCC and is associated with a lost enhancer. 

This enhancer loss may at the GATA3 locus may lead to adipogenic trans-differentiation, 

which supports tumorigenesis and metastasis265. JAGGED1 (JAG1), a ligand in notch 

pathway, is commonly overexpressed and reported to be associated with loss of CpG 

methylation at H3K4me1-associated enhancer regions174. Interestingly JAGGED1 was up 

regulated in our ccRCC tumors, potentially as a consequence of nearby gained enhancer. 

Although its pathological role in renal cell carcinoma is still unclear, patients with 

overexpression of JAG1 have poor outcome266. These observations show that abnormal 

epigenetic patterns may explain aberrant expression of many genes that are connected to the 

biology or clinical outcome of ccRCC. 

4.5 VHL-mediated DNA methylation reprogramming and its role in 

enhancer regulation in ccRCC 

A recent study reported that von Hippel-Lindau (VHL), the most frequently mutated 

gene in ccRCC, is able to reprogram the DNA methylome in ccRCC186. Therefore, we 

studied the potential involvement of VHL-mediated DNA methylation changes in remodeling 

the regulatory landscape of ccRCC. 

In our study, we observed a global DNA hyper-methylation after VHL re-constitution 

in two VHL-deficient ccRCC cell lines (RCC4 and 786-O), with a pattern that was 

significantly negatively correlated with DNA methylations levels in patient samples 

harbouring loss-of-function VHL mutations. This suggests that VHL deficiency may at least 

partially drive the DNA methylation differences between tumor and normal tissues. We note 

that a recently published study by Artemov et al.267 reported opposite results to us by 

showing global hypo-methylation upon inactivating VHL by CRISPR/Cas9 in Caki-1 cell 

line. However, a few pitfalls of their study can be summarized as follows: Caki-1 cell line is a 

VHL-positive (expressing wild-type VHL) cell line, which had been isolated from a skin 

metastatic site268, whereas we selected two appropriate models of ccRCC which represent the 

canonical malfunction of the driver pathway of ccRCC, which is the inactivation of VHL 

(primary ccRCC cell lines RCC4 and 786-O) and compared our results with actual primary 

tumor tissues (RCC4 and 786-O cell lines are VHL-deficient and resemble actual tumors). 

Although Caki-1 cells express wildtype VHL they may have other modifications downstream 

of VHL that still renders VHL non-functional, and therefore VHL CRISPR in Caki-1 may not 
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recapitulate the functional consequences of VHL deficiency in kidney epithelial cells  

(because VHL is already not doing what it is supposed to do due to downstream alterations). 

In addition, they have performed functional genomics experiments only on one cell lines 

(Caki-1) but our functional work (VHL-reconstitution) were based on two cell lines, 

supporting reproducible observations. Therefore, their results may also be confounded by cell 

line-specific patterns. 

In addition, VHL+ RCC4 cells showed an elevated level of methylation in distal DHS 

regions of genes compared to that in proximal areas of TSS. These observations suggest that 

in RCC4 cells, VHL largely affects distal regulatory elements such as enhancers, in a manner 

that mirrors differential CpG methylation in tumors. Therefore, focusing on enhancers, we 

uncovered several regulatory factors associated with dysregulated enhancers that there 

affected by VHL-driven DNA methylation changes. Among them, BATF, JUN, SPI1 and 

STAT3 were enriched in gained enhancers, and EZH2 was associated with lost enhancers.  

Considering the biological functions of these regulatory factors, BATF can form a 

heterodimer with JUN proteins to bind to AP1 transcription factor motifs, and is critical for T 

helper type 17 differentiation, growth and survival in anaplastic large cell lymphoma269. 

STAT3 is an oncogenic TF controlling inflammation, cell proliferation, survival, and 

differentiation in normal tissue as well as in ccRCC tumor growth270. EZH2 is a histone 

methyl transferase enzyme that catalyzes H3K27 tri-methylation, a suppressive histone mark. 

It is a subunit and one of the catalytic components of polycomb repressive complex 2 

(PRC2), which contributes to polynucleosome compaction and leads to transcriptional 

repression by reducing the access of both TFs and chromatin remodelers such as SWI/SNF to 

DNA123. In addition, it directly controls the DNA methylation271. Target genes of EZH2 are 

involved in various biological functions including cell cycle, cell proliferation and cell 

differentiation272. In ccRCC, over-expression of EZH2 is associated with metastasis and 

worse clinical outcome163. Overall, our results suggest that these regulatory factors may play 

a crucial role in reprogramming major biological and cellular pathways associated with 

cancer, warranting future studies for functional validation of these candidate factors.  

Finally, we examined the extent of ccRCC-associated transcriptional changes that can 

be explained by VHL-driven epigenetic changes in ccRCC.  Our results showed that VHL 

might be responsible for a mixture of hypoxia-dependent and hypoxia-independent effects on 

gene up-regulation due to gain of enhancer activity. Overall, our results suggest that only 
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10% of enhancer-upregulated genes in ccRCC can be inhibited by VHL reconstitution. This 

suggests that a major fraction of epigenetic changes that drive enhancer-mediated gene 

upregulation in ccRCC is not mediated directly by VHL. On the other hand, given that our 

results uncover a global effect on DNA methylation by VHL, further studies are necessary to 

examine the function consequences of these alterations beyond enhancer regulation. 
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

Here, we characterized the epigenome changes of cis-regulatory elements, specifically 

the enhancers and proximal regulatory elements in ccRCC, and investigated their role in gene 

expression changes in ccRCC. We identified thousands of differentially activated enhancers 

and proximal elements in ccRCC and found that most of them are associated with alterations 

in the expression of their target genes. We also found a set of regulatory factors whose 

binding sites are enriched in gained and lost cis-regulatory elements, suggesting that they 

may modulate the expression of the genes associated with these regulatory elements.  Finally, 

we investigated the potential involvement of VHL in these epigenetic alterations.  Our 

analysis revealed that only ~10% of gene expression changes in ccRCC can be reversed by 

VHL-driven epigenome alterations on enhancers, and that these VHL-driven changes are 

mixture of hypoxia-dependent and independent events. Moreover, we discovered several 

potential regulatory factors whose functions are regulated by VHL-mediated DNA 

methylation and that are associated with differentially activated enhancers in tumor relative to 

normal. These factors are possible candidates for functional validations for future studies. 

Overall, our study provides a better understanding of the molecular mechanisms that underlie 

the ccRCC initiation, progression and/or metastatic. 
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APPENDICES 

Supplementary Materials 

Supplementary methods 

Histone broad peaks comparison with reference peaks 

Histone Chip-Seq broad peaks of unconsolidated adult kidney from road map 

epigenome21 peaks were downloaded (link at the end). Coordinates were converted to 

GRCh38 from hg19. Bedtools225 shuffle (version 2.26.0) was used to generate a set of 

randomly shuffled histone mark peaks of kidney tissues from road map epigenome project. 

Overlap percentage was calculated comparing H3K27ac, H3K4me1 and H3K4me3 broad 

peaks from both normal and tumor tissues (from four ccRCC patients) with corresponding 

histone broad peaks from kidney tissues and their randomly shuffled genomic regions. 

(https://egg2.wustl.edu/roadmap/data/byFileType/peaks/unconsolidated/broadPeak/) 

Visualizing the histone enrichment profiles surrounding TSS 

Chip-Seq signal files generated by MACS2220 of normal samples of patient LR354 

were obtained (for H3K27ac, H3K4me3 and H3K4me1) and signal of each coordinate was 

normalized by total area under the curve of each sample. Normalized signal, files (bedgraph) 

were used for subsequent analysis. For one gene, gene body and similar width to gene body 

of surrounding flanking regions were considered for the visualization. ChIP-Seq signals of all 

three regions were separately averaged to 800bp each (one row in the heatmap). The same 

procedure was applied to all the genes and genes were ordered by the total average signal 

across rows of H3K27ac enrichment profile and this order was used as a reference for other 

histone marks. Average base mean expression values normalized to library size of each 

normal sample were used to compare with histone enrichment profiles.  

Visualizing the differential ChIP-Seq signal for histone marks around TSS  

Normalized ChIP-Seq signal files of both tumor and normal samples were used and 4kb 

region of TSS of each gene was selected. Genes were ordered based on the log2 fold change 

of expression of four patients comparing tumor relative to normal samples. Signal difference 

of tumor relative to normal samples were then calculated and used to visualize the change of 

histone modification. 

https://egg2.wustl.edu/roadmap/data/byFileType/peaks/unconsolidated/broadPeak/
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Supplementary figures 

  

Supplementary Figure S1: A. Comparison of histone mark peaks identified in this study 

with peaks from Roadmap Epigenomics dataset: Percentage of overlapping of H3K27ac, 

H3K4me1 and H3K4me3 broad peaks from both normal and tumor tissues (from four ccRCC 
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patients) with corresponding histone broad peaks from unconsolidated adult kidney tissues 

(left) or their genomic regions were randomly shuffled (right). Note the higher percentage of 

overlap with actual RoadMap Epigenomics peaks than random genomic regions. H3K4me3 

from the tumor sample of patient LR380 and H3K4me1 from its normal sample were 

excluded from this study due to low data quality; B. Histone enrichment profiles across the 

upstream flanking region, gene body, and downstream flanking region of genes: Each row 

represents one gene, with genes sorted by their average expression (shown in the left graph). 

The color gradient represents the average signal for H3K27ac, H3K4me3 and H3K4me1, 

obtained from normal samples (red represents the highest signal, and yellow denotes the 

lowest signal). The upstream flanking region, downstream flanking region, and gene body are 

normalized to have the same length for visualization purposes. FR: flanking region; C. 

Differential ChIP-seq signal for histone marks around TSS and its relationshi to differential 

gene expression between tumor (T) and normal (N) tissue samples: Each row represents one 

gene, sorted by their log2 fold change in gene expression as shown in the left graph. The 

color gradient represents log-fold change in average histone mark signal between T and N 

(red: enrichment in T; blue: enrichment in N tissue). H3K27ac and H3K4me3 panels were 

generated using data from patient LR354; H3K4me1 was analyzed using data from RL400 

(selected due to availability of high-quality data in both T and N tissues). D. Number of 

regulatory elements (REs) in this study overlap with gained and lost regulatory elements in 

ccRCC defined by Yao et al.79:  Number of overlaps of all core elements (without 

considering the origin tissue) with a previous study (Yao et al.) that identified a set of 

regulatory elements in ccRCC are shown in the tables. Percentage value denotes total 

percentage of regulatory elements in our study found in Yao et. al., study; E. Distribution of 

tumor- and normal-specific regulatory elements from a previous study79 with respect to the 

frequency of their observation in our tumor and normal samples. The x- and y-axes 

correspond to the number of times an overlapping element is observed in any normal and 

tumor sample, respectively. Color and annotations are similar to Figure 8A. 
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Supplementary Figure S2: Relationship between number of CpGs and statistical power 

(IHW) in PREs (left) and enhancers (right): Two-sided exact binomial test was used to 

calculate the significance of methylation imbalance (between hyper- and hypo-methylated 

CpGs) on the 10kb region around enhancers and PREs. Then independence hypothesis 

weighing (IHW)235 was used to calculate the adjusted P-value, optimizing for FDR < 0.1 

using the level of significance (P-value) and the number of differentially methylated CpGs on 

the element (n).  
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Supplementary Figure S3: A. Receiver operating characteristic (ROC) curves for 

identifying gained and lost enhancers and PREs. Cross-validation on the gold standard data 

set (i.e. gained/lost promoters and enhancers reported in a previous study79) was used to 

produce the ROC curves in order to evaluate the classification approach. In this cross-

validation, all enhancers from one chromosome were held-out for testing, and the classifier 

was trained on the other chromosomes. Then, the held-out data were used for determining 

gain and loss events (leave-one-chromosome-out cross-validation). This ensures that local 

information will not be leaked across nearby elements during the training and testing phases; 

B. Distribution of hypo- and hyper-methylated CpGs among PREs that are classified as 

gained, lost, or stable by the random forest classifier. Annotations are similar to Figure 3A; 

C. Similar to panel (B), but x- and y-axes correspond to the number of overlaps of each 

region with the PREs identified from normal and tumor samples, respectively; D. Similar to 

Figure 3A but, distribution only for where enhancer overlaps one element identified from a 

tumor sample and one element identified from a normal sample. E. Similar to Figure 3A but, 

distribution only for where enhancer overlaps more than one element identified from a tumor 

sample and no element identified from a normal sample 
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Supplementary Figure S4: A. Distribution of RNA-Seq gene expression values among 

tumor and normal samples. Color gradient shows the variance-stabilized values of read 

counts normalized to have an average of zero for each sample. Top 1000 genes with highest 

variance are shown in the figure; B. Receiver operating characteristic (ROC) curves for 

predicting the expression of genes associated with regulatory elements: Leave-one-out cross-

validation was used to evaluate the performance of our classifier for predicting up- or down-

regulated genes (FDR < 0.01) using regulatory elements activity; C. Visualization of the PRE 

status for predicted up-, down-regulated and non-differentially expressed genes relative to the 

PRE location from TSS. PRE gain score is shown on the y axis while distance from TSS is 

shown on the x axis. Red indicates enrichment and blue shows depletion. Therefore, as an 

example, the red color at the top middle part of the left graph shows an enrichment of gained 

PREs downstream and in the vicinity of TSS of genes that are predicted to be up-regulated. 
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Supplementary Figure S5: GSEA enrichment plots for target genes associated with 

regulatory factors. Target genes of each RF whose binding sites are significantly enriched in 

gained or lost enhancers were selected, followed by a GSEA pre-ranked test to examine 

whether the targets of the RF are enriched in up- or down-regulated genes (tumor vs. normal). 

The figure shows the enrichment plots generated by the GSEA software for all selected 32 

RFs. 

 

Supplementary Figure S6: A. Distribution of differentially methylated CpGs relative to 

change of methylation (Δβ). Number of significantly differentially methylated (VHL+ve vs. 

MOCK) CpGs (0.05 <FDR) relative to the change of methylation (Δβ) for 786-O and RCC4 

cell lines. Overall, 110191 and 109268 loci are hyper-methylated, and 81808 and 45310 loci 

are hypo-methylated in 786-O and RCC4 respectively; B. The distribution of the ratio 

between hyper-, hypo-methylated, non-differentially methylated CpGs and total CpGs of 

different genomic regions. The distribution of the ratio of differentially methylated CpGs for 

RCC4 (VHL/MOCK) cell lines and patient (T/N) samples; 
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Supplementary tables 

Supplementary Table S1: Clinical information of patients; M: male, F: female 

Patient 

ID 

Sex Ethnicity Country Tumor 

Stage 

Tumor 

Laterality 

Age 

category 

Tobacco 

usage 

Profiled 

data type 

LR354 M European 

ancestry 

UK 1 Right 

kidney 

<55 Current 

smoker 

ChIP-Seq, 

RNA-Seq, 

WGBS 

LR371 M European 

ancestry 

UK 1 Left 

kidney 

65-69 Ex-

smoker 

ChIP-Seq, 

RNA-Seq 

LR380 M European 

ancestry 

UK 1 Left 

kidney 

70+ Ex-

smoker 

ChIP-Seq, 

RNA-Seq, 

WGBS 

LR398 F European 

ancestry 

UK 3 Right 

kidney 

60-64 Ex-

smoker 

WGBS 

LR400 F European 

ancestry 

UK 1 Left 

kidney 

55-59 Never ChIP-Seq, 

RNA-Seq, 

WGBS 

 

Supplementary Table S2: ChIP-seq analysis statistics; T: tumor, N: Normal 

Patient 

ID 

Sample 

type 

Histone 

modification 

Raw read 

count 

Overall 

alignment 

rate (%) 

Tags after 

filtering in 

treatment 

Tags after 

filtering 

in control 

RL354 N H3K27ac 31870072 98.00 25719060 15586321 

RL354 T H3K27ac 19049026 98.32 16800047 25431284 

RL371 N H3K27ac 29,868,488 98.39 25615646 25709754 

RL371 T H3K27ac 41470878 98.95 31103595 22728163 

RL380 N H3K27ac 31758758 99.05 27653117 11734774 

RL380 T H3K27ac 29962914 98.66 25526062 17604874 

RL400 N H3K27ac 21745067 98.29 17067870 43933173 

RL400 T H3K27ac 68034144 99.21 52067078 43234735 

RL354 N H3K4me3 29351725 97.10 21019122 17185401 

RL354 T H3K4me3 38076319 97.53 31156666 26512299 

RL371 N H3K4me3 31003950 98.41 23808649 27250881 

RL371 T H3K4me3 31584539 96.15 23143882 23502332 

RL380 N H3K4me3 35762186 98.72 27893559 18002713 

RL380 T H3K4me3 11771595 97.46 9652163 18070989 

RL400 N H3K4me3 60162306 96.00 24688722 39709982 

RL400 T H3K4me3 46787546 92.82 37872958 43234735 

RL354 N H3K4me1 63451450 95.19 51654811 15586321 

RL354 T H3K4me1 63144291 98.46 17312283 25431284 

RL371 N H3K4me1 66393517 96.07 56061156 25709754 

RL371 T H3K4me1 71001106 98.41 52115362 22728163 

RL380 N H3K4me1 35748586 95.37 28952502 11734774 

RL380 T H3K4me1 15649816 96.66 13110606 17604874 

RL400 N H3K4me1 67382824 98.62 48141488 38403486 
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RL400 T H3K4me1 64914968 98.76 41127912 37916260 

 

Supplementary Table S3: WGBS analysis statistics 

Patient ID Sample Raw reads Trimmed 

reads 

Aligned reads Mapping efficiency 

(%) 

LR354 N_1 2,062,426,418 1,717,219,528 1,090,172,288 63.48  

LR354 N_2 203,503,296 147,839,506 109,551,370 74.10  

LR354 T_1 2,060,689,278 1,862,258,018   1,167,620,986  62.70  

LR380 N_1 2,036,265,582 1,897,001,532 1,219,271,256 64.27  

LR380 N_2 201,092,252 153,696,260 115,504,900 75.15  

LR380 T_1 2,239,250,024 2,041,092,698 1305273884 63.95  

LR380 T_2 235,831,200 167,402,550 122,748,676 73.32  

LR398 N_1 1,936,284,554 1,809,086,682 1,227,681,344 67.86  

LR398 T_1 2,130,245,932 1,944,291,960 1,291,919,996 66.44  

LR400 N_1 776,882,358 748,832,184 653,434,186 87.26  

LR400 T_1 799,885,498 772,774,862 675,394,396 87.39  

 

Supplementary Table S4: Significantly enriched pathways of up-regulated target genes of 

gained enhancer-RF pairs 

Pathway FDR Source 

Interferon gamma signaling 0.001633 Reactome 

Cytokine Signaling in Immune system 0.001892 Reactome 

Immune System 0.003067 Reactome 

T cell receptor signaling pathway – (human) 0.003708 KEGG 

Leishmaniasis (human) 0.003708 KEGG 

Adaptive Immune System 0.006734 Reactome 

Interferon Signaling 0.006734 Reactome 

Th1 and Th2 cell differentiation - (human) 0.006734 KEGG 

HIF-1-alpha transcription factor network 0.00705 PID 

Toll Like Receptor 4 (TLR4) Cascade 0.011596 Reactome 

Regulation of IFNG signaling 0.012772 Reactome 

Receptor-ligand binding initiates the second proteolytic cleavage of Notch 

receptor 

0.014103 Reactome 

Toll-Like Receptors Cascades 0.014103 Reactome 

Direct p53 effectors 0.014103 PID 

Allograft rejection - (human) 0.014103 KEGG 

Signaling by NOTCH1 HD Domain Mutants in Cancer 0.015924 Reactome 

Constitutive Signaling by NOTCH1 HD Domain Mutants 0.015924 Reactome 

Toxoplasmosis - (human) 0.015924 KEGG 

Signaling by NOTCH2 0.019254 Reactome 

Signaling by PTK6 0.019271 Reactome 

Signaling by Non-Receptor Tyrosine Kinases 0.019271 Reactome 

Measles - (human) 0.019271 KEGG 



88 

 

Autoimmune thyroid disease - (human) 0.019271 KEGG 

Alpha4 beta1 integrin signaling events 0.022168 PID 

Tuberculosis - (human) 0.022168 KEGG 

Signaling by NOTCH 0.02238 Reactome 

Signal Transduction 0.02238 Reactome 

MyD88:Mal cascade initiated on plasma membrane 0.02238 Reactome 

Toll Like Receptor TLR1:TLR2 Cascade 0.02238 Reactome 

Toll Like Receptor TLR6:TLR2 Cascade 0.02238 Reactome 

Toll Like Receptor 2 (TLR2) Cascade 0.02238 Reactome 

Signaling by NOTCH1 PEST Domain Mutants in Cancer 0.02238 Reactome 

Signaling by NOTCH1 in Cancer 0.02238 Reactome 

Constitutive Signaling by NOTCH1 PEST Domain Mutants 0.02238 Reactome 

Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 0.02238 Reactome 

Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 0.02238 Reactome 

HIF-2-alpha transcription factor network 0.02238 PID 

IL12-mediated signaling events 0.02238 PID 

Cell adhesion molecules (CAMs) - Homo sapiens (human) 0.02238 KEGG 

 

Supplementary Table S5: Up-regulated target genes associated with HIF1α and HIF2α 

transcription factor network and RFs associated with these target genes. 2nd and 3rd columns 

state whether these target genes are directly regulated by HIF1α and/or HIF2α273-275. HIF1α 

and HIF2α may contribute to the recruitment of other TFs whose target genes are involved in 

cellular process that are affected by hypoxia signaling. 

 Target 

gene 

HIF1 α HIF2 α RFs associated with target the gene 

ABCG2 no no NFIC 

HMOX1 no no FOS, SPI1, JUN, FOSL2, STAT3 

BHLHE40 no no NFATC1, MEF2C, JUNB, ATF1, IKZF1, STAT5A 

ID2 no no ATF1, ATF2, BCL11A, BCL3, FOS, FOSL2, FOXM1, 

IKZF1, IRF4, JUN, JUNB, MEF2A, MEF2C, MTA3, 

NFATC1, NFIC, POU2F2, RELA, RUNX3, SPI1, STAT3, 

STAT5A, WRNIP1 

PFKFB3 yes yes BATF, BCL11A, BCL3, EBF1, FOXM1, IKZF1, IRF4, 

MEF2A, NFIC, POU2F2, RELA, RUNX3, SPI1, STAT3, 

WRNIP1 

CXCR4 no no JUN, NFIC, RELA, STAT3, IRF4, NFIC, JUNB, SPI1, JUN, 

ATF1, ATF2, BATF, BCL11A, EBF1, FOS, FOXM1, IKZF1, 

IRF4, MTA3, POU2F2, RELA, RUNX3, SPI1, STAT3, 

WRNIP1 

JUN no no ATF1, ATF2, BCL3, FOS, FOSL2, FOXM1, JUN, JUNB, 

MEF2A, MEF2C, NFIC, RELA, RUNX3, SPI1, STAT3, 

STAT5A 

CREB1 no no SPI1 

ETS1 no no FOS, FOSL2, JUN, RELA, RUNX3, SPI1, STAT3 

VEGFA no yes EBF1 
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SLC2A1 yes no FOSL2, NFIC 

CITED2 yes yes ATF2, BATF, BCL11A, EBF1, FOS, JUN, RELA, RUNX3, 

SPI1, STAT 

EDN1 yes no BCL3, FOS, FOSL2, JUN, RUNX3, STAT3 

NDRG1 yes yes ATF1, FOS, JUN, MEF2A, RELA, RUNX3, STAT3 

PLIN2 no no ATF1, ATF2, BATF, BCL3, EBF1, FOS, FOSL2, FOXM1, 

JUN, JUNB, MTA3, NFIC, RUNX3, STAT3, STAT5A 

EPAS1 no no IKZF1, MEF2A, IKZF1, IKZF1, MEF2A, RELA, MEF2C, 

IRF4, FOXM1, MEF2A, IRF4, IKZF1, BCL3, EBF1, FOS, 

POU2F2, FOSL2, MTA3, POU2F2, POU2F2, MTA3, 

FOXM1, ATF2, BATF, BCL11A, BCL3, EBF1, FOS, FOSL2, 

FOXM1, IRF4, JUN, JUNB, MEF2A, MEF2C, MTA3, 

NFATC1, NFIC, POU2F2, RELA, RUNX3, SPI1, STAT3, 

STAT5A 

FLT1 no no ATF1, BATF, EBF1, FOS, FOSL2, JUN, JUNB, MEF2A, 

RELA, RUNX3, SPI1, STAT3, STAT5A 
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Ethical approval for using patient samples 

Patient samples were obtained from a previously published study by Scelo et al., 2014 

through CAGEKID consortium. They recruited patients undergoing nephrectomy for 

suspected renal cancer during the period December 2008 to March 2011 at St James’s 

University Hospital in Leeds, UK to the study after informed consent was obtained. Ethical 

approvals were obtained from the Leeds (East) Local Research Ethics Committee and the 

International Agency for Research on Cancer Ethics Committee. All sampling and clinical 

data collection was undertaken according to predefined standard operating procedures 

following guidelines from the International Cancer Genome Consortium. 

Epigenome and gene expression profiling experiments of these samples were 

performed by McGill University Epigenome Mapping Centre (EMC). The data are available  

to download from EMC data portal. 

(https://genomequebec.mcgill.ca/nanuqMPS/project/ProjectPage/projectId/9015) 

https://genomequebec.mcgill.ca/nanuqMPS/project/ProjectPage/projectId/9015

