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Abstract 

This thesis deals with the assessment of sei smic accelerations in buildings and the 

seismic analysis of components installed on building rooftops, with special focus on 

operational telecommunition towers during and after earthquake shaking. 

First, acceleration data recorded during the 1999 Chi Chi earthquake from Il 

instrumented buildings located in Taiwan were studied. Fundamental building periods 

were extracted by system identification and compared to those evaluated according to the 

equations proposed in the 2005 edition of the National Building Code of Canada (NBCC). 

Next, rooftop acceleration spectra and time histories were evaluated using 3-D finite 

element building models; three models of instrumented buildings were calibrated using 

accelerograms from the Chi Chi earthquake and the fourth model is a building located in 

downtown Montreal. The building models were subjected to 44 historical strong motion 

accelerograms and 30 synthetic accelerograms compatible with the target uniform hazard 

spectra specified in NBCC 2005 for Montreal. Based on both the experimental and 

numerical results, a maximum roof top acceleration amplification of 4 is proposed for 

low/medium rise buildings and 3 for flexible high-rise buildings (T > 1.7 s). 

In the second stage, a simplified method for the prediction of seismic shear forces 

and overturning moments at the base of self-supporting steel lattice telecommunication 

towers mounted on building rooftops is presented. The proposed method involves the 

estimation of four parameters: the rooftop seismic acceleration, the mass distribution 

profile of the tower along its height, the maximum acceleration amplification at the tower 

top, and the fundamental sway mode shape of the tower on a rigid base. The method was 

validated by means of numerical results of nine generated building-tower combinations 



composed of three towers assumed to be mounted on three of the building models studied 

in the first stage of the research. The building-tower combinations were subjected to the 

same sets of earthquake records used for the prediction of accelerations. It was found the 

proposed method yields conservative results in aIl the cases analyzed. 

In addition, the empirical component force amplification factor for 

telecommunication towers as proposed in the NBCC 2005 was compared to the factors 

evaluated for the towers of the 16 building-tower combinations. Improved component 

force amplification factors based on rational analysis are proposed. 
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Sommaire 

La recherche présentée dans cette thèse traite de l'évaluation des accélérations 

sismiques dans les bâtiments et de l'analyse sismique des composants installés sur les 

toits de bâtiments, en particulier les pylônes de télécommunication qui doivent demeurer 

fonctionnels durant et après le séisme. 

Dans une première étape, des accélérations enregistrées lors du tremblement de 

terre de Chi Chi en 1999 dans Il bâtiments instrumentés et situés à Taiwan ont été 

étudiées. Les périodes fondamentales de ces bâtiments ont été extraites des 

enregistrements et comparées à celles évaluées selon les équations de l'édition 2005 du 

Code national du bâtiment canadien (CNBC). Aussi, les historiques des accélérations et 

les accélérations spectrales ont été évalués au toit en utilisant des simulations numériques 

avec des modèles d'éléments finis en 3-D générés et calibrés par les accélérogrammes du 

Chi Chi pour trois des bâtiments instrumentés à Taiwan et un bâtiment situé à Montréal. 

Les modèles des bâtiments ont été soumis à 44 accélérogrammes réels et 30 synthétiques 

compatibles avec les spectres de l'aléa sismique du CNBC 2005 pour Montréal. En se 

basant sur les résultats expérimentaux et numériques, une valeur de 4 est suggérée pour 

l'amplification de l'accélération au toit pour les bâtiments rigides à faible ou moyenne 

hauteur, et 3 pour les bâtiments élevés (T > 1.7 s). 

En seconde étape, l'auteure présente une méthode simplifiée pour la prédiction des 

forces de cisaillement et des moments de renversement sismiques à la base des pylônes de 

télécommunication autoporteurs montés sur des toits de bâtiments. La méthode proposée 

nécessite l'évaluation de quatre paramètres: l'accélération sismique au toit, le profil de 

masse du pylône, l'amplification maximale de l'accélération au sommet du pylône, et la 
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forme du mode de vibration fondamental du pylône sur base rigide. La méthode proposée 

a été validée à l'aide de modèles numériques de neuf combinaisons bâtiment-pylône 

soumises aux mêmes accélérogrammes utilisés en première partie. On a trouvé que la 

méthode proposée est conservatrice pour tous les cas étudiés. 

Finalement, le facteur empirique d'amplification de force des composants pour les 

pylônes de télécommunication, tel que proposé dans le CNBC 2005, a été comparé aux 

facteurs évalués pour les pylônes de 16 combinaisons bâtiment-pylône. En se basant sur 

ces analyses rationnelles, l'auteure propose des facteurs améliorés pour l'amplification de 

force sismique des pylônes de télécommunication installés sur les toits de bâtiments. 
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Statement of Original Contributions 

To the author's best knowledge, the original contributions ofthis research include: 

• The study of sei smic floor acceleration demands in buildings based on a combined 

use of recorded accelerations in instrumented buildings and the results of numerical 

simulations. 

• The use of system identification techniques to study the accelerations lU Il 

buildings and compute their fundamental periods. 

• The generation of detailed three-dimensional linear finite element models of four 

existing buildings having geometries ranging from simple to quite complex. Three 

of these modeled buildings are located in Taiwan and their models were calibrated 

using recorded accelerograms during the 1999 Chi Chi earthquake. These models 

are deemed reasonably accurate to represent the seismic behavior of existing 

buildings during earthquake shaking. 

• The evaluation of seismic component force amplification factors for rooftop 

telecommunication towers based on rational analysis. 

• The development of a simple method for the prediction of sei smic acceleration 

profiles for telecommunication towers mounted on building rooftops. 

• The development of a simplified method for the prediction of seismic shear forces 

and overtuming moments at the base of a telecommunication tower mounted on a 

building rooftop. It is the first time that such a method has been developed. 
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foundation factor 

acceleration-based site coefficient 

seismic design force centered at the component's center of gravity 
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Fsz lateral seismic force induced at level z of the tower 

Ft portion of the building base shear to be concentrated at the top of the 

structure 

Fv = velocity-based site coefficient 

GAo shear rigidity at the base of the structure 

H = total height of the structure, in m 

H(n) = transfer function 

l, lE importance factor for the building 

Ip component importance factor (Equation 2-21) 

Ip importance factor for the structure (Equation 2-30) 

[K] diagonal stiffness matrix 

[M] = diagonal mass matrix 

Mdemand overturtning moment ca1culated in the numerical simulations in SAP 

2000 

Mcalculated overturtning moment ca1culated according to the proposed simplified 

method 

MJMA Japan meteorological agency scale for the earthquake magnitude 

ML local magnitude of the earthquake 

Ms surface wave magnitude of the earthquake 

N = number of stories above ground of a building 

R measure of the estimated intensity of earthquake forces that may 

occur in the area considered in NBCC 1953-1965 (Equation 2-4) 

R = seismic regionalization factor in NBCC 1970 (Equation 2-5) 

R = seismic risk rating score in CSA S832-01 (Equation 2-18) 

~ = energy dissipation capacity ofthe structure 

Ro force overstrength factor 

Rp component response factor 
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(Equation 2-19) 
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natural period of vibration of the building 
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natural period of vibration of the telecommunication tower 

longitudinal direction of the building model 

transverse direction of the building model 

OFC seismic vulnerability related to its probability of failure in CSA 

S832-0 1 (Equation 2-18) 

lateral seismic action or force on a part or portion of the structure, 

known as base shear 

base shear force calculated according to the proposed simplified 

method 

base shear force calculated in the numerical simulations in SAP 2000 

shear force distribution along x 

total reactive weight of the structure including machinery and other 

fixed concentrated loads 

weight of the component 

weight factor in CSA S832-0 1 (Equation 2-19) 

height of upper support attachment at level x as measured from the 

base (Equation 2-25) 

longitudinal direction of the existing building 

Fourier Transform of the input motion x(t) 
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base (Equation 2-25) 
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peak horizontal ground acceleration 
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component amplification factor 

rooftop sei smic acceleration 

fundamental frequency of the structure 
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height from the base of structure to level i, x, or z 

number designating the level under consideration 

seismic force distribution exponent (Equation 2-38) 

tower's height 

mass of the tower at position x measured from the tower base 
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extraneous noise 

modal coordinate associated with mode n 

vector containing the relative displacements with respect to the 

moving base 

modal displacement response associated with mode n 
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Chapter 1 

Introduction 

1.1 Background and problem definition 

A review of the current state of knowledge in seismic design of operational and 

functional components of buildings (OFCs) as reflected in codes, standards, and 

guidelines currently in use in Canada and the United States can be found in Assi (2003). 

These design provisions achieve a good balance between simplicity and rationality. 

Further research, however, has identified sorne deficiencies of these provisions. During an 

earthquake, the OFCs are subjected to seismic motion that is filtered through the 

supporting structure, while the acceleration at the building's base is amplified along the. 

building's height. The increase of acceleration along the building's height is accounted 

for in code provisions through the height amplification factor. One of the major 

deficiencies of code provisions is that the height factor used in the design methods for 

OFCs neglects the influence of the structural behavior of their supporting building. The 

2005 edition of the National Building Code of Canada (NRC/IRC 2005) assumes that 

seismic accelerations increase linearly along a building's height and reach a maximum 

amplification of 3 at rooftop level. 

On the other hand, current seismic provisions in codes and standards for self­

supporting steel lattice telecommunication towers relate to structures on the ground and 

are not specific for towers on building rooftops. The design of telecommunication towers 

on the ground is typically controlled by extreme wind, ice and wind combinations, and 

restrictive serviceability limits (CSA 2001 a; TIAIEIA 222-G 2005); therefore, in co Id 
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regions, rnost codes and standards are concemed with externe wind and ice loads. 

However, when the tower supports heavy attachrnents at the upper level, or in the case of 

uneven distribution of rigidity and/or rnass, or when the tower is erected on top of a 

building, it becornes necessary to check its seisrnic response in areas prone to 

earthquakes. At present, designers are left without rnuch guidance on how to evaluate 

earthquake effects on telecornrnunication towers erected on building rooftops. Moreover, 

the 2005 edition of the NBCC treats telecommunication towers rnounted on building 

rooftops as acceleration-sensitive OFCs and proposes an empirical component force 

amplification factor of 2.5 when the properties of the tower and building are not known. 

This factor and the base shear formula presented in Chapter 2 need revision based on 

rational analysis. No provisions are presently available for the estimation of overtuming 

moments at the base of these towers. 

The shortcomings in the code provisions for the estimation of accelerations in 

buildings and the lack of adequate simplified provisions for seismic analysis of 

telecommunication towers on rooftops have motivated this research. The main objectives 

of the research and an overview of its approach are summarized in the following sections. 
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1.2 Research objectives 

The objectives of this research are: 

• To gain insight into in-structure peak floor acceleration demands during 

earthquakes for common buildings, especially at rooftop level. 

• To verify the Canadian code recommendations for estimating floor acceleration 

demands and seismic base shear forces for OF Cs that are acceleration-sensitive. 

• To propose a simplified method for seismic analysis of self-supporting steellattice 

telecommunication towers mounted on building rooftops, in addition to improving 

the NBCC recommendations regarding the component force amplification factor for 

these towers. 

1.3 Research approach 

The first and second aforementioned research objectives are achieved by combining 

the experimental results for accelerations measured in existing instrumented buildings and 

the numerical results for accelerations obtained from finite element mode1s of the same 

buildings. Through research collaboration with Professor George C. Yao from the 

Department of Architecture of National Cheng Kung University in Tainan City, Taiwan, 

the author of the present study was given access to and analyzed Il existing instrumented 

buildings having records from the 1999 Chi Chi earthquake in Taiwan. Each of these 

buildings was instrumented with 20 to 28 sensors. The detailed description of the 

buildings, processing of the measured records, and a discussion of the results are given in 

Chapter 3. In addition, 3-D numerical models of four existing buildings, three in Taiwan 

and one in Montreal, were generated usmg the software SAP 2000 (Wilson and 
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Habibullah 2003). Seismic numerical simulations were carried out on these models, using 

several historical earthquake records and artificial earthquakes compatible with the target 

Unifrom Hazard Spectra of the 2005 edition of the NBCC (NRC/IRC 2005) for the city of 

Montreal. Detailed description of the numerical models, earthquake records, and a 

discussion of the results are presented in Chapter 4. In the light of the results presented in 

Chapters 3 and 4, trends relating the ground and rooftop accelerations are identified, and 

suggestions for improvement of CUITent building code recommendations are proposed. 

The third research objective is achieved through numerical simulations performed 

on generated finite element models of building-tower combinations. The detailed 

methodology used for the development of the simplified method for seismic analysis of 

self-supporting steel lattice telecommunication towers mounted on building rooftops is 

presented in Chapter 5. The component force amplification factor of the towers was 

determined for each building-tower combination, which allowed a better understanding of 

the dynamic behavior of rooftop towers, thus resulting in proposed simplified seismic 

design recommendations. 

1.4 Thesis organization 

Chapter two: A literature review is presented. Code provisions and recent research 

conducted to predict seismic accelerations along a building's height are presented, 

followed by a review of CUITent codes, standards, and research conducted for seismic 

analysis of telecommunication towers. The historical development of the Canadian code 

provisions for the computation of seismic base shear forces and displacement demands 

for OFCs is also outlined. 
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Chapter three: Strong motion analysis techniques that can be applied to recorded 

accelerations from past earthquakes are presented. The non-parametric system 

identification technique is summarized. Recorded accelerations during the Chi Chi 

earthquake that occurred in Taiwan at 17:47 GMT on September 20,1999 (01:47 AM on 

September 21 Taiwan time) are studied. Results of seismic acceleration amplification of 

Il instrumented buildings located in different parts of Taiwan are presented and 

discussed. 

Chapter four: The finite element models of the buildings and towers used in this 

research and generated in the commercial software SAP 2000 v.8.2.3 (Wilson and 

Habibullah 2003) are described. The buildings were subjected to two sets of earthquakes: 

one set is composed of 30 artificial records compatible with the target Uniform Hazard 

Spectra (UHS) of the 2005 edition of the NBCC for the city of Montreal, and the second 

set is composed of 44 historical records from different events c1assified according to the 

ratio of peak ground acceleration to peak ground velocity (a/v). The results of horizontal 

acceleration amplification at the building rooftops are discussed. 

Chapter five: The results of numerical simulations for the finite element models of 

the building-tower combinations subjected to the same earthquake sets used in Chapter 4 

are presented. The acceleration profiles along the towers mounted on the building 

rooftops are discussed. In addition, the base shear forces and overtuming moments at the 

building-tower interface resulting from the different numerical simulations are presented. 

These results are compared to values computed from a proposed simplified method based 

on the prediction of the seismic horizontal acceleration at the tower base, the prediction of 

the horizontal acceleration amplification at the tower top, the evaluation of the 
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fundamental sway mode of the tower on rigid base, and the mass distribution of the tower 

along its height. 

Chapter six: In this chapter, the salient findings, main assumptions, limitations, and 

conclusions of the research are highlighted. In addition, suggestions for relevant future 

work are summarized. 

For completeness, five appendices are also included. The first appendix includes the 

architectural plans and instrumentation schemes of the Il Taiwanese buildings. The 

second appendix includes the transfer functions of these buildings as calculated with the 

software Famos (lMC 2000). The third appendix includes the 20 lowest natural 

frequencies of the generated buildings and towers, and the corresponding first three mode 

shapes for each building and tower. The fourth appendix includes the detailed calculation 

of seismic base shear forces and overtuming moments at the base of the TC2, TC3, and 

TC4 towers assumed to be mounted on the CHYBA9 building, resulting from the 

generated models and the proposed simplified method, and corresponding to the records 

of UHS at 2% exceedance in 50 years. The fifth appendix includes the acceleration 

amplification profiles along the TC2, TC3, and TC4 towers assumed to be mounted on 

the CHYBA9 building, corresponding to each individual record applied separately to both 

main orthogonal horizontal directions of the building. 
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Chapter 2 

Literature Review 

This research is motivated by a desire to improve CUITent code recommendations 

pertaining to acceleration-sensitive operational and functional components COFCs) 

encountered in common and essential buildings and, particularly, the design provisions 

for self-supporting steellattice telecommunication towers mounted on building rooftops. 

The development of the seismic provisions for OFCs in the National Building Code of 

Canada is reviewed first, followed by a review of the provisions provided in other North 

American codes and guidelines. Relevant research conceming the prediction of seismic 

floor accelerations in buildings is discussed next, followed by a review of the CUITent 

seismic provisions for telecommunication towers. Finally, literature documenting the 

seismic analysis of telecommunication towers mounted on building rooftops is 

summarized. 

2.1 Definition and general review of the seismic performance of operational and 

functional components in buildings 

A building is made up of various components that can be divided into two groups: 

structural components and operational and functional components. According to CSA 

S832-01 (CSA 2001 b), OFCs are systems and elements housed in or attached to the 

floors, roofs, and walls of a building or an industrial facility, but they are not part of the 

main or intended load-bearing structural system. However, these components may 

contribute to the structural integrity of the building, depending on their location, type of 
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construction, and method of fastening. Like structural components, OFCs may be 

subjected to large seismic forces and must be designed to safely resist these forces. 

Sorne of the alternative names for OFCs are: non-structural components or 

elements, secondary systems, building attachments, and nonbuilding components. 

According to Chen and Soong (1988), secondary systems can be c1assified into non­

structural secondary systems and structural secondary systems. For the latter type, there is 

concern not only about the seismic behavior of the component, but also about its 

interaction with the primary structural system. 

OFCs represent a high percentage of the total capital economic investment for 

buildings and their failure during an earthquake can disrupt the function of the building 

and pose a significant safety risk to building occupants as weIl; therefore, these 

components are far from being secondary in importance. 

In fact, the development of seismic design provisions for OFCs has lagged behind 

that for primary structures. It is recognized that considerable progress has been made over 

the last two decades in the seismic analysis of structural systems, resulting in substantial 

improvement in seismic analysis, design, and construction of buildings, bridges, and other 

industrial facilities (Filiatrault et al. 2001 a). Structural earthquake engineering having 

reached a fair level of maturity, the research focus now inc1udes also the seismic 

performance of secondary systems attached to primary structures. A review of typical 

damages sustained in recent earthquakes (Soong 1990; McKevitt et al. 1995; Phipps 

1997; McGavin and Gates 1998; Kao et al. 1999; Naeim 1999, 2000; Filiatrault et al. 

2001 a, b) highlights the fact that the poor performance of non-structural components, 

equipment, and functional systems is the greatest contributor to damage, losses, and 
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business interruption in many essential and critical facilities. The vulnerabilities of non­

structural components in modem buildings were not explicitely exposed until the 1964 

Alaska and 1971 San Fernando earthquakes (Reitherman 1997). It then became c1ear that 

damage to non-structural elements not only can result in major economic losses, but also 

can pose a threat to life safety, even when structural damage is not significant. It should 

be stressed that, in moderate earthquakes, damage to critical equipment and contents may 

be far more important than damage to the structural framework, and earthquakes of 

moderate intensity are more frequent than earthquakes ofhigh intensity. Therefore, a need 

was identified to design and construct buildings with better OFC performance during 

earthquakes. 

Figures 2-1 and 2-2 show examples of the non-structural damage that occurred 

during the 1999 Chi Chi earthquake in two of the buildings studied in this research. 
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Figure 2-1 Damage to library stacks during the 1999 Chi Chi earthquake (Source G.C. 
Yao) 

Figure 2-2 Damage to pipes during the 1999 Chi Chi earthquake (Source G.C. Yao) 
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2.2 Types of OFCs 

Operational and functional components of buildings can generally be divided into 

three sub-categories according to Villaverde (1997) and CSA S832-01 (CSA 2001 b): 

• Architectural components, internaI and external, such as cladding, interior partition 

walls, ceilings, light fixtures, and others. 

• Building services, including mechanical and electrical systems, such as electrical 

power distribution systems, heating, ventilation, cooling systems, fire protection 

systems, telecommunications, and others. 

• Building contents, such as furniture, supplies, computer systems, record storage, 

racks, shelving, and others. 

2.3 Classification of OFCs 

From a structural perspective, OFCs can be classified into either acceleration­

sensitive, when their design is controlled by the prediction of the seismic input force, or 

deformation-sensitive, when their design is controlled by the supporting structure's 

displacement, typically the measured interstory drift. In fact, many components are 

classified as both deformation and acceleration-sensitive (BSSC 2001; Naeim 2001). In 

this study, we are mainly interested in acceleration-sensitive components; however, the 

NBCC seismic provisions for both acceleration and deformation-sensitive components 

are presented for completeness. 
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2.3.1 Acceleration-sensitive OFCs 

Acceleration-sensitive OFCs include most of the electrical and mechanical 

equipment. These components are vulnerable to excessive shaking, shifting, and 

overtuming if anchorage or bracing is inadequate. Any interaction with stiff elements 

such as walls and the structural system has to be taken into account so that the capacity of 

the structural system is not impaired by the behavior or failure of these elements. This 

requirement is reflected in the provisions of aIl past editions of the NBCC. 

2.3.2 Deformation-sensitive components 

The failure of deformation-sensitive components, which include most of the 

architectural components and building services, such as ducts, trays, and various line 

services, is caused either by excessive interstory displacement or drift, or incompatible 

stiffness between the building structure and the component, or interaction between 

adjacent structural systems and OFCs. A good seismic performance of deformation­

sensitive components can be obtained by implementing two general design strategies 

(Naeim 1989): 

• An isolation approach, in which elements are provided with sufficient separation 

from the structure so that the deformation of the structure will not produce stress on 

the element. 

• A deformation approach, in which the elements are designed to be able to undergo 

the required deformation of the supporting structure. This can be achieved either by 

controlling the interstory drift of the supporting structure, or by designing the 

component to accommodate the expected displacements without damage. 
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2.4 Codes for seismic design of OFCs 

The review of codes and recommended provisions, in terms of lateral force and 

displacement, is intended to illustrate the variation in sei smic design requirements for 

OFCs among different codes of practice. 

Architectural, mechanical, and electrical systems, building contents, and 

components permanently attached to structures, including attachments and nonbuilding 

components that are supported by other structures, must meet the requirements presented 

in the following sections. 

In general, the lateral seismic force, V, to which an OFC is subjected is higher than 

a comparative force used for the design of the structural system for many reasons 

(SEAOC 1999; Tauby et al. 1999), among them the following: 

• The accelerations acting on elements or their supports higher up within a building 

are greater than at ground level because of the dynamic response of the structure to 

earthquake ground motion. 

• If an element is flexible or flexibly supporte d, its dynamic response may be 

amplified. 

• Sorne elements and supports lack the energy-absorbing properties of ductile 

structures and may hence fail in a brittle manner. 

• Poor design or lack of design of anchorage and restraint can lead to connection 

failure; therefore, attachment failure should be minimized. 
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2.5 Historical review of provisions of the National Building Code of Canada 

Seismic design practices in Canada and in other countries have evolved 

significantly over the past fifty years. The first edition of the NBCC was deve10ped in 

1941 (NRC/IRC 1941) and contained sei smic provisions only in an appendix, based on 

concepts presented in the 1937 United States Uniform Building Code (UBC) 

(Heidebrecht 2003). Specifie provisions for seismic design of structural and non­

structural components in buildings and essential facilities were first introduced in the 

1953 edition. In all editions of the NBCC, the provisions conceming the OFCs are given 

in Part 4 of the Code for design, with Commentary J as a specialized supplement. 

In the following sections, the evolution of the provisions and recommendations of 

the NBCC conceming seismic hazard, force, and displacement are presented, starting 

from the 1953 edition until the 2005 edition. 

2.5.1 NBCC provisions for the editions from 1953 to 1965 

Within the 1953, 1960, and 1965 editions of the NBCC (NRC/IRC 1953, 1960, 

1965), the seismic zoning maps divided the country into four seismic zones (labeled 0, 1, 

2,3) based on qualitative assessment ofhistorical earthquake activity. 

2.5.1.1 Se;sm;c force requ;rements 

In these editions, portions of a building or structure should be designed to resist a 

minimum horizontal force, V, given in Equations 2-1 to 2-4: 

Vl953 1960 = CW 2-1 
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Vl965 = kW 

k=RCIFS 

S = 0.25 
9+N 

Where: 

V : lateral seismic force in pounds. 

2-2 

2-3 

2-4 

C : numerical constant given in Table 4.1.2 of Part 4 of the NBCC, appropriate 

for the part or portion of the building being considered (Equation 2.1). 

W: total dead load, inc1uding machinery and other fixed concentrated loads. 

R : measure of the estimated intensity of earthquake forces that may occur in the 

area considered. 

C : numerical constant function ofthe type of construction (Equation 2.3). 

1 : importance factor of the building, equal to 1.3 or 1.0, depending on the 

building's use and occupancy. 

F : foundation factor, equal to 1.5 for buildings on highly compressible soil and 

1.0 for aIl other soil types. 

S : factor related to the total number of stories, N, of the building (Equation 2-4). 

It should be noted that the parameters C and k in Equations 2-1 and 2-2 coyer only 

the architectural components, towers, and tanks. It is also worth mentioning that starting 

from the 1965 edition, rational dynamic analysis was mentioned as an alternative to 

equivalent simple static analysis for earthquake-resistant design. 
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2.5.1.2 Seismic dis placement requirements 

In the early editions of the NBCC, there were no provisions related to 

displacements. 

2.5.2 Provisions of the 1970 edition of the NBCC 

The 1970 edition of the NBCC (NRC/IRC 1970 a, b) introduced more refined 

seismic maps dividing the country into four zones (labeled 0, 1, 2, 3), based on expected 

ground accelerations having a retum period of 100 years. The new maps were based on 

the analysis of past earthquakes known or recorded throughout the country between 1899 

and 1963. 

2.5.2.1 Seismic force requirements 

In this edition, building parts and their anchorage should be designed for a 

minimum lateral force, V, given in Equation 2-5: 

2-5 

Where: 

R : seismic regionalization factor that is a measure of the seismic activity and risk 

in the area considered. 

Cp: horizontal force factor for part or portion of a structure, varying between 0.2 

and 2.0. 

w p: weight of a part or portion of a structure, such as cladding partitions and 

appendages. 
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In the 1970 edition, the commentary states that machinery and electricallmechanical 

equipment mounted within buildings should be designed to withstand the forces that arise 

from the seismic response of the structure, but no more specifie provisions are given. 

2.5.2.2 Seismic dis placement requirements 

In the 1970 edition of the NBCC, it was recommended in the commentary to limit 

the interstory drift of the building to 0.005hs, where hs is the story height. It was further 

suggested to multiply the deflections obtained from an elastic analysis using lateral forces 

by a factor of 3, to account for inelastic deformations at very high Ioad Ievels. 

2.5.3 Provisions of the 1975 and 1980 editions of the NBCC 

The seismic zoning maps of the 1975 and 1980 editions of the NBCC (NRC/IRC 

1975 a, b; 1980 a, b) are the same as those used in the 1970 edition. 

2.5.3.1 Seismic force requirements 

In these editions, building parts and their anchorage are required to be designed for 

a minimum lateral force, V, given in Equation 2-6: 

~975,1980 = AS pWp 2-6 

Where: 

A : acceleration ratio, also called assigned horizontal design acceleration, is 

assumed constant over each seismic zone, and is equal to the ratio of the 
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specified maximum horizontal ground acceleration to the acceleration due to 

gravity. 

Sp: horizontal force factor for part or portion of a structure as given in Table 

4.1.9.C, varying between 2.0 and 25. 

W p: weight of the component. 

It is in the 1975 edition that specific Sp factors for machinery and 

electrical/mechanical equipment mounted within buildings were first introduced. 

2.5.3.2 Seismic dis placement requirements 

The same recommendations as those of the 1970 edition applied. 

2.5.4 Provisions of the 1985 edition of the NBCC 

In the 1985 edition of the NBCC (NRC/IRC 1985 a, b), new seismic zoning maps 

were introduced, dividing the country into seven acceleration and velo city related zones 

(zones 0 to 6). The contour maps of maximum horizontal acceleration and maximum 

horizontal velocity on rock or firm ground were based on a probability of exceedance of 

10% in 50 years, i.e. a probability of 0.0021 per annum, corresponding to a retum period 

of 475 years, instead of a retum period of 100 years as in the previous editions. This was 

a very important increase in design earthquake hazard level. 

2.5.4.1 Seismic force requirements 

In this edition, building parts and their anchorage should be designed for a 

minimum lateral force, V, given in Equation 2-7: 
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2-7 

Where: 

v : zonal velocity ratio. It is the specified maximum zonal horizontal ground 

velocity expressed as a ratio to lm/s. 

Sp : horizontal force factor for part or portion of a structure as given in Table 

4.1.9.D, varying between 0.9 and 11. 

W p: weight of the component. 

2.5.4.2 Seismic dis placement requirements 

The same recommendations as those of the 1970 edition applied. 

2.5.5 Provisions of the 1990 edition of the NBCC 

The ground acceleration and velocity zoning maps of the 1990 edition of the NBCC 

(NRC/IRC 1990 a, b) are the same as those used in the 1985 edition. 

2.5.5.1 Seismic force requirements 

According to this edition, buildings parts and their anchorage should be designed 

for a minimum lateral force, V, given in Equation 2-8: 

2-8 

Where: 

v : zonal velocity ratio as defined in the 1985 edition. 
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Sp: horizontal force factor for part or portion. For architectural components, 

values of Sp should conform to Table 4.1.9.D, varying between 0.7 and 6.5, 

while for mechanical/electrical equipment, Sp is equal to CpArAx, where: 

Cp: sei smic coefficient for mechanical/electrical equipment, as given in Table 

4.1.9.E. It varies from 0.7 to 1.5. 

Ar : response force amplification factor to account for the type of attachment 

of mechanicall electrical components. 

= 1.0 for rigid components that are rigidly connected to the supporting 

structure. 

= 2.0 for flexible components or flexibly mounted components located on 

ground level. 

= 4.5 for aU other cases. 

Ax : amplification factor at level x to account for the variation of the response 

of mechanical/electrical equipment according to their elevation in the 

building; Ax is equal to (1 + hx/ho). 

hx : elevation at level x of the building. 

ho : e1evation of the highest level in the building. 

W p: weight of the component. 

In the 1990 edition of the NBCC, a distinction was made between the seismic force 

demand of architectural and mechanicalle1ectrical components. AIso, the height factor, 

Ax, was introduced for the mechanicallelectrical components only. 
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2.5.5.2 Seismic dis placement requirements 

In this edition of the NBCC, it was recommended to limit the largest interstory drift 

at any level based on the lateral deflections obtained from linear elastic analysis, to O.Olhs 

for post-disaster buildings, and 0.02 hs for aIl other buildings. It should be noted that this 

requirement was far less restrictive than the limit of 0.005 hs introduced in 1970. The 

lateral deflections obtained from an elastic analysis should be multiplied by R to give 

realistic values of anticipated deflections. R is a ductility factor that reflects the capacity 

of the structure to dissipate energy through inelastic behavior. Values of R vary between 

1.0 and 4.0. 

2.5.6 Provisions of the 1995 edition of the NBCC 

The 1995 edition of the NBCC (NRC/IRC 1995 a, b) is still currently in use as 

several municipalities have not yet approved the recent 2005 edition of the NBCC. The 

seismic provisions for parts and portions are given in Section 4.1.9.1.15. This edition 

specifies the same design earthquake hazard level and zoning maps as in the 1985 edition. 

2.5.6.1 Seismic force requirements 

The provisions of the 1995 edition of the NBCC provide distinct force requirements 

for architectural components (Equation 2-9), and for mechanical and electrical equipment 

(Equation 2-10). 

According to this edition, parts of buildings and their anchorage should be designed 

for a lateral force, V, given in Equations 2-9 and 2-10: 
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v; 995,architectural = vIS p Wp 2-9 

2-10 

Where: 

v : zonal ve10city ratio as defined in the 1990 edition. 

1 : importance factor for the structure. It is equal to 1.5 for post-disaster 

buildings, 1.3 for schools, and 1.0 for all other buildings. 

Sp: horizontal force factor for architectural part or portion of a building and its 

anchorage, should conform to Table 4.1.9 D. It varies between 0.7 and 6.5. 

= CpArAx for mechanicallelectrical equipment, where: 

Cp : seismic coefficient for mechanical / electrical equipment, given in Table 

4. 1.9. LE. It varies between 0.7 and 1.5. 

Ar : response amplification factor to account for type of attachment of 

mechanicall electrical equipment. 

= 1.0 for rigid components that are rigidly connected and for non-brittle pipes 

and ducts. 

= 1.5 for components located on the ground level that are flexible or flexibly 

connected except for non-brittle pipes and ducts. 

= 3.0 for all other cases. 

Ax: equal to 1.0 + (hx/hn). 

W p: weight of the component. 

It should be indicated that importance factor l, which applied before for the main 

structure, was introduced for the first time in 1995 for mechanicallelectrical equipment. 
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2.5.6.2 Seismic dis placement requirements 

The same recommendations as those of the 1990 edition applied. 

2.5.7 Provisions of the 2005 edition of the NBCC 

The specification of seismic hazard in the 2005 edition of the NBCC (NRC/IRC 

2005) has changed significantly from the previous editions of the Code. It now takes the 

form of Uniform Hazard Spectra (UHS) at specific geographical locations (Adams and 

Atkinson 2003) in order to provide a more uniform margin of collapse, thus resulting in a 

more consistent and uniform sei smic level of protection throughout the country. The 

provisions of this edition are based on seismic hazard values having a probability of 

exceedance of 2% in 50 years, which correponds to a retum period of 2500 years. As was 

the case in 1985, this is a very important additional increase in seismic hazard level. 

2.5.7.1 Seismic force requirements 

The provisions of the 2005 edition of the NBCC use the same force requirements 

for architectural components and for mechanical and electrical equipment. Elements and 

components of buildings and their connections should be designed for a lateral force, V, 

given in Equation 2-11 : 

2-11 

Where: 

0.3 Fa Sa (0.2) represents the input ground acceleration to the building with: 
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Fa: acceleration-based site coefficient. It is a function of site c1ass and SaCO.2), 

and it varies between 0.7 and 1.4. 

SaCO.2) : spectral response acceleration value at a period of 0.2 s. 

lE : importance factor for the building, equal to 1.0 for normal use and occupancy, 

1.3 for highly important structures, and 1.5 for post-disaster facilities. 

Sp: horizontal force factor for part or portion of a building and its anchorage, 

varying between 0.7 and 4.0. 

= CpArAxlRp, with: 

Cp : component factor. It takes into account the risk to life safety associated 

with failure of the component and/or release of contents. It may vary between 

0.7 and 1.5. Cp is equal to 1.0 for towers. 

Ar : component force amplification factor. It represents the dynamic 

amplification of the component relative to the position of its attachment to the 

building structure. It is function of the ratio of the fundamental period of the 

component (T p) and the fundamental period of the structure (T), as shown in 

Figure 2-3. In case the ratio of the periods is not known, values are suggested 

for various component types; a factor of2.5 is suggested for towers. 

Ax : height factor. It considers the linear amplification of accelerations along 

the height of the building and is equal to (1 + 2hx/hn), in which hn is the total 

height of the building and hx is the floor elevation where the component is 

located. 
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Rp : component response modification factor. It represents the energy­

absorption capacity of the element and its attachment. It may vary from 1.25 

to 5, and is equal to 2.5 for towers. 

W p: weight of the component. 

3~----------------------------------~ 
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Figure 2-3 Component force amplification factor according to NBCC 2005 

2.5.7.2 Seismic dis placement requirements 

The 2005 edition of the NBCC suggests limiting the large st interstory drift at any 

level, based on the lateral deflections obtained from linear elastic analysis, to O.Olhs for 

post-disaster buildings, 0.02 hs for schools, and 0.025 hs for an other buildings. The 

lateral deflections obtained from an elastic analysis should be multiplied by the factor 

RIRa/lE to give realistic values of anticipated deflections, where Ra is the force 

overstrength factor and RI represents the energy dissipation capacity of the structure. 
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2.5.8 Comments on the NBCC provisions: 2005 edition versus 1995 edition 

There are a number of differences between the 1995 and 2005 editions of the 

NBCC. Among others, the NBCC 1995 did not account for the soil type, the near-fault 

effect, and the variation of acceleration along the building height for the architectural 

components. Moreover, the component response modification factor R was only 

implicitly accounted for. AIso, the acceleration amplification with elevation in the 2005 

edition ranges from 1.0 at ground level to 3.0 at rooflevel, while in the 1995 edition, the 

acceleration amplification with elevation ranged from 1.0 at ground level to only 2.0 at 

roof level. Therefore, the 2005 code provisions bring more stringent requirements for 

equipment located at higher elevations in a building. 

AIso, in the 2005 edition of the NBCC, situations where dynamic analysis is needed 

as a substitute for the simplified static method of analysis are identified more precisely. 

2.6 Correction for forces on tops of buildings 

F or buildings having long periods, the contribution of higher modes to the response 

of the building becomes more important, thus resulting in higher accelerations and forces 

in the top stories. In the simplified static method presented in the NBCC, this effect is 

accounted for by specifying an equivalent concentrated force Ft applied at the top of the 

building. Accordingly, components located on building rooftops should be subjected to 

higher seismic forces as weIl, although related code provisions apply to the primary 

structure only. 
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2.6.1 Editions 1970 through 1985 of the NBCC 

In the 1970, 1975, 1980, and 1985 editions of the NBCC, the additional 

concentrated force to consider at the tops of buildings is given in Equations 2-12 to 2-14: 

F; = 0.004V(hn / Ds)2 

F; ::::; 0.15V 

Ft = 0 if holDs ;:5; 3 

Where: 

Ft: portion of V to be concentrated at the top of the structure. 

2-12 

2-13 

2-14 

V : lateral sei smic action or force on a part or portion of the structure, known as 

base shear. 

ho: height of the building above the base. 

Ds: dimension of the lateral-force resisting system in the direction parallel to the 

applied forces. 

2.6.2 Editions 1990 through 2005 of the NBCC 

In the 1990, 1995, and 2005 editions of the NBCC, the additional concentrated 

force to consider at the tops of buildings is given in Equations 2-15 to 2-17: 

F; = 0.07TV 

F; ::::; 0.25V 

Ft=O if T ;:5;0.7s 

T : fundamental period of the building in seconds. 
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2.7 CSA S832-01: Guideline for Seismic Risk Reduction of Operational and 

Functional Components (OFCs) of Buildings 

The objectives of the CSA S832-01 guideline (CSA 2001 b) are to provide 

information and methodology to identify the OFCs whose failure modes and 

consequences due to earthquakes may reqU1re mitigation, and to suggest design 

approaches to achieve adequate mitigation. 

The recommended approach to risk assessment is to determine the risk rating for 

each OFC, and to establish a ranking of high, moderate, or low, based on the numerical 

seismic risk rating score, R, given in Equation 2-18. This rating is determined as the 

product of the OFCs' seismic vulnerability related to probability of failure, V, and the 

consequences of failure, C, related to the probability of resultant death, injury, or loss of 

building functionality if failure/malfunction occurs. The methodology is outlined in 

Clause 6.2 of the guideline. 

R=VxC 2-18 

V is determined from Table 2 of the guideline and is calculated according to 

Equation 2-19: 

v = RG x RB x .=L=--(_RS_x_W._F_) 
10 

2-19 

RG depends on the characteristics of the ground motion and soil conditions, 

expressed as the product of the zonal velocity, v, and foundation factor, F, as defined in 

the 1995 edition ofNBCC. RB depends on the type of structural system of the building. 
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RS and WF are the rating score and the weight factor, respectively. Values ofboth 

RS and WF are functions of vulnerability parameters, inc1uding: the type of restraint, the 

overtuming effects of the OFC, the adequacy of gap for the effect of impactlpounding for 

displacement-sensitive OFCs, the flexibility of the component and its position within the 

building. 

The factor C given in Equation 2-20 is known as the consequence rating score, and 

is determined according to Table 3 of the guideline. 

2-20 

RS is a function of two consequence parameters: the impact on life safety resulting 

from the malfunction or failure of the OFC during or immediately after an earthquake, 

and the functionality of the component. Functionality is important if the component is 

required for post-disaster functions or for immediate occupancy after the earthquake. 

2.8 International Building Code (IBe) and NEHRP 2000 recommended provisions 

for seismic regulations of new buildings 

According to the IBC (IBC 2000) and NEHRP 2000 (BSSC 2001), the 

architectural, mechanical, electrical, and other non-structural components in structures 

should be designed or constructed to resist the equivalent static forces and displacements 

given in Equations 2-21 to 2-27. 

The interaction effects between the structure and the supported component should 

be considered when the weight of the component exceeds 25% of the weight of the 

supporting structure. 
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2.8.1 Seismic force requirements 

The seismic design force provisions of the NEHRP 2000 (BSSC 2001) were taken 

from the 1997 NEHRP seismic provisions (BSSC 1997), which in tum had evolved from 

those of the 1994 NEHRP that were based on strength design (Soong et al. 1993; 

Bachman and Drake 1994, 1995; Drake and Bachman 1995, 1996). The principal 

contributor to these provisions is the Building Seismic Safety Council (BSSC). 

Seismic force, Fp, according to the NEHRP 2000 (BSSC 2001), is determined 

according to Equations 2-21 to 2-23: 

2-21 

2-22 

2-23 

Where: 

Fp : seismic design force applied at the component's center of gravity and 

distributed relative to the component's mass distribution. 

ap : component amplification factor, varying between 1.0 and 2.5. 

Sos: design spectral acceleration at short period. It reflects the seismicity of the site 

including soil amplification effects. It is obtained from the maximum 

earthquake ground motion maps, reduced by a factor of 2/3. The 2/3 factor 

accounts for the margin of performance as the buildings are assumed to have 

a margin of collapse of 1.5, so that the deterministic earthquake results are 

equal to 2/3*1.5 = 1.0. 
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w p: component reactive weight. 

Rp : component response factor, varying between 1.0 and 5.0. Rp considers both 

the overstrength and deformability of the component and its attachment. 

Ip : component importance factor, equal to either 1.0 or 1.5. It represents the life-

safety importance of the component and the hazard exposure importance of 

the structure. This factor indirectly accounts for the functionality of the 

component or structure by requiring the design for a higher force level. 

z : height in the structure of the point of attachment of the component. 

h: average roofheight ofthe structure relative to the grade level. 

It is noted that the effect of the natural period of the supporting structure is not 

taken into account in these provisions. In addition, a minimum value of Fp is set to assure 

a minimal sei smic design force, while a maximum value of Fp is set to assure that the 

multiplication of the individual factors does not yield an unreasonably high design force. 

2.8.2 Seismic displacement requirements 

For two connection points on the same structure, A, or the same structural system, 

one on level x and the other on level y, the relative seismic displacement, Dp, is 

determined in accordance with Equation 2-24: 

2-24 

Dp is not required to be greater than the value given in Equation 2-25: 

2-25 
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For two connection points on separate structures A and B or separate structural 

systems, one at level x and the other at level y, Dp should be determined according to 

Equation 2-26: 

2-26 

Dp is not required to be greater than the value given in Equation 2-27: 

2-27 

Where: 

Dp : relative seismic displacement that the component must be designed to 

accommodate. 

OxA: deflection at building level x of structure A, determined by an elastic analysis 

and multiplied by the Cd factor. 

Cd: deflection amplification factor to increase the calculated elastic deflection to 

the total deflection anticipated in the post-elastic response range. 

OyA: deflection at building level y of structure A, determined by an elastic analysis 

and multiplied by the Cd factor. 

OyB: deflection at building level y of structure B, determined by an elastic analysis 

and multiplied by the Cd factor. 

X : height of upper support attachment at level x as measured from the base. 

y : height of lower support attachment at level y as measured from the base. 

~aA: allowable story drift for structure A. 
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~aB: allowable story drift for structure B. 

hsx : story height below level x used in the definition of the allowable drift, ~a. 

~alhsx: allowable drift index. 

2.9 Method proposed in TM 5-809-10-1: Seismic design guideline for essential 

buildings 

The US Departments of the Army, Navy and Air Force (1986) propose in guideline 

TM 5-809-10-1 an approximate procedure to determine the seismic forces to be applied to 

non-structural components in essential buildings. 

For rigid components, the total design force representing earthquake effects is equal 

to the product of the component' s weight and the maximum design acceleration. The 

latter is determined from the maximum floor or roof acceleration of the building and from 

a design response spectrum based on 2% damping. Therefore, a standard modal analysis 

of the building is performed to determine the periods and mode shapes for the significant 

modes of the building. The acceleration at each floor is calculated separately for each 

mode, as the product of the spectral acceleration of the mode times its participation factor. 

The minimum design acceleration is determined by taking the square root of the sum of 

the squares (SRSS) of the maximum floor acceleration for each mode considered. 

For components that are flexible or flexibly supported, the modal story acceleration 

is amplified by a magnification factor to account for resonance between the component 

and the building when the ratio of their natural periods is equal or close to one. The 

magnification factor, varying between 1 and 7.5 as shown in Figure 2-4, depends on the 

ratio of the period of vibration of the non-structural element to that of the supporting 
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building, Tp/T. The peak is broadened for ratios of 1± 0.2 to account for the uncertainty in 

evaluating the periods. The guideline gives a procedure to create a response spectrum for 

the component for the specifie building considered, giving the spectral acceleration as a 

function ofthe component's fundamental period, as shown in Figure 2-5. 

8~--------------------------------------, 
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Tp/T 

2 2.5 3 

Figure 2-4 Design magnification factor versus the period ratio (After US Army 1986) 
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Figure 2-5 Example of approximate floor response spectra (After US Army 1986) 
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2.10 Previous research on seismic acceleration amplification in buildings 

The concept of linearly increasing horizontal accelerations with floor elevation, 

illustrated in Figure 2-6, was originally suggested by engineers on the basis of statistical 

analyses of observed data. Sorne linear elastic multistory buildings were used to justify 

general, yet simple relationships for various recorded values (Sato et al. 1984; Hiramatsu 

et al. 1988). 

Rooftop ARooftop 

Grade level - '--- - ~ 

AGL 

Figure 2-6 Amplification of seismic accelerations from the grade level to the rooftop 

To evaluate forces on non-structural components, Singh et al. (1993) studied the 

provisions of the 1991 NEHRP and proposed a simplified approach using only the first 

mode of the supporting building and a more rigorous approach considering the first few 

dominant modes. These procedures served later as a basis for the 1994 NEHRP 
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provisions. This rigorous method incorporates the dynamic characteristics of the 

supporting structure as weIl as those of the non-structural components. Moreover, they 

proposed simplified procedures for calculating the frequencies, mode shapes, and modal 

properties for calculating the seismic coefficients. 

Bachman and Drake (1994, 1995) and Drake and Bachman (1995, 1996) examined 

more than 400 recorded structural acceleration data sets for buildings subjected to large 

Californian earthquakes collected between the 1971 San Fernando earthquake and the 

1994 Northridge earthquake. Their study revealed that buildings typically exhibit a sharp 

increase in floor acceleration response near the top of the structure, especially if the 

structure is flexible. It was further observed that a reasonable maximum for the rooftop 

acceleration is four times the input ground acceleration. Following this study, the 

elimination of the period effect from the 1994 NEHRP provisions was proposed. The 

shortcomings of this study are due to the structures' fundamental periods being computed 

using the approximate formulas proposed in the 1994 UBC, and records from two 

orthogonal principal directions being averaged. This last assumption may have obscured 

sorne of the results since the structural system may be different in both principal 

directions and consequently affect the response of the buildings. 

Recently, the linear distribution of accelerations adopted in the most CUITent 

provisions has been severe1y criticized by practicing engineers. Kehoe and Freeman 

(1998) carried out a dynamic analysis of a limited number of buildings assuming that 

non-structural elements are rigidly attached to the framework of the structure. They found 

that for buildings with higher mode effects, the floor acce1erations are relatively constant 
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over most of the building height. These resuIts are consistent with those found by Soong 

et al. (1993) for very flexible buildings. 

Lam et al. (1998) presented a simplified procedure for estimating peak floor 

accelerations for multistory buildings subjected to earthquakes. They recommended 

determining the effective peak floor acceleration at the rooftop by muItiplying the 

effective peak acceleration at the ground level by a factor of 3.0 for elastic structures, and 

by a factor of 1.5 for structures undergoing post-elastic ductile behavior. For the design of 

rigidly attached components, the authors assumed that design force is simply the product 

of the peak acceleration and the component mass, while the acceleration amplification of 

flexible and flexibly supported components was outside the sc ope oftheir study. 

Marsantyo et al. (1998, 2000) performed both experimental and analytical work to 

gain insight into the horizontal acceleration responses of non-structural systems mounted 

on a structural framework during earthquakes. They concluded that in the case of 

components mounted on fixed-base structures, the maximum acceleration amplification 

occurs at the condition of resonance between the structure and the non-structural systems, 

and/or at the condition of resonance between the predominant period of the ground 

excitation and the main structure's fundamental period. The comparison of the generated 

force coefficients to the provisions stipulated in the 1997 Uniform Building Code (ICBO 

1997) and those of the 1997 Building Center of Japan indicated that these codes were 

inadequate when the primary structure remains elastic with little damping. Moreover, 

they demonstrated that building equipment and contents equipped with a base isolation 

system and those mounted on the floors of a base-isolated main structure experience 
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significantly reduced acceleration responses. Therefore, base isolation can be used as an 

alternative solution in case sufficient damping cannot be achieved. 

Using the 1992 New Zealand loading standard NZS 4203, Rodriguez et al. (2000, 

2002) proposed a method based on modal superposition modified to account for inelastic 

response in order to evaluate the seismic design coefficients for rigid parts and 

diaphragms in regular buildings. They performed parametric nonlinear time-history 

dynamic analyses for three-, six- and twe1ve-story cantilevered wall structures. The 

analyses inc1uded both elastic and inelastic responses for different levels of ductility, 

types of hysteresis loops, and two input ground motions. The number of levels, a 

contribution factor due to the first sway mode, and a reduction factor associated with 

structural ductility were considered. They proposed their 'First Mode Reduced' method, 

where the floor acceleration A: corresponding to mode q at the uppermost level of the 

building can be formulated according to Equation 2-28: 

2-28 

Where: 

lq: participation factor for mode q. 

<1>; : amplitude ofmode q at leve1 n. 

Sa : spectral acceleration. 

R.q: reduction factor to account for the effect of ductility on the primary lateral 

force resisting system, associated with mode q. 

Tq : natural period of vibration of the structure, associated with mode q. 
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çq: damping ratio of the structure, associated with mode q. 

The modal accelerations of Equation 2-28 were then combined using the SRSS 

technique. For simplification, it was assumed that ductility affects only the accelerations 

associated with the first mode of the response, and therefore Rq = 1 for q > 1. RI is 

obtained from the ratio of base overtuming moments obtained from the nonlinear time-

history analysis and the elastic analysis. The acceleration at level n is given by Equation 

2-29: 

2-29 

A drawback of this method is that it is cumbersome for common design; therefore, 

the authors presented a simplified equation to calculate the horizontal design force for a 

rigid part or diaphragms, Fph, given in Equation 2-30: 

2-30 

Where: 

Sp: structural performance factor in NZS 4203:1992. 

Rp: risk factor for the part in NZS 4203: 1992. 

Z: seismic zone factor in NZS 4203:1992. 

Cpi: basic horizontal sei smic coefficient for a part at level i in NZS 4203:1992. 

w p: reactive weight of a part or diaphragm. 
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Based on raw data from a previous study by Bachman and Drake (1995), Searer and 

Freeman (2002) proposed an upper bound simplified equation for horizontal accelerations 

where the height effect was neglected. For rigid components not supported at the rooftop, 

the design force should be evaluated according to Equation 2-31: 

Fp = 1.4 xe a xl p X Wp 2-31 

Where: 

Ca: factor equivalent to the design spectral acceleration at short period, Sos, in 

current building codes. It is a function of the soil type and the sei smic zone 

factor. It is given in Table 104-9 ofthe SEAOC Blue book (SEAOC 1999). 

Ip : importance factor. It is equal to 1.0 for standard occupancy structures, and 1.5 

for essential and hazardous facilities and special occupancy structures. 

W p: weight of the component. 

For rigid components supported at the rooftop, the design force should be increased 

according to Equation 2-32 to account for the increased accelerations experienced at the 

rooflevel due to the effects ofhigher modes: 

2-32 

The horizontal force calculated in Equations 2-31 and 2-32 should be doubled for 

the design of flexible components to account for potential resonance amplification. 

There has also been relevant recent work at Stanford University (Miranda and 

Taghavi 2005; Taghavi and Miranda 2005) conceming the estimation of seismic demands 

for acceleration-sensitive components attached to conventional buildings that respond 
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elastically or remain practically elastic when subjected to small and moderate 

earthquakes. The dynamic characteristics of the buildings were approximated by using an 

equivalent uniform continuum cantilever that consists of a combination of a flexural beam 

and a shear beam. The method proposed by Miranda and Taghavi (2005) is based on 

simplified analytical models and takes into account the contribution of the lowest three 

sway modes of vibration of a building. The method yields rapid estimation of floor 

acceleration demands with only three parameters: the fundamental period of vibration of 

the building, a damping ratio characteristic of the building, and a non-dimensional 

parameter a o (Equation 2-33) that reflects the degree of participation of overall flexural 

and shear deformations in the building. For buildings with reduction in stiffness along the 

height that do not deflect laterally like flexural beams, an additional parameter is 

introduced consisting of the ratio of the lateral stiffness at the top of the structure to the 

lateral stiffness at the bottom of the structure (EltopfElo). 

2-33 

Where: 

GAo: equivalent shear rigidity at the base of the structure. 

Elo: equivalent flexural rigidity at the base of the structure. 

H : total height of the structure. 

The mode shapes and modal participation factors of the buildings were computed 

from the continuum cantilever model, assuming uniform mass and stiffness along the 

building height. The authors showed that the reduction in lateral stiffness and mass along 

the height has a negligible effect on the modal participation factors and mode shapes for 
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buildings deforming like flexural beams. They also proposed approximate equations to 

compute mode shapes, natural periods, and modal participation factors for buildings with 

non-uniform stiffness and significant shear deformations. The method does not address 

torsional deformations and is targeted at relatively regular buildings. 

2.11 Seismic provisions in standards and codes of practice for telecommunication 

towers 

A review of available research and information resources shows that most of the 

published work on the analysis of steel lattice telecommunication towers is devoted to 

analysis under wind and ice loads. In the fo11owing section, the CUITent provisions 

available in sorne design codes and standards for the seismic analysis and design of 

telecommunication towers are reviewed. In a survey of earthquake performance of 

telecommunication towers (Schiff 1999), it was conc1uded that ta11 broadcast towers and 

large building-supported microwave towers are the most vulnerable to earthquakes, but 

none of these towers has been a direct threat to life safety during an earthquake. The main 

issue for telecommunication towers is their functionality during or immediately after an 

earthquake. 

2.11.1 CSA S37-01: Antennas, towers and antenna supporting structures 

The 2001 edition of the Canadian standard CSA S3 7 -01: Antennas, towers and 

antenna supporting structures (CSA 2001 a) introduced a new appendix (Appendix M) 

which addresses earthquake-resistant design of both self-supporting and guyed lattice 

telecommunication towers. However, this appendix is not a mandatory part of the 
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standard. It states that unlike buildings for which life safety is of foremost concem, the 

target performance level for telecommunication towers depends on the tower's economic 

value and the function of the structure; therefore, the owner decides the appropriate 

performance level among the following: life safety, interrupted serviceability, and 

continuous serviceability. The life safety performance level ensures a minimum level of 

protection for towers located in areas of human occupancy, with special attention paid to 

towers supported by buildings. The interrupted serviceability performance level is for 

towers that should be able to quickly resume service following an earthquake. Finally, the 

continuous serviceability performance level is for towers that should remain fully 

functional during and after an earthquake. 

In this research, the focus is on towers having continuous or interrupted 

serviceability performance levels. These performance levels imply that the global 

response of the tower should remain elastic during the seismic shaking. Appendix M also 

recommends performing a frequency analysis of the tower in order to allow identification 

of the tower's sensitive frequency range. Past earthquake records have typical frequencies 

in the range 0.1-10 Hz, with a concentration in the 0.3-3 Hz range for horizontal motion, 

while the vertical motion involves a higher frequency band. Nevertheless, in the case of 

building-mounted towers, the frequency content of the input earthquake is modified and 

filtered according to the dynamic characteristics of the supporting building. Table 2-1 

summarizes the type of sei smic analysis that is recommended in Appendix M of the CSA 

S37-01 standard. As indicated in Table 2-1, at least a static design check is recommended 

for rooftop towers located in moderate seismic zones and with life safety and interrupted 

serviceability performance levels. However, no specific guidance is available for such a 
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static design verification. For the continuous serviceability performance level, in 

moderate and high seismic zones, a dynamic check for aU tower types is recommended. 

Appendix M further recommends adopting the provisions of the NBCC 1995 conceming 

the direction of the seismic input and load combinations. 

Table 2-1 Seismic design check recommendations ofCSA S37-01 (CSA 2001 a) 

Level of Seismicity Life Safety 
Interrupted Continuous 

Serviceability Serviceability 

Low Seismicity 
No seismic check No sei smic check No seismic check 

necessary necessary necessary 
Static check for 

building-supported 

Static check for 
towers and irregular 

Moderate Seismicity building-supported 
towers Dynamic check for 

(geometry /mass) aU tower types 
towers 

Dynamic check for 
masts of height 300 m 

and more 
Static check for aU 

free standing towers Static check for aU free 
Dynamic check for 

High Seismicity ofheight 50 m and standing towers and 
aU tower types 

more and masts from masts up to 150 m 
50mto 150m 

Dynamic check for Dynamic check for 
masts ofheight 150m masts ofheight 150m 

and more and more 
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2.11.2 TIAlEIA-222-G: Structural standard for antenna supporting structures and 

antennas 

The increased awareness of seismic risk in the last decade has encouraged the 

American Electrical and Telecommunication Industries Association to formulate seismic 

provisions for antenna structures in its TIAlEIA-222-G standard (2005). This standard 

provides seismic design provisions for self-supporting and guyed antenna towers on the 

ground, or mounted on building rooftops or other supporting structures. The design 

provisions apply only for ultimate strength limit state conditions, i.e. not for serviceability 

limit states. The earthquake effects may be ignored when the total sei smic base shear is 

less than 50% of the total horizontal wind load without ice, and for category 1 structures 

that represent a low hazard to human life and damage to property in the event of failure. 

The maximum earthquake ground motion should be taken as the motion of 

probability of exceedance of 2% in 50 years. The design spectral response acceleration 

should be calculated at short period, SDS, and at 1 second, SDI, assuming 5% of critical 

viscous damping in all structures. This standard proposes four methods to calculate the 

earthquake loads: the equivalent lateral force procedure that will be summarized below, 

the equivalent modal analysis procedure, the full modal analysis procedure, and time­

history analysis. 

2.11.2.1 Equivalent lateralforce procedure 

According to the TIA 222 G standard, the total seismic force, Vs, is obtained from 

Equations 2-34 and 2-35: 
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2-34 

2-35 

When Equation 2-35 is used, Vs should not he less than the values glVen III 

Equations 2-36 and 2-37: 

Vs = 0.044 SDS WI 2-36 

V = 0.5S IWI 
s R for SI ~0.75 2-37 

Where: 

SDS: design spectral response acceleration at short period, equal to 2/3 Fa Ss. 

W: total weight of the structure including appurtenances. 

1 : importance factor, equal to either 1.0 or 1.5 depending on whether the 

structure's failure represents a suhstantial hazard or a high hazard to human 

life and damage to property, respectively. 

R : force modification factor, to account for post-elastic response. 

= 3.0 for lattice self-supporting structures. 

= 2.5 for lattice guyed masts. 

= 1.5 for tuhular pole structures. 

fi: fundamental sway frequency of the structure. 

SDI: design spectral response acceleration at a period of 1.0 s, equal to 2/3 Fv SI. 

Ss : maXImum considered earthquake spectral response acceleration at short 

period. 
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SI: maximum considered earthquake spectral response acceleration at a period of 

1.0 s. 

Fa: acceleration-based site coefficient, depends on site class and spectral response 

acceleration at short period. 

Fv: velocity-based site coefficient, depends on site class and spectral response 

acceleration at 1.0 s. 

2.11.2.2 Vertical distribution of the lateral seismicforce Vs 

The standard provides a methodology for the vertical distribution of the lateral 

seismic shear forces determined from Equations 2-34 to 2-37. The lateral seismic force, 

Fsz, induced at any level z, is determined from Equation 2-38: 

2-38 

Where: 

Vs : total seismic shear force. 

wz : portion of total gravity load (w) assigned to level z. 

hz : height from the base of structure to level z. 

ke : seismic force distribution exponent, equal to 1.0 for structures having a 

fundamental frequency of 2.0 Hz or higher, and 2.0 for structures having a 

fundamental frequency of 0.4 Hz or less. For structures with a fundamental 

frequency between 2.0 Hz and 0.4 Hz, ke should be taken as 2.0 or determined 
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by linear interpolation between 1.0 and 2.0. Altematively, ke may be set equal 

to 2.0 for any structure. 

n : number designating the uppermost level of the structure with regard to the 

distribution of gravity loads. 

i : number designating the level under consideration. 

Wi: portion of total gravity load (w) assigned to level i. 

hi : height from the base of structure to level i. 

2.11.2.3 Towers supported on buildings or other supporting structures 

For towers less than or equal to 100 ft in height, with no mass or stiffness 

irregularities and supported on buildings or other supporting structures, the earthquake 

loads determined according to the equivalent lateral force procedure presented in the 

previous sections should be multiplied by an amplification factor, As, equal to 3.0. This 

amplification factor stands for the building height amplification factor at rooftop leve1 as 

suggested in the IBC (lBC 2000) and the 2005 edition of the NBCC (NRCIIRC 2005). 

Essentially, the towers are considered as rigid acceleration-sensitive non-structural 

components. However, as will be shown in the subsequent chapters, the response of 

telecommunication towers is much affected by the response of the supporting structure. 

The TIA 222 G standard recommends considering the dynamic interaction between the 

tower and the supporting structure for towers with mass or stiffness irregularities and 

those over 100 ft in height. In such cases, rational methods that account for the dynamic 

characteristics of the structures should be used to determine the earthquake loads; 
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however, earthquake loads should not be less than 80% of those determined from 

Equations 2-34 to 2-38. 

2.11.3 Australian standard AS 3995: Design of steellattice towers and masts 

The Australian standard AS 3995-1994 (Standards Association of Australia 1994) 

provides sorne guidance for earthquake design in its Appendix C, which is not mandatory. 

It states that steellattice towers and masts are less sensitive to earthquake loads than most 

other types of structures. A note of caution is given for self-supporting towers of more 

than 100 m in height with significant mass concentrations, which may be subjected to 

seismic base shear forces and overturning moments approaching those induced by the 

ultimate wind loads. However, no specific guidance on how to estimate the tower sei smic 

response is given. It is also suggested that the vertical component of ground motion be 

considered and that footing ties be provided in case of soft soils for freestanding towers 

and tall guyed steel masts, depending on the local seismicity. The Australian standard 

does not address the case oftowers mounted on building rooftops. 

2.12 Previous research to determine seismic forces for towers mounted on tops of 

buildings 

To perform an adequate seismic design of telecommunication equipment, it is 

necessary to evaluate seismic forces realistically. Because the design of towers on the 

ground is usually controlled by ice and wind loads, research on the sei smic response of 

these towers has not been abundant. 
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One of the first publications discussing earthquake effects on antenna-supporting 

lattice towers was authored by Konno and Kimura (1973). The study collected 

information on tower mode shapes, natural frequencies, and damping properties for 

microwave antennas erected on the roofs of buildings owned by the Nippon Telegraph 

and Telephone Corporation (NTT). The case study of an instrumented tower mounted on 

a building rooftop during the 1968 Off-Tokachi earthquake was presented. The collected 

data were analyzed and compared with results obtained from simplified stick models of 

the tower alone and of the coupled tower-building system, assuming a viscous damping 

ratio of 1 %. The study concluded that steel towers erected on building rooftops are likely 

to show resonant phenomena with the building over a wide range of frequencies during an 

earthquake, and that seismic forces resulting from strong earthquakes might exceed wind 

forces. These numerical results were validated by observations of local damage and 

permanent deformations at the tower base following the eàrthquake. It was also found that 

the viscous damping coefficient of the coupled system tends to increase with the 

lengthening period of vibration, while in the case of the tower alone, the damping 

coefficient is not affected by the period. The response of the coupled tower-building 

system varies with the period and mass ratios of the tower to the building, and reaches a 

maximum when the fundamental periods of the tower and building come close to each 

other. The acceleration response becomes larger as the fundamental period of the coupled 

system decreases, but as the period increases, the displacement response tends to grow 

larger. 

Sato et al. (1984) analyzed the data of strong-motion accelerographs in selected 

buildings owned by the Nippon Telegraph and Telephone Public Corporation in Japan. In 
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this study, the authors evaluated the natural periods of the buildings, the acceleration 

amplification ratios along the height of the buildings, and the acceleration response 

spectra of the building floors. In addition, they studied the input seismic force to be 

assumed for the design of appendages. A maximum acceleration amplification of 4 at the 

rooftop was deemed appropriate. A drawback of the study is that the average 

amplification was calculated for the two main horizontal directions. 

Hirumatsu et al. (1988) reported the continuation of the investigation of the seismic 

response of NTT telecommunication equipment mounted on building rooftops. A 

building having a steellattice tower on its rooftop was used in the study. The building 

framework was equipped with 7 sensors, the building telecom equipment with 16 sensors, 

and the tower itself with 2 sensors. The historical records of 6 earthquakes were studied. 

In general, the results agreed with the earlier observations of Sato et al. (1984). 

There have been unofficial reports of tower damage incurred during the 1994 

Northridge earthquake, involving mostly localized damages in the vicinity of antenna 

mounts (Madugula ed. 2002). Similar localized damages were reported by Pierre (1995) 

following a visit to Japan after the Hanshin Awaji (Kobe, Japan) earthquake that occurred 

on January 17, 1995. 

Kanazawa and Hirata (2000) apply the classical seismic response spectrum method 

for the analysis of secondary systems considering the dynamic interactions between the 

primary and secondary structures, and the transient response effects. As a first step, the 

floor response spectrum to be used as sei smic input to the secondary system is evaluated 

using the specified design spectra at the ground level; the second step consists of applying 

the modal combination rule to evaluate the maximum response of the secondary systems, 

51 



using the relative acceleration response spectra from the seismic input given by the first 

step. To illustrate their proposed method, the researchers performed time-history 

simulations on a building-tower model. A similar approach was developed at McGill 

University by Khedr (1998) and Khedr and McClure (2000) for steel lattice towers on 

firm ground and subjected to both horizontal and vertical earthquake accelerations; 

however, their method is not applicable to towers mounted on rooftops or other flexible 

supporting structures. 

In a preliminary study, McClure et al. (2004) used numerical simulations to explore 

the correlation between the building accelerations and the maximum seismic base shear as 

well as the base overtuming moment of towers mounted on building rooftops. This study 

was the precursor of the research reported in this thesis. 
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2.13 Summary 

In this chapter, a review of code provisions for seismic design of operational and 

functional components of buildings and for steel lattice telecommunication towers has 

been presented. The provisions of the National Building Code of Canada were presented, 

starting from the first edition in 1941 to 2005, as well as the relevant provisions of other 

codes and guidelines, including the CSA S832-01 guideline, the CSA S37-01 standard, 

the IBC, the TIAIEIA-222-G standard, the Australian AS 3995 code, and the US Army 

TM 5-809-10-1 guideline. 

In light of present and past research related to the estimation of acceleration 

amplification along a building's height and the seismic design of telecommunication 

towers mounted on a building rooftop, it can be concluded that OFCs in general, and 

telecommunication towers in particular, have received only modest attention from the 

research community despite the potential importance of damage to them during 

earthquakes. In fact, earthquake effects on these components have often been ignored. 
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Chapter 3 

Data Processing and System Identification 

This chapter describes the analyses and results of recorded accelerations from the 

1999 Chi Chi earthquake for Il instrumented buildings located in different regions of 

Taiwan. First, the building properties and instrumentation schemes are presented. 

Secondly, processing of data and system identification techniques that were used to 

extract the modal properties of the buildings are described. Two classes of system 

identification techniques are identified: parametric and non-parametric techniques. The 

dynamic formulation of the non-parametric system identification technique used in the 

study is summarized. Thirdly, the maximum acceleration profiles of recorded 

accelerations along the building heights are presented and the results are discussed. 

Finally, different parameters that could affect the acceleration amplification in buildings 

are identified and further discussed. 

3.1 Instrumentation of buildings located in Taiwan 

The Il buildings used in this research form part of the Taiwan Strong Motion 

Instrument Pro gram (TSMIP), operated by the National Weather Bureau and Ministry of 

Transportation and Communications in Taiwan. High quality force-balanced 

accelerometers with maximum capacity +/-2g were installed in the buildings starting from 

1992 (Shin 2000). The buildings were extensively instrumented with a sufficient number 

of sensors to permit a realistic dynamic analysis of the buildings and system 

identification. The buildings are located in different regions of Taiwan, at a distance 
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larger than 70 km from the epicenter of the 1999 Chi Chi earthquake, so the seismic 

waves that reached these buildings were much attenuated, corresponding to an earthquake 

of moderate intensity. The peak input ground accelerations recorded at the building sites 

range between 0.015g and 0.07g. 

3.2 Characteristics of the instrumented buildings used in tbis study 

The buildings used in this study did not suffer any structural damage, except for 

sorne minor cracking of partition walls; nonetheless, they suffered considerable non­

structual damage resulting in substantial economic losses. Therefore, the building 

structural frameworks were assumed to remain elastic, or practically elastic, with time­

invariant properties. Moreover, most of the buildings are erected on sand or cohesive soil 

and supported on rigid foundations. Consequently, soil-structure interaction was assumed 

to be negligible. Characteristic features of the buildings, inc1uding location, geometric 

properties, and structurallateralload resisting system, are summarized in Table 3-1 where 

the buildings are c1assified according to the number of stories. 

LLRS refers to the dominant lateral load resisting system of the building. Dual is a 

combination of shear walls and reinforced concrete frame system, SRC is a system 

composed of steel frames with concrete covered columns, and R.C. refers to a reinforced 

concrete frame system. Buildings range from low-rise to high-rise; TAPBA 7 is the 

second highest building in Taiwan, with 57 stories above ground. Most of the buildings 

are reinforced concrete structures, and they are of relatively recent construction, not older 

than 26 years. Architectural plans of elevations, ground and rooftop floors of the 

buildings are presented in Appendix A. 
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Table 3-1 Characteristics of the Il instrumented buildings 

Building 
Location 

Year of 
Use LLRS 

No. of stories Height 
ID construction above ground (m) 

CHYBA9 Tainan 1980 Telecom Dual 4 20 

CHYBA4 Jia-Yi 1983 Hospital Dual 6 24.2 

CHYBA5 Hsin-Yen 1984 Hospital R.C. 6 23 

TCUBAO Zhungli 1994 Library R.C. 8 32.2 

TCUBAA Hsinchu 1996 Library R.C. 8 30.4 

CHYBAO Tainan 1989 Office Dual 8 30.4 

TCUBA6 Hsinchu 1991 Residential R.C. 14 42.6 

TCUBA2 Miaoli 1992 Residential R.C. 17 56.1 

TCUBA4 Tao-Yuan 1994 Office SRC 17 62.9 

CHYBA7 Tainan 1995 Residential Dual 24 75 

TAPBA7 Taipei 1993 Office SRC 57 205.3 
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3.3 Data processing 

The recorded raw data need to be adjusted before being studied. The data 

processing consists of several steps including: the baseline correction in order to obtain a 

zero mean value for the accelerations; this is done by subtracting the mean of all values 

from each value of the records. The frequency components outside the range of interest 

and dominated by noise are removed by applying a bandpass filter. The high-pass and 

low-pass cutoff frequencies used in filtering vary from one building to another depending 

on the geographicallocation ofthe building and the sensitivity of the sensors; typicallow­

pass cutoff frequencies vary between about 0.1 and 0.5 Hz, while high-pass cutoff 

frequencies lie between 15 and 50 Hz. The high-pass and low-pass cutoff frequencies 

considered for the buildings in Taiwan are 0.2 Hz and 30 Hz, respectively. The sensors 

located at different levels within each building are linked to a central recorder providing a 

constant start time; therefore, the sensors are triggered simultaneously and the 

accelerograms are assumed to be synchronized without any further processing. In order to 

reduce the spiky appearance of the accelerograms and suppress noise, smoothing of 

records over three points was used. Smoothing consists of computing the weighted 

average of three adjacent data values. Due to the time limitation of the recorded signal 

coupled with the assumption of periodicity of the sample waveform, an undesirable 

phenomenon called leakage occurs. Leakage is the presence of spurious components near 

the sinusoid spectrum where a nonzero value appears in the transform at a frequency f 

because of the presence of a sinusoid at a different frequency fo (Bloomfield 2000). To 

reduce leakage, a Hanning window w(t) is imposed to the time signal x (t) prior to the 

Fourier Transform. This window for N points is basically a cosine shaped weighting 
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function (bell shaped) that forces the beginning and end of the sample interval to be 

heavily weighted to zero and is equal to w(t) = 0.5x(1-cos(2x1[xtlT)). This is generally 

useful for signaIs that do not satisfy periodicity requirements for the FFT process. After 

applying the window to the time signal x (t), it becomes x'(t), where x'(t) is equal to the 

product x(t)w(t). This process is used with an overlap of 50% for the windows, with 1024 

points inside each window. Overlapping is intended to produce smoother spectra. Figure 

3-1 illustrates conceptually the effect of the Hanning window on the DFT of the modified 

signal. The accelerograms were processed using the signal analysis software Famos (Fast 

analysis and monitoring of signaIs) version 3.2 (IMC 2000). 

58 



x(t) w(t) x'(t) 

a) Effect ofwindowing in the time domain 

b) Overlapping 

n 
c) Spectrum having leakage before 

applying the Hanning window 
d) Ideal spectrum after applying the 

Hanning window 

Figure 3-1 Effect of Hanning window on DFT (After Ewins 2000) 
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3.4 System identification techniques 

3.4.1 Objectives of system identification 

Instrumented buildings undergoing sel smIc shaking represent large-scale 

experiments that offer the opportunity to study the vibrational behavior of these buildings. 

The objective of system identification is to estimate the modal properties and damping 

ratios of a structure given the input sei smic loadings represented by the free-field or grade 

level recordings and the output records represented by the rooftop records. This can be 

achieved by deducing a model of a real system represented by a transfer function between 

the output and the input (Beck 1978). In addition, system identification allows the 

calibration of numerical models of the instrumented structures for further studies and 

analysis, as will be discussed in Chapter 4. There are three kinds of system identification 

techniques: 

• Non-parametric, time-invariant: this is used in this study. 

• Non-parametric, time-variant. 

• Parametric, time-variant. 

The time-invariant system identification technique is used for elastic or nearly 

elastic structures with properties not changing over time, while the time-variant technique 

is used for structures whose properties (stiffness, damping or mass) vary with time. 

Non-parametric methods are commonly used in engineering practices for their 

simplicity in identifying the frequencies of the structures. However, these approaches 

may not be suitable for problems that require high-frequency resolution and/or for 

situations where nonlinear behavior is dominant. On the other hand, the parametric 

methods are more suitable for problems with closely-spaced modes, non-proportional 
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damping, and for situations where a large number of modes are required to de scribe the 

structural response. Approaches in system identification can be further classified into two 

main groups: the frequency-domain methods and the time-domain methods. 

3.4.2 Non-parametric time-invariant system identification technique 

In this study, the non-parametric time-invariant system identification technique in 

the frequency domain was used (Cooley and Tukey 1965; Bendat and Piersol 2000; 

Ewins 2000). This technique is based on Fourier analysis and assumes that the unknown 

parts of the system are functions rather than parameters (Beck 1978). The system is 

treated as a "black box", since the objective is to determine a functional relationship 

between the input and output without any prior information about the system. The transfer 

function H(O) given in Equation 3-1 describes the alteration of the frequency content of 

the records through the elastic structure by using a single input x(t), and a single output 

y(t). The transfer function of an ideal linear system is illustrated in Figure 3-2. For a 

constant-parameter linear system, the transfer function, H(O), is a function of the 

frequency characteristics of the system, and is not a function of either the time or the 

system excitation. If the system is nonlinear, the transfer function will also be a function 

of the applied input (Bendat and Piersol 2000). 

H(O) = Y(O) Ç::} System Properties = Response 
X(O) Input 

3-1 

Where: 

H (0) : frequency response or transfer function linking the quantities x(t) and y(t). 
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X (0): Fourier Transform of the input motion x(t). 

y (0): Fourier Transform ofthe response y(t). 

x (t) 

----~)I~_H __ (O_) __ ~----~) 
y (t) 

Figure 3-2 Ideal single input/output linear system 

Mathematical formulation of H (fJ) 

The frequency response function or transfer function, H(O), is calculated as the 

ratio of the Fourier Transform of the output signal to that of the input signal (Equation 

3-1). However, for a transient problem such as seismic excitation, both the input x(t) and 

the response y(t) are not periodic and are described by random processes. It is not 

possible to consider the random signaIs as periodic with infinite period because the 

inherent properties of random signaIs cause them to violate the Dirichlet conditions that 

guarantee existence and convergence of the Fourier Transform. Consequently, the 

standard Fast Fourier Transform algorithm cannot be applied directly to the random 

excitation and response signal. Thereby, H(O) is usually computed from the power 

spectral density functions Sxx(O) and Syy(O) , and the cross-spectral density function 

Sxy(O) of the input and output signaIs, which are the Fourier Transforms of the 

auto correlation functions Rxx(t) and Ryy(t) , and the cross-correlation function Rxy(t) , 

respectively. Figure 3-3 shows a typical random signal f(t) with its autocorrelation 

function Rrt{'t) that satisfies convergence requirement of the Fourier Transform, and the 

spectral density function SrtCO). For a random signal f(t) , the autocorrelation function 
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Rn('t) is defined as the average value of the product f(t).f(t+'t) computed along the time 

axis. Rxx(t) and Ryy(t) and Rxy(t) are given in Equations 3-2 to 3-4: 

1 T 
Rxx(r) = lim- fx(t)x(t+r)dt 

T~<XlT o 

3-2 

1 T 

Ryy(r) = lim- fy(t)y(t +r)dt 
T~<XlT o 

3-3 

1 T 

Rxy(r) = lim- fx(t)y(t +r)dt 
T~<XlT 

o 

3-4 

The autocorrelation and power spectral density functions are related through the 

Fourier integrals given in Equations 3-5 to 3-7 (Clough and Penzien 1994): 

3-5 

3-6 

3-7 

63 



f(t) 

(a) 

t 

(b) 

r 

(c) 

n 

Figure 3-3 Random signal 

(a) Time-history (b) Autocorrelation function (c) Power spectral density function 

(After Ewins 2000) 

Using the spectral density functions, H(O) can be computed in two ways according 

to Equations 3-8 and 3-9 (Bendat and Piersol 2000): 

3-8 

3-9 

Equations 3-8 and 3-9 provide the basis for calculating the transfer function 

H(O) for the system. A good estimate of the transfer function is achieved in ideal 

situations when no extraneous noise exists at input and/or output points, and when the 
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system has no time-varying or nonlinear characteristics. Equation 3-8 is a real-valued 

relation and is known as the input/output auto-spectrum relation, while Equation 3-9 is a 

complex-valued relation and is known as the input/output cross-spectrum relation. In 

order to calculate the transfer function, Equations 3-8 and 3-9 can be rewritten as: 

3-10 

3-11 

1 H(Q) 1 is known as the gain factor. The two estimates of the transfer function 

should be theoretically equal. However, in practice, the input and/or output records are 

contaminated by noise. The gain factor given in Equation 3-10 is a biased estimate for all 

cases, while the gain factor given in Equation 3-11 is a biased estimate for cases where 

extraneous noise is present at the input, but will be an unbiased estimate for cases where 

extraneous noise is present at the output only. Accordingly, the model with extraneous 

noise present at the output illustrated in Figure 3-4 was adopted in this study. 

net) 

l 
x (t) 

>1 )~ y (t) H(Q) 

v(t) 

Figure 3-4 Input/output relationship with noise at the output 

y(t) = v(t) + net), v(t) is the true output signal and net) is the extraneous noise 

(After Bendat and Piersol 2000) 
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3.4.3 Non-parametric time-variant system identification 

The non-parametric time-variant system identification technique is essentially 

similar to the previous approach, except that in order to identify the variation of 

parameters in time, a window smaller than the total duration of the record is moved in 

time. The size of the window is selected to be a function of the fundamental period of the 

building. 

3.4.4 Parametric system identification 

In this technique, a particular mathematical form is chosen to describe the essential 

features of the input-output relation of the system, but certain parameters must be 

assigned values before the model is completely specified. Sorne of the parameters must be 

estimated from the input and output of the system. The model of the structure is initially 

converted to an equivalent mode! in the discrete time domain. The identification is 

performed by finding the values of the parameters which produce a least-squares match 

over the specified frequency range between the unsmoothed, complex-valued, finite 

Fourier series transformation of the acceleration response and that calculated for the 

mode!. More explanation and details about the parametric system identification technique 

can be found in Beck (1978) and Mc Verry (1979). This technique was not used in this 

study because the simpler non-parametric system identification technique based on the 

frequency-domain approach is deemed suitable for this resarch. 
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3.5 Analysis of the Chi Chi records 

Acceleration records of the accelerographs installed in the buildings were analyzed 

in both the time domain and the frequency domain. 

3.5.1 Variation of acceleration profiles along building height 

Peak floor accelerations were obtained from the processed accelerograms. The 

amplification of floor accelerations at the different instrumented levels of each building is 

shown in the graphs of Figures 3-5 to 3-15. Ax is the height amplification factor and is 

equal to the ratio of acceleration at elevation hx and the acceleration at grade level. Aiso 

shown are the acceleration amplification profiles suggested in the 2005 edition of the 

NBCC (NRCIIRC 2005) and the IBC (IBC 2000), (1 + 2hxlhn, continuous line), and the 

profile suggested by the 1997 UBC (lCBO 1997), (1 + 3hxlhn, dashed line). On these 

graphs, the reference input acceleration was taken as the free field acceleration if 

available, or the acceleration at grade level. Free field records are available for only 5 of 

the Il buildings, namely CHYBA4, CHYBA5, CHYBAO, TCUBAA, and TCUBAO. The 

results for aIl buildings in principal directions X and Y are summarized in Figure 3-16, 

using normalized elevations. X and Y are the longitudinal and transverse geometric 

horizontal directions of the buildings, respectively. 
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Figure 3-6 Amplification of horizontal accelerations in CHYBA4 

(a) X-direction (b) Y-direction 
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Figure 3-16 Peak floor acceleration amplification profiles for the Il buildings studied in 
principal horizontal directions X and Y 

3.5.2 Remarks on the acceleration amplification factor 

Based on the plots of Figures 3-5 to 3-15, we observe that in case of flexible 

buildings, such as the buildings labeled TCUBA4, CHYBA7 and TAPBA7 (Figures 3-13, 

3-14, and 3-15), the amplification of accelerations along the building height is more 

important at the upper part of the building. For low/medium-rise buildings having 

relatively regular geometry, such as the buildings labeled CHYBA9, CHYBA4, 

CHYBA5, TCUBAO, CHYBAO and TCUBA6 (Figures 3-5, 3-6, 3-7, 3-8, 3-10, and 3-

Il), the rate of amplification of seismic accelerations is more uniform, indicating that the 

accelerations are mostly affected by the fundamental sway mode of the building. It should 
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be noted that the buildings labeled TCUBAA and TCUBA2 (Figures 3-9 and 3-12) have a 

rather complex geometry. AIso, for sorne buildings, the variation of the accelerations 

along the height may be different in orthogonal directions, depending on the 

corresponding structural properties. Overall, the maximum amplification of 4 at the 

rooftop level seems conservative, except for the building CHYBA9 (Figure 3-5), where 

the maximum acceleration amplification reaches a value of 5. 

3.5.3 Rooftop accelerations and rooftop acceleration amplification factor 

Peak rooftop accelerations are obtained from the processed accelerograms. The 

corresponding amplification ratios in the orthogonal horizontal directions X and Y are 

summarized in Table 3-2. The peak rooftop acceleration amplification ratio is defined as 

the ratio of peak acceleration at the rooftop level in one direction, Aroof, to the 

corresponding peak ground acceleration in the same direction, Ag. These measured ratios 

can be compared to the height amplification factor Ax proposed in the NBCC 2005 and 

the IBC 2000, which reaches a maximum value of 3 at the rooftop. Note that this 

recommendation is based on recorded strong motion data at sites with peak ground 

accelerations in excess of O.lg (BSSC 2001), whereas all the recorded accelerations 

presented in Table 3-2 are much lower. 
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Table 3-2 Rooftop acceleration amplification 

Peak accelerations (cm/s2
) 

Building 
Location X - direction Y - direction ID 

Ag Aroof ArooriAg Ag Aroof ArooriAg 

CHYBA9 Tainan 36.47 182 5.00 37.1 177.0 4.76 

CHYBA4 Jia-Yi 21.84 47.1 2.16 24.56 43.92 1.79 

CHYBA5 Hsin-Yen 46.59 93.75 2.01 46.13 136.1 3.29 

TCUBAO Zhungli 43.57 118 2.71 45.00 130.0 2.90 

TCUBAA Hsinchu 28.68 121 4.21 35.71 135.2 3.79 

CHYBAO Tainan 22.46 51.27 2.28 35.71 135.2 3.56 

TCUBA6 Hsinchu 54.05 161.5 2.99 52.4 135.4 2.58 

TCUBA2 Miaoli 69.27 147 2.13 53.92 126.1 2.34 

TCUBA4 Tao-Yuan 33.74 46.8 4.35 41.3 161.1 3.90 

CHYBA7 Tainan 13.85 51.4 3.70 16.0 48.75 3.11 

TAPBA7 Taipei 33.81 89.4 2.65 22.0 78.0 3.57 
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The mean value of the acceleration amplification ratios at the rooftop level for the 

Il buildings presented in Table 3-2 is equal to 3.17 for the principal horizontal directions 

X and Y, with a standard deviation of 0.91. For the range of buildings studied, a 

maximum amplification ratio of 4 at the rooftop is suggested, as was proposed in the 

study of Bachman and Drake (1994, 1995) and the 1997 Uniform Building Code (lCBO 

1997). In the 1995 edition of the NBCC (NRC/IRC 1995), Ax is defined as l+hx/hn, 

giving a maximum acceleration amplification of 2 at the rooftop, which is much less than 

the computed maximum acceleration amplification ratios for most of the buildings used in 

this study. 

The mean percentage of difference in the acceleration amplification ratios in the 

orthogonal directions X and Y is 18%, which suggests that the codes assumption that the 

amplification is the same in both directions seems reasonable. As expected, this 

difference increases for buildings of complex geometry, and detailed analysis is usually 

necessary for these buildings. It is further observed that the maximum rooftop 

acceleration amplification ratio does not always occur in the direction of larger input 

ground acceleration, although the magnitude of acceleration is larger. 
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3.5.4 Correlation between rooftop acceleration amplification ratio and the number 

ofstories 

Since the acceleration amplification ratios were presented as a function of 

normalized elevation (hx/hn), the possible correlation between the number of stories and 

the maximum rooftop acceleration amplification ratio needs to be investigated. As 

indicated in Figure 3-17, there is no evidence of correlation between these two factors. 

These results support the fact that the number of stories is not a factor taken into account 

in the CUITent code provisions. 
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3.6 Frequency-domain analysis 

The first two fundamental periods of the buildings were extracted from the peaks of 

the transfer functions of the records; these transfer functions are presented in Appendix B. 

The fundamental periods extracted were then compared to values calculated from a 

previous study by Huang (1997), where the buildings were subjected to different 

earthquakes (labeled EQ in Table 3-3) of smaller amplitudes than those measured during 

the Chi Chi earthquake. Table 3-3 summarizes the results for the fundamental periods 

only, in the orthogonal directions X and Y. 

In two cases, there was too much noise in the Chi Chi records; therefore, no clear 

peak could be identified. For the buildings labeled CHYBA9 and TCUBAA, ambient 

vibration tests were performed because no other earthquake records were available. The 

elongation of the fundamental periods of the buildings during the Chi Chi earthquake 

compared to previous events can be explained by the fact that concrete, in partition walls 

for example, may crack at relatively low levels of shaking; therefore, the response 

becomes slightly nonlinear, with softening behavior. As expected, the periods obtained 

from small amplitude ambient vibration tests are also shorter than those obtained during 

the Chi Chi earthquake. 
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Table 3-3 Comparison of building periods from the Chi Chi earthquake versus previous 
events 

Building Year of 
Fundamental Period (s) 

X - direction Y - direction ID construction 
Chi Chi EQ Chi Chi EQ 

CHYBA9* 1980 0.29 0.28 0.26 0.23 

CHYBA4 1983 
Toomany 

0.52 0.31 0.32 
peaks 

CHYBA5 1984 0.42 0.38 0.38 0.30 

TCUBAO 1994 0.59 0.54 0.55 0.49 

TCUBAA* 1996 0.65 0.59 1.04 0.78 

CHYBAO 1989 0.54 0.48 0.42 0.41 

TCUBA6 1991 0.83 0.61 0.64 0.5 

TCUBA2 1992 0.85 0.78 0.73 0.66 

TCUBA4 1994 1.63 1.43 1.3 1.37 

CHYBA7 1995 0.93 0.88 1.72 1.45 

TAPBA7 1993 2.47 1.82 
Too many 

1.52 
peaks 

* Periods obtained from ambient vibrations tests for these buildings, instead of 
previous earthquake. 
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3.6.1 Correlation between rooftop acceleration amplification ratios and the 

building periods 
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Figure 3-18 The rooftop acceleration amplification versus the building periods 

Figure 3-18 shows the relationship between the acceleration amplification ratios at 

the rooftop of the buildings and their fundamental periods extracted from the Chi Chi 

records. Also shown are the maximum values of the suggested amplification ratios at the 

rooftop by the NBCC 2005 and the UBC 1997, for direct comparison. It is observed that 

for periods larger than 0.7s, the acceleration amplification factor at the rooftop does not 

always decrease with larger building periods; this is contrary to the trends in typical 

design spectra for buildings. Therefore, no strong correlation between the height factor 

and the building's period can be established. 
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3.7 Comparison of building periods extracted from the Chi Chi records with the 

values suggested in the NBCC 2005 

The fundamental period of a building is an important design parameter, especiaUy 

for the calculation of seismic design base shear forces and for the evaluation of spectral 

accelerations. Several empirical formulas are suggested in the 2005 edition of the NBCC 

to calculate the fundamental period of vibration of buildings, Ta, corresponding to 

different lateralload resisting systems; they are given in Equations 3-12 to 3-16: 

For concrete moment frames: 

3-12 

For steel moment frames: 

3-13 

For aU other moment frames: 

Ta = O.lN 3-14 

For braced frames: 

3-15 

For shear waUs and other structures: 

3-16 

Where N is the number of stories above grade level and hn is the total height of the 

building above the base in m. 

The fundamental periods ofthe Il buildings calculated from Equations 3-12 to 3-16 

and those extracted from the records of the Chi Chi earthquake are presented in Table 3-4, 

where the ratio of the NBCC 2005 prediction to the measured value is also given. 
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Table 3-4 Comparison of building periods extracted from the Chi Chi records and 
calculated with the NBCC 2005 formulas 

Fundamental Period (s) 
Building Year of X-direction y -direction 

ID construction 
Chi Chi NBCC05 Ratio Chi Chi NBCC05 Ratio 

CHYBA9 1980 0.29 0.47 1.58 0.26 0.47 1.80 

CHYBA4 1983 - 0.82 - 0.31 0.82 2.66 

CHYBA5 1984 0.42 0.79 1.87 0.38 0.79 2.07 

TCUBAO 1994 0.59 1.01 1.72 0.55 1.01 1.84 

TCUBAA 1996 0.65 0.97 1.49 1.04 0.97 0.93 

CHYBAO 1989 0.54 0.97 1.79 0.42 0.97 2.29 

TCUBA6 1991 0.83 1.25 1.51 0.64 1.25 1.95 

TCUBA2 1992 0.85 1.54 1.42 0.73 1.54 2.11 

TCUBA4 1994 1.63 1.79 1.10 1.30 1.79 1.37 

CHYBA7 1995 0.93 1.91 2.06 1.72 1.91 1.11 

TAPBA7 1993 2.47 4.34 1.76 - 4.34 -

The results shown in Table 3-4 indicate that fundamental periods calculated from 

Equations 3-12 to 3-16 as proposed in the NBCC 2005 are larger (with only one 

exception) than the periods extracted from experimental measurements. The discrepancy 

in the results suggests that the equations in the NBCC 2005 provide only rough estimates 

of the actual building periods and need further calibration. In addition, the average of 

periods given by Equations 3-12 and 3-13 was used for computing the fundamental 

periods for the T APBA 7 and TCUBA4 buildings since no expression exists in the NBCC 

for this kind of lateral load resisting system (SRC). AIso, Equation 3-14 yields an 

unrealistic estimate for the high-rise building TAPBA7. 
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3.8 Conclusions 

In this chapter, the amplification of sei smic accelerations along a building elevation 

has been discussed, based on the analysis of acceleration records of Il instrumented 

buildings located in Taiwan. It was observed that the height amplification factor, Ax = 

1 +3hx/hn, is more conservative for the upper levels of the building near the rooftop, and 

for the lowest levels within 30% of the total height. For the range of buildings studied, the 

maximum rooftop acceleration amplification factor of 3 as proposed in the NBCC 2005 

agrees fairly well with the experimental results, especially for the range of building 

periods below 0.7 s, with three exceptions. For more flexible structures or structures with 

discontinuities in the vertical direction, the acceleration amplification factors at the 

rooftop levellie in the range of 3 to 4; therefore, we propose an acceleration amplification 

factor of 4 in the range ofperiods below 1.7 s. For the most flexible structure, TAPBA7, 

the acceleration amplification factor is less than 3. We believe that more case studies of 

very flexible buildings are needed before final conclusions can be drawn. For the whole 

set of data, a rooftop acceleration amplification factor of 4 envelopes 82% of the cases 

and is then recommended for use in design. Besides, no strong correlation can be 

established between the height factor and either the building's period or its number of 

stories. Finally, since all the buildings studied were far from the epicenter (70 km and 

more), it is suggested to study buildings having ne ar-source earthquake records with 

different frequency characteristics in order to verify whether these observations remain 

valid. AIso, It was found that the equations suggested in the NBCC 2005 to compute the 

fundamental building periods provide only rough estimates of the actual values and need 

further calibration. 
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Chapter 4 

Finite Element Models of Building/Tower Systems and Rooftop 

Accelerations 

Detailed 3-D finite element models of four buildings having different lateral load 

resisting systems and four telecommunication towers were generated in the commercial 

software SAP 2000 v.8.2.3 (Wilson and Habibullah 2003). The self-supporting steel 

lattice telecommunication towers of different heights (1O-30m) and geometric properties 

were assumed to be mounted on the rooftop of the four buildings. The detailed finite 

element model of each building-tower combination was subjected to two sets of 

earthquake records, applied to the buildings' longitudinal and transverse directions, VI 

and V2, separately. First, details of the geometric properties of the buildings and towers, 

the modeling assumptions, and the earthquake records are presented. Secondly, the 

rooftop acceleration demands in the buildings resulting from numerical simulations are 

discussed. Results of the numerical simulations for the building-tower combinations are 

presented in Chapter 5. 
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4.1 Geometrie properties of the buildings and towers 

4.1.1 Buildings 

The building labeled CHYBA9 (see Table 3-1) is a five-story building owned by 

China Telecom and located in a small town of Tainan County, which is about 120 km 

from the 1999 Chi Chi epicenter. This 20 m high reinforced concrete telecommunication 

building was built in 1980. The lateral load resisting system consists of a combination of 

concrete moment resisting frames and predominant structural walls. Of particular interest 

is that the building is extensively instrumented at several locations (18 sensors) and 

supports on its rooftop a 10 m self-supporting steel latlice telecommunication tower 

(labeled TC1) having a 4.7 m x 4.7 m square base. The tower is also equipped with 3 

sensors in the x, y, and z directions at its mid-height. As shown in Table 3-2, the 

maximum absolute accelerations measured during the 1999 Chi Chi earthquake at the 

grade leve1 are 36.47 cmls2 in the longitudinal direction and 37.1 cmls2 in the transverse 

direction, while at the rooftop level the maximum absolute accelerations are 182 cm/s2 in 

the longitudinal direction and 177 cm/s2 in the transverse direction. Therefore, the 

maximum rooftop acceleration amplification is 5.0 in the longitudinal direction and 4.76 

in the transversal direction. Figure 4-1 shows a photograph and an elevation view of this 

building illustrating the instrumentation scheme. 

The building labeled CHYBA4 (see Table 3-1) is a 7-story building located in Jia­

Yi city, which is about 72 km from the 1999 Chi Chi epicenter. This 24 m high reinforced 

concrete hospital was built in 1983. The lateral load resisting system consists of a 

combination of concrete moment resisting frames and structural walls. Figure 4-2 shows a 

photograph and an elevation view of this building illustrating the instrumentation scheme. 

91 



The building is equipped with 26 sensors. As shown in Table 3-2, the maximum free-field 

accelerations measured during the 1999 Chi Chi earthquake are 21.84 cm/s2 in the 

longitudinal direction and 24.56 cm/s2 in the transverse direction, while at the rooftop 

level the maximum absolute accelerations are 47 cm/s2 in the longitudinal direction and 

44 cm/s2 in the transverse direction. Therefore, the rooftop acceleration amplification is 

2.16 in the longitudinal direction and 1.8 in the transverse direction. The maximum 

absolute aGcelerations at the grade level are 18.52 cm/s2 in the longitudinal direction and 

22.25 cm/s2 in the transverse direction. For this building, free field records match very 

weIl with those at the basement, indicating that there was no soil-structure interaction 

(Figure 4-3). 

The building labe1ed TCUBAA (see Table 3-1) is a 9-story building in Hsinchu 

city, which is about 113.6 km from the 1999 Chi Chi epicenter. This 30.5 m high 

reinforced concrete university library was built in 1996. The lateralload resisting system 

consists of a combination of predominant concrete moment resisting frames and structural 

walls. Special features of this building are that it is located on a slope, its geometry is 

relatively complex, and it suffered serious non-structural seismic damage in 1999. Figure 

4-4 shows a photograph and an elevation view of this building illustrating the 

instrumentation scheme. The building is equipped with 28 sensors. As shown in Table 3-

2, the maximum free-field accelerations measured during the 1999 Chi Chi earthquake 

are 28.7 cm/s2 in the longitudinal direction and 35.7 cm/s2 in the transverse direction, 

while at the rooftop level the maximum absolute accelerations are 121.04 cm/s2 in the 

longitudinal direction and 135.22 cm/s2 in the transverse direction. Therefore, the rooftop 

acceleration amplification is 4.2 in the longitudinal direction and 3.8 in the transverse 
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direction. The maximum absolute accelerations at the grade level are 25.4 cmls2 in the 

longitudinal direction and 30.6 cmls2 in the transverse direction. For this building, free 

field records match very weIl with those at the grade level, indicating that there was no 

soil-structure interaction (Figure 4-5). 

The building labeled 2020 University is a 27-story building located in downtown 

Montreal on University Street. This 115.2 m high reinforced concrete office building was 

built in 1973. The lateral load resisting system is composed of reinforced concrete 

moment frames and a shear wall elevator core. An isometric view of the building is 

shown in Figure 4-6. Although there is no seismic instrumentation in this building, we 

have retained it to provide a Montreal building example subjected to the NBCC 2005 

seismic hazard levels. 
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Figure 4-1 Isometric and facade elevation views of the CHYBA9 building 
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Figure 4-3 Free field and ground level accelerograms of CHYBA4 in the directions VI 
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Figure 4-4 Isometric and facade elevation views of the TCUBAA building 
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Figure 4-5 Free field and ground level accelerograms of TCUBAA in the directions UI 
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Figure 4-6 Isometric view of the 2020 University building in Montreal 
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4.1.2 Steellattice towers 

Three typieal medium-height towers and one short rigid tower were studied. The 

tower labeled TCl is a 4-legged lattiee tower having a square base. This tower is the only 

one that is aetually mounted on a building (CHYBA9). The towers labeled TC2, TC3, and 

TC4 are 3-legged lattiee towers and their bases form equilateral triangles. Table 4-1 

summarizes the geometrie properties of the towers, inc1uding the type, height, base width, 

top width, and total mass of the bare framework, exeept for TCl whose mass inc1udes all 

antennas and appurtenanees. 

Table 4-1 Geometrie properties of the teleeommunieation towers 

Tower 
Type 

Height Base width Top width Mass 
ID (m) (m) (m) (kg) 

TCl 4-legged 10.73 4.7 0.7 9566 

TC2 3-legged 30 2.5 1.5 2245 

TC3 3-legged 20 2.5 1.5 1735 

TC4 3-legged 20 5.5 1.3 2920 
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4.2 Modeling assumptions 

4.2.1 Buildings 

Three-dimensional elastic models of the four buildings were generated in SAP 2000 

version 8.2.3 (Wilson and Habibunah 2003). Isometric views of the wire meshes ofthese 

building models are shown in Figures 4-7 to 4-10. The floors are assumed as rigid 

diaphragms in an models. Masses of slabs, external and inner wans were lumped in the 

three Cartesian directions at columns and wans according to their tributary area. The mass 

of floors was increased by 20% to account for non-structural components and finishing. 

The concrete material used in the models has a density of 23600 N/m3 and a compressive 

strength of 27.6 MPa. Detailed structural drawings were available for the three Taiwanese 

buildings, while only structural sketches were available for the 2020 University model, 

which had been used as a case study in a structural dynamics course at McGill University. 

In the CHYBA9 and the 2020 University models, the shear wans were modeled as 

equivalent shear beamlcolumn members, while in the TCUBAA and CHYBA4 models 

the shear wans were modeled as plane stress panel elements. 

In an cases, the foundations are assumed to be rigid enough to provide a fixed base 

to the buildings; consequently, soil-structure interaction is neglected. The dynamic 

analysis is done by modal superposition using 20 modes of vibration and a viscous 

damping ratio of 3% critical for an modes, which is a common practice for elastic 

buildings and for bolted steel lattice structures. The Taiwanese models are calibrated 

using the recorded floor accelerograms from 1999 the Chi Chi earthquake, the 

fundamental periods extracted by system identification techniques as discussed in Chapter 

3, and the results of ambient vibration tests whenever available (Tables 4-2 to 4-4). The 
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dynamic properties for the first three modes of the building models are summarized in 

Table 4-5. 

Table 4-2 Comparison of existing building and generated model for CHYBA9 

CHYBA9 
Chi Chi Ambient 

OtherEQ 
SAP 

records vibration model 
,-... Channel 6 35.73 NIA NIA 32.67 N 
tI) 

S Channel 7 37.1 NIA NIA 29.84 t) 
'-" 
tI) 

Channel 9 55 NIA NIA 52.27 = .g ..... 
~ 
CI) 

Channel 10 75.22 NIA NIA 59.66 -CI) 

Channel 12 93.6 NIA NIA 86.00 t) 
t) 
ro 
El Channel 13 93.9 NIA NIA 95.93 
;:::1 

El Channel 15 144 NIA NIA 141.19 .-~ ro 
::E Channel 16 178 NIA NIA 167.55 

tI) 

Tl 0.29 0.28 0.28 0.30 "'C:l o ,-... ._ tI) 

I-i '-" 
CI) 

T2 0.26 0.23 0.23 0.26 P-< 

Table 4-3 Comparison of existing building and generated model for CHYBA4 

CHYBA4 
Chi Chi 

OtherEQ SAP model 
records 

,-... Channel 10 17.25 NIA 19.11 N 
tI) 

S Channel II 22.25 NIA 22.70 t) 
'-" 

tI) 

Channel 12 20.11 NIA 23.27 = 0 .-
~ Channel 13 22.60 NIA 23.00 I-i 
CI) -CI) 

Channel 18 25.45 NIA 44.90 t) 
t) 
ro 
El Channel 19 
;:::1 

29.22 NIA 30.00 
El Channel 22 33.60 NIA 35.00 . ...,. 
~ 

::E Channel 26 45.70 NIA 44.00 

tI) 

Tl NIA 0.51 0.41 "'C:l o ,-... 
• ...,. tI) 

I-i '-" 
CI) 

T2 0.31 0.32 0.31 P-< 
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Table 4-4 Comparison of existing building and generated model for TCUBAA 

TCUBAA 
Chi Chi Ambient 

SAP model 
records vibration 

Channel 5 29.87 NIA 35.63 

,-... Channel 7 24.83 NIA 28.57 N 
<1.1 

E Channel Il 31.74 NIA 36.04 u 
'-" 

<1.1 
Channel 14 37.17 NIA 36.04 ~ 

0 ..... 
~ Channel 18 59.34 NIA 69.04 
~ -~ 

Channel 19 63.7 NIA 51.30 u 
u 
~ 

§ Channel 21 90.58 NIA 82.06 
8 

Channel 22 89.37 NIA 99.83 ..... 
~ 
~ 

::E Channel 24 135.2 NIA 150.68 

Channel 27 120.6 NIA 152.75 

Vl TI 1.04 0.77 0.75 "'tj o ,-... 
.t::~ 
~ 

T2 0.65 0.59 0.69 Po; 

Tables 4-2 to 4-4 show that the natural periods of the generated elastic models and 

those extracted from the records match weIl, indicating that the response of the buildings 

was linear elastic or only slightly nonlinear. In addition, the floor acclerations of the 

existing buildings and their generated models are in good agreement. The small 

differences between recorded and computed accelerations can be attributed to the effects 

of initial defects, po or workmanship, the limitations of CUITent analytical methods, and 

modeling assumptions. 
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Table 4-5 Natural periods ofthe buildings from FE models 

Building ID Tl (s) Tz(s) T3 (s) 

CHYBA9 
0.30 0.26 0.18 

(sway) (sway) (torsional) 

CHYBA4 
0.41 0.31 0.24 

(sway) (sway) (torsional) 

TCUBAA 
0.75 0.69 0.62 

(sway) (sway) (torsional) 

2020 University 
2.01 1.90 1.36 

(sway) (sway) (torsional) 

Figure 4-7 3-D finite element model of the CHYBA9 building 
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Figure 4-8 3-D finite element model of the C1fYsA4 huilding 

Figure 4-9 3-D finite element model of the TCllBAA hUilding 
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Figure 4-10 3-D finite element model of the 2020 University building 

4.2.2 Steellattice towers 

The towers were modeled in SAP 2000 as three-dimensional frame-truss linear 

elastic structures. Frame elements were used for the main legs and truss elements for 

diagonal and horizontal members. AlI secondary and redundant members were removed 

from the numerical models because they did not contribute any stiffness, but their masses 

were lumped to stable leg joints. The mass of the main legs and their corresponding 

bracing members were lumped at the leg joints in order to avoid local spurious modes of 

vibration. The towers were attached to the buildings by rigid vertical frame elements 

protruding from the rooftop. Figures 4-11 and 4-12 show the actual attachment of the 

TC 1 tower to the CHYBA9 building. In all cases, the towers were assumed to be rigidly 

connected to the building models at the building-tower interface. Figure 4-13 shows the 
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wlre meshes of the numerical models of the four towers studied, and Table 4-6 

summarizes their dynamic properties as calculated on a rigid base. The towers were 

modeled without any attachment, except in the case of the TC 1 tower where detailed 

architectural/equipment drawings are available. The appurtenances and antennas attached 

to a tower increase its mass and fundamental period of vibration and, consequently, its 

mode shapes. 

Figure 4-11 Tower base 

Figure 4-12 Close-up ofthe tower base 
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III 

(a) TC1 (h) TC2 (c) TC3 (d) TC4 

Figure 4-13 Finite element meshes of the generated tower models 

Table 4-6 Dynamic properties of the towers 

Tower Type Tl (s) T2(s) T3 (s) T4(s) 
ID 

TC1 4-legged 
0.138 0.135 0.095 0.095 

(flexural) (flexural) (torsional) (flexural) 

TC2 3-1egged 
0.372 0.372 0.109 0.099 

(flexural) (flexural) (torsional) (flexural) 

TC3 3-1egged 
0.186 0.186 0.081 0.049 

(flexural) (flexural) (torsional) (flexural) 

TC4 3-legged 
0.254 0.254 0.084 0.048 

(flexural) (flexural) (torsional) (flexural) 
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4.3 Method of analysis 

As mentioned earlier, the modal superposition method is used in this study. The 

mode shapes and frequencies for the 20 lowest modes of the buildingltower 

combinations are evaluated and presented in Appendix C. The damping ratio is taken as 

3% of the critical viscous damping and kept constant for aIl modes. An explanation of the 

modal analysis technique will be summarized next; more details can be found in Clough 

and Penzien (1993) and Chopra (2001). 

4.3.1 Modal superposition analysis method 

The basic concept of modal analysis depends upon the fact that the response in each 

natural mode of vibration can be computed independently of the others, and the modal 

responses of the system can be combined to determine its total response. This method 

provides the response as a function of time and is adequate when the response of the 

structure is basically linear elastic with classical damping. The modal analysis procedure 

permits avoiding the solution of simultaneous coupled equations by transforming the 

continuous or multi-degree-of-freedom system into a set ofuncoupled algebraic equations 

representing SDOF systems through the separation of variables. Each mode responds with 

its own pattern of deformation known as the natural mode of vibration f/Jn, its own circular 

frequency W n, its own critical viscous damping ratio ~n, and its own modal particpation 

factor. The procedure of modal response analysis is summarized next. 

The equation of motion governing the dynamic response of a MD OF system 

subjected to earthquake induced ground motion is given in Equation 4-1 (Chopra 2001): 
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.. . ., 

M u+ Cu+ Ku = PejJ(t) = -MIUg(t) 4-1 

Where: 

M mass matrix. 

C viscous damping matrix. 

K stiffness matrix. 

t influence vector equal to 1 because aIl floor displacements are in the same 

direction. 

U g base acceleration (uniform at aIl support points). 

U,U,U: vectors containing the relative accelerations, velocities, and displacements, 

respectively, with respect to the moving base and are functions oftime t. 

The response of a structure having N-DOF can be determined by solving N 

differential equations represented by the matrix equation given in Equation 4-1. The 

displacement vector u can be written in the modal basis using the expansion theorem with 

N generalized coordinates qn: 

N N 

u(t) = Lun(t) = Lrpnqn(t) 4-2 
n=\ n=\ 

Equation 4-2 superposes the separate modal displacements; therefore, it is referred 

to as the modal superposition method. For buildings subjected to earthquakes, the modes 

with the lowest natural frequencies contribute significantly to the response. 

Substituting Equation 4-2 into Equation 4-1: 

N .. N . N .. 

LMrpn qn(t) + LCrpn q(t) + LKrpnqn(t) = PejJ(t) = -MlUg(t) 4-3 
n=\ n=\ n=\ 
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Pre-multiplying each term in Equation 4-3 by tP: : 

N N N 

Lf/J: MtPn q~ (t) + LtP: CtPn q(t) + LtP: KtPnqn (t) = tP: ~fJ(t) = base motion 4-4 
n=\ n=\ n=\ 

Equation 4-4 can be rewritten as: 

.. N . 

Mn qn(t)+ LCnr qn(t)+Kn qn(t) = Pn(t) 4-5 
n=\ 

Mn and Kn are diagonal matrices, while Cnr is a non diagonal matrix. The N 

equations are coupled through the damping terms of Equation 4-5. For systems having 

classical damping, it is possible to formulate a damping matrix C such that f/JT CtP IS 

diagonal, so that Equation 4-5 becomes: 

.. . 
Mn qn(t)+Cn qn(t)+Kn qn(t) = Pn(t) 4-6 

Equation 4-6 represents a series of n uncoupled equations identical to the equation 

of motion of a linear SDOF system. Dividing Equation 4-6 by the generalized mass, 

tP: Mf/Jn, yields the classical form: 

4-7 

With: 

4-8 

4-9 

4-10 

4-11 
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Equations 4-7 to 4-11 are valid if mode shapes are orthonormal with respect to [M]. 

The method is called the classical modal superposition method because individual 

uncoupled modal equations are solved to determine the modal coordinates qn(t) and the 

modal responses un(t), which are combined to obtained the total response u(t). 

4.4 Earthquake records 

Currently, information about seismicity in Canada can be found in published 

uniform seismic hazard maps, and corresponding earthquake data are prescribed by the 

National Building Code of Canada (NRC/IRC 2005). The hazard levels on these maps 

were particularly selected for buildings to ensure life safety by resisting moderate 

earthquakes without significant damage and major earthquakes without collapse or 

catastrophic failure. The Uniform Hazard Spectra (UHS) are provided for a probability of 

exceedance of 2% in 50 years, corresponding to a return period of 2500 years. Other data 

for higher probability levels such as 10% and 50% in 50 years are also available. 

In Canada, design of telecommunication structures is currently addressed by the 

Canadian Standards Association CSA S37-01 document (CSA 2001 a). Appendix M, not 

a mandatory part of the standard, is devoted to earthquake-resistant design. To define the 

seismicity level, this document uses a simple classification based on the peak horizontal 

ground acceleration, with three categories ofhigh (> 30 % g), moderate (15 to 30 % g), 

and low « 15 % g). Although this classification may need revision to comply with recent 

changes in the Canadian sei smic hazard maps, it is still useful since self-supporting lattice 

towers founded on the ground are mostly acceleration-sensitive. 
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4.4.1 Earthquake records used in this project 

In this study, the generated models are subjected to two sets of horizontal inputs. 

The first set comprises 44 historical records resulting from 23 events given in Table 4-7. 

The records are classified into three categories according to the ratio of the peak ground 

horizontal acceleration to the peak ground horizontal velocity (a/v), including 14 records 

with high a/v ratio, 15 records with medium a/v ratio, and 15 records with low a/v ratio. 

More details about these earthquake records can be found in Tso et al. (1992). The second 

set comprises three series, each including 10 generated time-histories compatible with the 

target Uniform Hazard Spectra for Montreal (Adams and Halchuk 1999), corresponding 

to probabilities of exceedance of 2%, 10% and 50% in 50 years, respectively. These 

synthetic time-histories were generated based on a stochastic approach presented by 

Atkinson and Beresnev (1998). A total of 15 magnitude-distance (M-R) scenarios were 

applied to coyer the entire frequency range of interest. Due to the randomness of the 

generated records, two acceleration time-histories were used for each M-R scenario; 

details are listed in Table 4-8. The reference ground condition for the NBCC seismic 

hazard maps is site Class C: this represents very dense soil or soft rock, with average 

shear wave velocity in the upper 30 m between 360 and 760 mis. 

Different sets of records were used in order to investigate the effects of frequency 

content of ground motion on the elastic response of the towers and their supporting 

buildings. 
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Table 4-7 Earthquake records classified according to their a/v ratio 

Earthquake & Location Date 

Long Beach, Califomia 10/03/1933 

Lower Califomia 10/12/1934 

Helena, Montana 31/10/1935 

Imperial Valley, Califomia 18/05/1940 

Kem County 21/07/1952 

San Francisco, Califomia 22/03/1957 

Honshu, Japan 5/04/1966 

Parkfield, Califomia 27/06/1966 

Borrego Mtn., Califomia 8/04/1968 

Near E. Co st of Honshu, Japan 16/05/1968 

Lytle Creek 12/09/1970 

San Fernando, Califomia 9/02/1971 

Central Honshu, Japan 26/02/1971 

Near S. Coast of Honshu, Japan 02/08/1971 

Near E. Coast of Honshu, Japan 11/05/1972 

Near E. Coast ofHonshu, Japan 17/06/1973 

Near E. Coast of Honshu, Japan 16/11/1974 

Oroville, Califomia 1/08/1975 

Monte Negro, Yugoslavia 9/04/1979 

Monte Negro, Yugoslavia 15/04/1979 

Banja Luka, Yugoslavia 13/08/1981 

Michoacan, Mexico 19/09/1985 

Nahanni, N.W.T, Canada 23/12/1985 

* ML = Local Magnitude 
MIMA = Japan Meteorological Agency Scale 
Ms = Surface Wave Magnitude 
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Magnitude 

ML· = 6.3 

ML=6.5 

ML= 6.0 

ML=6.6 

ML = 7.6 

ML= 5.3 

• MJMA = 5.4 

ML= 5.6 

ML=6.5 

MJMA =7.9 

ML =5.4 

ML=6.6 

MJMA = 5.5 

MJMA = 7.0 

MJMA = 5.8 

MJMA = 7.4 

MJMA = 6.1 

ML= 5.7 

ML =5.4 

ML = 7.0 

ML =6.1 

• Ms = 8.1 

Ms=6.9 



Table 4-8 Characteristics ofM-R scenarios considered for Montreal 

Epicentral Record 1 Record 2 Retum 
Magnitude 

distance ~t (s) 
Length 

Period 
M 

(km) PGA PGV PGA PGV 
[s] 

(years) 
(g) (mis) (g) (mis) 

6.0 30 0.430 0.170 0.520 0.150 0.01 8.89 2500 

6.0 50 0.240 0.072 0.190 0.084 0.01 8.89 2500 

7.0 50 0.510 0.190 0.630 0.290 0.01 12.39 2500 

7.0 70 0.300 0.140 0.290 0.160 0.01 12.39 2500 

7.0 100 0.240 0.150 0.260 0.210 0.01 20.56 2500 

5.5 30 0.180 0.047 0.190 0.045 0.01 20.56 475 

6.0 50 0.240 0.072 0.190 0.084 0.01 20.56 475 

7.0 150 0.130 0.079 0.130 0.086 0.01 20.56 475 

7.0 200 0.084 0.072 0.087 0.067 0.01 24.08 475 

7.0 300 0.042 0.042 0.040 0.040 0.01 24.08 475 

5.5 50 0.069 0.022 0.083 0.028 0.01 23.08 75 

6.0 70 0.045 0.015 0.045 0.018 0.01 23.08 75 

7.0 100 0.039 0.015 0.035 0.015 0.01 5.83 75 

7.0 200 0.084 0.072 0.087 0.067 0.01 5.83 75 

7.0 300 0.042 0.042 0.040 0.040 0.01 12.39 75 
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4.5 Amplification of rooftop accelerations 

An accurate prediction of rooftop seismic accelerations is key in determining the 

shear forces and overturning moments at the base of a telecommunication tower mounted 

on a building rooftop. In order to study the rooftop seismic accelerations, both time­

history and response spectrum dynamic analyses were carried out with the numerical 

models. 

4.5.1 Time-history analyses 

The earthquake sets of records were applied to both main orthogonal horizontal 

directions of each building independently, as prescribed in the 2005 edition of NBCC 

(Section 4.1.8.8); VI and V2 are the longitudinal and transverse directions of the building 

models, respectively. For each input earthquake, the maximum absolute horizontal 

acceleration was computed at the rooftop, in a location corresponding to the center of 

mass in order to avoid torsional effects. The acceleration amplification ratio in a direction 

is calculated as the ratio of the maximum absolute acceleration at the location considered 

and the maximum input acceleration at the ground level. For each set of earthquake 

records, the average (JL) and standard deviations (0-) of the acceleration amplification 

ratios at the rooftop are summarized in Tables 4-9 to 4-12, inc1uding 14 records for the 

a/v ratio group H, 15 records for each of the a/v ratio groups M and L, and 10 records for 

each of 2%, 10%, and 50% probabilities of exceedance in 50 years. In this chapter, 

rooftop acceleration amplification is discussed, while the acceleration amplification along 

the towers will be discussed in Chapter 5. 
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Table 4-9 Rooftop acceleration amplification for CHYBA9 

CHYBA9 Rooftop acceleration amplification 

Direction Ul U2 

Load case J.l cr J.l cr 

H 3.56 1.03 2.90 0.98 

M 4.02 1.25 3.58 0.89 

L 4.19 1.79 3.37 1.30 

2% 3.42 0.43 2.50 0.49 

10% 4.21 0.95 3.11 0.61 

50% 4.19 0.98 2.59 0.52 

AlI records 3.92 1.19 3.05 0.95 

Table 4-10 Rooftop acceleration amplification for CHYBA4 

CHYBA4 Rooftop acceleration amplification 

Direction Ul U2 

Load case J.l cr J.l cr 

H 3.49 0.68 4.26 1.19 

M 3.92 1.00 4.93 1.06 

L 4.02 0.88 4.40 1.57 

2% 3.15 0.48 4.20 0.98 

10% 3.60 1.21 4.85 1.25 

50% 3.38 1.18 3.92 1.13 

AlI records 3.63 0.94 4.44 1.23 
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Table 4-11 Rooftop acceleration amplification for TCUBAA 

TCUBAA Rooftop acceleration amplification 

Direction U1 U2 

Load case Jl cr Jl cr 

H 1.83 0.50 3.22 0.62 

M 2.85 0.84 4.21 0.88 

L 3.09 0.90 3.71 0.54 

2% 1.84 0.49 3.10 0.64 

10% 2.09 0.69 3.67 1.00 

50% 2.03 0.67 3.61 1.05 

AU records 2.34 0.86 3.60 0.85 

Table 4-12 Rooftop acceleration amplification for 2020 University 

2020 
Rooftop acceleration amplification 

University 

Direction U1 U2 

Load case Jl cr Jl cr 

H 2.36 0.35 2.54 0.56 

M 2.87 0.64 3.28 0.58 

L 3.08 0.70 3.52 0.44 

2% 2.29 0.50 2.29 0.50 

10% 2.67 0.61 2.95 0.75 

50% 2.46 0.60 2.69 0.85 

AU records 2.65 0.63 2.91 0.73 
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The results presented in Tables 4-9 to 4-12 indicate that the maximum amplification 

of rooftop accelerations occurs for the sets of records of medium and Iowa/v ratios as 

weIl as for the records compatible with the Uniform Hazard Spectra having probabilities 

of exceedance of 10% and 50% in 50 years. It is noticed that less amplification is 

obtained for the records compatible with the UHS having a probability of exceedance of 

2% in 50 years and those having high a/v ratios; this may explain why the height 

amplification ratio was decreased from 4 to 3 in the NEHRP 2000 (BSSC 2001), as 

provisions for acceleration amplification are for ground accelerations larger than O.lg. 

For medium and Iowa/v ratio records, it is proposed that a maximum acceleration 

amplification of 4 be considered, while for high a/v ratio records a factor of 3 is 

sufficient. In general, since an amplification factor of 4 is conservative, it IS 

recommended for aIl cases. The results of numerical simulations correlate weIl with the 

findings in Chapter 3, since the records of the Chi Chi earthquake can be associated with 

the sets of medium and Iowa/v ratios. Therefore, the recommended maximum rooftop 

acceleration of 4 based on the study of recorded accelerations undertaken in Chapter 3 

agrees with related recommendations resulting from the numerical simulations of the 

generated models presented in this chapter. 

The results further indicate a close correlation between the amplification obtained 

with the records classified according to the a/v ratio and the records compatible with the 

UHS classified according to the M-R scenarios, although the different records have 

different frequency content characteristics. This observation is proved by computing the 

mean acceleration response spectra of records normalized to Ig, as shown in Figures 4-14 

to 4-16. The mean spectral accelerations of 2%/50 years and high a/v ratios at 5% 
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damping (Figure 4-14) are very similar in all period ranges and decrease rapidly beyond 

0.2 s. In the case of 10%/50 years and medium a/v ratios (Figure 4-15), the mean spectral 

accelerations are very similar in the 0.2-0.5 s period range; however, the average 

spectrum of the data corresponding to medium a/v ratios decreases less rapidly than that 

of URS at periods longer than 0.5 s. In the case of 50%/50 years and low a/v ratios 

(Figure 4-16), the two curves ofmean spectral accelerations follow the same trend in the 

range ofperiods larger than 0.3 s, with larger values for the set oflow a/v ratios. 

118 



3,-----------------------------------------, 

2 

-- Calculated av. 2%/50y 

- Av. High a/v 

0.1 0.5 0.9 1.3 1.7 
Period in seconds 

Figure 4-14 Mean 5% damped elastic acceleration response spectra for the sets ofHigh 
a/v and 2%/50 years normalized to Ig 

3.-----------------------------------------~ 

2 

-- Calculated av.l O%/50y 

- Av. Medium a/v 

o+-~~~-+~~~~+_~~~_+~~~~+_~~~ 

0.1 0.5 0.9 1.3 1.7 

Period in seconds 

Figure 4-15 Mean 5% damped elastic acceleration response spectra for the sets of 
Medium a/v and 10%/50 years normalized to Ig 
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3~------------------------------------~ 

2 -- Calculated av. 50%/50y 

-Av. Lowalv 

0.1 0.5 0.9 1.3 J.7 

Period in seconds 

Figure 4-16 Mean 5% damped elastic acceleration response spectra for the sets ofLow 
a/v and 50%/50 years normalized to Ig 

4.5.2 Rooftop seismic spectral accelerations 

For each seismic input record, the response spectrum at 5% damping was 

computed. Spectral accelerations were evaluated at 0.2 s, as suggested in the NBCC 2005 

(NRC/IRC 2005), and at the sway fundamental periods of vibration of the building 

models, TI and T 2. The Uniform Hazard Spectra proposed in the NBCC 2005 and the 

computed 5% damped absolute acceleration response spectra for exceedance levels of 

2%, 10% and 50% in 50 years earthquake records are presented in Figures 4-17 to 4-19. 

The spectral accelerations of the earthquakes classified according to a/v ratios are 

presented in Figures 4-20 to 4-22. AlI generated spectra are plotted on the figures and the 

average curve is also shown. The peak rooftop acceleration (PRA) was computed in the 

direction of the applied motion. For each record, the ratio PRA/(O.3*Sa(T)*Sp) was 

computed, taking Sp as being equal to 4: referring again to Equation 2-11, this ratio is 
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equal to the importance factor lE. Tables 4-13 to 4-16 summarize the average and 

standard deviations of the ratios corresponding to each set of records and each of the four 

buildings. 

1.2 -.-----------------------, 

0.8 
,-... 
bD 
'-' 

0:1 
CI) 

0.6 
-NBCC2005 

0.4 
• Average computed 

0.2 

0 

0.1 0.5 0.9 1.3 1.7 

Period in seconds 

Figure 4-17 UHS proposed in NBCC 2005 and computed 5% damped average absolute 
acceleration response spectra for 2%/50 years 
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0.4 ;--------------------------, 
1. 
;1 

0.3 

"""' ~ 
~ 0.2 

-NBCC2005 
• Average computed 

0.1 

.. :: .... ~~.:~~~~----_. 
~--..;.;.;.:~----- '-. 

0.1 0.5 0.9 1.3 1.7 

Period in seconds 

Figure 4-18 URS proposed in NBCC 2005 and computed 5% damped elastic average 
acceleration response spectra for 10%/50 years 

0.15.---------------------------, 

,;1 
1 • 

1 

0.1 : tfi :: 
bD ,~1'. 1 

'-' 

'" CI) 

0.05 

0.5 

-NBCC2005 
• Average computed 

0.9 1.3 1.7 

Period in seconds 

Figure 4-19 UHS proposed in NBCC 2005 and computed 5% damped elastic average 
acceleration response spectra for 50%/50 years 
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3.5 -,-----------------------, 

3 

2.5 

1.5 

0.5 
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Figure 4-20 Computed 5% damped elastic acceleration response spectra for the set High 
a/v. (a) Without normalization (b) Normalized to Ig 
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Medium a/v. (a) Without normalization (b) Normalized to 19 
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Table 4-13 Comparison of rooftop peak and spectral accelerations for the CHYBA9 
building 

CHYBA9 PRA/1.2*Sa(0.2) PRA/1.2*Sa(T 1) PRA/1.2 * Sa(T 2) 

Direction VI V2 VI V2 VI V2 

Load case ~ cr ~ cr ~ cr ~ cr ~ cr ~ cr 

H 1.19 0.41 1.24 0.49 1.36 0.32 1.37 0.08 1.24 0.08 1.30 0.29 

M 1.37 0.26 1.46 0.37 1.25 0.24 1.31 0.14 1.32 0.11 1.42 0.24 

L 1.45 0.39 1.42 0.42 1.38 0.47 1.28 0.13 1.38 0.20 1.36 0.35 

2% 1.38 0.31 1.13 0.17 1.55 0.46 1.25 0.14 1.33 0.19 1.11 0.19 

10% 1.48 0.31 1.25 0.18 1.49 0.35 1.25 0.17 1.35 0.14 1.19 0.33 

50% 1.48 0.29 1.04 0.09 1.79 0.42 1.27 0.18 1.38 0.14 1.00 0.19 

AlI records 1.39 0.33 1.26 0.28 1.47 0.38 1.29 0.14 1.33 0.14 1.23 0.27 

Table 4-14 Comparison of rooftop peak and spectral accelerations for the CHYBA4 
building 

CHYBA4 PRA/1.2*Sa(0.2) PRA/1.2*Sa(T1) PRA/1.2*Sa(T2) 

Direction VI V2 VI V2 VI V2 

Load case ~ cr ~ cr ~ cr ~ cr ~ cr ~ cr 

H 2.49 1.22 2.38 0.85 3.66 1.54 3.70 1.50 3.09 1.30 2.90 0.81 

M 2.13 0.71 2.19 0.63 2.48 0.75 2.77 1.41 1.93 0.46 1.99 0.40 

L 2.10 0.34 2.17 0.58 2.07 0.22 2.18 0.68 2.09 0.46 2.02 0.27 

2% 2.23 0.30 2.63 0.59 3.28 0.72 3.85 0.98 2.62 0.53 3.01 0.35 

10% 2.15 0.39 2.39 0.26 3.06 0.62 3.44 0.78 2.17 0.37 2.43 0.32 

50% 2.05 0.29 2.22 0.22 3.19 0.90 3.42 0.77 2.52 0.54 2.73 0.51 

AlI records 2.19 0.54 2.33 0.52 2.96 0.79 3.23 1.02 2.40 0.61 2.51 0.44 
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Table 4-15 Comparison of rooftop peak and spectral accelerations for the TCUBAA 
building 

TCUBAA PRA/1.2*SaCO.2) PRA/1.2*Sa(T 1) PRA/1.2*SaCT2) 

Direction U1 U2 U1 U2 U1 U2 

Load case J..l cr J..l cr J..l cr J..l cr J..l cr J..l cr 

H 1.29 0.54 0.72 0.30 4.68 1.52 2.58 0.63 4.10 1.60 2.24 0.63 

M 1.56 0.51 1.07 0.45 2.53 0.60 1.67 0.35 2.23 0.55 1.46 0.19 

L 1.45 0.40 1.24 0.62 1.93 0.47 1.55 0.29 1.67 0.36 1.33 0.14 

2% 1.25 0.20 0.73 0.18 3.68 1.00 2.09 0.50 3.44 0.91 1.98 0.54 

10% 1.28 0.16 0.73 0.19 4.16 2.31 2.17 0.76 3.77 1.90 1.97 0.61 

50% 1.26 0.19 0.71 0.19 3.99 1.53 2.14 0.55 3.66 1.36 1.96 0.51 

AH records 1.35 0.34 0.87 0.32 3.49 1.24 2.03 0.51 3.15 1.11 1.82 0.44 

Table 4-16 Comparison of rooftop peak and spectral accelerations for the 2020 
University building 

2020 
PRA/1.2*SaCO.2) PRA/1.2*Sa(T 1) PRA/1.2*SaCT2) 

University 

Direction U1 U2 U1 U2 U1 U2 

Load case J..l cr J..l cr J..l cr J..l cr J..l cr J..l cr 

H 0.93 0.33 0.97 0.27 18.0 8.57 19.2 8.71 16.1 7.38 17.2 7.44 

M 1.08 0.42 1.20 0.36 5.8 1.45 6.81 2.32 5.48 1.39 6.42 2.18 

L 1.24 0.61 1.37 0.34 3.42 1.55 4.15 2.04 3.27 1.19 3.92 1.60 

2% 0.96 0.24 1.14 0.23 12.5 5.51 14.5 5.05 11.5 4.64 13.4 4.75 

10% 0.97 0.20 1.07 0.17 12.0 6.06 13.3 6.48 11.0 5.03 12.2 5.71 

50% 0.90 0.13 0.98 0.19 12.4 5.49 13.3 5.67 11.9 5.88 12.8 6.35 

AH records 1.02 0.32 1.12 0.26 10.7 4.77 11.9 5.04 9.87 4.25 11.0 4.67 
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Tables 4-13 to 4-16 indicate that for the sets of UHS records, the amplified uniform 

hazard spectral acceleration at 0.2 s, Sa(0.2), gives the best estimate of peak rooftop 

acceleration demand of the structure, which complies with the NBCC recommendations. 

For short period structures (CHYBA9 and CHYBA4), considering either 0.2 s, TI, or T2 

did not result in considerable variability in the results. On the other hand, only the 

spectral acceleration at 0.2 s is adequate for flexible structures such as the TCUBAA and 

the 2020 University buildings. 
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4.6 Conclusions 

The modeling details and assumptions used for the buildings and the towers of the 

study undertaken are presented in this chapter. The dynamic analysis procedure and the 

earthquake records used are described. Many records of different characteristics were 

used as input at the base of the buildings to investigate the effect of the frequency content 

of the ground motion on the acceleration amplification at the rooftop, irrespective of the 

building's period. It was found that the frequency content does have sorne effect in terms 

of individual time-history, but this is smoothed out when the responses are averaged. It is 

observed that less amplification occurs for the records having high a/v ratios and those 

having a low probability of occurrence (2%/50 years). As a result of the study, a 

maximum rooftop acceleration amplification of 4 is proposed for low/medium rise 

buildings and 3 for high-rise flexible buildings (T > 1.7 s). These recommendations are in 

good agreement with those resulting from the experimental study of real recorded 

accelerations in existing instrumented buildings in Taiwan (Chapter 3). FinaIly, the 

estimation of rooftop accelerations from input acceleration response spectra was 

discussed. It was found that evaluating the spectral acceleration at 0.2 s is adequate for aIl 

building cases. 
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Chapter 5 

Proposed Simplified Method of Seismic Analysis of Rooftop 

Towers 

The present chapter describes the procedure followed to develop an equivalent 

static method intended to provide a use fuI tool for the quick estimation of the seismic 

efforts, namely the base shear and overtuming moment, at the base of acceleration­

sensitive, self-supporting steel lattice telecommunication towers mounted on building 

rooftops. The method is based on the prediction of input seismic rooftop acceleration at 

the building-tower interface, which was discussed in Chapters 3 and 4; the definition of 

an acce1eration profile along the height of the building-mounted tower and the prediction 

of fundamental mode shapes of the tower on a rigid base, both of which will be discussed 

in this chapter; and finally, the computation of the mass distribution of the tower from its 

structural plans. In addition, the component force amplification factor Ar for 

telecommunication towers is discussed. 

5.1 Component force amplification factor Ar for telecommunication towers of the 

building-tower combinations 

The equation proposed in NBCC 2005 (NRC/IRC 2005) for calculating the input 

seismic base shear forces for design of operational and functional components (OFCs) in 

buildings was presented in Chapter 2 (Equation 2-11). This equation comprises an 

empirical component force amplification factor Ar that needs further study. In case of the 

unavailability of the building's and/or tower's dynamic properties, the NBCC 2005 
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(Table 4.1.8.17) proposes a component force amplification factor Ar equal to 2.5 for 

telecommunication towers. When the ratio of the tower's fundamental period over the 

building's fundamental period Ttowe/Tbuiling is known, Ar can be obtained from the graph 

shown in Figure 2-4. In order to investigate the adequacy of the factor Ar as proposed in 

NBCC 2005, the maximum absolute seismic accelerations were estimated along the tower 

height for each building-tower combination in both principal horizontal directions VI and 

V2 of the generated models separately. Ar is computed as the average value of the 

maximum acceleration amplification at different levels of the tower, from the building­

tower interface to the tower top. The graphs shown in Figures 5-1 to 5-8 illustrate the 

average values and standard deviations of the Ar factors resulting from the numerical 

simulations for each building-tower combination subjected to the earthquake sets depicted 

in Chapter 4. Aiso shown on each graph is the component force amplification factor as 

suggested in NBCC 2005. In this study, the ratio Ttowe/Tbuiling is known; therefore, the Ar 

values were calculated as suggested in NBCC 2005 and compared to the average 

amplification of accelerations. Results are presented in Tables 5-1 to 5-15. 
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5.1.1 Results for the building labeled CHYBA9 

The three largest natural periods of the CHYBA9 building are: 

TI = 0.30 s (U2-direction) T 2 = 0.26 s (Ul-direction) T 3 = 0.17 s (torsion). 

Table 5-1 Ar factors for the TCl, TC2, TC3, and TC4 towers mounted on the CHYBA9 
building calculated according to NBCC 2005 

Ul U2 
CHYBA9 

Ttowe/T building Ar Ttowe/T building Ar 

TCl 0.52 1.15 0.45 1 

TC2 1.43 2.5 1.24 2.5 

TC3 0.72 2.5 0.62 1.9 

TC4 0.97 2.5 0.84 2.5 

Table 5-2 Ar factors for CHYBA9-TCl 

CHYBA9 - TCl 
TCl (TI = T2= 0.14 s) 

Average tower acceleration amplification 

UI U2 
Load case 

J.l cr J.l cr 

H 1.02 0.02 1.05 0.03 

M 1.03 0.01 1.02 0.01 

L 1.02 0.01 1.03 0.01 

2% 1.08 0.03 1.07 0.06 

10% 1.08 0.05 1.05 0.05 

50% 1.07 0.04 1.05 0.04 

AlI records 1.04 0.04 1.05 0.04 
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Table 5-3 Ar factors for CHYBA9-TC2 

CHYBA9 - TC2 
TC2 (Tl = T2 = 0.37 s) 

Average tower acceleration amplification 

Load case 
VI V2 

~ cr ~ cr 

H 1.51 0.30 2.41 0.34 

M 1.56 0.38 2.17 0.33 

L 1.51 0.30 2.12 0.26 

2% 1.34 0.15 2.38 0.23 

10% 1.38 0.19 2.21 0.24 

50% 1.33 0.22 2.39 0.25 

AlI records 1.45 0.29 2.27 0.30 

Table 5-4 Ar factors for CHYBA9-TC3 

CHYBA9-TC3 
TC3 (Tl = T2 = 0.19 s) 

Average tower acceleration amplification 

VI V2 
Loadcase 

~ cr ~ cr 

H 3.40 0.65 2.12 0.55 

M 3.18 0.57 2.18 0.45 

L 3.18 0.45 2.27 0.71 

2% 3.59 0.38 2.25 0.48 

10% 3.20 0.41 2.02 0.37 

50% 3.20 0.28 2.58 0.51 

AlI records 3.28 0.50 2.23 0.54 
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Table 5-5 Ar factors for CHYBA9-TC4 

CHYBA9 -TC4 
TC4 (Tl = T2 = 0.25 s) 

Average tower acceleration amplification 

Load case 
Ul U2 

~ 0- ~ 0-

H 4.19 0.87 2.83 0.39 

M 4.61 0.90 2.63 0.24 

L 4.83 0.92 2.77 0.49 

2% 5.30 0.48 3.11 0.34 

10% 4.92 0.44 2.84 0.29 

50% 4.95 0.57 3.06 0.45 

AU records 4.76 0.81 2.85 0.40 

5.1.2 Results for the building labeled CHYBA4 

The largest natural periods of the CHYBA4 building are: 

Tl = 0.41 s (Ul-direction) T2 = 0.31 s (U2-direction) T3 = 0.24 s (torsion). 

Table 5-6 Ar factors for the TCl, TC2, TC3, and TC4 towers mounted on the CHYBA4 
building ca1culated according to NBCC 2005 

CHYBA4 
Ul U2 

TtoweJT building Ar TtoweJT building Ar 
TCl 0.33 1 0.44 1 
TC2 0.92 2.5 1.21 2.5 
TC3 0.46 1 0.61 1.83 
TC4 0.62 1.9 0.82 2.5 
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Table 5-7 Ar factors for CHYBA4-TC1 

CHYBA4-TC1 
TC1 (TI = T2 = 0.14 s) 

Average tower acceleration amplification 

Load case 
VI V2 

J.L 0- J.L 0-

H 1.70 0.19 1.55 0.15 

M 1.53 0.18 1.31 0.18 

L 1.49 0.17 1.37 0.22 

2% 1.73 0.12 1.57 0.10 

10% 1.69 0.16 1.51 0.11 

50% 1.70 0.15 1.56 0.15 

AlI records 1.63 0.19 1.47 0.19 

Table 5-8 Ar factors for CHYBA4-TC2 

CHYBA4-TC2 
TC2 (TI = T2 = 0.37 s) 

Average tower acceleration amplification 

Load case 
VI V2 

J.L 0- J.L cr 

H 5.06 1.82 2.79 0.60 

M 6.58 1.64 2.94 0.48 

L 7.31 1.20 3.17 0.78 

2% 5.76 1.26 2.83 0.17 

10% 6.07 1.61 2.93 0.14 

50% 6.39 2.10 3.00 0.27 

AlI records 6.24 1.73 2.95 0.51 
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Table 5-9 Ar factors for CHYBA4-TC3 

CHYBA4-TC3 
TC3 (Tl = T2 = 0.19 s) 

Average tower acceleration amplification 

Load case 
VI V2 

J.l cr J.l cr 

H 2.26 0.59 2.43 0.64 

M 2.23 0.54 2.59 0.29 

L 2.25 0.35 2.46 0.35 

2% 2.51 0.28 2.33 0.31 

10% 2.30 0.31 2.38 0.20 

50% 2.34 0.29 2.48 0.26 

AH records 2.30 0.42 2.46 0.38 

Table 5-10 Ar factors for CHYBA4-TC4 

CHYBA4-TC4 
TC4 (Tl = T2 = 0.25 s) 

Average tower acceleration amplification 

VI V2 
Load case 

J.l cr J.l cr 

H 2.91 0.72 2.33 0.43 

M 3.09 0.98 2.75 0.40 

L 2.49 0.49 2.56 0.40 

2% 2.83 0.47 2.35 0.29 

10% 2.92 0.64 2.42 0.20 

50% 3.02 0.45 2.50 0.27 

AH records 2.87 0.68 2.50 0.38 
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5.1.3 Results for the TCUBAA building 

The largest natural periods of the TCUBAA building are: 

Tl = 0.75 s (V2-direction) T2 = 0.69 s (U1-direction) T3 = 0.62 s (torsion). 

Table 5-11 Ar factors for the TC1, TC2, TC3, and TC4 towers mounted on the TCUBAA 
building calculated according to NBCC 2005 

VI V2 
TCUBAA 

Ttowe!T building Ar Ttowe!T building Ar 

TC1 0.2 1 0.18 1 
TC2 0.54 1.3 0.5 1 
TC3 0.27 1 0.25 1 
TC4 0.37 1 0.34 1 

Table 5-12 Ar factors for TCUBAA-TC1 

TCVBAA-TC1 
TC1 (Tl = T2= 0.14s) 

Average tower acceleration amplification 

VI V2 
Load case 

Jl cr Jl cr 

H 1.01 0.03 1.01 0.03 

M 0.99 0.02 0.99 0.02 

L 0.98 0.01 0.98 0.01 

2% 0.99 0.02 0.99 0.02 

10% 1.00 0.02 1.00 0.02 

50% 1.00 0.02 1.00 0.02 

AH records 1.00 0.02 1.00 0.02 
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Table 5-13 Ar factors for TCUBAA-TC2 

TCVBAA-TC2 
TC2 (Tl = T2 = 0.37 s) 

Average tower acceleration amplification 

Load case 
VI V2 

Il cr Il cr 

H 6.76 0.96 4.24 0.80 

M 8.67 1.66 3.86 0.96 

L 8.65 1.56 3.93 0.59 

2% 9.87 1.29 3.92 0.78 

10% 9.25 1.55 4.11 0.92 

50% 9.21 1.09 4.11 0.74 

AlI records 8.62 1.67 4.02 0.79 

Table 5-14 Ar factors for TCUBAA-TC3 

TCVBAA-TC3 
TC3 (Tl = T2= 0.19 s) 

Average tower acceleration amplification 

VI V2 
Load case 

Il cr Il cr 

H 10.68 5.66 7.73 3.65 

M 7.76 2.70 5.06 2.30 

L 6.06 2.20 4.08 1.46 

2% 8.87 1.53 5.38 0.96 

10% 8.77 1.95 6.50 3.13 

50% 8.43 2.18 6.17 2.63 

AlI records 8.35 3.41 5.75 2.74 
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Table 5-15 Ar factors for TCUBAA-TC4 

TCUBAA-TC4 
TC4 (Tl = T2= 0.25 s) 

Average tower acceleration amplification 

U1 U2 
Load case 

J.l cr J.l 0-

H 15.68 7.09 9.05 3.13 

M 9.12 3.84 3.88 1.26 

L 8.79 4.60 3.62 1.42 

2% 17.41 4.43 9.47 1.61 

10% 17.21 4.61 8.34 1.66 

50% 16.26 3.07 8.12 1.21 

AU records 13.47 6.04 6.74 3.10 

5.1.4 Results for the 2020 University building 

The largest natural periods of the 2020 University building are: 

Tl = 2.01 s (U1-direction) T2 = 1.88 s (U2-direction) T3 = 1.36 s (torsion). 

Table 5-16 Ar factors for the TC1, TC2, TC3, and TC4 towers mounted on the 2020 
University building calculated according to NBCC 2005 

2020 U1 U2 

University TtoweriT building Ar TtoweriT building Ar 

TC1 0.07 1 0.07 1 

TC2 0.19 1 0.20 1 
TC3 0.09 1 0.10 1 

TC4 0.13 1 0.13 1 
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Table 5-17 Ar factors for 2020 University-TC 1 

2020 University TCl (Tl = T2 = 0.14 s) 

-TCl Average tower acceleration amplification 

Load case 
Ul U2 

J.! 0- J.! 0-

H 1.38 0.06 1.13 0.07 

M 1.29 0.07 1.06 0.04 

L 1.23 0.08 1.04 0.04 

2% 1.41 0.05 1.17 0.06 

10% 1.37 0.10 1.14 0.08 

50% 1.40 0.11 1.15 0.07 

AlI records 1.34 0.10 1.11 0.08 

Table 5-18 Ar factors for 2020 University-TC2 

2020 University TC2 (Tl = T2 = 0.37 s) 

-TC2 Average tower acceleration amplification 

Ul U2 
Load case 

J.! 0- J.! 0-

H 3.30 0.86 6.15 1.59 

M 3.55 0.77 3.98 0.79 

L 3.29 0.77 3.79 0.81 

2% 3.16 0.53 7.23 1.72 

10% 3.31 0.61 6.58 2.07 

50% 3.24 0.60 6.80 1.80 

AlI records 3.32 0.71 5.52 1.99 
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Table 5-19 Ar factors for 2020 University-TC3 

2020 University TC3 (Tl = T2= 0.19 s) 

-TC3 Average tower acceleration amplification 

Load case 
U1 U2 

~ 0' ~ 0' 

H 4.77 1.68 5.47 1.56 

M 4.44 1.45 5.04 1.39 

L 3.42 1.08 3.80 1.04 

2% 5.06 1.87 5.40 1.27 

10% 4.51 0.74 5.40 1.16 

50% 5.09 0.98 6.32 1.38 

AH records 4.25 1.45 4.77 1.47 

Table 5-20 Ar factors for 2020 University-TC4 

2020 University TC4 (Tl = T2 = 0.25 s) 

-TC4 Average tower acceleration amplification 

Load case 
Ul U2 

~ 0' ~ cr 

H 3.55 0.90 4.16 0.97 

M 3.13 0.76 3.52 0.80 

L 2.54 0.73 2.54 0.73 

2% 3.44 0.64 4.03 0.85 

10% 3.28 0.70 3.81 0.52 

50% 3.33 0.51 4.03 0.94 

AH records 3.18 0.79 3.62 0.99 
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5.1.5 Discussion of the component force amplification factor Ar for 

telecommunication towers 

Operational and functional components attached to a building framework receive 

filtered and amplified input ground acceleration. The elastic base shear at the component­

building interface can be taken as the product of the input acceleration at the base of the 

component, the weight of the component, and a force modification factor equivalent to 

the component force amplification factor Ar. If the component is rigid or rigidly attached 

to the building, the component is assumed to follow the motion of the building; therefore, 

the proposed component force amplification factor proposed in the NBCC 2005 and other 

codes is equal to 1. On the other hand, when the component is flexible or flexibly 

attached to the building, this amplification factor increases as the fundamental frequencies 

of the building and component come close: a maximum value of 2.5 is suggested in the 

NBCC 2005 and other codes. Most telecommunication towers can be classified as 

flexible components, and it is expected that their Ar factor be greater than 1. This is 

reflected in the results shown in the Tables 5-1 to 5-15, where the Ar values are greater 

than 1 in most cases. 

For low-rise buildings, such as CHYBA9 (Figures 5-1 and 5-2) and CHYBA4 

(Figures 5-3 and 5-4), the component force amplification factor proposed in the NBCC 

2005 gives reasonable results, especially for the TCl tower, which is relatively rigid. 

However, when the tower's period approaches the building's period, an amplification 

factor of 6 seems more adequate. In case the period of the tower exceeds the period of the 

building, such as the TC2 tower mounted on the CHYBA9 building, the factor 2.5 

proposed by the NBCC seems reasonable. 
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In case of medium and high-rise buildings, such as TCUBAA (Figures 5-5 and 5-6) 

and 2020 University (Figures 5-7 and 5-8), the amplification factor of 1 seems reasonable 

for the TC1 tower, which is very rigid; however, for more flexible towers, it is suggested 

to increase the value of Ar from 2.5, as proposed in the NBCC 2005, to a value of 8. 

Besides, the somewhat arbitrary distinction of flexible and rigid component does not 

apply for medium and tall buildings because there is significant amplification of 

accelerations in the towers regardless of the fact that the ratio T piT becomes very small in 

most of the cases. Moreover, it is noted that the amplification of accelerations for the TC1 

tower is negligible for aIl building models, except for the CHYBA4 building, indicating 

that the NBCC limit of 0.06 s set for the fundamental period of rigid components is 

conservative. 

5.2 Prediction of forces at the building-tower interface 

5.2.1 Evaluation of shear force demands 

In order to evaluate the adequacy of the NBCC provisions in predicting the input 

sei smic shear forces at the base of steel lattice telecommunication towers mounted on 

building rooftops, the shear forces resulting from the dynamic modal analysis of all 

building-tower combinations modeled in SAP 2000 and subjected to the earthquake 

ground motions depicted in Chapter 4 were calculated and compared to the shear forces 

computed using Equation 2-11. The shear force demand evaluated from the numerical 

simulations at the building-tower interface is calculated as the sum of the maximum 

absolute shear forces at the tower's legs corresponding to the direction of the applied 

earthquake records. This method of calculation results in upper bound values of V. 

147 



Detailed calculations for shear force demands for the combination CHYBA9-TC2 are 

presented in Appendix D. Similar calculations were done for the other building-tower 

combinations. The acceleration in Equation 2-11 is estimated from the maximum time­

history rooftop acceleration and from the spectral acceleration. The latter was evaluated 

in order to make direct comparison with the NBCC 2005 provisions that use the amplified 

spectral acceleration at the ground level of the building as input acceleration to 

operational and functional components in buildings. The response spectra were calculated 

from the rooftop acceleration time-history, considering 5% damping ratio as suggested in 

the NBCC 2005. The mass of the towers studied is negligible in comparison to the mass 

of the buildings; therefore, it was assumed that dynamic interaction between the buildings 

and towers is negligible and their responses are uncoupled. Towers having different 

dynamic and geometric properties were chosen since the base shear forces are directly 

related to the component's period of vibration. It should be noted that the Rp factor in 

Equation 2-11 is taken as being equal to 1.0 because it is assumed that neither the tower 

nor its attachment to the building is experiencing ductile nonlinear deformation, while the 

Cp factor in Equation 2-11 is taken as equal 1.0, as suggested in Table 4.1.8.17 of the 

NBCC 2005. The prediction of maximum rooftop accelerations from time-history input 

records at a building's base was discussed in Chapter 4, but a methodology for generating 

the building rooftop response spectra is outside the scope of this study. Such methods can 

be found in Singh (1975) and Gupta (1990). The ratio of shear force demand, V, 

calculated from the numerical models generated in SAP 2000 and the shear force 

determined from Equation 2-11 using either the time-history accelerations (marooftop) or 

spectral accelerations (W*Sa(T)) was calculated. This ratio represents the component 
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force amplification factor Ar of the tower when time-history acce1eration is used. Results 

of numerica1 simulations for each bui1ding-tower combination and corresponding 

component force amplification factors ca1cu1ated according to the NBCC 2005 are 

summarized in Tables 5-21 to 5-32. On1y the results of the buildings 1abe1ed CHYBA9, 

CHYBA4, and 2020 University are presented. It is recommended to perform detai1ed 

dynamic ana1ysis and mode1ing for buildings of comp1ex geometry 1ike the TCUBAA 

building, which is not a representative case and thus it will not be considered in 

subsequent sections. AU ca1cu1ations were done separate1y in both the Ul and U2 

directions. 

5.2.1.1 Shear forces for the towers mounted on the CHYBA9 building 

The results of shear forces for the CHYBA9 building combined with each of the 

TCl, TC2, TC3, and TC4 towers are presented in Tables 5-21 to 5-24. 
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Table 5-21 Shear forces for the combination CHYBA9-TC1 

CHYBA9 TC1 (TI = T2= 0.14 s) 

V demandlW* Sa(T) V demand/marooftop Ar 

~ Load case VI V2 VI V2 
VI V2 

J..I. cr J..I. cr J..I. cr J..I. cr 

H 0.71 0.11 0.73 0.13 1.30 0.03 1.17 0.02 1.15 1 

M 0.84 0.08 0.86 0.11 1.19 0.02 1.19 0.03 1.15 1 

L 0.86 0.14 0.92 0.08 1.21 0.05 1.29 0.44 1.15 1 

2% 0.68 0.11 0.74 0.11 1.11 0.14 1.18 0.05 1.15 1 

10% 0.72 0.07 0.77 0.08 1.18 0.04 1.18 0.04 1.15 1 

50% 0.74 0.06 0.71 0.05 1.18 0.03 1.17 0.03 1.15 1 

AlI records 0.77 0.12 0.80 0.13 1.20 0.09 1.20 0.32 1.15 1 

Table 5-22 Shear forces for the combination CHYBA9-TC2 

CHYBA9 TC2 (TI = T2 = 0.37 s) 

V demand/W*Sa(T) V demand/marooftop Ar 

~ Load case VI V2 VI V2 
VI V2 

J..I. cr J..I. cr J..I. cr J..I. cr 

H 0.43 0.16 0.45 0.13 0.66 0.22 1.03 0.36 2.5 2.5 

M 0.41 0.15 0.38 0.11 0.77 0.34 0.98 0.32 2.5 2.5 

L 0.53 0.12 0.50 0.09 0.84 0.30 1.21 0.50 2.5 2.5 

2% 0.43 0.10 0.48 0.11 0.58 0.16 1.01 0.28 2.5 2.5 

10% 0.43 0.08 0.41 0.06 0.60 0.15 0.89 0.22 2.5 2.5 

50% 0.38 0.08 0.42 0.07 0.55 0.12 1.07 0.31 2.5 2.5 

AlI records 0.44 0.13 0.44 0.11 0.68 0.26 1.04 0.27 2.5 2.5 
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Table 5-23 Shear forces for the combination CHYBA9-TC3 

CHYBA9 TC3 (Tl = T2 = 0.19 s) 

V demandlW* Sa(T) V demand/marooftop Ar 

~ Load case VI V2 VI V2 
VI V2 

Il cr Il cr Il cr Il cr 

H 1.07 0.17 1.05 0.10 3.07 0.52 2.18 0.27 2.5 1.9 

M 1.17 0.17 1.11 0.14 2.84 0.50 2.03 0.19 2.5 1.9 

L 1.24 0.13 1.08 0.06 2.81 0.49 1.90 0.24 2.5 1.9 

2% 1.26 0.17 1.13 0.11 3.22 0.36 2.14 0.19 2.5 1.9 

10% 1.20 0.16 1.05 0.12 3.03 0.38 1.94 0.22 2.5 1.9 

50% 1.19 0.15 1.11 0.12 2.83 0.26 2.12 0.23 2.5 1.9 

AlI records 1.19 0.17 1.09 0.11 2.96 0.45 2.05 0.81 2.5 1.9 

Table 5-24 Shear forces for the combination CHYBA9-TC4 

CHYBA9 TC4 (Tl = T2 = 0.25 s) 

V demand/W*Sa(T) V demand/marooftop Ar 

~ Load case VI V2 VI V2 
VI V2 

Il cr Il cr Il cr Il cr 

H 0.60 0.07 0.49 0.04 3.13 0.74 2.10 0.33 2.5 2.5 

M 0.60 0.04 0.56 0.03 3.51 0.76 2.03 0.19 2.5 2.5 

L 0.62 0.02 0.66 0.24 3.68 0.68 2.62 1.15 2.5 2.5 

2% 0.64 0.07 0.49 0.04 3.98 0.49 2.36 0.30 2.5 2.5 

10% 0.57 0.04 0.52 0.03 3.69 0.32 2.11 0.30 2.5 2.5 

50% 0.58 0.04 0.57 0.03 3.71 0.48 2.32 0.34 2.5 2.5 

AlI records 0.60 0.05 0.55 0.12 3.60 0.66 2.26 1.03 2.5 2.5 
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Discussion of the shear forces for the towers mounted on the CHYBA9 building 

A close look at the values presented in Tables 5-21 to 5-24 indicates that in the case 

of very flexible towers such as the TC2 tower, the actual shear force demand at the 

tower's base is much lower than the shear force demand calculated according to the 

equation suggested in the NBCC 2005. When the ratio TtowerlTbuilding approaches unity, the 

floor response spectra reach their peak values at the building's period which is close to 

the tower's period; this explains why the acceleration amplification factor to obtain the 

shear force demand becomes smaller. Therefore, the shear force calculated as a product of 

the tower's weight and the spectral acceleration Sa(T) in g corresponding to the tower's 

period gives a conservative estimate of the shear force demand at the base of flexible 

towers mounted on buildings similar to CHYBA9. For less flexible towers, such as the 

TC3 and TC4 towers, the shear force demand is in general larger than values calculated 

according to the method suggested in the NBCC 2005. In the case of the rigid tower TC1, 

the time-history approach appears to be more adequate than the spectral acceleration 

approach. Finally, when the ratio TtowerlTbuilding is greater than 1, it is suggested that the 

shear force be calculated as the product of input acceleration and tower mass with a 

component force amplification factor of 1, since the tower response is not greatly affected 

by the building's response. 

It should be noted that using the spectral accelerations results in less variability in 

the results. 
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5.2.1.2 Shear forces for the towers mounted on the CHYBA4 building 

Table 5-25 Shear forces for the combination CHYBA4-TCl 

CHYBA4 TCl (Tl = T2= 0.14 s) 

V demand/W* Sa(T) V demand/marooftop Ar 

K Load case VI V2 VI V2 
VI V2 

J.l cr J.l cr J.l cr J.l cr 

H 0.57 0.17 0.76 0.82 1.77 0.16 1.69 0.22 1 1 

M 0.67 0.17 0.77 0.74 2.88 0.45 2.86 0.31 1 1 

L 0.62 0.15 0.37 0.10 1.60 0.17 1.61 0.26 1 1 

2% 0.47 0.05 1.13 0.45 1.74 0.11 1.80 0.14 1 1 

10% 0.49 0.04 0.68 0.34 1.75 0.15 1.73 0.15 1 1 

50% 0.46 0.05 0.50 0.39 1.80 0.15 1.78 0.17 1 1 

AlI records 0.56 0.14 0.71 0.58 1.95 0.52 1.96 0.70 1 1 

Table 5-26 Shear forces for the combination CHYBA4-TC2 

CHYBA4 TC2 (Tl = T2 = 0.37 s) 

V demand/W*Sa(T) V demand/marooftop Ar 

K Load case VI V2 VI V2 
VI V2 

J.l cr J.l cr J.l cr J.l cr 

H 1.35 0.24 1.12 0.24 4.06 1.63 1.79 0.57 2.5 2.5 

M 1.28 0.07 0.88 0.14 5.36 1.41 1.92 0.46 2.5 2.5 

L 1.45 0.16 0.84 0.14 6.01 0.99 2.17 0.74 2.5 2.5 

2% 1.33 0.09 1.12 0.27 4.68 1.21 1.68 0.30 2.5 2.5 

10% 1.31 0.15 0.99 0.19 4.85 1.49 1.86 0.25 2.5 2.5 

50% 1.43 0.21 1.13 0.21 5.31 1.71 2.01 0.20 2.5 2.5 

AlI records 1.36 0.17 1.00 0.23 5.07 1.51 1.91 0.48 2.5 2.5 
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Table 5-27 Shear forces for the combination CHYBA4-TC3 

CHYBA4 TC3 (Tl = T2 = 0.19 s) 

V demand/W*Sa(T) V demand/marooftop Ar 

~ Load case VI V2 VI V2 
VI V2 

Il cr Il cr Il cr Il cr 

H 1.15 0.11 1.31 0.14 2.03 0.69 2.34 0.74 1 1.83 

M 1.19 0.17 1.32 0.07 2.16 0.59 2.61 0.35 1 1.83 

L 1.30 0.16 1.34 0.09 2.20 0.34 2.46 0.38 1 1.83 

2% 1.25 0.12 1.34 0.06 2.10 0.32 2.20 0.28 1 1.83 

10% 1.24 0.17 1.31 0.04 2.09 0.42 2.31 0.18 1 1.83 

50% 1.28 0.17 1.30 0.06 2.15 0.40 2.37 0.27 1 1.83 

AlI records 1.23 0.16 1.32 0.08 2.12 0.48 2.40 0.64 1 1.83 

Table 5-28 Shear forces for the combination CHYBA4-TC4 

CHYBA4 TC4 (Tl = T2= 0.25 s) 

V demand/W* Sa(T) V demand/marooftop Ar 

~ Load case . VI V2 VI V2 
VI V2 

Il cr Il cr Il cr Il cr 

H 1.33 0.48 0.67 0.20 1.94 0.54 1.98 0.49 1.9 2.5 

M 1.19 0.43 0.70 0.10 2.12 0.62 2.33 0.37 1.9 2.5 

L 1.09 0.20 0.71 0.15 1.88 0.39 2.28 0.38 1.9 2.5 

2% 1.28 0.20 0.69 0.10 1.88 0.36 1.92 0.20 1.9 2.5 

10% 1.23 0.27 0.67 0.06 2.00 0.41 2.03 0.25 1.9 2.5 

50% 1.28 0.36 0.74 0.10 2.05 0.38 2.11 0.23 1.9 2.5 

AlI records 1.23 0.34 0.70 0.13 1.98 0.46 2.12 0.59 1.9 2.5 
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Discussion of the shear forces for the towers mounted on the CHYBA4 building 

The results presented in Tables 5-25 to 5-28 indicate that a component force 

amplification factor of 2.5 is adequate for flexible towers mounted on this type of 

building, except for the TC2 tower where the ratio TtoweriT building approaches unity from 

the lower side, resulting in larger acceleration amplification; therefore, a factor equal to 6 

is suggested. It is noted that using the spectral accelerations as input produces less 

variability in the results. For this building, the values of input seismic shear forces as 

proposed in the NBCC 2005 are inadequate and unconservative, especially for the 

flexible tower TC2. 

5.2.1.3 Shear forces for the towers mounted on the 2020 University building 

Table 5-29 Shear forces for the combination 2020 Vniversity-TC 1 

2020 Vniversity TC1 (Tl = T2 = 0.14 s) 

V demandlW*Sa(T) V demand/marooftop Ar 

~ Load case VI V2 VI V2 
VI V2 

J.l cr J.l cr J.l cr J.l cr 

H 0.34 0.09 0.32 0.07 0.83 0.10 0.83 0.52 1 1 

M 0.66 0.18 0.47 0.10 1.14 0.16 0.76 0.06 1 1 

L 1.20 0.66 0.60 0.16 1.60 0.52 0.82 0.09 1 1 

2% 0.45 0.07 0.37 0.05 0.90 0.09 0.70 0.04 1 1 

10% 0.49 0.13 0.37 0.08 1.03 0.25 0.73 0.06 1 1 

50% 0.45 0.14 0.36 0.09 0.89 0.09 0.73 0.06 1 1 

All records 0.62 0.43 0.42 0.14 1.09 0.38 0.77 0.40 1 1 
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Table 5-30 Shear forces for the combination 2020 University-TC2 

2020 University TC2 (Tl = T2 = 0.37 s) 

V demand/W* Sa(T) V demand/marooftop Ar 

~ Load case U1 U2 U1 U2 
U1 U2 

~ cr ~ cr ~ cr ~ cr 

H 1.28 0.10 2.10 0.58 2.11 0.68 3.28 0.71 1 1 

M 1.20 0.16 1.58 0.30 2.52 0.57 2.64 0.44 1 1 

L 1.19 0.10 1.56 0.34 2.35 0.53 2.47 0.49 1 1 

2% 1.28 0.10 2.79 0.91 2.15 0.36 3.90 1.07 1 1 

10% 1.32 0.13 2.41 1.05 2.23 0.44 3.77 1.37 1 1 

50% 1.31 0.08 2.60 0.78 2.22 0.46 3.76 0.85 1 1 

AH records 1.26 0.12 2.10 0.81 2.28 0.53 3.22 0.68 1 1 

Table 5-31 Shear forces for the combination 2020 University-TC3 

2020 University TC3 (Tl = T2 = 0.19 s) 

V demand/W*Sa(T) V demand/maroOftop Ar 

~ Load case U1 U2 U1 U2 
U1 U2 

~ cr ~ cr ~ cr ~ cr 

H 1.37 0.11 1.52 0.30 4.16 1.55 4.84 1.37 1 1 

M 1.32 0.20 1.53 0.29 3.87 1.36 4.45 1.32 1 1 

L 1.31 0.16 1.55 0.26 2.94 0.98 3.36 0.96 1 1 

2% 1.33 0.18 1.65 0.14 4.37 1.49 5.20 1.30 1 1 

10% 1.33 0.12 1.53 0.19 3.87 0.68 4.84 1.21 1 1 

50% 1.37 0.10 1.62 0.16 4.39 0.89 5.63 1.27 1 1 

AH records 1.34 0.15 1.56 0.24 3.89 1.30 4.63 1.44 1 1 
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Table 5-32 Shear forces for the combination 2020 Vniversity-TC4 

2020 Vniversity TC4 (TI = Tz = 0.25 s) 

V demand/W* Sa(T) V demand/marooftop Ar 

~ Load case VI V2 VI V2 
VI V2 

~ cr ~ cr ~ cr ~ cr 

H 1.39 0.58 1.16 0.67 2.71 0.70 2.72 0.67 1 1 

M 1.28 0.44 1.00 0.28 2.46 0.63 2.41 0.54 1 1 

L 1.16 0.27 1.19 1.18 2.00 0.55 2.40 1.69 1 1 

2% 1.25 0.32 1.09 0.25 3.23 0.64 3.35 0.73 1 1 

10% 1.25 0.28 0.99 0.13 3.61 0.75 3.52 0.65 1 1 

50% 1.18 0.26 1.07 0.18 2.55 0.37 2.54 0.52 1 1 

AU records 1.26 0.38 1.09 0.61 2.70 0.79 2.78 0.89 1 1 

Discussion of the shear forces for the towers mounted on the 2020 University building 

For this high-rise and very flexible building, the results presented in Tables 5-29 to 

5-32 indicate that the response of the towers is much influenced by the building's 

response. The input acceleration at the tower base is much amplified and the formula 

suggested in the NBCC is not suitable; therefore, a higher component amplification factor 

should be used, even if the ratio of the fundamental periods is very smaU; a factor of 5 is 

suggested for towers mounted on this -type of building. The method proposed in the 

NBCC 2005 can be considered adequate and conservative only for the very rigid tower 

TC 1. 
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5.2.2 General remarks 

Based on the aforementioned results, it can be conc1uded that the equation proposed 

in the NBCC 2005 for the estimation of seismic shear forces at the base of rooftop OFCs 

is inadequate, especially in case of flexible towers mounted on flexible buildings. 

Moreover, provisions do not exist for the estimation of seismic overtuming moments at 

the building-tower interface. This has motivated our development of a simplified method 

to estimate these forces while avoiding time-consuming detailed analyses, as a 

preliminary check. 

5.2.3 Prediction of overturning moment demands for telecommunication towers 

mounted on building rooftops 

Code provisions for the calculation of seismic overtuming moments at the base of a 

telecommunication tower mounted on a building rooftop do not yet exist, to our best 

knowledge. The sei smic base shear forces, V, and overtuming moments, M, at the base of 

telecommunication towers mounted on building rooftops were calculated from the 

numerical models of all building-tower combinations subjected to the earthquake records 

depicted in Chapter 4. Detailed calculations of V and M for the combination CHYBA9-

TC2 are presented in Appendix D. The computation ofbase shear forces was discussed in 

a previous section. The overturning moments are calculated as the sum of the product of 

maximum absolute vertical component of axial forces in the legs of the tower by the lever 

arm for each leg, which is the perpendicular distance between the leg and the geometrical 

center of the tower base. In order to gain insight into the relationship between the 

overturning moment, M, and base shear force, V, at the building-tower interface, the ratio 
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MN was calculated. Tables 5-33 to 5-45 summarize the results of numerical simulations 

for aU generated building-tower combinations. First, the average values and standard 

deviations for each set of data records are presented, foUowed by the results of aU sets. 
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Table 5-33 Ratio MN for CHYBA9-TC1 

CHYBA9-TC1 MN(m) 

~ 
VI V2 

Load case 
J! 0- J! 0-

H 3.69 0.06 3.80 0.09 

M 3.66 0.05 3.72 0.06 

L 3.61 0.09 3.68 0.07 

2% 3.94 0.51 3.85 0.10 

10% 3.80 0.11 3.79 0.09 

50% 3.77 0.09 3.82 0.09 

AH records 3.74 0.12 3.78 0.07 

Table 5-34 Ratio MN for CHYBA9-TC2 

CHYBA9-TC2 MN(m) 

~ 
VI V2 

Load case 
J! 0- J! 0-

H 20.00 4.43 21.75 3.61 

M 19.90 1.79 24.27 2.61 

L 18.91 1.72 24.27 2.61 

2% 20.09 2.03 20.09 2.03 

10% 19.44 1.75 22.66 2.24 

50% 19.90 1.50 20.88 1.54 

AH records 19.71 0.45 22.32 1.74 
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Table 5-35 Ratio MN for CHYBA9-TC3 

CHYBA9-TC3 MN(m) 

~ 
VI V2 

Load case 
Jl cr Jl cr 

H 12.56 0.32 12.29 0.37 

M 12.41 0.28 12.11 0.24 

L 12.20 0.26 12.17 0.33 

2% 12.50 0.31 12.32 0.25 

10% 12.40 0.15 12.57 1.00 

50% 12.32 0.17 12.47 0.38 

AlI records 12.40 0.13 12.32 0.17 

Table 5-36 Ratio MN for CHYBA9-TC4 

CHYBA9-TC4 MN(m) 

~ 
VI V2 

Load case 
Jl cr Jl cr 

H 12.65 0.27 12.49 0.63 

M 12.56 0.22 12.20 0.31 

L 12.47 0.40 11.97 0.46 

2% 12.57 0.37 12.49 0.46 

10% 12.70 0.46 12.53 0.91 

50% 12.63 0.18 12.37 0.59 

AlI records 12.60 0.08 12.34 0.22 
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Table 5-37 Ratio MN for CHYBA4-TCl 

CHYBA4-TCl MN(m) 

~ 
VI V2 

Load case 
J.l 0- J.l 0-

H 4.79 0.18 5.19 0.20 

M 4.66 0.26 4.92 0.18 

L 4.60 0.23 4.98 0.22 

2% 4.88 0.12 5.20 0.10 

10% 4.84 0.15 5.13 0.14 

50% 4.86 0.14 5.19 0.16 

AH records 4.77 0.12 5.10 0.12 

Table 5-38 Ratio MN for CHYBA4-TC2 

CHYBA4-TC2 MN(m) 

~ 
VI V2 

Load case 
J.l 0- J.l 0-

H 18.92 2.07 18.82 3.70 

M 19.70 0.42 22.11 1.81 

L 19.84 0.29 21.02 1.50 

2% 19.27 0.70 18.54 2.47 

10% 19.26 0.98 19.49 2.21 

50% 18.14 2.10 17.83 2.45 

AH records 19.19 0.61 19.64 1.62 
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Table 5-39 Ratio MN for CHYBA4-TC3 

CHYBA4-TC3 MN(m) 

~ 
VI V2 

Load case 
~ 0- ~ 0-

H 14.54 1.52 13.41 0.72 

M 13.50 1.12 13.18 0.45 

L 13.07 0.75 13.21 0.47 

2% 14.11 0.77 13.46 0.43 

10% 14.48 1.57 13.36 0.55 

50% 14.40 1.26 13.58 0.64 

AU records 14.02 0.60 13.37 0.15 

Table 5-40 Ratio MN for CHYBA4-TC4 

CHYBA4-TC4 MN(m) 

~ 
VI V2 

Load case 
~ 0- ~ 0-

H 12.97 1.67 9.85 0.56 

M 11.91 1.09 9.81 0.23 

L 11.62 0.92 9.88 0.45 

2% 12.83 1.14 9.99 0.41 

10% 12.59 0.83 10.41 1.34 

50% 13.01 0.74 10.29 0.77 

AU records 12.49 0.58 10.04 0.25 
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Table 5-41 Ratio MN for 2020 University-TC 1 

2020 University-TC 1 MN(m) 

~ 
U1 U2 

Load case 
/-1 0- /-1 0-

H 4.20 0.42 3.17 0.14 

M 4.86 0.26 3.01 0.14 

L 4.71 0.16 2.67 0.20 

2% 4.26 0.26 3.24 0.13 

10% 4.36 0.47 3.14 0.14 

50% 4.33 0.39 3.16 0.12 

AU records 4.45 0.27 3.07 0.21 

Table 5-42 Ratio MN for 2020 University-TC2 

2020 University-TC2 MN(m) 

~ 
U1 U2 

Load case 
/-1 0- /-1 0-

H 18.79 1.76 14.47 2.71 

M 19.59 0.86 17.81 1.84 

L 19.43 0.61 16.76 2.25 

2% 18.72 1.34 12.11 1.97 

10% 18.91 1.53 14.19 2.70 

50% 19.01 0.74 13.69 2.22 

AU records 19.07 0.36 14.84 2.09 
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Table 5-43 Ratio MN for 2020 Vniversity-TC3 

2020 Vniversity-TC3 MN(m) 

~ 
VI V2 

Load case 
J.l 0' J.l 0' 

H 14.65 0.26 14.63 0.21 

M 14.48 0.29 14.58 0.25 

L 14.35 0.53 14.45 0.34 

2% 14.64 0.24 14.72 0.17 

10% 14.63 0.22 12.57 1.12 

50% 14.72 0.22 12.55 0.96 

AlI records 14.58 0.14 13.92 1.06 

Table 5-44 Ratio MN for 2020 Vniversity-TC4 

2020 Vniversity-TC4 MN(m) 

~ 
VI V2 

Load case 
J.l 0' J.l 0' 

H 11.97 0.59 14.20 0.62 

M 11.61 0.57 13.57 1.18 

L 11.10 0.92 13.29 1.41 

2% 11.97 0.42 13.93 0.65 

10% 11.86 0.60 14.77 2.12 

50% 11.80 0.58 14.52 1.64 

AlI records II.72 0.33 14.04 0.56 
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Table 5-45 Summary of results for MN ratio for aIl building-tower combinations 

MN(m) 
Tower 

VI V2 Arm(m) 
ID 

J.l cr J.l cr 

TC1 4.32 0.47 3.98 0.88 4 

TC2 19.32 0.54 18.93 3.62 12 

TC3 13.66 1.01 13.20 0.90 9 

TC4 12.27 0.55 12.14 1.73 7 

Discussion of the calculation of overturning moments for telecommunication towers 

mounted on building rooftops 

The results presented in Tables 5-33 to 5-45 indicate that for very rigid towers, such 

as the TC 1 tower, the seismic overtuming moment at the base of a telecommunication 

tower can be evaluated by multiplying the shear force at the tower's base by the lever 

arm, which is the distance between the center of mass of the tower and its base. This 

conclusion is valid whether the tower is mounted on a rigid or flexible building. On the 

other hand, the ratio of MN is larger than the lever arm for the flexible towers TC2, TC3, 

and TC4. Therefore, the overtuming moment at the tower base cannot be directly 

obtained from the total base shear force and a more accurate calculation is necessary to 

predict overtuming moments. 

Based on the results presented in the previous sections, it can be concluded that a 

simplified method is needed for estimating the seismic base shear force and overtuming 

moment of a telecommunication tower mounted on a building rooftop. Such a method 

will be presented in the following sections. 
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5.3 A simplified method for calculating seismic base shear force and overturning 

moment at a building-tower interface 

The purpose of our proposed simplified method is to provide a quick tool to 

determine the seismic forces on telecommunication towers mounted on building rooftops 

and compare them to the effects of other loads like wind and ice, while avoiding the 

detailed modeling of the supporting buildings. The simplified method requires the 

determination of: the input acceleration at the tower base, which was discussed in 

Chapters 3 and 4; the mass profile m(x) that can be calculated from the tower's structural 

drawings and localized attachments (antenna drums, platforms, and others); and the 

evaluation of a horizontal acceleration profile a(x) along the tower's height, which will be 

discussed in this chapter. The concept ofthe method is illustrated in Figure 5-9. 

The prediction of the tower acceleration profile a(x) is the key factor in this method. 

It was found that the acceleration amplification profile along a telecommunication tower 

mounted on a building rooftop matches its fundamentai mode shape when mounted on a 

rigid base. Equations 5-1 and 5-2 provide the basis for the method. 

1 1 

Vcalculated = Vbase = fVxdx = fm(x)a(x)dx 
5-1 

o 0 

1 1 

Mcalculated = M base = fVxxdx= fm(x)a(x)xdx 
5-2 

o 0 

Where: 

m(x) : mass ofthe tower at position x measured from the tower base. 

1 tower's height. 

v x shear force distribution along x. 
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Figure 5-9 Concept of the proposed simplified method 
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5.3.1 Prediction of tower acceleration profiles a(x) 

5.3.1.1 Tower mode shapes on rigid base 

In order to gain insight into the dynamic behavior of the towers and to study the 

correlation between the towers' acceleration profiles and their lateral modes of vibration, 

the mode shapes corresponding to the first four sway modes of the towers on a rigid base 

were calculated in both principal directions VI and V2 of the buildings. The mode shapes 

of the three flexible towers TC2, TC3, and TC4 used in this study are presented in Figures 

5-10 to 5-15; the mode shapes of the TCl tower are not shown since its acceleration 

profiles are fairly linear in aB cases, with a maximum amplification of 1.5 at the tower 

top. The fundamental modes of vibration of towers TC2 and TC3 are translational 

(Figures 5-10 to 5-13) in the principal horizontal directions VI and V2, while the first two 

fundamental modes of tower TC4 are biaxial (Figures 5-14 and 5-15). 
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Figure 5-10 Mode shapes ofTC2 tower projected on the U1 direction 
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Figure 5-11 Mode shapes ofTC2 tower projected on the U2 direction 
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Figure 5-12 Mode shapes ofTC3 towerprojected on the VI direction 
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Figure 5-13 Mode shapes of TC3 tower projected on the V2 direction 
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Figure 5-14 Mode shapes ofTC4 tower projected on the VI direction 
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Figure 5-15 Mode shapes ofTC4 tower projected on the V2 direction 
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5.3.2 Calculated and proposed acceleration profiles of the rooftop towers 

A strong correspondence was found between the tower acceleration amplification 

profile and its fundamental sway mode shape. The graphs shown in Figures 5-17 to 5-34 

represent the average acceleration amplification profiles along the heights of the towers 

mounted on each building. These profiles are calculated for each series of the earthquake 

records applied separately to both principal horizontal directions of the buildings, VI and 

V2. Aiso added to the graphs is the proposed acceleration amplification profile 

corresponding to the fundamental mode shape of each tower mounted on a rigid base, 

adjusted to match the maximum acceleration amplification at the tower top. The detailed 

calculations of acceleration amplification at different stations along the tower height for 

the TC2, TC3, and TC4 towers mounted on the CHYBA9 building are presented in 

Appendix E, in addition to the average values and standard deviations of acceleration 

amplification at each station corresponding to each set of records. Calculations are also 

illustrated through the graphs presented in Appendix E. 

The calculated tower acceleration amplification factors for each building-tower 

combination are presented in Tables 5-46 to 5-48 in the directions VI and V2, separately. 

Following this study, factors were proposed to multiply the tower fundamental mode 

shape to obtain its acceleration amplification profile when mounted on a stiff building (T 

< 0.6 s), as illustrated in Table 5-49 and in the graph of Figure 5-16. When the tower is 

more flexible than the building, the former does not always experience amplification; 

however, a minimum factor of 1 is suggested to remain conservative. For a tower 

mounted on a flexible building, it is proposed to multiply its mode shape by a factor of 3 

times the rooftop horizontal acceleration in order to obtain the tower acceleration profile. 
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Table 5-46 Calculated tower acceleration amplification factors for TC2 on 3 buildings 

U1 U2 
TC2 

Tif Factor Tp/T Factor 

CHYBA9 1.43 0.40 1.24 0.80 

CHYBA4 0.92 3.32 1.21 1.43 

2020 University 0.19 1.25 0.20 3.21 

Table 5-47 Ca1culated tower acceleration amplification factors for TC3 on 3 buildings 

U1 U2 
TC3 

Tp/T Factor Tp/T Factor 

CHYBA9 0.72 1.09 0.62 0.60 

CHYBA4 0.46 1.00 0.61 0.91 

2020 University 0.09 2.12 0.10 2.75 

Table 5-48 Calculated tower acceleration amplification factors for TC4 on 3 buildings 

U1 U2 
TC4 

Tp/T Factor Tp/T Factor 

CHYBA9 0.97 2.70 0.84 1.31 

CHYBA4 0.62 1.34 0.82 0.88 

2020 University 0.13 1.59 0.13 1.96 
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Table 5-49 Proposed tower acceleration amplification factors for stiffbuildings 

TplT Factor 

o to 0.6 1.0 

0.9 to 1.1 4.0 

>1.2 1.0 

5 . Calculated 

0 
4 

-Proposed 

..... 
~ 
§ 3 
.~ 
u 
~ 

1 2 

• 

o 
o 0.4 0.8 1.2 1.6 2 

Figure 5-16 Proposed and ca1culated tower acceleration amplification factors versus T piT 
for stiffbuildings (T < 0.6 s) 
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5.3.2.1 Acceleration amplification profiles for towers mounted on the CHYBA9 

building 
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Figure 5-17 Acceleration amplification profiles of TC2 mounted on CHYBA9 - VI 
direction 
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Figure 5-18 Acceleration amplification profiles of TC2 mounted on CHYBA9 - V2 
direction 
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Figure 5-19 Acceleration amplification profiles ofTC3 mounted on CHYBA9 - VI 
direction 

30 

25 

20 

----a 
'-' ..... 15 ..c --2%-U2 .!=P 

Q) - - - 10"1o-U2 
~ 

10 - - ·50"1o-U2 

----H-U2 

5 
----.-M-U2 

--L-U2 
~Proposed 

0 

0 2 4 6 8 
Amplification 

Figure 5-20 Acceleration amplification profiles ofTC3 mounted on CHYBA9 - V2 
direction 
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Figure 5-21 Acceleration amplification profiles ofTC4 mounted on CHYBA9 - VI 
direction 
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Figure 5-22 Acceleration amplification profiles ofTC4 mounted on CHYBA9 - V2 
direction 
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5.3.2.2 Acceleration amplification profiles of towers mounted on the CHYBA4 

building 
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Figure 5-23 Acceleration amplification profiles ofTC2 mounted on CHYBA4 - VI 
direction 
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Figure 5-24 Acceleration amplification profiles ofTC2 mounted on CHYBA4 - V2 
direction 

179 



30 

25 

20 
]: 
~ 15 
0 --2%-Ul ::r: 

10 - - - loolo-Ul - - - 5oolo-Ul 
----H-UI 

5 ----...-- M-UI 
--L-UI 
~Proposed 

0 
0 2 4 6 8 

Amplification 

Figure 5-25 Acceleration amplification profiles ofTC3 mounted on CHYBA4 - VI 
direction 
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Figure 5-26 Acceleration amplification profiles ofTC3 mounted CHYBA4 - V2 
direction 
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Figure 5-27 Acceleration amplification profiles ofTC4 mounted on CHYBA4 - VI 
direction 

Figure 5-28 Acceleration amplification profiles ofTC4 mounted on CHYBA4 - V2 
direction 
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5.3.2.3 Acceleration amplification profiles oftowers mounted on the 2020 University 

building 
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Figure 5-29 Acceleration amplification profiles ofTC2 mounted on 2020 University - Ul 
direction 
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Figure 5-30 Acceleration amplification profiles ofTC2 mounted on 2020 University - U2 
direction 
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Figure 5-31 Acceleration amplification profiles ofTC3 mounted on 2020 University - Ul 
direction 
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Figure 5-32 Acceleration amplification profiles ofTC3 mounted on 2020 University - U2 
direction 
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Figure 5-33 Acceleration amplification profiles ofTC4 mounted on 2020 University - UI 
direction 
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Figure 5-34 Acceleration amplification profiles ofTC4 mounted on 2020 University - U2 
direction 
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5.3.2.4 Discussion of the tower acceleration amplification profiles 

5.3.2.4.1 CHYBA9 building with TC2 tower 

The acceleration profile of the TC2 tower (Figures 5-17 and 5-18) is constant over 

about two-thirds of its height, and acceleration amplification occurs only at the upper one­

third. In contrast to what is expected, this flexible tower supported on this rigid building 

does not experience significant amplification. This behavior is not reflected in current 

code provisions that tend to propose a larger component force amplification factor for 

flexible components without any reference to the supporting structure. In addition, the 

proposed acceleration amplification profile corresponding to the first mode shape in both 

principal directions does not follow the calculated amplification profiles. This can be 

explained by the influence of higher modes of vibration of the building CHYBA9 on the 

tower's response. It is noted that the first two sway modes of the tower in each principal 

direction are very close to those of the building, so that the building-tower interaction 

could explain why the shape of acceleration amplification profiles does not follow its 

mode shapes, especially in the VI direction. It is further observed that this 30 m tower is 

very flexible and represents a limit case of towers mounted on buildings rooftops. 

5.3.2.4.2 CHYBA9 building with TC310wer 

For this building-tower combination, the acceleration amplification profiles of the 

TC3 tower match very weIl the proposed profiles (Figures 5-19 and 5-20). 
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5.3.2.4.3 CHYBA9 building with TC4 tower 

For this building-tower combination, both the calculated and proposed acceleration 

amplification profiles (Figures 5-21 and 5-22) remain constant in the tapered part of the 

tower and match very weIl. 

5.3.2.4.4 CHYBA4 building with TC2, TC3, and TC4 towers 

In aIl building-tower combinations, the calculated and proposed acceleration 

amplification profiles of the towers mounted on the building's rooftop match fairly weIl 

(Figures 5-23 to 5-28). The building's first fundamental period exceeds the periods of aIl 

towers, resulting in no significant dynamic interaction between the building and towers. 

For these building-tower combinations, the tower acceleration amplification increases 

with the tower flexibility, which is reflected in the codes. 

5.3.2.4.5 2020 University building with TC2 tower 

For this building-tower combination, the calculated acceleration amplification 

profiles match the proposed acceleration amplification profile in the VI direction (Figure 

5-29). However, the calculated acceleration amplification profiles do not match the 

proposed acceleration amplification profile in the V2 direction (Figure 5-30). This 

unusual behavior of the tower can be attributed to the influence of higher modes of the 

supporting building. It is recommended to perform detailed dynamic analysis for similar 

building-tower combinations. 
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5.3.2.4.6 2020 University building with TC3 and TC4 towers 

In both cases, the calculated and proposed acceleration amplification profiles match 

very well (Figures 5-31 to 5-34). 

5.3.3 Parametric study to validate the proposed simplified method 

Using Equations 5-1 and 5-2 for each building-tower combination, the values of 

equivalent base shear forces and overtuming moments at the building-tower interfaces 

were calculated as shown schematically in Figure 5-9. The shear force diagram was 

obtained by multiplying the mass profile and the acceleration profile; the base overtuming 

moment was obtained by multiplying the mass profile, the acceleration profile, and the 

moment arm. Detailed calculations using the proposed simplified method for the TC2, 

TC3, and TC4 towers combined with the CHYBA9 building are presented in Appendix 

D. Results were compared to the values obtained from the detailed SAP models using the 

SRSS modal combination method. The average results and their standard deviations for 

all sets of records are presented in Tables 5-50 to 5-58. In these tables, V demand and 

Mdemand are the base reactions calculated in SAP 2000 from the numerical simulations, 

while V calculated and Mcalculated are the base reactions calculated according to the proposed 

simplified method. 
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Table 5-50 Validation of the simplified method for CHYBA9-TC2 

CHYBA9-TC2 

Effort 
Mcalculated/Mdemand V calculatedN demand 

Load case VI V2 VI V2 

~ cr ~ cr ~ cr ~ cr 

H 1.46 0.23 1.20 0.22 1.86 0.56 1.51 0.40 

M 1.32 0.38 1.15 0.15 1.71 0.46 1.53 0.31 

L 1.20 0.21 1.08 0.23 1.44 0.34 1.33 0.28 

2% 1.45 0.25 1.27 0.15 1.87 0.37 1.55 0.21 

10% 1.45 0.25 1.19 0.07 1.82 0.38 1.55 0.21 

50% 1.45 0.18 1.41 0.18 1.87 0.28 1.62 0.22 

AIl records 1.38 0.27 1.20 0.20 1.75 0.43 1.50 0.30 

Table 5-51 Validation of the simplified method for CHYBA9-TC3 

CHYBA9-TC3 

Effort 
Mcalculated/Mdemand V calculatedN demand 

Load case VI V2 VI V2 

~ cr ~ cr ~ cr ~ cr 

H 0.97 0.17 0.96 0.04 0.96 0.16 0.98 0.05 

M 0.98 0.10 0.97 0.14 0.98 0.09 0.98 0.13 

L 1.03 0.05 0.99 0.07 1.01 0.05 1.00 0.07 

2% 0.98 0.01 0.97 0.02 0.97 0.02 0.99 0.02 

10% 0.94 0.13 0.97 0.02 0.93 0.12 1.02 0.09 

50% 1.00 0.02 0.97 0.02 0.98 0.02 1.00 0.04 

AH records 0.99 0.13 0.97 0.07 0.97 0.10 0.99 0.08 
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Table 5-52 Validation of the simplified method for CHYBA9-TC4 

CHYBA9-TC4 

Effort 
Mcalculated/Mdemand V calculatedN demand 

Load case VI V2 VI V2 

Il 0' Il 0' Il 0' Il 0' 

H 1.04 0.02 1.01 0.03 1.00 0.06 1.05 0.08 

M 1.03 0.02 1.00 0.01 0.96 0.05 1.02 0.03 

L 1.03 0.01 0.92 0.20 0.94 0.04 0.91 0.22 

2% 1.03 0.02 1.00 0.03 0.97 0.07 1.01 0.04 

10% 1.04 0.01 1.01 0.03 0.96 0.04 1.05 0.11 

50% 1.04 0.01 1.01 0.03 0.96 0.03 1.01 0.05 

AlI records 1.03 0.01 0.99 0.11 0.96 0.05 1.00 0.13 

Table 5-53 Validation ofthe simplified method for CHYBA4-TC2 

CHYBA4-TC2 

Effort 
Mcalculated/Mdemand V calculatedN demand 

Load case VI V2 VI V2 

Il 0' Il 0' Il 0' Il 0' 

H 1.00 0.18 1.19 0.29 1.03 0.11 1.34 0.19 

M 0.93 0.03 0.99 0.10 0.97 0.04 0.01 0.00 

L 0.92 0.01 1.00 0.11 0.92 0.01 1.18 0.15 

2% 0.98 0.05 1.27 0.14 1.02 0.08 1.38 0.09 

10% 1.07 0.06 1.25 0.16 1.19 0.06 1.47 0.17 

50% 1.08 0.05 1.29 0.20 1.13 0.09 1.39 0.11 

AlI records 0.99 0.11 1.14 0.21 1.04 0.11 1.30 0.18 
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Table 5-54 Validation of the simplified method for CHYBA4-TC3 

CHYBA4-TC3 

Effort 
Mcalculated~emand V ca\culatedN demand 

Load case VI V2 VI V2 

J.t cr J.t cr J.t cr J.t cr 

H 1.02 0.04 1.00 0.04 1.15 0.16 1.07 0.09 

M 0.98 0.03 0.98 0.01 1.05 0.10 1.01 0.04 

L 0.99 0.02 0.97 0.02 1.03 0.04 1.01 0.03 

2% 1.17 0.12 1.01 0.07 1.23 0.19 1.08 0.06 

10% 0.90 0.02 0.87 0.03 1.13 0.12 1.04 0.03 

50% 0.90 0.02 0.89 0.03 1.12 0.10 1.07 0.05 

AlI records 0.99 0.09 0.96 0.06 1.11 0.14 1.04 0.06 

Table 5-55 Validation ofthe simplified method for CHYBA4-TC4 

CHYBA4-TC4 

Effort 
McalculatedlMdemand V ca\culatedN demand 

Load case VI V2 VI V2 

cr J.t cr J.t cr J.t cr J.t 

H 1.10 0.08 1.08 0.07 1.20 0.21 0.99 0.13 

M 1.12 0.41 1.03 0.03 1.10 0.28 0.89 0.05 

L 1.09 0.30 1.05 0.03 1.10 0.28 0.92 0.05 

2% 1.11 0.04 1.09 0.04 1.18 0.10 0.99 0.06 

10% 1.08 0.04 1.05 0.03 1.14 0.07 0.98 0.11 

50% 1.07 0.04 1.05 0.02 1.15 0.09 0.96 0.06 

AH records 1.10 0.23 1.06 0.06 1.14 0.20 0.95 0.09 

190 



Table 5-56 Validation ofthe simplified method for 2020 University-TC2 

2020 University - TC2 

Effort 
McalculateiMdemand V calculatedN demand 

Load case U1 U2 U1 U2 

J.1 cr J.1 cr J.1 cr J.1 cr 

H 1.14 0.20 1.83 0.47 1.23 0.16 1.49 0.17 

M 1.00 0.05 1.19 0.23 1.09 0.06 1.19 0.15 

L 1.00 0.03 1.27 0.33 1.00 0.03 1.21 0.12 

2% 1.10 0.10 2.31 0.37 1.20 0.08 1.62 0.09 

10% 1.08 0.11 1.85 0.36 1.17 0.09 1.55 0.29 

50% 1.05 0.06 1.95 0.42 1.16 0.08 1.57 0.19 

AlI records 1.05 0.12 1.67 0.53 1.16 0.11 1.41 0.24 

Table 5-57 Validation of the simplified method for 2020 University-TC3 

2020 University - TC3 

Effort 
McalculatedlMdemand V calculatedN demand 

Load case U1 U2 U1 U2 

J.1 cr J.1 cr J.1 cr J.1 cr 

H 0.99 0.02 0.96 0.02 1.08 0.04 1.04 0.03 

M 0.99 0.02 0.97 0.01 1.09 0.03 1.05 0.03 

L 1.00 0.01 0.96 0.01 1.11 0.04 1.05 0.03 

2% 1.00 0.02 0.97 0.02 1.09 0.03 1.05 0.05 

10% 1.00 0.01 1.16 0.02 1.09 0.02 1.08 0.10 

50% 0.99 0.01 1.16 0.02 1.08 0.02 1.06 0.07 

AH records 0.99 0.02 1.02 0.09 1.09 0.03 1.05 0.05 
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Table 5-58 Validation of the simplified method for 2020 University-TC4 

2020 University - TC4 

Effort McalculatedlMdemand V ca\culatedN demand 

Load case Ul U2 Ul U2 

J.1 cr J.1 cr J.1 cr J.1 cr 

H 1.04 0.04 1.04 0.03 1.01 0.08 1.15 0.10 

M 1.09 0.30 1.03 0.03 1.03 0.25 1.12 0.08 

L 1.03 0.03 1.36 1.19 1.02 0.06 1.37 0.92 

2% 1.07 0.04 1.04 0.04 1.03 0.08 1.15 0.07 

10% 1.04 0.04 1.03 0.01 1.02 0.07 1.20 0.17 

50% 1.05 0.02 1.04 0.03 1.00 0.04 1.18 0.09 

AlI records 1.05 0.13 1.10 0.53 1.01 0.13 1.20 0.43 

Discussion of the proposed simplified method 

For the TC2 tower, the global average ratios for overtuming moments and shear 

forces corresponding to 444 load cases are equal to 1.24 and 1.36 respectively, with 

standard deviations of 0.36 and 0.34 respectively; for the TC3 tower, the average ratios 

are 0.99 and 1.04, with standard deviations of 0.09 and 0.1; while for the TC4 tower, the 

average ratios and standard deviations are equal to 1.05 and 0.25 for both M and V. This 

indicates that the proposed simplified method gives higher values than the detailed 

calculation in most cases, so it is conservative in the base force/moment predictions. 

Moreover, the proposed method becomes more accurate as the fundamental period of the 

tower decreases. 

The smalI standard deviations between the loading cases for individual building­

tower combinations suggest that the method is suitable regardless of the frequency 
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content of the input seismic excitations. It is also noted that the method is more accurate 

for the calculation of overtuming moments than for the calculation of base shear forces. 

This was also observed by McClure et al. (2000) in relation to the predicted response of 

towers founded on the ground. 

5.4 Summary 

From the 16 building-tower combinations studied, it can be concluded that the 

component force amplification factor as proposed in the NBCC 2005 is not adequate for 

most of the cases and therefore needs revision, particularly in the case of flexible towers 

mounted on flexible buildings. A simplified method for telecommunications towers 

mounted on rooftops was proposed. The method is intended to help tower designers to 

assess whether seismic effects at the tower base are important enough to be taken into 

account and their importance relative to those generated by ice and wind loads, and 

consequently, to decide whether a detailed dynamic analysis is necessary. The proposed 

method was validated by comparing its predictions to the results of detailed numerical 

simulations of 9 building-tower combinations generated in SAP 2000 and subjected to 74 

input accelerograms applied separately in the two main building directions, VI and V2. It 

was found that the method yields conservativeresults for the base shear forces and 

overtuming moments. It is suggested, however, that a detailed dynamic analysis be 

performed for towers mounted on high-rise buildings and for towers supporting heavy 

attachments, especially in high seismicity zones. 
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Chapter 6 

Summary and Conclusions 

The research conducted in this thesis has met its main objectives: 

• To gain further insight into the prediction of seismic floor acceleration demands in 

buildings, especially at the rooftop level, based on rational analysis of both 

experimental data and numerical results. 

• To formulate a simplified method for the seismic analysis of steel lattice 

telecommunication towers mounted on building rooftops. Such a method is 

particularly needed for flexible towers. 

This research program has lead to important findings and conclusions in the field of 

seismic analysis of operational and functional components in buildings (OFCs), 

specifically for steel lattice telecommunication towers mounted on building rooftops. 

6.1 Seismic floor acceleration demands 

Seismic acceleration records from Il instrumented buildings in Taiwan during the 

1999 Chi Chi earthquake were processed and studied, followed by a parametric study of 

the different factors that can affect the floor acceleration amplification in buildings. These 

factors include the frequency content of the input motion, the number of stories of the 

building, and its fundamental period. Numerical finite element models of four existing 

buildings were generated in the software SAP 2000. Three of the building models were 

calibrated using records from the 1999 Chi Chi earthquake. Each of these models was 

subjected to 74 earthquake records of two large sets applied to both horizontal principal 
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directions of the building, separately. The first set comprises 44 records c1assified into 

three categories according to the ratio of maximum horizontal acceleration a to the 

maximum horizontal velocity v (low, medium, high a/v), the second set comprises 30 

records compatible with the target Uniform Hazard Spectra for the City of Montreal. The 

rooftop acceleration amplification resulting from each of the different simulations was 

computed. A good agreemeent between the results from instrumented buildings and 

generated models was observed. As a result, it was recommended to consider a maximum 

rooftop acceleration amplification of 4 for low and medium-rise buildings (T < 1.7 s) and 

3 for flexible high-rise buildings. 

The input seismic acceleration to OFCs using the spectral anlaysis as a substitute to 

time-history acceleration was also investigated. It was found that considering the spectral 

acceleration at 0.2 s as recommended in the NBCC 2005 is adequate, especially for 

flexible buildings; in case of rigid buildings, however, computing the spectral 

acceleration at either the building fundamental periods or 0.2 s resulted in negligible 

differences. 

6.2 Simplified method for seismic analysis of telecommunication towers mounted 

on building rooftops 

Four self-supporting steellattice telecommunication towers ofheights ranging from 

10 m to 30 m were modeled as frame-truss finite element models and assumed to be 

mounted on four existing buildings studied in the first part of the thesis. The 10 m tower 

(TC1) actually exists on one of the buildings (CHYBA9). Each building-tower 

combination was subjected to the earthquake records of the two sets described earlier. 

195 



Acceleration amplification envelopes along the towers' height were then evaluated. The 

tower component force amplification factors, computed as the average of values at a 

number of stations along the envelopes of acceleration amplification, were evaluated for 

each building-tower combination and compared to the NBCC 2005 recommendations; 

then, new component force amplification factors for telecommunication towers were 

suggested. The tower base reactions, namely base shear force and overtuming moment, 

resulting from numerical simulations were evaluated and compared to values computed 

from the proposed simplified method. This simplified method requires the determination 

of the input rooftop acceleration at the tower base, the maximum acceleration at the tower 

top, the fundamental sway mode shape of the tower on a rigid base, and the mass 

distribution of the tower along its height. It was found that the method yields conservative 

results. 

6.3 Research limitations 

First, the records of Il instrumented buildings were processed and studied. AlI 

these buildings are far from the epicenter; therefore, near-fault acceleration records were 

not studied. In addition, most of the buildings are low to medium-rise, even though one of 

them (T APBA 7) is the second tallest building in Taiwan. AIso, only buildings that behave 

in the linear elastic range were studied, as this research is intended for the design of 

components with continuous serviceability, which implies that the component does not 

experience any damage or only minor damage during an earthquake. This requires that 

the behavior of both the component and its supporting structure remain in the elastic or 

nearly elastic range. 
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Second, four buildings and four towers were modeled in detail. It is assumed that 

these models represent a wide range of existing constructions. The buildings were 

assumed to be founded on firm ground and soil-structure interaction was ignored. 

Furthermore, the effect of only the horizontal accelerations on the design of components 

was studied since it was assumed the effects of vertical accelerations are not critical at 

building rooftops. Moreover, the effect of atlachments on a tower's response was ignored. 

6.4 Recommendations for future work 

The work presented in this thesis covers many aspects related to the sei smic 

analysis of acceleration-sensitive components located in buildings and to steel lattice 

telecommunication towers mounted on building rooftops. However, a few topics need to 

be further investigated in future research. 

On the topic of prediction of sei smic accelerations in buildings, suggestions for 

future work are given below: 

• Study more instrumented medium and high-rise buildings having records from 

events of different characteristics. 

• Study the effect of soil type, foundation and floor flexibility on the floor 

acceleration amplification in buildings. 

• Study the effect of nonlinear and post-elastic deformations of a building on the 

acceleration amplification. It is expected that nonlinear response of the building will 

decrease the acceleration amplification. 
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On the topic of seismic analysis of telecommunications towers mounted on 

buildings rooftops, suggestions for future work are given below: 

• Study other existing towers of different heights and geometric properties, preferably 

equipped with sensors. 

• Study the effect of attachments, like heavy antennas and accessories, on the 

prediction of tower mode shapes and frequencies, and eventually their acceleration 

amplification profiles. 

• Study the component force amplification factor for building-tower combinations 

undergoing nonlinear deformations. It is believed that friction at supports, yielding 

of equipment, or yielding of anchorage would tend to reduce the component force 

amplification factor and flatten the plots of amplification vs Tp/T. This needs to be 

verified in detail. 

• Study the applicability of the proposed simplified method in case of buildings 

and/or towers undergoing nonlinear deformations. 

• Explore whether the proposed simplified method is applicable to seismic analysis of 

guyed towers mounted on building rooftops. 
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Appendix B 

Transfer Functions for the Il Buildings Calculated 

U sing the Software Famos 

223 



1 - TF CHVBA9 X 

6 

5 

4 

3 

2 

o 
o 5 

TF CHVBA9 V.m 

10 

8 

6 

4 

2 

o 
o 5 

10 15 

Ca) 

10 15 

Cb) 

20 25 

20 25 

30 

Hz 

30 

Hz 

Figure B-l Transfer functions for the CHYBA9 building 

Ca) X - direction Cb) y - direction 

224 



TF CHVBA4 X.m 

gal/gal 
2 ,---------------------------------------------, 

o 
o 5 10 15 20 25 30 

Hz 

(a) 

TF CHVBA4 V.m 

gallgal 
10 ~-------------------------------------------. 

8 

6 

4 

2 

o 
o 5 10 15 20 

(b) 

25 30 

Hz 

Figure B-2 Transfer functions for the CHYBA4 building 

(a) X - direction (b) Y - direction 

225 



TF _CHYBA5 X.rn 

5 

4 

3 

2 

o 
o 5 10 15 20 25 

(a) 

TF CHYBA5 Y.m 

5 

4 

3 

2 

o 
o 5 10 15 20 25 

(b) 

Figure B-3 Transfer functions for the CHYBA5 building 

(a) X - direction (b) Y - direction 

226 

30 

Hz 

30 

Hz 



TF _ TCUBAQ X.1n 

7 

6 

5 

4 

3 

2 

Ir ,IV"\o-AA 
0 JVv A 

0 5 10 15 20 25 30 

Hz 

(a) 

TF TCUBAQ Y.m 

7 

6 

5 

4 

3 

2 

o 
o 5 10 15 20 25 30 

Hz 

(h) 

Figure B-4 Transfer functions for the TCUBAO building 

(a) X - direction (h) Y - direction 

227 



1- TF TCUBAA X.m 

5.0 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

o 5 10 15 20 25 

(a) 

TF TCUBAA Y.m 

6 

5 

4 

3 

2 

o 
o 5 10 15 20 25 

(b) 

Figure B-5 Transfer functions for the TCUBAA building 

(a) X - direction (b) Y - direction 

228 

30 

Hz 

30 

Hz 



1 -- TF CHYBAO X.m 

B 

7 

6 

5 

4 

3 

2 

o 
o 5 10 15 20 25 

(a) 

TF CHYBAO Y.m 

16 

14 

12 

10 

8 

6 

4 

2 

0 
0 5 10 15 20 25 

(b) 

Figure B-6 Transfer functions for the CHYBAO building 

(a) X - direction (b)Y - direction 

229 

30 

Hz 

30 

Hz 



1- TF TCUBA6 X.m 

10 

8 

6 

4 

2 

o 
o 5 10 15 20 25 

(a) 

1- TF TCUBA6 Y.m 

8 

7 

6 

5 

4 

3 

2 

o 
o 5 10 15 20 25 

(b) 

Figure B-7 Transfer functions for the TCUBA6 building 

(a) X - direction (b) Y - direction 

230 

30 

Hz 

30 

Hz 



6 

5 

4 

3 

2 

o 

A 
5 

4 

3 

2 

o 

TF TCUBA2 X.m 

o 5 

TF TCUBA2 Y.m 

o 5 

10 15 

Ca) 

10 15 

Cb) 

20 25 

20 25 

30 

Hz 

30 

Hz 

Figure B-8 Transfer functions for the TCUBA2 building 

Ca) X - direction Cb) y - direction 

231 



1 - TF TCUBA4 X.m 

10 

8 

6 

4 

2 

o 
o 5 10 15 20 25 

(a) 

TF TCUBA4 Y.m 

14 

12 

10 

8 

6 

4 

2 

0 
0 5 10 15 20 25 

(b) 

Figure B-9 Transfer functions for the TCUBA4 building 

(a) X - direction (b) Y - direction 

232 

30 

Hz 

30 

Hz 



TF CHYBA7 X.m 

5 

4 

3 

2 

o 
o 5 

TF CHYBA7 Y.m 

7 

6 

5 

4 

3 

2 

o 
o 5 

10 15 

(a) 

10 15 

(b) 

20 25 

20 25 

30 

Hz 

30 

Hz 

Figure B-l 0 Transfer functions for the CHYBA 7 building 

(a) X - direction (b) Y - direction 

233 



1 - TF TAPBA7 X.rro 

4 

3 

2 

o 
o 5 10 15 20 25 

(a) 

TF TAPBA7 Y.m 

6 

5 

4 

3 

2 

o 
o 5 10 15 20 25 

(b) 

Figure B-ll Transfer functions for the T APBA 7 building 

(a) X - direction (b) Y - direction 

234 

30 

Hz 

30 

Hz 



Appendix C 

Mode Shapes and N atural Frequencies of the Buildings 

and Towers Modeled in SAP 2000 
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Ca) Mode 1: Translation in the y direction 

Cb) Mode 2: Translation in the X direction 
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(c) Mode 3: Torsion 

Figure C-l Mode shapes of the CHYBA9 building 

Table C-l Natural periods and frequencies of the CHYBA9 building 

Modes of Period Frequency 
vibration (s) (cycle/s) 

Mode 1 0.30 3.34 
Mode 2 0.26 3.85 
Mode 3 0.17 5.76 
Mode 4 0.14 7.27 
Mode 5 0.14 7.40 
Mode 6 0.09 10.54 
Mode 7 0.09 10.57 
Mode 8 0.09 10.61 
Mode 9 0.09 10.63 
Mode 10 0.08 12.05 
Mode Il 0.08 12.27 
Mode 12 0.07 13.47 
Mode 13 0.07 14.95 
Mode 14 0.06 15.64 
Mode 15 0.06 16.00 
Mode 16 0.06 16.35 
Mode 17 0.06 16.53 
Mode 18 0.06 17.74 
Mode 19 0.05 19.68 
Mode 20 0.05 20.06 
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(a) Mode 1: Translation in the X direction 

(b) Mode 2: Translation in the y direction 
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(c) Mode 3: Torsion 

Figure C-2 .Mode shapes of the CHYBA4 building 

Table C-2 Natural periods and frequencies of the CHYBA4 building 

Modes of Period Frequency 
vibration (s) (cycle/s) 

Mode 1 0.41 2.45 
Mode 2 0.31 3.25 
Mode 3 0.23 4.26 
Mode 4 0.14 7.20 
Mode 5 0.14 7.39 
Mode 6 0.12 8.05 
Mode 7 0.12 8.32 
Mode 8 0.12 8.46 
Mode 9 0.12 8.56 
Mode 10 0.12 8.68 
Mode Il 0.11 8.98 
Mode 12 0.11 9.24 
Mode 13 0.11 9.47 
Mode 14 0.10 9.59 
Mode 15 0.10 9.66 
Mode 16 0.10 9.69 
Mode 17 0.10 9.81 
Mode 18 0.10 9.98 
Mode 19 0.10 10.02 
Mode 20 0.10 10.17 
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Ca) Mode 1: Translation in the Y direction 

Ch) Mode 2: Translation in the X direction 
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(c) Mode 3: Torsion 

Figure C-3 Mode shapes of the TCUBAA building 

Table C-3 Natural periods and frequencies ofthe TCUBAA building 

Modes of Period Frequency 
vibration (s) (cycle/s) 

Mode 1 0.74 1.34 
Mode 2 0.69 1.45 
Mode 3 0.62 1.62 
Mode 4 0.21 4.82 
Mode 5 0.20 5.09 
Mode 6 0.18 5.60 
Mode 7 0.17 5.75 
Mode 8 0.17 5.88 
Mode 9 0.16 6.16 
Mode 10 0.16 6.35 
Mode Il 0.15 6.52 
Mode 12 0.15 6.67 
Mode 13 0.15 6.83 
Mode 14 0.14 6.90 
Mode 15 0.14 6.99 
Mode 16 0.14 7.04 
Mode 17 0.14 7.09 
Mode 18 0.14 7.18 
Mode 19 0.14 7.25 
Mode 20 0.14 7.30 
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(a) MOde 1: Translation in the X direction 

(b) MOde 2: Translation in the Y direction 
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Cc) Mode 3: Torsion 

Figure C-4 Mode shapes of the 2020 University building 

Table C-4 Natural periods and frequencies of the 2020 University building 

Modes of Period Frequency 
vibration (s) (cycle/s) 

Mode 1 2.01 0.50 
Mode 2 1.88 0.53 
Mode 3 1.36 0.73 
Mode 4 0.63 1.60 
Mode 5 0.52 1.91 
Mode 6 0.48 2.07 
Mode 7 0.30 3.33 
Mode 8 0.29 3.46 
Mode 9 0.23 4.44 
Mode 10 0.20 5.08 
Mode Il 0.19 5.24 
Mode 12 0.16 6.09 
Mode 13 0.13 7.49 
Mode 14 0.13 7.75 
Mode 15 0.13 7.98 
Mode 16 0.11 8.91 
Mode 17 0.10 10.22 
Mode 18 0.09 10.56 
Mode 19 0.09 Il.31 
Mode 20 0.08 12.00 
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(a) Mode 1: Translation in the X direction 

(b) Mode 2: Translation in the y direction 

(b) Mode 3: Torsion 

Figure C-5 Mode shapes of the TCl tower 
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Table C-5 Natural periods and frequencies of the TCI tower 

Modes of Period Frequency 
vibration (s) (cycle/s) 

Mode 1 0.14 7.27 

Mode 2 0.14 7.40 

Mode 3 0.09 10.55 

Mode 4 0.09 10.58 

Mode 5 0.09 10.61 

Mode 6 0.09 10.64 

Mode 7 0.08 12.28 

Mode 8 0.06 15.98 

Mode 9 0.06 16.30 

Mode 10 0.05 19.87 

Mode Il 0.05 19.99 

Mode 12 0.05 20.73 

Mode 13 0.05 20.75 

Mode 14 0.05 21.02 

Mode 15 0.04 23.62 

Mode 16 0.04 23.79 

Mode 17 0.04 24.32 

Mode 18 0.04 24.47 

Mode 19 0.04 24.71 

Mode 20 0.04 25.36 
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(a) Mode 1: Translation in the X direction 

(b) Mode 1: Translation in the Y direction 
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(c) Mode 3: Torsion 

Figure C-6 Mode shapes of the TC2 tower 

Table C-6 Natural periods and frequencies of the TC2 tower 

Modes of Period Frequency 
vibration (s) (cycle/s) 

Mode 1 0.37 2.69 
Mode 2 0.37 2.69 
Mode 3 0.11 9.18 
Mode 4 0.10 10.11 
Mode 5 0.10 10.11 
Mode 6 0.05 18.36 
Mode 7 0.04 22.27 
Mode 8 0.04 22.27 
Mode 9 0.03 29.83 

Mode 10 0.03 30.05 
Mode Il 0.03 30.05 
Mode 12 0.03 36.43 
Mode 13 0.03 36.43 
Mode 14 0.03 36.54 
Mode 15 0.03 38.03 
Mode 16 0.03 38.66 
Mode 17 0.02 40.40 
Mode 18 0.02 41.10 
Mode 19 0.02 41.10 
Mode 20 0.02 41.39 
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Ca) Mode 1: Translation in the X direction 

Cb) Mode 2: Translation in the Y direction 
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Cc) Mode 3: Torsion 

Figure C-7 Mode shapes of the TC3 tower 

Table C-7 Modal periods and frequencies of the TC3 tower 

Modes of Period Frequency 
vibration (s) (cycle/s) 

Mode 1 0.19 5.37 
Mode 2 0.19 5.37 
Mode 3 0.08 12.33 
Mode 4 0.05 20.39 
Mode 5 0.05 20.39 
Mode 6 0.04 28.02 
Mode 7 0.03 30.03 
Mode 8 0.03 30.03 
Mode 9 0.03 36.63 

Mode 10 0.02 40.86 
Mode Il 0.02 40.87 
Mode 12 0.02 42.18 
Mode 13 0.02 42.19 
Mode 14 0.02 43.90 
Mode 15 0.02 51.26 
Mode 16 0.02 51.28 
Mode 17 0.02 51.29 
Mode 18 0.02 57.89 
Mode 19 0.02 58.85 
Mode 20 0.02 60.87 
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(a) Mode 1: Biaxial in the X and Y directions 

(b) Mode 2: Biaxial in the X and Y directions 
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(c) Mode 3: Torsion 

Figure C-8 Mode shapes of the TC4 tower 

Table C-8 Natural periods and frequencies ofthe TC4 tower 

Modes of Period Frequency 
vibration (s) (cycle/s) 

Mode 1 0.25 3.94 
Mode 2 0.25 3.94 
Mode 3 0.08 11.92 
Mode 4 0.05 20.80 
Mode 5 0.05 20.80 
Mode 6 0.04 27.79 
Mode 7 0.03 34.13 
Mode 8 0.03 34.19 
Mode 9 0.03 38.13 
Mode 10 0.02 40.60 
Mode Il 0.02 49.31 
Mode 12 0.02 49.33 
Mode 13 0.02 51.28 
Mode 14 0.02 61.27 
Mode 15 0.02 63.08 
Mode 16 0.02 63.23 
Mode 17 0.01 79.43 
Mode 18 0.01 82.33 
Mode 19 0.01 82.42 
Mode 20 0.01 95.05 
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Appendix D 

Detailed Calculation of Efforts (Y, M) at the Bases of the TC2, 

TC3, and TC4 Towers Mounted on the CHYBA9 Building 

Loading Cases - UHS 20/0/50 Years 

1) From the numerical simulations in SAP 2000 

II) From the proposed simplified method 
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Table D-I Forces at the base of the TC2 tower mounted on the CHYB9 building calculated in SAP 2000 
(a) VI - direction (b) V2 - direction 

(a) P (N) Mdemand Vdemand 
M demand / V demand 

Loading cases - 2% - Ul Ist Leg 2nd Leg 3rd Leg (N-m) (N) 

1 77.55 99.41 25.26 22120.00 935 23.7 

2 84.99 112.21 29.05 24650.00 1122 22.0 

3 94.13 115.79 22.67 26240.00 1577 16.6 

4 76.37 91.99 16.57 21045.00 1028 20.5 

5 125.74 152.11 27.28 34731.25 1649 21.1 

6 133.15 141.4 19.2 34318.75 1933 17.8 

7 97.87 117.63 22.66 26937.50 1421 19.0 

8 82.56 92.99 21.59 21943.75 1102 19.9 

9 81.5 96.03 16.75 22191.25 1136 19.5 

10 125.86 137.49 27.19 32918.75 1572 20.9 
----- - -_ .. __ .. _---_ .. _-------- --- -

(b) P (N) M demand Vdemand 
M demand / V demand 

Loading cases - 2% - U2 Ist Leg 2nd Leg 3rd Leg (N-m) (N) 

1 57.44 48.65 104.31 22659.12 1278 17.7 

2 98.98 78.31 175.97 38104.56 1833 20.8 

3 120.77 101.25 221.33 47856.96 2117 22.6 

4 75.63 66.48 142.11 30695.76 1403 21.9 

5 101.44 87.63 188.33 40732.56 2023 20.1 

6 123.21 108.82 231.62 50059.44 2684 18.7 

7 103.44 86.91 190.34 41114.16 1831 22.5 

8 110.26 94.57 204.48 44192.88 1918 23.0 

9 93.3 74.2 166.82 36082.08 1563 23.1 

10 115.29 96.67 211.5 45717.12 2138 21.4 
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Table D-2 Forces at the base ofthe TC3 tower mounted on the CHYB9 building calculated in SAP 2000 
(a) UI - direction (b) U2 - direction 

(a) P (N) M demand Vdemand 
Mdemand / V demand 

Loading cases - 2% - VI Ist Leg 2nd Leg 3rd Leg (N-m) (N) 

1 219.09 304.53 85.27 65452.50 5347 12.2 
2 330.28 438.39 107.81 96083.75 7675 12.5 
3 223.41 309.25 90.25 66582.50 5298 12.6 
4 215.75 281.11 65.65 62107.50 4968 12.5 
5 199.78 264.65 70.99 58053.75 4739 12.3 
6 293.64 383.74 90.59 84672.50 6637 12.8 
7 244.79 329.93 89.23 71840.00 5936 12.1 
8 219.98 299.49 80.74 64933.75 5293 12.3 
9 272.19 367.06 94.06 79906.25 6368 12.5 
10 274.25 362.37 87.16 79577.50 6416 12.4 

(b) P (N) Mdemand Vdemand 
M demand / V demand 

Loading cases - 2% - V2 Ist Leg 2nd Leg 3rd Leg (N-m) (N) 

1 76.81 87.84 161.21 35150.22 2839 12.4 
2 139.63 133.45 268.49 58459.33 4784 12.2 
3 98.59 85.85 184.19 39895.18 3214 12.4 
4 71.73 80.11 151.19 32779.54 2562 12.8 
5 97.74 74.73 163.05 35980.14 2976 12.1 
6 125.93 128.43 246.44 53925.82 4392 12.3 
7 96.03 86.37 180.41 39202.38 3252 12.1 
8 93.05 83.78 157.6 35508.17 2810 12.6 
9 101.06 79.82 173.3 38066.47 3080 12.4 
10 104.15 104.26 177.14 40607.46 3250 12.5 
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Table D-3 Forces at the base of the TC4 tower mounted on the CHYB9 building calculated in SAP 2000 
(a) VI - direction (b) V2 - direction 

(a) P (N) M demand Vdemand 
M demand / V demand 

Loading cases - 2% - U1 l S
! Leg 2nd Leg 3rd Leg (N-m) (N) 

1 352.37 324.86 31.47 186238.25 14461 12.9 

2 318.35 287.21 33.1 166529.00 12969 12.8 

3 240.11 222.06 23.97 127096.75 9599 13.2 

4 251.12 227.18 27.24 131532.50 10629 12.4 

5 343.48 309.73 36.08 179632.75 14696 12.2 

6 231.39 208.51 26.58 120972.50 9805 12.3 

7 323.93 300.42 30.47 171696.25 13688 12.5 

8 341.12 316.35 34.95 180804.25 14121 12.8 

9 224.14 207.61 25.47 118731.25 9874 12.0 

10 266.47 241.83 29.68 139782.50 11258 12.4 1 

! 

(b) P (N) M demand Vdemand 
Mdemand / V demand 

Loading cases - 2% - U2 l S
! Leg 2nd Leg 3rd Leg (N-m) (N) 

1 57.09 82.38 130.54 63553.93 4854 13.1 

2 84.76 109.29 194.61 92545.51 7384 12.5 

3 61.8 75.78 121.4 60353.63 5002 12.1 

4 48.84 77.38 118.68 57688.03 4513 12.8 

5 73.09 111.66 172.39 84018.76 6315 13.3 

6 53.84 91.45 131.33 64728.07 5164 12.5 

7 63.12 97.86 138.95 69635.63 5880 11.8 

8 82.95 112.72 172.15 85675.24 6980 12.3 

9 65.69 95.81 150.73 73456.32 6079 12.1 

10 57.8 110.78 155.21 76001.33 6145 12.4 
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Table D-4 Shear forces at the base of the TC2 tower mounted on the CHYBA9 building calculated according to the proposed 
simplified method - VI direction 

CHYBA9-TC2 Loading cases - 2% - VI 

Panel # Mass (kg) 1 2 3 4 5 6 7 8 9 10 

1 581 529.87 562.99 551.80 567.39 548.62 556.58 542.74 528.15 565.19 559.08 

2 502 356.85 402.43 445.39 450.82 392.64 486.75 394.72 369.64 426.97 436.01 

3 434 229.44 274.87 369.10 310.78 307.59 484.04 282.00 265.23 305.07 351.50 

4 217 118.28 147.12 200.20 150.21 194.21 282.88 149.05 137.31 168.09 207.47 

5 102 76.88 89.47 118.60 94.95 122.41 150.16 94.31 78.74 104.61 126.80 

6 102 108.98 114.31 147.25 123.70 153.54 167.26 124.75 100.34 129.46 154.66 

7 102 149.13 140.47 180.67 154.35 185.30 195.25 156.37 132.61 162.03 185.01 

8 102 190.73 172.69 221.44 188.43 217.62 233.46 188.69 170.38 205.69 222.74 

9 102 232.30 212.63 263.79 225.03 249.91 273.03 220.96 209.03 251.20 266.51 

~= 1992.44 2116.98 2498.24 2265.66 2371.84 2829.42 2153.58 1991.42 2318.32 2509.77 

Rooftop acceleration 1.21 1.22 0.95 0.94 1.18 0.94 1.19 1.13 0.83 1.05 

~ m(x)a(x) = V calculated 2413.23 2578.01 2370.83 2119.52 2802.71 2651.68 2569.61 2247.88 1934.63 2645.45 

Vdemand 935 1122 1577 1028 1649 1933 1421 1102 1136 1572 

V ca1culatedN demand 2.58 2.30 1.50 2.06 1.70 1.37 1.81 2.04 1.70 1.68 
-- ----- - - ----- -------
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Table D-5 Shear forces at the base of the TC2 tower mounted on the CHYBA9 building calculated according to the proposed 
simplified method - U2 direction 

CHYBA9-TC2 Loading cases - 2% - U2 

Panel # Mass (kg) 1 2 3 4 5 6 7 8 9 10 

1 581 585.00 515.68 527.84 553.25 578.91 557.44 561.75 535.98 515.71 625.70 

2 502 488.80 385.72 399.89 483.74 518.64 578.78 456.86 410.34 347.14 585.80 

3 434 466.83 340.55 480.66 488.09 629.85 715.23 451.67 419.92 328.02 691.15 

4 217 267.78 209.86 361.78 312.53 445.79 456.63 299.47 297.44 233.65 514.55 

5 102 133.92 135.39 215.31 187.82 258.21 252.33 184.52 184.94 146.58 311.69 

6 102 165.67 177.21 266.33 225.48 312.69 290.99 236.83 231.51 187.44 377.48 

7 102 221.78 220.31 326.32 274.24 372.68 347.65 292.94 281.65 230.78 450.33 

8 102 284.22 270.39 392.16 339.54 441.14 423.65 350.59 333.69 278.53 530.98 

9 102 347.29 327.83 461.24 408.87 515.71 503.90 411.41 386.32 332.06 613.42 

E= 2961.30 2582.93 3431.52 3273.56 4073.61 4126.60 3246.02 3081.79 2599.90 4701.11 

Rooftop acceleration 0.67 1.17 1.20 0.65 0.86 0.79 0.85 0.90 1.08 0.69 

Em(x)a(x) = Vcalculated 1989.31 3012.94 4112.96 2142.54 3523.19 3275.82 2760.68 2766.59 2805.60 3253.78 

Vdemand 1278 1833 2117 1403 2588 2684 1831 1918 1563 2138 

V calculatedN demand 1.56 1.64 1.94 1.53 1.36 1.22 1.51 1.44 1.80 1.52 
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Table D-6 Overtuming moments at the base of the TC2 tower mounted on the CHYBA9 building calculated according to the proposed 
simplified method - UI direction 

CHYBA9-TC2 Loading cases - 2% - VI 

Panel # Mass (kg) x 1 2 3 4 5 6 7 8 9 10 

1 581 3.34 1772.07 1882.83 1845.39 1897.53 1834.76 1861.38 1815.10 1766.32 1890.17 1869.76 

2 502 9.61 3427.67 3865.50 4278.16 4330.23 3771.43 4675.42 3791.37 3550.47 4101.23 4187.98 

3 434 15.02 3446.64 4129.12 5544.57 4668.57 4620.56 7271.27 4236.14 3984.28 4582.82 5280.22 1 

4 217 18.77 2220.29 2761.70 3758.20 2819.75 3645.78 5310.26 2797.93 2577.59 3155.41 3894.59 i 

5 102 21.02 1616.12 1880.80 2493.22 1995.93 2573.40 3156.76 1982.58 1655.30 2199.12 2665.69 

6 102 23.02 2508.85 2631.53 3389.96 2847.81 3534.86 3850.72 2872.08 2309.99 2980.41 3560.70 

7 102 25.02 3731.45 3514.76 4520.69 3862.25 4636.50 4885.51 3912.65 3318.20 4054.29 4629.26 

8 102 27.02 5153.85 4666.45 5983.63 5091.85 5880.65 6308.51 5098.78 4603.87 5558.28 6018.79 

9 102 29.02 6741.70 6170.99 7655.82 6530.89 7252.83 7923.92 6412.76 6066.42 7290.25 7734.53 

L= 30618.65 31503.70 39469.64 34044.81 37750.77 45243.76 32919.40 29832.45 35811.98 39841.52 

Rooftop acceleration 1.21 1.22 0.95 0.94 1.18 0.94 1.19 1.13 0.83 1.05 

Mcalculated = 37085.00 38364.57 37456.69 31848.92 44608.57 42401.54 39278.77 33674.27 29885.10 41995.36 
Lm(x)a(x)x 

Mdemand 22119 22120 24650 26240 30632.5 34731.25 34318.75 26937.5 21943.75 22191.25 

McalculatedlMdemand 1.68 1.73 1.52 1.21 1.46 1.22 1.14 1.25 1.36 1.89 
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Table D-7 Overtuming moments at the base of the TC2 tower mounted on the CHYBA9 building calculated according to the proposed 
simplified method - U2 direction 

CHYBA9-TC2 Loading cases - 2% - U2 

Panel # Mass (kg) x 1 2 3 4 5 6 7 8 9 10 

1 581 3.34 1956.45 1724.60 1765.26 1850.25 1936.06 1864.25 1878.67 1792.51 1724.69 2092.55 

2 502 9.61 4695.08 3704.97 3841.11 4646.46 4981.75 5559.35 4388.32 3941.48 3334.39 5626.78 

3 434 15.02 7012.76 5115.68 7220.44 7332.13 9461.59 10744.12 6784.97 6308.00 4927.54 10382.41 

4 217 18.77 5026.73 3939.48 6791.25 5866.84 8368.34 8571.91 5621.64 5583.53 4385.99 9659.15 

5 102 21.02 2815.19 2846.22 4526.29 3948.29 5428.08 5304.52 3878.88 3887.88 3081.45 6552.44 

6 102 23.02 3814.13 4079.65 6131.37 5190.91 7198.77 6699.12 5452.22 5329.76 4315.25 8690.43 

7 102 25.02 5549.40 5512.48 8165.20 6862.01 9325.13 8699.00 7329.84 7047.34 5774.47 11268.12 

8 102 27.02 7680.27 7306.56 10596.92 9175.09 11920.35 11447.93 9473.65 9017.06 7526.31 14348.25 

9 102 29.02 10079.16 9514.40 13386.19 11866.28 14966.97 14624.18 11939.91 11211.74 9637.13 17802.74 

L= 48629.17 43744.04 62424.03 56738.27 73587.05 73514.38 56748.11 54119.31 44707.22 86422.87 

Rooftop acceleration 0.67 1.17 1.20 0.65 0.86 0.79 0.85 0.90 1.08 0.69 

Lm(x)a(x) x = 
32667.61 51026.55 74820.19 37135.20 63643.96 58357.92 48263.13 48583.99 48244.45 59815.86 

Mca\culated 

Mdemand 22659.12 38104.56 47856.96 30695.76 57551.04 50059.44 41114.16 44192.88 36082.08 45717.12 

McalculatedlMdemand 1.44 1.34 1.56 1.21 1.11 1.17 1.17 1.10 1.34 1.31 
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Table D-8 Shear forces at the base of the TC3 tower mounted on the CHYBA9 building calculated according to the proposed 
simplified method - VI direction 

CHYBA9-TC3 Loading cases - 2% - VI 

Panel # Mass (kg) 1 2 3 4 5 6 7 8 9 10 

1 581 767.48 930.54 826.08 826.75 833.45 880.36 840.82 889.78 865.09 959.96 

2 502 1107.15 1566.33 1379.17 1320.36 1265.61 1425.32 1347.23 1442.52 1384.15 1576.89 

3 434 1490.73 2188.84 1953.93 1821.41 1671.43 1908.67 1889.06 1971.75 2017.79 2149.22 

4 217 963.64 1425.43 1273.24 1166.45 1060.31 1217.88 1238.12 1268.04 1375.37 1407.09 

~= 4329.00 6111.14 5432.43 5134.97 4830.80 5432.24 5315.22 5572.09 5642.40 6093.16 

Roof top acceleration 1.20 1.19 0.95 0.93 1.18 0.93 1.18 1.10 0.83 1.03 

~m(x)a(x) = Vcalculated 5207.83 7271.95 5149.35 4768.69 5705.37 5077.62 6250.86 6126.96 4671.90 6283.75 

V demand 5347 7675 5298 4968 5936 5293 6368 6416 4527 6359 

V calculatedN demand 0.97 0.95 0.97 0.96 0.96 0.96 0.98 0.95 1.03 0.99 
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Table D-9 Shear forces at the base of the TC3 tower mounted on the CHYBA9 building ca1culated according to the proposed 
simplified method - U2 direction 

CHYBA9-TC3 Loading cases - 2% - U2 

Panel # Mass (kg) 1 2 3 4 5 6 7 8 9 10 

Panel 1 581 750.64 756.76 690.86 692.55 746.07 663.85 700.74 689.10 688.81 705.61 

Panel 2 502 1068.42 1056.01 932.13 958.18 1003.12 868.65 931.94 895.26 826.15 902.46 

Panel 3 434 1416.35 1355.38 1237.50 1356.06 1229.52 1159.56 1191.66 1169.51 987.41 1106.65 

Panel 4 217 906.63 859.00 798.85 905.25 757.08 752.01 738.99 748.01 608.87 677.77 

I:= 4142.03 4027.16 3659.35 3912.03 3735.79 3444.07 3563.32 3501.88 3111.25 3392.48 i 

Rooftop acceleration 0.67 1.15 0.90 0.66 0.87 0.80 0.86 0.89 0.98 0.98 

I: m(x)a(x) = Vcalculated 2762.86 4615.61 3280.42 2570.13 3264.34 2760.15 3053.16 3132.92 3046.41 3320.83 

V demand 2839 4784 3214 2562 3252 2810 3080 3250 3043 3461 

V calculatedN demand 0.97 0.96 1.02 1.00 1.00 0.98 0.99 0.96 1.00 0.96 
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Table D-l 0 Overtuming moments at the base of the TC3 tower mounted on the CHYBA9 building calculated according to the 
proposed simplified method - U 1 direction 

CHYBA9-TC3 Loading cases - 2% - U1 

Mass (kg) x 1 2 3 4 5 6 7 8 9 

581 3.34 2566.71 3112.04 2762.70 2764.94 2787.35 2944.22 2811.97 2975.73 2893.14 

502 9.61 10634.56 15045.14 13247.43 12682.52 12156.60 13690.68 12940.59 13855.85 13295.22 

434 15.02 22393.70 32880.72 29351.89 27361.19 25108.24 28672.11 28377.41 29619.57 30311.17 

217 18.78 18089.43 26758.12 23901.32 21896.57 19904.06 22862.10 23241.93 23803.71 25818.52 

E= 53684.39 77796.01 69263.35 64705.21 59956.25 68169.11 67371.90 70254.86 72318.05 

Rooftop acceleration 1.20 1.19 0.95 0.93 1.18 0.93 1.18 1.10 0.83 

Mcalculated = 64582.86 92573.37 65654.04 60089.78 70810.73 63719.03 79231.37 77250.84 59879.35 
~m(x)a(x)x 

Mdemand 65452.5 96083.75 66582.5 62107.5 71840 64933.75 79906.25 79577.5 60258.75 

McalculatedlMdemand 0.99 0.96 0.99 0.97 0.99 0.98 0.99 0.97 0.99 
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Table D-ll Overtuming moments at the base of the TC3 tower mounted on the CHYBA9 building calculated according to the 
proposed simplified method - U2 direction 

CHYBA9-TC3 Loading cases - 2% - U2 

Mass (kg) x 1 2 3 4 5 6 7 8 9 

581 3.34 2510.38 2530.87 2310.48 2316.13 2495.11 2220.13 2343.49 2304.59 2303.63 

502 9.61 10262.51 10143.31 8953.38 9203.61 9635.29 8343.64 8951.62 8599.25 7935.45 

434 15.02 21276.37 20360.59 18589.78 20370.68 18469.91 17418.98 17901.04 17568.40 14832.88 

217 18.78 17019.30 16125.17 14996.04 16993.34 14211.90 14116.77 13872.29 14041.67 11429.76 

E= 51068.56 49159.94 44849.69 48883.76 44812.22 42099.52 43068.45 42513.91 36501.70 

Rooftop acceleration 0.67 1.15 0.90 0.66 0.87 0.80 0.86 0.89 0.98 

Mcalculated = 34064.26 56343.19 40205.50 32115.65 39156.91 33739.40 36902.34 38034.64 35741.01 
Em(x)a(x)x 

Mdemand 35150.22 58459.33 39895.18 32779.54 39202.38 35508.17 38066.47 40607.46 36864.90 

McalculatedlMdemand 0.97 0.96 1.01 0.98 1.00 0.95 0.97 0.94 0.97 
---- -------- ..... 
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Table D-12 Shear forces at the base of the TC4 tower mounted on the CHYBA9 building calculated according to the proposed 
simplified method - UI direction 

CHYBA9-TC4 Loading cases - 2% - VI 

Panel # 
Mass 

1 2 3 4 5 6 7 8 9 10 
(kg) 

1 890 922.62 910.76 919.40 917.16 928.25 916.06 908.13 915.61 926.44 934.45 

2 440 484.44 460.88 475.76 469.93 478.30 475.63 449.72 470.97 474.78 482.47 

3 315 392.98 347.82 352.02 396.28 386.70 373.29 342.33 371.77 405.98 406.29 

4 255 558.77 478.12 467.96 569.63 583.45 515.41 542.58 584.21 588.21 611.71 

5 255 1119.27 960.77 933.56 1043.32 1138.53 984.65 1106.85 1248.93 1086.69 1193.16 

6 255 1865.54 1617.29 1602.18 1656.88 1822.02 1567.64 1788.91 2128.43 1720.12 1947.13 

7 255 2690.73 2366.06 2419.06 2358.75 2565.41 2191.59 2553.46 3102.64 2422.26 2783.07 

8 255 3564.82 3156.56 3299.25 3086.01 3338.15 2869.28 3361.27 4108.46 3149.46 3648.60 

L= 11599.18 10298.26 10469.21 10497.96 11240.81 9893.56 11053.24 12931.03 10773.94 12006.87 

Rooftop acceleration 1.20 1.21 0.93 0.94 1.18 0.93 1.15 1.01 0.82 0.85 

L m(x)a(x) = Vcalculated 13893.15 12461.93 9733.33 9872.07 13273.71 9219.11 12680.50 13009.13 8828.92 10156.01 

V demand 14461 12969 9599 10629 14696 9805 13688 14121 9874 11258 

V calculatedN demand 0.96 0.96 1.01 0.93 0.90 0.94 0.93 0.92 0.89 0.90 
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Table D-13 Shear forces at the base of the TC4 tower mounted on the CHYBA9 building ca1culated according to the proposed 
simplified method - U2 direction 

CHYBA9-TC4 Loading cases - 2% - U2 

Panel # 
Mass 

1 2 3 4 5 6 7 8 9 10 
(kg) 

1 890 885.30 907.48 889.81 875.85 892.84 888.73 895.95 890.37 894.68 886.11 

2 440 464.86 478.95 454.69 427.61 457.57 445.18 463.24 452.49 456.33 448.23 

3 315 399.03 394.43 362.07 354.26 374.36 363.41 392.89 387.36 365.21 381.50 

4 255 468.01 453.19 381.95 431.37 464.44 416.12 458.60 490.60 398.88 478.56 

5 255 741.64 703.94 547.95 699.55 771.17 630.22 681.07 785.47 602.39 769.94 

6 255 1114.18 1012.66 766.10 1043.10 1123.69 907.83 928.83 1123.26 875.66 1115.46 

7 255 1545.20 1368.05 1030.12 1414.77 1535.36 1217.55 1198.54 1502.63 1182.10 1484.82 

8 255 2038.25 1792.62 1358.89 1815.74 2016.06 1545.08 1510.72 1912.09 1500.98 1859.89 

L= 7656.46 7111.33 5791.57 7062.26 7635.49 6414.12 6529.83 7544.28 6276.23 7424.51 

Roof top acceleration 0.66 1.08 0.93 0.65 0.88 0.82 0.86 0.86 0.96 0.79 

Lm(x)a(x) = Vca1culated 5024.40 7699.15 5373.07 4605.09 6745.57 5245.60 5628.52 6498.87 6036.98 5841.53 

Vdemand 4854 7384 5002 4513 6315 5164 5880 6980 6079 6145 

V calculatedN demand 1.04 1.04 1.07 1.02 1.07 1.02 0.96 0.93 0.99 0.95 
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Table D-14 Overtuming moments at the base of the TC4 tower mounted on the CHYBA9 building calculated according to the 
proposed simplified method - UI direction 

CHYBA9-TC4 Loading cases - 2% - VI 

Mass 
1 2 3 4 5 6 7 8 9 (kg) x 

890 1.3 1199.4 1184.0 1195.2 1192.3 1206.7 1190.9 1180.6 1190.3 1204.4 

440 3.8 1840.9 1751.3 1807.9 1785.7 1817.6 1807.4 1708.9 1789.7 1804.2 

315 6.2 2436.5 2156.5 2182.5 2457.0 2397.6 2314.4 2122.4 2305.0 2517.1 

255 8.3 4637.8 3968.4 3884.1 4727.9 4842.7 4277.9 4503.4 4848.9 4882.1 

255 11.3 12647.8 10856.7 10549.3 11789.5 12865.3 11126.6 12507.4 14112.9 12279.6 

255 13.9 25931.0 22480.3 22270.4 23030.6 25326.1 21790.2 24865.8 29585.1 23909.6 

255 16.5 44397.0 39040.0 39914.4 38919.4 42329.2 36161.3 42132.1 51193.6 39967.3 

255 19.1 68088.1 60290.2 63015.7 58942.9 63758.6 54803.3 64200.2 78471.6 60154.6 

L= 161178.5 141727.50 144819.55 142845.26 154543.78 133471.91 153220.93 183497.21 146718.91 

Roof top acceleration 1.20 1.21 0.93 0.94 1.18 0.93 1.15 1.01 0.82 

Mcalculated = 193054.8 171504.4 134640.2 134328.8 182493.0 124373.1 175778.1 184605.5 120231.7 Dn(x)a(x)x 

Mdemand 186238.3 166529.0 127096.8 131532.5 179632.8 120972.5 171696.3 180804.3 118731.3 

Mcalculated/Mdemand 1.04 1.03 1.06 1.02 1.02 1.03 1.02 1.02 1.01 
- --- ... _- - ----_ ... _----- -----------
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Table D-15 Overtuming moments at the base of the TC4 tower mounted on the CHYBA9 building calculated according to the 
proposed simplified method - U2 direction 

CHYBA9-TC4 Loading cases - 2% - U2 

Mass 
1 2 3 4 5 6 7 8 9 

(kg) 
x 

890 1.3 1150.9 1179.7 1156.8 1138.6 1160.7 1155.4 1164.7 1157.5 1163.l 

440 3.8 1766.5 1820.0 1727.8 1624.9 1738.8 1691.7 1760.3 1719.5 1734.0 

315 6.2 2474.0 2445.5 2244.8 2196.4 2321.0 2253.l 2435.9 2401.6 2264.3 

255 8.3 3884.4 3761.4 3170.2 3580.4 3854.8 3453.8 3806.4 4072.0 3310.7 

255 11.3 8380.5 7954.6 6191.8 7905.0 8714.3 7121.5 7696.1 8875.8 6807.0 

255 13.9 15487.2 14076.0 10648.7 14499.0 15619.4 12618.9 12910.7 15613.4 12171.6 

255 16.5 25495.8 22572.8 16997.0 23343.8 25333.4 20089.6 19775.9 24793.5 19504.7 

255 19.1 38930.6 34239.l 25954.9 34680.7 38506.7 29510.9 28854.7 36520.8 28668.7 

L= 97569.82 88049.17 68091.94 88968.8 97249.06 77894.88 78404.72 95154.05 75624.l7 

Rooftop acceleration 0.66 1.08 0.93 0.65 0.88 0.82 0.86 0.86 0.96 

Mcalculaled = 64028.2 95327.3 63171.6 58013.9 85914.7 63704.0 67582.5 81968.6 72741.4 Lm(x)a(x)x 

Mdernand 63553.9 92545.5 60353.6 57688.0 84018.8 64728.1 69635.6 85675.2 73456.3 

Mcalculaled/Mdemand 1.01 1.03 1.05 1.01 1.02 0.98 0.97 0.96 0.99 
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Appendix E 

Acceleration Amplification along the TC2, TC3, and TC4 

Towers Mounted on the CHYBA9 Building 

1) Detailed calculations from the numerical simulations 

II) Profiles 
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Table E-I Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set high a/v - UI 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - high a/v - U 1 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1 

6.69 0.80 1.06 0.99 0.83 0.88 0.88 1.12 0.93 0.88 1.01 1.01 0.84 0.86 0.90 

12.52 0.67 1.09 0.78 0.58 0.93 0.85 1.03 1.07 0.96 0.92 0.92 0.50 0.79 0.79 

17.52 0.64 1.27 0.60 0.37 1.18 0.79 0.80 1.20 0.99 0.72 0.72 0.45 0.53 0.55 

20.02 0.94 1.66 0.75 0.67 1.38 1.00 0.92 1.46 1.12 0.84 0.84 0.79 0.77 0.73 

22.02 1.30 2.06 1.00 0.98 1.60 1.36 1.13 1.76 1.53 0.93 0.93 1.09 1.07 0.88 

24.02 1.68 2.49 1.27 1.34 2.15 1.86 1.38 2.15 2.01 1.25 1.25 1.40 1.46 1.09 

26.02 2.09 2.94 1.56 1.73 2.76 2.41 1.75 2.56 2.53 1.77 1.77 1.72 1.91 1.51 

28.02 2.50 3.41 1.97 2.12 3.39 2.96 2.18 2.98 3.05 2.31 2.31 2.11 2.38 1.95 

30.00 2.94 3.95 2.36 2.51 4.01 3.51 2.61 3.40 3.57 2.83 2.83 2.52 2.84 2.38 
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Table E-2 Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set high a/v - U2 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - high a/v - U2 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 0.82 0.97 0.96 0.84 1.08 0.76 0.81 0.91 1.01 1.14 1.14 0.75 1.1.9 0.83 

12.52 0.75 0.87 0.84 0.50 1.63 0.79 0.83 1.00 1.09 1.07 1.07 0.36 1.12 0.72 

17.52 1.28 1.80 1.19 0.69 2.16 1.16 1.03 1.79 1.60 0.77 0.77 0.80 1.38 0.88 

20.02 1.90 2.41 1.49 1.11 2.84 1.45 1.49 2.35 1.98 1.13 1.13 1.28 1.73 1.11 

22.02 2.44 2.94 1.77 1.51 3.55 1.90 2.01 2.83 2.32 1.45 1.45 1.70 2.02 1.49 

24.02 3.02 3.54 2.05 1.94 4.31 2.37 2.59 3.34 2.82 1.79 1.79 2.14 2.38 1.96 

26.02 3.62 4.20 2.34 2.39 5.10 2.87 3.19 3.87 3.35 2.13 2.13 2.61 2.80 2.46 

28.02 4.23 4.86 2.69 2.85 5.89 3.37 3.80 4.41 3.90 2.47 2.47 3.07 3.22 3.06 

30.00 4.84 5.52 3.08 3.30 6.69 3.86 4.41 4.94 4.46 2.80 2.80 3.56 3.64 3.68 
---_.-
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Table E-3 Average values and standard deviations ofacceleration amplification along the TC2 tower 

mounted on the CHYBA9 building - set high a/v - U1&U2 directions 

CHYBA9-TC2 Acceleration amplification 

Loading cases - high a/v 

Distance from the 
U1 U2 tower base (m) 

Il cr Il cr 

0.00 1.00 0.00 1.00 0.00 

6.69 0.93 0.09 0.94 0.15 

12.52 0.85 0.18 0.90 0.30 

17.52 0.77 0.29 1.24 0.46 

20.02 0.99 0.30 1.67 0.55 

22.02 1.26 0.36 2.10 0.64 

24.02 1.63 0.43 2.57 0.75 

26.02 2.07 0.47 3.07 0.87 

28.02 2.55 0.51 3.59 0.99 

30.00 3.02 0.57 4.11 1.11 
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Table E-4 Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set medium a/v - VI 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - medium a/v - Ul 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 0.79 0.95 0.88 0.82 0.96 0.86 0.81 0.93 0.93 0.82 0.82 0.98 0.83 0.82 1.07 

12.52 0.66 1.13 0.81 0.60 0.90 0.58 0.65 0.69 0.84 0.73 0.73 0.90 0.56 0.82 1.20 

17.52 0.59 1.26 0.93 0.44 1.39 0.38 0.63 0.57 0.77 0.77 0.77 0.95 0.46 1.02 1.67 

20.02 0.76 1.59 1.25 0.65 1.84 0.53 0.86 0.76 0.98 1.16 1.16 1.18 0.62 1.20 1.94 

22.02 1.04 1.92 1.61 0.97 2.26 0.78 1.21 1.03 1.37 1.60 1.60- 1.43 0.82 1.39 2.29 

24.02 1.43 2.28 2.00 1.30 2.69 1.06 1.58 1.32 1.78 2.08 2.08 1.77 1.08 1.65 2.75 

26.02 1.85 2.66 2.41 1.65 3.14 1.36 1.98 1.67 2.21 2.59 2.59 2.13 1.43 2.01 3.23 

28.02 2.27 3.04 2.82 2.00 3.59 1.68 2.37 2.04 2.66 3.11 3.11 2.49 1.79 2.40 3.72 

30.00 2.68 3.42 3.23 2.35 4.04 2.00 2.76 2.40 3.10 3.62 3.62 2.85 2.15 2.79 4.21 
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Table E-5 Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set medium a/v - U2 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - medium a/v - U2 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 0.88 0.99 0.92 0.73 0.76 0.88 0.96 0.83 0.81 0.81 0.81 0.80 0.77 0.70 0.90 

12.52 0.86 0.93 1.15 0.45 0.82 0.57 0.76 0.47 0.53 0.59 0.59 0.77 0.50 0.74 1 1.05 . 

17.52 1.33 1.50 1.89 0.91 1.76 0.68 1.30 0.81 0.89 1.25 1.25 0.96 0.80 0.92 1.63 

20.02 1.91 1.89 2.60 1.44 2.50 1.12 1.89 1.15 1.30 1.81 1.81 1.50 1.20 1.42 1.98 

22.02 2.43 2.32 3.23 1.93 3.14 1.52 2.41 1.45 1.67 2.33 2.33 1.97 1.58 1.86 2.42 

24.02 3.00 2.85 3.90 2.47 3.83 1.94 3.01 1.94 2.08 2.90 2.90 2.49 1.98 2.33 2.93 

26.02 3.59 3.40 4.60 3.04 4.55 2.39 3.68 2.48 2.53 3.50 3.50 3.03 2.41 2.84 3.46 

28.02 4.19 3.95 5.38 3.62 5.29 2.84 4.36 3.03 2.99 4.11 4.11 3.58 2.84 3.34 4.00 

30.00 4.78 4.51 6.16 4.19 6.01 3.29 5.03 3.58 3.45 4.72 4.72 4.12 3.27 3.85 4.53 
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Table E-6 Average values and standard deviations of acceleration amplification along the TC2 tower 

mounted on the CHYBA9 building - set medium a/v - UI&U2 directions 

CHYBA9-TC2 Acceleration amplification 

Loading cases - medium a/v 

Distance from the 
U1 U2 tower base (m) 

Il cr Il cr 

0.00 1.00 0.00 1.00 0.00 

6.69 0.89 0.08 0.84 0.08 

12.52 0.79 0.19 0.72 0.21 

17.52 0.84 0.37 1.19 0.38 

20.02 1.10 0.43 1.70 0.46 

22.02 1.42 0.47 2.17 0.54 

24.02 1.79 0.53 2.70 0.62 

26.02 2.19 0.57 3.27 0.70 

28.02 2.61 0.62 3.84 0.79 

30.00 3.01 0.67 4.41 0.88 
~ --
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Table E-7 Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set Iowa/v - VI 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases -low a/v - Ul 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 0.95 0.91 0.89 0.89 0.85 0.76 0.86 0.96 0.89 0.91 0.91 0.91 0.93 0.99 1.06 

12.52 0.97 0.91 0.61 0.75 0.64 0.64 0.58 0.82 0.67 0.74 0.74 0.87 0.73 0.90 1.14 

17.52 1.27 1.06 0.47 0.89 0.57 0.68 0.67 1.00 0.53 0.79 0.79 1.15 1.11 1.02 1.63 

20.02 1.44 1.33 0.66 1.13 0.83 0.93 0.87 1.12 0.74 0.86 0.86 1.41 1.33 1.26 1.95 

22.02 1.62 1.60 0.84 1.35 1.16 1.27 1.06 1.29 1.04 1.14 1.14 1.67 1.56 1.48 2.35 

24.02 1.95 1.88 1.05 1.73 1.52 1.68 1.33 1.54 1.39 1.45 1.45 2.02 1.91 1.77 2.77 

26.02 2.29 2.19 1.29 2.13 1.91 2.11 1.66 1.88 1.75 1.78 1.78 2.42 2.29 2.10 3.21 

28.02 2.64 2.50 1.54 2.55 2.30 2.55 1.99 2.26 2.12 2.11 2.11 2.82 2.68 2.48 3.69 

30.00 2.98 2.82 1.83 2.95 2.68 2.98 2.32 2.64 2.49 2.44 2.44 3.22 3.06 2.87 4.17 
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Table E-8 Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set Iowa/v - U2 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - low a/v - 02 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.08 0.83 0.82 0.95 0.74 0.72 0.82 1.07 0.95 0.82 0.82 0.91 0.78 0.88 0.97 

12.52 1.64 0.89 0.66 0.80 0.62 0.65 0.53 1.27 0.86 0.67 0.67 0.78 0.67 0.62 1 1.22 • 

17.52 2.87 1.53 1.06 1.01 1.20 1.11 1.05 2.18 1.03 0.96 0.96 1.16 1.43 0.84 2.09 

20.02 3.84 1.97 1.34 1.33 1.72 1.68 1.50 2.71 1.55 1.34 1.34 1.56 1.93 1.27 2.74 

22.02 4.68 2.34 1.74 1.68 2.17 2.21 1.90 3.17 2.00 1.67 1.67 1.90 2.40 1.65 3.37 

24.02 5.57 2.78 2.26 2.10 2.66 2.79 2.33 3.64 2.50 2.02 2.02 2.28 2.90 2.06 4.06 

26.02 6.48 3.24 2.82 2.57 3.18 3.40 2.77 4.14 3.03 2.50 2.50 2.67 3.42 2.49 4.78 

28.02 7.39 3.78 3.39 3.05 3.70 4.02 3.22 4.79 3.56 2.99 2.99 3.06 3.94 2.93 5.51 

30.00 8.29 4.33 3.96 3.51 4.21 4.64 3.66 5.47 4.09 3.48 3.48 3.45 4.46 3.36 6.24 
- ._--- --_ .. _--- --
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Table E-9 Average values and standard deviations of acceleration amplification along the TC2 tower 

mounted on the CHYBA9 building - set Iowa/v - Ul&U2 directions 

CHYBA9-TC2 Acceleration amplification 

Loading cases - low a/v 

Distance from the 
VI V2 tower base (m) 

~ 0- ~ 0-

0.00 1.00 0.00 1.00 0.00 

6.69 0.91 0.07 0.88 0.11 

12.52 0.78 0.15 0.84 0.31 

17.52 0.91 0.31 1.36 0.58 

20.02 1.12 0.34 1.85 0.72 

22.02 1.37 0.36 2.30 0.84 

24.02 1.70 0.40 2.80 0.97 

26.02 2.05 0.43 3.33 1.08 

28.02 2.42 0.48 3.89 1.21 

30.00 2.79 0.52 4.44 1.34 
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Table E-lO Acceleration amplification along the TC2 tower mounted on the CHXBA9 building - set VHS 2%/50 years - VI 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - 2% - U1 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 0.82 0.94 0.90 0.95 0.89 0.92 0.87 0.82 0.95 0.92 

12.52 0.60 0.67 0.88 0.84 0.68 1.02 0.70 0.65 0.76 0.81 

17.52 0.46 0.60 0.83 0.59 0.74 1.21 0.60 0.57 0.65 0.81 

20.02 0.63 0.75 1.02 0.80 1.05 1.40 0.78 0.70 0.90 1.10 

22.02 0.88 1.00 1.31 1.07 1.35 1.54 1.07 0.85 1.15 1.38 

24.02 1.26 1.24 1.58 1.36 1.66 1.74 1.38 1.12 1.39 1.65 

26.02 1.66 1.51 1.96 1.67 1.97 2.09 1.69 1.48 1.79 1.98 

28.02 2.08 1.87 2.38 2.03 2.29 2.48 2.01 1.86 2.24 2.39 

30.00 2.48 2.30 2.79 2.39 2.61 2.87 2.32 2.24 2.68 2.83 
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Table E-ll Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set UHS 2%/50 years - U2 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - 2% - U2 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.01 0.78 0.82 0.90 0.99 0.92 0.93 0.85 0.78 1.15 

12.52 0.93 0.76 0.78 1.02 1.07 1.39 0.89 0.79 0.61 1.18 

17.52 1.22 0.81 1.44 1.23 1.83 1.91 1.19 1.15 0.90 2.01 

20.02 1.25 1.13 1.90 1.65 2.28 2.30 1.57 1.60 1.25 2.74 

22.02 1.38 1.53 2.33 2.03 2.78 2.65 2.05 2.03 1.62 3.37 

24.02 1.87 1.95 2.90 2.39 3.35 3.06 2.59 2.51 2.05 4.03 

26.02 2.48 2.37 3.50 2.98 3.96 3.76 3.15 3.01 2.47 4.80 

28.02 3.10 2.93 4.19 3.67 4.69 4.55 3.72 3.53 2.99 5.61 

30.00 3.71 3.50 4.86 4.34 5.42 5.33 4.35 4.05 3.52 6.42 
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Table E-12 Average values and standard deviations ofacceleration amplification along the TC2 tower 

mounted on the CRYBA9 building - set URS 2%/50 years - Ul&U2 directions 

CHYBA9-TC2 Acceleration amplification 

Loading cases - 2% 

Distance from the 
VI V2 tower base (m) 

f.l cr f.l cr 

0.00 1.00 0.00 1.00 0.00 

6.69 0.90 0.05 0.90 0.11 

12.52 0.76 0.12 0.93 0.23 

17.52 0.70 0.19 1.35 0.39 

20.02 0.91 0.21 1.75 0.49 

22.02 1.16 0.21 2.17 0.57 

24.02 1.43 0.20 2.66 0.63 

26.02 1.78 0.20 3.24 0.71 

28.02 2.16 0.22 3.86 0.81 

30.00 2.55 0.24 4.50 0.90 
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Table E-13 Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set UHS 10%/50 years - VI 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - 10% - U 1 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 0.89 0.94 0.90 0.95 0.96 0.92 0.90 0.92 0.82 0.90 

12.52 0.69 0.83 0.88 0.84 0.81 0.81 0.72 0.77 0.69 0.67 

17.52 0.39 0.59 0.83 0.59 0.97 0.77 0.62 0.80 0.59 0.67 

20.02 0.50 0.85 1.02 0.79 1.16 0.99 0.82 1.13 0.89 0.85 

22.02 0.76 1.12 1.31 1.07 1.47 1.34 1.08 1.55 1.27 1.08 

24.02 1.03 1.48 1.58 1.36 1.79 1.70 1.35 1.99 1.67 1.34 

26.02 1.40 1.87 1.96 1.67 2.18 2.10 1.63 2.45 2.10 1.64 

28.02 1.77 2.26 2.38 2.03 2.58 2.50 1.91 2.92 2.54 1.94 

30.00 2.14 2.64 2.79 2.39 2.97 2.90 2.19 3.38 2.97 2.23 
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Table E-14 Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set UHS 10%/50 years - U2 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - 10% - U2 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 0.79 0.78 0.93 0.90 0.82 0.83 0.83 0.80 0.78 0.79 

12.52 0.65 0.56 0.83 1.02 0.70 0.74 0.96 0.88 0.54 0.90 

17.52 0.68 0.74 1.39 1.23 1.15 0.98 1.25 1.29 1.05 1.59 

20.02 0.98 1.04 1.96 1.65 1.45 1.43 1.70 1.80 1.49 2.14 

22.02 1.33 1.32 2.46 2.03 1.86 1.82 2.16 2.24 1.91 2.63 

24.02 1.70 1.64 3.03 2.39 2.40 2.22 2.72 2.71 2.36 3.16 

26.02 2.09 1.99 3.66 2.98 2.97 2.62 3.30 3.20 2.84 3.74 

28.02 2.47 2.49 4.31 3.67 3.56 3.03 3.90 3.70 3.34 4.35 

30.00 2.84 2.97 4.96 4.34 4.14 3.46 4.49 4.23 3.84 4.95 
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Table E-15 Average values and standard deviations of acceleration amplification along the TC2 tower 

mounted on the CHYBA9 building - set UHS 10%/50 years - Ul&U2 directions 

CHYBA9-TC2 Acceleration amplification ! 

Loading cases - 10% 

Distance from the 
VI V2 

tower base (m) 

Il 0- Il 0-

0.00 1.00 0.00 1.00 0.00 

6.69 0.91 0.04 0.83 0.05 

12.52 0.77 0.07 0.78 0.17 

17.52 0.68 0.16 1.13 0.28 

20.02 0.90 0.19 1.56 0.37 

22.02 1.20 0.23 1.98 0.43 

24.02 1.53 0.28 2.43 0.50 

26.02 1.90 0.32 2.94 0.59 

28.02 2.28 0.36 3.48 0.66 

30.00 2.66 0.41 4.02 0.74 
, 

~ -
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Table E-16 Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set VHS 50%/50 years - VI 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - 50 % - U1 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 0.93 0.79 0.87 0.99 0.83 0.85 0.90 0.92 0.82 0.90 

12.52 0.71 0.78 0.64 0.82 0.52 0.68 0.72 0.77 0.69 0.67 

17.52 0.45 0.78 0.77 0.76 0.42 0.66 0.62 0.80 0.59 0.67 

20.02 0.67 1.00 0.87 1.05 0.49 0.83 0.82 1.13 0.89 0.85 

22.02 0.93 1.38 0.91 1.31 0.68 1.08 1.08 1.55 1.27 1.08 

24.02 1.22 1.78 1.19 1.61 0.95 1.48 1.35 1.99 1.67 1.34 

26.02 1.57 2.20 1.49 1.95 1.24 1.96 1.63 2.45 2.10 1.64 

28.02 1.95 2.62 1.79 2.42 1.57 2.45 1.91 2.92 2.54 1.94 

30.00 2.33 3.09 2.14 2.92 1.91 2.94 2.19 3.38 2.97 2.23 
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Table E-17 Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set UHS 50%/50 years - U2 

CHYBA9-TC2 Acceleration amplification 

Distance from the 
Loading cases - 50% - U2 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.06 0.87 0.90 0.95 1.13 1.13 0.75 0.89 0.70 0.85 

12.52 0.94 1.28 0.87 0.81 0.96 1.24 0.71 0.96 0.63 0.77 

17.52 1.31 2.35 1.11 1.30 1.75 2.06 1.25 1.80 1.53 1.59 

20.02 1.71 3.05 1.58 1.83 2.46 2.75 1.67 2.54 2.12 2.20 

22.02 2.14 3.67 1.98 2.27 3.05 3.35 2.04 3.18 2.62 2.73 

24.02 2.59 4.34 2.43 2.70 3.56 3.89 2.42 3.85 3.15 3.30 

26.02 3.01 5.17 2.96 3.12 3.99 4.56 2.90 4.53 3.70 3.90 

28.02 3.52 6.02 3.48 3.61 4.37 5.37 3.42 5.21 4.29 4.56 

30.00 4.08 6.87 4.00 4.17 5.12 6.24 3.95 5.89 4.87 5.21 

285 



Table E-18 Average values and standard deviations ofacceleration amplification along the TC2 tower 

mounted on the CRYBA9 building - set URS 50%/50 years - Ul&U2 directions 

CHYBA9-TC2 Acceleration amplification 

Loading cases - 50% 

Distance from the 
VI V2 tower base (m) 

Il cr Il cr 

0.00 1.00 0.00 1.00 0.00 

6.69 0.88 0.06 0.92 0.14 

12.52 0.70 0.08 0.92 0.21 

17.52 0.65 0.13 1.61 0.39 

20.02 0.86 0.18 2.19 0.50 

22.02 1.13 0.25 2.70 0.59 

24.02 1.46 0.31 3.22 0.68 

26.02 1.82 0.37 3.78 0.79 

28.02 2.21 0.43 4.38 0.91 

30.00 2.61 0.50 5.04 1.03 

286 



Table E-19 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set high a/v - VI 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - high a/v - U 1 

tower base (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.87 1.91 2.35 2.03 1.69 1.82 2.09 1.63 1.51 1.26 1.26 2.21 1.60 1.77 

12.52 3.52 3.27 4.70 3.50 3.01 3.18 4.10 2.99 3.43 2.30 2.30 4.11 2.86 3.20 

17.52 5.26 4.78 7.15 5.15 4.47 4.61 6.43 4.43 5.71 3.50 3.50 6.15 4.16 4.74 

20.00 6.15 5.58 8.40 6.00 5.30 5.35 7.64 5.16 6.88 4.12 4.12 7.19 4.83 5.60 

Table E-20 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set high a/v - V2 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - high a/v - U2 

tower base (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.58 1.36 1.54 1.38 1.58 1.49 1.46 1.37 1.51 1.40 1.40 1.51 1.51 1.58 

12.52 2.63 1.95 2.74 1.99 2.49 2.22 2.67 2.14 2.94 1.92 1.92 2.35 2.34 2.38 

17.52 3.74 2.59 4.16 2.62 3.44 2.96 4.10 2.95 4.55 2.92 2.92 3.25 3.32 3.50 

20.00 4.31 2.91 4.89 2.94 3.92 3.37 4.83 3.36 5.37 3.43 3.43 3.71 3.87 4.07 
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Table E-21 Average values and standard deviations ofacceleration amplification along the TC3 tower 

mounted on the CHYBA9 building - set high a/v - Ul&U2 directions 

CHYBA9-TC3 Acceleration amplification 

Loading cases - High a/v 

Distance from the 
VI V2 tower base (m) 

~ cr ~ cr 

0.00 1.00 0.00 1.00 0.00 

6.69 1.78 0.32 1.48 0.08 

12.52 3.32 0.66 2.34 0.33 

17.52 5.00 1.06 3.36 0.60 

20.00 5.88 1.27 3.89 0.74 
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Table E-22 Acceleration amplification along the TC2 tower mounted on the CHYBA9 building - set medium a/v - VI 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - medium a/v - VI 

tower base (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.58 1.97 1.84 2.17 1.48 1.84 1.77 1.73 2.33 1.72 1.72 1.73 1.75 1.43 1.54 

12.52 2.67 3.69 3.28 3.87 2.50 3.22 2.97 2.93 4.46 2.82 2.82 3.13 3.32 2.47 2.45 

17.52 4.02 5.69 5.09 5.74 3.79 4.76 4.29 4.19 6.81 3.99 3.99 4.81 5.02 3.65 3.41 

20.00 4.71 6.71 6.04 6.70 4.45 5.55 4.96 4.83 8.02 4.59 4.59 5.66 5.89 4.26 3.95 

Table E-23 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set medium a/v - V2 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - medium a/v - V2 

tower base (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.59 1.55 1.34 1.39 1.31 1.52 1.48 1.10 1.50 1.27 1.27 1.54 1.60 1.31 1.17 

12.52 2.55 2.47 2.14 2.02 1.99 2.38 2.19 1.53 2.27 1.77 1.77 2.58 2.57 1.92 1.67 

17.52 3.57 3.55 3.11 2.83 2.75 3.27 2.93 2.30 3.09 2.32 2.32 3.76 3.60 2.60 2.26 

20.00 4.08 4.14 3.61 3.25 3.14 3.73 3.30 2.69 3.50 2.60 2.60 4.36 4.12 2.95 2.57 
. 
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Table E-24 Average values and standard deviations of acce1eration amplification along the TC3 tower 

mounted on the CHYBA9 building - set medium a/v - Ul&U2 directions 

CHYBA9-TC3 Acceleration amplification 

Loading cases - medium a/v 

Distance from the 
VI V2 

1 

tower base (m) . 

Il cr Il cr 

0.00 1.00 0.00 1.00 0.00 

6.69 1.77 0.24 1.40 0.16 

12.52 3.11 0.56 2.12 0.35 

17.52 4.62 0.93 2.95 0.52 

20.00 5.39 1.12 3.38 0.62 
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Table E-25 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set Iowa/v - Ul 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - Iowa/v - U 1 

tower base (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.81 1.61 2.06 2.31 1.85 1.94 1.68 1.87 1.97 1.75 1.75 1.73 1.67 1.68 1.84 

12.52 3.06 2.77 3.61 4.43 3.09 3.30 2.66 3.11 3.53 3.20 3.20 2.87 2.74 2.69 3.17 

17.52 4.38 3.96 5.35 6.64 4.40 4.74 3.70 4.44 5.28 4.73 4.73 4.22 3.87 3.87 4.56 

20.00 5.05 4.56 6.24 7.77 5.07 5.47 4.23 5.12 6.17 5.51 5.51 4.91 4.51 4.54 5.28 

Table E-26 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set Iowa/v - U2 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - Iowa/v - U2 

tower base (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.49 1.33 1.45 1.33 1.30 1.26 1.33 1.44 1.32 1.44 1.44 1.19 1.26 1.34 1.37 

12.52 2.54 1.86 2.38 1.95 1.98 1.90 1.95 2.37 2.13 2.27 2.27 1.85 1.72 1.85 1.95 

17.52 3.61 2.50 3.46 2.74 2.73 2.57 2.66 3.62 2.96 3.20 3.20 2.57 2.28 2.45 2.60 

20.00 4.18 2.84 4.02 3.19 3.12 2.92 3.04 4.25 3.39 3.67 3.67 2.93 2.56 2.78 3.01 
--_.-
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Table E-27 Average values and standard deviations ofacceleration amplification along the TC3 tower 

mounted on the CHYBA9 building - set Iowa/v - Ul&U2 directions 

CHYBA9-TC3 Acceleration amplification 

Loading cases - Iowa/v 

Distance from the 
VI V2 

tower base (m) 

Il 0- Il 0-

0.00 1.00 0.00 1.00 0.00 

6.69 1.83 0.18 1.35 0.08 

12.52 3.16 0.45 2.06 0.24 

17.52 4.59 0.75 2.88 0.44 

1 

20.00 5.33 0.89 3.30 0.53 
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Table E-28 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set UHS 2%/50 years - UI 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - 2% - U1 
tower base (m) 1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.64 2.20 1.84 l.85 1.87 2.03 1.89 2.06 1.98 2.30 

12.52 2.77 4.04 3.65 3.41 3.17 3.65 3.47 3.68 3.54 3.98 

17.52 4.10 6.05 5.35 4.98 4.53 5.15 5.23 5.40 5.76 5.93 

20.00 4.78 7.09 6.38 5.77 5.24 6.08 6.18 6.28 6.91 7.04 

Table E-29 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set UHS 2%/50 years - U2 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - 2% - U2 

tower base (m) 1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.58 1.61 1.38 1.38 1.57 1.29 1.41 1.37 1.37 1.43 

12.52 2.67 2.60 2.34 2.43 2.43 2.18 2.30 2.19 1.92 2.17 

17.52 3.85 3.64 3.37 3.82 3.24 3.17 3.19 3.19 2.63 2.93 

20.00 4.50 4.27 4.00 4.53 3.74 3.76 3.62 3.70 2.98 3.31 
. .. ......- ----
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Table E-30 Average values and standard deviations ofacceleration amplification along the TC3 tower 

mounted on the CRYBA9 building - set URS 2%/50 years - Ul&U2 

CHYBA9-TC3 Acceleration amplification 

Loading cases - 2% 

Distance from the 
VI V2 

tower base (m) 

Il cr Il cr 

0.00 1.00 0.00 1.00 0.00 

6.69 1.97 0.19 1.46 0.13 

12.52 3.57 0.43 2.34 0.23 

17.52 5.29 0.69 3.31 0.35 

20.00 6.23 0.85 3.83 0.45 
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Table E-31 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set VHS 10%/50 years - VI 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - 10% - U 1 

tower base (m) 1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.77 2.17 1.43 1.85 1.65 1.65 1.92 2.06 1.54 1.56 

12.52 3.19 3.81 2.27 3.41 3.19 3.19 3.25 3.62 2.58 2.90 

17.52 4.71 5.40 3.52 4.98 4.71 4.71 4.65 5.48 3.79 4.43 

20.00 5.49 6.49 4.19 5.77 5.46 5.46 5.37 6.51 4.44 5.21 

Table E-32 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set UHS 1O%/50years - V2 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - 10% - U2 

tower base (m) 1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.32 1.21 1.38 1.39 1.44 1.24 1.41 1.26 1.46 1.48 

12.52 1.98 1.98 2.34 2.43 2.14 1.84 2.17 1.76 2.27 2.40 

17.52 2.71 2.77 3.37 3.82 2.94 2.74 3.10 2.43 3.09 3.46 

20.00 3.14 3.14 4.00 4.53 3.36 3.21 3.59 2.81 3.50 4.00 
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Table E-33 Average values and standard deviations ofacceleration amplification along the TC3 tower 

mounted on the CHYBA9 building - set UHS 10%/50 years - U1&U2 directions 

CHYBA9-TC3 Acceleration amplification 

Loading cases - 10% 

Distance from the 
VI V2 

tower base (m) 

~ cr ~ cr 

0.00 1.00 0.00 1.00 0.00 

6.69 1.76 0.24 1.36 0.10 

12.52 3.14 0.46 2.13 0.23 

17.52 4.64 0.62 3.04 0.41 

20.00 5.44 0.74 3.53 0.52 
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Table E-34 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set VHS 50%/50 years - VI 

CHYBA9-TC3 Acceleration amplification 

Distance from the Loading cases - 50% - VI 

tower base (m) 1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.89 1.94 1.80 1.80 1.74 1.79 1.92 2.06 1.54 1.56 

12.52 3.16 3.34 3.07 3.07 3.00 3.29 3.25 3.62 2.58 2.90 

17.52 4.47 4.86 4.47 4.63 4.36 4.97 4.65 5.48 3.79 4.43 

20.00 5.30 5.77 5.34 5.65 5.07 5.88 5.37 6.51 4.44 5.21 

Table E-35 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set VHS 50%/50 years - V2 

CHYBA9-TC3 Acceleration amplification along the tower height 

Tower height Loading cases - 50% - V2 

from its base (m) 1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.69 1.53 1.44 1.35 1.45 1.58 1.54 1.41 1.26 1.46 1.49 

12.52 2.59 2.23 2.18 2.47 2.65 2.59 2.17 1.76 2.27 2.40 

17.52 3.75 3.22 3.18 3.75 . 3.64 3.64 3.10 2.43 3.09 3.46 

20.00 4.38 3.88 3.68 4.41 4.11 4.17 3.59 2.81 3.50 4.00 
----- ---------
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Table E-36 Average values and standard deviations ofacceleration amplification along the TC3 tower 

mounted on the CHYBA9 building - set URS 50%/50 years - Ul&U2 directions 

CHYBA9-TC3 Acceleration amplification 

Loading cases - 50% 

Distance from the 
U1 U2 

tower base (m) 

Il 0- Il 0-

0.00 1.00 0.00 1.00 0.00 
1 

6.69 1.80 0.16 1.45 0.09 

12.52 3.13 0.28 2.33 0.27 

17.52 4.61 0.44 3.33 0.41 

20.00 5.45 0.55 3.85 0.48 
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Table E-37 Acceleration amplification along the TC4 tower mounted on the CHYBA9 building - set high a/v - UI 

CHYBA9-TC4 Acceleration amplification 

Distance from the 
Loading cases - high a/v - VI 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 Il 12 13 14 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.60 1.06 1.03 1.11 1.06 1.05 1.01 1.16 1.04 1.08 1.04 1.08 1.03 1.01 1.04 

5.00 1.05 1.03 1.10 1.06 1.08 1.04 1.15 1.04 1.05 1.04 1.08 1.05 1.03 1.03 

7.40 1.04 1.27 0.95 1.17 1.22 1.51 1.04 1.10 1.03 1.07 1.00 1.45 1.06 1.00 

10.00 2.31 3.09 2.14 2.34 2.35 2.93 1.66 2.25 1.78 1.47 1.37 3.20 2.20 2.18 

12.60 4.55 5.58 4.18 4.19 4.25 5.24 2.94 4.38 3.60 2.59 2.55 5.78 4.25 4.34 

15.20 7.15 8.48 6.64 6.40 6.58 8.08 4.76 6.84 5.73 3.92 3.94 8.88 6.74 6.93 

17.80 9.91 11.61 9.26 8.78 9.07 11.09 6.69 9.47 8.02 5.32 5.42 12.21 9.40 9.73 

20.00 12.71 14.84 11.91 11.18 11.58 14.14 8.63 12.11 10.34 6.74 6.92 15.57 12.09 12.56 
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Table E-38 Acceleration amplification along the TC3 tower mounted on the CHYBA9 building - set high a/v - U2 

CHYBA9-TC4 Acceleration amplification 

Distance from the 
Loading cases - set of high a/v - U2 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.60 1.01 1.00 1.01 1.00 1.01 1.01 1.01 1.00 1.00 1.04 1.00 1.01 1.02 1.02 

5.00 1.03 1.05 1.02 1.05 1.04 1.04 1.05 1.03 1.03 1.11 1.02 1.02 1.04 1.06 

7.40 1.08 1.29 1.07 1.35 1.28 1.16 1.18 1.28 1.26 1.29 1.17 1.19 1.13 1.20 

10.00 1.79 1.97 1.52 2.23 2.19 2.00 1.49 2.01 1.92 1.73 1.79 2.19 1.69 1.54 

12.60 2.96 2.95 2.61 3.43 3.50 3.19 2.16 2.97 2.80 2.43 2.62 3.75 2.74 2.32 

15.20 4.32 4.09 4.04 4.81 5.08 4.58 3.05 4.07 3.82 3.46 3.59 5.56 4.07 3.35 

17.80 5.76 5.30 5.55 6.27 6.76 6.06 3.99 5.22 4.93 4.61 4.64 7.48 5.48 4.46 

20.00 7.22 6.51 7.07 7.75 8.46 7.56 4.94 6.38 6.18 5.78 5.69 9.42 6.89 5.57 
------------ ------- - -------
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Table E-39 Average values and standard deviations ofacceleration amplification along the TC4 tower 

mounted on the CHYBA9 building - set high a/v - U1&U2 directions 

CHYBA9-TC4 Acceleration amplification 

Loading cases - high a/v 

Distance from the 
VI V2 

tower base (m) 

J..l cr J..l cr 

0.00 1.00 0.00 1.00 0.00 

2.60 1.06 0.04 1.01 0.01 

5.00 1.06 0.03 1.04 0.02 

7.40 1.14 0.17 1.21 0.09 

10.00 2.23 0.56 1.86 0.25 

12.60 4.17 1.00 2.89 0.46 

15.20 6.51 1.51 4.14 0.69 

17.80 9.00 2.08 5.47 0.95 

20.00 Il.52 2.65 6.82 1.22 
--- --_._--
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Table E-40 Acceleration amplification along the TC4 tower mounted on the CHYBA9 building - set medium a/v - VI 

CHYBA9-TC4 Acceleration amplification 

Distance from the 
Loading cases - medium a/v - U 1 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
! 

2.60 1.07 1.04 1.05 1.04 1.04 1.05 1.08 1.07 1.00 1.03 1.04 1.04 1.04 1.05 1.04 

5.00 1.06 1.06 1.06 1.05 1.04 1.05 1.07 1.06 1.04 1.05 1.02 1.06 1.04 1.06 1.04 

7.40 1.07 1.23 1.35 1.33 1.07 1.28 1.11 1.33 1.37 1.40 1.16 1.18 1.12 1.11 1.10 

10.00 1.78 2.99 2.99 2.67 1.78 3.36 2.14 3.48 2.82 2.58 2.66 2.18 1.88 2.06 2.42 

12.60 3.44 5.64 5.25 4.79 3.32 6.32 4.01 6.45 5.37 4.42 5.17 3.84 3.48 3.95 4.48 

15.20 5.39 8.80 8.09 7.31 5.12 9.75 6.41 9.98 8.34 6.67 8.17 6.05 5.42 6.17 6.89 

17.80 7.50 12.18 11.10 10.08 7.03 13.41 8.99 13.80 Il.49 9.06 11.36 8.40 7.49 8.53 9.45 

20.00 9.64 15.60 14.20 12.88 8.96 17.14 11.60 17.66 14.67 Il.48 14.60 10.78 9.57 10.91 12.07 
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Table E-41 Acceleration amplification along the TC4 tower mounted on the CHYBA9 building - set medium a/v - U2 

CHYBA9-TC4 Acceleration amplification 

Distance from the 
Loading cases - medium a/v - U2 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.60 1.02 1.00 1.01 1.00 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.01 1.00 1.01 

5.00 1.03 1.02 1.02 1.04 1.03 1.03 1.03 1.02 1.04 1.03 1.03 1.04 1.03 1.03 1.04 

7.40 1.16 1.16 1.19 1.25 1.22 1.28 1.07 1.11 1.26 1.22 1.28 1.28 1.19 1.25 1.16 
i 

10.00 1.89 1.79 1.86 1.84 1.73 2.07 1.64 1.46 1.90 1.73 1.98 1.93 1.72 1.85 1.59 

12.60 3.02 2.75 2.76 2.74 2.47 3.30 2.66 2.14 2.74 2.62 3.00 2.89 2.61 2.65 2.41 

15.20 4.32 4.03 3.81 3.84 3.43 4.72 3.84 2.99 3.80 3.66 4.19 4.01 3.64 3.56 3.33 

17.80 5.69 5.40 4.95 5.01 4.44 6.23 5.09 3.89 5.00 4.76 5.44 5.19 4.74 4.54 4.31 

20.00 7.08 6.78 6.19 6.19 5.46 7.76 6.35 4.80 6.21 5.88 6.71 6.38 5.84 5.51 5.28 

303 



Table E-42 Average values and standard deviations of acceleration amplification along the TC4 tower 

mounted on the CHYBA9 building - set medium a/v - Ul&U2 directions 

CHYBA9-TC4 Acceleration amplification 

Loading cases - medium a/v 

Distance from the 
VI V2 tower base (m) 

Il cr Il cr 

0.00 1.00 0.00 1.00 0.00 

2.60 1.04 0.02 1.01 0.00 
1 

5.00 1.05 0.01 1.03 0.01 

7.40 1.21 0.12 1.21 0.06 

10.00 2.52 0.55 1.80 0.16 

12.60 4.66 1.01 2.72 0.28 

15.20 7.24 1.56 3.81 0.42 

17.80 9.99 2.15 4.98 0.58 

20.00 12.78 2.75 6.16 0.75 
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Table E-43 Acceleration amplification along the TC4 tower mounted on the CHYBA9 building - set low a/v - VI 

CHYBA9-TC4 Acceleration amplification 

Distance from the 
Loading cases - Iowa/v - VI 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.60 1.07 1.03 1.05 1.10 1.06 1.05 1.06 1.05 1.09 1.07 1.04 1.06 1.09 1.00 1.00 

5.00 1.03 1.03 1.05 1.09 1.05 1.04 1.05 1.05 1.06 1.06 1.06 1.04 1.08 1.04 1.02 

7.40 1.02 1.02 1.28 1.16 1.23 1.20 1.38 1.23 1.19 1.12 1.42 1.05 1.00 1.38 1.22 

10.00 2.60 2.51 3.10 2.36 2.89 2.75 3.44 2.89 3.06 2.52 3.00 2.18 1.76 2.86 1.87 

12.60 5.12 4.72 5.97 4.15 5.57 4.98 6.49 5.18 5.83 4.55 5.64 3.98 3.21 5.22 3.01 

15.20 8.05 7.31 9.43 6.29 8.74 7.63 10.03 7.99 9.15 7.22 8.77 6.23 5.03 8.06 4.32 

17.80 11.18 10.08 13.11 8.66 12.12 10.51 13.81 10.99 12.74 10.06 12.10 8.62 6.99 11.07 5.73 

20.00 14.33 12.88 16.82 11.16 15.53 13.42 17.62 14.02 16.40 12.93 15.47 11.03 8.98 14.12 7.14 
-~-

305 



Table E-44 Acceleration amplification along the TC4 tower mounted on the CHYBA9 building - set low a/v - U2 

CHYBA9-TC4 Acceleration amplification 

Distance from the 
Loading cases - low a/v - U2 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.60 1.00 1.01 1.02 1.00 1.01 1.00 1.01 1.00 1.00 1.01 1.00 1.00 1.01 1.01 1.01 

5.00 1.02 1.02 1.03 1.03 1.02 1.04 1.03 1.04 1.05 1.02 1.02 1.03 1.03 1.03 1.03 

7.40 1.13 1.21 1.05 1.19 1.11 1.26 1.17 1.44 1.33 1.09 1.15 1.19 1.18 1.12 1.19 

10.00 1.92 1.86 1.90 1.64 1.77 1.99 1.73 2.59 2.22 1.53 1.64 1.60 1.68 1.62 1.84 

12.60 3.14 2.79 3.29 2.37 2.85 3.07 2.62 4.14 3.69 2.44 2.46 2.29 2.43 2.33 2.85 

15.20 4.53 3.86 4.92 3.21 4.16 4.32 3.75 5.93 5.44 3.57 3.41 3.10 3.37 3.15 4.05 

17.80 5.98 4.98 6.65 4.09 5.56 5.65 4.96 7.84 7.30 4.78 4.42 3.96 4.41 4.03 5.33 

20.00 7.47 6.11 8.39 4.98 6.98 7.00 6.18 9.77 9.18 5.99 5.44 4.83 5.46 4.93 6.62 
------
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Table E-45 Average values and standard deviations of acceleration amplification along the TC4 tower 

mounted on the CHYBA9 building - set low a/v - Ul&U2 directions 

CHYBA9-TC4 Acceleration amplification 

Loading cases - Iowa/v 

Distance from the 
VI V2 tower base (m) 

~ cr ~ cr 

0.00 1.00 0.00 1.00 0.00 

2.60 1.05 0.03 1.01 0.00 

5.00 1.05 0.02 1.03 0.01 

7.40 1.19 0.13 1.18 0.10 

10.00 2.65 0.47 1.81 0.29 

12.60 4.91 0.99 2.80 0.58 

15.20 7.62 1.60 3.97 0.92 

17.80 10.52 2.26 5.21 1.28 

20.00 13.46 2.91 6.46 1.65 
-------_ .. _--------- L._ . ------ -------- -------------
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Table E-46 Acceleration amplification along the TC4 tower mounted on the CRYBA9 building - set URS 2%/50 years - UI 

CHYBA9-TC4 Acceleration amplification 

Distance from the 
Loading cases - 2% - U 1 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.60 1.07 1.05 1.07 1.06 1.09 1.06 1.04 1.06 1.08 1.10 

5.00 1.13 1.05 1.10 1.06 1.09 1.10 1.00 1.08 1.08 1.09 

7.40 1.37 1.16 1.14 0.99 1.37 1.27 1.17 1.28 1.50 1.49 

10.00 3.02 2.59 2.53 2.11 3.21 2.78 3.09 3.30 3.11 3.31 

12.60 5.76 4.95 4.79 3.89 5.72 4.95 5.60 6.49 5.41 6.05 

15.20 8.87 7.74 7.78 6.16 8.57 7.35 8.43 10.20 8.08 9.22 

17.80 12.23 10.82 Il.20 8.75 11.55 9.84 Il.59 14.13 10.92 12.60 

20.00 15.72 13.94 14.68 11.38 14.63 12.66 14.77 18.09 13.78 16.01 
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Table E-47 Acceleration amplification along the TC4 tower mounted on the CRYBA9 building - set URS 2%/50 years - U2 

CHYBA9-TC4 Acceleration amplification 

Distance from the 
Loading cases - 2% - U2 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.60 0.99 1.04 1.00 0.97 1.01 1.00 1.01 1.00 1.01 0.99 

5.00 1.12 1.14 1.07 0.98 1.07 1.03 1.09 1.06 1.06 1.05 

7.40 1.41 1.37 1.23 1.27 1.30 1.28 1.40 1.40 1.26 1.38 

10.00 2.26 2.19 1.76 2.11 2.34 1.98 2.19 2.44 1.87 2.38 

12.60 3.56 3.33 2.53 3.38 3.71 2.96 3.15 3.72 2.85 3.66 

15.20 5.18 4.61 3.47 4.80 5.10 4.16 4.14 5.09 4.02 5.09 

17.80 6.94 6.12 4.60 6.29 6.94 5.39 5.26 6.69 5.25 6.56 

20.00 9.05 7.94 6.05 7.95 8.87 6.73 6.59 8.31 6.52 8.03 
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Table E-48 Average values and standard deviations of acceleration amplification along the TC4 tower 

mounted on the CRYBA9 building - set URS 2%/50 years - Ul&U2 directions 

CHYBA9-TC4 Acceleration amplification 

Loading cases - 2% 

Distance from the 
U1 U2 tower base (m) 

Il cr Il cr 

0.00 1.00 0.00 1.00 0.00 

2.60 1.06 0.02 1.00 0.02 

5.00 1.08 0.03 1.07 0.05 

7.40 1.31 0.17 1.35 0.09 

10.00 2.95 0.37 2.18 0.27 

12.60 5.38 0.68 3.29 0.47 

15.20 8.24 1.01 4.55 0.69 

17.80 Il.36 1.37 5.99 0.99 

20.00 14.57 1.73 7.57 1.29 
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Table E-49 Acceleration amplification along the TC4 tower mounted on the CHYBA9 building - set URS 10%/50 years - U1 

CHYBA9-TC4 Acceleration amplification 

Distance from the 
Loading cases - 10% - U 1 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 i 

2.60 1.04 1.09 1.07 1.06 1.07 1.04 1.06 1.07 1.05 1.07 

5.00 1.03 1.13 1.10 1.08 1.06 1.09 1.08 1.05 1.06 1.08 

7.40 1.33 1.30 1.14 1.44 1.07 1.41 1.18 1.13 1.33 1.28 

10.00 2.71 2.92 2.53 3.03 2.30 2.85 2.29 2.60 2.63 2.89 

12.60 5.16 5.69 4.79 5.16 4.25 4.83 4.38 4.88 4.94 5.68 

15.20 8.02 8.92 7.78 7.84 6.45 7.30 6.84 7.49 7.62 8.94 

17.80 11.10 12.35 Il.20 10.66 9.01 10.23 9.52 10.39 10.46 12.42 

20.00 14.22 15.83 14.68 13.54 11.62 13.32 12.24 13.42 13.32 15.93 
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Table E-50 Acceleration amplification along the TC4 tower mounted on the CHYBA9 building - set UHS 10%/50 years - U2 

CHYBA9-TC4 Acceleration amplification 

Distance from the 
Loading cases - 10%-U2 

1 

i 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.60 1.00 1.02 1.00 0.97 0.99 0.99 1.01 1.01 1.00 1.01 

5.00 1.09 1.10 1.07 0.98 0.99 1.04 1.02 1.05 1.06 1.04 

7.40 1.23 1.31 1.23 1.27 1.17 1.29 1.29 1.27 1.37 1.24 

10.00 2.19 1.87 1.76 2.11 1.86 2.08 2.02 1.88 2.27 1.84 

12.60 3.36 2.65 2.53 3.38 2.78 3.11 3.00 2.68 3.52 2.88 

15.20 4.50 3.52 3.47 4.80 3.88 4.26 4.22 3.62 4.95 4.07 

17.80 5.88 4.41 4.60 6.29 5.01 5.57 5.51 4.63 6.47 5.37 

20.00 7.40 5.55 6.05 7.95 6.15 6.95 6.80 5.85 8.01 6.68 

312 



Table E-51 Average values and standard deviations ofacceleration amplification along the TC4 tower 

mounted on the CRYBA9 building - set URS 10%/50 years - Ul&U2 directions 

CHYBA9-TC4 Acceleration amplification 

Loading cases - 10% 

Distance from the 
VI V2 tower base (m) 

Il 0- Il 0-

0.00 1.00 0.00 1.00 0.00 

2.60 1.06 0.02 1.00 0.01 

5.00 1.07 0.03 1.04 0.04 

7.40 1.26 0.13 1.27 0.05 

10.00 2.67 0.25 1.99 0.17 

12.60 4.98 0.47 2.99 0.34 

15.20 7.72 0.79 4.13 0.52 

17.80 10.73 1.09 5.37 0.71 

20.00 13.81 1.39 6.74 0.85 
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Table E-52 Acceleration amplification along the TC4 tower mounted on the CHYBA9 building - set VHS 50%/50 years - VI 

CHYBA9-TC4 Acceleration amplification 

Distance from the Loading cases - 50% - VI 

tower base (m) 
1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.60 1.05 1.09 1.12 1.02 1.04 1.05 1.06 1.07 1.05 1.07 

5.00 1.04 1.08 1.16 1.07 1.06 1.10 1.08 1.05 1.06 1.08 

7.40 1.03 1.15 1.24 1.51 1.28 1.37 1.18 1.13 1.33 1.28 

10.00 2.29 2.53 2.87 3.55 2.84 2.57 2.29 2.60 2.63 2.89 

12.60 4.35 4.78 5.28 6.37 5.08 4.60 4.38 4.88 4.94 5.68 

15.20 6.59 7.33 8.09 9.69 7.87 7.07 6.84 7.49 7.62 8.94 

17.80 9.29 10.01 11.30 13.67 10.84 9.93 9.52 10.39 10.46 12.42 

20.00 12.25 12.85 14.73 17.71 13.84 12.82 12.24 13.42 13.32 15.93 
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Table E-53 Acceleration amplification along the TC4 tower mounted on the CHYBA9 building - set URS 50%/50 years - U2 

CHYBA9-TC4 Acceleration amplification 

Distance from the Loading cases - 50% - U2 
towerbase 

(m) 1 2 3 4 5 6 7 8 9 10 

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.60 0.99 1.02 1.00 1.01 0.99 1.00 1.01 1.01 1.00 1.01 

5.00 0.99 1.10 0.99 1.07 1.03 1.00 1.02 1.05 1.06 1.04 

7.40 1.13 1.39 1.14 1.30 1.40 1.23 1.29 1.27 1.37 1.24 

10.00 1.95 2.11 1.69 2.25 2.64 2.19 2.02 1.88 2.27 1.84 

12.60 3.04 2.99 2.55 3.38 4.32 3.40 3.00 2.68 3.52 2.88 

15.20 4.42 4.22 3.58 4.56 6.27 4.85 4.22 3.62 4.95 4.07 

17.80 6.30 5.62 4.69 5.93 8.37 6.60 5.51 4.63 6.47 5.37 

20.00 8.37 7.03 6.04 7.70 10.48 8.52 6.80 5.85 8.01 6.68 
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Table E-54 Average values and standard deviations ofacceleration amplification along the TC4 tower 

mounted on the CHYBA9 building - set UHS 50%/50 years - Ul&U2 directions 

CHYBA9-TC4 Acceleration amplification 

Loading cases - 50% 

Distance from the 
VI V2 

tower base (m) 

/-l cr /-l cr 

0.00 1.00 0.00 1.00 0.00 

2.60 1.06 0.03 1.00 0.01 

5.00 1.08 0.04 1.04 0.04 

7.40 1.25 0.14 1.28 0.10 

10.00 2.71 0.37 2.08 0.27 

12.60 5.03 0.62 3.17 0.51 

15.20 7.75 0.96 4.48 0.78 

17.80 10.78 1.36 5.95 1.09 

20.00 13.91 1.75 7.55 1.38 
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Figure E-l Acceleration amplification profiles along the TC2 tower mounted on the 
CHYBA9 building for the sets: (a) high a/v, (b) medium a/v, (c) Iowa/v 
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Figure E-2 Acceleration amplification profiles along the TC2 tower mounted on the 
CHYBA9 building for the sets: (a) UHS-2%, (b) UHS-I0%, (c) UHS-50% 
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Figure E-3 Acceleration amplification profiles along the TC3 tower mounted on the 
CHYBA9 building for the sets: (a) high a/v, (b) medium a/v, (c) low a/v 
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Figure E-4 Acceleration amplification profiles along the TC3 tower mounted on the 
CHYBA9 building for the sets: (a) UHS-2%, (b) UHS-lO%, (c) UHS-50% 
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Figure E-5 Acceleration amplification profiles along the TC4 tower mounted on the 
CHYBA9 building for the sets: (a) high a/v, (b) medium a/v, (c) Iowa/v 
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Figure E-6 Acceleration amplification profiles along the TC4 tower mounted on the 
CHYBA9 building for the sets: (a) UHS-2%, (b) UHS-lO%, (c) UHS-50% 
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