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Abstract 

Cu3Au is a classic model for the experimental investigation on the transitional process 

because of its very long relaxation time from the disordered to the ordered state. 

When Cu3Au is quenched from higher temperature above its critical temperature 

(383°C) to sorne temperature below its critical temperature, the small regions of 

ordered phase (do mains) form in the background of disordered phase. As time evolves, 

large domains grow at the expense of small domains. X-ray intensity fluctuation 

spectroscopy (XIFS) is a technique using coherent X-rays to measure the fluctuations 

of the diffracted intensity (speckle patterns) from the sample. During the ordering 

process, the structure of the sample changes, so does the speckle pattern. 

In this thesis, we use XIFS to investigate the dynamic process of the order-disorder 

phase transition taking place in the sample Cu3Au. The sample is quenched from 

420°C to three different lower temperatures 378°C, 370°C and 355°C. A CCD detector 

is used to record the (100) superlattice Bragg peak and the speckle pattern. We 

analyze the Bragg peak and summarize its properties. The universal scaling law is 

tested and is observed to be in good agreement with the theory. The average domain 

size (inverse of Bragg peak width) obeys the power law t112 . This part is refereed 

to as one-time (incoherent) analysis in the thesis. Second, we calculate the two-time 

correlation functions, also called two-time (coherent) analysis. As expected, two­

time correlation function also follows sorne universal scaling law. In the small time 

limit, a linear relationship is found between the correlation time T (width of two­

time correlation function) and average time t = (t1 + t2)/2. In the large time limit, 

T ex: fl/2
• The more interesting and exciting results we obtain are that the correlation 

time has an unpredicted behavior for the first dozens of minutes and the coherent 

factor (peak height of two-time correlation function) has a dependence on time and 

on the wave vector. The possible explanations are proposed and discussed. 
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Résumé 

Cu3Au est un modèle classique pour effectuer une investigation expérimentale au su­

jet des processus transitionnels puisque celui-ci possède un temps de relaxation très 

long d'un état désordonné à un état ordonné. La spectroscopie rayon-X a fluctua­

tions d'intensité (XIFS) est une technique utilisant des rayons-X pour mesurer les 

fluctuations d'intensité diffractée (patron de speckle) obtenue de l'échantillon. 

Dans cette thèse, nous utilisons la XIFS pour investiguer le processus dynamique 

de la transition de phase ordonné-désordonné qui se produit dans un échantillon 

de Cu3Au. La température de l'échantillon est réduite de 420°C au-dessus de sa 

température critique (383°C) jusqu'à trois températures différentes 378°C, 370°C et 

355°C inférieure à sa température critique. Un détecteur CCD est utilisé pour mesurer 

le pic de Bragg (100) du réseau et le patron de speckle. Nous analysons les pics de 

Bragg et nous résumons ses propriétés. La loi universelle de changement d'échelle est 

testée et nous démontrons un bon accord avec la théorie. La grandeur moyenne du 

domaine (inverse de la largeur du pic de Bragg) obéit la loi de puissance t 112
. Dans 

cette thèse, nous appelons cette partie une analyse un-temps (incoherent). Ensuite, 

nous calculons les fonctions de corrélation deux-temps, ce que nous appelons une 

analyse deux-temps (coherent). Comme prévue, les fonctions de corrélation deux­

temps suivent aussi une loi universelle de changement d'échelle. Dans la limite des 

temps courts, nous trouvons une relation linéaire entre le temps de corrélation T 

(largeur de la fonction de corrélation deux-temps) et le temps moyen t = (t1 + t2)/2. 

Dans la limite des temps longs, nous trouvons que T ex fl/2 • Les résultats les plus 

intéressants et excitants que nous obtenons sont que le temps de corrélation démontre 

un comportement imprévisible pour les premieres douzaines de minutes et le facteur 

de coherence (hauteur du pic de la fonction de corrélation deux-temps) dépend du 

temps et du vecteur d'onde. Des explications possibles sont proposées et discutées. 
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1 

Introduction 

The development of long range order out of a disordered system is a well-known and 

well studied class of non-equilibrium processes. Via a temperature quench, an Ising 

system cau change from a one-phase region to a disequilibrium state with a globally 

unstable point in the coexistence region. ldeally, the quench is so rapid that the 

state of the system (in particular, its order parameter) immediately after the quench 

is identical to its state immediately before the quench. The order parameter is zero 

at this point. As time progresses, approximately equal size regions with non-zero 

order parameter will form. These regions will be separated by domain walls. The 

characteristic size of domains will grow with time in a process called coarsening. 

Binary alloys are convenient model systems for investigating this dynamic phenom­

ena of order-disorder phase transition [1, 2, 3, 4, 5, 6]. Over the past few decades, 

the numerical studies of scaling theories for the structure functions have been doue 

vastly in systems with a non-conserved order parameter such as binary alloys and 

binary fluids [7, 8, 9, 10, 11, 12]. Theory predicted that the characteristic length L(t) 

grows as a power law with the time t: L(t) = ta [13, 14]. For non-conserved order 

parameter system, also called model A, a = 1/2. Various Ising systems have been 

investigated to test the scaling model and good agreement was found between the 

theories and experiments. For example, Wakabayashi studied the time-dependence 

kinetics of the order-disorder in Ni3Mn by neutron scattering techniques [15]. Noda et 

al. used time resolved X-ray scattering experiments to study the kinetics of ordering 

process in Cu3Au alloy in the vicinity of its order-disorder phase transition point [16]. 
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2 1 Introduction 

They observed that the X-ray diffraction profiles show universal scaling property in 

terms of space and time in the later stage of the ordering process. Fig. 1.1 shows 

one of our results of scaling function for time-dependent structure factors for three 

temperatures. This data covers three orders of magnitude in intensity and from a few 

to hundreds of minutes in time. More details will be discussed in this thesis. 

-20 

Longitudinal scans 

0 

0 

dQx/Widlhx 

20 

20 

-5 

-5 

Transverse scans 
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0 

dQy/Widlhy 

5 

5 

Figure 1.1: The scaled intensity vesus scaled wave vector is plotted against the time for two direc­
tions: (a) Tf = 378°0, (b) Tf = 370°0, (c) Tf = 355°0. The black lines on the top of image show 
the contour of rescaled intensity. 

AU the investigations above only provide information about a configurational av­

erage intensity, also called the incoherent intensity, which is the structure factor of 
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the system. Mathematically, this can be written 

S(k, T) = lincoh = (I(k, T)) (1.1) 

where () denotes an average over the disorder material. But the coherent intensity 

I(k, T) or the fluctuations in the intensity I(k, T) - (I(k, T)) can provide further 

interesting information about the systems under study. If a sample is illuminated 

with coherent light, a speckle pattern arises [17, 18, 19, 20, 21], then fluctuations 

in intensity will be observed. This speckle pattern varies in time as the sample 

undergoes thermal fluctuations. The time autocorrelation of the speckle pattern 

yields information about the dynamics of thermal fluctuations and the characteristic 

times involved [17, 18]. 

X-ray intensity fluctuation spectroscopy(XIFS) is a new diffraction technique which 

can measure speckle patterns. It uses a small x-ray bearn that is sufficiently coher­

ent to produce speckle patterns characteristic of the specifie structural arrangement 

of the illuminated sample. Such a speckle pattern is uniquely related to the exact 

spatial arrangement in the sample. It allows us to obtain direct information about 

the dynamic of atomic-scale fluctuations by measuring the temporal correlations in 

diffraction intensities. In equilibrium systems, XIFS reduces to measuring one-time 

correlation functions. In non-equilibrium systems, not only the speckle pattern fluc­

tuates in time, but also the average scattered intensity changes with the dynamic 

process. Full two-time correlation functions are measured. 

G. Brown et al. [22] have clone the numerical studies of the statistical properties 

of coherent radiation scattered from phase-ordering materials with non-conserved 

orcier parameter. For such systems it is well established that the standard scaling 

hypothesis applies, consequently, the average scattering intensity at wave vector Q 

and the time T is proportional to a scaling function which depends only on a rescaled 

time, t "-'1 Q !2 T. Considering fluctuations around the average behavior, they also find 

that the covariance of the scattering intensity for a single wave vector at two different 

times is proportional to a scaling function with two natural variables t = (t1 + t2)/2 

and bt = !t1 - t 2 !. For small value of t this scaling function is linear, only depending 



4 1 Introduction 

on btjt. In the large-f limit the correlation data collapse onto a universal curve which 

is a function only of 8tjt112• 

Cu3Au is a classical system for studying the properties of first order phase tran­

sitions. For over half a century, Cu3Au has always been and still continues to be a 

favorite system to study order-disorder transition. If Cu3Au is heated up to a higher 

temperature than its critical temperature Tc, the system is in the disordered state. 

When the system is rapidly quenched to a certain temperature below the ordering 

temperature Tc, the formation of ordered "droplets" begins due to the fluctuations 

into the low temperature equilibrium phase. Small domains in the ordered phase 

then appear here and there throughout the system in the background of disordered 

phase. The behavior in this stage is often called nucleation [13]. As time evolves, the 

isolated domains grow in size to reduce the free energy of the system. This process 

is termed ordering. Eventually the domain walls will meet. The larger domains con­

tinue growing by eating up the smaller domains. The evolution to larger domains is 

called coarsening. 

The dynamic process in Cu3Au is characterized by the formation and growth 

of antiphase domains. The investigation of the behavior of antiphase domains will 

provide direct information of the ordering process taking place in the sample. The 

characteristic length in the scaling law is the average domain size for Cu3Au, which 

can be measured as the inverse of the Bragg peak width [23, 24, 25]. Many authors 

have made clear that there were two types of antiphase domain walls. The type-1 

antiphase domain wall is expected to be of low energy because the nearest neighbor 

atoms remain unchanged. The type-II antiphase domain wall causes a chance for 

two gold atoms to occupy nearest neighbor positions and is expected to be of higher 

energy th an the type-1 domain wall. 

The non-equilibrium ordering kinetics of Cu3Au have been studied extensively 

with incoherent illumination [26, 27, 28]. Recent work [29] using coherent scattering 

presented the first experimental confirmation of the scaling of the two-time correlation 

functions in Cu3Au. The dynamics of the fluctuations are well characterized by the 
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dynamical scaling arguments for calculating these two-time correlations (see Fig. 1.2). 

One puzzle in these measurements was the presence of delay time before the onset of 

this scaling behavior. This delay time t 0 , which can be as long as 50 minutes, occurs 

well after the time at which the system has reached the scaling region as determined 

by measurements of the average domain size (inverse of the peak width). 

( f- to )*d02 

Figure 1.2: Rescaled correlation time T versus rescaled average time f collapse onto one stationary 
universal curve with the kink which indicates the transition from linear dependence T "' f to a power 
law dependence T"' fl/ 2 • The dashed line has a slope of 1 and the solid line has a slope of 1/2. 

With upgrades to IMMY /XOR side station at the Advanced Photon Source, both 

the intensity and the coherence factor required to perform XIFS measurements have 

been improved. This has allowed us to obtain better data and do a deeper investiga­

tion of ordering in Cu3Au. In the thesis, we report on sorne of our new results and 

explanations to sorne unanswered questions. 

ln chapter 2 we review sorne basic concepts about X-ray diffraction. It includes 

the introduction to the properties of X-ray synchrotron sources, geometry of crystal 

which are the two key elements for X-ray diffraction to take place. ln this chapter, 

we also give an brief introduction to the determination of direction of X-ray diffrac-
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tion and the calculation of diffracted intenstiy. In chapter 3 we report the one-time 

(incoherent) results of the experiments. We summarize the properties of superlattice 

Bragg peak (100) in Cu3Au such as the peak height, peak width and peak position. 

We also test the scaling law and it is found that the functions of the rescaled variables 

intensity I/Imax versus wave vector/time dQt112 are time independent and in good 

agreement with the theory. In chapt er 4 the two-time (coherent) results of this thesis 

are presented. The two-time correlation function is calculated and its line shape is 

examined. As predicted by the theory, time constants of two-time correlation func­

tion can be rescaled to a universal form with rescaled time. Incubation time ( up to 

50mins) are found as a result of speckle shift. By calculating two-time two-Q corre­

lation functions the correlation functions at the early stage are improved greatly. It 

is interesting and exciting that we find the dependence of the contrast on the wave 

vector and time. Sorne simple models are applied to explain these results. Conclusion 

and outlook of this thesis are included in Chapter 5. 
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X-ray Diffraction 

Since Von Laue discovered in 1912 that crystals diffract X-rays and that the pat­

tern of the diffraction spots can reveal the structure of the crystal, X-ray diffraction 

has become an important tool for the investigation of the fine structure of matter. 

At first, X-ray diffraction was used only for the determination of crystal structures. 

La ter on, however, the applications of this method has been extended to su ch diverse 

problems as chemical analysis, the study of phase equilibria, to the determination 

of the orientation of one crystal or the ensemble of orientations in a polycrystalline 

material. Lately with the advent of the high brilliance and the high degree of coher­

ence of third generation synchrotron sources, many new types of X-ray experiments 

become possible. X-ray diffraction is very rich field used by physicists, metallurgists, 

chemists, ceramists, mineralogists and so on. This chapter just introduces the basic 

knowledge of this topic related to this thesis. Interested readers can find more details 

in references [30, 31, 32, 33]. 

2.1 X-rays and Crystals 

2.1.1 Properties of X-ray Synchrotron Radiation Sources 

X-rays are produced when any electrically charged particle of sufficient kinetic energy 

rapidly decelerates. Electrons are usually used for this purpose. If electrons are 

moving at relativistic velocities in an accelerator such as an electron synchrotron and 

are defiected along a curved trajectory by a magnetic field, synchrotron radiation 

is produced. Synchrotron radiation has many advantages over conventional tube 

7 
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sources for X-ray diffraction for several reasons. For example, synchrotron radiation 

provides the intensity far greater than that of other sources and it can be tuned to the 

most advantageous X-ray wavelength. Because of the very small divergence of X-ray 

bearn, synchrotron source has an even higher flux (intensity per unit area of source) 

and brightness (intensity per second per unit source area per unit solid angle per unit 

spectral bandwidth). Using a pinhole as the spatial filter, synchrotron sources can 

provide high orders of spatial coherence. Many diffraction experiments like X-ray 

Intensity Fluctuation Spectroscopy (XIFS) we carried out for this thesis are feasible 

only with synchrotron radiation. 

Several types of deviees provide the intense magnetic fields required to produce 

synchrotron radiation. Initially, sources used synchrotron radiation emanated from 

the bending magnets of the synchrotron or storage ring. Later, specially designed 

magnets that wiggles the electrons were placed in the straight section of the storage 

ring. These wiggler magnets have a magnetic field alternating in polarity along the 

axial direction, causing the electrons to follow an oscillating trajectory through the 

deviee. The output radiation is predominantly in the forward direction and is signifi­

cantly enhanced in flux and brightness compared to radiation from a bending magnet 

as radiation is collected from each wiggle. 

If the wiggler magnet has only a few periods and the field strength is large, the 

radiation has the broad-spectrum characteristic of synchrotron radiation. On the 

other hand, if the magnet has many periods and a weak field, the spectrum exhibits 

peaks about a fundamental frequency and its harmonie. In this case the deviee is 

referred to as an undulator rather than a wiggler. The brightness from the harmonies 

of an undulator can be several orders of magnitude higher than radiation from a 

wiggler, which in turn can be several orders of magnitude higher than that from a 

bending magnet. 

The history of synchrotron radiation facilities and their design is commonly clas­

sified in terms of generations. The early work carried out on high-energy physics 

machines is referred to as the first generation. The first generation sources were not 
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optimized for synchrotron radiation applications and often had lower brightness, in­

tensity and stability. The second-generation synchrotron radiation facilities provides 

higher intensity and brightness because they were optimized for synchrotron radia­

tion. The majority of the experimental beamlines were situated on bending magnets. 

Although of lower brightness than insertion deviees, bending magnets can provide 

high intensity. The broad spectrum from bending magnets allows easy tuning over 

a large range of wavelengths. Success at second-generation facilities and the rapid 

growth of the user community, provided the justification for building third-generation 

facilities. Much larger numbers of straight sections that use insertion deviees provide 

high-brightness sources. But second-generation facilities continue to be heavily uti­

lized by the many experimental programs that require high flux but only moderate 

brightness. Brightness and flux available at second- and third-generation facilites are 

illustrated in Figs. 2.1 and 2.2. 

- 2nd GEN. (300 mA) 
- - 3rd GEN. (100mA) 

' 3rdGEN. 
\ UNDULATOR 

3rd GEN. 
BEND 

\ 
\ 

1~ 1~ 1~ 
Photon energy [eV] 

Figure 2.1: Comparison of brightness available at second- and third-generation X-ray synchrotron 
radiation facilities. [32] 
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w - - 3rd GEN. (100mA) 

~ 1015 ...... 3rdGEN. 
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\. ..,.. 

~ \ 

~ 1014 \ 

5 
0 -a ........ 
x 1013 :l cr: 3rd GEN. BEND 

1012 

101 1o2 103 1o4 105 

Photon energy [eV] 

Figure 2.2: Comparison of flux available at second- and third-generation X-ray synchrotron radiation 
facilities. [32] 

2.1.2 Geometry of Crystals 

When a crystal grows in a constant environment, the form develops as if identical 

building blacks were added continuously. The building blacks are atoms or groups of 

atoms, so that a crystal is a three-dimensional periodic array of atoms. The structure 

of all crystals can be described in terms of a lattice, with an atom or group of atoms 

attached to every lattice point. The atom or the group of atoms is called the basis; 

when repeated in space it forms the crystal structure. 

The lattice is defined by three fundamental translation vectors a1 , a2 , a3 called 

crystal axes. It is only the magnitude and direction of the repeating displacements 

a1 , a2 , a3 which are important. In other words, the atomic arrangement looks the 

same in every respect when viewed from the point f as when viewed from the point 

Ti which can be expressed as 

(2.1) 
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where u1, u2, U3 are arbitrary integers. The set of points Ti defined by Eq.(2.1) for 

all u1 , u2 , u3 defines a lattice. A crystal structure is formed when a basis of atoms is 

attached identically to every lattice point. The logical relation is 

lattice + basis = crystal structure. 

The lattice and the crystal axes a1, a2, a3 are said to be primitive if any two points 

r,? always satisfy Eq.(2.1) with a suitable choice of the integers u1 , u2, u3 • With this 

definition of the primitive crystal axes, there is no cell of smaller volume that can 

serve as a building block for the crystal structure. This smallest volume is called 

primitive unit cell which is designated by the integers u1, u2 , u3 . 

A lattice translation operation is defined as the displacement of a crystal by the 

crystal axes 

Any two lattice points are connected by a vector of this form (see Fig. 2.3) . 

• • • L . • • 
~ 

• • 
r 

r' 

• • • • • 
Figure 2.3: Sketch of portion of a crystal in two dimensions. The atomic arrangement in the crystal 
looks exactly the same to an observer at r1 as to an observer at r, provided that the vector f 
which connects rÏ and r maybe expressed as an integral multiple of the vector ii\ and ih. In this 
illustration, f = -a1 + 2a2. The vectors a1 and a2 are primitive translation for the two-dimensional 
lattice. 

N ext we define the crystallographic planes hkl which are extremely useful to discuss 

X-ray diffraction. Integers hkl are called Miller indices. A set of crystallographic 

planes hkl means a set of parallel equidistant planes, one of which passes through 

the origin, and the others makes intercepts ai/nh, a2 /nl, a3 jnk where n is an integer. 
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~--~~------------~~----------~al 

a1/h 
' 

' 
' 

' 

Figure 2.4: Representation of the crystallographic planes hkl. 

Fig. 2.4 indicates one of the hkl planes when n = 1. To determine the Miller indices: 

a) Find the intercepts on the axes in terms of the lattice constants a 1 , a 2 , a3 . b) Take 

the reciprocals of these numbers and then reduce to three integers having the same 

ratio, usually the smallest three integers. c) The result is inclosed in parentheses like 

(hkl). For example, the plane whose intercepts are 4, 1, 2, the reciprocals are i, 1, 

and ~; the smallest three in te gers having the same ratio are ( 142). The indices of 

sorne important planes in a cubic crystal are illustrated by Fig. 2.5. 

Vectors a1 , a2 , a3 define the basis vectors of a three-dimensionallattice. This direct 

space lattice, however, is not the only way that the periodicity of a given lattice can 

be represented. A reciprocallattice bi, i.e. b1 , b2 , b3 in reciprocal space can be defined 

for every direct space lattice iii, i.e. â1, â2, â3 by 

(2.2) 
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Figure 2.5: Indices of important planes in a cubic crystal. The plane (200) is parallel to (100) to 
(lOO). [34] 

The reciprocallattice has several important properties. First, the cross-product in 

the numerator means that bl is perpendicular to al and a2, that b2 is perpendicular 

to a1 and a3 and that b3 is perpendicular to a1 and a2. This relationship means that 

the reciprocallattice has the property of orthonormality, i.e., 

(2.3) 

It can be shown that the volume of the reciprocal lattice unit cell is the reciprocal of 

the volume of the direct space unit cell scaled by (27r)3 . 

Second, if we define a vector fihkl in terms of the reciprocal vectors and the Miller 

indices: 

(2.4) 

we can prove that the vector fihkl drawn from the origin of reciprocal space to an 

point in reciprocal space has the coordinates h, k, l and is perpendicular to the plane 



14 2 X-ray Diffraction 

in direct space whose Miller indices are hkl. The length Hhkl equals the reciprocal of 

periodicity of (hkl), i.e., Hhkl = 27r / dhkl· 

In defining a lattice with three non-coplanar lattice vectors, depending on the 

length and orientation of the vectors, unit cells can have various shapes. It turns out 

that only seven different kinds of cells are necessary to include all the possible point 

lattices. Seven different point lattices can be obtained simply by putting points at 

the corners of the unit cells of the seven crystal systems. However, there are other 

arrangements of points which fulfil the requirements of a point lattice, namely, that 

each lattice point having identical surroundings. The French crystallographer Bravais 

demonstrated in 1848 that there are only fourteen possible point lattices which are 

termed as Bravais lattices. Instead of considering all of the fourteen Bravais lattices 

we will next consider three crystal structures of cubic symmetry, simple cubic (sc), 

face-centered cu bic (fee) and body-centered cu bic (bec). 

As we know, primitive cells have only one lattice point per cell. To reveal the sym­

metry of the lattice most of the time it is more convenient to use non-primitive cells, 

also called conventional cells. There are more than one lattice points per conventional 

cells. The number of lattice points per unit is given by: 

Nf Ne Ne 
N =Ni+ 2 + 8 + 4' (2.5) 

where Ni is the number of lattice points in the interior of a cell which only belong 

to that cell, Nf lattice points in the faces of a cell are shared by two cells, Ne is the 

number of lattice points in the corner shared by eight cells, and Ne is the number of 

lattice points on the edge shared by four cells. 

As shown in Fig. 2.6, all the lattice points are located in the corners of cube. 

The conventional cubic cell of sc lattice is the primitive cell since there is only one 

lattice point belonging to the cube. The crystal axes coincide with the orthogonal 

axes. From Eq.(2.3), we can see right away that the reciprocallattice of sc lattice is 

also sc lattice. 

The conventional cell of fee lattice is also cubic (see Fig. 2.7). Beside the eight 

lattice points in the corners of the cube, six lattice points occupy the centers of six 



2.1 X-rays and Crystals 

a 

, , 

x 

, 

, , , , 

a y' 
, , , , 

, , 

z 

' 

·---,' ---------
,: a2 

y 

Figure 2.6: Primitive basis vectors of the simple cu bic lattice. 
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faces of cubic. Thus the number of lattice points per cell is four. The primitive crystal 

axes of the fee lattice are given by 

(2.6) 

where a is the side of the conventional cube and x, f}, z are orthogonal unit vectors 

parallel to the cube edges. 

Using Eq.(2.3) the primitive translation vectors of the reciprocal lattice for fee 

structure can be obtained: 

bl = (2·n-ja)( -x+ y+ z); 

;;2 = (211-j a)(x- y+ z); 

b3 = ( 211-j a) (x + y - z); 
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y 

Figure 2.7: Primitive basis vectors of the face-centered cubic lattice. 

We'll see shortly that these are primitive translation vectors of a body-centered cubic 

(bec) lattice in the direct space. So the bec lat ti ce is reciprocal to the fee lattice. 

As shown in Fig. 2.8, the conventional cell of bec lattice is still cubic. Eight lattice 

points are in the corners of cubic and one is in the center of cubic. Two lattice point 

belong to the unit cell. The primitive translation vectors of the bec lattice (Fig. 2.8) 

are 

.... 1 ( A A A) a1 = 2a -x + y + z ; 

.... 1 (A A A) a2 = 2a x - y + z ; 

.... 1 (A A A) a3 = 2a x + y - z ; 

Again, the primitive translations of the reciprocal lattice can be calculated from 

Eq.(2.3) 

b.... 27r (A A) 1=-y+z; 
a 
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Figure 2.8: Primitive basis vectors of the body-centered cubic lattice. 

b--+ 27r (A A) 2=-x+z; 
a 

b--+ 27r (A A) 3=-x+y; 
a 
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Note by comparison with Eq. (2.7) that these are just the primitive vectors of an fee 

lattice, so that an fee lattice is the reciprocal lattice of the bec lattice. 

Other crystal structures are not going to be discussed in this thesis. Further 

reading can be found in the classical textbook written by C. Kittel [34] and in reference 

[35]. 

2.2 X-ray Diffraction 

The crystal structure can be studied by X-ray diffraction [36], which depends on 

the crystal structure and on the wavelength of X-rays. When the wavelength of the 

radiation is comparable with or smaller than the lattice constant, the incident X-ray 

bearn may be diffracted by the crystal. 
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2.2.1 The Bragg's Law and Laue's Equations 

W. L. Bragg presented a simple explanation of the diffracted bearn from a crystal. 

Consider parallellattice planes spaced d apart as shown in Fig. 2.9. The radiation 

is incident in the plane of the paper. The pa th difference for rays reflected from 

adjacent planes is 2d sin() , where () is measured from the plane. The angle between 

the diffracted bearn and the transmitted bearn is al ways 2(). This is known as the 

diffraction angle, and it is this angle, rather than (), which is usually measured ex­

perimentally. Constructive interference of the radiation from successive planes occurs 

when the path difference is an integral number of n of wavelengths .À, so that 

2d sin () = n.À (2.7) 

This is the Bragg law. Because sin() can not exceed unity, Bragg reflection can occur 

only from wavelength .À ::; 2d. Bragg law is a consequence of the periodicity of the 

lattice. Although the reflection from each plane is specular, for only certain values of 

() the reflections from all parallel planes will add up in phase to give a strong reflected 

bearn. 

Figure 2.9: Derivation of the Bragg law 2d sin() = nÀ for the diffraction of X-rays by a crystal. d is 
the spacing of parallel atomic planes. 

Bragg's law describes diffraction in terms of a scalar equation. Crystals are, in 

general, three-dimensional. To describe the diffracted bearn directions, the equations 
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needed to be expressed in terms of vectors. 

We have defined a vector fi in the reciprocallattice in terms of the reciprocal axes 

bl, b2, b3 
(2.8) 

where hkl are Miller indices. Vectors fihkl drawn for all values of the indices hkl form 

the reciprocallattice with repetition vectors b1, b2 , b3 . 

By using the vector fihkl it is convenient to express the Bragg law in vector form. 

If k = 271' /À and ft are the wave vectors of incident and diffracted beams, we construct 

them making angles (} with the diffracting planes as illustrated by Fig. 2.10. The 

Bragg law in vector form is then given by 

(2.9) 

Figure 2.10: Typical scattering geometry showing the incident, diffracted and scattering wave vectors 
k, 72, and Q = k -12. 

To see that Eq.(2.9) is equivalent to the Bragg law, note that JHhkzl = 27r/dhkl and 

J QJ = 4_; sin(} from the geometry of Fig. 2.10. Substitute these two equations into 

Eq.(2.9), one obtains 

471' 271' 
-sin(}=-
À dhkl 

i.e. 2dsin(} =À (2.10) 

Eq.(2.10) is just the usual form of the Bragg law. 
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The Eq. (2.9) may be expressed in another way to give what are called the Laue 

equations. Take the scalar product of both Q and fi successively with a1 , ëi2 , a3 , we 

get 

a1. Q = 21rh; 

a2 . Q = 27rk; 

a3 . Q = 27rl. 

(2.11) 

These equations have a simple geometrical interpretation. The first equation tells us 

that Q lies on a certain corre about the direction of a1 . The second equation tells us 

that Q lies on a certain corre about the direction a2 • The third equation tells us that 

Q lies on a certain corre about the direction a3 . Thus, at a refl.ection Q must satisfy 

all three equations. It must lie at the common line of intersection of three cones. 

2.2.2 Structure-factor Calculation 

Bragg's law and Laue's equations give a neat statement of the condition for the 

constructive interference of waves scattered from the lattice points to determine the 

direction of diffraction. Notice that they do not refer to the composition of the basis of 

atoms associated with every lattice point. We shall see, however, that the composition 

of the basis determines the relative intensity from a given set of parallel planes. 

Although X-rays are scattered in all directions by an electron, the intensity of the 

scattered bearn depends on the angle of scattering. J.J. Thomson first demonstrated 

that the intensity 1 is given by 

K . 2 
I = 10 R2 sm a, (2.12) 

where 10 is intensity of the incident bearn, K = e2
4 

4 is a constant, Ris the distance mc 

between the electron and the point of observation and a is the angle between the 

scattering direction and the the direction of acceleration of the electron. Suppose the 

incident bearn is traveling in the x direction towards the origin 0 and encounters an 

electron at 0 (see Fig. 2.11). The scattered intensity at P in the xz plane has a 
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scattering angle of 20 to the incident bearn. The unpolarized incident bearn can be 

resolved into two polarized components, having electric vectors Ey and Ëz where 

z 

----------- E Fz 1 

x 

Figure 2.11: Classical scattering of an unpolarized primary X-ray bearn by a single free electron at 
the origin. 

On the average, Ey will be equal to Ëz, since the direction of Ë is perfectly random. 

Therefore, 

Since Ë measures the amplitude of the wave and the intensity of a wave is proportional 

to the square of its amplitude. Therefore 

1 
foy= Eoz = 2Io 

The intensity at P arising from y component of the incident bearn is found from 

Eq.(2.12) to be 
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since a = 1r /2. Similarly, the intensity of the scattered z component is given by 

K 2 
lpz = Ioz2 cos 2() 

r 

since a = 1r /2 - 2B. Therefore the total scattered intensity at P is obtained by 

summing the intensities of these two scattered components: 

(2.13) 

This is the Thomson equation for the scattering of an X-ray bearn by a single electron. 

The intensity of scattered bearn is only a very small fraction of intensity of the incident 

bearn because of small value of K(= 7.94 x lü-30m2). 

When a monochrornatic bearn of X-rays encounters an atorn with a group of elec­

trons confined to the volume of the atom, two scattering processes occur. Tightly 

bound electrons are set into oscillation and radiate X-rays of the same wavelength as 

that of the incident bearn, which is called coherent or unmodified scattering. More 

loosely bound electrons scatter part of the incident bearn and slightly increase its 

wavelength in the process, which is called incoherent or Compton modified. It is the 

unmodified scattering which gives rise to the Bragg reflections. The modified scat­

tering from different electrons is completely incoherent and produces only a diffuse 

background. 

As shown in Fig. 2.12, the incident bearn is in the x direction towards 0 with wave 

vector k. The electrons are clustered about point 0, the position of each represented 

by a vector rn. The point of observation P compared with the distance lrnl has a 

large distance R from 0. It can be shown that the amplitude of the wave at the point 

of observation diffracted from an atom containing several electrons is given by 

vil( ~ ~ 
E = E0 R 2;:expi(k'- k) · rj 

J 

The quantity represented by the surnrnation is called the atornic scattering factor f, 

f = L exp i (ki - k) · 'G 
j 

(2.14) 
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z 

p f. 
J 

Figure 2.12: Scattering by a group of electrons at positions rn. 

To find an expression for the intensity of a diffracted bearn the coherent scattering 

must be considered from all the atoms making up the crystal. Since the crystal is 

merely a repetition of the fundamental unit cell, it is enough to consider the diffracted 

intensity from a single unit cell. Qualitatively, the effect is similar to the scattering 

from an atom. 

Relative to a crystal origin at 0, the position of the atom of type j in unit cell 

u 1u 2u3 is given by vector Rj(u1u 2u3 ) = u1a1 + u2a2 + u3a3 + fj. By summing over 

j to include all the a toms in a unit cell, and summing over u1 u2u3 to include all the 

unit cells, the amplitude of diffracted field at the point of observation is expressed by 

E <X L /je(k1 -k)·fj L e(k1 -k)·u1a1 L e(l?-k)·u2a2 L e(k1 -k)·u3a3 

j Ul U2 U3 

Here we define the structure factor S which involves the positions rj of the different 

atoms in the unit cell as 

S = L fj exp[(fÎ- k) · fj] 
j 

2.2.3 Fourier Series Methods in Structure Determinations 

(2.15) 

Another method to represent a crystalline structure is to use Fourier analysis to 

determine the scattering intensity from the basis of atoms. From Eq. (2.2), a crystal is 

invariant under any translation of the form T = u 1a1 +u2a2 +u3a3 . Any local physical 

property of the crystal is invariant under T. For example, the electron number density 
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n(f) is a periodic function off, with periods al, ii2, ii3 in the directions of the three 

crystal axes. Thus 

n(f + T) = n(f) (2.16) 

Such periodicity creates an ideal situation for Fourier analysis. The most interesting 

properties of crystals are directly related to the Fourier components of the electron 

density. 

We consider first a function n(x) with period a in the direction x, in one dimension. 

We expand n(x) in a Fourier series of sines and eosines: 

n(x) = n0 + :~::JcPcos(27rpx/a) + Dpsin(27rpxja)] (2.17) 
p>O 

where the p's are positive integers and Cp, Dp are real constants, called the Fourier 

coefficients of the expansion. The factor 27r/a in the arguments ensures that n(x) has 

the period a. We say that 27rp /a is a point in the reciprocal lattice or Fourier space 

of crystal. The reciprocal lattice points tell us the allowed terms in the Fourier series 

Eq. (2.17). It is great convenience to write Eq. (2.17) in the compact form 

n(x) = L np exp(i27rpxja), 
p 

where the sum is over all integers p: positive, negative, and zero. The coefficients np 

are now complex numbers. 

The extension of the Fourier analysis to periodic functions n( f) in three dimension 

is straightforward. We must find a set of vectors fi such that 

n(f) = L nH exp(iH · f) (2.18) 
H 

is invariant under all crystal translations f that leave the crystal invariant. It will be 

shown below that the set of Fourier coefficients nH determines the X-ray scattering 

amplitude. The inversion of Eq. (2.18) gives 

nH = Vc-l1 dVn(f) exp( -ifi · f) 
cell 

Here Vc is the volume of a cell of the crystal. 
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When the diffraction condition ok= fihkl is satisfied, the scattering amplitude is 

determined by 

Shkl = j dVn(r) exp[i(k- kt)· f1 = j dVn(r) exp( -iii· f). (2.19) 

The quantity Shkl is the structure factor and is defined as an integral over a unit cell. 

Often it is useful to write the electron concentration n(f') as the superposition of 

electron concentration functions nj associated with each atom j of the cell. If fj is the 

vector to the center of a tom j, then the function nj ( r- fj) defines the contribution 

of that atom to the electron concentration at r. The total electron concentration at 

r due to all atoms in the cell is the sum 

n(r) = L nj(r- fj) 
j=l 

The structure factor defined by Eq. (2.19) may now be written as 

Shkl = 2;, exp( -iii· fj) j dVnj!:lrexp( -iii· !:lf) 
J 

(2.20) 

over the a toms of a cell and Or= r- fj. We now ob tain the atomic scattering factor 

as 

(2.21) 

We combine Eq.(2.20) and Eq.(2.21) to obtain the structure factor of the basis in the 

form 

shkl = L: Jj exp( -iii. r;) (2.22) 
j 

This is just Eq.(2.15) if the diffraction condition Ok = iihkl is applied. The usual 

form of this result follows on the writing for the a tom j: 

as in Eq.(2.1). Then, for the refiection labeled by hkl we have 

ii· fj = (hb1 + kb2 + zb3) · (xiii+ Y/12 + z/13) 

= 21r(hxj + kyj + lzj) 
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so that Eq.(2.22) becomes 

shkl = 2::: Jj exp[-i27r(hxj + kyj + zzj)J. 
j 

(2.23) 

The structure factor S need not be real. The scattered intensity will in volve S* S, 

where S* is the complex conjugate of S. 

In a crystal whose Bravais lattice is simple cubic, consider only one atom is at­

tached to each lattice point. Thus an atom belonging to the cubic cell is at postion 

000. According to Eq.(2.23), the structure factor can be expressed as 

In a crystal whose Bravais lattice is face-centered, the four atoms in the cubic cell 

are at positions 000, ~~0, ~0~, 0~~· If the four atoms have the same scattering atomic 

factor, according to Eq.(2.23), the structure factor can be expressed as 

Shkl = f(l +exp [1ri(h + k)] +exp [1ri(h + l)] +exp [1ri(k + l)]). 

If mis an integer, exp(1rim) = ( -l)m, hence the above equation becomes: 

Shkl = 4j, when hkl are unmixed (all odd or all even). 

shkl = 0, when hkl are mixed. 

It can be seen that Shkl = 0 for all diffraction with mixed hkl. Renee the face-centered 

Bravais lattice is recognized by the fact that all diffractions with mixed indices are 

missing. 

If a crystal's Bravais lattice is body-centered, the two atoms in the cubic cell 

occupy the positions 000 and ~ ~ ~. The structure factor is expressed as a sum over 

two atoms, 

shkl = f(l +exp [7ri(h + k + l)]) 

and hence, 

shkl = 2j, when h + k + l = even. 

shkl = 0, when h + k + l = odd. 
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The body-centered Bravais lattice is recognized from the fact that all diffraction will 

be missing for h + k + l =odd. 

At high temperature above the critical point our sample Cu3Au is disordered and 

has a fee structure. At lower temperature below its critical point the ordered Cu3Au 

has a sc structure. For (100) plane, strong scattering is observed for sc structure 

but no scattering for fee structure. Thus measuring (100) Bragg peak allows us to 

monitor the change of structure in the sample. 

Assume that the crystal has the shape of a parallelopipedon with edges N 1a 1 , N2a 2 , N3a3 

parallel to the crystal axes â1, â2 , â3 . The intensity at the point of observation is given 

by 

I ex 
82

sin2 [(fÎ ... - k)j2 · N 1â1] sin2 [(fÎ ... - k)j2 · N 2â2] sin2 [(fÎ ... - k)j2 · N3â3] 

sin2 [(k'- k)/2 · â1] sin2 [(k'- k)/2 · â2] sin2 [(k'- k)/2 · â3] 
(2.24) 
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Incoherent X-ray Studies of Order-disorder Transition m Cu3Au 

3.1 Introduction 

3.1.1 Bragg peaks in Cu3A u 

If Cu3Au is heated up to a higher temperature than its eritieal temperature Tc, it has 

an fee lattice with eaeh site randomly oeeupied by either a Cu atom or a Au atom 

as shown in Fig. 3.1(a). The system is in the disordered state. When the system 

is rapidly quenched to a certain temperature below the ordering temperature Tc, 

the ordering process begins due to fluctuations into the low temperature equilibrium 

phase. When the system is in the ordered state, the Au atoms tend to occupy the 

corner while the Cu atoms will be at the face sites as shown in Fig. 3.1(b) . 

• 
1 -· 

1 ,' ·--- ---:.~"-------· 
,."" 1 ·--
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Figure 3.1: (a) Cu3Au is the in disordered state with each site randomly occupied by either a Cu 
atom or a Au atom. (b) Cu3Au is in the ordered state: the Au atoms tend to occupy the corner 
while the Cu atoms are at the face sites 

There are two types of reflections when Cu3Au is illuminated by X-rays. One is 

independent of the degree of order, they are called fundamental reflections, which are 

28 
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measured as the Bragg peaks of disordered phase. The other are called superstructure 

refiections which vanish when the order vanishes in the system. So measurement 

of superstructure refiection is one of the approaches to find the long range order 

parameter in the ordering system. 

The sketch of structure factor of Cu3Au in reciprocal space is shown in Fig. 3.2. 

The black dots mark the fundamental refiection which are associated with the fee 

structure and appear both in the ordered and disordered phases. The superlattice 

peaks only appear in the scattering pattern from partially ordered Cu3Au. The 

superstructure refiections are disk-shaped while the fundamental refiections are sharp 

spheres. 

[000] [100] [200] 

Figure 3.2: For Cu3Au, the superstructure reflections like [100] are disk-shaped and the fundamental 
reflections like [200] are sharp spheres. 

The complicated antiphase domain structure present in ordered Cu3Au not only 

broadens the superstructure refiection but causes an hkl-dependence [30]. More de­

tails of anti-phase domains will be discussed in the following section. 

3.1.2 Anti-phase domain walls 

Fig. 3.3 shows a transmission electron micrograph of a thin foil of Cu3Au in a highly 

ordered state [37]. The domain configuration is seen to consist of a network of rect­

angular blocks. Diffraction analysis of this area shows that the domain boundaries 

which appear here as dark lines lie essentially on cube planes which are perpendicu­

lar to the plane of the figure, whereas the larger dark areas represent (001) domain 

boundaries which lie in the plane of the foil. 
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Figure 3.3: Transmission electron micrograph of a thin foil of Cu3Au in a highly ordered state. 
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Fig. 3.4 shows a unit cell of the Cu3Au superlattice, in which the corners are called 

the type-I sites, the front and back faces are the type-Il sites, the left and right side 

faces are type-III sites while the top and bottom faces are called type-IV sites. If 

all the gold atoms occupy the type-I sites this type of domain will be designated as 

type-I domain. Similarly, do mains in which all of gold a toms occupy the type II, III 

and IV sites will be designated as type-II, III and IV do mains, respectively. 

1 I 
IV 

I III 
II II 

III I L ____ 

I , , , 
IV , 

, 
, 

I 1 
Figure 3.4: Unit cell of the Cu3Au superlattice, type-I, II, III, IV sites are shown in the schematic. 

When a crystal orders, it is likely that the ordering starts at a large number of 

positions throughout the crystal. Renee there can be neighboring regions in which 

there has been a different choice of copper and gold atoms on the four fee sites. This 

situation is illustrated schematically by Fig. 3.5. In the left side of the figure, all 

of gold atoms occupy the corner sites whereas the face centered sites are occupied 

by copper atoms. Similarly, in the right side of figure, all of gold atoms occupy a 

face centered site while the other sites are occupied by copper atoms. If a region 

adjoins another region of different type, an anti-phase boundary is formed between 

them shown as dashed line in Fig. 3.5. 

There exists an infinite variety of anti-phase domain boundary(APDB) configura­

tions as defined by the relation between the plane of the boundary and the displace­

ment vector. However, certain configurations are energetically favorable [23]. There 

will, in general, be two ways of forming boundaries on cube planes. The first type is 

formed by the first kind of out-of-step vector, ~a(llO), lying in the boundary plane, 
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Figure 3.5: In the left side and right sides, the eopper and gold atoms have different ehoiees of the 
fee sites. An anti-phase boundary is formed when those two different regions meet. 

as shown in Fig. 3.6(a). This type ofboundary is also termed type-I domain wall. On 

the other hand, the second type is formed by the second kind of out-of-step vector 

lying in either of the cube planes perpendicular to the boundary plane, as shown 

in Fig. 3.6(b). There are two possibilities to form second kind of boundary. The 

out-of-step vector can lie on either of front face or bottom face. The second type of 

boundary is also called type-II domain walls. [24, 25] 

An important feature of the first type of boundary is that gold atoms do not come 

in contact across the boundary, and thus it is expected to be of lower energy. The 

second type of boundary, however, causes a chance for two gold a toms to occupy 

nearest neighbor positions across the boundary and is expected to be of somewhat 

higher energy than the first type of boundary. 

The growing domain structure is often studied by means of the scattering intensity, 

whose width is proportional to the inverse of the average domain size R( T). The 

dynamics of the system can be characterized by the average domain size R( T) in 

the form of a time-independent scaling function [38]. The time dependence enters 

only through the characteristic length, which grows with a characteristic power law, 

R(T) "'Ta [13, 39]. This scaling hypothesis has been found to apply to a large range 
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(a) • Au atom 0 Cu atom 

(b) e Au atom 0 Cu atom 

Figure 3.6: (a) Type-I domain wall: it's formed by a displacement of ~0:(110) in the boundary 
plane. (b) Type-II domain wallis formed by a displacement of ~0:(101) in either of the cube planes 
perpendicular to the boundary plane. The arrows show the directions of the displacements. 

of systems. For example, for systems described by a non-conserved order parameter, 

often called mo del A, one expects a = ~. Mo del B refers to systems in which the 

order parameter is conserved. For this kind of systems, a = ~. 

3.1.3 The dynamics of first arder phase transition 

If a system is rapidly quenched from a one-phase, thermal equilibrium state to a 

nonequilibrium state inside its coexistence curve (Fig. 3.7), such a quenched system 

then gradually evolve from this nonequilibrium state to an equilibrium thermody­

namic state [40, 41]. Spatial fluctuations develop intime. This process willlead the 

initially homogeneous system to the final equilibrium state through a sequence of 

highly in-homogeneous states which are far from equilibrium. 

In the classical theory of first-order phase transitions one distinguishes between two 

different types of instability which characterize the early stages of phase separation 

in such systems. The first is the initial decay of a metastable state. This kind of 

instability involves finite amplitude, localized (droplet-like) fluctuations. The rate 

of birth of such droplets is described by homogeneous nucleation theory [13]. The 
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Figure 3.7: The solid line is the coexistence curve and the dashed line presents the classical spinodal 
curve. The two vertial arrows show the typical quenches from sorne high temperature about the 
critical temperature Tc into metastable (m) and unstable (u) regions. 

second instability is against infinitesimal amplitude, non-localized (long wavelength) 

fluctuations. This process causes the initial decay of an unstable state. This latter 

instability is termed spinodal decomposition [13]. 

To describe the phase transition, a set of macroscopic variables (Pi, i=1,2, ... ,N, 

whose dynamical evolution is "slow" compared to the remaining microscopie degrees 

of freedom can be used. The remaining microscopie ("fast") variables enter only in 

the form of random forces. The choice of this set of variables is an important issue 

and in general it includes the order parameter cp and hydrodynamic variables. At 

high temperature, there is no order, and the order parameter (cp) is zero. At a critical 

temperature, Tc, order sets in so that, for temperatures below Tc, (cp) is nonzero. If 

(cp) rises continuously from zero, as shown in Fig. 3.8(a), the transition is second­

arder. If (cp) jumps discontinuously to a nonzero value just below Tc, as shown in Fig. 

3.8(b), the transition is a first-order phase transition. 

The general dynamical model can be given in terms of nonlinear Langevin equa­

tions for the variables cpi. Assume that the system under study depends primarily 

upon a single thermodynamic-like field or order parameter, which for generality is 
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Figure 3.8: Order parameter as a funciton of temperature for (a) a second-order and (b) a first-order 
transi ton. 

defined as cjJ(f, t) [14, 42]. Depending on the problem being considered, this field 

could be concentration, density, molecular order, or one of many other possibilities. 

In equilibrium, the spatial configuration of order parameter given by 

bF(f, t) = O 
vc/J(f, t) 

where F is the free-energy functional. 

(3.1) 

If the system is slightly out of equilibrium, it is natural to guess that the rate at 

which the system relaxes back to equilibrium is proportional to the deviation from 

equilibrium. In mathematical expression, it's written like: 

BcfJ(r, t) = -MbF(r, t) ~"( ... ) 
at bcp(f, t) + '3 r, t (3.2) 

where the constant M is the atomic mobility and ((f, t) is the noise term which is 

assumed to be a Gaussian random function. 

The theoretical model introduced above describes the time evolution of a time-

dependent field. A simple form, called Landau-Ginzburg free-energy functional de­

scribing such a process is given by 

F[c/JJ = j (~D.c/J;r,t)2 +f(c/J)) dr 

with f (cp), the potential density, being equal to: 

f[c/J] = rcp2 + ucp4 
2 2 

(3.3) 

(3.4) 
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An essential feature of this free energy density is that above a critical point it has 

a single well structure and below a critical point it has a double well structure (see 

Fig. 3.9). This double well describes the equilibrium situation in which two phases 

coexist. The Eq.(3.3) and Eq.(3.4) completely define the dynamics of a system in 

which the final state is doubly degenerate. The binary alloy studied in the thesis, 

Cu3Au is a system that can be described by such a model when it undergoes an 

order-disorder phase transition. The only important particular aspect is the fact that 

the final, ordered state is not doubly degenerate but four-fold degenerate [43]. 

T<Tc 

E E - -

Figure 3.9: The free energy density versus the orderparameter for temperature above a critical point 
(a single well structure) and below the critical point (a double well structure). 

3.1.4 X-ray Intensity Fluctuation Spectroscopy(XIFS) 

When a laser light illuminates a disordered material the diffraction pattern will show 

a graininess known as speckle. This is an effect caused by the inherent coherent 

property of laser light. This leads to a technique called Dynamic Light Scattering or 

Intensity Fluctuation Spectroscopy. lt's been widely used with visible light to study 

processes such as critical fluctuations near phase transitions in fluids and the diffusion 

of particles in liquids [44]. But it is not possible to study processes involving length 

scales less than about 200 nm, or those in opaque materials using visible light. The 

development of the modern synchrotron X-ray radiation facilities makes it possible 

to investigate the fluctuations of the structure factor in systems with very small 
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scales. By appropriately collimating an incoherent monochromatic source of high 

brilliance synchrotron radiation sources one can get sufficient flux to measure the 

speckle [45, 20]. Now using X-ray intensity fluctuation spectroscopy (XIFS) allows 

us to obtain direct information about the dynamics of atomic-scale fluctuation of 

material by measuring the temporal correlations in diffraction intensities [46, 47, 48]. 

X-ray intensity fluctuation spectroscopy is a diffraction technique. All the knowl­

edge about the conventional X-ray diffraction applies for the this new technique 

[49, 50]. XIFS adds sorne new features to the X-ray diffraction and we are now 

capable to do sorne experiments which can not be done using conventional X-ray 

source. 

XIFS is an important tool for better understanding the evolution of condensed­

matter systems on atomic and nanometer length scales. XIFS examines the temporal 

evolution of speckle pattern to reveal the underlying structural evolution of the mate­

rial being studied. In contrast, if the incident bearn is not coherent, the speckle is not 

resolved, and the scattering pattern is determined only by the reflections averaged 

over a region in the sample. 

The prime disadvantage of X-rays over visible light is the much lower intensity 

levels of x-ray sources. And to eliminate the incoherent average, the scattering volume 

of the sample has to be restricted to less than the coherence volume of the bearn. The 

experimental difficulty becomes to obtain sufficient diffracted intensity to measure 

a signal. Fortunately, today's third generation high-brightness synchrotron X-ray 

sources can be used to meet the requirements. With new synchrotron X-ray sources 

which are capable of providing coherent X-ray beams many orders of magnitude more 

intense than previously available, many experiments now are possible to perform. 

A unique advantage in scattering with a coherent bearn lies in the ability to observe 

the dynamics of the disorder. It offers the possibility of observing ordering phenom­

ena on length scales as small as 1-10 nm, with no restriction on optical transparency. 

When the spatial arrangement of the disorder evolves with time, the speckle pattern 

also changes. The technique of XIFS is simply the observation of the intensity flue-
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tuations at a single point in the speckle pattern to obtain a direct measurement of 

the dynamics in the system under study. 

XIFS can be used to study the dynamics of disorder in systems at equilibrium 

or nonequilibrium [51]. For equilibrium systems, the exact arrangement of disorder 

evolves in time but its average distribution does not. The average intensity is constant 

in time and the fluctuations about this average depend only on the time difference be­

tween two measurements. Thus one can use conventional autocorrelation techniques 

which average over many measurements to obtain the average intensity. In nonequi­

librium systems, there is no reason to expect that correlations will depend only on 

the time difference and so a full two-time correlation function should be used. How 

to obtain the varied average intensity will be included in chapter 4. 

The outline of this chapter is as follows. The experimental set up is described in 

section 3.2. A brief introduction to the coherent X-rays , the CCD detector and the 

temperature controller is included. In section 3.3, the main experimental results of 

incoherent analysis are presented. The details of Bragg peak measured are summer­

ized and the universal scaling law is discussed. Finally this chapter is concluded in 

section 3.4. 

3.2 Experimental details 

The experiments reported in this thesis were performed at beamline IMMY /XOR 

of the Advanced Photon Source at Argonne National La bora tory. A typical experi­

mental setup is shown in Fig. 3.10. A monochromator is used to select the required 

wavelength. To obtain partially coherent X-rays, the bearn is then restricted to a cer­

tain size by going though two collimation slits. The slits are chosen to be an aperture 

of 5J.-Lm in horizontal direction and lOJ.-Lm in vertical direction. The X-ray bearn illu­

minated on the sample is monochromatic and has a desired small size. The diffraction 

pattern is recorded by CCD detector [52, 53] installed on the path of scattered X-rays. 

This setup provides 7.66 keY X-rays having a relative bandwidth ~À/ À= 6.2 x 10-5 

and a flux of"" 2 x 1012 photons per second per mm2 for a storage ring current of 
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Figure 3.10: A schematic of the coherent X-ray spectrometer. The arrows show the path the X-ray 
light. The synchrontron X-ray is reflected by two monochromators to select the disired wavelength. 
The nearly monochromatic X-ray is restricted to a certain size by the apertures to obtain partially 
coherent X-ray. Then the coherent X-ray is illuminated on the sample and the difracted X-ray is 
collected by CCD detector. 

A furnace was used to rapidly quench the the sample temperature from 420°0 to 

three final temperatures 378°,0 370oC and 355°0 and was held at final temperature 

for several hours. At the same time X-rays illuminated the sample and the diffraction 

patterns were recorded by the CCD detector. The two dimensional [100] superlattice 

Bragg peak was saved as images every eight seconds or every four seconds. This is 

the continuation of work clone by Andrei Fluerasu. See his paper and Ph.D. thesis 

[54, 55] for detailed description of his work. 

3.2.1 Coherent X-rays 

As one of the properties of light, there are two types of coherence: longitudinal 

coherence and transverse coherence [56, 57]. Longitudinal coherence means that the 

wave of light interferes with a time-delayed copy of itself. This interfering process will 

produce fringes in a Michelson interferometer. This phenomenon only happens when 

the wave and its copy are separated from each other by a distance much shorter than 

the longitudinal coherence length, which is defined as 

À2 

lz~28À' (3.5) 
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where À is the wavelength of the light, and 6Àj À is the relative bandwidth of the 

light source. From Eq.(3.5), the longitudinal coherence length increases with the 

wavelength and inversely with the relative bandwidth of the light source. 

In the Young's double-slit experiment, if the two slits are separated much larger 

than the transverse coherence length, no interference fringes will be seen. If the 

distance between two slits is comparable to the transverse coherence length, the fringes 

produced by two copies of the wave is observed in the Young's double-slit experiment. 

The wave is called transversely coherent. The transverse coherence length is given by 

l _ ÀR8 _ 2_ 
t- 2d

8 
- 2a' (3.6) 

where Rs is the distance from the light source to the observation point, d 8 is the 

source size, and a = d8 / R 8 is the opening angle subtended by the source at the 

point of observation. From Eq.(3.6), the transverse coherence length diverges for a 

point source. For a source with finite size, the transverse coherence length increases 

with the wavelength, which makes it possible to observe interference effects at longer 

wavelengths. 

To quantify the coherence of a light source, we need to calculate the statistical 

correlation between two points of the light source. The electric fields of the two 

points can be expressed as Ë(rl_, t 1) and Ë(r2, t 2 ) [17, 18]. The mutual coherence 

function then can be obtained by 

(3.7) 

where the time difference T = t2 - t 1 and the average can be considered either over 

the different coherence regions ( space) or over time. 

The correlation function above can be considered as only depending on the time 

difference T because the incident wave usually have constant intensity. A normalized 

form of the correlation function ')'(rl_, r2, r) can be defined as: 

(3.8) 
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which is called the degree of coherence. With 1 "Y 1= 1, it is said the source is perfectly 

coherent. With 1 "Y 1= 0, the source is incoherent. If 1 "Y 1 has sorne value between 1 

and 0, the source is called partially coherent [58]. 

The partially transversely coherent X-rays are used for the experimenta in this 

thesis. The selected wavelength À is r-...J 1.8Â. The distance from the sample to the CCD 

detector (observation point), d8 is set as 1.17m. The source size d8 are 5j.1m x 10J.1m 

which is the size of slits as mentioned before. From Eq.(3.6), we can calculate the 

transverse coherence length is r-...J 10J.1m for our experimental setup. 

3.2.2 Charge-coupled deviees( CCDs) 

CCD is an area detector for X-ray detection in scattering experiments. For more 

detailed description of CCD detector, see references [52, 53]. An X-ray photon incident 

generates a distribution of charges in neighboring pixels on the CCD array. In terms of 

a double distribution h(fl, E) and of the average number of detected X-rays (nd(r + 
i5.., t))t, the average voltage measured (V(f, t))t over time (in analog-digital units 

(AD U)) can be expressed as 

(V(T, t))t = L Eh(ll, E)(nd(T + i5.., t))t (3.9) 

where the number of charges collected in ADU is proportional to E and i5.. is the 

distance (in pixel units) from the central pixel where the photon strikes the silicon 

chip. The sum of h(ll, E) over all E yields the average spatial distribution of total 

induced charges, and the sum over all i5.. gives the distribution of charges induced by 

an X-ray. 

In the absence of X-ray illumination, a leakage current occurs in the CCD, and an 

offset voltage is introduced in the A/D process. So an estimate of the clark contribu­

tion has to be subtracted from measured signal Vm ( r, t). Th us, the corrected signal 

is the measured signal minus the detector signal: 

(3.10) 

Both the signal and the dark measurements have noise. An estimate of the variance 
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SJ(f, <5t) of dark can be obtained by making several (Nd) measurements. To reduce 

the noise introduced by clark correction, and average over a number of clark frames 

Nd can be performed and the resulting pattern is then subtracted from the data 

frames. If this dark signal is averaged over Nd readouts of the same duration as Vm, 

the variance due to electronic noise of Vc(f, t) then becomes 

(3.11) 

In this thesis, direct illumination (DI) CCD detector of a 1152 x 1242 normal silicon 

(NS) (in unit of pixels) is used to record the scattered X-rays. From DI CCDs, both 

high spatial resolution and relatively low noise are obtained. This detector has a 

resolution of slightly longer than one pixel (20J.Lm), which can give excellent results 

for the observation of speckles with a typical size of"" 20J.Lm. To eliminate the dark 

contribution and reduce the noise caused by dark correction, ten measurements of 

clark are made. The average of ten measurements is calculated and subtracted from 

the original data to obtain the signal of X-rays. 

3.2.3 Temperature control of sample 

As we pointed out before, the sample Cu3Au undergoes a first-order phase transition 

when quenched from a higher temperature above the critical temperature to sorne 

temperature below it. To study the ordering process in the sample, a temperature 

controller is required to heat up the sample to sorne temperature above the critical 

point and cool it clown to sorne temperature below the critical point rapidly. The 

final temperature should be reached without any significant oscillations ( over or under 

shooting) to avoid any effects on the kinetic process in the sample. The system will 

be kept at constant final temperature for long time when the ordering process is going 

on in the sample. It is also critical to have the final state stable. 

A furnace was designed and built by Andrei Fluerasu [55] to control the tempera­

ture of the sample as presented schematically in Fig. 3.11. From the left of the figure, 

the first black stands for the water-cooled copper post as a heat sink. N ext to it is 

a layer of mica which thickness will decide the maximum temperature the furnace 
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can reach with the maximum heating power and the maximum cooling power. The 

main part of the furnace is a Boron-Nitride coated pyrolytic graphite heater, which is 

connected to a power supply. Then there is a layer of tungsten buffer block where the 

sample is mounted. The whole system is placed in a vacuum chamber with a window 

facing the sample. The X-rays illuminate on the sample through the window. This 

arrangement can increase the temperature stability and maximum temperature for a 

given heating power. This furnace is able to cool clown the sample at a rate of about 

Mica layer 
W block 

Window 

! 

X-ray 

Sample 

Cu post 
BN heater 

Figure 3.11: The schematic of the furnace used to control the sample temperature. The whole 
system is mounted in a vacuum chamber with a window tolet the X-ray in. 

To control the temperature of the sample the Kalman-Predictive-Proportional­

Integral-Derivative (KPPID) algorithm is applied. The detailed description of KPPID 

algorithm cau be found in reference [54]. 

Proportional-Integral-Derivative (PID) algorithm functions weil and is used widely 

in controlling systems. For a good temperature controller, the error function, e(t), 
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which is the difference between the target temperature and the measured temperature, 

has to be minimized. A PID feedback algorithm is applied to control the heating 

power P(t) by the formula 

P(t) = KP ( e(t) + :i lot e(t)dt + Td d:~t)) (3.12) 

The PID controller thus consists of three components, each with its own distinctive 

function to fulfill certain control objectives. The coefficient Kp is the gain of the feed­

back circuit, 7i is the integral time constant, and Td is the derivative time constant. 

Together, they control and determine the response of the system. The proportional 

term (Kp) is the main term which determines the response time, but without an in­

tegral correction, it would produce a steady state error. The integral term elimina tes 

the steady-state error but makes the transient response worse. The derivative term 

improves the transient response by reducing the over or under shooting and reducing 

the response time. However, the derivative term has to be reduced or canceled in 

systems with appreciable noise on the temperature readings. 

A thermal model for the sample furnace is used to calculate an optimal power 

profile as the PREDICTIVE power output, also refereed as feedforward. By doing 

this, the corrections made by PID feedback system are small. This will minimize 

the problems when the PID feedback algorithm attempts to cancel large differences 

between the set values and the measured values. 

To reduce the noise produced by temperature probe and measure the temperature 

precisely, a Kalman filter is used to estimate the sample temperature. If there are two 

estimates T1 , T2 with standard deviations a 1 , a 2 for the sample temperature, then a 

better estimate for the actual value of temperature is given by the weighted average: 

(3.13) 

This estimate is better because its standard deviation akal is smaller than either a1 

1 1 1 -=-+­
akal a1 a2 

(3.14) 
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The two estimates could be the sample temperature calculated from the thermal 

model ( theoretical value) and the measured value of temperature. Because the cal­

culated temperature is subject to systematic errors. A second Kalman filter is used 

to compensate the systematic errors. A correction term, !:1T is estimated using the 

error of the first stage Kalma filtering (Tkal- Tmeas)· Eventually the temperature is 

determined as T = Tkal + !:1T. 

One example of the temperature quench profile is shown in Fig. 3.12. The sample 

temperature is cooled clown from 420°C to 355°C rapidly with little under shooting. 

The sample temperature is kept at final temperature steadily for over ten hours. The 

inset figure presents the temperature quench more directly. It can be seen that the 

quench is finished in about four minutes. The final temperature is reached nearly 

perfectly and only very small under shooting is observed. 
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Figure 3.12: One example of the temperature quench profiles from 420°C to 355°C is shown. The 
inset figure shows the temperature profile for the first twenty minutes with little under or over 
shooting. 
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3.2.4 X-ray signais in early time 

The experiments we have clone benefit greatly from the development of third genera­

tion of synchrotron X-ray source. Compared to the conventional X-ray sources, high 

brilliant synchrotron radiation facility can provide X-ray light which is 1013 times 

brighter. It allows us to study the early stage of the sample when the ordering is low. 

In Fig. 3.13, the intensity turn-on is shown for the first twenty minutes whereas the 

whole ordering process was observed for as long as ten hours. The quench line is the 

temperature profile. The vertical line marks the time when the critical temperature 

point (383°0) is crossed. We've selected four different regions from the image of 

Bragg peak as in Fig. 3.14. The averaged intensity over the four regions is plotted for 

three final temperatures. There is a clear intensity increase at the critical point for all 

three temperatures. In other word, the signal is detected at the critical point when 

the system just starts ordering. Except for the first few minutes after the quench, the 

sample is at constant temperature for the rest of the measurements as required. 

3.3 Experimental results 

A two dimensional X-ray scattering scans is presented in Fig. 3.14 when Cu3Au is in 

parti ally ordered state. The x-axis, we often call the longitudinal direction, is in (hOO) 

direction. The y-axis, also called the transverse direction, is in ( OkO) direction. It can 

be seen that a wide range of wave vectors in reciprocal space is covered by the CCD 

detector. The darks (the background of CCD camera) [52, 53] have been carefully 

subtracted. The superlattice Bragg peak has the shape of a thin disk as expected. 

The width is wider in transverse direction while it's narrower in longitudinal direction. 

The intensity distribution in terms of the variables h 1h2h3 for an hkl-superstructure 

refiection can be expressed as [30, 59]: 

(3.15) 

where (h1h2h3 ) represents the departure of the tip of the diffraction vector from the 
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Figure 3.13: The quench line is the temperature profile. The verticalline marks the critical temper­
ature point (383°C). The four curves show a clear intensity turn-on at the critical point for all three 
temperatures. The different color represents the different region in the CCD detector and symbols 
just lable different curves. 
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Figure 3.14: Disk-shaped superlattice Bragg peak is shown. The two lines on the top mark the 
directions in the reciprocal space. 
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reciprocallattice point hkl. F is the structure factor as usual. N1 N2 N3 are numbers 

of unit cells in three dimensions respectively. 'Y is the probability of crossing a domain 

boundary in the length of lattice constant a. 

It's obvious from Eq.(3.15) that h1 and h2 are the indices of equal parity. The 

intensity distribution has the shape of a thin disk, the plane of the disk being the 

h1h2-plane, which is the longitudinal scan in our data. The thickness of the disk is 

determined by the crystal dimension N3a3 , presented as the transverse scan of our 

data. The radius of the disk increases with the probability "( of antiphase boundaries. 

We see the graininess in Fig. 3.14 as a consequence of partial coherent X-ray 

scattering. This is called speckle which will be discussed in detail in chapter 4. For 

one-time (incoherent) analysis we have to average this fiuctuating intensity to get a 

smoothed image, i.e. to smear out the speckle. A couple of approaches were tested 

to obtain the averaged incoherent X-ray scattering. For two dimensional Gaussian 

profile the tail is a bit too short while the squared Lorentzian fit profile has a too 

long tail. A two dimensional Strawitzky-Golay(SG) smoothing filter [60] gave the 

best estimate of the average scattered intensity. 

The two dimensional SG smoothing filter was used by Andrei Fluerasu [55]. The 

basic idea behind a SG filter is to use a polynomial form in order to least-squares 

fit the data in a window that is large enough that the fits are not affected by the 

fluctuations and small enough that the particular polynomial form chosen does not 

bias the evaluated, fitted, quantity. If the window is too big, we will miss sorne of 

the line shape of the Bragg peaks. If the window is too small, the intensity will still 

look fiuctuating. More details about how to choose the box size can be found in the 

following chapter. In practice, we use a 21 x21 or 41 x41 pixels window with 3rd 

order polynomial form to find the incoherent intensity at a particular location of the 

two-dimensional Bragg peak. This location is in the center of the window. The data 

in the window is fitted by a two-dimensional polynomial form. The fitted value at the 

center of the window is considered to be the incoherent scattered intensity for that 

particular location. 
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In this thesis, two methods were applied: 2D Gaussian fits and Strawitzky-Golay 

smoothing filters. In this chapter, we're only concerned about the peak height(amplitude), 

peak width(FWHM) and the position of the peak. The 2D Gaussian fit is easy to 

perform and provides gook values for these quantities. SG filter well describes the 

average for the tail and is used when the fluctuation of intensity becomes essential as 

in chapter 4. 

The example fits for various times using these two methods are shown in Fig. 

3.15. The solid lines on the top of the coherent scattered intensity are the 2D Caus­

sian fitting profiles. The dashed lines show the averaged intensity fitted by the SG 

smoothing filter. The fluctuating lines are the centrallines of 2D X-ray scans in Fig. 

3.14 for early, middle and late times of the ordering process in Cu3Au. It can be 

seen that for the early time the two fitting methods provide almost identical average 

intensity for the whole range of the wave vector. But for the middle and late times, 

SG smoothing filters average the intensity in the tail much better than the Gaussian 

fitting whose tail is too low. 

It is important to point out that the fluctuations of the intensity are not the noise. 

It's the contrast of the speckle that we mentioned before, which is larger than the 

noise. For example, we take the peak value for time = 372mins in the middle row. It 

is around 5500 counts and converted to about 48 photons. So the noise is ±7 photons. 

The contrast of the speckle is 6000(= 8000- 2000) counts which makes about ±24 

ADU, which is greater than the noise. 

3.3.1 Bragg peak 

Using averaged intensity obtained from 2D SG filters, the time evolution of Bragg 

peak for three final temperatures is plotted in Fig. 3.16. We take the center line 

of all the images of two dimensional Bragg peak recorded by CCD detector and line 

them vertically in x-axis. In this three dimensional graph, x-axis is time, y-axis is 

wave vector and color is the intensity of the Bragg peak whose magnitude is shown 

in different colors. In this way we can see the change of the Bragg peak in time. 
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Figure 3.15: The fluctuating lines show the coherent intensity of Bragg peak for three different times. 
The smooth solid lines are the averaged intensity from Gaussian fitting and the smooth dashed lines 
show the averaged intensity by SG smoothing filter. 
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As expected, the Bragg peak gets sharper during the ordering process. For all three 

temperatures, the peak width(FWHM) becomes narrower and the intensity of Bragg 

peak grows in time. The curves on the top of graphs present the change of peak 

width(FWHM) from Gaussian fitting in time. 

But it's obvious that when the temperature gets doser to the critical temperature 

a narrower Bragg peak is observed compared with the other two temperatures. As 

we know, the width of Bragg peak(FWHM), as a measurement of the average domain 

size, is inversely proportional to the average domain size in the material. In other 

words, for shallower quenches (higher final temperature) the system has bigger average 

do mains. 

This is the consequence of the competition between the diffusion constant and 

the thermodynamic force, which in this case is the temperature-dependent free en­

ergy difference. The two mechanisms have opposite temperature dependence. The 

higher temperature will increase the diffusion constant but also decrease the thermo­

dynamic force. Our data shows that the average domain size grows faster for shallower 

quenches, which suggests that the system under study is in the diffusion-dominated 

regime. For example, at 400 minutes, the widths of the Bragg peak(FWHM) are 

0.0025Â - 1 for r, = 378°C, 0.0035Â - 1 for r, = 370°C and 0.0048Â - 1 for r, = 355°C. 

In Fig. 3.17 the width of Bragg peak(FWHM) is plotted over the time when the 

ordering in the system is in progress. As stated in previous paragraph, the width of 

Bragg peak(FWHM) is smaller for a shallower quench than for a deeper quench. For 

all three quenches, the peak width(FWHM) is decreasing with time . ln addition, 

at the beginning there is a fast change of the peak width(FWHM) while in the late 

stage the peak width(FWHM) decreases very slowly. It is natural to condude that 

the ordering process is much faster in early time but getting slower when the system 

is doser to the ordered state. After more than five hundreds minutes the system is 

still not one hundred percent ordered according that the peak width(FWHM) is still 

decreasing very slowly. 

The ratio of peak widths(FWHM) in the longitudinal and transverse directions 
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Figure 3.16: The center slice of disc-shaped superllattice Bragg peak is plotted against time to 
show the growing of the Bragg peak. The curves on the top of graphs present the change of peak 
width(FWHM) from Gaussian fitting in time. 
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Figure 3.17: The change of peak width is plotted against time for three final temperatures. The 
solid lines are the peak widths from the fits and the symbols are just to label the curves. 

against time is plotted in Fig. 3.18. At the first glanee, we can see this ratio is higher 

for lower final temperature. For all three temperatures, the data shows a quick change 

of ratio in early time. lt's longer for shallow quench and up to fifty minutes for the 

highest final temperature. After the sudden change of ratio, it can be seen that 

the ratio is decreasing slowly in time for the two deeper quenches, while the ratio is 

steadily constant for the shallow quench. 

As we know, the ratio of peak width(FWHM) in the longitudinal and transverse 

directions is a measure of the ratio of type-II and type-1 domain walls densities in the 

sample. We can conclude that the type-1 domain walls are predominant as expected 

because of its relative lower energy than the type-II domain walls. The different 

behavior between the higher final temperature and lower final temperatures suggests 

that the formation of domain walls may have different mechanism in two cases. lt 

seems that it is more complicated process for lower temperatures because there is 

a different time behavior for the type-II and type-1 domain walls. For the higher 

temperature, only the growth of the domains is involved by sacrificing the small 
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Figure 3.18: The ratio of peak widths(FWHM) in the longitudinal and transverse directions against 
time is plotted. The solid lines are the peak widths from the fits and the symbols are just to label 
the curves. 

do mains. 

Another highly related and interesting property is the integrated intensity. From 

Fig. 3.14, we know that the Bragg peak is disk-shaped with two identical transverse 

scans and one longitudinal scan. So the integrated intensity is calculated by the 

product of the fitted amplitude, the fitted longitudinal width and the fitted transverse 

width squared. In this way, we can partially compensate the missing counts in the 

tail which are not measured by the CCD detector when the Bragg peak is wide 

and out of the range of the CCD detector. In Fig. 3.19, the integrated intensity is 

plotted again the evolution of the time. Here we see again the difference between the 

higher final temperature and lower final temperatures. For higher final temperature, 

the integrated intensity is constant through the ordering process except for the very 

short early stage. For the two lower final temperatures, the integrated intensity shows 

obvious decreasing tendency intime. This intensity change appears to be related to 

the relative amount of type-I and type-II domain walls changing as in Fig. 3.18. For 
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all three temperatures, integrated intensity increases rapidly to the highest value in 

ten to twenty minutes. 
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Figure 3.19: The integrated intensity is calculated by the product of the fitted amplitude, the 
fitted longitudinal width and the fitted transverse width squared and plotted against the time. The 
symbols are just to label the curves. 

From the simple mean-field theories for an Ising model, Monte Carlo simulation 

of the ordering process and the experimental data [39, 61, 62, 27], it may be argued 

that the integrated intensity should be constant. The sudden increase of integrated 

intensity in early time can be explained as follows. In the early time, the Bragg peak 

is very broad and out of the measurement range of CCD detector. Even though we've 

tried to correct this by using the product of the fitted peak height(amplitude), the 

fitted longitudinal width and the fitted transverse width squared instead of summing 

all the counts in CCD detector, because of the very low intensity at the beginning, it 

is difficult to obtain the good fitting results including the amplitude and peak widths 

in longitudinal and transverse directions. After the abrupt change of intensity in 

early time, the intensity starts decreasing for the two lower temperatures while the 

intensity is constant for the higher temperature. This is very similar to the results 

in Fig. 3.18 of the ratio of the Bragg peak widths, which suggests that the ratio of 
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peak widths affects the results of integrated intensity. In other words, as we pointed 

out above, it might be related to the evolution of the two types of domain walls in 

the sample during the ordering process. 

It also worth while to discuss the change of the peak position during the ordering 

process in the system. The move of the peak position in time is plotted in Fig. 

3.20. The behavior is similar for three quenches. There is a dramatic change of peak 

position in the early time. The move of the peak position becomes steady after one 

hundred minutes. The change of peak position (referred as q- q0 in the figure) is 

increasing all the time for our measurement. This is the the direction where the 

Bragg angle increases in our experiments. As we know the Bragg angle () is inversely 

proportional to the lattice constant a, 

2a sin(()) = nÀ (3.16) 

It can be concluded that the lattice constant of Cu3Au is shrinking in sorne way. 

In other words the distance between the atoms is getting slightly smaller during the 

ordering process. 
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Figure 3.20: The move of the peak position in time is plotted for three final temperatures. 

The change of peak position was explained by Andrei Fluerasu [55] in his Ph.D. 

thesis. He interpreted it as a change in the average lattice constant caused by the 

domain walls. The volume fraction associated with the domain walls is proportional 
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to the increase of the lattice constant. During the ordering process, the domains get 

bigger and the domain walls get thinner, which will decrease the volume fraction of 

the domain walls. Renee the average lattice constant approaches its nominal value. 

He actually proposed an equation to calculate the distorted lattice constant as: 

- D a=a-----
D+(a-L) 

(3.17) 

with the following notations: a-lattice constant, D-average domain size, L-average 

domain wall thickness(see Fig. 3.21). 
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Figure 3.21: The schematic of the domain in Cu3Au with the following notations: a-lattice constant, 
D-average domain size, L-average domain wall thickness. The polygon in the center stands for a 
domain and the black dots are atoms. [55] 

From Eq.( 3.17), a value L = a would let the lattice undisturbed, a = a, a value 

L < a would "push" the atoms closer together and as a consequence would reduce 

the lattice constant a < a, while a value L > a would increase the lattice constant 

a > a. For our data the lattice constant gets smaller in time which suggests that the 

domain walls push the atoms closer to each other as time evolves. This means that 

the domain walls are thinner than the lattice constant. 
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3.3.2 One-time scaling 

It's well known that universallaws exist for the development of long-range order in a 

system approaching equilibrium after a quench. Scaling describes well the evolution 

of dynamic process. If scaled by a single length scale, which contains all the time­

dependence, the system looks invariant intime. For our sample Cu3Au which has the 

nonconserved-order-parameter system ( model A), one expect that the characteristic 

length L( t) "' t112 [22]. 

The characteristic length for Cu3Au is the average domain size of ordered domains. 

This value is inversely proportional to the peak width (FWHM) of the Bragg peak 

in our measurement. As already mentioned in the previous section, 2D Gaussian fit 

is used to obtain the peak width(FWHM) for the dynamic process. 

To test the power scaling law, the average domain size, i.e. the inverse of the peak 

width (FWHM) is fitted to the equation 

(3.18) 
0 

The parameter Rg[mi~1; 2 ] is a measure of the speed of growth of the ordered domains 

and R0 can be interpreted as a droplet size at which the scaling description starts 

being accurate. 

In Fig. 3.22, (1/ FW HM- R0 ) is plotted against the time in a log scale. The 

straight line on the top is the fitted data. It can be seen that the data has a slope 

of 1/2 through the ordering process. The parameter Rg decreases when temperature 

goes down. This is saying that the process of domains growing is slower at lower 

temperature. Here the data shows again the diffusion is playing a major role in the 

ordering process of Cu3Au. 

The structure factor also exhibits scaling of the form[14] 

S(Q, t) = [L(t)]dSê(qL(t)) (3.19) 

where tQ = Q- Qo, Qo is the ordering wave vector, dis the spatial dimensionality, 

and ê = tQ /bQ. The scaling function S is in general anisotropie, and refl.ects the 

structure of the domains and the formation of the domain walls. 
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Figure 3.22: Scaling law: domain sizerv t 112 . The average domain size, i.e. the inverse of the peak 
width (FWHM) is plotted against the time in a log scale. The straight line on the top is the fitted 
data from Eq.(3.18). 
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In Fig. 3.23 the scaled scattered intensity(structure factor squared) is plotted 

again scaled wave vector in semi-log scale for a few selected times in both longitudi­

nal and transverse directions. Because our data has more than ten percent fluctuation 

(speckle), the average intensity obtained from SG smoothing filters, instead of coher­

ent intensity was used for the analysis of scaling. It can be seen in Fig. 3.23 that 

for three final temperatures the scaled intensity is independent of time. Even for the 

longest Q's where the intensity is low, the scaling law applies very well as seen on a 

log scale. 

In a three dimensional graph, full data of the scaled intensity versus scaled wave 

vector is plotted against the time in Fig. 3.24. The black lines on the top of image 

show the contours of rescaled intensity. We can see that the rescaled intensity which 

has the same value are at the same position over all the time. For the small Q's 

the black line is perfectly straight. For bigger Q's the lines are although noisy, also 

straight. This shows the whole line shape scales very precisely. 

As of our knowledge, none of the previous data has shown such a beautiful scaling 

for large range of time, wave vector and temperature. Shannon et. al. [26, 27] studied 

ordering kinetics in single-crystal bulk Cu3Au using time-resolved X-ray scattering. 

Their results showed that the line shape of the scattering function exhibits a crossover 

from a Gaussian to a Lorentzian squared as the system evolves. There is no such a 

crossover of the line shape for our data. The normalized intensity I:ax against the 

rescaled scattering vector wi~;hx collapsed on a nearly perfect stationary line shape for 

our data. We believe the crossover shown in their data cornes from the relative low 

resolution of the scattering geometry they used. Since our resolution is given by the 

speckle size, around a CCD pixel (22J-Lm), it has no effect on our diffraction patterns. 

3.4 Conclusion 

In this chapt er, we reported the experimental results of order-disorder phase tran­

sition in Cu3Au using incoherent X-ray. The information about the Bragg peak of 

Cu3Au, such as peak height (amplitude), peak widths(FWHM) and peak position, is 
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vector in semi-log scale for a few selected times (shown as different colors) in both longitudinal and 
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summarized for three final temperatures. The (100) superlattice Bragg peak has the 

shape of a thin disk with two long identical longitudinal diffractions and one short 

transverse diffraction. The Bragg peak gets sharper in time when the ordering is in 

process in the sample. The amplitude increases, peak widths(FWHM) get narrower 

and there is slight change of peak position when the time evolves. As a measurement 

of the ratio of type-1 and type-II domain densities formed in the sample, the ratio of 

peak widths(FWHM) in longitudinal and transverse directions was discussed. The 

integrated intensity of the three dimensional Bragg peak in time is calculated and 

discussed for three final temperatures. 

The single-time scaling law is tested for our data. lt's well known that universal 

laws exist for the development oflong-range order in a system approaching equilibrium 

after a quench. For Cu3Au which has the nonconserved-order-parameter(model A), 

one expect that the characteristic length L(t) "'t112 • Our data shows that the average 

domain size (the inverse of the peak width(FWHM)) follows the t112 line through the 

whole ordering process for all three final temperatures. The intensity of Bragg peak 

also shows the beautiful scaling in time for the full range of wave vector and final 

temperatures we have covered. 
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Coherent X-ray Studies of Order-disorder Transition m Cu3Au 

4.1 Introduction 

4.1.1 Speckle pattern in the X-ray spectroscopy 

Speckle can be observed when coherent light refiects or scatters diffusely off disordered 

material. It is well known that laser is the natural coherent source of light [44]. 

Taking advantage of high-brilliance synchrotron X-ray sources, M. Sutton et al. [45] 

first demonstrated that one can get sufficient coherent X-ray flux to observe speckle 

in the diffraction pattern from the system which contains sorne randomness. 

The intensity at each point in the scattering pattern is the sum of light from 

many different points in the disordered materials with randomly distributed phases. 

However, since the light is coherent, the phase at each point ends up having a definite 

value. Where the phases add destructively, it results in a dark spot and where they 

add constructively a bright spot is seen. Fig. 4.1 is an example of the speckle pattern 

observed when the partially coherent X-ray bearn illuminates on the partially order 

single crystal of the binary alloy Cu3Au. If the light is incoherent, the speckle smears 

and we only see the average of the intensity. 

The following argument is based on the section 3.3 of the chapter written by M. 

Sutton [17]. More details can be found in the reference [17, 18]. The principal result 

of the section is the intensity-intensity correlation Q(2) between two points on the 

detector Q and Q + c5Q: 

65 
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Figure 4.1: Speckle pattern in the diffuse scattering from randomly distributed antiphase domain 
walls in a Cu3 Au single crystal 
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(4.1) 

Where {3(bQ) is called the coherence factor. G(1)(Q, T) is the electric field-field cor­

relation function for the scattered waves, 

(1) ..... * ..... ..... G (Q,T) = (Es(Q,t)Es(Q,t+T)) 

= (E;(o, O)E8 (0, T))e-iwor S(Q, T) (4.2) 

Where the structure factor S(Q, T) = f eiQ·r(bp(rï, O)bp(r2, T))dr and constants have 

been ignored for convenience. 

Eq.(4.1) and Eq.(4.2) describe how the speckle pattern is produced and how the 

intensity varies. It is useful to discuss severallimits of the Eq. ( 4.1). First with T = 0 

and bQ = 0, one gets 

(4.3) 

which shows that the variance of the scattering intensity is proportional to the square 

of the scattering intensity. 

According to M. Sutton [17, 18], (3(0) can be approximated as the ratio of the 

coherence volume to the scattering volume. Approximately {3(bQ) is the Fourier 

transform of the scattering volume V. Thus the speckle size can be estimated as the 

inverse of the appropriate projection of the bearn size, i.e., ddetÀ/ dbeam· dbeam is the 

size of the bearn on the sample and ddet is the distance to the detector. To obtain the 

coherent light, the scattering volume has to be comparable to the coherence volume 

which is usually small. The restriction of scattering volume requires sufficient counts 

in the light bearn which is impossible for the conventional X-ray sources to provide. 

Another limit is for bQ = 0 (measuring a single speckle) then Eq.(4.1) can be 

written as 

( 4.4) 

or by defining g(l) = G(1)(Q, T)/(I(Q)) and g(2) = G(2)(Q, Q, T)/(I(Q)) 2 , Eq.(4.4) 

becomes: 

(4.5) 
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Eq.(4.5) relates the normalized autocorrelations of the intensity measurements g(2) 

to the normalized autocorrelations of the density g(l). In other words, by measur­

ing G(2) ( Q, T) (the speckle intensity as a function of time) the statistical mechanics 

of the system under study can be investigated. Using X-ray Intensity Fluctuation 

Spectroscopy, experiments can be done to measure the covariance of intensity readily. 

Thus XIFS becomes a powerful technique to probe the dynamics of the materials. 

4.1.2 Studies on the kinetics of phase transition 

As pointed out above, for coherent diffraction, the scattering from an inhomogeneous 

material displays a characteristic speckled scattering pattern. For instance, when a 

disordered homogeneous material is rapidly brought to a new set of conditions, corre­

sponding to the coexistence of two equilibrium phases, a spatial pattern of domains of 

the two phases develops. The random distribution of domains results in the speckle 

pattern in the scattered intensity. As the domains change shape, the speckle pattern 

changes and this time dependence of the speckle offers a unique method for studying 

the evolution of inhomogeneous materials. 

The Fourier transform of the order parameter cp( R, T), the scalar field describing 

the inhomogeneity of a specifie sample, is related to the scattering intensity by 

(4.6) 

where we ignore the proportionality constant for convenience. The average of I(k, T) 

over an ensemble of initial conditions is the structure factor, 

S(k, T) = (I(k, T)) (4.7) 

Where the ensemble average expresses the distinction between coherent scattering, 

given by 1, and incoherent scattering, given by S. 

G. Brown et al. [22] have made simulations and a theoretical study of the fluc­

tuations in the scattering intensity from a nonequilibrium system undergoing phase 

ordering by domain growth, in which case the order parameter is not constrained by 



4.1 Introduction 69 

any conservation laws (modelA). The relationship between an individual speckle at 

two different times T1 and T2 is, on average, described by the intensity covariance, 

(4.8) 

For random systems, the covariance is maximum in the equal-time limits, T1 = T2. 

As the two measurement times become widely separated, the values of the intensity 

become stochastically independent and the covariance decays to zero. The normalized 

analog of the covariance is the correlation function, 

(4.9) 

By choosing a scaled time t given by t(k, T) = [kR(T)]2, the covariance Covk(k, TI, T2) 

changes to Cov(t1 , t 2 ). 

A more natural set of variables, the average time t = (t1 + t2)/2 and the time 

difference 8t =1 t1 - t2 1 are used to express the two-time correlation functions [22]. 

A constant value of t corresponds to a line perpendicular to the t 1 = t2 diagonal 

and 8t measures the distance from the equal time diagonal along a line with constant 

t. The characteristic time difference 8t required for the scaled intensity covariance 

Cov(t1, t2 ) to decay to half its maximum value can be found as a function off. For 

small value of t the relationship between two natural variables is linear 8t r-v t and at 

large values of f, 8t r-v fl/2 • 

An analytic theory is developed by C. Yeung and D. Jasnow [63], which is an 

extension of the analysis by T. Ohta, D. Jasnow and K. Kawasaki [64, 65]. They 

predict the form of the correlation function as: 

F( Jt, t) ~ ~ (2" )d/2 f duudl
2 

Jd12_1 ( u) x arcsin {[ 1 - ( ~ rr exp ( ~~2 ) } 

(4.10) 

The asymptotic early-time form is, 

(4.11) 
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A more useful result in the limit of large t is weil approximated as: 

(4.12) 

Where z = Mjvt, Kn is a modified Bessel function of the second kind. We note that 

the full result Eq.(4.10) as well as the early-time approximation Eq.(4.11) depends 

on 8t only through the scaling combination 8tjt. However, in the asymptotic late­

time approximation Eq.(4.12), the natural scaling combination is z = M/vt. This 

analytical result is in excellent agreement with G. Brown's numerical simulations. 

Similar work for a conserved case (madel B) was clone by G. Brown et al. [66] to 

investigate the speckled intensity patterns created by scattering coherent radiation 

from materials undergoing spinodal decomposition after a rapid change in a ther­

modynamic parameter such as temperature. For binary systems which obey a local 

conservation law, the characteristic domain size is known to grow intime Tas R""' Ta 

with a = 1/3. With two variables 8t = k11a 1 T2 - T1 1 and t ""' k1la(T1 + T2)/2 

the two-time intensity covariance at wave vector k can be collapsed onto a scaling 

function Cov(M, t), which was found to depend on 6t only through &/fin the small 

f limit and 8tjF-a in the large-f limit. 

The results of the experimental study on the systems with conserved arder parame­

ter are consistent with the prediction from theory. A. Malik et al. [10] reported the ob­

servation of the dynamics of the speckle pattern during phase separation in a sodium 

borosilicate glass. Non-equilibrium fluctuation in the structure factor were analyzed 

using a two-time correlation function to obtain the correlation time. The scaling 

function W was found to follow a power law W""' x(l-a), where (1-a) = 0.65±0.04, 

which agrees with the predicted scaling law &/F-a with a= 1/3 in the large-f limit. 

F. Livet et al. [9] studied AlLi single crystal during the evaporation-condensation 

coarsening process. Two-time correlation functions were measured. The scaled corre­

lation times versus f closely collapse quite well onto the universal form predicted by 

the theory. At early times, the correlation time grows linearly with time and at late 

times the correlation time grows as f2/3 roughly. 
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Other experiments have been performed by K. Ludwig [7] to examine the coars­

ening kinetic in the classic long-period superlattice Cu-Pd alloy. The evolution of 

the speckle intensity were measured near the centres of both a superlattice peak and 

a satellite peak. The decay of the two-time correlation function was independent of 

the direction examined and was similar for the superlattice and satellite peaks. The 

correlation time 8t in cre ases linearly with average time t. However, the power law 

8t rv fl/2 was not observed in the large t limit. This was interpreted as 8t increases 

much more slowly with increasing f than expected. A. Fluerasu et al. [29] has stud­

ied order-disorder phase transition and measured the two-time correlation functions 

in Cu3Au using X-ray intensity fluctuation spectroscopy. They have found that the 

scaling form of two-time correlation functions crosses over from linear in f to fl/ 2 • 

In this chapter we introduce sorne theoretical and numerical approaches involved 

in the data analysis in section 4.2. The line shape of correlation function is discussed 

and the sizes of box used to obtain the average intensity are examined in this section. 

In Section 4.3 the main experimental results are presented. Two-time correlation 

function is calculated and the universal scaling law is tested. Two interesting features, 

speckle shift and speckle contrast dependence are discussed in detail. This chapter is 

concluded in section 4.4. 

4.2 Theoretical and numerical approaches 

4.2.1 Line shape of two-time correlation function 

As we mentioned above, Yeung and Jasnow proposed the functional forms of the cor­

relation function Eq.(4.10), Eq.(4.11) and Eq.(4.12) in terms oftwo natural variables, 

f = (t1 + t2)/2 and 8t =1 t1 - t2 1. Since the upgrade of IMMY/XOR beamline in 

Argonne National Lab (more details about the beamline can be found in the experi­

mental method section of chapter 3), we have obtained much better data for Cu3Au. 

Accordingly the result of two-time correlation function has been improved greatly. 

Now it is possible and also worth while to test the line shape of two-time correlation 
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function. 

First we programmed Eq.(4.10) for full result and Eq.(4.12) for large-f limit to 

calculate the correlation function. In Fig. 4.2(a), the normalized correlation function 

F(bt, f)/ Fmax is plotted against 6t for several selected f. As it is shown in the figure 

the dashed line corresponds to the full result Eq.(4.10) and the solid line represents the 

large-flimit Eq.(4.12) . From the inside to outside, fare 2, 10, 20, 30, 60 respectively 

in the same units as the paper [22]. It can be seen that the two equations give the 

different results if f < 20 but the two curves collapse onto each other when f > 20. 

So the large-f limit is meant to be f > 20 in the paper [22]. This value is consistent 

with where the crossover from linear to fl/2 happens in Fig. 5 of Brown's paper [22]. 

To see the line shape of the two equations 8t is rescaled by dividing the value of 6t 

when the normalized correlation function F(bt, t)j Fmax falls to 1/2. The rescaled 

results for the full result Eq.(4.10) and for the large-f limit Eq.(4.12) are plotted in 

Fig. 4.2(b) and (c). From Fig. 4.2(b), the correlation functions have different shapes 

for the small-f and large-f limits. The correlation function has a longer tail for large-f 

limit. In Fig. 4.2( c) for large-t, the correlation functions collapse onto one curve as 

expected. 

Now we know the correlation functions have different line shapes for the small-f and 

large-f limits. Next we want to test how they agree with our data. The experimental 

datais fitted by Eq.(4.10) in the small-f limit, large-[ limit and Gaussian function 

as well for comparison. In Fig. 4.3 the experimental and three fitting results are 

plotted for three different ts. The dashed line corresponds to Eq.(4.12) in the small-f 

limit, the solid corresponds to Eq. ( 4.12) in the large-f limit (or Eq. ( 4.10)), and the 

dotted line corresponds to the Gaussian fit. All figures show that the form of small-t 

limit fits the data better than the form of the large-[ limit. Surprising, the Gaussian 

function almost exactly matches the form of small-f limit. Fig. 4.3(b) (t = 295mins) 

is the biggest f we can get in order that the correlation function has the tail to test 

the line shape. Since at this value of t the form of small-t limit provides the better 

fitting result than the form of large-t limit, the data at this moment is in the range of 
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Figure 4.2: (a) Normalized correlation function Ji'(Jt, [)j F'max is plotted against Jt for several selected 
f. The dashed line corresponds to the full result Eq.(4.10) and the solid line represents the large-f 
limit Eq.(4.12). From the inside to outside, fare 2, 10, 20, 30, 60 respectively in the same time 
unit as the paper [22]. Normalized correlation function F(Jt, f)/ Fmax versus rescaled time difference 
otjot1; 2 for the full result Eq.(4.10) in (b) and for the large-flimit Eq.(4.12) in (c). 



74 4 Coherent X-ray Studies of Order-disorder Transition in Cu3Au 

the small-t limit discussed in the paper [22]. Because of the small difference between 

the line shapes of two limits, detailed test of Eq.(4.10) will require even better data. 

4.2.2 Estimate of average (incoherent) intensity 

One of the main problems for two-time analysis is to calculate the ensemble average 

of the scattered intensity. In an equilibrium system (I(Q, t)) is expected to be con­

stant intime and can be evaluated simply by averaging I(Q, t) over a long-enough 

time interval. However, in a non-equilibrium system (I(Q, t)) changes with time 

and separating the intensity fluctuations from this changing average is not always 

straightforward. If the scattering is isotropie, (J(Q, t)) can be evaluated by averaging 

over intensities at constant Q. This is not our case because of the anisotropy of the 

superlattice scattering. The other option to calculate the average intensity (J(Q, t)) 

is least-square fitting. 

As we have pointed out in chapter 3, A. Fluerasu in his Ph.D. thesis [55] tested 

several analytical forms to obtain the average intensity and pointed out that SG 

smoothing filters provide the best estimate of the average intensity in the tails of the 

Bragg peak than other fitting profile. Since in this chapter it is important that the 

fluctuating intensity J( Q, t)is well averaged everywhere. SG smoothing filters give an 

excellent estimate of the average intensity in the whole region of Bragg peak and will 

be applied in this chapter. 

The SG filter uses a polynomial form in order to least-squares fit the data. In 

practice, a box has to be chosen that is large enough that the fits are not affected by 

the fluctuations and small enough that the the particular polynomial form does not 

bias the fitted quantity. To find out what 's the best choice of box size, a couple of 

box sizes are examined. 

In Fig. 4.4 two slices of average intensity of Bragg peak using different sizes of 

box are plotted. Fig. 4.4(a) and (b) correspond to sorne early time and sorne late 

time of the ordering process respectively. Both of them show similar features. In 

the regions where the intensity is low, the box size doesn't have a big affect on the 
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average intensity. But around the center of Bragg peak the box size 11 x 11 is too 

small because from the reported experimental results [27] the incoherent intensity is 

supposed to be smooth with no fluctuation. We can see the fluctuation remain in the 

average intensity curve. Box size 21 x 21 seems still too small and not good enough 

either. Both of box sizes 31 x 31 and 41 x 41 smear out the fluctuation and give 

similar results. In practice box sizes 41 x 41 is applied. 

4.3 Experimental results 

As we pointed out before, the observation of the speckles is the consequence of the 

partially coherent X-rays. To see the speckle in the scattering pattern, two conditions 

apply. First the X-ray source has to be coherent or partially coherent. By confining 

the X-ray bearn to finite size so that the transverse coherence length is comparable to 

the diffraction volume in the sample, we are able to obtain the partially coherent X­

rays. Second, because of the small size of the X-ray bearn, the X-ray source has to be 

bright enough so that sufficient scattered X-rays can be collected. Taking advantage 

of the third generation of brilliant synchrotron X-ray source, the required brightness 

is provided. Under the two conditions, speckles can be observed. 

A doser view of the speckle is shawn in Fig. 4.5(a). This is the center region of 

Fig. 3.14. We can see the bright spots which represent higher intensity and darker 

spots which represent lower intensity are distributed uniformly in the image. In other 

words, the intensity is fluctuating over the detector. In Fig. 4. 5 (b), the average 

intensity obtained from SG smoothing filters is plotted. There are no bright or dark 

spots appearing in the image. The intensity changes smoothly over detector. The 

deviation of the fluctuating intensity J(Q, t) around average intensity (J(Q, t)) can 

be seen directly in Fig. 4.5( c) where the center lin es of (a) and (b) are plotted. The 

fluctuating line is the coherent intensity with speckles from (a) and the smoother 

line is the average intensity from (b). To show the degree of the fluctuation of the 
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Figure 4.4: Average intensity obtained from SG smoothing filters using different sizes of box. Black 
lines are original fluctuating intensity. (a) Time=140mins (b) Time=560mins. Box sizes 11 x 11 and 
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intensity, the normalized intensity D(Q, t) given by, 

I(Q,t)- (I(Q,t)) 

(I(Q, t)) 
(4.13) 

is plotted in Fig. 4.5(d). As expected, it looks similar to Fig. 4.5(a) and has the 

bright spots and dark spots at the same places. The fluctuating line on the top shows 

the center line of Fig. 4.5(d). It has been rescaled to fit in the image. It can been 

seen that the normalized intensity is fluctuating up and down about zero. The crests 

correspond to the bright spots in the image while the troughs are the positions of 

dark spots. 

To demonstrate the time evolution of the speckles during the ordering process, we 

take the center lines from the two dimensional images at different times and plot them 

against the time as shown in Fig. 4.6 (waterfall plot). In Fig. 4.6(a), the fluctuating 

intensity is plotted. We see the straight bright lines and the straight dark lines of 

speckles are distributed alternately. We know from Fig. 4.5, the bright spots and dark 

spots represent the crests and the troughs of the fluctuating intensity respectively. In 

Fig. 4.6(a), the bright or dark lines stay straight intime, which means the speckles 

mostly stay at the same position during the ordering process. We have seen the time 

evolution of the average intensity obtained from SG smoothing fil ter in the chapter 3. 

It is plotted again in Fig. 4.6(b). The normalized intensity, D(Q, t) is plotted in Fig. 

4.6(c), also refereed to the waterfall plot. It shows the same features as in (a). But 

Fig. 4.6(c) is just the result of (a)(~?) or ~~? - 1, which emphasizes on the deviation 

of the fluctuating intensity around average intensity. For the early times or larger 

wave vectors where the intensity is low, we don't see the traces of the speckles in (a) 

because of the high intensity in the center but still see them (bright or dark lines) 

follow straight lines in ( c). By plotting in this way, we can see that the fluctuations 

slow down as the system evolves. This phenomenon will be discussed in details in the 

following section. 
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Figure 4.5: (a) Fluctuating intensity I(Q, t) with speckles uniformly distributed (b) Average intensity 
(I(Q, t)) obtained from SG smoothing filters (c) Center lines of (a)(the fl.uctuating line) and (b)(the 

smoother line) for comparison (d) Normalized intensity I(Q,t](J~~?,t)), the fl.uctuating line on the 

top is the center line of image( cl). 
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Figure 4.6: (a) Time evolution of the fluctuating intensity. Alternately distributed bright lines and 
the clark lines show the traces of the speckle. (b) Time evolution of the average intensity obtained 
from SG smoothing filter. No speckles can be seen. The curves on the top of graph present the 
change of peak width from Gaussian fitting in time. (c) Normalized intensity, D(Q, t) (waterfall 
plot). The traces of speckles stay at the same position during the ordering process. 
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4.3.1 Two-time correlation functions 

The incoherent (average) intensity (I(Q, t)) measures the ensemble average structure 

factor of the sample. Using partially coherent X-ray bearn the speckles are detected 

as a direct measurement of the exact structure factor of the sample. When the sample 

gets ordering after the temperature quench, the domains form and grow in time. The 

dynamics in the sample change during the ordering process. So does the speckles. 

Measuring the time evolution of the speckles will provide valuable insight about the 

dynamics of fluctuations in the system under study. 

The way to analyze the speckle (the fluctuations in scattered intensity) was pro­

posed by G. Brown et al. [22, 66]. The intensity correlation functions measure two­

time correlation functions of the order parameter which is the density of the ordered 

material. The intensity covariance correlation functions measures the two-time cor­

relations of the density fluctuations. Following their analysis, a correlation function 

can be defined by, 

( 4.14) 

Where the normalized intensity D( Q, t) can be expressed as: 

D(Q t) = I(Q, t) - ... (I(Q, t)) 
' (I(Q, t)) 

(4.15) 

With the average intensity estimated from SG smoothing filters, the normalized in­

tensity over time is calculated. 

According to Eq.(4.14), the two-time correlation functions for every pair of the 

times are calculated. To improve statistics, the functions are averaged over a relatively 

small area (41 x 41 pixels). One typical example of two-time correlation function 

contour for T1 = 378oC is plotted in Fig. 4. 7. It is symmetric about the t1 = t2 

diagonalline as expected. The correlation function is the same if the order is switched. 

The coloris brighter, i.e., the correlation is greater when nearer to the diagonalline. 

This is not surprising because the speckles are more related when the two times are 

doser to each other. It can also be seen that the correlation time becomes longer when 

the time evolves, which can be interpreted as the ordering process in the sample is 
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slowing down with time. You may notice that the correlation time does not increase 

at the moment that the critical temperature is reached (t=O) but after around fifty 

minutes. This time delay is actually the consequence of the shift of the speckle 

position in the early time. We'll discuss in detail the shift of the speckle position and 

how to correct this in the following section. 

400 

200 

0 
0 200 400 

t1(mins) 

Figure 4. 7: Two-time correlation function contour for Tf = 378°C. It is symmetric about the t1 = t2 
diagonal line. The correlation is greater when nearer to the diagonal line. The correlation time 
becomes longer when the time evolves. Incubation time is as long as around 50 minutes. 

In Fig. 4.8, the two-time correlation function are plotted for three selected wave 

vectors and for the three final temperatures. The row (a) is for Tf= 378°C. The row 

(b) is for Tf = 370°C. And the row ( c) is for Tf = 355°C. Accordingly, each vertical 

column corresponds to a different wave vector, dQ = 0.002Â - 1
, dQ = 0.011Â - 1 and 
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dQ = 0.021Â -1, respectively. All graphs are plotted with the same scale in the third 

dimension which means the same color corresponds to the same value even for the 

different graphs. As a whole, all the graphs have similar features. The two-time 

correlation functions are symmetric about the diagonal line and the correlation is 

greater when nearer to the diagonalline. The correlation time becomes longer when 

the time evolves. But we can also see the difference between the different wave vectors 

and the different final temperatures. First, there is a temperature-dependence. For 

the shallower quench (T1 = 378°C) the edges of the two-time correlation functions 

are more rounded while the edges for the other two lower final temperatures are 

more sharp and straight. Aside from the shape, the correlation also increases as 

the final temperature decreases. Second, for the two lower final temperatures the 

correlation has an obvious dependence on the wave vectors and on the time. The 

correlation increases with the time and decreases with the wave vectors. More details 

and explanation will be given in the following section. 

Similar to the incoherent analysis that the rescaled scattered intensity or the width 

of the Bragg peak obeys the universal scaling law, the two-time correlation function 

can also be rescaled to follow an universal form. To test this for our data, two natural 

variables, the average time f = (t1 + t2)/2 and the time difference 8t =1 t1 - t2 1 are 

used to express the two-time correlation functions (22]. 

The two-time correlation function can be expressed in functional forms (22]. We 

have discussed the line shape of the correlation function in detail in section 4.2.1. For 

a three-dimensional system, the measured correlation functions are fitted to the form 

8t 
C(bt,T) = f3Cnorm(Zlj2 * T) (4.16) 

Where the two parameters {3 is the coherence factor and T, FWHM of the correlation 

function is the correlation time. The value of z for which Cnorm falls to 0.5 can 

calculated numerically, Cnorm(Zlj2 = 1.2597) = 0.5. 

Several cross sections of two-time correlation function in Fig. 4. 7 and the fitting 

results are plotted in Fig. 4.9. The different symbols are for different average time f. 

The curves are the fitting results from Eq.(4.16). It can be seen that the coherence 
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Figure 4.8: Contours of two-time correlation function for three selected wave vectors and for the 
three final temperatures. (a) Tt = 378°0, (b) Tt = 370°0 and (c) Tt = 355°0. Accordingly, 
each vertical column corresponds to a different wave vector, dQ = 0.002A -1, dQ = 0.011A - 1 and 
dQ = 0.021Â - 1, respectively. 
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factor, i.e., the degree of coherence of the X-ray bearn is roughly 12.5%. So the 

speckle contrast (square root of the coherence factor) is V12.5% ~ 36%. This is a 

much higher contrast than 10% that A. Fluerasu [55] reported in his Ph.D. thesis. 
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Figure 4.9: Cross sections of two-time correlation function for selected average time f. The curves 
are the fitting results from Eq.(4.16). Two variables correlation time T and coherence factor are 
obtained from the fitting procedure. 

The fitted correlation time T versus the average time l for several selected wave 

vectors is plotted in Fig. 4.10. As we stated before, the correlation time increases with 

the average time. It also can be seen that for the larger average time, the correlation 

time decreases when the wave vector increases. We can conclude that the ordering 

process in the system is not uniform everywhere at the same time. The process is 

faster in the centre of the Bragg peak where the wave vector is small while in the 

tails of the Bragg peak the process is slow. 

To rescale the two variables, the correlation time T and the average time t, they 
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Figure 4.10: The fitted correlation time T versus the average time f for several selected wave vectors. 
Correlation time increases with the average time and decreases when the wave vector increases. 

are multiplied by the wave vector squared [22, 55]. According to the Brown et al. 

[22], the rescaled correlation times follows an universal curve with a slope of 1 in the 

small t asymptotic limit and with a slope of 1/2 in the large t asymptotic limit. The 

rescaled correlation time T against the average time t is plotted in Fig. 4.11. We can 

see the rescaled correlation time T and the average time t collapse onto one stationary 

universal curve with the kink which indicates the transition from linear dependence 

T t'V t to a power law dependence T rv Pl2 . The dashed line has a slope of 1 and the 

solid line has a slope of 1/2. In the Figure, a constant value t0 is subtracted from 

the average time f. t 0 is the delay time as we mentioned earlier and will be explained 

in the following section. Without the shift of the time origin, the scaling law didn't 

work. This indicates that the scaling law starts working after the delay time. During 

the delay time, there might be other mechanism dominant we do not fully understand 

yet. 

In Fig. 4.12, our results on the rescaled correlation time T versus the average time 

tin two directions and for all final temperatures are summarized. The dashed lines 
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Figure 4.11: Rescaled correlation time T versus rescaled average time f collapse onto one stationary 
universal curve with the kink which indicates the transition from linear dependence T ,...., f to a power 
law dependence T,...., fl/ 2 • The dashed line has a slope of 1 and the solid line has a slope of 1/2. 
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with a slope of 1 shows that all the data obeys the scaling law for the small-f limit. In 

this data, we only see a little data which follows the solid lines with the slope of 1/2 

in longitudinal direction. In transverse direction, the cross over probably happens 

even later so that we barely see anything. It seems that our experiments do not get 

to the large average time tlimit. 

The theoretical scaling laws: correlation time T versus t from reference [22] is 

replotted in Fig. 4.13. Two scaling laws for the small-f and large-tlimits are also 

plotted. The dashed line corresponds to T "' f and the solid line corresponds to 

T "' fl/2 . The transition from linear relationship T "' t to T "' fl/2 takes place at 

f ~ 20 time units as we pointed out before. Our data for T1 = 378°C, the crossover 

happens f * dQ2 = 0.02. Because all scaled variables are normalized, one might expect 

that the crossover is universal. But this is not true for our data. More theoretical 

work should be carried out to explore the universality of the crossover. 

4.3.2 Shift of speckle positions in the early time 

We have mentioned that we didn't see any correlations for the early time in Fig. 4. 7 

because the position of the speckle changed. Assuming the speckles do not change 

position, it makes sense that we only correlate the speckles at the same position ( wave 

vector), also called the 1Q-2t method. If the speckle moves its position, we are trying 

correlate the two different speckles which are at the same position at different times. 

The correlation function will be found to be much smaller than its actual value. 

To recover the loss of the correlation function, we use 2Q-2t method to calculate 

the correlation functions. We correlate every pair of the wave vectors and find the 

maximum of the correlation functions and the position where the maximum is as weiL 

In this way we can not only compensate the speckle contrast but obtain the change 

of the speckle position. 

The correlation functions for a few pairs of times along the line t = 140 mins 

are calculated using 2Q-2t method and plotted in Fig. 4.14. In the longitudinal 

direction (see Fig. 4.14(a)), the position of speckle shifts with time. If the 1Q-2t 
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Transverse scans 
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Figure 4.12: Rescaled correlation time T versus the average time fin two directions and for all final 
temperatures are summarized. The dashed lines with a slope of 1 shows that all the data obeys the 
scaling law for the small-f limit. 
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Figure 4.13: Theoretical scaling laws: correlation time T versus [from reference [22]. The dashed 
line corresponds to T ('V f and the solid line corresponds to T ('V fl/2 . The transition from linear 
relationship T ('V f to T ('V fl/ 2 takes place at f ~ 20. 

method is applied to calculate the correlation functions, the values at dQ = 0 shown 

as the crosses in the figure are taken as the speckle contrast. It is obvious that these 

values are much smaller than the true values at the peaks. For the t1 = 71mins, 

t2 = 69mins pair, there is no shift of the speckle position, so the two methods give 

the same result. From Fig. 4.14(b), it can be seen that no speckle shift is observed 

in transverse direction. 

The waterfall plot is plotted for this quench (T1 = 378°C) in Fig. 4.15. We can 

clearly see the shift of speckle position in the early time. The change of the speckle 

position obtained from 2Q-2t method is plotted as solid line in Fig. 4.15. It matches 

with the waterfall plot. The dashed line on the right is the change of the Bragg peak 

position. Bragg peak position changes at a much smaller scale and it is not clear if 

it is accounted for the speckle shift. Since the scaling law did not work during the 

delay time, the ordering process or the formation of domains obeys sorne unknown 

law which is different from the predicted scaling law at later times. 

The shift of speckle is only longitudinal which is the Q direction, so can be inter-
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Figure 4.14: Speckle shift in the early time for the shallower quench. Solid lines are the fits. 
Correlation functions for a few pairs of times along the line t = 140 mins are calculated using 2Q-
2t method to compensate the speckle contrast and obtain the change of the speckle position. (a) 
Longitudinal direction: speckles shift the positions. (b) Transverse direction: no shift of speckle 
postions. 
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Figure 4.15: Waterfall plot to show the speckle shift in the early time for shallower quench. Solid 
line is the change of the speckle position obtained from 2Q-2t method. Dashed line on the right is 
the change of the Bragg peak position for reference. 
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preted as the dilation of the domains. Assuming that the original number density is 

C(r'), the structure factor is given by 

S(Q) = j C(f) exp( -iQ · r')dr 

After dilation, the number density becomes C'(r') = C(Àr') so that the structure factor 

for the new structure is given by 

S'(Q) = j C'(r') exp( -iQ · r')dr 

= j C(Àr')exp(-i~ · ÀrJdÀrjÀ3 

1 Q 
= À3S(-:\) 

It can be seen that after the dilation the wave vector slightly changed by a factor of 

À. 

The values of the delay time for different final temperatures are plotted in Fig. 

4.16. From Fig. 4.16, it is not surprising that the delay time has a temperature­

dependence since it exists in every aspect of our analysis. It is interesting that the 

delay time gets longer as we approach the critical temperature. If we look back the 

incoherent data, sorne evidence is in agreement with this observation. First, in Fig. 

3.19, the data shows the steep increase of the integrated intensity at the beginning. 

However, the slope of the curve, i.e., the rate of this increase is the steepest for the 

lowest temperature and less steep for the highest temperature. This suggests that 

the ordering process is slower for shallower quench which is consistent with that the 

delay time is longer for shallower quench. Second, in Fig. 3.13, the measurement of 

intensity at the the critical point was presented. From this figure, it can be clearly 

seen that the intensity turn-on takes place later for lower final temperature. In other 

words, it shows again that the ordering process in early time is slower for higher final 

temperature. Since time constants for the order parameter get slower near the phase 

transition, the delay time appears to be related to phase transition kinetics. Further 

experimental and theoretical work needs to be clone to further study this effect. 
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Figure 4.16: Incubation time for different final temperatures. The origin of time is shifted by the 
amount of delay time for each final temperature to make the scaling form work. Dash-dotted line is 
just the guide to the eyes. 

The two-time correlation functions calculated using 2Q-2t method is plotted in 

the upper-left corner of Fig. 4.17. ln the lower-right corner, the two-time correlation 

functions calculated using 1Q-2t method is plotted for comparison. First, most im­

portantly, during the delay time, the result has been improved greatly. The two-time 

correlation functions is measured and the correlation time starts increasing at the 

moment that the critical temperature is reached (t=O). Second, we can see that the 

datais smoother in the upper-left corner than in the lower-right corner. So the 2Q-2t 

method gives less noisy results than the 1Q-2t method. This is not surprising because 

more pixels now contribute to the calculation of two-time correlation function. 

It is worth to point out that even though a correlation time is now resloved during 

the delay time, the curvature is still quite different than after the delay time. An 

obvious bending is seen at the crossover. The correlation time is measured at a 

smaller scale. This is another evidence that the correlation time during the dalay 

time is much faster than after the delay. 
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Figure 4.17: Two-time correlation functions calculated using 1Q-2t method in the lower-right corner 
and two-time correlation functions calculated using 2Q-2t method in the upper-left corner. Corre­
lation function is recovered during the delay time. 
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4.3.3 Discussion on the contrast of speckle 

The most striking and interesting result is that the contrast of two-time correlation 

function shows a dependence on the evolution time and wave vector. And it is not 

surprising that it is temperature-dependent as well. One typical graph showing this 

dependence is plotted in Fig. 4.18. In this graph, we plot the coherence factor 

(contrast) versus the average time l = (t1 + t2)/2 for different wave vectors. In 

general, the contrast increases with time for smaller wave vectors while decreases 

with time for larger wave vectors. A bump can be seen either obvious or less obvious 

for each curve. At early times, the contrast does not change much for different wave 

vectors. But at late times, there is a significant change of contrast when the wave 

vectors change. For bigger wave vectors, the contrast is as high as 23% which is 

twice big as the normal contrast (around 12%). For smaller wave vectors, the lowest 

contrast is 7% which is much less than the normal contrast. The big question is why 

we sometimes get extra contrast and why sometimes lose the contrast? 
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Figure 4.18: Wave vector dependence of two-time correlation function in transverse direction for 
Tf = 378°C. At early times, the contrast does not change much for different wave vectors. But 
at late times, there is a significant change of contrast when the wave vectors change. The symbols 
simply label the data curves. 
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The sample Cu3Au we are investigating has a fee lattice as shown in Fig. 4.19. 

The positions of the four atoms 1,2,3 and 4 in the unit cell of the lattice are fj=(OOO), 

(0~~), (~0~) and (~~0) respectively. For the (001) Bragg peak, if the wave vector 

is slightly away from the center in the z direction, i.e. Q = 27r · (0, 0, 1 + 8l), the 

contribution of the scattered electric field for one unit cell can be expressed as: 

4 

Ë = L exp(iQ · fj) 
i=l 

= 2 + 2 exp[7ri(1 + 8l)] 

= 2 exp[i( ~ + <p )]{exp[ -i( ~ + <p )] + exp[i( ~ + <p )]}, (4.17) 

where <p = ~ · 8l and the constants are ignored for convenience. 

y 

lL:z 
• Au atom 0 Cu atom 

Figure 4.19: Unit cell of Cu3Au and the positions of the four atoms 1,2,3 and 4 in the unit cell of 
the lattice: (000), (OH), (!O!) and (HO). 

In Eq. ( 4.1 7), there are two possible phases: - ( ~ + <p) or ~ + <p varying from domain 

to domain. These have the same value for eosine and opposite signs for sine. If we 

introduce sorne variable T(x) = ±1, Eq.(4.17) becomes 

-+ 1f 1f 1f 

E(x) = 2 exp[i( 2 + <p)][cos( 2 + <p) + iT(x) sin( 2 + <p)]. (4.18) 

Therefore the mean intensity can be calculated from Eq.(4.18): 

(J) = J 2[cos2 (~ + <p) + (T(x)T(x')) sin2 (~ + <p)] exp(iQ · xdx). (4.19) 
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The calculation of mean-square intensity (!2
) is straightforward but tedious and will 

not be shown here. 

Jakeman et al. [67] proposed a theoretical model to investigate the statistical 

properties of electromagnetic radiation scattered by a randomly grooved surface as 

shown in Fig. 4.20. They called such a wave a telegraph wave. They calculated 

the contrast of the intensity pattern for both near- and the far-field geometries. For 

far-field calculation, they used the following expression of normalized version as the 

scattered electric field: 

l~L/2 
E = L exp[ik(xsine + h0T(x) cosB)]dx 

-L/2 
. L/2 

= cos(kh0 cos e) + !.._ 1 T(x) sin(kh0 cos e) exp(ikx sin B)dx, 
L -L/2 

(4.20) 

where L is the dimension of the hard aperture, ho is the height of the rectangular 

grooves. This will directly apply to our scattering. 

ho 
0------

-ho 

Figure 4.20: Sketch of a randomly grooved surface from Jakeman's model. 

The scattered field is thus expressed as the sum of a constant or unscattered 

component and a fiuctuating part of zero mean. The mean and mean-square intensity 

for a random telegraph wave with Poisson-distributed crossings are calculated. In the 

forward direction where B=O, the results reduce to 

( 4.21) 

(12) = coé kho + sin2 kh~~os2 kho [2N +exp( -2N)- 1] 

sin
4 

kh0 [ - 2 - 9 - 9 - J + 3N - 6N +-- (3N + -exp(-2N 
N 4 2 2 ' 

(4.22) 



4.3 Experimental results 99 

where N = RL. The normalized second intensity moments (J2) / (1) 2 calculated 

from Eq.(4.21) and Eq.(4.22) are shown in Fig. 4.21. The phase distribution of the 

telegraph wave is not well approximated by a Gaussian in which case the second 

intensity moments (12
) / (!) 2 would be 2 instead of 3 as shown in Fig. 4.21. For 

partially coherent diffraction, we would expect the consequently coherent factor to 

be 1 + 2/3 as opposed to 1 + j3. It can be seen that Fig. 4.21 has similar features 

to our experimental results Fig. 4.18. The mean-square intensity increases as N for 

larger values of kh0 and decreases as N for smaller values of kh0 • In the limit of small 

N, the mean-square intensity changes slightly for different values of kh0 . In larger N 

limit, the mean-square intensity falls quickly with kh0 . Only in the special case when 

kh0 = (2n + 1)-rr/2, the mean-square intensity saturates at a value of 3 for large N. 

2.5 

')!..... 

x2.o 
"' ::::;.. 

1.5 

- kho=rt/2 
--- kho=49rt/1 00 
...... kho=7rtl15 
-·-·- kho=5rtl12 
-··-.. kho=rt/3 

1.0 10.0 

N 

' ' ' ' ' ' 

100.0 

' ' ' \ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

... 

\ 
\ 
\ 
\ 

1000. 

Figure 4.21: The normalized second intensity moments (12)/(1) 2 calculated from Eq.(4.21) and 
Eq.(4.22) for different values of koh. 

In Jakeman's Eq.(4.20), let()= O. Eq.(4.20) will reduce to 

Ë = cos(kh0 ) + iT(x) sin(kh0 ) (4.23) 

Comparing it with our calculation Eq.(4.18), it is clear that kh0 =~+cp for our case. 
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So Jakeman's results Eq.(4.21) and Eq.(4.22) can be used to explain our data (see 

Fig. 4.18). 

According to Eq.(4.21) and Eq.(4.22), the mean and mean-square intensity for 

varied dQ in Fig. 4.18 are calculated. The second moment of intensity which has 

been normalized to be comparable with our data are shown in the upper figure of Fig. 

4.22. The circles on the graph indicates the experimental values of coherence factor 

for each k0h or dQ. The vertical dashed line marks the average N for the six different 

dQ. The intersections are considered as the theoretical values of coherence factor for 

different dQ. The experimental and theoretical values versus dQ are plotted in the 

lower graph of Fig. 4.22. We can see that they agree with each other quite well. 

In conclusion, Jakeman's model explained very well the extra contrast and the 

nearly zero contrast observed in the experiments for late times. But Jakeman's model 

does not show the feature of normal contrast in the early time. The physical reason is 

that the Jakeman's telegraph wave modelisa non-Gaussian model. We suggest that 

in the early time the fluctuating scattered electric field is more Gaussian distributed 

as would be the case for diffused domain walls. The normal contrast is the result of 

averaging over the Gaussian distributed intensity. 

Features in telegraph model depend on a well defined phase at each point hav­

ing only two values. This model is valid when the scattering from each domain is 

centered at Q0 and has a width of 21r / L. At the late times the domains are large 

and well registered so that the telegraph wave model applies. At the early time, the 

domains are small and could have different orientations. Also a diffuse or spread out 

domain wall could form and would lead to a more Gaussian-like phase distribution. 

As we know, for a given pixel in the detector, the random phase of each domain 

that contributes to it leads to the speckle pattern. A small mosaic or distribution of 

angles willlead to a range of dQ and thus phases, at each pixel so that the telegraph 

model is not a good approximation any more. The data for three temperatures in two 

directions is summarized in Fig. 4.23. These results for contrast dependence on wave 

vector or temperature show sorne interesting features. Not surprising, the behaviour 
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Figure 4.22: Upper: The rescaled second moment of intensity from the model. The circles on the 
graph indicates the experimental values of coherence factor for each k0 h or dQ. The vertical dashed 
line marks the average N for six different dQ. Lower: The experimental and theoretical values versus 
dQ. 
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is different between the shallower quench and the deeper quenches. For the shallower 

quench, the contrast seems to remain constant and there is little dependence on the 

wave vector. For deeper quenches, as described before, in the earl y time the normal 

contrast is obtained while at late times the contrast changes with the different wave 

vector. The contrast can be twice as big as the normal value for small wave vector 

or smaller than the normal value for bigger wave vector. Further work requires to be 

clone to come up sorne more complex madel to fully explain this phenomenon. 

4.4 Conclusion 

ln this chapter, we presented the coherent X-ray studies of order-disorder transition 

in Cu3Au. We measured the autocorrelation function of the scattered intensity which 

is a description of the evolution of the density-density correlation functions. The two­

time correlation functions can be expressed with two natural variables, the average 

time t = (t1 + t2)/2 and the time difference bt =1 t1 - t 2 1· The correlation times T 

versus the average time t was found to follow sorne scaling forms as predicted by the 

theory. The scaling forms cross over from T ,......, t to T ,......, P/2 • 

The correlation time is found to start increasing only after 10, 15 up to 50 min­

utes (delay time) depending on different temperature quenches. The loss of speckle 

contrast during the delay time was caused by a shift of the speckle position. 2Q-2t 

method instead of 1Q-2t was applied to compensate the speckle contrast and the 

results have been improved greatly. 

Finally we reported that the significant change of speckle contrast was observed 

for different wave vector and different temperature quenches in the sample. At late 

times the contrast was twice big as expected for small wave vector and the contrast 

was mu ch smaller than expected value for large wave vector. A telegraph wave mo del 

was applied and well explained the extra contrast and loss of the contrast. The madel 

didn't show the feature that the contrast was same for all wave vectors in the early 

time. The explanation of this result is under investigation. 
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Figure 4.23: The data for three temperatures in two directions is summarised, (a) Tf= 378°0, (b) 
Tf = 370°0, (c) Tf= 355°0,. For shallower quench, the contrast seems remain constant and there 
is no dependence on the wave vector. For deeper quenches, as described before, in the early time 
the normal contrast is obtained while in the late time the contrast changes with the different wave 
vector. 
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Conclusion and Outlook 

In conclusion, this thesis is a summary of a study on the order-disorder phase tran­

sition in the classic sample Cu3Au. Using traditional incoherent X-ray sources, one 

can only measure the averaged intensity and obtain the averaged behavior of the 

sample under study. With the synchrotron X-ray sources, coherent X-rays can be 

produced and the speckle patterns can be observed to reveal the exact information of 

the illuminated sample. The results of this thesis are then divided into two parts and 

are reported as incoherent (one-time) analysis in Chapter 3 and coherent (two-time) 

analysis in Chapter 4. 

In chapter 3, we present the experimental results of order-disorder phase transi­

tion in Cu3Au using incoherent X-rays. The information about the (100) superlattice 

Bragg peak of Cu3Au is summarized for three temperature quenches. The (100) su­

perlattice Bragg peak has the shape of a thin disk with two long identicallongitudinal 

diffractions and one short transverse diffraction. The Bragg peak gets sharper and 

narrower intime when the ordering is in process in the sample. Slight change of peak 

position with time is interpreted as the result of distortion of lattice due to the growth 

of the domains in the sample. The universal scaling law is tested for the incoherent 

data. Our data shows that the average domain size (the inverse of the peak width) 

follows the t112 line through the whole ordering process for the three temperature 

quenches. The rescaled intensity of Bragg peak also looks invariant in time when 

plotted against the wavevector rescaled by the peak width. 

In chapter 4, we present the coherent X-ray studies of order-disorder transition 
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in Cu3Au. The fluctuation of the scattered intensity, speckle patterns are measured 

as the evolution of time. The information about the change of exact structure in 

the sample can be obtained from the speckle patterns. Though for non-equilibrium 

system separating the averaged intensity (J) from the fl.uctuating intensity I is not 

straightforward, SG filters provide a good estimate to the averaged intensity. The two­

time correlation functions of the normalized intensity ( 1- (J)) / (J) are then calculated. 

They can be expressed with two natural variables, the average time t = (t1 +t2)/2 and 

the time difference 8t =1 t1 - t2 1. The correlation times T versus the average time t is 

found to follow sorne scaling forms as predicted by the theory. The scaling forms cross 

over from T "' t to T "' fl/2
. The crossover happens earlier for shallower temperature 

quench, which suggests a faster ordering process in the sample. This is the first clue 

that the dynamics of sample have a dependence on the quench temperature. 

Though the crossover for shallower temperature quench is quite obvious, they are 

not so convincing for deeper quenches. To improve the results, the first thought is to 

increase the time of the experiments or use a bigger CCD detector. This is not very 

doable for two reasons. First, because of the technological limits of XIFS method 

[68], longer experiments are not feable at present. Second, for our sample Cu3Au, 

the (100) Bragg peak is already very sharp at the end point of present data. Even 

though we can measure larger wave vectors not much signal will be received. Another 

difficulty is that the graph is in log-log scale. The time or the wave vector has to be 

increased by the order of ten to see the effect. Actually, one alternative option is to 

choose a different sample which has a faster dynamic. The crossover will be reached 

earlier and enough data can be used to test the latter scaling form T "' fl/2 • So 

far, the transition of two scaling laws in systems with non-conserved order parameter 

has not been observed in other systems. The results obtained by A. Fluerasu [29] 

for Cu3Au did not clearly show this transition. The work done by K. Ludwig et. 

al. [7] investigated a Cu-Pd alloy and their results only showed the linear part of 

the scaling laws. However, the study of systems with conserved order parameter did 

not encounters this difficulty. F. Livet [9] observed both the linear scaling law and 
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T,....., f21 3 in AlLi single crystal. A. Malik et. al. [10, 9] measured two-time correlation 

functions in a sodium borosilicate glass undergoing phase separation and also obtained 

T "' f21 3 relationship between the correlation time and the average time. 

The correlation time T is found to start increasing only after 10, 15 up to 50 

minutes (incubation time) depending on temperature quench. The loss of speckle 

contrast during the incubation time is a consequence of the shift of speckle position. 

Instead of using the same wave vector for each pair of times ( 1 Q-2t method), the 

speckles are paired for different wave vectors (2Q-2t method) to compensate the 

speckle contrast and the results have been improved greatly. The physical explanation 

is that the growth of domains in the sample causes a slight change of structure and 

the small dilation of wave vector. Here the incubation time is longer for shallower 

quenches, second evidence that ordering process in the sample has a dependence on 

quench temperature. 

We also reported the very interesting result that the significant change of speckle 

contrast is observed depending on evolution time and on wave vector. At late times 

the contrast is twice as big as expected for smaller wave vectors and the contrast is 

very small for larger wave vectors. At early times, the contrast is same for different 

wave vectors. A telegraph wave model is applied and well explains the extra contrast 

and loss of the contrast at late times. But this model does not show the same 

behavior for the early times. Telegraph wave model assumes that the domain walls 

are rectangular grooved and have a well defined phase with only two values. At the 

late times, the domains are big and packed tightly hence the domain walls are well 

characterized by the telegraph model. At the early times, the domains are small and 

it is possible to have different orientations. The phases of domain walls may be better 

described by Gaussian distribution. A more complex model to combine the characters 

of telegraph wave model and Gaussian model is actually under investigation. 

ln the previous paragraph, we only discussed the speckle contrast for the deeper 

quench. For shallower quench, the speckle contrast actually remains constant and 

is independent of the wave vector and time. This is another observation which sug-
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gests that the sample shows different behaviors between shallower quench and deeper 

quench. This temperature dependence might be the consequence of sorne different 

relaxation mechanisms between different quenches which are not understood yet. Our 

shallower quench is only 5°C below the critical point and the deeper quench is 28°C 

below the critical point. Because of this significant difference between the final tem­

peratures, we already observe that the domains are formed at the different rate and 

the ordering process is faster for shallower quench. This mostly will affect the shape 

and orientation of the domain walls and results in different speckle pattern. It is 

worth further investigation on this interesting phenomenon both theoretically and 

experimentally. 

On the other hand, the temperature dependence is only observed in the coherent 

analysis but not in incoherent analysis. This is one example to show the power of the 

new technique XIFS we use to carry out the experiments in this thesis. The results 

obtained in this thesis present that XIFS provides new information and brings new 

insight into the investigation on the system under study. The applications of XIFS 

will offer a lot possibilities in studying numerous systems with different dynamics. 

With the new generation of synchrotron X-ray sources, the dynamics in the systems 

can be studied on the time scales ranging from minutes to tens of nano seconds and 

space scales of nanometers. 
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