
A Historical Survey of Music
Recommendation Systems: Towards

Evaluation

Ying Qin

Music Technology Area, Department of Music Research
Schulich School of Music

McGill University
Montreal, Canada

April 2013

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Arts in Music Technology.

c© 2013 Ying Qin





i

Abstract

The development of the Internet and the emergence of audio compression technologies have

contributed to the realization of making millions of music titles accessible to millions of

users. Due to the extensive distribution of music, consumers are being presented with a

problem of information overload, while the music industry is being faced with the challenge

of personalized promotion and distribution. Music recommendation systems aim to ease

the task of finding the music items that might interest the users by generating meaningful

recommendations. The recommendation for music is different from those for books and

movies, due to its low cost per item, short consumption time, high per-item reuse, highly

contextual usage, and numerous item types. Understanding the patterns of music listening

and consumption is important to create accurate and satisfying music recommendations.

This thesis reviews state-of-the-art music recommendation and discovery methods with

the goal of presenting the historical developments in this area. Traditional music recom-

mendation systems can be classified as one of two major kinds: collaborative filtering and

content-based filtering. Recently, the research community has broadened its attention to

include other aspects, such as hybrid approaches, context awareness, social tagging, music

networks, visualization, playlist generation, and group recommendation.

For the evaluation of music recommendation systems, researchers or developers need

to take into account properties such as accuracy, coverage, confidence, novelty, diversity,

and privacy. These properties can be measured in an offline simulation, a user study, or

an online evaluation. Suggestions for future work in both the design and the evaluation of

music recommendation systems are given.
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Sommaire

Le développement d’Internet et l’émergence des technologies de compression audio ont con-

tribué à rendre des millions de titres de musique accessibles à des millions d’utilisateurs.

Due à la large distribution de musique, les consommateurs ont des problèmes de téléchargement

d’information, pendant que l’industrie de la musique faisait face aux défis de la promotion

et de la distribution personnalisée. Les systèmes de recommandation de musique ont pour

objectif de faciliter la tâche dans la recherche d’articles de musique qui peuvent intéresser

l’utilisateur en générant des suggestions significatives. La recommandation de musique est

différente de celle des livres et des films; cette différence est explicable par le bas coût de

chaque article, le court temps de consommation, le haut taux de réutilisation de chaque ar-

ticle, l’utilisation hautement contextuelle immédiat et le grand nombre d’articles possibles.

La compréhension des schémas d’écoute et de consommation de la musique est importante

afin de concevoir des recommandations musicales pertinentes et satisfaisantes.

Ce mémoire passe en revue l’état des recherches sur la recommandation musicale et les

méthodes de découverte, dans le but de dressez un historique des développements de ce

domaine. Les systèmes de recommandation de musique traditionnels se divisent en deux

catégories principales: le filtrage collaboratif ou filtrage fonde sur le contenu. Récemment,

la communauté de chercheurs a élargit ces champs d’investigation en incluant d’autres

aspects : tels que, les approches hybrides, la sensibilité au contexte, le marquage social, les

réseaux de musique, la visualisation, la génération de liste de lecture et les recommandations

de groupe.

Pour l’évaluation des systèmes de recommandation de musique, les chercheurs et les pro-

moteurs ont besoin de prendre en compte des propriétés, comme la précision, la couverture,

la confiance, la nouveauté, la diversité et la protection de la vie privée. Méthodologiquement,

ces propriétés peuvent être mesurées dans des simulations hors connexion, dont l’étude du

comportement des utilisateurs, ou lors d’évaluations en ligne. Des suggestions pour de fu-

tures recherches en design et évaluation de systèmes de recommandation de musique seront

abordées.
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Chapter 1

Introduction

The emergence of digitization and efficient audio compression technologies, such as MP3,

has realized the dream of making millions of music titles accessible to millions of users

(Pachet 2003). Over the last decade, the fast development of the Internet and the Web

further accelerated the distribution of music to enormous number of music listeners (Fields

2011). Due to the extensive distribution of music by major portals (e.g., Amazon1, iTunes2

and Yahoo! Music3) and streaming services (e.g., Pandora4 and Last.fm5), consumers are

facing a problem of information overload for music data (Hijikata et al. 2006). They are

being presented with an increasing number of music items while the music industry is being

faced with the challenge of personalized promotion and distribution. Clearly, services that

help users look for their favorite music are urgently needed. Music recommendation systems

are used to facilitate the task of finding appropriate items within a huge collection.

The goal of a recommendation system is to generate meaningful recommendations to

users for items that might interest them (Resnick and Varian 1997; Melville and Sind-

hwani 2010), based on users’ predefined preferences or access histories (Chen and Chen

2005). The process of a recommendation system is illustrated in Fig. 1.1. Celma (2010)

pointed out that music recommendation is somewhat different from other domains, such

as recommendation for movies or books. Music is unique due to its low cost per item, low

consumption time, high per-item reuse, highly contextual usage, numerous item types, and

1http://www.amazon.com/
2http://www.apple.com/itunes/
3http://music.yahoo.com/
4http://www.pandora.com/
5http://www.last.fm
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highly passionate users (Celma and Lamere 2011). In order to efficiently access, discover,

and present music content to the final user, techniques for searching, retrieving, and rec-

ommending need to be appropriate for music content. There has been some work done in

both academia and the industry to provide music recommendation services. Understanding

patterns of music listening and consumption can help to perform accurate and satisfying

music recommendations. This thesis aims to present the development of music recommen-

dation and discovery methods so far, and identify the issues in evaluation that still require

careful consideration and research.

Fig. 1.1: An illustration of recommendation systems.

1.1 Music Recommendation in Academia and Industry

Research into music recommendation did not begin in earnest until 2001 (Celma 2010),

with an early exception by Shardanand (1994). Over the last decade, both academics

and industry members have done work with music recommendation. Music recommenda-

tion is an interdisciplinary research area, which involves the areas of search and filtering,

musicology, data mining, machine learning, personalization, social networks, text process-

ing, complex networks, user interaction, information visualization, and signal processing

(Celma and Lamere 2011). Traditional music recommender systems use collaborative fil-

tering (Shardanand 1994) or content-based filtering (Logan 2004). Collaborative filtering

analyzes historical interactions between users and systems and generates recommendations

to the user based on the opinions of a group of like-minded users. Alternatively, content-

based filtering analyzes the content of items and recommends items similar to the ones the

user liked in the past. Since 2005, the research community has broadened its attention to
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include other aspects, such as hybrid approaches (Yoshii et al. 2006; Tiemann et al. 2007;

Magno and Sable 2008; Yoshii and Goto 2009), context awareness (Park et al. 2007; Shin

et al. 2009; Lee et al. 2010), social tagging (Eck et al. 2007; Symeonidis et al. 2008;

Nanopoulos et al. 2010), music networks (Buldú et al. 2007; Fields et al. 2008; McFee and

Lanckriet 2009; Seyerlehner et al. 2009), visualization (Goto and Goto 2005; Pampalk and

Goto 2006), playlist generation (Knees et al. 2006; Flexer et al. 2008; Fields 2011), and

group recommendation (Cho et al. 2007; J.-K. Kim et al. 2010). Celma (2010) systemati-

cally expounded the topic of music recommendation and discovery in his dissertation.

In the industry, recommendation systems play an important role in e-Commerce. Pop-

ular music recommendation services include Amazon’s personalized recommendation lists,

personalized Internet radio (e.g., Last.fm and Pandora), and software applications (e.g.,

Apple’s iTunes Genius and Microsoft’s Zune MixView). Other music recommendation

systems include Rhapsody6, iRate7, MusicStrands8, inDiscover 9, Spotify10, Play.me11, and

seevl12. Companies such as Echo Nest13 and BMAT14 provide specific solutions to assist

people to discover, personalize, and filter huge amounts of music content.

For evaluating recommendation systems, Netflix, an online streaming video and DVD

rental service, announced an open competition15 for the best recommendation algorithm,

offering a prize of $1,000,000 in 2006. The evaluation metric, root mean square error

(RMSE), has been widely used to evaluate recommender systems; however, RMSE is not

that useful to evaluate music recommendation systems (Celma and Lamere 2011). An

overt focus on accuracy does not take into account users’ desire in looking for diverse and

serendipitous music. Moreover, accuracy metrics like RMSE can only be measured on the

test data that has already been rated by users, which may lead to skewness in evaluation.

So far, not much work has been done in evaluating how well the music recommenders work.

There was a lack of objective evaluation methods and standardized datasets for compar-

6http://www.rhapsody.com/start
7http://irate.sourceforge.net/
8http://strands.com/
9http://www.indiscover.net/

10http://www.spotify.com/int/
11http://www.playme.it/
12http://seevl.net/
13http://echonest.com
14http://bmat.com
15http://www.netflixprize.com/
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ison (Celma and Lamere 2011). To fill this gap, the Million Song Dataset Challenge16

was released in 2012, which aims at being the best possible offline evaluation of a music

recommendation system. It contains listening history for more than 1M users. To predict

the missing listening history in the test set, “any type of algorithm can be used: collabora-

tive filtering, content-based methods, web crawling, even human oracles”. As a result, this

competition will shape the platform for the evaluation of music recommendation systems

in the future. More details will be described later in this thesis, in order to speculate on

possible methods to evaluate a music recommendation system.

1.2 Music Listening and Consumption

The goal of a music recommendation system is to help consumers and the music industry

with the discovery and delivery of music. In order to realize the personalized distribution

of music, it may be beneficial for recommender designers to understand the music listening

behaviors and know about the state of music consumption in the industry.

Understanding user preference and behavior can help to propose a reasonable recom-

mendation to a specific user. For example, some users show a clear bias towards style when

choosing music, while some emphasize timbral similarity (Baumann et al. 2004). In order

to make recommendations respectively to these two types of listeners, the recommender

needs to focus on different attributes (e.g., musical style and timbre). Moreover, users’

feelings and expressions can be different towards the same music (Kodama et al. 2005),

such that a personalized user profile is needed for each user before the system can make

meaningful recommendations. Generally, a user’s preference shifts with time, in terms of

years, seasons, days, and even hours (Hayes 2003; Yoon et al. 2008; Park and Kahng

2010; Hu and Ogihara 2011). For instance, a user who liked calm and soft music before,

may like noisy music now. So a user’s profile needs update and maintenance to describe

the music preference of the user at a time. Unlike the consumption of movie, books, and

games, people listen to music repeatedly and continuously (Celma and Lamere 2011; Celma

2010; Park and Kahng 2010). This adds more complexity to capture a user’s preference

accurately, which is important for a music recommendation system.

In reality, the frequency distribution of music transactions is concentrated at the begin-

ning (high volume); dominated by a very few popular items (the well-known hits) followed

16http://www.kaggle.com/c/msdchallenge



1.3 Outline 5

by a long list of items that does not sell that well (Anderson 2004; Elberse 2007; Celma

2010). This long list is referred as the Long Tail (Anderson 2004), where a large number

of songs or artists, the misses, are only played or downloaded by a relatively small group

of people. It seems that a majority of users prefer popular titles, while only a minority

exploit niche titles. Analyses of the music sales have shown that the music industry is

dominated by popular artists and songs (Elberse 2007; Soundscan 2007). However, nearly

everybody’s taste deviates from the mainstream somewhere, with most people consuming

niche products at least some of the time (Anderson 2004; Elberse 2007; Goel et al. 2010).

Sometimes, listeners may be expecting to discover and enjoy a wide range of music that

may be less popular but a good match to their personal taste (Levy and Bosteels 2010).

On the other hand, some economists explored the utility of the tail items and proposed the

Long Tail business strategy. That is, offering customization to individual consumers can

increase the profit in e-commerce by “selling less of more” (Anderson 2004; Elberse 2007).

Both the users and the profit-driven service providers are looking forward to advanced tools

for music discovery and recommendation.

1.3 Outline

This thesis identifies the issues that should be addressed to develop music recommendation

systems and the ways in which they have been dealt with so far. By examining the historical

development of music recommendation methods, the thesis allows designers and researchers

to make use of knowledge and experience that have already been accumulated, and to

address many open questions that require further exploration. The rest of this thesis is

organized as follows:

Chapter 2 describes how collaborative filtering works and reviews its application in

music recommendation systems. Collaborative filtering depends on a set of human judge-

ments (known as ratings) for items to predict how well a user will like an item that has not

been rated. The rating data can be collected explicitly or implicitly. Memory-based and

model-based methods have their own advantages and disadvantages. Although collabora-

tive filtering is a successful recommendation method, it presents some challenges such as

data sparsity, popularity bias, and cold start.

Chapter 3 depicts content-based filtering for music recommendation systems. To pre-

dict which items the user may like, content-based filtering provides recommendations by
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comparing the item information to the user preference. The musical content can be cat-

egorized into three types of metadata: editorial, acoustic, and cultural. Given the user

preference, the recommendation problem can be treated as an information retrieval task or

as a classification task. The content-based filtering can be limited by the content analysis

schemes and it has to deal with problems such as scalability and overspecialization.

Chapter 4 presents some new research interests to extend the capabilities of traditional

music recommendation systems, including hybrid approaches, context awareness, social

tagging, music networks, visualization, playlist generation, and group recommendation.

Chapter 5 investigates how to evaluate a music recommendation system. The evaluation

procedure can take into account the properties of music recommendation systems such

as accuracy, user preference, coverage, confidence, novelty and serendipity, diversity, and

privacy. These properties can be measured in an offline simulation or a user study.

Chapter 6 summarizes the development of music recommendation systems presented

in previous chapters and gives suggestions for further work in both the design and the

evaluation of music recommendation systems.
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Chapter 2

Collaborative Filtering

In everyday life, people rely on others to receive useful recommendations (Resnick and Var-

ian 1997). Collaborative filtering, also termed as social information filtering (Shardanand

1994), is modeled on similar behavior of people to assist and augment automated recom-

mendation systems. It assumes that users who rate items similarly or have similar behaviors

(e.g., buying or listening) will rate or act on other items similarly (Sinha and Swearingen

2002). Given a set of human judgements (known as ratings) for items, collaborative filter-

ing aims to predict how well a user will like an item that has not been rated (Herlocker

et al. 1999).

The term collaborative filtering (CF) was coined by Goldberg et al. (1992), who de-

veloped an e-mail filtering system Tapestry. Tapestry was expected to scan all mailing

lists and select interesting documents for the user. However, the collaborative filtering

provided by Tapestry was not automated and required users to construct complex queries

in a special query language designed for the task (Herlocker et al. 1999). Later, GroupLens

(Resnick et al. 1994) introduced an automated collaborative filtering system to help people

find articles they may like in the huge stream of available articles. Other early implemen-

tations of collaborative systems were published with projects such as personalized music

recommender Ringo (Shardanand 1994; Shardanand and Maes 1995), video recommender

(Hill et al. 1995), and MovieLens (Dahlen et al. 1998). Today, automated collaborative

filtering has been widely used in both information filtering applications and E-commerce

applications (Sarwar et al. 2001; Linden et al. 2003). It has been incorporated by Inter-
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net retailers (e.g., Amazon, Barnes and Noble1), music recommenders (e.g., MyLaunch2,

Last.fm), movie recommenders (e.g., Internet Movie Database3, Rotten Tomatoes4), and so

forth.

Collaborative filtering depends on a database of preferences for items by users to predict

a user’s affinity for items or the utility of items to a user (Breese et al. 1998). Memory-

based CF methods use the user rating data to calculate the similarity between users or

items and make recommendations according to those similarity values. On the other hand,

Model-based CF methods use the rating data to learn a model to make predictions. Each

method has advantages and disadvantages in implementing a recommendation system. This

chapter will describe how collaborative filtering works and discuss the challenges it has to

address for a music recommendation system.

2.1 User-Item dataset

In a typical collaborative filtering scenario, the database is a collection of interactions

between m users and n items. Given a list of m users U = {u1, u2, ..., um} and a list of

n items I = {i1, i2, ..., in}, the dataset is generally represented as a user-item matrix R.

In matrix R, each row represents a user profile, whereas each column corresponds to one

item (Celma 2010). The value ru,i is the rating of the user u for the item i, as depicted in

Fig. ??.

A common approach to build such a user preference dataset is through eliciting ei-

ther explicit ratings or implicit inferences from users, which provide different degrees of

expressivity of users’ preferences (Jawaheer et al. 2010). Explicitly, user can choose to

rate items with an numerical scale, e.g., 1–5. Amatriain et al. (2009) showed that explicit

feedback suffered from natural noise that referred to user variability and inconsistency in

providing explicit feedback. It is beneficial to exploit which perspective had been selected

by the user to rate music, such as lyrics, melodies, instruments, singers, originality, and

impression (Anderson et al. 2003; Chedrawy and Abidi 2006). As an alternative to ex-

plicit ratings, implicit inference can be generated by analyzing user’s behavior, which is

domain-dependent (Jawaheer et al. 2010). For example, website recommenders can use a

1http://www.barnesandnoble.com/
2http://www.mylaunch.com
3http://www.imdb.com
4http://www.rottentomatoes.com
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Fig. 2.1: User-item matrix for collaborative filtering.

record of browsed URLs, while book recommenders can employ purchase history. In music

recommendation, tracking user listening habits (e.g., in terms of playcounts) has become

the most common way (Celma 2010)

According to Loeb (1992), implicit feedback is important for less interactive or casual

users, for they are not likely to be willing to engage in lengthy interactions with the sys-

tem. However, some researchers pointed out that it could only capture positive preferences

(Jawaheer et al. 2010; Celma 2010). For example, if a user skipped a recommended track,

that does not imply the user does not like the track. It may be because that track doesn’t

match the current emotion or context. On the other hand, explicit feedback can be both

positive and negative. The rating scale can go from ‘I like it a lot’ to ‘I do not like it at all’.

Explicit feedback tend to be absolute whereas implicit feedback tend to be relative (Jawa-

heer et al. 2010). For example, a user, listening to track A ten times, may express high

preference if the user typically listens to each track once or twice. Or the user’s preference

on track A may be low if he/she listens to other tracks more than 20 times.

Explicit and implicit feedback exhibits different characteristics to represent users’ pref-

erences with both pros and cons. Some researchers have exploited new techniques to use

explicit or implicit feedback. RACOFI (rule applying collaborative filtering approach) (An-

derson et al. 2003) incorporated a set of logic rules, which can implicitly modify the ratings

that a user has done previously. For example, “if a user rates 9 the originality of an album
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by artist X then the predicted originality rating, for this user, of all other albums by artist X

is increased by a value of 0.5”. Hu et al. (2008) proposed the notion of applying confidence

levels to interpret the implicit feedback as positive and negative preference values.

2.2 Memory-based CF Techniques

Memory-based CF algorithms work over the entire or a sample of the user-item database

to predict the utility of items to the active user (the user under current consideration for

recommendations) (Breese et al. 1998; Sarwar et al. 2001; Melville and Sindhwani 2010).

Generally, they compute similarity between users or items, and then use the weighted aver-

age of ratings to produce predictions based on the similarity values (Su and Khoshgoftaar

2009). According to the similarity employed, either among users or among items, the task

of prediction can be done in user-based neighborhood or item-based neighborhood. Mak-

ing use of these neighborhood-based methods, top-N recommendation generates a list of

N top-ranked items that will be of interest to the active user (Karypis 2001).

2.2.1 User-based Neighborhood

User-based method calculates the similarity between the users u and v based on the items

they have both rated (Su and Khoshgoftaar 2009). To compute the similarity between two

users, Pearson correlation (Shardanand 1994; Breese et al. 1998; Hayes 2003; Sarwar et al.

2000) and cosine similarity (Breese et al. 1998; Sarwar et al. 2000) are often utilized. Let

I denote the set of items that have been rated by users u and v, Pearson correlation will

be

sim(u, v) =

∑
i∈I(ru,i − r̄u)(rv,i − r̄v)√∑

i∈I(ru,i − r̄u)2
√∑

i∈I(rv,i − r̄v)2
, (2.1)

where r̄u is the average rating of user u. Constrained Pearson correlation (Shardanand

1994) is a variation of Pearson correlation, which uses midpoint instead of mean rate and

is given by,

sim(u, v) =

∑
i∈I(ru,i − rm)(rv,i − rm)√∑

i∈I(ru,i − rm)2
√∑

i∈I(rv,i − rm)2
, (2.2)

where rm is the mid-point of rating scale.
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Vector cosine similarity is defined as,

sim(u, v) =

∑
i∈I ru,irv,i√∑

i∈I r
2
u,i

√∑
i∈I r

2
v,i

. (2.3)

It is possible to use mean squared difference (MSD) (Shardanand 1994) to derive the

similarity between a pair of users. MSD is formulated as

MSD(u, v) =

∑
i∈I cu,icv,i(ru,i − rv,i)2∑

i∈I cu,icv,i
, (2.4)

where cu,i = [1, 0] if ru,i [is, is not] defined.

Obtaining the predicted preference of a user on an item is the most important step in

a collaborative filtering system (Su and Khoshgoftaar 2009). For the user-based method,

a subset of nearest neighbors of the active user is chosen based on their similarities, and

the prediction is generated as a weighted aggregate of their ratings (Herlocker et al. 1999;

Celma 2010). Using the similarity as weighting, the predicted value for item i to user u is

r̂u,i = r̄u +

∑
v∈Sk(u) sim(u, v)(rv,i − r̄v)∑

v∈Sk(u) sim(u, v)
, (2.5)

where r̄u is the average rating of user u, and Sk(u) denotes the set of k neighbors for

user u.

User-based approaches by dynamically computing a neighborhood of similar users are

better suited to provide truly personalized information (Karypis 2001). However, they have

limitations related to scalability and real-time performance (Linden et al. 2003; Deshpande

and Karypis 2004; Sarwar et al. 2001). The bottleneck is the search for neighbors among

a large user population of potential neighbors (Herlocker et al. 1999). The computational

complexity grows linearly with the total number of users. Moreover, this type of algorithm

cannot take advantages of pre-computed user-to-user similarities (Karypis 2001). Without

the aid of pre-computation, the latency is crucial for near real-time performance (Sarwar

et al. 2001; Deshpande and Karypis 2004).

2.2.2 Item-based Neighborhood

Sarwar et al. (2001) proposed using the same correlation-based and cosine-based techniques

to compute similarities between items instead of between users. This idea has been further
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extended in Deshpande and Karypis (2004) for the top-N item recommendations. To obtain

the similarity between items i and j, the algorithms work on the set of users U , who have

rated them both. The common approaches to calculate the item similarity are Pearson

correlation (Eq. 2.1) and cosine similarity (Eq. 2.3).

Considering the reality that different users may use different rating scales, researchers

exploit adjusted cosine similarity (Deshpande and Karypis 2004; Sarwar et al. 2001) to

compute the similarity between two items, which is

sim(i, j) =

∑
u∈U(ru,i − r̄u)(ru,j − r̄u)√∑

u∈U(ru,i − r̄u)2
√∑

u∈U(ru,j − r̄u)2
, (2.6)

where r̄u is the average rating of user u.

Similarity using conditional probability (Karypis 2001) is defined as

sim(i, j) = P (j|i) ' f(i ∩ j)
f(i)

, (2.7)

where f(I) is the number of users who purchased item I. Note that this metric is asym-

metric.

Taking advantage of the set of k nearest neighbors of item i, Sk(i;u), the item-based

methods generate the predicted utility as a simple weighted average of all ratings from user

u (Celma 2010; Sarwar et al. 2001).

r̂u,i =

∑
j∈Sk(i;u) sim(i, j)ru,j∑
j∈Sk(i;u) sim(i, j)

(2.8)

The assumption behind the item-based scheme is that a user will be interested in pur-

chasing items that are similar to the items the user liked earlier and will tend to avoid items

that are similar to the items the user disliked earlier (Sarwar et al. 2001; Deshpande and

Karypis 2004). The item-based algorithms are expected to alleviate the scalability problem

of the user-based algorithms and lead to a much faster recommendation engine. The com-

putationally expensive part is to build an item-to-item matrix of similarities between each

pair of items, which can be done offline. The online task is to select items similar to each of

the active user’s purchases, aggregate them, and generate the recommendation. Thus, the

online computation is independent of the total number of items or users, but only depen-

dent on the number of items that have been rated or purchased by the active user. This

characteristic guarantees the computation speed for even extremely large datasets (Linden
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et al. 2003). On the other side, the item-to-item recommendation tends to generate lower-

quality recommendations than the user-based method (Sarwar et al. 2001). And another

potential limitation is that the globally computed item-to-item similarities may not be able

to provide a sufficient degree of personalization (Karypis 2001).

2.3 Model-based CF Techniques

The Model-based CF algorithms use the database to learn or build a descriptive model of

users, items, and/or ratings, which is then applied to make predictions (Breese et al. 1998;

Pennock et al. 2000). From a probabilistic perspective, the collaborative filtering task can

be viewed as calculating the expected value of a rating, r̂u,i, given the rating records of the

active user u (Breese et al. 1998). If K denotes the set of rating values and Iu denotes the

set of items on which user u has rated, the prediction is given by

r̂u,i =
K∑
k=0

P (ru,i = k|ru,j, j ∈ Iu)k, (2.9)

where P (ru,i = k|ru,j, j ∈ Iu) is the probability that the active user u will have a

particular rating for item i given the previously observed ratings. These probabilities are

the parameters of the desired model, which are estimated from a training set of user ratings

via offline computation. The model building process can be performed by many machine

learning and data mining algorithms such as clustering (Breese et al. 1998), regression

(Sarwar et al. 2001), and other models.

2.3.1 Clustering Model

Clustering models can explicitly infer the preferences of the underlying users (Su and Khosh-

goftaar 2009). In Breese et al. (1998), the clustering model was used to treat collaborative

filtering as a classification problem. Using a Bayesian classifier, it clustered similar users

into the same class, estimated the probability that a particular user was in a particular

class, and from there computed the conditional probability of ratings. Based on the con-

cept of classification, Ungar and Foster (1998) clustered users and items separately using

variations of k-means and Gibbs sampling. Each user was assigned to a class with a degree

of membership proportional to the similarity between the user and the mean of the class.
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Some researchers also applied a data clustering algorithm as an intermediate step. These

clustering methods (O’Connor et al. 2002; Anglade et al. 2007b) required a distance

metric or similarity metric to guide the partitioning process, grouped users or items, and

then performed recommendation within each cluster independent of the other clusters.

O’Connor et al. (2002) performed partitioning in the item space and applied traditional

collaborative filtering in each cluster of items. Anglade et al. (2007b) presented a peer-to-

peer music recommendation system that clustered users with similar tastes and provided

shared music radio channels to them.

2.3.2 Regression Model

In practice, two rating vectors may be distant in terms of Euclidean distance but are highly

similar with respect to Pearson correlation or vector cosine measure (Su and Khoshgoftaar

2009). In this case, using the raw ratings of the so-called similar items may result in poor

prediction. Instead of using raw ratings, a regression model uses an approximation of the

ratings (Sarwar et al. 2001; Su and Khoshgoftaar 2009). Given the user-item matrix Rm×n,

the linear regression model can be expressed as

R = MX +N, (2.10)

where M is a m × k matrix with each row as an estimate for one user, X is a k × n
matrix, and N is a random variable representing noise in user choices.

Vucetic and Obradovic (2005) proposed a regression-based CF approach that first

learned a number of experts describing relationships in ratings between pairs of items

and then combined the experts using statistical methods to predict the active user’s prefer-

ences. They used ordinary least squares to estimate the parameters of the linear regression

function. Lemire and Maclachlan (2005) proposed three Slope One schemes with the pre-

dictors of the form f(x) = x + b, which precomputed the average difference between the

ratings of one item and another for users who rated both. The assumption behind is that

the popularity differential between items for users can determine how much better one item

is liked than another on average. In return, the average popularity differential between a

pair of items can be used to predict a user’s preference on one unrated item if the user has

rated another.
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2.3.3 Other Models

In the literature, researchers have also incorporated other models into collaborative filtering

systems. Breese et al. (1998) formulated a probabilistic collaborative filtering with the

Bayesian network model, where a node corresponded to an item and the state of each node

corresponded to possible rating values for each item. The learning algorithm searched over

various model structures to capture dependencies for each item and the resulted model had

a decision tree at each node to encode the conditional probabilities.

An alternative to Bayesian network is a dependency network (Heckerman et al. 2000),

a graphical model for probabilistic relationships. Similar to a Bayesian network, a de-

pendency network is a directed graph, where a node’s parents render that node with a

conditional probability. The dependency network is potentially cyclic while the Bayesian

network is acyclic. Although less accurate than Bayesian networks, dependency networks

are faster in generating predictions and require less time and memory to learn.

Sarwar et al. (2000) applied association rule discovery algorithms to develop top-N

recommendation systems. Given two subsets of items A and B, such that A,B ⊆ I and

A
⋂
B = ∅, an association rule states that the presence of items from A in a transaction

indicates a likelihood that items from B are also present in the transaction. The confidence

of an association rule can be determined by the fraction of transactions that involve both A

and B. This rule-based model discovered association between co-purchased items and then

generated item recommendations based on the strength of the association between items.

Billsus and Pazzani (1998) proposed a machine learning framework for collaborative

filtering, where various machine learning techniques (such as artificial neural networks)

coupled with dimensionality reduction techniques (such as singular value decomposition)

can be used. Other model-based collaborative filtering methods include a probabilistic

relational model (Getoor and Sahami 1999), a maximum entropy model (Pavlov and Pen-

nock 2002), a probabilistic latent semantic analysis model (Hofmann 2004), and a Markov

decision process model (Shani et al. 2002).

2.4 Hybrid Memory- and Model-based Techniques

Memory-based CF algorithms are easy to implement, seem to work well with dense datasets

in practice, and are able to add new data easily and incrementally. However, this approach

can become computationally expensive, in terms of both time and space, as the size of the
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database grows. Moreover, data sparsity may decrease the performance of recommendation,

and these methods generally cannot provide explanations of recommendations to users

(Deerwester et al. 1990; Pennock et al. 2000; Su and Khoshgoftaar 2009).

Model-based CF algorithms can alleviate the sparsity and scalability problem to some

extent. Beyond the predictive capabilities, the model can highlight certain correlations in

the data, offer an intuitive rationale for recommendations, or make assumptions more ex-

plicit. The generated model can calculate predictions quickly and the memory requirements

for the model are generally less than for storing the full database (Pennock et al. 2000).

On the other hand, the time complexity to build a model may be prohibitive, and adding

one new data entry may require a full recompilation. When the dataset becomes extremely

sparse, model-based algorithms may not be practical, however, and for many algorithms,

there is a tradeoff between prediction performance and scalability (Su and Khoshgoftaar

2009).

It is possible to combine the memory-based and model-based CF algorithms into a hy-

brid approach. Personality diagnosis (Pennock et al. 2000) is a representative hybrid CF

approach that retains some advantages of both algorithms. Like memory-based methods,

the hybrid approach maintains all data throughout the process, and does not require a

compilation step to incorporate new data. This approach manifests each user’s underlying

personality type with their ratings for items, and assumes that users report ratings with

Gaussian noise. Given a user’s known ratings, it computes the probability that the user

is of the same personality type as other users, and then predicts the probability that the

user will like new items. The empirical results demonstrated that the use of this combined

approach can provide better recommendations than pure memory-based and model-based

collaborative filtering. The approach of personality diagnosis retains some of the advantages

of both memory- and model-based algorithms, namely simplicity, extensibility, normative

grounding, and explanatory power. ClustKNN (Rashid et al. 2006) is a highly scalable

hybrid algorithm. This method first compresses data tremendously by building a straight-

forward but efficient clustering model, and then generates recommendations quickly by

using a simple nearest neighbor-based approach.



2.5 Collaborative Music Recommendation Systems 17

2.5 Collaborative Music Recommendation Systems

The development of collaborative music recommendation systems can be traced back to the

1990s. Ringo (Shardanand 1994; Shardanand and Maes 1995) is one of the first generation

of music recommendation systems. It collected user ratings via email and made personalized

recommendations for music albums and artists. As a memory-based CF system, Ringo uti-

lized three functions (mean square difference, Pearson correlation, and constrained Pearson

correlation) to calculate the similarities between users and employed Pearson correlation

to implement the artist-to-artist recommendation.

The Audiomomma music recommendation system (Alvira et al. 2001) incorporated a

memory-based CF approach. It kept track of what artists a user listens to, searched for

other users with similar tastes based on the user’s listening history, and recommended other

artists that these similar listeners enjoyed.

A website-oriented music recommendation system (Chen and Chen 2001, 2005) provided

the service of music recommendation based on music grouping and user grouping. The

music grouping was achieved by analyzing the content of music items. By recording a

user’s access histories (i.e., the access time, the music item id, the corresponding music

group which the item belongs to, and the corresponding transaction), the system derived

an interest profile and a behavior profile of the user. Instead of predicting the utility of

one item to the active user, the user-based method predicted the association of each music

group with the active user.

Smart Radio (Hayes 2003), a community-based music radio, was a web-based applica-

tion that allowed its users to manage and share their personalized music programmes. It

was “a dynamic domain where users may seek new recommendations almost immediately

once the current programme has played through”. Thus, for the concern of computation

and scalability, a scheduler recalculated the neighborhood for each online user every half

hour for the recommendation engine to perform a memory-based CF algorithm.

As mentioned in Celma (2010), inDiscover implements the Slope One collaborative

filtering method (Lemire and Maclachlan 2005) as well as the RACOFI (rule applying

collaborative filtering) approach (Anderson et al. 2003). RACOFI incorporates a set of

logic rules with the goal to promote the items that the user will be most familiar with. As

an example, “if a user rates 9 the originality of an album by artist X then the predicted
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originality rating, for this user, of all other albums by artist X is increased by a value of

0.5”. In this way, the ratings have been implicitly modified.

Last.fm is a music recommendation site and a streaming radio station with a built-

in collaborative filter that attempts to learn its listeners’ likes and dislikes. For each

user, Last.fm builds a preference profile either by means of the Scrobbler or by recording

“Skipping” behaviors. With the Scrobbler, Last.fm can be informed of which songs the user

listens to on iTunes, Spotify, and various other web services and software. Alternatively

during the music streaming, if a song plays to the end, it is recorded as like. But if the

user skips a song, it is recorded as dislike. Over time, a preference profile is built. Based

on which artists a user listens to, Last.fm can find musical neighbors who listen to similar

music, and explore their collections to recommend new music to the user.

Genius, a playlist generation feature of iTunes, make recommendations depending on

the collaborative wisdom of crowds (Barrington et al. 2009; Mims 2010; Bogdanov and

Herrera 2011). Mims (2010) hints at how Genius may work according to the factors defined

by the algorithms. Basically, it compares the seed song to iTunes ’ massive database of

music, based on song rating data, play history, and metadata. When it is first initialized,

Genius analyzes a user’s music library and compiles all of the data necessary to build

playlists (Barrington et al. 2009).

2.6 Challenges

Collaborative filtering is a subjective method that aggregates the social behavior of the

users to make recommendations (Celma 2010). It is based on the user preference dataset (in

terms of ratings, purchases, downloads, etc.), and does not take into account the description

of the items. It presents some challenges although it is a popular recommendation method.

2.6.1 Data Sparsity

Data sparsity is an inherent property of user preference datasets since users only rate the

items they have accessed or purchased. Those commercial systems with a relative large

number of users and items have the problem of low coverage of the users’ ratings among the

items. It is common to have a sparse user-item matrix of 1% (or less) coverage (Celma 2010).

The lack of access to the content of the items prevents similar users from being matched

unless they have rated the exact same items (Balabanović and Shoham 1997). Thus, the
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sparsity of dataset prohibits effective recommendations. Only the items that were actually

rated by users can be addressed and only strong patterns in communities are actually

propagated (Pachet 2003). If two similar items have never been rated by the same user,

those two items cannot be classified into the same community, not necessarily because they

are inherently unassociated but because their associations have not been observed among

the users (Li et al. 2007). For recommendation systems that rely on comparing users

in pairs and therefore generating predictions, data sparsity poses challenges to neighbor

transitivity (Sarwar et al. 2001). If user A and B have similar interests, and user C shares

similar interests with B, it is not necessarily true that user A and C are like-minded as they

may have rated too few items.

To alleviate the data sparsity problem, many approaches have been proposed, including

Singular Value Decomposition (SVD) (Billsus and Pazzani 1998), Principal Component

Analysis (PCA) (Goldberg et al. 2001), and Latent Semantic Indexing (LSI) (Deerwester

et al. 1990). Generally, model-based CF algorithms can tackle the sparsity problem better

than memory-based CF algorithms (Sarwar et al. 2001; Su and Khoshgoftaar 2009). First,

it is easier to capture the similarities between users and items in a reduced dimensional

space than in a sparse high-dimensional space (Sarwar et al. 2001). Second, model-based

algorithms can provide more accurate predictions for sparse data than memory-based ones

(Su and Khoshgoftaar 2009).

2.6.2 Scalability

Traditional collaborative filtering will suffer scalability problems when the number of users

and items grow tremendously. Many systems need to react immediately to online require-

ments and make recommendations for all users (Linden et al. 2003). A poorly scalable sys-

tem will slow this process. Model-based CF algorithms, such as clustering CF algorithms,

address the scalability problem by seeking candidates for recommendation within smaller

and highly similar clusters instead of the entire database (O’Connor et al. 2002). But for

those models there are tradeoffs between scalability and quality. Dimensionality reduction

techniques can tackle the scalability problem and still produce accurate recommendations,

but they have to undergo expensive matrix factorization steps (Su and Khoshgoftaar 2009).
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2.6.3 Popularity Bias

Collaborative filtering is prone to popularity bias as expected by its inherent social com-

ponent. It “tends to reinforce popular artists, at the expense of discarding less-known

music” (Celma and Cano 2008). The popularity of music can be measured in terms of to-

tal playcounts (Celma and Cano 2008) or the fraction of total consumption fulfilled (Goel

et al. 2010). In a user preference dataset, popular items seem to be similar to (or related

with) lots of items, such that they are more likely to be recommended. As a consequence,

the recommenders are sometimes biased towards a small number of popular items and do

not explore the Long Tail of unknown items that could be more interesting and novel for

the users (Celma 2010). Navigation through the network of popular artists reveals a poor

discovery ratio. And this can decrease user satisfaction and novelty detection in the rec-

ommendation workflow (Herlocker et al. 2004; McNee et al. 2006). On the other hand,

content-based and human expert-based recommendation systems are unvulnerable to the

popularity bias. One possible way to recommend long tail items using conventional col-

laborative filtering, is to identify a candidate pool of long tail items from which to draw

recommendations (Levy and Bosteels 2010).

2.6.4 Cold Start

The cold start problem is related to both elements of a recommendation system: users

and items. It occurs when a new user or item has just entered the system, which is also

called new user/item problem (Adomavicius and Tuzhilin 2005) or early rater problem

(Claypool et al. 1999). It is difficult to find similar users or items because there is not

enough information. Collaborative filtering cannot recommend a new item until some

users rate it, for there are no user ratings on which to base the predictions. Moreover,

early recommendations for the item will often be inaccurate because there are few ratings

on it. Similarly, new users are unlikely to receive good recommendations because of the

lack of their ratings or purchase histories. The cold start problem essentially restricts the

performance of a collaborative filtering system (Celma 2010).

2.6.5 Shilling Attacks

Since collaborative filtering relies on social information to receive recommendations, good

ratings seem to promise a good selling rate. To manipulate the recommendation, producers
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or malicious users may introduce fake user profiles that highly rate a set of target items,

and then give negative ratings to other items. The desired result is known as a shilling

attack, which consists of either increasing rating (push attack) or lowering rating (nuke

attack) (Chirita et al. 2005). These attacks can affect the quality of the recommendation

and result in decreasing satisfaction with the system. Lam and Riedl (2004) found that

item-based CF algorithms were much less affected by the attacks than the user-based CF

algorithms. Attack models for shilling the item-based CF systems have been examined in

Mobasher et al. (2005). Future systems need to introduce precautions that discourage this

phenomenon (Resnick and Varian 1997).

2.6.6 Gray Sheep

The users, whose opinions do not consistently agree or disagree with any group of people,

will rarely receive accurate collaborative filtering predictions, even after the initial start up

phase. This problem is referred as Grey sheep (Claypool et al. 1999). Their atypical tastes

makes it difficult to find many users as their neighbors (Celma 2010), and thus these users

will not benefit from pure collaborative filtering systems.

2.6.7 Explainability

According to Herlocker et al. (2000) and Sinha and Swearingen (2002), a good recom-

mendation system should be able to explain to the user why the particular item has been

recommended. The explanations can help users justify how much confidence to put in the

received recommendation. Therefore, the explainability of a recommendation system can

increase the user acceptance by providing a justification of the system’s choice beyond a

blind recommendation. This is very beneficial when the CF-based recommendations are

not satisfying because users’ trust in the system may be degraded by these inapposite rec-

ommendations. A user study of five music recommendation systems, conducted by Sinha

and Swearingen (2002), indicated that users felt more confident in recommendations per-

ceived as explainable and more inclinable to accept them. Herlocker et al. (2000) explored

the effective models in supporting explanations in CF systems and believed that providing

explanations could also increase the filtering performance of CF systems.
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Chapter 3

Content-based Filtering

Content-based filtering provides recommendations by comparing the item (e.g., music)

information to the user preference, with the goal of predicting which items the user may

like (Celma 2010; Melville and Sindhwani 2010). Unlike collaborative filtering based on

other users’ ratings, content-based filtering focuses on the properties of items. The main

assumption under such approaches is that an item can be identified by a set of features

extracted directly from their content (Orio 2006). Content-based recommendation systems

attempt to make suggestions based on the analysis of items or the metadata associated

with them.

The content-based recommendation approach has its roots in the information retrieval

(IR) field (Adomavicius and Tuzhilin 2005; Celma 2010). Many early content-based sys-

tems focused on recommending items containing textual information, such as documents

and Web sites (URLs) (Adomavicius and Tuzhilin 2005; Melville and Sindhwani 2010).

Recently, this approach has been applied to the multimedia domain. A popular system

using (manual) content-based descriptions to recommend music is Pandora (Celma 2006),

which plays music with similar characteristics to those of a song provided by the user as

an initial seed. Pandora employs a team of professional music analysts to collect musical

details on every track, such as melody, harmony, instrumentation, rhythm, and vocals.

The general idea of content-based music recommendation systems is to analyze the

content of music items and decide the proper suggestions based on the comparison to

user preferences. The description of musical content can be collected either manually (like

Pandora Radio) or automatically. The manual description process is expensive in terms

of both labor and time (Magno and Sable 2008; Celma 2010). A lot of research work
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have focused on automatic acoustic feature extraction or web mining techniques to access

cultural information (Celma 2010). The user preference can be either represented by a

seed song or derived from listening or consumption histories. The process of matching

candidate items against user preference, can be treated as an information retrieval task or

a classification task (Melville and Sindhwani 2010).

3.1 Music Content Analysis

Content analysis is to create an item profile for representation. An artist or an album can

be recognized by various tags or the aggregation over all songs labeled with that artist. The

content of a given song can be obtained through an acoustic feature detection approach

(Huang and Jenor 2004; Li et al. 2004; Logan 2004; Knees et al. 2006; Shao et al. 2009), a

metadata (e.g., genre, artists, and lyrics) mining approach (Aucouturier and Pachet 2002c;

Pauws et al. 2006; Platt et al. 2002; Ragno et al. 2005), or the analysis of a score-based

symbolic representation (Chen and Chen 2005; Vembu and Baumann 2005). Pachet (2005)

proposed a framework to categorize music information into editorial, acoustic, and cultural

metadata, such that music content analysis is to retrieve the three types of metadata.

3.1.1 Editorial Metadata

Editorial metadata refers to the metadata manually entered by an editor, usually an expert

or a group of experts (Pachet 2005). It covers anything from album information (e.g., the

song “I Feel Good” by James Brown was released as a single in 1965) to administrative

information such as artist biography, genre information, and relationships among artists.

Thus, editorial metadata is not necessarily objective. A well-known music database orga-

nized by genre is Allmusic1, where professional editors compose brief descriptions of popular

artists and often include a list of similar artists (Berenzweig et al. 2004). mpME! (Dunne

et al. 2002) recommended music or artist to its users by using the artist directories on

AllMusic and Ultimate Band List (UBL)2.

1http://www.allmusic.com/
2http://www.ubl.com
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3.1.2 Acoustic Metadata

Acoustic metadata is obtained by analyzing audio files without any reference to a tex-

tual or prescribed information. Thus, acoustic metadata is purely objective information,

pertaining to the content of music (Pachet 2005). Acoustic metadata includes low-level

signal features (e.g., temporal features and spectral features) and high-level musical con-

cepts (e.g., rhythm, melody, and timbre) (Baumann and Hummel 2005; Casey et al. 2008;

Celma 2010). One noticeable endeavor promoting automatic feature extraction is the mu-

sic information retrieval experimental exchange (MIREX). MIREX provides a framework

for formal evaluation of music information retrieval (MIR) systems using centralized tasks,

datasets, platforms, and evaluation methods (Casey et al. 2008). Through machine learn-

ing algorithms such as regression, the acoustic metadata can be used to infer semantic

descriptors, such as genre, mood, and instrumentation (Bogdanov et al. 2010).

Low-level Signal Features

Low-level audio features are measurements of audio signals that contain information about a

musical work (Casey et al. 2008). According to the domain of analysis (time or frequency),

these features are generally categorized into temporal features or spectral features . Most

of the time, the signal is segmented into (overlapping) frames from 10 to 100 ms with 50%

overlap (Chen and Chen 2005; Kodama et al. 2005; Pampalk et al. 2005; Celma 2010).

For each frame, a feature vector is computed. Considering the large number of frames,

the resulted representation of a whole music piece can be characterized with one averaged

feature vector (Magno and Sable 2008) or one model (Cai et al. 2007).

Temporal Features are extracted directly from the raw audio signal without any pre-

ceding transformations, such that the computational complexity of temporal features tend

to be low (Mitrović et al. 2010). Zero crossing rate (ZCR) is such a inexpensive and simple

feature that is defined as the number of zero crossing in the temporal domain within a time

frame. It may be used to provide a measure of the noisiness of the signal (D.-M. Kim et al.

2007; Yoon et al. 2008), which is related to the timbral texture (Bozzon et al. 2008). For

example, heavy metal music tends to have a higher ZCR than classical music due to guitar

distortion and drums (Tzanetakis and Cook 2002). The amplitude-based or power-based
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features represent the temporal envelope of an audio signal. These features are easy and

fast to compute but limited in their expressiveness (Mitrović et al. 2010).

Spectral Features are considered more robust to polyphonic and complex textures

(Celma 2010). The popular ways to extract spectral features include Fourier transform,

autocorrelation, cosine transform, wavelet transform, and the constant Q transform (Casey

et al. 2008). The group of spectral features is usually the largest group of audio features

(Mitrović et al. 2010). Here, I focus on the features that have been applied to music

recommendation in the literature.

The short-time Fourier transform (STFT) performs a time-frequency decomposition

as the computation of spectrogram. STFT yields complex values, which carry both the

distribution of frequency components and the phase information on these components. The

frequency distribution is an estimation of the magnitude spectrum, which often serves as

the first step of feature extraction (Casey et al. 2008; Huang and Jenor 2004). After

computing the spectral envelope, many low-level audio features can be obtained, such

as spectral rolloff, spectral flatness, and spectral flux. Both the spectral rolloff and the

spectral flatness measure the spectral shape and indicates the tonality of sound. Noise-like

sounds tend to have a flat or uniform spectrum, while tonal sounds typically have line

spectra (Mitrović et al. 2010). The spectral rolloff point is the N% percentile of the power

spectral distribution, where N is usually 85% or 95% (Scheirer and Slaney 1997). In other

words, it is the frequency below which N% of the magnitude distribution is concentrated

(Mitrović et al. 2010). Besides music recommendation (D.-M. Kim et al. 2007; Yoon et al.

2008), this measure has also been used in genre classification (Li and Ogihara 2005) and

timbre modeling (Morchen et al. 2006). The spectral flatness is defined as the ratio of the

geometric and the arithmetic mean of a subband in the power spectrum. It shows to which

degree the frequencies in a spectrum are uniformly distributed (Huang and Jenor 2004).

Roughly, a flatness close to 1 means a “noise-like” signal, while a value close to 0 means

a “tone-like” signal. The spectral flux measures the frame-to-frame spectral amplitude

difference, quantifying changes in the shape of the spectrum over time (Scheirer and Slaney

1997; D.-M. Kim et al. 2007). The spectral flux is an important perceptual attribute in

the characterization of timbre (Yoon et al. 2008). Fluctuation patterns (Pampalk et al.

2005) characterize the energy distribution by describing the power fluctuations in different
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frequency bands (Pampalk et al. (2005) used 20 frequency bands according to the Bark

scale).

The Mel-frequency Cepstral Coefficients (MFCCs) represent the spectral envelope of a

signal, based on a conversion of the log amplitude spectrum to Mel-scale and a discrete

cosine transform (DCT) (Mitrović et al. 2010). MFCCs have been useful for the timbre and

genre classification (Celma 2010). In the literature (Logan 2004; Pampalk et al. 2005; Knees

et al. 2006; Magno and Sable 2008), the MFCC feature set has already shown effective

performance for the task of music recommendation. Foote (1997) utilized the histograms of

MFCCs to develop a music indexing system; while others have aggregated MFCCs together.

Logan and Salomon (2001, 2002, 2004) modeled a group of MFCC features with K-means

clustering, while Aucouturier and Pachet (2002a) and Knees et al. (2006) modeled the

distribution of each song’s MFCCs as a Gaussian Mixture Model (GMM) over the space

defined by MFCC features. Magno and Sable (2008) first performed the K-means clustering

on the MFCC set of a target song, and then fit each data cluster with a Gaussian component

to subsequently form a GMM.

Linear predictive coding (LPC) aims to estimate the filter of a source-filter model of

signal production. The LPC spectrum can be used as an approximation of the spectral

envelope. Due to the high retrieval efficiency of LPC coefficients, it has been extensively

used in automatic speech recognition and audio retrieval (Mitrović et al. 2010), and has

recently been adopted by music classification algorithms (Xu et al. 2005) and music rec-

ommendation systems (Dickerson and Ventura 2009)

High-level Music Concepts

High-level music concept embodies the intuitive information that a sophisticated listener

would have about a piece of music (Casey et al. 2008). In the literature (Kuo and Shan

2002; Chen and Chen 2005; Cano et al. 2005; Kodama et al. 2005; Hijikata et al. 2006),

recommendation systems extracted features of timbre, melody, rhythm, and music struc-

ture, based on the computation of low-level signal features.

Timbre is the quality of sound which allows human ears to distinguish the sound that

have the same pitch and loudness (Winckel and Binkley 1967; Khine et al. 2008). It is

mainly determined by the harmonic content and the dynamic characteristics of the sound

such as attack-decay envelope (Winckel and Binkley 1967). In addition to representing
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the distinguishable characteristics of a tone (Khine et al. 2008), the timbral features can

even help to differentiate mixture of sounds with similar rhythmic content (Çataltepe and

Altinel 2007). In this case, the spectral envelope consists of the basis for the description

of timbre (Schwarz and Rodet 1999). It is believed by Aucouturier and Pachet (2004) that

timbre is often correlated with music taste such that timbre similarity is a natural way

to measure relationships between music. According to McKay and Fujinaga (2006), many

genre classification systems have utilized primarily timbral features. In the development of

content-based music recommendation systems, researchers have used MFCC (Magno and

Sable 2008; Chordia et al. 2008), STFT (Çataltepe and Altinel 2007; D.-M. Kim et al.

2007), and modified discrete cosine transform (MDCT) (Zhu et al. 2006) to capture timbral

features.

Melody can be a strong identifier of Western music (Casey et al. 2008). Psychoacoustic

research (Dowling 1978) has shown that the contour, or shape, of a melody is an impor-

tant memorable feature for music. According to Downie (2003), any representation that

highlights a work’s melody can increase the chances of successful music identification or

retrieval. For example, the estimated melody line facilitated song retrieval based on similar

singing voice timbres (Fujihara and Goto 2007). Melody can be represented as a contin-

uous temporal-trajectory representation of fundamental frequency (pitch) or a series of

musical notes (Casey et al. 2008). In this case, the estimation of melodies can be achieved

by finding the predominant fundamental frequency trajectory (Goto 2004) or through a

knowledge-based (Eggink and Brown 2004) or classification-based (Poliner and Ellis 2005)

approach. To develop a music recommendation system, Çataltepe and Altinel (2007) and

Chordia et al. (2008) obtained melody information by pitch detection techniques, while

Kuo and Shan (2002) mined the melody style by utilizing a chord assignment algorithm.

Rhythm refers to all of the temporal aspects of a musical work, no matter whether

represented in a score, measured from a performance, or existing only in the perception of

listeners (Gouyon and Dixon 2005). It represents a change pattern of musical events over

time and conveys information such as tempo, meter, pitch duration, and harmonic duration

(Tzanetakis and Cook 2002; Mitrović et al. 2010). An intuitive approach to describe the

rhythm of musical data is to detect onset times and use the frequently occurring inter-

onset intervals as cues (Gouyon and Dixon 2005; Casey et al. 2008; Celma 2010). A review
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of automatic rhythm description approaches can be found in Gouyon and Dixon (2005).

The music recommenders have been reported to extract rhythmic features via the log-scale

modulation frequency coefficients (LMFC) (Zhu et al. 2006), beat histogram calculation

(Çataltepe and Altinel 2007), or auto-correlation metrics (Donaldson 2007a).

Music Structure refers to the way how music materials are presented (Celma 2010). The

structure in music arises from certain relationships between the elements, such as notes,

chords, and so forth (Paulus et al. 2010). On the level of individual notes, structures

can be characterized by timbre, pitch, and time intervals. Phrases, chords, and chord

progressions form the structures on a higher hierarchical level. On the level of entire

musical pieces the subdivision can be style-specific, such as the A-B themes exposition,

development and recapitulation of a sonata form, or the intro-verse-chorus-verse-chorus-

outro of pop music (Celma 2010). A general goal of structure analysis is to divide an audio

recording into temporal segments with some internal similarity of consistency in music

information (Casey et al. 2008). Paulus et al. (2010) gave an overview of state-of-the-art

methods for computational music structure analysis. Bozzon et al. (2008) thought that

exploiting similarities on semantic audio parts made the song similarity more meaningful to

the user by providing a finer granularity analysis, such that they incorporated the semantic

segmentation into their music recommendation system.

3.1.3 Cultural Metadata

Cultural metadata is textual data about musical content, implicitly produced by the envi-

ronment or culture and usually gathered from the Internet, weblogs, and forums (Pachet

2005). Since the Web contains a large amount of music-related information, there has been

much interest in the methods that automatically assign cultural metadata to music items

(Casey et al. 2008). Most of the works depend on the textual information retrieval and

filtering techniques, which have been widely used in the content-based recommendation

systems for documents and websites (URLs) (Adomavicius and Tuzhilin 2005).

Whitman and Lawrence (2002) used music descriptions generated from community

metadata to recommend similar artists. This approach sent the query to a web search

engine, downloaded top pages, and extracted text and natural language features using a

HTML parser. Then it created a vector representation for each artist with the Term Fre-

quency Inverse Document Frequency (TFIDF) values (Baumann and Hummel 2003). Their
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extracted data was time aware, reflecting changes in both the artist’s style and the public’s

perception of the artist (Casey et al. 2008). Vembu and Baumann (2005) presented a

recommendation system using Amazon web service interface to retrieve album reviews for

artists.

3.1.4 Combining Metadata

Berenzweig et al. (2004) argued that the “ground truth” of music relationships was present

in both the objective analysis and the cultural sensibility of music. A subjective evaluation

in Bogdanov and Herrera (2011) revealed that combining acoustic metadata (e.g., tim-

bre, tempo, and rhythm) and genre labels provided significant improvement in listeners’

satisfaction compared with the approach based on single source of information.

There have been some works combining distinct sources of information for efficient

content-based music recommendation. Baumann and Hummel (2005) exploited a multi-

modal similarity model (Baumann and Halloran 2004; Baumann et al. 2004) that linearly

combined the audio-based track similarity with the web-based artist similarity. Pampalk

and Goto (2007) adopted a weighted linear combination of audio-based and web-based

artist similarity, where weights were adjusted by users. The audio-based artist similar-

ity was aggregated from the similarities of tracks. According to Knees et al. (2006), one

drawback of the linear combination is that it does not reduce the number of necessary com-

putation between pairs of songs. As an alternative, Knees et al. proposed an approach to

prohibit the similarity calculation for songs that were unlikely to be similar by taking into

account additional artist information. More precisely, only the distance between tracks by

similar artists were calculated. A similar approach was found in Pampalk and Goto (2006).

3.2 User Preference Modeling

Generally, a system can discern a user’s preference via explicit or implicit inquiries. Ex-

plicitly, a user provides an example (e.g., a seed song or an artist) when the user has an

initial idea of what he/she wants. Otherwise, the system models the user’s preference im-

plicitly from a list of items that the user liked before (K. Kim et al. 2008; Bogdanov et al.

2010). The former situation is straightforward for content analysis methods to determine

user preferences. On the other hand, the list in the latter situation can be regarded as the

accumulation of a user’s preferences, and a representative value needs to be extracted.
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Given a set of items to derive a user’s preference, a simple approach is to represent the

user as a single point in the feature space, such as the mean point of all items (Bogdanov

et al. 2010). Bogdanov et al. (2010) also proposed to use the density of the user’s

preferences by employing a GMM. The advantage of the GMM approach is that the model

took the relevance of the attributes within the user’s preferences into account. A user may

prefer many classes of music in terms of genres or instrumentation (Yoon et al. 2008). To

analyze and represent the multiple preferences D.-M. Kim et al. (2007) proposed a dynamic

k-means clustering algorithm where the number of clusters, k, was controlled by the range

of clusters. If the range of some clusters exceeded the limit, k increased.

Usually, a user’s music list is growing as the user downloads or listens to pieces of music.

And the user’s preference may change with time. Concerning these, recommendation sys-

tems need to pay attention to when a user listens to what music (Yoon et al. 2008). Yoon

et al. (2008) extended the dynamic k-means clustering (D.-M. Kim et al. 2007) by intro-

ducing a decrease rate to analyze a user’s preference change with time. In this approach,

when a user had listened to new music, the importance of music which the user listened

before would be decreased. The weighted average values of clusters (center of “mass”)

were used to represent the user’s preference. Similarly in Chen and Chen (2001), each

transaction was assigned a different weight, where the latest transaction had the highest

one. Chang et al. (2011) expanded this method by taking extra count information into

consideration. Their proposed method was termed as transaction-interest-count-interest

(TICI), where the music group containing more accessed music objects in a transaction

had a higher weight than other groups in the same transaction. Since TICI emphasized

both the weight of time and the weight of count of music groups, it could decide the rank

of the group weight more precisely.

A hierarchical user preference model can facilitate the process of matching music items

against the user’s preference. Hijikata et al. (2006) built a decision tree as the user

profile based on the extracted features and allowed the user to edit it. This approach

enabled the recommendation to prioritize on important feature parameters. For instance,

one user who disliked fast tempo music, could use tempo as a first branching attribute to

exclude undesired music. After being rejected from the candidate set, these songs were not

considered for the next stage, which reduced the computation load on average.
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3.3 Matching Items against User Preference

The content-based recommendation is to suggest the items that fall into the active user’s

taste. Given the item representation and the user profile, the process of matching music

items against the user preference can be performed by either an information retrieval task

or a classification task.

3.3.1 Information Retrieval Task

The recommendation problem can be treated as an information retrieval (IR) task, where

the user’s preference is treated as a query and the candidate items are scored with rele-

vance/similarity to this query (Balabanović and Shoham 1997; Adomavicius and Tuzhilin

2005; Melville and Sindhwani 2010). After extracting a signature to represent each music

item, this type of method computes the distance between the query and the candidates

with a pre-designed similarity measure, sorts the similarity scores, and finally gives recom-

mendations from an ordered list of items (Adomavicius and Tuzhilin 2005; Zhu et al. 2006).

The similarity/distance computation approaches two cases: the vector representation and

the model representation of items.

In the vector space, the similarity computation can be straightforward by means of

distance functions, such as Pearson correlation and Euclidean distance (Chordia et al.

2008; Bogdanov et al. 2010; Dickerson and Ventura 2009). On the other hand, given

the model representation, the similarity computation can use the Kullback-Leibler (KL)

divergence (Bozzon et al. 2008), Earth Mover’s Distance (EMD) (Logan and Salomon

2001) or Monte Carlo sampling (Aucouturier and Pachet 2002b). KL divergence is a non-

symmetric measure of the difference between two probability distributions. EMD expands

the KL divergence to the the comparison of mixtures of distributions (Magno and Sable

2008; Chordia et al. 2008). This measure is defined as the minimum amount of work

needed to transfer one model into another (Logan 2002; Pampalk et al. 2005). Monte

Carlo sampling treats cluster models as probability distributions from which samples are

drawn. For each piece of music, a sample is drawn and the similarity is based on the

log-likelihood that a sample is generated by the model (Aucouturier and Pachet 2002b;

Pampalk et al. 2005).

In addition to the attempts to design a distance function, the literature has also reported

other possibilities to facilitate similarity search. Some researchers used a Self-Organizing
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Map (SOM) to create a lower dimensional space and simple distance metrics (Vembu and

Baumann 2005; Dickerson and Ventura 2009). SOM is an unsupervised learning algorithm

which creates a new n-dimensional space (usually two) from any higher dimensionality and

preserves as much similarity among training data as possible. A SOM trained on song data

(Dickerson and Ventura 2009) or artist data (Vembu and Baumann 2005) can be used to

perform music recommendation according to the similarity. Cai et al. (2007) converted

the recommendation problem to a scalable search problem, by building an efficient data

structure via locality sensitive hashing (LSH). This music indexing approach organized

music signatures based on hash codes generated by LSH, and returned the results sorted

through a relevance-ranking function.

3.3.2 Classification Task

An alternative to IR is to treat the recommendation problem as a classification task, where

a user’s past opinions assign labels to the items (Adomavicius and Tuzhilin 2005; Melville

and Sindhwani 2010). For instance, given a set of items labeled as “like” or “dislike” by

the user, the system can classify other items into the two groups and only recommend the

items in the group “like”. Sometimes the classifier made use of a user’s ratings by mapping

the rating scale (from 1 to k) to k classes (Melville et al. 2002; Huang and Jenor 2004).

In Huang and Jenor (2004), a user was asked to assign ratings ranging from one to five

to the songs for training. Then the LBG vector quantization method was implemented to

categorize a new song into a quantization group. As a result, the rating of the new song

was assigned as the most common rating value in its group.

In the research area of music recommendation, there exist other proposals of multi-class

classifier without the use of user rating values. Kuo and Shan (2002) used a Multitype

Variant-Support (MTVS) classifier, and defined three types of recommendation (boolean

recommendation, total rank recommendation, and total confidence recommendation) to

deal with the multi-class problem. Based on the classification results, the recommendation

engine calculated a ranking score for each candidate item to generate a ranked recommen-

dation list. Çataltepe and Altinel (2007) used the Shannon entropy measure to determine

the right clustering method (on which feature set to use). For each user, the clustering

with minimum entropy was selected, for it was the best possible way to group the songs

accessed by a user. After clustering, the recommendation system chose songs from each
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cluster proportional to the number of songs that belonged to this cluster from the user

history.

3.3.3 Hybrid of IR and Classification

Some work combined the above-mentioned two tasks to build a content-based music recom-

mendation system. Zhu et al. (2006) proposed an integrated music recommender that in-

cluded music genre classification, music emotion classification, and music similarity query.

The classifiers first classified music into five genre classes and four emotion classes with

AdaBoost algorithm, and then looked for similar songs from the class which the user’s

query belongs to. The hypothesis behind this approach was that “two similar songs must

be in the same music genre class and the same music emotion”. Based on the results of

classification, their designed scheme could speed up the similarity query process without

decreasing the precision.

3.4 Challenges

Content-based recommendation systems base their suggestion in the content analysis of

items, ignoring the collaborative wisdom of crowds. They present several limitations that

are described in the rest of this section.

3.4.1 Limited Content Analysis

Since the content-based techniques depend on the analysis of items, the quality of the

available data is a determinant factor in the performance of such systems (Adomavicius

and Tuzhilin 2005). With the editorial and cultural metadata the main problem is the

inconsistency (Angeles et al. 2010). The effects of inaccurate metadata (e.g., spelling

mistakes and subjective entries of genre) are numerous and there are no coordinated efforts

to independently measure the (editorial/cultural) metadata quality (Freed 2006). For the

acoustic metadata, only a relatively shallow analysis of certain kinds attributes can be

supplied (Balabanović and Shoham 1997). Although there have been a large amount of

research in extracting features from audio contents, it is still an open issue how to extract

truly relevant and significant features (Celma 2010).

For the computational modeling of music similarity, numerous features can be taken

into account. However, for a specific user at a specific time only a few features might be
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sufficient. This is because people seem to choose music at one time from one perspective,

such as lyrics, artists, instruments, or genre. And each of these descriptors may lie in

a unique set of features. It is not clear which features are important and should be used

without a comprehensive understanding of the user’s demand. In my opinion, content-based

music recommendation system can benefit from more accurate user preference models.

3.4.2 Scalability

Content-based approaches mainly use linear scan to look for proper recommendations, so

that the processing time increases linearly with the data scale (Cai et al. 2007). To

accelerate the computation on large-scale music collections, most audio-based approaches

utilize track-level descriptions, such as one feature vector (Aucouturier and Pachet 2002a;

Cano et al. 2005; Pauws et al. 2006) or one model representation (Knees et al. 2006)

for a whole piece of music. Some approaches further group music pieces into clusters and

perform searching on the cluster level (Huang and Jenor 2004; Logan 2004). However, such

high-level descriptions lose the temporal characteristics and may not be able to provide

enough information to characterize and distinguish various pieces of music (Cai et al. 2007).

Besides, for the systems based on editorial/cultural metadata it becomes more difficult to

maintain the consistency when catalogues become very large (Freed 2006).

3.4.3 Overspecialization

Since the goal of most content-based recommendation systems is to find music similar to a

user’s preference, finding novel and diverse music becomes an unavoidable challenge (Bal-

abanović and Shoham 1997; Cai et al. 2007). When a system can only recommend items

that are similar to those already accessed, the novelty and diversity of recommendation will

be low (Adomavicius and Tuzhilin 2005; Pampalk et al. 2005). For example, a listener with

no experience with Soul music will never receive a recommendation for even the greatest

Soul music. This problem can be addressed by introducing some randomness (Balabanović

and Shoham 1997) or using other factors to promote the eclecticness of the recommended

items (Celma 2010). In the context of information filtering, the randomness can be intro-

duced by the crossover and mutation operations (as part of a generic algorithm) (Sheth

and Maes 1993). To reach a compromise of similarity and novelty, Çataltepe and Altinel
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(2007) recommended a certain percentage of songs according to the user’s preference, and

the remaining songs from a repository of the popular songs at the time.

3.4.4 New User Problem

Since the content-based filtering is achieved by analyzing items’ contents rather than ex-

ploring other users’ opinions, new items with few ratings can avoid being excluded from

discovery. However, the cold-start problem may occur when a new user enters the system

(Adomavicius and Tuzhilin 2005; Celma 2010). Unless the new user explicitly clarifies a de-

mand, the system cannot adapt to the user preference with few listening histories such that

the user will not be able to receive reliable recommendations (Balabanović and Shoham

1997).

3.4.5 Gray Sheep

The problem of gray sheep (users with atypical tastes) can occur too, if the size of collection

is not big enough or the collection is biased towards the mainstream music (Celma 2010).
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Chapter 4

Extending the Capabilities of

Traditional Recommenders

Traditional music recommendation systems depend on collaborative filtering or content-

based filtering to generate recommendations. So far, the research community has broadened

its attention to include other aspects, as listed in Table 4.1. Hybrid approaches combine

the collaborative filtering and content-based filtering together to leverage the strengths and

weaknesses of each approach. User modeling aims to develop a better user profile. Context

awareness associates users and items in a specific circumstance, such as working or dancing.

Tag-based recommendation labels items with users’ opinions. Recommendation in the Long

Tail tries to minimize the popularity bias and mostly accompanies collaborative filtering,

for content-based filtering ignores item popularity at all. Recommendation networks intro-

duces some new properties to the recommendation strategies. Visualized recommendation

provides visual perception to users and sometimes allows interaction. Playlist generation

can be deemed as a variation of top-N recommendation, satisfying the needs specified by

users. Group recommendation involves some pre- or post-processing by either aggregating

multiple user preferences into a unit user profile or uniting separate recommendation results

into one recommendation list.

Out of all the works in the bibliography, 116 works in total tried to extend the ca-

pabilities of music recommendation systems. Most of these works can be identified with

one extension approach, while 11 works can be tagged with two labels. For example, the

work by van Gulik and Vignoli (2005) covered both the visualized recommendation and

the playlist generation. Fig. 4.1 shows the approximate categorization of the 116 extension
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works. Playlist generation and context-aware recommendation respectively accounted for

around one-quarter of all works. On the other hand, only 2% or research works proposed

to recommend niche items in the Long Tail. The other approaches took up 6% to 13%

of works. So we can conclude that more than half of the research effort has been for the

playlist generation and the context-aware recommendation. Fig. 4.2 depicts a detailed

model of music recommendation systems. The following sections will discuss the details of

each extension approach.

Table 4.1: Extensions to traditional recommenders

Extensions Description

Hybrid collaborative Combine collaborative filtering and content-based filtering

and content-based into a hybrid recommendation strategy.

User modeling Customize user profile with music-related information.

Context-aware Take into account additional contextual information (e.g.,

time and location) when providing recommendations.

Tag-based Apply tags to describe items (e.g., artists and songs).

Recommendation in Recommend unpopular items to minimize popularity bias

the Long Tail in collaborative filtering.

Recommendation Explore music by navigation under links between items

Networks and/or users.

Visualization Provide an interface visualizing a music collection or

recommendation results.

Playlist Recommend an ordered (or unordered) list of music.

Group recommendation Make recommendations to a whole group of users.

4.1 Hybrid of Collaborative and Content-based Filtering

Both collaborative filtering and content-based filtering have considerable merits and draw-

backs. Collaborative filtering can reflect a cultural knowledge about music and capture

the dynamics of music tastes as the population changes its sensibilities (Donaldson 2007a).

It works well in domains where it is hard to analyze content information by automated
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Fig. 4.1: Extensions of music recommendation systems.

Fig. 4.2: A detailed model of music recommendation systems.

processes (Melville et al. 2002), and has the ability to provide serendipitous recommenda-

tion. But this method is essentially content-blind, such that it has the new item problem,

popularity bias, and so forth (Aucouturier and Pachet 2002a). By contrast, content-based
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filtering does not necessarily need user feedback to characterize a given song. Since rec-

ommendations of music are based on content directly, it can recommend completely new

items and solve the popularity bias (Celma 2010). Unlike collaborative filtering where the

popularity information of music is constantly changing over time, the content or metadata

of music (e.g., artist, melody, and rhythm) do not change over time. Therefore, one musical

item can be analyzed only once. However, content-based approaches cannot discriminate

popular music from unpopular music, nor can it detect any cultural information (Donaldson

2007a). The two techniques have complementary characteristics as listed in Table 4.2.

Table 4.2: A comparison of collaborative filtering and content-based filtering

Collaborative filtering Content-based filtering

Social behavior analysis Yes No

Content analysis No Yes

Diversity & Serendipity Yes No

Overspecialization No Yes

New item problem Yes No

Popularity bias Yes No

In order to leverage the strengths and weaknesses of collaborative filtering and content-

based filtering, there have been some recommendation systems combing the two methods

into a hybrid approach (Adomavicius and Tuzhilin 2005; Melville and Sindhwani 2010).

Burke (2002) gave a survey of hybrid recommender systems and categorized the methods

to integrate different approaches into a hybrid recommender, such as weighted, switching,

mixed, cascade, and so on. I will now describe the hybrid approaches that have been

utilized by music recommendation systems.

4.1.1 Weighted Approaches

One simple way to build a hybrid recommendation system is to allow collaborative filtering

and content-based filtering produce recommendations separately and then merge them to-

gether using methods such as linear combinations (Burke 2002; Celma 2010). Tiemann et al.

(2007) investigated ensemble learning methods for hybrid music recommendations. In this

approach, collaborative filtering and content-based filtering each produced a weak learner,

whose results were combined by a simple combination rule. Lu and Tseng (2009) presented
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a music recommendation system that weighted collaborative filtering, content-based filter-

ing, and emotion-based recommendation. For each user, the system first computed some

initial weights of each recommendation method through a user survey. Then in the process

of making recommendations, the system collected the user’s feedback and adjusted the

weights of the three recommendations to adapt to the user’s variations of interests.

4.1.2 Feature Augmentation

To overcome the problems of collaborative filtering, such as sparsity, cold start, and pop-

ularity bias, some hybrid systems are based on traditional collaborative filtering but also

maintain a content-based profile for users or items. These content-based profiles are then

used to calculate the similarities between users or items to facilitate recommendation. Co-

hen and Fan (2000) described a collaborative filtering spider that collected lists of seman-

tically related entities from Internet. They extracted information about genre and musical

style of each artist from Allmusic1 and created a pseudo-user for each genre. The pseudo-

user rated everything in the genre positively and everything not in the genre negatively.

Then the system used the standard k-nearest neighbor approach to find the genres that

correlate with the user’s preferences and recommend artists in these genres. Their results

suggested that collaborative filtering methods may be useful even in cases where there was

no user data at all.

On the other hand, user access patterns discovered by item-based collaborative filtering

are also useful to determine music similarities, such that they can be incorporated into

a content-based recommendation system (Shao et al. 2009). This approach is essentially

a dynamic music similarity measurement scheme. The user access patterns assumed that

two pieces of music with a higher co-occurrence frequency were more similar to each other

in human perception. Shao et al. utilized the user access patterns to dynamically learn

weights for each content features and then performed music recommendation based on music

similarities. It has been argued by the authors that “comparing with other probabilistic

models and hybrid approaches, our method incorporates the content similarity data and

collaborative filtering information seamlessly.”

1http://www.allmusic.com/
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4.1.3 Mixed Approaches

Some recommenders do not only combine, but expand the description of the data sets by

taking into account the ratings of users and the description of the items, which is called

the mixed approach (Burke 2002; Celma 2010). Li et al. (2004, 2005, 2007) transferred

audio features into aggregate features using a K-means clustering algorithm and attached

those aggregate features to the user-rating matrix. Based on this extended rating matrix,

item community was derived from the Pearson correlation and the k-Medoids clustering

algorithm. Donaldson (2007a) merged the co-occurrence information of music and the

acoustic features into a unified scale. The co-occurrence of music in playlists was presented

in an adjacent matrix, where every column or row represented a song and each cell contained

the number of co-occurrence times. From this matrix, spectral graph eigen-vectors were

extracted and merged with the acoustic feature vectors to identify k-nearest neighbors.

This ability enabled the system to disambiguate the music seeking behavior of a given user

if they supply a given playlist as a query.

Some works attempt to directly develop a unifying model to combine collaborative

filtering and content-based filtering. Popescul et al. (2001) extended Hofmann’s aspect

model (Hofmann 1999) to incorporate three-way co-occurrence data among users, items,

and item content. This model introduced a set of latent variables to explain the generative

process for the observed data (Celma 2010). Based on it, Yoshii et al. (2006, 2008)

presented a probabilistic latent semantic indexing (pLSI) for hybrid music recommendation

that incorporated both rating data provided by users and content-based data extracted

from audio signals. Yoshii et al. (2007) improved the efficiency and scalability of the

previous approach using incremental learning. The original pLSI treated users and items

as discrete random variables that follow multinomial distributions, while Yoshii and Goto

(2009) extended this work to a continuous pLSI that incorporated GMMs.

4.2 User Modeling

The main goal of a music recommendation system is to suggest music that the listener

will be interested in. Understanding users can be crucial to proposing a more reasonable

recommendation than applying the same recommendation strategy to all users. For exam-

ple, some users show a clear bias towards style when choosing music, and some emphasize

timbral similarity, while others are interested in finding new and unexpected music (Bau-
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mann et al. 2004). Moreover, users’ feelings and expressions can be different towards the

same music (Kodama et al. 2005). Most recommendation systems try to understand a

user based on two complementary types of information: psychological factors (personal-

ity, demographics, social relationships) and explicit musical preferences (Perik et al. 2004;

Celma and Serra 2008). Those psychological factors are rarely updated or modified, while

the explicit musical preferences are updated more often (Celma and Serra 2008). These

two aspects are not isolated but correlated. As pointed out in Uitdenbogerd and van

Schnydel (2002) and Lesaffre et al. (2006), the music preference of a user is dependent on

the information of age, origin, occupation, socio-economic background, personality factors,

gender, and so on. The incorporation of demographic data into recommenders has proved

to be useful in improving the performance of music recommendation systems (Yapriady

and Uitdenbogerd 2005). Customizing the user profile is a field of increasing importance

for information filtering, which can provide adaptive recommendation service for users with

different backgrounds, experiences, and tasks performed (Vassileva 1994). Using user mod-

els in recommendation systems can reduce the search space and make recommendation

services more accurate and easier to use (Chai and Vercoe 2000).

In the music recommendation field, there have been a few attempts to set up user

profiles with music-related information (Celma 2010), including User Modeling for Infor-

mation Retrieval Language (UMIRL) (Chai and Vercoe 2000), MPEG-7 (Tsinaraki and

Christodoulakis 2005), Friend of a Friend (FOAF) (Celma et al. 2005; Celma and Serra

2008). UMIRL is an XML-like language, specially designed for music information retrieval

systems. It describes a user with indirect/demographic information and direct information

relating to music interests (e.g., favorite artists or genres). It even allows a user to add her

own definition to music, for example, “romantic music for me means slow music with titles

or lyric including word love.” The MPEG-7 is an ISO/IEC standard which provides a set

of description schemes to describe multimedia assets. For the user preferences of multime-

dia content, it includes the user’s history of interacting with multimedia items, searching

preferences (e.g., country, language, and artist), and keywords (e.g., dramatic and fiery).

FOAF, which is based on RDF/XML vocabulary, may include demographic (e.g., name,

gender, and age), geographic (city, country, latitude, and longitude), and social (relation-

ship with others) information together with usage patterns and music preferences. Other

approaches to model user preference also exist. Scrobbler 2 builds a user profile from the

2http://www.last.fm/about
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usage records. Each time a song is played, a little note containing the artist’s name, the

song title, and a timestamp, will be sent to Last.fm. In this way, the user profile reveals

“what songs you play most often, which songs you like the most, how much you’ve played

an artist over a certain amount of time, which of your friends have similar tastes... all

kinds of stuff”. Using a list of songs which a user listened to in the past, content analysis

techniques can further grasp the user’s preferences with respect to music attributes (Hoashi

et al. 2003; Hijikata et al. 2006; K. Kim et al. 2008).

Usually, a user’s preference shifts with time, in terms of years, seasons, days, and even

hours (Hayes 2003; Yoon et al. 2008; Park and Kahng 2010; Hu and Ogihara 2011).

The recommendation system needs to focus on when the user listens to what music. For

example, a user who liked calm and soft music before, may like noisy music now. One

strategy considering the temporal effect on music preference is to decrease the importance

of former data (Yoon et al. 2008). However, the consumption behavior of music is different

from that of others like movie, books, and games, so that unlike these other contents,

people listen to songs repeatedly and continuously (Celma and Lamere 2011; Celma 2010;

Park and Kahng 2010). Park and Kahng (2010) studied the periodicity of music listening

along the time axis, such as weekly periodic patterns and daily cycles, and their analysis

of the seasonal effect showed that some kinds of music were preferred at particular seasons

or months. For example, dance music is more popular in summer than winter. Although

the number of times a user plays a song shows his/her preference for that song (Park and

Kahng 2010; Hu and Ogihara 2011), the preference and the playcounts are not linearly

correlated (Park and Kahng 2010).

Since the modeling of user preference is not simple or straightforward, user feedback and

interaction has become a powerful auxiliary tool (Hoashi et al. 2003; Vignoli and Pauws

2005; Hijikata et al. 2006; Pampalk and Gasser 2006; Celma and Cano 2008). Alternatively,

tracking a user’s participation in a playing song can be used to evaluate the user’s attitude

towards that song (Hu and Ogihara 2011). If a user listens to a song from beginning to

end, the user is likely to like that song. On the other hand, if a user skipped a song

before playing 5% of the length, the user is assumed to dislike the song (Hu and Ogihara

2011). Collecting these data can inform the system whether the current recommendation

is effective or not (Pampalk et al. 2005). Pampalk et al. started the playlist generation

with an arbitrary song automatically selected and then adjusted the playlist according to
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users’ skipping behavior. This scheme can help to solve the problem of cold start when a

recommendation system has no reference as to what kinds of songs users like or dislike.

4.3 Context-aware Recommendation

The traditional recommendation approaches, either collaborative filtering or content-based

filtering, operate in a two dimensional User × Item space, and do not take into account

any additional contextual information, such as time, location, and activity (Adomavicius

and Tuzhilin 2011). In other words, they do not put users and items into context when

providing recommendations. Dey (2001) defined the context as “any information that can

be used to characterize the situation of an entity such as a person, place, or object that

is considered relevant to the interaction between a user and an application, including the

user and applications themselves”. According to some studies of the psychology and soci-

ology of music (North and Hargreaves 1996; North et al. 2004; McEnnis and Cunningham

2007), a user’s short-term music preferences are associated with the user’s context, such

as emotions, activities, or external environment. For example, the music for a dinner can

be different from the music for a dance party on musical attributes such as tempo and

rhythm. Even for the same activity, for example working, a user’s music preference on a

rainy Monday morning may be different from that on a sunny Friday afternoon. Moreover,

music preferences are affected by the season (Lee et al. 2010; Park and Kahng 2010),

such that a user may listen to different music in summer and winter. Those traditional

recommendation systems that ignore contextual information may not be able to accurately

capture a user’s temporary preference.

Context-awareness is to use the information about the circumstances to provide rele-

vant information and/or services to the user (Cuddy et al. 2005). The usage of contextual

information in recommender systems can be traced to the work by Herlocker and Konstan

(2001), who hypothesized that the inclusion of knowledge about the user’s task into consid-

eration can improve recommendation performance. Researchers in music recommendation

have recently paid more and more attention to the context-aware music recommendation

in order to provide more satisfying music to users. For example, Sourcetone radio3 takes

the specified mood of a listener into the consideration when streaming music. Songza4

3http://www.sourcetone.com/
4http://songza.com/
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recommends various playlists based on the time of day and activities (e.g., working or

cooking). The rest of this section will focus on how to obtain the contextual information

and incorporate them into a music recommender system.

4.3.1 Obtaining Contextual Information

Existing context-aware music recommenders have explored many kinds of context informa-

tion, such as location (Park et al. 2007; Lehtiniemi 2008; Lee and Lee 2007; Rho et al.

2009; Kaminskas and Ricci 2011), time (Park et al. 2007; Lehtiniemi 2008; Liu et al. 2009;

Su et al. 2010), weather (Park et al. 2007; Su et al. 2010), emotions (Kodama et al. 2005;

Kuo et al. 2005; Park et al. 2007; Dornbush et al. 2007; Rho et al. 2009; Shan et al. 2009;

Han et al. 2010), physiological states (Wijnalda et al. 2005; Oliver and Kreger-Stickles

2006; Niitsuma et al. 2008; Liu et al. 2009; Su et al. 2010), and tasks/activities (Cai et al.

2007; Rho et al. 2009). These contextual information can be obtained via either explicit

or implicit methods (Adomavicius and Tuzhilin 2011).

Explicit approaches gather contextual information by directly approaching users (Ado-

mavicius and Tuzhilin 2011). For example, a music website may obtain contextual infor-

mation by asking users to answer some specific questions before proving access to music.

Baltrunas et al. (2010) asked the users to indicate the appropriate context for their rated

item, in addition to a standard rating matrix. The contextual dimensions included activity

(work, party, relaxation, and sport), weather (sunny, rainy, cold), time of day (morning,

noon, evening), the valence mood (happy, sad), and the arousal mood (calm, energetic).

Based on these information, they predicted the best context for each item.

Implicit approaches gather contextual information from the data or the environment

without interaction with the user. For example, J.-H. Kim et al. (2006, 2007, 2008)

collected user information (e.g., sex, age, and pulsation) and surrounding contexts (e.g.,

weather, temperature, and location) from automatic sensing data based on an open service

gateway initiative (OSGi) framework. They traced user sex, age, and location information

using an RFID Tag which was attached to a user’s watch, and obtained temperature in-

formation from a temperature sensor through real-time Zigbee communication. Lee and

Lee (2006, 2007) obtained the weather data from the Weather Bureau, which contained

the data such as season, month, a day of the week, atmospheric conditions, and low-

est/highest/average temperatures.
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Sometimes, the user’s raw context data cannot be applied to recommendation systems

directly, but needs to be abstracted into a concept level. For example, the raw context

data, 14:00, 37◦C, may indicate a hot afternoon in summer. But the context abstraction

can be fuzzy when the contextual concepts do not have the clear boundary. For example,

there is no clear boundary between spring and summer in terms of a day, and a temperature

value of 27◦C can be either warm or hot. To solve this problem, Park et al. (2007), Shin

et al. (2009), and Lee et al. (2010) utilized the fuzzy set theory with each contextual

concept considerered as a fuzzy set. Guan et al. (2006) employed the native Bayesian

algorithm to automatically derive the mood of users from the contextual information. In

order to automatically suggest music when users read Web documents, Cai et al. (2007)

proposed an emotional allocation model to abstract emotions from textual information of

Web documents and music metadata.

4.3.2 Incorporating Context in Recommendation Systems

Incorporation of context converts a two-dimensional (user and item) problem into an n-

dimensional one through the addition of several contextual dimensions or variables (Ado-

mavicius and Tuzhilin 2005). Here, I will review some approaches that exist in the literature

of music recommendation. For a more comprehensive discussion of how to model context

in recommender systems, please refer to Adomavicius and Tuzhilin (2011).

Some systems treat the context-aware recommendation problem as the recommendation

via context-driven querying and search (Adomavicius and Tuzhilin 2011). The systems of

this type, such as Songza, typically use contextual information (e.g., current mood or

location) to query or search a certain repository of music and present the matching items

to the user. J.-H. Kim et al. (2006, 2007) prepared music profiles using contextual labels

such as weather, temperature, location and user age, and stored the labeled profiles in

a music content information database. Then, a content-based statistical filtering method

would select suitable music that matched the user’s need. Shin et al. (2009) introduced an

intermedium layer of context concepts to compute the similarities between a user’s current

context and an item. The system multiplied the correlation between a user’s current context

and the context concepts with the correlation between the context concepts and an item.

Some researchers employed the reasoning methodology to achieve context-awareness.

Lee and Lee (2006, 2007) used the case-based reasoning (CBR) on the user’s demographics,

behavioral patterns, and context. The fundamental concept in CBR is that similar problems
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will have similar solutions, such that the system solves a new problem by analyzing the

solutions to previous, similar problems. For example, a user who usually listened to the

song “Who’ll Stop the Rain” by Creedence Clearwater Revival on a rainy day, will likely

to listen to this song on a rainy day in the future. For a specific user in a specific context,

their system recommended the music that the similar users listened most in the similar

contexts. As an alternative, Rho et al. (2009) used rule-based reasoning to reason about

the context information and the user’s favorite mood from the user profile information.

Kuo et al. (2005) and Shan et al. (2009) proposed the music affinity graph algorithm to

discover the relationship between music features and emotions from film music.

Sometimes, the information about the current context can be used for selecting or con-

structing the relevant set of data records (Adomavicius and Tuzhilin 2011). Chedrawy and

Abidi (2006) presented a context-based collaborative filtering algorithm, where the simi-

larity between items was computed over the user-selected perspectives only, such as lyrics,

tunes, vocals, etc. Alternatively, Su et al. (2010) grouped users under similar context con-

ditions to improve collaborative filtering. Cebrián et al. (2010) generated a segmentation

in context space of the user profile into several contextual profiles. When a user requested

a recommendation, the system used the context-constrained micro-profiles that matched

the current temporal context to produce a recommendation list via a collaborative filtering

approach. Lee et al. (2010) described four ways to capture context-dependent preferences

of users in the framework of collaborative filtering.

The literature refers to works that directly used the contextual information in the

modeling techniques. Dornbush et al. (2007) modeled the complex relationships between a

user’s musical preferences and physiological states via various machine learning algorithms,

such as decision trees, AdaBoost, support vector machine (SVM), k-nearest neighbors, and

neural networks. The system was trained to understand what music would be preferred

under what conditions. J.-H. Kim et al. (2008) performed a modeling for each item using a

hidden Markov model (HMM) based on the context information. This context-based HMM

expressed user history according to the selected items and assisted in the recommendation

service together with collaborative filtering. Hu and Ogihara (2011) used GMM to represent

the time pattern of listening and compute the probability of playing a song at that time.
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4.4 Tag-based Recommendation

Tags are free text labels that are applied to items such as artists, albums, and songs.

Unlike traditional keyword assignment, no restrictions are placed on the makeup of a tag.

Additionally, there is usually no restriction on the number of tags that can be assigned

to an item. These tags are generally assigned by a non-expert easily. Social tags are

the aggregation of individual sets of tags, which can provide information about various

features, like genre, style, mood, users’ opinions, or instrumentation (Lamere 2008). Social

tagging is the process to annotate items with free text labels (Symeonidis et al. 2008;

Nanopoulos et al. 2010). It addresses the limitations of centralized metadata by providing

the opportunity of describing content to public communities of users (Casey et al. 2008).

Social tagging is a key part of Web 2.0 technologies and shows its power when the tags of

many users are aggregated and shared (Eck et al. 2007; Symeonidis et al. 2008; Nanopoulos

et al. 2010). The increasing number of users tagging their accessed items has facilitated

the emergence of tag-based profiling approaches, which has become an important source of

information for recommendation (Milicevic et al. 2010).

In the domain of music, Web sites such as Last.fm5 provide the possibility that users

can assign as many tags as they want to any track, album, or artist in their profiles. The

social tags not only carry useful information about the musical items, but also about the

users who provide them. It is assumed that the tags assigned to items usually include the

information related to their contents. Analogously, the tags provided by users can describe

their interests, tastes and needs (Cantador et al. 2010). With social tags, users can find

items more easily (Firan et al. 2007; Levy and Sandler 2009), and systems can improve the

search mechanisms and the personalized music recommendation (Symeonidis et al. 2008;

Green et al. 2009; Milicevic et al. 2010).

4.4.1 Incorporating Social Tags in Recommendation Systems

A simple way to utilize tags in recommendation is to consider them as query terms, e.g.,

find all songs tagged as “pop”. The tag-based searching approach has the significant ad-

vantage of computation speed and is able to return results instantly (Firan et al. 2007).

In the literature, there are also works that incorporated the tag-based user/item profile

into collaborative filtering (Firan et al. 2007) and content-based filtering (Cantador et al.

5http://www.last.fm/
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2010). Firan et al. (2007) defines user profiles as collections of tags together with corre-

sponding scores representing the user’s interest in each of these tags. In their approach, the

collaborative filtering worked on a User-Tag matrix and generated a list of recommended

tags based on what tags other similar users have used. With this list of tags, the top

10 tracks that have been tagged with most of these tags were returned as recommenda-

tions. Cantador et al. (2010) investigated the issue of applying tag-based profiles to both

users and items, and studied several weighting schemes to measure the importance of a

given tag for each user and item. The tag-based user/item profiles were then exploited by

content-based recommendation models. McFee and Lanckriet (2009) used tag-based artist

profiles together with artist-level acoustic features and biography summaries to reproduce

human-derived measurements of subjective similarity between artists.

Social tags can reveal the three-dimensional correlations between user-tag-item, which

project a user’s perception of a particular musical item (Symeonidis et al. 2008; Nanopoulos

et al. 2010). To capture the multimodal perception of music by particular users, Symeonidis

et al. (2008) developed a unified framework to model the social tagging data with three-

order tensors, and performed the latent semantic analysis (LSA) on this model to discover

the latent structure using higher-order single-value decomposition. Recommendations were

generated according to the user’s multimodal perception of music based on the discovery

of the latent structure. To further improve the quality of recommendation by addressing

the problem of data sparsity, Nanopoulos et al. (2010) exploited similarities between the

music items that were computed based on audio features.

4.4.2 Challenges

Even though social tagging has provided some new possibilities to perform the task of

recommendation, the tag-based systems still need to deal with some challenges posed by

the nature of tags. First, the free nature of social tags poses the vocabulary problem,

such as polysemy and synonymy (Lamere 2008; Nanopoulos et al. 2010). Polysemy refers

to the problem that tags have more than one meaning. For example, the tag “classic”

may be assigned to both the music composed in 18th century and the rock songs from the

60’s. Whilst synonymy refers to the problem that different tags have the same or similar

meanings, e.g., “rnb”, “r and b”, and “r&b”. To address the vocabulary problem, Levy

and Sandler (2008) applied LSA to social tags.
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Second, social tags may have the problem of data sparsity because some items may be

tagged poorly. New items may not be retrieved because they do not have enough assigned

tags. These problems can be addressed by employing other ways to collect tags, such as

deploying annotation games or autotagging audio content (Turnbull et al. 2008). Tagging

games like Tag a Tune6 collect tags with human players, while the autotagging approaches

use automated content analysis to apply tags. The general idea of autotagging is to map the

content-based features to a more semantically meaningful space, which can be formulated as

a multi-label classification problem (Ness et al. 2009). In Sandvold et al. (2006), Eck et al.

(2007) and Ness et al. (2009), tags were automatically predicted from audio features with

supervised learning. Moreover, Ness et al. (2009) used stacked generalization to exploit

possible correlations between tags. The output autotags can furnish the information of

musical items that lack descriptive tags and assist recommendation.

4.5 Recommendation in the Long Tail

The statistical analysis of music transactions/plays has revealed a popularity decreasing

curve across titles, which is often termed as Long Tail (Anderson 2004; Elberse 2007; Celma

2010). Except the head where a small number of popular items (the hits) are located,

the Long Tail is relatively flat in the shape of the frequency distribution. It illustrates

that a large number of songs or artists, the misses, are only played or downloaded by a

relatively small group of people. It seems that a majority of users prefer popular titles,

while only a minority exploit niche titles. The characteristics of the Long Tail is shaped

by the popularity of items (Celma and Cano 2008). To measure the popularity bias, the

Gini coefficient, which is usually used to measure the inequality of a given distribution,

has been applied (Elberse 2007; Fleder and Hosanagar 2007). When every item is equally

popular, the Gini coefficient equals zero. On the other hand, the Gini coefficient reaches

one when the distribution concentrates on one item. In Elberse (2007), the Gini coefficient

of Rhapsody music data is as high as 0.838. In some sense, this value infers that the music

industry is dominated by a high popularity bias. The 2007 “State of the Industry” report

(Soundscan 2007) showed that among the 844 million digital tracks sold in 2007, only 1%

of all digital tracks accounted for 80% of all track sales. Also, 1,000 albums accounted for

6http://www.gwap.com/gwap/gamesPreview/tagatune/
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50% of all album sales, and 450,344 of the 570,000 albums sold were purchased less than

100 times.

In the old days of brick-and-mortar stores, the hit-driven economics of the industry

endorsed that a small inventory of popular items would satisfy most customers (Anderson

2004; Goel et al. 2010). There is not enough shelf space for all of the CDs and not

enough radio waves to play all the music that is released. But it is believed by some

economists that the Long Tail can be profitable in e-commerce by “selling less of more”

(Anderson 2004; Brynjolfsson et al. 2006). In fact a sizable fraction of total consumption is

generated from niche items not available in traditional brick-and-mortar stores (Anderson

2004; Goel et al. 2010). Studies have shown that nearly everybody’s taste deviates from the

mainstream somewhere, with most people consuming niche products at least some of the

time (Anderson 2004; Elberse 2007; Goel et al. 2010). Interestingly, an analysis of Yahoo!

Music data showed that “both the most popular and the least popular songs receive the

highest ratings, with a dip in the middle of the inventory”, and that “the most obscure songs

receive slightly higher average ratings than the most popular ones” (Goel et al. 2010). This

contradicts the “Double Jeopardy” (obscure items are not generally known, and they are not

generally liked by those who know of them) supported by the analysis of DVD rental data

(Elberse 2007; Goel et al. 2010). In movie datasets, average consumer rating values increase

with popularity. In any case, aggregating the Long Tail has led to business successes, such

as Google, eBay, Amazon, Netflix, and Rhapsody (Anderson 2004). Moreover, according

to Goel et al. (2010) the tail availability may even boost the head sales. The essence of

the Long Tail business is to offer customization to individual consumers (Elberse 2007).

In the music industry, although the hits will continue to dominate consumption (Elberse

2007), driving demand down the Long Tail can potentially create a larger market overall

(Anderson 2004).

With the development of advanced tools for search and recommendation, listeners have

a better chance to discover and enjoy a wider range of music that may be less popular but

a good match to personal taste (Levy and Bosteels 2010). A study on Last.fm data showed

that the item popularity tended to reinforce popular music at the expense of discarding

less-known music (Celma and Cano 2008). The navigation guided by popularity may be

stuck in the head, such that it is not easy to reach a niche item from a hit (Celma and

Lamere 2011). To improve the visibility of Long Tail artists, Levy and Bosteels (2010) built

a prototype recommender for long tail artists using conventional item-based collaborative
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filtering. However, it is notable that the popularity effect can drastically filter out all low-

quality items in the Long Tail, since poor-quality tracks are hardly popular (Celma and

Cano 2008). In some sense, the popularity effect guarantees the data quality of the recom-

mended tracks. The user-centric experiment with 288 subjects and 5,573 tracks (Celma and

Herrera 2008) indicated that collaborative filtering outperformed content-based methods

in terms of users’ perceived quality even though it recommended less novel items (on the

Long Tail). Therefore, to assist in this discovery task, the recommendation techniques are

needed to discount popularity on an appropriate level (Fleder and Hosanagar 2007).

4.6 Recommendation Networks

Given a database of music, a music recommendation system is constructed to assist users

to explore music by navigation under guided links among items or users (i.e., item-to-item,

user-to-user, or user-to-item) (Cano et al. 2005; Seyerlehner et al. 2009). These guided

links constitute the information that music recommendation engines use to produce results

(Buldú et al. 2007). Recently there have been some works that made use of complex

networks (Anglade et al. 2007a; Buldú et al. 2007; Donaldson 2007b; Fields et al. 2008)

and music similarity networks (McFee and Lanckriet 2009; Seyerlehner et al. 2009) to assist

the music recommendation. The motivation behind this attempt is that the properties of

musical networks contain the information that can be used for the development of a music

recommendation system (Buldú et al. 2007).

Complex network theory is derived from graph theories (Albert and Barabási 2002). It

was realized from the experiment of Milgram (1967). He sent several packages to randomly

chosen people, asking them to forward it to a given person. If those people did not directly

know the recipient, they should “mail this folder to a personal acquaintance who is more

likely than you to know the target person” (Milgram 1967). In Milgram’s experiment,

most of the letters never arrived at their destinations, but of the ones that did, it took

an average of six forward to get there. This is the origin of the six degrees of separation

theory: assuming that people are all connected through chains of acquaintances, the theory

suggests that two people on the planet are, at most, six handshakes away from each other.

So far, complex networks have been applied to many problems including music topology

analysis (Gleiser and Danon 2003; De Lima e Silva et al. 2004; Lambiotte and Ausloos

2006; Park et al. 2007).
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A complex network is a group of nodes (vertices) connected via links (edges). Directed

links connect directed networks while undirected links connect undirected networks. If a

node has more links to other nodes, it has a higher probability to connect a new node, and

it is more likely to become central for the network. A weighted network is connected by

links that carry a numerical value measuring the strength of the connection. A detailed

description of complex network can be found in Albert and Barabási (2002). For the

recommendation systems, there are two distinct kinds of nodes, namely users and items.

These two groups of nodes can lie in two parallel planes (called bipartite graphs), connected

to each other with certain links. This bipartite structure can be projected to either user

plane or item plane. Zanin et al. (2008) described how to build a recommendation system

from the complex networks.

With the use of complex analysis, researchers have uncovered some clues to the struc-

ture of recommendations. Cano et al. (2005) analyzed the networks of artists where a

link was assigned if two performed or composed similar music. The information was ex-

tracted from online music portals such as AllMusic7 and Yahoo! Music8. They found

small-world effect in all networks, which had an influence on the navigation through the

network. By taking into account all uploaded playlists, Buldú et al. (2007) and Donaldson

(2007b) created a network of songs according to the information of co-occurrence. When

two songs co-occurred in playlists, an undirected link was created between them, and the

connection weights were assigned according to the number of times that the two songs ap-

peared together. Such networks offered the association data between songs. Furthermore,

Buldú et al. (2007) studied the evolution of a network with time and characterized the its

growth under musical tastes. Anglade et al. (2007a) created virtual communities of users

in peer-to-peer systems using a complex network theoretic approach.

For the music similarity networks, Seyerlehner et al. (2009) argued that any recom-

mender system could be transformed into a recommendation network or graph under some

restrictions, such as independence of user profiles. Thus, they constructed a recommen-

dation/browsing graph to analyze the performance of a content-based music recommender

system and assist the modification of the system design. Fields et al. (2008) tried to im-

prove navigation through music collections using both social metadata and content-based

similarities. They combined the complex network theory, network flow analysis and signal-

7http://www.allmusic.com/
8http://music.yahoo.com/
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based music analysis to construct an artist similarity network that explored the relationship

between the connectivity of pairs of artists on the Myspace9 top friends network and a mea-

sure of acoustic dissimilarity of these artists. This work was employed in playlist generation

(Fields 2011). Considering the variety and complexity of relationships among objects in

music social communities, Bu et al. (2010) and Tan et al. (2011) modeled multiple kinds

of social media information and acoustic features into a hypergraph. The hypergraph was

used to model high-order relations, where a hyperedge represented a set of objects. On this

hypergraph, recommendation was considered as a ranking problem.

4.7 Visualized Recommendation

The visualization for a music collection can provide an interface with comprehensive and

functional interaction to users. Automatic music analysis and music similarity measurement

have brought various interfaces with novel visualization functions (Casey et al. 2008).

Generally, the visualization in lower dimensions (usually two or three) involves projecting

high-dimensional item features onto a 2D plane or a 3D space, such as self-organizing maps

(SOMs). These techniques have realized the active and creative music management and

recommendation on the level of songs and artists.

To support exploration of unknown music, Pampalk (2001) presented the Islands of

Music interface based on audio features. They used a metaphor of geographic maps in this

intuitive interface where “islands” represented self-organized clusters of similar musical

pieces. Torrens et al. (2004) used metadata of sound files without acoustic analysis to

visualize musical pieces in a circle, rectangle, or tree map. They suggested using this

technique to create playlists by drawing paths or selecting regions of interest. Instead of

visualizing the whole collection, Musicream (Goto and Goto 2005) dynamically showed a

part of the collection to induce active user interaction. This interface enabled users to

come across unexpected musical pieces and generate a playlist of playlists. FM4 Soundpark

(Gasser and Flexer 2009), a content-based music recommender, came into use with two

user interfaces: “a more traditional Adobe Flash-based MP3 player interface with a small

integrated visualization of similar tracks to the currently played one and a downloadable,

fully interactive, 3D visualization client”. Donaldson (2007b) visualized the prominent

9http://www.myspace.com/
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structure of a recommendation network, and provided an interaction function to deal with

the occlusion in the low-dimensional representation.

On the other hand, there are interfaces that focus on the level of artists. van Gulik et al.

(2004) presented an interface of artist map, where artists were drawn as dots in a 2D space

and similar artists were placed close together. It enabled users to explore and discover

music collections on small devices. Based on the artist map, van Gulik and Vignoli (2005)

described a visual playlist creation method by specifying paths or regions on the map.

MusicRainbow (Pampalk and Goto 2006) mapped all artists in a collection onto a circular

rainbow where colors represent different styles of music. Similar artists were mapped near

each other by the traveling salesman algorithm and summarized with word labels extracted

from web pages. Later, Pampalk and Goto (2007) designed the MusicSun user interface as

an artist recommendation tool. MusicSun is a query-by-example interface, where the query

artists were placed inside the sun encircled by associated text labels, and recommendations

were displayed on the right side of the sun.

4.8 Playlist as Recommendation Engine

Music listeners typically do not listen to a single song in isolation but rather a sequence of

songs (McFee and Lanckriet 2011). A playlist is a group of songs, from an unordered list to

a specific ordered list, or anything in between (Knees et al. 2006; Fields 2011). To simplify,

a playlist refers to any set of music selected for a particular purpose. Due to the context of

selecting and ordering a set of songs from a music collection, playlist generation can serve

as a particular tool for music recommendation (Pauws and Eggen 2003; Herlocker et al.

2004; Kaji et al. 2005; Cai et al. 2007; Celma 2010; Fields 2011).

In many cases, a playlist is created to fit the current situation (Cunningham et al. 2006;

Knees et al. 2006; Liu et al. 2009; Fields 2011). For example, a playlist can be created as

background music for another task such as studying, driving, or exercising. Or it may be

created to reflect a particular mood or emotion such as depression or excitement. Different

from a classic music recommendation list that usually orders musical pieces by descend-

ing similarity scores or popularity, a playlist can utilize a number of methods to order

songs, including random, alphabetical, chronological, sorting acoustic attributes, optimiz-

ing song transitions and rule-based ordering (Aucouturier and Pachet 2002a; Donaldson

2007a; Fields 2011). Thus, playlist generation can solve the problem of context-aware mu-
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sic recommendation with an ordered list. On the other hand, playlist generation can be

different from general music recommendation in terms of orientation. While recommen-

dation systems are classically defined about consumption and acquisition, playlists are for

listening and playback (Pestoni et al. 2001; Fields 2011).

Over the last few years, a number of software applications or web services have included

the playlist generation. One famous example is the functions within iTunes10, such as smart

Playlists, Genius Playlists, and Genius Mixes. The smart Playlists feature allows a user

to specify a number of rules or constraints on various metadata (e.g., artist and genre)

which are then used to create playlists automatically. The Genius Playlists feature makes

a playlist of songs from the user’s library based a song selected by the user. The Genius

Mixes feature creates mixes by automatically grouping the user’s collections. A number of

web-based services are also offering personalized radio services using various analytics to

generate playlists, such as Pandora and Last.fm.

The construction of a playlist is tied to the understanding of how songs relate to each

other. Both the collaborative filtering and content-based filtering can be used to facilitate

the creation of playlists. In the cases of Hayes and Cunningham (2000), French and Hauver

(2001), Pestoni et al. (2001), and Avesani et al. (2002) collaborative filtering reveals the

social relationships of music and builds playlists by finding users with similar interests. In

terms of non-social playlist generation, Logan (2002, 2004), Pampalk et al. (2005), and

Flexer et al. (2008) used audio similarities, while Platt et al. (2002) and Pauws and Eggen

(2003) worked with some kinds of metadata (e.g., composer, instrument, and producer).

Knees et al. (2006) used a combination of audio features and web-based artist similarity

to accelerate the similarity computation on song level. Specially, existing playlists can

support the process of similarity exploration. Ragno et al. (2005) assumed that songs

that appeared in close proximity in playlists were more likely to be similar, such that they

inferred similarities between songs based on their occurrences in playlists. Maillet et al.

(2009) used playlists from professional radio stations as training data to learn a similarity

model based on song-level audio features. The output indicated the probability of audio

files being played successively in a playlist.

Given the structure of a collection of songs with respect to similarity, a simple case of

playlist generation is to return a subset of similar songs as a playlist (Logan 2002; Pampalk

et al. 2005; Pampalk and Gasser 2006; Fields 2011). On the other hand, some researchers

10http://www.apple.com/itunes/features/
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paid attention to optimize a route for the sequence of songs. Alghoniemy and Tewfik (2001)

treated the problem of playlist generation as a network flow problem. Based on integer

linear programming and branch & bound techniques, their algorithm found a path (of user-

defined length) satisfying user defined constraints and linking the given start song and end

song. Flexer et al. (2008) looked for an inherent sequential order by creating a smooth

transition between a start song and an end song. As a result, the songs at the beginning

sounded similar to the start song, songs at the end similar to the end song and songs in

the middle similar to both start and end songs. Baccigalupo and Plaza (2006) applied

case-based reasoning to create new playlists with inherent temporal structure based on the

patterns of existing playlists. Knees et al. (2006) used the traveling salesman algorithm

to generate playlists where consecutive tracks are maximally similar on average. Liu et al.

(2009) generated a playlist according to the heartbeat transition via the Markov decision

process. Bosteels et al. (2009) processed the procedure of dynamic playlist generation

using fuzzy set theory. Hu and Ogihara (2011) used time-series analysis of genre and year

to predict the next song to play. They argued that their approach catered better to a

user’s taste than recommending a similar song to the current one. Fields et al. (2010) and

McFee and Lanckriet (2011) discussed the evaluation of playlists in terms of the sequence

prediction.

Some playlist generation systems allow users to specify additional requirements. For

example, the first song should be from a particular artist, there should be 13 hip-hop songs

in a playlist of 30 songs, or the playlist should contain titles with increasing tempo. These

requirements can be modeled as logical constraints of music attributes (e.g., artist, genre,

and tempo) over playlist positions (Pachet et al. 2000; Aucouturier and Pachet 2002a;

Pauws and van de Wijdeven 2005; Pauws et al. 2006). To scale up playlist generation,

the local search procedure to constraint satisfaction was proposed and realized. According

to user-defined constraints, Aucouturier and Pachet (2002c) proposed a cost function of

constraints and constructed the playlist by iteratively optimizing an initial randomly chosen

playlist with regard to the cost function. Pauws et al. (2006) performed the local search

procedure by means of simulated annealing algorithm. However, searching for an optimal

sequence based on multiple constraints is an NP-hard problem (Aucouturier and Pachet

2002c). It is difficult to extend such methods to a scale with thousands of pieces and

hundreds of constraints (Cai et al. 2007).
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In addition to these automatic algorithms, there have been other works that utilized

visualization techniques and human interaction to generate playlists. Goto and Goto (2005)

presented an interactive user interface where users can grab pieces of music from similarity-

based flows of tracks to create playlists. van Gulik and Vignoli (2005) allowed users to

draw paths and specify regions on an artist map to construct playlists. Baur et al. (2010)

presented a real-time interaction model for creating playlists on mobile devices. Beginning

with a seed song, the system first delivered a set of recommendations. After the user

selected one and added it into the playlist, the process repeated with the selected song as

a new seed to make recommendations. In this way, the user manually constructed playlists

with the assistance of automatic recommendation.

4.9 Group Recommendation

Recommendation systems have traditionally focused on recommending items to individual

users (Jameson and Smyth 2007; J.-K. Kim et al. 2010). It is not a limitation in the

scenarios where users behave individually such that only their personal interests should

be considered. However, in some domains of recommendation, for example, music recom-

mendation, users may be looking for music in groups, such as at parties or in the gym.

In such cases, personalized music recommendation systems have difficulties in achieving a

proper degree of group satisfaction. Recently in the area of music recommendation, there

have been a small number of studies that address their recommendations to groups of

users, varying from long-term communities established formally (J.-K. Kim et al. 2010) to

short-term collections of individuals on a particular occasion (Cho et al. 2007).

Group recommendation systems differ from individual recommendation systems in that

group recommendation systems need to aggregate individual users’ tastes into a group pref-

erence properly (Crossen et al. 2002; Chao et al. 2005; J.-K. Kim et al. 2010). One of

the earliest group recommendation systems is MusixFX (McCarthy and Anagnost 1998),

which automatically adjusted the selection of music playing in a fitness center. The system

kept a database of members’ preferences for a wide range of musical genres and constructed

a group model through an averaging procedure. To maximize the satisfaction of the group,

it played the genre with the highest average ratings. Without explicit specification of pref-

erences, Flytrayp (Crossen et al. 2002) paid attention to what music people listened to on

their computers. Using this track data together with the interrelationships of genres, Fly-
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trayp decided the next song to play based on a voting mechanism. Instead of determining

users’ preferred songs, Adaptive Radio (Chao et al. 2005) elicited negative preferences (e.g.,

expressions of dissatisfaction with particular music tracks). It kept track of the songs that

users disliked and avoided playing them. The adaptive in-vehicle multimedia recommenda-

tion system (Yu et al. 2005) aggregated user profiles through wireless mobile devices, such

as laptops, PDAs, and cell phones. The aggregation procedure first selected features to rep-

resent common interests of travelers, and then assigned appropriate weights to the selected

features. J.-K. Kim et al. (2010) proposed a group recommendation system for members

of online communities. The procedure of generating recommendations consisted of two

phases. First, a group profile-based filtering method produced a candidate recommenda-

tion set through an adjusted collaborative filtering process. This phase aimed to satisfy the

majority of group members. Second, an individual profile-based filtering method removed

items irrelevant to individual preferences from the candidate set, which could reduce the

dissatisfaction of individuals. Although representing the taste of the group before making

recommendations can increase the chance of finding valuable recommendations, it cannot

satisfy all members of the group (Jameson and Smyth 2007; J.-K. Kim et al. 2010).

Instead of aggregating individual users’ preferences into a group preference, there ex-

ist other schemes to make recommendations to groups. O’Connor et al. (2002) generated

recommendation sets for each group member and then merged them into a final recommen-

dation set for the group. This method explored the tradeoffs between group satisfaction

and individual privacy for small groups of close friends. However, this recommendation

approach can be very time-consuming for larger groups, and may not function effectively

for more anonymous groups. For public places where people are coming and going fre-

quently, Cho et al. (2007) proposed a context-aware music recommendation system based

on sensor networks. According to the information collected by the installed sensors, such

as the density of people, season, weather, and time, the system chose the music that best

matched the current situation from the music database.

A comprehensive description of the recommendation to groups can be found in Jameson

and Smyth (2007).
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Chapter 5

Evaluating music recommendation

systems

Given many approaches to generate music recommendations, how to identify the best

algorithm is important for both the academic research and the e-commerce application.

Evaluating a proposed method is one of the biggest challenges when designing music recom-

mendation systems (Barrington et al. 2009). This challenge mainly lies in the disagreement

on the attributes to be measured and the metrics to be used (Herlocker et al. 2004). To

evaluate how well a commercial recommender achieves its overall goals, one possible way is

to check the revenue of the application with and without the recommendation strategy and

make an estimation of the value of the system (Shani and Gunawardana 2011). Although

this evaluation approach can provide conclusive evidence of the system performance, it

is time-consuming because a period of time is always needed to validate the revenue. It

is also not commercially viable and different vendors can not be compared. Alternative

possibilities are to evaluate recommendation systems in terms of some specific properties.

In the literature, the majority of previous work has focused on improving the predictive

accuracy of recommendations. However, some studies have shown that users are willing

to sacrifice some amount of accuracy for improved performance in other aspects, and that

such systems are more satisfying overall (Swearingen and Sinha 2001; Herlocker et al. 2004;

Ziegler et al. 2005; Zhang et al. 2012). Therefore, a growing trend is to consider properties

other than accuracy such as coverage, novelty, and diversity, which contribute towards the

quality of music recommendations. All these properties will be discussed below.
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As to the problem of collecting evaluation data, Shani and Gunawardana (2011) pro-

posed three types of experiments. Firstly, offline simulation utilizes existing datasets and

requires no user interaction, thus it is easy to conduct. Secondly, an user study involves

a small group of subjects who are required to perform predesigned tasks in a controlled

environment. This approach can collect both the quantitative and the qualitative informa-

tion, but the bias in users need to be taken into consideration. Lastly, large-scale online

evaluation refers to the case where a recommendation system is used by real users perform-

ing real tasks. Since this approach collects evaluation results from real user populations

interacting with the system, it is more trustworthy than offline simulation and user studies

of small set of subjects (Kohavi et al. 2009; Shani and Gunawardana 2011). Nevertheless,

such experiments can be expensive and risky in some cases, such that they are not easy or

feasible to be carried out. There has not been any notable work on conducting an online

evaluation in the academia or the industry. Here, only the description and examples of the

first two experimental settings, offline simulation and user studies, will be given.

5.1 Properties

As different applications have different needs, it is crucial to decide on the properties for

evaluation. Since some of the properties (e.g., novelty, diversity, and privacy) often conflict

with the drive for accuracy, it is also important to understand how these traded-offs affect

the overall performance.

5.1.1 Accuracy

It is assumed that a system providing more accurate predications will be preferred by users,

so that many works in evaluating recommendation systems have focused on the property

of predictive accuracy (Swearingen and Sinha 2001; Herlocker et al. 2004; Ziegler et al.

2005; Hu et al. 2008; Zhang et al. 2012). Accuracy may measure how well a system

predicts a rating value for a specific item, how often a system makes correct or incorrect

recommendations, or how close a predicted ranking of items differs from the user’s true

ranking.
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Rating-based Metrics

In some applications, the system predicts the rating value of an item from a user on a

numeric range (e.g., 1–5). In this case, the deviation between the predicted value and the

actual one can be used to demonstrate the prediction accuracy of the system. Given a

test set T of user-item pairs (u, i) with actual ratings ru,i and a set of predicted ratings

r̂u,i generated by the system, mean absolute error (MAE) (Shardanand and Maes 1995;

Herlocker et al. 1999; Pennock et al. 2000; Sarwar et al. 2001; J.-H. Kim et al. 2006;

Rashid et al. 2006; Li et al. 2007; Liu et al. 2009) and root mean squared error (RMSE)

(Amatriain et al. 2009; Dror et al. 2011) are commonly used metrics.

MAE =
1

|T |
∑

(u,i)∈T

|r̂u,i − ru,i| (5.1)

RMSE =

√
1

|T |
∑

(u,i)∈T

(r̂u,i − ru,i)2 (5.2)

Decision-based Metrics

Some applications are not interested in how much a user likes recommended items (repre-

sented as rating values), but rather focus on whether or not the user would like to accept

the recommendations. For instance, a system may recommend a set of songs to a user

and the user may add them into a playlist or not. A contingency table (or confusion ma-

trix) as shown in Table 5.1, shows four possible outcomes, which is helpful to measure the

appropriateness of recommendations.

Table 5.1: A contingency table showing possible results of recommendations

Liked Not liked

Recommended True Positive (TP) False Positive (FP)

Not recommended False Negative (FN) True Negative (TN)

TP and TN are desired outcomes when the relevant items are recommended and the

irrelevant items are ignored. FNs describe the cases when products are not recommended,

though the consumer would like them, while FPs represent the cases when products are
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recommended, though the consumer does not like them. In many cases, such as medical

diagnosis or news recommendation, FNs are more important than FPs because the cost of

an FN is significant. An FN in diagnosis may be at the expense of a patient’s life and an

FN in news recommendation is likely to lead to an investment failure. Differently, in music

or movie recommendation, the cost of an FN is almost zero. According to Sarwar et al.

(2000), FPs are the most important errors that need to be avoided for they will lead to

angry consumers. However, in the area of music recommendation, the cost of an FP is just

a few dollars to purchase a song or an album, although FP is more significant than FN.

In order to quantify the performance of a recommendation system, precision and recall

can be utilized (Hijikata et al. 2006; Cai et al. 2007; Lee and Lee 2007; Bozzon et al. 2008;

Fields et al. 2010).

Precision =
TP

TP + FP
(5.3)

Recall =
TP

TP + FN
(5.4)

Precision measures the fraction of recommended items that are relevant, while recall

measures the fraction of relevant items that are recommended (Karypis 2001; Bozzon et al.

2008; Celma 2010). Recall can also be viewed as the probability of a randomly-selected good

item being recommended. A recall value of 1.0 indicates that the recommendation algorithm

is always able to recommend the good items, whereas a recall value of 0.0 indicates that the

recommendation algorithm is not able to recommend any of the good items (Karypis 2001).

In a typical online music recommendation system (e.g., Last.fm), users require a higher

precision to receive highly relevant recommendations; while, in an offline system (based on

browsing and navigation activities), users prefer a higher recall in order to retrieve a wider

range of items (Bozzon et al. 2008). As a weighted harmonic mean between precision and

recall, F-measure, Fβ, has also been utilized for performance evaluation (Hijikata et al.

2006; Bozzon et al. 2008; Celma 2010).

Fβ =
(1 + β2) · (precision · recall)

β2 · precision+ recall
. (5.5)

Taking the ranking performance into consideration, Bozzon et al. (2008) adopted the

precision-recall curve, where recall was plotted on x-axis and precision was plotted on y-

axis. This curve indicated the precision achieved by retrieving the top-k% relevant items

in the collection. An alternative tool is the receiver operating characteristic (ROC) curve
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that measures the selection of high-quality items over a range of different recommendation

list lengths (Celma 2010; Shani and Gunawardana 2011) or over a scope of prediction score

thresholds for recommendation (Herlocker et al. 1999; Su and Khoshgoftaar 2009). On an

ROC curve, false positive rate (FPR) is plotted on the x-axis and true positive rate (TPR)

is plotted on the y-axis.

FPR =
FP

FP + TN
(5.6)

TPR = Recall =
TP

TP + FN
(5.7)

The FPR can be used to determine the probability of a randomly-selected bad item

being rejected by the recommender (Herlocker et al. 1999). The trade-off between FPR

and TPR can be visualized by the ROC curve. Typically, the area under the curve (AUC)

can summarize the ROC results and compare algorithms independently of applications

(Schein et al. 2002; Celma 2010). The AUC demonstrates the probability that a system

will be able to choose correctly between a good item and a bad item (Herlocker et al. 2004).

A higher AUC value infers a better performance of the recommendation system.

Ranking-based Metrics

Sometimes the application presents ranked lists of recommendations to users with the

interest in ordering items according to users’ preferences. Ranking-based accuracy metrics

can assist in evaluating a recommendation sequence, such as an ordered playlist, although

they may be overly sensitive for applications where users are just concerned about whether

an item is good or not (Herlocker et al. 2004).

There are two common approaches to evaluate the accuracy of such a ranked list. The

first one needs to generate the correct order of a list for a given user, and compare the

predicted list with the correct one. The second approach needs to measure the utility of

the ranked list to the user, based on the assumption that the top positions are more relevant

than the bottom positions on a list (Shani and Gunawardana 2011). In other words, the

utility-based ranking metrics take the item position on a predicted list into consideration,

which include mean reciprocal rank (MRR) (Nanopoulos et al. 2010), discounted cumulated

gain (DCG) (Firan et al. 2007; Cantador et al. 2010), and rank score (R-score) (Breese

et al. 1998; J.-H. Kim et al. 2006; Li et al. 2007; Yoshii and Goto 2009).
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The MRR evaluates the quality of top-N lists generated by retrieval processes by mea-

suring how far from the top appears the first good item. It is defined as

MRR =
1

N

H∑
i=1

1

pi
, (5.8)

where H is the number of hits that refer to the good recommendations, and pi is the

position of hits within the top-N list. Hits that occur earlier in the top-N list are weighted

higher than hits that occur later in the list.

The DCG logarithmically penalizes relevant recommendations that are located in the

bottom of the top-N list. Assuming each user has a gain, G, from being recommended an

item, the DCG at position p in an ordered list can be formulated as,

DCGp =

{
G1 if p = 1

DCGp−1 +Gp/ log(p) Otherwise.
(5.9)

Therefore, the utility of a top-N recommendation list for a user is DCGN that is based

on the user’s perceived gain.

The R-score assumes that the value of recommendations decline exponentially down the

ranked list. The strength of the decline is described by a half-life parameter α, such that

R-score is also called half-life utility. The half-life is the number of items on a list that have

a 50% chance of being listened to. The R-score for each user is defined as,

Ru =
∑
p

max(ru,p − d, 0)

2(p−1)/(α−1) , (5.10)

where ru,p represents the rating of user u on the item at position p in the list, and d is

a task dependent neutral rating value. In the literature, d can be a default rating (Yoshii

and Goto 2009; Celma 2010), the overall mean rating (Li et al. 2007), or the mid-average

rating (J.-H. Kim et al. 2006). The total score reflecting the utilities of all users is,

R = 100

∑
uRu∑

uR
max
u

, (5.11)

where Rmax
u is the maximum achievable utility if all observed items had been at the

top of the ranked list, ordered by rating values. A higher rank score indicates not only
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higher accuracy, but also higher probability of recommending known items (Yoshii and

Goto 2009).

5.1.2 Utility

The measurement of users’ perceived utility requires users to check the recommended items

and explicitly express their opinions over them (Herlocker et al. 2004). An obvious pro-

cedure is to run a user study and collect preference data through an interview or using a

questionnaire. For collaborative filtering systems, the ratings can be used to measure the

utility (Breese et al. 1998). For example, in the case of rating an album, a five star rating

indicates higher utility than a four star rating. Note that a user’s expression of utility may

be biased or imprecise (Barrington et al. 2009). This is because the personal sentiments

and contexts may affect the acceptance of recommendations. To measure these effects,

Park and Moon (2011) applied a conceptual model called technology acceptance model,

which had been used to explain users’ acceptance behaviors in socio-psychology studies.

Moreover, aggregating the opinions across users into one score for a recommendation sys-

tem needs more consideration. It is not clear whether to treat all users equally or not. In

the e-commerce, the opinions of users who bought many items may be preferred by the

system. Meanwhile, these users’ preferences to this system may be higher than the users

who only bought a single item (Shani and Gunawardana 2011). Therefore, assigning proper

weightings to users may be not easy.

5.1.3 Confidence

Confidence in recommendations can refer to the system’s trust in its own recommendations

or represent users’ trust in the recommendations (Shani and Gunawardana 2011). The goal

of a recommendation system as a decision-support system is to help users make the best

possible decision about what to try or purchase based on their interests (Swearingen and

Sinha 2001; Herlocker et al. 2000). In many cases, the system confidence can help users

make effective decisions. For example, if the system recommends an album with very high

confidence, and another album with the same rating but a lower confidence, the user is

more likely to choose the one with higher confidence. A common measurement of system

confidence is the probability that the predicted value is indeed true, or the interval around

the predicted value where a predefined portion (e.g., 95% of the true values) lie. Herlocker
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et al. (2000) explored a wide range of different system confidence in order to study their

influences on users.

On the other hand, the measurement of users’ trust generally requires the involvement

of users to provide feedback. Some studies have showed that presenting a recommendation

that a user love or hate a lot can significantly affect the overall evaluation (Cunningham

et al. 2006; Lee 2011). For example, a user may rate a playlist higher because he/she

really likes one of the songs, or rate the whole playlist lower if he/she dislike a single song

(Lee 2011). Another notable pattern is that users seem to like rediscovering songs that

were once familiar (Swearingen and Sinha 2001; Lee 2011). Recommending some familiar

items to users is deemed to be able to improve users’ confidence in the system, even though

users gain little value from them (Celma and Herrera 2008). If users receive unknown

recommendations, the system is better to provide transparency by giving an explanation

of why the recommendations are produced. Herlocker et al. (2000) showed that providing

more transparency can increase users’ trust because the recommendations sound reasonable.

Generally speaking, given two recommenders that perform similarly on other properties, the

system with higher (system or user) confidence may be preferred (Shani and Gunawardana

2011).

5.1.4 Coverage

In the item space, coverage measures the domain over which the system can form predictions

or make recommendations (Herlocker et al. 2004). Systems with lower item coverage may

be less valuable to users because they will miss the items from neglected area which match

users’ preferences (Seyerlehner et al. 2009; Celma 2010). Items out of coverage can never be

annotated or rated by users either. A practical measurement of coverage is the percentage of

the items for which predictions can be formed. Alternatively, the catalog coverage is defined

as the percentage of items in the catalog that are ever recommended to users, probably in

an experiment. Most of the time, the item coverage should be considered together with

accuracy, for the fact that the items uninteresting to all users are better to be filtered out

for higher accuracy although leading to lower coverage (Shani and Gunawardana 2011).

In the user space, coverage is the proportion of users or user interactions to whom the

system can make recommendations (Shani and Gunawardana 2011). In some cases, the

system may not recommend items to users if the system has little information about them,

or the users’ preferences are too obscure to find matched items. Specifically in collaborative
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filtering, the user coverage can be measured as the number of ratings a user has to provide

before receiving recommendations (Swearingen and Sinha 2001).

5.1.5 Novelty and Serendipity

Novel recommendations are those providing unknown but relevant items to users (Lee 2011).

The novelty can be defined as the margin with respect to user’s knowledge and degree of

interest in a recommended item (Yang and Li 2005). Serendipitous recommendations offer

users the opportunity to find surprisingly interesting items that they might not have dis-

covered (Herlocker et al. 2004). Unlike novelty, serendipity can be imagined as the distance

between the recommended item and the user’s expected content (Zhang et al. 2012). To

clarify the difference between novelty and serendipity, consider the situation of recommend-

ing music to a user who has listened a number of songs from Beatles. Recommending other

songs from Beatles may be novel to the user, if he/she is unaware of those songs, but not

serendipitous. But recommending music from an obscure garage band is more likely to

be serendipitous. In short, serendipitous recommendations are by definition also novel but

novel recommendations do not have to be serendipitous. Sometimes serendipity is incor-

rectly used the same as novelty (Herlocker et al. 2004; McNee et al. 2006), because they

both measure the nonobviousness of a recommendation. However, the distinction between

them is important when evaluating collaborative filtering algorithms. Traditional content-

based filtering systems do not have the potential for serendipitous recommendations, since

they are always looking for items similar in content.

An obvious way to measure novelty is to gather feedback from users explicitly or implic-

itly (McNee et al. 2006). Explicit feedback is based on two related questions: whether the

user already knew the item, and whether he/she likes it or not. Implicit feedback includes,

for instance, the purchase or preview of an item. If a user already knew an item, preview

and repeat purchase are less likely to happen. Alternatively, objective metrics of novelty

can make use of the item popularity. It seems that popular items are more likely to be

recognized and rated, and items with fewer interactions (e.g., rating or purchasing) are

more likely to be unknown to users (Ziegler et al. 2005; Zhang et al. 2012). Under this

assumption, the novelty is inversely proportional to the popularity of the recommended

items. That is, lower score of popularity denotes higher novelty. Celma and Herrera (2008)

correlated the Long Tail distribution and complex networks to assist in the novelty anal-

ysis. To measure the potential of serendipity, the distance between the recommendations
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and the items in the user’s profile has been utilized (Zhang et al. 2012). Higher values

indicate that recommendations deviate from a user’s traditional tastes, and hence are more

surprising. Since a serendipitous system challenges users to expand their tastes, hopefully

it will provide more interesting recommendations that can help improve users’ satisfaction

(Swearingen and Sinha 2001).

However, novelty and serendipity may contradict the desire of accuracy, although they

are sometimes necessary to improve users’ experience in discovery (Celma 2010; Lee 2011).

For example, recommending the Beatles’ famous White Album to a Beatles fan is accurate

but neither novel nor serendipitous, while recommending music from an obscure artist can

be novel and serendipitous but not accurate. Therefore, when evaluating how well a recom-

mendation system can make a user aware of previously unknown items, it is worthwhile to

check to see to what extent users accept the new recommendations (Herlocker et al. 2004).

Users may at first be intrigued to try out the unexpected recommendations, but stop follow-

ing them if they find recommendations are not satisfying. A user-centric method proposed

by Celma and Cano (2008) aimed at measuring users’ perceived quality of novel recom-

mendations. Although it is not clear about the ideal proportion of familiar and new songs

in a recommendation list, users do prefer a mix of familiarity and novelty/serendipity (Lee

2011). Zhang et al. (2012) suggested that a personalized recommendation system should

be able to allow users to individually tune the level of desired novelty and serendipity.

5.1.6 Diversity

Diversity typically measures how many different items are present in a list of recommen-

dations (Smyth and McClave 2001; Fleder and Hosanagar 2007; Zhang et al. 2012). Since

users may listen to music repeatedly and continuously, diversity is deemed important for

a music recommendation system to generate a broader range of relevant choices and hope-

fully to increase users’ satisfaction (Slaney and White 2006). In music, diversity may refer

to various attributes, such as genre, artist, instrumentation, lyrics, tempo, and mood (Lee

2011). Diversity comes at the expense of homogeneity or coherence of a recommendation

list, and sometimes it even counteracts the accuracy (Smyth and McClave 2001; Ziegler

et al. 2005; Zhang et al. 2012). For example, a playlist of Beatles is coherent and accurate

for a rock music fan, but seems monotone for a user with multiple interests. On the other

hand, a playlist consisting of multiple genres of music is diverse but not accurate enough

for a big rock music fan.
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The item-to-item similarity has been well explored to measure diversity (Shani and

Gunawardana 2011). If the items on a list are all similar to each other, the diversity will

be low. One possible definition of diversity is the average dissimilarity between all pairs of

items in an item set (Smyth and McClave 2001; Zhang and Hurley 2008). Alternatively,

the intra-list similarity (ILS) metric introduced by Ziegler et al. (2005) sums the pairwise

similarity of all items in a set. A list of dispersed and diverse recommendations scores a

lower ILS value than the list with similar items (Zhang et al. 2012). Slaney and White

(2006) characterized the diversity of a playlist by fitting a Gaussian probability model to

the songs. For each song, a set of audio features were calculated to place that song as a

point in a multidimensional space. The volume of an enclosing ellipsoid generated by the

model was used to describe the diversity.

5.1.7 Privacy

A personalized recommendation algorithm requires user information in order to make rec-

ommendations. In general, the more information the system knows about its users, the

better recommendation service the users will be able to receive (Resnick and Varian 1997).

Gathering more user information potentially increases recommendation accuracy, but also

increases the risk of privacy issues (Lam et al. 2006; Shani and Gunawardana 2011). Pri-

vacy problems may arise when people who are observed are not aware of it. For example,

Netflix will be paying out millions of dollars to settle a lawsuit that accused the company

of keeping customer data of canceled subscribers for longer than they should have kept

it. Thus, a personalized system needs to be careful about the acquisition, storage and

application of user information.

The challenge for the adoption of personalized services is to find a balance where the

system is able to make good recommendations to users while not violating or threatening

their privacy (Perik et al. 2004; Lam et al. 2006). One intuitive question is how much

data is needed from a user to make good recommendations to that user. Lam et al. (2006)

argued that “providing a recommender with data may produce diminishing returns”. That

is, once the system knows a certain amount information about a user, obtaining further

information is only marginally useful. Moreover, users will be less likely to trust a system

that continuously records sensitive information about their interests or tastes (Perik et al.

2004). Although the preferences for music are considered less personal than the information
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about personality traits, the preference data may allow undesired re-identification (Lam

et al. 2006).

5.2 Experimental Settings

When designing an evaluation experiment, it is important to be aware of several key de-

cisions regarding experimental datasets and expenses. Can the evaluation be carried out

offline on an existing dataset or does it require user subjects? How long does it take for an

evaluation, hours, days, or months? In the following, the pros and cons of two experimental

settings for evaluation will be discussed.

5.2.1 Offline Simulation

Offline simulation tests recommendation algorithms on an existing dataset, without interac-

tion with real users. The assumption is that the user behavior when the data was collected

is similar to the user behavior when evaluation is deployed (Shani and Gunawardana 2011).

Such evaluation is attractive for the fact that it is economical to conduct, and that it al-

lows to compare a wide range of algorithms on several different datasets at once. When

a dataset is available, the evaluation process simply runs the test algorithm and compares

the predicted results to the “ground truth” from the dataset. The data used for the offline

evaluation should be as close as possible to the data that the recommendation system will

face when deployed online (Herlocker et al. 2004). The limitation of offline simulation

lies in the incompleteness of dataset. It is not possible to evaluate the appropriateness of

a recommended item to a user if no information about that user-item pair exists in the

dataset. Since this evaluation does not recruit any users, only objective evaluation can

be provided. Recently, there have been two offline competitions aiming to evaluate music

recommendation systems.

Yahoo! Music Dataset and KDD Cup Contest

The Yahoo! Music Dataset1 was released with the KDD Cup 2011 contest, which challenged

the community to identify user tastes in music (Dror et al. 2011; Koenigstein et al. 2011).

The dataset comprises over 260 million ratings (scores from 0 to 100) of 624,961 music items

1http://kddcup.yahoo.com/datasets.php
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(a mixture of songs, albums, artists, and genres) by one million users over the last decade

(1999-2010). All users and items are represented by opaque identifiers with the provided

artist/genre/album/track taxonomy. Each item and each user have at least 20 ratings in the

whole dataset. The one-minute resolution timestamps included in the ratings allow refined

temporal analysis. This dataset is useful as a benchmark for content-agnostic collaborative

filtering algorithms, because the anonymity of users and items makes it impossible to

integrate various metadata and content analysis into the recommendation task (McFee

et al. 2012).

The KDD Cup contest offered two different tasks. Task1 required predicting users’

ratings of musical items. For each user, it provided at least 10 ratings in the training data,

four ratings in the validation data, and the last six ratings for test. The evaluation criterion

was the root mean square error (RMSE) between the predicted ratings and the true ones.

Task2 was less conventional. Once again, each user and item have at least 20 ratings, out

of which six are used as test data (while the rest as training data). The test data for each

user contained three items rated highly (score 80 or higher) by the user and three that had

not been rated. With the goal to differentiate high ratings from missing ones, participants

were asked to identify exactly the three highly rated items for each user. The evaluation

criterion was the error rate, the fraction of wrong predictions. At both tasks, the test set

was internally split into two equal halves known as Test1 and Test2 (Dror et al. 2011).

Observed from the results, all the top 3 winning teams have a slightly better performance

on Test2 than on Test1 for both Task1 and Task2. Only the results on Test1 will be quoted

here for illustration. On Test1, the best result achieved on Task1 was RMSE of 21.01

(Chen et al. 2011), and the best result on Task2 was an error rate of 2.47% (McKenzie

et al. 2011). Both were achieved by the National Taiwan University team. For Task1,

Chen et al. adopted a four-stage procedure: individual model building, non-linear blending,

linear ensemble, and post-processing. The first step of individual model building included

variants of existing models, such as matrix factorization, k-nearest neighbors, probabilistic

latent semantic analysis, probabilistic principle component analysis, supervised regression,

and restricted Boltzmann machine. Step 2 blended these individual models in a non-linear

manner, and then step 3 combined both the individual and the blended models through a

linear ensemble. Finally, the post-processing step adjusted the predictions generated from

the ensemble model. McKenzie et al. utilized a similar approach of local blending and

global ensemble to achieve accuracy over 97%. The Commendo team that won the second
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place in Task1 and the third place in Task2, also made use of an ensemble, blending many

solutions. Their achievement on Test1 for Task1 was RMSE=21.08, and the error rate on

Test1 for Task2 was 2.49%. The prevalence of ensemble learning reinforced the finding

from the Netflix experience.

Note that the RMSE results of Task1 are not directly comparable to those of the Netflix

contest, because they are using different rating scales. While in the Netflix dataset the

rating range is 4 (ratings from 1 to 5), the Yahoo! Music Dataset has a rating range of 100.

Calibrating Yahoo! ratings to the Netflix rating scale will shrink the RMSE with a factor

of 25. That is, the best RMSE achieved at Task1 will be around 0.84, strikingly close to

the best score known on the Netflix dataset (0.86) (Dror et al. 2011).

Million Song Dataset Challenge

As indicated by its name, the Million Song Dataset2 contains a collection of a million

contemporary popular songs (Bertin-Mahieux et al. 2011; McFee et al. 2012). Since this

dataset is linked to several complementary datasets (e.g., EchoNest and MusicBrainz3),

it contains extensive metadata, audio features, tags on the artist- and song-level, lyrics,

and so on. The collection of data used in the competition is known as the Taste Profile

Subset4, which consists of more than 48 million triplets (user, song, count) gathered from

user listening histories. The data involves approximately 1.2 million users and more than

380,000 songs, where all users have at least 10 songs in profile. Due to user privacy concerns,

users are anonymous. Unlike the Yahoo! Music Dataset which contains explicit ratings,

this dataset uses playcounts instead. Although having played a track does not mean it was

liked, the fact a song was listened to suggests that there was at least some initial interest

on behalf of the user. Another difference is that timestamps are not provided in the dataset

(McFee et al. 2012).

The Million Song Dataset Challenge aims to provide a large-scale, transparent music

recommendation challenge allowing participants to exploit metadata and content analysis.

In the contest, the recommender observes a subset of the songs consumed by a user, and

predicts a ranking over all other songs in the dataset. Ideally, the remaining songs consumed

by the user would be ranked ahead of all songs not consumed. During the evaluation, all

2http://labrosa.ee.columbia.edu/millionsong/
3http://musicbrainz.org/
4http://labrosa.ee.columbia.edu/millionsong/tasteprofile
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that matters is whether the user listened to the song or not, rather than the exact number

of times the song was consumed. Due to the large scale of the test data (100K users and

380K songs), only the top-500 predicted rankings are evaluated. The evaluation procedure

uses the mean average precision of the truncated ranking as the primary evaluation metric

and also includes additional metrics such as mean reciprocal rank, normalized discounted

cumulative gain, precision-at-10, and recall at the cutoff point (McFee et al. 2012). The

preliminary results released online reveal the leaderboard5 ordered by the mean average

precision, which still needs further verification before finalization.

5.2.2 User Study

A user study regularly recruits a group of subjects to interact with recommendation sys-

tems. Quantitative measurement can be collected during subjects performing tasks through

observing their behavior, such as how many recommendations are accepted by the user or

the ratings indicating how much the user likes the recommended items. On the other

hand, qualitative measurement can be collected via questionnaires or surveys. The sub-

jects may be required to answer questions such as whether they have received interesting

recommendations, or whether they trust the system (Shani and Gunawardana 2011).

Unlike offline simulation, user studies allow studying user behavior through subjects’

interaction with the system and collecting qualitative data that is often crucial for estimat-

ing the recommendation performance (Hu and Ogihara 2011). However, it is not assured

that users will behave in the same way in real life as in the lab (Swearingen and Sinha

2001). The results can be biased because subjects are aware that they are participating in

an experiment. If the subjects know the hypothesis tested, they may tend to support it

and satisfy the conductor of the experiment. Since music is in most cases embedded into a

socio-cultural process, Baumann et al. (2004) suggested carrying out user studies outside

the lab during daily activities. Moreover, this setting will be expensive and time-consuming

if a large set of subjects are needed. Therefore, only a small set of subjects and relatively

short tests can be recruited in a user study.

In the literature about music recommendation, the group size of many user studies was

smaller than 25 subjects. For example, Lee (2011) involved eight participants to examine

the perceived quality of generated playlists and argued the importance of factors other

than similarity, such as variety, personal preference, familiarity, and mix of familiar and

5http://www.kaggle.com/c/msdchallenge/leaderboard



76 Evaluating music recommendation systems

new music. Chen and Chen (2005) invited 10 students to test the performance of their

proposed systems by measuring precision. Knees et al. (2006) carried out a user study

of 10 subjects to score the consistency of the playlists generated by their approach. In

Bogdanov et al. (2010), 12 people participated in subjective listening tests and then ex-

pressed different subjective impressions related to the recommended music, with regards

to familiarity, enjoyment, and listening intention. The evaluation results revealed that

their music recommender based on semantic similarities was preferred by users over the

timbre-based recommender; however, it was inferior to the considered collaborative filter-

ing recommender in terms of both the number of successful novel recommendations and the

trusted recommendations. Magno and Sable (2008) compared their proposed recommen-

dation engines to today’s leading online music discovery tools (i.e., Pandora, Last.fm, and

Allmusic), based on a user study of 15 volunteers. The analysis of the user ratings assigned

to recommendations, showed that a signal-based recommendation engine could perform

comparably to popular commercial music discovery applications when subjected to human

evaluation. The results also showed that music recommendations given by an expert could

not always satisfy the sensibilities of a music consumer. Pauws and Eggen (2003) employed

20 subjects to measure playlist quality by precision, coverage, and a rating score. After the

experiment, an interview was used to yield supplementary findings on perceived usefulness.

Zhang et al. (2012) conducted a user study involving 21 participants to assess the objective

qualities of enjoyment, novelty, serendipity, and overall user satisfaction of playlists. The

analysis of survey results showed that introducing serendipity into music recommendation,

although sacrificed some accuracy, could improve the overall satisfaction.

According to Shani and Gunawardana (2011), the small size of user studies may cause

the evaluation not to be convincing. The user studies with a relatively larger group size

have also been carried out by researchers. For example, Barrington et al. (2009) employed

185 subjects to compare Genius to another two music recommender systems: one based

purely on artist similarity and the other purely on acoustic similarity. Their three findings

were: a) Genius had the best overall performance; b) collaborative filtering could actually

capture similarities between the acoustic content of songs; c) artist similarity could account

for the performance of Genius, when evaluators can see the names of the recommended

songs and artists. Another example was the user-centric evaluation for novelty conducted

by Celma and Herrera (2008), which involved 288 users and 5,573 tracks. This experiment
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showed that collaborative filtering outperformed content-based methods in terms of users’

perceived quality even though it recommended less novel items.
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Chapter 6

Conclusion

Music recommendation systems have made progress over the last decade when numerous

recommendation techniques were proposed and several “industrial-strength” systems have

been developed. The recommendation for music is different from those for books and

movies, due to its low cost per item, short consumption time, high per-item reuse, highly

contextual usage, and numerous item types. Understanding the patterns of music listening

and consumption is helpful to create accurate and satisfying music recommendations. In

the literature, traditional music recommendation systems can be classified as one of two

major kinds: collaborative filtering and content-based filtering. Since collaborative filter-

ing works on the user preference data, collaborative filtering systems can follow the social

consumption patterns to make recommendations, but they are prone to popularity bias

and hardly ever explore the Long Tail that contain interesting and novel items for users.

On the other hand, content-based filtering bases its recommendations in the content anal-

ysis of items, such that content-based systems can recommend niche items on the Long

Tail but they can only recommend items similar to those already accessed. Recently, the

research community has broadened its attention to include other aspects, such as hybrid

approaches, user modeling, context awareness, social tagging, recommendation in the Long

Tail, music networks, visualization, playlist generation, and group recommendation. So

far, collaborative filtering has been popular in both commercial applications and academia,

while the majority of content-based filtering methods are still at the research stage. More

and more music recommendation systems have been focused on the context awareness that

can provide more accurate recommendations and more satisfying services.
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How to determine the best music recommendation algorithm is an important step in

both the research attempt and the application design. Many evaluation works in the past

have focused on improving the predictive accuracy of recommendation. However, a growing

trend is to consider properties other than accuracy such as coverage, novelty, and diver-

sity, which contribute towards the quality of music recommendations. Although it is not

clear how to aggregate these properties into one score for a music recommendation system,

studies do show that users are willing to sacrifice some amount of accuracy for improved

performance in other aspects, and that such systems are more satisfying overall. A set of

properties that are sometimes discussed as important for the music recommendation sys-

tems have been presented. These properties can be measured in either an offline simulation

or a user study. An offline simulation is simple and easy to conduct, however, it can be lim-

ited by the incompleteness of dataset and can only collect the quantitative measurement.

On the other hand, a user study can collect both the quantitative and qualitative informa-

tion, but it is expensive to carry out such that only a small set of subjects and a relatively

short tests can be recruited. The small size of user studies may cause the evaluation not

to be convincing. To indicate the power of each experimental setting and harvest available

experience, examples of previous work are discussed.



81

Bibliography

Adomavicius, G., and A. Tuzhilin. 2005. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17 (6): 734–49.

Adomavicius, G., and A. Tuzhilin. 2011. Context-aware recommender systems. In Rec-
ommender Systems Handbook, 217–53.

Albert, R., and A.-L. Barabási. 2002. Statistical mechanics of complex networks. Reviews
of modern physics 74 (1): 47–97.

Alghoniemy, M., and A. Tewfik. 2001. A network flow model for playlist generation. In
Proceedings of IEEE International Conference on Multimedia and Expo.

Alvira, M., J. Paris, and R. Rifkin. 2001. The audiomomma music recommendation
system. Technical report, Massachussets Institute of Technology.

Amatriain, X., J. M. Pujol, N. Tintarev, and N. Oliver. 2009. Rate it again: Increasing
recommendation accuracy by user re-rating. In Proceedings of 3rd ACM Conference
on Recommender Systems, 173–80.

Anderson, C. 2004. The long tail. Wired Magazine 12 (10): 170–7.

Anderson, M., M. Ball, H. Boley, S. Greene, N. Howse, D. Lemire, and S. McGrath.
2003. RACOFI: A rule-applying collaborative filtering system. In Proceedings of In-
ternational Workshop on Collaboration Agents: Autonomous Agents for Collaborative
Environments.

Angeles, B., C. McKay, and I. Fujinaga. 2010. Discovering metadata inconsistencies.
In Proceedings of International Society for Music Information Retrieval Conference,
195–200.

Anglade, A., M. Tiemann, and F. Vignoli. 2007a. Complex-network theoretic clustering
for identifying groups of similar listeners in P2P systems. In Proceedings of ACM
Conference on Recommender Systems, 41–8.

Anglade, A., M. Tiemann, and F. Vignoli. 2007b. Virtual communities for creating shared
music channels. In Proceedings of International Society for Music Information Re-
trieval Conference, 95–100.



82 Bibliography

Aucouturier, J.-J., and F. Pachet. 2002a. Finding songs that sound the same. In Proceed-
ings of IEEE Benelux Workshop on Model based Processing and Coding of Audio.

Aucouturier, J.-J., and F. Pachet. 2002b. Music similarity measures: What’s the use?
In Proceedings of International Society for Music Information Retrieval Conference.

Aucouturier, J.-J., and F. Pachet. 2002c. Scaling up music playlist generation. In Pro-
ceedings of IEEE International Conference on Multimedia and Expo.

Aucouturier, J.-J., and F. Pachet. 2004. Improving timbre similarity: How high is the
sky? Journal of Negative Results in Speech and Audio Sciences 1 (1): 1–13.

Avesani, P., P. Massa, M. Nori, and A. Susi. 2002. Collaborative radio community. In
International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems,
Volume 2347, 462–5. Springer.

Baccigalupo, C., and E. Plaza. 2006. Case-based sequential ordering of songs for playlist
recommendation. In Advances in Case-Based Reasoning, Volume 4106 of Lecture
Notes in Computer Science, 286–300.
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Mitrović, D., M. Zeppelzauer, and C. Breiteneder. 2010. Features for content-based audio
retrieval. Advances in Computers 78: 71–150.

Mobasher, B., R. Burke, R. Bhaumik, and C. Williams. 2005. Effective attack models
for shilling item-based collaborative filtering systems. In Proceedings of the Workshop
on Knowledge Discovery in the Web.

Morchen, F., A. Ultsch, M. Thies, and I. Lohken. 2006. Modeling timbre distance with
temporal statistics from polyphonic music. IEEE Transactions on Audio, Speech, &
Language Processing 14 (1): 81 – 90.

Nanopoulos, A., D. Rafailidis, P. Symeonidis, and Y. Manolopoulos. 2010. Musicbox:
Personalized music recommendation based on cubic analysis of social tags. IEEE
Transactions on Audio, Speech, & Language Processing 18 (2): 407–12.

Ness, S. R., A. Theocharis, G. Tzanetakis, and L. G. Martins. 2009. Improving automatic
music tag annotation using stacked generalization of probabilistic SVM outputs. In
Proceedings of 17th ACM International Conference on Multimedia, 705–8.

http://www.technologyreview.com/view/419198/how-itunes-genius-really-works
http://www.technologyreview.com/view/419198/how-itunes-genius-really-works


Bibliography 95

Niitsuma, M., H. Takaesu, H. Demachi, M. Oono, and H. Saito. 2008. Development of
an automatic music selection system based on runner’s step frequency. In Proceedings
of International Society for Music Information Retrieval Conference, 193–98.

North, A., and D. Hargreaves. 1996. Situational influences on reported musical prefer-
ence. Psychomusicology: Music, Mind and Brain 15 (1-2): 30–45.

North, A., D. Hargreaves, and J. Hargreaves. 2004. Uses of music in everyday life. Music
Perception 22 (1): 41–77.

O’Connor, M., D. Cosley, J. A. Konstan, and J. Riedl. 2002. Polylens: A recommender
system for groups of users. In W. Prinz, M. Jarke, Y. Rogers, K. Schmidt, and V. Wulf
(Eds.), Proceedings of 7th European Conference on Computer-Supported Cooperative
Work, 199–218. Springer Netherlands.

Oliver, N., and L. Kreger-Stickles. 2006. PAPA: Physiology and purpose-aware automatic
playlist generation. In Proceedings of International Society for Music Information
Retrieval Conference, 250–3.

Orio, N. 2006. Music retrieval: A tutorial and review. Foundations and Trends in Infor-
mation Retrieval 1 (1): 1–96.

Pachet, F. 2003. Content management for electronic music distribution. Communications
of the ACM 46 (4): 71–5.

Pachet, F. 2005. Knowledge management and musical metadata. In D. Schwartz (Ed.),
Encyclopedia of Knowledge Management. Hershey, PA: Idea Group.

Pachet, F., P. Roy, and D. Cazaly. 2000. A combinatorial approach to content-based
music selection. IEEE Multimedia 7 (1): 44–51.

Pampalk, E. 2001. Islands of music: Analysis, organization, and visualization of music
archives. Master’s thesis, Vienna University of Technology, Vienna, Austria.

Pampalk, E., A. Flexer, and G. Widmer. 2005. Improvements of audio-based music
similarity and genre classification. In Proceedings of International Society for Music
Information Retrieval Conference.

Pampalk, E., and M. Gasser. 2006. An implementation of a simple playlist generator
based on audio similarity measures and user feedback. In Proceedings of International
Society for Music Information Retrieval Conference, Victoria, Canada, 389–90.

Pampalk, E., and M. Goto. 2006. Musicrainbow: A new user interface to discover artists
using audio-based similarity and web-based labeling. In Proceedings of International
Society for Music Information Retrieval Conference, 367–70.

Pampalk, E., and M. Goto. 2007. MusicSun: A new approach to artist recommendation.
In Proceedings of International Society for Music Information Retrieval Conference,
Vienna, Austria.



96 Bibliography

Pampalk, E., T. Pohle, and G. Widmer. 2005. Dynamic playlist generation based on
skipping behavior. In Proceedings of International Society for Music Information Re-
trieval Conference, London, UK.

Park, C. H., and M. Kahng. 2010. Temporal dynamics in music listening behavior: A
case study of online music service. In Proceedings of IEEE/ACIS 9th International
Conference on Computer and Information Science, 573–8.

Park, J., O. Celma, M. Koppenberger, P. Cano, and J. M. Buldu. 2007. The social
network of contemporary popular musicians. International Journal of Bifurcation
and Chaos 17: 2281–8.

Park, M. K. S., and N. Moon. 2011. The effects of personal sentiments and contexts on the
acceptance of music recommender systems. In Proceedings of 5th FTRA International
Conference on Multimedia and Ubiquitous Engineering, 289–92.

Paulus, J., M. Mller, and A. Klapuri. 2010. State of the art report: Audio-based mu-
sic structure analysis. In Proceedings of International Society for Music Information
Retrieval Conference, 625–36.

Pauws, S., and B. Eggen. 2003. Realization and user evaluation of an automatic playlist
generator. Journal of New Music Research 32 (2): 179–92.

Pauws, S., and S. van de Wijdeven. 2005. User evaluation of a new interactive playlist
generation concept. In Proceedings of International Society for Music Information
Retrieval Conference, London, UK, 638–43.

Pauws, S., W. Verhaegh, and M. Vossen. 2006. Fast generation of optimal music playlists
using local search. In Proceedings of International Society for Music Information
Retrieval Conference, Victoria, Canada, 138–43.

Pavlov, D., and D. M. Pennock. 2002. A maximum entropy approach to collaborative
filtering in dynamic, sparse, high-dimensional domains. In Proceedings of 16th Annual
Conference on Neural Information Processing Systems, 1441–8.

Pennock, D. M., E. Horvitz, S. Lawrence, and C. L. Giles. 2000. Collaborative filtering by
personality diagnosis: A hybrid memory- and model-based approach. In Proceedings
of 16th Conference on Uncertainty in Artificial Intelligence.

Perik, E., B. de Ruyter, P. Markopoulos, and B. Eggen. 2004. The sensitivities of user
profile information in music recommender systems. In Proceedings of Private, Secu-
rity, Trust, 137–41.

Pestoni, F., J. Wolf, M. Habib, and A. Mueller. 2001. KARC: Radio research. In Pro-
ceedings of 1st International Conference on Web Delivering of Music, 139–46.

Platt, J. C., C. J. C. Burges, S. Swenson, C. Weare, and A. Zheng. 2002. Learning a
gaussian process prior for automatically generating music playlists. In Proceedings of
Advances in Neural Information Processing Systems, Volume 14, 1425–32.



Bibliography 97

Poliner, G., and D. Ellis. 2005. A classification approach to melody transcription. In Pro-
ceedings of International Society for Music Information Retrieval Conference, 161–6.

Popescul, A., D. M. Pennock, and S. Lawrence. 2001. Probabilistic models for uni-
fied collaborative and content-based recommendation in sparse-data environments.
In Proceedings of 17th Conference on Uncertainty in Artificial Intelligence, 437–44.

Ragno, R., C. Burges, and C. Herley. 2005. Inferring similarity between music objects
with application to playlist generation. In Proceedings of 7th ACM SIGMM Interna-
tional Workshop on Multimedia Information Retrieval, 73–80.

Rashid, A. M., S. K. Lam, G. Karypis, and J. Riedl. 2006. ClustKNN: A highly scalable
hybrid model- & memory-based cf algorithm. In Proceedings of 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.

Resnick, P., N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. 1994. Grouplens: An
open architecture for collaborative filtering of netnews. In Proceedings of ACM Con-
ference on Computer Supported Cooperative Work, 175–86.

Resnick, P., and H. R. Varian. 1997. Recommender systems. Communications of the
ACM 40 (3): 56–8.

Rho, S., S. Song, E. Hwang, and M. Kim. 2009. COMUS: Ontological and rule-based
reasoning for music recommendation system. In Advances in Knowledge Discovery
and Data Mining, Volume 5476, 859–66.

Sandvold, V., T. Aussenac, Ò. Celma, and P. Herrera. 2006. Good vibrations: Music
discovery through personal musical concepts. In Proceedings of International Society
for Music Information Retrieval Conference, Victoria, Canada.

Sarwar, B., G. Karypis, J. Konstan, and J. Reidl. 2001. Item-based collaborative filter-
ing recommendation algorithms. In Proceedings of 10th International Conference on
World Wide Web, 285–95.

Sarwar, B., G. Karypis, J. Konstan, and J. Riedl. 2000. Analysis of recommendation
algorithms for e-commerce. In Proceedings of 2nd ACM Conference on Electronic
Commerce, 158–67.

Schein, A. I., A. Popescul, L. H. Ungar, and D. M. Pennock. 2002. Methods and metrics
for cold-start recommendations. In Proceedings of 25th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, 253–60.

Scheirer, E., and M. Slaney. 1997. Construction and evaluation of a robust multifeature
speech/music discriminator. In IEEE International Conference on Acoustics, Speech,
and Signal Processing, Volume 2, 1331–4.

Schwarz, D., and X. Rodet. 1999. Spectral envelope estimation and representation for
sound analysis-synthesis. In Proceedings of International Computer Music Confer-
ence.



98 Bibliography

Seyerlehner, K., P. Knees, D. Schnitzer, and G. Widmer. 2009. Browsing music recom-
mendation networks. In Proceedings of International Society for Music Information
Retrieval Conference.

Shan, M.-K., F.-F. Kuo, M.-F. Chiang, and S.-Y. Lee. 2009. Emotion-based music recom-
mendation by affinity discovery from film music. Expert Systems with Applications 36
(4): 7666–74.

Shani, G., R. I. Brafman, and D. Heckerman. 2002. An MDP-based recommender system.
In Proceedings of 18th Conference on Uncertainty in Artificial Intelligence, 453–60.

Shani, G., and A. Gunawardana. 2011. Evaluating recommendation systems. Recom-
mender Systems Handbook : 257–97.

Shao, B., M. Ogihara, D. Wang, and T. Li. 2009. Music recommendation based on
acoustic features and user access patterns. IEEE Transactions on Audio, Speech &
Language Processing 17 (8): 1602–11.

Shardanand, U. 1994. Social information filtering for music recommendation. Master’s
thesis, Massachusetts Institute of Technology.

Shardanand, U., and P. Maes. 1995. Social information filtering: Algorithms for automat-
ing “word of mouth”. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 210–7.

Sheth, B., and P. Maes. 1993. Evolving agents for personalized information filtering. In
Proceedings of 9th IEEE Conference on Artificial Intelligence for Applications.

Shin, D., J. Lee, J. Yeon, and S. Lee. 2009. Context-aware recommendation by aggregat-
ing user context. In Proceedings of IEEE Conference on Commerce and Enterprise
Computing, 423–30.

Sinha, R., and K. Swearingen. 2002. The role of transparency in recommender systems.
In CHI Extended Abstracts on Human Factors in Computing Systems, 830–1.

Slaney, M., and W. White. 2006. Measuring playlist diversity for recommendation sys-
tems. In Proceedings of 1st ACM Workshop on Audio and Music Computing Multi-
media, 77–82.

Smyth, B., and P. McClave. 2001. Similarity vs. diversity. In D. Aha and I. Watson
(Eds.), Case-Based Reasoning Research and Development, Volume 2080, 347–61.

Soundscan, N. 2007. State of the industry. Nielsen Soundscan Report. National Associ-
ation of Recording Merchandisers .

Su, J.-H., H.-H. Yeh, P. S. Yu, and V. S. Tseng. 2010. Music recommendation using
content and context information mining. IEEE Intelligent Systems 25 (1): 16–26.

Su, X., and T. Khoshgoftaar. 2009. A survey of collaborative filtering techniques. Ad-
vances in Artificial Intelligence 2009.



Bibliography 99

Swearingen, K., and R. Sinha. 2001. Beyond algorithms: An HCI perspective on recom-
mender systems. In ACM SIGIR Workshop on Recommender Systems, Volume 13,
393–408.

Symeonidis, P., M. M. Ruxanda, A. Nanopoulos, and Y. Manolopoulos. 2008. Ternary se-
mantic analysis of social tags for personalized music recommendation. In Proceedings
of International Society for Music Information Retrieval Conference, 219–24.

Tan, S., J. Bu, C. Chen, B. Xu, C. Wang, and X. He. 2011. Using rich social media
information for music recommendation via hypergraph model. ACM Transactions on
Multimedia Computing, Communications, and Applications 7 (1): 22.

Tiemann, M., S. Pauws, and F. Vignoli. 2007. Ensemble learning for hybrid music rec-
ommendation. In S. Dixon, D. Bainbridge, and R. Typke (Eds.), Proceedings of In-
ternational Society for Music Information Retrieval Conference, 179–80.

Torrens, M., P. Hertzog, and J. L. Arcos. 2004. Visualizing and exploring personal mu-
sic libraries. In Proceedings of International Society for Music Information Retrieval
Conference.

Tsinaraki, C., and S. Christodoulakis. 2005. Semantic user preference descriptions in
MPEG-7/21. In Hellenic Data Management Symposium.

Turnbull, D., L. Barrington, and G. R. G. Lanckriet. 2008. Five approaches to collect-
ing tags for music. In Proceedings of International Society for Music Information
Retrieval Conference, 225–30.

Tzanetakis, G., and P. Cook. 2002. Musical genre classification of audio signals. IEEE
Transactions on Speech and Audio Processing 10 (5): 293–302.

Uitdenbogerd, A., and R. van Schnydel. 2002. A review of factors affecting music rec-
ommender success. In Proceedings of International Society for Music Information
Retrieval Conference, Paris, France.

Ungar, L. H., and D. P. Foster. 1998. Clustering methods for collaborative filtering. In
Workshop on Recommender Systems at the 15th National Conference on Artificial
Intelligence, 112–25.

van Gulik, R., and F. Vignoli. 2005. Visual playlist generation on the artist map. In Pro-
ceedings of International Society for Music Information Retrieval Conference, Lon-
don, UK, 520–3.

van Gulik, R., F. Vignoli, and H. van de Wetering. 2004. Mapping music in the palm
of your hand, explore and discover your collection. In Proceedings of International
Society for Music Information Retrieval Conference.

Vassileva, J. 1994. A practical architecture for user modeling in a hypermedia-based
information system. In Proceedings of 4th International Conference on User Modeling,
115–20.



100 Bibliography

Vembu, S., and S. Baumann. 2005. A self-organizing map based knowledge discovery for
music recommendation systems. In Proceedings of 2nd International Conference on
Computer Music Modeling and Retrieval, 119–29.

Vignoli, F., and S. Pauws. 2005. A music retrieval system based on user driven similarity
and its evaluation. In Proceedings of International Society for Music Information
Retrieval Conference, London, UK, 272–9.

Vucetic, S., and Z. Obradovic. 2005. Collaborative filtering using a regression-based
approach. Knowledge & Information Systems 7 (1): 1–22.

Whitman, B., and S. Lawrence. 2002. Inferring descriptions and similarity for music from
community metadata. In Proceedings of International Computer Music Conference.

Wijnalda, G., S. Pauws, F. Vignoli, and H. Stuckenschmidt. 2005. A personalized music
system for motivation in sport performance. IEEE Pervasive Computing 4 (3): 26–32.

Winckel, F., and T. Binkley. 1967. Music, sound and sensation: A modern exposition.
Dover Publications.

Xu, C., N. Maddage, and X. Shao. 2005. Automatic music classification and summariza-
tion. IEEE Transactions on Speech and Audio Processing 13 (3): 441–50.

Yang, Y., and J. Li. 2005. Interest-based recommendation in digital library. Journal of
Computer Science 1 (1): 40–6.

Yapriady, B., and A. Uitdenbogerd. 2005. Combining demographic data with collab-
orative filtering for automatic music recommendation. Knowledge-Based Intelligent
Information and Engineering Systems 3684: 201–7.

Yoon, T., S. Lee, K. ho Yoon, D. Kim, and J.-H. Lee. 2008. A personalized music recom-
mendation system with a time-weighted clustering. In Proceedings of 4th International
IEEE Conference on Intelligent Systems, Volume 2, 48–52.

Yoshii, K., and M. Goto. 2009. Continuous pLSI and smoothing techniques for hybrid
music recommendation. In Proceedings of International Society for Music Information
Retrieval Conference, 339–44.

Yoshii, K., M. Goto, K. Komatani, T. Ogata, and H. G. Okuno. 2006. Hybrid collabora-
tive and content-based music recommendation using probabilistic model with latent
user preferences. In Proceedings of International Society for Music Information Re-
trieval Conference, Victoria, Canada, 296–301.

Yoshii, K., M. Goto, K. Komatani, T. Ogata, and H. G. Okuno. 2007. Improving effi-
ciency and scalability of model-based music recommender system based on incremen-
tal training. In Proceedings of International Society for Music Information Retrieval
Conference, 89–94.



Bibliography 101

Yoshii, K., M. Goto, K. Komatani, T. Ogata, and H. G. Okuno. 2008. An efficient hybrid
music recommender system using an incrementally trainable probabilistic generative
model. IEEE Transactions on Audio, Speech & Language Processing 16 (2): 435–47.

Yu, Z., X. Zhou, and D. Zhang. 2005. An adaptive in-vehicle multimedia recommender for
group users. In Proceedings of IEEE 61st Vehicular Technology Conference, Volume 5,
2800–4.
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