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Abstract

Virtualization and service-oriented architecture are important concepts that triggered the

rapid evolution of cloud computing technologies. Network infrastructure virtualization is

now possible by applying similar concepts in conjunction with recent advances in software-

defined technologies. Since wireless technologies will play an important role in the future

of networking technologies, this thesis proposes Aurora, a virtualization framework and

testbed platform for supporting multiple types of virtualization techniques and architec-

tures specifically applied on wireless technologies. In the first half of this thesis, a back-

ground survey of works in the recently-emerged field of “wireless virtualization” is made

in order to identify potential applications, common trends and future research directions.

This is followed by the presentation of three main perspectives: flow-based virtualiza-

tion, protocol-based virtualization and spectrum-based virtualization. Then, a hypothetical

ecosystem scenario of a future virtualized wireless infrastructure in which these perspectives

coexist is discussed along with some of the challenges and requirements for a sustainable

wireless virtualization framework. In the second half of this thesis, the general architecture

and design principles behind Aurora are explained. Aurora is designed to fulfil multiple

roles as a powerful tool to combine multiple wireless virtualization technologies, a research

platform for developing new virtualization architectures and a service-oriented wireless in-

frastructure manager. Finally, the first iteration of the software implementation of Aurora

inside the Smart Applications on Virtual Infrastructure (SAVI) testbed is exposed in order

to demonstrate the feasibility of the framework.
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Abrégé

La virtualisation et l’architecture orienté services sont des concepts importants qui ont

déclenché l’évolution rapide des technologies de cloud computing. La virtualisation de

l’infrastructure de réseaux est maintenant possible grâce à l’application de ces concepts et

les avancées récentes dans les technologies définies par logiciel. Puisque les technologies

sans-fil joueront un rôle important dans l’avenir des technologies de mise en réseau, cette

thèse propose Aurora, un cadre et une plate-forme de banc d’essai pour soutenir plusieurs

types de techniques et d’architecture de virtualisation spécifiquement appliquées sur les

technologies sans-fil. Afin d’identifier les applications potentielles, les tendances et les ori-

entations futures de la recherche, la première partie de cette thèse consiste d’une étude

des travaux dans le domaine de la virtualisation sans-fil. Ceci est suivi par la présentation

de trois perspectives différentes : la virtualisation basée sur les flux de paquets, la virtu-

alisation basée sur le protocole de communication et la virtualisation basée sur le spectre

de fréquences. Ensuite, un scénario hypothétique dans lequel ces perspectives coexistent

est discuté en relation avec les défis et les exigences d’un cadre durable de virtualisation

sans-fil. Dans la partie finale de cette thèse, l’architecture d’Aurora est dévoilée. Aurora

est conçu comme un outil puissant pour combiner plusieurs technologies de virtualisation

sans-fil. C’est aussi une plate-forme de recherche pour développer de nouvelles architectures

de virtualisation et un gestionnaire de l’infrastructure sans-fil orienté services. Enfin, la

mise en œuvre de Aurora à l’intérieur du banc d’essai SAVI est prèsentée afin de démontrer

la faisabilité du cadre.
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Chapter 1

Introduction1

1.1 Current and Future Wireless Landscape

The current landscape for wireless technologies is evolving very rapidly. New emerging wire-

less protocols, services and applications are being introduced, such as machine-to-machine

(M2M) communications for sensor networks and smart grid. Some of these applications are

based on the re-purposing of existing concepts whereas others are inspired by entirely new

research areas such as mobile cloud computing. In all cases, the main challenge of deploying

new innovative services and applications on the existing wireless infrastructure is the fact

that they are “locked-in” with the current monolithic and increasingly-complex hardware

equipments. Many of these services and applications potentially require different quality-

of-service (QoS) requirements and different degrees of control and management (C&M) in

order to realize their full potential. The future wireless ecosystem will not only be hetero-

geneous in the sense of having different cell sizes, but also in terms of the coexistence and

convergence of different wireless technologies and different services and applications with

different requirements. Thus, the future wireless landscape will be dominated by a dense,

ubiquitous and heterogeneous network. The development, deployment and management of

such a diverse and rich wireless ecosystem will become a major challenge to solve.

At the same time, there are many new emerging research areas and associated tech-

nologies in computing, networking and wireless telecommunications. On the computing

1Parts of this chapter have been presented at the 2013 IEEE Third International Conference on Selected
Topics in Mobile and Wireless Networking (MoWNet’2013) in Montreal, Canada [1] and published as part
of the SpringBriefs in Computer Science series [2].

2014/04/01
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side, cloud computing and server virtualization have revolutionized the IT industry in the

past few years. More recently, the paradigm shift in the service model for server resources

has been extended to the network infrastructure with the introduction of concepts such as

software-defined networking (SDN) and network virtualization. On the business side, the

concept of network functions virtualization (NFV), which consists of relocating network

functionalities into the cloud and keeping hardware equipments more generic, is being pro-

moted by major telecommunications operators around the world [3]. This trend leads to

the development of a new system architecture and business model that focuses on offering

virtualized hardware resources as a service. Clearly, this will deeply impact the evolution

of the next-generation telecommunications infrastructure. On the wireless telecommuni-

cations side, new radio technologies and wireless transmission techniques, ranging from

software-defined radio (SDR) and cognitive radio to coordinated multi-point (CoMP), are

aimed at making the wireless communications infrastructure more dynamic and efficient.

At last, advancements in optical fibre technologies make architectures such as the fibre-

connected massively-distributed antennas (FMDA) system feasible [4]. All these techni-

cal advancements are like pieces of a larger puzzle that have the potential to generate a

“perfect storm” which could result in a major revolution of the wireless landscape: the

transition and convergence of the wireless infrastructure into a virtualized, software-defined

and service-oriented architecture.

1.2 Virtualized, Software-Defined and Service-Oriented

Paradigms

For the development of the next-generation network (NGN) and infrastructure, includ-

ing the wireless infrastructure, there are three main overlapping but different concepts

at work: virtualization, software-defined technologies and service-oriented infrastructure.

These concepts combine together to form the basis of the modern concept of an extended

cloud infrastructure.

First, virtualization is a concept that allows the abstraction, sharing and partitioning

of resources. The goal of virtualization is to enable a more dynamic and efficient reuse

of resources. In the so-called server or computer virtualization, computing resources such

as processors, memory and storage are shared. For network virtualization, the network

switching fabric and backplane is shared. In the case of wireless virtualization, the main
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topic of this thesis, the wireless resources are shared. The wireless resources can include

the wireless network, the wireless access hardware such as access points (AP), basestations

(BS) and wireless network interface cards (NIC), as well as the frequency spectrum itself.

The virtualization of different types of wireless resources is explored in Chapter 2 and 3

of this thesis. The terminology pertaining to wireless virtualization used in this thesis is

drawn from similar or equivalent terminology used in virtualization and cloud computing.

A hypervisor, also called a virtual machine monitor (VMM), is defined as the management

layer that resolves conflict and performs resource allocation among tenants. The location

and implementation of the hypervisor is one important aspect that differentiates one virtu-

alization approach from another. The virtual instance of a set of shared resources allocated

to a tenant is called a slice. A tenant is defined as the owner (individual, group of individ-

uals or organization) of the virtual wireless infrastructure. As such, a tenant should not be

confounded with mobile clients, who use the wireless services provided by the tenants.

On the other hand, software-defined technologies consist of decoupling functionalities

from the hardware and providing external software interfaces to control these function-

alities. The purpose of the software-defined paradigm is to enhance the flexibility and

programmability of the hardware infrastructure. In the case of SDN, the control and pro-

cessing of network functionalities can be performed by an external controller. In the case

of SDR, the baseband processing and wireless protocol stacks can be partially or fully im-

plemented using software modules. Software-defined technologies are often key enablers

to the implementation of virtualization in non-computing hardware such as the switching

fabric and the wireless access equipments. This is due to the fact that abstraction and

sharing are simpler to implement and manage in software than in highly-specialized hard-

ware. In other words, although software-defined technologies are not a strict requirement

for virtualization, they can facilitate its implementation.

Finally, the service-oriented architecture (SOA) can be applied on the wireless infras-

tructure both as a system architecture and a business model to offer and sell the abstracted

and virtualized resources as services to an external party, generically referred to as a ten-

ant. For instance, the mobile virtual network operator (MVNO) in the traditional cellular

network can be considered as one type of tenant. The service-oriented paradigm aims at

keeping the infrastructure functionalities and resources highly modularized, reusable and

relocatable ubiquitously across the infrastructure. When applied together with virtualiza-

tion, each tenant is given the illusion of ownership over its slice defined by a contract such
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as a service-level agreement (SLA). Overall, the combination of these three concepts should

allow a more sustainable, flexible and efficient way of using the hardware infrastructure.

The modern cloud computing is an example of the result of the interplay between these

concepts in the computing domain. However, wireless virtualization can be quite different

from computer technologies due to some fundamental differences between the ways how

wireless technologies and computing technologies are used.

1.3 Motivation for Wireless Virtualization

With the ongoing research on network virtualization and SDN, it is important to determine

whether the sole application of network virtualization technologies and techniques, which

are mostly designed for the wired network, is sufficient for the future infrastructure. Clearly,

the wireless medium, wireless technologies and mobile services behave differently from their

wired counterparts. Thus, virtualization technologies and techniques that target specifically

wireless technologies must be considered. In addition, wireless virtualization has a wide

range of potential benefits in both commercial and academic contexts by enabling a flexible

reuse of the existing wireless infrastructure.

Commercially, wireless virtualization, when combined with software-defined technolo-

gies and the service-oriented paradigm, can lower the capital expenditures and the barrier

to entry for emergent wireless service providers by allowing them to dynamically share the

existing infrastructure [5]. Infrastructure virtualization offers the tenant service providers

a scalable, relocatable and on-demand deployment of virtual infrastructure. It also allows

them to offer fully-differentiated services to their clients by having total control over their

own virtual wireless infrastructure without having to own the physical wireless infrastruc-

ture. This feature is especially useful in the case of smart grid communications, where the

utility provider wants to control and manage the telecommunications network in order to

provide a critical and essential service without the need to rebuild its own communications

infrastructure. Additionally, wireless virtualization can also allow various wireless functions

to be decoupled from the hardware and implemented in the cloud [3][6]. This allows the

high-volume processing capabilities of the cloud to be leveraged by these functions. This

also enables the hardware equipment to be reprogrammable instead of specialized, leading

to faster deployment of new technologies. Hence, a more integrated, innovative, diverse and

competitive ecosystem is created [7]. In a sense, virtualization allows new applications that
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require different highly-customized cross-layer network capabilities to be deployed over a

common infrastructure.

In terms of academic research, virtualization is already extensively applied in the Fu-

ture Internet initiative and the clean-slate design [8]. The main reason for virtualization

to be used in research is the level of flexibility that can be achieved with virtualized ex-

perimentation testbeds. Virtualization can shorten the research and development life cy-

cle of new wireless technologies by providing a more open and flexible infrastructure [9].

Since the virtualized infrastructure can be shared among multiple tenants isolated from

each other, it can enable the testing and deployment of experimental functionalities on a

real production infrastructure without interrupting its regular operations. Furthermore,

wireless virtualization can both leverage from and impact many active research areas in

wireless communications, ranging from SDR to cognitive radio technologies. Whereas some

technologies can make wireless virtualization feasible, other technologies can benefit from

a virtualized environment. These interdependencies between wireless virtualization and

other technologies is explored in Chapter 2. In short summary, wireless virtualization is

one possible method to simplify the development, deployment and management of a dense

and heterogeneous wireless ecosystem in both commercial and academic contexts. Such a

hypothetical ecosystem is presented in the following section.

1.4 A Hypothetical Virtualized Wireless Ecosystem

A hypothetical futuristic virtualized infrastructure is envisioned as shown in Figure 1.1. The

hypothetical scenario predicts the roles of different actors with the introduction of a virtu-

alized, software-defined and service-oriented wireless infrastructure. In this scenario, Eric is

the equipment manufacturer. He provides the high-performance and virtualization-enabled

wireless hardware equipment along with abstraction, control and management interfaces

for his equipments. These interfaces acts as an abstraction and management mechanism to

the high-performance hardware. Eric also has the choice of developing and selling a virtu-

alization platform, a software suite of virtualization management tools and infrastructure

operating system. Since he has the advantage of producing the hardware, he can include

unique functionalities that can differentiate himself from other hardware and virtualization

platform vendors. Otherwise, third-party companies can develop these platforms, which

can access the hardware through the available interfaces.
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Fig. 1.1: Hypothetical Virtualized Infrastructure Scenario

Irene, the infrastructure provider, owns the hardware infrastructure bought from Eric.

Irene can offer virtual instances of the infrastructure to the service, application and content

providers Sara and Simon. Of course, Irene herself can act as a basic default service

provider. However, she also sells to Sara and Simon the right to provide their services over

the same infrastructure without having to own it. Sara and Simon, who traditionally have

less control over the delivery of their service or content through the network and wireless

infrastructure, are now able to use customized network topologies and optimized protocols

to support their services residing entirely in the cloud. They will be able to fully manage

their slice via an application-specific management interface without being affected from each

other. In fact, Irene, Sara and Simon can actually belong to the same organization. In other

words, even within a single commercial entity, the virtualized infrastructure can be used

to provide agility and decoupling between different groups. For example, the hypothetical

infrastructure can support different service teams decoupled from the infrastructure team.

Ultimately, the end users Alice and Bob are unaware of the interaction between the in-

frastructure and service providers. Alice and Bob simply use customized applications and

services that take advantage of the fully virtualized infrastructure. Since these enhanced

services are perfectly integrated within the virtualized and ubiquitous wireless access net-
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work, Alice and Bob are able to access and use them any time and anywhere. Additionally,

virtualization can allow access points bought by Alice and Bob to run multiple virtual in-

frastructure applications provided by service providers Sara and Simon, giving the providers

access to the functionalities of user-bought equipment to enhance their services.

While this scenario might sound similar to network sharing [10], there are important

differences such as the degree of control and freedom over the virtualized resources. Finally,

such a scenario might seem far-fetched but similar ideas are discussed and analysed in [6]

and [11]. The best analogy of this scenario would be a building owner (i.e. infrastructure

owner) leasing out rooms to tenants (i.e. service providers) whereas the tenants can then

open outlets to sell their services and goods to customers (i.e. mobile users).

1.5 Thesis Contribution and Organization

Wireless virtualization is still at its early stage of research and development. Thus, the

approaches to wireless virtualization are numerous and multi-dimensional. There is not

yet a single definite approach that stands out. This thesis first attempts to provide a more

comprehensive picture on the different aspects of wireless virtualization and identify how

it is related to other emerging research areas. The first contribution of this thesis is a clas-

sification of different wireless virtualization approaches into three levels. However, instead

of proposing a new virtualization technique or arguing for the adoption of one particular

perspective, this thesis embraces the idea of coexistence between different virtualization

perspective targeted for different needs. The most important contribution is the formula-

tion of a generic and evolvable wireless virtualization framework that is able to support

and integrate different wireless virtualization perspectives on virtualized radio nodes. This

framework differentiates itself from other existing frameworks such that it is both a flexible

testbed platform and a powerful suite of tools similar to a wireless infrastructure operating

system that enable full reconfigurability of the wireless infrastructure, most particularly

radio nodes. This contribution is important because it provides a workable platform on

which different wireless virtualization technologies and techniques can be integrated, de-

veloped and experimented on. One major selling point of the framework, other than its

extensibility and high degree of customization, is that it adds no overhead to the perfor-

mance of the virtualization technologies it integrates. The final contribution of this thesis is

the implementation of the proposed as an extensible software platform adapted for 802.11
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wireless local area network (WLAN) technologies. The rest of the thesis is organized as

follows:

Chapter 2 presents a background overview of existing research topics in wireless virtual-

ization and its different aspects. The topics covered in Chapter 2 include various techniques

and emerging technologies that can be used to implement wireless virtualization, such as

the use of multiple access techniques and the application of software-defined technologies.

General wireless virtualization architectures in the context of Future Internet testbeds is ex-

plored. The virtualization of specific wireless technologies, notably 802.11 WLAN, WiMAX

and Long Term Evolution (LTE) is also discussed. In Chapter 3, a framework for the classi-

fication of different wireless virtualization approaches is shown. Three main approaches are

identified: flow-based virtualization, protocol-based virtualization and spectrum-based vir-

tualization. The coexistence of these virtualization perspectives is discussed in the context

of a virtualized, software-defined and service-oriented wireless infrastructure. A generic

wireless virtualization framework that can encompass all these perspectives in a multi-

perspective and evolutionary manner is identified, along with its benefits, justifications,

challenges and requirements. The general architecture of such a framework is outlined.

In Chapter 4, the implementation architecture of a virtualization and software-defined

infrastructure software platform for wireless access networks, codenamed Aurora, is pre-

sented. The main purpose of Aurora is to provide a modular and evolvable resource ab-

straction, virtualization and orchestration platform for the wireless infrastructure. The

foundation of the platform is outlined. More specifically, this thesis focuses on the Aurora-

Agent, the local virtualization agent of the architecture, and the virtualization of wireless

resource nodes. Aurora-AP, a virtualization agent designed for OpenWrt-based 802.11

access points is presented. In Chapter 5, the implementation and integration of Aurora

with the existing OpenStack cloud infrastructure platform and the Smart Applications on

Virtual Infrastructure (SAVI) testbed are discussed. The implementation of flow-based

datapath virtualization with Aurora-AP is detailed. Possible network integration and dat-

apath configurations are shown in order to demonstrate the flexibility of the architecture,

along with an example OpenFlow application supported over Aurora. The extensions of

Aurora to SDRs are discussed. At last, Chapter 6 concludes with a summary of the main

points of the thesis, including a synthesis of the essentials of the concept of wireless vir-

tualization. Some suggestions on the future direction of research in the field of wireless

virtualization are highlighted.
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Chapter 2

Current Trends in Wireless

Virtualization1

Before formulating a framework for wireless virtualization, it is important to understand the

scope of ongoing research in wireless virtualization and its related technologies. First, the

so-called wireless virtualization borrows many aspects taken from virtualization in general.

Comprehensive survey of emerging computer networking technologies, including network

virtualization, is provided in [8]. The survey [12] identifies wireless virtualization as one

of the frontier emerging research areas in network virtualization. However, as mentioned

in Chapter 1, while the fundamental concept of both network and wireless virtualization

remains the same, there are significant differences between their approaches. This chapter

provides a background literature overview of some recent wireless and infrastructure virtu-

alization trends. A more detailed presentation of these technologies and techniques can be

found in [2].

2.1 Different Aspects of Wireless Virtualization and Related

Technologies

Since wireless virtualization is a relatively young and active area of research, a framework

for classifying all the recent advances in wireless virtualization technologies is quite difficult

1Parts of this chapter have been presented at the 2013 IEEE Third International Conference on Selected
Topics in Mobile and Wireless Networking (MoWNet’2013) in Montreal, Canada [1] and published as part
of the SpringBriefs in Computer Science series [2].

2014/04/01
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to realize. In this thesis, wireless virtualization is considered a multi-dimensional concept

broken down to many different aspects that are explored in this chapter. This section

summarizes the main aspects that are taken into account during the formulation of a

virtualization framework in Chapter 3 of this thesis.

2.1.1 Scope and Depth of Wireless Virtualization

The scope and depth of virtualization for wireless resources are important architecture

design choices that define the types of wireless resources being virtualized. The scope

defines which device, technology or logical entity is being virtualized. In terms of scope,

virtualization can be applied on a network-wide scope or on the localized access hardware

(access point or basestation) and the client hardware (wireless NIC). On the other hand,

the depth of virtualization is the extent of penetration of slicing and partitioning of the

wireless resources on a given device. It defines the granularity of the virtualized resources

supported in a given architecture. The capabilities and the level of sharing of resources

will vary depending on how deep the virtualization is applied.

2.1.2 Virtualization in Different Wireless Standards

Technology-specific bindings of virtualization are important due to the need to preserve

efficiency in the unpredictable multi-user multi-accessed wireless medium. Unlike in server

and network virtualization, there is not one single dominant wireless technology, but a few

major ones. It is also important to understand that not all these technologies benefit equally

from various wireless virtualization perspectives. The benefits of virtualization are most

apparent in technologies where the supported bandwidth and the supported number of users

are relatively high, leaving enough room for dynamic sharing of resources, such as in 802.11

WLAN and cellular networks. In general, cellular technologies provide more advanced

network control and management as an infrastructure-grade technology compared to the

relatively simpler WLAN technologies. Some of the existing features of these standards,

such as virtual access point (VAP) in 802.11 and network sharing in LTE, can be used as

a basis starting point to support more advanced wireless virtualization, as will be shown

in Section 2.5 and 2.6.
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2.1.3 Virtualization and Other Research Areas in Wireless Communications

Wireless virtualization is both affected by and can affect other research areas in wireless

communications technologies. In some cases, the feasibility of virtualization is positively

impacted by areas such as software-defined technologies (Section 2.4 and 2.8). In other

cases, there is a synergy between virtualization and other concepts such as cognitive radio

(Section 2.9). The following sections will examine different aspects of wireless virtualization

as well as its interaction with other research areas and technologies.

2.2 Future Internet Testbeds Using Virtualization

This section covers virtualization applied in next-generation network (NGN) testbeds, in-

cluding wireless virtualization. These international research initiatives on Future Internet

are initially motivated by the need for a change in the current Internet architecture. For

instance, the increasing demand for mobility and the shift from host-to-host applications to

content-oriented applications prompt the development of new network paradigms [8]. Thus,

one objective of NGN testbeds is to overhaul the existing infrastructure in order to support

a smarter and more open infrastructure, in this case, through infrastructure virtualization.

Gradually, focus also shifted towards wireless technologies, which are major players that

have to be considered in the foreseeable Future Internet landscape. Thus, NGN testbeds

can provide a context in which wireless virtualization can be applied and integrated in.

2.2.1 Global Environment for Network Innovations (GENI)

GENI is currently one of the largest and most complex virtualization-enabled testbed fed-

eration in development, initiated by the National Science Foundation. In fact, GENI is de-

scribed as a suite of research infrastructure [13]. The basic requirements of GENI are based

on two main concepts: resource sharing through virtualization and a federation ecosystem

of different testbeds among universities across the United States of America [13]. The vir-

tualization architecture of GENI is mostly focused on the slicing and isolation of different

experimentations, the main function of the testbed. The inclusion of virtualized wireless

technologies as part of the infrastructure is initially handled by the Open-Access Research

Testbed for Next-Generation Wireless Networks (ORBIT).

The GENI testbed meta-architecture can be divided into three main sections: the fed-
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eration of aggregates of virtualized components, the clearinghouse management registries

and the experimentation tool services [8]. The component aggregates are the main re-

source pools in which multiple components are grouped under the control of an aggregate

manager that share them through virtualization. The clearinghouse registries provide the

book-keeping and security features required for user authentication and slice configuration.

The different aggregates must communicate and establish trust relationship with the clear-

inghouse before allocating resources to a user. Finally, the tools and services contain the

important software developed for the GENI tenants to monitor, control and debug their

experiments.

2.2.2 Smart Applications on Virtual Infrastructure (SAVI)

Smart Application on Virtual Infrastructure (SAVI) is an experimental testbed under de-

velopment by the joint effort of Canadian industry and academia [14]. In some sense, SAVI

can be considered the Canadian counterpart of GENI. SAVI puts a high emphasis on cloud

infrastructure, flexible high-speed wireless access networks and low energy footprint. The

goal of SAVI is to address the design of future application platform built on a flexible in-

frastructure consisting of heterogeneous resources. SAVI is initially based on an extension

of the Virtualized Application Networking Infrastructure (VANI), a virtualization testbed

implemented by University of Toronto [15].

SAVI is divided into three major components which are the network fabric, the control

and management (C&M) center and the resource nodes. There are two types of network

fabric supported: over the Internet and over a dedicated optical backbone. The testbed-

wide C&M center is a suite of software that includes a clearinghouse system, a testbed

monitoring and measurement system, a resource allocation system and a web portal server.

Each core and edge node also has its own local C&M system. The management framework

extends the OpenStack open source cloud computing platform [16] (see Subsection 2.2.4) to

include new types of virtualized resources such as field-programmable gate array (FPGA),

graphics processing unit (GPU) and wireless access points2. The virtualization of each type

of resources is performed by a resource-specific virtualization agent [15]. The architecture

of the testbed is shown on Figure 2.1.

2This thesis is part of the Theme 4 of the SAVI Research Group, which handles the wireless access
technologies inside the SAVI testbed. Thus, one of the objectives of this thesis is to integrate virtualized
wireless resources into SAVI.
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The testbed is divided into two planes: the C&M plane and the application and exper-

iment (A&E) plane [17]. The C&M plane performs the control and setup of the infrastruc-

ture whereas the A&E plane runs the tenant applications and experiments. The resource

nodes of SAVI are divided into three levels: core, edge and access [17]. Each core node

is composed of a large-scale datacenter preferably located close to a source of renewable

energy. On the other hand, edge nodes are smaller local datacenters hosted in participating

universities. They can contain non-computing resources in addition to scaled-down storage

and processing resources. Access nodes are similar to edge nodes with the exception that

they have virtualized wireless and optical access resources. A tenant can configure its own

slice of the infrastructure, called a project, by sending RESTful application programming

interface (API) calls to the edge controller. The controller or manager then allocates the

desired resources and establish their connectivity to the virtual network of the tenant. More

details on the SAVI testbed is presented when the deployment of the proposed framework

of this thesis is discussed in Section 5.2.
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Fig. 2.1: Simplified SAVI Testbed Architecture

2.2.3 General Architecture for Infrastructure Virtualization

Both GENI and SAVI follow a generalized infrastructure virtualization and orchestration

architecture. Some generalized control and management frameworks that includes wire-

less virtualization are proposed in [18] and [9]. In [18], the virtualization architecture is
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broken down into three general components: the virtualized physical resources (VPR), the

virtual resource manager (VRM) and the virtual network controller (VNC). Each type of

VPR has its own standardized interface since they can offer different types of services and

functionalities. The VRM is the hypervisor that reinforces the QoS requirements of each

slice determined by a network service-level agreement (SLA) negotiated between the tenant

and the infrastructure provider. It can act as a resource broker. The VNCs are used by

the tenants to control and manage their own slice of the virtualized infrastructure. This

architecture is outlined in Figure 2.2 and bear resemblance to both GENI and SAVI.

Aggregation and slicing of
resources

Virtual

Network

Controller

(VNC)

Virtual

Resource

Manager

(VRM)

Virtualized

Physical

Resources

(VPR)
Router

Standardized

Interface

Server

Standardized

Interface

Storage

Standardized

Interface

Wireless

Standardized

Interface

Resource
manager

Resource Pool

VNC

Virtual

Network 1

VNC

Virtual

Network 2

VNC

Virtual

Network 3

Router

Standardized

Interface

Server

Standardized

Interface

Storage

Standardized

Interface
Wireless
Access

Standardized
Interface

Infrastructure-wide Hypervisor

Fig. 2.2: Infrastructure Virtualization With Different Resources

In contrast with [18], which presents an architecture for infrastructure virtualization

in general, [9] specifically targets the virtualization of the wireless resource, defined as a

radio node. In this case, the resources are radio resource blocks delimited by time and

frequency. The resources are allocated through algorithms implemented in a resource al-

location control (RAC) layer. A virtualization manager interface (VMI) resides in each

radio node and acts as a broker and coordinator for tenants to interface with the RAC. In

this hypothetical architecture, each tenant interacts with its own virtual radio node, which

can be completely different wireless protocol stacks. This architecture is outlined in Figure

2.3. Techniques that can support such architecture are discussed in Section 2.8 and 2.9.

Overall, these frameworks provide a global perspective on the design, deployment, control

and management of the virtualized wireless resources.
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2.2.4 OpenStack Cloud Infrastructure Platform

OpenStack is an open source cloud management and orchestration platform initially formed

by three main software components: Nova, Swift and Glance [16]. Nova manages virtual

machines (VMs) for cloud computing with VM images provided through Glance whereas

Swift manages virtualized storage. A fourth component dedicated to networking, Neutron

[19] (previously known as Quantum), supports extensible and differentiated network ap-

plications and services over a virtualized cloud infrastructure, including technologies such

as OpenFlow. There is no direct support for wireless networks inside OpenStack, which

prompted the development of Aurora in Chapter 4 of this thesis.

2.3 Multiple Access Techniques in Wireless Virtualization

Virtualization provides the illusion of sharing the resources. Ultimately, all high-level

resource virtualization eventually breaks down into low-level resource partitioning, as it

is fundamentally impossible to truly share an irreducible physical resource. In the case of

wireless virtualization, the most fundamental resources is based on the space-time-frequency

access to the wireless medium. The allocation and multiplexing of these resources are

well known as multiple access and multiplexing techniques. These techniques consist of

partitioning the time, space or frequency dimensions of the channel and allocating them to
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different users or traffic flows. In some sense, all wireless virtualization architectures rely on

some combination of multiple access techniques, whether by design or as a by-product of the

implementation. A basic guideline on the usage of different multiple access techniques for

different wireless applications depending on the requirements of the application is presented

in [20].

Each multiple access technique has its own set of trade-off in virtualization. Different

techniques are used to conserve different types of resources [21]. For example, frequency-

division multiple access (FDMA) can conserve the spatial resources by allowing multiple

tenants to reuse the same node location [21]. Alternatively, time-division multiple access

(TDMA) can be used to allocate each tenant to a time slot but with the same frequency,

conserving frequency resources [21], at the cost of some additional context-switching time

in the order of milliseconds [20]. Space-division multiple access (SDMA) is a third possible

technique presented in [20]. In the ORBIT testbed, it is applied to allow different experi-

ments to run on different portions of the grid. SDMA virtualization can also refer to the

allocation of different spatial streams of a MIMO system to each tenant although there are

limitations in the flexibility of such a design.

Hybrid access methods that use more than a single dimension can often provide a more

efficient and flexible virtualization. For instance, orthogonal frequency-division multiple

access (OFDMA) is a multi-carrier multiple access technique that allows multiple users to

seamlessly share different time-frequency blocks without any switching delay or interference

penalties originally described in [20] and [21]. In OFDMA, inter-channel interference can be

avoided by preserving orthogonality between resource blocks in frequency and inter-symbol

interference can be minimized through the use of guard intervals and cyclic prefix between

resource blocks in time. The OFDMA scheduling is performed by the downlink air interface

MAC scheduler in modern cellular technologies and is discussed in Section 2.6.

2.4 Wireless Virtualization and Software-Defined Networking

With OpenFlow

As mentioned in Section 1.2, one of the main goals of software-defined networking (SDN)

is to enhance the programmability of the network fabric and decouple the functionalities

from hardware to software. Since the network fabric is the backbone of the wireless in-

frastructure, there are specific applications of SDN technologies in a network that includes



2 Current Trends in Wireless Virtualization 17

wireless access nodes, often called a mobile network.

2.4.1 OpenFlow in SDN and Network Virtualization

Software-defined networking (SDN) enablers such as the OpenFlow protocol [22] allow an

external software controller to access the switching functions of the network fabric using

flow-based instruction rules. An OpenFlow-compliant switch, either a hardware switch or

a software switch such as Open vSwitch (OVS) [23], must have a set of flow tables and

support for the OpenFlow protocol [24]. A flow is defined by any combination of the header

subfields from layer 1 to layer 4 along with possible wildcard fields. The basic operation

of the protocol is extremely simple. An ingress packet is first matched with the headers of

existing flow entries in the flow table. If a longest prefix match is found, the flow counter

is incremented and a list of actions prescribed for that entry is executed. If a match is

not found, the packet is forwarded to the controller using the OpenFlow protocol. The

controller can then decide to create a new entry in the flow table with a set of prescribed

flow actions or additional instructions (as of the version 1.1 of the standard [25]). The

semi-persistent state of the flow table allows the packets to be processed at line rate while

being managed by a centralized controller. Thus, the protocol effectively decouples the

data plane from the control plane. More recent versions have added support for IPv6 [26]

and quality-of-service (QoS) control through meter tables [27].

An OpenFlow controller is a software platform that offers a set of APIs for develop-

ers to use the OpenFlow commands to exert SDN. A single controller can be connected

to a network of switches, each having its own datapath identification (DPID). The con-

troller usually offers an event-based platform on event callback can be attached. However,

OpenFlow by itself does not imply virtualization. Network virtualization with OpenFlow

is achieved by using an OpenFlow hypervisor such as FlowVisor [28]. FlowVisor is a Java-

based controller that enables multiple OpenFlow guest controllers to share the same set

of switches. It acts as an intermediary translation unit between guest controllers and the

switching fabric. Therefore, each tenant can control and manage the SDN in its own slice

of the virtualized infrastructure.

Overall, OpenFlow can be considered as a form of datapath virtualization technology.

Other widely-known datapath virtualization techniques include virtual local area network

(VLAN) and multiprotocol label switching (MPLS). The advantage of OpenFlow is that
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its basic software-defined operations do not rely on the labeling of flows, allowing them to

travel through the network fabric unmodified. This makes it more flexible and extensive

than most other datapath virtualization technologies. In fact, both VLAN and MPLS can

be supported over OpenFlow. Currently, OpenFlow is compatible with other virtualization

frameworks and technologies, such as OVS and OpenStack. Some of the challenges with

OpenFlow consist of scalability and fault-tolerance. Clearly, a purely centralized model

suffer from scalability and bottleneck issues because of the overhead and delay during each

flow setup. Some alternative distributed OpenFlow architecture such as DevoFlow attempts

to solve these issues [29].

2.4.2 OpenFlow in Wireless Technologies

OpenFlow can also be applied on wireless technologies in order to integrate wireless access

and mobility functionalities to the SDN framework. OpenFlow Wireless, also known as

OpenRoads, is the addition of OpenFlow-enabled plug-ins on wireless access points and

basestations [7]. OpenRoads enables OpenFlow by installing a software switch (OVS) in-

side the wireless access point firmware and using the simple network management protocol

(SNMP) to configure wireless parameters. FlowVisor and SNMP Visor (configuration hy-

pervisor) work in conjunction as shown in Figure 2.4. OpenRoads is based on the NOX

controller [30] although other guest controllers can also be used through FlowVisor. Unfor-

tunately, there are limitations with OpenRoads. First, OpenFlow cannot affect any wire-

less functionality, leaving all configuration tasks to the SNMP. However, SNMP is a generic

management protocol not sufficiently specialized to handle all wireless functionalities. For

instance, conflicting configurations such as different power levels on the same wireless ac-

cess point cannot be resolved. Thus, efficient wireless resource allocation and interference

management cannot be achieved without more enhancements in the radio hardware. Nev-

ertheless, OpenRoads remains very important because it extends datapath virtualization

to include the wireless access nodes.

In frequent cases, OpenFlow and SDN are mainly used to increase the flexibility and

mobility of the wireless network. For instance, SDN technologies and OpenFlow have been

applied to wireless technologies in various ways either to enable virtualization [31] or to

improve existing functionalities [32]. In both of these cases, OpenFlow only operates on

the switching fabric and not on the wireless hardware. In [31], CloudMAC, an OpenFlow-
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based architecture, is used to support the forwarding of 802.11 MAC frames from access

points to virtualized servers for processing, partially relocating 802.11 functionalities into

the cloud. CloudMAC is composed of four main components: the virtual access point

(VAP), the wireless termination point (WTP), the OpenFlow-enabled network fabric and an

OpenFlow controller. The time-critical functions are processed locally by the WTP on the

AP hardware. The other functions are delegated to the wireless firmware running on VMs.

Here, the key role of OpenFlow is to dynamically associate WTPs with VAPs by redirecting

and reconfiguring the layer-2 tunnels between them. This enables on-demand allocation of

new WTPs to a VAP. A single WTP can also be connected to multiple VAPs identified by

their MAC address. This effectively enables a single WTP to be shared among multiple

VAPs. The OpenFlow controller is also accompanied by an infrastructure-wide hypervisor

which manages control and management frames and stores network slicing policies. It

reinforces these policies by intercepting and overwriting control headers exchanged between

the WTPs and the VAPs through OpenFlow. The CloudMAC architecture is illustrated

in Figure 2.5.

In the case of [32], OpenFlow is used to enhance the mobility management of user

equipments (UEs) in LTE network by replacing the GPRS tunneling protocol (GTP) by

a dynamic OpenFlow-based mobility anchoring system. Since GTP tunnels must be torn

down and re-established after each handover, additional signaling overhead is incurred.
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OpenFlow can avoid this issue by dynamically allocating anchor points that maintains the

traffic flow. Only traffic flows between the UEs and the anchor point are affected during a

handover, considerably reducing the signaling traffic [32].

2.5 Virtualization in 802.11 Technologies

Compared to cellular technologies, IEEE 802.11 WLAN standards are designed to support

faster and easier deployment in a plug-and-play manner. However, as a trade-off, the

control and management framework is relatively less sophisticated. In the infrastructure

mode, WLAN APs can coordinate multiple client devices within their coverage area, just

like a cellular basestation. However, there is only support for priority-based QoS and not

for scheduling. On the other hand, direct peer-to-peer connection among 802.11 devices is

allowed. Thus, applications such as mesh networking are possible. Virtualization becomes

an extremely alluring feature in recent and future 802.11 releases that support very high

data rates, such as 802.11ac.

2.5.1 Wireless Access Point Virtualization

In 802.11 WLAN, there is already the widely-deployed feature of virtual access point (VAP)

(not to be confused with the same term used in CloudMAC in Section 2.4) as an extension
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to the basic service set (BSS) [33]. A physical access point can have multiple VAPs, each

having its own BSS and service set identifiers (SSIDs). Each VAP also has its own beacon

frame advertisements, security settings, forwarded authentication to RADIUS servers and

attachment to VLANs. Of course, multiple VAPs must share the same radio parameters

such as channel and transmission power. An example of virtualization architecture for

802.11 WLAN, CloudMAC, is presented in the previous Section 2.4. Otherwise, there

is SplitAP [34], which attempts to control the uplink traffic by installing a plug-in on

wireless client stations. While downlink traffic scheduling is relatively simple to perform

at the AP, uplink traffic control is much harder to perform in 802.11. These client plug-ins

communicate with a controller residing on the AP that runs a fairness scheduling algorithm.

One weakness of this approach is that plug-ins must be intrusively installed inside wireless

client devices.

2.5.2 Wireless Network Interface Card Virtualization

In terms of implementation, WLAN technologies are more versatile than cellular tech-

nologies. With a WiFi radio card, also called a wireless network interface card (NIC), a

computer workstation can be configured to act as an 802.11 AP. Many modern commercial

APs that run Linux-based firmware on an embedded general purpose processor (GPP) are

also using wireless NICs as radio frontend. Thus, 802.11 virtualization can be applied to

the 802.11 wireless NIC.

There are existing techniques that are applied on Ethernet NICs such as single-root

input/output virtualization (SR-IOV) used in server virtualization [35]. These techniques

use hardware-assisted components to facilitate virtualization. For instance, in SR-IOV,

memory and address translation are performed by specialized hardware units instead of

software [35]. In some instance, dedicated buffer chains and hardware ’lanes’ are provided

for each virtual interface [36]. Of course, similar mechanisms might be necessary but not

sufficient for wireless NICs because they must also perform more sophisticated MAC and

PHY functions.

In Virtual WiFi [37], 802.11 NICs are virtualized to be shared by virtual machines. A

hybrid software and hardware approach is taken because advanced wireless virtualization

functions cannot be fully implemented in hardware due to their complexity. As shown in

Figure 2.6, the Virtual WiFi architecture is divided into four main components: the guest
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machine wireless NIC driver, the virtual Wi-Fi device model, the virtualization-augmented

device driver and the virtualization-augmented NIC. Similar to [36], each virtual instance

has a dedicated and isolated vertical cross-layer software and hardware lane. Through a

generic device model interface which only implements basic peripheral component intercon-

nect (PCI) I/O functions, the guest driver communicates with the virtualization-augmented

device driver, which implements more advanced NIC-specific functions. The augmented

driver passes the management control messages obtained from the virtual drivers to their

corresponding virtual MAC layer located on the augmented NIC. The microcode of the aug-

mented NIC is modified to accommodate multiple virtual instances by keeping the state of

each slice isolated.

On the other hand, in [38], the existing 802.11 power-saving mode (PSM) and point

coordination function (PCF) are used to allow a single wireless NIC to simultaneously

participate in multiple BSS by seamlessly switching between them. This technique takes

advantage of the sleep state of PSM to maintain the virtual connectivity and avoid interrup-

tion due to re-association. There are also many other attempts at virtualizing the 802.11

WLAN. In the case of [39], no major modifications to existing technologies are made. The

existing virtual access point is simply connected to a virtual switch which then forwards
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the traffic to a virtual Ethernet interface connected to a VM [39]. A similar strategy is used

in the datapath virtualization implemented in Aurora in Subsection 5.1. In FLAVIAn [40],

the existing SoftMAC Linux implementation mac80211 is enhanced into a less monolithic

framework, the mac80211++, which is more suited for virtualization.

2.6 Virtualization in Cellular Technologies

One important difference between WLAN technologies and cellular technologies is the pres-

ence or lack of elaborate multi-user scheduling and carrier-grade infrastructure support. In

other words, basic cellular technologies already have more advanced resource scheduling ca-

pabilities compared to WLAN technologies, which are important assets for virtualization.

Of course, in the case of 3G networks, there is already support for the concept of network

sharing [10]. In network sharing, multiple mobile virtual network operators (MVNOs)

can share the same basestation (eNodeB). However, the configuration of the basestation

hardware and the wireless protocol cannot be controlled by the MVNOs [9]. Thus, deeper

basestation virtualization have been considered for both IEEE 802.16 WiMAX and 3GPP

LTE.

2.6.1 Virtualization in WiMAX

Despite being superseded by LTE, WiMAX technologies are comparatively more mature

than LTE in terms of virtualization. The virtual base transceiver system (vBTS) [41] is

a WiMAX virtualization architecture that runs full virtual instances of the basestation

on virtual machines. A router-like flow slicing engine lies as an overlay to the physical

basestation, inside the modified access service network (ASN) gateway. Traffic isolation is

provided to each slice by using traffic shaping mechanisms [42] to limit the traffic coming

in from different virtual basestation instances. Thus, in this architecture, the physical

basestation is treated as a black box component. One major advantage of vBTS is the

flexibility of supporting different MAC schedulers in different vBTS instances since they are

independent from each other and from the physical basestation. However, the effectiveness

of virtualization is limited due to a lack of coupling with the real scheduler inside the

physical basestation. As such, the schedulers can only provide a coarse isolation between

different slices [43].
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Some of the limitations of vBTS issues are addressed by integrating the virtualization

scheduler within the physical basestation in the network virtualization substrate (NVS)

architecture [43]. The NVS architecture takes advantage of the existing OFDMA-based

scheduling and QoS capabilities of WiMAX. In [43], two types of scheduling, slice schedul-

ing and flow scheduling, represent two different scopes and can act separately from each

other. Slice scheduling is the partitioning of resources across different tenants. The NVS

framework supports two different slice scheduling policies: the resource-based allocation

and the bandwidth-based allocation. The resource-based allocation consists of partitioning

a specific proportion of OFDMA slots to a virtual network during each frame time. Thus,

the available resource limits are always known, making the virtual basestation similar to

a normal basestation but with reduced data capacity. The bandwidth-based allocation

consists of guaranteeing a specific aggregated throughput for the network traffic. This sec-

ond approach allows the scheduler to dynamically allocate resource slots to satisfy a given

minimum throughput requirement.

Flow scheduling allows tenant MVNOs to have full control and customization of the

scheduling of downlink and uplink flows within their slice. Three different modes of flow

scheduling with various degrees of freedom are supported in [43]: scheduler selection, model

specification and virtual time tagging. The scheduler selection mode is the equivalent of

providing a library of pre-programmed schedulers from which the MVNOs can select from.

These scheduling modules are fully autonomous and require little or no user input. The

model specification mode allows the MVNOs more freedom at changing the configuration of

the virtual scheduler through the model interface and parameters. Finally, the virtual time

tagging mode allows the emulation of arbitrary flow schedulers defined by the MVNOs. A

virtual system time is tagged on each incoming flow in order to allow the maximum degree

of freedom in the scheduling decisions of the virtual schedulers.

2.6.2 Virtualization in LTE

The virtualization of the complete system architecture evolution (SAE) or LTE infrastruc-

ture is segmented into different components. For instance, the backbone transport network

is virtualized through SDN and network virtualization technologies, as exemplified by the

mobility anchoring with OpenFlow shown in Subsection 2.4.2. The evolved packet core

(EPC) can be virtualized by running it on virtual servers inside the cloud. On the other
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hand, for the radio access nodes, called the Evolved Universal Terrestrial Radio Access

Network (E-UTRAN) formed by eNodeB’s, wireless basestation virtualization is applied.

LTE basestation (eNodeB) virtualization is explored in [5] through the integration of

virtualization-aware algorithms in the scheduling of physical radio blocks (PRBs). Similar

to NVS, [5] implements different types of resource allocation within the downlink air-time

scheduler at the eNodeB, as shown in Figure 2.7. It attempts to define different types

of SLA for entire slice owned by a tenant MVNO: fixed guarantee, dynamic guarantee

with maximum bandwidth restriction, best effort with minimum guarantee and best effort

with no guarantee. Such an architecture is extremely similar to the virtual radio node

architecture from [9] discussed in Subsection 2.2.3.

2.7 Virtualization in Heterogeneous Technologies

Other than sharing resources, one interpretation of virtualization is to provide an abstrac-

tion layer to allow heterogeneous technologies to be managed through a common framework.

The Carrier Grade Mesh Network (CARMEN) architecture is a heterogeneous wireless mesh
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network infrastructure with a MAC abstraction layer supporting both 802.11 and WiMAX

nodes [44]. The CARMEN mesh network is composed of three different types of nodes:

CARMEN mesh points (CMPs), CARMEN access points (CAPs) and CARMEN gateways

(CGWs). The CMP nodes serve as wireless routing relays to other nodes and forwards

packets coming from CAPs with flow-based QoS reinforcements. The CAP nodes are lo-

cated at the edge of the mesh network and connect the end users to the network. The CGW

nodes are the boundary points between the wired network infrastructure and the wireless

mesh network. The MAC abstraction layer proposed in [44] simplifies the management and

traffic offloading of the mesh nodes. It is divided into the mesh functions sub-layer and

the MAC abstraction sub-layer. The mesh functions sub-layer consists of the technology-

independent mesh node management functions such as mobility, forwarding, monitoring

and configuration. The interface management function (IMF) maps the mesh functions

from the technology-independent interface to the technology-dependent interface through

an adapter module.

2.8 Wireless Virtualization and Software-Defined Radio

The goal of SDR technologies is to enable a more programmable and general-purpose radio

hardware, as mentioned in Chapter 1. The usage of SDR can facilitate the implementation

of virtualization architectures by decoupling of the control and processing logic from the

hardware data plane. With such a decoupling, it is possible to have the same radio hardware

simultaneously support different wireless standards. For instance, the GNURadio project

[45] provides open source software modules to perform signal processing instead of relying on

specialized hardware. Unfortunately, it suffered from poor real-time performance. However,

more recent advances in SDR technologies such as Sora SDR [46] and OpenRadio [47] offer

feasible real-time performance.

While SDR technologies based on programmable hardware using DSP and FPGA are

very fast, they are often more expensive and do not provide the same amount of flexibility

as a purely software-based SDR running in GPPs. On the other hand, it is very hard

for GPPs to meet the throughput and latency requirements for practical real-time radio

transmission. In order to address these issues, the Sora platform [46] provides a pure

software-based solution with high performance. Sora is divided into three main sections:

the radio front-end hardware, the radio control board (RCB) and the software radio stack.
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The radio front-end hardware consists of the antenna and the digital/analog converters.

The digitized signal is directly fed into a host computer through the RCB. Thus, the

entire PHY layer baseband processing is performed in software. The RCB is an interface

board with a direct memory access (DMA) module and a custom PCI Express (PCIe)

controller, which supports high bus transfer rate and low latency sufficient enough to satisfy

timing requirements of many wireless standards. The RCB can be installed on a computer

workstation like a regular NIC. Additional software-based optimizations are performed

in the software radio stack, which resides in the operating system kernel as a driver-like

component. It contains a library of PHY functions optimized for multi-core GPPs using

streamline processing, look-up tables (LUTs) and single instruction multiple data (SIMD).

The multi-purpose access point (MPAP) [48], an example of virtualization using SDR, is

shown along with the Sora architecture in Figure 2.8. The MPAP architecture allows a

ZigBee radio interface to simultaneously share the same hardware with an 802.11 radio

interface.
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On the other hand, OpenRadio [47] is a hybrid SDR platform partially based on hard-

ware digital signal processing (DSP) technologies. Its objective is to decouple the wireless

protocols from hardware and separate the processing functions from decision functions in

wireless protocols. The decoupling of wireless protocols from the physical hardware is per-

formed through protocol decomposition by identifying a set of basic irreducible PHY and

MAC building blocks. PHY building blocks are implemented within DSP and FPGA-based

modules. Since these functions are common to PHY layers of most wireless standards, a

common dataplane can be constructed for most if not all wireless standards [47]. The

constructed wireless protocol consists of two distinct planes: the decision plane and the

processing plane. The decision plane is a logic assembly of branching rules. The processing

plane is defined by mathematical operations over the signal data. The decision plane and

the processing plane of OpenRadio are separated by the information plane, an interface

formed by the configuration and statistics of the processing plane acting as interface be-

tween the two planes. This architecture has the advantage of providing fixed guarantee

on the execution time of functions [47]. This is because the time-intensive data process-

ing is performed in hardware (fixed execution time) while all the decision that are not

computationally-intensive are performed in software (variable execution time).

2.9 Sub-PHY Wireless Virtualization

The virtualization of wireless resources can be performed even below the PHY layer of the

wireless protocol stack. Such low-level techniques are usually very complex and difficult

to implement due to their tight coupling with the physical medium. However, once imple-

mented, they provide the highest degree of flexibility and enable potentially revolutionary

applications. These techniques are mostly developed to support advanced radio applica-

tions such as cognitive radio and dynamic spectrum allocation. They can complement SDR

technologies presented in the previous Section 2.8.

2.9.1 Spectrum Virtualization

One category of sub-PHY virtualization techniques is to apply a virtualization and abstrac-

tion layer over the frequency spectrum, as in the spectrum virtualization layer (SVL) [49].

SVL resides between the PHY layer and the RF circuit. As an intermediate layer, SVL
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does not require major modifications to the MAC and PHY layers of existing wireless stan-

dards. Instead, it allows the spectrum shared among virtual radio stacks to be managed in

a technology-independent spectrum manager. These virtual radio instances can potentially

run different wireless protocols. SVL is composed of the spectrum manager, the spectrum

map, the spectrum reshaper and the software mixer/splitter.
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The overall architecture is very similar to a ‘spectrum router’ [49]. The spectrum

manager determines the spectrum allocation of different virtual radio stacks. It creates the

spectrum map based on allocation algorithms and policies. The spectrum map is an efficient

lookup mechanism with very little overhead. The spectrum reshaper performs virtualization

by reshaping the baseband spectrum of each virtual radio stack to fit into the spectrum

specified by the spectrum map. The reshaping consists of a mixture of signal decomposition,

signal re-composition, bandwidth and sampling rate adjustment and frequency shifting [49].

Finally, the mixer and splitter multiplexes/de-multiplexes the baseband signals of each

virtual radio before sending the combined spectrum to the radio frontend. The architecture

is outlined in Figure 2.9.

Due to the abstraction layer provided by SVL, the spectrum can be mapped to not only

a single frontend but to a network of multiple frontends. Thus, SVL also behaves as a RF
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frontend abstraction layer. As such, SVL can work in conjunction with concepts such as the

fibre-connected massively-distributed antennas (FMDA) system [4], in which the baseband

signals of a network of radio nodes are jointly processed. Cognitive radio techniques can

also be applied over such virtualized platform. For example, a white-space networking

application that uses the 802.11g protocol to transmit data in the TV channel frequencies

is supported by SVL [49]. The SVL architecture is fully implemented in software by using

the Sora SDR platform discussed in Section 2.8.

2.9.2 Radio Frontend Hardware and Virtualization
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Physical limitations of the RF frontend in terms of isolation and bandwidth do exist.

Thus, the radio frontend circuit itself can be enhanced to facilitate virtualization and var-

ious other advanced radio technologies by supporting a more flexible range of spectrum

with fewer limitations and more degrees of freedom. For instance, in [50], Picasso provides

a nearly full duplex RF circuit that can be used in SDR, cognitive radio and virtualiza-

tion. It allows simultaneous transmission and reception of signals in the same and adjacent

frequency spectrum with a single antenna. In addition, it provides spectrum slicing and
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virtualization through FPGA-based digital filters, allowing multiple virtual radio protocol

stacks to apply dynamic spectrum allocation techniques to share the fragmented spec-

trum available in the same frequency band [50]. In order to achieve this, two components

are used: the passive self-interference cancellation system and the programmable spectrum

slicing engine. The passive self-interference cancellation system is based on a full-duplex

circuit composed of a circulator and a passive cancellation circuit with fixed delay lines

and passive programmable attenuators. The spectrum slicing engine is implemented using

Xilinx Virtex-5 FPGAs and contains a digital filter engine to perform re-sampling, filter-

ing and remapping of the digitized samples. The overall spectrum slicing architecture is

comparable to that of SVL except that it is mainly FPGA-based. Additional digital self-

interference cancellation is performed inside the slicing engine to provide further isolation

of the spectrum. This architecture is shown in Figure 2.10.

2.10 Chapter Summary

In this chapter, different aspects of wireless virtualization have been surveyed in order to

identify the existing architectures and implementations of virtualization in wireless tech-

nologies. The integration and interdependence of virtualization with other research areas

such as Future Internet testbeds, software-defined network and software-defined radio have

been explored. This literature survey serves as the basis for classifying different wireless

virtualization approaches and formulating a generic wireless virtualization framework in the

following Chapter 3. The various techniques and architectures presented in this chapter

are taken into account in the design and implementation of Aurora in Chapter 4.
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Chapter 3

Generic Framework for Wireless

Virtualization1

As discussed in the previous Chapter 2, there is a great diversity in the scope, depth,

application and feasibility of different existing approaches in wireless virtualization. In

order to cover a large range of applications, often more than one of these approaches must

be implemented. Currently, there is a lack of a common framework that allows these

different virtualization perspectives to interact and coexist. Thus, this chapter outlines the

architecture of an evolvable, modular, generic and multi-perspective virtualization meta-

framework for wireless resources. Such an evolving framework aims at providing the tools

and building blocks necessary to explore and develop various virtualization architectures.

As such, it is not intended to be a definitive answer to wireless infrastructure virtualization.

In this chapter, the term virtual resource refers to an abstracted slice of the physical

resource.

3.1 Wireless Virtualization Perspectives

Unlike the formal server virtualization requirements defined in [51], there is no well-

established guiding framework or formal requirements for the so-called wireless virtualiza-

tion. Thus, it is important to define a classification framework that can focus the attention

1Parts of this chapter have been presented at the 2013 IEEE Third International Conference on Selected
Topics in Mobile and Wireless Networking (MoWNet’2013) in Montreal, Canada [1] and published as part
of the SpringBriefs in Computer Science series [2].

2014/04/01



3 Generic Framework for Wireless Virtualization 33

on different aspects of wireless virtualization. This section proposes a classification of var-

ious wireless virtualization approaches into three perspectives : flow-based virtualization,

protocol-based virtualization and spectrum and RF frontend virtualization.

These three perspectives are mainly defined based on the type of the resources being

virtualized and the objective of virtualization. The motivation of such a classification is that

it is independent from specific wireless standards or technologies. In addition, it can provide

some insight on why these perspectives are necessary in a given application. Overall, the

different types of virtualization are like pieces of a larger puzzle in the sense that they can

complement each other. However, these perspectives are not mutually exclusive. Instead,

they are markers on a gradual scale of virtualization.

3.1.1 Flow-based Wireless Virtualization

In flow-based wireless virtualization, the focus is on the customization and control over

the datapath of the wireless infrastructure, viewed as a data exchange and distribution

network. Flow-based virtualization takes care of the isolation, scheduling, management

and service differentiation between traffic flows. It can be considered as an extension of

the flow-based SDN and network virtualization concepts into wireless technologies. Using

the same SDN terminology, a ’flow’ is an extremely flexible construct defined as a stream

of data sharing a common signature, uplink or downlink. It can be managed from within

a slice or across different slices of a virtualized network. Despite its resemblance with SDN

and network virtualization, flow-based wireless virtualization approaches require wireless-

specific functionalities such as the scheduling of radio resource blocks in order to reinforce

quality-of-service (QoS) and SLA over the traffic flows.

The general architecture of this perspective can be divided into two types: overlay

flow-based virtualization and integrated flow-based virtualization. In the overlay case,

the wireless access hardware is considered as a black box. The virtualization layer and

hypervisor are located outside of the access hardware. They function like a filter, switch

and gateway to provide a configurable datapath and control path to the wireless nodes.

The overlay virtualization is required in order to integrate existing wireless technologies

into a virtualized infrastructure. However, since it cannot access the internal resources of

the hardware, the level of guarantee and the granularity of control over the servicing of the

flows is limited. Implementations such as OpenRoads [7] (Subsection 2.4.2) and vBTS [41]
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(Section 2.6) are examples of overlay flow-based virtualization.

In the integrated case, the main difference is that the virtualization layer is located

within the wireless access hardware, granting it access to the inner scheduling mechanisms

of the radio node. In other words, the resource management on the hardware is modified to

be virtualization-enabled and aware of the different SLA of different slice tenants. As such,

integrated flow-based virtualization often deals with allocation of radio resource blocks

in order to satisfy these service requirements. This allows a more dynamic and efficient

way of managing different traffic flows. Architectures such as NVS [43] and virtual LTE [5]

(Section 2.6) are examples of integrated flow-based virtualization. Both types of flow-based

virtualization architecture on radio hardware are outlined in Figure 3.1 in comparison with

a non-virtualized radio hardware.
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Fig. 3.1: Overlay and Integrated Flow-Based Virtualization Architecture

Flow-based virtualization is the most feasible approach to implement with very im-

mediate benefits. Its main benefit is to provide a more flexible and efficient traffic and

resource management. It potentially allows tenants to control the scheduling of flows for

clients within their own slice of the infrastructure. In addition, flow-based perspectives are

required for the integration of wireless technologies with the rest of the cloud infrastructure.
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3.1.2 Protocol-based Wireless Virtualization

Protocol-based wireless virtualization focuses on the wireless protocol stacks and their sup-

port on the virtualized radio nodes. This perspective considers the isolation, customization

and management of multiple wireless protocol instances on the same radio hardware. It al-

lows tenants to control separate instances of the wireless protocol stacks on the same radio

hardware, which is not possible in flow-based virtualization. As such, the types of resources

being virtualized are mostly MAC and PHY processing resources, which are distributed

between software and hardware. Link layer and protocol configuration functionalities are

usually located in software components such as device firmware, driver and micro-controller

code. Baseband processing operations are typically performed in hardware embedded dig-

ital signal processing (DSP) units. With software-defined radio (SDR) technologies, more

and more hardware functions are being processed in software, decoupling the wireless pro-

tocol from the hardware. The protocol-based perspective attempts to take advantage of

these advancements to improve the flexibility and sharing of radio hardware.

In terms of architecture, there are varying levels of protocol-based virtualization de-

pending on how decoupled the protocol is from the hardware. The partial protocol-based

virtualization consists of tenants sharing the same wireless protocol stack but with different

configuration profiles. In other words, each tenant can have a different set of radio MAC and

PHY configuration parameters for their slice, which is not possible in pure flow-based vir-

tualization. This partial implementation requires some software interfaces to dynamically

access radio configuration parameters and the protocol stack to process data with changing

MAC or PHY parameters depending on the slice it belongs to. The NIC virtualization

techniques discussed in Subsection 2.5.2 belong to this category.

On the other hand, full protocol-based wireless virtualization allows completely different

protocol standards to be simultaneously supported on the same radio hardware. This

perspective allows the same radio hardware to be reused for different wireless protocols. In

order to support this perspective, the radio hardware is fully abstracted and decoupled from

the wireless protocols. MAC and PHY resources are allocated based on a protocol scheduler

mechanism that can vary based on the architecture. The Sora SDR [46] and OpenRadio

[47] (Section 2.8) fall into this level. Both levels of protocol-based virtualization along with

spectrum virtualization are shown in Figure 3.2.

It is important to note that the challenging aspect of the full protocol-based architecture
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is the spectrum allocation for different protocols. In this thesis, the protocol-based per-

spective is defined to be uniquely focused on the mechanisms that support virtual protocol

stacks. The management of the spectrum is considered in the following subsection.
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Fig. 3.2: Partial and Full Protocol-Based and Spectrum Virtualization Architecture

3.1.3 Spectrum and RF Frontend Virtualization

The lowest level of virtualization, the spectrum and RF frontend wireless virtualization,

focuses on the dynamic allocation and management of the spectrum and the radio frontend

nodes. The types of resources being virtualized are the frequency spectrum and the RF

frontend. In terms of spectrum virtualization, this perspective aims at providing an abstrac-

tion layer over the spectrum available at a given region and time in order to support a more

intelligent, flexible and efficient spectrum usage. Here, the spectrum allocation is different

from that of flow virtualization in the sense that it has a wider and more dynamic scope.

As such, it covers the general spectrum potentially used by different standards. Cognitive

radio technologies and dynamic spectrum allocation techniques are extensively used in this

perspective. In RF frontend virtualization, this perspective considers different techniques

that can remove physical limitations in the radio hardware in order to dynamically support

a wider range of spectrum, which is an important feature for spectrum virtualization.

In terms of architecture, the spectrum and RF frontend virtualization requires some
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form of spectrum sensing mechanisms in order provide the spectrum manager information

required to perform allocation and coordination. On the other end, the radio frontend must

be able to receive and transmit at a wide range of frequencies with as few restrictions as

possible. Ideally, the RF hardware should be capable of supporting wideband transmission

with very good isolation between adjacent spectrum, provided either through digital filters

or through RF circuit components. Both the spectrum layer and the RF frontends are com-

pletely decoupled from the wireless protocol stacks. Such an architecture is illustrated in

Figure 3.2. From the previous Section 2.9, SVL [49] is an example of spectrum virtualization

whereas Picasso [50] is an example of RF frontend virtualization. Otherwise, a centralized

baseband processing unit, as in the case of fibre-connected massively-distributed antenna

(FMDA) systems [4], can also help in the implementation of spectrum and RF frontend

virtualization over a large region.

In protocol-based virtualization, in order for multiple protocols to coexist on the same

hardware, a mechanism to share the spectrum must be applied. Otherwise, there might

be conflicts between protocols sharing the same frequency band. Thus, spectrum and RF

frontend virtualization is required in order for protocol-based virtualization to reach its full

potential. These types of interplay between the different perspectives are discussed in the

following subsection.

3.1.4 Coexistence of Different Virtualization Perspectives and Domains

In practical applications, the wireless access network is connected to the core switching

network and the Internet. This highlights the importance of integration between different

infrastructure domains in the Future Internet infrastructure. These domains refer to a set

of infrastructure components sharing similar types of resources and performing similar func-

tionalities. Cloud computing and SDN technologies cover the computing and networking

domains whereas wireless virtualization is applied in the wireless domain. Cross-domain

integration of control and customization allows for a more agile infrastructure [18]. In

other words, the infrastructure can be viewed as an active part of the application or the

service, not simply as a support. For instance, wireless virtualization can be integrated

with other domains in order to form a cloud infrastructure in which a single slice can

span across the entire infrastructure, binding together virtualized computing, networking

and wireless resources. The different wireless virtualization perspectives presented in the
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previous subsections can play different roles in such a virtualized infrastructure. Example

applications with 802.11 are briefly compared in Table 3.1. Thus, this thesis promotes the

idea of coexistence between these perspectives. The idea of coexistence is supported by two

main reasons: the important roles each perspective play and the gradual evolution of these

perspectives.

Table 3.1: Examples of 802.11 Applications Over Different Virtualization Perspectives

Perspective Flow-based Protocol-based Spectrum-based

Resource

Type

Packet flow, flow-bound
resource allocation

MAC and PHY process-
ing resources

Wireless spectrum, ra-
dio frontend

Examples

for 802.11

Flow isolation and man-
agement among virtual
networks, enhanced
virtual access point
(VAP) functionalities
[33], SDN application in
wireless networks such
as OpenFlow Wireless
[7]

802.11 access points
with configurable vir-
tual radio profiles,
coexistence with other
wireless protocols on
same radio hardware
[47]

802.11 delivered over
TV spectrum [48]

In terms of roles, the three perspectives are complementary to each other. For instance,

flow-based wireless virtualization is required to connect virtual resources together. In [52],

flow-based virtualization is used for network-wide applications such as the personalized

mobility management. In this case, virtualization is used to maintain different personalized

connection profiles. However, flow-based virtualization is often not sufficiently granular

for more advanced and efficient wireless communication applications, such as the coordi-

nated multipoint (CoMP) using hardware virtualization proposed in [53]. For the methods

proposed in [53], virtualization is applied in the PHY and spectrum layer to provide vir-

tual basestations for baseband processing that can be distributed over multiple physical

basestations. On the other hand, even with spectrum virtualization, there is still need

for protocol-based virtualization mechanisms to define and maintain the decoupling of the

virtualized protocol stacks from each other and from the radio hardware. In all cases, flow-

based virtualization is still required to integrate the data and control path with the rest of

the infrastructure.

The second motivation behind a multi-perspective approach is the evolving nature of

virtualization technologies. Not all the perspectives can reach their full potential with the
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existing technologies and techniques. This is particularly true for protocol-based virtualiza-

tion, which requires a mature and sustainable SDR platform, and spectrum virtualization,

which requires new radio hardware architectures. Looking back at the history of server

virtualization, only software-based virtualization was originally possible. Then after the

introduction of VT-x and AMD-V, full hardware-based virtualization was possible. Thus,

the availability of technology and the transition from one technology to another are key as-

pects that must be taken into account. As wireless virtualization is still evolving, different

perspectives should be simultaneously supported with the same infrastructure in order to

leave room for improvement.

3.2 Towards a Generic Wireless Virtualization Framework

As discussed in the previous section, the different wireless virtualization perspectives can

be complimentary to each other. The process of integration of virtualization technologies

in a virtualized infrastructure should be evolutionary and progressive. This section dis-

cusses the central idea of this thesis, which is the formulation of a generic platform that

can support these perspectives under a common framework. In other words, the so-called

generic framework is a meta-framework that provides a sandbox approach that is mod-

ular and flexible enough to support various existing wireless virtualization architectures.

Thus, the framework promotes a heterogeneous and diversified infrastructure as opposed

to a monolithic one. At the same time, complete virtualization is a challenging task due

to the complexity of such system. The advantage of a multi-perspectives approach is the

integration of different perspectives and technologies from SDN, SDR and cognitive radio

as interworking yet separate solutions to the multiple aspects and challenges of virtualiza-

tion. In a sense, the generic framework is similar to an infrastructure operating system, in

which different virtualization perspectives are represented by different software modules.

Ideally, such a framework allows researchers and service providers alike to explore, develop,

implement and deploy new applications and services on the virtualized infrastructure and

is beneficial to the evolution of the future infrastructure. The following subsection iden-

tifies the different challenges and requirements for the design of such a generic wireless

virtualization framework.
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3.2.1 Challenges of a Wireless Virtualization Framework

Even though different perspectives are complementary to each other and can be combined,

not all the tenants might be interested in having full control over them. For instance, some

tenants do not need protocol-based or spectrum virtualization perspectives because of the

nature of their applications or services. Moreover, not all existing hardware equipments can

support the same degree of virtualization, as mentioned in Subsection 3.1.4. A sustainable

virtualization framework should progressively allow multiple virtualization perspectives to

coexist and evolve. Some of the current and emerging challenges of wireless virtualization,

along with possible solutions and impact on the proposed framework, are identified as

follows.

1. Flexibility-performance trade-off : Wireless technologies are inherently special-

ized and optimized by design. High granularity of control and programmability of

wireless hardware can add overhead fatal to time-sensitive functionalities. Over-

generalization can lead to a reduced efficiency in the performance of a given wireless

technology. On the other end, a deeply integrated and specialized virtualization

layer can lead to a more efficient design, albeit a less flexible and portable one. It all

comes down to the question of determining the right amount of wireless virtualization.

Unfortunately, since different applications and services have different requirements,

there is no right answer to that question. Typically, existing wireless virtualization

techniques are implemented with as few intermediate layers as possible in the direct

datapath and time-critical decision path. In some cases, a localized virtualization agent

is closely integrated to a specific technology, allowing it to retain performance while

providing a common abstraction layer to its functionalities. The proposed framework

incorporates all these different approaches as building blocks of virtualization. As

such, it operates as an orchestration plane over other virtualization technologies, giv-

ing the tenants flexibility to build their own virtual infrastructure without sacrificing

the performance of the existing technologies. This concept is explained in Subsection

3.3.2.

2. Scalability of framework: There are various scalability issues at the different levels

of a virtualization framework, notably at the infrastructure level and the radio node

level. In terms of infrastructure-wide control and management, a centralized virtual-

ization manager can become overburdened as the number of resources increases. In
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existing virtualization C&M frameworks, the manager plays the role of a broker, del-

egating as much as possible the direct management of resources to tenant-operated

guest controller, as suggested in [9]. Thus, instead of letting the manager handle

all the tenants directly, semi-persistent rules and policies are installed on the local

virtualization agents. In addition, resources can be clustered into regions each with

a separate infrastructure manager, as implemented in OpenStack [16] and SAVI [14].

The proposed framework adopts both of these methods. On the other hand, the

problem of scalability can also occur in software-defined technologies used to sup-

port virtualization. For instance, when baseband processing is pushed to software for

virtualization, the scalability of the virtualization layer becomes dependent on the

processing capabilities of the external controller and the link capacity between the

controller and the radio hardware. Then, time-sensitive functionalities can experience

longer delays as distance is increased. Potential methods to tackle these challenges

include the use of high-throughput low-delay optical fibre connections and a more

efficient partitioning of functionalities between hardware and software. Preferably,

time-critical functionalities must be optimized in software and accelerated through

hardware. The proposed framework provides a platform to test and deploy such

methods.

3. Complexity of architecture and interface: If not carefully planned, a meta-

framework not only adds complexity to the implementation but also exposes too much

complexity to its tenants. By design, the virtualization layer (or hypervisor) must

perform overhead virtualization-related functionalities of multiplexing, slice isolation,

function translation and policy reinforcement. Thus, coordination among multiple

slices can cause complex interactions among different components. In the proposed

framework, in order to avoid increasing the complexity of the overall framework,

many of these complex operations are abstracted and modularized. A selection of

common high-level slice management functions is offered through the framework. To

an external user tenant, the complexity of the implementation is hidden under various

levels of APIs. A customizable level of granularity of control and configuration are

exposed to different tenants with different needs, given to rise to a scalable complexity.

In other words, the framework attempts to be user-friendly without removing access

to the complexity actually required by certain tenants.
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4. Feasibility of deployment: One of the most difficult challenges is the deployment

of such a generic virtualization framework. The practical deployment of the frame-

work requires technology-specific implementation and integration. However, unlike

with server virtualization which is mainly dominated by a single technology (x86 ar-

chitecture), wireless technologies are extremely diverse. Clearly, it is not possible to

virtualize everything at once. Therefore, the multi-perspective framework approach

can provide a modular platform on which different virtualization technologies can

be slowly integrated. Moreover, backward compatibility and retrofitting are essential

to the deployment of the framework as it is unrealistic to throw away the existing

infrastructure. This is where a multi-perspective platform can shine since different

levels of virtualization can be abstracted to offer different capabilities and features

of the wireless resource node. Nodes without support for virtualization will simply

be allocated ’as is’ with a more limited set of functionalities. More advanced and

high-performance capabilities can be then offered as a premium over the basic fea-

tures. For this thesis, the framework is deployed as part of the SAVI testbed. The

integration of existing university access points into the framework is considered in

Subsection 5.5.

3.2.2 Defining Requirements of a Wireless Virtualization Framework

Different solutions to the challenges presented in the previous subsection were discussed.

Here, some of these solutions are reformulated as requirements and features of a generic

multi-perspective virtualization framework for wireless technologies. The partial fulfilment

of these requirements by existing frameworks and technologies is also discussed.

1. Generic, modular and open framework: Different wireless resources use different

virtualization perspectives and technologies. In order to support such a heterogeneous

infrastructure, there are many characteristics that need to be taken into account in

the design of the framework.

(a) Generic core engine: The core framework should be independent from partic-

ular perspectives or technologies. General functions such as wireless network

and slice creation, deletion and modification should be agnostic to how a slice

is defined and implemented. The core framework act as an engine to orches-

trate and broker wireless resources from an abstracted point of view, allowing
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the framework to be easily reconfigurable and extensible. This characteristic is

observed in meta-architectures such as GENI [13], SAVI [14] and mobile virtual-

ization [18]. The proposed framework differs from them by providing extending

the core framework to the radio resource node level in order to manage wireless

virtualization functions.

(b) Modular components : Modularity is an important characteristic that must be

applied to both internal (between modules) and external (exposed to tenants)

interfaces and functions. Technology-specific functions must be self-contained in

an exchangeable software module. A similar concept with MAC functions was

applied in [44] but should be extended to include more functionalities. The pro-

posed framework in this thesis attempts to satisfy this requirement by encapsu-

lating different implementation technologies for different wireless virtualization

perspectives to offer them as building blocks part of a virtualization toolbox.

(c) Open configurability and interfaces : All the functionalities offered through the

virtualization framework and the different virtualization perspectives should be

fully accessible to tenants if they desire so. In other words, different tiers of

perspectives can be exposed to the tenants depending on their needs. The main

advantage of the proposed framework is that it allows the tenant to setup and

configure their own data and control path and implement their own virtualization

and software-defined architecture. At the same time, a tenant not interested in

such low-level control can simply use the prebuilt virtualization packages and

blueprints.

2. Evolvability and extensibility of the framework: Since it is not required to have

all three wireless virtualization perspectives integrated at the same time, a progressive

approach adjusted to different applications is suggested. As the depth of virtualiza-

tion evolves, new extension modules and plug-ins can be added to the framework.

The potential integration and federation of both existing and emerging virtualization

architectures should be considered. Existing Future Internet testbed architectures

such as GENI and SAVI are designed with such objectives in mind. The proposed

framework follows a similar design pattern but focuses uniquely on wireless virtual-

ization technologies, an area relatively less explored by existing works. In order to

facilitate the development of the framework and leave room for contribution by other



3 Generic Framework for Wireless Virtualization 44

research groups, the proposed framework will be based on open source technologies

and offers a transparent access to internal APIs.

3. Resource and function abstraction: In relation to the modularity requirement,

the resources should be abstracted as building blocks, giving a sandbox-like view of

the infrastructure. The abstraction applied in the proposed framework should be

flexible enough such that it can even be nested. As an example, one tenant should

be able to obtain an abstracted SDR resource to create multiple virtual radio access

nodes that can then be abstracted as resources to be used by other tenants. Thus,

a portion of the virtualization platform itself can be allocated as a resource to a

tenant interested at providing new virtualization services to other tenants, forming an

interesting ecosystem of service exchange between tenants on the same infrastructure.

Such an ecosystem was briefly explored in Section 1.4.

3.3 Architecture for a Multi-Perspective Wireless Virtualization

Framework

This section outlines the overall architecture and concept of a generic wireless virtualiza-

tion framework that can support multiple coexisting wireless virtualization perspectives

and technologies. The framework is divided into two groups of components: the control

and management layer (CML) and the virtualization layer (VL). The CML contains a

series of components that process wireless infrastructure-wide management functions. It

encompasses both the framework manager and the tenant-owned managers. On the other

hand, the VL includes a set of virtualization mechanisms and agents that can be configured

by the tenants through the CML. These two layers are kept separate in order to support

as much as possible the decoupling of functionalities from the physical resources. Here,

a physical resource node is defined as a radio node or a collection of radio nodes in the

case processing is centralized. The rest of this thesis is mostly focused on the design and

implementation of components from the virtualization layer. The detailed architecture of

the CML is outside the scope of this thesis.

The overall architecture of the framework is shown in Figure 3.3, which describes how

a tenant can obtain and control virtual wireless resources inside the framework. First,

the tenant must send a configuration blueprint to the infrastructure manager to request
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a specific wireless resource. The manager validates the request and sends a slice creation

command to the virtualization agent located on the physical resource. The agent prepares

a virtual slice and set it up to be connected to the tenant-specified virtual network(s).

A direct control and data path between the slice and the tenant is therefore established.

Tenant can then use its own controller to manage the virtual resources it acquired. This

architecture is inspired by that of [15] and [18]. However, what is newly introduced is

the integration of virtualization with software-defined and service-oriented infrastructure

concepts, which allow the virtual infrastructure to be easily reconfigured as a virtual testbed

platform. In order to support this in a scalable manner, the level of interaction and control

offered to the tenants is separated into two phases: the virtual infrastructure setup and

configuration and the virtual infrastructure control and management. Different control

paths are used depending on the type of control operations.

1. Virtual infrastructure setup and configuration: Infrastructure setup designates

any operations that require a change in the configuration of the physical resource that

cannot be handled within the virtual resource. Such operations include modifications

to the slice SLA, such as the creation, deletion and resizing of slices. Depending

on the capabilities of the virtual resource, it can also include various changes to
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the architecture of the virtual infrastructure and the relationships between virtual

resources. Overall, the setup operations allow a tenant to fully redefine its own

virtual infrastructure through a customized blueprint. The setup path is indirect

since it must be validated through the infrastructure manager, which dispatches the

blueprint to agents which reconfigure the resources on behalf of the tenants. This

intervention is necessary because these setup operations can potentially affect other

tenants residing on the same infrastructure. The manager must resolve any potential

conflicts between them before letting the agents work on them.

2. Virtual infrastructure control and management: Infrastructure control and

management refers to operations that fall within the jurisdiction of a slice and its

tenant. In other words, it includes any operation that does not affect the definition

and capabilities of the virtual resource itself. For example, it can include the control

of decoupled functionalities using software-defined technologies. The control path for

infrastructure management is directly established between the tenant and the virtual

resources in order to reduce potential delays. Of course, some control operations can

still impact slices from other tenants. These potential conflicts can be resolved by the

local agent (as opposed to infrastructure manager). Ultimately, what functionalities

fall into which type of control depends on the capabilities of the physical resource. For

instance, a physical radio resource node that supports spectrum virtualization can

treat channel selection as a control operation whereas a node that does not support

dynamic channel configuration treats the same function as a setup operation. The

different types of agents used in a multi-perspectives framework are discussed in the

following subsection.

The interaction between the tenant and the different framework components is illus-

trated in Figure 3.4. Most existing architectures support the infrastructure control and

management by tenants but only have a limited support for infrastructure setup and con-

figuration. In these architectures, the infrastructure setup is relatively fixed and prede-

termined, making it difficult for tenants to apply different virtualization architectures and

perspectives. The proposed framework offers a more diverse toolbox-like support for both

infrastructure setup and infrastructure control, as will be shown in Chapter 4.
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3.3.1 Multi-Perspective Integration in Virtualization Framework

From an infrastructure-wide point-of-view, a virtual infrastructure is created by assembling

different types of resources and defining the connectivity between them. The wireless

virtualization perspectives presented in Section 3.1 offer different types of virtual resources

with different services. In fact, flow-based wireless virtualization is the only perspective

that needs to be integrated along with network virtualization and SDN technologies as a

minimum requirement. On the other hand, protocol-based and spectrum virtualization can

offer functionalities completely foreign to the flow-based perspective. In some cases, the

physical resources used in a given virtualization perspective can actually be substituted by

a virtual resource obtained through another perspective. Moreover, resource allocation and

partitioning should be applied whenever virtualization is not available. The integration of

different perspectives within the proposed virtualization framework is illustrated in Figure

3.5 with a few example cases of resources with varying degrees of virtualization.

First, a non-virtualizable wireless resource (case A) can be integrated within the frame-

work by the addition of an abstraction layer and agent to interface with the framework.

The agent can establish the connectivity between the resource and the tenant network.

Physical resources can then be directly allocated along with virtual resources in order to
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benefit from the service-oriented and sandbox nature of the framework. In a resource node

that only supports the flow-based virtualization perspective (case B), tenants must share

the same wireless protocol and the same radio parameters. The capabilities that can be

offered to tenants include datapath isolation and customization. The virtualization agent

on such resources must setup virtual interfaces, virtual bridges, tunneling endpoints, traffic

shaping mechanisms, data capturing services as well as SDN-enabled technologies. This

type of agent is implemented in Chapter 4.

If partial protocol-based virtualization is available (case C), the resource node still

retains the flow-based capabilities but acquire additional features such as the ability to

allocate unique radio configuration profiles to each tenant. One important concept that is

maintained throughout the proposed framework is that resource nodes with more capabil-

ities can still offer virtual resources with lower capabilities. For example, in case C, default

radio configuration packages are provided to tenants who only need flow-based perspec-

tives. Even though it is preferable not to “waste” resource nodes with more capabilities on

tenants who don’t need these capabilities, it is important to support this type of backward
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compatibility in order to achieve tenant-owned virtualization platforms within the frame-

work. This is more apparent when more advanced capabilities are provided, such as in

the case of protocol-based and spectrum-based perspectives. In a SDR resource node with

support for full protocol-based virtualization (case D), tenants are able to implement and

customize the protocol of their choice on their virtual resources. However, these tenants

can also offer virtual resources with lower capabilities. An example of this is a tenant who

acquired SDR resources through the framework and implemented a modified version of

the 802.11 access point. Such a tenant can then offer VAP instances with only flow-based

virtualization that other tenants can control. In the advanced case where spectrum and

RF frontend virtualization are implemented on a distributed antenna system with central

processing (case E), a network of radio nodes can be managed by a single agent which

can offer multiple types of resources to different tenants. These resources can range from

portions of the spectrum to a virtual radio node running a specific protocol.

3.3.2 Local Virtualization Agent Architecture

In order to maintain the coexistence of the different perspectives as presented in the pre-

vious subsection, the virtualization layer must be able to provide a common and modular

framework while offering different functionalities to the tenants. In the proposed frame-

work, as illustrated in Figure 3.3, the local virtualization agent is an intermediary layer

that directly interacts with the physical resource nodes. The design and implementation

of a local virtualization agent is one of the main focus of this thesis. Its architecture is key

at satisfying the framework requirements identified in Subsection 3.2.2.

The agent is customized and optimized to the different capabilities of the resource

node. To maintain modularity, the agent is composed of components separated into the

technology-independent core engine and the technology-dependent abstraction layer. As

shown on the Figure 3.6, a physical resource node is separated into two planes: the agent

plane and the virtualization plane. The agent plane contains the agent, which handles

the setup and configuration of the virtualization plane. The agent can also be located on

an external controller depending on the technology available on the resource node. The

virtualization plane contains the technologies that sustain the virtualization of the node,

called resource components. By allowing tenants to directly interact with the virtualization

plane once the setup is complete, the overhead of the proposed framework over existing
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virtualization technologies is mostly averted. In other words, flexibility is achieved in the

agent plane without affecting the performance of the virtualization plane.
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The main components of the agent are the local broker and hypervisor, the interface

abstraction modules and the core modules. The implementation of the agent is discussed

in Section 4.2.

1. Local broker and hypervisor: The core function of the local virtualization agent is

to provide localized setup, configuration and management of virtualization. Whereas

the infrastructure manager from the CML takes care of the infrastructure-wide vir-

tualization as a network of wireless nodes, the local agent is only aware of resources

available on the node it belongs to. There are two types of local virtualization man-

aged through the agent: broker mode and hypervisor mode.
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(a) Broker mode: The local broker sets up and configures other virtualization tech-

nologies to create a slice that can then be directly managed by the tenant. The

broker can only initialize components configurable by the tenants. In other

words, it is the slice builder. In addition, the broker performs some basic con-

flict resolution during the slice creation and configuration phase. Only the broker

mode is implemented in this thesis in Chapter 4.

(b) Hypervisor mode: On the other hand, the local hypervisor performs resource

allocation and conflict resolution of different slices on the node during the active

operation of the slice. Clearly, conflicts during setup must be caught by the bro-

ker in order to avoid them during operation, which are more costly to resolve.

However, since not all conflicts can be determined at initial setup, the hypervisor

must be able to resolve conflicts dynamically at the expense of added overhead,

regardless of whether conflicts actually occur. In most cases, the hypervisor

function is actually delegated to the separate abstraction modules implemented

by various technologies in the virtualization plane. Thus, while the broker builds

the slice, the hypervisor provides inter-slice isolation and management. Unlike

the broker, components created by the hypervisor are not visible nor directly

configurable by the tenants. Inter-slice traffic shaping can be considered a hy-

pervisor mode function and is discussed in Subsection 5.4.1.

2. Core modules: In order to satisfy the modularity and extensibility requirements

mentioned in Subsection 3.2.2, the virtualization core modules are components that

help define one or multiple wireless virtualization perspectives on a given resource

node. The core modules are independent from a given technology implementation.

As such, they are movable and reusable across different resource nodes and imple-

mentations. The three virtualization perspectives discussed in Section 3.1 can share

some common modules. These core modules maintain an abstracted view of the dif-

ferent resources components. These technologies (resource components) that the core

modules interact with through the abstraction modules are running concurrently and

independently in the virtualization plane. As such, the core modules are used to

orchestrate these resource components as building blocks of a slice.

(a) Flow-based virtualization modules : For flow-based virtualization, the core mod-

ules handle the creation of virtual control and data paths for each slice on the
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resource node, which involves the maintenance of virtual network interfaces and

virtual bridging services as well as the attachment of different metering and

scheduling services to those paths. The flow core modules configures these paths

to connect to the tenant virtual network in a tenant-defined manner, integrating

them as part of an external network virtualization and SDN framework. Finally,

the flow modules provide gateway functions to transport all types of data, from

IP packets, raw MAC frames to radio signal samples. The abstraction modules

coordinated by this core module are the main focus of Subsection 4.1.4. This

core module is explained in Subsection 4.2.4.

(b) Protocol-based virtualization modules : In the case of partial virtualization, the

protocol-based virtualization core modules handles the management of protocol

and radio configuration profiles. In the case of full virtualization, the modules

assemble the different software components and interfaces to hardware compo-

nents that constitute a virtual protocol stack. They also provide the virtual radio

interfaces that are then used by the flow-based virtualization modules. Only a

partial implementation of these modules is explored in this thesis in Subsection

4.1.4.

(c) Spectrum and RF frontend virtualization modules : At the spectrum and RF

frontend virtualization level, flexible portions of various frequency bands can be

dynamically allocated to each slice using cognitive radio and DSA techniques.

These core modules can hypothetically interface with spectrum reshaping mod-

ules, maintain spectrum management profiles and collect spectrum sensing data.

These modules are not implemented in this thesis.

3. Interface abstraction modules: The abstraction modules are the binding points

between various technologies and the agent core framework. They contain technology-

specific implementations of the functions called by the core modules. Their actual

operation and implementation will greatly vary depending on the technologies avail-

able on the resource node. For instance, in software, they can act as inter-process

communication plug-ins and system calls to interact with a separate virtualization

technology, referred as resource components. The resource components they control

are the basic building blocks and tools of the framework. They are implemented as

abstraction modules and plug-ins orchestrated by the core modules.
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3.3.3 Comparison to Other Virtualization Frameworks

The proposed multi-perspective virtualization framework is designed based on some of the

testbed and meta-frameworks presented in Section 2.2. This subsection highlights the main

similarities and differences between them. Overall, the general architecture of the proposed

framework can be viewed as a both a fusion between the infrastructure virtualization archi-

tecture presented in [18] and the Virtual Radio architecture [9], and an extension to these

frameworks.

The concepts of the virtual network controller, virtual resource manager and virtualized

physical resources from [18] can be respectively mapped to the tenant-owned controller,

the infrastructure manager and the virtualization agents. However, in [18], only a general

overview of the concept is provided. Wireless resources are treated like other types of

resources (network, computing, etc.) without specifying the architecture of the standardized

interfaces for these wireless resources. The question on what functionalities a virtualized

wireless resource should provide is also left unanswered. In other words, while the general

infrastructure-level description of virtualization is provided, the architecture of wireless

virtualization was not. As such, it does not explore the full extent and potential of wireless

virtualization.

This issue has been partially addressed in Virtual Radio [9] where the architecture of a

virtualization-enabled wireless resource node is provided. In the proposed multi-perspective

framework, the concept of the infrastructure manager that allocates and sets up the radio

nodes before letting them connect directly to the tenant is borrowed from [9]. Virtual

Radio also provides an outline of virtual protocol stacks and how it interacts with the radio

spectrum resource allocation. However, the Virtual Radio architecture requires some major

changes in the existing wireless technologies. It neither considers the gradual integration

of other wireless virtualization technologies into the framework nor the potential evolution

and emergence of new virtualization technologies.

Overall, the existing frameworks are too rigid. None of them provide a framework

definition flexible enough such that it allows not only different wireless technologies but also

different virtualization perspectives to coexist. Thus, they do not fully consider the different

requirements from different services and applications. This is why this thesis first classified

different virtualization perspectives in order to identify the different needs from different

tenants in a virtualized ecosystem and the technologies that can support those perspectives.
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This framework considers these multiple wireless virtualization approaches simultaneously

and carefully defines how it interacts with existing technologies. Moreover, the proposed

framework integrates most if not all the main features from the other frameworks and

extends them with additional configurability of the framework itself. As such, it can be

viewed as a true meta-framework or toolbox of frameworks for wireless virtualization, from

the infrastructure-level to the spectrum level.

Finally, the framework can also be viewed as an extension to VANI/SAVI [15][17] to

include wireless resources as part of the virtual infrastructure testbed. Even though the

proposed framework is independent from SAVI, its implementation is closely related to the

SAVI and OpenStack architecture, as will be discussed in the following Chapter 5. In fact,

the concept of agent plane and virtualization plane follows the same concept of separation

between the control plane and application plane in SAVI [17]. Nevertheless, in this case,

the agent plane is entirely configurable by the tenants themselves.

3.4 Chapter Summary

In this chapter, the architecture for a generic and modular wireless virtualization frame-

work has been formulated. First, this chapter presented three different wireless virtu-

alization perspectives : flow-based virtualization, protocol-based virtualization and spec-

trum/RF virtualization. This was followed by a discussion on the reason why these per-

spectives must coexist and not compete with each other. Then, this chapter presented the

challenges and requirements of a hypothetical virtualization framework that can simultane-

ously support multiple perspectives. Following these requirements, the general architecture

of such a framework, including the local virtualization agent, was outlined. The wireless

infrastructure-wide framework is separated into the control and management layer and the

virtualization layer. The virtualization layer itself is then composed of the agent plane

and the virtualization plane. How different wireless virtualization perspectives can be sup-

ported by the agent was discussed. With an open and evolutionary approach, the proposed

framework is not the end solution but is instead the beginning of a solution. As such, it

provides a balance between a research testbed and a deployable technology.
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Chapter 4

Aurora: Virtualization and

Software-Defined Infrastructure

Platform for Wireless Access

Networks

The previous Chapter 3 outlined the general challenges, requirements and architecture for

a generic, modular and multi-perspective virtualization framework. The missing element

in many of the existing virtualization architectures, such as the ones presented in [18] and

[9], is the implementation and deployment of the framework. Thus, this chapter expands

on the implementation architecture of the framework: a virtualization and software-defined

infrastructure software platform for wireless access networks codenamed Aurora. In this

chapter, how the framework requirements are satisfied through the system design of Aurora

is explained, with a particular emphasis on the architecture of the local virtualization agent.

4.1 Introduction to Basic Concepts in Aurora

This section details the main objectives of Aurora aligned with the requirements discussed

in Subsection 3.2.2 and how they are handled in this implementation.

2014/04/01
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4.1.1 Motivation, Inspiration and Objective of Aurora

As discussed in Subsection 3.3.3, the general framework is greatly influenced by the archi-

tectures presented in [18] and [9]. The implementation of Aurora is oriented towards being

a service component for the cloud infrastructure platform OpenStack (Subsection 2.2.4)

and the SAVI testbed (Subsection 2.2.2). Currently, OpenStack does not have any service

that can explicitly interact with wireless technologies. The closest service is Neutron, which

offers APIs for the network virtualization and SDN functions on the virtual infrastructure.

The SAVI testbed architecture extended OpenStack with additional software-defined in-

frastructure services such as graph-based topology service (Whale) and SDI management

(Janus). Aurora also attempts to extend the OpenStack family of services by providing

orchestration and virtualization tools for wireless resources with different wireless virtual-

ization perspectives.

The reason why Aurora was not made an extension to Neutron but kept as a separate

service is the need for low-level wireless virtualization features (i.e. protocol and spectrum

perspectives) that has no direct relationship with the network functions of Neutron. How-

ever, why choose OpenStack for the first implementation of the generic framework? The

main reason is that OpenStack is already widely deployed in both commercial and research

environment, including the SAVI testbed. Aurora, by providing “OpenStack-like” control

and management client console commands and REST APIs, makes wireless virtualization

concepts easier to grasp for users who are familiar with OpenStack.

4.1.2 Resource Abstraction and Orchestration

Resource abstraction has been identified as one of the main requirements for a generic

wireless virtualization framework in Subsection 3.2.2. In Aurora, there are three classes

of resources abstracted in software: virtual wireless networks, virtual resource slices and

physical resource nodes. The logical relationship between the different classes of resources

is shown in Figure 4.1. These abstracted resources are defined as the building blocks of a

virtual infrastructure in Aurora.

1. Physical resource node (wnode): The physical resource node exist as an entity

referred as wnode within the Aurora software platform. Although the full physical

nodes are usually not allocated as resources to tenants, both the infrastructure man-

ager and the tenants use them as a reference point to obtain virtual resources. Unlike
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Fig. 4.1: Classes of Resources in Aurora Framework

with server virtualization, the location of the physical node is extremely important in

the deployment of a virtual wireless infrastructure. Thus, the wnodes are tagged with

searchable information about its physical characteristics and capabilities, including

location. The Aurora framework can then perform filtering over wnode tags to satisfy

the tenant’s requirements. Different types of radio nodes are represented by different

flavors of wnode, which can share similar functions but differ in terms of capabilities.

The different wnode can include 802.11 access points (ap), software-defined radios

(sdr), cellular basestations (base) and other wireless technologies. Even within a

type of resource node, the capabilities will differ depending on the implementation.

At the same time, a single wnode can support more than one type of virtual resource

slice (wslice). Only the implementation of ap and, to some extent, sdr are covered

in this thesis.

(a) 802.11 wireless access point (ap): This flavor of physical resource node repre-

sents an 802.11 AP that is virtualized using Aurora. This type of wnode only

supports flow-based virtualization with possible partial procotol virtualization.

In the current implementation, it only offers one type of virtual resource slice:

ap-slice. This is the only type of resource node implemented to a workable

state in this thesis. This resource node is implemented on PC Engines alix3d2

APs [54] with two 802.11ab/g mini-PCI radio interface cards although it can be

extended to any AP running Linux-based firmware.

(b) Software-defined radio (sdr): The software-defined radio resource node can po-
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tentially support all three virtualization perspectives. It can offer more than

one type of virtual resource slice. For instance, it can offer an instance of the

SDR platform itself (sdr-slice) or an instance of a particular pre-packaged pro-

tocol standard, such as 802.11 (ap-slice). This resource node is planned on the

WARPv3 FPGA-based SDR boards [55]. Possible implementation is discussed

in Subsection 5.4.2.

2. Virtual resource slice (wslice): The wslice is the virtual instance of the wireless

resource node that is allocated to the tenants. The wslice is not a single virtual

resource but is more a package or container of different virtual resources (bandwidth,

VAP, etc.) supported on the wnode that can be configured and controlled by the

tenant. As such, even within the same type of wslice, there are large variations in

the capabilities offered on the slice, just like the wnode. The wslice is defined by a

setup contract specified by the tenants and validated by the infrastructure manager

in Aurora. Then, the tenant has direct control and management of the wslice within

the limitations defined by the setup contract. Each wslice can join a wnet. The

wslice also inherits some tags from the wnode from which it spawned depending on

the capabilities it obtained from the wnode. Then, tenant-defined tags can be added

in order to partition wslice into customized management groups by the tenants.

(a) ap-slice: This wslice contains mostly resource components used to setup and

configure flow-based virtualization, such as virtual interfaces, bridges, queues,

schedulers and radio interfaces. It can support an instance of virtual access point

(VAP). These resources components are interfaced through plug-ins presented

in Subsection 4.1.4. One particular implementation of ap-slice is discussed in

Subsection 4.2.4.

(b) sdr-slice: This wslice contains similar virtual resources to ap-slice except with

the addition of multiple radio configuration profile for different radio interfaces

and potentially the support for loading tenant-made protocols. The sdr-slice

can also be configured and abstracted as a ap-slice by defaulting the additional

capabilities.

3. Virtual wireless network (wnet): A wnet is a group of one or multiple wslice of

different types. It is similar to a subnet but has additional wireless network manage-
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ment functionalities. The networking functionalities of the wnet is delegated to an

external network virtualization and SDN framework (see Section 5.5). A wnet is used

by Aurora to offer support for wireless networking functions that can be adapted to

a specific standard (WLAN or cellular). In order to achieve this, the wnet connects

the virtual wireless network to a wireless network manager, a software controller that

manages the policies, virtual resources and coordination of the wireless nodes. This

manager can be a tenant-owned custom controller or a default controller provided by

the Aurora framework. It can be an entire network of its own, such as the Evolved

Packet Core (EPC) in the case of LTE technologies. The network-wide conflict res-

olution and contract reinforcement is then performed by the management modules

inside Aurora-Manager (see Subsection 4.2.2), which are not covered in this thesis.

Thus, the current implementation of wnet is only a place holder for a future full

implementation.

This arrangement of resources allows a building block-based creation of virtual infras-

tructure. In order to support the concept of scalable complexity and separation of concerns

for different tenants, the configuration blueprint of a virtual resource slice is accessible to

all tenants in the form of JavaScript Object Notation (JSON) files. Pre-made default in-

frastructure blueprint packages are then used to provide simple virtual infrastructures for

tenants who do not need or want full reconfigurability (see Appendix A.6). The tenants can

also create their own packages by writing orchestration scripts using the Aurora APIs and

the JSON configuration files. The Aurora framework is mainly implemented in Python

[56] due to its dynamic typing features. Python is also the language of implementation

for OpenStack and most of the SAVI testbed services, facilitating the integration between

Aurora and these platforms. The relationship between the different resources are stored

using a centralized structured query language (SQL) database, more specifically MySQL

[57]. Each class or resources has its own SQL table similar to the implementation inside

OpenStack. Samples of Aurora database format are shown in Appendix A.3.

4.1.3 Multi-tier Tenancy

With the different classes of resource abstraction presented in the previous subsection,

there is a great variety in the types of virtual wireless infrastructure a tenant can assemble.

In fact, as mentioned in the previous chapter, different tenants have different needs and



4 Aurora: Virtualization and Software-Defined Infrastructure Platform for
Wireless Access Networks 60

requirements. As shown in Figure 4.2, different tenants can own different portions of the

infrastructure, not necessarily with wireless resources. This gives rise to the concept of

multi-tier tenancy, a concept necessary to support the hypothetical ecosystem presented in

Section 1.4.

Physical Resources

Tenant A Tenant B

Tenant C

Tenant D Tenant F

Virtual Resources

Tenant E

Fig. 4.2: Multi-Tier Tenancy in a Virtualized Infrastructure With Wireless Resources

There are different tiers of tenants that can interact with the virtual wireless resources.

They can be grouped as two main tiers: wireless infrastructure-level tenants and wireless

service-level tenants.

1. Wireless infrastructure-level tenants: Infrastructure-level tenants own wireless

resources inside Aurora (Tenant E and F in Figure 4.2). The minimum requirement

for ownership is the configuration and creation of a wslice by the tenant. Even within

infrastructure-level tenants, there are various sub-tiers of tenants that differ from

each other in terms of capabilities. For instance, a tenant does not necessarily need

to perform active control and management of its wireless resources. As a practical

example, how the different types of tenants supported on standard 802.11 APs in

Aurora are detailed as follows:

(a) Base tenant with full radio interface and base BSS : Even though in a regular

enterprise-grade 802.11 AP there can be multiple radio cards, only one radio

configuration profile is supported per physical radio interface. Thus, without the
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implementation of partial protocol-based virtualization, only a single tenant can

configure the radio parameters (channel, mode, power, etc.) per physical radio

interface. In such a scenario, Aurora must allocate the full radio interface to a

tenant that requires control over radio configuration parameters. Such allocation

(not virtualization) is limited by the number of physical radio cards. However,

since standard 802.11 allows multiple BSS over the same radio interface, Aurora

also allows tenants with lower capabilities to share the same radio interface.

In other words, there is a base tenant that owns the radio interface with a

master or prime BSS. This tenant can then specify how many additional BSS

the radio interface can support and if the radio is shareable to other tenants.

Such limitations are non-existent in resource nodes with at least partial protocol

virtualization implemented since each tenant can have its own radio profile.

(b) Guest tenant with additional BSS over same radio interface: The feature of

multiple BSS on the same radio exists as the concept of VAP. Each VAP has

its own BSS (ESSID, BSSID, encryption, etc.) and virtual wireless interface.

Aurora allows additional guest tenants to share the radio interface with each

other and with the base tenant (with its permission of course). Since the radio

parameters can only be controlled by a single base tenant, guest tenants have a

more restricted set of capabilities. The downside of this approach is that if the

base tenant disables the interface or deletes its slice, all guest tenants attached

on the radio interface will lose their BSS. In future implementations, it will be

possible to migrate BSS over different radio interfaces. However, in practical

scenarios, such as the deployment of Aurora inside the SAVI testbed, there will

a default base tenant for accessing the SAVI network that remains active at all

time (see Section 5.2).

2. Wireless service-level tenants: Service-level tenants are not actual tenants per se

in the wireless infrastructure as they do not own any wireless resources. Instead, these

are mainly tenants in the computing and networking infrastructure that require wire-

less access to their virtual network and services (Tenant A-D in Figure 4.2). They do

not necessarily care about the wireless configuration or the wireless network setting.

In the case of the SAVI testbed with OpenStack and Aurora, there are advantages of

having direct connectivity from within the virtualized infrastructure. First, there is a
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dedicated network that can support experimental network architectures developed for

Future Internet, with different innovative security and mobility features. For instance,

a subscription-based access model in which service-level tenants can only be reached

at the infrastructure level by mobile clients subscribed to that particular service, un-

like the public access format of the current Internet infrastructure, can be reinforced.

In the case of the SAVI testbed, a default SAVI base wireless infrastructure-level ten-

ant can manage the wireless access network to which other service-level tenants can

subscribe to. Therefore, service-level tenants are often not managed by the frame-

work itself but by another infrastructure-level tenant. The setup and configuration

of such a service in Aurora is described in Subsection 5.5.

4.1.4 Modular and Evolvable Framework

One of the important requirements defined for the framework in Subsection 3.2.2 was the

evolvability of the framework. Aurora, as a software implementation, is designed with

such requirements in mind. The Aurora framework must allow different virtualization

perspectives to coexist and integrate different virtualization technologies. The addition of

new perspectives and technologies at the virtualization layer functionally affect Aurora at

all levels: the operation of Aurora virtualization agents, the Aurora resource management

and the tenant interaction with Aurora. In order to maintain modularity, different software

design decisions were made at the various layers of the Aurora framework. Overall, the

“toolbox” approach is applied, in which the implementation of a particular function is

selected from different flavors. Similar functions of different flavors are grouped inside

an Aurora module. A specific flavor of a module is referred to as a plug-in and interact

with a specific type of resource component. In the basic implementation of Aurora in this

thesis, only flow-based wireless virtualization is supported on infrastructure-mode 802.11

APs. Ongoing effort on supporting partial protocol virtualization on FPGA-based SDR is

under way.

Three Aurora modules are used by the virtualization agent for achieving basic flow

virtualization on 802.11 APs: virtual interfaces, virtual bridges and virtual WiFi radio.

These are implementations of the abstraction module and plug-in inside the agent from

the general framework architecture presented in Subsection 3.3.2 (see Figure 3.6). These

modules allow the tenants to define and configure their own control and data paths, which
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are important assets for implementing flow-based virtualization. Detailed operations of

these modules are provided in Subsection 4.2.4, 4.2.2 and 5.1.

1. Virtual (network) interfaces: Virtual network interfaces (VirtualInterfaces) rep-

resent binding endpoints of a virtual link where data is exchanged. In Aurora, there

is a distinction between network interfaces and radio interfaces. Here, the radio

interface refers exclusively to wireless interfaces that connects the AP to the radio

interface card. Network interfaces include all other interfaces (both physical and

virtual). In Aurora, different flavors of virtual network interfaces are provided to

tenants, each fulfilling different roles ranging from tunneling to VLAN. In this thesis,

the Capsulator [58] and virtual Ethernet (veth) plug-ins are implemented. Other

types of interfaces, such as VLAN and GRE tunnels, can be developed separately as

extension plug-ins to the VirtualInterfaces module.

(a) Capsulator tunneling interface: Capsulator is a custom over-IP tunneling pro-

gram [58] that provides basic flow isolation between tenants and is used in many

research projects involving OpenFlow such as [7] and [31]. For outbound traffic,

Capsulator takes normal packets from a border port, encapsulates them with a

tunnel ID and send them out on the attached interface to an endpoint IP. The

inbound traffic is decapsulated based on tunnel ID and sent out on the matching

border port. The original program only provides a match based on tunnel ID.

The version inside Aurora has been modified to support match based on both

tunnel ID and endpoint IP in order to allow different tenants to have the same

tunnel ID.

(b) Virtual Ethernet interface (veth): Veth is a basic virtual interface that has its

own MAC address and duplicates the traffic to and from another interface on

which it is attached to. In Aurora, these interfaces are attached to the virtual

wireless interfaces to mask them as virtual network interfaces. This procedure

is necessary if wireless interfaces are to be attached to an instance of Open

vSwitch (OVS). Wireless interfaces lose connection to the wireless driver when

directly attached to OVS, as OVS intercepts the traffic on the interface before

the drivers.

2. Virtual bridges: In Aurora, the VirtualBridges modules provide the internal layer
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2 connection between virtual interfaces. Most of the virtual interfaces already implic-

itly function like a bridge between the attached interface and the virtual interface.

However, they only operate on a single interface (and creates the other). Virtual

bridges operate on two or more interfaces (virtual or not). The current version of

Aurora includes plug-ins for different programs that behave like bridges inside the

Linux operating system such as Open vSwitch [23] and the actual Linux bridge.

(a) Open vSwitch (OVS): The OVS software [23] allows tenants to create a virtual

switch with multiple virtual interfaces attached as ports. OVS also supports

the OpenFlow protocol, enabling tenants to control the virtual switch using an

OpenFlow controller, satisfying the direct control and management by tenant

requirement. This plug-in can be used by infrastructure-level tenants (direct

OpenFlow control) as well as by the Aurora framework itself as the default

bridge in conjunction with FlowVisor (delegate OpenFlow control). The different

modes of OVS inside Aurora are explained in Subsection 5.1.

(b) Linux bridge: This plug-in simply provides the wrapper for Aurora to interact

with the basic Linux bridge, which sends packets arriving on one interface to

the other interfaces and vice versa. It is used as the most basic form of gateway

connection between the AP and the wired network.

3. Virtual WiFi radio (interfaces): VirtualWifi is a 802.11-specific module that

can be used in both flow-based and protocol-based virtualization core modules. In

flow-based virtualization on APs, this module contains plug-ins to interact with the

wireless drivers of the AP. This module allows tenants to configure the wireless ra-

dio parameters of the radio interfaces. It can also create virtual radio interfaces

with which the VirtualInterfaces and VirtualBridges modules can interact with. The

management and allocation of new 802.11 BSS to tenants is performed through this

module. It also counts the number of radio and BSS resources available. The only

flavor currently implemented in Aurora is the plug-in for OpenWrt.

(a) OpenWrt : OpenWrt is an open-source Linux-based firmware for wireless access

points and wireless routers [59]. The OpenWrt flavor of VirtualWifi can interface

with OpenWrt-specific configuration system known as the unified configuration

interface (UCI) and the hostapd 802.11 driver. The concept of base BSS and
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guest BSS mentioned in the previous subsection is implemented through the

OpenWrt plug-in. The radio parameters are configured separately from the BSS

parameters. However, the AP is only operational when both radio and base BSS

configuration are completed.

4. Traffic scheduling: Additional modules for flow-based virtualization perspective,

such as scheduling and queuing, are not fully implemented in the current iteration of

Aurora. This is because the pure usage of such mechanisms on wireless APs is not

sufficient to guarantee QoS. These modules are discussed as extensions in Subsection

5.4.1.

The addition of a new module or plug-in, such as new scheduling and queue mechanisms,

does not impact the core engine of the Aurora agent or manager. Aurora implements the

core engine as basic generic routines that call abstracted functions in a fashion similar

to pseudo-code. Recall that there are two types of interaction tenants can have with

the virtual resources allocated to them (Section 3.3). Only the setup and configuration

operations are handled through the Aurora framework. Direct control and management

functions are handled through the technologies orchestrated by Aurora but not directly

through the framework itself, with the exception of OpenFlow (see Section 5.1). For setup

and configuration, both the Aurora manager and agents use JSON configuration files to

exchange information. JSON is chosen for its relatively simple structure, its flexible format

and its close resemblance to Python dictionary objects. As such, modules are grouped as

independent entries to a list of configuration modules. The JSON configuration format of

different Aurora modules is described in Appendix A.2.

Each resource component associated with a plug-in has two fields: flavor and attributes.

The flavor field identifies the type of plug-in that has to be loaded for a given module. The

attributes field is a container for a dictionary of configurable plug-in parameters. The JSON

parser in Aurora dynamically loads modules based on the contents of the slice configuration

blueprint and the capabilities of the affected resource node. The detailed parsing, validation

and generation of slice configuration blueprints are delegated to individual modules and

plug-ins. As such, both modules and plug-ins can be added or removed without affecting the

rest of the Aurora framework. This also means that the Aurora software is easily relocatable

to operate on different types of resource nodes (assuming support for Python) by using

different plug-ins to match with the specific technologies available on the wnode. In such
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Fig. 4.3: General Aurora Architecture With Different Types of Aurora-Agents

a way, Aurora is able to act as a common platform for different virtualization perspectives

and technologies. The detailed operations of the different entities inside Aurora, including

the agent and the manager, are described in the following section.

4.2 Aurora Architecture

The implementation architecture of Aurora is based on the generic framework architecture

presented in Section 3.3 (see Figure 3.3), which is itself based on a mixture of different

infrastructure virtualization architecture, as explained in Subsection 3.3.3. The high-level

Aurora architecture, as shown in Figure 4.3, is divided into four main components: Aurora-

Agent, Aurora-Manager, Aurora-Client and Aurora-Tenant. The first three are the core

components of the framework whereas Aurora-Tenant is a set of additional tools for ten-

ants that complements the framework. This thesis is mostly focused on Aurora-Agent,

in particular Aurora-AP for 802.11 access points. The operation of other components is

also presented but only the modules in direct relationship with Aurora-Agent are covered.
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Thus, the various management modules that can be integrated within Aurora-Manager and

the accompanying tools in Aurora-Tenant are not presented in this thesis.

4.2.1 Aurora-Client: User and Tenant Interface to Virtualization Framework

In Aurora (and OpenStack in general), a tenant represents a project or a set of virtual

infrastructure resources. As such, a tenant is most likely operated by individual users, who

set up and configure the resources of the tenant slice. The Aurora-Client is the Python-

based console that provides the console commands for users to do so. It is designed to be

similar to the OpenStack client. The architecture of Aurora-Client is shown in Figure 4.4.

aurora-client

Tenant

Command-line

Arguments Parsing

Aurora Commands

Setup &

Configuration

Syntax Validation

REST APIs
Return Status Keystone

Authentication

Token request

Token

aurora-manager

HTTP

Request
HTTP

Reply

Fig. 4.4: Aurora-Client Implementation Architecture

Aurora-Client takes console commands from a user and performs basic syntax validation

over them. Advanced validation requiring information about the state of the infrastructure

are performed at the Aurora-Manager. Authentication of the users and tenants is performed

through a token-based authentication service provided by OpenStack called Keystone [60].

Then, the client request is sent out to the Aurora-Manager through a HTTP-based REST

API with the token obtained from Keystone. The implementation details of the authen-

tication and Keystone are not of much interest to this thesis and can be found in the

OpenStack manuals [61]. The basic interaction for Aurora-Client commands is illustrated

in Figure 4.5

As mentioned in Subsection 4.1.2, the main classes of resources are wnode, wslice and

wnet. Aurora-Client supports similar sets of commands for each of these categories. In the

current implementation of Aurora, only APs wnode and wslice are supported. As such,
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Fig. 4.5: Aurora-Client Handling of Tenant Commands

the Aurora-Client commands operate on ap, ap-slice and wnet. In general, list and show

commands work on all classes of resources. The list command typically displays the list

of resources of a certain type available to the tenant. It is scoped such that only resources

owned by the tenants are visible to its users, with the exception of physical resources (ap)

which are available to all tenants. The show command gives more details on a specific

resource referred by name or universally unique identifier (UUID). Virtual resources, such

as wslice and wnet, have create, modify and delete commands. The modify command allows

the slice to be recreated based on new slice configuration blueprint without regenerating

the metadata of the slice (i.e. UUID and relationship with other resources). For simple

parameters, a console is sufficient. For the full customization of the virtual resources,

JSON slice configuration blueprints are used. Additional commands specific to each class

of resources are provided, such as the ability to add and remove wslice from the wnet or the

ability to add and remove tags from wslice (see Subsection 4.1.2). A more detailed list of

the different commands in Aurora-Client is provided in Appendix A.1. The infrastructure

administrator can also use a similar client but with additional commands and capabilities

available. The administrator has full knowledge and control of resources from all tenants.

4.2.2 Aurora-Manager: Virtualization Manager for Wireless Infrastructure

The Aurora-Manager is the implementation of the infrastructure manager presented in

Section 3.3. It performs three main roles inside the framework. The first role is to provide
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access to infrastructure information. The second role is to redirect the setup and configura-

tion of the virtual wireless resources from the client to the virtualization agents, including

the detailed settings of the resource components of each slice. The third role is the hosting

of wireless infrastructure resource allocation and management services. The first two roles

result from the processing of API commands received from Aurora-Client instances.

For the first two roles, a REST API server is deployed inside Aurora-Manager to handle

both API requests from Aurora-Client instances from different tenants and API requests

from Aurora-Tenant VMs (see following subsection). The current REST API server is only

a HTTP server without the full RESTful implementation yet. The overview of the archi-

tecture of Aurora-Manager is shown in Figure 4.6. Aurora-Manager contains two persistent

management databases to keep record of the status, attributes, capabilities and configura-

tion of both physical and virtual resources. The garbage collection of both databases are

maintained through the configuration modules and the status monitoring module.
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1. Resource database: Even though MySQL [57] provides a very fast and reliable

database, configuration information are too complex and flexible to be implemented

only using MySQL tables. Therefore, the first database is a SQL-based resource

database and contains only simple resource attributes (name, UUID, tenant, status,

tags, etc.) and relationships between resources. Access control (read-write con-

currency) is handled automatically by MySQL. Each class of resources (wnet, ap,

ap-slice) and each type of tags (location and tenant-added, see Subsection 4.1.2) has

its own MySQL table. Thus, a total of five MySQL tables are currently used: ap,

ap-slice, wnet, ap-tag and ap-slice-tag. The format of the SQL tables are provided in

Appendix A.3.

2. Configuration database: The second database is a JSON-based configuration

database that stores the full wslice configuration blueprints for each tenant. Blueprint

files are grouped by tenant and a series of blueprints owned by a single tenant can

only be edited by a single module at any given time to preserve database integrity.

The format of the configuration database is provided in Appendix A.2 and A.4.

For handling client requests of infrastructure information, Aurora-Manager queries the

resource database and the configuration database. The manager then returns the result of

the query to the client through the API server. For setup and configuration such as slice

creation, Aurora-Manager loads different configuration modules based on dependencies.

Each module is associated with an abstraction module on Aurora-Agent. The lower-level

and “foundation” modules are always checked first. In this implementation of Aurora,

the order of modules to check are, in order: VirtualWifi, VirtualInterfaces and Virtual-

Bridges. Aurora-Manager uses the modules to parse and functionally validate the JSON

configuration file obtained from the client. Conflicts such as invalid or duplicate names

and unsupported capabilities are resolved. In other words, the manager has to determine

(1) what the tenant wants and (2) if the resource nodes can support it. This operation

potentially requires access to the databases and other management modules. If the valida-

tion is successful, JSON files are generated for each wslice and posted to the Aurora-Agent

through a dispatch module. More specifically, a subscription-based dispatcher using Rab-

bitMQ [62] is used. At this point, the client request is returned with apparent success. The

dispatch operation is registered to a pending queue in a resource status monitoring module,

a wrapper for handling callbacks from the replies of Aurora-Agent.
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The last role of Aurora-Manager is to host management modules (i.e, not agent-related

unlike the configuration modules currently implemented) that provide various wireless net-

work management functionalities. These functionalities can include, but are not limited to,

mobility management services, dynamic provisioning of radio nodes, migration of virtual

radios, outage handling and dynamic spectrum reuse. Of course, some of these functions

can be directly implemented by the tenant themselves using their own management system

within their own slice (see next subsection on Aurora-Tenant) or implemented by a specific

technology on the resource node (i.e, cognitive radio). However, any autonomic functions

that are abstracted away from the tenants or involve cross-tenant allocation must be pro-

vided as part of the infrastructure framework (Aurora) itself. The simplest management

module would be a resource monitoring module to receive status updates from agents and

synchronize the databases. None of these management functionalities, with the exception

of a basic resource status monitoring module, are implemented as they fall outside the

scope of this thesis, which is only the bare minimum system architecture of the framework.

However, they can be added as extension modules to Aurora-Manager, as shown in Figure

4.6.

1. Resource status monitoring module: The status monitoring module has two

tasks: to monitor the status of virtualization agents and to handle slice creation/-

modification return status received from them. When a slice setup or modification

command is issued by the client, the slice configuration blueprint is saved or updated

in the configuration database and an entry for the slice is created in the resource

database (if it is a new slice). The command dispatched to the agents is registered

on the resource status monitoring module, who watches for operation status updates

coming from the agents. There are two general categories of failures: operation fail-

ure and node/agent failure. The operation failure occurs when there are errors that

prevent a slice from being fully created. The node/agent failure occurs when the

connectivity to the node is broken or when the node or agent crashes or powers off.

Thus, the connectivity between the manager and the agents is periodically verified

by this module to detect any node/agent failure. The general rule is that once an

agent is marked as down, it must be restarted once the connection is established. The

agent sends an initialization request when restarted. If an agent previously marked as

down is suddenly active without such initialization request, it is forced to restart by



4 Aurora: Virtualization and Software-Defined Infrastructure Platform for
Wireless Access Networks 72

the manager. This behavior can be modified in future extensions once more robust

fault-tolerant and database synchronization mechanisms are implemented. The state

transition and possible status of a slice is shown in Figure 4.7. These states are valid

and accessed throughout all modules of Aurora-Manager, not just the resource status

monitoring module.
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Fig. 4.7: Wireless Slice Creation/Modification/Restart Status Cycle

(a) PENDING : The status of the slice is set to PENDING when a create, modify or

restart command is issued on a new or existing slice, before receiving any status

update or confirmation from the agent instances. During this state, the agent is

assumed to perform the slice creation routine (see Subsection 4.2.4).

(b) ACTIVE : The status of the slice is updated to ACTIVE if the create, modify

or restart operation is successful and confirmed by the agent through the status

monitoring module. The slice also enters this state if it is recovered successfully

from a DOWN state (node/agent failure).

(c) FAILED : The status of the slice is updated to FAILED if an operation failure

to a command is returned by the agent, if a node/agent failure occurs when

the status is PENDING or if the re-initialization of the slice from a DOWN

state (node/agent failure) is unsuccessful. A FAILED slice can be restarted or

modified by the tenant.
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(d) DOWN : If a node/agent failure occurs when the status of a slice is ACTIVE,

the status is changed to DOWN. This state is used to allow the agent to auto-

matically restore previous ACTIVE slices after node/agent recovers from failure.

The recovering process when the node and agent come back online is handled

through the agent initialization process covered in Subsection 4.2.4. On the

other hand, PENDING slices are not restored if a node/agent failure occurs.

Instead, the slice status changes from PENDING to FAILED and has to be

restarted manually by the tenants.

(e) DELETING : The status of the slice is changed to DELETING if a slice deletion

command is issued when the slice is in PENDING or ACTIVE state. This status

is used to mark slices that needs to execute de-initialization operations in order

to be deleted. It also blocks further operations on them. If a delete command is

issued when the status is FAILED or DOWN, the DELETING state is skipped

as there are no additional routines that need to performed by the agents. During

this state, the agent performs the slice deletion routine (Subsection 4.2.4).

(f) DELETED : In general, slice entries in the resource database are not automati-

cally removed when failure is encountered. Instead, they persist until the tenant

removes them manually through Aurora-Client (or through automated scripts).

Nevertheless, even when the tenant successfully deletes a slice through Aurora-

Client, its database entry is not removed from Aurora-Manager immediately.

Instead, its status is marked as DELETED. Then, the DELETED entries are

purged after a certain time period. DELETED slices do not show up through

the normal list commands.

To support some of these management functionalities, event modules are used to capture

events from the resources managed by Aurora-Manager. An event abstraction layer is

required to handle different types of events coming from different sources and through

different technologies. For instance, callbacks from Aurora-Agents using RabbitMQ can be

considered events. Input from other OpenStack/SAVI services, such as OpenFlow-based

callbacks from the SAVI FlowVisor controller, can also be considered events to the Aurora

management modules. Finally, a dedicated REST API server for agents is used as an

event module during the initialization of the agent to which agents can send requests for

retrieving all relevant slice configuration blueprints (see Subsection 4.2.4).
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4.2.3 Aurora-Tenant: Tools for Tenant-Owned Network C&M

As mentioned previously, the tenant can deploy its own wireless network controller inside

the virtual infrastructure, typically on a VM allocated through cloud computing services,

in this case Nova from OpenStack/SAVI. Aurora-Tenant is the official framework-provided

”package” to do so. This service component is not a mandatory part of Aurora because

tenants can implement their own tools to manage their resources and are encouraged to do

so. However, Aurora-Tenant aims at providing pre-made tools that improve the accessibility

of Aurora, similar to platform-as-a-service (PaaS) in cloud computing. These tools can

range from SDN-based controllers to wireless network management software.

The Aurora-Tenant can also call the REST APIs to the Aurora-Manager to perform

setup and configuration of the virtual wireless infrastructure. A dedicated control path can

potentially be used for these requests as the Aurora-Tenant can reside inside the virtualized

testbed infrastructure. This is to allow tenants to co-locate their own setup orchestration

tools (through Aurora-Manager) with the direct control and management of virtual re-

sources (directly to virtualization plane of physical resource nodes). A different set of

commands and APIs can be exclusively supported for special management functionalities.

Aurora-Tenant is not implemented within the scope of this thesis. Some of its possible

features are discussed as future works in Section 6.2.

4.2.4 Aurora-AP: Local Virtualization Agent for 802.11 Access Points

The generic service component that implements the local virtualization agent from Subsec-

tion 3.3.2 is called the Aurora-Agent. The specific implementation of Aurora-Agent must

be customized to work with particular wireless technologies, such as 802.11 APs, SDRs

and potentially cellular basestations. The implementation covered in this thesis is the

Aurora-AP, a local virtualization agent for 802.11 APs. Aurora-AP is fully implemented

in the agent plane (see Subsection 3.3.2). Only the broker mode is currently implemented.

In other words, Aurora-AP only orchestrates the setup and configuration of other tech-

nologies, called resource components, through plug-ins grouped by abstraction modules (see

Subsection 4.1.4) in order to build the wireless slice (ap-slice). The actual slice isolation

and hypervisor functionalities are implicitly achieved through resource components and

not directly by the agent. As such, the operational performance of the virtualization is

determined by the performance of the individual technologies and the complexity of the
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setup, not by Aurora-Agent. The architecture of Aurora-AP is shown in Figure 4.8.
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Fig. 4.8: Aurora-AP Virtualization Agent Implementation Architecture

In Aurora-AP, the abstraction modules are abstraction layers to specific technologies

(resource components) interfaced through plug-ins. The current implementation only has

abstraction modules sufficient to achieve very basic flow-based virtualization at the network

level. As for the exchange of configuration information, the same JSON blueprint format

used by Aurora-Client is applied but is assumed to be already sanitized and validated

by Aurora-Manager. Aurora-AP has a local database to store configuration information

of wireless slices currently active on the resource node. Currently, this local database is

non-persistent as it only exist in the active memory of the agent software. This is in

order to reduce the frequency of read/write access to the AP persistent memory, which

is typically a flash drive with limited access lifetime. The slice information inside the

database are grouped by tenant such that one tenant cannot access another tenant’s slices.

The structure of the local database is shown in Appendix A.5.
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The core modules, as described in Subsection 3.3.2, contains the core logic of the agent.

The core agent modules currently implemented in Aurora-AP include the agent initializa-

tion module and the ap-slice core module. These modules execute various “routines” to

perform various tasks requested by the Aurora-Manager or to handle special situations.

These routines can be different for different virtualization perspectives. The routines call

into various abstraction modules, which in turn call into individual plug-ins to interact

with a specific resource component.

1. Agent initialization module: Aurora-AP (like other Aurora-Agent) is assumed to

be actively running on all physical resource nodes (wnode). The first time Aurora-AP

starts or when it recovers from a failure, an initialization of the agent is performed.

During this initialization, a synchronization of the local database is performed by

rebuilding the slice from the configuration blueprint stored on Aurora-Manager. An

agent initialization notice is sent to Aurora-Manager through a dedicated REST API

server for agents. The configuration blueprints of all slices that are marked DOWN

in the resource database on the manager are then sent to the agent for restoration.

Finally, during agent initialization, a metadata file describing the physical capabilities

of the resource node is parsed. Samples of such files are included in Appendix A.5.

2. AP-slice core module: The ap-slice core module handles all commands related to

ap-slice instances, which is mostly a broker-mode flow-based virtualization module

with some possible extensions to partial protocol-based virtualization (see Subsection

5.4.2). The basic routines implemented for this core module are: ap-slice creation,

ap-slice deletion, ap-slice modification/restart and remote API processing.

(a) AP slice creation: Recall that an ap-slice is a wslice with flow-based virtualiza-

tion support for 802.11 APs. The agent has the task of orchestrating resource

components to build a slice of the resource node specified through the configu-

ration blueprint provided by the tenant and validated by Aurora-Manager. For

flow-based core modules, Aurora-AP builds the data and control path on the

virtualized resource node. It initializes the different abstraction modules and

plug-ins specified through the configuration blueprint following a specific order,

as specified in Subsection 4.1.4. The radio interfaces are created first, using

the VirtualWiFi module. Then, the virtual interfaces attached to the Ethernet
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Fig. 4.9: Agent Initialization and AP Slice Creation

interfaces are initialized using the VirtualInterfaces modules. The virtual radio

and virtual Ethernet interfaces are then connected together through the Virtu-

alBridges modules. The order of resource component initialization is important

during slice creation since interfaces must be functional before attaching them to

a bridge module. Once initialized, the ap-slice instance is fully sustained by the

resource components running as separate processes from the Aurora-AP agent.

The slice configuration information is added to the local database if this opera-

tion is successful. Agent initialization and AP slice creation are both shown in

Figure 4.9.

(b) AP slice deletion: The slice deletion command is only sent to the agent by the

manager if the status of the slice is ACTIVE or PENDING. Otherwise, the

slice is not confirmed to be active on the resource node (and thus no need for

deletion). The resource components are tore down by a de-initialization routine

during deletion. The order at which the components are deleted is exactly the

reverse of that of the slice creation. Some components are Python sub-processes

launched by Aurora-AP through the plug-ins. Others are existing daemon pro-

cesses or services that the agent plug-ins merely interact with. Thus, the exact

disabling mechanisms for these technologies are implementation-specific and per-

formed through the plug-ins. In general, the Python sub-process library is used
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whenever possible. The configuration information of the slice is removed from

the local database after this operation.

(c) AP slice modification/restart : Unlike the resource and configuration database on

Aurora-Manager, the local database only stores slice configuration of successfully

initialized and active slices and its resource components. Thus, if a failed slice

must be restarted, a new albeit identical configuration blueprint must be sent

from the manager (i.e. failed attempts are not stored on Aurora-AP). Overall,

for both the modification and restart commands, the routine checks if the slice is

active on the agent. If it is, the slice deletion routine is performed followed up by

a slice creation operation with the provided configuration blueprint. Otherwise,

only the slice creation routine is required. In other words, modify and restart are

functionally the same at the agent level in the current implementation. Future

extensions might include partial slice modifications without restarting the ap-

slice. Some of these modifications can be performed through the remote agent

APIs.

(d) Remote agent API processing : The remote agent API processing feature is ini-

tially used to debug the abstraction modules by allowing the manager to re-

motely call individual functions to modify the state of the ap-slice without

tearing down the entire ap-slice. This feature is implemented by packing the

module name, function name and function arguments inside a JSON structure

(see Appendix A.2) and sending it over the message queue. This functionality

is currently not fully available to regular tenants. Only selected functions are

available for modifying the virtual bridge settings without resetting the entire

ap-slice. However, in future extensions, it is possible to extend this feature to

grant permissions to tenants for them to interact directly with slices they own,

potentially through Aurora-Tenant. In other words, these APIs can be trans-

formed into control and management operations instead of setup operations.

Some of these extensions are discussed in 6.2.

In the current implementation with the broker mode, the signaling of events by Aurora-

AP to Aurora-Manager is mostly limited to the notice of initialization using the REST API

and the reply to commands using the message queue. Other events are directly handled

by the individual components orchestrated by agent and not through the agent. This is
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also why the proposed agent architecture does not directly impact the performance of the

existing technologies because the broker performs orchestration in the agent plane, out

of the way of the datapath of the slice. The performance of each slice is then directly

impacted by each tenant through their selection and configuration of resource components

during slice creation.

Of course, in the full implementation, the virtualization plane is not entirely transparent

to each tenant. For instance, certain modules for the hypervisor mode, such as inter-slice

traffic shaping modules, are part of the framework and cannot be configured by the ap-

slice tenants. The “hidden” performance cost of the traffic shaping module to provide slice

isolation can be considered as virtualization overhead by the tenants. However, the key

point is that these hypervisor-mode modules are still modularized. They are not funda-

mentally tied to Aurora and can be exchanged with other technologies. Additionally, even

hypervisor-mode components can be offered as broker-mode components to a low level ten-

ant (support for multi-tier tenancy). As such, Aurora provides high level of customization

flexibility and modularity to both the tenant users and developers of the framework itself.

In fact, traffic shaping modules in the AP are not even necessary in certain implementation

scenarios when protocol or spectrum-based virtualization (MAC scheduler) is available in

conjunction with an advanced network virtualization framework (network traffic shaping

and flow QoS). Thus, Aurora is designed with extensibility in mind without over-relying

on one particular technology.

4.3 Chapter Summary

In this chapter, the architecture of Aurora, the software implementation of the proposed

multi-perspectives wireless virtualization and SDI framework, was presented. The moti-

vation and inspiration behind Aurora, as well as some of its key concepts, were exposed.

More specifically, the concept of multi-tier tenancy, different classes of resource abstraction

and modularity of the architecture are explained in the context of Aurora. The architecture

of the different Aurora service components, such as Aurora-Client, Aurora-Manager and

Aurora-AP, have been outlined. Overall, the broker mode of the virtualization agent is an

slice orchestration tool designed to offer flexibility to the tenant without directly interfer-

ing with the operation of virtualization plane components. However, how virtualization is

achieved by the virtualization plane is covered in the following Chapter 5.
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Chapter 5

Application, Integration and

Deployment of Aurora

The previous chapter covered the implementation architecture of a generic multi-perspective

wireless virtualization framework called Aurora. The emphasis was made on the flexibility

and the orchestration capabilities of framework. In this chapter, the actual application

of the Aurora to assist the implementation of wireless virtualization and software-defined

infrastructure is detailed. Overall, Aurora represents a “virtualization operating system”

implemented as a service platform that attempts to offer flexibility while providing useful

tools for the development and implementation of wireless virtualization. Thus, the archi-

tecture will be validated by implementation example and practical application scenarios.

First, this chapter explains how datapath isolation and basic 802.11 access point virtualiza-

tion can be achieved through Aurora-AP. Then, the integration of Aurora with the SAVI

research testbed and OpenStack is presented. In order to demonstrate the flexibility of

a virtual wireless infrastructure created through Aurora, the support of various example

virtualization projects is shown. At last, extensions of Aurora-Agent to include hypervisor

mode traffic shaping, SDRs and partial protocol-based virtualization are discussed.

5.1 Datapath Virtualization in Aurora-AP

Overlay flow-based virtualization is the only perspective currently implemented in Aurora-

AP. Recall from Section 3.1 that flow-based perspectives aim at allowing tenants to cus-

tomize the servicing of their traffic without affecting each other. Also recall that Aurora-AP,

2014/04/01
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as the local virtualization agent, does not actually virtualize the physical resource nodes di-

rectly. In other words, Aurora-AP is not a new wireless virtualization technology. Instead,

it must be considered a meta-framework and powerful toolbox for wireless virtualization

that leaves as much as possible the virtualization process itself modular and openly con-

trollable by the tenants. However, how is flow-based virtualization actually achieved by the

tenants using Aurora? How do the different abstraction modules and resource component

plug-ins come into play in wireless virtualization?

One of the original challenges of a generic framework for wireless virtualization is how

to support a large variety of virtualization techniques and perspectives on the same infras-

tructure to satisfy different tenants. The solution provided by Aurora is that the tenant

is given freedom to use the various resource components provided by Aurora-AP to build

their own ap-slice. In some sense, the flow-based modules of Aurora-AP play a similar

role as a VM manager except that it is not the operating system firmware that is being

virtualized. Instead, only selected networking and wireless functionalities are virtualized.

On top of this, Aurora-AP gives the freedom to tenants to customize the content of their

ap-slice, which has no equivalence in other frameworks. That being said, Aurora-AP does

not make it an obligation for the tenants (scalable complexity, see Subsection 3.2.2). The

tenants have the freedom to customize their slice or simply use a predefined virtualization

package.

In a typical enterprise-grade 802.11 AP, the concept of multiple virtual access points

(VAPs) [33] on the same physical AP is already widely applied. Each VAP can have

its own 802.11 BSS, authentication methods and connectivity to a VLAN. The VAP is

often used to manage and isolate access policies of wireless clients. Aurora-AP uses these

existing concepts and functionalities as the basis for further extensions. In Aurora-AP,

traffic from each tenant go through different components defined by configuring the ap-

slice. The general rule identified for wireless APs is that the data traffic must ultimately go

through both the radio interface and the backbone network interface (Ethernet or optical).

Thus, the path between the radio interface and the network interface can be subject to

various type of customization by different technologies. Aurora-AP enhances the VAP

by providing additional components to build and customize these traffic paths, fully in

line with the concept of flow-based virtualization. Ultimately, the isolation of the traffic

between the different ap-slice depends on the implementation technology of each data path

component and the interaction between them.
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The physical hardware supporting the first version of Aurora-AP is the alix3d2 board

[54]. It has an embedded 500 MHz AMD Geode LX800 processor with 256 MB DRAM

and Compact Flash card slot. Its computing power and performance are slightly superior

than most wireless router commercially available. It has two miniPCI radio card slots, one

10/100 Ethernet port, one UART serial port and one USB 2.0 port. The radio cards are

based on 802.11b/g Atheros chipset. The wireless firmware is a customized OpenWrt [59]

based on Linux kernel 3.2 loaded on a 4GB Compact Flash card (although the image itself

is well under than 100MB). The OpenWrt firmware has Python and all resource component

technologies and software installed. The architecture of typical ap-slice instances on the

alix3d2 -based AP resource node is shown in Figure 5.1.
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Fig. 5.1: Flexible Datapath Configuration of AP-Slice on AP Resource Node

5.1.1 Wireless and Radio Interface Technologies

OpenWrt uses the Linux daemon hostapd, which has the ability to turn any radio interface

card into a 802.11 access point. The hostapd daemon supports VAP functionalities and

binds each BSS to a separate Linux interface, as shown in Figure 5.1. Uplink traffic

from wireless clients connected to different BSS are separated inside hostapd since they

have different ESSID and BSSID (MAC). The prime interfaces (wlan0, wlan1, etc.) are

linked with the first BSS created on a radio card. All subsequent BSS are given a virtual
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interface (i.e. wlan0-1, etc.). One limitation with vanilla hostapd is that it does not support

dynamic addition and removal of BSS. In other words, whenever a BSS is added or removed,

the entire radio interface must be brought down and restarted. For the implementation

of Aurora, the vanilla hostapd has been modified to support dynamic BSS creation and

deletion through the hostapd cli interface with Aurora-AP. Another limitation with hostapd

is that the radio card is deactivated once the prime BSS is removed. This limitation can

be removed by changing the way the radio card is initialized by hostapd. Finally, there

is a limitation that all BSS must share the same radio configuration profile. This issue is

resolved by using technologies that support partial protocol-based virtualization, as will be

discussed in Subsection 5.4.2. In alix3d2 APs, up to two radio cards are supported. These

radio cards are allocated as separate resources running separate hostapd instances. The

naming of the virtual radio interfaces is automatically allocated by Aurora-AP.

5.1.2 Network Interface Technologies

There is only a single Ethernet interface on the alix3d2 -based resource node. Thus, different

tenants must be isolated from each other and from the control path of Aurora while sharing

the same physical interface. Virtual network interfaces are used to provide such function-

alities. Virtual network interfaces can also be extensively used by tenants as checkpoints

to apply various traffic policies within their slice. Thus, Aurora-AP allows the tenants to

select the type of interfaces they want to use in their ap-slice. Of course, different interface

technologies have different isolation properties and restrictions.

• For instance, modified Capsulator interfaces in Aurora-AP isolate traffic by encap-

sulating them and identifying them by a 2-tuple (the tunnel ID and the destination

IP). As such, they are suitable to be attached on the physical Ethernet interface to

separate the traffic of each tenant and provide tunneling functionality at the same

time. With tunneling, a single Ethernet interface is sufficient for both the control

and data paths.

• In the case of veth, there are no implicit isolation mechanisms. Thus, Aurora-AP must

make sure that the tenants do not create ”leaking” ap-slice instances by mistake.

Typically, veth interfaces are mandatory on radio interfaces when using OVS. This is

because there is a conflict between the operation of OVS and that of a radio interface,
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as mentioned in Subsection 4.1.4. An indirect interface technology such as veth is

therefore necessary. When used like this, there are no isolation issues because wireless

traffic are already isolated by hostapd on the radio interface. On the other hand, veth

cannot be attached directly to the Ethernet interface since it does not provide any

filtering or isolation capabilities. An Aurora-controlled OVS must be used to isolate

the traffic among tenants, as shown with ap-slice 3 and 4 on Figure 5.1. The OVS

also prevents any Aurora control messages from being seen by the tenants by blocking

them, providing control and data path isolation (see Section 5.4).

The naming of the virtual network interfaces are partially given by the tenants. How-

ever, Aurora-AP appends a prefix identifier based on the tenant name or ID to the actual

name of the interface, forming its own isolated namespace. This allows multiple tenants to

name their virtual interfaces without worrying about using the same name as other tenants.

Of course, one question that arises is whether the tenant want to customize these interfaces.

The answer is no for service-level tenants but yes for researchers and infrastructure-level

tenants. Aurora attempts to support as much as possible different virtualization architec-

tures as a platform and allow for further innovation. Thus, using these virtual interfaces,

the tenants can actually build their slice the way they want within reasonable flexibility

without the need to virtualize the entire operating system firmware. For instance, if a

tenant wants to process 802.11 MAC remotely, they can use Capsulator to tunnel raw

802.11 MAC frames of their ap-slice to a VM in the cloud, as done in CloudMAC [31],

while another tenant processes its frames locally, on the same physical AP. Future resource

component plug-in extensions, such as wireless monitoring interfaces, will be developed to

allow raw 802.11 frames to be captured in order to make this possible.

5.1.3 Bridging and OpenFlow Support

The most sophisticated and flexible customization of the data paths occurs through the

bridging technologies managed through Aurora-AP. The usage of OVS is suggested to

tenants, as it is an OpenFlow and SDN-enabled virtual switch. Different OpenFlow appli-

cations for wireless networks can be enabled at the AP with OVS, ranging from firewall

and gateway services to mobility management. In general, bridges can also be used as a

filter or traffic shaper for tenants to manage the client traffic inside their ap-slice instances.

In Aurora-AP, separate instances of OVS data path can be created for each tenant, as
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shown in Figure 5.1. Each instance of OVS data path can then be directly connected

to an OpenFlow controller in the tenant network through a bridge interface (ovs1, ovs2,

etc.) on the physical Ethernet interface (control path). The isolation of the control path

is managed at the network-wide level using OpenFlow. Nevertheless, Aurora-AP can also

use OVS as a default bridge in hypervisor mode, allowing more than one tenant to share

the same virtual or physical interface (i.e. ap-slice 3 and 4 in Figure 5.1). In such a case,

OVS is connected to a FlowVisor controller inside the SAVI testbed. Then, each tenant’s

flowspace is redirected to its corresponding tenant-owned guest controller. The Linux brctl

bridge is an alternative simpler bridge that can be used if OpenFlow functions are not re-

quired. However, unlike with OVS, Aurora-AP does not currently support sharing a single

brctl instance with multiple tenants. In general, only virtual interfaces within the names-

pace of the ap-slice owned by a tenant can be added to the bridge created by the tenant.

The exception to this rule is the default OVS bridge, which contains a common interface

(veth0 ) shared using OpenFlow. Interfaces created by tenants choosing the default OVS

as bridging option are dynamically added to the default OVS. The OpenFlow control of

the default OVS can be delegated to a guest controller through FlowVisor. Currently, the

default OVS feature is not fully implemented as it requires full integration with the SAVI

networking services. It will be completed as a future extension to the OVS plug-in (see

Section 5.4).

5.1.4 Inter-slice Isolation Mechanisms

Basic datapath isolation is achieved using the technologies described in previous subsec-

tions. However, it does not provide rate limiting mechanisms among slices. Inter-slice

traffic shaping modules to throttle the throughput of different tenants are functional but

not yet integrated inside Aurora-AP. They will be covered in Subsection 5.4.1. So far,

the ap-slice isolation discussed is purely implemented on the AP resource node, in a per

node basis. However, such localized isolation is not sufficient and must be extended at

the network-wide level (integration with tenant virtual network). Such isolation cannot be

provided by Aurora-AP and must be handled by wireless network management functions

or SDN frameworks inside SAVI/OpenStack. These functions are outside the scope of this

thesis and are discussed in Section 5.5. In terms of wireless resource isolation, the tech-

nologies interfaced with Aurora so far do not support integrated wireless virtualization nor
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protocol-based or spectrum-based approaches. As such, there are no inter-slice wireless

resource scheduling mechanisms coupled with Aurora-AP.

As discussed above, the current version of Aurora-AP is not (yet) a magical swiss knife

of wireless virtualization nor provides a comprehensive list of functionalities. Only a limited

set of tools are currently available to demonstrate the core ideas of the framework. However,

the modular software design of Aurora makes extensions simple to integrate. Some of these

extensions, particularly the traffic shaping module and the support for SDR resources, are

briefly explored in Section 5.4.

5.2 OpenStack and SAVI Integration

As explained in Section 4.1, Aurora is designed as a component service to OpenStack. Its

implementation is achieved as a part of the SAVI testbed. The basic overview of the SAVI

testbed is given in Subsection 2.2.2. In this section, the detailed SAVI testbed setup at

McGill is presented in order to discuss the deployment of Aurora in the physical testbed.

5.2.1 SAVI McGill Edge Node Testbed Overview
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Fig. 5.2: Physical Hardware Setup for the McGill SAVI Edge Node

First, the SAVI testbed at McGill is classified as a SAVI edge node with OpenStack

region name MG-EDGE-1. The edge nodes are designed to be miniature datacenters with
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specialized non-computing resources. However, the McGill edge node is extremely small

in terms of computing power (a single server). It is more focused on the development

of virtualized wireless nodes for the SAVI testbed. The McGill edge node is currently

composed of one edge controller server, a single compute node server, one OpenFlow-enabled

physical switch and up to six wireless access points, as shown in Figure 5.2. The addition

of FPGA platforms used as SDR is currently under development. The McGill edge node

is connected to the other edge and core nodes around Canada by Internet. Edge nodes

within Ontario are connected by a dedicated optical backbone network. The edge controller

hosts the SAVI and OpenStack manager, which includes a Ryu OpenFlow controller and

FlowVisor, and the edge node MySQL databases. The OpenFlow-enabled Pronto switch is

the central switch connecting all the resources available on the edge node. All VMs allocated

inside the MG-EDGE-1 region are instantiated on the compute node. Resources, such as

compute nodes, typically use two Ethernet interfaces to connect to the OpenFlow switch.

One interface is used for the control path between the edge controller and the compute node

while the other is used for the data path. In the case of the wireless access points, only a

single Ethernet interface is available for both control and data path (in-band). The isolation

of the control and data paths between tenants and the edge controller is achieved through

policies set by OpenStack Neutron with its OpenFlow controller. The addition of a second

Ethernet interface on alix3d2 APs using an Ethernet-to-USB adapter has been considered.

However, whereas such out-of-band control setup simplifies the isolation mechanism, it is

less practical to deploy on wireless nodes, unlike on server nodes. The authentication of

users is performed by a dedicated testbed-wide authentication server running OpenStack

Keystone. VMs inside the SAVI testbed are reachable from the public Internet if a public

floating IP is attached to its virtual interface using Neutron.

5.2.2 Interaction and Integration between Aurora, SAVI and OpenStack

The Aurora service components are relatively independent from SAVI and other OpenStack

services. Of course, there are different points of integration between the Aurora service

components and SAVI/OpenStack in order to provide a unified infrastructure-wide end

user experience. These points of integration are well delimited and are briefly summarized

as follows:

1. Tenant and user authentication: In Aurora and OpenStack, a tenant is not
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exactly an individual. Instead, users are individuals belonging to one or more tenant

projects. All commands issued by users through Aurora-Client must be validated

using a token-based authentication system managed by the OpenStack Keystone

service. Aurora-Client is co-located with other OpenStack clients on user access

stations. Aurora-related policies must be integrated inside Keystone by configuring

authentication middleware components [63]. The authentication component is used

to identify the user and verify what capabilities that user has with the Aurora service

components within a tenant project. These information are then passed to Aurora-

Manager, which is co-located with all other service managers (Nova, Swift, etc.) on

the SAVI edge controller.

2. Resource database: The information about the state of wireless resources and

their relationship is stored in the MySQL database on the edge controller, along with

other OpenStack and SAVI services. In such a way, the Aurora resource database

can allow other services to access information about wireless resources. For instance,

some Aurora functionalities can be incorporated into other SAVI services such as

Whale, the network topology service.

3. Network connectivity: The most important aspect of the integration between Au-

rora and SAVI is the network connectivity between the wireless resource nodes and the

rest of the testbed infrastructure. The physical APs are connected to the SAVI edge

node switch through Ethernet, as shown in Figure 5.2. Network virtualization and

network-as-a-service (NaaS) inside SAVI are managed by Quantum/Neutron mainly

through OVS and OpenFlow-based Neutron plug-ins. Aurora relies on Neutron to

connect the wireless slices on physical nodes to virtual networks owned by their cor-

responding tenant. New OpenFlow rules are added whenever a new virtual wireless

network (wnet) is instantiated. Wireless-aware OpenFlow controllers must be de-

ployed to handle wireless clients. Even though wireless network functionalities are

outside the scope of this thesis, some network connectivity mechanisms are discussed

as extensions in Section 5.5.

The projected placement of Aurora components with respect to SAVI and OpenStack

components is shown in Figure 5.3. In order to experiment with the proposed framework,

a proof-of-concept Aurora framework is implemented inside a single SAVI tenant project,
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as will be presented in the following Subsection 5.2.3. The full integration of Aurora on

the same level as the other services (Nova, Keystone, etc.) is expected in future releases of

the SAVI testbed.
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Fig. 5.3: Projected Integration of Aurora Service Components in SAVI/Openstack

5.2.3 Prototype Deployment of Aurora Inside SAVI McGill Edge Node

The SAVI testbed has the advantage of providing a full suite of virtual infrastructure-as-

a-service on demand, including VMs and virtual networks but missing wireless resources

(and thus one of the motivation of Aurora). In order to test and debug the Aurora software

platform during its development, a prototype of Aurora has been implemented within the

SAVI testbed. As opposed to the real integration of Aurora within SAVI as a first class

service, the components of the prototype are running inside a slice of the SAVI testbed

and not as part of the SAVI platform itself. As such, the prototype is isolated from the

other SAVI services and cannot interact directly with them. The prototype represents an

important milestone before the full support of wireless functionalities in SAVI.

The prototype is implemented in a SAVI tenant project with three networks: ap-net

(10.5.255.0/24), mcgill-net (10.5.8.0/24) and mcgill-net2 (10.5.254.0/24). These networks

are logically isolated from each other by different subnet addresses. They are used to

emulate the fact that the infrastructure network with the control path (ap-net) is isolated

from the tenant networks (mcgill-net and mcgill-net2 ). The physical AP nodes are bridged
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to ap-net by modifying OpenFlow firewall rules on the physical port of the switch on which

they are connected to. Three VMs are created using Nova: ManagerVM, VMTenantA and

VMTenantB. ManagerVM, connected to ap-net as 10.5.255.15, hosts the Aurora-Manager

along with an instance of FlowVisor. It tries to emulate the SAVI edge controller minus the

other SAVI services. The two other VMs and their subnets are emulating two tenants and

their networks. The tenant VMs are both connected to ap-net (10.5.255.16 and 10.5.255.13)

and its corresponding mcgill-net and mcgill-net2, as shown in Figure 5.4. Of course, there

is no traffic isolation between the slices at the network level because all APs are connected

to the same subnet (ap-net). As such, tunneling is used on tenant datapaths inside the

prototype, as will be detailed in the following subsection.

In the prototype setup, Aurora-Client is installed on PC workstations outside the SAVI

testbed. A floating IP is assigned to ManagerVM and security group rules (i.e, firewall

rules in SAVI) are added, such as port 80 for a HTTP server to receive client commands.

Since the Keystone authentication components are not implemented for this prototype,

tenant identities are taken at face value by the prototype Aurora-Manager. This basic

security setup is sufficient for the prototype since the user still has to obtain the token

from Keystone (iam.savitestbed.ca). There are simply no authentication policies defined
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for the prototype (i.e, no customized per-tenant and per-user access to Aurora functions).

Finally, the mere fact that Aurora is actually developed with the help of other existing

SAVI and OpenStack services reinforces one of the reasons why Aurora was developed in

the first place: to provide a powerful framework and testbed platform to facilitate the

development of other future frameworks. The ideal vision is that Aurora will join the

other SAVI and OpenStack services to accelerate the development of new services, just as

the existing services did for Aurora. The next section gives some examples of flow-based

wireless virtualization technologies deployed using the Aurora prototype.

5.3 Example Applications of Aurora

As mentioned previously, Aurora is not considered as a new wireless virtualization technol-

ogy by itself. Instead, it integrates other virtualization technologies and automates slice

creation with these technologies. In order to demonstrate the flexibility of the framework,

this section briefly presents an implementation of OpenFlow Wireless, a flow-based vir-

tualization architecture from [7], using existing components inside the Aurora prototype

framework. Then, in order to showcase the steps necessary to integrate new technol-

ogy components not present in the Aurora prototype, a walk-through on the hypothetical

implementation of another flow-based virtualization architecture CloudMAC from [31] is

presented. The common point between these two architectures is that they both use Open-

Flow, albeit not in the same way. However, the Aurora framework itself is not dependent

on OpenFlow. Other SDN technologies and frameworks can also be integrated as resource

component plug-ins.

5.3.1 OpenFlow Wireless in Aurora

OpenFlow Wireless was briefly surveyed in Subsection 2.4.2. OpenFlow Wireless essentially

allows traffic on wireless access points and basestations to be controlled through SDN by

installing an OpenFlow-enabled software switch on them (OVS). The prototype of Aurora

simplifies the process of setting up such an architecture by integrating one by one the var-

ious technologies that OpenFlow Wireless depends on. This is directly reflected through

the first few abstraction modules and technology plug-ins implemented in Aurora, notably

Capsulator and OVS. Using such a modular framework, it is possible to construct different
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wireless virtualization architectures on different slices by making different plug-ins to in-

terface with different component technologies. The setup of OpenFlow Wireless inside the

Aurora prototype is shown in Figure 5.5.
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Fig. 5.5: OpenFlow Wireless Deployed Under Aurora Prototype Framework

In the prototype deployment of OpenFlow Wireless using Aurora, tenant A and tenant

B each can use their own OpenFlow controller to act upon their own instance of the software

switch, as described in [7]. The setup required for OpenFlow Wireless is minimalistic: each

ap-slice has one Capsulator VirtualInterfaces component, one OpenWrt VirtualWiFi com-

ponent and one OVS VirtualBridges component. The blueprint of this example deployment

is included in Appendix A.6. In this example, the OVS component of each slice is directly

connected to the tenant controller respectively located at 10.5.255.16 and 10.5.255.13, with-

out going through FlowVisor as in [7]. This is because in this particular setup, the ports
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of the VirtualBridges component of each slice are non-overlapping. As such, FlowVisor is

not necessary. On the other hand, if the ports are shared, the OVS component can use the

default OVS mode described in Subsection 5.1.3 to point to ManagerVM on 10.5.255.15.

The VMTenantA and VMTenantB each run a Ryu-based OpenFlow controller for video

streaming handover, as in [7]. Capsulator tunnel endpoints are also running in the tenant

VMs to de-capsulate the datapath traffic coming from ap-slice instances, allowing it to be

bridged to its tenant network.

Clearly, the deployment of OpenFlow Wireless inside Aurora is not an exact replica of

the original setup in [7]. For instance, there is no SNMP in the example deployment. In-

stead, the configuration of the radio is performed through the Aurora VirtualWiFi module.

In addition, the prototype Aurora-AP actually extends the OpenFlow Wireless architec-

ture by binding each ap-slice to a VAP. This demonstrates the flexibility of Aurora-AP at

abstracting the interfaces between different components, allowing the OpenFlow Wireless

architecture to easily integrate into various other configurations and technologies. The

same modules and plug-ins that OpenFlow Wireless require can be reused in other scenar-

ios and virtualization architectures, assuming the software and hardware requirements of

running them are met (i.e, Linux-based operating system with OVS support). In any case,

the full configuration of an ap-slice instance is consolidated into a single blueprint file. The

tenant no longer needs to run its own custom scripts or manually configure the devices.

By unifying the different components under a common interface layer, the blueprint allows

potentially complex configurations to be easily validated and deployed over a virtualized

infrastructure. Of course, new components and new architectures most likely will at the

very least require new plug-ins and in many cases, new abstraction modules. In other

words, the Aurora framework might be convenient in the long run but certain tenants (i.e,

researchers and developers) must be supportive in its earlier stages, where most compo-

nents and modules are still missing. However, why would any tenant want to extend the

Aurora framework just in order to deploy their own wireless virtualization architecture?

The following subsection gives an example scenario to illustrate why and how a tenant

should write plug-ins and modules for Aurora.
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5.3.2 CloudMAC in Aurora

Aurora is mainly based on open-source implementations of various technologies and is itself

open to extensions developed by certain tenants. The creation of new plug-ins and modules

inside Aurora is relatively simple due to the way Aurora is modularized and does not

significantly increase development overhead compared to writing a customized automation

script. The advantage of running virtualization projects under Aurora is the fact that

other pre-written components are available for maximum technology reuse. Writing new

modules and plug-ins is encouraged as it is a more organized way of implementing new

virtualization technologies. At the same time, these new components are automatically

standardized under a common framework (i.e, Aurora), in turn enabling other tenants to

reuse them to build their own slice and maintaining a good ecosystem for research and

development. This is not to mention that without a unified blueprint, it is very difficult to

share the same wireless infrastructure among multiple tenants with different technologies

that might interfere or conflict with each other. The process of creating Aurora modules

and plug-ins can prevent many of the architecture conflicts right from the earlier stages

of their development. As an example to demonstrate how new components are integrated

into Aurora, the hypothetical deployment of CloudMAC [31] is outlined as follows.

CloudMAC is briefly surveyed in Subsection 2.4.2 and illustrated in Figure 2.5. In short

summary, CloudMAC directly sends 802.11 MAC frames from the access point to a virtual

machine running inside the cloud using a tunnelling protocol (Capsulator). CloudMAC

requires a monitoring interface that can capture and redirect raw 802.11 frames directly

from the wireless interface. Such an interface can be integrated as a plug-in to the Virtu-

alInterface module that attaches itself to a custom radio interface integrated as a plug-in

to VirtualWiFi. The custom radio interface is needed because CloudMAC requires time-

critical functions to be handled locally [31]. However, the current prototype implementation

does not have plug-ins for these modules nor the actual implementation of these plug-ins.

In order to integrate these components, relatively simple (compared to a scenario without

Aurora) steps are outlined as follows:

1. Implementation of technologies (or resource components in Aurora terminology):

First, the implementation of the monitoring interfaces and custom wireless interfaces

with local handling of time-critical functions is needed. This step is the same whether

or not the Aurora framework is present and can be developed independently from Au-
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rora. Even though there are no enforcement by Aurora per se, it is still suggested

to modularize these implementations to match with the modularity of the Aurora

framework in order to maximize the future reuse of the components by other ten-

ants. Additional concerns such as the support for multiple virtual instances of these

interfaces on a single physical interface and the isolation of these virtual interfaces

from each other are suggested but not required. Of course, if these concerns are not

considered by the implementation, Aurora will simply allocate resources using these

components as is, with limited sharing among tenants.

2. Making plug-ins for Aurora: This is a new step introduced if these components

are to be integrated into Aurora. The developer tenant must write wrappers to

interface the Aurora-Agent and Aurora-Manager with these new components. The

equivalent steps taken when Aurora is not used would be the creation of automation

scripts to facilitate a demo setup of the architecture. The development of wrappers,

which includes full component APIs, is generally a more modularized and organized

method compared to the composition of ad hoc scripts.

3. Testing plug-ins for Aurora: Along with the previous step, this is an additional

step taken when integrating new components into Aurora. In order to validate the

implementations as well as the new plug-ins and modules, native testing (i.e. with

physical access point hardware) and debugging of the Aurora framework itself are

required. Such a testbed can be assembled using resources on the SAVI testbed

within a slice of the infrastructure, in the same way Aurora prototype is currently

deployed.

4. Deployment of architecture: At last, the custom wireless virtualization architec-

ture must be deployed over the infrastructure. In the case without Aurora, it is usually

impossible to run multiple wireless virtualization architectures at the same time over

the same infrastructure. With Aurora, the resources and components connection

topology is fully defined in a centralized blueprint file, facilitating its deployment and

any changes to the architecture. At the same time, some components such as Cap-

sulator already exist as Aurora plug-ins. These components can be directly used by

the blueprint file without much setup overhead by the tenant. The new components

introduced by the CloudMAC tenant can benefit other tenants in a similar way.
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As mentioned in step 4, once CloudMAC components are integrated into SAVI, they

can be reused by other tenants in various different ways no longer limited by the original

CloudMAC architecture. For instance, CloudMAC can be deployed alongside other wire-

less virtualization architectures over the same infrastructure. In such a scenario, a monitor

interface can be allocated to a base tenant, similar to the way BSS are allocated inside the

Aurora prototype (see Subsection 4.1.3). On the other hand, guest tenants would not be

directly supported on such an interface, unless the monitor interface is modified to distin-

guish 802.11 MAC frames between slices (additional implementation concerns suggested).

This is because a simple monitor interface is otherwise able to capture all traffic on the

radio interface. However, for CloudMAC, nothing prevents other tenants from connecting

to the base tenant’s VMs to use the AP resources. Of course, this is still an idealized

narrative of a hypothetical scenario in which everything falls perfectly in place within the

Aurora framework. Nevertheless, this extrapolation is based on an achievable integration

plan for a real wireless virtualization architecture (i.e. CloudMAC).

5.4 Extensions to Aurora Virtualization Agents

The components for Aurora-Agent (more specifically Aurora-AP for 802.11) described in

this thesis so far are only sufficient for the prototype to demonstrate the model of the

framework. They are far from being sufficient to support a fully featured virtual wireless

infrastructure. For instance, there are no explicit traffic shaping mechanisms to limit

the bandwidth of each ap-slice instance among tenants. The assumption is that traffic

shaping is mostly performed at the network-wide level by the SDN framework within SAVI.

However, one basic motivation behind Aurora is to provide flexibility. As such, some

example extensions to the Aurora-Agent are covered in this section to provide pointers for

future Aurora research and development directions.

5.4.1 Traffic Shaping and Scheduling for Aurora-AP

For inter-slice scheduling across tenants (hypervisor mode, see Subsection 3.3.2), the steps

to guarantee different service levels for different tenants are quite complex. In fact, both

downlink and uplink traffic are difficult to control on the access point with the current

level of implementation. Ideally, the downlink traffic scheduling must be joined with traffic

shaping in the network infrastructure or at the source of the traffic. Otherwise, there is no
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guarantee for the tenant traffic to arrive at the AP in the first place. However, since the link

capacity is asymmetric on the AP (Ethernet capacity is typically higher than basic 802.11

rates), some throttling mechanisms are still necessary to preserve bandwidth guarantee

between tenants in the case of over-capacity. In such a case, traffic must be blocked and

dropped at the Ethernet interface. Nevertheless, such a basic throttling mechanism can be

rendered obsolete by a SDN framework that can control link QoS. Possible extensions for

traffic control among slices are already planned by integrating the Linux tc (traffic control)

plug-in [64], which can be attached on virtual interfaces to modify the queuing discipline

(qdisc). In fact, in the JSON blueprint file, there are already place holder parameters for

defining the throttling threshold of each ap-slice (see Appendix A.2).

Actual scheduling of the wireless downlink traffic is possible on the AP only by manip-

ulating the 802.11 MAC layer, which is not implemented in this thesis. Similarly, on the

wireless uplink side, enhancements in the 802.11 MAC layer (i.e. PCF [38]) or modifica-

tions on the mobile client (i.e. SplitAP [34]) are required. These types of extensions can be

integrated when more advanced radio resources are available, as will be briefly discussed

in the following Subsection 5.4.2.

As for intra-slice scheduling within the virtual resource slice of a tenant (broker mode),

OVS can be managed and controlled by the tenant either directly or by delegation (see

Subsection 5.1). The planned flavors of traffic shaping mechanisms will include the tc

plug-in, which is shared between the Aurora framework (inter-slice) and the tenants (intra-

slice) albeit with different permission capabilities. For instance, the configuration of the

inter-slice tc components will not be available to the tenant but only to the infrastructure

administrator or to the framework management services.

5.4.2 Integration of Specialized Radios: WARP and SDR

The proposed Aurora framework is a multi-perspective virtualization framework. As such,

it is designed to support more than one wireless virtualization perspective. With the alix3d2

access points resource nodes, only overlay flow-based virtualization is supported since there

is no integration with the 802.11 MAC for air-time uplink or downlink scheduling among

tenant slices. This limitation reduces the benefits of wireless virtualization as the wireless

resources cannot be allocated or isolated by Aurora-Agent. On the other hand, such overlay

virtualization is the simplest to deploy on existing technologies. In order to support more
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advanced wireless virtualization perspectives, technologies such as SDRs must be integrated

within the Aurora framework.

Since there are different types of SDRs, the flexibility and modularity offered by the

Aurora framework is beneficial to the process of technology inclusion. Reference designs

on platforms such as the WARPv3 [55] are not exactly SDRs in the true sense of the term.

The WARP board is more a programmable radio as opposed to a true SDR, as its MAC

and PHY layers cannot be modified once the reference design is loaded into the FPGA.

Nevertheless, the flexibility of the FPGA still allows the MAC and PHY layers of a radio to

be freely redesigned in such a way that software drivers can directly interface with functions

previously unavailable through commercial radio cards, making integrated flow-based and

partial protocol-based wireless virtualization feasible. One planned extension to Aurora

is the integration of WARP-based SDR nodes. However, Aurora-AP is still applied to

WARP resources, as opposed to the hypothetical Aurora-SDR. This is because the current

reference design on WARP is limited to 802.11 APs, the main target technology for Aurora-

AP. Aurora-SDR will be reserved for full SDR nodes with simultaneous support for multiple

protocols, such as GNURadio [45], Sora [46] or OpenRadio [47].

The Aurora-AP agent for WARPv3 nodes is very similar to the Aurora-AP agent for

alix3d2 nodes. Multiple radio configuration profiles can simultaneously coexist within the

SDR node, effectively achieving partial protocol-based virtualization as described in Sub-

section 3.1.2. However, the use of a server to host the Aurora agent and the SDR controller

(if any) is suggested, whether it is a physical or virtual server locally or remotely located.

A separate server is not mandatory if the SDR node can run a basic Linux operating system

on its integrated CPU. The key function of the server is to provide an operating system on

which Aurora agents can easily be supported. In the case of WARP nodes, the MAC por-

tion of the 802.11 reference design is divided into the CPU High, which handles high-level

non time-critical functions such as BSS and authentication, and CPU Low, which handles

low-level time-critical functions such as ACK responses. The two CPUs are completely

decoupled and communicates through a middleman module. Due to this decoupling, the

first integration scenario consists of running the CPU High on the controller server. In the

second scenario, the CPU High remains on the embedded microprocessor on the FPGA.

The configuration of the reference design with respect to the Aurora framework is shown

in Figure 5.6.

The radio configuration profiles define radio parameters that were originally unique per
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Fig. 5.6: Integration of WARP Resource Nodes Into the Aurora Framework

radio interface for hostapd in alix3d2 nodes. These parameters include transmission power,

channel and rate limitations through different modulation and coding schemes (MCS). The

reference design can apply different radio configuration profiles for different packets (per-

packet processing). In fact, there are two scenarios envisioned for integrating the 802.11

AP reference design on WARP. In both cases, dynamic loading and unloading of BSS is

supported. In the first implementation scenario, the BSS implemented in CPU High can

each be directly bound to virtual interfaces that act as component plug-ins to the Aurora

agent. This setup has the advantage that the de-multiplexing of tenant traffic is reduced,

as no additional tagging of traffic is required to bind them to each BSS. On the other hand,

in the second scenario, the tenant traffic must be labelled or tagged before being sent from

the controller to CPU High due to the lack of direct binding between the traffic and the

BSS. In both cases, Aurora-AP runs on a GPP-based controller external to the FPGA on

WARPv3. Moreover, the radio configuration profiles reside inside both the Aurora agent

and the access memory of the FPGA. The profiles must be readily accessible with very low

latency in order to bind each packet to them in the MAC and PHY layers of the reference

design. The extension to Aurora is in the form of a new flavor/plug-in of VirtualWiFi

virtual radio interface module, referred as warpv3 (as opposed to OpenWrt with alix3d2

nodes). All other modules such as VirtualInterfaces and VirtualBridges are the same as the

ones for alix3d2 nodes. However, the basic interactions between BSS and radio interfaces

are drastically more flexible due to the removal of restrictions present in hostapd.
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For full SDR technologies in full protocol-based virtualization, the Aurora-Agent will

be significantly distinct from Aurora-AP. For instance, Aurora-SDR might allow one ten-

ant to load their own software protocol stack on the SDR platform while sharing radio

resources with another tenant’s protocol stack. In that case, Aurora-SDR will interface

with a technology component that manages the running protocol instances similar to a

hypervisor managing VMs. Unfortunately, WARPv3 cannot yet support such scenarios

without significant modifications to the 802.11 reference design. Nevertheless, if these sce-

narios are supported, the process of integration into Aurora remains relatively unchanged.

Thus, the proposed Aurora agent is flexible and modular enough to support a large variety

of wireless virtualization technologies, partially due to the decoupling of the agent plane

from the virtualization plane in its architecture.

5.5 Extensions to Aurora Network Functions

At last, the prototype framework presented so far in the thesis only covers the virtualization

of individual wireless nodes. The fully virtualized wireless infrastructure requires functions

at the network level. Even though the Aurora network functions are considered outside

the scope of this thesis, this section briefly outlines the flexibility and degrees of freedom

provided by Aurora-Agent (Aurora-AP) for network integration.

5.5.1 Connectivity Support for Service-Level Tenants

Recall that there are different types of tenants residing within or on the border of the vir-

tualized infrastructure. In Subsection 4.1.3, service-level tenants simply want their clients

to connect to their services through the virtualized wireless infrastructure. In such a sce-

nario, the slices on the virtual nodes are actually owned by an infrastructure tenant. The

infrastructure tenant must then provide connectivity to other tenant’s virtual networks.

Since Aurora will be first integrated into the SAVI testbed, a default infrastructure tenant

service can be provided by the testbed.

An extension of the Aurora prototype requires the authentication of mobile clients by a

specialized authentication and subscription server within SAVI. This server maintains the

subscription of a mobile client to a particular service offered by service-level tenants. The

DHCP of the client can be performed by this server. Then, using the MAC and IP of the

client, an OpenFlow controller can be used as a firewall to restrict the connectivity (IP,
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ARP, broadcast domain, etc.) of the client only to the services it subscribed to. In such a

setup, a client can be subscribed to more than one service-level tenants. The basic outline

of this setup is shown in Figure 5.7.
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An alternative setup would be to instantiate multiple capsulator border interfaces to

directly bridge client traffic to its corresponding service-level tenant network. Once again,

OpenFlow is used to provide isolation and flexibility to the tunneled traffic. However, such

a scenario prevents a client from connecting to multiple services at the same time, limiting

its application. Nevertheless, a well-designed infrastructure slice can potentially support

multiple types of network configurations. By design, Aurora-Agent does not limit the type

of network configuration. Standard and common network functions will be included as

modules and plug-ins in Aurora-Manager and applied on wnet resources, just as technology

components were included as plug-ins in Aurora-Agent.

5.5.2 Integration of Legacy Wireless Infrastructure

Recall from Subsection 3.2.1 that legacy infrastructure must be able to integrate within

the Aurora framework in order for its deployment to be successful. The deployment of the

Aurora framework is equivalent to the deployment of wireless functionalities in the SAVI

testbed. As such, the deployment of SAVI and Aurora over university campus wireless

access points is one of the first scenarios that should be supported.

In order to minimize the amount of changes required to the existing devices, very limited

functionalities are supported over them. For instance, in the case of university APs, the

device is owned by the university and cannot be easily upgraded to a custom firmware.

This limitation is true to most of the existing infrastructure. However, a VLAN and a
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BSS can be obtained from the university. This VLAN can then be routed to a SAVI edge

switch. In such a way, the clients can still connect to the SAVI testbed through a dedicated

BSS. In such setup, wireless virtualization is clearly not feasible but simple connectivity

to service-level tenant networks is still possible. In addition, some of the network-level

functionalities can still be implemented to some degree with the help of OpenFlow to

reinforce policies between service-level tenants. In such a scenario, there is no virtualization

agent. Specialized management modules in Aurora-Manager will be available to handle this

scenario.

5.6 Chapter Summary

In this chapter, the application and integration of a prototype Aurora framework was

presented in order to demonstrate the benefits and flexibility of the framework. The de-

ployment of Aurora with SAVI is also prototyped within the SAVI testbed itself. The

usefulness of a modular and multi-perspective virtualization framework is strengthened by

how future extensions can be developed over it. Two example architectures, one already

supported (OpenFlow) and one not yet supported (CloudMAC), are shown to provide a

walkthrough of deploying wireless virtualization architectures over Aurora. Finally, due to

the limited scope of this thesis, some functionalities were left out as future extensions to

the framework.
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Chapter 6

Conclusion

6.1 Summary

Overall, this thesis is an introductory step in the development of a virtualization frame-

work and platform for the future wireless infrastructure. As discussed in Chapter 1, there

are three main essential concepts at work: virtualization, software-defined technologies and

service-oriented infrastructure. The first concept, virtualization, is applied to wireless tech-

nologies in order to allow efficient allocation and sharing of wireless resources. A survey of

different wireless virtualization technologies and architectures was presented in Chapter 2.

Testbed architectures and existing general frameworks for infrastructure virtualization were

also examined in order to determine the context in which wireless virtualization is applied.

The resulting analysis indicated that wireless virtualization can be viewed as an impor-

tant part among other types of virtualization, such as computer virtualization and network

virtualization. Wireless virtualization, together with other virtualization domains, form

the important pillars of infrastructure virtualization. Then, wireless virtualization itself is

particularly more complex than the other domains. This thesis classifies wireless virtu-

alization into three different perspectives: flow-based, protocol-based and spectrum-based.

All three perspectives are deemed necessary because they target different applications and

needs. Thus, the framework proposed in Chapter 3 and 4 attempted to support all three

and potentially more by being intrinsically modular and evolvable.

The second concept of software-defined principle was explored throughout the survey

of different virtualization architectures and related technologies. Software-defined tech-

nologies provide a higher flexibility than their hardware-defined counterparts, albeit at the

2014/04/01
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expense of performance. The typical strategy is to migrate the loss in performance to less

time-critical sections of the system. This mitigation is present in the proposed virtualization

framework Aurora, which decouples the different functions into the management plane, the

agent plane and the virtualization (technology component) plane in such a way that it does

not significantly affect the performance of existing technologies. Overall, software-defined

technologies are essential to the implementation of virtualization and service-oriented in-

frastructure. They remains as part of the basic assumptions on the evolution of wireless

virtualization technologies considered within this thesis.

Finally, the concept of service-oriented infrastructure was less explicitly mentioned

throughout this thesis. However, it implicitly serves as the foundation of the proposed

wireless virtualization framework and software platform Aurora. In order to apply all three

concepts, support different virtualization perspectives and different wireless resources (het-

erogeneous infrastructure), Aurora was designed to follow the service-oriented architecture

of the open-source cloud computing platform OpenStack. The entire architecture of Aurora

is based on a server-client relationship between the tenant and the infrastructure and among

the software components of the infrastructure. This enables the hypothetical scenarios de-

scribed in Section 1.4. Nevertheless, Aurora does not introduce any new virtualization

technologies. At the end, Aurora is just a common unifying framework to make wireless

virtualization easier to implement and deploy. It binds the different architectures together

such that a centralized management and servicing of these architectures become possible.

Overall, this thesis only presents half of the picture, mostly focusing on the virtual-

ization of the individual radio resource nodes and the accompanying virtualization agent.

However, for a fully-featured wireless infrastructure, the concept of wireless networking

is very important. Thus, the management of wireless resources on an infrastructure-wide

level, such as the mobility management and dynamic provisioning of resources, is the other

half of the picture and can be the subject of further research. In fact, the prototype pre-

sented in this thesis can be barely considered the basic skeleton framework required to

demonstrate the main ideas behind Aurora. In order to be effective, the framework must

be extended, as will be discussed in the following section.
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6.2 Future Works and Extensions

As previously discussed, there are many shortcomings and missing components in the pro-

totype framework. These future research directions and software development tasks for

Aurora are grouped as follows:

1. Stabilization of Aurora prototype and full SAVI integration: The current

prototype only has the bare essential components that might not be the most optimal

implementation. Some minor stabilization and improvements on existing features are

required before the actual deployment of Aurora inside the SAVI testbed. The full

integration of Aurora with SAVI potentially requires some minor changes to both

SAVI and Aurora. For instance, the Aurora REST API server architecture is not

yet defined and is classified as one of the most important features to implement. The

REST API server is currently substituted by a simple HTTP server handling JSON

messages.

2. Management functions and modules for Aurora-Manager: Some basic man-

agement modules and extensions to Aurora-Manager are required for a fully functional

deployment of Aurora. At the very least, connectivity among wireless nodes and the

tenant virtual networks must be automatically maintained. The network connectiv-

ity are partially manually configured in the current prototype. The development of

OpenFlow controllers and the partial implementation of wnet resources are considered

the other half of the framework.

3. Advanced scheduling, QoS and isolation of wireless resources: In order to

provide a richer set of functions to manage and control the service parameters of

wireless slices, more advanced scheduling and traffic shaping techniques must be

integrated within Aurora as extensions, as discussed in Subsection 5.4.1. Some of

these functions are wireless technology-specific whereas some functions are tied with

the network virtualization framework within SAVI, Neutron. Basic traffic shaping

with Linux tc has been successful but remains to be integrated within Aurora as a

plug-in. More advanced scheduling at the wireless MAC level can also be the subject

of integration.

4. Integration of software-defined radio technologies in Aurora: The basic in-
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tegration of WARPv3 resource nodes was discussed in Subsection 5.4.2. The actual

implementation and prototyping of the reference design are left to be done. The

predicted integration scenarios can change depending on the engineering decisions

that are made during its implementation. The integration of other SDR platforms,

preferably full SDRs, should be considered in order to implement full protocol vir-

tualization and spectrum virtualization. More advanced radio technologies such as

cognitive radios and distributed antennas are also potential targets for integration

with Aurora.

5. Integration of cellular technologies in Aurora: Cellular technologies was not

extensively mentioned in this thesis due to the lack of infrastructure (i.e. basesta-

tions) that can support it within the SAVI testbed. However, the architecture of the

cellular network is mappable to the Aurora framework. A basic projection of cellular

technologies in Aurora was made in Figure 4.3. For instance, the packet core can

be implemented on tenant VMs (Aurora-Tenant) whereas the basestations can be

interfaced with a cellular technology-specific Aurora virtualization agent.

6. Miscellaneous features for improving framework usability: A large variety

of features and functions that can further enhance the service-oriented infrastruc-

ture to provide better usability and flexibility remain yet to be implemented. For

example, some of these features include more support for IPv6 protocols within the

Aurora components. Currently, IPv6 functions are dependent on the implementation

technology components but are not exposed through the Aurora blueprints. Other

useful features include a monitoring interface (for use in CloudMAC) and additional

pre-made virtualization blueprint packages for easier deployment.
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Appendix A

Aurora Software Implementation

Overview

This appendix provides a very general overview of the software implementation details of

Aurora. It is not meant to be the documentation of the code. The actual documentation

can be found within the source code itself. In fact, since the Aurora software is in active

development at the writing of this thesis, the following overview does not reflect the most

recent version of the framework. Instead, this overview aims at providing some insight on

how Aurora is structured and what type of functions it can provide. The structures of the

different databases are also briefly explained.

A.1 Aurora-Client Commands

The following list describes various commands supported on Aurora-Client. Underneath,

these commands will use the REST APIs to communicate with Aurora-Manager (see Sub-

section 4.2.1). The REST API portion of these commands are not yet implemented in

the current version of Aurora. In addition, not all these commands are fully functional.

For instance, the resource class wnet has no functionalities except an entry in the MySQL

database. Therefore, all wnet-related commands are in fact place holder functions.

• aurora ap-list [--filter <ap tags>] [--i]: This command prints a list of physical

ap nodes available to the tenant. Typically, an ap resource node is available to all

tenants (public). However, some resource nodes are private and only available to

2014/04/01
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administrators. The filter optional argument takes in a string that describes filter

arguments on the tags of the ap. Some basic logical expressions are supported, such

as: “=” (equal), “!” (not equal), “>” (greater than), “<” (smaller than), “&” (logical

and) and “*” (select all). For example, ”location=mcgill & number radio>1” would

return all ap located in McGill and having more than one radio interface. The optional

argument “--i” displays additional ap information on the list.

• aurora ap-show <ap name/uuid>: This command shows all the detailed status

and capabilities information available to the tenant for the specified ap by name or

by UUID, assuming the resource is visible to the tenant.

• aurora ap-slice-list [--filter <ap-slice tags>] [--i]: This command is similar to the

ap-list command except that it displays the list of all ap-slice visible to the tenant.

By default, a tenant can only see ap-slice it owns. The filter optional argument

behaves the same as ap-list with the addition of tenant-added tags (see Subsection

4.1.2). The optional argument “--i” displays additional ap-slice information on the

list.

• aurora ap-slice-show [--i] <ap-slice name/uuid>: This command is similar to the

ap-show command except that it shows the detailed information for an ap-slice speci-

fied by name or UUID owned by the tenant. The optional argument “--i” additionally

displays the full configuration of the ap-slice.

• aurora ap-slice-create [--filter <ap-slice tags>] [--file <path>] [--tag <string>]:

This command creates an ap-slice for the tenant on the specified ap. This function

can also create an ap-slice on each of the ap from the optional filter argument.

If a single ap is desired, querying “name=ap name” is sufficient. If filter is not

specified, the ap-slice is automatically allocated to the first available ap (this usage

is discouraged). The configuration of the wslice is passed as a JSON configuration

file whose path is specified using the optional path argument. A single configuration

file can be used to generate multiple ap-slice with variable range of parameters (see

Appendix A.2). If a configuration file is not provided, a default ap-slice defined by

the framework is created instead. The optional tag argument allows tenants to add

their own tags to identify ap-slice they own. This command does not wait until all
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the slices are finished building to return (non-blocking). It merely “boots” the slices.

Tenants must use ap-slice-list or ap-slice-list to see the current status of the slice.

• aurora ap-slice-delete [--filter <ap-slice tags>]/<ap-slice name/uuid>: This com-

mand deletes one or multiple ap-slice created by the tenant. The ap-slice can also be

referred by UUID. A warning message is returned if no filter or name arguments are

specified.

• aurora ap-slice-modify [--filter <ap-slice tags>] [--file <path>]: This command

allows the tenants to modify the configuration of one or multiple ap-slice they own

and created. The current implementation simply resets the ap-slice and applies the

new configuration, while keeping the UUID, tenant-added tags and other metadata

associated with the existing ap-slice. Thus, this is different from ap-slice-delete fol-

lowed by ap-slice-create, which resets the wslice metadata as well. The optional filter

argument behaves identically as ap-slice-create. The new configuration file is specified

through the optional file argument.

• aurora ap-slice-restart [--filter <ap-slice tags>]: This command restart one or

multiple ap-slice instances owned by the tenant, specified through the filter argument.

This command behaves the same as a slice creation command except that it can be

applied on existing ap-slice that failed during past slice creation or modification. A

warning message is returned if no filter or name arguments are specified.

• aurora ap-slice-add-tag [--filter <ap-slice tags>] [--tag <string>]: This command

allows tenants to add tags to the ap-slice they own. One or multiple ap-slice can

be specified through the optional filter command. If there are no filter arguments

provided, tags are added to all ap-slice available to the tenant. Tags are useful tools

to group ap-slice instances together by attributes defined by the tenant. An ap-slice

can have an arbitrary number of tenant-added tags. If no tag argument is specified,

nothing happens (i.e. empty tag).

• aurora ap-slice-remove-tag [--filter <ap-slice tags>] [--tag <string>]: This com-

mand allows tenants to remove tags from the ap-slice they own. One or multiple

ap-slice can be specified through the optional filter command. If there are no filter

arguments provided, the specified tag is removed from all ap-slice available to the
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tenant. The tag is specified through the optional tag argument. The special “*” can

be used to remove all the tenant-added tags. If no tag argument is specified, nothing

happens.

• aurora wnet-list: This command is similar to the ap-slice-list command except that

it displays the list of all wnet visible to the tenant. By default, a tenant can only see

wnet it owns. There are no optional arguments for this command.

• aurora wnet-show <wnet name/uuid>: This command is similar to the ap-slice-

show command except that it shows the detailed information for a wnet specified by

name or UUID owned by the tenant.

• aurora wnet-create [--filter <wslice tags>] [--file <path>] <wnet name>: This

command allows the tenant to create a wnet instance. The optional filter argument

specifies the wslice (in this implementation only type of wslice available is the ap-

slice) that join the wnet. No wslice is added if no filter arguments are specified. Each

wslice/ap-slice can only be a member of a single wnet. The optional file argument

specifies the path for a wnet configuration file. Additional optional wnet parameters

will be added in the future. The current implementation is only a place-holder for

future expansion.

• aurora wnet-delete <wnet name/uuid>: This command deletes a wnet created by

the tenant. The wnet must be specified by name or by UUID.

• aurora wnet-join-subnet <wnet name/uuid> <subnet name/uuid>: This place-

holder command is an integration of Aurora with OpenStack Neutron for a wnet to

join as part of a subnet. This operation is the equivalent of adding all wslice under

the wnet on the ports of the virtual switch represent the subnet. As a consequence,

the IP addresses of the wslice are allocated through the DHCP present inside the

subnet (if applicable). This function is not implemented at the writing of this thesis.

• aurora wnet-add-wslice [--filter <wslice tags>] <wnet name/uuid>: This com-

mand allows the tenants to add one or multiple wslice to a wnet. The groups of

wslice are specified by tags through the optional filter argument. If no filter argu-

ments are specified, no wslice is added. In addition, if the wslice specified is already

part of another wnet, it is not added to this wnet.
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• aurora wnet-remove-wslice [--filter <wslice tags>] <wnet name/uuid>: This

command allows the tenants to remove one or multiple wslice from a wnet. The

groups of wslice are specified by tags through the optional filter argument. If no

filter arguments are specified, no wslice is removed. If the wslice specified is not part

of the wnet specified, nothing is removed.

A.2 Aurora JSON Configuration Blueprint Format

The blueprint that the tenants use to define one or multiple Aurora wslice instances is

a Python dictionary (or equivalent JSON object) in JSON format. There are two main

sections to the blueprint of each slice: the general slice attributes and the component

configuration. The slice attributes define some general service parameters on the slice and

are used by the hypervisor mode of the virtualization agent to set up inter-slice isolation

and service guarantee (currently not fully implemented). The component configuration

are grouped by abstraction modules, as shown in Figure A.1 in Subsection 4.1.4. The

different components of the blueprint are optional. By default, unspecified parameters have

a default value handled at Aurora-Client. If a resource needs to be allocated automatically,

the allocation is handled by Aurora-Manager. If crucial information is missing and neither

Aurora-Client nor Aurora-Manager can resolve it, a warning message is issued to the tenant.

VirtualInterfaces:

[...]

Flavor:

Attributes: { .}

VirtualBridges:

[ ]

VirtualWiFi:

[ ] [ .]

wslice Configuration: {...}

Flavor:

Attributes: { .}

Flavor:

Attributes: { .}

Flavor:

Attributes: { .}

Flavor:

Attributes: { .}

Flavor:

Attributes: { .}

Flavor:

Attributes: { .}

Flavor:

Attributes: { .}

Flavor:

Attributes: { .}

Flavor:

Attributes: { .}

Flavor:

Attributes: { .}

Flavor:

Attributes: { .}

Fig. A.1: JSON Configuration Format for Modules and Plug-ins in a wslice

Due to the complexity of the JSON structure, the description of the blueprint file is not

in an official JSON schema format. The general conversion rule between Python structures

and JSON is that Python dictionary is equivalent to a JSON object and Python list is

equivalent to a JSON array. While the blueprint is stored and transported as JSON, it be-



A Aurora Software Implementation Overview 112

comes a Python structure when parsed by Aurora. The following sections are entries to the

main blueprint dictionary/object. Note that not all attributes are currently implemented.

Many entries are left as place holders for future extensions to the framework. Samples

of the blueprint file are included in Appendix A.6. The generic format of configuration

modules entries for each wslice is illustrated in Figure A.1.

1. id (Type: string): UUID of the ap-slice for identification.

2. attributes (Type: dictionary/object): Dictionary of general slice attributes.

• nw downlink rate (Type: number): Network downlink rate for the slice. (cur-

rently not implemented)

• nw uplink rate (Type: number): Network uplink rate for the slice. (currently

not implemented)

• wl downlink rate (Type: number): Wireless downlink rate for the wireless

node of the slice. (currently not implemented, need modification to wireless

MAC)

• wl uplink rate (Type: number): Aggregated wireless uplink rate for all the

clients to wireless node of the slice. (currently not implemented, need modifica-

tion to wireless MAC)

3. VirtualWiFi (Type: list/array): List of components from the VirtualWiFi abstrac-

tion module. This module is used for creating virtual radio interfaces for 802.11. This

module contains two types of components: radio and bss. A bss must be attached to

a radio to function.

(a) radio (Type: dictionary/object): Radio configuration profile for 802.11 AP,

mostly derived from hostapd.

• name (Type: string): Name of the radio interface used as reference by the

tenant. The actual name of the interface is managed by the framework to

differentiate between tenants on the same resource node.

• channel (Type: number): 802.11 frequency channel. The available channels

are 1 to 14 in 2.4GHz. The availability of 5GHz channels varies depending

on the country code.
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• hwmode (Type: string): 802.11 mode (a/b/g/n/ac/ad). Currently, only

802.11a and 802.11b/g are available on alix3d2 -based access points.

• txpower (Type: number): Radio transmission power in dBm.

• country (Type: string): Country code based on ISO 3166-1 alpha-2. Canada

is CA and the United States is US. Certain restrictions in frequency channels

apply depending on the country code.

• bss limit (Type: number): Number of BSS that can be attached on this

radio interface. The minimum value is 1 while the maximum is 4 for alix3d2 -

based access points (can be increased with RF card upgrade).

• bss shared (Type: number): This is the number of BSS that can be used

by other tenants on this radio interface. In other words, this parameter

allows the tenants to control whether they want to share the radio with

other tenants. The number of BSS available to other tenants cannot exceed

the maximum number of BSS specified by bss limit.

(b) bss (Type: dictionary/object): Basic service set (BSS) configuration profile for

802.11 AP, mostly derived from hostapd. Must be attached to a radio. This also

creates a virtual radio interface.

• name (Type: string): Name of the BSS used as reference by the tenant.

This name is internal but is sometimes the same as SSID field.

• radio (Type: string): Name of radio interface (typically radio0 or radio1 )

on which the BSS is attached to.

• ssid (Type: string): Service set identifier. Maximum 32 characters. They

are managed by the framework to prevent conflict between tenants. Thus,

it can be different from the name field.

• if name (Type: string): Name of the virtual radio interface created by this

BSS.

• macaddr (Type: string): MAC address of the virtual radio interface. Typ-

ically, this field is not available to tenant and is automatically allocated.

• encryption type (Type: string): Encryption type for client association to

BSS. Currently available types are wep-open, wep-shared, psk and psk2.

• key (Type: string): Key (password) for encryption. Note that different

encryption types have different key length requirements.
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• auth server (Type: string): RADIUS authentication server IP.

• auth port (Type: number): RADIUS authentication server port number.

• auth secret (Type: string): RADIUS authentication server key.

• acct server (Type: string): RADIUS accounting server IP.

• acct port (Type: number): RADIUS accounting server port number.

• acct secret (Type: string): RADIUS accounting server key.

• nas id (Type: string): Optional NAS-Identifier string for RADIUS mes-

sages. Currently left as default.

4. VirtualInterfaces (Type: list/array): List of components from the VirtualInterfaces

abstraction module. This module is used for creating virtual network interfaces.

(a) capsulator (Type: dictionary/object): Capsulator over-IP tunneling interface.

• name (Type: string): Name of tunneling border interface.

• attach to (Type: string): Name of interface on which tunnel is attached

to.

• forward to (Type: string): IP address of tunnel endpoint.

• tunnel tag (Type: number): Tunnel tag ID.

• is virtual (Type: Boolean): Create a virtual interface matching with name

if set to TRUE. Otherwise, makes the existing interface specified name the

border interface.

(b) veth (Type: dictionary/object): Virtual Ethernet interface.

• name (Type: string): Name of virtual Ethernet interface.

• attach to (Type: string): Name of interface on which veth is attached to.

5. VirtualBridges (Type: list/array): List of components from the VirtualBridges

abstraction module. This module is used for creating virtual bridges.

(a) ovs (Type: dictionary/object): Open vSwitch (OVS) bridge that transforms the

bridge into an OpenFlow-enabled virtual switch.

• name (Type: string): Name of bridge interface.
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• interfaces (Type: list/array): List of string representing interface names

attached to this bridge.

• default ovs (Type: Boolean): Flag marking whether this is a separate in-

stance of OVS or the default OVS provided by SAVI. If the default OVS

is selected, the default virtual network interface veth0 is automatically in-

cluded. By default this flag is set to False.

• bridge settings (Type: dictionary/object): Additional OVS settings to

the bridge. These attributes are optional and are derived from ovs-vsctl.

– controller (Type: string): OpenFlow controller ip in the format “tcp:x.x.x.x”.

– dpid (Type: string): OpenFlow datapath identifier for this bridge

– fail mode (Type: string): Failsafe mode without OpenFlow controller.

Use standalone for a default controller by OVS when an external con-

troller is not present. Use secure to disable the bridge when an external

controller is not present.

– ip (Type: string): The IP address of the OVS bridge interface.

• port settings (Type: dictionary/object): Additional port settings to the

bridge. (currently not used)

(b) linux bridge (Type: dictionary/object): Standard Linux bridge.

• name (Type: string): Name of bridge interface.

• interfaces (Type: list/array): List of string representing interface names

attached to this bridge.

• bridge settings (Type: dictionary/object): Additional Linux-bridge set-

tings. These attributes are optional and are derived from brctl.

– ageing (Type: number): Number of seconds a MAC address is kept in

the forwaring database after last packet seen.

– stp (Type: string): Activate spanning tree protocol (on/off).

– bridge priority (Type: number): Priority of bridge in STP. Lowest

priority bridge is set as the root STP bridge.

– forward delay (Type: number): Number of seconds spent by the

bridge in listening/learning state before initiating the forwarding.
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– hello time (Type: number): Number of seconds between Hello packets

sent by the bridge for STP.

– max age (Type: number): Time-out if no Hello messages are received

from a bridge.

– ip (Type: string): The IP address of the Linux bridge interface.

• port settings (Type: dictionary/object): Additional brctl settings to the

bridge.

– priority (Type: string): Format is “[port] [priority]” and set a 8-bit

value to be used as metric in STP.

A.3 Aurora-Manager MySQL Resource Database

The MySQL resource database on Aurora-Manager mostly contains resources attributes

(relatively static) and relationship between resources (dynamic). It is separated into mul-

tiple tables. There are three resource tables : ap, ap-slice and wnet. In addition, there are

two tag tables used to attach location tags on ap and tenant tags on ap-slice. As a side,

primary keys must be unique for MySQL entries within a given table.

1. ap: The ap tables contain attribute information of physical access point resources,

which are physical resource nodes (wnode). Most of these attributes, with the excep-

tion of the memory status, do not change during operation.

• name (Primary key): String for name of the ap. (Example: mg-ap-1 )

• region: OpenStack region of the ap node. For McGill, it is MG-EDGE-1.

• firmware: Firmware for the wireless AP. Currently, only OpenWrt is supported.

• version: Place holder for version control of resource node.

• supported protocol: String specifying which 802.11 protocols are supported.

The current alix3d2 hardware supports “a/b/g”.

• number radio: Number of physical radio cards available on the resource node.

Currently 1 or 2.

• number radio free: Number of radio cards currently inactive on the resource

node.
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+--------------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------------------+--------------+------+-----+---------+-------+

| name | varchar(255) | NO | PRI | NULL | |

| region | varchar(255) | YES | | NULL | |

| firmware | varchar(255) | YES | | NULL | |

| version | double | YES | | NULL | |

| supported_protocol | varchar(255) | YES | | NULL | |

| number_radio | int(11) | NO | | NULL | |

| number_radio_free | int(11) | NO | | NULL | |

+--------------------+--------------+------+-----+---------+-------+

2. ap slice: The ap slice table contains the attributes for the wslice instances for 802.11

access points. It mainly contains information about its status and relationship with

other entities, notably tenant and wnet.

• ap slice id (Primary key): UUID for ap-slice resource. ID format is 36 charac-

ters (including dashes) of the form “xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”.

• tenant id: Name of the tenant that owns this slice.

• project id: Name of the project in which this slice belongs to.

• physical ap: Name of the physical ap on which this slice is attached to.

• wnet id: UUID of the wnet resource on which this slice is attached to.

• status: Status of the slice can take possible values: PENDING, ACTIVE,

FAILED, DOWN, DELETING and DELETED (see Subsection 4.2.4).

+---------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------------+--------------+------+-----+---------+-------+

| ap_slice_id | varchar(36) | NO | PRI | NULL | |

| tenant_id | varchar(255) | YES | | NULL | |

| project_id | varchar(255) | YES | | NULL | |

| physical_ap | varchar(255) | YES | | NULL | |

| wnet_id | varchar(36) | YES | | NULL | |

| status | enum | NO | | NULL | |

+---------------+--------------+------+-----+---------+-------+

3. wnet: The wnet tables contain attribute information of virtual wireless network

resources. It is not used in the current implementation.
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• wnet id (Primary key): UUID of the wnet resource. ID format is 36 characters

(including dashes) of the form “xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”.

• name: Name of the wnet resource

• tenant id: Name of the tenant that owns this wnet.

• project id: Name of the project in which this wnet belongs to.

+--------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------------+--------------+------+-----+---------+-------+

| wnet_id | varchar(36) | YES | PRI | NULL | |

| name | varchar(255) | YES | | NULL | |

| tenant_id | varchar(255) | YES | | NULL | |

| project_id | varchar(255) | YES | | NULL | |

+--------------+--------------+------+-----+---------+-------+

4. location tag: The location tag tables contain relational information about the lo-

cation tags attached to each ap. The general rule is that each ap can have multiple

location tags. Each location tag can link to multiple ap. The ap-slice can be indi-

rectly linked to its location tags through the physical ap field. As such, both name

and ap name can be duplicate but the combination cannot be duplicate (joint primary

key).

• name (joint primary key): Name of the location tag.

• ap name (joint primary key): Name of the access point resource node.

+-------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------+-------+

| name | varchar(255) | NO | PRI | | |

| ap_name | varchar(255) | NO | PRI | | |

+-------------+--------------+------+-----+---------+-------+

5. tenant tag: The tenant tag tables contain relational information about the tenant-

added tags attached to each ap-slice. The general rule is that each ap-slice can have

multiple (or none) tenant tags. Each tenant tag can link to multiple ap. The tenant id

field of ap-slice must be used to differentiate between the same tag used by different

tenants. Both name and ap slice id can be duplicate but the combination cannot be

duplicate (joint primary key).
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• name (joint primary key): Name of the tenant tag.

• ap slice id (joint primary key): UUID of the ap-slice resource. ID format is 36

characters (including dashes) of the form “xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”.

+-------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------+-------+

| name | varchar(255) | NO | PRI | | |

| ap_slice_id | varchar(36) | NO | PRI | | |

+-------------+--------------+------+-----+---------+-------+

A.4 Aurora-Manager JSON Configuration Database

The JSON configuration database residing in Aurora-Manager is a database in which the

blueprint configuration of each wireless slice (in this implementation ap-slice) is stored in

a separate JSON file. Each tenant has a folder named by its tenant id. Each slice file is

named by its slice id and is put into a tenant folder. As such, each slice can be accessed

using the file path “[tenant id]/[slice id].json”. The blueprint files are stored in the same

format specified in Appendix A.2 and can be directly used in slice creation commands to

Aurora-Agent.

This database is more an archive and as such is not designed to be searchable. Instead,

searches should be performed using the MySQL resource database. Then, the slice id

obtained can be directly used to form the file path of the slice configuration and access

it. If the need for searching particular module components inside blueprint file arises,

future extensions can consider creating relational MySQL tables for modules and resource

components inside slices.

A.5 Aurora-AP Local Database

The local database reside on each Aurora-Agent. As mentioned in Subsection 4.2.4, the

local database only resides in temporary memory as long as Aurora-Agent is active. As such,

it only contains information about wireless slices that are currently active (or believed to be

active) on the resource node. The agent calls different modules and plug-ins to orchestrate

and build the slice on behalf of the clients. Separate database entries are created for

each resource component. Each entry is a dictionary that can be identified by four fields:
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tenant id, slice id, flavor, attributes. These resource components entries are linked inside

two Python dictionaries. The first slice dictionary groups the components by tenant and

slice. The other component dictionary groups the components by abstraction module and

plug-in flavor.

The slice dictionary is used to restrict the components within the scope of a single

tenant and provide configuration isolation between them. For instance, a virtual interface

component from one tenant cannot be attached to a virtual bridge component owned

by another tenant. The component dictionary is used when specific plug-ins need to be

restarted. In that case, the agent can obtain a list of all resource components that use that

plug-in across all tenants. The local database is illustrated in Figure A.2.

Flavor Attributes Tenant SliceComponent

Plug-in A1

Plug-in A2

Plug-in A3

Module 1

Resource Component Entries

Flavor Attributes Tenant SliceComponent

Flavor Attributes Tenant SliceComponent

Flavor Attributes Tenant SliceComponent

Flavor Attributes Tenant SliceComponent

Flavor Attributes Tenant SliceComponent

Plug-in B1

Plug-in B2

Plug-in B3

Module 2

Plug-in C1

...
...

Module 1

Module 2

...

ap-slice

1

Local Component

Database

Module 1

Module 2

...

ap-slice

2

Module 1

...
...

Local Slice Database

Fig. A.2: Local Agent Database Component Entries

Finally, the local agent database also loads a physical ap metadata file that describes

the physical capabilities of the ap resource node (i.e, number of radios, firmware version,

etc.) during the initialization of the agent. Some of these attributes could potentially be

automatically detected on the resource node. Parts of the ap metadata are also found inside

the resource database on Aurora-Manager. Currently, no automated synchronization for

the ap metadata between the manager and the agents is implemented. These metadata

files are written in JSON with the following sample format:

{

"firmware":"OpenWRT",

"firmware_version":"r37630",

"aurora_version":"0.1",
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"memory_mb":"256",

"wifi_radio":

{

"number_radio":"1",

"number_radio_free":"1",

"radio_list":[]

}

}

A.6 Aurora Sample Blueprint

The sample blueprint given in this appendix section is a blueprint for the OpenFlow Wire-

less setup described in Subsection 5.3.1. It can be written in a format that aggregates the

initialization of multiple ap-slice for a single tenant into a single blueprint. Even though

this blueprint aggregation is optional and is not used when slices greatly differ from each

other, it is useful in cases where a large quantity of similar slices must be created. By de-

fault, if only a single entry for an attribute is specified, that entry is applied to all ap-slice

created using this blueprint. Otherwise, the number of entries must match the number of

ap-slice defined on the blueprint.

1. Tenant A Blueprint (Aggregated):

{

"ap":["mg-ap-1","mg-ap-2","mg-ap-3"],

"command":"create_slice",

"user":"tenantA",

"config":

{

"VirtualInterfaces": [

{

"flavor":"capsulator",

"attributes":{

"attach_to":["eth0"],

"forward_to":["10.5.255.16"],

"name":["s1-tap0"],

"tunnel_tag":["1","2","3"],

"is_virtual":[true]

}

},

{

"flavor":"veth",

"attributes":{

"attach_to":["wlan0"],



A Aurora Software Implementation Overview 122

"name":["vwlan0"]

}

}

],

"VirtualBridges": [

{

"flavor":"ovs",

"attributes":{

"name":["ovs-1"],

"interfaces": [[

"s1-tap0",

"vwlan0"

]],

"bridge_settings": {

"controller":["tcp:10.5.255.16"],

"dpid":[

"0000000000000001",

"0000000000000002",

"0000000000000003"

]

},

"port_settings":{}

}

}

]

}

}

2. Tenant B Blueprint (Aggregated):

{

"ap":["mg-ap-1","mg-ap-2","mg-ap-3"],

"command":"create_slice",

"user":"tenantB",

"config":

{

"VirtualInterfaces": [

{

"flavor":"capsulator",

"attributes":{

"attach_to":["eth0"],

"forward_to":["10.5.255.13"],

"name":["s2-tap0"],

"tunnel_tag":["1","2","3"],

"is_virtual":[true]

}

},
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{

"flavor":"veth",

"attributes":{

"attach_to":["wlan0-1"],

"name":["vwlan0-1"]

}

}

],

"VirtualBridges": [

{

"flavor":"ovs",

"attributes":{

"name":["ovs-2"],

"interfaces": [[

"s2-tap0",

"vwlan0-1"

]],

"bridge_settings": {

"controller":["tcp:10.5.255.13"],

"dpid":[

"0000000000000001",

"0000000000000002",

"0000000000000003"

]

},

"port_settings":{}

}

}

]

}

}
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