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Abstract 

Sensory systems have evolved to optimally encode stimuli found in the natural environment. In 

order to achieve this optimal coding, neural coding strategies in many sensory systems have been 

adapted to the natural scene statistics to efficiently encode sensory stimuli. Thus, neurons within 

sensory systems must perform numerous complex computations in a concerted manner in order 

to give rise to what we perceive as the external world. In this thesis, I studied how sensory 

neurons in the hindbrain encode and process natural second-order sensory stimuli in the weakly-

electric fish. These neurons in the hindbrain area, electrosensory lateral line lobe (ELL) receive a 

multitude of inputs from both feedforward and feedback and it is unknown to date how these 

determine neural coding and behavioural perception. 

 I first characterized how second-order electrosensory signals are processed within the 

many subclasses of pyramidal neurons in the ELL. We hypothesized that the ELL of the weakly-

electric fish utilizes the three different segments for parallel coding. Specifically, the pyramidal 

neurons will respond differentially to natural sensory stimuli in the three segments so as to 

preserve a copy of the stimulus containing all its redundancies in the bandpass filtering CMS 

segment, while the high-pass filtering LS segment temporally decorrelates the stimulus in order 

to remove the redundancies. When working in parallel and in combination with one another, 

stimulus information and its statistics could therefore be segregated, filtered, and recombined to 

be passed on to successive brain areas for higher-order processing.  Using standard in vivo 

extracellular electrophysiology techniques, we recorded neurons from all subclasses of 

pyramidal neurons and found that there are differential tuning properties within the ELL to 

confirm our hypothesis. Indeed, LS neurons were able to perform temporal whitening, while 

CMS neurons preserved the stimulus statistics. This would lead to the idea that this is a feasible 

coding strategy in order to properly decode optimized information sent in parallel through 

temporally whitened responses based on context downstream of the ELL in higher brain areas. 

 Next, I explored further into how pyramidal neurons in the ELL perform temporal 

whitening. What kind of cellular machinery would enable the pyramidal neuron to achieve high-

pass tuning to match and oppose those of decaying power-law natural stimulus statistics, and 

thus efficient neural coding? A highly likely candidate for this role is the small-conductance 

calcium-activated potassium (SK) channel. SK channels are specialized calcium-dependent 
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potassium channels commonly found in many brain regions and is crucial to many functions of 

the nervous system. We hypothesized that SK channels provide the underlying molecular 

mechanism which gives rise to power-law adaptation in pyramidal cells and hence optimal 

neural encoding of natural sensory stimuli. Furthermore, we hypothesized that SK channels 

could alter neural tuning in a way such that it also alters behavioural perception in a predictable 

manner. Using a combination of pharmacology, electrophysiology, and behavioural paradigms, 

we observed that SK channels do indeed determine the degree of high-pass tuning, and that 

altering the SK channel conductance changes neural tuning and behaviour of the animal in a 

predictable way. These results suggest that SK channels play a novel critical role in which the 

nervous system can implement efficient processing and perception of natural sensory input that 

is likely to be shared across systems and species. 

 Finally, I questioned whether efficient processing of second-order natural stimuli is due 

to a combination of both feedforward and feedback input. For this purpose, I initially asked how 

the envelope response in pyramidal cells is generated in the first place. By using a linearly 

increasing envelope stimulus, we aimed to determine exactly how low of a stimulus intensity is 

needed to generate an envelope response in different neurons along the electrosensory pathway. 

By performing extracellular electrophysiology recordings from electrosensory afferents (EAs), 

pyramidal cells in the ELL, stellate cells in the nucleus praeeminentialis (nP), in conjunction 

with pharmacological feedback block of the nP, we observed that feedback (in particular the 

direct feedback pathway) is necessary to generate the envelope response in pyramidal cells, and 

hence, the behavioural output for low contrast envelope stimuli. Subsequently, we also 

performed similar experiments exploring the role of feedback in determining the optimized 

neural tuning across envelope frequencies. Using a combination of electrophysiology, 

pharmacology, and behavioural paradigms, we observed that multipolar neurons in the nP, which 

are the source of the indirect feedback pathway, was necessary in shaping the high-pass tuning 

observed in the pyramidal neurons in the ELL. Our results from these studies thus provide the 

first experimental evidence that feedback generates and optimizes both neural and behavioral 

responses to low contrast stimuli that are commonly found in the natural environment. 
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Résumé 

Les systèmes sensoriels ont évolué pour encoder de façon optimale les stimuli présents dans 

l'environnement naturel. Afin d'obtenir ce codage optimal, les stratégies de codage neuronal dans 

les systèmes sensoriels sont adaptées aux statistiques de la scène naturelle. Ainsi, les neurones 

des systèmes sensoriels doivent effectuer de nombreux calculs complexes de manière concertée 

afin de donner naissance à ce que nous percevons comme le monde extérieur. Dans cette thèse, 

j'ai étudié comment les neurones sensoriels primaires du cerveau postérieur codent et traitent les 

stimuli sensoriels naturels de deuxième ordre chez les poissons faiblement électriques. Ces 

neurones dans la région du cerveau postérieur, le lobe de ligne latérale électrosensorielle (ELL), 

reçoivent une variété d'entrées à la fois prospection et rétroaction et on ignore à ce jour comment 

ces entrées neuromodulatrices s’intègrent pour déterminer le codage neuronal et la perception 

comportementale. 

 

 J'ai d'abord caractérisé comment les signaux électrosensoriels de deuxième ordre sont 

traités dans les nombreuses sous-classes de neurones pyramidaux du ELL. Nous avons émis 

l'hypothèse que l'ELL du poisson faiblement électrique utilise les trois segments différents pour 

le codage parallèle. Spécifiquement, les neurones pyramidaux répondront différemment aux 

stimuli sensoriels naturels dans les trois segments de manière à conserver une copie du stimulus 

contenant toutes ses redondances dans le segment CMS filtrant la bande passante, tandis que le 

segment LS filtrant passe-haut décorrélera temporellement le stimulus afin de supprimer les 

redondances. En travaillant en parallèle et en combinaison les uns avec les autres, l'information 

de stimulus et ses statistiques pourraient donc être séparées, filtrées et recombinées pour être 

transmises à des zones cérébrales successives pour un traitement d’ordre supérieure. En utilisant 

des techniques standard d'électrophysiologie extracellulaire in vivo, nous avons enregistré des 

neurones provenant des sous-classes de neurones pyramidaux et nous avons trouvé qu'il y avait 

des propriétés sélectivité au sein de l'ELL pour confirmer notre hypothèse. En effet, les neurones 

LS étaient capables d'effectuer un blanchiment temporel, alors que les neurones CMS 

conservaient les statistiques de stimulus. Cela conduirait à l'idée qu'il s'agit d'une stratégie de 

codage réalisable permettant de décoder correctement les informations optimisées envoyées en 

parallèle à travers des réponses temporellement blanchies basées sur le contexte en aval de l'ELL 

dans les zones cérébrales supérieures. 
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 Ensuite, j'ai exploré comment les neurones pyramidaux dans l'ELL effectuent un 

blanchiment temporel. Quel type de machinerie cellulaire permettrait au neurone pyramidal de 

réaliser un accord passe-haut pour faire correspondre et opposer ceux des statistiques de stimulus 

naturel de puissance décroissante, et donc un codage neural efficace? Un candidat très probable à 

ce rôle est le canal de potassium à faible conductance activé par le calcium (SK). Les canaux SK 

sont des canaux potassiques calcium-dépendants spécialisés que l'on trouve couramment dans de 

nombreuses régions du cerveau et qui sont cruciaux pour de nombreuses fonctions du système 

nerveux. Nous avons émis l'hypothèse que les canaux SK fournissent le mécanisme moléculaire 

sous-jacent qui donne lieu à une adaptation de la loi de puissance dans les cellules pyramidales et 

donc un codage neural optimal des stimuli sensoriels naturels. De plus, nous avons émis 

l'hypothèse que les canaux SK pourraient modifier l'accord neuronal d'une manière telle qu'il 

modifierait également la perception comportementale d'une manière prévisible. En utilisant une 

combinaison de pharmacologie, d'électrophysiologie et de paradigmes comportementaux, nous 

avons observé que les canaux SK déterminent en effet le degré d'accord passe-haut et que la 

modification de la conductance du canal SK modifie sélectivité neuronale et le comportement de 

l'animal de manière prévisible. Ces résultats suggèrent que les canaux SK jouent un nouveau rôle 

s'avérant critique. Grâce à ces canaux, le système nerveux pourrait effectuer un traitement 

d’information efficace ainsi permettrait la perception de l'apport sensoriel naturel susceptible 

d'être partagé entre les systèmes et les différentes espèces. 

 

 Enfin, je me suis demandé si le traitement efficace des stimuli naturels de second ordre 

était dû à une combinaison de prospection et de rétroaction. À cette fin, j'ai d'abord demandé 

comment la réponse de l'enveloppe dans les cellules pyramidales est générée en premier lieu. En 

utilisant un stimulus d'enveloppe augmentant linéairement, nous avons cherché à déterminer 

l'intensité minimale d'un stimulus permettant de générer une réponse d'enveloppe dans différents 

neurones le long de la voie électrosensorielle. En effectuant des enregistrements 

électrophysiologiques extracellulaires à partir d'afférences électrosensorielles (EA) de cellules 

pyramidales dans l'ELL et de cellules stellaire dans le noyau praeeminentialis (nP), en 

conjonction avec le blocage pharmacologique du nP, nous avons observé que cette rétroaction 

(en particulier la voie de rétroaction directe) est nécessaire pour générer la réponse d'enveloppe 
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dans les cellules pyramidales, et par extension, la réponse comportementale pour les stimuli 

d'enveloppe à faible contraste. Par la suite, nous avons également effectué des expériences 

similaires explorant le rôle de la rétroaction dans la détermination de l'optimisation neuronale à 

travers les différentes fréquences d'enveloppe. En utilisant une combinaison d'électrophysiologie, 

pharmacologie et paradigmes comportementaux, nous avons observé que les neurones 

multipolaires dans le nP, qui sont la source de la voie de rétroaction indirecte, étaient nécessaires 

pour façonner filtre passe-haut observé dans les neurones pyramidaux de l'ELL. Nos résultats de 

ces études fournissent ainsi la première preuve expérimentale que la rétroaction génère et 

optimise à la fois les réponses neuronales et comportementales à des stimuli à faible contraste 

qui sont couramment trouvés dans l'environnement naturel. 
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Chapter 1 

 

General Introduction 

The natural world which we experience is made up of nearly endless complex stimuli. The way 

we can interact with the natural world relies on our perception, and critically, our sensory 

systems. The transduction from seeing a red apple or hearing a bird sing into a series of electrical 

signals, called action potentials, also known as the neural code, is a central question of 

neuroscience investigation. The question of perception has sparked the curiosity of mankind 

since the time of Aristotle when he first claimed that there were “the five senses.” Today, we 

know that cells in the central nervous system, called neurons, are able to integrate information 

received from peripheral sensory receptors and perform complex computations in order to give 

rise to our perception of the world and drive appropriate behavioural responses.  

Despite our current knowledge, the complex computations which translate natural 

sensory stimuli to a series of action potentials remains a mystery, as solving the problem requires 

asking fundamental questions and understanding why and how neurons perform such 

computations in order to generate perception. One of the most important categories of sensory 

stimuli in our natural world are interaction signals with conspecifics. For humans, whether these 

are communication signals such as spoken or written language, sign language, or even traffic 

lights and signs, they are all processed by our brain to mean something, for us to understand one 

another. However, these interaction signals in nature often contain a complex and rich 

spatiotemporal structure, which must be processed by the neurons in sensory systems. One 

example of this type of natural stimuli is second-order stimuli, which corresponds to amplitude 

modulations in speech, contrast detection in vision, etc. Unfortunately, very little is known about 

how they are processed in biological systems. This is the fundamental and central question of 

this dissertation and I will attempt to investigate this question by approaching it using the 

electrosensory system of the weakly-electric fish. We will use the weakly-electric fish because it 

offers unique advantages such as its well-characterized anatomy and physiology, as well as the 

possibility to simultaneously capture in vivo neural activity and behaviour.  
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In this introductory chapter, I will first review how I addressed this question during my 

graduate studies by introducing the essential concepts such as the model animal of choice 

(weakly-electric fish), the types of electrosensory interaction signals between conspecifics, the 

neural anatomy and circuitry in which these signals are potentially processed, as well as possible 

efficient information coding mechanisms in the brain. These sections will provide the framework 

in which my dissertation is structured. 

1.1 – Animal Model 

The ideas presented above provide a general rationale as to why it is important to study the key 

questions pertaining to sensory processing of natural stimuli. However, our ultimate goal is to be 

able to tie all these concepts together and provide concrete links between molecular mechanisms, 

neural processing, and behavioural perception. Therefore, we proposed to use the electrosensory 

system in the weakly-electric fish to answer the questions in my dissertation. The electrosensory 

system offers several unique advantages to study the questions addressed above due to its well-

characterized anatomy and physiology (see (Chacron et al., 2011; Clarke et al., 2015; Krahe and 

Maler, 2014; Maler, 2009a, b) for review). It should be noted that while weakly-electric fish are 

comprised of those who have either a discontinuous “pulse-type” EOD such as the African 

species, Gnathonemus petersii, belonging to the family Mormyridae, the focus of my studies are 

exclusively in the “wave-type” electric fish, who emit a continuous signal, belonging to the 

family Gymnotidae (Bennett, 1971); however, some Gymonotids are also pulse-type. These two 

families have independently evolved; however, the principle of an active electrosensory system 

remains common between these fish. The proposed species to perform the studies in my thesis is 

the South American wave-type weakly electric fish Apteronotus leptorhynchus, commonly 

known as the brown-ghost knifefish. The brown-ghost knife fish generates a continuous quasi-

sinusoidal signal called the electric organ discharge (EOD), which it uses in order to sense the 

environment (Hitschfeld et al., 2009; Krahe and Maler, 2014). The EOD of these animals is 

sexually dimorphic, with frequencies typically in the 600-800 Hz range for females and higher in 

the 800-1500 Hz range for males (Krahe and Maler, 2014). The weakly-electric fish utilizes this 

unique sensory system to detect everything in its environment including objects such as rocks 

and plants, small prey items such as daphnia, as well as using it to communicate with other 

conspecifics. 
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1.2 – Electrosensory Conspecific Interaction Signals 

1.2.1 – Amplitude Modulations: First Order 

The wave-type weakly-electric fish generate an active electric field around the body in order to 

sense what is in the environment. However, it is the disturbance or perturbation of this electric 

field, which gives rise to a stimulus signal to the fish (Bennett, 1971). For example, if there is an 

object or another conspecific in proximity of the fish, the object or fish’s difference in 

conductivity from the water will perturb the electric field lines causing frequency (FM) or 

amplitude modulations (AM) (Carlson and Kawasaki, 2006). Hence, we can refer to the EOD of 

the fish as the zeroth-order stimulus and the perturbations in the form of frequency or amplitude 

modulations as the first-order stimulus. It is important to note that the FMs and AMs are 

modulations of the fish’s own EOD, and therefore carry the relevant signal. My studies focus on 

AMs exclusively, as FMs and AMs are processed independently by distinct electrosensory 

pathways, which will be described later below. While small objects and prey items such as 

daphnia (local stimuli) cause small AMs to the fish’s otherwise constant EOD, the situation 

becomes more complex during interactions between two conspecific fish (global stimuli) 

(Nelson and MacIver, 1999; Zupanc and Maler, 1993). This is because in situations in which two 

conspecifics are in proximity of one another (<1m), their individual electric fields interact in 

such a way that there is constructive and destructive interference. Similar to sound waves, the 

resulting signal is a “beat”, occurring at a frequency equal to the difference between the two 

fish’s EOD frequencies. For example, if one fish has an EOD frequency of 900 Hz and a nearby 

fish has an EOD frequency of 910 Hz, the resulting AM would be a modulated signal occurring 

at 10 Hz (Fig. 1A). Previous literature include extensive studies in regards to AMs that arise 

from conspecific interactions (Bastian et al., 2002; Bastian and Nguyenkim, 2001a; Engler et al., 

2000; Engler and Zupanc, 2001), both in terms of physiology and behaviour. One of the most 

remarkable behaviours is the jamming avoidance response (JAR). The JAR occurs when two fish 

are close enough in their emitted EOD frequencies (1-5 Hz difference) such that they are actively 

jamming each other’s signals. This is a detriment to the fish as both fish are essentially blind to 

the environment. Thus, in order to stop the signal jamming, one of the fish will either increase its 

own EOD frequency, or in some cases, decrease their own EOD frequency in order to be able to 

detect what is in the environment again (Kawasaki, 1997; Stamper et al., 2012). In addition to 
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this, there have been a variety of studies characterizing other communication signals such as 

“chirps”, which are transient increases in one fish’s EOD frequency signalling agonistic 

behaviour, seen between two same-sex fish, as well as many others (Benda et al., 2005; Engler 

and Zupanc, 2001; Marsat and Maler, 2012). 

1.2.2 – Amplitude Modulations of Amplitude Modulations: Second Order – Envelopes    

The interaction signals described above are limited to the interactions of two stationary fish. In 

their natural environment, this is of course not true, as rarely two fish will stay stationary next to 

one another. Thus, when we introduce the movement of two interacting fish, the quantification of 

these signals become even more complex. One can simplify this process by first imagining one 

fish looming perpendicular to another stationary fish at a constant speed (Fig. 1B). The 

underlying first-order AM signal would still occur at 10 Hz (per our example above), but this 

constant amplitude 10 Hz signal would be further amplitude modulated at a lower frequency. 

Therefore, this “amplitude modulation of the amplitude modulation” of the 10 Hz signal can be 

referred to as a second-order signal, otherwise known as an envelope (Stamper et al., 2013; 

Stamper et al., 2012). The continuous random approaching and receding motion of the moving 

fish at a given speed would generate a second-order envelope of a range of frequencies that is 

much lower than the 10 Hz first-order AM (Fig. 1B). Thus, the envelope carries separate and 

distinct information about the movement of another moving fish (Metzen and Chacron, 2014; 

Stamper et al., 2013). Previous literature have looked at these “movement envelopes” in a variety 

of contexts (Stamper et al., 2013), and the general consensus is that these particular envelopes 

occur at lower frequencies in the range of as low as 0.03 Hz to 1 Hz. In addition, it is important 

to note that envelopes can also exceed 1 Hz, which have been previously classified as “social 

envelopes”. These social envelopes are separately categorized because they correspond to when 

three or more fish are in close proximity and are stationary, the EODs sum and the combined 

signal which thus consists of two prominent AMs interact to form an overlying time-varying 

envelope. Such social envelopes do not require movement, but due to the fact that it is an 

interaction of multiple AMs, the resultant envelope is one which contains higher frequencies > 1 

Hz (Stamper et al., 2013). Although there is a clear distinction between movement and social 

envelopes, the studies presented in this thesis are largely focused on movement envelopes, which 

occur < 1 Hz. Several studies have also characterized the movement envelope frequency power, 
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which is an indirect measure of how often these frequencies occur, and it was found that low 

frequencies occur the most and have the highest power, and higher frequencies occur less often 

with lowest powers across many orders of magnitude (Fotowat et al., 2013; Metzen and Chacron, 

2014). It was also found that the decay in power from low to high envelope frequencies occur in 

a scale-invariant power-law fashion, a similar feature is found in most natural stimuli of other 

sensory modalities (Carriot et al., 2017; Lundstrom et al., 2010; Metzen and Chacron, 2014). 

Note that this is an extremely important feature of natural stimuli and will be discussed in detail 

throughout this thesis.  

Envelopes are not exclusive to the electrosensory system, as the information carried by 

envelopes is vitally important in sensory processing across different modalities. For example, 

first-order AMs in the electrosensory system can be compared to sinewave gratings (alternating 

signals) in the visual system, as well as pure tones found in the auditory system. These first-order 

signals are all carrier signals of second-order envelope signals, as the envelope in the visual 

system corresponds to contrast, and amplitude modulations in speech in the auditory system (see 

(Clarke et al., 2015) for review). Therefore, envelopes carry behaviourally-relevant stimulus 

information that could be independently processed and are essential to drive neural responses in 

the brain and ultimately behavioural responses in an organism. Due to the complexity of this 

question, my thesis will utilize the electrosensory system in order to elucidate how envelope 

information decoded in the central nervous system. 
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Figure 1. First- and second-order electrosensory interaction signals. A) Two stationary fish within 

proximity to one another <1 m (top) will each emit their own EOD at a particular frequency (dark green 

and light green, middle), which gives rise to an amplitude modulation of each fish’s EOD frequency called 

the AM or beat (blue). The resulting AM is at a frequency equal to the difference in EOD frequencies 

between the two fish. B) One stationary fish and another fish approaching and receding away from the 

fish (top) will give rise to an amplitude-modulation of the beat (middle), resulting in a second-order 

stimulus called the envelope (bottom, red). This envelope overlaying on top of the beat is of lower 

amplitude and frequency compared to the beat.   

 

What is known and what remains to be discovered? While much is known about how first-order 

signals are processed, relatively little is known regarding second-order signal processing. Much 

of the electrosensory system literature have focused on first-order signals and it was not until 

recently that it was found that second-order signals are behaviourally-relevant signals that elicit a 

behavioural response (Metzen and Chacron, 2014). It is unclear where the envelope response is 

generated in the electrosensory system and other studies have investigated this. It was shown that 

both movement envelopes (Metzen and Chacron, 2015) and social envelopes (Savard et al., 

2011) do elicit a neural response in peripheral electroreceptor afferents, while other studies did 

not find this response and instead claim that the envelope response is generated by an inhibitory 

interneuron in the hindbrain (Middleton et al., 2006). Furthermore, it is likely that envelope 

responses are generated in the periphery, as another study has found that the midbrain area 
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contains subsets of neurons which also respond selectively to envelopes (McGillivray et al., 

2012). Thus, while we do know there are neural and behavioural responses to envelopes, it is 

unknown how they are processed in the brain and the underlying mechanisms associated with 

these processes. Therefore, the focus of my studies in my thesis will answer the fundamental 

questions in regards to envelopes, and understand how these important signals are processed in 

the brain in order to give rise to behavioural responses. 

1.3 - Neural Anatomy of the Weakly Electric fish – From Receptors to Behaviour 

1.3.1 – Peripheral Electroreceptors and Electroreceptor Afferents  

The weakly-electric fish offers a unique opportunity to study these questions due to its well-

characterized brain anatomy and physiology. As mentioned above, the fish receives both FM and 

AM signals due to modulations in its EOD. Changes in EOD frequency or amplitude are encoded 

by tuberous electroreceptors, which are located in pores all over the fish’s skin. These pores 

contain epithelial cells which are connected to an afferent nerve through an excitatory synapse, 

and thus elicit action potentials to signal changes in EOD frequency or amplitude (Bullock et al., 

2005). In wave-type fish, two classes of tuberous electroreceptors exist: the T-type (time coders) 

which exclusively code the phase and hence frequency of the EOD, and P-type (probability 

coders), which exclusively code the amplitude of the EOD (Carlson and Kawasaki, 2006; 

Chacron, 2006; Wessel et al., 1996). Since I am primarily interested in AM and envelope signals, 

the remainder of the thesis will focus on the encoding from the P-type electroreceptors. The 

electrosensory afferent nerve (EA) carries information from the electroreceptors up to the brain 

to the first brain area for electrosensory processing (Krahe et al., 2008), otherwise known as the 

electrosensory lateral line lobe (ELL) in the hindbrain. 

1.3.2 – The Electrosensory Lateral Line Lobe  

The ELL serves as the first brain area in which AM information coming from the EAs terminate 

in a feedforward manner. Anatomically, the ELL is divided into three major segments: the lateral 

segment (LS), centrolateral segment (CLS), and centromedial segment (CMS). There is an 

additional segment called the medial segment (MS), which exclusively processes information 

coming from ampullary electroreceptors, which will not be discussed in this thesis. The EAs 

from the tuberous electroreceptors trifurcate as they approach the ELL (Fig. 2) (Krahe et al., 
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2008), which means that each of the three major segments receive the same incoming 

information. LS is the smallest and CMS is the largest area, while receptive fields of pyramidal 

neurons in the LS have the largest size and in the CMS the smallest size (Maler, 2009a; 

Shumway, 1989). Furthermore, the ELL has largely a cerebellar-like laminar structure which can 

be divided into eight layers:  deep fiber layer (DFL), deep neuropil layer (DNL), granular cell 

layer (GCL), plexiform layer (PIL), pyramidal cell layer (PCL), stratum fibrosum (StF), Ventral 

molecular layer (VML) and dorsal molecular layer (DML). The ELL contains sensory neurons 

called pyramidal cells, whose somata are located in the PCL (Maler, 1979).  

The pyramidal neurons can be divided into ON-type cells, which receive direct synaptic 

input from EAs, and OFF-type cells, which indirectly receive input from EAs via an inhibitory 

interneuron (Fig. 2). The ON-type cells are named due to their responses to increases in EOD 

amplitude (i.e. rising or peaks of first-order AM stimuli), while OFF-type cells are named due to 

their responses to decreases in EOD amplitude (i.e. falling or troughs of first-order AM 

stimuli)(Maler, 1979; Saunders and Bastian, 1984). These subclasses are similarly typically 

found in other sensory systems such as primary sensory areas in the visual system, auditory 

system, etc. Furthermore, the pyramidal cells are arranged in columns such that along each 

column, pyramidal cells are further subdivided into depth classes: superficial, intermediate, and 

deep cells. Superficial cells typically have large and extensive apical dendrites, and typically 

have a spontaneous firing rate of <15 Hz. Intermediate neurons have smaller apical dendrites and 

typically have a spontaneous firing rate of 15 – 25 Hz. Finally, deep neurons have small apical 

dendrites and typically have high spontaneous firing rates of >25 Hz (Bastian et al., 2004; 

Bastian and Nguyenkim, 2001a; Chacron et al., 2005c).   
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Figure 2. Tuberous electroreceptors project to the Electrosensory lateral line lobe. Tuberous 

electroreceptors (blue) send projections via afferents (EAs), which trifurcate to synapse onto pyramidal 

neurons in each of the three major segments: lateral segment (LS), centrolateral segment (CLS), and 

centromedial segment (CMS). The EAs synapse onto superficial, intermediate, and deep pyramidal 

neurons, characterized by the arborisation of their dendritic tree, in each segment. Each segment also 

contains ON- (green) and OFF-type (red) pyramidal neurons, which either synapse directly with EAs or 

indirectly through an inhibitory interneuron (grey) respectively. 

 

 

1.3.3 – Beyond the ELL – Higher Brain areas and Feedback 

While pyramidal cells are quite similar across the ELL segments, each segment’s neurons 

process incoming feedforward input from EAs very differently. The pyramidal cells are the sole 

output projection cells of the ELL and thus play a fundamental role in information processing. In 

addition to the feedforward input from the EAs, the ELL pyramidal cells also receive massive 

excitatory and inhibitory feedback input from higher brain areas. Neurons from all three 

segments project to the higher brain area Torus semicircularis (TS) located in the midbrain 

(Maler, 1979). The TS further projects to even higher brain areas and gives rise to the behaviour 

we see in the form of changes in EOD frequency such as the JAR. The TS also projects to a 

major feedback area called the nucleus praeeminentialis (nP), also located in the midbrain 

(Bastian and Bratton, 1990; Bratton and Bastian, 1990). The nP contains two classes of neurons: 

stellate cells and multipolar cells. Stellate cells and multipolar cells can be distinguished by their 

spontaneous firing rate as well as tuning to first-order AM stimuli. Stellate cells typically have 
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<5 Hz spontaneous firing rate and are tuned to low AM frequencies (<16 Hz) and do not respond 

to higher frequencies beyond 16 Hz. On the other hand, multipolar cells have high spontaneous 

firing rates ~80 – 100 Hz, and are tuned to high AM frequencies (>32 Hz). Stellate cells in the 

nP are responsible for the direct feedback pathway and project directly back to the ELL 

pyramidal cell proximal dendrites via the StF. Multipolar cells in the nP are instead responsible 

for the indirect feedback pathway such that they project via the praeeminential tract (PET) first 

to the Eminentia granularis posterior (EGP), where granule cells in the EGP project back to the 

apical dendrites of the pyramidal cells in ELL (Bastian and Bratton, 1990; Bratton and Bastian, 

1990).   

As mentioned in the above sections, the ELL is a fundamental sensory processing area 

that receives both feedforward and extensive feedback inputs (Summary in Fig. 3). As with other 

sensory systems, feedback largely outweighs the incoming feedforward inputs, and therefore 

suggests a functional role for sensory processing. Thus, the ELL pyramidal cells are the primary 

focus of the studies presented in this thesis with investigations of the inputs coming from 

surrounding areas in the electrosensory pathway. In the following section, I will describe more in 

detail the known functions of sensory processing in the ELL as well as present outstanding 

problems which will set up the rationale for questions of the presented studies in this thesis. 

 

 

Figure 3. Summary of the electrosensory system pathways. The electroreceptor afferents (EAs) are the 

sole source of feedforward input to the hindbrain area electrosensory lateral line lobe (ELL), where 
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pyramidal neurons are located. The pyramidal neurons of the ELL project further downstream via the 

lateral lemniscus (LL) to the midbrain area Torus semicircularic (TS), which eventually gives rise to 

behaviour via the pre-pacemaker nucleus (PPn). The TS also sends descending feedback projections to 

the nucleus praeeminentialis (nP), where stellate and multipolar cells are located. The stellate cells of the 

nP project through the direct feedback pathway back to the ELL via the stratum fibrosum (StF). The 

multipolar cells project indirectly back to the ELL via the praeeminential tract (PET) to the Eminentia 

granularis posterior (EGP), where granule cells in the EGP project back to the apical dendrites of the 

pyramidal cells in ELL. 

 

 

1.4 – Functional roles in the ELL and Sensory Processing of Electrosensory Stimuli 

1.4.1 – Background 

ELL pyramidal cells can be divided into several subclasses based on segment (LS, CLS, CMS) 

and depth (superficial, intermediate, deep), and can be further classified into ON- and OFF-type 

cells. There is extensive literature on the sensory processing of first-order AM stimuli, including 

tuning curves from cells in all 9 subclasses (Chacron et al., 2005c) as well as detailed functional 

roles of each of the three major ELL segments. Generally, CMS is largely responsible for 

processing the JAR (Krahe et al., 2008; Metzner and Juranek, 1997). CLS has been shown to be 

extensively involved in generating the negative image to cancel out signals generated by the 

fish’s own movement in a cerebellar-like fashion (Sawtell, 2017). Finally, LS is known to be 

responsible for the processing of global stimuli (i.e. interaction and communication signals) 

between conspecifics (Deemyad et al., 2013; Marsat and Maler, 2012). Several behavioural 

studies have shown that lesions of LS decrease and attenuate aggressive signals by the fish in 

response to conspecific electrocommunication signals. On the other hand, lesions of CLS and 

CMS have no effect on these aggressive signals, thus demonstrating that LS is primarily 

responsible for electrocommunication (Metzner and Juranek, 1997). Many of the studies 

presented in this thesis are thus focused on the ELL pyramidal neurons of the LS.   

Much of what we have described in the sections up until now deal with first-order AM 

stimuli, such as “beats” which are simply the sinusoidal amplitude modulation of the fish’s EOD 

occurring at the frequency which is equal to the difference in frequency between two conspecific 

fish, and “chirps”, which are the transient frequency increases in the beats which signal 

aggression between two conspecifics. Much of the previous studies have focused on these two 
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categories of stimuli and much is known about how they are processed by pyramidal neurons in 

the ELL. In addition, we have introduced the concept of “envelopes” which are second-order 

amplitude-modulated stimuli, and are vastly more complex in their spatial and temporal features. 

This is because envelopes contain important information about the relative distance and 

movement between two conspecific fish, adding an additional dimensionality for sensory 

processing. Although there has been extensive literature on first-order AM stimuli, much less is 

known about responses to second-order stimuli such as envelopes. However, there are studies 

which have characterized the natural stimulus statistics of envelopes and observed that the 

stimulus power is highest at low envelope frequencies and several magnitudes lower at high 

frequencies, and that this decay in power follows a power-law (Fotowat et al., 2013; Metzen and 

Chacron, 2014), making it scale-invariant. In addition, we know that playing sinusoidal envelope 

stimuli to the fish results in a unique behavioural response. In this case, the fish’s EOD responds 

with an increase in frequency (offset), and actually modulates its EOD on top of this offset in a 

sinusoidal fashion 1:1 to the envelope stimuli (Metzen and Chacron, 2014). Therefore, we know 

that envelopes elicit a behavioural response, and thus there must be sensory processing 

happening at the neural level.  

1.4.2 – Sensory Processing of envelopes at the periphery 

To begin looking at the neural processing side, one recent study has observed envelope responses 

in the peripheral EAs. It was found that EAs respond to envelopes ranging from 0.05 Hz – 1 Hz 

in a broadband manner such that all frequencies resulted in similar gain values with a flat tuning 

curve. However, the EAs displayed wide heterogeneities and only tracked the envelope when the 

firing rate was saturated or rectified. A linear-nonlinear model was used to explain the gain and 

phase responses of the EAs, and was able to accurately match up with the experimental data 

(Metzen and Chacron, 2015). It was theorized that the heterogeneity could increase information 

transmission, and perhaps this would be true at the next stage of sensory processing in the ELL. 

Another study demonstrated that correlated activity between EAs could also encode envelopes to 

an extent, which would also be in line with the fact that hundreds of EA units synapse onto a 

single pyramidal cell (Metzen et al., 2015). Despite these studies in the EAs, it is unknown 

whether the pyramidal cells actually respond to envelopes in the manners predicted by the model 

and experimental data, and further studies were needed in order to confirm these hypotheses. The 
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question of information transmission also comes into play in a regard that due to the power-law 

nature of natural envelope stimuli, stimulus information must be efficiently processed further 

downstream of the EAs to drive behaviour. One interesting point to note is that both the 

behavioural gain and the stimulus power of the envelope decay as a power-law with similar 

exponents, and this has been observed experimentally in the studies mentioned above (Metzen 

and Chacron, 2014). This prompts the question of what exactly happens downstream of EAs in 

the ELL pyramidal neurons and how exactly their integration of both feedforward and feedback 

input drive behaviour. 

1.4.3 – Sensory Processing Strategies and Efficient Coding Mechanisms 

While we do not know how the ELL will respond to envelopes, we can make some predictions 

based on the anatomy of the ELL itself. Firstly, we know that EAs trifurcate to synapse onto 

pyramidal cells of each of the three segments. This is important because each ELL segment is 

receiving the same electrosensory stimuli information and could possibly process them in very 

different ways similar to how first-order stimuli are processed (McGillivray et al., 2012). The 

architecture of the ELL also sets up the perfect candidate for parallel processing, similar to what 

is observed for the dorsal and ventral stream or how the cochlear nucleus is subdivided into 

segments in the visual and auditory systems respectively (Rauschecker, 2015). Therefore, it is 

likely that each ELL segment, as well as each of the subclasses of ELL pyramidal cells within 

each segment, can give rise to different neural responses and tuning curves to envelope stimuli. 

This opens up the possibility that a variety of differential responses could efficiently encode the 

various statistics found in the natural envelope stimuli. 

Optimal coding theory also posits that neural systems should be adapted to encode 

stimuli in order to maximize information transmission and reduce redundancy (Barlow, 2001; 

Barlow, 1961). One such strategy would be to temporally decorrelate or temporally whiten the 

information in the decaying power-law statistics found in natural environments of the fish. In 

order to achieve this, one would need a subset of pyramidal neurons, which are high-pass tuned 

(i.e. neural gain increases as a function of envelope frequency) in order to match and counter-

oppose the decaying power-law stimulus statistics (Fig. 4). The concept of neural tuning 

matching the stimulus statistics is also found across sensory systems (Dan et al., 1996; Pozzorini 

et al., 2013; Wang et al., 2003), and there has been extensive evidence that neurons in early 
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sensory processing stages serve as a filter in order to only detect transient changes and reduce 

redundant stimuli as well as maximize the information transmission in the brain (Lundstrom et 

al., 2010; Lundstrom et al., 2008). Thus, it is a likely possibility that temporal whitening can 

occur in the electrosensory system as well to efficiently encode natural second-order stimuli.  

 

 

 

 

Figure 4. Temporal whitening. Schematic showing that, in order to optimize coding, the tuning curve 

(middle) must oppose stimulus statistics (left) in order to give rise to a neural response power that is 

independent of frequency (right). 

1.4.4 – SK Channels  

How could these strategies be achieved? The cellular and molecular machinery in pyramidal 

cells are complex on their own merit. There are a variety of channels and receptors which could 

serve to aid in efficient sensory processing. One such candidate which can explain differences in 

sensory processing across segments for first-order AM stimuli are small-conductance calcium-

activated potassium (SK) channels. . SK channels (Fig. 5A) share common structural similarities 

with other members in the potassium channel family in that they have six transmembrane 

domains as well as a pore region found in traditional voltage-gated potassium channels between 

S5 and S6. Due to the lack of a functioning voltage sensor, SK channels are not voltage-gated 

but are instead activated by increases in the intracellular calcium concentration. SK channels are 

hence named for their high calcium sensitivity as well as their small conductance of 

approximately 10-14 pS (Hirschberg et al., 1998; Kohler et al., 1996). The binding of small 

concentrations of calcium onto calmodulin leads to an important conformational change of the 

SK channel, causing an inward rectification of potassium in the outward direction. SK channels 
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regulate cellular excitability by controlling the afterhyperpolarization (AHP) following action 

potential firing (Deemyad et al., 2011; Ellis et al., 2007). This would then influence how fast the 

neuron recovers before it can fire the next action potential, and in turn affect how often a neuron 

can fire given a particular stimulus (Fig. 5B). 

  In particular, it was found that SK type 2 (SK2) channels gives rise to differential 

adaptation responses as well as a tendency to be tuned to different beat frequencies. This is due 

to the differential expression pattern of SK2 channels in pyramidal cell somata across the 

segments, where LS contained the most SK2, whereas CMS contained the least (Ellis et al., 

2008). When LS SK2 channels were antagonized, the adaptation responses of LS neurons 

became more like those found in CMS, and tuning shifted to the lower AM beat frequencies 

found in CMS (Deemyad et al., 2012; Ellis et al., 2007). However, it is important to note that this 

effect is only found in ON-type cells, and not OFF-type cells. SK1 channels, which are found in 

the dendrites of pyramidal cells, also follow a similar expression pattern to the SK2 channels, 

such that LS contains the most SK1 channels and CMS contains the least. However, it is 

important to note that unlike the SK2 channels, SK1 channels are found in both ON- and OFF-

type pyramidal cell dendrites. Thus, it is a possibility that SK1 channels could serve as a 

mechanism to give rise to similarly differential tuning curves and adaptation responses to 

second-order stimuli such as envelopes.  

Previous studies have shown that blocking SK channels with apamin or UCL-1684 

results in a loss of AHP and thus the cells become more excitable, leading to more burst firing 

(Faber and Sah, 2003). In contrast, SK channel activity can also be increased with 

pharmacological agonists such as 1-EBIO, which increases the AHP, leading to lower 

excitability (Fig. 5C). The differential expression of SK channels across segments could 

therefore also control the degree of high-pass tuning via changes in conductance to give rise to a 

subset of neurons which can perform temporal whitening. In conjunction with the fact that SK1 

channels are located in the dendrites, where feedback input from higher brain areas such as the 

nP terminate, it is likely that there are integration mechanisms worth investigating which could 

lead to efficient coding strategies of second-order stimuli.   
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Figure 5. SK channels determine neural excitability. A) Schematic of an SK Channel showing its basic 

structure consisting of 6 transmembrane domains. B) SK channels are activated by increases in the 

intracellular calcium concentration following action potential firing and give rise to an after-

hyperpolarization (AHP) (shaded region). C) SK channel antagonist application reduces the AHP, leading 

to increased neural excitability, while SK channel agonist application instead increases the AHP, leading 

to decreased neural excitability. Figure adapted from (Huang and Chacron, 2017). 

 

1.4.5 – Summary 

In this section, I had first introduced the animal model of the weakly-electric fish and presented 

arguments as to why it is an attractive model to study questions of sensory processing, then 

introduced the types of electrosensory signals that we are primarily interested in investigating, 
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outlined the neural anatomy and what is known about sensory processing of related 

electrosensory signals, and presented a series of possibilities in which efficient coding and 

processing of the electrosensory signals (i.e. envelopes) I am interested in investigating. In 

summary, the above sections provide a general outline of the key unresolved questions and 

provide potential hypotheses and approaches to unraveling these mysteries. In the final section 

below, I will present the goals of each of the studies in this thesis. 

 

1.5 – Goals of the present studies 

The electrosensory system will allow me to elucidate if and how this system is able to process 

second-order natural stimuli. Due to the fact that little is known about envelope responses in the 

brain, the first goal of the study presented in Chapter 2 will be to characterize all the 

heterogeneous responses in all 9 subclasses pyramidal neurons according to ELL segments and 

depth, as well as investigate differences in the responses between two primary classes of ON- 

and OFF-type pyramidal neurons in the ELL. A secondary goal of this study would be to 

elucidate if parallel processing is a possibility in the ELL as an efficient coding strategy. I 

propose that there will be differential responses across the ELL pyramidal cell population and 

that parallel processing serves as a primary strategy which is to be used in higher brain areas 

such as the TS in order to decode envelope stimuli information 

Chapter 3 will investigate whether and how ELL pyramidal cells can perform temporal 

decorrelation or temporal whitening in order to maximize information transmission and 

optimally reduce redundancy in natural second-order stimuli. I propose that ELL pyramidal cells 

utilize temporal whitening in order to optimally encode envelope information such that tuning 

gives rise to matched behaviour to the stimulus statistics. I also hypothesize that this optimal 

coding will be mediated by the SK channels and I will additionally test if this system can be 

altered and investigate whether changes in neural tuning can directly lead to predictable changes 

in optimal coding and matched behaviour. This will be done by altering SK channels with 

pharmacological drugs to induce changes in neural tuning. 

Chapter 4 will investigate whether it is truly feedforward or feedback which drives neural 

responses to envelopes. This will be achieved by playing linearly ramping envelope stimuli and 
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looking at the phase locking responses with vector strength, as well as firing rate responses 

across the electrosensory pathway. Furthermore, we will test whether feedback plays a critical 

role by blocking the direct and indirect feedback pathways to see how exactly envelope 

responses arise at low envelope stimulus intensities as well as what is being decoded downstream 

in the closed-feedback loop with the ELL pyramidal cells at the centre. 

Finally, Chapter 5 will investigate the role of feedback in neural tuning and whether the direct or 

indirect feedback pathways play critical roles in determining the neural tuning of ELL pyramidal 

cells. We will again test this by blocking the direct and indirect feedback pathways to see how 

exactly envelope responses change. Due to the termination points of both feedback pathways in 

proximity with SK1 channels, I propose that both feedback pathways play a role in generating 

and optimizing the neural responses of ELL pyramidal cells. 
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Chapter 2 

 

Characterization of Envelope Responses in Pyramidal Cells 

of the ELL 

 

In this chapter, we aim to outline a complete neural tuning characterization of envelope 

responses in pyramidal cells of the ELL using a range of envelope frequencies mimicking the 

movement of another fish. As mentioned in the introduction, we know the responses of the 

peripheral EAs and how both single EAs and correlated EAs, hence population activity, encode 

for envelopes across the spectrum of low frequencies encompassing movement information. 

Here we explore the hub of electrosensory processing in the first downstream brain area where 

these EAs terminate. We performed a complete characterization of each class and subclass of 

pyramidal neurons: the difference (or lack thereof) between ON and OFF-type pyramidal 

neurons, neural responses in each of the three ELL segments, as well as superficial, intermediate, 

and deep neurons within each segment. This chapter is adapted from: Chengjie G. Huang, 

Maurice J. Chacron. Optimized parallel coding of second-order stimulus features by 

heterogeneous neural populations. Journal of Neuroscience 36: 9859-9872, 2016. 

2.1 – Abstract  

Efficient processing of sensory input is essential to ensure an organism’s survival in its natural 

environment. Growing evidence suggests that sensory neurons can optimally encode natural 

stimuli by ensuring that their tuning opposes stimulus statistics, such that the resulting neuronal 

response contains equal power at all frequencies (i.e. is “white”). Such temporal decorrelation or 

whitening has been observed across modalities but the effects of neural heterogeneities on 

determining tuning and thus responses to natural stimuli have not been investigated. Here we 

investigated how heterogeneities in sensory pyramidal neurons organized in three parallel maps 

representing the body surface determine responses to second-order electrosensory stimulus 
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features in the weakly electric fish Apteronotus leptorhynchus. While some sources of 

heterogeneities such as ON and OFF-type responses to first-order stimuli did not affect responses 

to second-order electrosensory stimulus features, other sources of heterogeneity within and 

across the maps strongly determined responses. We found that these cells effectively performed a 

fractional differentiation operation on their input with exponents ranging from zero (no 

differentiation) to 0.4 (strong differentiation). Varying adaptation in a simple model explained 

these heterogeneities and predicted a strong correlation between fractional differentiation and 

adaptation. Using natural stimuli, we found that only a small fraction of neurons implemented 

temporal whitening. Rather, a large fraction of neurons did not perform any significant whitening 

and thus preserved natural input statistics in their responses. We propose that this information is 

needed in order to properly decode optimized information sent in parallel through temporally 

whitened responses based on context. 

 

2.2 – Introduction  

 Understanding how the brain processes sensory input, thereby leading to behavior (i.e. the 

neural code) remains a central problem in neuroscience. Growing evidence suggests that the 

brain’s coding strategies are adapted to the statistics of stimuli found in the natural environment, 

thereby making the use of natural stimuli paramount towards understanding the neural code 

(Attneave, 1954; Barlow, 1961; Laughlin, 1981; Simoncelli and Olshausen, 2001). In particular, 

it has been proposed that sensory neurons can efficiently encode time varying natural stimuli by 

removing redundant information and therefore maximizing information transmission (Rieke et 

al., 1996), leading to a neural response with equal power at all frequencies (i.e. “white”). 

Experiments have provided evidence that sensory neurons achieve such temporal decorrelation 

or whitening of natural stimuli by matching their tuning properties to natural stimulus statistics 

across modalities (visual: (Dan et al., 1996; Wang et al., 2003); auditory: (Rodriguez et al., 

2010); somatosensory: (Pozzorini et al., 2013); electrosensory: (Huang et al., 2016)). However, 

strong heterogeneities have been observed in neural populations (Bannister and Larkman, 1995a, 

b; Goldberg, 2000), even for a given cell type (Marder and Goaillard, 2006; Schulz et al., 2006). 

While heterogeneities can benefit coding (Mejias and Longtin, 2012; Padmanabhan and Urban, 
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2010; Tripathy et al., 2013), how these influence optimized coding of natural stimuli through 

temporal whitening has not been investigated to date.  

Gymnotiform wave-type weakly electric fish offer an attractive model system for studying the 

coding of natural stimuli because of its well-characterized neural circuits and natural stimulus 

statistics. These fish sense amplitude modulations (AMs) of their self-generated quasi-sinusoidal 

electric organ discharge (EOD) through peripheral electroreceptors found on their skin. 

Electroreceptors send afferents that trifurcate to contact sensory pyramidal neurons within three 

parallel maps of the body surface (lateral segment: LS; centro-lateral segment: CLS; centro-

medial segment: CMS) within the electrosensory lateral line lobe (ELL) that subsequently 

project to higher brain areas, thereby mediating perception and behavioral responses (see 

(Chacron et al., 2011; Krahe and Maler, 2014; Marsat et al., 2012) for review). ELL pyramidal 

cells display large and well-known heterogeneities. First, there are two pyramidal cell types: ON 

cells that respond to increases in EOD amplitude and OFF cells that instead respond to decreases 

in EOD amplitude (Saunders and Bastian, 1984). Second, pyramidal cells within a given map 

display large heterogeneities in both morphology and physiology (Avila-Akerberg et al., 2010; 

Bastian et al., 2002, 2004; Bastian and Nguyenkim, 2001a; Chacron, 2006; Chacron et al., 

2005a; Chacron et al., 2005c). Third, pyramidal cells across the three ELL maps display strong 

response heterogeneities (Krahe et al., 2008; Shumway, 1989).  

As in other sensory modalities, natural electrosensory stimuli consist of a fast time varying 

waveform (i.e. the EOD AM which is a first-order attributes) whose amplitude (i.e. the envelope 

which is a second-order attribute) varies more slowly (Stamper et al., 2013). It is important to 

note that the animal’s EOD is a carrier and that the time varying EOD AM is the meaningful 

stimulus here. Thus, the first- and second-order features of the stimulus correspond to the 

second- and third-order features of the full signal received by the animal, respectively. Envelopes 

carry behaviorally relevant information and are processed within the brain as they give rise to 

behavioral responses (Metzen and Chacron, 2014; Stamper et al., 2012). While much is known 

about how heterogeneities in ELL pyramidal cells influence responses to AMs (see (Krahe and 

Maler, 2014; Maler, 2009a) for review), almost nothing is known about their influence on 

responses to envelopes. ELL pyramidal cells can respond to envelopes (McGillivray et al., 2012; 

Middleton et al., 2006) and a recent study has shown that LS pyramidal cells efficiently process 
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envelopes through temporal whitening by matching their tuning properties to natural statistics 

(Huang et al., 2016). However, the effects of pyramidal cell heterogeneities within as well as 

across the ELL maps on their responses to envelopes have not been investigated to date. 

 

2.3 – Methods  

2.3.1 – Animals   

The weakly electric fish Apteronotus leptorhynchus was used exclusively in this study. Animals 

of either sex were purchased from tropical fish suppliers and were acclimated to laboratory 

conditions according to published guidelines (Hitschfeld et al., 2009). All procedures were 

approved by McGill University’s animal care committee and were performed in accordance with 

the guidelines of the Canadian Council on Animal Care. 

2.3.2 – Surgery   

Surgical procedures have been described in detail previously (Chacron et al., 2003; Metzen et al., 

2015; Toporikova and Chacron, 2009). Briefly, 0.1-0.5 mg of tubocurarine (Sigma) was injected 

intramuscularly in order to immobilize the fish for electrophysiology experiments. The fish was 

respirated through a mouth tube at a flow rate of 10 mL/min when placed in the recording tank. 

To stabilize the head during electrophysiology recordings, a metal post was glued to the exposed 

area of the skull. A small hole of  2 mm2 was drilled over the caudal lobe of the cerebellum 

above the ELL in order to gain access to the pyramidal neurons. 

2.3.3 – Electrophysiology   

We used well-established techniques to perform extracellular recordings with Woods metal 

electrodes from pyramidal cells (Frank and Becker, 1964). Cells were assigned to each segment 

based on recording depth and medio-lateral placement of the electrode on the brain surface as 

done previously (Khosravi-Hashemi and Chacron, 2014; Krahe et al., 2008). Extracellular 

recordings were digitized using CED 1401-plus hardware and Spike II software at 10 kHz 

sampling rate.   
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2.3.4 – Stimulation  

The electric organ discharge of A. leptorhynchus is neurogenic, and therefore is not affected by 

injection of curare. All stimuli consisted of amplitude modulations (AMs) of the animal’s own 

EOD and were produced by triggering a function generator to emit one cycle of a sinewave for at 

each zero crossing of the EOD as done previously (Bastian et al., 2002). The frequency of the 

emitted sinewave was set slightly higher ( 30Hz) than that of the EOD, which allowed the 

output of the function generator to be synchronized to the animal’s discharge. The emitted 

sinewave was subsequently multiplied with the desired AM waveform (MT3 multiplier; Tucker 

Davis Technologies) and resulting signal was isolated from ground (A395 linear stimulus 

isolator; World Precision Instruments). The isolated signal was then delivered through a pair of 

chloridized silver wire electrodes placed 15 cm on either side of the recording tank 

perpendicular to the fish and, depending on polarity, either added or subtracted from the animal’s 

own discharge. The stimulus intensity was adjusted to give rise to changes in EOD amplitude 

that were ~20% of the baseline level as in previous studies (Aumentado-Armstrong et al., 2015; 

Deemyad et al., 2013; Metzen et al., 2016a; Simmonds and Chacron, 2015b) as measured using a 

small dipole placed close to the animal’s skin. The typical stimulus intensity used was  0.2 

mV/cm. The stimuli consisted of a 4Hz sine wave AM with a constant envelope to test pyramidal 

cell responses to first-order stimuli. Moreover, we used stimuli consisting of two noisy AM 

waveforms with frequency contents 5-15 Hz and 60-80 Hz whose envelopes were modulated 

sinusoidally with frequencies ranging from 0.05 Hz to 1 Hz mimicking those frequencies found 

in movement envelopes (Huang et al., 2016; Metzen and Chacron, 2014, 2015). We also used 

noisy envelopes whose spectrum decayed as a power law with exponent -0.8 mimicking signals 

seen under natural conditions (Metzen and Chacron, 2014).  

2.3.5 – Fractional Differentiation Model 

Fractional differentiation is a linear operation that can be described simply as dα/dtα, in which the 

order of differentiation α is a non-integer number. In the frequency domain, fractional 

differentiation of order α corresponds to filtering by a transfer function H(f) given by: 

𝐻(𝑓) = (2𝜋𝑓)𝛼exp (𝑖
𝛼𝜋

2
) 

The gain G(f) and phase (f) of the model can then be written as: 
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𝐺(𝑓) = |𝐻(𝑓)| = (2𝜋𝑓)𝛼  

𝜙(𝑓) = arctan (
𝐼𝑚[𝐻(𝑓)]

𝑅𝑒[𝐻(𝑓)]
) =

𝛼𝜋

2
 

where Im[𝐻(𝑓)] and Re[𝐻(𝑓)] are the imaginary and real parts, respectively. We fitted a 

fractional differentiation model to our data using the Grunwald-Letnikov definition, which was 

adapted to use a vectorization method to pass signals through a spectrum of fractional derivative 

values between 0 and 1 from which we obtained the fractional differential exponent neuron.   

 

2.3.6 – Neuron Model 

In order to model the pyramidal neural responses to the stimuli used in this study, we 

implemented a leaky integrate-and-fire model (Lapicque, 1907) with a power-law adaptation: 

𝐶
𝑑𝑉

𝑑𝑡
= −𝑔𝑙𝑒𝑎𝑘(𝑉 − 𝐸𝑙𝑒𝑎𝑘) − 𝑧1(𝑡) + 𝐼 + 𝜎𝑛𝑜𝑖𝑠𝑒  𝜉(𝑡) + 𝜎𝑠𝑡𝑖𝑚 𝑠(𝑡) 

where C is the membrane capacitance, gleak is the leak conductance, Eleak is the leak reversal 

potential, I is a constant bias current, (t) is gaussian white noise with zero mean and standard 

deviation unity, noise is the noise intensity, s(t) is the stimulus which was taken to have the same 

statistics as for the data, stim is the stimulus intensity, V is the membrane potential, and z1(t) is 

the adaptation current. Each time the membrane potential reaches the threshold , it is reset to 

Vreset and an action potential is said to have occurred at that time. We approximated the power 

law adaptation using M variables z1…zM that obeyed the following system of differential 

equations (Drew and Abbott, 2006):  

𝑑𝑧𝑖

𝑑𝑡
=

−𝑧𝑖(𝑡) + 𝑧𝑖+1(𝑡)

𝜏𝑖
+ 𝑏 𝛾1−𝑖 ∑ 𝛿(𝑡 − 𝑡𝑗)

𝑗

 for i = 1 to M − 1 

𝑑𝑧𝑀

𝑑𝑡
=

−𝑧𝑀(𝑡)

𝜏𝑀
+ 𝑏 𝛾1−𝑀 ∑ 𝛿(𝑡 − 𝑡𝑗)

𝑗

 

𝜏𝑖 = 𝜏min𝛾𝑖−1 

where tj are the spikes times, (t) is the delta function, and b and   are constants that determine 

the strength and power law exponent neuron of the neural sensitivity, respectively. The model 

was simulated using an Euler-Maruyama integration with timestep dt=0.025 ms. Unless 
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otherwise stated, we used parameter values C=1 F/cm2, gleak=0.36 S/cm2, Eleak=-70 mV, I= 7 

A/cm2, noise= 5 A/cm2, M=40, b=0.2, =1.1253, min=100 ms, =-50 mV, Vreset=-70 mV, C=1 

F/cm2. We note that we varied parameters b (the adaptation strength) as well as I (the bias 

current) in order to reproduce the heterogeneities seen across segments as well as within each 

segment when considering the different cell classes (i.e. superficial, intermediate, and deep).  

2.3.7 – Data Analysis 

Superficial, intermediate, and deep pyramidal cells were segregated based on the baseline (i.e. in 

the absence of stimulation but in the presence of the animal’s unmodulated EOD) firing rate, as 

done previously (Avila-Akerberg et al., 2010; Chacron, 2006; Chacron et al., 2005c). Cells 

whose baseline firing rate was less or equal to 15 Hz were classified as superficial, cells whose 

baseline firing rate was greater or equal to 35 Hz were classified as deep, cells whose baseline 

firing rate was between 15 and 35 Hz were classified as intermediate.  

In order to quantify the neural responses and relate the responses to the stimulus 

envelope, we used linear systems identifications techniques to compute the gain and phase 

relationships. The recorded neural activity was first high-pass filtered (100 Hz; eighth-order 

Butterworth). Spike times were defined as the times at which this signal crossed a given 

threshold value from below. A binary sequence R(t) was constructed from the spike times by 

discretizing time into bins of width 0.1 ms and setting the content of a given bin to 10000 if a 

spike occurred within it or 0 otherwise. The time varying firing rate was obtained by low-pass 

filtering R(t) using a second-order Butterworth filter with cutoff frequencies 0.2 Hz, 0.35 Hz, 

0.75 Hz, 1.5 Hz, 2.5 Hz, and 3.5 Hz for envelope frequencies 0.05, 0.1, 0.2, 0.5, 0.75, and 1 Hz, 

respectively. Using linear systems identification techniques, the response gain was calculated as 

the ratio of the amplitude of the filtered firing rate response and the amplitude of the stimulus 

obtained from the dipole during the recording. The response phase was calculated as the average 

phase at which the filtered firing rate waveform reached its maximum value relative to the peak 

values of the stimulus waveform over each cycle/period of 2π. We note that computing response 

gain from the phase histogram gave values that were not significantly different than those 

obtained using the filtered firing rate (data not shown).   
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The whitening index was calculated by taking the area under the power spectrum curve of 

the spiking response using a trapezoidal method and dividing by that obtained by replacing all 

values by the maximum value in the power spectrum. The whitening index ranges between 0 and 

1, where 1 indicates complete whitening (i.e. a power spectrum that is independent of temporal 

frequency), as done previously (Huang et al., 2016).  

2.4 – Results  

We recorded from ELL pyramidal cells within the CMS, CLS, and LS maps. Our stimuli 

consisted of sinusoidal AMs with constant amplitude as well as noisy EOD AMs whose 

envelope: 1) varied sinusoidally at different frequencies spanning the behaviorally relevant range 

or, 2) mimicked the frequency spectrum of natural envelopes. Fig. 1A shows example traces of 

the AM (magenta), envelope (blue), and the full signal received by the animal (green) with their 

respective temporal frequency contents. Previous results have shown that cells whose somata are 

found most superficially within the pyramidal cell layer (i.e. superficial pyramidal cells) tend to 

have the largest dendritic trees. In contrast, cells whose somata are found most deeply within the 

pyramidal cell layer (i.e. deep pyramidal cells) tend to have the smallest dendritic trees. Finally, 

cells whose somata are located at intermediate levels within the pyramidal cell layer (i.e. 

intermediate pyramidal cells) have properties in between those of their superficial and deep 

counterparts. Importantly, previous anatomical work has shown that ELL pyramidal cells are 

organized in columns within each map (Maler, 2009a). Each column consists of six cells (ON 

and OFF-type deep, intermediate, and superficial) receiving almost identical input from 

peripheral receptors (Fig. 1B). Previous studies have shown a strong correlation between the 

baseline (i.e. in the absence of stimulation) firing rate and the location of the soma within the 

pyramidal cell layer (Bastian et al., 2004; Bastian and Nguyenkim, 2001a). We thus used the 

baseline firing rate to distinguish between these cell classes, as done previously (Avila-Akerberg 

et al., 2010; Chacron, 2006; Chacron et al., 2005c).  
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Figure 1. Experimental setup and relevant anatomy. A) Schematic representation showing the awake-

behaving preparation where a stimulus is presented to the animal while neural activity is being recorded 

via extracellular Woods Metal electrodes. Shown on the right are: example AM waveform (magenta), its 

envelope (blue), and the full signal received by the animal (green) with their respective frequency 

contents. B) Schematic showing anatomy where peripheral electrosensory afferents trifurcate to make 

synaptic contact with pyramidal cells with three parallel maps of the body surface: the lateral segment 

(LS), the centro-lateral segment (CLS), and the centro-medial segment (CMS). Within each segment 

pyramidal cells are organized into columns each consisting of six cells: three ON-type (deep, 

intermediate, superficial) and three OFF-type (deep, intermediate, superficial). 
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2.4.1 – ON- and OFF-type pyramidal neurons display similar responses to envelopes  

We first investigated how ON and OFF-type ELL pyramidal cells responded to EOD AMs. ON 

and OFF-type pyramidal cells have different morphologies and can easily be distinguished based 

on their responses to AM stimuli (Bastian et al., 2002; Maler, 1979; Maler et al., 1981; Saunders 

and Bastian, 1984). Indeed, in the case of a 4 Hz sinusoidal AM, ON-type cells tend to respond 

during the stimulus upstroke and near the peak (Fig. 2A). In contrast, OFF-type cells tend to 

respond during the stimulus downstroke and near the trough (Fig. 2B). As such, ON (n=46) and 

OFF-type (n=45) cells in our dataset responded to opposite phases (Figs. 2C,D) of the AM. The 

distribution of preferred phases of all recorded neurons was clearly bimodal (Hartigan’s dip test, 

p=0.01) (Fig. 2E), consistent with previous results (Bastian et al., 2002; Saunders and Bastian, 

1984). 
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Figure 2. ON- and OFF-type pyramidal neurons respond in opposite fashion to EOD AMs (i.e. first-order). 

A) Top: Schematic showing the morphology of an ON-type pyramidal cell with its distinctive basilar 

dendrite receiving excitatory input from peripheral afferents. Bottom: sinusoidal EOD AM stimulus with 

frequency 4 Hz and the spiking response of an example ON-type pyramidal neuron. B) Top: Schematic 

showing the morphology of an OFF-type pyramidal cell. Note the lack of a basilar dendrite as the cell 

instead receives di-synaptic inhibition from peripheral afferents on its soma through a local interneuron 

(not shown). Bottom: sinusoidal EOD AM stimulus with frequency 4 Hz and the spiking response of an 

example OFF-type pyramidal neuron. C) Phase histogram showing the preferred phase response from 

this same neuron shown in A with the best-fit sinusoid (dashed black). D) Phase histogram showing the 

preferred phase response from this same neuron shown in B with the best-fit sinusoid (dashed black). E) 

Distribution of preferred phases for ON (green) and OFF (red) ELL pyramidal cells in our dataset. The 

entire distribution was clearly bimodal (Hartigan’s dip test, p=0.01) and both modes could easily be 

separated. 

We next investigated how ON and OFF-type ELL pyramidal cells responded to envelopes. 

Surprisingly, we found that both ON and OFF-type ELL pyramidal cells displayed similar 

responses (Figs. 3A,B) to these by firing preferentially during the envelope upstroke (Figs. 

3C,D). Similar results were seen across our dataset as the distributions of preferred phases 

largely overlapped between ON and OFF-cells (Fig. 3E). Similar sensitivity and phases for 

envelope responses were observed when using either low (5-15 Hz) or high (60-80 Hz) 

frequency AMs (Kruskal-Wallis test, p=0.85). Responses obtained for either low or high 

frequency AMs were thus pooled in all subsequent analyses. We thus conclude that ON and 

OFF-type pyramidal cells, despite responding in opposite fashion to AMs, actually respond 

similarly to envelopes.  
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Figure 3. ON- and OFF-type pyramidal neurons respond similarly to envelopes (i.e. second-order). A) Top: 

Stimulus consisting of a noisy EOD AM (magenta) whose envelope (blue) is modulated sinusoidally. 

Bottom: spiking and time-varying firing rate response from an example ON-type LS pyramidal cell to this 

stimulus. B) Top: Stimulus consisting of a noisy EOD AM (magenta) whose envelope (blue) is modulated 

sinusoidally. Bottom: spiking and time-varying firing rate response from an example OFF-type LS 

pyramidal cell to this stimulus. C) Phase histogram from this same LS ON-type example neuron shown in 

A to the envelope with the best-fit sinusoid (dashed black). D) Phase histogram from this same LS OFF-

type example neuron shown in B to the envelope with the best-fit sinusoid (dashed black). E) Distribution 

of preferred phases for ON (green) and OFF (red) ELL pyramidal cells in our dataset across the CMS, CLS, 

and LS maps for 5-15 Hz (light green and red) and 60-80 Hz (dark green and red) EOD AMs. All 

distributions were not significantly different from one another (Kruskal-Wallis test, p=0.89) 
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2.4.2 – Pyramidal cell populations of different ELL segments display differential tuning to 

envelopes 

Previous studies have shown important differences between the responses of ELL pyramidal 

cells across the three maps to AM stimuli (Krahe et al., 2008; Mehaffey et al., 2008; Shumway, 

1989) and have suggested different functional roles for each map (Metzner and Juranek, 1997). 

Thus, one possibility is that one ELL map is specialized to process envelope stimuli. If that were 

the case, then we would expect that only pyramidal neurons within that map would respond to 

envelopes. Another possibility is that ELL pyramidal neurons across the three maps are tuned 

differentially to envelopes, as is observed for AMs (Krahe et al., 2008; Shumway, 1989).  

We thus investigated how ELL pyramidal cells within the LS (ON: n=21, OFF: n=14), CLS 

(ON: n=15, OFF: n=14), and CMS (ON: n=12, OFF: n=15) maps respond to envelopes. Since 

sinusoidal envelope stimulation elicited sinusoidal modulations in firing rate at the same 

frequency, we used linear systems identification techniques (see Methods) to quantify the gain 

and phase relationship between the envelope and neural response. We found that, for both ON 

and OFF-type LS pyramidal cells, gain increased as a power law as a function of increasing 

envelope frequency (Fig. 4A, green and red filled circles) while phase was largely independent 

of envelope frequency (Fig. 4A, green and red open circles), which is characteristic of fractional 

differentiation (Lundstrom et al., 2008; Pozzorini et al., 2013). We thus fitted a fractional 

differentiation model to our data (see Methods) and found excellent agreement (Fig. 4A, 

compare circles with dashed lines). We obtained similar fractional differentiation exponents 

(which is equal to the power law exponent describing the increase in gain) for ON and OFF-type 

LS pyramidal cells LS (ON: α=0.31±0.04; OFF: α=0.27±0.04; One-way ANOVA, p=0.52).  

We found qualitatively similar results for CLS pyramidal cells in that the gain also increased as a 

power law as a function of increasing envelope frequency and that the phase lead was also 

independent of envelope frequency for both ON and OFF-type CLS neurons (Fig. 4B, compare 

filled and open red and green circles). Our data for CLS pyramidal cells were also well fit by a 

fractional differentiation model (Fig. 4B, compare circles with dashed lines). However, we found 

that the rate of increase of the gain as well as the phase lead were smaller in magnitude than 

those observed for LS pyramidal cells, as confirmed by smaller fractional differentiation 



32 
 

exponents that were similar for ON and OFF-type cells but lower than those observed in LS 

(ON: α=0.22±0.02; OFF: α=0.17±0.04; One-way ANOVA, p=0.29).  

We next investigated how CMS pyramidal cells responded to envelopes. While ON and OFF-

type cells also display similar response profiles, our data shows that CMS pyramidal cells 

respond to envelopes in a qualitatively different manner than their CLS or LS counterparts. This 

is because we found that response gain was independent of envelope frequency and that these 

cells displayed little or no phase lead (Fig. 4C, compare filled and open red and green circles). 

Our data was also well fit by a fractional differentiation model (Fig. 4C, compare circles and 

dashed lines) but the obtained fractional differentiation exponents (i.e. the power-law exponent), 

while similar for ON and OFF-type cells (ON: α=0.06±0.05; OFF: α=0.04±0.04; One-way 

ANOVA, p=0.82), were not significantly different than zero (ON: t-test, p=0.29; OFF: t-test, 

p=0.25), indicating that CMS pyramidal cells performed little or no filtering on the envelope 

stimulus.  

Our results thus show that ELL pyramidal cells within all three maps responded to envelopes, 

thereby providing strong evidence against the hypothesis that there is only one ELL map that 

processes these. Rather pyramidal cells across the ELL maps were differentially tuned to 

envelopes. We conclude that pyramidal cell heterogeneities across the ELL maps significantly 

influence their response properties to envelopes. LS pyramidal cell responses displayed the 

strongest fractional differentiation exponent followed by their CLS counterparts with CMS 

pyramidal performing little or no fractional differentiation (Fig. 4D, One-Way ANOVA with 

Tukey’s HSD correction, p<0.05). We note that, since we found no significant differences 

between ON and OFF-type cells across all three segments, data from each cell class were pooled 

in all subsequent analyses. 



33 
 

              

Figure 4. ELL pyramidal cells across the three ELL maps display differential responses to envelopes. A) 

Population-averaged gain (filled circles) and phase (open circles) relating the neural response to the 

envelope for LS ON (green) and OFF (red) pyramidal neurons with fractional differentiation (FD) fits 

(dashed lines). B) and C) Same as A but for CLS and CMS cells, respectively. D) Population-averaged 

fractional differentiation exponents for ON (green) and OFF (red) pyramidal cells in LS (left), CLS (middle), 

and CMS (right). For each map, the fractional differentiation exponents of ON and OFF-type cells were 

not significantly different from one another (one-way ANOVA’s, p0.29 in all three cases). In contrast, 

the fractional differentiation exponents were significantly different between maps and decreased from 

LS to CMS. “*” indicates significant difference at p<0.05 level using a one-way ANOVA with Tukey’s LSD 

correction. Error bars indicate ± 1 SEM. 

 

2.4.3 – A simple LIF model predicts that differential degrees of adaptation can explain the 

observed response heterogeneities across ELL maps to second-order electrosensory stimuli 

How can the observed differences between the responses of LS, CLS, and CMS pyramidal cells 

to envelopes be explained? Previous studies have shown that spike frequency adaptation can lead 

to high-pass filtering of the neuronal response (Benda and Hennig, 2008; Benda et al., 2005; 

Deemyad et al., 2012). Importantly, pyramidal cells display spike frequency adaptation in 

response to envelope steps, with the degree of adaptation strongest in LS and weakest in CMS 
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(Zhang and Chacron, 2016). Thus, we hypothesized that the different response profiles across the 

ELL maps could be explained by the fact that ELL pyramidal cells display different degrees of 

adaptation. To test this hypothesis, we used a simple model based on the leaky integrate-and-fire 

formalism that included an adaptation current (Fig. 5A, see Methods). We found that, with high 

adaptation, our model could successfully reproduce the gain and phase of LS pyramidal cells 

(Fig. 5B). By decreasing the adaptation strength in our model, we were able to successfully 

reproduce the gain and phase of CLS pyramidal cells (Fig. 5C). Finally, with no adaptation, our 

model successfully reproduced the gain and phase of CMS pyramidal cells (Fig. 5D). In all 

cases, our model simulation data was well fit by a fractional differentiation model whose 

exponent matched that observed experimentally (Fig. 5E) (LS: t-test, p=0.10; CLS: t-test, 

p=0.40; CMS: t-test, p=0.73). These results demonstrate that, by manipulating the degree of 

adaptation, we can reproduce the experimentally observed heterogeneities in the responses of 

ELL pyramidal cells across the three maps. Our model thus predicts that it is the degree of 

adaptation that determines a cell’s response profile to envelopes.  
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Figure 5. A simple leaky integrate-and-fire model with power-law adaptation successfully reproduces the 

experimentally-observed heterogeneities seen across ELL maps. A) Model schematic representation in 

which the stimulus (blue) is fed to a leaky integrate-and-fire (LIF) neuron model with an adaptation 

kernel that decays as a power law as a function of time. We chose a power law since a previous study 

has shown that LS pyramidal cells displayed power law adaptation in response to envelope stimuli 

(Huang et al., 2016). B) Population-averaged gain (filled circles) and phase (open circles) for our 

experimental data in LS. Also shown are the gain (filled black squares) and phase (open black squares) 

from our LIF model. C) and D) Same as B but for our CLS and CMS datasets, respectively. Note that I was 

decreased in order to maintain the baseline (i.e. in the absence of stimulation) constant across all 

segments, as observed experimentally (Krahe et al., 2008). E) Population-averaged fractional 

differentiation exponents for our experimental data (brown) and model (black) for LS (left), CLS (middle), 

and CMS (right). For all three maps, the fractional differentiation exponents obtained experimentally and 

from the model were not significantly different from one another. n.s. indicates not significant at the 

p<0.05 level. Error bars indicate ± 1 SEM. 

 

2.4.4 – Our simple LIF model also predicts that differential degrees of adaptation can explain 

the observed response heterogeneities within each ELL map 

We next tested whether pyramidal cell class (i.e., superficial, intermediate, or deep) influenced 

responses to envelopes. To do so, we segregated cells within each segment into deep (LS: n=9, 

CLS: n=9, CMS: n=10), intermediate (LS: n=12, CLS: n=11, CMS: n=9), and superficial (LS: 

n=14, CLS: n=8, CMS: n=8) using the baseline firing rate as done previously (Avila-Akerberg et 

al., 2010; Chacron, 2006; Chacron et al., 2005c). We found that, within LS, superficial cells 

displayed the greatest degree of fractional differentiation, followed by intermediate, and with 

deep cells displaying the least degree of fractional differentiation (Fig. 6A). Qualitatively similar 

results were obtained in CLS (Fig. 6B). Importantly, we found that, within CMS, deep, 

intermediate, and superficial pyramidal cells all displayed little to no fractional differentiation 

(Fig. 6C).  

We then tested using our model whether differential degrees of adaptation could explain the 

different levels of fractional differentiation performed by superficial, intermediate, and deep cells 

across all three ELL maps. We found that, by suitably varying the adaptation strength in our 

model, we could reproduce the response heterogeneities within each segment (Fig. 6, compare 

circles and squares in each panel). We thus conclude that our simple mathematical model could 

reproduce all the response heterogeneities seen in the data. Our model thus makes the important 

prediction that the differential levels of fractional differentiation seen across ELL maps and 



36 
 

across pyramidal cell class can both be explained by differences in the level of adaptation. The 

implications of this result as well as the nature of the underlying mechanisms are discussed 

below.  

 

 

Figure 6. Pyramidal cell classes within each ELL map display differential responses to envelopes. A) 

Population-averaged gain (filled brown circles) and phase (open brown circles) for our experimental data 

for superficial (top), intermediate (middle), and deep (bottom) LS cells. Also shown are the gain (filled 

black squares) and phase (open black squares) from the model in each case with corresponding 

fractional differentiation exponent α and adaptation strength value b. B) and C) same as A, but for CLS 

and CMS neurons, respectively. Note that, for CMS, deep, intermediate, and superficial CMS neurons all 

displayed similar fractional differentiation exponents that were all not significantly different from 0. Our 

LIF model could reproduce heterogeneities in envelope responses by decreasing adaptation strength 

going from LS to CMS for a given cell class (i.e. deep, intermediate, or superficial) as well as going from 

superficial to deep within a given ELL map (i.e. CMS, CLS, or LS). The values of model parameter b and Ibias 

(in microamperes per square centimete) used in each case are shown. 
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2.4.5 – Coding of natural envelope stimuli by ELL pyramidal cells 

It is important to note that we have, so far, used artificial sinusoidal envelope stimuli to 

characterize the responses of ELL pyramidal cells across maps. However, natural envelope 

stimuli are not sinusoidal in nature and are instead characterized by a whole spectrum of 

temporal frequencies (Fotowat et al., 2013; Metzen and Chacron, 2014; Yu et al., 2012b). 

Importantly, as natural envelope stimuli are scale invariant (i.e. are self-similar when looked at 

different timescales), their power spectrum decays according to a power law as a function of 

envelope temporal frequency (Fig. 7A). As mentioned above, in order to maximize information 

transmission, a neuron’s tuning curve should oppose this decaying power such that response 

power is independent of frequency (i.e. temporal decorrelation or whitening).  

We thus investigated how different ELL pyramidal cell subtypes (i.e. deep, intermediate, 

and superficial) across maps (i.e. CMS, CLS, and LS) responded to natural envelope stimuli. 

Within LS, we found that the response power spectra of superficial pyramidal cells were 

independent of frequency (Fig. 7B, top panel). That of intermediate pyramidal cells decayed as a 

function of frequency (Fig. 7B, middle panel) while that of deep pyramidal cells showed an even 

more pronounced decay (Fig. 7B, bottom panel). We quantified the degree of temporal 

decorrelation or whitening by computing a white index whose value is 1 if the response power 

spectrum is constant. White index values were greatest for LS superficial pyramidal cells, 

followed by intermediate pyramidal cells, and smallest for deep pyramidal cells (Fig. 7E).   

In contrast, superficial cells within CLS did not perform as much temporal decorrelation 

of natural envelope stimuli as their LS counterparts as quantified by a lower white index (Fig. 

7C, top panel). Superficial CLS pyramidal cells nevertheless displayed larger white index values 

than their intermediate counterparts (Fig. 7C, compare top and middle panels). Deep CLS cells 

performed even less temporal decorrelation (Fig. 7C, bottom panel). Interestingly, superficial, 

intermediate, and deep CMS pyramidal cells did not perform any significant temporal 

decorrelation or whitening of natural envelope stimuli (Fig. 7D, top, middle, and bottom panels 

and Fig. 7E). Indeed, the white index values computed from the neural responses were not 

significantly different than those obtained for the stimulus power spectrum (Fig. 7E), indicating 

that these cells instead preserve the statistics of natural input in their responses.  
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Figure 7. Different pyramidal cell classes across the three ELL maps perform different degrees of 

temporal whitening in response to natural envelope stimuli. A) Example time series of a natural envelope 

stimulus (top left), its power spectrum (top right) that decays as a power law with exponent -0.8 as a 

function of temporal frequency, and the spiking response from an example pyramidal neuron (bottom 

left). B) Stimulus (blue) and population-averaged response (black) power spectra for superficial (top), 

intermediate (middle), and deep (bottom) LS pyramidal cells. C) and D) same as B, but for CLS  and CMS  

pyramidal cells, respectively. E Population-averaged whitening indices for the stimulus (blue) and for 

superficial (S), intermediate (I), and deep (D) pyramidal cells within the LS (left), CLS (middle), and CLS 
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(right) maps. “*” indicates significance at the p<0.05 level, “**” indicates significance at the p<0.01 level. 

n.s. indicates not significant at the p<0.05 level. Error bands indicate ± 1 SEM. 

 

2.4.6 – Summary  

Fig. 8 shows a summary of our results. A previous study has shown that most peripheral 

receptors do not perform significant filtering of envelopes and thus faithfully relay information 

about their detailed structure to ELL pyramidal cells (Metzen and Chacron, 2015). Overall, ON 

and OFF-type pyramidal cells displayed similar responses to envelopes. Using artificial 

sinusoidal envelopes, we further found that LS cells displayed, on average, the strongest degree 

of fractional differentiation to envelope stimuli. CLS cells displayed, on average, intermediate 

degrees of fractional differentiation while CMS cells displayed little or no fractional 

differentiation (Fig. 8). Within the CLS and LS segments, deep pyramidal cells performed little 

to no fractional differentiation while superficial pyramidal cells displayed the greatest degree of 

fractional differentiation. Overall, a mathematical model showed that differential levels of 

adaptation could explain the experimentally observed heterogeneities in tuning. Using natural 

stimuli, we found that superficial pyramidal cells within LS and CLS performed temporal 

decorrelation or whitening while all CMS cells instead preserved natural stimulus statistics. 

Thus, our results have shown that a significant proportion of ELL pyramidal cells (deep cells for 

LS and CLS as well as all cells within CMS) perform little to no filtering of envelope stimuli. As 

all pyramidal cells project to higher brain areas, our results have important implications for 

understanding envelope coding as discussed further below. 
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Figure 8. Summary of envelope processing by ELL pyramidal neurons. Natural envelope stimuli are first 

processed by peripheral electroreceptor afferents (EAs) that perform little to no filtering (Metzen and 

Chacron, 2015), thereby preserving stimulus statistics. EAs then relay this information to pyramidal cells 

within the three ELL maps. Superficial pyramidal cells (cyan) within the LS perform the most temporal 

whitening of these natural stimuli (middle left), followed by superficial CLS pyramidal neurons (middle). 

Within CMS, all cells displayed little to no temporal whitening and instead preserve natural envelope 

stimulus statistics. Also, within the CLS and LS maps, deep pyramidal cells (orange) perform little to no 

temporal whitening and instead preserve natural envelope stimulus statistics. ELL pyramidal cells can 

thus be segregated into two groups: those that do not perform filtering (gray) and those that do (navy 

blue). Information transmitted by those two groups is decoded by TS neurons before being transmitted to 

higher brain areas. 
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2.5 – Discussion  

2.5.1 – ELL pyramidal cell heterogeneities and coding of second-order electrosensory attributes 

We investigated how ELL pyramidal cell heterogeneities influence their responses to envelopes. 

We found that heterogeneities either did not or strongly influenced envelope responses. 

Specifically, the responses of ON and OFF-type ELL pyramidal cells, despite being out of phase 

with one another when first-order electrosensory stimulus features were considered, were 

actually in phase with one another when second-order electrosensory stimulus features were 

instead considered. Such relative homogeneity is surprising given that peripheral afferents 

providing feedforward input to ELL pyramidal cells display strong heterogeneities in their 

responses to second-order features (Metzen and Chacron, 2015; Savard et al., 2011). Indeed, 

responses to envelopes were in phase for 66% of afferents and out of phase for the remaining 

34%. One possibility is that afferents whose responses are out of phase with the envelope do not 

synapse directly onto pyramidal cells but rather indirectly through local inhibitory interneurons, 

thereby making the input in phase with the envelope and potentially explaining why ON and 

OFF-type ELL pyramidal cells display similar responses to envelopes.  

We also found that responses to envelopes were cell class (i.e. superficial, intermediate, 

or deep) as well as map specific. However, as the connectivity pattern from ELL to Torus 

semicircularis (TS), while preserving somatotopy, appears to be random with respect to cell class 

or map (Krahe and Maler, 2014), we argue that the different envelope response profiles observed 

in ELL constitute heterogeneities from the point of view of the decoder. Our simple 

mathematical model further showed that different levels of adaptation could reproduce our 

experimental data. Importantly, our model predicts a strong correlation between the observed 

fractional differentiation exponent and the strength of adaptation across cell classes and across 

ELL maps. A previous study has shown that LS pyramidal cells display stronger adaptation to 

envelope steps than their CMS counterparts (Zhang and Chacron, 2016), thereby supporting our 

hypothesis. We further hypothesize that the differences in envelope response profiles observed 

across ELL maps and cell class are both primarily if not exclusively due to differences in the 

level of SK channel expression. This is because: 1) SK channels strongly influence adaptation in 

ELL pyramidal cells (Deemyad et al., 2012; Ellis et al., 2007) and; 2) the strongest SK channel 

expression in pyramidal cells was observed in LS and decreased going to CLS, with CMS 
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showing little to no expression (Ellis et al., 2008; Ellis et al., 2007). Moreover, within LS and 

CLS, the strongest level of SK channel expression was observed for superficial, decreased for 

intermediate, and was almost negligible for deep pyramidal cells (Maler, 2009a). Thus, 

experimentally observed variations in the fractional differentiation exponent were very well 

correlated with known levels of SK channel expression across cell classes and across ELL maps. 

Together with previous results showing that pharmacological manipulation of SK channels can 

directly alter LS pyramidal cell tuning to envelopes (Huang et al., 2016), these results strongly 

suggest that SK channel expression determines a pyramidal cell’s response to envelopes.  

ELL pyramidal cell receptive fields (RFs) have a classic antagonistic center-surround 

organization. There is a tradeoff between the relative sizes of the RF center and surround across 

the ELL maps. Indeed, while RF center size decreases from CMS to LS, RF surround size 

instead increases (Maler, 2009a; Shumway, 1989). Moreover, superficial cells have the largest 

surround while deep cells have little to no surround (Bastian et al., 2002). Thus, while RF size 

differences across maps are linked to differences in tuning to AM temporal frequency (see 

(Krahe and Maler, 2014) for review), there does not appear to be such a link when envelopes are 

instead considered. One important caveat however, is that ELL pyramidal cell RFs were all 

measured using AMs and not envelopes. Further studies are needed to map pyramidal cell RFs to 

envelopes and determine whether the spatial structure is coordinated with the temporal response 

profile.  

2.5.2 – Functional role of pyramidal cell heterogeneities in coding of first and second-order 

electrosensory stimulus attributes 

Our results have shown that, within the LS and CLS segments, deep pyramidal cells performed 

little to no filtering of envelope stimuli as indicated by their gains that were independent of 

envelope frequency and negligible phase leads. As such, their responses closely resembled that 

of most peripheral afferents (Metzen and Chacron, 2015). An important question is thus, what is 

the functional role of having central neurons whose responses are virtually identical to those of 

most peripheral receptors? One potential explanation is that deep cells exclusively project to the 

nucleus praeminentialis and provide feedback to their superficial and intermediate counterparts 

indirectly via parallel fibers originating from cerebellar granule cells within the eminentia 

granularis posterior (Bastian et al., 2004). We hypothesize that the lack of filtering by LS and 
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CLS deep cells is necessary to provide feedback to their superficial and intermediate 

counterparts, thereby determining their response properties to envelopes.  

Interestingly, all pyramidal cells within the CMS performed no significant filtering of 

envelope stimuli because their gains did not depend on envelope frequency and they displayed 

negligible phase leads. As such, their response profiles closely resemble those of most peripheral 

receptor afferents (Metzen and Chacron, 2015). What is then the functional role of CMS 

pyramidal neurons in envelope processing? One possibility is that the observed responses to 

envelopes are not behaviorally relevant, as downstream brain areas do not decode them. While 

this possibility cannot be ruled out, we argue that it is unlikely to be true. First, the CMS is by far 

the largest segment and it does not appear efficient to effectively “waste” such a large amount of 

resources on the coding of behaviorally relevant stimuli. Rather, as all three ELL maps project to 

downstream brain areas such as the midbrain TS, we hypothesize that the responses of CMS cells 

are necessary to properly decode the filtered responses of superficial and intermediate LS and 

CLS pyramidal cells. The lack of fractional differentiation observed for CMS neurons could 

provide the contextual information necessary in order to properly decode the optimized 

representation of natural envelope stimuli provided by superficial LS pyramidal neurons in 

downstream areas.  

Alternatively, it is also possible that the lack of filtering by CMS pyramidal cells serves 

to provide reliable responses to the prominent low-frequency components of natural envelope 

stimuli, while the high-pass filtering through fractional differentiation would serve to enhance 

responses to the weak high-frequency components that could easily be contaminated by noise, as 

proposed originally by Barlow (Barlow, 2001). We note that such high-pass filtering cannot 

extend to arbitrarily large frequencies where stimulus power is negligible, as it would then lead 

to noise magnification. As such, neural sensitivity should increase over the frequency range for 

which stimulus power is significant and decrease for higher frequencies. Such band-pass tuning 

has been observed in the retina and is thought to provide an efficient strategy for coding natural 

scenes (Atick and Redlich, 1992). In the electrosensory system, natural envelopes can contain 

significant power for frequencies up to 10 Hz (Fotowat et al., 2013; Stamper et al., 2013; 

Stamper et al., 2012). Further studies using envelope frequencies higher than those used here are 

needed to test whether the sensitivity of ELL pyramidal cells to these will decrease. It is also 
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possible that neurons in higher brain areas low-pass filter input from ELL pyramidal cells, 

thereby removing noise. Further studies focusing on how TS neurons receiving input from ELL 

pyramidal cells are tuned to envelopes are necessary to test this hypothesis and are beyond the 

scope of this paper. However, we note that previous studies have found that a significant fraction 

of TS neurons displayed responses that were similar to that of ELL neurons and that these project 

to higher brain areas (Sproule et al., 2015; Vonderschen and Chacron, 2011). It is thus very 

likely that the information transmitted by CMS pyramidal cells about envelopes is preserved in 

the electrosensory brain and contributes to determining observed behavioral responses (Metzen 

and Chacron, 2014).  

2.5.3 – Implications for other systems  

It is likely that our results will be applicable to other systems. First, we note that natural stimuli 

across sensory modalities frequently consist of a fast time varying waveform whose envelope 

varies more slowly. For example, in the auditory system, envelopes carry behaviorally relevant 

information relating to timbre for music as well as speech recognition (Heil, 2003; Shannon et 

al., 1998) and are also characterized by a power spectrum that decays as a power law 

(Theunissen and Elie, 2014). Studies of auditory processing of natural sounds suggest that the 

auditory system efficiently encodes them through whitening (Lewicki, 2002; Rodriguez et al., 

2010). Other sensory systems also perform whitening of natural stimuli (Dan et al., 1996; Wang 

et al., 2003) and our proposed mechanism involving SK channels, which are expressed 

ubiquitously in the central nervous system and are major determinants of adaptation (Adelman et 

al., 2012), could explain the observed high-pass filtering properties of these sensory neurons to 

artificial stimuli, thereby explaining whitened responses to natural stimuli whose spectra decay 

as a function of frequency.  
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Chapter 3 

 

SK Channels enable temporal whitening in pyramidal cells 

 

We had established in chapter 2 that pyramidal cells can respond to envelope stimuli, to 

differential degrees depending on the segment and depth they are located in. In particular, the 

curious case of LS superficial pyramidal cells had been predicted to give rise to temporal 

whitening or temporal decorrelation of the natural movement envelope stimulus statistics. In 

Chapter 3, we will confirm this prediction by observing responses to natural envelopes within 

this subset of neurons. We will extend our LIF model to make predictions on how the degree of 

high-pass tuning is determined, and test these predictions using pharmacological agents to test 

whether the molecular candidate, SK channels, are actually responsible for establishing optimal 

coding. Finally, we will link the changes in neural tuning directly to changes in behavioural 

responses at the organismal level. This chapter is adapted from: Chengjie G. Huang, Zhubo 

Zhang, Maurice J. Chacron. Temporal decorrelation by SK channels enables efficient neural 

coding and perception of natural stimuli. Nature Communications. 7: 11353, 2016. 

3.1 – Abstract  

It is commonly assumed that neural systems efficiently process natural sensory input. However, 

the mechanisms by which such efficient processing is achieved, and the consequences for 

perception and behavior remain poorly understood. Here we show that small conductance 

calcium-activated potassium (SK) channels enable efficient neural processing and perception of 

natural stimuli. Specifically, these channels allow for the high-pass filtering of sensory input, 

thereby removing temporal correlations or, equivalently, whitening frequency response power. 

Varying the degree of adaptation through pharmacological manipulation of SK channels reduced 

efficiency of coding of natural stimuli, which in turn gave rise to predictable changes in 

behavioral responses that were no longer matched to natural stimulus statistics. Our results thus 



46 
 

demonstrate a novel mechanism by which the nervous system can implement efficient processing 

and perception of natural sensory input that is likely to be shared across systems and species. 

3.2 – Introduction  

Understanding the key computations by which neurons process incoming natural sensory stimuli, 

thereby giving rise to perception and behavior, remains a central problem in neuroscience. There 

is growing evidence that sensory systems developed coding strategies to suit a dynamic range of 

statistics in natural sensory stimuli (Attneave, 1954; Barlow, 2001; Dong and Atick, 1995; 

Laughlin, 1981; Simoncelli and Olshausen, 2001). Indeed, sensory systems can efficiently 

process input by matching their adaptation properties to natural scene statistics, thereby 

removing redundant information and thus maximizing information transmission in the presence 

of noise (Brenner et al., 2000; Fairhall et al., 2001; Maravall et al., 2007). Specifically, efficient 

neural coding can be achieved by ensuring that the neural tuning function is inversely 

proportional to stimulus intensity as a function of frequency, thereby achieving a neural response 

that is decorrelated in the temporal domain or, equivalently, whose amplitude is independent of 

frequency (Rieke et al., 1996). Such “temporal whitening” has been observed across species and 

systems (Dan et al., 1996; Wang et al., 2003). However, the mechanisms giving rise to efficient 

neural processing and, importantly, whether, and if so how, this information is decoded 

downstream in order to mediate perception and behavior remains poorly understood to this day. 

Here we show that SK channels, which are found ubiquitously in the brain (Faber and Sah, 

2003), mediate efficient processing of natural stimuli by sensory neurons through temporal 

decorrelation and, importantly, how such processing ensures that perception is matched to 

natural scene statistics at the organismal level. 

Gymnotiform wave-type weakly electric fish sense amplitude modulations of their self-

generated quasi-sinusoidal electric organ discharge (EOD) through peripheral electroreceptors 

found on their skin. These electroreceptors in turn send afferents onto sensory pyramidal neurons 

within the electrosensory lateral line lobe (ELL) that subsequently project to higher brain areas, 

thereby mediating perception and behavioral responses (Chacron et al., 2011; Krahe and Maler, 

2014). Natural electrosensory stimuli have complex spatiotemporal characteristics(Fotowat et al., 

2013; Nelson and MacIver, 1999) and, as in other systems, display both first and second order 

attributes that vary independently of one another and whose intensity decreases as a power law 
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as a function of temporal frequency under natural conditions (Fotowat et al., 2013; Stamper et 

al., 2013). First order stimulus attributes consist of changes in the animal’s EOD amplitude 

caused by objects with conductivity different than that of the surrounding water (e.g. prey, 

plants, rocks, other fish) (Fotowat et al., 2013; Nelson and MacIver, 1999). In contrast, the 

second order stimulus attributes occur exclusively during social interactions with conspecifics. 

For example, when two fish come into close proximity to one another, interference between both 

EODs gives rise to a sinusoidal stimulus (i.e. a beat or first order) whose frequency is equal to 

the difference between the two EOD frequencies. The beat amplitude (i.e. the envelope or second 

order) then depends on the relative distance and orientation between both fish and is therefore a 

time varying signal under natural conditions that carries behaviorally relevant information and 

elicits robust behavioral responses (Fotowat et al., 2013; Metzen and Chacron, 2014; Stamper et 

al., 2013; Stamper et al., 2012).  

The responses of electrosensory neurons to first order electrosensory stimulus attributes 

have been well characterized (see (Chacron et al., 2011; Clarke et al., 2015; Krahe and Maler, 

2014; Marquez et al., 2013) for review). Importantly, peripheral receptor afferents display high-

pass filtering characteristics of time-varying first order attributes that oppose the strongly 

decaying intensity as a function of temporal frequency seen under natural conditions (Bastian, 

1981; Chacron et al., 2005b; Fotowat et al., 2013; Xu et al., 1996). These afferents are thus 

thought to efficiently process natural first order natural electrosensory stimulus attributes by 

temporal whitening (Fotowat et al., 2013). Each afferent trifurcates and makes synaptic contact 

onto pyramidal cells within three parallel maps (lateral segment: LS; centrolateral segment: CLS; 

centromedial segment: CMS) of the body surface within the ELL (Heiligenberg and Dye, 1982). 

Pyramidal cells are the sole output neurons of the ELL and project to higher brain areas (Maler, 

1979). Parallel processing occurs at the level of the ELL as pyramidal cells within each map 

extract different features of first order attributes in part through differential frequency tuning 

(Krahe et al., 2008; Marsat et al., 2009; Shumway, 1989) that are necessary to elicit appropriate 

differential behavioral responses at the organismal level (Metzner and Juranek, 1997).  

In contrast, much less is known about coding strategies used for the processing of second 

order electrosensory stimulus attributes. In particular, previous studies have shown that 

peripheral afferents can faithfully encode these both at the single neuron and population levels 
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(Metzen and Chacron, 2015; Metzen et al., 2015; Savard et al., 2011). However, because their 

tuning was found to be independent of temporal frequency, afferents do not efficiently process 

natural second order electrosensory stimulus attributes through temporal whitening (Metzen and 

Chacron, 2015). While previous studies have shown that ELL pyramidal cells can respond to 

second order electrosensory stimulus attributes (McGillivray et al., 2012), their temporal 

frequency tuning to these has not been investigated to date. It is therefore not known whether 

and, if so, how, processing of second order electrosensory stimulus attributes by these cells is 

constrained by natural scene statistics.  

We found that ELL pyramidal neurons efficiently process natural second order 

electrosensory stimulus attributes through temporal whitening. Indeed, neural responses were 

characterized by weak correlations and by constant power for envelope frequencies spanning 

three orders of magnitude. Further experimentation and modeling revealed that such temporal 

whitening is achieved because pyramidal neurons display time-scale invariant adaptation to 

envelope stimuli. This adaptation enables high-pass filtering of the input through a fractional 

derivative operation whose exponent is matched to natural stimulus statistics. We further show 

that small conductance calcium-activated potassium (SK) channels mediate adaptation to 

envelopes in pyramidal neurons. Indeed, both pharmacological activation and inactivation of 

these channels altered the degree of fractional differentiation and tuning to envelope stimuli, 

thereby reducing efficiency of processing of natural stimuli. Importantly, these manipulations 

caused predictable changes in behavioral responses to natural stimuli by inducing a mismatch 

between behavioral sensitivity and natural scene statistics. Our results therefore reveal a general 

mechanism by which SK channels can enable efficient processing and perception of natural 

stimuli through scale invariant adaptation.  

3.3 – Methods  

3.3.1 – Animals  

The weakly electric fish Apteronotus leptorhynchus was used exclusively in this study. Animals 

were purchased from tropical fish suppliers and were acclimated to laboratory conditions 

according to published guidelines (Hitschfeld et al., 2009). All procedures were approved by 

McGill University’s animal care committee. 
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3.3.2 – Surgery 

0.1-0.5 mg of tubocurarine (Sigma) was injected intramuscularly in order to immobilize the fish 

for experiments. The fish was respirated through a mouth tube at a flow rate of 10 mL/min 

when placed in the recording tank. To stabilize the head during recording, a metal post was glued 

to the exposed area of the skull. A small hole of  2mm2 was drilled over the caudal lobe of the 

cerebellum above the ELL in order to gain access to the pyramidal neurons. 

3.3.3 – Electrophysiology  

We used well-established techniques to make extracellular recordings with Woods metal 

electrodes from pyramidal cells within the lateral segment (LS) of the ELL (Krahe et al., 2008). 

We used CED 1401-plus hardware and Spike II software to record the resulting signal with 

resolution 0.1 ms. 

3.3.4 – Pharmacology 

The composition of the vehicle/control saline is as follows (all chemicals were obtained from 

Sigma): 111 mM NaCl, 2 mM KCl, 2 mM CaCl2, 1 mM MgSO4, 1 mM NaHCO3, 0.5 mM 

NaH2PO4. The pH of the saline solution was 6.8. Glutamate (Sigma), UCL-1684 

Ditrifluoroacetate hydrate (Sigma), and 1-EBIO 1-Ethyl-2-benzimidazolinone (Sigma) were 

dissolved in saline for application as before (Toporikova and Chacron, 2009). Drug application 

electrodes were two-barrel KG-33 glass micropipettes (OD 1.5 mm, ID=0.86 mm, A-M Systems) 

pulled by a vertical micropipette puller (Stoelting Co.) to a fine tip and subsequently broken to 

attain a tip diameter of ∼10 μm. The two barrels were used for separate application of either 

UCL-1684 (100 M) or 1-EBIO (2.5 mM) and glutamate (1 mM). During recordings, we first 

used excitatory responses to glutamate application via PicoSpritzer to confirm that we were 

within proximity of the pyramidal neuron we were recording from as done previously (Deemyad 

et al., 2013). UCL-1684 and 1-EBIO were then applied as done previously (Toporikova and 

Chacron, 2009).  

3.3.5 – Behavior 

Animals were immobilized and set up in the recording tank similarly to the method described 

above. However, both ELLs were exposed and two glass micropipettes loaded with saline 
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control solution, UCL-1684 (100 M), or 1-EBIO (2.5mM) solution were inserted into the LS 

segment using previously established techniques (Deemyad et al., 2013; Larson et al., 2014). 

Simultaneous bilateral injection of either saline, UCL-1684, or 1-EBIO into the LS region of the 

ELL molecular were delivered via a PicoSpritzer (Pressure=10 psi, Pulse duration=140 ms). 

Sinusoidal waveforms with frequency of 4 Hz below the animal’s baseline EOD frequency and 

with intensity of 2 mV/cm with duration of 50 s were presented. Previous studies have shown 

that such stimuli will reliably elicit a jamming avoidance response (JAR) and/or transient EOD 

frequency excursion (i.e. chirp) responses in A. leptorhynchus (Deemyad et al., 2013). The JAR 

magnitude was defined as the maximum frequency elicited during stimulation minus the baseline 

(i.e., without stimulation) value and was used as a positive control to confirm that UCL-1684 had 

an effect. Envelope stimuli were then subsequently played and saline or UCL injected two or 

three times before each stimulus presentation. Behavioral sensitivity was measured as the ratio 

between the amplitude of the envelope stimulus as extracted by the dipole, and the response, 

which was quantified by the average extracted change in EOD frequency of the fish over the 

course of the stimulus. The phase relationship was quantified by determining the difference 

between the phase at which the maximum peak of the envelope stimulus occurred and the phase 

at which the maximum peak of the average extracted change in EOD frequency. behavior was 

obtained by fitting a power law to the behavioral sensitivity as a function of frequency.  

3.3.6 – Stimulation 

The electric organ discharge of A. leptorhynchus is neurogenic, and therefore is not affected by 

injection of curare. All stimuli consisted of amplitude modulations (AMs) of the animal’s own 

EOD and were produced by triggering at the zero crossing of each EOD cycle as done previously 

(Bastian et al., 2002). This allowed the train of sinusoid stimuli to be synchronized to the 

animal’s discharge and depending on the polarity, either added or subtracted from the animal’s 

own discharge. The modulated waveform was subsequently multiplied (MT3 multiplier; Tucker 

Davis Technologies) and the resulting signal was isolated from ground (A395 linear stimulus 

isolator; World Precision Instruments). The signal was then delivered through a pair of 

chloridized silver wire electrodes placed ∼15cm on either side of the recording tank 

perpendicular to the fish. The stimulus intensity was adjusted to give rise to changes in EOD 

amplitude that was ~20% of the baseline level as in previous studies (Bastian et al., 2002) that 
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were measured using a small dipole placed close to the animal’s skin. The stimuli consisted of 

two noisy AM waveforms with frequency contents 5-15Hz and 60-80Hz whose envelopes were 

modulated, sinusoidally with frequencies ranging from 0.05Hz to 1Hz (Fotowat et al., 2013) or 

in a stepwise fashion at frequencies 0.05, 0.1, 0.25, 0.5, 1, 2, and 4 Hz for 5-15 Hz and 0.05, 0.1, 

0.25, 0.5, 1, 2, 4, 8, and 16 Hz for 60-80 Hz (note that the step duration is then half of the 

stimulus period). Stimuli also consisted of envelope stimulus waveforms obtained under natural 

conditions (Metzen and Chacron, 2014) as well as noisy waveforms whose power spectrum 

decayed as a power law with exponent stim=-0.8 and whose phase varied uniformly. The slope 

of the spike triggered average computed in response to the noisy AM waveform was used to 

assign each cell as either ON of OFF-type as done previously (Chacron et al., 2005c). 

3.3.7 – Fractional Differentiation model 

Fractional differentiation (Podlubny, 1999) can be described simply as the differentiation 

operation, dα/dtα, in which the order of differentiation, is a non-integer number. In the frequency 

domain, fractional differentiation of order α corresponds to filtering by a transfer function H(f) 

given by: 

𝐻(𝑓) = (2𝜋𝑓)𝛼exp (𝑖𝛼
𝜋

2
) 

The gain G(f) and phase (f) of the model can then be written as: 

𝐺(𝑓) = |𝐻(𝑓)| = (2𝜋𝑓)𝛼  

𝜙(𝑓) = arctan (
𝐼𝑚[𝐻(𝑓)]

𝑅𝑒[𝐻(𝑓)]
) = 𝛼

𝜋

2
 

where Im[𝐻(𝑓)] and Re[𝐻(𝑓)] are the imaginary and real parts, respectively. We fitted a 

fractional differentiation model to our data using the Grunwald-Letnikov definition which was 

adapted to use a vectorization method to pass signals through a spectrum of fractional derivative 

values between 0 and 1 from which we obtained neuron (Podlubny, 1999).   

3.3.8 – Matching response sensitivity to stimulus statistics in order to ensure temporal 

decorrelation  

Linear response theory(Risken, 1996) posits that the response power spectrum Prr(f) is related to 

the gain G(f) and the stimulus power spectrum Pss(f) by the following equation: 



52 
 

𝑃𝑟𝑟(𝑓) ≈ 𝐺2(𝑓)𝑃𝑠𝑠(𝑓) 

Thus, if the stimulus power spectrum decays as a power law with exponent stim and if the neural 

gain increases as a power law with exponent neuron, then we have: 

𝑃𝑟𝑟(𝑓) ≈ 𝑓2𝛼𝑛𝑒𝑢𝑟𝑜𝑛+𝛼𝑠𝑡𝑖𝑚  

The response power spectrum will then be independent of frequency f if 2neuron+stim=0 or, 

equivalently, if: 

𝛼𝑛𝑒𝑢𝑟𝑜𝑛 = −
𝛼𝑠𝑡𝑖𝑚

2
 

3.3.9 – Relationship between neural tuning and behavior 

We assume that the neural tuning exponent neuron and the behavioral exponent behavioral are 

related by: 

𝛼𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 = −𝛼𝑛𝑒𝑢𝑟𝑜𝑛 − 0.4 

 We then have: 

∆𝛼𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 = −∆𝛼𝑛𝑒𝑢𝑟𝑜𝑛 

where  is the change in exponent  resulting from pharmacological manipulation of SK 

channels.  

3.3.10 – Neuron Model  

In order to model the responses of the pyramidal neurons to the stimuli used in this study, we 

implemented a leaky integrate-and-fire model with power-law adaptation: 

𝐶
𝑑𝑉

𝑑𝑡
= −𝑔𝑙𝑒𝑎𝑘(𝑉 − 𝐸𝑙𝑒𝑎𝑘) − 𝑧1(𝑡) + 𝐼 + 𝜎𝑛𝑜𝑖𝑠𝑒  𝜉(𝑡) + 𝜎𝑠𝑡𝑖𝑚 𝑠(𝑡) 

where C is the membrane capacitance, gleak is the leak conductance, Eleak is the leak reversal 

potential, I is a constant bias current, (t) is gaussian white noise with zero mean and standard 

deviation unity, noise is the noise intensity, s(t) is the stimulus which was taken to have the same 

statistics as for the data, stim is the stimulus intensity, V is the membrane potential, and z1(t) is 

the adaptation current. Each time the membrane potential reaches the threshold , it is reset to 

Vreset and an action potential is said to have occurred at that time. The adaptation current is then 

incremented  
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We approximated the power law adaptation using N variables z1…zN that obeyed the following 

system of differential equations (Drew and Abbott, 2006):  

𝑑𝑧𝑖

𝑑𝑡
=

−𝑧𝑖(𝑡) + 𝑧𝑖+1(𝑡)

𝜏𝑖
+ 𝑏 𝛾1−𝑖 ∑ 𝛿(𝑡 − 𝑡𝑗)

𝑗

 for i = 1 to N − 1 

𝑑𝑧𝑁

𝑑𝑡
=

−𝑧𝑁(𝑡)

𝜏𝑁
+ 𝑏 𝛾1−𝑁 ∑ 𝛿(𝑡 − 𝑡𝑗)

𝑗

 

𝜏𝑖 = 𝜏min𝛾𝑖−1 

where tj are the spikes times, (t) is the delta function, and b and  are constants that determine 

the strength and power law exponent neuron of the neural sensitivity, respectively. The model 

was simulated using an Euler-Maruyama integration with timestep dt=0.025 ms. We used 

parameter values C=1 F/cm2, gleak=0.36 S/cm2, Eleak=-70 mV, I= A/cm2, noise= A/cm2, 

N=40, b=0.2, =1.1253, =-50 mV, Vreset=-70 mV, C=1 F/cm2. For these parameter values, we 

obtained model=0.4.  

3.3.11 – Data Quantification 

We used several Methods in order to quantify our experimental data. Correlation time was 

measured as the duration of time it took to decay to 5% of maximum autocorrelation value. 

White index was measured by taking the normalized area under the power spectrum curve using 

a trapezoidal method and dividing by the maximum normalized area to achieve a value between 

0 and 1. The match between behavior and natural stimulus statistics was obtained as 1-(αstim- 

αbehavior) and thus is maximum when the two power-law exponents and match. This method was 

used in order to quantify the optimality of the animal’s behavior during the pharmacology 

experiments. For step envelope stimuli, we constructed peri-stimulus time histograms (PSTHs) 

by averaging over each step onset and offset and typically used 50 bins for a given step duration. 

 

3.4 – Results 

3.4.1 – Fractional differentiation enables temporal whitening  

We recorded ELL pyramidal neuron responses to stimuli (n=14) in awake and behaving animals 

(Figs. 1A). Our stimuli consisted of a fast time varying waveform (first-order) with a slow time 
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varying amplitude (i.e. the envelope or second-order) as encountered under natural conditions 

(Fotowat et al., 2013; Metzen and Chacron, 2014). Fig. 1A shows an example AM waveform 

(magenta), its envelope (blue), as well as the full signal received by the animal (green) with 

respective frequency content. It is important to realize that the animal’s unmodulated EOD is a 

carrier and that the meaningful stimulus here is the EOD AM. Thus, we note that the first- and 

second-order features of the stimulus actually correspond to the second- and third-order features 

of the full signal received by the animal, respectively. 

We considered envelope waveforms that either varied sinusoidally or whose timecourse 

mimicked of that seen under natural conditions (Fig. 1B, see Methods). Specifically, for the latter 

case, the envelope autocorrelation decayed over a time window of 400 ms (Fig. 1C, inset) while 

the envelope power decayed as a power law with exponent stim=-0.8 (Fig. 1C). We found that 

pyramidal neurons displayed robust responses to such stimuli (Fig. 1B, bottom). Interestingly, 

further analysis revealed that pyramidal neurons perform temporal decorrelation of natural 

envelope stimuli. Indeed, the response autocorrelation function decayed to zero much faster than 

that of the stimulus over a time window of 27.5 ms (Fig. 1C, inset) as quantified by significant 

differences in correlation time (see Methods, Fig. 1D, left). Moreover, the response power 

spectrum was constant for frequencies spanning three orders of magnitude (Fig. 1C), indicating 

whitening. Indeed, the population-averaged neural whitening index was significantly larger than 

that of the stimulus (Fig. 1D, right). We note that ELL pyramidal cells can be classified as either 

ON or OFF-type based on whether they respond with increases or decreases in firing rate to 

increases in EOD AM (i.e. first order), respectively (Saunders and Bastian, 1984). Cells in our 

dataset could be easily identified as either ON or OFF-type based on responses to sinusoidal 

AMs (Supplementary Figures 1A, 1B). We however found no significant differences between 

ON and OFF-type pyramidal cell responses to envelope stimuli (Supplementary Figures 1C, 1D). 

Data from each cell class were thus pooled in subsequent analyses.  

How is temporal whitening of natural stimuli by pyramidal neurons achieved? Theory 

posits that such whitening is achieved by ensuring that the neuron’s tuning curve is matched to 

the statistics of natural input (Rieke et al., 1996). Neural sensitivity should then be highest for 

frequencies at which stimulus power is lowest. A simple derivation (see Methods) predicts that, 

in order to achieve temporal whitening of stimuli whose power decreases with exponent stim= -
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0.8, neural sensitivity should increase as a power law with exponent neuron=-stim/2=0.4 (Fig. 

2A).  

                             

Figure 1. Temporal decorrelation of natural stimuli by electrosensory pyramidal neurons. A) Schematic 

showing the awake behaving preparation where a stimulus is presented to the animal while neural 

activity is being recorded.  Shown on the right are: example AM waveform (magenta), its envelope 

(blue), and the full signal received by the animal (green) with their respective frequency contents. B) 

Natural envelope stimulus (blue) as well as the firing rate (middle) and spiking (bottom) response of a 

typical ELL pyramidal neuron. C) Stimulus (blue), and population-averaged (red) neural response power 

spectrum. Note the flattening of the response spectrum (black arrow). The gray band shows one SEM. 

Inset: Stimulus (blue), and population-averaged (red) neural response autocorrelation function. Note that 

the neural autocorrelation function decays to zero much faster than that of the stimulus (black arrow). 



56 
 

The gray band shows the 95% confidence interval around zero. D) Left: Correlation time for the stimulus 

(blue) and neural response (red). Right: White index for the stimulus (blue) and neural response (red). 

“**” indicates statistical significance at the p=0.01 level using a Wilcoxon rank-sum test with N=14. 

 

To verify this prediction, we recorded pyramidal neuron responses (n = 14) to sinusoidal 

envelope stimuli with frequencies spanning the behaviorally relevant range (0.05-1 Hz). We 

found that pyramidal neurons responded to such stimuli through sinusoidal modulations in firing 

rate that increased in amplitude as a function of frequency (Fig. 2B). We then used linear 

systems identification and plotted the sensitivity and phase relationships between stimulus and 

neural response as a function of frequency (Fig. 2C). Our results show that sensitivity indeed 

increased as a power law as a function of frequency with exponent 0.4 (Fig. 2C, top), while the 

phase remained constant (Fig. 2C, bottom). Such phase constancy is typical of fractional 

differentiation, a mathematical operation that is thought to be advantageous for coding 

(Lundstrom et al., 2008). Fractional differentiation in the time domain is equivalent to linearly 

filtering by a transfer function with gain (2πf)α and phase απ/2 (see methods), where f is the 

frequency and  is the order of differentiation. We thus fitted a fractional derivative model with 

=0.4 to our data (see Methods) and found an excellent fit (Fig. 2C). Importantly, this simple 

model correctly predicted temporal decorrelation and whitening seen in response to naturalistic 

envelope stimuli (Fig. 2D) as quantified by both correlation time (Fig. 2E) and whitening index 

(Fig. 2F). We conclude that temporal whitening of natural envelopes occurs because pyramidal 

neurons high-pass filter the input stimulus through fractional differentiation whose exponent is 

precisely matched to natural scene statistics. 
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Figure 2. Fractional differentiation by electrosensory pyramidal neurons achieves temporal decorrelation. 

A) Schematic showing that the neural tuning function (middle) must oppose the decay in the stimulus 

power (left) in order to achieve a neural response that is constant (right). B) Phase histograms showing 

the firing rate modulation in response to the stimulus (blue) for low (dashed red) and high (solid red) 

envelope frequencies. The bands and vertical arrows show the amplitudes of the best sinusoidal fits (not 

shown for clarity) for both frequencies, which are used to compute gain. The horizontal arrows show the 

phase shift between the stimulus and the firing rate modulation signal. C) Population-averaged (brown) 

sensitivity (top) and phase (bottom) obtained from sinusoidal stimuli (N=14). The solid orange lines show 

the gain and phase of the best-fit fractional derivative. D) Predicted (orange) and actual (red) response 

power spectra to natural stimuli (N=14). The grey band shows 1 SEM. Inset: Predicted (orange) and 

actual (red) response autocorrelation function. The grey band shows the 95% confidence interval around 

zero. E,F) Predicted as a function of actual correlation time and white index, respectively. 
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3.4.2 – A simple model reproduces experimental data  

In order to gain insight into the mechanism which enables pyramidal neurons to efficiently 

process natural stimuli through fractional differentiation, we built a simple model based on the 

leaky integrate-and-fire formalism that included a spike-activated adaptation current that decayed 

as a power law in the absence of firing (Drew and Abbott, 2006), see Methods (Fig. 3A). The 

output model spike train was analyzed in the same way as our experimental data. Numerical 

simulation revealed that this simple model accurately reproduced our experimental data 

(compare Figs. 3B and 2B). Indeed, the model neuron’s sensitivity and phase closely matched 

those obtained experimentally (Fig. 3C). Importantly, the model also accurately reproduced 

temporal whitening in response to naturalistic stimuli (Fig. 3D) as quantified by correlation time 

(Fig. 3E) and white index (Fig. 3F).  
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Figure 3. A simple model with power law adaptation implements temporal decorrelation by fractional 

differentiation. A) Model schematic in which the stimulus (blue) is fed to a leaky integrate-and-fire (LIF) 

neuron model with an adaptation kernel that decays as a power law as a function of time. The spiking 

output of the model (red) was analyzed in the same manner as the experimental data. B) Phase 

histograms showing the firing rate modulation in response to the stimulus (blue) for low (dashed green) 

and high (solid green) envelope frequencies. The bands and vertical arrows show the amplitudes of the 

best sinusoidal fits (not shown for clarity) for both frequencies, which are used to compute gain. The 

horizontal arrows show the phase shift between the stimulus and the firing rate modulation signal. C) 

Population-averaged sensitivity (top) and phase (bottom) for the data (brown) and our LIF model (green) 

obtained for sinusoidal stimuli. D) Response power spectra to natural stimulation for our experimental 

data (red) and LIF model (green). The grey band shows 1 SEM for the experimental data. Inset: Response 

autocorrelation function to natural stimulation for our experimental data (red) and LIF model (green). 

The grey band shows the 95% confidence interval around zero for the experimental data. E,F) Population-

averaged values obtained from experimental data (red) and for our LIF model (green) for correlation 

time and white index, respectively. 

 

To understand how adaptation can lead to efficient processing of natural stimuli, we next 

systematically varied the strength of the adaptation current in our model. We found that, without 

adaptation, our model displayed constant sensitivity and no phase lead in response to envelope 

stimuli (light green curves in Figs. 4A, B). Increasing the adaptation strength led to sensitivity 

curves which increased more steeply as a function of frequency and furthermore increased phase 

lead (compare light and dark green curves Figs. 4A, B), consistent with increases in the neural 

exponent neuron (Fig. 4C). These results have important implications as they predict that, for a 

given adaptation strength, our model can only achieve temporal decorrelation/whitening of 

stimuli whose power decays with a given exponent. This was verified by plotting the whitening 

index for naturalistic envelope stimuli (i.e. stim=-0.8) as a function of the adaptation strength. 

Indeed, both lower and higher adaptation strength led to tuning curves that were not matched to 

natural stimulus statistics and lowered coding efficiency as quantified by lower white index 

values (Fig. 4D).  

Our model therefore makes two important predictions. The first is that, in order to 

observe temporal whitening of scale invariant natural stimuli through fractional differentiation, 

neurons must display adaptation that is also scale invariant (i.e. decay as a power law). The 

second is that temporal whitening is only achieved for a given adaptation strength. Thus, 

increases or decreases in the adaptation strength will alter neural tuning and lead to sub-optimal 

processing of natural stimuli.  
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3.4.3 – Pyramidal neurons display power law adaptation  

To test whether pyramidal neurons display scale invariant adaptation, we recorded their 

responses to step changes in envelopes (Fig. 5A). We found that pyramidal neurons responded to 

such stimuli by a rapid increase in firing rate followed by a slower decay following the step 

onset, which is characteristic of spike frequency adaptation (Fig. 5A). If adaptation displays a 

characteristic timescale (i.e. is not scale invariant), then we expect that the peristimulus time 

histogram (PSTH) responses to step onset with different duration will all be well-fit by an 

exponential curve with the same time constant whereas a power law will instead give a poor fit. 

If adaptation is instead scale invariant, then we expect that PSTH responses to step onset with 

different duration will all be well fit by a power law curve with the same exponent. The apparent 

decay time constant of adaptation as quantified by fitting an exponential will then be inversely 

proportional to the step duration (Fairhall et al., 2001; Lundstrom et al., 2010).  

To test our hypothesis, we plotted the time-dependent firing rate in response to steps with 

different durations. The curves obtained did not overlap and were each well fit by exponentials 

but with different time constants (Fig. 5B). Rescaling both the firing rate and time led to strong 

overlap between the curves that were all well fit by power laws with the same exponent (Fig. 

5C). We note that rescaling both firing rate and time will not alter the power law exponent. Thus, 

our results suggest that the time course of adaptation in ELL pyramidal cells follows a power law 

rather than an exponential. We next systematically varied the step duration and found that, while 

the exponential time constant varied strongly as a function of step duration (Fig. 5D, left), the 

power law exponent was instead relatively independent of step duration (Fig. 5D, right). We 

conclude that pyramidal neurons indeed display scale invariant (i.e. power law) adaptation in 

response to envelopes as predicted by our model.  
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Figure 4: Our model predicts that adaptation strength 

is critical to ensure efficient processing of natural 

stimuli. A,B) Model gain and phase as a function of 

frequency for different amounts of adaptation, 

respectively. For each amount of adaptation, the 

circles show the values obtained from numerical 

simulation and the dashed lines those from the best-fit 

fractional derivative model. Note the progressive 

steepening of the gain curve as well as the increase in 

phase as adaptation is increased (black arrows). C) 

Neural exponent αneuron as a function of adaptation 

showing values obtained from numerical simulation 

(black circles) and theoretical prediction (dashed line). 

D) White index computed in response to a natural 

stimulus with exponent αstim=-0.8 as a function of 

adaptation showing values obtained from numerical 

simulation (black circles) and theoretical prediction 

(dashed line). 
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 Figure 5: Electrosensory pyramidal neurons 

display power law adaptation in response to step 

changes in envelopes. A) Top: Step stimulus that 

switches from a low to a high value (onset) with 

duration indicated by the black arrow. Bottom: 

Spiking response from a typical electrosensory 

pyramidal neuron to this stimulus. B) Time 

dependent firing rate following the step onset 

(solid red) for three different step durations and 

corresponding best exponential fits (dashed red). 

The numbers give the time constants of these fits: 

note the different values obtained for different 

step durations. We note that firing rate 

normalization does not affect the value of the 

fitted exponential time constants. C) Normalized 

change in firing rate as a function of normalized 

time following the step onset (solid red) for the 

same three different step durations and 

corresponding power law fits (dashed red). Note 

that the curves now superimpose and are thus 

well fit by power laws with similar exponents. D) 

Left: Population-averaged exponential time 

constant τ as a function of step duration. Right: 

Population-averaged power law exponent α as a 

function of step duration (N = 23). 

 

 

 

 

 

 

 

3.4.4 – SK channels promote efficient coding of natural stimuli 

So far, we have shown that ELL pyramidal neurons can efficiently process natural stimuli 

through temporal decorrelation because of fractional differentiation, which ensures that the 

neural tuning increases as a power law with exponent neuron that is precisely related to the power 

law exponent of the stimulus stim. Our model predicted that such fractional differentiation can 
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be explained by including an adaptation current whose timecourse follows a power law which 

was confirmed experimentally. Importantly, our model also predicted that changing the level of 

adaptation can strongly affect neuron, which should decrease coding efficiency. Thus, we next 

tested experimentally whether modifying adaptation in pyramidal neurons will alter their tuning 

exponent neuron, and whether this will decrease coding efficiency as quantified by the white 

index.  

We focused on small conductance calcium-activated potassium (SK) channels. This is 

because previous results have shown that pharmacologically activating and inactivating these 

currents will increase and decrease adaptation in ELL pyramidal neurons, respectively (Deemyad 

et al., 2011; Ellis et al., 2007). We thus hypothesized that pharmacological activation and 

inactivation of SK channels will increase and decrease fractional differentiation by pyramidal 

neurons, respectively, thereby altering tuning. Both manipulations are then predicted to decrease 

efficient coding of natural stimuli by temporal whitening. We thus micro-injected the SK channel 

antagonist UCL-1684 (UCL) as well as the SK channel agonist 1-EBIO (EBIO) in the ELL using 

well-established methodology (Bastian 1993; Deemyad et al. 2013; Supplementary Figure 2A, 

see Methods) (Fig. 6A). We note that previous studies have shown that injection of saline alone 

using this methodology does not alter pyramidal neuron activity (Bastian, 1993; Deemyad et al., 

2013). Consistent with previous results (Ellis et al., 2007; Toporikova and Chacron, 2009), we 

found that UCL and EBIO application both strongly altered pyramidal neuron activity in the 

absence of stimulation (Supplementary Figures 2B,C,D).  

If our hypothesis is true, then we expect that UCL application will decrease the neural 

tuning exponent neuron as neural sensitivity should then increase less steeply as a function of 

frequency when using sinusoidal stimuli. In contrast, we expect that EBIO application will 

increase the neural tuning exponent neuron as neural sensitivity should then increase more steeply 

as a function of frequency. Consistent with these predictions, neural sensitivity indeed became 

relatively independent of frequency following UCL application as quantified by a decrease in 

neuron (Fig. 6B, compare red and purple). Neural sensitivity increased more steeply as a function 

of frequency after EBIO application as quantified by an increase in neuron (Fig. 6B, compare red 

and cyan).  
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We next tested whether changes in neural tuning do indeed decrease coding efficiency 

when instead using natural stimuli. To do so, we next plotted the response power spectra before 

and after application of either UCL or EBIO. We found that, after UCL application, the response 

power spectrum decayed as a function of frequency (Fig. 6C, compare red and purple). In 

contrast, the response power spectrum increased as a function of frequency after EBIO 

application (Fig. 6C, compare red and cyan). The changes in power spectra observed were in 

agreement with predictions from our simple model (Fig. 6C, compare dashed and solid curves) 

that were based solely on the changes in neuron (Fig. 6D). Importantly, confirming our 

prediction; UCL and EBIO application both significantly reduced coding efficiency as quantified 

by the white index (Fig. 6E).  
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Figure 6: Pharmacological inactivation and activation 

of SK channels alter neural sensitivity and both reduce 

coding efficiency of natural stimuli. A) Schematic 

showing how a double-barrel electrode approaches 

and can eject glutamate as well as either UCL (SK 

channel antagonist) or EBIO (SK channel agonist) in 

the near vicinity of the pyramidal neuron being 

recorded from. B) Normalized gain as a function of 

frequency obtained for sinusoidal stimuli under control 

(red), after UCL application (purple), and after EBIO 

application (cyan). The circles show the experimental 

data and the dashed lines the best power law fits with 

exponents αneuron given in the figure. UCL and EBIO 

application decreased and increased the steepness of 

the curve, respectively (black arrows). C) Response 

power spectra to natural stimuli under control (solid 

red), after UCL application (solid purple), and after 

EBIO application (solid cyan). The dashed lines show 

the predicted values obtained from the power law fits 

in B). UCL and EBIO application led to response power 

spectra that were no longer independent of frequency 

(black arrows). D) Population-averaged neural 

exponent αneuron under control (red), after UCL 

application (purple) (N=6), and after EBIO application 

(cyan) (N=8). E) Population-averaged white index 

values under control (red), after UCL application 

(purple) (N=6), and after EBIO application (cyan) (N = 

8). “**” indicates statistical significance at the p=0.01 

level using a one-way ANOVA with post-hoc Bonferroni 

correction. 

 

 

 

 

 

3.4.5 – SK channels in ELL determine behavioral responses 

Information transmitted by neurons is only useful to an organism if it is actually decoded 

downstream. Thus, we next investigated how efficient coding of natural stimuli by ELL 
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pyramidal neurons mediates perception. To do so, we took advantage of the fact that weakly 

electric fish display robust behavioral responses to envelope stimuli (Metzen and Chacron, 2014, 

2015) (Fig. 7A). These consist of changes in the animal’s EOD frequency that follows the 

stimulus’ detailed timecourse but whose magnitude decreases with increasing frequency (Fig. 

7B). Behavioral response sensitivity is matched to natural stimulus power (Fig. 7C). Indeed, both 

curves decreased as a power law with exponents behavior and stim that were not significantly 

different from one another (Fig. 7C, inset). This matching ensures that behavioral sensitivity is 

greatest for stimulus frequencies that tend to occur most frequently in the natural environment 

(Metzen and Chacron, 2014; Simoncelli and Olshausen, 2001).  

 

Figure 7: Weakly electric fish display behavioral responses 

that are matched to natural scene statistics. A) Schematic 

showing the behavioral setup in which the animal’s 

behavioral responses to stimuli are recorded by continuously 

monitoring its EOD whose spectrogram indicates the time 

varying frequency. B) Stimulus (blue) and time varying EOD 

frequency responses (green) to 0.05 Hz (middle) and 0.75 Hz 

(bottom) sinusoidal stimuli. Note the smaller changes in EOD 

frequency in response to the 0.75 Hz stimulus (vertical green 

arrows). C) Behavioral response sensitivity (green) is matched 

to the power spectrum (blue) of natural envelope stimuli. 

Inset: Population-averaged power law exponents from 

behavioral sensitivity (green) and from natural envelope 

stimuli (blue). 

 

 

 

 

 

 



67 
 

We hypothesized that behavioral sensitivity is directly related to ELL pyramidal neuron 

tuning. Thus, changing the neural tuning exponent neuron should cause changes in the behavioral 

exponent behavior (Fig. 8A) and a simple model predicts that behavior=-neuron (see Methods). 

To test our hypothesis, we injected UCL and EBIO bilaterally into the ELL (Fig. 8B) (Deemyad 

et al., 2013; Larson et al., 2014) (see Methods). As a control, injection of saline alone had no 

significant effect on behavioral responses (Supplementary Figure 3). In contrast, UCL and EBIO 

injection both strongly altered behavioral sensitivity (Fig. 8C). Indeed, behavioral sensitivity 

decreased more steeply following UCL application as quantified by a greater behavioral 

exponent behavior (Fig. 8C, compare red and purple, Fig. 8C, inset). In contrast, behavioral 

sensitivity decreased less steeply after EBIO application as quantified by a lesser behavioral 

exponent behavior (Fig. 8C, compare red and cyan, Fig. 8C, inset). Importantly, behavioral 

sensitivity was no longer matched to natural stimulus statistics after both UCL and EBIO 

application (Fig. 8D). Consistent with our simple model, changes in behavioral tuning behavior 

following UCL and EBIO application were consistent with predictions made from changes in 

neuron (Fig. 8E). Thus, we conclude that efficient processing of natural envelope stimuli by ELL 

pyramidal neurons does indeed ensure that behavioral sensitivity at the organismal level is 

matched to natural scene statistics.  
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Figure 8: Changes in neural sensitivity caused by pharmacologically manipulating SK channels cause 

predictable changes in behavioral responses. A) Schematic showing how changes in the neural tuning 

characterized by exponent neuron are predicted to cause changes in behavioral sensitivity characterized 

by exponent behavior. B) Schematic of the bilateral ELL drug injection setup by which UCL or EBIO is 

injected simultaneously in both ELL’s on each side of the brain via two electrodes. C) Population-

averaged normalized behavioral sensitivities under control (red), after UCL application (purple), and after 

EBIO application (cyan). The circles show the experimental data and the dashed lines the best power law 

fits with exponents behavior given in the figure. Inset: Population-averaged behavior values under control 

(red), after UCL application (purple), and after EBIO application (cyan). D) Population-averaged matching 

index between behavioral response and natural stimulus statistics under control (red), after UCL 

application (purple) (N=6), and after EBIO application (cyan) (N=6). Both drugs significantly decreased 

the matching index value. E) Actual (solid) and predicted (striped) changes in exponent behavior caused by 

UCL (purple) and EBIO (cyan) application. The changes were predicted solely from the changes in neural 
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tuning exponent neuron shown in Fig. 6D. “**” and “*” indicate statistical significance a using a one-way 

ANOVA with post-hoc Bonferroni correction at the p=0.01 and 0.05 levels, respectively. 

 

3.5 – Discussion  

3.5.1 – Efficient coding of natural second-order stimuli depend on SK1 channels 

Envelopes constitute a critical component of the natural electrosensory environment as they carry 

information about the relative positions between conspecifics as well as their identities (Fotowat 

et al., 2013; Stamper et al., 2013). In particular, envelopes can arise during movement between 

two conspecifics as well as from the static interactions between the electric fields of three of 

more fish. While the former movement envelopes generally tend to contain low (<1 Hz) 

temporal frequencies (Fotowat et al., 2013; Metzen and Chacron, 2014; Stamper et al., 2013), the 

latter “social” envelopes tend to instead contain higher (>1 Hz) temporal frequencies (Fotowat et 

al., 2013; Stamper et al., 2013). Behavioral studies have shown that weakly electric fish can 

perceive both categories of envelopes (Metzen and Chacron, 2014; Stamper et al., 2012). While 

it is known that electrosensory neurons respond to mimics of social envelope stimuli 

(McGillivray et al., 2012; Savard et al., 2011; Vonderschen and Chacron, 2011), little is known 

about the coding of movement envelope stimuli.   

Here we have shown that ELL pyramidal neurons receiving direct synaptic input from 

peripheral afferents optimally process natural movement envelope stimuli because of scale 

invariant adaptation. Such adaptation leads to high-pass filtering of envelopes through fractional 

differentiation whose exponent is matched to natural scene statistics, thereby removing temporal 

correlations in the response or, equivalently, whitening the response power across frequencies. 

By whitening the response power across frequencies, the brain should be able to encode the most 

important information in natural sensory stimuli while discarding any redundancies, most often 

found in the high-power, low frequencies range. This agrees with efficient coding theory, which 

states that optimality is achieved by adapting to the natural scene statistics, and by completely 

removing any correlations which are potentially present in the signals to be encoded(Barlow, 

1961).  This process was shown to critically depend on SK channels. It was previously shown 

that SK2 channels are located on the somata of ON-type pyramidal neurons while SK1 channels 

are instead located on the apical dendrites of both OFF and ON-type pyramidal neurons (Ellis et 
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al., 2008). Despite these differences, even when we segregated pyramidal neurons into ON and 

OFF types, the temporal whitening of natural second-order scene statistics did not differ 

significantly. Furthermore, when we applied the SK channel antagonist and agonist in the apical 

dendritic tree, we observed that each of their effects were similar in ON and OFF-type pyramidal 

neurons. We therefore hypothesize that SK1 channels are sufficient to give rise to optimized 

envelope processing and perception. Pyramidal neurons receive large amounts of feedback on 

their apical dendrites (Sas and Maler, 1983) that help refine responses to electrosensory stimuli 

(Bastian et al., 2004; Chacron et al., 2005a; Simmonds and Chacron, 2015b) and previous studies 

have shown that pharmacological inactivation of SK1 channels strongly disrupted responses to 

first-order electrosensory stimuli (Toporikova and Chacron, 2009). It is therefore likely that SK1 

channels optimize processing of movement envelope stimuli by altering feedback input to ELL 

pyramidal neurons but further studies are needed to gain more understanding of the underlying 

mechanisms. We also note that, while our results make it clear that disrupting pyramidal neuron 

responses to envelopes leads to predictable changes in behavior, further studies are needed to 

understand how downstream targets of pyramidal neurons will respond to this behaviorally 

relevant stimulus feature.  

Our results suggest a novel mechanism by which neural responses can be adaptively 

optimized to process natural stimuli. Indeed, our modeling and pharmacological manipulations 

suggest that SK channel conductance is critical for optimizing processing of natural stimuli with 

given statistics. If true, then regulating SK channel conductances could serve as a dynamic 

control for adaptive optimized processing of stimuli following changes in the environment. In 

particular, we predict that exposing the animals to envelope stimuli whose power law exponents 

differ from those seen in the natural environment will give rise to changes in SK channel 

conductance, thereby altering ELL pyramidal neuron tuning in order to optimize processing of 

these new stimuli through temporal decorrelation/whitening, thus altering and optimizing 

perception and behavior. Dynamic regulation of SK channel conductance could come from 

serotonergic modulation as previous studies have shown that elevating serotonin levels inhibits 

SK channels in ELL pyramidal neurons (Deemyad et al., 2011; Deemyad et al., 2013). Finally, it 

should be noted that our simplistic model predicts a direct link between the ELL pyramidal 

neurons and behavior. These behavioral responses are likely to result from further processing of 

ELL by several downstream areas possibly including forebrain. In this context, the observed 



71 
 

match between changes in ELL neural and behavioral responses induced by pharmacologically 

manipulating SK might thus appear surprising. This match should not, however, be taken as 

evidence that downstream brain areas always merely relay information carried in ELL pyramidal 

cell spike trains. Rather, it is likely that these are involved in other aspects of behavioral 

responses to envelopes that were not considered in the current study such as the previously 

described habituation to repeated presentations of the same envelope stimulus (Metzen and 

Chacron, 2014). Further studies are needed to test these interesting hypotheses to demonstrate 

how processing and perception of natural stimuli are dynamically optimized based on input 

statistics, but are clearly beyond the scope of this paper.   

 

3.5.2 – Implications for differential sensory coding of first- and second-order stimulus attributes 

in the electrosensory system 

We first note that our results showing that the electrosensory system efficiently process second 

order natural electrosensory stimulus attributes in no way imply that other stimulus attributes 

(e.g. first order) are not also processed efficiently. This is because previous studies have shown 

that both first and second order attributes are processed in parallel by different subset of neurons 

in higher order areas (McGillivray et al., 2012). However, both attributes must first be processed 

by the same neurons in more peripheral areas prior to reaching these. In particular, peripheral 

receptor afferents respond to both first and second order electrosensory stimulus attributes but 

display differential frequency tuning to each attribute. Indeed, while afferents are preferentially 

tuned to higher temporal frequencies for first order attributes (Bastian, 1981; Chacron et al., 

2005b; Xu et al., 1996), their tuning to second order attributes is instead independent of temporal 

frequency (Metzen and Chacron, 2015). For first order statistics, the power law exponent 

characterizing the rate at which sensitivity increases is matched to the power law exponent 

characterizing the rate at which stimulus power decays as a function of frequency; afferents are 

thus thought to efficiently encode the first order natural electrosensory stimulus attributes 

through temporal whitening (Fotowat et al., 2013). However, no such match was observed for 

second order attributes as the sensitivity does not increase as a function of temporal frequency in 

order to oppose the rate at which envelope power decays as a function of frequency (Metzen and 
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Chacron, 2015). Thus, peripheral afferents do not efficiently process natural second order 

electrosensory stimulus attributes through temporal whitening.  

Our results show that efficient processing instead emerges at the level of the ELL and 

requires SK channels. It is important to note here that we only recorded from pyramidal cells 

within LS, which displays the greatest SK channel expression (Ellis et al., 2007). Since 

pyramidal cells within CLS and CMS display considerably less expression, we predict that these 

will not efficiently process natural second order electrosensory stimulus attributes through 

temporal whitening. This is not a problem as pyramidal cells within CLS and CMS have been 

shown to be involved in the processing other stimulus attributes (Chacron et al., 2003; Metzner 

and Juranek, 1997). These include those encountered during prey capture. Indeed, weakly 

electric fish display robust behavioral responses showing that they can reliably and accurately 

detect the presence the underlying weak stimuli as they then execute a series of movements to 

capture the prey (Nelson and MacIver, 1999). Such behavior is likely to require multisensory 

integration as the animal then experiences simultaneous stimulation of its active electrosensory, 

passive electrosensory, and lateral line systems (Nelson et al., 2002). In particular, the passive 

electric sense is likely to make a substantial contribution to allow the animal to first successfully 

detect the presence of a prey as ampullary electroreceptors are exquisitely sensitive to the 

resulting small amplitude exogenous electric fields (Fotowat et al., 2013). The perturbations of 

the animal’s own electric field caused by the prey during the detection phase are very weak and 

will in turn cause very small perturbations in the activities of tuberous electroreceptors (Nelson 

and MacIver, 1999). While these can theoretically be decoded (Nesse et al., 2010), further 

studies are needed to understand whether and, if so, how neural circuits of the active electric 

sense actually decode these faint signals in the presence of substantial variability. It is thought 

that the active electric sense makes an important contribution to give the animal sensory 

feedback as to the prey’s location as it is executing a series of movements to bring the prey close 

to its mouth. ELL pyramidal cells within CLS and CMS are then likely to be involved as both 

their frequency tuning (Chacron et al., 2003; Krahe et al., 2008; Shumway, 1989) and receptive 

field organization (Maler, 2009a, b) are optimized to the statistics of the input.  Importantly, we 

note that LS pyramidal cells, which were the focus of the current study, do not solely process 

second order electrosensory stimulus attributes. Indeed, previous results have shown that these 

cells respond to natural communication calls consisting of high frequencies transients (Marsat et 
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al., 2009). Since SK channels are major determinants of frequency tuning in LS pyramidal cells 

(Deemyad et al., 2012; Ellis et al., 2007), it is likely that these will also contribute to shaping 

responses to natural communication stimuli. It is then conceivable that SK channel expression 

would be not only constrained to optimally process second order electrosensory stimulus 

attributes as shown here but might also be constrained to optimally process natural 

communication stimuli as well.  

Thus, it is likely that electrosensory coding strategies are constrained to efficiently 

process natural stimuli. However, these will differ depending on the subset of natural stimuli 

considered and are likely to involve multiple sensory modalities. A complete understanding of 

these will require further studies and is clearly beyond the scope of this paper that only 

considered second order electrosensory stimulus attributes.  

3.5.3 – Implications for other sensory systems 

It is very likely that our results will be applicable to other systems. First, we note that SK 

channels found in weakly electric fish display ~86% sequence identity with those found in 

mammals (Ellis et al., 2007). SK channels are furthermore expressed ubiquitously in the brain 

and are key determinants of spike frequency adaptation (Faber and Sah, 2003). Second, natural 

stimuli have been shown to also exhibit power spectra that decay as a power law in the visual 

(Dong and Atick, 1995; Ruderman and Bialek, 1994) and auditory (Theunissen and Elie, 2014) 

systems and also display first and second order attributes. Third, growing evidence suggests that 

neural coding strategies are adapted to natural scene statistics by optimizing neural responses via 

temporal decorrelation/whitening across systems and species (Dan et al., 1996; Wang et al., 

2003). In particular, adaptation to second order stimulus attributes is widely observed (Brenner et 

al., 2000; Maravall et al., 2007; Smirnakis et al., 1997). Further, our proposed mechanisms 

underlying temporal decorrelation/whitening, namely high-pass filtering by fractional 

differentiation as mediated by scale invariant adaptation, are also generic and have been 

observed in other systems including cortex (Lundstrom et al., 2010; Pozzorini et al., 2013).  

Thus, our results provide a general mechanism by which SK channel can optimize neural 

responses to natural stimuli through temporal decorrelation/whitening, which in turn optimizes 

behavioral responses by making them best tuned to stimuli that occur most frequently in the 

natural environment. Optimized coding and perception of natural stimuli mediated by SK 
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channels is thus likely to be a universal feature of sensory processing that is shared amongst 

systems and species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

Chapter 4 

 

How are envelope responses generated in the first place? 

 

The chapters up until now have characterized responses to second-order natural stimuli and 

elucidated that SK channels are responsible for determining high-pass tuning to enable efficient 

encoding via temporal whitening to elicit matched behaviour to the natural stimulus statistics. 

However, our LIF model largely predicts a feedforward model in which the spike-frequency 

adaptation power-law kernel allows pyramidal neurons to perform these complex operations. The 

matter of the fact remains that there are additional possibilities to just feedforward. We know that 

EAs do not perform any temporal whitening and can only respond to envelopes when stimulus 

intensity reaches an amplitude which elicits either saturation or rectification. If the pyramidal 

neurons receive feedforward exclusively, then envelope stimuli must be of sufficient intensity to 

be detected at all. Therefore, in this chapter, we tested this question by recording from both EAs 

and pyramidal neurons to see just how low of an intensity is needed to elicit an envelope 

response, either by phase locking or firing rate modulation. We hypothesized that it is not only 

feedforward which plays a role in generating an envelope response in pyramidal cells, and that 

feedback also plays a critical role in the envelope response at weak or low stimulus intensities. 

This chapter is adapted from: Michael G. Metzen, Chengjie G. Huang, Maurice J. Chacron. 

Descending pathways generate perception of and neural responses to weak sensory input. PLoS 

Biology 16: e2005239. 

4.1 – Abstract 

Natural sensory stimuli frequently consist of a fast time-varying waveform whose amplitude or 

contrast varies more slowly. While changes in contrast carry behaviorally relevant information 

necessary for sensory perception, their processing by the brain remains poorly understood to this 

day. Here, we investigated the mechanisms that enable neural responses to and perception of 

low-contrast stimuli in the electrosensory system of the weakly electric fish Apteronotus 

leptorhynchus. We found that fish reliably detected such stimuli via robust behavioral responses. 
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Recordings from peripheral electrosensory neurons revealed stimulus-induced changes in firing 

activity (i.e., phase locking) but not in their overall firing rate. However, central electrosensory 

neurons receiving input from the periphery responded robustly via both phase locking and 

increases in firing rate. Pharmacological inactivation of feedback input onto central 

electrosensory neurons eliminated increases in firing rate but did not affect phase locking for 

central electrosensory neurons in response to low-contrast stimuli. As feedback inactivation 

eliminated behavioral responses to these stimuli as well, our results show that it is changes in 

central electrosensory neuron firing rate that are relevant for behavior, rather than phase locking. 

Finally, recordings from neurons projecting directly via feedback to central electrosensory 

neurons revealed that they provide the necessary input to cause increases in firing rate. Our 

results thus provide the first experimental evidence that feedback generates both neural and 

behavioral responses to low-contrast stimuli that are commonly found in the natural 

environment. 

4.2 – Introduction  

Understanding how sensory information is processed by the brain in order to give rise to 

perception and behavior (i.e., the neural code) remains a central problem in systems 

neuroscience. Such understanding is complicated by the fact that natural sensory stimuli have 

complex spatiotemporal characteristics. Specifically, these frequently consist of a fast time-

varying waveform whose amplitude (i.e., the “envelope” or contrast) varies more slowly (Attias 

and Schreiner, 1997; Joris et al., 2004; Theunissen and Elie, 2014). Envelopes are critical for 

perception (Shannon et al., 1995; Shannon et al., 1998), yet their neural encoding continues to 

pose a challenge to investigators because their extraction (i.e., signal demodulation) requires a 

nonlinear transformation (Rosenberg and Issa, 2011; Stamper et al., 2013).  

It is generally thought that peripheral sensory neurons implement such demodulation 

through phase locking, in which action potentials only occur during a restricted portion of the 

stimulus cycle, and that such signals are further refined downstream to give rise to perception. 

Indeed, in the auditory system, peripheral auditory fibers respond to amplitude-modulated 

sounds because of phase locking (Joris and Yin, 1992) with the most sensitive units displaying 

detection thresholds similar to those of the organism (see (Joris et al., 2004) for review). 

Sensitivity to amplitude modulations (AMs) increases in higher-level areas (e.g., cochlear nuclei, 
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inferior colliculus, auditory cortex), thereby exceeding that seen at the periphery, but the 

underlying mechanisms remain poorly understood (Joris et al., 2004; Krishna and Semple, 2000; 

Malone et al., 2010; Sayles et al., 2013; Zhao and Liang, 1997). The common wisdom is that 

these are feedforward in nature and involve integration of afferent input from the sensory 

periphery. Here, we show that refinement of neural sensitivity to AMs that occurs in central 

brain areas is not due to integration of afferent input but is rather mediated by feedback 

pathways, thereby mediating perception and behavior. 

Wave-type weakly electric fish generate a quasi-sinusoidal signal called the electric 

organ discharge (EOD) around their body, which allows exploration of the environment and 

communication. During interactions with conspecifics, each fish experiences sinusoidal AMs as 

well as phase modulations (PMs) of its EOD (i.e., a beat). This beat can interfere with 

electrolocation of other objects when the frequency is low. Specifically, such stimuli elicit a 

jamming avoidance response (JAR) in which both fish shift their EOD frequencies in order to 

increase the beat frequency to higher values that do not interfere with electrolocation. The neural 

circuitry giving rise to the JAR is well understood and involves feedforward integration of AM 

and PM information that is processed in parallel by separate neural pathways that later converge 

(see (Heiligenberg, 1991) for review), although JAR behavior can sometimes be elicited by 

stimuli consisting of AMs or PMs only. In particular, neural sensitivities to AM and PM 

components increase in higher level areas, thereby explaining the animal’s remarkable 

behavioral acuity (Kawasaki, 1997).  

Experiments focusing on the JAR have typically but not always used beats with constant 

depth of modulation (i.e., the envelope or contrast). More recent studies have focused on 

studying how time-varying contrasts, which carry information as to the distance and relative 

orientation between both fish (Fotowat et al., 2013; Yu et al., 2012a), are processed by the AM 

neural pathway to give rise to behavioral responses that consist of the animal’s EOD frequency 

tracking the detailed time course of the envelope (Huang and Chacron, 2016, 2017; Huang et al., 

2016; Martinez et al., 2016; McGillivray et al., 2012; Metzen and Chacron, 2014, 2015, 2017; 

Metzen et al., 2016b; Middleton et al., 2006; Savard et al., 2011; Stamper et al., 2013). P-type 

peripheral electrosensory afferents (EAs) scattered over the animal’s skin surface encode EOD 

amplitude, but not PMs, and synapse onto pyramidal cells (PCells) within the electrosensory 
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lateral line lobe (ELL). PCells are the sole output neurons of the ELL and project to higher brain 

areas that mediate behavior. Moreover, PCells receive large amounts of input from descending 

pathways (i.e., feedback)  (Bastian and Bratton, 1990; Berman and Maler, 1999; Bratton and 

Bastian, 1990) that have important functional roles such as gain control (Bastian, 1986a, b), 

adaptive stimulus cancellation (Bastian, 1996a, b; Bastian, 1998; Bastian, 1999; Bastian et al., 

2004; Bol et al., 2011; Bol et al., 2013; Mejias et al., 2013), coding of natural electro-

communication signals (Marsat and Maler, 2012), synthesizing neural codes for moving objects 

(Clarke and Maler, 2017), as well as shifting the tuning properties of PCells contingent on the 

stimulus’ spatial extent (Chacron, 2006; Chacron et al., 2003; Chacron et al., 2005c). However, 

whether and how feedback input determines PCell responses to time-varying contrasts have not 

been investigated to date. Moreover, while previous studies have focused on studying neural and 

behavioral responses to high-contrast stimuli (Huang and Chacron, 2016, 2017; Huang et al., 

2016; Martinez et al., 2016; McGillivray et al., 2012; Metzen and Chacron, 2014, 2015, 2017; 

Metzen et al., 2016b; Middleton et al., 2006; Savard et al., 2011; Stamper et al., 2013), we 

instead focused on low-contrast stimuli that are more commonly found in the natural 

environment (Fotowat et al., 2013).  

 

4.3 – Methods 

4.3.1 – Animals  

The wave-type weakly electric fish, Apteronotus leptorhynchus was used exclusively in this 

study. Animals of either sex were purchased from tropical fish suppliers and were housed in 

groups (2-10) at controlled water temperatures (26-29C) and conductivities (300-800 µS*cm-1) 

according to published guidelines (Hitschfeld et al., 2009). All procedures were approved by 

McGill University’s animal care committee and were performed in accordance with the 

guidelines of the Canadian Council on Animal Care.  

4.3.2 – Surgery 

Surgical procedures have been described in detail previously (Chacron et al., 2003; Metzen et al., 

2015; Toporikova and Chacron, 2009). Briefly, 0.1-0.5 mg of tubocurarine (Sigma) was injected 

intramuscularly to immobilize the fish for electrophysiology and behavioral experiments. The 
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fish was then transferred to an experimental tank (30 cm x 30 cm x 10 cm) containing water from 

the animal’s home tank and respired by a constant flow of oxygenated water through their mouth 

at a flow rate of 10 mL*min-1. Subsequently, the animal’s head was locally anesthetized with 

lidocaine ointment (5%; AstraZeneca, Mississauga, ON, Canada), the skull was partly exposed, 

and a small window was opened over the recording region (hindbrain for ELL or midbrain for 

nP). 

4.3.3 – Stimulation 

The electric organ discharge of A. leptorhynchus is neurogenic, and therefore is not affected by 

injection of curare. All stimuli consisted of AMs of the animal’s own EOD were produced by 

triggering a function generator to emit one cycle of a sine wave for each zero crossing of the 

EOD as done previously (Bastian et al., 2002). The frequency of the emitted sine wave was set 

slightly higher (30 Hz) than that of the EOD, which allowed the output of the function generator 

to be synchronized to the animal’s discharge. The emitted sine wave was subsequently multiplied 

with the desired AM waveform (MT3 multiplier; Tucker Davis Technologies), and the resulting 

signal was isolated from the ground (A395 linear stimulus isolator; World Precision 

Instruments). The isolated signal was then delivered through a pair of chloridized silver wire 

electrodes placed 15 cm away from the animal on either side of the recording tank perpendicular 

to the fish’s rostro-caudal axis. Depending on polarity, the isolated signal either added or 

subtracted from the animal’s own discharge. It is important to realize that these stimuli mimic the 

EOD AMs but not the FMs generated during encounters with conspecifics. This is not an issue 

here as these FMs do not elicit responses from the neurons considered here. Further, previous 

studies have shown that the behavioral responses considered here (see below) do not require FMs 

(Metzen and Chacron, 2014). 

In order to obtain behavioral and neural (periphery: EAs; hindbrain: PCells; midbrain: 

STCells) detection thresholds we used a stimulus consisting of either a 5 Hz sinusoidal or a 5-15 

Hz noise (4th order Butterworth) carrier waveform whose depth of modulation computed with 

respect to the animal’s unperturbed EOD amplitude increased from 0% to 100%. We found that 

EA detection thresholds were similar for both sinusoidal (n = 15) and noisy (n = 39) stimulus 

waveforms (Kruskal-Wallis, df = 2, p = 0.13). Thus, detection threshold values for EAs were 

pooled. We only used the 5 Hz sinusoidal waveform for determining detection thresholds for 
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ELL PCells, nP stellate cells, and behavior. We characterized each ELL pyramidal cell as either 

‘ON’ or ‘OFF’ type using a noisy AM stimulus with frequency content of 0-120 Hz, as done 

previously (Hofmann and Chacron, 2017; Martinez et al., 2016). In this case, the standard 

deviation of the AM was adjusted as in previous studies (Aumentado-Armstrong et al., 2015; 

Deemyad et al., 2013; Metzen et al., 2016a; Simmonds and Chacron, 2015a), as measured using 

a small dipole placed close to the animal’s skin in the middle of the animal’s rostro-caudal and 

dorso-ventral axes (typically 0.2 mV*cm-1). We note that it is likely that some of the variations 

in threshold values obtained for EAs are due to the location of the pore on the animal’s skin 

relative to the stimulus. 

4.3.4 – Pharmacology 

The composition of the vehicle/control saline was as follows (all chemicals were obtained from 

Sigma): 111 mM NaCl, 2 mM KCl, 2 mM CaCl2, 1 mM MgSO4, 1 mM NaHCO3 and 0.5 mM 

NaH2PO4. The pH of the saline solution was 6.8. Glutamate (Sigma), Lidocaine (Astra 

Pharmaceuticals) and CNQX 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, Sigma) were 

dissolved in saline before application as done previously (Huang et al., 2016). Drug application 

electrodes were made using two-barrel KG-33 glass micropipettes (OD 1.5 mm, ID 0.86 mm, A-

M Systems) and pulled by a vertical micropipette puller (Stoelting Co.) to a fine tip and 

subsequently broken to attain a tip diameter of5 μm for each barrel. The two barrels were used 

for separate application of either Lidocaine (1 mM) or CNQX (1 mM), as well as glutamate (1 

mM) or saline. During ELL recordings where the EGP indirect feedback was blocked with 

CNQX, we first used excitatory responses to glutamate application to confirm that we were 

within proximity of the pyramidal neuron we were recording from as done previously (Deemyad 

et al., 2013). CNQX was then applied to the neuron to ensure a local effect. Complete feedback 

inactivation was achieved by inserting two pipettes containing Lidocaine bilaterally into nP. In 

order to block the direct feedback from the midbrain area Torus semicircularis (TS), we 

performed unilateral injections of Lidocaine on the contralateral TS while recording from PCells 

within the ipsilateral ELL. Injection locations were guided by the Apteronotus brain atlas (Maler 

et al., 1991), and determined based on somatotopic mappings. We inserted a glass pipette (20-30 

μm tip) and pressure injected Lidocaine at a few depths between 1000 – 1500 μm with 4-5 puffs 

each at a pressure of 15-20 psi and 130 ms of injection time as done previously (Clarke and 
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Maler, 2017). We note that this manipulation also blocks ascending input to higher order brain 

areas mediating behavior. As such, we did not investigate the effects of injecting Lidocaine 

within TS on behavioral responses. For behavioral recordings, injections of Lidocaine, saline, 

and CNQX were performed bilaterally in nP and ELL, respectively, as done previously 

(Deemyad et al., 2013; Huang et al., 2016). All pharmacological injections were performed using 

a duration of 130 ms at 15-20 psi using a Picospritzer (General Valve). Indirect feedback 

inactivation was assessed by comparing the baseline firing rates of pyramidal cells before and 

after drug application as shown in a previous study (Bastian and Nguyenkim, 2001a). 

4.3.5 – Electrophysiology 

Sharp glass micropipette electrodes (20 – 40 MΩ) backfilled with 3 M KCl were used to record 

in vivo from electrosensory afferents (EAs) within the deep fiber layer of ELL as described in 

previous studies (Bastian, 1981; Chacron et al., 2005b; Metzen and Chacron, 2017). EAs can be 

easily identified based on their high baseline (i.e., in the absence of stimulation) firing rates as 

well as from the fact that their probability of firing increases with increasing EOD amplitude 

(Gussin et al., 2007; Scheich et al., 1973). The recording electrode was advanced into the ELL 

with a motorized microdrive (IW-711; Kopf). We used well-established techniques to perform 

extracellular recordings with Woods metal electrodes from pyramidal cells (Frank and Becker, 

1964) located within the lateral segment of the ELL based on recording depth and mediolateral 

placement of the electrode on the brain surface as done previously (Hofmann and Chacron, 2017; 

Huang and Chacron, 2016; Krahe et al., 2008).  

Similarly, we performed extracellular recordings with Woods metal electrodes from 

stellate cells in nP. Stellate cells were confirmed based on the recording depth as well as their 

low spontaneous firing rate and response tuning curves to sinusoidal amplitude modulations 

based on previous characterization (see S5 Fig) (Bratton and Bastian, 1990). All recordings were 

digitized at 10 kHz sampling rate using CED 1401 plus hardware and Spike2 software 

(Cambridge Electronic Design) and stored on a computer hard disk for offline analysis.  

4.3.6 – Behavior 

Animals were immobilized by an intramuscular injection of 0.1-0.5 mg tubocurarine and set up 

in the recording tank similarly to the method described above. Depending on which feedback 
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pathway was pharmacologically inactivated, different surgeries were performed. Briefly, to 

inactivate the nP direct feedback pathway, both sides of the midbrain were exposed rostrally to 

T0 (Maler et al., 1991) and double barrel pipettes containing saline and lidocaine were inserted 

into the nP (1000-1250 μm). To inactivate the EGP indirect feedback pathway, both sides of the 

hindbrain ELL were exposed to the caudal-lateral edge where pipettes containing CNQX were 

inserted superficially (100-400 μm). Multiple injections (typically 3-5) were performed to ensure 

that both hemispheres of nP and ELL were sufficiently affected by the pharmacological agents. 

Stimuli were then presented as described above in order to elicit behavioral responses. The 

animal’s behavior was recorded through a pair of electrodes located at the rostrum and tail of the 

animal. The fish’s time-varying EOD frequency was extracted either by computing a 

spectrogram of the recorded signal or from the zero-crossings of the recorded EOD signal. For 

the former, the EOD frequency was then determined as the frequency with the highest power 

near the 4th harmonic of the fish’s baseline EOD frequency and the extracted frequency was then 

divided by 4 in order to get the true EOD frequency of the fish. For the latter, the zero-crossings 

were used to generate a binary sequence as described above that was low-pass filtered (2nd order 

Butterworth filter with 0.05 Hz cut-off frequency) to obtain the time-varying EOD frequency. 

Quantitatively similar results were obtained using either methodology.  

4.3.7 – Data Analysis 

All data analysis was performed offline using custom written codes in MATLAB software 

(MathWorks). The recorded electrical activity were first high-pass filtered (100 Hz; 8th order 

Butterworth). Spike times were defined as the times at which the signal crossed a given threshold 

value from below. A binary sequence R(t) was then constructed from the spike times of each P-

unit in the following manner: time was first discretized into bins of width dt=0.1 ms. The value 

of bin i was set to 1 if there was a spike at time tj such that i*dt<tj<(i+1)*dt and to 0 otherwise. 

Note that, since the bin width dt is smaller than the absolute refractory period of the neuron, 

there can be at most one spike time that can occur within any given bin. The firing rates were 

obtained by filtering the binary sequence using a 2nd order Butterworth filter with 0.05 Hz cut-off 

frequency. Both neural and behavioral response detection threshold values to the stimulus were 

characterized by the intensity at which the firing rate or EOD frequency crossed a response level 

that corresponded to the 95% confidence interval established during the absence of stimulation. 
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We note that changing the significance in order to determine the response level did not change 

the detection threshold values significantly, as shown for a subset of our data (S7 Fig). 

 

4.3.8 – Time-varying vector strength 

To determine the degree of a neuron’s phase locking to the AM stimulus, we computed a time-

varying vector strength until the end of stimulation was reached. Therefore, spike trains where 

accumulated as cycle histograms and the response was quantified using the vector strength (r), 

which measures the degree of phase locking and ranges between 0 (random spiking) and 1 

(perfect phase locking) (Mardia and Jupp, 1999). Vector strength is defined as: 

 

𝑟 =
1

𝑁
√(∑ cos 𝜃𝑖𝑖 )2 + (∑ sin 𝜃𝑖𝑖 )2   (1) 

 

where N is the number of spikes during one cycle of stimulation. The time-varying vector 

strength was computed by averaging the vector strength r over a time window T of 1 s: 

 

𝑉𝑆 =
∑ 𝑟𝑖𝑖

𝑇
       (2) 

  

where ri is the vector strength obtained during one cycle of stimulation and T is a time-window 

of 1 s (i.e., 5 cycle periods). The Rayleigh statistics (r2N 3.5) was used to determine 

significance. Varying the time-window length between 0.6 and 2 s did not alter our results 

significantly.  

4.3.9 – Correlation 

To correlation between detection threshold values of PCells and behavior obtained 

simultaneously during repetitive stimulation (n = 10, three repetitions each) was assessed using 

the Pearson’s correlation coefficient. The correlation between the residuals were computed by 

first subtraction the mean detection threshold value obtained for PCells and behavior over the 

three repetitions. 
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4.3.10 – Statistics 

Statistical significance was assessed through a non-parametric Kruskal-Wallis test with 

Bonferroni correction or Wilcoxon sign rank test for paired measures at the p = 0.05 level. 

Values are reported as boxplots unless otherwise stated. Errorbars indicate ± SEM. On each box, 

the central mark indicates the median, and the bottom and top edges of the box indicate the 25th 

and 75th percentiles, respectively. The whiskers extend to the most extreme data points not 

considered outliers, and the outliers are plotted individually using the '•' symbol. 

 

4.4 – Results  

The goal of this study was to understand how behavioral responses to low-contrast stimuli are 

generated by neural circuits in the animal’s brain. To do so, we used an awake-behaving 

preparation in which the immobilized animal is respirated within an otherwise empty tank (Fig. 

1A). The animal’s behavioral response is determined from its EOD, which is being continuously 

recorded (Fig. 1A, upper left) during stimulation (Fig. 1A, upper right). The relevant neural 

circuitry is shown in Fig. 1B. EAs make direct excitatory synaptic contact and indirect inhibitory 

synaptic contact with ON- and OFF-type ELL PCells, respectively. PCells project directly to 

torus semicircularis (TS) neurons, which in turn project to higher brain areas mediating 

behavioral responses. However, some TS neurons also project back to ELL via stellate cells 

(STCells) within the nucleus praeeminentialis (nP), thereby forming a closed feedback loop (Fig. 

1b, cyan). Our stimuli consisted of AMs of the animal’s own EOD that mimicked those 

encountered during interaction with a same-sex conspecific. Specifically, interference between 

the two EODs gives rise to a sinusoidal AM (Fig. 1C, blue) whose depth of modulation (i.e., the 

envelope, red) is inversely related to the relative distance between both fish. It is important to 

realize that the animal’s EOD is a carrier and that the AM is the relevant stimulus here. We are 

considering both first- (i.e., AM) and second-order (i.e., envelope or contrast) features of the 

stimulus and note that these correspond to the second- and third-order features of the full signal 

received by the animal, respectively. Thus, the first- and second-order features correspond to the 

time-varying mean and variance of the stimulus, respectively. The AM, envelope, and full-signal 

waveforms with their respective frequency contents are shown in Fig. 1C. Our stimuli consisted 
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of a 5 Hz sinusoidal waveform (blue) whose contrast (red) increased linearly as a function of 

time. 

       

Figure 1. Weakly electric fish display low behavioral contrast detection thresholds. A) Relevant anatomy 
diagram showing the main brain areas considered. B) Top: EOD spectrogram (i.e., time varying power 
spectrum showing frequency as a function of time) obtained under baseline conditions (i.e., in the 
absence of stimulation but in the presence of the animal’s unmodulated EOD). We found that the 
frequency at which there is maximum power (i.e., the EOD frequency) fluctuated as a function of time, 
which was used to compute a response level (white dashed line) to determine whether behavioral 
responses obtained under stimulation were significantly above than those obtained in the absence of 
stimulation. Middle: Stimulus waveform (blue) and its envelope (red) showing contrast as a function of 
time. Bottom: EOD spectrogram in response to the stimulus. It is seen that the EOD frequency increases 
after stimulus onset. The detection threshold is the contrast corresponding to the earliest time after 
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stimulus onset for which the EOD frequency was above the response level (black circle and white dashed 
line). Inset: Population-averaged detection threshold values for behavior (n = 35, brown). 

 

4.4.1 – Weakly electric fish give behavioral responses to low contrasts   

We first investigated behavioral responses to increasing contrast (Fig. 2A). To do so, we 

first quantified behavioral responses in the absence of stimulation by looking at the time-varying 

EOD frequency (Fig. 2B, top). Plotting the EOD spectrogram (i.e., the time-varying power 

spectrum of the measured EOD trace) revealed that the frequency at which there was maximum 

power (i.e., the EOD frequency) fluctuated slightly (Fig. 2B, top) around a mean value. We used 

these fluctuations to compute a probability distribution and to determine the interval of values 

that contains 95% of this distribution (Fig. 2B, white dashed lines, see Materials and methods). 

During stimulation, we found that the animal’s EOD frequency increased more or less linearly as 

a function of time (Fig. 2B, bottom). The detection threshold was computed as the contrast 

corresponding to the smallest time after stimulus onset for which the EOD frequency was outside 

the range of values determined in the absence of stimulation (Fig. 2B, bottom, black circle and 

white dashed lines). We found that fish could reliably detect weak contrasts as evidenced from 

low detection thresholds (n = 35 fish, 8.8% ± 1.1%, min: 1.1%, max: 27.6%, Fig. 2B, bottom, 

inset). The detection threshold values obtained were furthermore robust to large changes in filter 

settings (S1 Fig). 

Our behavioral results show that electrosensory neural circuits must extract the time-

varying stimulus contrast (i.e., implement signal demodulation). We thus next investigated how 

electrosensory neurons respond to increasing contrast. 
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Figure 2. Weakly electric fish display low behavioral contrast detection thresholds. A) Relevant anatomy 
diagram showing the main brain areas considered. B) Top: EOD spectrogram (i.e., time varying power 
spectrum showing frequency as a function of time) obtained under baseline conditions (i.e., in the 
absence of stimulation but in the presence of the animal’s unmodulated EOD). We found that the 
frequency at which there is maximum power (i.e., the EOD frequency) fluctuated as a function of time, 
which was used to compute a response level (white dashed line) to determine whether behavioral 
responses obtained under stimulation were significantly above than those obtained in the absence of 
stimulation. Middle: Stimulus waveform (blue) and its envelope (red) showing contrast as a function of 
time. Bottom: EOD spectrogram in response to the stimulus. It is seen that the EOD frequency increases 
after stimulus onset. The detection threshold is the contrast corresponding to the earliest time after 
stimulus onset for which the EOD frequency was above the response level (black circle and white dashed 
line). Inset: Population-averaged detection threshold values for behavior (n = 35, brown). 
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4.4.2 – Peripheral EAs provide information about low contrasts through phase locking but not 

through firing rate  

We first recorded from peripheral EAs (Fig. 3A). EAs are characterized by high baseline firing 

rates in the absence stimulation within the range of 200-600 spk*s-1 (Gussin et al., 2007; Metzen 

and Chacron, 2015). Our dataset confirms these previous results as the baseline firing rates were 

all within this range (population average: 400.818.0 spk*s-1, n = 54, N = 5 fish). As done for 

behavior, we used the baseline activity of EAs to determine whether the observed neural activity 

was due to stimulation. We note that this is physiologically realistic as, in order to be detected, a 

stimulus must perturb the ongoing baseline activity of EAs. Overall, we found that EA activity 

was phase locked to the stimulus waveform for both low (Fig. 3B, left inset) and high (Fig. 3B, 

right inset) contrasts. Notably, for high contrasts, we observed stronger phase locking in that 

there was cessation of firing activity during some phases of the stimulus cycle (Fig. 3B, right 

inset). We quantified EA responses to stimulation using standard measures of firing rate (see 

Materials and methods) and phase locking (i.e., the vector strength [VS], see Materials and 

methods). Overall, the time-varying VS quickly became significantly different from baseline 

(i.e., in the absence of stimulation) after stimulus onset (Fig. 3B, dashed blue), leading to low 

phase locking detection threshold values (Fig. 3B, left black circle). However, the mean firing 

rate (Fig. 3B, solid blue) only became significantly different from baseline for larger contrasts, 

leading to higher firing rate detection threshold values (Fig. 3B, right black circle). We note that, 

while there is no complete dichotomy between phase locking and firing rate, our results above do 

show that it is possible to increase phase locking without increasing firing rate for low contrasts.   
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Fig 3. EAs reliably detect low-contrast stimuli through phase locking but not through overall changes 

in firing rate. A) Relevant anatomy diagram showing the main brain areas considered. Recordings were 

made from individual EAs. B) Top: Stimulus waveform (blue) and its envelope (red) showing contrast as a 

function of time. Middle: Spiking activity (black) from a representative example EA. The insets show 

magnification at two time points. In both cases, the spiking response is modulated. Bottom: Double y-

axis plot showing the mean firing rate (solid blue) and VS (dashed blue) of this EA as a function of time. 

The bands delimit the upper range of values determined from this EA activity in the absence of 

stimulation for VS (dark blue) and firing rate (light blue). The detection threshold obtained from VS 

(leftmost black circle) was much lower than that obtained from the mean firing rate (rightmost black 

circle). Inset: The population-averaged detection thresholds obtained from firing rate (left) was 

significantly higher than those obtained from VS (middle) and behavior (right) (Kruskal-Wallis, df = 2, FR-

VS: p = 2.6 × 10−9; FR-Behavior: p = 8.9 × 10−5). The population-averaged detection threshold obtained 

from VS was not significantly different than that obtained from behavior (Kruskal-Wallis, df = 2, p = 1). 

“*” indicates significance at the p = 0.05 level. 

 

Similar results were seen across our dataset in that EA phase locking thresholds were low 

and comparable to behavioral values (EA VS: 9.1% ± 1.1%, behavior: 8.8% ± 1.1%, Kruskal-
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Wallis, df = 2, p = 0.99), whereas those computed from firing rate were much higher than 

behavioral thresholds (38.2% ± 3.1%; Kruskal-Wallis, df = 2, p = 8.9 × 10−5; Fig. 3B, inset). 

Neural detection threshold values obtained were also robust to large changes in filter settings (S1 

Fig). Thus, our results show that, for low contrasts (i.e., <15%), EA firing rate modulations (i.e., 

phase locking) carry the information necessary to implement signal demodulation. However, 

such demodulation must occur downstream of EAs, as their mean firing rates were effectively 

unchanged relative to baseline conditions. For high contrasts (i.e., >40%), our results show that 

EAs implement signal demodulation, as their firing rates are then different from baseline. 

 

4.4.3 – ELL PCells provide downstream brain areas information about low contrasts through 

both their firing rates and phase locking  

We next recorded from the downstream targets of EAs: PCells within the ELL (Fig. 4A). ELL 

PCells have much lower baseline firing rates than EAs, which are typically within the 5–45 Hz 

range (Krahe et al., 2008). Baseline firing rates of our PCell data were all within this range 

(population average: 13.20.8 spk*s-1, n = 59, N = 27 fish). We found that, like EAs, ELL PCell 

spiking activity was phase locked to the stimulus shortly after stimulus onset (Fig. 4B, dashed 

green curve and Fig. 4B, insets). Phase locking was seen for both low and high contrasts in that 

spiking only occurred during a restricted portion of the stimulus cycle (Fig. 4B, compare left and 

right panels). However, PCells responded in a qualitatively different fashion than EAs in that 

their firing rates also became significantly different from baseline shortly after onset (Fig. 4B, 

solid green curve). Thus, firing rate detection threshold values for PCells were comparable to 

those found for behavior (PCells FR: 7.0% ± 0.9%; Kruskal-Wallis, df = 2, p = 0.23; Fig. 4B, 

bottom inset), whereas phase locking detection thresholds for PCells were significantly lower 

than firing rate and behavioral detection thresholds (VS: 3.9% ± 0.6%; Kruskal-Wallis, df = 2, 

FR-VS: p = 0.0054; VS-Behavior: p = 1.1 × 10−5; Fig. 4B, bottom inset). We further tested the 

relationship between neural and behavioral detection thresholds by plotting values obtained from 

neurons in different individual fish. Overall, there was a strong correlation between neural and 

behavioral detection threshold values (S2A Fig, n = 10, N = 10 fish, 3 repetitions each; r = 0.93; 

p = 4.6 × 10−7), indicating that neurons with low detection thresholds were primarily found in 

fish with low behavioral detection thresholds. There was, however, no correlation between the 
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trial-to-trial variabilities of neural and behavioral detection thresholds to repeated stimulus 

presentations (S2B Fig, n = 10, N = 10 fish, 3 repetitions each; r = −0.14; p = 0.48), indicating 

that fluctuations in the activity of a single ELL PCell do not significantly influence behavior. 

Overall, our results show that, for low contrasts (i.e., <15%), PCell phase locking and firing rate 

both carry information about contrast. As such, either phase locking or firing rate could be 

decoded by downstream brain areas in order to give rise to behavior.                

    

Figure 4. ELL PCell responses display low firing rate and phase locking detection threshold values that are 

comparable to behavior. A) Relevant anatomy diagram showing the main brain areas considered. 

Recordings were made from individual PCells. B) Top: Stimulus waveform (blue) and its envelope (red) 

showing contrast as a function of time. Middle: Spiking activity (black) from a representative example 

PCell. The insets show magnification at two time points. In both cases, the PCell activity strongly phase 

locked to the stimulus, but the average number of spikes per stimulus cycle increased with contrast. 

Bottom: Double y-axis plot showing the mean firing rate (solid green) and vector strength (dashed green) 

of this PCell as a function of time. The bands show the response levels determined from this PCell’s 
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activity in the absence of stimulation. The detection threshold obtained from firing rate (rightmost black 

circle) was similar to that obtained from vector strength rate (leftmost black circle). Inset: The 

population-averaged detection thresholds obtained from firing rate (left) were not significantly different 

from behavior (Kruskal-Wallis, df = 2, p = 0.23). The population-averaged detection thresholds obtained 

from vector strength (middle) were significantly lower compared to those obtained from firing rate or 

behavior (right) (Kruskal-Wallis, df = 2, FR-VS: p = 0.0054; VS-behavior: p = 1.1*10-5). 

 

4.4.4 – Feedback input to PCells causes increases in firing rate, while feedforward input causes 

increased phase locking for low contrasts 

Perhaps the simplest explanation for why PCells phase lock to stimuli with low contrasts is that 

they simply linearly integrate feedforward input from EAs, which are already phase locked to 

these. What then causes PCells to increase their firing rates in response to stimuli with low 

contrasts? Unlike the explanation above for increased phase locking, this cannot be due to linear 

integration of feedforward input from EAs. This is because our results show that, for low 

contrasts, EA firing rates are not significantly different from baseline values. One possibility is 

that increases in PCell firing rate result from nonlinear integration (e.g., half-wave rectification) 

of feedforward input from EAs. Another possibility is that increases in firing rate are due to 

feedback input. To determine the relative roles of feedforward and feedback inputs, we 

pharmacologically inactivated all feedback input onto ELL PCells by injecting lidocaine, a 

sodium channel antagonist, bilaterally into nP (n = 10 cells, N = 4 fish, see Materials and 

methods, Fig. 5A). Importantly, this manipulation does not alter feedforward input onto ELL 

PCells, since EAs do not receive feedback input. Thus, if increases in firing rate are due to 

feedforward input, then we would expect that PCell responses will be relatively unaffected and 

that the firing rate detection threshold will remain the same as under control conditions. If, on the 

other hand, increases in firing rate are due to feedback input, then we would expect that, after 

complete feedback inactivation, PCells will no longer respond to low-contrast stimuli through 

increases in firing rate, thereby significantly increasing the firing rate detection threshold.   

We found that complete feedback inactivation strongly altered ELL PCell responses to 

stimuli with increasing contrast (Fig. 5B). Indeed, PCell firing rate only became significantly 

different from baseline for much higher contrasts (Fig. 5B, middle, compare dark and light solid 

green curves). Consequently, PCell firing rate detection threshold values were much higher after 

feedback inactivation (control: 8.4% ± 2.9%; lidocaine: 29.7% ± 6.3%, Fig. 5B, middle inset). 
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We note that this was not due to changes in the integration of feedforward input, as phase 

locking was unaffected (Fig. 5b, bottom, compare dark and light dashed green curves). Indeed, 

phase locking threshold values were similar before and after complete feedback inactivation 

(control: 5.2% ± 2.1%; lidocaine: 5.1% ± 2.0%, Fig. 5B, bottom inset). We note that vehicle 

injection (i.e., saline) did not affect ELL PCell firing rate (n = 7, N = 3 fish, control: 9.4% ± 

1.0%; saline: 9.3% ± 0.7%, S3 Fig) or phase locking (control: 5.4% ± 1.7%; saline: 4.8% ± 

1.5%, S3 Fig) detection thresholds. Thus, while increases in PCell firing rate were no longer 

observed for low (<15%) contrasts after complete feedback inactivation, such inactivation did 

not affect phase locking. These results show that it is possible to alter firing rate without altering 

phase locking. We conclude that, during low-contrast stimulation, increased PCell firing rate is 

due to feedback input, while increased phase locking is instead due to feedforward input from 

EAs. 
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Figure 5. Feedback inactivation strongly increases PCell detection thresholds computed from firing rate 
but does not affect those computed from phase locking. A) Relevant anatomy diagram showing the main 
brain areas considered. Recordings were made from individual PCells while lidocaine, a sodium channel 
antagonist, was injected bilaterally into nP (top left inset), which will inactivate feedback input (red 
cross). B) Top: Stimulus waveform (blue) and its envelope (red) showing contrast as a function of time. 
Middle Top: Spiking activities of a representative example PCell before (dark green, top) and after (light 
green, bottom) feedback inactivation. The insets show magnification at two time points. PCell activity 
was strongly phase locked to the stimulus before and after feedback inactivation, indicating a strong 
response to feedforward input from EAs even for low stimulus contrasts. Middle bottom: Mean firing 
rates before (solid green) and after (light green) feedback inactivation. The detection threshold of this 
cell strongly increased after feedback inactivation (compare the position of the leftmost and rightmost 
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black circles). Inset: The population-averaged firing rate detection thresholds were significantly increased 
after feedback inactivation (Wilcoxon sign rank test, p = 0.0039). Bottom: Vector strength curves as a 
function of time before (solid green) and after (light green) feedback inactivation for this same cell. The 
phase locking detection thresholds (black circles) before and after feedback inactivation were similar to 
one another. Inset: The population-averaged phase locking detection threshold was not significantly 
altered by feedback inactivation (Wilcoxon sign rank test, p = 0.92). 

 

4.4.5 – Changes in PCell firing rate, but not phase locking, determine behavioral responses 

Our results so far show that the increase in PCell firing rate shortly after stimulus onset (i.e., to 

low contrasts) is due to feedback, while increased phase locking is instead due to feedforward 

input from EAs. As mentioned above, in theory, either PCell firing rate or phase locking could 

be used to determine behavioral responses. If the former, then increases in EOD frequency 

shortly after stimulus onset are due to increases in PCell firing rate. If the latter, then nonlinear 

integration of PCell input by downstream neurons would give the information necessary to drive 

behavior. To test which of PCell firing rate or phase locking is relevant for determining behavior, 

we investigated how complete feedback inactivation affected behavioral responses, as this 

manipulation does not affect ascending pathways from TS to higher brain areas mediating 

behavior (Fig. 6A). On the one hand, if phase locking is necessary to elicit behavior, then we 

would expect that feedback inactivation will not affect behavioral responses to low contrasts and 

thus that behavioral detection threshold values will be largely unaffected. On the other hand, if 

changes in PCell firing rate are necessary to elicit behavioral responses, then we would expect 

that feedback inactivation will cause cessation of behavioral responses to low contrasts, thereby 

increasing the behavioral detection threshold. 

We found that complete feedback inactivation gave rise to significant changes in 

behavioral responses (N = 15 fish). Indeed, behavioral responses to low contrasts (<15%) were 

no longer present, as the EOD frequency remained below the response level (Fig. 6B, compare 

light and dark brown curves). EOD frequency only became significantly different from baseline 

for much larger contrasts than under control conditions, leading to significantly larger behavioral 

detection threshold values (control: 12.2% ± 2.3%; lidocaine: 34.2% ± 6.3%, Wilcoxon sign rank 

test, p = 6.1 × 10−5, Fig. 6C, brown boxes). We note that vehicle injection (i.e., saline) did not 

significantly affect behavioral detection thresholds (N = 10 fish, control: 13.9% ± 1.5%; saline: 

14.1% ± 1.9%, S3 Fig). Thus, our results show that, for low contrasts, the information carried by 
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PCell phase locking is not decoded by downstream areas to determine behavior. Rather, it is the 

increase in PCell firing rate that is necessary to elicit behavioral responses. Interestingly, 

complete feedback inactivation increased PCell firing rate and behavioral detection thresholds to 

values that were similar to those obtained for the firing rate of single EAs (Fig. 6C). Thus, not 

only do our results show that feedforward input from EAs is sufficient to elicit changes in PCell 

firing rate for high (>40%) contrasts, but they also suggest that it is the changes in EA firing rate 

that are then necessary to elicit behavioral responses to high contrasts, rather than phase locking. 

We will return to this point below.  
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Figure 6. Feedback inactivation strongly increases behavioral detection thresholds. A) Relevant anatomy 

diagram showing the main brain areas considered. Behavioral responses were recorded before and after 

lidocaine, a sodium channel antagonist, was injected bilaterally into the nPs (top left inset), which will 

inactivate feedback input onto ELL PCells (red cross). B) Top: Stimulus waveform (blue) and its envelope 

(red) showing contrast as a function of time. Bottom: EOD frequency from a representative example 

individual fish before (dark brown) and after (light brown) feedback inactivation. The behavioral 

detection threshold strongly increased after feedback inactivation (compare the position of the leftmost 

and rightmost black circles). C) Whisker-box plots comparing population-averaged detection thresholds 

computed from behavior before (dark brown) and after (light brown) feedback inactivation to those 

obtained from PCells after feedback inactivation computed using firing rate (green, left) and phase 

locking (green, right) and to those computed from firing rate in EAs (blue). Overall, PCell firing rate was a 
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much better predictor of behavior than phase locking. The similarity of detection thresholds obtained 

from EA and PCell firing rate to that of behavior after feedback inactivation strongly suggests that, for 

low contrasts (<15%), phase locking in EAs is detected by PCells but is not decoded by downstream brain 

areas to give rise to behavior. “*” indicates significance at the p = 0.05 level using a Wilcoxon sign rank 

or Kruskal-Wallis test (behavior). 

 

4.4.6 – Closed-loop direct feedback input mediates changes in ELL PCell firing rate 

ELL PCells receive two sources of feedback input. One source originates directly from nP and 

forms a closed loop with ELL PCells, while the other instead originates indirectly from nP and 

goes through the eminentia granularis posterior (EGP) (S4 Fig). To test which pathway mediates 

changes in PCell firing rate responses, we performed two additional manipulations. The first was 

selectively blocking the indirect pathway by injection of 6-cyano-7-nitroquinoxaline-2,3-dione 

(CNQX) within the ELL, which did not significantly alter PCell firing rate or phase locking, as 

well as behavioral responses (S4 Fig). The second was to selectively inactivate direct feedback 

by injecting lidocaine unilaterally within the TS, which gave rise to similar changes in PCell 

activity as those observed with complete feedback inactivation (compare S5 Fig to Fig. 5). Thus, 

these results show that it is closed-loop feedback that causes increases in PCell firing rate in 

response to low-contrast stimuli.   

 

4.4.7 – nP stellate cells providing direct feedback input to ELL pyramidal cells increase their 

firing rates with increasing contrast 

How does closed-loop feedback input enable increases in PCell firing rate for low-stimulus 

contrasts? To answer this question, we recorded from nP STCells (n = 10, N = 3 fish) that 

provide direct feedback input to ELL PCells in response to increasing contrast (Fig. 7A). We 

used previously established criteria (Bratton and Bastian, 1990) to identify STCells (S6 Fig). 

Overall, STCells were mostly silent in the absence of stimulation and started firing shortly after 

stimulus onset (Fig. 7B, bottom, solid orange line). Overall, their firing rate detection thresholds 

were comparable to those of PCells under control conditions as well as behavior (STCells: 4.6% 

± 0.7%, min: 2.0%, max: 7.6%; Fig. 7B, inset). We also found that STCells phase locked to the 

stimulus at the onset of firing (Fig. 7B, bottom, dashed orange line). Consequently, their phase 

locking detection thresholds were also low (6.5% ± 0.9%; Fig. 7B, inset). Thus, our results show 
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that STCells, by increasing their firing activity in response to low-contrast stimuli, provide the 

necessary input to drive increases in ELL PCell firing rates.  

                      

Figure 7. STCells within nP display low detection thresholds that are comparable to behavior. A) Relevant 

anatomy diagram showing the main brain areas considered. Recordings were made from individual 

STCells. B) Top: Stimulus waveform (blue) and its envelope (red) showing contrast as a function of time. 

Middle: Spiking activity from a representative STCell. The insets show magnification at two time points. 

In both cases, the STCell activity strongly phase locked to the stimulus, but the average number of spikes 

per stimulus cycle increased with contrast, similar to that observed for PCells under control conditions. 

Bottom:  Double y-axis plot showing the mean firing rate (solid orange) and vector strength (dashed 

orange) of this STCell as a function of time. The band shows the response levels determined from this 

STCell’s firing rate in the absence of stimulation. Because STCells tended to not fire action potentials in 

the absence of stimulation, it was not possible to compute a threshold level for the vector strength. The 

vector strength detection threshold (upper black circle) was thus set to the lowest contrast for which the 

STCell reliably fired action potentials for at least 5 consecutive stimulus cycles (see Methods). Inset: The 

population-averaged detection thresholds obtained from firing rate (left) and vector strength (middle) 

were not significantly different from one another of from behavior (Kruskal-Wallis, df = 2; FR-VS: p = 

0.51; FR-behavior: p = 0.06; VS-behavior: p = 1). 
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4.4.8 – Summary  

Fig. 8 shows the proposed contributions of feedforward and feedback inputs towards determining 

behavioral responses to increasing stimulus contrast. Overall, EAs phase lock to low contrasts, 

which causes ELL PCells to in turn phase lock to these. While the information carried by PCell 

phase locking is necessary to extract the contrast (i.e., implement signal demodulation), our 

results show that this information is not directly decoded by downstream brain areas to give rise 

to behavior (Fig. 8A). Rather, PCell phase locking is integrated via a closed-feedback loop that is 

necessary to elicit increases in PCell firing rate for low contrasts, which in turn elicit behavioral 

responses. For high contrasts, and in the absence of feedback, our results suggest that it is 

changes in EA firing rate that is carried over to ELL pyramidal cells, which in turn elicit 

behavioral responses (Fig. 8B). 



101 
 

                                                    

Figure 8. Summary of results. A) Relevant circuitry showing ELL PCells receiving feedforward input from 
EAs and projecting to TS. It is assumed that some neurons within TS decode information carried by PCell 
firing rate and in turn project to higher brain areas to give rise to behavior. It is further assumed that a 
separate group of neurons within TS project back to ELL via nP STCells and receive phase locking 
information from PCells, thereby forming the closed feedback loop that is necessary to elicit increases in 
firing rate and behavioral responses to low contrasts. B) Summary of the relative contributions of 
feedback and feedforward inputs towards determining behavioral responses as a function of contrast. 
For low contrasts (<15%) and under control conditions, feedback is necessary to elicit changes in PCell 
firing rate and behavior. However, for higher (>30%) contrasts, feedforward input is sufficient to elicit 
increases in PCell firing rate and behavior. This is because our results show that, after complete feedback 
inactivation, both PCell and behavior tended to be only elicited for contrasts for which EAs increased 
their mean firing rates.  
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4.5 – Discussion 

4.5.1 – Summary of results 

Here, we investigated how weakly electric fish process and perceive stimuli with different 

contrasts. Contrary to previous studies, we focused specifically on behavioral responses and the 

underlying neural mechanisms to low (<15%) contrasts. We found that behavioral detection 

thresholds were low on average (9%). Overall, peripheral EAs responded through phase locking 

and thus transmitted the necessary information to extract contrast to downstream areas. However, 

changes in EA firing rate were only elicited for much higher (approximately 40%) contrasts. 

ELL PCells receiving input from EAs responded to low contrasts through both increased phase 

locking as well as firing rate: the detection threshold values computed from either were lower 

than those for EAs (7% and 4%, respectively) and matched behavior (9%). Pharmacological 

inactivation of feedback input revealed that, while such input was necessary to elicit increases in 

firing rate for low contrasts, increases in phase locking were caused by feedforward input from 

EAs. Analysis of behavioral responses after feedback inactivation revealed that it was changes in 

PCell firing rate and not phase locking that determined behavior. Finally, we recorded from nP 

STCells that provide direct feedback input to PCells. STCells increase their firing activity shortly 

after stimulus onset and thus displayed low detection thresholds (5%) that matched those of 

PCells and behavior under control conditions. Our results thus provide the first experimental 

evidence showing that feedback is necessary to give rise to neural and behavioral responses to 

weak sensory input that would not be detected otherwise. 

 

4.5.2 – Direct feedback generates neural responses to low contrasts 

Our results show that behavioral and ELL PCell firing rate responses to low contrasts are 

generated because of closed-loop feedback. These results have strong implications for the 

electrosensory system as well as other systems, as described below. We note that information 

about low-stimulus contrast is carried by PCell phase locking and is due to feedforward input 

from EAs and does not require feedback. Theoretical studies have shown that it is possible to 

directly extract this information (e.g., by performing a nonlinear operation such as half-wave 

rectification followed by low-pass filtering (Rosenberg and Issa, 2011)). However, our results 
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show that downstream brain areas that mediate behavior do not decode information carried by 

PCell phase locking. This is because we showed that feedback inactivation strongly increased 

behavioral thresholds but did not alter PCell phase locking. We also note that some EAs 

displayed firing rate detection thresholds (approximately 2%) that are lower than those obtained 

at the organismal level (approximately 9%). The input from these EAs could theoretically be 

used to elicit behavioral responses to low contrasts. Moreover, as EAs display negligible 

correlations between their baseline firing rate variabilities (Chacron et al., 2005b; Metzen et al., 

2016a; Metzen et al., 2015), it is then theoretically possible to improve the signal-to-noise ratio 

(SNR) by linearly integrating their activities (Zohary et al., 1994). Anatomical studies have 

shown that the PCells considered here receive input from many (600-1400) EAs (Maler, 2009a), 

which should give rise to substantial improvement in SNR, according to theory. However, it is 

unlikely that the lower firing rate thresholds of PCells are due to either selectively responding to 

input from the most sensitive EAs or to improving the SNR. This is because our results show 

that, under complete feedback inactivation, PCell firing rate threshold values were similar to 

those of single EAs (40%). We hypothesize that this is because heterogeneities within the EA 

population counteract the potential beneficial effects of summing afferent activities. Indeed, 

previous studies have shown that EAs display large heterogeneities, particularly in terms of their 

baseline firing rates (Gussin et al., 2007), which can strongly influence how they respond to 

envelopes (Metzen and Chacron, 2015). 

It is well known that ELL pyramidal cells receive both direct and indirect sources of 

feedback (Berman and Maler, 1999). However, the functional role of the direct pathway has 

remained largely unknown until recently (Clarke and Maler, 2017). Indeed, previous studies 

have hypothesized that this pathway could act as a sensory searchlight that enhances salient 

features of sensory input as originally hypothesized by Crick (Crick, 1984). Our results provide 

the first experimental evidence that such feedback serves to generate sensory neural responses 

and perception of behaviorally relevant features of sensory input that would otherwise not be 

processed in the brain, which is in line with this hypothesis. In particular, nP STCells providing 

direct feedback input to ELL PCells have firing properties that are ideally suited for detecting 

low contrasts. Indeed, these cells display little to no spiking activity in the absence of stimulation 

(Bratton and Bastian, 1990), which is unlike ELL PCells (Bastian and Nguyenkim, 2001a; 

Saunders and Bastian, 1984) or multipolar cells that instead give rise to indirect feedback input 
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onto ELL pyramidal cells (Bastian and Bratton, 1990). Our results suggest that it is the increase 

in firing rate of STCells that is likely needed to increase PCell firing rate to low contrasts, 

thereby eliciting behavioral responses. We note that our results show that feedback plays an 

active role in generating increases in PCell firing rate, rather than changing how they integrate 

feedforward input. This is because PCell phase locking was unaffected by feedback inactivation, 

strongly suggesting that the response to feedforward input is similar under both conditions. This 

novel function for feedback is thus quite different than previously uncovered functions for 

feedback input such as gain control (Bastian, 1986a). We further note that our stimuli consisting 

of a sinusoidal waveform whose amplitude increases with time will roughly mimic the spatially 

diffuse AM stimulation caused by a looming conspecific (Yu et al., 2012a). The resulting 

stimulation is quite different than that caused by a looming object (e.g., a prey), which instead 

gives rise to spatially localized stimulation consisting of changes in EOD amplitude with no 

envelope. However, we note that a spatially localized envelope would be also generated if an 

oscillating motion would be superimposed on top of the looming motion. A previous study has 

shown that the direct feedback pathway played an important role in determining neural responses 

to receding but not looming objects (Clarke and Maler, 2017), strongly suggesting that responses 

to looming objects are primarily determined by feedforward input. Here, we have instead shown 

that the direct feedback pathway generates neural and behavioral responses to stimuli mimicking 

a looming conspecific. While previous studies have shown that lateral motion can give rise to 

changes in EOD frequency (Carlson and Kawasaki, 2007), how looming objects affect EOD 

frequency should be the focus of future studies.  

An important question pertains to how feedback generates increased PCell firing rate 

responses to low contrasts. Such studies will require recording from the TS neurons that receive 

input from ELL PCells and project back to nP STCells. Previous studies have shown that there 

are about 50 cell types within the TS (Carr and Maler, 1985; Carr and Maler, 1986) that display 

highly heterogeneous responses to electrosensory stimulation (Chacron and Fortune, 2010; 

Chacron et al., 2009; Khosravi-Hashemi and Chacron, 2012; Khosravi-Hashemi et al., 2011; 

Sproule and Chacron, 2017; Sproule et al., 2015; Vonderschen and Chacron, 2011). In particular, 

some cell types in TS (i.e., so-called ON-OFF neurons) respond selectively to stimulus contrast 

because of balanced input from ON- and OFF-type ELL PCells (McGillivray et al., 2012). 

Specifically, these neurons respond to both increases and decreases in the stimulus and are thus 
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ideal to generate behavioral responses. This is because they will simply increase their firing rates 

with increasing contrast (see (Stamper et al., 2013) for review). Other cell types within TS 

respond to contrast in a manner similar to that of ELL PCells (i.e., through changes in phase 

locking and firing rate) (McGillivray et al., 2012). We hypothesize that it is these latter neurons 

that project back to nP and provide input to STCells. It is, however, important to note that all 

previous studies of TS neural responses used high contrasts. As such, future studies that are 

beyond the scope of this paper are needed to understand how different cell types within TS 

respond to the low contrasts considered here and mediate both ELL PCell and behavioral 

responses to these. Such studies should focus on brain areas downstream of TS, where it is 

expected that variability in the responses of single neurons would correlate with behavior, as 

observed in other sensory modalities (Pitkow et al., 2015). 

What is the relationship between our observed behavioral responses to stimuli with time-

varying contrasts and those previously observed using stimuli with constant contrasts? Previous 

studies have focused on studying the JAR behavior in response to stimuli with constant contrast. 

In particular, the JAR and the underlying neural circuitry have been extensively studied in the 

weakly electric fish species Eigenmannia virescens (Heiligenberg, 1991). This species shows 

exquisite sensitivity to AM stimuli, as these generate behavioral responses with contrasts as low 

as 0.1% (Carlson and Kawasaki, 2007). The JAR behavior in Apteronotus is less sensitive than 

for Eigenmannia (Dye, 1987), which is most likely due to the fact that the former species is less 

gregarious than the latter (Hagedorn, 1986; Hagedorn and Heiligenberg, 1985; Stamper et al., 

2010). Further, there are important differences between the JAR behavior as well as the 

underlying neural circuitry in Apteronotus and Eigenmannia that have been reviewed extensively 

(Heiligenberg et al., 1996; Metzner, 1999; Rose, 2004). Most notably, Apteronotus tend to 

always increase their EOD frequency in response to low-frequency jamming stimuli with 

constant amplitude, which does not require the presence of PMs (Bastian et al., 2001; Zakon et 

al., 2002). Specifically, the EOD frequency will rise and saturate to a higher value. What is the 

role of feedback input onto ELL PCells in determining the JAR behavior? Previous studies have 

shown that lesioning both indirect and direct feedback onto ELL PCells increases their phase 

locking responses to low-frequency sinusoidal stimuli for high but not for low contrasts (Bastian, 

1986a). Further studies have shown that this effect was mediated primarily, if not exclusively, by 

the indirect feedback pathway (Bastian et al., 2004; Chacron et al., 2005c). Our results showing 
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that selectively blocking the direct pathway does not alter phase locking in ELL PCells are 

consistent with these. Although the effects of complete feedback inactivation on the JAR have, to 

our knowledge, not been tested in Apteronotus, manipulations that enhanced phase locking by 

ELL PCells to low-frequency stimuli also led to an enhanced JAR (i.e., a greater increase in 

EOD frequency) (Deemyad et al., 2013). We thus predict that complete feedback inactivation 

would enhance the JAR and that this would be primarily, if not exclusively, due to the indirect 

pathway. If true, then this would imply that the role of feedback in determining JAR behavior in 

response to stimuli with constant contrast and our observed behavioral responses to stimuli with 

time-varying contrasts are qualitatively different. While the indirect feedback pathway is 

involved in determining the JAR magnitude via gain control, we have instead shown here that 

the direct feedback pathway is necessary in order to elicit increases in ELL PCell firing rate that 

in turn elicit increases in EOD frequency. It is nevertheless possible that the direct pathway could 

play a role in generating the initial increase in EOD frequency during the JAR, or in setting the 

latency. Further studies are needed to test these predictions. 

Finally, our results show that feedback is only necessary to generate neural and 

behavioral responses to low contrasts. Indeed, our results show that EAs will change their firing 

rates for high (>40%) contrasts, which are then sufficient to elicit changes in PCell firing rate 

and, in turn, behavioral responses. An important question is thus: why generate responses to low 

contrasts through feedback when such responses could, in theory, be generated by feedforward 

pathways? To answer this question, one must first consider that the sinusoidal stimuli with 

different contrasts considered here, while behaviorally relevant, are by no means the only 

behaviorally relevant stimuli that must be encoded by the electrosensory system. For example, 

prey stimuli (Nelson and MacIver, 1999) as well as intraspecific communication stimuli (Marsat 

et al., 2012) must also be encoded. Secondly, one must consider the actual mechanism by which 

EAs can encode contrast, which involves static nonlinearities (e.g., rectification and/or 

saturation) during which the firing activity is constant and thus cannot encode sensory input. 

Thus, responses to envelopes in EAs comes at a cost. This is because these neurons then cannot 

respond as well to other sensory input, as the firing rate is constant (either at zero or at its 

maximum value) for some portion of the stimulus. We thus hypothesize that generating 

responses to low contrast at the level of feedback pathways does not compromise ELL PCell 

responses to other behaviorally relevant sensory input (e.g., caused by prey). While further 
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studies are needed to test this hypothesis, we note that ELL PCells display large heterogeneities, 

with some PCells receiving much less feedback than others (Bastian et al., 2004; Bastian and 

Nguyenkim, 2001b). It is also conceivable that these latter PCells, which also project to higher 

brain areas, help mediate perception of other behaviorally relevant stimuli. 

 

4.5.3 – Implications for other sensory systems 

Processing of AMs is behaviorally relevant in multiple sensory modalities (auditory: (Joris et al., 

2004); visual: (Mareschal and Baker, 1998); vestibular: (Carriot et al., 2017; Metzen et al., 

2015); somatosensory: (Lundstrom et al., 2010; Lundstrom et al., 2008)). As mentioned above, 

AMs found in natural auditory stimuli (e.g., speech) are particularly necessary for perception 

(Shannon et al., 1995; Shannon et al., 1998). There exist important parallels between processing 

of amplitude-modulated stimuli in both the auditory and electrosensory systems. Our results 

show that behavioral detection thresholds in weakly electric fish (approximately 9%) are similar 

to those found in the auditory system (approximately 4%) (Klump and Okanoya, 1991; 

Kohlrausch et al., 2000; Viemeister, 1979). The processing of amplitude-modulated sounds by 

the auditory system has been extensively studied. In particular, single peripheral auditory fibers 

will respond to AMs because of phase locking (Joris and Yin, 1992) with the most sensitive 

neurons displaying detection thresholds that are similar to perceptual values (Klump and 

Okanoya, 1991) (see (Joris et al., 2004) for review). Sensitivity to AMs also increases in higher-

level areas (e.g., cochlear nuclei, inferior colliculus, auditory cortex) (Joris et al., 2004; Krishna 

and Semple, 2000; Malone et al., 2010; Sayles et al., 2013; Zhao and Liang, 1997). Thus, it has 

been commonly assumed in the auditory system that the lower detection thresholds seen 

centrally are the result of integration of afferent input from the periphery, as predicted from 

mathematical models (Hewitt and Meddis, 1994; Wang and Sachs, 1995). We hypothesize that 

the lower detection thresholds seen in more central areas are instead due to feedback. Further 

studies investigating the effects of feedback onto central auditory neurons are needed to validate 

this hypothesis.  

Finally, we note that it is frequently assumed that behavioral responses are determined by 

feedforward integration of afferent input (Liu et al., 2013; Pitkow and Angelaki, 2017; Pitkow et 

al., 2015). However, anatomical studies in several systems have shown that feedback projections 



108 
 

from higher centers often vastly outnumber feedforward projections from the periphery (Cajal, 

1909; Hollander, 1970; Ostapoff et al., 1990; Sherman and Guillery, 2002), and a recent review 

has highlighted the need for further studies focusing on the role of feedback projections in 

determining how sensory information gives rise to behavioral responses (Cumming and 

Nienborg, 2016). Previous studies have demonstrated that feedback is involved in predictive 

coding (Meyer and Olson, 2011; Meyer et al., 2014; van Kerkoerle et al., 2014) (see (Bastos et 

al., 2012) for review) or combined with feedforward input in order to amplify neuronal responses 

(Hupe et al., 1998). Instead, we provide here the first experimental evidence that closed-loop 

feedback actually generates responses to and perception of weak or low-intensity sensory input.   

Our results are thus timely in that they show for the first time how feedback pathways mediate 

sensory neural responses to and perception of behaviorally relevant stimulus features. Important 

commonalities between the electrosensory system and the visual, auditory, and vestibular 

systems of mammals (see (Bullock et al., 2005; Clarke et al., 2015) for review) suggest that 

similar mechanisms will be found in these systems as well. 
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Chapter 5 

 

Feedback plays an essential role in optimizing neural 

responses and behavioural perception of second-order 

natural stimuli 

 

Chapter 4 outlines how important it is to have feedback in generating envelope responses, 

particularly at low stimulus intensities, which occur frequently in the fish’s natural environment. 

While we now know that this is mainly due to the effect of the direct feedback, it raises the 

question of what the indirect feedback is actually doing in regards to envelope responses. In this 

chapter, we therefore set out to observe frequency tuning to movement envelopes to elucidate 

exactly how feedback can give rise to the high-pass tuning that perfectly opposes the stimulus 

statistics seen in pyramidal cells to lead to temporal whitening. We hypothesized that the indirect 

feedback pathway plays a similar role as their effects on first-order AM stimuli such that they 

would attenuate the lower second-order envelope frequencies to give rise to high-pass tuning. To 

confirm this, we additionally recorded from neurons in the nP directly in order to validate our 

predictions. This chapter is adapted from: Chengjie G. Huang, Michael G. Metzen, Maurice J. 

Chacron. Feedback optimizes neural coding and perception of natural stimuli. This manuscript is 

currently under review at eLife. 

5.1 – Abstract  

A common assumption in systems neuroscience is that sensory neurons achieve optimal 

encoding by matching their tuning properties to the statistical structure of natural stimuli. 

However, the nature of the underlying mechanisms remains unclear. Here we demonstrate that 

feedback pathways originating from higher brain areas mediate optimized coding of natural 

stimuli via temporal whitening. Specifically, direct descending input enhances sensory neural 
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responses independently of frequency while indirect descending input instead selectively 

attenuates neural responses to low frequencies. The combined effect of descending direct and 

indirect pathways is thus to generate a high-pass neural tuning curve that opposes the decaying 

spectral power content of natural stimuli in order to optimize their encoding. Finally, we 

recorded from two populations of higher brain neurons giving rise to both direct and indirect 

descending inputs. While one population displayed broadband tuning, the other instead displayed 

high-pass tuning and performed temporal whitening. Thus, our results demonstrate a novel 

function for descending input in optimizing neural responses to sensory input through temporal 

whitening that is likely to be conserved across systems and species.  

5.2 – Introduction  

How sensory neurons process incoming sensory input thereby leading to perception and behavior 

remains a central question in systems neuroscience. There is growing evidence showing that 

neural systems can efficiently process natural sensory input by matching their tuning properties 

to natural stimulus statistics, thereby removing redundancy and thus maximizing information 

transmission (Brenner et al., 2000; Fairhall et al., 2001; Maravall et al., 2007). Theory posits that 

efficient coding is achieved by ensuring that the neural tuning function is inversely proportional 

to stimulus intensity as a function of frequency, thereby achieving a neural response whose 

amplitude is independent of frequency (Rieke et al., 1996). While such “whitening” has been 

observed across species and systems (Dan et al., 1996; Huang et al., 2016; Pitkow and Meister, 

2012; Pozzorini et al., 2013; Wang et al., 2003), the nature of the underlying mechanisms 

remains unclear.  

Weakly electric fish offer an attractive model system for studying the mechanisms 

underlying optimized coding of natural stimuli because of well-characterized anatomy and 

physiology (Berman and Maler, 1999; Chacron et al., 2011; Clarke et al., 2015). These fish 

generate a quasi-sinusoidal signal called the electric organ discharge (EOD) around their body, 

thereby allowing them to explore the environment and communicate with conspecifics. When 

two conspecifics are located close (<1 m) to one another, each fish experiences an amplitude 

modulation of its own EOD (i.e., a beat or first-order) whose amplitude (i.e., envelope or second-

order) is a function of the distance and relative orientation between two conspecifics (Fotowat et 

al., 2013; Yu et al., 2012a) (see (Stamper et al., 2013) for review. Natural electrosensory 
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envelopes due to movement measured in freely moving animals display scale invariance in that 

their spectral power decays as a power law as a function of increasing temporal frequency 

(Fotowat et al., 2013; Metzen and Chacron, 2014). Furthermore, information as to their detailed 

timecourse is retained in the brain in order to give rise to behavioral responses (Metzen and 

Chacron, 2014). Envelopes and other electrosensory stimuli are sensed by electroreceptor 

afferents (EAs) that are scattered over the animal’s skin. EAs project to pyramidal cells within 

the electrosensory lateral line lobe (ELL) which in turn project to higher brain structures, thereby 

giving rise to behavior.  

While ELL pyramidal cell responses to beats and other first-order electrosensory stimuli 

are well characterized (see (Chacron et al., 2011; Clarke et al., 2015; Huang and Chacron, 2017; 

Krahe and Maler, 2014; Marsat et al., 2012) for review), comparatively much less is known 

about their responses to envelopes (Huang and Chacron, 2017; Middleton et al., 2006; Stamper 

et al., 2013). Moreover, all ELL pyramidal cells respond to envelopes, and their frequency tuning 

curves are determined by type 1 small conductance calcium-activated potassium (SK1) channels 

(see (Huang and Chacron, 2017) for review). Specifically, cells with large SK1 channel 

expression performed significant filtering of envelopes, as evidenced from high-pass tuning 

curves (Huang and Chacron, 2016) that effectively oppose the decaying spectral power content 

of natural envelopes, thereby making the resulting response independent of frequency (i.e., 

temporally whitened) (Huang and Chacron, 2016; Huang et al., 2016; Martinez et al., 2016; 

Zhang and Chacron, 2016). In contrast, cells with small or no SK1 channel expression performed 

minimal filtering of envelopes, as evidenced from broadband tuning curves (Huang and Chacron, 

2016) that resembled those of EAs (Metzen and Chacron, 2015), and did not display temporally 

whitened responses to natural envelopes (Huang and Chacron, 2016). While previous studies 

have shown that SK1 channels are necessary to mediate temporal whitening of natural envelope 

stimuli by ELL pyramidal cells, the nature of the underlying mechanisms remains unknown to 

this day. One possibility is that, through SK1 channels, pyramidal cells filter incoming ascending 

input from EAs (i.e., feedforward) in order to achieve temporal whitening of natural envelopes, 

which is supported by modeling predictions (Huang et al., 2016). However, pyramidal cells also 

receive large amounts of descending inputs (i.e., feedback) from higher brain centers which 

emanate from the nucleus praeeminentialis (nP) (Berman and Maler, 1999; Sas and Maler, 1983, 
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1987). Thus, another possibility is that optimized coding of envelopes results from processing of 

descending (i.e., feedback) input by ELL pyramidal cells.  

Here we used a systems level approach to investigate how feedback input mediates 

optimized processing of natural envelope stimuli by ELL pyramidal cells. Pharmacological 

inactivation of both direct and indirect sources of descending input strongly reduced pyramidal 

cell and behavioral responses to envelopes. However, pyramidal cell responses to high 

frequencies were relatively more attenuated than those at low frequencies, such that the resulting 

tuning was no longer high-pass but independent of frequency, which compromised optimized 

coding of natural stimuli by temporal whitening. In contrast, pharmacological inactivation of the 

indirect feedback pathway strongly increased both pyramidal cell and behavioral sensitivity to 

envelopes. However, enhancement was primarily seen for low envelope frequencies, such that 

the resulting pyramidal cell tuning curve was broadband, which also compromised optimized 

coding of natural stimuli by temporal whitening. Finally, we recorded from two different groups 

of nP neurons that project either directly or indirectly back to ELL pyramidal cells. The former 

displayed broadband envelope frequency tuning curves and thus did not perform temporal 

whitening. In contrast, the latter displayed high-pass envelope frequency tuning curves that 

effectively opposed the decaying envelope stimulus spectral power content, thereby enabling 

temporal whitening. Our results demonstrate clear but distinct functional roles for the direct and 

indirect feedback pathways in determining how ELL pyramidal cells respond to envelopes. 

While the direct pathway enhances responses to envelopes independently of frequency, the 

indirect pathway instead selectively attenuates responses to low frequencies, thereby giving rise 

to the high-pass tuning that is necessary to optimize coding of natural envelopes via temporal 

whitening. Interestingly, our results also show that indirect feedback input to ELL is already 

temporally whitened. Our results thus demonstrate an important new function for descending 

input onto sensory neurons in optimizing their responses to natural stimuli and their perception at 

the organismal level. 

5.3 – Methods  

5.3.1 – Animals  

The wave-type weakly electric fish Apteronotus leptorhynchus was used exclusively in the 

present study. Fish were supplied by tropical fish suppliers and were housed in groups of 2-10 at 
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appropriate water temperatures and water conductivities similar to their natural habitats 

according to published guidelines (Hitschfeld et al., 2009). All procedures were approved by 

McGill University’s animal care committee and were performed in accordance to the guidelines 

set out by the Canadian Council of Animal Care. 

5.3.2 – Surgery 

0.1-0.5 mg of tubocurarine (Sigma) was injected intramuscularly in order to immobilize the fish 

for both electrophysiology and behavioral experiments. Experiments were performed in a tank 

(30 cm x 30 cm x 10 cm) filled with the fish’s home tank water. The fish were respired using a 

constant flow of 10 mL/min of oxygenated water over its gills for the duration of the experiment. 

A 2 mm2 hole was then exposed over either the hindbrain and/or midbrain near T0 to gain access 

to either ELL pyramidal neurons or nP neurons respectively for electrophysiology and/or drug 

injection. Bilateral exposure of the brain was performed for experiments requiring bilateral drug 

injections.   

5.3.3 – Stimulation 

The electric organ discharge of A. leptorhynchus is neurogenic, and therefore is not affected by 

injection of curare. All stimuli consisting of AMs of the animal’s own EOD were produced by 

triggering a function generator to emit one cycle of a sine wave for each zero crossing of the 

EOD as done previously (Bastian et al., 2002). The frequency of the emitted sine wave was set 

slightly higher (30 – 40 Hz) than that of the EOD, which allowed the output of the function 

generator to be synchronized to the animal’s discharge. The emitted sine wave was subsequently 

multiplied with the desired AM waveform (MT3 multiplier; Tucker Davis Technologies), and 

the resulting signal was isolated from ground (A395 linear stimulus isolator; World Precision 

Instruments). The isolated signal was then delivered through a pair of chloridized silver wire 

electrodes placed 15 cm away from the animal on either side of the recording tank perpendicular 

to the fish’s rostro-caudal axis. Depending on polarity, the isolated signal either added or 

subtracted from the animal’s own discharge. The resultant signals which arrives at the fish’s skin 

was approximated using a dipole with 1 mm of distance between the two poles to simulate what 

the electroreceptors would pick up. 



114 
 

Both neural and behavioral experiments utilized stimuli consisting of a 5 – 15 Hz noise 

(4th order Butterworth) carrier waveform (i.e., AM) whose amplitude was further modulated (i.e., 

envelope) at frequencies ranging from 0.05 – 1 Hz, a behaviorally relevant range of frequencies 

which mimicked the envelope signals due to relative movement between two fish (Metzen and 

Chacron, 2014; Stamper et al., 2013). The depth of modulation for the envelope was 

approximately 20% of the baseline EOD amplitude as in previous studies (Deemyad et al., 2013; 

Metzen and Chacron, 2017; Metzen et al., 2016a). This was confirmed using the dipole recording 

mentioned above.  

We note that movement envelopes, which are the focus of the current study, are 

fundamentally different than so-called “social” envelopes that are instead due to interaction 

between the EODs of three of more fish (Stamper et al., 2013) and which have been the focus of 

previous studies (McGillivray et al., 2012; Middleton et al., 2006; Savard et al., 2011; Stamper et 

al., 2012). Indeed, for social envelopes, the frequency content of the envelope is mostly 

determined by the frequencies of the three EODs. This is because the envelope frequency is 

given by the difference between the two resulting beat frequencies. In contrast, for movement 

envelopes occurring during interactions between two conspecifics, the envelope frequency 

content is not determined by the two EOD frequencies or the resulting beat frequency. Rather, it 

is determined solely by the relative movements of both fish (Fotowat et al., 2013; Metzen and 

Chacron, 2014). We further note that field studies have shown that Apteronotid species tend to 

encounter movement envelopes much more frequently than social envelopes: this is because they 

tend to be found in groups of 2 much more frequently than in groups of 3+ (Stamper et al., 

2010). It is expected that social envelopes will be more relevant for weakly electric fish species 

that tend to be more gregarious (e.g., Eigenmannia virescens).  

5.3.4 – Pharmacology 

The composition of the vehicle/control saline was as follows: (all chemicals were obtained from 

Sigma): 111 mM NaCl, 2 mM KCl, 2 mM CaCl2, 1 mM MgSO4, 1 mM NaHCO3 and 0.5 mM 

NaH2PO4. The pH of the saline solution was 6.8. Glutamate (Sigma), lidocaine (Astra 

Pharmaceuticals) and CNQX 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, Sigma) were 

dissolved in saline for application as done before (Deemyad et al., 2013; Huang et al., 2016). 

Drug application electrodes were made using either two-barrel KG-33 glass micropipettes (OD 
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1.5 mm, ID 0.86 mm, A-M Systems) pulled by a vertical micropipette puller (Stoelting Co.) or 

single barrel pipettes to a fine tip and subsequently broken to attain a tip diameter of ~5 μm for 

each barrel.  

The two barrel pipettes were used for separate application of either lidocaine (1 mM) or 

CNQX (1 mM), as well as glutamate (1 mM) or saline. In order to block the indirect feedback, 

we injected CNQX into the ELL in proximity of a pyramidal neuron we were recording from, 

which we confirmed by using the excitatory response to glutamate application, as done 

previously (Deemyad et al., 2013). We also blocked the indirect feedback pathway by injecting 

lidocaine into the praeeminential electrosensory tract (PET) (behavior: bilateral; neurons: 

ipsilateral) projecting to the ipsilateral EGP rostral to ELL, as done previously (Bastian, 1986a). 

We then compared ELL neural and behavioral responses before and after injection. In order to 

block both the direct and indirect feedback pathways, we instead inserted two pipettes containing 

lidocaine into both the ipsilateral and contralateral nPs. Again, both ELL neural and behavioral 

responses were compared before and after injection. Bilateral injections of lidocaine were 

performed in order to completely silence the respective feedback pathways to directly observe 

the effect on neural responses and behavior, as done previously (Deemyad et al., 2013; Huang et 

al., 2016). In some cases, lidocaine was injected into the contralateral nP while recording from a 

pyramidal cell within the ipsilateral ELL (Figure S1). Saline controls were performed in the nP 

and we observed that there was no effect of the microinjection itself on either electrophysiology 

or behavior (see Figure S2). All pharmacological injections were performed using a duration of 

130 ms at 103 - 138 kPa using a Picospritzer (General Valve). 

5.3.5 – Electrophysiology 

We used well-established techniques to perform extracellular recordings with Woods metal 

electrodes from pyramidal cells (Frank and Becker, 1964) located within the lateral segment of 

the ELL based on recording depth and mediolateral placement of the electrode on the brain 

surface as done previously (Huang and Chacron, 2016; Krahe et al., 2008). We recorded 

pyramidal cells for control in conjunction with their responses after either lidocaine (nP 

injections: n = 7; PET injections: n = 9), CNQX (n = 8), or saline (n = 8) injections. In addition, 

by tailoring the tip shape of our Woods metal electrodes, we also performed extracellular 

recordings from nP stellate (n = 11) and multipolar cells (n = 8) in the midbrain. We confirmed 
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the identity of each cell type based on recording depth, spontaneous baseline firing rates, and 

AM tuning curves (see Fig. S7). While stellate cells have low spontaneous firing rates 

(1.37±0.42 Hz) and do not respond to high AM frequencies, multipolar cells have high 

spontaneous firing rates (55.53±8.05 Hz and do respond well to high AM frequencies >32 Hz. 

These results match the results found in the literature (Bastian and Bratton, 1990; Bratton and 

Bastian, 1990), confirming our recordings were appropriate. All recordings were digitized at 10 

kHz sampling rate using CED 1401 plus hardware and Spike2 software (Cambridge Electronic 

Design), and stored on a computer hard disk for offline analysis.  

5.3.6 – Behavior 

Animals were immobilized by an intramuscular injection of 0.1-0.5 mg tubocurarine and set up 

in the recording tank similarly to the method described above. Different surgeries were 

performed depending on the pharmacology protocol. Both nPs or both ELLs were exposed on 

either side of the head in order to bilaterally inject lidocaine (nP injection: n = 9; PET injection: n 

= 8), saline (n = 8) or CNQX (n = 7), respectively. Pipettes containing lidocaine/saline were 

placed approximately 1000 – 1250 μm below the surface where the nP is located, while pipettes 

containing CNQX were placed superficially at about 200 – 300 μm below the surface of the 

hindbrain where the EGP feedback terminates on the apical dendrites of pyramidal cells. 

Additionally, lidocaine injections were performed 50-100 μm below the brain surface adjacent to 

the rostral end of the ELL, where the PET is located terminating on the EGP, in order to block 

indirect feedback. Multiple injections (typically 3-5) were performed to ensure that both 

hemispheres of nP and ELL were sufficiently affected by the pharmacological agents. Stimuli 

were then presented as described above in order to elicit behavioral responses before and after 

drug application. The animal’s behavior was recorded through a pair of electrodes located at the 

rostrum and tail of the animal. The zero-crossings of the recorded EOD signal were used to 

generate a binary sequence as described above that was low-pass filtered (2nd order Butterworth 

filter with 0.05 Hz cut-off frequency) to obtain the time-varying EOD frequency. 

5.3.7 – Data Analysis 

Data obtained from ELL pyramidal neurons were pooled as there is no difference in envelope 

response between ON- and OFF-type pyramidal cells (Huang and Chacron, 2016). All data 

analysis was performed offline using custom written codes in MATLAB software (MathWorks). 
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The recorded electrical activity were first high-pass filtered (100 Hz; 8th order Butterworth). 

Spike times were sorted using Spike2 software and defined as the times at which the signal 

crossed a given threshold value from below. To quantify the neural responses and relate them to 

the stimulus envelope, we used linear systems identifications techniques to compute the gain 

relationships to envelope frequency. We approximated the gain by averaging over the cycles of 

the stimulus and fitting a sinewave to the resultant cycle histogram to determine the firing rate 

modulation. We then divided the amplitude of the firing rate modulation to the stimulus envelope 

amplitude observed in the dipole to obtain the gain to any given envelope frequency. Our filtered 

firing rates were obtained using a second-order Butterworth filter with cutoff frequencies of 0.2, 

0.35, 0.75, 1.5, 2.5, and 3.5 Hz for envelope frequencies 0.05, 0.1, 0.2, 0.5, 0.75, and 1 Hz, 

respectively, as done in previous studies (Huang and Chacron, 2016). Gain values calculated for 

behavior was performed using similar methods. 

Responses to AMs were calculated using standard techniques by determining the spike-

triggered average (STA) change in amplitude of the AM stimuli. The STA is the mean stimulus 

waveform that triggers an action potential and was obtained by averaging the stimulus 

waveforms within a 2 s time window surrounding each spike. We used the same envelope stimuli 

containing 5-15 Hz AM in order to calculate our STAs and determine the response to AMs. The 

response was then quantified as the peak-to-peak amplitude of each STA change in amplitude 

and was compared before and after drug application. We then quantified the change before and 

after drug application as a percentage of control, where the control STA was normalized to 

100%.   

Temporal whitening performed by ELL pyramidal neurons and nP neurons were 

calculated based on their observed tuning properties by squaring the gain at a given envelope 

frequency and multiplying it by the power of the natural stimulus whose spectrum decays as a 

power law with exponent α = -0.8. The result provided us with an accurate estimation of the 

response power of the neuron across the range of frequencies we investigated. Indeed, previous 

studies have shown that an accurate approximation of the response power spectrum could be 

correctly predicted using the tuning function with this transfer function, as a change in the tuning 

curve of the neuron directly caused changes in the response power experimentally (Huang and 

Chacron, 2016; Huang et al., 2016). From the temporal whitening response power curves, the 
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whitening index was calculated by taking the area under the power spectrum curve of the spiking 

response using a trapezoidal method and dividing by that obtained by replacing all values by the 

maximum value in the power spectrum. The whitening index ranges between 0 and 1, where 1 

indicates complete whitening (i.e., a power spectrum that is independent of temporal frequency), 

as done previously (Huang et al., 2016). Finally, the change in sensitivity between control and/or 

drug conditions were calculated using the following formula: 

𝐺𝐷𝑟𝑢𝑔 −  𝐺𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝐺𝐶𝑜𝑛𝑡𝑟𝑜𝑙
 ×  100% 

where GDrug is the gain response of the neuron after drug injection at a given envelope frequency 

and GControl is the gain response of the neuron under control conditions at the same given 

envelope frequency. We then pooled the changes in sensitivity across envelope frequencies in 

order to obtain the case individually for neuron and behavior.  

5.3.8 – Statistics 

Statistical significance was assessed through a non-parametric Kruskal-Wallis ANOVA test if 

the data was unpaired or Wilcoxon signed-rank test for paired measures at the p = 0.05 level. 

Data is presented as mean ± standard error (SEM). For the whisker boxplot in figure S7, the 

central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 

75th percentiles, respectively. The whiskers extend to the range of data points.  

 

5.4 – Results  

We investigated the mechanisms that enable ELL pyramidal cells to optimally encode envelope 

stimuli. To do so, we performed recordings from these in awake behaving animals (Fig. 1A). 

Data obtained from ON- and OFF-type ELL pyramidal neurons were pooled as, consistent with 

previous studies (Huang and Chacron, 2016), we found no overall difference between their 

responses to envelopes. Our stimuli consisted of sinusoidal AMs with constant amplitude as well 

as noisy EOD AMs whose envelope varied sinusoidally at different frequencies. The left panel of 

figure 1A shows example traces of the AM (blue, first-order), envelope (red, second-order), and 

the full signal (cyan) received by the animal with their respective temporal frequency contents. It 

is further important to realize that the animal’s EOD is a carrier and that the meaningful stimulus 
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here is the EOD AM. Thus, both first- and second-order features of the stimulus correspond to 

the second- and third-order features of the full signal received by the animal, respectively. We 

recorded both the neural activity as well as the animal’s behavioral responses that consist of 

changes in the EOD frequency (Fig. 1A). As explained above, previous studies have shown that 

ELL pyramidal cells can optimally encode natural envelope stimuli because their high-pass 

tuning curves (Fig. 1B, middle panel) are set such as to counter the decaying stimulus spectral 

power (Fig. 1B, left panel). The resulting response spectrum is thus independent of frequency 

(Fig. 1B, right panel) which optimizes information transmission (Huang and Chacron, 2016; 

Huang et al., 2016) (see (Huang and Chacron, 2017) for review).  

                

Figure 1. A) Schematic of the experimental setup showing the awake-behaving preparation where a 

stimulus (left) is presented to the animal while neural (bottom right) and behavioral (upper right) 

responses are recorded simultaneously. The stimuli consisted of amplitude modulations of the animal’s 

own EOD: shown are an example AM waveform (blue), its envelope (red), and the full signal received by 

the animal (cyan) with their respective frequency contents. B) Principle of whitening by which the neural 

tuning curve (center) increases in order to effectively compensate for the decaying power spectrum of 

natural envelope stimuli (left), such that the resulting response power is independent of frequency (i.e., 

“whitened”, right). 
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5.4.1 – Descending input shapes neural responses and perception of envelopes 

In order to elucidate the role of feedback input, we injected the voltage gated sodium-channel 

antagonist lidocaine bilaterally into the nuclei praeeminentialis (nP) from which descending 

inputs onto ELL pyramidal cells originate (Figs. 2A, 2E). One pathway projects directly from nP 

to ELL (i.e., the direct feedback pathway, Fig. 2A, cyan) while the other projects indirectly from 

nP via the eminenatia granularis posterior (EGP) to ELL (i.e., the indirect feedback pathway, 

Fig. 2A, orange). We found that pharmacological inactivation of both feedback pathways 

strongly attenuated ELL pyramidal neural responses to envelopes (Fig. 2B, compare blue and 

purple). Under control conditions, cells typically responded vigorously to the sinusoidal 

envelope (Fig. 2B, top panel, red) through changes in firing rate (Fig. 2B, bottom panel, blue). 

However, after bilateral lidocaine injection, responses to the envelope were strongly reduced 

(Fig. 2B, bottom panel, purple). We note that unilateral injection of lidocaine within the 

contralateral nP gave rise to similar changes in ELL pyramidal neural responses to envelopes 

(Fig. S1), while injection of saline alone had no effect (Fig. S2). Bilateral lidocaine injection had 

no significant effect on ELL pyramidal cell responses to AMs (Fig. S3).    

We next varied the envelope frequency and investigated the effects of feedback 

inactivation on tuning. Under control conditions, the frequency tuning of ELL pyramidal cells is 

high-pass, such that neural gain increases as a power law when envelope frequency is increased 

(Fig. 2C, blue). Further, the power law exponent is set such as to oppose the decay of the 

spectrum of natural envelopes, thereby causing the response power to be independent of 

frequency (i.e., is “whitened”, Fig. 2D, blue) as quantified by a white index (see methods) value 

near unity (Fig. 2H, left blue) as required for optimal coding. Pharmacological inactivation of 

feedback strongly affected tuning curves as well as temporal whitening. Indeed, we observed a 

strong attenuation in neural gain for all envelope frequencies tested (Fig. 2C, compare blue and 

purple). However, the attenuation was more pronounced for higher envelope frequencies, such as 

the resulting tuning curve was flat as characterized by a power law exponent near zero (Fig. 2C, 

purple, see inset). Such a change in tuning strongly affected whitening as response power was no 

longer independent of frequency (Fig. 2D, purple) as quantified by a lower white index value 

(Fig. 2H, left purple), which is accompanied by a decrease in sensitivity (Fig. 2H, right) 

indicating sub-optimal coding. These results indicate that descending input optimize neural 
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coding of envelopes by enhancing neural responses in a frequency dependent manner. Indeed, 

higher envelope frequencies are more amplified relative to lower envelope frequencies, thereby 

whitening neural responses to natural envelopes.  

Changes in neural responses are only behaviorally relevant if they are actually decoded 

by downstream areas. Thus, we next investigated the effects of pharmacological inactivation of 

feedback pathways on behavioral responses (Fig. 2E). Under control conditions, the animal’s 

EOD frequency tracks the envelope (Fig. 2F, blue). However, changes in EOD frequency are 

greater for low envelope frequencies, resulting in a behavioral gain that decreases as a function 

of increasing envelope frequency, in a power-law manner (Fig. 2G, blue), consistent with 

previous results (Metzen and Chacron, 2014). Pharmacological inactivation of feedback 

pathways strongly attenuated the animal’s behavioral responses to envelopes (Fig. 2F, purple) in 

a frequency dependent manner, such that attenuation was strongest for low envelope frequencies 

(Fig. 2G, purple). Decreases in neural sensitivity were accompanied by decreases in behavioral 

sensitivity (Fig. 2H, right). We note that injection of saline alone had no effect on behavioral 

responses to envelopes (Fig. S2). 
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Figure 2. Descending input enhances and optimizes information transmission via whitening. A) Schematic 

showing relevant ELL anatomy and feedback inactivation. ON- (green) and OFF- (magenta) type ELL 

pyramidal cells receive feedforward input in form of excitation and di-synaptic inhibition from 

electrosensory afferents (EAs), respectively. Data obtained from ELL pyramidal neurons were pooled as 

there was no difference in envelope response between ON- and OFF-type pyramidal cells, consistent with 

previous results (Huang and Chacron, 2016). Both cell types also receive direct (cyan) and indirect 

(orange) feedback onto their apical dendrites that originate from the nucleus praeeminentialis (nP). B) 

Top: stimulus waveform showing the noisy AM (blue) and its sinusoidal envelope (red). Middle: Time 

dependent firing rate in response to the stimulus from a typical ELL pyramidal cell before (blue) and after 
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(purple) lidocaine application. Bottom: spiking activity from this same neuron in response to stimulation 

before (blue) and after (purple) lidocaine application. C) Population-averaged neural gain to sinusoidal 

envelopes as a function of frequency before (blue) and after (purple) lidocaine application. The dashed 

lines show the best power law fits to the data. Inset: Exponent before (blue) and after (purple) lidocaine 

injection (p = 0.0156, Wilcoxon Signed-Rank Test). D) Population-averaged neural response power before 

(blue) and after (purple) lidocaine application. The dashed lines show the best power law fits to the data. 

E) Schematic showing that pharmacological inactivation of descending input was achieved by injecting 

lidocaine in both the ipsilateral and contralateral nPs. F) Top: stimulus waveform showing the noisy AM 

(blue) and its sinusoidal envelope (red). Bottom: Time dependent EOD frequency in response to the 

stimulus from a typical fish before (blue) and after (purple) lidocaine application. G) Population-averaged 

behavioral gain to sinusoidal envelopes as a function of frequency before (blue) and after (purple) 

lidocaine application. The dashed lines show the best power law fits to the data. Inset: Exponent before 

(blue) and after (purple) lidocaine injection (p = 0.0313, Wilcoxon Signed-Rank Test). H) Left: population-

averaged white index before (blue) and after (purple) lidocaine application (p = 0.0234, Wilcoxon Signed-

Rank Test). Right: population-averaged relative changes in neural (left) and behavioral (right) sensitivity 

following lidocaine application (neuron: p = 4.77*10-4, Wilcoxon Signed-Rank Test, behavior: p = 0.002, 

Wilcoxon Signed-Rank Test). “*” indicates statistical significance at the p = 0.05 level.  

 

5.4.2 – Direct feedback enhances while indirect feedback optimizes neural responses to natural 

envelopes 

We next investigated how direct and indirect sources of descending input contribute to 

determining ELL pyramidal cell and behavioral responses to envelopes. To do so, we injected 6-

cyano-7-nitroquinoxaline-2,3-dione (CNQX) near the distal apical dendrites of ELL pyramidal 

cells (see Methods), where indirect descending input from the EGP terminates (Fig. 3A). 

Previous studies have shown that this manipulation effectively blocks only indirect sources of 

descending input within the vicinity of the ELL pyramidal cell being recorded from (Bastian, 

1993; Chacron et al., 2005c). Consistent with previous results, CNQX injection increased ELL 

pyramidal neuron responses to AMs (Fig. S4). We found that pharmacological inactivation of 

indirect sources of descending input enhanced neural responses to envelopes (Fig. 3B, compare 

blue and green). However, neural gain was increased for low but not for high envelope 

frequencies, such that the resulting tuning curve was independent of frequency (Fig. 3C, green). 

This change in tuning antagonized optimal coding of envelopes, in that the response power 

spectrum was no longer independent of envelope frequency (Fig. 3D, green) as quantified by a 

decrease in the white index (Fig. 3H, left, green). Neural sensitivity was significantly increased 

(Fig. 3H, right, green). Thus, our results show that indirect sources of descending input actively 
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shape ELL pyramidal cell tuning to envelopes by attenuating responses to low but not high 

envelope frequencies, thereby optimizing coding through whitening.  

In order to test the effects of the indirect feedback input on behavior, we used a different 

manipulation in which lidocaine was injected bilaterally within the praeeminential electrosensory 

tract (PET) connecting nP to EGP bilaterally (Fig. 3E). This manipulation gave rise to similar 

effects on ELL pyramidal cell responses than CNQX injection for both envelopes (Fig. S5) and 

AMs (Fig. S6). We found that pharmacological inactivation of indirect feedback input enhanced 

the animal’s behavioral responses to envelopes (Fig. 3F, compare blue and red) only for low 

frequencies (Fig. 3G, compare blue and red). The behavioural response curve thus decreased 

more sharply as reflected by a significant decrease in the behavioral exponent (Fig. 3G, inset), 

leading to an increased behavioral sensitivity to envelopes only at low frequencies (Fig. 3H, 

right, red). Taken together, our results show that both direct and indirect feedback inputs onto 

ELL pyramidal cells have differential effects on envelope tuning and optimized coding. 

Specifically, they suggest that the function of the direct input is to enhance envelope responses 

independently of frequency while the indirect input selectively attenuates low frequencies, 

thereby optimizing coding.  
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Figure 3. Direct descending input enhances while indirect input optimizes neural responses. A) Schematic 

showing relevant ELL anatomy. Data obtained from ELL pyramidal neurons were pooled as there is no 

difference in envelope response between ON- and OFF-type pyramidal cells (Huang and Chacron, 2016). 

Indirect feedback input from the EGP was inactivated by application of CNQX near the apical dendrites of 

the recorded neuron. B) Top: stimulus waveform showing the noisy AM (blue) and its sinusoidal envelope 

(red). Middle: Time dependent firing rate in response to the stimulus from a typical ELL pyramidal cell 

before (blue) and after (green) CNQX application. Bottom: spiking activity from this same neuron in 
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response to stimulation before (blue) and after (green) CNQX application. C) Population-averaged neural 

gain to sinusoidal envelopes as a function of frequency before (blue) and after (green) CNQX application. 

The dashed lines show the best power law fits to the data. Inset: Exponent before (blue) and after (green) 

CNQX injection (p = 0.0156, Wilcoxon Signed-Rank Test). D) Population-averaged neural response power 

before (blue) and after (green) CNQX application. The dashed lines show the best power law fits to the 

data. E) Schematic showing bilateral injection of lidocaine into the praeeminential electrosensory tract 

(PET). F) Top: stimulus waveform showing the noisy AM (blue) and its sinusoidal envelope (red). Bottom: 

Time dependent EOD frequency in response to the stimulus from a typical fish before (blue) and after 

bilateral (red) lidocaine injection. G) Population-averaged behavioral gain to sinusoidal envelopes as a 

function of frequency before (blue) and after (red) lidocaine injection. Inset: Exponent before (blue) and 

after (red) lidocaine injection (p = 0.0234, Wilcoxon Signed-Rank Test). The dashed lines show the best 

power law fits to the data. H) Left: population-averaged white index before (blue) and after (green) 

CNQX application (p = 0.039, Wilcoxon Signed-Rank Test). Right: population-averaged relative changes in 

neural and behavioral sensitivity following CNQX or lidocaine application (neuron: p = 6.33*10-5, 

Wilcoxon Signed-Rank Test, behavior: p = 6.74*10-4, Wilcoxon Signed-Rank Test). “*” indicates statistical 

significance at the p = 0.05 level. 

 

5.4.3 – Responses of nP neurons that give rise to descending input onto ELL pyramidal cells 

Finally, we investigated the nature of the descending signals that are received by ELL pyramidal 

cells. To do so, we recorded from nP neurons that project both directly and indirectly to ELL. 

Specifically, nP stellate cells project directly to ELL pyramidal cells while nP multipolar cells 

instead project indirectly through the EGP (Sas and Maler, 1983, 1987). Both cell types can 

easily be distinguished from one another based on their electrophysiological properties (Bastian 

and Bratton, 1990; Bratton and Bastian, 1990) (see Fig. S7). Overall, our results show that both 

stellate and multipolar cells responded strongly to envelopes (Fig. 4A) but showed differential 

frequency tuning (Fig. 4B). Specifically, stellate cell sensitivity was largely independent of 

envelope frequency (Fig. 4B, cyan) as quantified by a power law exponent near zero (Fig. 4D 

left, cyan). As such, these cells did not perform temporal whitening of natural envelopes as their 

response power spectra decayed with increasing frequency (Figs 4C and 4D right, cyan). These 

results confirm our hypothesis that the function of the direct feedback input is to enhance ELL 

pyramidal cell responses to envelopes independently of temporal frequency.  

In contrast, multipolar cells instead displayed high-pass tuning to envelopes (Fig. 4B, 

orange) as quantified by a power law exponent near 0.4 (Fig. 4B, 4D left, orange) that is similar 

to that observed for ELL pyramidal cells (compare with Fig. 2C). As a result, we found that 

multipolar cells perform temporal whitening of envelopes as their response spectra was 



127 
 

independent of frequency (Fig. 4C, orange) as quantified by a white index near unity (Fig. 4D 

right, orange). Thus, our results reveal that the feedback input that is sent indirectly to ELL 

pyramidal cells via the EGP is already temporally whitened. This result has important 

implications for understanding how temporal whitening of ELL pyramidal cell responses is 

achieved as discussed below.  

          

Figure 4: Only nP neurons projecting indirectly to ELL display tuning properties that are optimized to 

natural stimulus statistics. A) Top: stimulus waveform showing the noisy AM (blue) and its sinusoidal 

envelope (red). Bottom: Time dependent firing rate in response to the stimulus from typical nP stellate 

(cyan) and multipolar (orange) cells. B) Population-averaged neural gain as a function of frequency in 

response to sinusoidal envelopes for nP stellate (cyan) and multipolar (orange) cells. The dashed lines 

show the best power law fits to the data. C) Population-averaged neural response power for stellate 

(cyan) and multipolar (orange) cells. The dashed lines show the best power law fits to the data. D) 

Population-averaged power law exponents (left, χ2 = 12, p = 5.32*10 - 4, Kruskal-Wallis ANOVA) and 

white index (right, χ2 = 10.7, p = 0.0011, Kruskal-Wallis ANOVA) values for stellate (cyan) and multipolar 

(orange) cells. “*” indicates statistical significance at the p = 0.05 level. 
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5.5 – Discussion  

5.5.1 – Summary of Results 

We investigated the roles of both direct and indirect sources of descending input onto ELL 

pyramidal cells in determining their responses to envelopes. Pharmacological inactivation of 

both direct and indirect sources strongly attenuated pyramidal cell and behavioral responses to 

envelopes. Because responses to higher envelope frequencies were more attenuated, the resulting 

tuning curve became independent of frequency, thereby compromising optimized coding through 

temporal whitening. Pharmacological inactivation of indirect input instead increased pyramidal 

cell and behavioral responses to envelopes. However, enhancement was observed primarily for 

low envelope frequencies, such that the resulting tuning curve was independent of frequency, 

which also compromised optimized coding through temporal whitening. Finally, we investigated 

the nature of the feedback signals being received both directly and indirectly by ELL pyramidal 

cells. Specifically, nP stellate cells that project directly to ELL displayed tuning curves that were 

independent of envelope frequency and did not perform temporal whitening. In contrast, nP 

multipolar cells that project indirectly to ELL displayed high-pass tuning and optimally encoded 

envelopes through temporal whitening. Thus, our results provide the first experimental evidence 

showing how descending pathways mediate optimized coding of stimuli by sensory neurons. 

While direct feedback input enhances neural responses independently of frequency, our results 

show that indirect feedback input selectively attenuates responses to low envelope frequencies, 

thereby giving rise to a high-pass tuning that opposes natural envelope statistics and optimizes 

coding through temporal whitening.  

5.5.2 – Feedback modulation enhances responses to salient features  

Our results showing that nP stellate cells projecting directly to ELL pyramidal cells enhance their 

responses to envelopes provide a new function for this feedback pathway. Indeed, while previous 

studies have suggested that the function of this feedback pathway was to enhance responses to 

salient stimuli (Berman and Maler, 1998, 1999; Bratton and Bastian, 1990), experimental 

evidence supporting this hypothesis was lacking until recently when a clear role in synthesizing 

responses to motion stimuli consisting exclusively of first-order stimulus features was 

established (Clarke and Maler, 2017). Our results show an important novel functional role for the 

direct feedback pathway in enhancing both neural responses to and perception of behaviorally 
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relevant second-order (i.e., envelope) stimuli. Interestingly, previous studies have suggested that 

the direct feedback pathway could function as a sensory searchlight (Berman and Maler, 1999), 

as originally proposed by Crick (Crick, 1984), thereby enhancing salient stimulus features and 

attenuating others. Our results are consistent with descending input onto ELL pyramidal cells 

acting in this manner but instead suggest that concerted action from both direct and indirect 

sources is necessary. Indeed, while the direct pathway enhances responses to envelopes 

independently of frequency, the indirect pathway instead selectively attenuates responses to low 

frequencies, thereby favoring responses to higher frequencies.  

Overall, our results are consistent with previous ones showing that the tuning function of 

ELL pyramidal cells must be matched to natural statistics in order to optimize coding, which in 

turn ensures that behavioral sensitivity is greatest for frequencies at which natural stimuli contain 

the most power (Huang et al., 2016). Indeed, we found that feedback inactivation altered ELL 

pyramidal cell tuning, thereby rendering coding sub-optimal, which caused a mismatch between 

behavioral sensitivity and natural statistics. However, our results suggest that the relationship 

between ELL pyramidal cell and behavioral responses to envelopes is more complicated than 

previously expected. Specifically, it was assumed that changes in the neural exponent of ELL 

pyramidal cells alone would determine changes in the behavioral exponent. Our current results 

show that this is not the case as pharmacological inactivation of both direct and indirect feedback 

input led to similar changes in the neural tuning exponent but led to opposite changes in the 

behavioral tuning exponent. Thus, it is not only the tuning exponent of ELL pyramidal cells that 

determines the behavioral exponent, but also the overall sensitivity. Further studies are needed to 

better understand how information transmitted by ELL pyramidal cells is decoded by higher 

brain areas in order to lead to behavioral responses.  

5.5.3 – The effect of the indirect feedback on neural responses to behaviourally-relevant first-

order and second-order stimuli are functionally different 

Previous results have demonstrated important functions for the indirect feedback pathway such 

as gain control (Bastian, 1986a, b) as well as cancelation of both self and externally-generated 

low (< 15 Hz) frequency spatially diffuse AM (i.e., first-order) stimuli (Bastian, 1986a, 1996a, b; 

Bastian, 1998; Bastian, 1999; Bastian et al., 2004; Chacron, 2006; Chacron et al., 2005c; Clarke 

and Maler, 2017), thereby allowing better detection of spatially localized stimuli (e.g., those 
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caused by prey) (Bastian et al., 2004; Litwin-Kumar et al., 2012). Specifically, previous studies 

have shown that this pathway generates a negative image of the stimulus, thereby strongly 

reducing ELL pyramidal cell responses. More recent studies have shed light on how short-term 

burst-timing dependent depression helps in sculpting this negative image in an adaptive fashion 

(Bol et al., 2011; Bol et al., 2013; Mejias et al., 2013). In contrast, our results have demonstrated 

an important new function for indirect feedback in mediating optimized coding of envelope (i.e., 

second-order) stimuli by selectively attenuating responses to low frequencies.  

How then can the same feedback pathway mediate attenuation of responses to both low-

frequency AMs and envelopes? One possibility is that in both cases it is the same mechanisms 

that facilitate response attenuation. This is however unlikely because of the important difference 

between the frequency ranges of AMs and envelopes for which responses are attenuated, as 

mentioned above. Specifically, while the response to a 1 Hz AM will be strongly attenuated by 

feedback (Bol et al., 2011), our results show that this is not the case for a 1 Hz envelope. 

Previous results have shown that SK1 channels strongly determine envelope but not AM tuning 

properties. Specifically, pharmacological inactivation of SK1 channels had minimal effects on 

responses to AMs (Toporikova and Chacron, 2009) but compromised optimized coding of 

envelopes by causing the tuning curve to be broadband (Huang et al., 2016). In fact, the effects 

of indirect feedback inactivation and of SK1 channel antagonists on ELL pyramidal cell tuning 

to envelopes were strikingly similar. We propose that indirect feedback excitation provides the 

necessary intracellular calcium entry that activates SK1 channels. These in turn give rise to spike 

frequency adaptation, thereby selectively attenuating responses to low envelope frequencies and 

causing the envelope tuning curve to become high-pass (Benda and Herz, 2003; Deemyad et al., 

2012; Huang et al., 2016) (see (Huang and Chacron, 2017) for review). Thus, blocking indirect 

feedback input would strongly attenuate calcium entry via NMDA receptors, thereby effectively 

inhibiting SK1 channels and explaining why the effects on ELL pyramidal cell tuning to 

envelopes are similar to those previously observed after application of SK channel antagonists 

(Huang et al., 2016). The fact that calcium-permeable NMDA receptors are highly expressed 

within the apical dendrites of ELL pyramidal cells (Bottai et al., 1997; Harvey-Girard and Dunn, 

2003), where indirect feedback input terminates (Berman and Maler, 1999) and SK1 channels 

are located (Ellis et al., 2008), supports our hypothesis. However, the exact mechanisms by 

which SK1 channels determine responses to envelopes but not AMs, though critical in order to 
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enable the indirect pathway to perform multiple functions, are not well-understood and should be 

the focus of future studies.  

It is important to note that the envelope stimuli considered here are behaviorally relevant 

and contain important information as to the relative position between both conspecifics. Since 

our results show that the indirect feedback did not attenuate responses to envelopes with higher 

(>0.2 Hz) frequencies, it is conceivable that these could interfere with the detection of other 

behaviorally-relevant low frequency AM stimuli (e.g., those caused by prey) since the responses 

to both stimuli should be enhanced by the direct feedback pathway. This is unlikely to be the 

case however because: 1) the AM stimuli caused by prey are spatially localized whereas 

envelope stimuli are spatially diffuse and; 2) the temporal frequency content of envelopes tends 

to be much lower (0-1 Hz) than that of prey stimuli (0-10 Hz) (Nelson and MacIver, 1999; 

Stamper et al., 2013). We hypothesize that these differences in spatial extent and temporal 

frequency content are used by the animal to distinguish between both stimuli, but further studies 

are needed to verify that this is the case.  

We have shown for the first time how neurons within nP that project either directly or 

indirectly back to ELL respond to envelopes. Stellate cells projecting directly to ELL pyramidal 

cells displayed broadband tuning curves. The fact that ELL pyramidal cells displayed broadband 

tuning curves after pharmacological inactivation of indirect descending input suggests that they 

perform little filtering of input from stellate cells. Interestingly, multipolar cells projecting 

indirectly have tuning properties that are similar to those of ELL pyramidal cells and optimize 

coding via temporal whitening. This result has important implications for understanding how 

temporal whitening of envelopes occurs in ELL pyramidal cells as it implies that the output of 

the nP received by EGP granule cells that project back to ELL is already temporally whitened. It 

is very likely that the output of nP multipolar cells, which is critical in determining ELL 

pyramidal cell tuning and responses to envelopes, undergoes significant filtering both by EGP 

granule cells to enable filtering by SK1 channels in ELL pyramidal cells. Further studies are 

needed to gain further understanding as to the underlying mechanisms.  

5.5.4 – Implications for other sensory systems  

Our results provide novel functional roles for the indirect feedback pathway in optimizing ELL 

pyramidal cell responses to envelopes through temporal whitening by selective attenuation of 
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low frequencies. It should be noted that the architecture of the indirect feedback pathway by 

which parallel fibers emanating from the EGP terminate onto distal ELL pyramidal cell apical 

dendrites shares many similarities with the cerebellum and other cerebellum-like structures (e.g., 

the dorsal cochlear nucleus). Studies performed in cerebellum as well as cerebellum-like 

structures have shown clear common functions and mechanisms mediating how such descending 

input in attenuating or even cancelling responses to self-generated sensory input (Bell et al., 

2008; Cullen, 2011; Requarth and Sawtell, 2011; Sawtell, 2017; Singla et al., 2017; Warren and 

Sawtell, 2016). It is likely that our results showing that feedback input from parallel fibers in the 

cerebellar-like ELL mediate optimized coding of natural stimuli through whitening will be 

applicable to the cerebellum as well as other cerebellum-like structures.  

Finally, recent results have emphasized the critical role of descending pathways, which 

are found ubiquitously in sensory systems (Cajal, 1909; Hollander, 1970; Ostapoff et al., 1990; 

Sherman and Guillery, 2002), in determining accurate sensory neural and behavioral responses to 

sensory input (Kwon et al., 2016; Manita et al., 2015; Takahashi et al., 2016). In particular, it 

was shown that feedback terminating on the apical dendrites of cortical pyramidal neurons was 

essential in determining both responses and perception to somatosensory input (Takahashi et al., 

2016). Critically, the electrosensory system of weakly electric fish displays many documented 

similarities with the mammalian visual, auditory, and vestibular systems (Chacron et al., 2011; 

Clarke et al., 2015; Metzen et al., 2015). Thus, given that temporal whitening has been observed 

across sensory systems (Dan et al., 1996; Lundstrom et al., 2010; Pozzorini et al., 2013; Wang et 

al., 2003), it is likely that our results showing how feedback pathways mediate temporal 

whitening of sensory input by ELL pyramidal cells in the electrosensory system of weakly 

electric fish will be generally applicable to other systems.  
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Chapter 6 

 

General Discussion 

 

The primary goal of my research was to understand how envelopes are encoded and decoded in 

the brain in order to elicit the behavioural responses which demonstrate perception of the 

movement between two conspecific animals. In order to achieve this goal, I first performed a 

complete characterization of ELL pyramidal cell responses from various subclasses to gain an 

understanding of what type of responses exist to encode envelopes. It was found that a subset of 

those neurons could perform temporal whitening and efficiently encode envelope stimuli in an 

optimal manner. I also found out that other subclasses that did not perform temporal whitening 

served to preserve stimulus information and would work in conjunction in downstream brain 

areas to decode the efficiently encoded information coming from other subsets of neurons. Next, 

I investigated further into temporal whitening and observed exactly what would give rise to the 

high-pass characteristics which matched and opposed the natural stimulus statistics. In addition 

to making predictions with an LIF model, I tested these predictions with pharmacology to 

observe the direct effects on neural tuning and subsequent consequences on the animal’s 

behaviour. Finally, I investigated the roles of feedback in generating and optimizing neural 

responses in the ELL, which was final piece of the puzzle which was uncovered to explain 

exactly where envelope responses came from in the first place. In the following sections, I will 

perform some general discussion of the overall projects in my dissertation. 

6.1 – Integration of feedback across the three segments 

From chapter 2, we know that different segments of the ELL have differential tuning curves and 

that temporal whitening mostly occurs for LS superficial neurons. We also know that feedback 

pathways are important for temporal whitening and are necessary for creating the envelope 

response in the first place. How do the segments then differ in their tuning responses if they are 

to receive similar feedback from the direct and indirect feedback pathways? One aspect that was 
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not discussed in the thesis is the integration of information in the TS and how that plays a role in 

sending information back to the ELL to modulate pyramidal cell activity in the three different 

segments. We can speculate that the TS is responsible for both decoding and sending different 

inputs back to ELL via the nP. While the nP sends similar feedback back to the three segments, 

how they are integrated in the dendrites could be key to the differential tuning across the 

segments. This could be due to what ion channels and neuromodulator receptors are co-localized 

with where the feedback terminates. We know from chapter 3 that SK1 channels exist on the 

apical dendrites of pyramidal cells in the ELL. However, the expression of the SK1 channels 

differ across segments, with less in CLS, and little to none in CMS. This is similarly true for 

superficial neurons having the most SK1 channels, and little to none in the deep neurons. 

Therefore, it is likely that the inputs from feedback activate either the entrance of calcium 

through NMDA/AMPA receptors or induce release of intracellular calcium through the Protein 

Kinase C (PKC) pathway to activate these SK1 channels. However, the level of activation differs 

due to the differential levels of expression across the three segments. This could then explain the 

observed differential tuning across ELL segments. This is a relatively simple hypothesis and it is 

likely other channels and receptors play key roles in the integration of feedback inputs. On the 

contrary, the feedforward integration of TS and its role in giving rise to behavioural responses 

would also need to be elucidated.  

 

6.2 – Neural integrator in the midbrain for behavioural output 

As mentioned above, another aspect that remains to be solved is how pyramidal cell output 

becomes integrated in the midbrain. Currently, it is known that there are TS neurons which 

respond to envelopes; however, a systematic characterization of tuning curves to neither 

movement nor social envelopes have been classified. It is interesting in that pyramidal cells have 

a high-pass tuning curve which enables temporal whitening, but ultimately the behaviour 

matches the statistics of the natural environment. This is to say that behavioural responses to low 

envelope frequencies have the highest gain and the responses to high envelope frequencies have 

the lowest gain. This suggests that downstream of the ELL, there is an integrator which “flips” 

the tuning curve to give rise to the one found in behaviour. We would need to identify TS 

neurons which exclusively or non-exclusively encode envelopes and explore how they are 
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decoding the incoming information from the ELL. One possibility is that a specific subset of TS 

neurons are decoding the time-dependent firing rate information coming from ELL and 

transforming it to feed into the nP, where this information feeds back onto the ELL to further 

modulate and refine responses. In contrast, another subset of TS neurons are receiving both 

efficiently encoded information from LS neurons in combination with the preserved copy of the 

stimulus coming in from CMS, to optimally decode the information through parallel processing. 

The difficulty in this study would be to actually identify neurons belonging to these subclasses as 

there are presumably over 50 cell types in the TS (Carr and Maler, 1985; Sproule et al., 2015). It 

is thus likely that from the vast variety of TS neurons, there are neurons which may already be 

integrating temporally whitened information and decoding it for behaviour by displaying a low-

pass tuning curve to the envelope frequencies. However, this remains to be tested. Either way, 

there is a need for a neural integrator which gives rise to the signals which mediate behaviour. 

These neural integrators are critical to behaviour as they explain the link between primary 

sensory neurons and the ultimate behavioural output. One example of this is within the vestibular 

system, where the neural integrator exists to integrate raw signals from the otolithic organs, 

linear head acceleration, and eye positions and velocity inputs to elicit the vestibular ocular 

reflex (VOR) and all other conjugate eye movements (Dale and Cullen, 2015; Skavenski and 

Robinson, 1973). Whereas in our case, it is most likely that the TS takes information from all 

three segments (as well as other sensory pathways) and acts as a central neural integrator to 

generate signals necessary for behaviour.  

Furthermore, one cannot discount the influence of higher brain areas such as those found in the 

forebrain. Previous studies have found that neurons in the forebrain are responsible for complex 

cognitive functions in the weakly-electric fish such as spatial navigation and memory, as well as 

attention (Elliott et al., 2017; Jun et al., 2016). These are all higher-level functions which have 

been shown extensively to influence neural tuning and behaviour. This is to say that although 

there are feedback projections from the TS and nP, even more modulation may come from the 

forebrain where these executive functions exert top-down modulation. This also introduces 

possibilities of stimulus-dependent or task-dependent modulation, behavioural adaptation, as 

well as a number of other avenues to explore regarding feedback. Models of how different higher 

brain areas interact with the periphery could shed light on how exactly neural responses can be 

altered and in turn, give rise to differential behavioural responses under different contexts. 
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6.3 – Implications for social envelopes  

The thesis mainly focused on movement envelopes and how this type of second-order 

information is processed in the brain. However, as mentioned in the introduction, social 

envelopes also exist when there are three or more fish are either stationary or moving about 

around each other. However, the statistics of three fish are very complicated and thus requires 

much further study to understand how the electrosensory systems processes them. However, we 

do know that these envelope frequencies are much higher than those found in movement 

exclusively, and are > 1 Hz. This presents an interesting conundrum for the fish. How does a fish 

segregate a 4 Hz envelope from a 4 Hz first-order AM beat signal? It is likely that the fish takes 

into account the spectral power of the stimulus. Previous studies have shown that by the 1 Hz 

cutoff of the movement envelopes, the stimulus power has already decayed by three orders of 

magnitude (Metzen and Chacron, 2014). Furthermore, the spectral power of the envelopes is 

already inherently lower than those found in the first-order AM and hence would likely not be 

confused with the envelope. Although these two signals may be tied to one another, several lines 

of evidence show that first-order signals can be independently processed from second-order 

signals (McGillivray et al., 2012), particularly downsteam of the ELL in the TS, where these 

signals are subsequently decoded. However, it is unknown whether the same high-pass filtering 

will continue to apply to envelope frequencies > 1 Hz since social envelopes could constitute 

different stimulus statistics. In addition, signals > 1 Hz are often much noisier and it is likely that 

the brain has to employ alternative strategies in order to optimally encode those frequencies. 

Preliminary results from CMS recordings show that neural tuning changes for envelope 

frequencies > 1 Hz and thus suggest that these social envelopes are processed differentially in a 

separate manner. These responses remain to be tested and further studies are needed to 

understand how social envelopes, along with other social contexts (such as those with chirps) the 

fish may encounter in nature, can alter neural responses and behaviour in the wild. 
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6.4 – Applicability to other sensory systems 

To what extent are the findings in this thesis applicable to other sensory systems? To a large 

extent, temporal whitening is a neural coding strategy that exists widely in the literature. For 

example, the classic example of (Dan et al., 1996) demonstrated that noisy or unnatural stimuli 

do not elicit neural responses that are temporally whitened in the lateral geniculate nucleus. 

Rather, only a movie (Casablanca) with natural statistics was able to elicit temporal whitening. 

Notably, this was performed in the adult cat visual system. Furthermore, previous studies have 

also found that temporal whitening performed by auditory midbrain neurons in zebra finches 

enhance acoustic differences between natural sounds, and thus improves discrimination between 

different segments of songs, which are behaviourally-relevant sounds critical for mating 

(Woolley et al., 2005). In addition, it was found that L2/3 neurons in the somatosensory cortex of 

mice were also able to perform temporal whitening using power-law adaptation, to enhance 

signal-to-noise ratio and thus maximize information transmission (Pozzorini et al., 2013). These 

results have several implications. First, these results suggest that temporal whitening is an 

optimal neural coding strategy which is used widely to enhance the transfer of information 

within any given sensory system. Second, these results suggest that temporal whitening can 

occur along many stages and brain areas of sensory processing. The results from this thesis 

suggest that temporal whitening happens relatively early on, similar to the example in the visual 

system, where redundant information is already filtered out before it reaches the cortex. Despite 

this, we must note that not all ELL pyramidal cells do perform whitening, and that the majority 

of deep neurons across segments and in particular the CMS, do not perform any filtering. The 

leading idea is that these neurons are important for preserving the stimulus statistics. Neurons 

which do not perform any filtering can be similarly found in other sensory systems such as in the 

spherical bushy cell of the ventral cochlear nucleus, whom faithfully preserve the temporal 

properties of the auditory nerve fiber response. Having a combination of neurons which preserve 

the stimulus statistics and those which serve as filters are suggestive of common parallel coding 

strategies. Finally, results from the auditory system and somatosensory system mentioned above 

suggest that temporal whitening can also take place in higher brain areas, such as a primary 

sensory cortex. This also has implications that perhaps neurons in the electric fish midbrain, such 

as subsets of TS neurons, might also be able to perform temporal whitening after integrating 

inputs from the three ELL segments. Despite this, it is likely that temporal whitening occurs 
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relatively early in sensory pathways, as further processing past primary sensory cortices become 

more specialized for segregating information streams. This is useful in that natural stimuli 

generally contains abundant forms of redundancies, all of which may not be ultimately useful for 

behaviour. Therefore, the findings regarding temporal whitening in my thesis contribute further 

evidence to these ideas. 

We know that from the present studies, that SK channels are responsible for mediating 

the temporal whitening process described above. The question lingers as to whether and to what 

extent are SK channels, applicable to other systems? To answer this question, we must consider 

what the SK channels are actually doing to achieve temporal whitening. SK channels are 

mediating the AHP, which in turn determines neural excitability by controlling how fast a neuron 

recovers to baseline membrane potential. This process leads to spike-frequency adaptation, and 

the degree of spike-frequency adaptation ultimately determines the neural tuning curve in 

general. However, we must note that SK channels are not the only possibility in mediating spike-

frequency adaptation. Spike-frequency adaptation can be achieved to a similar fashion by other 

channel dynamics, such as activation of Kv7 or M-channels in the electrosensory system 

(Deemyad et al., 2011), slow inactivation of voltage-gated sodium channels in somatosensory 

neurons (Fleidervish et al., 1996), sodium-dependent potassium channels in cat sensorimotor 

neurons (Schwindt et al., 1989), or a combination of both sodium- and calcium-dependent 

potassium channels found in the ferret visual system, shown to contribute to adaptation to visual 

contrast (Sanchez-Vives et al., 2000). The results from these studies suggest that it is not 

necessary to have SK channels expressed throughout the brain in all sensory systems, but rather 

implicates that sensory systems must utilize a strategy which enables spike-frequency adaptation 

to enhance encoding of natural stimuli. Therefore, it is likely that different sensory systems have 

evolved to utilize the available receptors and channel dynamics to adjust neural excitability in 

their respective systems, in order to optimize coding.  

In addition to SK channels, the present studies also demonstrated that feedback is critical 

to generate and optimize neural responses in the ELL. To what extent does feedback play a role 

in general? It is well known that feedback occurs in all sensory systems, with feedback vastly 

outnumbering those coming from feedforward inputs. For example, the LGN in the visual system 

receives only ~10% of feedforward input from the retina, while ~90% of the inputs are feedback 
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coming from primary visual cortex V1. This seems to similarly apply to the ELL in our case. The 

only known feedforward input to the ELL comes from the EAs, while feedback comes from a 

variety of different higher brain structures such as the TS, nP, EGP, and others in the forebrain 

which remain to be discovered. It is also generally accepted that the prefrontal cortex sends 

massive top-down modulation to primary sensory areas through mechanisms which involve 

attention and task dependency in primates (Bichot et al., 2015; Petrides and Pandya, 2006). Thus 

it is not out of the realm of possibility that the weakly-electric fish also receive feedback input to 

the ELL from areas in the forebrain. More specifically, the ELL is designed to hold features of a 

cerebellar-like network. There has been extensive evidence in the weakly-electric fish literature 

that demonstrate this idea pertaining to cancellation of self-generated signals (Alvina and 

Sawtell, 2014; Requarth and Sawtell, 2011; Sawtell, 2017). Thus, it is also likely that our 

findings can extend beyond the electrosensory system into plasticity of other cerebellar-like 

networks as well as plasticity and adaptation mechanisms for learning. However, these remain to 

be tested with second-order stimuli such as envelopes and would be a case for future 

investigations.  

 

6.5 – Future Directions 

This thesis has contributed several new insights into both the electrosensory system as well as 

neural coding and behaviour in general. While many questions have been addressed, there are 

new questions that can be raised for further studies.  

6.5.1 – Serotonin and its interaction with feedback input and SK channels 

The studies here have addressed the cellular machinery that is present within the neural system 

and how it can enable the changes observed experimentally. One possible future study could be 

to look at how neurotransmitters modulate this system through the cellular machinery. The most 

prominent neurotransmitter which comes to mind is serotonin (5-HT), which has brain-wide 

effects due to its ubiquitous pathways extending throughout the brain. The source of 5-HT is the 

dorsal raphe nucleus (Rn), which is known to have projections to the ELL (Deemyad et al., 

2013). Previous immunohistochemistry studies have shown that the ELL pyramidal dendrites 

contain 5-HT2A receptors, which are abundantly present across the hindbrain area (Marquez et 
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al., 2013). The remarkable finding is that the 5-HT expression patterns are quite strikingly 

similar to those of SK1 channels. This has several implications and have been addressed in 

previous studies where it was shown that exogenous and endogenous release of 5-HT 

downregulates SK channels. This means that the presence of 5-HT and the activation of 5-HT2A 

receptors leads to similar effects as blocking SK channels with UCL-1684. What remains to be 

discovered is how 5-HT directly modulates envelope responses. The hypothesis is that the effect 

of 5-HT, whether exogenously applied with a double-barrel pipette or stimulation of the Rn, will 

elicit a loss of high-pass tuning in pyramidal cell responses to envelopes. This would in turn lead 

to suboptimal coding of natural stimulus statistics and have a detrimental effect on the fish’s 

behavioural perception. Furthermore, it is likely that serotonin will also have effects on feedback 

integration; however exactly how this interaction would affect neural coding is unknown at this 

point. Further studies are therefore needed to test these questions and elucidate the role of 

serotonergic modulation on envelope encoding. 

6.5.2 – The nP and other electrosensory communication stimuli 

The third and fourth studies show the first electrophysiology recordings of responses to second-

order envelope stimuli in the nP. We had characterized how the two major cell types, stellate and 

multipolar cells, are tuned to low envelope frequencies <1 Hz. This exploration can be extended 

to other electrosensory communication stimuli such as chirps. As mentioned previously, chirps in 

electrocommunication are similarly important in that they signal an aggression from one fish to 

another. We predict that the role of feedback is not exclusively limited to envelope responses in 

the ELL, as the pyramidal cells in the ELL have also been shown extensively to respond to 

chirps. In addition, previous studies have shown that pyramidal cells are responsible for driving 

invariance to differential chirp stimuli, which could be due to the role of feedback from the nP 

neurons. The problem remains as to how chirps are so well extracted from the background first-

order AM, and perhaps feedback enables this “sensory searchlight” (Crick, 1984) to enhance 

firing rate responses to chirps. One could imagine performing the same set of experiments 

involving pharmacological agents to block the direct and/or indirect feedback pathways to 

elucidate how chirps are encoded as well as how feedback plays a role in invariance. We can also 

record from the same neurons in the nP and characterize whether responses to chirps are similar 
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in stellate or multipolar cells as those found in the pyramidal cells in the ELL to determine 

whether and if so, how these responses are inherently linked.  

6.5.3 – Adaptation to dynamic changes in natural stimulus statistics 

The studies presented here adhere to the literature finding that the natural second-order 

movement envelope statistics decay in power as a function of frequency in a power-law fashion. 

In particular, it was found that the power-law exponent was ~-0.8. We must note that while this 

is true on average, there are several possibilities which could perturb this power-law to generate 

different stimulus statistics. For example, one could imagine that when the fish are more active 

during the night (because they are nocturnal), there would be higher power at the higher 

envelope frequencies, thereby leading to a less steep power-law decay with an exponent closer 

greater than -0.8. On the other hand, during the day when the fish are a lot less active, there will 

be higher power at the low envelope frequencies, leading to a steeper power-law decay and an 

exponent less than -0.8. This presents an interesting problem of whether and if so, how can the 

fish adapt its behavioural tuning to match those of the statistics at those given times of the day. 

This is a similar problem as adaptation in the visual system, where luminance can range over 

several orders of magnitude while only being able to encode over a few orders of magnitude 

(Purpura et al., 1990). Therefore, given the constraints of the electrosensory system, can the 

animal adapt if we alter the stimulus statistics in its environment and observe the changes that are 

associated with them. If so, does it use the same tools in the brain as what is observed in the 

studies presented here to mediate those changes? This is a logical step to take in order to 

elucidate how adaptation to envelopes with different stimulus statistics take place and the 

underlying mechanisms which enable such adaptation. 

While this project is currently in progress, I would like to mention some preliminary results in 

order to generate some discussion below. We tested this question by generating two sets of 

adaptation envelope stimuli which decay in power with power-law exponents of α=0 (active 

envelope) and α=-2 (passive envelope). We used these highly extreme exponents to see exactly 

how far we can push the system. Preliminary results reveal that after adaptation of ~6 hours, the 

behavioural tuning curves were shifting in the correct direction towards the presented exponents. 

For example, if the adaptation stimulus with exponent α=0 was presented continuously, the 

behavioural exponent shifted from α=-0.8 towards a greater exponent with a shallower tuning 
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curve at α=-0.4 in a time-dependent manner. This was true also in the case when we presented 

α=-2 as the adaptation stimulus. We also wanted to elucidate the neural circuitry which could be 

mediating this adaptation process. We subsequently focused on the forebrain as there are brain 

areas such as the dorsal pallium (DD) and the dorsolateral pallium (DL) which show 

hippocampal-like circuitry akin to the Dendate Gyrus-CA3 relationship (Elliott et al., 2017), 

which could mediate adaptation which take place over the course of hours observed in our 

preliminary behaviour data. Preliminary data shows that lesioning the forebrain did not abolish 

the EOD frequency tracking behaviour in these fish, but did abolish the adaptation from taking 

place when we attempted to adapt the fish to differential stimulus statistics. We also focused on 

the serotonergic system as the forebrain may contact the Rn to release serotonin, which in turn 

would feedback onto early sensory areas (such as the ELL) to mediate adaptation. By blocking 

any activation of the serotonergic system by injecting 5-HT2A antagonist Ketanserin into the 

ELL, we observed that adaptation did not take place when we attempted to adapt the fish to 

differential stimulus statistics, while saline control did result in the adaptation observed earlier.  

These preliminary results are promising and more work on the electrophysiology side must be 

completed in order to understand how neural responses are being adapted to drive the adaptation 

seen in behaviour. Furthermore, we can additional perform immunohistochemistry screening or 

qPCR to observe any changes in SK channel expression at the dendrites of pyramidal cells or 

mRNA levels respectively. These experiments would validate a complete characterization and 

circuitry of exactly how adaptation can take place in the electrosensory system and provide 

insight on how adaptation could take place across sensory systems in general. 

 

6.6 – Concluding Remarks 

The studies presented in this thesis have been able to provide an original contribution to both the 

fields of electrosensory system as well as neural coding in general. I set out to characterize 

envelope responses in the ELL and received an incredibly complex question of efficient and 

optimized coding in a neural system. With each chapter of my thesis, I uncovered more pieces of 

the puzzle and elucidated the underlying mechanisms which ultimately mediated the neural code 

of envelopes. The weakly-electric fish is truly a fascinating animal and I think that we have 

plenty more to learn for years to come.  
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While there are plenty more questions to explore in this system, I must bid farewell to the 

weakly-electric fish for now. As presented in my future directions sections, I am quite excited 

about the potential projects which could follow up on the work I completed in this dissertation. 

The results of these proposed studies would further help us understand the neural code of 

envelopes and provide useful links between molecular level processes involving channels, 

computations at the neural circuitry level, and behaviour and perception at the organismal level. 
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Supplementary Materials 

Supplementary figures for Chapter 3 

 
Supplementary Figure 1. ON and OFF-type ELL pyramidal cells display similarresponses to second order 
attributes of natural electrosensory stimuli. A) Example responses of example ON-type (green) and OFF-
type (brown) ELL pyramidal cells to a 4 Hz sinusoidal AM (black). B) Distribution of stimulus phase for 
which ELL pyramidal cells in our dataset fired preferentially. The distribution is clearly bimodal 
(Hartigan’s dip test, p=0.0167) with ON-type cells firing preferentially near the maximum of the stimulus 
(phase 0) and OFF-type cells firing preferentially near the minimum (phase π). C) The population-
averaged response power spectrum (green) for ON (left) and (brown) OFF (right) type cells was relatively 
constant as compared to that of the envelope stimulus (blue). Insets: The population-averaged response 
autocorrelation function (green) for ON (left) and (brown) OFF (right) type cells decayed to zero much 
faster than that of the stimulus (blue). D) Population-averaged correlation times (left) and white index 
(right) for ON (green) and OFF (brown) type cells. No significant differences were observed between 
correlation time (Wilcoxon rank-sum test, p>0.05, n.s., N=14) or white index values (Wilcoxon rank-sum 
test, p>0.05, n.s., N=14). 
 



156 
 

Supplementary Figure 2: UCL and EBIO application 
have opposite effects on pyramidal neuron 
baseline activity. A) Glutamate ejection causes 
rapid increases in pyramidal neuron firing rate, 
indicating that the pharmacology electrode is 
close to the neuron from which we are recording. 
B) Baseline activity under control (top) and after 
UCL application (bottom) from a typical pyramidal 
neuron. C) Same as B for EBIO application. D) 
Populationaveraged burst fractions under baseline 
(control) and after UCL and EBIO application, 
respectively. Burst fraction was significantly 
different between control and UCL (Wilcoxon rank-
sum test, p<0.05, N=6) and between control and 
EBIO (Wilcoxon rank-sum test, p<0.05, N=6). 
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Supplementary Figure 3: Saline injection does not 
significantly alter behavioral responses to envelope 
stimuli. A) Schematic showing the bilateral saline 
injection. B) Top: Low (left) and high (right) 
frequency envelope stimuli. Bottom: Corresponding 
behavioral responses before (green) and after (red) 
saline injection. C) Population-averaged behavioral 
sensitivity before (green) and after (red) saline 
injection. The dashed lines show the best power 
law fits to the data. Inset: Population-averaged 
power law exponents for before (green) and after 
saline injection (red) (N=3). D) Population-averaged 
phase lag before (green) and after (red) saline 
injection 
(N=3). 
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Supplementary figures for Chapter 4 

               
 
Supplemental Figure 1. Filter settings do not affect detection threshold values obtained for EAs and 
behavior. Detection thresholds as a function of filter cut-off frequency for EAs (blue) and behavior 
(brown). Light blue and light brown data points indicate the values obtained for a cut-off frequency of 

for different filter cut-off 
frequencies (EAs: Kruskal-Wallis, df = 12, p = 0.999 with Bonferroni correction; behavior: Kruskal-Wallis, 
df = 12, p = 0.6162 with Bonferroni correction). 
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Supplementary Figure 2. Neuronal and behavioral detection threshold values are strongly correlated but 
not their residuals. A) The detection threshold values of PCells and behavior are strongly positively 
correlated as indicated by a high r-value (Pearson’s rho: r = 0.93; p = 4.6*10-7) The inset shows a whisker-
box of the correlation coefficient obtained for each pair. B) The residuals of neuronal and behavioral 
detection threshold values obtained for repetitive stimulation (three repetitions) are not significantly 
correlated (Pearson’s rho: r = -0.14, p = 0.48). 
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Supplemental Figure 3. Saline injection into nP does not affect neuronal and behavioral detection 
thresholds. A) Relevant anatomy diagram showing the main brain areas considered. Recordings were 
made from individual PCells. B) Left: PCell firing rate detection threshold values did not change after 
saline injection (control: 9.4±1.0%, saline: 9.3±0.7%; Wilcoxon sign rank test, n = 7; p = 0.94). Middle: 
PCell vector strength detection threshold values did not change after saline injection (control: 5.4±1.7%, 
saline: 4.8±1.5%; Wilcoxon sign rank test, n = 7; p = 0.59). Right: Behavioral detection threshold values 
did not change after saline injection (control: 13.1±1.5%, saline: 13.1±2.2%; Wilcoxon sign rank test, n = 
8; p = 0.95). “ns” indicates no significant difference. 
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Supplementary Figure 4. Inactivating the indirect feedback pathway does not alter detection thresholds 

observed for either central electrosensory neurons or from the organism. a) Relevant anatomy diagram 

showing the main brain areas considered. Recordings were made from individual PCells. Right inset: 

bilateral injection of the non-NMDA glutamate receptor antagonist CNQX near the apical dendrites of 

ELL pyramidal cells in the molecular layer near the cell being recorded from as well as to test the effects 

on behavior. b) Top: Example behavioral responses to increasing contrast (top) before (dark brown) and 

after (light brown) bilateral CNQX injection. Middle: example firing rate responses to increasing contrast 

from an example ELL pyramidal neuron (dark green) and after (light green) bilateral CNQX injection. 
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Bottom: example time-varying vector strength responses to increasing contrast from the same ELL 

pyramidal neuron (dark green) and after (light green) bilateral CNQX injection. We found that both 

behavioral (top, inset, control: 2.6±0.4%; CNQX: 2.5±0.4%, Wilcoxon sign rank test, n = 7, p = 0.81) and 

neural (firing rate: middle inset, control: 8.5±3.2%; CNQX: 8.1±3.0%, Wilcoxon sign rank test, n = 8, p = 

0.31; vector strength: bottom inset, control: 3.8±1.5%; CNQX: 3.2±1.7%, Wilcoxon sign rank test, n = 8, p 

= 0.55) detection thresholds were not affected by CNQX injections. Note that previous studies have 

shown that saline injection within the molecular layer does not affect behavioral responses (Deemyad et 

al., 2013; Huang et al., 2016; Larson et al., 2014). As a positive control, we note that injection of CNQX 

significantly decreased the baseline (i.e., in the absence of stimulation) firing rates of ELL pyramidal cells 

(control: 12.75±1.98 spk*s-1; CNQX: 6.79±1.18 spk*s-1, Wilcoxon sign rank test, n = 8, N = 3 fish, 

p = 0.0078), which is consistent with previous results (Bastian and Nguyenkim, 2001a; Chacron and 

Bastian, 2008). “ns” indicates no significant difference. 

 
 

                       
 
Supplementary Figure 5. Inactivating the direct feedback pathway by injecting Lidocaine into TS 
significantly increases firing rate detection thresholds but does not affect phase locking detection 
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thresholds. A) Relevant anatomy diagram showing the main brain areas considered. Lidocaine was 
injected in TS while recordings were made from individual PCells within the contralateral ELL. B) Top: 
example firing rate responses to increasing contrast (top) from an example ELL pyramidal neuron (dark 
green) and after (light green) Lidocaine injection. Bottom: example time-varying vector strength 
responses to increasing contrast (top) from the same ELL pyramidal neuron (dark green) and after (light 
green) unilateral Lidocaine injection into the contralateral TS. We found that firing rate detection 
thresholds significantly increased after Lidocaine application (middle inset, control: 3.6±0.5%; Lidocaine: 
13.6±4.9%, Wilcoxon sign rank test, n = 12, N = 5 fish, p = 4.88*10-4). In contrast, vector strength 
detection thresholds were not significantly altered by Lidocaine injections into the contralateral TS 
(bottom inset: control: 2.4±0.7%; Lidocaine: 2.1±0.7%, Wilcoxon sign rank test, n = 12, p = 0.42). We note 
that these results are qualitatively similar to those obtained by injecting Lidocaine into nP thereby 
blocking STCells (compare with Fig. 5). “ns” indicates no significant difference. 
 
 
 

                      
 
Supplementary Figure 6. Identifying nP stellate cells based on previous characterization. Response profile 
of our nP stellate cell population (n = 10) to different sinusoidal AM frequencies. The firing rate 
modulation peaks around 4-8 Hz and is negligible for AM frequencies > 32 Hz. This is similar to that 
reported previously for stellate cells (Bratton and Bastian, 1990) and strongly differs from properties of 
other neuron types within nP (Bastian and Bratton, 1990). 
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Supplementary Figure 7. Detection threshold values are similar for different response levels. No 
significant differences were seen for behavior (brown, left), EAs (blue, middle), and PCells (green, right) 
when altering the significance level (Kruskal-Wallis, df = 2; Behavior: p = 0.99; EAs: p = 0.99; PCells: p > 
0.66 with Bonferroni correction).  
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Supplementary Figures for Chapter 5  
 

Supplementary Figure 1. Unilateral injection of lidocaine 
in contralateral nP gives rise to effects qualitatively 
similar to those observed when injecting bilaterally. A) 
Top: stimulus waveform showing the noisy AM (blue) 
and its sinusoidal envelope (red). Middle: Time 
dependent firing rate in response to the stimulus from a 
typical ELL pyramidal cell before (blue) and after (purple) 
contralateral lidocaine application. Bottom: spiking 
activity from this same neuron in response to stimulation 
before (blue) and after (purple) lidocaine application. B) 
Population-averaged neural gain to sinusoidal envelopes 
as a function of frequency before (blue) and after 
(purple) lidocaine application. The dashed lines show the 
best power law fits to the data. Inset: Exponent before 
(blue) and after (purple) lidocaine application 
(p = 0.0039, Wilcoxon Signed-Rank Test). C) Population-
averaged neural response power before (blue) and after 
(purple) lidocaine application. The dashed lines show the 
best power law fits to the data. Inset: White index for 
neural response power before (blue) and after (purple) 
lidocaine application (p = 0.0156, Wilcoxon Signed-Rank 
Test). 
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Supplementary Figure 2. Saline injection has no effect on ELL pyramidal cell tuning properties and 
optimized coding of natural stimuli. A) Schematic showing the relevant ELL anatomy. Data obtained from 
ELL pyramidal neurons were pooled as there is no difference in envelope response between ON- and OFF-
type pyramidal cells (Huang and Chacron, 2016). Saline injection was performed into nP. B) Top: stimulus 
waveform showing the noisy AM (blue) and its sinusoidal envelope (red). Middle: Time dependent firing 
rate in response to the stimulus from a typical ELL pyramidal cell before (blue) and after (brown) saline 
application. Bottom: spiking activity from this same neuron in response to stimulation before (blue) and 
after (brown) saline application. C) Population-averaged neural gain to sinusoidal envelope stimulation 
as a function of frequency before (blue) and after (brown) saline application. The dashed lines show the 
best power law fits to the data. Inset: Exponent before (blue) and after (brown) saline injection. No 
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significant changes were observed (p = 0.641 Wilcoxon Signed-Rank Test). D) Population-averaged 
neural response power before (blue) and after (brown) saline application. The dashed lines show the best 
power law fits to the data. E) Schematic showing bilateral injection of saline during behavioral 
experiments. F) Top: stimulus waveform showing the noisy AM (blue) and its sinusoidal envelope (red). 
Bottom: Time dependent EOD frequency in response to the stimulus from a typical fish before (blue) and 
after (brown) saline application. G) Population-averaged behavioral gain to sinusoidal envelopes as a 
function of frequency before (blue) and after (brown) saline application. The dashed lines show the best 
power law fits to the data. Inset: Exponent before (blue) and after (brown) saline injection. No significant 
changes were observed (p = 0.938, Wilcoxon Signed-Rank Test). H) Left: population-averaged white index 
before (blue) and after (brown) saline application. No significant changes were observed (p = 0.547, 
Wilcoxon Signed-Rank Test). Right: population-averaged relative changes in neural and behavioral 
sensitivities following saline application. No significant changes were observed (neuron: p = 0.710, 
Wilcoxon Signed-Rank Test, behavior p = 0.750, Wilcoxon Signed-Rank Test). “n. s.” indicates no 
significant difference. 
 

          
Supplementary Figure 3. Bilateral lidocaine injection does not affect ELL pyramidal cell responses to AMs. 
A) Spike-triggered average (STA) of the noisy AM stimulus waveform before (blue) and after (purple) 
bilateral lidocaine injection from an example ELL pyramidal cell. B) Population-averaged STA amplitudes 
before and after injection were not significantly different from one another (p = 0.469, Wilcoxon Signed-
Rank Test). 
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Supplementary Figure 4. CNQX injection increases ELL pyramidal cell responses to AMs, consistent with 
previous results (Bastian et al., 2004; Clarke and Maler, 2017). A) Spike-triggered average (STA) of the 
noisy AM stimulus waveform before (blue) and after (green) CNQX injection from an example ELL 
pyramidal cell. B) Population-averaged STA amplitude was significantly lower before CNQX injection 
(p = 0.008, Wilcoxon Signed-Rank Test).  
 
 
 
 

 
Supplementary Figure 5. Lidocaine injection within 
the PET gives rise to effects on ELL pyramidal cell 
responses to envelopes that are qualitatively similar 
to those observed when injecting CNQX. A) Top: 
stimulus waveform showing the noisy AM (blue) and 
its sinusoidal envelope (red). Middle: Time 
dependent firing rate in response to the stimulus 
from a typical ELL pyramidal cell before (blue) and 
after (red) PET lidocaine injection. Bottom: spiking 
activity from this same neuron in response to 
stimulation before (blue) and after (red) PET 
lidocaine injection. B) Population-averaged neural 
gain to sinusoidal envelopes as a function of 
frequency before (blue) and after (red) PET lidocaine 
injection. The dashed lines show the best power law 
fits to the data. Inset: Exponent before (blue) and 
after (red) lidocaine injection (p = 0.0039, Wilcoxon 
Signed-Rank Test). C) Population-averaged neural 
response power before (blue) and after (red) PET 
lidocaine injection. The dashed lines show the best 
power law fits to the data. Inset: White index for 
neural response power, p = 0.0273, Wilcoxon 
Signed-Rank Test). 
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Supplementary Figure 6. PET lidocaine injection increases ELL pyramidal cell responses to AMs, consistent 
with previous results (Bastian, 1986a). A) Spike-triggered average (STA) of the noisy AM stimulus 
waveform before (blue) and after (red) PET lidocaine injection from an example ELL pyramidal cell. B) 
Population-averaged STA amplitude was significantly lower before PET lidocaine injection (p = 0.0391, 
Wilcoxon Signed-Rank Test). 
 
 

 
Supplementary Figure 7. nP stellate and multipolar 
cells have different electrophysiological properties. 
A) Cyan: AM frequency tuning curve for nP stellate 
cells. Note that the tuning curve rapidly drops off at 
higher frequencies >32 Hz due to a lack of responses 
to those frequencies. Orange: AM frequency tuning 
curve for nP multipolar cells. Note that the 
multipolar cells in contrast respond to the higher 
frequencies >32 Hz. The tuning curves are in 
agreement with previous studies. B) Whisker-boxplot 
of baseline firing rate distribution of stellate (cyan) 
and multipolar (orange) cells recorded from. Note 
that multipolar cells have significantly higher 
baseline firing rates than stellate cells (χ2 = 12, 
p = 5.32*10 - 4, Kruskal-Wallis ANOVA). Overall, 
values were in agreement with those of previous 
studies (Bastian and Bratton, 1990; Bratton and 
Bastian, 1990). “*” indicates statistical significance 
at the p = 0.05 level. 
 
 
 

 


