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Abstract

The problem of direct initiation of detonations has been investigated numerically

by using a more realistic chemical kinetics scheme. The chemical kinetics model is based

on a three-step chain-branching reaction consists sequentially of a chain-initiation and a

chain-branching step. followed by a temperature independent chain-termination. The

steady ZND structure using the 3-step chemical kinetics model is compared with that

based on the standard single-step Arrhenius rate model. The 3-step chemical kinetics

model is shown to permit an independent variation of the induction and reaction zone

length and a number of different steady-state detonation profiles cao be derived. An

unsteady computation has also been performed to determine whether the solution from

steady-state analysis cao be approached asymptotically from a transient development.

Oscillatory or even chaotic detonations are observed for high values of the ratio between

the induction and reaction zone length, which is a more adequate parameter to

characterize the stability of detonation waves. The transient results also show that the

present multi-step kinetics model provides a chemical switch-off mechanism that causes

detonation failure, which cannot be described by using a single-step Arrhenius rate law.

The three regimes of direct initiation have been numerically simulated for planar,

cylindrical and spherical geometries using the present 3-step chemical kinetics model.

The use of a more realistic reaction scheme allows a unique value for the critical

ini tiation energy to be defined. The numerical results demonstrate that detonation

instability plays an important raIe in the initiation process. The effect of curvature for

cylindrical and spherical geometries has been tound to enhance the instability of the

detonation waves and thus influences the initiation process.

Sorne general theories for direct initiation have been verified from the results of

the present numerical simulation using a more detailed chemical kinetics mode!. where a

definitive value of the critical energy was obtained. lt was found that these theories are

satisfactory only for stable detonation waves and 5tart ta break down for highly unstable

detonations because they are based on simple blast wave theory and do not include a

parameter to model the detonation instability. This study suggests that a stability

parameter, such as the ratio between the induction and reaction zone length, should be

considered in the future development of a more rigorous theory tor direct initiation.
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Résumé
Le problème de l'initiation directe des détonations a été étudié numériquement en

utilisant un schéma de cinétique chimique plus réaliste. Ce schéma réactionnel est basé sur

une réaction "chain-branching~~à trois étapes, qui consiste, séquentiellement, en une étape

'"chain-initiation''' et une étape "'chain-branching", suivies d'une étape '''chain-termination''

indépendante de la température. La structure ZND stationnaire obtenue grâce à ce schéma

réactionnel à trois étapes est comparée avec celle basée sur une réaction de type Arrhenius

à une seule étape. Le schéma réactionnel à trois étapes permet une variation indépendante

des longueurs des zones d'induction et de réaction, et une multitude de profils

thermodynamiques stationnaires différents peuvent être obtenus. Des calculs

instationnaires peuvent aussi être réalisés pour déterminer si la solution du calcul

stationnaire peut être approchée asymptotiquement à partir d'un développement

instationnaire. Des détonations oscillatoires et même chaotiques sont observées pour des

valeurs élevées du rapport entre les longueurs d'induction et de réaction, qui représente un

paramètre plus adéquat pour caractériser la stabilité des ondes de détonation. Les résultats

instationnaires démontrent aussi que le présent schéma multi-réactionnel permet un

mécanisme d ~extinction de la détonation, ce qui ne peut être expliqué grâce à un schéma

réactionnel Arrhenius à une seule étape.

Les trois régimes dïnitiation directe ont été simulés numériquement pour des

géométries planaire, cylindrique et sphérique à partir du présent schéma mufti-réactionnel.

L'utilisation d'un schéma plus réaliste permet de déterminer une valeur unique de l'énergie

critique dïnitiation. A partir des simulations numériques~ il est démontré que [' instabilité

des détonations joue un rôle important dans le processus d'initiation. Il a été démontré que

reffet de courbure pour les géométries cylindrique et sphérique augmente lïnstabilité de

l'onde de détonation et influence donc le processus d'initiation.

Certaines théories générales de l'initiation des détonations ont été vérifiées à partir

des résultats de la présente simulation basée sur un schéma multi-réactionnel, où une

valeur bien détinie de l'énergie critique d'initiation est obtenue. Il appert que ces théories

sont satisfaisantes uniquement pour les détonations stables. Ces théories échouent pour les

détonations hautement instables, puisque qu'elles sont basées sur la théorie simple des

ondes de souffle, et n'incluent pas de paramètre pour décrire ['instabilité des détonations.

La présente étude suggère qu" un paramètre de stabilité, tel que le rapport entre la longueur

des zones d'induction et de réaction, pourrait être considéré dans le développement futur

d'une théorie plus rigoureuse pour l'initiation directe des détonations.
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Chapter 1

Introduction

There are two modes of combustion in general: detlagration and

detonation. Detonation is a supersonic combustion wave that propagates via auto­

ignition from adiabatic shock compression in contrast with slow deflagration

whose propagation depends on heat diffusion and mass transport. GeneraUy, a

detonation can be tormed in two ways. One way involves the acceleration of a

flame. which eventually results in the transition to a detonation under appropriate

boundary conditions. This is usually referred to as deflagralion to detonation

lransition (DDT). Altematively, the other mode of initiation is when the

detonation is formed instantaneously from the asymptotic decay of the strong

blast wave generated by a rapid deposition of a large arncunt of energy into the

combustible mixture. This mode of initiation is usually referred to as direcl or

hlast initiation. This thesis foc uses mainly on the direct initiation of detonation.

ln the limit of an ideal instantaneous point source energy. the ignition

energy becomes the sole parameter that determines the possible outcome of the

initiation process. i.e., whether a detonation can be initiated or not. If. for given

experimental condition, a sufficiently large amount of energy is released by the

igniter, then the blast wave will decay asymptoticaUy to the Chapman-louguet (C­

l) velocity of the combustible mixture. A self-sustained detonation is thus

successfully initiated. If the igniter energy is too low. the initiation of detonation

fails. In this case. the blast wave generated by the igniter will progressively

decouple from the reaction zone and eventually decays to a weak shock wave. A

critical threshold value for the initiation energy can be identified below which no

detonation can be formed. This minimum energy required to successfully initiate

a detonation is usually referred to as the crilical initialion energy.
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Over the past tour decades. direct initiation of detonation has been a

subject of intense study. Since the pioneer work of Zel'dovich et al. [42].

significant advances have been made toward the understanding of direct initiation

phenomenon. Nurnerous studies were carried out which attempted to yield a

predictive theory for the critical initiation energy. In spite of aIl these efforts. a

quantitative theory capable of predicting the critical energy from tirst principles

based on thermo-chemical and chemical kinetics data of the mixture is still

lacking. Moreover. the weakest parts of previous theoretical and numerical

investigations on direct initiation is their sub-model tor chemical kinetics. Most of

these investigations are based on an idealized single-step Arrhenius rate law to

model the chemistry. Although the use of single-step Arrhenius kinetics model

simplifies the analysis and reveals sorne interesting global features of the

phenomenon. it does not describe the realistic reaction scheme of most explosive

mixtures. Hence. the results obtained are not even in qualitative agreement with

sorne experimental observations. For instance. in the numerical study by Mazaheri

[30]. it was demonstrated that a single-step Arrhenius rate law is not an adequate

chemical kinetics model for the problem of direct initiation due to the ditliculty in

defining a unique value of critical initiation energy. For single-step chemistry. a

system without losses will always react to completion. Hence initiation will

always occur after a sufficiently long time and a critical value of initiation energy

no longer exists. This often yields the non-physical result that initiation of

detonation can always be achieved via any arbitrary strength of shock wave.

Recent studies have revealed that detailed chemical kinetics steps are also

able to influence the initiation and propagation of the detonation wave. as weil as

the detonation structure. Dionne [13] studied the propagation of non-ideal

detonations arising from reaction steps involving a competition between

exothermic and endothermic reactions. Il was tound that the propagation of

detonation couId be different by using more than one single-step rate law. Dionne

reported that pathological detonations. i.e., detonations can travel at a velocity

tàster than the Chapman Jouguet value. are possible when there are more than

one-step kinetics present in the chemical model.

2
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Dold & Kapila [15] have investigated the difference between shock

initiation of detonation based on an asymptotic analysis using a global one-step

model and a three-step chain-branching chemical model. They found that the

development of detonation behind an initiating shock wave is fundamentally

different when the chemistry is modeled using a radical chain-branching

mechanism from that of using a global one-step model. Their analyses show that a

one-step model is probably not adequate for the study of detonation initiation in

combustible mixtures, which are typically burned via a radical chain-branching

process.

More recently. Short & Quirk [36] have studied the non-linear stability of

a pulsating detonation using the same three-step chain-branching reaction model

as in the work of Dold & Kapila [15]. They showed that similar mechanisms for

the regular and iITegular modes of instability for both the three-step reaction

model and the standard one-step reaction mode!. However. the use of the three­

step chain-branching reaction has a distinct advantage over the standard one-step

Arrhenius model because a well-defined detonability limit cao now be obtained.

In view of the different qualitative features obtained from these studies

where a more detailed chemical kinetics is used. it appears of interest to

investigate the direct initiation problem using again more realistic chemical

kinetics model. Therefore, the main objective of this thesis is to elucidate further

the direct initiation phenomenon and investigate the importance of the chemical

kinetics scheme used. The motivation for such an investigation is to contribute

toward the development of a rigorous theory of direct initiation.

The present investigation was caITied out via numerical simulations. A

number of numerical schemes are now available [7], which are capable of

reproducing many aspects of the highly transient and unstable events of the

initiation and propagation of gaseous detonation. Numerical simulations can

provide a lot of information. which is difficult to obtain from actual experiments.

Although a complex set of kinetics rate equations could in principle be solved

simultaneously with the reactive Euler equations within CUITent computational

capabilities. it suffices to use a simplified system of three-step reaction

3



•

•

•

mechanism to just reproduce the qualitative aspects of the initiation phenomenon

[27]. In the present study. the same three-step chain-branching reaction model as

in the work of Dold & Kapila [15] and Short & Quirk [36] is used to simulate the

direct initiation phenomenon. This model consists of a chain-initiation and a

chain-branching step. followed by a temperature independent chain-termination. ft

can represent a generic three-step chemical-kinetics description of a real ehain­

branching reaetion.

The thesis is divided into five Chapters. In Chapter 2. the ehemical

kineties model and the goveming equations of the problem are tirst diseussed in

detail. To demonstrate the effeet of the kinetics rate model on detonation. the

steady lND structure using a 3-step chemical kinetics model is investigated and

comparison is made with the structure obtained from a single Arrhenius rate law.

A transient computation is also carried out to determine whether the solution from

the steady state analysis can be approaehed asymptotieally. The instability of

detonation waves observed from the fully unsteady computation and its

dependence on the chemical kinetics rate model are also discussed. The regimes

of direct initiation are then simulated numerically in Chapter 3 tor different

geometries of planar. cylindrical and spherical case. The effeet of detonation

instability and the eurvature effect on initiation are investigated. followed by a

discussion on the existence of a unique value of critical initiation energy with the

present 3-step chemical kinetics scheme. In Chapter 4. sorne general theories lor

direct initiation are verified through the present numerical results. Finally. the

thesis is ended by sorne concluding remarks in Chapter 5.

4
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Chapter 2

The Detonation Structure

2.1 Introduction

Betore we investigate the dependence of the direct initiation process on

the details of the chemical kinetics model. it is worthwhile to first examine the

steady ZND detonation structure using different chemical kinetics models. We

shaH first consider the steady ZND structure using a 3-step chemical kinetics

model and compare the qualitative differences l'rom that based on the standard

single-step Arrhenius rate model used in most theoretical studies. An unsteady

analysis is also carried out to verify the existence of the steady-state detonation

l'rom an initial transient development and elucidate the nonlinear instability of the

one-dimensional detonation wave.

2.2 Analytical model

The dynamics of unsteady propagation of a one-dimensional detonation

can be described by the one-dimensional reactive Euler equations. Le.. a set of

hyperbolic partial diftèrential equations in space (in laboratory frame) and time

that express the conservation of mass. momentum and energy. They have the

following non-dimensional form:

ap + a(pu) + l (pu) =0
al ar r

a(pu) +~ (pu:! +p)+ l (pu:! )= 0
al ar r

a( ) a .
--I!!!- + -[u(~ + p)]+ L[u{,œ + p)] = 0

al a,. r
(2.1 )

5
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where p. u~ p and e denote the tluid density. velocity. pressure and internai energy

respectively. The parameter j represents the geometric factor withj = O. 1. 2 in the

planar. cylindrical and spherical geometry. Assuming a perfect gas with constant

specitic heat ratio y. the internai energy is detined as:

pl,
e= -q+-u~

(y -l)p 2
(2.2)

where Cf is the local chemical energy release. Ali the flow variables are noo­

dimeosionalized with respect to the unbumed mixture properties (e.g.. the density

is non-dimensionalized with po~ pressure with yPo and the velocity with the sound

speed of the unbumed mixture co),

The chemical kinetics scheme used for the present study is a generalized

three-step chain-branching reaction modeL which is the same as the one employed

by Short & Quirk [36] in their recent investigation of the behavior of pulsating

detonation waves. This model involves two temperature-sensitive radical

producing reactions and a temperature-independent exothermic chain-termination

reaction. It can be represented by the following three main-stages:

1. Initiation

2. Chain branching

3. Chain termination

F+ Y~ 2Y

Y~P

k1 = exp( E.(;' -nJ

kR = exp( ERU., -nJ

•

(2.3)

where F~ Y and P correspond to the amount of reactants. radicals and products.

respectively. The chain-initiation and chain-branching rate constants k, and ku

have an Arrhenius temperature-dependent form e-EiRT
. The chain-termination

reaction or recombination is assumed to be first order. independent of temperature

and has a fixed rate constant kc. The initiation step has the activation energy El

and the activation energy for the chain-branching step is represented by EB. The

parameters TI and TB denote respectively the chain-initiation and chain-branching

"cross-over'~ temperatures. These are the temperatures limits at which the chain-

6
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initiation and chain- branching rates become as fast as the chain-termination rate.

T0 represent typical chain-branching reactions. these different parameters should

be within the following limits as mentioned in the paper by Short & Quirk [36]:

For the initiation proeess (step 1). the cross-over temperature TI is greater than the

post shock temperature Tshock and it generally has a large activation energy El

because a large amount of energy is required to break the relatively strong

chemical bonds 0 f the reactants. As a result. this reaction step tends to be

unitormly slow. This energetically demanding reaction step produces a small

concentration of chain carriers from the reactant. As for the chain-branching

reaction (step 2). the activation energy is relatively small as compared to El_ The

cross-over temperature TB is lower than the post shock temperature because once

the shoek raises the temperature above TB. chain-branching will have a rapid

reaction rate if a sufficient concentration of free radical has been reached. This

reaetion leads to the rapid growth in the concentration of chain carriers. Finally.

the last step (step 3) is an exothermie termination reaction in which chain camers

are converted into produets.

ln the present study. the referenee length seale rc is chosen such that the

chain-termination rate constant is unity. i.e.. kc = 1. The reference time scale le is

set to the reference length seale dividing it with the sound speed of the reactant

(i.e.. te = r,)co). Thus ail length and time seales are based on the ratios of the

recombination time and length.

Denoting the variable f and y to be the mass fraction of the fuel F and

radical Y. the consumption equations tor fuel and radical can be written as:

a(pf) + o(pl~l) + L(plIf) = -lt'l - lt'l)

a cr r

o(py) + o(puy) + L(nlJu) = W + li' - Wa à· r ""~J 1 n c

(2.4)

7



where:• Wc =y

•

•

(2.5)

The local chemical energy release cao be written as:

{,1 =0 - f .0 - ". (0 + 0 )_ _ J _ -c:ndo.

(2.6)

where Q is the total amount of energy released by the fuel and Q..:ndo. represents

the amount of endothermic energy absorbed by the initiation and chain-branching

reactions because energy is required to break the bond and dissociate the reactant

into free radicals. In the present study. Qcndo. is set to zero for simplicity without

loss of generality.

Using the above described chemical kinetics model. four parameters can

be adjusted. namely El, Eo. Tl and TB. These parameters can indeed control the

ratio of the chain-branching induction length to the length of the recombination

zone. It should he noted that it is possible to derive a numher of different steady

detonation profiles under the ordered limits allowed by the parameters. This

model has an advantage over the standard single-step rate law because it allows

the variation of the two important length scales of the reaction. namely the

induction and reaction zone length. Here. value of Q = 10. El = 20. Eo = 8. Tl =

3T'iIHld: and y= 1.2 are used throughout. unless specified otherwise.

8



• 2.3 Steady ZND structure

The Zerdovich-Von Neumann-Doring (ZND) detonation structure is the

c1assical one-dimensional steady structure for a detonation wave., consisting of a

normal shock wave followed by an induction zone and a reaction zone (figure

2.1). The tennination of the reaction zone is the C-J or sonic plane, where

equilibrium occurs. The variation of the state variables in the detonation structure

can be obtained via the integration of the three conservation equations together

with the chemical kinetics rate law.

Stationary
shock front C-J plane

•
Unreacted
mixture

•

Reaction
zone .

,\;f=1

VN state

Detonation
product

•

Figure 2.1: One-dimensional ZND detonation structure.

The non-dimensional steady state conservation equations for a coordinate

system fixed with respect ta the shock front cao be written as:

l'v! = !!­
v

l ') li.'!
-+M- =p+-=p+Mu
y v

1 J'vI.'! Y pv u 2
( )-+-=-+-- O-I'O-y'O

y-I 2 y-l 2 - - -

Conservation ofmass

Conservation ofmomentum

Conservation ofenergy

(2.7)

•
and the variation in fuel and radical concentrations is determined by the following

equations:

Yr =(wr +wB -wc)/u

(2.8)

9



•

•

•

where the subscript r denotes the derivative with respect to the distance r.

Detailed derivations of the above equations are given in Appendix 1. The above

system of equations can he integrated using the initial condition of the shocked

state (or Von Neumann state). For a given shock Mach number. the Von

Neumann state can be obtained from the Rankine-Hugoniot relationship for a

normal shock wave. The integration proceeds until the equilibrium C-J conditions

are reached. The possible paths of integration along the Rayleigh line for different

shock strengths are shown on the p-v diagram (ligure 2.2).

~
CJ solution

,0" /-Weak solution (W) .

. . '-......~...... ~ Hugomot curve

. ',~ ---------- complete reaction

-~,~ .
',--, ------ unreacted matenal

Initial state

Figure 2.2: p-v diagram showing possible paths of integration.
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Figure 2.3: Steady ZND detonation profiles: Ca) pressure protile
(b) temperature profile for mixture with Q = 1O~ y = 1.2~ El = 20~

En = 8 and TI = 3Tshock.
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Typical pressure and temperature profiles for the ZND structure are

illustrated in figures 2.3a and 2.3b. Across the shock~ the pressure and

temperature jump abruptly to the Von Neumann state. During the induction period

both the pressure and temperature remain relatively constant. When energy starts

to release in the reaction zone~ the pressure drops white the temperature increases.

At the end of the reaction zone, the products are at equilibrium and the final state

corresponds to values from the C-J solution. if the correct shock velocity is used.

From figure 2.3. two distinct regions can be c1early recognized after the shock

front. i.e.~ induction zone and reaction zone. In the induction zone where the

"incubation" process occurs. the reactants start to dissociate into free radicals. The

free radicals then participate in the exothermic recombination process when the

chemical energy is released and temperature increases.

As mentioned previously. the chain-branching cross-over temperature Tu

contrais the ratio of the induction length to the recombination length. In figure

2.3. Tu varies from O.80T~hock to O.88Tshock while the other parameters are held

constant. By increasing parameter Tu, the induction zone length increases relative

to the recombination zone. This cao be shawn more c1early if we look at the

profiles tor the consumption of reactant as weil as the formation of product.
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Figure 2.4 shows the mass fraction of fuel. radical and product profiles in

the reaction zone behind the shock front. For a low value of TB = O.80Tshock~ the

chain-branching induction zone length is small and a significant build up of chain

radical concentration occurs rapidly. Since the chain-branching cross-over

temperature TB is the temperature at which the chain-branching rate is equal to

that of the chain-tennination. we see that for a low value of TB~ the chain­

branching reaction rate is significantly greater than that of the recombination

reaction and a relatively longer recombination region is obtained betore the final

equilibrium is reached. However. for higher values of TB. the chain-branching

induction zone increases. resulting in a lower peak concentration of chain

radicals. For high values of TB, the rate of chain-branching reaction is lower. thus

allowing the chain-termination reaction to become etTective before ail the fuel is

depleted. Hence~ this restricts the build up in free radical concentration in the

reaction zone.

From the steady ZND analysis. it is shown that the present three-step

model allows us to vary the ratio between the induction zone length and reaction

zone length independently. This is one of the distinct advantages over the

standard one-step Arrhenius kinetics model. [n fact it is difficult to define an

induction zone length in the one-step Arrhenius rate model where both induction

and reaction length are governed by a global activation energy.
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2.4 Transient computation

The steady state ZND detonation structure has been described in the

previous section. However. it is weil known that a steady ZND solution may be

unstable and the response of the steady-state solution to smaIl perturbations can

be obtained via an additional linear stability analysis as those carried out by Lee

& Stewart [24] and Sharpe [34]. Altematively. the stability of a steady-state

solution can be studied through an unsteady calculation from initial conditions.

where the transient behavior of the detonation is considered. Unsteady numerical

simulations of 1-0 detonations subject to the present 3-step kinetics model have

already been performed by Short & Quirk [36] to study the non-linear stability of

the structure of detonation waves. However. they first assumed a stable ZND

structure based on the steady-state solution using the C-1 criterion. and then

subjected this stable solution to a perturbation. [t is not c1ear that the stable ZND

protile for the present 3-step chemical kinetics model imposed by Short & Quirk

as a starting condition in their simulations can in fact be reached during the

transient development of the detonation wave from an arbitrary initiation

condition. It is thus important to first examine if the steady detonation using the

present 3-step chemical kinetics mode) can indeed be formed from arbitrary initial

conditions before actually focusing on the problem of direct initiation of

detonation. [n this section. an unsteady analysis of the transient development of a

1-D detonation initiated by a strong blast wave is carried out to determine the

existence of the steady detonation wave subject to the present 3-step chemical

kinetics mode!. [t is also possible to illustrate the detonation instability and its

dependence on the chemical kinetics model from the complete history of the

transient development of the detonation initiated by a strong blast wave.

The unsteady one-dimensional reactive Euler equations with the present

chemical kinetics scheme are solved numerically using an Eulerian detonation

code based on the piecewise parabolic method {PPM} of Colella & Woodward

[12]. which is a higher order extension of Godunov's method. together with a

conservative shock front tracking algorithm [9]. Due to the small length scale of

the present problem. it is important to properly retine the reaction zone.
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Therefore. an adaptive mesh refinement is used [2]. The computation domain is

covered by an uniform coarse grid of 20 numerical cells per half-reaction zone

length. An extra fine grid is used, with a refinement ratio of 5. giving an effective

resolution of 100 cells per half-reaction zone length (i.e.. where half the chemical

energy of the reaction has been released) within the reaction zone of the

detonation. This high resolution ensures that each reaction step is weil resolved

(more than 25 cells were present within the zone of each reaction step). Ail

computations are performed \Vith a CFL number of 0.5. The detonation code was

initially developed by Mazaheri [30] and extended to a 3-step reaction mechanism

for the present study. Details of the numerical methods can be found in Appendix

IL

In previous studies using a single step Arrhenius rate law. the stability of

the detonation wave is usually characterized by the activation energy of the rate

[aw. As the activation energy increases beyond the value for the stability limit the

detonation front changes from smail harmonic oscillations to non-linear

pulsations and eventually to chaotic behavior when the activation energy is far

l'rom the stability limit value [23]. In facl. the activation energy is a parameter in

the single-step rate law that contrais the ratio between the induction and reaction

zone length, i.e..

5 = Ll fne/uction

Ll R .
ecu.'llOIl

(2.9)

To understand more c1early the nonlinear pulsating instability of the detonation.

we should emphasize the importance of the ratio 8. To obtain this ratio cs. the

values of the induction zone and reaction zone length are determined from the

heat release curve as shawn in figure 2.5. The black dot corresponds to the

maximum heat release rate or the inflection point of the curve.
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Figure 2.5: Heat release profile using Q = 10. y = 1.2, El = 20. EB =
8 and TI = 3 Tshock for the 3-step chemicaI kinetics modeL

•
For the 3-step chemical kinetics model, the ratio between the induction

zone and reaction zone length can be changed by varying the chain-branching

cross-over temperature TB. as sho\vn in Section 2.3. Table 2.1 shows the

corresponding value of the ratio 8 for different chain-branching cross-over

temperatures Tn. together with the equivalent activation energy for a single-step

rate law. The equivalent activation energy for the single-step Arrhenius rate law is

tound by matching the inflection point of the heat release curve with the one from

the present 3-step chemical kinetics model, such that bath chemical kinetics

models gives approximately the same ratio between the induction and reaction

zone length. as illustrated in figure 2.6. For comparison. the distance is re­

normalized with the half-reaction zone length defined as the distance where half

the chemical heat has been released.

•
17



• Chain-branch ing cross-over Ratio i5 Equivalent activation
temperature TB energy Ea

0.80 T'ihock 0.8975 -13

0.86 T'ihock 1.1063 -l5

0.88 Tshod. I.l624 -16

0.89 TShock 1.1989 -16.5

0.90 T'ihlld 1.2347 -17

Table 2.1: The ratio g for different chain-branching cross-over
temperatures and equivalent activation energies En for Q = 10. y =

1.2. El = 20. En = 8 and TI = 3 Tshock.
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Figure 2.6: Heat release profiles for bath the single-step and three­
step chemical kinetics models for Q = 10 and y= 1.2.

The results obtained from the numerical computations usmg the 3-step

chemical kinetics model are now investigated in detail and compared with those

obtained from the standard single-step rate law with different activation energies

Ea•
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• 2.4.1 Stable detonation with 8 < 1
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Figure 2.7: Shock pressure history for a stable detonation wave
with TB = O.80fshock for the three-step chemical kinetics model.

Figure 2.7 shows the pressure history of the shock front for chain­

branching cross-over temperature TB equal to O.80T'ihock for the 3-step kinetics

model. From the steady ZND structure. we know that for TB = O.80T'ihock. the

induction zone length is short compared to the recombination or reaction zone

length. The ratio cS is equal to 0.8975. At the early time. a small amplitude

oscillation is ohserved due to the initiation process. However. after a period of

time. the oscillation is damped out and the detonation wave eventually approaches

to a stable steady state solution. Comparison between the detonation profiles From

steady ZND calculation and transient calculation is given in figure 2.8. It shows

that both results are in good agreement. Here. we can see that for small ratio cS

([ess than 1). the steady detonation wave is stable to small perturbation and a

steady ZND solution cao be achieved asymptotically.
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Figure 2.8: Comparison between the steady ZND solution (dashed
lines) and the asymptotic solution from transient calculation (solid
lines) for TB = 0.80Tshock for the three-step chemical kinetics
model. (a) Pressure profile and (b) temperature profile.
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• Similar result is also obtained using a single-step rate law \Vith activation

energy Ea = 13. This value of activation energy for mixture with Q = 10 and y=

1.2 also corresponds to a stable detonation. as illustrated in figure 2.9.
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Figure 2.9: Shock pressure history for a stable detonation wave
using single-step chemical kinetics model with activation energy
Ea = 13 .
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• 2.4.2 Unstable detonation with <5~1
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Figure 2.10: Shock pressure history for an unstable detonation
wave (a regular harmonie oscillation) with TB = O.86Tshock tor the
three-step chemical kinetics model.

By increasing ~he chain-branching cross-over temperature TB to 0.86Tshock.

thereby increasing the chain-branching induction length relative to the length of

the recombination region giving a value of 5 = 1.1063. an unstable detonation

wave is obtained asymptotically. as shown in figure 2.10. Hence for high value of

TB. a stable detonation cannot be achieved l'rom a transient calculation. For TB =

0.86T-;huck. the oscillation demonstrates a regular oscillatory behavior with

constant period. This phenomenon is generally retèrred to as a pulsating

detonation and it is sho\\'TI that this occurs when the ratio 8 is close to 1. The

instability mechanism underlying the steady constant period and frequency

pulsation is due to the periodic low-trequency. finite amplitude compression and

expansion waves in the chain-branching induction zone between the main reaction

region of the reaction zone and the leading shock [37].

Increasing the activation energy for a single-step Arrhenius rate model has

the same effect as increasing the induction length relative to the reaction length.

Figure 2.11 shows the pressure history of the shock front for activation energy Ea
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• = 15 using the single step Arrhenius rate law. Similar pulsating phenomenon with

a regular hannonic oscillation is observed.
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Figure 2.11: Shock pressure history for an unstable detonation
wave (a regular harmonie oscillation) using single-step chemical
kinetics model with activation energy Ea = 15.•
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Figure 2.12: Shock pressure history for an unstable detonation
wave (a period-doubling bifurcation mode) with TB = O.88T'ihock for
the three-step chemical kinetics model.
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Further increase in the chain-branching cross-over temperature TB for the

three-step kinetics model causes the oscillation to become less regular. The ratio i5

eventually becomes bigger than 1. For TB = O.88Tshock, a bifurcation occurs. A

steady period-doubled oscillation can be obscn;cd. as illustrated in ligure 2.12. It

consists of a high amplitude oscillation tollowed by a smaller-amplitude

oscillation. A bitùrcation mode of oscillation is also observed for activation

energy Ea = 16 for the computation using the single-step Anhenius rate law. as

shown in tigure 2.13.

- 1

z
-...;

c..-0...

1.2

0.8 ~-

o 50 100

Distance

150 200

•

Figure 2.13: Shock pressure history for an unstable detonation
wave (a period-doubling bifurcation mode) using single-step
chemical kinetics model with activation energy Ea = 16.

24



• 2.4.3 Highly unstable detonation with 8>1
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Figure 2.14: Shock pressure history for an unstable detonation
wave (a chaotic oscillation mode) with Tf] = O.89Tshock for the
three-step chemical kinetics model.

For a very large value of TB. a very long chain-branching induction zone

occurs which can significantly affect the propagation of detonation waves. A

highly non-steady behavior with a number of oscillations of different amplitudes

and periods is observed. as shown in figure 2.14. This result shows that no steady

solution can be obtained. The oscillation is chaotic and is generally called a multi­

mode pulsating detonation. In this case. the instability mechanism is more

complex because a secondary detonation is formed behind the lead detonation

shock and thus leads to a shock-shock interaction. This accounts for the

observation of the highly irregular behavior. We can obtain the same phenomenon

by increasing the activation energy for the single step kinetics model to Ea = 16.5

(figure 2.15).
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Figure 2.15: Shock pressure history for an unstable detonation
wave (a chaotic oscillation mode) using single-step chemical
kinetics model with activation energy Ea = 16.5.

2.4.4 Detonability limit
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Figure 2.16: Quenching of detonation wave: detonability Iimit with
To = O.9üTshock for the three-step chemical kinetics model .
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[f TB continues to increase further. then at sorne value TB (i.e.. TB =

O.9üTshock giving a ratio 15= 1.2347), the detonation wave fails. This phenomenon

is demonstrated in figure 2.16. For sufficiently large TB. the reaction zone (where

the chemical energy is released) is at a distance far away From the shock front.

With a large amplitude fluctuation. the shock temperature will drop below the

chain-branching cross-over temperature TB. Toe rate constant for the chain­

branching reaction is very small and has a profound eftèct on the rate of radical

production behind the shock. The chain-branching reaction can be considered to

be "switched off". Decoupling between the detonation shock and reaction zone

occurs. The energy released from the reaction zone cannot sustain the detonation

wave and eventually the detonation wave quenches.

For the numerical result using a single-step kinetics rate law. He & Lee

[23] found that the dynamic quenching phenornenon occurs only at very high

value of activation energy (far above Ea = 17 in this case). They argue that there

exists a dynamic limit of activation energy for which the detonation cannot

propagate via auto-ignition mechanism. However. Sharpe & Falle [35] recently

tound that even at high value of activation energy tor the one-step Arrhenius rate

law. the detonation wave still propagates as a series of explosion if one uses a

very retined numerical grid tor the computation. Therefore. tor single-step

chemistry. there is no clear definition for this detonation limit. Unlike a

detonation wave using a one-step Arrhenius chernical reaction. a clearer criterion

for the tàilure can now be established using the present three-step kinetics mode!.

Short & Quirk in their paper state that:

"Ifthe detona/ion shock tempera/lire drops /0 the chain-hranchinR cross­

ove,. temperature T'J. the detonability limit occllrs. " [36]

[n the present study. the resulting solutions from transient initial developments are

very similar to those obtained from a non-linear stability analysis of the ZND

solution by Short & Quirk. Il is demonstrated that the pulsating behaviour found

for the present three-step reaction model is also similar to the pulsating detonation
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instabilities found for the standard one-step reaction model [36]. The difference is

that the present kinetics model possesses a well-detined detonability limit. The

chemical switch-off mechanism found in this three-step reaction model that

causes the quenching to occur is not present for one-step Arrhenius reaction

kinetics.

From the present result using two difTerent chemical kinetics models. we

can suggest that the ratio between the induction zone and reaction zone length is

the main parameter (independent of the rate process)~ which characterizes the

stability of detonation wave. The significances of these two length seales on the

detonation stability have been tirst discussed by Short & Quirk [36] and also

experimentally observed by Borisov et al. [6]. ln the present study. we see that if

the value i5 is mueh smaller than l. where the reaction zone length is always larger

than the induction zone length. the detonation wave is stable. When the value 8

approaches to 1. the detonation wave starts to become weakly unstable. This

implies that as soon as the induction stage of the reaction becomes dominant the

wave becomes unstable to perturbation. Slightly above 1. regular oscillation of the

detonation front can be observed. If this ratio is mueh larger than 1. the shock

front oscillates in a chaotic manner and eventually detonability limit occurs due to

the high instability of the detonation.

Since this ratio offers a reasonable explanation of sorne marginal features

of detonations. thus in the tollo\ving chapter. this ratio will be used to characterize

the mixture for simplicity.

28



•

•

•

Chapter 3

Direct Initiation ofDetonation

3.1 Introduction

[n this Chapter~ the phenomenon of direct initiation is investigated for the

planar~ cylindrical and spherical geometries using a more realistic chemical

kinetic model than the single-step Arrhenius rate model used in almost aIl of the

previous investigations. We shaH adopt the ideal strong blast wave model as

initial condition in the present simulation ofdirect initiation phenomenon.

For ideal strong blast waves, the initial condition used in the numerical

simulations is given by the similarity solution for non-reacting blast wave of

Taylor and Sedov [33~ 38]. The subsequent decay of the blast, when chemical

reaction cornes into play. has to be described by the numerical integration of the

reactive Euler equations with the appropriate chemical rate law. The similarity

solution for non-reacting strong blast waves gives the following relationship

between the strength of the shock Ms, the shock radius Rs and the source energy

Es. i.e.~

(3.1)

where aj is a constant obtained from blast wave theory (ao = 2.257, al = 2.026,

a2 = 1.739), which is a function of the adiabatic exponent y. Po is the initial

pressure of the mixture and j is the geometric index, i.e.,} = 0, 1, 2 for the planar~

cylindrical and spherical geometries, respectively. Knowing the initial shock

strength and location, the initiation energy can be determined from this

relationship. Equation 3.1 will be used for aIl the following computations to

obtain the initiation energy for direct initiation.
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• 3.2 The three regimes ofdirect initiation

From the experimental investigation of direct initiation of spherical

detonation of Bach et al. [3], we know that the initiation process can be c1assified

into three regimes, i.e., subcritical, supercritical and critical regimes according to

whether the source energy is less than, greater than, or equal ta a threshold value

corresponding to the critical energy. The three regimes of direct initiation are first

simulated for planar geometry and their mechanism is discussed in this section. A

mixture that corresponds to stable detonation is first investigated.

3.2.1 The subcritical regime
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Figure 3.1: Shock pressure history for the subcritical regime of
initiation tor Q = 10. r = 1.2 and 8 = 0.5652 (The dashed lines
represent the non-reactive blast wave) with non-dimensional
initiation energy Es = 342.

Upon the sudden deposition of a large amount of energy in a gaseous

combustible mixture, a strong blast wave is fonned. During the early times of the

blast wave propagation, the shock pressure decreases rapidly as in a strong non-
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• reactive blast wave since the blast energy dominates the decay process. As the

blast decays to larger distances, the chemical heat release starts to influence the

blast wave propagation (at about l'vIs < 1.5AtlcJ ). If the source energy is far below

the critical value, the chemical reaction zone \vill fail to couple to the shock front

and the blast continues to decay to sonic speed asymptotically. This initiation

phenomenon is retèrred to the subcritical regime of initiation where the source

energy is below the critical value. Figure 3.1 shows the shock pressure history for

the subcritical regime of initiation, together with that of a non-reactive blast wave

for comparison. In this case. the non-dimensional initiation energy Es (i.e.. Es!P0)

is equal to 342. As the blast wave continues to decay, the combustion front will

recede further from the shock front. The shock progressively decays to sonic

velocities. similar to the non-reactive blast wave propagation. while the

combustion zone propagates as a slow deflagration \vave.
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Figure 3.2: Temperature profiles at different times t'Or the
subcritical regime of initiation for Q = 10, Y = 1.2 and 8 = 0.5652
with non-dimensional initiation energy Es = 342.

•
The decoupling between the reaction front and the leading shock can be

clearly observed from the temperature profiles. Figure 3.2 shows the temperature

profiles at different times during the blast decay. In the subcritical regime, two
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•

•

sharp temperature rises can be seen in the profiles. The first abrupt rise in the

temperature is due to the adiabatic shock compression. A short plateau follows

where the temperature remains almost constant. This distance corresponds to the

induction zone length. i.e.. the region where the ""incubation" process takes place

and the reactants start to dissociate into free radicals. After the induction period.

the chemical energy release starts because the recombination process of radicals is

exothennic. Thus. a second rise in temperature occurs due to the rapid chemical

heat release. This second j ump in temperature can be defined as the reaction front.

[n the early times of blast wave propagation. the induction zone is extremely short

(almost not perceptible) due to the high temperatures. Thus. the two fronts are

coupled and can hardly be distinguished from each other. However. as the blast

decays to weaker strength. the shock temperature is lower and the induction time

increases. The shock and the reaction front then start to decouple as the induction

length increases.
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Figure 3.3: Detonation structure profiles showing the mass fraction
of fuel (solid lines) and radical (dashed Iines) for the subcritical
regime of initiation tor Q = 10. r= 1.2 and r5 = 0.5652 with non­
dimensional initiation energy Es = 342. The arrows indicate the
leading shock front.
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• The reason for the decoupling phenomenon can be explained by looking at

the protiles showing the mass fraction of fuel and radicals (figure 3.3). At the

early decay of the blast~ the chain-branching induction zone is small and there is a

significant buildup of chain radical concentration at the combustion front. As the

blast expands further. the rate of the chain-branching reaction decreases~ resulting

in a lower peak concentration of chain radicals. Once the temperature drops below

the chain-branching cross-over temperature TB~ the chain-branching reaction step

is essentially "switched off~ and no furthcr radical buildup can be observed in the

reaction zone. This leads to a significant increase in the induction zone length and

results in a decoupling of the combustion front and the leading shock.

3.2.2 The supercritical regime
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Figure 3.4: Shock pressure history for the supercritical regime of
initiation for Q = 1O~ r= 1.2 and 8 = 0.5652 with non-dimensional
initiation energy Es = 670.

•
If the blast wave generated by the source is of sufficient duration. rapid

auto-ignition takes place behind the blast wave and the chemical reaction zone is

then intimately couple with the shock. The blast wave decays asymptotically to a
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• self-sustained C-J detonation. The detonation front will continue to propagate

steadily at the C-J velocity thereafter. This corresponds to the so-called

supercritical regime of initiation. For this supercritical case. the initiation energy

deposited is above the critical value. the flow field simply consists ofa continuous

decaying blast wave to the C-J velocity of the mixture. The supercritical regime is

illustrated in ligure 3.4. which shows the pressure history of the shock front for

the supercriticai regime of initiation. This simulation for supercritical regime of

ini tiation is performed with a non-dimensional initiation energy Es = 670.
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Figure 3.5: Temperature protiles at diffèrent times for the
supercritical regime of initiation for Q= 10. y = 1.2 and 8 = 0.5652
with non-dimensional initiation energy Es = 670.
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Figure 3.6: Detonation structure profiles showing the mass fraction
of fuel (solid lines) and radical (dashed lines) for the supercritical
regime of initiation tor Q = 10, ï' = 1.2 and 0 = 0.5652 with non­
dimensional initiation energy Es == 670. The arrows indicate the
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Figure 3.5 shows the temperature profiles. From this figure. we note that

the temperature rise due to the heat release by combustion almost coincides with

the temperature rise due to shock front compression. This indicates that the

combustion front is intimately coupled to the shock front throughout. Also. from

the mass fraction of fuel and radicals profiles (tigure 3.6), we note that there is

always a significant amount of chain radicals in the reaction front.
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• 3.2.3 The critical regime
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Figure 3.7: Shock pressure history for the critical regime of
initiation for Q = 10. y= 1.2 and g= 0.5652 with non-dimensional
initiation energy Es = 370.

If the initiation energy is near the critical value~ the phenomenon is more

complex as illustrated in figure 3.7. Here, the non-dimensional initiation energy

Es has a value of 370. When the initiation energy near the critical value. the shock

front and the reaction front decouple as the blast expands. The reaction front

recedes from the leading shock. However, unlike the subcritical case. where the

reaction zone continually recedes from the shock. the decoupling in the critical

case stops after the blast has decayed to a certain shock velocity. Thereafter both

the shock and the reaction front propagate together as a quasi-steady complex al a

Mach number near the auto-ignition limit of the mixture. This is referred to as the

quasi-steady period and this quasi-steady period tenninates when the shock front

abruptly re-accelerates to an overdriven detonation wave. The overdriven wave

eventually decays to a self-sustained detonation wave. If the initiation energy is

smaller than this critical value, the decoupling will continue and the shock will

eventually decays to an acoustic wave (lvls = 1) and no detonation is initiated, as in

the subcritical case.
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Figure 3.8: Temperature profiles at different times for the critical
regime of initiation for Q = 10, r= 1.2 and c5 = 0.5652 with non­
dimensional initiation energy Es = 370.
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Figure 3.9: Detonation structure profiles showing the mass fraction
of tùel (sol id lines) and radical (dashed lines) for the critical
regime of initiation for Q = 10, r = 1.2 and 8 = 0.5652 with non­
dimensional initiation energy Es = 370. The arrows indicate the
leading shock front.

•
Figure 3.8 shows the temperature profiles al different times for the critical

regime of initiation. During the early blast decay, the distance between two fronts

progressively increases as the two fronts decouple from each other. Near the end
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• of the quasi-steady period~ the distance between two fronts decreases again and

the shock begins to accelerate and finally two fronts become completely coupled.

The shock temperature at the quasi-steady regime is found to correspond closely

to the chain-branching cross-over temperature TB. Same phenomenon can he

observed in Figure 3.9 showing the mass fraction of reactants and radicals during

the initiation process.
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Figure 3.10: Pressure profiles at different times for the critical
regime of initiation for Q = 1O~ r = 1.2 and ô = 0.5652 with non­
dimensional initiation energy Es = 370.

39



•

•

•

To understand the re-acceleration process before the onset of detonation.

sorne observations can be made from the analysis of the pressure profiles. Figure

3.10 shows the pressure protiles for the critical regime of initiation. At the early

decay. the shock pressure and the pressure gradient at the shock are decreasing as

the shock moves forward. A pressure pulse begins to develop in the region

between the reaction front and the leading shock. As the reaction-shock complex

moves, this pressure pulse starts to amplify. This pressure pulse eventually

becomes the maximum pressure in the flow field. The distance between the

reaction front and the peak pressure decreases as the structure moves. As the

strength of the pressure pulse increases, the shock front accelerates because the

high pressure region begins to drive the shock front. The leading shock and the

reaction front eventually merge together to forro an overdriven detonation. The

mutual interaction of the pressure pulse and the chemical heat release results in

the rapid amplification of the pressure pulse and the onset of a detonation. This is

the essence of the mechanism of shock wave amplification by coherent energy

release (SWACER). tirst proposed by Lee [28]. The re-establishment of the front

in the critical regime of initiation is due to the generation and amplification of a

pressure pulse between the leading shock and combustion front. This process of

rapid shock amplification at the end of the quasi-steady period can be explained

by the fact that the chemical energy release in the reaction front is synchronized

with the propagation of the pressure pulse within the reaction-shock cornplex.

3.3 SWACER mechanism

It is important to investigate in more detail the mechanism of detonation

formation in the critical regime of initiation. During the quasi-steady phase of the

critical regime of initiation. the shock amplification at the end of the quasi-steady

period is due to synchronization of the chemical energy release with the

propagation of the pressure pulse generated within the reaction-shock complex.

This concept of shock wave amplitication by coherent energy release (SWACER)

mechanism was first proposed by Lee el al. [28] in the study of photo-chemical
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• initiation of detonation. The shock wave amplification is basically a phenomenon

that involves the phase synchronization between pressure waves and heat release

of chemical reactions. To illustrate the idea of SWACER mechanism., consider the

example of a moving energy source in a tube. This theoretical model has been

tirst considered by Thibault et al. [28]. A planar energy source is assumed to

move at a constant velocity Vo depositing a total energy per unit mass Qo at a

rate w(t) such that the rate of energy release (i{X.,I) is given by:

(3.2)

where H is the step function (H(r)=O for r<D and H(r)=/ for r>O). The

function w(t) is chosen to have the following fonn:

This heat release l'unction is plotted in figure 3.11. r R is the time required

for w(t) to reach its peak value. Through this ignition process of moving ignition

source. the energy is released in a constant sequence corresponding to a constant

induction time. The induction time can be changed using different velocities of

the igniter. The development of shock wave due to this traveling energy source

was then computed l'rom the non-linear gas-dynamic equations. Details of this

theoretical model cao be l'ound in ref. [41 J.

IlrR

Figure 3.11: Heat release profile for equation 3.2.
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Figure 3.12: (a) Pressure protiles and (b) x-/ diagram for flvfsourcc = 1.

Results obtained for different energy source velocities Msourcc (= VJeo) are

now diseussed. Figure 3.12 shows the pressure profile and the trajeetories of the

point of the maximum volumetrie energy release rate (pif )ma" and the maximum

pressure point (p)ma" for the energy source moving at Msource = 1. From the x-(

diagram (figure 3.12b), we can observe that the early formation of the
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• compression wave immediately runs away From the energy source. The pressure

protile shows that only a weak amplification of the pressure pulse can be

obtained.

12

la -
Il

8 - ~ /:
~ /i 1 1

Ui 6 -:Il
eu....

c..
4 -

2 j

~ 1
'-

0
() 20 -ta 60 80 100

Distance
(a)• 30

~

25 -

20 >-

11)

E 15 >-

~

--Maximum pressure
- - Maximum volumetrie heat rclease rate

o
() 10 20 30 40 50

Distance
(b)

60 70 80

Figure 3.13: (a) Pressure profiles and (b)x-t diagram for Msourcc = 3.

• On the other hand, pressure profiles (figure 3.13a) corresponded to the

case of Msourcc = 3 clearly reveal a strong shock wave amplification. From figure
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• 3.13b showing the trajectories of (;xi' )ma:< and (p )ma.x' we can see more clearly the

interaction between the pressure wave and the energy release. At t - 10. a shock

wave is established and the shock raises the temperature. leading to a higher

volumetrie energy release rate. The reaction zone is then coupled with the

pressure pulse, resulting in a strong shock wave amplification. Indeed.. this energy

source velocity corresponds c10sely to the C-J value of the mixture. Thereafter,

the combustion front is always coupled with the compression wave.
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If the source energy moves even faster. i.e.. Alsourcc = 5. it remains ahead of

the compression wave as illustrated in the x-( diagram (figure 3.14b). As a result

no shock wave amplification can be seen in the pressure profiles as given in figure

3.14a. The compression wave broadens with lime as the source travels into the

undislurbed mixture. [n the limit where J\tfsourcc goes to infinite. il results in an

uniform deposition of energy, which corresponds to a constant volume explosion.

The above example shows how a proper synchronization of the pressure

pulse with the energy release can cause rapid amplification of the pressure pulse.

resulting in the onset of a detonation. The time sequence of chemical energy

release is such that it is coherent with the shock wave. thus adding strength ta the

shock wave as it propagates. When the pressure wave becomes strong enough to

cause vigorous chemical reaction. the mixture will detonate. Therefore. effective

shock wave amplification depends on whether or not a reacting flow-field

maintains the SWACER mechanisrn for a sufficiently long duration. Various

parameters. such as the induction time gradient. reactivity of gas mixture. or

geometry of flow-field. should govem the SWACER mechanism.

3.4 The effect of instability on direct initiation

The initiation process for stable detonation was studied in the previous

section. Similar calculations are presented here for unstable detonations. As

mentioned in Chapter 2, if the induction length is increased relative to the

recombination zone length. the detonation wave bccomes unstable. We have

introduced the ratio 8 as the main parameter controlling the stability of one­

dimensional pulsating detonations. An interesting question that arises is whether

the instability of the detonation plays a raie in the initiation processes.
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For comparison~ figures 3.15 and 3.16 show the pressure history of the

shock front for both stable and highly unstable detonation of planar geometry.

respectively. For the stable case with 6= 0.5652, the initiation process can be weil

described by the decay of the blast wave. The blast wave decays to a sub-CJ value

and re-accelerates back ta the C-J detonation after the quasi-steady period.

Therefore~ the critical initiation energy can he weil approximated from the blast

wave theory. The numerical result shows that sorne new phenomenon appears for

highly unstable detonation (J = 1.1989)~ where the tinal self-sustained detonation

propagates with a chaotic behavior. Instead the blast decaying continuously to the

sub-CJ value~ oscillation occurs during the initiation process. The detonation

instability cIearly influences the initiation process. For curve 1, the source energy

is far from the critical value and the reaction front and shock front are decoupled

throughout. The blast continues to decay to an acoustic wave. Curve 2

demonstrates how instability of the detonation front may induce sorne failure of

the detonation. After the first oscillation of the shock pressure, it is possible that

sorne unsteady event from the rear boundary of the reaction zone dorninates the

wave propagation and causes the quenching of the detonation wave. Therefore~ a

larger amount of initiation energy is expected to overcome aIl these instability

etfects of the detonation. The mechanism behind this initiation process for highly

unstable detonation is beyond the scope of this work.

From these results we can see that the detonation instability is also

important tor the initiation process. So tar. the instability effect has not been

explicitly considered in any of the current initiation models. These models are

mostly based on the blast wave theory and do not include a stability parameters in

their formulations .
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3.5 Other geometries

What we have considered so far is the initiation for planar detonations. For

the planar case. the detonation wave is not subject to any curvature effect and

only unsteadiness of the flow behind the shock causes the decay of the wave. For

the cylindricaI and spherical detonation. curvature will be a factor in addition to

unsteadiness and we shaH investigate these combined effects on the initiation

process.

Curvature of a shock front induces an additionaI expansion of the gas

behind il. and this additionaI expansion causes cooling and can lead to quenching

of the reaction. When a fluid particle crosses a curved shock wave. it is tirst

compressed by the shock and its temperature is increased. Subsequently, the

compressed fluid particle expands volumetrically due to the radial. outward flow

behind the shock and this expansion wiU result in él decrease in the temperature.

This expansion can cause failure of the detonation if it is sufficiently rapid to

quench the chemical reactions. To illustrate the curvature effect. consider the

critical tube diameter phenomenon. When a detonation emerges abruptly from a

contined tube into an open space, the planar detonation diffracts into a curved

front. The wave fails if the curvature is excessive. Hence the tube diameter must

be above sorne critical value so that the wave curvature does not lead to failure.
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Figure 3.17: Three regimes of initiation for Q = 10. y= 1.2 and 8=
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.

• In the initiation of cylindrical and spherical detonation. the curvature

decreases as the blast expands. However during the initiation process. both
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curvature and unsteadiness effect can cause failure of the diverging wave. Figure

3.17 shows the shock pressure history for the three regimes of initiation for

cylindricaI and sphericaI geometries. Since curvature can cause additional

quenching~ initiation of cylindrical waves require that the same critical strength of

blast to occur at a larger radius than the planar geometry. Similarly~ spherical

waves have even larger curvatures at the same radius. Hence, the same critical

value of the strength of the blast must be maintained to even larger radius than the

cylindrical geometry in order for successful initiation to be achieved.

The three regimes of initiation for stable detonation are qualitatively

similar for ail three geometries. The only difference is that for the planar

geometry a self-sustained detonation is formed doser to the source. Another

interesting result is that the detonation velocity is found to he sIightly lower than

the planar ZND solution. Since the curvature term goes like j/r in the conservation

equations (j = l, 2 for cylindrical and spherical geometries. respectively). then the

velocity is always unsteady and anly becomes Cl if the radius approach ta

infinity.
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Figure 3,18: Direct initiation of unstable cylindrical detanation for
o = 10. y = 1.2~ t5 = 0.8975 with non-dimensional initiation
;nergies: Est = 3.89xIOs~ Es2 = 4.71xlOs, EsJ = 5.60xIOs and Es4 =
7.63xlOs.
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Another interesting phenomenon for diverging wave is that curvature

enhances instability of the detonation wave. Figure 3.18 shows the numerical

results for a ratio 8 = 0.8975 for cylindrical geometry. Although this value of §

corresponds to a stable case tor planar detonation (see Chapter 2)~ but in the case

of cylindrical detonations, instability occurs when the radius of the front is small.

For the curved detonation front. the particle undergoes an expansion behind the

shock due to the curvature effect. This expansion due to curvature increases the

induction time and hence enhances the instability of the detonation wave. This is

even more significant for spherical detonation because of a higher curvature. The

\vave will become stable asymptotically when the radius approaches infinity.
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• 3.6 The critical initiation energy

Previous numerical studies on direct initiation of detonation [30] based on

a single-step Arrhenius rate law failed to yield a detinitive value of the critical

energy. This contradicts with experimentaI observation where a distinct value tor

the critical initiation energy is observed. To illustrate the problem of using a

single rate law. the initiation processes for planar detonation for different

initiation energies are plotted in figure 3.19. Note that if one waits long enough.

then even curve "7" will eventually result in detonation initiation. Of course the

time one has to wait increases exponentially, but no sharp cut off can be obtained

with a single rate law to permit a unique value of the critical energy to be

determined.
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Figure 3.19: Shock pressure history for direct initiation using 1­
step kinetic rate law for Q = 50. r= 1.2 and Ea = 24 for different
initiation energies: Es1 = 3243, Es2 = 3285, Es3 = 3302, Es4 = 3361,
Es5 =3420, Es6 = 3601 and Es7 = 3724.

However if a more realistic chemical kinetics model is used. the difficulty

in identifying the critical energy cao be eliminated. For instance. see ligure 3.15.

A single step rate model also does not provide a detonability limit. However using
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a three-step reaetion modeL Short & Quirk [36] sueeeeded in obtaining a eriterion

for the detonabiIity limit i.e.~ onset of the detonabiIity limit oeeurs when the

shoek temperature drops to the ehain-branehing eross-over temperature. For the

direct initiation of detonation~ a distinct value of the cnticaI energy can be

obtained if the blast generated by the source energy never drops below the chain­

branching cross-over temperature TB. If the energy is insuffieient and the blast

drops below the chain-branching cross-over temperature Tfj~ then the chain­

branching reaction is effectively being switched off. Since the chain-branching

induction length is now much longer than the recombination zone length. the rate

of heat release is signifieantly reduced. In this case. the combustion front will no

longer be able to couple with the leading shock and form a seU:'sustained

detonation. Based on the chemical kinetics of the reactions. a criterion tOI'

defining the criticaI initiation energy can be obtained. i.e..

·'For successjit! initiation. the blast wave generated by the source must

nol drop he/olt' the chllin-brllnching cross-over temperature hefore the

onset ofdetonation occurs. ..

Once it drops below this temperature limit. no initiation of detonation is possible.

Thus. we see that the use of a three-step chain-branching reaction has a distinct

advantage over the standard one-step Arrhenius model in that it can provide a "cut

off~ temperature and this leads to the possibility of obtaining a distinct value for

the critical initiation energy.
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Chapter 4

General Theories for Direct Initiation

4.1 Introduction

ln the past two decades. severai theories have been developed to estimate

the critical initiation energy from a point source. Due to the non-uniqueness of the

critical energy when a single-step Arrhenius rate law is used. these theories for

direct initiation cannot be verified numerically from previous studies. Hence~ it

appears worthwhile to examine the validity of these theories from the results of

present numerical simulations, where a more realistic chemical model is used.

4.2 Dependence of critical energy on induction length

A criterion for direct initiation was first proposed by Zel'dovich el al.

[42]. For successful initiation. Zel'dovich stated that the blast radius should be on

the order of the induction zone thickness by the time shock strength has decayed

to the C-J value. From this argument, he demonstrated that the critical energy for

direct initiation of spherical detonation must be proportional to the cube of the

induction zone thickness, i.e.• Es· -LI). Later, Lee [26] extended the Zel'dovich' s

initiation criterion to other geometries in the form 0 f Es•-LI J+
1
• where j = O. L 2

for planar. cylindrical and spherical geometries, respectively. In the past forty

years. most of the initiation models involve aimost the same correlation between a

characteristic chemical length and the critical initiation energy as described by

Zel'dovich's model. Since ZeI'dovich's criterion forms the base ofmany ofthese

initiation models. thus it appears worthwhile to examine the validity of

leI'dovich's criterion for different geometries from the results of present

numerical simulations using a more detailed chemical kinetics model, where a

definitive value of the critical energy can be obtained.
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The critical initiation energles for different geometries calculated by

numerical simulations are plotted versus the induction zone length of the steady

ZND detonation in figures 4.1. The corresponding induction zone length for

detonability limit (above which no detonation can be fonned) is also indicated in

these figures. From these figures, it is shown that the critical initiation energy

correlates weil with the induction zone length as predicted by Zel'dovich~s theory.

The linear, quadratic and cubic correlation between the critical initiation energy

and the ZND induction zone length for planar, cylindrical and spherical cases

appear to be valid, especially for the case of short induction zone length, where

the detonation is stable. For long induction zone length where the detonation is

unstable, other effects such as curvature and non-steady expansion begin to

influence the initiation process and the critical energy departs from the simple

blast wave scaling law where Zel'dovich's theory is based. For aIl three

geometries. it is observed that there is a small deviation from the Zel'dovich' s

criterion for long induction zone length. As mentioned previously. Zel'dovich's

criterion simply relates the critical initiation energy with a chemical length scale.

which does not include the effect of uilsteadiness. Therefore, it is not appropriate

to simply use the induction zone length for the very unsteady events in the

initiation process. Furthermore. this deviation is more significant in cylindrical

and spherical geometries because curvature appears to enhance the instability of

the wave. Nevertheless~ Zel'dovich's theory provides a mean to estimate the

correct order of magnitude of the critical initiation energy.
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Figure 4.1: Variation of eritieaI initiation energy with ZND
induction zone length for (a) planar j = a (b) eylindrical j = 1 and
(c) sphericalj == 2 geometries. The dashed lines show the Es·_iJl+ l
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•
4.3 Invariance of the critical explosion length Ra

For direct initiation of detonation for different geometries. Lee [26] has

suggested that the critieal explosion length is independent of geometry.

•

The explosion length Ro represents a eharacteristie length of the source energy

specifie ta the geometry and is the only length seale associated with strong blast

decay. From the results of numerical simulations using the present 3-step

ehemical model for different geometries. it is also possible ta verify the critical

explosion length scaling law proposed by Lee. Ta do this. the critical explosion

lengths for direct initiation in planar, cylindrical and spherical detonation are

plotted in figure 4.2. From this figure. it is c1ear that the explosion length is
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• essentially invariant for aIl the three geometries for the same mixture parameters.

Again. there is a small deviation for long induction zone length. As mentioned

previously, this is due to the faet that the detonation becomes highly unstable for

long induction zone length and the instability has a significant effect on the

initiation proeess.
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Figure 4.2: Invariance of explosion length for blast initiation for
different geometries.

The invariance of the critical explosion length with geometry is quite

useful in practiee beeause we can predict the critical initiation energy for different

geometries if it is known for one geometry. For example with the critical value of

the explosion length known. then the eritieal initiation energy for different

geometries could be determined, i.e.,

•
R = ESPherical = EcylindriCai

o Ecylindrical EplanOIr
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Since the critical energy Es· is linked to the chernical length scale d of the

detonation. i.e.. Es· -.1 j+l. and frorn the explosion length invariance principle for

different geornetries. we could expect that the critical explosion length should also

scale with the chemical length of the detonation~ i.e., Ro-il ln the present

numerical study, the explosion length Rn under critical conditions is tound to be in

the order of Ro - 810.1.

Using the standard correlation between the cell size and induction length LI

of the torm À. -- 30.1 [39]~ the explosion length Ro under critical conditions can be

roughly correlated with the cell size. In the present study, we obtain that Ro is in

the order Ro -- 27À. which is close to sorne experirnental results (i.e.. Ro varies

from 17 - 24À. tor typical hydrocarbon-air -- Benedick et al. [5] and Rn -- 33À. in

the recent study by Radulescu et al. [32])

4.4 Critical kernel radius Rs* for direct initiation

The detonation kemel theory of Lee & Ramamurthi [29] states that there

exists a critical size of detonation kernel for direct initiation. The size of the

detonation kemel corresponds to the shock radi us Rs* at which the shock wave

has decayed to sorne critical Mach number !vIs* before it re-accelerates back to a

C-J detonation.

The appropriate choice of critical Mach number !vIs* should reflect the

critical shock strength below which any detonation would fail. The shock strength

prior to the onset of detonation, during the so-called quasi-steady period~ appears

to be an appropriate value for the critical Mach number A{.,*. Experirnentally, the

shock strength during the quasi-steady period is observed to be close to half the

Cl detonation speed. The half-Cl value is generally accepted for the critical Mach

nurnber !vf.'i* and is used in many initiation models [5]. However. this half-CJ

value is only a general estimate from experirnental observation and may disagree

for different explosive mixtures. The present study suggests that the choice of

critical Mach number should take into account the chemistry. [n the previous
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• section. it is shown that if the blast wave generated by an initial point source

drops below the chain-branching cross-over temperature Ta, initiation of

detonation fails. Therefore. the shock temperature during the quasi-steady period

should be close to this chain-branching cross-over temperature Tu. Hence. the

shock strength to this temperature limit should be a more suitable choice of the

critical Mach number Ms *, which corresponds to the shock strength very near the

auto-ignition limit of a combustible mixture. Depending on the value of the chain­

branching cross-over temperature Ta. the critical Mach number ranges from 0.5 ­

0.9 l'vIC].

•

1.5

-< ~
:- Critical radius Rs·

0.5
a 50 100 150

Distance

200 250

•

Figure 4.3: Definition of criticaI radius Rs• from the numerical
simulation of direct initiation.

ln the present numerical results. the critical radius Rs• is defined as the

radius betore the re-acceleration of the shock to detonation at the critical

condition. as shown in figure 4.3. The value of critical radius Rs• for different

mixture from the present numerical simulations are given in Table 4.1 .
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• Induction length .dl R;lanar/dl R;ylindricaJ / ~ 1 R:PhC:ricaJ / ~ 1

0.487 71.83 205.24 328.37

0.665 63.09 180.25 300.41

0.796 71.52 182.05 299.07

1.008 69.41 188.41 317.32

1.148 78.40 182.89

1.306 76.59 187.64

1.475 74.57

1.661 72.26

Table 4.1: Results of critical radius Rs• for direct initiation from the
present numerical simulations.

•

Conventionally. the critical kemel Rs• at which the onset of detonation

occurs is usually correlated to the cell size of the mixture, which is the most

important dynamic parameter of gaseous detonation. Estimates of the critical

radius for initiation vary widely in the literature. Table 4.2 shows sorne

experimental results of critical radius for each geometry for typical hydrocarbon

combustible mixture:

R,*

Spherical

(vlindrical

Planar

:::: 10 -13 À. (Bull el al. [8])

:::: 4 -8 À (Radulescu el al. [32])

less than 3 À. (Benedick [4])

•

Table 4.2: Experimental results of critical kemel radius for
different geometries.

For qualitative comparison between the results of the 'present numerical

simulations, the standard correlation between the cell size and induction length d

of the forro À. - 30Ll is used once again. Using this correlation. we ohtain the

values of critical radius in term of cell size, i.e.. Rs• planar - 2.42, Rs•cylindrical ..... 611.

and Rs•sphcrical - 10À.. These results are in good agreement with the experimental

results shown in Table 4.2.
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Chapter 5

Conclusion

The problem of direct initiation using a more realistic multi-step chemical

kinetics model has been investigated in the present thesis. A three-step chemical

kinetics scheme used for this study represents the simplest realistic mechanism

able to reproduce the essential dynamics of an actual chain-branching reaction.

Due to the different mechanism of a chain-branching chemical reaction over a

one-step global reaction, sorne differences between these two kinetics models are

observed for the initiation and propagation of detonation.

This study demonstrates that using a more realistic chernical kinetics

model could eliminate sorne of the difficulties in a single-step rate la\v and was

able to more realistically reproduce the qualitative aspects of the direct initiation.

Multi-step chemical kinetics model cao provide a chemical switch-off mechanism

that causes detonation failure to occur, which cannot be described by the one-step

Arrhenius rate mode!. This permits a unique value tor the eritical initiation energy

to be determined. A criterion for defining the critical initiation energy based on

the chemical kinetics can also be obtained, due to the faet that the blast wave

generated by the source must not decay below the chain-branching cross-over

temperature before the onset of detonation occurs. Below this temperature limit

chain-branching reactions become ineffeetive, resulting in a sudden decrease in

the global reaction rate and causing a quenehing of energy release and a failure to

initiate.

Due to the non-uniqueness of the critical energy when a single-step

Arrhenius rate law is used, most of the existing theories on direct initiation cannot

be verified numerically. In the present study where a more realistic chemical

model is used and a clear cut-off value of critieal energy cao be obtained, these

theories have been verified from the present numerieal simulations. The
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numerical results show that the detonation instability plays an important raIe in

the initiation process. For a highly unstable mixture~ results deviate from those

obtained by prior theories for direct initiation. Since most of these existing

initiation models are based on the blast wave theory, they do not include a

parameter to model the detonation instability. This study suggests that the ratio i5

between the induction and reaction zone length may be a good parameter to be

include in the fonnulation of a theory for direct initiation to take into account for

the effect of detonation instability. Regardless of the chemical reaction

mechanism, this ratio 5 is shown to control the detonation propagation. In

addition, it is thought to govem the mechanism of the amplification process tor

initiation near the critical regime. A multi-step kinetics model is certainly required

to investigate in more detail the effect of this ratio t5 because it allows the

independent variation of the induction and reaction length scales. which cannot be

achieved by a single-step Arrhenius rate law. This permits us in future to perform

a parametric study of these two length scales numerically and contribute in the

development of a more vigorous theory for direct initiation.

ln conclusion. this thesis justifies that the single-step rate law should be

abandoned in favour of more detailed chemical kinetics model similar to the one

employed in the present study for a more comprehensive study of the direct

initiation of detonation.
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• Appendix 1: ZND Detonation Structure

The conservation equations

ln a shock-fixed reference frame, the conservation equations (mass, momentum

and energy) can be written as follows:

D LI
-=-
Vo V

Dl li:!

Po+-=P+-
Vo v

Dl ).
h +-=h+!!--(O-f·O-y.O)

o 2 2 - - -

•
We assume a polytropic equation of state, such that:

h= Y pv
y-l

and the equation for the conservation energy cao be written as:

The scales for density, pressure, temperature and velocity are the dimensional, initial pre­

shock density. pressure. temperature and sound speed (with subscript 0), respectively.

, P
P =--

y Po

, v , li
V=- 1I=-

Vo Co

The scaled heat release quantity is defined as:

Q
=

•

Using the above non-dimensional variables, the conservation equations becomes:

Mass:
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•

•

Momentum:

Energy:

y p~v" +c; (~J' =y' ~ovo (LJ(~J+(; (~J2
y 1 - Co Y 1 J'Po Vo - Co

(
0 0 0 J- r Po Vo - - f· - - y. -

YPovo YPoVo YPoVo

1 "f- ') ",l
iY. - Y P v u - (0' . 0' 0')--+-=--+-- -J. -y.

y-I 2 y-I 2 - - -

ln summary, the conservation equations ir. non-dimensional form are:

u'
At[= -

v'
l ') U,2

- + 1\;/- =p' + - =p' + Alu'
y v'

1 M 2 r p'v' url
-+-= +--(Q,-/·Q'-Y'Q')
y-I 2 y-I 2
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• The Chapman-Jouguet state

At the C-J detonation state, the chemical energy is fully released and the products

are in chemical equilibrium. Also, the flow velocity relative to the shock front is exactly

sonic. This condition may be expressed as follows:

f=y=O , , .J "lI=C: = ypv

•

Substituting these conditions into the conservation equations, we obtain:

I+y M 2

p'=-"'""----
y(y + 1)

1 M
2

( Y + 1 J--+--+0' =y p'v'
y - 1 2 - 2(Y - 1)

Substituting the rnornentum equation into the continuity equation, one can obtain:

, y p' 1+ y M 2

v ----
- M 2

- (y + 1) M 2

Replacing the rnornentum and above equations into the energy equation gives:

After sorne simplifications. one can obtain:

(
1 y 2 J 1 ( 1 y) ( 1 J-- ....\'~ + --+Q'- X- =0
2 2(y2 -1) y-l y2 -1 2(y2 -1)

where X· = M2 . The supersonic solution corresponds to the C-J detonation state. The

subsonic solution corresponds to the C-J deflagration state. The other C-J state variables

can be calculated using:

•
, 1+ y M 2

P = y(y + 1)

y p' 1+ y Ml
v' - -- - -~---

- Ml - Y (y + 1) M 2
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• The Von Neumann state

The state just behind the leading shock wave is called the Von Neumann state. It

is used as the initial condition in the integration to find the flow properties in the reaction

zone. Across the shock. no chemical reaction is occurred and thus:

f = 1 and y = 0

And the conservation equations becomes:

u'
1\4= ­

v'
1 ., U,2

-+ Atl- =:= p' +-= p' + 1.\1u'
y v'

1 M 2 Y p'v' U,2

--+--= +-
y-l 2 y-I 2

Rearranging the mass and momentum equations. the followings can be obtained:

Putting these ioto the energy equation yields:

1 1\;/
2

Y (1 , ) li ' Il' 2--+--=-- -+ 1\;[- - A1u' -+-
y-l 2 y-l Y j\;[ 2

1 M
2

1 ( 1+ y NI:!) , ( y ) , 2 li' '2--+-=-- li - -- li +-
y-l 2 y-l M y-l 2

(Y~I-i)u" -((;~I)~JlI'+(Y~1 + i~') =0

•
u'

v'=-
1\1

and
1 ,

p' = - + lw- - Mu'
y

For a given Mach number. the above expression gives a quadratic equation with variable

u' :

One solution is the trivial solution u' = M. the other corresponds to the Von Neumann

partic1e velocity. Once the Von Neumann particle velocity is found. the other state

variables can be calculated using:

• ,
, li

V =-
1\;1

, 1 ., ,
p =-+M- -Mu

y
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• Reaction zone properties

To compute the reaction zone structure of the detonation, consider the two

equations for the rate ofconsumption of fuel and radical:

df
-=-w -w
dt 1 B

These can be written as follows:

dy
-= wi +wB-w
dt C

"f dx--=-w -w
d'r dt 1 8

where:

li

~~ ~ ~+~-~
--=W +w -w ~ -=---.,;....-~-~

dr dl 1 B C dx li

•

•

and the variable x is the steady shock-attached distance coordinate system.

Given the initial condition which are the Von Neumann state, the above

differential equations may be integrated away from the shock at x ~ 0 50 as to determine

the complete structure of the steady detonation wave for x> o.

Numerical methods

The variation in the consumption progress variables is determined by 4lh order

Runge-Kutta method. The above differential equations have 2 dependent variablef and y:

df
- = z(x,f,y)
dr
dy
- = g(x,f,y)
d"
f(xo ) = fo

Hereh andyo are the initial conditions of the problem. Using a step size of h, the value of

fandy can be found using:
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• J.. = 10 + ~ (k1 + 2k, + 2k, + k. )

kl =h·z(xo'/o·yo)

h . kl II
k~ =h· z(xo + 2,10 + 2 ·Yo + 2)

h k, 1,
k" =h·z(xo +-'/0 +-- ,Yo +-=-). 222

k~ =h·z(xo +h,J:1 +k3 ,yo +/3 )

Y, =Yo +~(/1 +2/, +2/, +/.)

II =h·g(xo'/o·yo)

h k 1
1, = h . g(x, + -, '0 + -'-, v +...!..)

- 1. 2· J ( 2· u 2

h k, /,
/3 =h· g(xo +2,1:1 + i ·Yu + :2)
/~ = h·g(xo +h.f., +k.".yo +1:,)

•

•

The mass fraction f and y are evaluated numerically using Runge-Kutta method and the

ather state variables are evaluated directly from the 3 conservation equations for each step

size h.

Consider again the 3 conservation equations:

u/
J'vi =­v/

1 , u/ l

- + A1- =p' + - = p' + i'vfU/
y v'

1 J\;(1 Y p'V / li / 2

-+-= +--(O'-/.O'-y.O')
y-l 2 y-l 2 - - -

From the continuity and momentum equation:

u' = J\;/v'

1 ,
p' = - + A1- - lv/u'

y

Substitute these relations into the energy equation, one can obtain:
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• Given the Mach number of the detonation wave. the above equation is a quadratic

equation in v' :

1 ( l'vI! y M! ) (1 Y M
2

) ( 1 1\1
2

)v'- ---- +v --+-- - (Q'-j.Q'-y.Q')+--+- =0
2 y-I y-l y-I y-I 2

The other state variables can be computed using:

u' = At/v'

•

•

These equations are used to update the state variables inside the reaction zone for each

step size h. These values will be used for the next integration step of the rate equations.
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• Appendix II: Numerical Methods

Fractional steps method

We are solving the reactive Euler equation in conservation fonn:

The solution of equation A2 serves as the initial condition for the system of ordinary

differential equations tor the geometrical source terms:

where U. F(U) , S, G denote the flow vector. the flux. the source term due to combustion

and geometry. respectively. J is the geometric index (J = O. 1. 2 for planar, cylindrical

and spherical geometries, respectively)

The system is solved by the use of a splitting scheme where the hydrodynanlics

transport and the chemical effects are taken into account separately in successive

fractional steps. BasicaIly, we divide the problem into several sub-problems. The

fractional step technique proceeds as follows. [n the tirst step, we solve the non-reactive

version of equation Alby setting aIl the source terms to zero:

•

u( +F(Ut =S-JG

U( + F(Ut =0

u( =-JG

(AI)

(A2)

(A3)

Finally, we use the solution of equation A3 as the initial condition to solve the equation

for the source term due to chemical reaction.

u( =S (A4)

•

The solution to equation A4 completes the solution at the new time level. A complete

second order accurate splitting scheme (Strang's splitting method) to integrate from ln to

(+1 is of the form:

where L~: denotes the finite difference approximation operator for the hyperbolic

equation A2. L~ and L~ are discrete operators for the ordinary equations A3 and A4 for

the geometric and chemical source term, respectively.
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•

Hydrodynamic solver: PPM method

In the above numerical scheme. the hydrodynamic equation (equation. A2) is

solved using the piecewise parabolic method of ColeHa & Woodward [12]. which is a

higher-order extension of Godunov' s method. The flow variables U are updated using the

tollowing discrete eonservative fonn:

U"~I V" ti.t F F)
1 = 1 - A..-r ( I~II 2 - 1-1/2

where A..-r = X H1 / 2 - X;-ll:! and ~{= ("~I - (". F is the flux at the interfaces between two

ceUs. To find the solution Vat a ne\v time level 1'+1. the interface fluxes Fi+ l /l and Fi-Ii:!

must be properly determined. The difference between different numerical schemes is to

how to obtain these fluxes. The above update formula is conservative no matter how we

define our numerieal flux F. It is therefore possible to create a multitude of conservation

methods simply by defining the inter-cell fluxes differently and using the above update

tormula. For Godunov method. instead of using sorne averaging between eeUs values. the

fluxes are computed fronl an exact solution of Riemann problem at the interface between

two adjacent cells. For PPM method. instead of using a constant value tor the dependent

variable at each cell as in the Godunov method, uses a parabolic interpolation in each cell

of the fonn:

V(.r:) = U,_1/2 + ç[JV, + V 6.,(1 - Ç)}

where.

•

!'J.U, =U'.1!2.1. - U'.112.R and (J•., =6[U, - ~(U'+II2.L + U'.112.R)]

We obtain V i+1I2.L and Ui+112.R by first using an interpolation scheme to calculate U(x) and

an approximation to the value of U at Xi+I/2, subject to the constraint that V;+//2 does not

tàll out of the range of values given by Vi and Ui+I/2. The interface value is calculated as:

where

8,U; = min{18U, [,21 ti.1+ 112 1,21 ~'-112 I)sign(8U;), if ~;+1I2· ~'-112 > 0
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• (j,U, = 0 otherwise.

A V" V"U,+1/2 = 1+1 - , A Vif V",-112 = ,- 1-1

In smooth parts of the solution~ away fron1 extrema, the left and right states can be

obtained as:

so that the interpolation function V(.x) is continuous at the interface. In sorne cases~ the

interpolation function V(.r:) takes on values which are not between Ui+1I1.l and Ui+ 11l.R.

Therefore~ the value Ui+l1l.l and V i+l11.R are further modified such that U(.r:) is monotone

function on each cell (.r:j-1I2. X}+II])' The newexpressions for Vi+1I2.l and Ui+II!.R are thus

written as:

if (U,.R - U;' )(V;' - V,.L) ~ 0

l
't" V U [V" 1 ] (U,.R - U,.L)2

( '.R- I.l) '-"2(V,.R+ V,.L) > 6

•
U -..,V" -JU

'.L - -' f - f.R

U -..,U" -JU
,.R - -', - '.l if

(V U)2
,.R- '.L >(U -V )[U,,_.!-(U +V )]

6 'oR f.L , 2 'oR foL

Once we have these values Vi.l and Ui•R, the cell intertàce fluxes can be obtained by:

x [ 2]
~+li2.L(Y)=U,.R --=) AV, -(1-:;-x)U6 .,

- -'

y
X=-

Aç,

•

Once the left and right states at interface are known, the next step is to solve the Riemann

problem to obtain the value of tlow variables at intertàce. Details of the PPM method are

given in the papers by CoUeia & Woodward [12] and Mazaheri [30] .
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Shock front tracking

For the simulation of unstable detonations~ the leading shock front must be

computed very accurately. Thus~ a tracking procedure is implemented in the present

algorithm. The present numerical scheme used a simplest conservative front tracking by

Chem & ColelIa [9]. The details ofthis method to track a shock wave moving to the right

into an uniform flow Vo is described next and illustrated in figure A.t.

~t

Figure A.l: Update of the shock location.

At time l!l~ the solution V;' at aIl cells is known. In addition~ the position of the

tracked front X~~, is known as weIl, which is located in cell ish. The shock front divides

this cell ish into two subintervals. The average of V is also known on those two

subintervals. The pre-shock values V~ and U;' for those cells ahead of the shock are

equal to the constant state Uo and do not need to be updated. The average value of the

conservative variable U at the left subinterval ULis computed by:

where XL is the length of left subinterval of the cell ish \vhich contains the shock. The front

speed Sr is calculated using the Rankine-Hugoniot relationship for a normal shock

separating left and right states:
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and the shock position is updated by:

11+1 /1 S
X Sh = X Sh + rli/

The flux across the front is also computed by:

Fs = F(Uo ) - SrU"

The tlow behind the shock is updated. The PPM algorithm is applied in ail cells for i<ish.

However a special trealment is needed for the cell containing the shock front. There are

two possible cases and the conservative variable for this cell containing the shock can be

updated as follows.

C 1) ,"+1 ./1

ase /Sh = lSh

..-.
v"
-Llo

F· A ') Sh k Co k' c. '11+1 ·1119ure ._: oc lront trac mg lor /Sh = /Sh •

The conservative update of U for the left subinterval between l'and t+/ may be written

in this form:

1I+IU"+1 - "U" + A/(F. - F )XL L - XL L Ll 1 5

This is not a stable way to updating UL because ifx~+' is very small. the CFL condition

will be violated [7]. This is the major difficulty with front tracking procedures. To resolve

this problem~ Chem & Colella's method (flux redistribution near the front) suggested the

tollowing procedure:

1I+1U·"+1 = x"U" + A/(F. - F ) + 11+
1U" _ II+IU"

XL L L L Ll 1 S XL L XL L
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• Denote:

theretore~

1+[U"+1 = ... II+IU" + ~),I
XL L .\. L L ViVI L

Ta avoid the violation ofCFL stability condition, t5JvI,. is divided into two parts:

11+[ r"+1
()N! L == 5:- oJv!L + (l - .:....!::-)t5ML == c5M LI + âAt!L2

L\X L1;r

Substituting it in equation AS. we obtained:

lj "+[ _ U" &\1L
L - L+

~X

(A5)

•

•

Ta maintain strict conservation~ the remaining flux 6ML:! is re-distributed between left

subinterval of ÎSh and its left cell iSh-l. The general procedure redistributes it among the

ceUs based on the flux decomposition in terms of eigenvectors~ so that its various

components are distributed to where they are bcing propagated in the sense of

characteristics. In the present case of a shock wave moving into an unifonn flow~ the

redistribution formulas are very simple:

V 'l+l == V,,+I + 1 -~'f'
L L A _ 1/+ 1 Uiv. L2

LU + XI.

U "+1 == U"+I + 1 ~',I
'Sh -1 'Sl,-I A. 11+1 ViVI L2

uX'+X L

C ')) ·11+1 ·11 1ase - /Sh == /Sh +

XII
L

Figure A.3: Shock front tracking for Î~;;I == i~;1 + 1.
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This situation is slightly more complicated than case 1. First of aIl, the fraction of Lll

which is elapsed in the new cell containing the shock, called it r, is introduced as:

r lt+1

r =:..L.
Sr

Then, the conservation equations will be applied in two steps in the shocked celi. Once

between l'and 1'+(.1/-r), and then between 1'+(.1/-r) and ('+/. The conservation law is

1· d &: b h Il -// d ·//+1app le Lor ot ce s /Sh an /Sh -

where. F =F(V L). Similar to case 1, we derive the following expressions:

II+IU"+I - ,,..1 V - .... "+1 V + r(F - F )XL L - XL L ." L l s

and denote DNILas:

then.

and finally the same method of redistribution of oNI'.l as in case 1:

U "... 1 =V"+1 + 1 "{
1 L (j,v. L_"'
• A. 11+1

uX+XL

V "+1 = V'I+I + 1 ~".{.... 1 U1V, L2
'Slo 'Sil tl;r + xt
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Adaptive mesh refinement

ln the present numerical scheme~ the adaptive mesh refinement technique of

Berger & Collela [2] is used to resolve effectively the region near the shock front. Two

uniform grids are used to coyer the computational domain. The entire domain is covered

by a basic coarse grid and a fine mesh is superimposed on the coarse grid in the vicinit)'

of the leading front. Find grid boundaries always coincide with coarse grid cell

boundaries.

'-----------------~xCoarse grid

Fine grid
j 111 1 1 1 1 1 1 Il 11 1

Figure A.4: Adaptive mesh refinement.

Given the solution on both grids at time ln, the complete solution at next time level

11+/ " A· b· d . h &". II· d1 ;::::.1 +LJI IS 0 tame VIa t e LO oWlng proce ures:

1. The flow variables in the coarse grids are first updated with time step .dIe.

2. Next~ the solution in the fine grids is updated. Denote NR to be the refinement

ratio between the coarse and fine grid mesh sizes. then lVR successive integrations

are required on the fine grids with time step .dl = t1{INR•

3. Information from the fine grids needs to be fed back ioto the coarse grids.

Therefore. those coarse grids superimposed by fine meshes are updated again.

Finally, the values of the flow variables are replaced by the conservative average

of the corresponding values of the fine grid points within them.
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4. The location of the shock front on the coarse grid is also replaced by its value on

the fine grid.

5. To preserve strict conservation. the solution at the left boundary of the fine grid is

corrected by the foliowing fonnula:

where F~ is the flux at the interface between the coarse and fine grids determined

previously in step 1. F~' is the flux at the same place calculated in step 2. and

U,:·~~I is the conservative variable on the first coarse cell at the left of the

interface between coarse and fine meshes [7. 30].

6. The position of the fine grid with respect to the coarse grid is finally updated te

account for the motion of the tracked shock. The fine grid is located such that the

tracked leading shock is always covered by the fine grid.
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