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ABSTRACT !

]
i

-

‘ , o / A n\lrny is-giyen of various methods for extraoting
curvature and tangent le measurements from boundary points of
quantized ashapes.. original method is proposed which nses the
entropy of a histogram of the 8 of line segments joining the
disorete boundary points. This meth mﬁlemmtod oxporimnt‘ully)
using a computer and its validity and theoretical basis investigated
and eetabﬁahed. A relationship between the proposed measure and
the olassical measure of curvature is given. Some variations of
the proposed method #ré suggested and their conasquences are

Y investigated. In addition, a method for data reduotion of line
drawings is proposed and investigated whioch 1at'bued on the entropy
measure of curvature. ' \

_Index Terms: GCurvature, Eantropy Neasurs, Features Extraction,
Picture Processing, Preproosssing, Smoothing, Tangent .
Angle Neasurement, Line Drawings, Data Reduction,
con(puter Graphios, Pattern Recognition.
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Résumé

| Une &tudo-des différentes méthodes d'extraction de
mesures de courburs et d'angles de tangence & partir des points
délimitant l¢s forme quantififes est ioci présontée. Une
méthode nouvelle est proposée utilisant l'sntropie d'un -

histogramme des angles formés par les segments de droite Joignant

les points discrets dflimitaut le contour, Cette méthode est
réalisfe experimentalement & l'ajde d'un ordinateur et sa
validité ainsi que ses fondements théoriques sont ici examinbs
et &tablis. Une'pelation eat donnbe entrs la méthode de mesure
proposée et la m&thq&e classique de meaurs de courdbure, Sont
suggerées &gnlement cortaines variantes do la méthode proposeé
et 1eura'cona§quencem<ggnt gtudi®es. Finalement une méthode
bastée en principe sur la mesurs par entropie de la courdbure,

" et ayant pour but la réduction du volume de donnbes requises

pour ‘tracés, eat proposée et investigube.

Répertoire: Courpure, Nesure d'Bntropie, Lxtraction des
caractéristiques, Traitement des images, Pré-
traitement, Filtrage, Mesure de 1l'angle de
tangence, Tracés, Réducticn des doRrlesy
Grayhiques d'Ordinateur, ieconnaissance des
forzes. ’
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1. INTRODUCTION

Ever since physiologists and experimental psycﬁologists
have conceptualized the plcture processing mechanisms of visual
systems, this knowledge has instigated the dévelopmant of many
preprocessing techniques and mat ematical models to simulate these
picture processing procedures and properties. Nost of them process
pictures that are digitized and quantized in various Gays and then
applied as a part of preprocessing and feature extraction to some -
visual pgttern recognition system.

1.1 Curvature leasurement

&

The use of curvature as a feature or shape descriptor ir
Pattern kecognition arose after Attneave (1) pointed out that
"points at which contours change direction maximally" provide the

" informational content that one would require to recognize shapes.

Thus providing a description of a boundary by its curvature values
as a function of the point# on the boundary is one way by which.
one can study and try to recognirze shapes.

Contours of patterns are wused to provide measures of this
geometric property. The curvature function may depend on the
orientation of the original figure resulting in differences of ‘
partial phase shifts. This can be overcome by auto-correlation
techniques in the classification procedure. Besides being affected
by a variation in sigze, which can easily be removed by appropriate
normalization proced 8, the eurvature function.is literally
unaffeéted by translation. This one dimensional function repre?en-
ting the original two dimensiqgal shape sufficiently enough to make
possible the rgconstruction of the boundary is deemed a good

| procedure in data reduction. These attractive.properties have made
the extraction of curvature measurements from a boundary as a
function of distance around the boundary points of ité\quantized
shape a possibly good procedure in image-processing, as a pre-
processor in visual pattern recognition systems.
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1.2 Mathematical Concept of Curvature
(o g ' With reference to Fig. 1.1, given a twice differentiable

.function £(t), we denote T(t) as the unit tangent to the point P
at time t, and (i) as the angle of the tangent at point P at time
t. Ve want to know the rate of change of O as t increases, that
is, as we jqove along the curve f£(t), as a measure of curvature .of
the function f(t) , /

Y
\ A )
T(t+at)
function
L or
° A
\
| | '
+ Sy - t (time)
' Fig. 1)1: The curvature of the function f(t)
| is the rate 6 changes as a function .
of t, time. v
o \ Formally, the curvature at ﬁuigt P is the value of the

derivative of the polar angle (@) of the unit tangent vector T with
respect to arc length at that point. Intuitively, one can also
interpret curvature as the rate of change of arc length per unit
change in inclination (0), but it is preferable to consider its
reciprocal, that is, the rate of change of inclination A6 (or
, turn of the tamgent vector) per As, the unit change in the arc
'e ' length along the curve.




‘of the rate of change of arc length per unit change in time t, we

So, the curvature at P can be represented by:

;._49_ = lim 40
ds » A4s—0 As

If we denote the sloye tan © as y' = —%%4 , 1.8, O = arctan y°',

fhen H
) " . : t

<t (1+(—%~‘Jtl-)2)‘lr = J1=(3")2  is the reciprocal

where

get the expression for the curvature: , \ \

G‘mﬁ]\ . : (1.2.1)

In terms of polar coordinates, we substitute for tar.cos @ 'and
y=r-sin @ to obtain:

3;'8 x2 s 2(rt)? -{2."_ ’
(x? + (£)?) (1.2.2)
< 80. -curvature measures the rate at which the tangent 11ne/
turns per unit distance moved’along the curve, that is, the rate
o* change of direction of the curve. This calculus notion of

curvature will be referred to as the classical definition of
curvature.

1.3 Some Shapes and their Culva‘i:ure Function
\ :

As an example, consider a few simple curves and their
curvature functions.

(1) \The Circle: its equation: 2 +y% = 1P (1.3.1)
To determine its curvature function, we determine their
derivatives y'. and y" and substitute them into Eqn. 1.2.1.

/ For f£(x) —,I - = y, we differentiate to get:

y' = —-—-L;' and y' = =L ° ol
(r? - x2) . (r§ - xE)! . b
Thus the curvature function: / '

-1!_- for y< 0, i.e. when y"»0 /

(1.3.2)




(2) The Ellipse: its equation: :

2 2 ;
-:g+-§3 -1 / (1.3.3)

Again, we determine the derivatives and substitute them 1nt/o
 Bgn. 1.2.1. In this case, the funotion is:

\ ¢
R ‘ y = -g-»,' a2 - xz « Thus their derivatives are:

]

':—l* , d y" = -8 #bH
7 COec-3e S A e S

a +x
Thus, the curvature function.

& - = beat ‘ S (1.3.4)
| RIS /

(3) The Cardiocid: its equaticn: r = a{l-cos Q) (1.3.5)

This time, we deterzine the polar coordinate derivatives and

substitute them into Equ. 1.2.2. So, we have;

Y

i r' = arsin © and T = a®cos 0 \
Thus, the c\u'vature function: / ' :
5 — (1.3.6)
2fa*r (
(4) The Spiral of Archimedes: its equation: r = a+® (1.3.7)
Again, we use Eqn. 1.2.2 ¥for: /
r'=a._.  and ™ =0
Thus -the cur*;atu’re function: / ’
. 2 (
g = -i—,‘,t-l—* (1.3.8).
~a (6° + 1) '
(5) The Parabola: its equation: y = 12 (1.3.9)

In thé similar steps, we get its curvature function:

) ggt .(_1;2;5?. | | ‘ (1.3.10)




1.4 BSco The

* A brief survey is given in Chapter 2 on the methods of
extracting curvature and tangent angle measurements and their use
in obtaining features for visual and p;éforial%pattern recognition
systems. In Chapter 3, a method 1s/pr6posed to measure curvature
and tengent angles using two-dimensionally quantized boundaries of
shapes. This method involves using entropy measures as indicators
of curvature, producing an entropy value graph plotied against the
linear boundary poinz positions, from which one could easily dis-
tinguish higher curvature points from lower curvature points/
These methods are implemented using a computer and their validity
and dependability investigated and established.

The theoretical structure of this method is explored in
Chapter 4 and its basis established by studiea and experimental
results. A congruous endeavour determinea the tangent angle \
directions of Ehe given boundary on the two—dimeﬁsional quantized
gria. '

The computer implementation provides fér a useful tool
from which investigative studies on the method 1s done‘ Some. -
‘variations of it are studied in Chapter 5, section 5.1 to 5. 3, and
their effects determined. Sectian 5.4 outlines the effects of
quantization on the methods performance. Finally, in section 5.5,
a method based on using entropy measures as indicators of curvature
is auggested for use in data reduction of line drawings. Then
conclusions are drawn in Chapter 6 with regards to this- method's
performance in terms of its time involvement in its computer
;mﬁlementation.

7/

'1,5 Some Comments

—

L

Taroughout this thesis, many terms have been EsedAgglec- Jf
tively at my discretion. Terms 1like "line-points™ and "1-step
staircases" will be defined when first encountered and subsequently i
used quite freely when required. Other terms like "noise", .
"picture retina", "transformation" and “entropy" have been adapted
from concepts in picture processing and information thq?ry. Sonme
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atat;stical terms like unbiasyxess. expected values, means, proba=-

bility, frequency distribution and histoérams have, been used with
the assumption that readers are ‘Pamiliar with them, and thus they
will not be defined.

follows:

1%
Some effort has been made to maintain consistency in the

symbols used. A list of the main one? used throughout the thesis

© = the angle of the line (£ ) between two points ( P1 &
Pa:) with reference to an arbitrary zero line (v ).
In most cases, U e_is chosen as the x-axis.

g - subtending angle of an angle sector of a circle
r - the radius of the circle S
P -~ perpendicular distance from the origin to a line

G - classical curvature

& - curvature estirate\ obtained by taking the entropy
of a histogram ) ,

5 - an expression that gives a value indicating curvature

With reference to the programmed system, i.e. the computer imple-
mentation of this method, the kth point 1is the midpoint of the
segment under consideration and is the point under consideration.

When referring to histograms, the terms ™cell"™ and "slot" are
synonymous . ) '
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2. Methods of Curvature ¥nd Tangent Angle Neasuremente and -
their App;(.icati\ons in Pattern Recognition

1

Since this thesis follows two Ph. D. theses (2,3) related
to the measurement of curvature, many references of physiological
results and related background in Pattern Recognition involving the
use of curvature and tangent angles for various purposes are omitted
to reduce the amount of repetition. The intention here is to give
a brief survey of some of the more commonly used methods from which
the curvature and tangent angle measurements ‘can be derived.

Many researchers have employed these measures to create
a description with which to categorize two-dimensional binary
shapes or silhouettes. O0f all these works, only a few methods
have been repetitiously used, although variations of them are
usually adapted for each particular problem. Inadvertently, these
curvature or tangent angle measures have been easy to derive and
have proven to be useful as representatives of shapes and figures.
NMost often, they are extracted from @igitirzed or quantized versions
of the original shape or pattern. Methods involving digitized or
quantized pictures with more than two gray levels is not considered "
in this thesis, (e.g. Symon (4)). .

2.2, Representation of Curves /

Most often one can easily provide adjectival descriptors
of sha;(es like compact, ;j'agged,“ compléx, beautiful, etc. One can
also correlate plwsical measures like perceivable complexity with
more geometrical terms 11ke the number of sides, angular variability,
symmetry or lack of symmeiry, perimeter®/area, etc. For example,
Kagmierczak (5) used some descriptive terms for line forms that
produced shape criteria characteristics when using the potantial ,#
distribution to characterize the shape. Here, he used terms like
peaks, exposed marginal points, protected points, curve shape open -
to the left or to the right, straight line, closed lines, continued
lines, etc. Also terms like convex, concave, straight, etc have




been sufficient for some purposes E(6)). On the other hand, picture

@ subsets can be completely determined by qucifying their edges
' as a set of directed curves which could be represented by, theﬂir
equations.
! , L.
2.2.1 c £ d Dir -

-

Attneave (1) éstablished through some experiments fhat
information of shapes was concentrated at points.of higher qontrast :
and where the contour changes direction most rapidly, the relative ! :
locations of the points and their connéctivity. These points on »
the contour, having maximum curvature, vere important for the :
representation and recognition of the shapes. ’ ]

NS 'Attheave & Arnowlt (7) approximated & curve by choosing
sample points so that the difference betueen the original and the
interpolated-curves does not exceed a pre-specified amount.
Alternately, a pre-specified number of sample po:tnts can be
selected to minimize the differen ,f

d ‘ . Freeman, (8) used the grid-intersection method to approxi- |
mate a curve. The set of points apprroximating the line are those
grid-intersection“po:lnts' for which the curve passes the closest or
through some pre-specified neighbourhood about that point. In the
pdlygonal approximation obtained in this way, each side of the
approximated curve is either horizontal, vertical of unit length,

\ or diiagonal with length of the ratio of V2 to the unit length.
This is the basis of chain encoding from which one can represent
lines by their starting point and the sequence of slopes of its
sides. These slopes, the tangent .\angle approximations, are-
usually coded into six (hexagonal grid representation) or eight
numbered directions to produce a chain of coded directions which
most often can be used as an efficient description with some
\invariance properties for the purpose of classification. e

Others have done this by selecting bréakpoints for which
the edges or the borders of a picture subset may be segmented to
produce polygonal approximations of the original contours. For
instance, Freeman (9) chose points of inflections. Mason and

Q Clemens (10) used local extremas of the contours; i.e. the locsally

1
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'generate a simple -code for claseitieation of alpha—nnmerics

" where two or more arcs end or meet in their line-like figuresw’

/ pendent of size and origin.

use the slope of the edges (tangent angle estimates) rather than

lowest, highest, left-most, right-most points of the edge to

Genchi, et al (11) segmented edges by locating shape features like ??Q
straight strokesm‘baya. notches, spurs, etc, on the contour in

seven stroke segﬁent directions and used this sequence of geometri-
cal features of the character for classification. Glucksman (12)
and Symon (4) both chose points on the curve that have high
curvature values. J%gzman ({3) chose intersections for his ¢wn
purpose; where two -or more lines with different slopes meet/at one .
point, end points and isolated points. Sherman (14) chose nndes,

This breaks the contour into "branches" joined to one another at

¢ ends. A connection matrix is then used to describe the group /
?tining these nodes and contains the sign, maximum degree ani the
amount of curvature of the branches joining the node.

2.2.2 Fun ns of Picture Subget

An important method .of describing the edge of a p%ﬁture
subset is by its intrinsic equation which gives its curvature ss &
function of}arc length measured from an arbitrary starting point.
This method completely determines the edge and can be made inde-

Alternatively, as can be observed in Fig. 2.1, one can

the curvature measure, as a runction‘of arc length, although this
would not be independent of orientation, or as in Fig. 2.2, take
the angle between the radiu¢ vector, i.e. the line from the origin

o a point on the edge, and the tangent to this edge at that point,
Zs;a function of arc length. This is independent of position.
orientation and scale (15)., Still ancther way, as in Fig. 2.3, is
to take the radial angle as a function of the &rc length (16).




\ J

The chain encoding of an arc, as a sequence of steps of
pre-deternined length in one of a given set of directions, can be
thiought of as a diScyrete intrinsic equation since it gives quantized |
slopes (tangent angle measurements) as a function of ggantized arc |
length. The quantized curvature measure, the rate of ﬁa ge of the
slope, as a function of arec length 13“Ken obtained by tHking the
diferenqes of successive slopes (17-19). Cantoni (20) used this
approach to obtain coptimal curve fitting using a linear pilecewise

function, ‘ B |

2.2.3 g;ger hetmdg of Repgesenting Curves s

Hough (21) proposed an it[teresting and compx\atationally
quite efficient procedure to represent curves and event,ua.lly detect
lires, e¢ven dotted lires in pletures. In cases of line-like
figures, sequential methods adapted from his point to curve (slope-
intercept) transformation scheme can be used to.search for and
follow curves to provide information about its shape; for instance'
to obtain the curvature as a function of arc length.

Duda & Hart (22) showed that the use of the angle-radius
rather than thie \\310pe—1ntercept parameters of Hougﬁ to represent
curves vou;'t.d simplify computations even further. Their method is
used for more general curve fitting and has bHeen improved to detect
lines in noisy pictures by Cohen & Touasain‘li (23). —

X / »X
Fig. 2.4: Hough Trans- )i‘ig. 2.5t Duda & Hart's
formation. ormation
The line L is represented The line X is represented by
by the parameters: . the ° eters:

(2o 3 | (e,9)
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Fig. 2.7: The Curvature Graph. - !

‘Curvature values are expressed as the difference
in the angles (in radians) of the trailing vector
and the E%eading vector. For instance, tralling

?

vector leading vector 12 gives a clockwise -
difference in angle of /2, thus establishes the -
value as negative — for a concave point. ’ O
)\\_
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2.3 h ue for Measur _ ////
and Tengent Angles e A

We have already Seen some ways of representing digitized
or quantized lines and/ figures. In this section, we class some 7
more commonly used ideas from which onc could derive or extract
measures of curvature and timgent angles. It should dbe kept in
mind that some of these are not direct procedures from which one
can obtain these mealsures, mstaad. 'they are means used to
facilitate the e;traction of the curvature aﬁd tangeat angle ~
measurements. | . |
2.3.1 ne defin tio)n of an Im eof C .
‘ : ' “ -\
The measure of curvature at'a point of a linearly

[segmegted arbitrary shape is literally taken as the difference in

angular directions of the vector leading from the previous poini

and the vector l\gading to the next point, the figure deing

traversed in a pi‘e-speciﬁed direction from which arbitrary standard

notations may be'set. For instance, if the shape is being traversed

in an anti-clockwise direction, we can set clockwise difference in
le as being of negative curvature and counter-clockwise differ-

ence as being of positive curvature. Thus concave segments will’

have negative curvature values and c‘pnvex segments will have

© positive values of curvature. . \

To iliustrate this method, we xquantized an arbitrary
shape (Fig. 2.6) partly on squars grids and partly on hexagon\;l
grids. Distances between points are acoounted for by different
distances on the x-axis of the curvature graph, shown in Fig. 2.7.°
Possible values obtained from shapes quantiged on square grids are:

4 3qr/4, +/2, t‘ﬂ'74 and 0. Stitlarly, possible values
o}aained from shapes quantiyzed on hexagonal grms ﬁre. +97r, t 2%/3,

/3, and 0. (24) : -

2. 3 2 Via CEn—Engodggg

- Here, a slope function is qnantized into a set of eight
possible standard slopes or six, to “produce representations based
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on a hexagonal grid. The curve is represented by a"seqLenge of
( - small vectors in a Yimited set of possible directions which
describe the features-of the shape by the associated chains and
chainlets of coding used. It was Freeman (8,18,25) who first }
» 1intrcduced the-chain-encoding method that used éhe eight basic
- - dlrections to quantize +the directions along a curve traced out 4o
by a line follower This technique has been adapted by many, others
€26—31) for use in“the recognition of handwritten characters/and
ﬁumerals: Some defined chainlets as porfiagi of larger chains
that represent curves between slope disconti uities or inflection
points, and -describe the shapes of the pieces by features

associated with the gioperties of the associated. qhains and
chainlets.

-~
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ok ’ In a similar way, Groner (28) quantized his curve using
T only the four main directions. Still others (32,33) used these |
principai technigues on their work to detect overlapping chomosomes,
) cellséand other biological objects.

( Essentially, curve following techniques require well-
defined contrast boundaries which are usuaily obtained after some
form:-of preprocessing if they are not initially present in the
oriéipal figure. Kasvand (34) uses a simple technique that does
not require a eurvevfollower'put it does not account for the
effects of imperfect data or the presence of noise. He suggests
quantizing a contour or edge using a hexagonal array as the basis
of his operations on monochromatic two-dimensional objects and
using curvature as a descriptor. .

" With reiJrence to Fig. 2.8, By 8ay B
if ao1= 1, the assembly of points is
! on the contour, and the expression:

/ C = ay + Za“ + Zau is directly,
although\non-linearly related to the
angle ef curvature. This is then

“‘Beedwas a basis for his/coding. Fig. 2.8: Hexagonal

o Yamada &/Fornanago(BS) used grid assembly used by

o ) another method where they quantized /

g ‘ Kasvand
- and labelled boundary points in a

)P
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-easily be made independent of the scale of the origiﬂal shape.

- follows the contour line. The angle deviation 6, the angle

scene according to a scale of eight directions of a line through
the point in question using a 5 by 5 quantized grid. This method
also does not require the use of a curve follower.

2.3.3 Via the Angle versus Length (AYLZ Technique
N !

Attneave and Arnoult (7) outlined a few methods to
describe contours so that they wouig be independent of theif size,
place and orientation. Generally, normalization of the bouhdary
wduld render it independent of size while location and orientation
are intrinsically dormant in these techniques. a

(a) "Plot the reciprocal of the radius of curvature versus the
distance along the contour at each point. This gives a pericdic
function (of 27 -if the contoutr is closed and convex) that can

For instance, %he function can be normalized by scaling tke peri-
meter of the figure as one unit and expressing (r) the radius of
curvature in comparable terms, or alternately, set the area under
one period of the function to[one unit.

(b) Plot the angle deviation (6) versus the distance along the
contour. This can be realized as in Fig. 2.9, by guiding a tri-
cycle over the contour such that the point between the rear wheels

measured between the front wheel and
the forward direction is then plotted
against the distance travelled by the
front wheel to give a periodic function

descriptive of the contour. Since the
front wheel moves in an arc concentric

“ith the segment of the contour being  Fig. 5.9
followed, the function maintains a ‘
range of values between -90° and 90°. ¢ "

The raiiius of curvature is given by: r = cot ©, where L is the
distance between the front and rear wheels. This function could
also be normalized by é&vlng the perimeter of the Tfigure unit
value and setting L at some small fractlon, the smaller L 1s, the

N
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more "continuous" would be the resulting fuynction. . ,,

(c) Ve can divide the figure into individually homogeneous parts

which[are amenable to approximate descriptions in terms of a few

standard dimensions. . \

Given a "complex" figure, we construct a polygon about

it by drawing tangents a

(1) at points of zero curLature, i.e. at straight segments of
the boundary and at inflection points--when the curve
changes from concave to convex or vice veréa,k |

(1i) at points of minimal curvature, when decrease in curva-
ture is followed by an increase, or vice versa,

(1ii) at discontinuities of slopes or angles.

Thkis makes it possible to describe the figure by stating successive

sets of slopes arnd the length of each line in the constructed

figure. 1t may be made orien%ation—@reg end scale-free by speci-

fying i#stead. for each pair of adjacent segments, ‘
(i) the change in direction in degrees or radians,
(ii) the change in length -(in logarithms), as the contour is
followed around in a clockwise direction,

which is what is essentially required for the description of shapes
of successive segments of the polygon taken in pairs.

In this case, as can be seen in Fig. 2.‘!0,° a curve is
AN

approximated by an arc located tangent
to two successive lines of the polygon,
like a rounded-off angle. The size of
the arc is limited by the shorter of
the two segments. Hence the curvature
can be expressed as the ratio si/ss.

Values of this range from zero, | aents )
indicating an abrupt angle with the conshructed
radius of curvature‘; 0, to one, . Fig. 2/g0

indicating an arc which is tangent to

the shortef egment at its end. It '

may also attain. values greater than -

one for some series of bulbous projections that“one ‘might introduce

or find in a figure.
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This method provides descriptions that are invariant of )
size or orientation. Since general normalﬁping factors are avoided,
part similarities of two objects are reflected in their numerical
descriptions between same contours and repétitious sequences of
elements, so, auto-correlation techniques could be wused.

The number of terms required to adeguately describe a

curve is related to thk complexity of the figure. Fehrer (36)

.showed that it is proportional to the difficulty in a reproduction-

learning situation, while Attneave (7) showed that it is propor-
tional to the number of sides. The major disadvantage of this
method is that some figures like spirals do not yield unique
descriptions since we approximate curves by straight lines and grcs

and ignore higher order invariances. P

7

(d) Plot the tanzent angle versus the arc ieng%h: Starting at an

arbitrary point and tracing the contour of the shape clockwise, ’

the sum of the angular changes of the directed tangent to the
boundary is plotted against the length along the ‘boundary. If we
let clq%kwise angulaf changes be considered negative and counter-
clockwise, positive from the position of the initial tangent, thé .
resulting wave~form'wou1§‘be a'single valued continucus function
of the boundary length. This method wasfirst used by Brill (37)
and many others in the University of Ohio group, (see 3,24) and
Zahn (38). B !

2.3.4 By Syntax-Directed Methods ;

/ \
Ledley and Rotolo (39) used a syntax-directed pattern
recognition technique using the programming system FIDACSYS to

« classify objects by matching characteristic shapes and other

aspects of the object with a syntax descriﬁtion. The boundary is

characterized in terms of successive segments, each described by
\

its diregction and curvature. .

Here, curvature is approximated T
as the angle between the leading (L) and |
trailing vector (T) that divides the arc
length equally] see Fig. 2.11. The
tangent angle is the sum of the two vectors. Fig. 2.11

tant\t'ﬂt
-~
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Ledley (40) used this same method to obtain boundary curvature as
a function of arc length for automatic chromosome analysis and '
classification of blood cells and other biological shapes. The
karyotyping was performed by syntax-directed boundary analysis
from which these measurements were made for the purpose of classi-
fication. A related technique was used by Ledley, et al (41)
while usmeg film as input t0o a digital automatic computer programmed
to use an>335001ated syntax-directed pattern recognition system.
This same méthod of evaluating curvature and tangent angle was
also. nsed by Shlrai (42) in the scene analysis of polyhedral
objects and by Johnston & Rosenfeld (43).

4y The analysis of local curvature of the chromosome

boundary pioneered by Ledley (44,45) has since.been refined by
many others. One of them, Gallus & Neurath (46) introduced a
simplified form. of curﬁature analysis which aims specifically at
locating regions of negative curvature which indicates the end of
the centromere line. This method includes analysis of the symmetry
of the shape in relation to the various prospective centromere lines
joining ‘pairs of opposing concavities. ) :

/ [

2.3.5 By Four%gr Analysis / - .

The Rourier Descriptors of Brill (37,47) are simply
related to the Fourier components of the curvature function. The
boundary is traced to produce a characteristic wave-form by
plotting the tangent angle versus the arc length around the figure.
This unigque one-dimensional wave—form representing the &xterior
boundary of the shape is expanded into the Fourier series from
which the coefficients of the series are used as descriptors of
the character. This method is the first successful attempt to
describe a character's boundary by its Fourier coefficients which
are then used for their classifica&hpn.

Rutovitz (16) described chromosome shapes as closed

. curve outlines in polar co-ordinates py a Fourier analysis of r,

the radius, as a function of the polar angle, ©. In taking the
origin of the coordinate system as the centroid of the enclosed

‘area, the results would depend on the choice of the origin.

i
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2.3.6 Viae Lateral Inhibition and the Area Operator

Moreover, th%s technique is restricted to single valued: curves for
any given value of 6.

' Bennett (3) extensively used and investigated the use of
curvature and tangent angles as a function of arc length, in terms
of distance around the boundary, and its resulting expgnsion of
the periodic function in a Fourier series for shape recognition. /

\

The 'use of lateral inhibition models to obtain a form
related to curvature has been extensively studTed by Connor (2).
It was used by Kasvand (48-50) to extract and smooth the curvature
of boundary points, and using the concept of area operators, -
exiract curvature values at isolated poin%s,in investigating the
use of curvature in nerve endings and water droplet countings.

The concepf of area operators stems from an enormous
background of psychOIOgical and physiologlcal results and mathema-
tical models built on the basis of lateral inhibition networks.
The area operator simulates the activity in a lateral inhibitory
network and produces values when operated along an intensity

boundary to give A description of the boundary related to its .

. intrinsic-description -- curvature as a function of arc length.

These concepts and techniques were dealt with extensively by
Comnor (2) and Bennett (3) in th/eir Ph. D. theses.

| N

2.4 Some Feature Extraction.Schemes

'

Some examples of tangent and curvature measure extraction
procedures should provide a feeling of how the abov¢ methods are
utilized for the purpose of féature extraction. .,

Kazmierczak (5) uséd twokdimensional fields of flow in
which to represent characters and then extracted shape descriptors
claisei as gross, convexity open ﬁpward he left or right. Guzman
(13) pointed ou{ that two curves have the same shape if the function
that gives the radius of curvature as a function of s', the normar
lized distance along the curve, is the same for both.. Although' .
this function of s' is independent of size, position and orienta--
tion of the curve, visudlizing zhe curves describid by it is rather
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difficult. So, he shose intersections -- where’ two Jr more lines
vith different slopes meet at one point, end-péints 04 lines and
isolated points. Then/he determined the main axis o% the curve,
the tangent angle direction, by finding the maximum total contri-
bution of this curve in each of the 64 directional axes used. The .
function of the curve is obtained by coding the direction using

two terms; the slope code, i.e. the tangent angle direction code,
and the midpoint of the curve. With this, the;curve was normalized
tiamake the function independent of curve sipe and its orig}n. A
c¥lterion used for two curves to have the 'saze shape is thut they
mnust have the same total contribution at the sarme argles.

Barrow & Popplestone (\[) represented curves in the s-6
coocrdinate, (sce Fig.' 2.1), wheré>é was the angle that the tangent
to the ‘curve rakes with a referernce line, usuafiy the x-axis, and
s 1s the length along the curve from an arbitrary starting point.
This function &(s) is single-valued and is/suitable for curves of
arbitrary complexity. For a closed curve it is periodic with a
pericd of 2qr. If we consider @(s) = 0(3);2wrs/é.. where s, is
the length of the perimeter, we subtract the steadily rising
component as s increases. This function is also single-valued and
cyclic, since @#(0+s)=@(ns+s) for any integer n> 1, thus, well-
sulted for Fourier analysis. ‘

’ For example, a circle has constant d0/ds = 2q97/s, = 1/r,
so 6(s) is a straight line of slope 2ar/s. and @(s) is also constant.

-Thus an arc of a circle transforms\to a straight line on the s-§@§

or s-9 plot. The magnitude and direction of the slope gives the
radius and sense of the arc. Straight lipes also transform to a
straight line on the s-§ or s-© plot. Theb the average curvature
measure is computed bf fitting the best straight line to the 6(s)

nréprqsentation of the boundary curve and normalizing it by dividing

it by 24ar/s.,, the average curvature of the whole boundary.

&

"
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3. The Proposed Method

3.1 Introduction

y

This method came about initially through intuitive /
speculatigns on how a_higher proportion of all possible lines that

"can be drawn- through pairs of points on a segment of a digitized

curve seem to give us the general or axial direction of the segment
in question. Then if one were to count the number of lines in

each direction to give a histdvram, the entropy wvalue of this
histogram wouwld reflect the curvature of the curve. v

Ideally, a preprocessed and eight-way connected digltized
boundarj’of a shape is used. For each boundary point, we consider -
a string of connected points on each side. In determining a good
size for the neighbourhood, heuristic approximations ard corsicdera-
tions of the shape in question are employed to obtain a value that
will give the most realistic set of curvature and tangent angle
measurements.

The necessity of the boundary points being all connected
is rather arbitrary since the importance of this method lies in‘ )
working with a linear list of boundary point coordinates. If a
shape or pattern happens to have more than one boundary, then more
than one linear list of boundary point coordinates would have to
be considered. Also, debending on the classification scheme
involved, it may be sufficient to consider only the "major" boundary
of the given shape or pattern.

3.2 The Procedu}es Involved

This metzzi can be segmented into three steps to clearly

illustrate the technique involved.

* Pic{ure cells are termed four-way connected if they are defined
to be connected only to their four surrounding cells with' which

. they share common edges. Otherwise, they can be eight-way connected,

i.e. they are defined to be also connected to those four cells with
which they share common vertices. This obviously applies only to
picture cells on gquadruled grids, as picture cells on hexagonal
grids which have common vertices also share common si@cs.

i 4 s 5 SRS S
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Step 1: Given a segment of n points, we connect all possible pairs
of points in the segment to obtain & total of n#*(n-1)/2 such lines.
We shall refer to these lines drawn between pairs of points as
"line-points" as each of these lines will be mapped into a one-
dimensional space. ] '

Step 2: We\arbitrarily select tﬁe origin as the center of the
picture retina, a 120 by 120 array of points. A perpendicular is
drawn from this center to each 1ine—p01nk of the segment under
ccnsideration. The radial angle © of the perpendicular is deter-
mined and entered as a count into an appropriate cell of the @ -
histogram; that is, we map all n*{(n-1)/2 line-points of the segment
into a one-dimensional 6 space.

Step 3: With the completed histogram containing at most- n*(n-1)/2

. points, we can now determine the tangent to the k th coordirate at

the midpoint of the segment and the measure of curvature at point

k using the following:

(a) * At the G-histogram cell with the highest value we can say
that the estimate of the tangent angle lies in this vicinity.
So, we take the expected value of @ using the counts of each
0 cell as its probabil;ty, that is,

Tangent estimate = E(6) = X ©y « P(03) (3.2.1)
where ~ th -
P 91) count in the 0 slot (3.2.2)

total nnmber of line-points
is an estimate of the probability of a line-point being mapped
into the Gith slot of the histogram.

(b) To evaluate the curvature measure at/point k, we calculate the
entropy of the histogram, that is,
’ ~ / ~ N -
Curvature estimate = H =/~ 2 P(8;) * log P(03) - (3.2.3)
-where §(ei) is as defined in Eqn. 3.2.2.

In the next chapter, theoretical restlts will be given to support
these intuitiveapproaches to obtain the - tangent angle and curva-
ture measurements. Let us now consider some examples.

Eg. 1t For a given straight segment 6f a boundary, see Fig. 3.1,
we will get only one value of O for all the/n*(n-l)/z line-~
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points. This would result in that the 0j'P slot of the

/ histogram contains all the points and correctly implying,
by our method of estimation, that the tangent to the k th
point is the line with the ‘transformed coordinﬁte of Oi.
To calculate the curvature at the k th point, we substitute Q
P(Oi) = 1 and P(Oj) = 0 for all other j # i, into Eqn.
3.2.3 to get a value of zéro, which also is a correct

/ estimate of the curvature of a straig?t line.

Bg. 2‘: With a (nicely) curved boundary segment like an arc of a
circle, see Fig. 3.2, we will get the estimate of the
tangent angle as the angle of the line with/ the transformed
coordinate of the expected value of ©, using Eqn. 3.,2.1.
The curvature estimate obtained using Eqn. 3.2.3 is always
a real non-negative va/lue.

Fig. 3.1 Example 1 '/ Fig. 3.2 Example 2

3.3 Definition of the Transformation Used

Issentially, as can be seend?t;/Fig. 3.3, wed map line-
points (£, £') to their radial angles (8) of their perpendiculars
from -the center with respect to an arbitrarily chosen reference
line ¥ . In our case, it was convenient to use the x-axis as the
reference line ¥ . This mapping will be referred to as the line to
angle (- ©) transformation.

Given a line (@) joining two points Py and P2 on the
picture retina, as defined in Section 3.2 Step 2, a perpendicular

N




Fig. 3.3 The f£- 6 Transformation
\ ‘
to this line is constructed from the center of the retina. The
perpendicular to the line (Jl) or the exteansion of it makes an
angle of ? with respect to the reference line ¥ in a pre-specified
angular direction. Thus, © represents the line going through points
Py and Pg; moreovef, it represents all lines parallel to it.

The range of values for © is defined to be between O anmd
qr radians. This would make the ¢ histogram obtained independent
of the position of the origin, the center of the retina, as will
be proven in Section 4.7. .

@

/3.4 The Programmigg Design of the System

Those who are not interested in a system design.and
computer implementa?ion of this method may skip this section, the
purpose of which is’'primarily to provide a sufficiently complete

/documentatibn of a program used to study and investigate this
/proposed method. t

In this method, a-picture is quantized on a 120 by 120
grid frame. The use of simply connected (in the topologiczl sense)
“single-boundary test patterns is assumed. When studying the
effects of quantigzation, pictureg of varying sizes are presented

_ on this same size array. Smaller pictures give the effect of gross
quantization and produces similar results to that obtained when
the picture is actually quantized on a larger sized grid frame.




i

YT CRTWE R Y RS YT e €

' 23
| \ \
Some variations. to the original system will be discussed later to
provide some alternate ideas for the purpose of comparison 'Models
of some sub-processes used will also be discussed. \
We consider programming t Es sthem with a few~variables_f

that may eventually be fixed for gian problem. We define:

(1) NB as the size of the neighbourhood about a point. This
' makes the number of points in the segment = 2#NB+1, where
the point under consideration is the (NB+1) st point —
the point at the middle of the segment.

(i1) NS as the number of equal size angle &artitions between O and
47 radians to provide NS distinct cells in the © histogram.

.(111) XX as a threshold, a fraction of one, determined heuristically
and used to determine the @ range of the histograrm in the
evaluations of the curvature measures. The reascns for
including a threshold variable in this implementation will
become clear in the followfng sections.

N
3.4.1, The General Subsxsiems /

, The process is divided into three main components out-
lined here. Each will be covered in more detail in the subsequen7
sections. Detailed algorithms and listings can be found in
\Appendix 1. ‘ '

(I) Read in and determine the boundary points of a given test
\\' pattern. The set is then preprocessed and the sign of the
curvature determined for each point; convex points being
positive'and concave points negative, denoted by '+! and -1
respeE;ively in the array called "SGN".

(II) Read the system variables ]NB,NS,XX)'and produce the
- measures of curvature and tangent angle estimates for each
point on the boundary of the test pattern. ’

(I1I) For research and evaluation purposes, graphs are produced
from the results obtained. The original and reconstructed
pictures of the test patterns arenalso drawn using the
CALCONP Digital Plotter.

Lo s e o o L tan,




/ 3.4.2 Subsystem I

The élgorithms used to determine the béundary points, the ]
sign of their curvature and the pre-processing procedure are briefly 3
outlined here. A" simple contour following method from Duda and 3
Hort (52) is used t6 determine the boundary since we do not antici-
pate disconnected"’"bo\&ndary points. . Obviou patterns with
'  more than one set of co pundgiry points, this procedure is

merely re for each.
) The coordinates of the starting boundary point can be

/ manually supplied. .or detemin?d by a scan from the left edge. The
| boundary tracing algorithm is as fellows. n—

Uy

L If the poi‘rﬁ is part of the-picture, t ake a step left, .
othenpse, take a step right. Terminate when the boundary K
of the test pattern has been circumvented. ' See Fig. 3.4.
This bug would trace out ihe boundary in a clockwise direction. In
mathematical notations, the coordinates of the next point (Xyeiyyee:r)

are determined as follows:. .

&
Xt = Xy +~{Tyn‘Yl°lJ [t“ZR(Xn»YK)]} g (3.4.1)
Yxe2 .= ¥ +{[X;-Is-x][zn(iu,y;)"]} T \ N o
where (x.,y«) is the present location, (X.1,yx-:) is the immediate

previous location and R(x«,y«)=/1 if (xxy®%) is part.of the picture,
O otherwise.

.- f‘ T j/, Fig. 3.4
" i / 2 /& r f )z . Coﬁ\tonr tracing by a "bug" =
:%t 1, f/ 7 1 - the clockwise direction.
S VA | :
| LB e .
- 447 47 e g?’;____
9 // ‘ 4%_4"'} / X




] N
// . :\ i
3 E '
L - * NN

- T e
a /
, After the set of boundar
0 / they ‘are preprocessed to e points that we believe produce

stogram., fore going any further, consider a
definition. Given three consecutive points on the boundary, 1, 2
and 3, if this orde séquence of points fits in a 2 by 2 window,
then it is c a "t-step staircase”. All configurations

of 1-s8 staircases are illustrated in Fig. 3.5.
,#//’//////////////// : 3 ) 3
: 112 1 211 1 213 3 3 1312

31°1213) |3 3121 [t 1]2] |2} 1
. ) !
o Fig. 3.5: l-stegastaircases -- 3 points in a 2 x 2 window ,

3

We want a minimum 8-way connected boundary as much as
possible, sO we remove the second point of all 1-step staircgse7
that can be found on the boundary. The algérithm for this pre-
processing proegdure is as follows: \ ‘

) . 1. Take 3 conbecutive points and check for the existence of a
t-step staircase. -
" 2. If it exists, ‘then remove the middle point and set point(3)
as point(1), otherwise, set voint(2) as point(1) for the
next sequence of three consecutive points. ?1
3. Repeat step 1 until the boundary has beean traversed.
'The logic for checking for the existence of 1-step staircases is
best represented as a flowchart in Fig. 3.6, yhere the coordinates

of the three points are: (i1,31), (12.32? and (is3,Jis3). .

v
Take {
3
points romove
(12732
. »
e Fig. 3.6: Flow logic for detecting t-step staircases
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In programmlng this logic, we use the knowledge that
‘ - approxlmately 15 # of the points will be removed, so that at about
’ 85 % of the time, only two evaluations and comparisons out of the
possible eight are done. This has shown to be relatiwely more
efficient than other logics for this procedure.’
S To determine fthe sign'of the curvature, we comply with
the standard (classical) convention of cfnvexity and concavity. A4s
¥  boundary tracing is done in a clockwise di&ection around the test
pattérn, the following heuristic algorithm was adequate for the
! : determination of the signs of tde curvature for éach boundary point.
] p \ / -Considered, in Fig. 3.7, three ordered points, P+, P2 and ;
‘ Ps wifﬁ coordinates (Xx,Y:), (xz2,y2) and (xi,ys) respectively and
the vectors P.Pa and Pars. We want to determine the sign of the 4
curvature for point P». Let '©; be the angle between P, P: and the
', initial coordinate system's x-axis {e,}as shown. If vector P, Ps
deviates negatively, ‘i.e. in a clockwise direction from the
vector Png, then P: is a convex point; otherwise, P2 is a concave /
point:”wlnowing this, we only need to determine the y-coordinate
value of point| b with respect-to the coordinate system having
< f point Py as the origin and vector P E. indicating the direction of

its x-axis.
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First, we translate the origin to point Pi1, to give us
the -system with basis {e;’,ez'}. Theh we rotate the e '-8,"' axis
6, degrees so that the positive x-axis aligns with the<vector frfz

, to give us the system with [the basis {fi,fz}. ©n this coordinate
system, we want to determine the y-component of point P,.
) Let (X3,7s) be the coordinates of‘P;Iin the {e/, e}
system. Then the coordinates (Xs,Ys) of Ps in {ft;fl} are given

by: = Xs% cos G: - Y3* sin & e (3.4.2)

= X;* 8in 0, + Ys* cos 0, (3.4.3)
To' extract the y-component value, Y;, from the above equatiors, we
perform the operations. cos O1* Eqn. 3.4.3 - sin Gi* Eqn. 3.4.2

to get: y,* cos O, — Xs% sin 01 = Y5 (cos®0, + sin’O.).l Thus,
=
. Y5 = (¥s-yi )xcos 6, - (x,-x.)*s1n s (3.4.4)

A
X
A
y

So, we have that if Y5 <€ 0, P2 is convex, otherwise, P, 1is cozcave.
To realize the signlflcance of EZqn. 3.4.4, we can reﬂnce

. 1its terms and interpret it as: (with reference to Fig. 3.7),

Ys= (y5=y1 )% (xs-x1)/I1P1Bl = (x3-x,)=|AB|/|P; Bl

X3 =Xy

i.e. Y;= (Tfrgr) *{(Ys-yt) -]Kﬁl}

. I
In effect if lKﬁI‘)IAP;I then Ys is negative, thus Pz is convex.

Otherwise, Y; will be positive, thus P: is coucave.

3.4.3 Subs£;+e r II

/Subsystem I presents a 1list of boundary point coordirates
and the gigns of their curvature to Subsystem II which then ccntinue
process@z

v.going Zhroubh the follcwing steps:
i.

ead in the system variables .and esﬁeblish the first n points
7/ as tﬁz segment to be used for domg#{ation, and the middle
point as the k¥ th point under con i@eration.
. Determine the n*(n-1)/2 values oﬁ/e (as defined in Section
3.3), from this segment of: n points. ‘
" Hap these linefpoints into their proper cells in the ©-value
‘histogram.

2t

-
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g usirg this reduced data from theforiginal pattern by ’
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Fi~. 3.8: Case 1 . Piz. 3.9: Case 2

when (y:-y:)=0 ~ when (x2-x:)=0 ey

. © ={'FT/2 - (for 0) .9 ={0’, (for 0) -
o —ar/2 (for O')

o- /2 (for 07)
\ .
-1

3

. \
(X yYa) ) (x:,52)
Fig. 3.10: Case 3 Fig. 3.11; Case 4 \
when slope € O when slope >0 ’ —
# .. 0 =[1/2 - arctan{(-slope) - 2 + arctan{slope)
o - M2 (for 0') - /2 (for 0')
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oo iv. Determine the meashres of curvature and tangent angle
estimates from this histogram.
cé‘ v. Move the segment "ahead" by,ﬁone\ point and, "recopy" the "matrix
of 6-values", leaving out values in the first row and
!- determining values for the last column. This step will be
: explaired in more detail later.
vi. Repeat step (iii) until the k th'point reaches the starting
position, indicating that the boundary has been traversed.
vii. Produce graphs of the measures and copy the arrays of values
onto disk or card files to be used Subsystem III.

P
'

:

i

*

1

*

1

4

3
3

4

We can briefly discuss an algorithm used to determine
the @ value for each line-point. By the definition of the ﬂ-gG
transformation, the range of the radial angle is from O to 7, 1i.e.
modulo 9r. Given two points, (xi,y1), and (xa,ys) on the bourdary
.0f the test pattern, we use the slope (y2-y:)/(xz2-x:) to determine
theﬁgydial angles. Points marked O' in Figures 3.8 - 3.11 denote

arbitrary alternate centers of the picture retina. Consider the
four cases:

U

Case 1. The line-point is horizontal, i.e. (y2-y1)=0 , or the
slope is zero. Then the radial angle © = /2
Case 2. The line-point is vertical, i.e. (x2-x:)=0 and thus
¢ - 06 =0 | / S E S
Case 3. If the slope is less than O, then 6= NW/2-arctan(-slope)
- Case 4. If the slope > O, then ©=97/2 + arctan(slope)

\
RN 0 0L T i

For a known NS, the number of equal size partitions
. between O and 77, a given value of © will be mapped into'the

| #9s /+ 1|*® s1ot on the G-axis of the histogram. That is, one
would be added to the present histogram count of that slot.

[

P

i Before explaining Step v, a point on the storage structure
and data menipulation technique of the © values ought to be made. :
For a given segment of n = 2#NB+1 points, we have to store at most
n*(n-1)/2 © values. These are stored in a virtual upﬁer triangulaf
matrix where one can easily identify each 6 value by its location

/ "' in the array; a © value in the (4i,j) Ep position of the array is_

4

- e -

hl
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the radial angle of a line-point between point i ‘and point j of

the segment of n points, i,j £ n and i £ j. Obviously, the use of
the whole matrix would be inefficient in terms of the storage

space used. MNMoreover, the use of an array structure is unneceésary.
Since there is no need to refer to the © values by their position
in the matrix, we use a linear vector of size n*(n-i)/z with an
index k that is related to the matrix structure indlces 1 and j

by the relations: = (1-1)x(n=-1) + j.

In Step v,«when we move the segment "ahead" by one point,
only tﬁe values related to the previous first point becoxze obso;ete
and the new values frono all the remaining poirts to the new cre
just added to the end of the segment are calculated. In tke
procedure to "recopy" the "matrix" , WE s‘mply omit the first row
and calculate values for the last column of this imaginary matrix'
thus, only (n-1) new valuesxare needed each time it is moved ahead
by one point. This technlque results in & substantial reduction
in the amount of computations required in this program. e

3.5 Analysis of the Parameters Involved
- \

The presence of three variables, NB, NS and XX'defined
in Sec. 3.4 each ought to be justified and the effects of their
varying values investigated in order to arrive at an ideal set of
these variable values that would give the best or most desirable
results. Two of these, NB and NS are an integral part of the
proposed method. The purpose of NB is to segment the boundary into
n point partitions from which the described procedures could be
applied fo obtain values that would be assigned to the point at the
midpoint of each partitidn.

The purpose of the parameter NS, is to provide a histogram
with .the indicated NS number of cells into which the 0 values of
line-points can be mapped. The third parameter XX, the threskold,
was introduced in order to make the technique attain a higher
degree of accuracy and correlation to intuitive senses of &urvature.
The exact reason as to why it was introduced;and the way this
parameter is used will be given when we get to the analysis of this
variable.

3t
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3.5.1 NB - The Size of the lNeighbourhood
‘E . Given an unprocessed boundary like in Fig. 3.12, a small
sl size NB of say, two, would produce results for the- boundary that

S0 L0 bl

could be mis-interpreted as part of a ljine that is relatively
convex (like line a) or concave (like line b). If this same
boundary segment was preprocessed to remove 1-step stairecases,
using a small neighbourhood size would not produce locally convex
or concave sections of the boundary, see Fig. 3.13. Thus measures
~from a preprocessed boundary would be relatively more acéurate.
On the other hand, the size of the neighbourhood would
§ also reflect the amount of noise\presegk' a larger NB size used

e v, R

on mhe unprocessed boundary could reduce the amount of ncicse in

the resulting measures. S0, we want to select a suitadble neightor-

l

hood size that might provide more realistic correlations to inc

actual curvature and tangent angle| measures.
In order to avoid or reduce the effects of noise, we car

do one or some of the following: L‘ "

a) Quantize the given pattern using a muchvsmaller grid in order -
to obtain more details. Then use its preprocessed version.
Repeaied use of this is undesirable in termsbof the storage
space required. Besides, it would involve a lot more c-mputa—
tions than one carf afford or wish to have. ‘/ ’
b) Increase.the size of gﬁe neighbourhood to smooth out 'some of
the noise. This size should also be limited to a proportion
/ of the size of the smallest bulbous appendage that one might
have on the pattern and would vant to have recognized and
present in the resulting pattern. A large size NB would tend
to give axial directions instead of local tangent directions.
) c) Strive to obtain a minimum 8-way connected boundary. This|
implies eliminating as many 1-step staircases as we can. vith
" this change, we obtain a much less noisy picture witﬁ less
boundary points, and a "good" size of NB, the neighbourhood
" would tend to be smaller, thus, also reducing the amount of
‘comthations. . / ) \
GE} One cannot say if there is a neighbourhood size that
would produce optimal performance for all evaluations since it all
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debends on the test pattegn and the quantization lével of it. But

(? for a given class of test patterns, it can be derived by heuristic

methods or ’by triel and error; that is, by varying the size of NB

and obgectively deciding ‘which produces results that most closely
resemble and correlate with theoretical measures. This would be

rather time consuming since for a segment of size n, at most

n*(n-1)/2 line-points are being considered for each point on the

boundary, thus the amount of computation increases by an order of
n¥. This process of obJectively selecting the best results has
been applied to other recOgnition procedures like selecting the

. _best skeletonization algorithm or image processing techniques. So

it may well be a suitable and practical method\ for our case. A 3

We use a test pattern shown in Fig. 3.14, that has
several different curves having different degrees of curvature to '
generally represent the class of patterns which may include Chinese {
characters, chx:omosomes, handwritten alphabets, etc. The best N3
size obtained ffgom this could also then .be suitable for other
patterns in this\ category of shapes. To demonstrate the difference
in the resu/lts( wt;en using different nei/éhbourhood sizes, consider

] ' the cases for NB =5 and 13. :

With reference to the curvature value graphs in F\ig. 3.15,
some observations specific to these variables can be made. One
quickly observes that the range of the values for NB = 13 is larger
than that for NB = 5, and that NB = 13 produc;(es a much smoother /
and regularly varying graph as opposed to a more rapldly varying
graph of KB = 5. We also note that the NB' = 5 curve attains the

/ zero value. more frequéntly than the NB = 13 curve.

This phenomenon of a more rounded curve is evidently
caused by a larger neighbourhood size which tends to average up
and smooth out the curvature measurg;nents giving slight changes to
correspondingly slight variations, whereas the graph of the smaller
’LB size exhibited sensitivity to local changes on the boundary,
giving a jagged-looking curv)é. We can conclude that the graph of

2 the larger KB size can primarily be usedto identify points of
@ 4 higher curva’xtu;le althox_:gh it is quite far from a realistic point

by point representation of the pattern's curvature. A smaller NB
!
I
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" gives a more realistic local representation of the curvature,

although a smoothed version of it would practically be more useful.
For the tangent estimates, we observe in Fig. 3.16 that
a larger NB size gives more averaged-out estimates of the tangent
angle. When reconstructing the picture by drawing a short line
through each point with the estimated tangent angle, we observe in
Fig. 3.17 that the larger NB size gives more locally mis-directed
lines, whereas the smaller size gives a locally mo:t:e realistic
set of tangent estimates. 5o, a smaller size neighbourhooa like
5 has prov1ded/more accurate and realistic tangent estimates.

3.5.2 NS - The Number of sAngle Sectors 4 /

N

This dividcs v radians into NS equal size partitions

from whernce calculzted © values can te placed into their respec%ive
cells of the ‘O histogram. 'In using this histogram, the cell with
the highest count is first located. Then a scan of the counts of
cells on either side of it is done until a zero cell 1is encountereé.
This region of non-zero cells on both sides of the cell with the
highest count will be known as the high frequency region and it
would be used in the calculation of the curvature and tangent angle

/ b ~
measures.

In assuming a uniform distribution of © values in each
angular partition, the mean, being the value of the angle at~ the
center of the partition, would sufficiently represent the angle /
sector. Hence, ln odd number of partitions would be ideal to
ensure the availability of the'value qar/2 radians,;i.e. g90°. 1If I?S
is large, like 180, then each angle degree would be represented by
a histogram slot. The only disadvantage in this is that the
resulting. histogram could have a generally known high frequency
region with embedded zero-value cells. These would indicate cut-
off points when'using the above procedures, causing subsequent
cells to be ignored in the computations. Furthermore, due to the
presence of any vertically or horizontally aligned quantized
boundary points, the possibility of selecting an incorrect high

. frequency region is higher; this would evidently result in bias
- and/or incorrect medsurements.
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On the other hand, a small value of NS may not enable

O one to discrmlnate 6 values sufficiently well, thus, it may not
provide enough information to defermine which © valuc would best

! repreuent .the tangent angle.
Let us observe the effects of using different NS values

- by briefly considering the three cases: >

i. Using a small NB with a large KS, e.g. (5,35)
ii. Using a small XB with a small IS, e.g. (5,11)
iii. Using a large NB with a large: NS, e.g. (13,35).

/ i) Small NB and large NS: As can be seen in Fig. 3.18, we notice
an irregular graph that attains the value zero quite freguently
and often without any sort of graduwal ‘approach to it. The
occwrrence of this erratic back and forth movement from zeroto

1

a non-zero value and back at some regions can be explained as
follows. ' -
A large NS value implies\small histogram partitions for 6 values.
Thus, only lices with very /small 6 value differences accumulate
» ’ in the same histogram slot. Having a small NB value is like
' considering a small segment of a large cprve. Consequently,
at times, they are perceived as straight lines. This would *
result in line-points being classed in orly a few slots of the
histogram. The small size O partitions would make the possibi—
1ity of having the highest slot separated on both sides by zZero
‘ valued slots even hlgher. Consyquently, the curvature measure
o would be evaluated on a high frequency region containing only
*  a single slot and thu$, the résulting value would be zero. So
only at regions where the curve varies regularly in‘ra small
segment would'®this measure behave differently. This combination
of a small KB and a large NS has shown to have ma.de the S
measuring mechanism too sensitive to vary pr0portionate1y with
differences in curvature on the digitized curve.
1i) Small NB and small NK3: Reducing the wvalue of NS, as can b)e :
observed in Fig. 3. 19, causes the curvature graph to become
@ ) relatively smoother. This is due to the’ ‘greatly reduced
/ occurrence of having\the highest slot separated on both sides

e
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.-directions obtained give more locally mis-directed lines. Thus

. the histogram, where the neighbouring slots of the highest slot

Pen
by zero-valued, slots. Slight variations at some stretches of
the graph can be interpreted as points having" similar curvature.
vy Likewise, prominent peaks are seen as gradual increases and -3
decreases in curvature. In other words, one can perceive some o
continuity in the calculated curvature measures. Thus, a
smaller NS provides a much better representation of the
curvature, as can be observed by the indicator lines in Fig.
3.20. o ]
1i1) Large NB and large NS: When using a large neighbourhood size,
a large NS size produces nicely prominent peaks as can be
observed in Fig. 3.21, highlighting the regions, and dot points
/ of\higher curviture. We notice a lack of low curvature regions
vhlich we can assume exist somewhere between the¢ high curvature
regions. So, this combination of higher values of XB and LS
can be used for the purpose of detecting high curvature régions :
although a smaller size NS would not drastically reduce its /‘?
performance; compare Fig.43.22 with Pig. 3.20.\ ) ‘

For tangent estimates: Generally, a large NB value' would produce
relatively averaged-out versions of the original shape. In our
example in Fig. 3.23, the tangent tends to take on the general
direction of the section, resulting in mie—directed‘lines at
points~of higher curvature and points of inflection. A smaller
NS would only give some smoothly varying tangent vectors at some
regions of higher curvature.

When NB is smaller, like in Fig. 3.24 when KB-S, \
reasonable ,local estimatés af the tangents are generally obtained,
but a smaliér size NS would give relatively Heﬁ%er values, even
aﬁ regions of higher curvature. For a larger NS, the main axial '
a smaller NB hnd NS has shown to produce better tangent estimates.
In this case, it was when NB =5 and NS = 11. y

' : R Y
;.5.3 XX - The Acceptable Fraction . \

In our methpd of locating a higher prébability region on

are scanned until a.zero slot 18 encountered, there is always a-

; | R | .
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highest slot count to be included in the high frejuency regicn of

_cause estimatesoto deviate from the actual values, the measures

‘suitable sets of variables for the system. If we only want to.

H 38
/

I
!

chance that the whole histogram becomes tﬁ; high frequency region.
All that needs to happen is that every slot has one count or more.
In evaluating the entire histogram, chances are that the estimates
of curvature or tangent would not be as realistic. If /we can
isolate a more specific higher probability region, then the esti-
mated tangents and curvature values would obviously tend to be
closer to actual values.

It is with this in mind that the use of a fractional
variable, XX, was introduced. This fraction functions by only
allowing slots with counts that are more than this fracticrn cf the -

the histogram/ Ia the scan from both 'sides of the slot with the
kighest count, as scon as a §lot is encountered with a count that
is less than this fracticn of the highest count, the high frequency
region ends. ’
The initial idea on this thresholding value is that it
should vary propértidﬁately with the sige of NB, singelfor d larger
NB, there is a higher tepdency that the larger number of line-
points would produce a histogram with no zero value slots. @.amall
value of XX would tend to return a larger € region, if not the
entire @ range. If XX is higher, the O region singled out as the
high probability region would tend to be smaller and very probably
not the entire histogram © range. Without these other slots that

obtained would be much more realistic.

As XX approaches 1, the regién reduces to one or very
few slots, all having very close or equal values. This results in
tangent estimates showing e step-like graph due to its limited
field of efxpition. Moreovsr, curvature est;mates woulé often be
zero if not close to it. So, a high value of XX is undesirable.
Furthermore, it has been observed that as XX becomes less than 0.5,
more reasonable regions were chosen and more realistic measures of
curvature and tangent angle estimates were prodpced.

I

From all the‘abovJ observations, we can now provide some

determine the regions of higher curvature, we use a large value of

N Y N S T A e I L e ™




KB and NS, like 13 and 35 respectively.

NB and NS, 1like 5 and 11 respectively.

and 11 would also be suitable.

If only points of higher '
c#rvature are required, a smaller NB value and a large value - of

NS would do, like 7 and 35 respectively.
éstimatesﬁof curvature, theugraph of which is quite smooth to

represent gradual changes in curvature, we .use a small value of
If we only want locally
good and accurate tangent estimates, the small NB and NS, like 5

If we want locally good

Since we want curvature measures to be as smoothly
varying as possible and showing differences of higher and lower
curvature poirts distinctively, and tangent estimates to show more
details in terms of small variations of angles on the boundary to
realistically represent the intended shape‘bf the test pattern,

\

we' have selected the set of variables LB =

5, 88 = 11 and XX = 0.1

as the best to most reasonably achieve our requirements. This
value of XX had shown to produce the best result fod the NB =95,

XS = 11 combination.

-4
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Tangent to
point b

5

Ge= X + *W;U

Fig. 4.1

1f the length of the arec
ob 1s 4s, then
X2 A0= As/r

If b 18 at the midpoint of

v

.arc 40, then ok = @, and

the tangent to point /b is

’ooz'i"“' +\'}¢' '

where @' = o+ @ is the
subtending angle of are & o.

-
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4. Some Theoretical Comnsiderations

!

4,1 Introduction

) In this chapter we consider a few models of the proposed
mf%hod of measuring curvature in order to establish some backgyodnd
that might give us more insight as to'pow and why this method works.
/Section 4.2 gives a discrete model and its simulated results, 7
Section 4.3 gives the theoretical background to this sysiem with
respect to the continuous esvironment and finally, Sections 4.4 to
4.7 give_.scme theoretical implications from our method. '

Arcs of circles of various/kadii Lave been iaeal =z tEe
cbiect of our corsideration because they give us a resularity that
is ratier wuxnijue; they are 5éometfically easy to handle, their
curvafure is tie z=zze at every point on the arc and classically
known to Ye 1/radius. Furthermore, if we can consider an alternate
way of measuring the curvature of a segment of an arbitrary curve
as taking the curvature of. the circle that best fits the segmént,
then circles are a basis for measuring curvature. In this respect,
our results using arce of circles can be congidered as bases for

{
the proposed method of measuring curvatu{e.

4.24 Discrete Case i

Given n cpnchutive boundary points, we employ ?/Eistogram
to shovw the frequency of the radial angles of all the line-points.
Now, we want to determine the frequency distribution of the radial
angles generated by all minor chords of an arc of a circle of
radius r and subtended by an angle of size @§. In Fig.} 4.1, the
tangen%~t0/the arc at point b is a vector of angle

0 = (o+ ) ' | (\4.2#)

with reference to the horizontal line ¥ as the zerg direction.
Obviously, if X = O, the angle of the tangent to point b would be
' { I

G = /2 -~ ' (4.2.2)

1

In our considerations, we can assume ot = O, '
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We chose (n+1) points in order to get n equal
sized ( As) segments on the arc, also implying
that the subtending angle @ is divided into n
equal sized angle partitions, each of size
Aaa As/r




\

4 We now resort to a discrete process to simulate the
proposed method for a digitized version of an arc ab. If we have
(n+1) equally spaced points®, A s distance apart on the arc, we
would have n*{n+1)/2 possible line-points and their corresponding
@ values. An easy way to account for all these 6 values would be
to establish their ranges in an orderly manner.

If consecutive points are As distance apart, then the
angle between the radii drawn to any two consecutive points on the
arc is 4§ = As/r, where% r is the ragius of the arc. If we number
the {n+1) points on the arc sequentially as point O to n and define
R,:L as the range of the 6 values of all line-points originating

from point 1 to all points j> 1, thenRo ={ 6, +388, 6. +f} 1s the -

range from the first point, point O, as can be verified in Fig. 4.2.

In general, :
Ri/= { o +(r1) A8, 0. + 49 + 3xag | (4.2.3)
for all k = O to (n-1), as can be verified in Fig. 4.3. DNote that

the range frog point k = n-1 is a single value of G« + f§ ~ $ A,
and @ = n A@, thus, the range of point k = n is not defined. We

_ also note that the left limit of the ranges movesto the right by

Ag¢ as the right limits move by +A @ for each comsecutive pair of
ranges. Thus the width of the range3 decreases as in the

i

sequence: (-%-—A?;@ L ‘ZL k”Aﬁ, o _%2 o)

ard the entire range for the & vzlues is:
Q=(9.+%ﬁ,.o.+¢—-‘§g-)' / (4.2.4)

wnere Q¢ 1s as defined in Eqn. 4.2.1. As As’'—» 0, Af =+ 0,

inplying that R (0 06+8) (4.2.5)

' Now consider the following example with an arc of a
circle of ra.d/ius r, subtended at the center by an angle of size J.
The entire range of the @ values (13 then R, = (0o, 6o + § ) from
Eq?. 4.2.5. 1If this arc was divided into 20 partitions by 21
equally spaced points As distance apart, we can represent the
ranges for each point, k = O to 19 as deﬁneé in EZqn. 4.2.3, using
the discr_e{:e process described, as An Fig. 4.4. If we sum up the
number of bars representing the © ranges over each slot on the

! ! . /
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x-axis, we obtain a model histogram showing the frequency distri- b
&; bution of © over the entire range. We note that if As —s 0, the

histogram will approach a continlous symmetrical shape over the

entire range R. . Yy

With a symmetrically shaped distribution, the mean, or
the expected value of 6, will be at the peak of the histogrem,
'i.e. @ — 6.+ 3P "as As —» 0. We ﬁ?te that this is/actually the

. & valué of the tangent at the mid-point of the arc; see Fig. 4.t.
\ ;

[
i

4.%1 The Probability Distribution
) ¥Ye generalize tgé above example by taﬁing 8 partitions

on the arc, instead of 20, giving us s slots on the histogram. In
théVlimitinglcase when 8 —~+'co, the probability at the center slot

N approaches 2/@, the maximum height of the density function. Using
this as our guideline, with %8 slots on each side of the histogram 8
center, the value of each slot has to differ by 5 Aa unlts.

| Thus, the generalized slot counts are: ( for s even),

' e = (1-%)*8, 7»=1,--- ces 38
# ) S a (4.2.6)
# T-‘i“é--’) *S,i:i’g+1’ . 00,8
8+1

. We normalize these counts by their sum 2]01 = —3-‘ to obtaﬁp
their discrete probability: ‘

: i-2 ; o
Cou . pi"-- SB+1 i 1, o .0,.}9 ( )
‘ 4,2.7
8+1~1 .
Ty i =484, .. .. ,8 '

4.,2.2 The Estimate of the lNean L .
: L.

‘
/

The expectedﬁfalue of this frequency distribution is our
/ estimate of the tangent angle. We evaluate, for any value of 8 -~
the number of partitions using values of pgs from Eqn. 4.2.7,

£ i _ g , 28+ 8+2 ;
sl = Taking the limit

-g+1

‘@’ ) as 8 =—» oo, we get: = —g— . This implies that the estimate of
of the tangent angle approaches the midpoint of the angular range
as the number of slots increases. .Thus, the eétimate{fb unbiased.
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4.2.3 The Entropy Value - ' 7

The entropy value of this frequency distribution, is our
estimate of the curvature of the arc under consideration, that . is,

- Zglu_* log py - Substituting the pi's from values in Eqn.

st

4.2.7, into the posgitive component of the entropy, yields, after
much algebra: :

- 8 8 . s+2 wE °
= 2(s+1) log( sls+1) ) 4+ 2(s+1) Log( TR

.}
—2—y 2, (21-1) « log (21-1) -/ o

[32)

£ , 2 )
s_('gTﬂ' P (s+1 -i? * log(s+1-i?
2

. _ . 8 2 i -
. =54 log 8 + logl STEITT ) + FIETSD] ".i * log 4
Tﬂus, the estimate “of the curvature is the negative value of the
above expression. '

4

4.3 Continuous Case

!

)

Although the primary aim, as the title of the thesis
suggests, is the measurement of curvature on a quantized grid,
i.e. the discrete case, in this seéction, we would like to gain
insight into the method from the theoretical point of view. One
way to do this is to have a cohtinuous model. A gbntinuous model
assumes that the quantization of the grid is extremely fine, or +
alternatively, that a particular segment of the contour of a

,
/

vattern essentially consists of an infinite number of points.

| ] ' In the discrete case,,the tangent angle estimate is the

* average value of O obtained f om the ©- hietOgram. In the

continuous model, -the problem of measuring the- tangent .angle \

" becomes: given an arc al: what is the expected value of © when

tvwo points are chosen at random on the arc to producf a random

segment. As before, the analysis ‘below is based on a circle for
A

simplicity. J

E

»
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probability deneity function of half the eum of two uniforws, each.

- . - B 1y

4.%3.1 A Continuous kodel

V}e want to know the prgbability density function of the
radial angle from a line-point between two randomly placed points
on the arc of a sec‘cor of a ‘circle subtended by an angle of size {
@. With this, ond would know the frequency of line-points for :
any radial angle ©. In our considerations, we let X as defined;
in Eqn. 4.2.1 be zero to make things easier to manipulate, thu’é
under tand. , . \

Let & and ¢ be” two uniforxnly distributed angle values
between 0 and @ radians. - With reference to Fig. 4.5, we have:'

§ = a}{ qr-,oa-az,,[} then ‘,,by eimple geometry,
M = 8 + max (“t.qz)

- % - |§1-d; + max (ﬁg,ut) . | / '

17 we let AMi= pax(0,0,) and A= pin (o, 00), then My and 42 |
gre two uniform random variables within the rangé of ( o, ¢%2).
Again, by simple geomeiry, we have:

’ﬂt‘r-—""‘%&-‘fﬂ; \\ ’ J

‘% S

Hence, we have that the probability distribution oﬁ%h& ‘vari'able /
M 18 the distribution of (F{M+ia}sw/2), where, /2 18_a
constant, affecting the density functi/on by a shift or displace-
pent of that value on ’7&19 0 axis.

We know what/the.distribution of fhe eus of two uniforms
each in the range of (0,f) would look 1like.{53), thus, we have the

being in this range, in the range of (O,¢) as shown in Pig. 4.6.
4.3.2 wmmmu_v_zwﬁm " S
; To determine the density function, we have, for any given
g, 24(6) 2 0, Jo u(e) dé = 1, and the general equation:
- 2e(€) = f e O '069"”
& ] 5ig-Q) <ok N (4.7.1)

I ¢ elsewhere, vhere ¢ is ‘the slope. - -

!

f
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S N J - . ~

r -

Geometrically, the height of this function, by symmetry
_of the two equal size triangles on both sides of %@, is obtained
by Bqlving for the area equation: fbaae x height = 1. With the
base .= @, the height = 2/, the slope = height/%sbase, /is 4/98°.

That is: ¢ = _4_2_ ) (4.3.2)

‘3 Analytically, we confirm this by solving for the system:
j"’a(o) 40 = 1. Thet 18, ff c ¢ a6 +f c (§-6) 46 = 1.

Tal#ing the integrals, e ¢ ’ + c 0(¢-}0)l5 =1
' Subatituting, we have - (c ¢ /4 =1
_ implying that c = 4/#°, and the height is the value of the function
'£4(0) at 0,= @/2, and is equals to 2/¢. .

he distribution function D(O/) -}:‘ T4(0) dé 1is worked
out to be: | )

D(0) = 2’(3')2. for 0 £ © & P /

, 2 - (4.3.3)
.1_..2;(1--%), . for 3P« 0 & ¢ 33.)

1

It 18 interesting to note that the denLity of Fig. 4.6 is indeed
the continuous version of the histogram of Fig. 4.4 for the discrete
case. o

4.3-’5 Qg;culatgon of thg Mean | /

\ Given the probability deneity tunction from Eqn. 4.3.1,
we calculate the ‘expected value as f w® 24(0) 40. That 1ie,

-f e 62 dO + f c O (g-0) 49. Taking the' integrals,
-§- 03' ¢ o° % -9-) lf . Bubstituting,

- _9...1 4 fi @ . Adding and substituting :t’ozZ c,

n = ¢/2. Thus the mean is unbiased and is at g/2.
Again, this value agrees with the value obtained in the discrete
case. a ‘ ‘

4.3.4 gCalculation of the Entropy o -

‘Bince this probability density function is symiotric
about O = 39, we need only evaluate the entropy for the range



| 3 :ﬁ - % - ._._ ,
\ o o 1
(0,44) and multiply this by two to give us the entropy of the whole

density function. That is, entropy = - 2 [} £,(0)xlog £4(6) d6 .
So, substituting £4(0) = ¢ @ = 40/¢* into

e

P

s £,(0) * log £4(0) 40, we get, oftér considerable algebra,

=% (log 2 - log ¥ - %¥). Thus, the entropy indicating
curvature is: - -

. K =1+ 10 (8/2) ' (4.3.4)

4.4 The Theoretiggl“Discrete Casge

Since the distribution of the angles of lines formed
between two ‘uniformly random points on the arc between 0 -and ¢
radians is evidently t?e same as the limiting case of the frequency
distribution of 1ine-point aungles, the process of taking line~
point angles is equivalent in some way to taking angles of lines
between twoffandomly selected points on the arc. Thus we can
impose a discrete framework on the results of the continuous model

" to investigate the theoretical discrete case. Furthermore, in

addition to being able to relate the curvature measure (Eqn. 4.3.4)
with the classical measure in the continuous domain, we can also
relate the curvature measure of the theoretical discrete case 1o
the classicﬁilcurvature measure.

We 'start by partitioning the distribution runction of-
Eqn. 4.3.3% into n partitions to give us a frequency distribution
of the angles, each value pi = D(x1) = D(x4-1), where xo = O, The
resu;ting histogram would have the vagvee. (tor n even),

zpi. l ZL-L foﬁ 1",.0 ../.,i‘n -
. 2 N © - (4.4.1)
| i { i% * = = for imsin+l, .. .,n
_and for m odd, '
= [ ﬁ-&s&,‘;-’- " for =1, ... ..,55-‘-
\ sl for 1w B (4.4.2)
| 2 2pe g sap
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If we take these values of pj; to evaluate the entropy,
we would get, after much algebraic manipulation:

Ko §ns 20s ms = § A ne (2250 o [ 25 10 <“‘2’,’éq,
odd

- -
$ 2(2§n212+12 log ( §2§n 12+12)
=3 n
()= 2 log 2 - log n° + k lo k-m}jklok
jbl= < 1og gn’ + 45 f Pi 100  k log /

for n being even % (4.4.3)
G- 285 10g 2 - 10g ¥ + (Z2L) 10g (2n-1)

{ﬂk log k - 2% § k log k} for n odd  (4.4.4)

ks

Thus the e/zntropy = - ﬁ(ﬂ) ,

e N
Ligressing a little, we note that when using the values
of p4 from Eqn. 4.4.1 and Eqn. 4.4.2, the expected value of these
frequencies for a given @ is:

Ioedo-palody . [25 5],
S g, ‘

After much algebralc manipulation, we get: /
‘ Bl “
[ "g’* n for n even, and
g + -1- , Zfor n odd. /

Ve note that they are equivalent and the 1imit aé n —»eo’ is §/2.
which is the unbiased estimate of the tangent angle.

. An illustration o{ some frequency distributione for some
values of @ can be seen in Fig., 4.7. Here, one can obeez;ve what
happgns to the density function as @ increases. This in effect
producee the differences in the entropy measures /tc show the

differences in their curvature walues. ! :
Getting back to the enxropy value of the/ continuous model.

obtained in Eqn. 4.3.4, one sees in Fig. 4.8 that the graph of the
entropy function ¥ + log (#¥) is negative for some valuesof < &,.
Real:i.zing that the eptropy of the histogram indicating curvature.




1.40
i

0.50

i

2.

+ = NATURAL LOG

72
w
D /
o
>
)—-
Q.
g .
—e
Al .
o B
w | -
Em ® = COMMON LOC )
% + = NATURAL LOG
ma
=
<
.
’-ﬂ

e

%.00 0.50 1.00 1,50 . 2.00 2.50 3.00

‘ . RANGLE SIZE
Fig. 4.9 Graph of the Translated Entropy

o

o

] .
7s)
(e} )
=
-JQ @ \ ~
an .
> '
> , ‘ !
o 5
—S ! I
z - W
hJ ‘,
o - ) "5;‘
et * £
~ ® = COMMON LOC , . !
L] / . 11
o | -
o<
z
o
=
=

.00

00 1.50 2.00 2.50 3.00
ANGLE SIZE ' /
Fig. 4.10 G@raph of the Normalized Entropy

\.0.50 1,

e
ty




48

- is always non-negative, we suggest a translation of the graph by
Po to give a non-negative function of the entropy. To determine
the value of @., one simply solves for its root, i.e. solve for
4 + log (#f) =0, or log # = log 2 - +. Thus, we obtain @= 2/
where b is the base of the logarithms. Now we can equate the
curvature to non-negative values of the entropy by thé equation:

4(x(¢) = 4 + log ($(@+7,)) (Translated Entropy) (4.4.5)
indicating that the curvature for ¢ = 0 is 0. As such, we obtain
the graph as illustrated in Fig. 4.9. VWith this, we still do not
have the curv&iure of § = 1 as one which is the case for circles.
We can obtain this by normalizing the values of the entropy by its
value at § = 1. Thus, the normalized values of entropy indicating
its curvature is: (Normalized Entropy)

The graph of the normalized values of entropy can be observed in
FPig. 4.10, : ’
Now let us consider the entropy values obtained in Eqn.
4.4.3 and 4.4.4 by using the histogram frequencies of Eqn. 4.4.1
and Eqn. 4.4.2. Ve note that this entropy.gxpression is indepen-
dent of @. At first this may seen inconsistent after knewing
that the entropy measures indicating curveture are directly related
" 40 the size of f. Eut we will see irn the rext secticn tha for an
irftial (arbitrary) value of &, ésdecision will be mad: as tc row
zzny slots in the histogram--partitions of the demnsity function,
are to be used for this'value of @. Thus, for all subzequent
values of § enﬁguntered, this same sized partition will be used.
) This implies t t'khe pumber of slots directly reflects on the
/ size of §. Since the expressions in Eqn. 4.4.3 and 4.4.4 are
/ functions of the number of partitions, n, it indicates that it is
related to the size of the angle ¥ after all,

/
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Fig., 4.11 The rate the angle

of the targent to the arc changes
(46) 1s uniforz for fixed size
chances in the arc length (As).

4

Fig. 4.12 .The difference in the rate of . -

change of © with respect to arc length is
the size of the radius of the are, T.
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4.5 Entropy leasure versus Classical Measure of Curvature
. | / ‘ .
Classically, curvature is defined as the rate of change

of the angle 6 with respect to its arc length; see Section 1.2.
S0, we want to see in a discrete~way, the graph of the rate of
change of © as a function of the arc length s.

Cc;nsider a sector of radius r = 1. We divide this arc
into n equal size sectors each having an arc length of As, and
subtended by an angle of AP = §/n as illustrated irn Fig. 4.11.
Sincer =1, As = AP = #/n, and the difference in the axnsle ﬁ
between vectors ©: and 9z 18 A9 = Af = @/n, easily verified by
sizple geome{try - ucing the fact that the sum of tke arngles cf a
triangle is v radians. Thus we see that A9 = AP = As = @#/n,
izplyirg that the change in 6 (A6), 18 uniform for equal sized
chatges in 8 (Ac). This is represented in Fig. 4.12 by the r = 1

graph.

In general, we consider the case for any integer value
of r>1. Using the same size A s as before, we now partition the
arc into (nar) equal size sectors, each sector now being subtended
by an angle of A@ = As/r = §/(nsr). Similarly, the difference

in the angles of the two vectors ©4 and Oz is A0 = Af = §/(nsr)

like a8 before. Thus the graph showing the uniform change of ©
for equal size changes in s can be repre/éented as in Pig. 4.12.

for various values of r.

In essence, the change in ¢, A0 = As/r = @/(nsr), vwhen
differentiated with resbect to 1ts arc length, As, gives us the
rate of the change of © with respect to the arc length, i.e. the
classical curvature function. ‘That is, d/ds = 1/r, which 1s the
classical curvature function for a circle.

To elaborate briefly on our concept of curvature measure,
let us consider a model. As a basis for reference, consider a one
radian sector of a unit circle. Classically, the curvature for

P=1, r=148 one at any point on the'arc regardless of the size

of the arc length taken into consideration, and for any other
values of r extending from this one radian sector, the curvature
)g = 1/r., With reference to Fig. 4.13, we present the model.

/ {
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Fig. 4.13

Classically, the curvature of the arcs,
being 1/radius, show a decreasing trend
as the radius increases, In using
the proposed method, only a fixed sized
(~segment of each arc is considered,
whereby the decreasing values of the
subtending
corresponding decrease in the entropy
measure to correlate with the classical

meam030 L # .

es would result in a
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Ve set the curvature of a =1, r=1are to one by
appropriate normalization of the entropy, like as was‘done in
Section 4.4 for the discretized continuous model. Then for any
other value of r, we use the same size arc for our evaluations. /
As T increases, the angles of the fixed arc-length sectors (8)
successively decrease. Subsequently, there is a corresponding
decrease in the entropy measure. Thus we see a correlation
between the entropy and'classical measure of curvature.

This sets the importance of using a fixed length segment\
as the basis for measuring curvature in the proposed method; a
fixed size neighbourhood of the point under consideration is
uged for our evaluations, Having establiehed this, we now seek
to determine a suitable size B}“A 8 which will remain fixed for
all cases of ¥ being coneidered. Analogously, the neighbourhood
size is to remain ccnstant for all evaluations done in the quantized
case. Note that all “ealculations done in the proposed method have
been made independently of the size of the radius, and the entropy,
. our curvature estimate, remained solely a function of the size of ‘
the angle ¢. ' 5

- The constraint which As has to satisfy is that n of

/4

them on a one radian sector would give a frequency histogram that I

has an entropy of one or close to it. That is, we solve for the
pi's in the equatio_gz - gpi # log p1 =1 , pi as defined in
Eqn. 4.4.1 and Eqn. 4.4.2. When using common logarithms, we get
n =12 for a unit @ to give an entropy value of 0.9994. Ve note
that this is determined independently of the.actual size/ of § or
the radius r. We also/'note that when using proposed method,
the curvature estimates of all the complete arcs in Fig. 4.13
would be equal since they all give identical histograms. Thie
would come about if each arc is divided into n (or 12) equal
sized segmente, each subtended by an angle of ¢/ regardless of
the size of the radius. With an equal number, of ar sectors, \
the histograme obtained, and indeed the resulting entropy values
would be equal. Thus we would want to establish no for the
values of § and As from which all other measures can be
normalized using the resulting entropy value obtained from this
set of norms. / '
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f57 would satiefy both ideals, ) -

We can choose As with :r-espec':“ﬁS to # = 1 radian and with
A@ = §/12. We would then be able to partition any given angle #°' |
into (§'/@)+12 equal sized angular sectors, and for varying sfzes :
of @', the corresponding variations in the number of angular
sectors would give entropy measures of t‘xe histograms that depict
their curvature as a non-linear function as can be seen in Fig 4.14..7
So, in fact, we are using the entropy value of the ©-distribution
histdgram for some @' with reference to an initial @ which we have
established as the norm, Pié. 4.15 shows the entropy values for
various angle sizes. And after normalization by the value of the
entropy when ' = 1, s0 that we can get a curvature indicating one
vhen the size of the angle is actually one radian, we note that
the two curves in Pig. 4.16, obtained wken using cormon and ratural
logarittms coincide. It can be shown that regardless of tiec Baee
of the logarithms used, normalized entropy values will aiways be
equivalent ~

Tow that we have seen the theoretical equivalence of this

‘method, we want to know what these results inuply when they are

related to the actual application of the method. The range of the
O deffnition is from O to TW. If K8 =n 2 2 is used, then |4 |
partitions would enclose an angle of one radian. We 'can thus set
the entropy of a histofram with [ 1’}] cells as the -value of the

_ norm, i.e. equivalent to a curvature measure of one. Thus, we

can relate the proportionai factor that associates entropy values
and curvature in terms of n, i,e. A%

Curvature oC-Entropy fromn' (&n) slots (4.5.1)
Entropy /from HH slots .

-~ - Obviously, different values of n would give di‘f!erenf
values of the norm. . Uéing’ the result that the entropy is one for

'n =-12 whken using common logarithma, each histogram cell would / ‘

aétually represent 1/12 (or 0.0833) radians. Thus NS stould be
1241 4in order that the one radian sector would give an entropy
measure that is close to its curvature value of one. With this,
the theoretical number of angular partitions (¥8) would be 37.699.
A larger sized partition and an odd number of them ie ideal, so |

“ +
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4,47 Olissically, the ourvature of the
‘ two aros have different values,
:horo:l th; ':gtro twgiiluat:g‘ g:x .
size o o subtonding A .
eh:buu give the sanme value for S \ ‘
oth ares, . : .
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It is aleo of intcrest to note that when the sector is
o partitioned into 12 equal seotors, we equivalently get an arc
length of 12 unite which means 13 pointe on the arc is required.

J:;hin impliee a noighbourhood size of 6 which ie what we can ‘
consider as the thooretical neighbourhood size (NB).

4.6 Wwwm T f
. and_the Clagsical Neagure of Qgﬂggugg | )

In Soction 4. % ‘:'e derived an expression for the cntropy
1/ of the probubility densxity tmcti?n obtained from a continuous
model of our proposed method. Iqn. 4.3.4 gives us:

KA2) = 4 + 2og (39) v (4.6. 1)
W¢ con eacily roldte this result iz;lied by the continuous model
of the jropove’ nethod "$o clascical curvature, PR
\ ) Consider an angle sector, radius r, subtended by an angle
¢ with an arc longth s. The olapsical curvature $Bw 1/r = ¢/,
thus ¢ =8 8, Bubstituting th/ia equivalcnco relation into Eqn.
' 4.6.1, we gets |

s K(¢)-i+log(-g—) S e ]

A, This shows nn exact relatiomhip betwoon tho éntropy measure of
the continuous case and classiosl curvnturo,

[ On second thought, we realize that the entropy funotion
in the continuous case at times had negative values which do not
depict the discrete histogran's entropy consis ontly, i.0. they
.had to be trmtormod and normalized before they sbowed any direct
resexblance to hutogrm entropies. . Vith this in mind, we want to
utubunh soms general relationships to classical curvature by

~using results of thé theoreticsl disorate model of Bection 4, 4
which best desoribes ocur- proyosed mothod, )

V2R There are two differences bowun the classical and

antro;y neagure of curvature. :
1, In Fig. 4.17, we consider the case of az angle ¢ having
different size aros. Classiocally, the ourvature is taken as
 the reociprooal of the radius; for any size arc length s, the
ourvature )5 (s) = §/s. Por any other arc of length ¢’ = xs/

o
vy ¥

P
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| Classically, ‘the curvature ,

of both arcs is the same, -

whereas the entropy values . =~  —

evaluated on the size of their

subtending angles would be different. / |

[ . | /
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i Fig. 4.49 In this oase, the values of the - !
: olassioal curvature and the entropy : /

/ / neasure correlate positively. | .
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the ‘curvature f(g') - -’g; - —;—:_-\ﬁ(n). Ve note that ii/’

(9 o (X ) = x8, then the curvature |
o Xixe) = B(r(x)) ==L L(£(1)) = e 2 (8).

In evaluating the entropy of a histogram from a sector
of angle sizé ¢ divided into n. partitions, we would get en entropy
value of €K(f#) == (n), whére P 1s from Eqn. 4.4.3 or 4.4.4 5
depond'in€ on ,&hethér n is even or odd respectively. When
‘normalized by 4K (f=1), the normalized entropy is:

Ao - L) g - (4.6.3) |

o 2 (3D - ~

So the first difference is that 4 (¥) is independent of the size

of s and depondent on the size of @, whercaez, classical curvature
% (s) is dependent on the size of s or r, the radius,

2. In Pig., 4.18, ve consider a fixed sized r with/vuryirlé sized

angles and their proportionately varying arc lengths. Thus,

' 412 & seotor of angle § has an arc length of s on & cirole of
radius r, a sector of angle X @, for X a positive real number,
-would have an arc length of xs on the same circle, because

- @ = 3/r, Olassically, the curvature of both arcs is 1/r.

f / On the other hand, the normalized entropy measurs from

& histogran of angle size @ having n slots woudd be like in Egu.

. 4,6.3, vheresas, from an angle of size xf hav/ing 2n slots, the

" entropy messure would be: —

&, 29) o« Blen) | : p
~ BE % 7 . |
Clesrly, it <41, Kn(m and Kn"" @) are not /cquul,”vhorou, 1
classical curvature indicates both ares to have the same curvature,
.‘Eh}o‘ is the second difference. ’ :

Bow we want to omfdcr the situation where {g/oth entropy
and ourvature messures behsve similarly. In Fig. 4.19, two arcs
. having the same lengih s, ars subtepded by {uﬁm sized angles,
g and X, vhere x is s real positive number, Classically, the .
: ouéy’aturo of each aro is the reciprooal of their radii, s/f, s/(%§).
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That 1e,~the relationship betweep/ B (g) and ¥ (zfa), where
}:(m = 1/r = @/s, i8: :

B(xg) - - -'x}’(m

As before, classical curvature proves to be linear; the ratio of
the angles is the same as the ratio of their curvatures;. 1 : € .
This can be observed in Fig. 4.20 which shows a graph of the
. classical curvature as a function of @, :
/Ii’ the hiatogram entropy for tha range g ia taken over
n slots, we denote 1t by (@) =% (n). When normalized by

4 (#=1), 1t becomes () o« _Bin)
) ‘}p ;([%1) o (4.6.4)

y From a histogram with a range of .?t¢, with the size of the angular
partitions (or equivalently, the size of the arc ) remaining
constant, the nuwber of slots is then xn. ;rhua the entropy

/ 1
when noma}izad" is 1({[‘( xg) . Ef" 1) | (4.6.5)
| 18540
In this case, a linear increase over the size of § does not result
\ in a linear increase in the entropy value, but in both eituations,
there existe a corresponding inoreasce if X 21 or decreape 1f X <41,
The relationship between #(f) and &K 4(x9) is thus
/ derived to be: (from E4n. 4.6.4 and Eqn. 4.6.5)

g Kn(zﬂ) . Blmz) _ Br) , L&)
/ B Fe CRgp

P '/ E( ) » Kn(¢)

This relatiomhip can be axpreaud as a graph as shown 4in Fig, 4.21.
. We can now establish an exact algebraic relationship
/ , between classical ocurvature and cntmpy weasured from a histogran.
Ve denote ocurvature as 15 (¢) and nomuzod ontropy as K n(?).
For X =1, we hcvn

y
/

B@ - £ a




@

<
>

/

Thus we have:

) | ,
B =L -/%-f%-h ) ./‘Kn(m (4.6.6)

or equivalently, /

{
Py P

/ ) ‘ ,
K, = (4 20y , B C (4.6.7)
g + 23] ¥ _‘ .
In general, for any X, we have: )

29) » €L am ) - B(En)
H;:( g) = x-£ Kal®9) r 50

and thus: 5 /
2
xg) - ( 28, Blx Z (4.6.8
-1 (% }‘n);%)> v K09 4.6.8)
or equivalently, / .

%

%,,(xm-(-g-u%‘-(ﬁ[g%-)-) c B e

/

With this relationship established, we have shown that
the histogram entropy ie theoretically sound as an indicator of /
curvature. In thie context, entropy measures the amount of change
in the tangent angle (©) to the arc as a function of #. It nhpuid
be remembered that entropy is solely dependent on the afie of the
radial (or subtending) angle. It is with thio/aopa ence on §
that eimilarities of this measure can be drawn to lassical
curvature by using the known faot that § = s/r for circles.




Pig. 4.2é To deteruine the O histogranm

we first consider the extent of the range.
/

/

-

Pig. 4,23 The probadility density

funoction using C, as t;u Morigin¥, . /
In terms of radial angles,' @,» o , and °

in terms of lihe~point angles,
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4 7 A Relevant Theoren ’ -
H

0 ' Whetrwe. defined the L- @ transformation in Sec. 3.3,
reference was made to an "origin" from which the perpendiculars
to line-points originate. This theorem states that: :

/

B

The © histogram obtained from a given arc is independent
- of the position ot this origin.

In Fig. 4.22, we consider an arc of a circle of radiuse
; r eubtended at the center Co by an angle of size . We know from
- results in Bec. 4.4 that the histogram of ¢ values obtained while
using this center C» as the origin/}ooks like the probability
/  density function in Pig, 4.23. The range of the O values (R) in
the histogram is defined to be from the perpendicular (Bs) ¢
vector Vi to the perpendicular (B.) to veotor V.. We note that it
is equivalent to the difference in angle between vector Vi and Vi,
i.e. the range of line-point angles is also of size #.
Eiret we want to show that the range defined with respect
to center Co 12 equal in size to the ranges defined for any other
: rigins. This can most easily be verified geometrically, keeping
‘ in mind that line-point angles, thus radial angles e, are expressed
relative to A radians, i.e. modulus 9., In Pig. 4.24, let C:
and C: be alternate origins. Consider the. perpendiculars from C4
‘and C: to vectors Vi and V». By similar triangles congruence
relations, we ses that both the ranges are of size ‘equal 'to &,
‘How consider an arbitrary line-point on the arec. With
respect to C» as the origin, let the differencs between vector B
- and the perpendicular to this lina-point be . Consider the
' pcrpendicularn from the alternate origins, C; and C. to this 1ine=-
point. It can easily be shown by simple geometry that the differ-
ence in angle between gha perpendiouldr. to this line~point and the
perpendicular to vector V, from either C. or Os is equal to §.
From ¥ig. 4.23 we know the frequenscy distribution of this line-
point’s rsdisl angle §? from $1), and this is also the frequency
value of line~-point’s mul angls with respect to ihe ot}wr origins.
S0 ve see a 1~1 mapping of the ¢ frequency values from the range
1{, to thie ranges f!samd Rs'. Since the aizo of the  rasge is

R %
. ) . | | |
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exactly the same, it implies that the histograms are identicel in
( J shape and size.” The only difference between them is merely in a
lateral shift.

COROLL The entropy value of a gi:veﬁ arc obtained by this
proposed method is independent of the position of its

origin, , (
Broof: Trivial. Since entropy is taken over histograme that are
‘ of the same shape and size, their values must be equgl.'

|/

arbitrary
line-point .-
“a (

v "

, , g Lo M
- ; ™ Tig. 4.24 The 0 histograss from duformt
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Y, ,
5. Investigative Studies on the Implementation of this Method,

5.1 .Some Variation Byst

In this section, minor variations made to the present
modifications or combinatione/ of. them have been implemented f0
this study.

5.1.1 ’ A ' /

' . 8ince entropy values were not normalized in the
implementation of this system, this merely implies a difference
in the order of an exponential function between values from
different bases uscd. In our system common logarithms was’
arbitrarily chosen for use. - )

If we tan assume that tha pamm “or uhapea that are
being considerdd do not have "singla boundary sppendages” like in a
the example in Fig. 5, 1, then the present system can be simplified
to some extont. Ve can remove the "mechanism” that checks for
these eldges and handles them aa/ boundary points on different sides
of the appendsge. If a pattern has 1 boundary points and m of
these points bélong to the appendage’s boundary, we can determine
‘the approximate an nt of computation incurred by this mechanism,
Let n be the size "the neighbourhood ant assume a simply-.
comuctod baundary. With refexrence to the line numhor- of the
/yrogrm listings in Appendix 1 aud the supcruripta representing '
¢ for comparuom, a, for usigmonto and g for ' g0 to's, u% haves

Line 29-323 gn_(_zg;u, {,*a TN M)‘}

Line 119=122s 4 , (2ne1) & ‘ 14° +*l + ‘lﬁ)‘}

Maing the sbove yieldss . '

, (20~1) » {#(nsd) + 0}  comparisons - [5.1.4)
‘n - *) # {8+ ‘) i m‘mﬂ’ l . [5:’02,

,/«*-
L4




' ' /

Note that if m = O, only Eqn. 5.1.3 would show any /change,
implying that the remaining computatione are wasted. In removing |
this "mechanism”, the reduction in the amount of computations would .
be the sum of Eqns, 5.1.1, 5.1.F and 5.1.3,

5.1.3 Incofgorgte Pre-processing into the Main Program. - . %

This implies the incorporation of the contour or line . 1
follower and emoothing algorithm for boundary points into the :
main program. There are two ways abo t which one could do thiss ;
() A physical concatenax;on of the 'two systems., This means -

literally placing the pre-processing proaéduro before the main
/ prbceduro and making sure that the preprocessed boundary points
are stored and carried over into the main procedure, -In this
case, there is no need for disk or card storage of the boundery
points and no disk or card input is required for the main /
program, Although‘ft will be one singlo unit, the -space required
increases due to the existence of a 120 x 120 pictura matrix.
Thio matrix is stored in one byte character form to ensure
minimal storage; access to individual bits are’ no% possible vhen
using the Fortran'H compiler nxcopt when logicsl (bit) variables
aro/paod, in which case, reading, outputting and manipulating
them become very inefficient and undesirable in terms of time.
(b) An algorithmic merge of the two systeme. This-means doing
~ both procedures at the same time as the boundary is being
tr ersed ) Again this requires mors storage space nnd incurs
comyutution. Por clarity and oalior understanding of the
lﬁltim,Uthii approach was not used, whq following algorithm
would show its relative complexity when compared to the sctusl/
, inplementation of the ngthod .

\ Given s 120 x 120 pioturo patrix of the quantized shape with a
* single bOundazy stored on dsta cards, the algorithn followss
4, Resd iho pleture intoa 120 x 120 array and print 11 -out tor
. the purpose of documentation, -
2, Locntc the starting point by a scan or rnad in the naaualky
locatod coorﬂ tes of the ﬂtgrtin‘;iftnt Irom data carul.
¥8,XX),

3.
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‘4. Determine the ‘first n points using the contour follower,
(n > 1 ana approxigately 125% of 2#NB), afid emooth the
boundary points by renoving 1-step staircases.

5. Check to esee if the number of ramaining points satisfy the
required segment length of 2EB+i. If not, continue to obtain
more boundary .points, smooth them and repeat step 5. :

6.  Determine and store the sign of the curvature of the” (NB+1)st 4
point =~ this is the point under conaideration. B

7. Determine the first eet of angles from the 1ine-pointe.

‘8, DMap the anglea into the ¢ bietogram. : -

9. Zstablish the high frequency rezion, dotermino and store the ! 3
tangent angle and entropy maasuros. ’

10, Zero out the histogranm

11, MHove to the next boundary point; recopy rolevant deta, 3

| determine a few more boundary points, smooth then and execute
step 5 and 6., s - ' |

12, Letermine new line-point angle values.

1% - Go to step 6 and repeat int¢il the firet evaluated point is

%t in the process to be evaluated, i.e. tho boundary has

been travorsed and all resulting values stored.

14nmgror documentation purposes, print the smoothed boundary point

{ coo#dinstcn and their curvature signs,

. ’ Although e know that this algorithm is practical enough
to be implemented, tha nuzber of times processes 1iko in etep 5
and 11 are done and tha rcquimod storage for arrays prosonts
sdditional problems.. Also since the use .of charactor or logical
varisbles in FPortran H is unavailable and undoairablo respsctively, °
points have t6 be stored iin full words, A0, four bytes foruat,
instéad of one byte for aharuatcr?toznat and one bit for logical
,formats. ZIhis implies the involvement of s large amount of requiroed
space that would be badly. utilizcd. Mgrcovor, if one 1ncilts on .
using charscter varisbles, then the VA&?IV compiler has to be used,
Oonsequently, execution time would greatly 1noruaso by at least |
200% which oan be domd/ usneceseary md tc olr nmvmxtsgc 1n ‘

A
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The oonanquenoeu of untng an unprooeunod boundary are

- few and individually rdther inaignifioant, but each deserves aome

montion.,

L

!
If the proopan to remove 'i-atep athircassa ia omitted, there

‘1a an approximate decrease of about 10 ¥ in CPU time when uaing

2,

\ N ~3'

the WATFIV compller, This Cirat sub-ayatem uaually takea about
alght 10 ten mevonds, thus omitting the pre-processing does not
aslgnificantly roduce the amount of computation time. On the
other hand, doing thia proprooeaning reduees the number of
boundary pointa by an average of ‘5% for a shape huving about 600
boundary pointa. This reduction in the total number of pointas
would affect the amount of computation time required in the
main aystom. ’ * :
To obtain a similar "quality" of tangent and entropy measures \ i
as in the case when boundary points were proceased, the value of '
NB and XX have to slightly inorcase while NS should slightly
deorease., NB, the neighbourhood sise has to inorease to reduce
the influence of more horisontally and vertiocally aligned
boundary points which generate "no;ne" for the aegment under
conalderation. XX has to inorease to exclude these line-points
that produce a more "noiay" histogram. A slightly larger value
of XX would ensure that we diaregard any potentially present
"noime" peaka in the histogram. NS, the number of angular
partitions, should decrease to odbtain better measurcs as it
ensures that the alot with the higheat count is not alwaya the
slots where horiwontal and vartiocal 1ine-pointa acoumulate,

The inoreanse in tho aize of NB would evidently cause an.
inorease in computational time. DBut the inoroase of XX and the
daorease of NS actually help to reduce it, although not suffioient
enough to warrant any significant difference in the overall ayaﬁem.
The total inorease in time would ba approximately i& % more
than the original ayaten.

For reaarch purposes, a tangcnt ‘was drawn at saoch boundary
point to aid in the objective evaluations of the method's per-
formance. An increased number of boundary points caused the
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o resulting plotures to look more untidy aa more tangent linea
P () ' . Were drawn per absolute length on the doundary. Of course,
more time was dnvolved. - a :

In general, uaing\ an unprodeased boundary would result
in an overall inorease in computational ftime, a.risk of lens
//rournte tangent and entropy <¢atimatea and an 1ncreaao in the

numbey oﬂ pointa being conaidéred. '
Inthis same unproctssed eonvironment, aome changes in
" ita logle have been studied./ We ocan ignore the ¢ angle.values
of line-points that are between pointa less than V3% or 2, eto.
- unita apart. In this way, we tried to reduce the amount of ncise
‘ that originates from horisontally and vertically aligned bouhdary
pointa, Instead, we observed an increase in the number of mia-
directed tangent lines because thia logioc makes the aysiem pay
more attention to line~-pointa that are farther apart. Angles of
line=points that are farther apart repreasent the.axial direction
of the segment better than the local tangent direotion. Thua thia
system would work bettar for a smaller nelghbourhood size and
larger §§31° partitions, i.e. smaller NS.

5.2 QOther Methods of Tansont Batimation

For the purpose of performonce compariason, two alternate
mothods have buon studied. These mothode aleo wae the O-histogram.
In faot they are minox vur;?tiona of the existing method; their
ortoct1v7neaa vould be briefly dismcuased.

1. Take/the angle at the center of the angle partition in the
histogram that has the highest count. Theoretically, this is
acoeptable as we can refer to resulta obtained in Chapter 4.

. However, in the quantined pituation, as only NS values of the
tnngent are possidble, we get a step-like and discontinuous
tangent graph showing values that are approximated to half the
size of the angle partitions. In this case, one might want to
inercase NS, but results have shown that for NS greater than
some value, we may get varying valuea with smaller atep size but
they occasionally fluctuate even in regions of lower ourvature.
This ia due to the asnsitivity of the histogram when mapping

™ \
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iino-ﬁointn into amaller angle partitions. Thi@/ﬁ?thad 1a not
recommended if pre-ﬁrooenaiﬁg i» not dono, othorwiae, it is
fairly reliable exoept for ita non—continuity in nngl@ cgtimaten,
Tangont ontimaten obtained in this way have shown reanonnbly £ood
platures for amaller valuea of NS. BoG Fic 5.2,

2. This m@thod way heurintioally Tormulated as an extension of the
above case with the basic aaaumption that the tanaentfiiea olone
to the nngsinr value of the higheat qell of the Win%ogram. It
has been atudicd and teated in depth and found to be faster and
in gome ways bottsr than the implonon\ed method. A bri»# acoount
of thia atudy ia dinousaed here. The only disadvantdige of thias
method is that it cannot handle nolsy pioturoa aa well as the
present system.

The value of the throshold XX ia initially assumed to
bo large, vay greater than 0.4, Thus only & few histogram slots
are likely to be zelected Lor woe in the caloulations. If we
denote the higheut cell as the -k th slot and its count as Oy,
then the angular value representing the k th slot ia (k=}) #+m |
where n ig tho size of an angle partition for a given value of

- NS} L., M = "f/ES. In goenoral, let Cy be the count of the ith
cell of the hiatogram. Then the tangent oatimate using the,

. pelesotod slots ia

TS

= b e s X et e By (5.21)

Consider the following example: take an arbitrary histogram
from which four cells with counts, 12,22,11,11 have been seldscted
Tor calouwlation. Then using kgn. 9.2.1, we substitute the counts
to got: \ ‘ ‘
e ke e+ GBI 2 R - G
= (k- 38) am  ® (k- 0353) + M :

As a comparison, we note that using the first methed would return
o tangent cotimate of (k=-¥)*W and whilo uaing the original
method, the tnnge:t would be eutirmated ati

ﬁ)ﬁ; L3 | -{ ﬁ*(m) + g-}*(w) +§§.k ﬁ«(k—\) }

- (k+0375)*'v1

—
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showing that they all are within the range of ons alot, n radian.

If wo have two equal-valued slots, ono of whioh ip,
deaignated as the higheat alot, then the tangent estimate uning
this mulhod would bo evaluated aa = (&-H* M ¢ T = ke W which
is the an.;le at the boundary common to bqth celln, Thia ia of
course the exteasion of the first mothod and i€ int tively <
sound. We obaerve that if aymetry is encowntered on .both
sides of the hi&heat histogran cell, thia methoed weuld return
the value of (k = %) »n a8 the tangent estimate aince

m&- ﬁ 0. Thia :*oault-oo@.noiden with doth of the other

methods of tangent satination, @\ (‘
We uao the expreasion in an. 5.2+1 t0o eatimate tho

tangent angle from a given hiastogram, s0 wo can simply estimate

range of its values if we consider the extremé cases. In

5.3, we conaider the highest cell flank on its right by

eells with values slighily less than it. In this case, the

‘R ﬁ shows o geometric progression in (1-‘1;) and

m_ﬁ ¢ 1 for all values of i, 5o .
upper bound begomest € a: t» -f- -q : gI Although

diverges, for a small n, say ‘ 10, tho upper bound dbdécomes

(k-ifg‘.f.‘g; )n\- (k- e1a68) em

singe Cis Ok, the expression

- &€ (k+1)2m ’ , (5.2.2)
Similarly, the lower bound is oatimated for m £ 10 at: ‘
. (k=2)am : (5.2.3)

With this assumption, the range of the tmont oatimnto ia:
-2 )w 'q.(k-n)n\} whose exireme values can only be ntzaimd
o ten

jont eatimatea is lesas than the aize of one angle partition,

_Thiwe, this method would place the tangent estimate very olose to

thb alot with th? highest histogram count.
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Nov that the extent of the range of the tangent estimates
has been realised to bde amall, the value/zigix does not have to
be restricted in any ‘way as it will not oubatnntially change the
rosulta. In comparing the resulta obtained by this method that
we refer to as TAN.2 in Fig. 5.4 and our implemented method,
(TAN,3), we can make some general observations. 'We note that
TAN.3 gives a more averaged-up and rounded set of valuea than
TAN.2, i.e, ita graph would shovw & relatively amcother curve in
Yorms of itz rate of lnorease and deoreasc. For a amaller value
of NB, the neighbourhood aize, the picturs from TAN.2 in Fig. 5.5
shows locally more accurate tangent ostimates. Howaver, the
lack of amoothly varying lines at regions of higher curvatura
rcsults in o rather squarish-looking pioture. As NB or KS
inereasces, it would get more untidy at higher curvature regiona.
This method, if used, has the advantage of being faater to
compute and the results obtained are r.lativaly Juat as good. o

5.3 mns.msx_\_x_-_s_xmmmm

\ I A study was done .on the meaaursment of curvature using
what we will refer to as the f - 6 transformation, represented in
Fig. 5.6, similar to the transformation used in our méthod. For
each pair /of pointa of the segment on the quantized doundary, the
line joining them, the line-point, is mapped into the f-= @ apace,
whore © is'thu radial angle and § is the perpendicular distance
to the line or its extension. ' Clearly, for a atraight segment,
sl the ©'a and #'s are conatant and hence the 9 -6 histogram is
perfectly peaked giving sero entropy and henoce indicating no
ocurvature. ) E S
" This section discusses this heuriatic method with some

- gonexal oxpor;gphtul rosultaﬁ Theoreticsl considerations show

the method to be unsgund. Thus, the purpose of this presentation !
ia primcrily for the sake of those who might think of researching
it as a feasible extenaion of cur method to measure curvature,

The use of this tranaformation entails an additicnmal
aystem variable called NP, the nnmbcr'é&hcquul—width°par§1tiona
on the picture retina, independent of oricntati?n. This is used

I

©
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1o claas line-points at different distances avay from the center
of the retina, which we rofer to as the origin. The additional
use and ‘svaluvation of -f vn}h’ this variable for each line-point
results in an mcromxnt of over 400 £ in C.P.U. time in the teats
done on it. Usinag this variadble alac requires the use of a large

. tangent is done indepmdont)y of thia variadle and the ourvature

estimate is taken as the entropy of the two=dimenaional histogram.
e Fron 0xper1mmu1 regults, a luuir aize NP produces

‘entropy- values with a larger range whi subatantially aids in

difformthting high from low curvature poi.nta. A larger 1B size

will give smoother curvature graphs. XNow, for the theoretical . °

aopeot of this method that makea it undesirable.

~ " Gonsider the following Sheorem:

The eutropy measure of the two-dizensional P=-'8 histogram

obtained by using the P = @ transformation on lne-points -

is NOT. mdtpendmt of the position of its origin.
One vay to provc this is by assuming independence and producing a
counter-example to contradict the assumption. With ycforsneo to
Fig. 5.7, given an arc of a circle of radius r subtended at the
center by an angle of #, construct the two origins at 0,, (0,0)
and O:, (2wrscos(i#), O0). We know that entropy measures from
histogrma having a different mmbor of cells are not equal.
Furtherqore, since the quantization of P remains fixed in .a given

problem, a different range for, P determines a different number

of histogran cells. We now only qneed to show that the ranges of
P from the two origing Oy and Oa have different aiua\, '
The range of § with respect to 01 is clearly (rcosif,r).
Thus the aixe of it is: ¥ » (1 - coa(i®)) (5 3.1)
_Similarly, the range of ¢ with respect to the origin Oa is
" caloulated to be (=r+2raain® (), -regos(3¥)). Thus the extent
is3 v » (cos(H) + 2wsin*(i4) - 1) | (5:3.2)
Obviously, the size of the mngu is not cqunl in gomral It is
equal for all § such that cos{i¥)+ain*(3#) - 1, 1.0, cos(ig) = 1,
That wmeans that § must be zero or W for the sise of the two
ranges %0 be squal. ‘ : , .

- N\

N

- array of aime NS x NP as the histogram. The ‘estimation of the -

\
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5.4 Some Resulta on thé Effeots of Quait ization
J ' R

When digitiming plctures uamd quo.ntiud grids; a shape
is represented differently and in Aifferent degreea of docuracy
by waing different simed grida; a ploture digitimed uaing a ,
smaller grid sise vould- produce more datailed ailouhettes which \
vould resemdble the original shape much better. In our ocase, %o
éainulate Quantization on different aized er%da.’ we need only to
vary. the size of sur shapes on the ‘same aize 120 z 120 pim‘.ure .
franme T\aed for input into the systen, <

The motivating basia of this nudy is to swe how this
proposed method's parrcmnn« is- u‘taowd by different levels of

quantization when the sanme pamners are uaed. A shape suitably -

chosen for. this study is thu circle. Since dieuination effec=
tively removes the promrw of contimity. resulting measures

whin compared to theoretical results tend to ‘1ook rathey disconti—

nuous and -unpredictably. fluctvating instead of the rigidly
oconsistent value of the i-wiproul of the radiua. Thus we: have
8 good basis from which to eompure entropy values obtnimd trom

circles! with their classical curvature values. Since consistency-

of ‘va.iuea can be, realized if we km»; its mean and variance, these

gtatistics of the entropy values will ong&lo us /to deternine which-
sst of voriables for the system would produce . “better" measurements

in terms of smaller variations sway from theé mean. Thus we can
relate the corresponding differonces of values obtained from

_different sized circles. Results of these statistics when plotted

will easily show their "rel‘ationahip. in terms of performance. - .

In the first-case, 'in Fig. 5.8, we use a circle of
radius 50; with the process of digitintion and Mprocessinﬁ of
the bonndary. we ended .up with a 282 point ho\mdary. Then
_determine ita ehtropy values for all points on the boundary for
various values of NB and NS. We observed, as expected™, that’the
vgl\us obtained using common logerithms attain ruch smaller
: variances and gonenny 1ower mm values., ’0:0 0130 note that for
* since values ot lomithn %o the base 2 is larger than
v values of the 1030:3.%7@ %o the bage 10, 7

/ \ ;

|
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‘a Tixed size NS, as NB increases, the means increase and, at the

samge time, the variances decrease. For a fixed size NB, as NS
increases, both the means and variances increase. These results
reinforce our intultive idea that the variance would decrease and
become small for sultably chosen values of NB and NS.

Similurl&. the same¢ was done to digitized circles of .

radius 30 and 10, We observe that as the size of the radius

increases, the means of the entropy values decrease as expected
of them. As NB (or NS) increases, the values of the nean also

'&ﬁé?éase. As for the variances, they generally decrease as the
- radiuss increases and also as the variable NB increases. - The \

variances increase as the variable NS decreases. Thus we sce -
that for a fixed set of variables, they correspond relatively
well to the differences of their theoretical curvature measure-
ments of {/radius. '

To sum these observations, we can saybthat the proposed

method produces entropy values--curvature indicators that correlate

very well to theoretical results, and different levels of quanti-
zation merely causes the estimates to vary slightly depending on \
the values of the system variables used. Gross quantization, like
in the,caée when the radius equals 10, in Fig. 5.10, evidently
does not produce as consistent or accurate results as finer
quantization. This is exhibited in the graph when the variances
of the entropy values do not _show much consistency for improve-
ment with varying values of NB and NS like the graphs in Fig. 5.8
and Fig. $.9. Most evidently, finer quantization would produce
better results. :

5.5 Appl tion to Data Compression of Line Drawi

In many applications dealing with line drawings, data
compression is of crucial importance. For example, in communication
theory we would have to transmit much less information if we
consider only a small subset of the\péints making ﬁé a line
drawing (54). In the rapidly expanding field/of automated carto-
graphy, it is important—to store maps with elevation profiles
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efficiently (%5,56). Finally, in ¢omputer graphics, data reduction,
is important to (a) reduce storage requirements for the display.
Tile, (b) provide for faster imnge transmission and bufldup, and
(¢) provide Tor faster transformations (57). In this seetion, wo
proposc and investigute a method for re%ycing the number of points
"of a line drawing based on the entropy measure of curvature.

As originally intended, the measurements produced by the
proposed éetho§ are supposed to enablc one to‘diﬁtinguish low

. curvature points (regions) from high curvature points (regions).

30, one could wse the resulting cutropy values in two ways:
(1) Apply a thresholding process to the values obtained from a
glven ﬁhapg. This actually selects all ppints above a pre=-
qpociiiod fraction of the maximum absolute entropy value for a
glven s xnpe llo attention is given to the sign of the entropy
values selecting these points which are then joined by
utr&iﬁht linvs indicating thnt thc region between them have
lover curvature. - ’ ' ‘
Experimental results have shown that s reasonably good
rescemblance of the original shape is obtained by using a
threshold level of approximately 50% of its absolute maximum
entropy valuc. Allower value would increase the number of
points selccted making the resulting picture look more like the
original. Of course this 1s acceptable unless one were to be
looking for a minimal number of points to best represent a
picture,’then one would have more points than nccessary or
required. A higher value will result in a reduction of the
number of points seclected, and it may also omit some crucial
points on the boundary necessary for the connected set of points
to resemble the original shape. If a process using this method
has n6 need of a joined set of the selected points, then a
higher threshold level would essentially exhibit regions of
higher curvature. \
Fig. 5.11. shows some results of this thresholding process
applied to some shapes. The second shape is the first gquadrant
of a four-leaved rose, the third is a cardioid and the fourtﬁ\is
the top section of the Spiral o§ Archimedes. We note that when
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NB&S NSal) XX=0,10
O1FF=0.00 215 OF 619 P18

\

‘NB=S NS=11 XX=0,10
01Fr=0.00 110 or 282 P13

@)

NB=S NS=11 XX=0,10
OLFF=0.0Q S4 oOF 296 PYS

“)

NBE NSell XX=g, 10
DIFF=0.0Q S6 or 238 PYS

Fig. 5.12

[ Ji \
/
/
%
NBxS NSell XX=0,10 NBaS NSall XX=0,10
DIFF«0.05 103 OF 619 PTs DIFF=0.09. 73 OF 61§ PYS
\
/
NB=S NS=1l XX=0,10 NBaS NS=11 XX=0,10 -
DIFF0,05 36 OF 282 PTS DIFF=0.08. 21 OF 282 PTS
\
{
NBaS NS=11 XXa0,10 NBaS NS=11 XX=0.10 - A
DIFFa0.0S 33 OF 296 PT$ DIFF=0.08 18 OF 236 PTS
_ /
) {
3 m
. \
f - . i
- \ \ - -
NB=S NSx11 XX=0.10 NB=S NS=11 XX=0,10
DIFF0.0S. 26 OF 239 PIS  DIFF=0.0Q 20 OF 239 PTS
Results Obtained by Selecting Peaks
of Entropy Graphs of Various Shapes
\ i
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these shapes are threshold at 47% of its absolute maximum
« entropy value, the reduction in the number of points ranged
from 53% to 84%. At the threshold level of 50%, the amount of
reduction ranged from 60% to 87%, and at the threchold levgi
of 53%, it ranged from 69% to 90%. Objectively, it seems, that
a threshold level of 50§ is the "border-line" case, whepe if it
gets greater, the nwount of distortion may not make the
connected remalning points re resent the original shape as well.

(2) Select peaks of the entropy value graph and designate then
as locally higher curvature’ points. If one intends to select
regionally higher curvature poiyta, as opposed to glodbal, 80 -
that higher curvature points of each region or segment are
retained to enable the connected set of selected points‘to

/ better resemble the 6rigina1, then one could introduce a
difference factor to iron out the presence of fluotuating values
vithin a small range; that is, we ohooae.more,prominent poaks
vhose values differ from neighbouring values by a certain amount.

- Fig. 5.12 shows two levels of difference applisd to the

entropy value grapha of some shapes. ﬁhen DIFF = O, all lecal
peaks are selected. We observe that as this value increases,
less points would be selected thus reducing its resemblance %o
their original shapes. This technique enables one to obtain a
relatively more complete reduced shape. We observe that if all
local peaks are selected (i.e. DIFF = 0), the reduction in the
number of points ranged from 61% to 77%. With DIFF = 0.05, the
reduction ranged from 83% to 89%, and with DIFF = 0.09, it
ranged from 88% to 94% We note that while the number of points
are reduced to a greater extent than in the first techniqu! the
reduved s shape still seenms to resembdle the original figure much
more.,

The first technique essentially selects higher curvature
regions depending on how high the threshold level is; the:higher
the threshold, the higher would the curvature of the remaining
points be. Thus it would be useful for the extraction of higher
curvature regions. The second technique pin—points‘reggonally or
locally higher curvature points instead of regions depending on




the value of the &'%fforence factor. . These techniques could be
used as a data reduction process for lins drawings in picture

processing Pattern Recognition applications.
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. # \ ,
Neighbourhood No. of Angular Acceptable No. of Time
Sisze Sectors Fraction Points (secs)
NB NS x
- B
1) 5 1" oG <" 619 2.0667
5 '3 0.10 619 2.250
5 5 ~ 0.10 619 2.13333
5 17 1 0.10 619 2.13333
5 19 0.10 619 2.250
5 21 0.10 619 2.283%%3
5 23 0.10 619 2.2333
5 .25 © 0,10 613 2.11667
5 27 - 0,00 619. 2.10
5 29 0.10 619 2.1667
5 B 0.10 619 2.21667
5 5 | 0.10 619 2.08333
5 21 0.33 619 2.2333
5 35 0.33 619 2.08333
6 19 0.10 619 2.58335
6 21 0.10 619 2.650
6 23 0.10 619 2.633%
7 21 0.10 619 3.4500
9 21 0.10 619 5.350
9 35 0.10 613 5.41667
13 " 0.10 619 8.31667
AR} 21 0.10 619 8\ 1667 .
13 35 0.10 619 8.38333
13 21 0.33 619 8.4333
13 35 0.33 619 7.950
2) 5 " 0.10 54 0.2333
3) 5 1", 0.10 166 0.48333
4) 5 " 0.10 282 0.83333
5) 5 1 . 0410 239 0.7500
6) 5 " 0.10 296 0.98333
Fig. 6.1

A ;rﬁble showing the C.P.U. time involved for
various values of the parameters NB, N5, XX.
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\ 6. Summary and Conclusions

In this thesis, a method was proposed to measure the

- eurvature of bopndaries or lines quantized on two-dimensional

square grids. An implementation of this method on the computer

|

showod desirable results while the study and investigation into

" the theoretical aspect of this method established relationships

to the classical definition of curvature. A suggestion was also
made as to the use of these entropy values in a data reduction

. process for line drawings. =2

While comparative evaluations of this method have yet
to be done with other direct methods of measuring curvature, we
can only express its performance in terms of the time taken to
evaluate all the entropy values for the boundary points of a
shape. These measured times shown in the table in Fig. 6.1 are
C.P.U: times and do not includie preliminary iaput-output

~functions. That is to say, that if this ayste\m is incorporated

into a picture prLcessing' appljcation, the§® will be the additional
amounts of time involved. Also note that lthe times listed (in
seconds) should be consi;i‘ered in conjunction with the number of
points the shape possesses.

In this thesis, a means of measuring and expressing the
curvature of Eigitized lines, curves or contours have been

~estadblished through the use of the © transformation and the ©

histogram's entropy. The proposed method in Chapter 3 has been
substantially supported by its theoretical equivalence and
implications given in Chapter 4 and 5; its equivalence to the
classical def;nition of curvature, /and its indepen?ience of the
position.of the origin used, implying independence of the position
and orientation of the shape. Furthermore, we showed that. the '
)[;- ‘9 transformation is not as effective or theoretically and
practically as desirable as the proposed © transformation.

, A relationship between classical curvature and the
entropy measure as defined has been established. This forms t!#e
backbonej to the validity of our method which can also be used to
determine the axial directions of quantized segments. Furthermore,
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& smoothing process, the removal of 1—stepsstaircnses, has
successfully improved and enhanced the results and performance of
our method. Thus the results of this thesis form a ‘contridution
to the area of curvaturc measurement, tangent angle measurement,
boundary pre-processing, feature extraction and information or
data reduction, and more generally, to the field of picture
processing and computer graphics.

The approach to this thesis has mainly been in the

_ direction of a proposed technique, the study into its validity.

an investigation into its practicality and the establishment

of it¥s theoretical basis. A variety of extensions of the work’
described in this thesis are pgfsible. The most 1mmediate ones
arg comparative evaluations of this method té other methods of
measuring curvature, and other methods of data reduction rrocess.
Then one could work on the implementation of this method into
picture processing and other pattern receognition applications
that 6ould uée a curvature méasuring or data reduction process.




&mmmm& Preprocessing

1.

2.
3.

4.
5.
6.
7.
8.

Read in from data cards a ocnnected digitized picture of size
120 x 120 and print the original shape. I

Repad in or dnetemlne the coordi’m‘;tes of the starting point.
Determine the boundar; by the contour tracing inethod and
store their coordinates in two linear vsctors (IB & JB).
qutxk out input array.

Do procedure to remove “\-gtep staircases"™.

Recopy the remaining doundary poix?ts into o. linsar list.
Determine and record the curvature sign of sach point.

Store the coordinates and signs of the boundary point.

Algorithm for Subsystem II: Nain Program

“,
2.
3.

4.

5.

Read in doundary .coordinates and signs from st';rage device.
Start CLOCK! procedure to begin timing of process.

Read in the 3 systen varisbles and eatablish“ conatants to be
u\aed in the conputations.

Copy first segment of pointe into the vorking array (IL & JL).
Determine the first set of angle values while checking for
coinciding boui\dary points... |

Nap angle value.s into the histogram.

gétemine the rangs for computation by scanning from the
.8lot with the highest count. 2
Determine and store the curvature a.nd/ttangent angle; measures.
Zexro ‘out the histogram and move ahead by ox\ne point.
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0 - \
10, Determine the new values of the angles and go to step 6

and repeat until satlch boundary point has been considered.
11. Call CLOGE2 to terminate the timing subroutine,

12. Store resulting arriys of the measures.

o i

Algorithm _for Subgygstem IIJ:

t. Draw the original shaps by indicating positions of the
boundary points. . ‘

2. Draw the tangent angle at each boundary point.,

3. Plot the graphs of the measures. | &

4. Draw indicators of cux"n;ture at each boundary point and

4

reconstruct the picture by thresholding curvature values.




LEvEL 216 ¢ DEC 72 ) ' 052150 FURTRAN W

COMPILER OPTIONS = NAMUR MAINJORT=O2,L1INE CNT=60,. ST2EEGO00K
/ SOURCEVEBCOI CuNDLIST JNDDECK AL DADNOMARGNOZILT 4 TONUXREE

C L]
c (VARTADLFS RLOUIRED FORTHE UNTQUE STATE OF THE 3YSTEM ,
C T vt W W et T T S W W i S e U VL e Wy W S Y o o e R, W v, 4 T O R 4 S W W *
— < N = SIRE OF NEIGHIWRMOAN RADIUS < .14 ON EACH SIDE
, . NS = NUMBER QF EQUAL ANGUT SECTORS IN TOP HEMISPHERE < 19
PR - XX =  VALUE DF THu ACCTRTAWLE FRACTION
C o .
1SN 0002 i DIMEASTION TANIITISO) +CUIIL TS0 ) ANGLE(A3S)
TSN 0003 ‘ . INTLGER HISTCIN) o FILTB0I4 I TS0 4 SHNUPSON L ILT 29 v I L2
1SN 000a DATA TANIVCUANWANGLE HIST TLVJL 7193500 ,0,9700/ )
: - 1SN 000S \ COMMAN 7ARLAY/ R9O | i
I M '
e L constant VART ABLES USED IN DROGRAM
[ o} e s [ S . T Y Y W VR T W T T W B R VS W VR e . S T v
< lﬁidt -  ARRAYS CONTAINING 1 & J COCROINATES DF YTHME BOUNDARY POINTS
< TLWJL =  ARRAYS ZONTAINING COOROINATLS OF THE SEGMENT BOINTS
. c RO0 = _ VALUE OF WALF %= Pl 190 DEGREES IN RADIANS)
. \ - ¢ 1t =  NUMBER OF POINTS ON THE BNUNDARY
c .
/ 1SN 0008 RPID = 1’7,
TSN 0007 \ READ (1) 10.J3,SGN
TSN 000" | It = tst?%0)
. c »
c NOW READ IN REQUIRED SYSTEM VARIAULES & DETERMINE ITS CONSTANTS
c N A T TR W v W T T WAL W W G Y e, S iy W T T R YR G A R W A, W W W g S YR TR R M Gm R W W W - -
C NY - LENGTH UOF ST LHNCNT UF (INUNDARY UNODER CUNQID!:PA;I ON
C N2 = POINTS TO Tt 3SECOND LAST FLEVMENT OF THL SEGMENT
b ° < GNS =  SIZF QF ANGLEL QF SUCTORS IN LEGPRES
< ANS = ANGLE ™ CACH SLCTAOR { IN RADIANS)
N [ IN -~ POSITTON UF SUINT UNDER CONSINERATION -
c IP = PUSITION OF LAST SEGMENT ADINT IN BOUNDARY | 1ST
C . . .
ISN 0003 CALL cLiCKk) , i
® 1SN 0010, BUAD 1 «NH» NS VKK
' ISN 0011 1 FORNAT (213,F5.2) g H
1SN 0012 . BRINT 2¢ NBNS XX 1T - - .
ISN 0013 2  FORMAT (5K, *SIZ2E OF SEGVENT RADIUS =% «l13vaXy* N OF ANGLES =%,013.4X,
1 * *ACCERTABLE FRACTION E3 F3.2,4X,'¢ OF POINTS =',14)
ISN 0014 v N1 = 2%A3+] s
; ISN 0015 NH? = NI'l=) .
ISN-001 8 N3 ®m ONO O+ ) \
I ISN 0017 CNS = 1304 /NS
E ISN 0018 RNS = 22./7¢ 7.8NS) -
- 1SN oo % IN = N, . -—
* X SN 0020 In = Nyl ,
£ B 1SN 0021 DO 3 I=t.Nty [
| . ISN 0022 W=t g K o . '
. ISN 00223 3 JULII=IRL) . —
a . c
€ -~ ., DETERMINE THE FIRST SEY NOF ANGLES !
c N - % OF ACCEPTAGLE LINE PAIRS IN THE SEGMENT (<=NB1&N32/2)
, . c
TSN 0024 N =0 .
' 1SN 0025 DO & xlal.NB2 /~
@ ISN 0026 J =Xl ¢ : ' . S
1SN 0027 DO 5 X2wy,NB1

S
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USN
ISN
18N
ISN
1SN
ISN

TSN
ISN
1SN
U SN
SN
I SN

I SN
TSN
TSN
I SN
IS\

1SN

ISN
{ SN
1SN

1

1SN
{SN
1SN
{SN
ISN
I SN
1SN

1
1SN
1SN

1SN
ISN
TSN
ISN
U SN

ISN 0075
ISN Q076

ISN

Leled-3)
0029
0031
0032
QO34
003%

0038
0037
003%
0040
Q04A1l
0042

0043
PIVEY Y

o0&
Q067

0048
Q00aQ

0050
0051
00S?
00S5e
005%
0050
3057
0059
‘00061
0062
0063
117,13
006S
0066
0067

0069

0071
0072
0073
0074

0077

'

[a o 3a Nal

4
5

Nnoon

10

15

20

oONnNoO

P2

23

24

_©
2%

NnNNOONn

26

| | | 19

.2 l \

S

. N =T N+ 1 ,
IF CIL(RIDGNELILIKD)) GO TO o
ANSLF(N) = 999, .
IF (JLIR1)EQILIXKD)) GO TP & o
CALL FINDOILIKI) e JLIKII¢ILIR2) ¢ ILEK2) ANGLEIND)
CONTINUF ° -
L4
TQ FIT YHE ANGLE VALUES INTO THE HISTOGRAM
Boo 20 1=1.N ’ -
IF (ANGLE (11 NCe9994) GO TO 15
GO TN 20
KI=ANGLE C1)/0NS & 1 /
HIST{(K1) = HIST(K]1) ¢+ 1
CONTINUL - .

Wt NOW HAVE THE HISTUGRAM. FIND THEé§%S(YTDN QF THE\HIGHEST SLAOT.

Kl = VALUE OF HIGHEST HISTOGRAM ANGLECEUNF—  ——
K? = ®Na IN HISTUGRAM WiTH HIGHEST ANGLE COUNT
Kl = 0 \
D0 22 1=21.NS
16 (RISTUI)WLEWKL) GO TO 22
KL =2 MISTCD) . -
K2 = 1 \

o

CONTINUL
INCLUDF NEIGHROURING Rida CAUNTS GREATER THAN THE ACCEPTABLE FRACTIAN Of
TO DETEPMINE THE RANGE DF THE 20WS o et INCLUDED IN THE CALCULATLUON

K & 1 - '
JN = K1 ®x XX

If (JUNEQLO ) UN =2 1 : y
XK = K) ’

r = k2 \ (

J = %2 -1 . , /

IF (JeE0.0) J = NS )

IF (MISTCJ) «LEWUN) GQ E@—zd -
XK = XK & HISTULY)

K = K + 1

1 =9 \ - -

J =" -1

GO YO 23

J= K2 ¢} ) ~

IF (JoGTWNS) J=) /
IF (HIST(J) LESJN) GO TO 26 ‘
XK = XX + WIST(J)
K = K &1
J= 4 ¢
GO Th 25 . -
NOW, DETERMINE TANGENT .3 AND CUNVATURE .3 ‘

TAMG3 =7 EXPECTED VALUE OF THE ANGLES USING ROW COUNTS AS WEIGHT

CUR.3 = TAKE ENTROPY MEASURE NN THE ENTIRE NlSYgEBﬁM
"SLP = 0.
CURV = 0.
IN = 1

-

e




- e

LSN
1SN
SN
1SN
1SN
SN
18N

1SN

. USN

TSN
1SN
[ SN
15N
I SN

15N 0008

ISN
I[SN

SN
1SN
ISN
1SN
1SN
1SN
1SN

ISN
I SN
TSN
1SN
ISN
ISN
1SN
1SN
1SN
1SN
1SN
1SN
1SN
ISN
13N
TSN
SN
1SN
ISN
1SN

SN
1SN
ISN

aora
Q079
Q080
0081

oon>?
0083
oouBe
00806
Qo087
oo8n
0089
0090
0091}
Q092

0096
0097

o098
0099
0100
o101

0102
0104
0108

0100
o107
o108
0109
0110
o111
Q1112
o113
o115

0116

oz
o118
0119
argl

o122
o124
0125
o126
o2y
o129

0130
0131
0132

e]a)

CON
sSLP
SLpP
TAN
cunl
IN

/
M
O VU I

T 1K -
SLP = SLP ¢ HISTLI)2(JN-D.50)
PR = HISTLI) /XK
CupPv = CURV ~ PRE®ALNGIOLPR) %i
JN = JUN + 1 .
1= 1 + 1 ’ B
IF (1.6T.NS) 1 = 1
TINUE /
® (SLP/XK) & CNS S
2 ANDDISLP,180.,0)
WM IN) = SLP
3LINY = CURV *® SGNUIN) - . \ 1
= INF ) . ’

e ’
" TTUF {INJGT 11) IN = )

—

s Na ol

30

“Nnn

32

33

4

35

40

tF

[a]e]

1p
IF
.t
Jut

=

23
Je
JN

X = NB2

Jd =
JIN
1F
[»Ta]

1F

ANGLE(J) = 999.7 -

(INJEQNIY GC TO 40

ZERQ DUT NISTOGRAV IN PRESPARATION FOR THY NEXT DROINT

28 I=1.NS -
HIST(L) = O \

MOVE YO THE NEXT CRLLe T eFe MOVE SEGMENT AHEAD 8Y 1 CtiLL BOUNDARY U‘
DELLTL THE 1SY ROCW AND DETEPMINE THE LAST COLUMN OF THE ANGLC MAT

30 I=1.N32 3 \ /.

Iy =1eitel) ‘ :

JL{DI=JLtEe)

= 97 1 | i

{IP6TLITY)  IR=)

NAL)I=IRCIP) ]

IS RENETREC)) . “ \ i

YO UFTERMINE NEw VALUES QF ANGLE ~ [f
/ .
TLONRL ) : N
JLINELY - ’ §

= { - - 3
= NB2? ) ' . )

\
2 JN - 1

(INeL00) GO YO 3a
33 I=1+JN .
K= K &1 ‘ .o R
ANGLE ( J) =ANGLE 'K) >
Sz o0 o+ 1

(IL(IPIJNELKL) GG TO 38

CJLLUPIEQx2) GO TO 35 R B !

IF
CALL FIND (TLCUR)JILLIP) K13 KRAGANGLERIN) \ ‘
JP = 4P+ 1 e - :
4 = J + 1 / !
IF (JP.LEJNB2) GO TD 32 . i !
GQ To 10 '
*exake  END OF JOH sewhax
CURI747) = NB-0.5 Yoo .
CUR3(748) = NS#0.5 ﬁy )

CUR3ITAD) = XX .

N




A

ISN OL3) CURILTISO) = 1T + 0.5

ISN 0134 TAN3IITA7) = Nd=O0.S

ISN 0135 TANI(TAR) = NS+0.5

ISN 013¢ TANI(7349) = XX

1SN 0137 TAN3I{T750) = 11¢0.5

ISN 0138 CALL TLDCK2 (N) .

15N 0139 XX = N/Z€Oe .
- ISN 0140 ’ PRINY a2,XX

ISN Otlal A2  FORMAT (10X, *TIME 2% ,F9.%," SECONDS')
+ 1SN D147 WRITE (7.,45) TAN3

1SN o\t a3 wRITE (7.45) CuQl

1SN O01aa AS  FOAMAY (2044)

ISN 0145 STOP

1SN 0146 END
«DPTIONS IN EFtétT# NAME=  MAINGUIPT=02 L INECNT=604512ZEC0000K

i

*UPTIONS IN ERFRCT

—

‘HSYATISYICSx SDURCE STATLMENTS = 1349 +PROGPAM SI12E =

E3TATISTICS*® N0, ODIAGNOSTICS GENER7TED

-bekeEr END OF COMPILATION ®xavan -

200852

SOUURCE oL BCDTC o NOL IST s NODFCK G LOAD, NOMAP NOT Ol T 1D NOXRLF

55K BYYTS3 UOF CORE NU

c
c THIS SU4ROUTINE FINWS THE THETA VALUES GIVEN Twd POINTS
c
c
ISN 0002 SUSROUTINE FINUCT14Jl, 124023 THET)
1SN 0003 COMNON ZARE A3/ RQO
ISN 0004 AXTJ2-J1
1SN 000% . If (AX.EQ.0) 6Q TO 1
ISN 0007 Ax=12-11 -
ISN 000R 1€ (BX.E0.0) GO Ya 2
ISN.0010 SLP = AX/AX -
ISN 2011 IF (SLP,LT.0.) GO YO 3 \
ISN 0013 THET=ATAN({SLP) + RGO
ISN 0014 RE TURN - :
ISN 0015 1 THET=RQ0 ’ - ~ \
1SN 00106 RE TURN
JISN 0017 2 THET = O
ISN 0013 RETURN
1SN 001% 3 THET=R30 - ATAN(=3LP)
ISN 0020 RETURN ¢ .
ISN 0021 T END
*OPTIONS IN EFFECT* NAMEz

’ —

*UPTIONS IN EFFECT*

*STATISTICS» SOURCE STATEMENTS = 20 +PROGRAM SI2C =

*STATISTICS* # NO DIAGNOSTICS GENERATED

tenkka END UF COMPILATION stxexw

*STATISTICS®* " NO DIAGNQOSTICS THIS STEP

~

>

“AINQOPT=02\LINtCNT‘DO.SlZ&qPOQOK'

Sas

f
i
!

SQUQtE EACDICINOLIST s NODECK LOAD(NOMARyNIEDI T 1D s NOXREF

\

79K BYTES OF CURE Nt

o g
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SWATF IV (TINC FLOWPAGES=1 0L INESE6 S ¢ NOEXT

C
c GIVEN ANY SINAPY VALUED (0-1) CONNFCTED PICTURE, THIS PROGRAM
c
c ls NITAIN THE RGUNDARY DAINTS
C e PREPANCLSS THTM SAINTAINING A=wAY CONNECTIVITY
C Te _ DETHAMING BACH IOUNDADY POINT A% A CONVEX OR CONCAVE POINT
4 .
C THL STARTING COURDINATE (I54JS) TS GIVEN AS A PUINT ON THE HOUNDARY
c - '
1 CHADACTER P(1.204170) « b /0 e )
2 INTEGER [4l?90) /750%C7, JIUT00) 2790%07, SAN(TSO) ECISE IV
R CAMMUN ZaRCAL/ RYDLRIBORITO, 138D ’
L] RIO = L1477, , .
5" RIR0 =’ 25,77,
& R27TO = 31,/7,
b4 R3IGO = a4,/7. ‘n
8 NH = 49
9 . READs 18,48 .
C -
C PEAD £ PRINT THr D91GINAL N ICTURE [ '
C f
10 READ 1a(P{Ta) vl 14120 ,1214120)
1 U FURMAY (6)A1, 26X) . )
te PRINT 2 ' : )
13 > FORMAT (*1%420X4'"THE DRIGINAL NICTUREY) :
1a PRINT QG {IP(Ted) 1224120} 121,120) ’ )
is 29 FORMAT (000 e A s loGl " 10/ A Xy 18 s 12X Y40 0/ 1P0(AX LR T Y ¥ I
t ' v AR R R R R NS R L O I A L NV RN )
c
C DETCRMINE THE QOUNDARY POINTS AND STORE THFALIR, CIIROINATES
C IN THFE ArpAYS ID¢e) & Ji{s)
C
1o [0C1) = t3
iy - Sadl) = gs
1a ) 1 = 13
19 J = J 3.
20 1P = 1S
1 JPo= S -
22 , e o= 1 ‘ )
23 3 KVAL = 0 f
>a IF (PLLIL,J1EQ.SP) GO TN & .
’s ‘ KVAL = §° ) -
26 - IR C1eNELTALTEY) GO TO &
27 TIF (J.EQ.Jul 1)) GO To's
28 4 1T = 11 « 1 v, -
29 IBCIL) =
30 JICIYY = g
a1 s IN = 1+{J-JP)%x(1-PeKVAL) ‘
32 IN = ge{I-1P)R({PerVAL-])
ax e = g : .
34 g = _ ¢ . .
as 1 = IN ’
16 J = JN
ay IF (L.NF.I1S) GO TN 3 ’ .
AT IF (J.NELJSY GO TO 3

.
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N
O s e e A R R LTI L SR A . .

pa ; fk
» - i
- 83 {
I - %
e : - "1
< NLANK UUT INPUY ARKAY aND AT UP CTRCULAOLY LINSI D LIST b OOINT §
' C CONPUINATLS.  THLN PRICES S T PEMOVE BCQNSRY O0INEs (f BOUNDARY "
< — %
9 PN 6 1x14120 , x
A0 - DO o Jdz=lton \ - %
al 6 . PBCLya) . v 0 ;
ap 0N 7 tmi, o R - k
ay I IT+l) = Tu(Y1) , :
LY ? LIBEIIAT) = Bl i g
as 1 - 0 = ‘ i
an 3 T =1 + - :
a7 Q IT (I.GT,11) 60 TO 1Y , - i
ay IF (TAQSOIF{E)=TR( T41))=1) 13.1&.5 ) . .
49 10 IF (TAXSCI HTI 1)=J3CT+ ) )eNCel) G TO A : %
a0 I (TAGSEISDI=IBOI+2))eNFo L) G0 TN & ]
51 . IF (LAS(IH1)I-Ja(1e2) ) aNIel) GO TO 8 :
b2 11 13(1+1) = 999 ;
a3 1 =1 ¢« 2 ;
a4 GO TO 9 - :
L33 12 IF (1A3S{IR(1)1-JNCI+1))eNC1) GO TH 8 3
TS IF (TARSEIe(TI41)—1a(T+2))eNFQY) GO TO 8 p
“? - IF (TADSOINCI)I-I8CT142) deNLol) GO IN A
a8 IF {IABSEINCTI=I3(142) ) eNFL L) GD A , - E
Lo GO YO 11 . N -
c
C RECHPY THE GOCD BCUNOATY POINTS ;
c ] - , ~
60 13 K = 0
el DO 1S =111 )
L2 IF (I8(1) e Qe99Y) GO TN 1S
[ ] K = K + 1 . -
64 16(K) = T3¢L1) ! [ .
N \ Jaix) = JIRLT1)
66 NLLACK) JJUIK)) = "0 e
67 15 CUNTINUC ‘ -
(3 ITi= X , ) ,
69 11?750) = 11 #'J?“
C - \
C DETERMINE IF +ACH SOUNDARY LIOINT I8 CONVEX ar CONCAVE
C
70 J = 2%NA T . -
7 X = N
T DO 17 I=1,11 .
73 J=J+1 | s
T4 K=K &1 . [ '
78 1I¥ (J.GT.11) J=1 .
76 IF (KoGTell) K=} ’
L& 4 THET = DIRCIR{T )L o IHIN) I (KY)
78 IF (I8 (II=ISL I )IRCASCIRET)I=( T ()= T1ALII )Y ® SIN(THIT)LEaQ4)
« * GC YO 1?7
70 PUINIK) +JRUK) )= *0° / '
20 SGN(K) ==}
81 17 CONTINUE \ -
< _ : ['
. ¢ PRINT SUUNDARY POINT COARD INATES .
c - .
L: PRINT 1oo.x§.Js.~a . N
a3 109 FORMAY (¢ STACTING POINT CRORDINATE 2¢,213,¢ N3I=, v,13)
aas PRINT 18,11 . .
" a5 18 FORMAT (SX o'Wt HAVE' T4 BPUNDARY POINTSYySX4 %% 23 CONVE X POINTS® [
x ¢eH5X*0 33 CONCAVE POINTSY)
Hao PRINT 99s ({(P{leJ)eJd=1+4120)e1=14120)
, a7 PRINT 19,01¢18(I)JB(1I«SGNITYLI=1I) i .
13 19 FORMAT (5Xs'THE OO INT NUMHE R« COOPDINATES AND SIGNS ARE LISTED AS
AFOLLOWS 20 43/774120¢ SXo ol 2%+ 1T 34 % (el 3303 ', 13,8)2¢,13,3X)e/))
89 T WRITE (2) 1B+JH+SGN
@0 sTnp . .
91 END
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THIS FQNCYION DETERMINGS THE VELTOR DIRECTYON ANGLE NF Twu QRUERED
PAINTS (11.21) & (1IN JPY  AND CETURNS THE ANGLI 1IN RADIANS

FUNCTION DIR(I1+J14+12.J2) -
INTEGER 114J1412402

COMMON ZAPEALZ ROOLRIAVR2T0, D150

Y = g2-Ji ’

X = 12-11 #
IF (Y) 142,3 | -
I (X) 44046 ° .

DIR = RIRO4ATAN(Y/X) ‘ ™
RETURN ! l

OIR = NPT

RE TURN * o -

“DIR = RINO-ATAN(-Y/X) . .

RECTURN

TF "IX) 7488 -
OlR = R1R0

RETURN W
DIv = 0, '

Rt TURN

I+ (X) 9510411 -

DIR = RIDAO-ATANI-Y/ZX)
RETURN

DIR = RYY \
RETURN
DIR =
RE TURN
END

Nz

ATANCYZX)
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