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Abstract

Previous measurements show that the thermal conductivity of Y Ba;Cu30;_5 in the
basal plane is anisotropic with a large peak in the superconducting state. The magni-
tude of this anisotropy in the superconducting and normal states, and the dominant
mechanism for heat conductisn in the superconducting state are cur-ently the subject
of debate. We have measured the thermal conductivity of high quality Y Ba;Cu3O7_;s
for deoxygenated, twinned and detwinned samples along the a and b axes to shade
light on this issue. We were able to measure the electrical and thernial conductivity
using the same contacts and hence determine the Lorenz nuinber I = kp/T accu-
ntely.

Attributing the normal state anisotropy in the heat transport to electrons in the
Cu-O chains, the Lorenz number takes on its full Sommerfeld valuei.e. . = Ly. Under
this assumption, the phonon conduction is about the same in the superconducting
and deoxygenated samples.

Our results are discussed in connection with the two possible mechanisms for heat
conduction in the superconducting stat:. We find that although a strong case can
be made for the "electronic scenario” -/hereby the peak is due to rapidly increasing
electron meen free path below T, it is still not compelling at this stage.

In addition, it is found that the thermal conductivity along the a and b axes is
isotropic at low temperatures, with a non zero linear term in &, indicative of some
uncondensed electrons as T — (). This low temperature isotropy contradicts previous
explanations in terms of non-superconducting chains.



Résumé

Des travaux antérieurs ont montré que la conductivité thermique du Y Ba,Cu307.5
dans le plan de basc est anisotrope, avec un important pic dans ’état supraconducteur.
L¢amplitude de cette anisotropie dans I’état normal et 1’état supraconducteur, ainsi
que le méanisme dominant de conduction de chaleur dans 1'état supraconducteur,
font toujours 'objet de discussions. Nous avons mesuré la conductivité thermique
d’échantillons de cristaux désoxygénés, maclés et démaclés le long de I'axe a et b dans
le but d’éclaircir le sujet. Il nous a été possible de mesurer la conductivité électrique et
thermique en utilisant les mémes contacts et ainsi correctement déterminer le nomhre
de Lorenz L = xp/T.

En attribuant ’anisotropie de 1’état normal aux électrons des chains de Cu-O, le
nombre the Lorenz prend sa valeur maximale (de Sommerfeld), i.e. L = Lo. Selon
cette hypothése, la conduction phononique est environ la méme dans le cristaux a
haute T, et dans les cristaux désoxygénes.

Nos résultats sont discutés en rapprochement avec deux mécanismes possivles de
conduction thermique dans ’état supraconducteur. Nous trouvons que méme si le
"scénario électronique” peut paraitre carrément plus vraisemblable (le pic serait alors
di a I'a.gmentation rapide du libre parcours moyen des électrons sous T.), il n'est
toute fois pas parfaitement satisfaisant.

De plus, les mesures de conductivité thermique aux basses températures le long des
axes a et b, avec un terme linéaire non-nul dans x, indiquent la présence d’électrons
non-condensés lorsque T — 0. Ce comportement isotrope a basse température con-
tredit des travaux antérieurs dont les explications du terme linéaire sont données en
termes de chaines Cu-O non-supraconductrices.
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Chapter 1

Introduction

sectionBasic conduction properties

1.0.1 Scattering processes

At temperature, T=0, one of the results of Block’s theorem is that electrons in a per-
fect periodic potential, 1 spite of the interaction with the fized lattice of ions, move
Jorever wrthout any degradation of their mean velocity{l]. In real crystals, however,
this periodicity is broken by impurities, isotopic inhomogeneities, structural defects
etc. These imperfections of the lattice act as scattering centers (neglecting for a mo-
ment scattering of electrons by itself or by phonons) to degrade the infinite conduction
of these electrons. These scattering centers are called static wmpurities which in most
cases conserve energy ii the collision (not true for magnetic impurities however), and
at zero temperature are responsible for the residual electrical resistivity.

Heat in insulators, carried by phonons, could also be infinitely well conducted
were it not for static imperfections and sample boundaries. However even without
these imperfections, one should remember the anharmonic terms in the Hamiltonian
will, eventually, degrade the perfect conductivity of the phonons.

At finite T, inelastic collisions become important, and in general, electrons and
p'onons scatter each other.

On average, every particle, say an electron, travels a mean distance between col-



lisions, called the mean free path, and the time beiween these collisions is called the
relazation time, 7. In the general case, when there are more than one .cattering
mechanism but one does not alter the other, the total scattering rate, 1/7,is the sum

of the several scattering rates from different mechanisms, i.e.

-1 ) | -1 -1
Telectrons — Telectrona—-tmpcrfecttona + Telectrona—phonon: + Telectrons—electrona

Similarly for 1/Tphonons = Tppesmp T Tohet + Tphph+ Lhis is called Mattressen’s Rule.
The validity of this rule relies on a relaxation time, 7, which is independent of the
momentum k. In formal theories this is not correct but within the relaxation time

approximation, this is a valuable tool.

1.0.2 The Drude model

Drude assumed the electrons in a metal are free from interactions except for point
collisions with other electrons or with the ions. The electrical current density, hence,
is given by the number of carriers times their charge times their mean velocity between
collisions. In the presence of an electric field, E , each electron has a mean velocity in
the direction anti parallel to E. Classically the equation of motion between collisions
is ¥y = Up— eEt/m. Since in absencc of a field the average current is zero, the velocity
gained between collisions due to the field is —eEt/m. Taking t to be short and, on
average t = 7, the current density can be written as

nelr

E

i= ok (1.1)
m

To obtain the electronic thermal conductivity, Drude considered a model in which
the electrons move along the x-axis so at a point z half the electrons come from
the high temperature side and half from the low temperaturz side. If ¢(T') is the
equilibrium thermal energy of the electron, then on average each electron carries the
thermal energy of the point were it had its last collision. At point z ihe electrons
that came from the high temperature side had their last collision at z — vr. Their

contribution to the thermal current density is Jve(T[z ~ vr]). The electrons coming

2




from the other side have the same form of current density but with negative velocity.

Adding the two terms and expanding around z gives the heat current density

2 = grva{e(Tle — var]) - e(Tle + var])} =

nvz'rgi _4r
2 dT \ dzx
On average < v2 >= 1v? s0

7= %—vzrcv(—VT) = k(—VT) (1.2)

Drude was wrong in taking the classical velocity and specific heat of the electrons. Us-
ing the Sommerfeld theory of conduction, v? = v} = 2¢p/m and cy = 1;— ('—‘f;"[) nkp,

one concludes
_ winklT
3 m

Heat can also prepagate through the lattice of ions, i.e. by phonons. The thermal

Ke T (1.3)

conductivity of the phonons can be found by the same formalism as for the electrons,
replacing the velocity of the electrons by the sound velocity, ¢, assuming the Debye

approximation for phonon dispersion relation, w = ck. Hence

Kph = %cvcz‘r (1.4)

The Drude model, although over simplified, gives the right conduction equations to
within some corrections. However one cannot proceed much further with this model.
A better picture on conduction is given by the relaxation time approximation, for
example, in which the relaxation time is taken to be energy dependent and employing
the Fermi-Dirac distribution to recover the Drude model to an accuracy of (L‘fpl)2
(~ 10~* at 300K for most metals). One should note that in this model the electron

mass comes from the mass tensor M;ul so in order to recover the Drude formulas it

is necessary to deal with samples of cubic symmetry.




1.0.3 The Lorenz number

The hardest variable in the conduction equations to determine theoretically is the
scattering rate 71, Dividing the thermal by the electrical conductivity of the elec-

trons, the relaxation time cancels out and one cbtains

Ke 12 kB ? —_ -8 2
=3 (?) = Ly =2.44 X 107" watt — ohm/K (1.5)

This formula is called the Wiedemann-Franz law and the value of Lg is the Sommerfeld
value and the ratio %= is the Lorenz number. The Wiedemann-Franz law assumes
electrons scatter elastically so the relaxation time, 7, is the same for the electrical
and thermal conductivity. However there are scattering processes that can degrade
thermal conduction without degrading electrical conduction. Qualitatively, this can
be explained by the fact that electrons maintain their charge in a collision so the
only way to degrade electrical current is by changing the electron velocity. However
the "charge” in the thermal current is replaced by (¢ — p)/T.! Therefore if energy is
conserved in each collision, the electrical and thermal current will degrade the same.
On the other hand, inelastic scattering will cause the Lorenz number to be smaller
than L, since energy is also used in this case. The Wiedemann-Franz law will hold to
a good approximation in two cases: 1) at low temperatures, where inelastic scattering
becomes small and the main source of scattering comes from impurities and defects in
the lattice, which are elastic scatterers, or 2) at high temperatures where scattering
involves large momentum transfez, q, across the Fermi surface (forward scattering)

which degrades electrical and thermal conductivity by the same amount {2].

1This can be seen as follow: under temperature gradient, assume T is constant for a short interval
of length, yield the thermodynamic identity dQ = T'dS — ydN. In term of c..rrent densities, that is
J9 = j* — p3™ where j¢, j® and j¢ (the electrical current density) take the form

e )
&

" dk .
= fasy ! (U

¥) -€
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Figure 1.1: The Lorens number of high purity Au, Ag and Cu (after T. Matsumara et al.[3]).

In pure metals, the lattice thermal conductivity is negligibly small compared with
the electronic thermal conductivity, so that one can measure directly x., and hence the
Lorenz number. Figure 1.1 shows the Lorenz number of Au, Ag and Cu. The strong
deviation of the Lorenz number from its calculated L, at intermediate temperatures
(below about 200K) reveals the importance of the inelastic processes, electron-phonon
scattering in this case. It is observed that at high and low temperatures, L ~ Lo. We
will use this property later in this work to test the thermal conductivity obtained in
our measurements. One should note the variation of the Lorenz number as a function
of purity illustrated in figure 1.2: the temperature at which the mean free path, |,
becomes comparable to the mean distance between adjacent impurities increases as
this mean distance decreases, i.e. as the density of impurities increases.

While the electrical conductivity in the Wiedemann-Franz law is measured di-
rectly, the measured thermal conductivity is the sum «, + ;. Some authors make
use of this fact to estimate the significance of the phonons in the thermal conductivity
of a material by taking the electronic Lorenz value not to exceed Lo, and attributing

the rest to phonons.




Temperature

f‘;%u[ta)l.m The Lorens number as fuaction of temperature and putity (after H.M. Resenberg, p.

Let us now discuss the temperature dependence of the thermal conductivity. First,
the phonons. For T < Op the heat capacity ey o< T* (in the Debye model) and for
temperatures well above Op it is constant (the law of Dulong-Petit). The temperature
behavior of the relaxation time is more complicated. At high temperatures (T > Op)
the dominant phonon process is the phonon-phonon scattering and for a given phonon
the scattering rate is linearly proportional to the number of phonons. The number of

-1

phonons is given by n(k) = ;;u—)/‘.’—,_; =~ 'n'i'({—) 50 T, ~ T, and

1
K~ F (1.6)

where z is close to unity (perhaps higher due to anharmonic terms).
As the temperature decreases, the number of phonons decreases however some

phonons may still have energy of the order of Awp hence the occupation number of
phonons n(k) = gl ~ e~®2/T 50 that

7 ~ DT (1.7)

As the temperature drops the mean free path increases dramatically until it becomes
comparable with the mean {ree path due to phonon-boundary scattering. Below that
temperature the mean free path remains constant but than the cubic term in the heat
capacity decreases the thermal conductivity, and x ~ T?, In summary, one should

observe an enhancement in the thermal conductivity of insulators as the temperature

6




decreases from, say © p, with a peak which is related to the impurity concentration (or
to sample dimensions in case of very pure samples). Then the thermal conductivity
drops to zero as T3. This general behavior of the thermal conductivity is illustrated
in figure 1.3, for isotopically pure LiF([5].

In a non-insulating crystal, phonons can be scattered by electrons. Since only
electrons within kgT of the Fermi energy, er, can participate in the process, the
number of these electrons is L’f;"'-'-, and hence 7, ; ~ T. In the temperature range
where cy ~ T3, kph—et ~ T?. According to Mattiessen’s rule and the fact that
Tph-boundaries 16 constant at these low temperatures, the phonon thermal conductivity
is

Kph ~ CYyT = (a/Tz +ﬂ/T3) - (1.8)

The temperature behavior of the thermal conductivity of the electrons can also
be derived. In the temperature range where the heat capacity of the phonons, ¢y =
% ~ T3, the total crystal energy, E ~ T*. Since the average energy of the phonon
is of the order of kpT, the number of phonons is proportional to T and so is "'leh-
From Mattiessen’s rule and equation 1.3, assuming 7T;—impurity t0 be constant,

re = (% + BT’) N (1.9)

For our discussion is is important to note that equation 1.9 can be written as 3¢ =
(A + BT®)™? so when T — 0, %¢ intercepts to a non-zero value.

This secticu describes the expected behavior of the conduction of heat either
by electrons or phonons. In many cases neither one of them is negligible. Since
the measured thermal conductivity of the crystal is the sum of two contributions,
K = K¢ + Kph, it is hard to separate between the two. One way to do so is to fit the
measured thermal conductivity, Kmeasured(T') to equations 1.8 and 1.9.

We shall make use of the Wiedemann-Franz law to estimate an upper limit of the
electronic contribution. We shall find that in good crystals of Y Ba;CusO7_5 (with
§ ~ 0) this upper limit is about 30% - 45% of the total thermal conductivity, hence
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one cannot neglect it.

1.1 Thermal conductivity of conventional super-
conductors

‘arly experiments by Onnes and Holst[6] showed that at the superconducting transi-
tion point T, when the electrical resistance suddenly goes to zero, no discontinuous
change in the thermal conductivity occurs. Later it was shown by De Haas and
Bremmer|7] and Mendelssohn and Pontius(8] that the thermal conductivity of a su-
perconductor has a lower value than when a magnetic field is applied (to drive it into
"normal” state).

A simple model to explain it is the two fluid model which assumes that below the
transition point, T., a certain fraction of the electrons, 1 — z, remains normal. ¢ was

found experimentally[9] to be

T

z=1- (F)4 (L.10)

The electrical resistivity, is always short-circuited by the superconducting electrons.

Experiments by Daunt and Mendelssohn(16] led to the conclusion that the specific
heat of the superconducting electrons is zero hence they can’t transport heat and the
thermal conductance arises from the normal electrons. As the temperature drops,
their number decreases and the thermal conductance decreases faster than in the
normal state.

The B.C.S. theory makes use of a formal transport theory and the Boltzmann
equation? to create an integro-differential equation. The equation for thermal con-
ductivity of electrons limited by electron-impurity scattering is found, by means of

variational principle, to be the same as for metals except that the lowest excited state

3The total rate of change fr = fkld i + fkl] w + f;,, " must vanish in the steady state, fis
9 e [
the Fermi-Dirac distribution, fkld.” = - (%1;}) (%—:) == --13'1,%1} and f'klju‘d = (%{‘L) (%1:- .

The current density is Xiesvifi as in the previous footnote.
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Figure 1.4: The ratio £ for the case when impurity scattering is dominant (after J. Bardeen et
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Figure 1.5: The zatio £% for the case when phonon scattering is dominant (in weak coupling limit)
(after L. Tewordt [11]).

in the superconductor is shifted up by the energy gap, A. It is more convenient to
take the ratio of the thermal conductivities of the superconductive and normal states®

© JF . E23L
T rETY .
where f is the Fermi-Dirac distribution. This ratio is shown in figure 1.4. An attempt
to use the variational method to solve the Boltzmann equation for electron-phonon
scattering gave poor results but a solution by numerical methods is presented in
figure 1.5.

Much below T, (say T < 0.2T,) the electronic thermal conductivity is small in both

3For simplicity, spherical Permi surface is assumed.
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cases since at these temperatures the number of excited electrons, i.e. the number
of quasi-particles, is very small. At these temperatures the heat is carried mainly by
phonons and, as shown in the previous section, x ~ T3.

Near T, both contributions, k. and k5, may be comparable. However the most
definitive information is obtained when one of the contributions is dominant. If
Ke 3> Kphn the behavior of . falls into two categories. When the transition tempera-
ture is on the high side of the normal state thermal conductivity maximum (obtained
from equation 1.9), the thermal conductivity of the superconducting-state meets that
of the normal state with quite a large angle as in figure 1.6. This is the case for lead
and mercury, with low ©p, where the normal state thermal conductivity around 7. is
dominated by strong electron-phonon scattering. The opening of a superconducting
gap decreases the thermal conductivity rapidly (figure 1.5). If however the transi-
tion is on the lower side of the thermal conductivity maximum, the superconducting
thermal conductivity is shifted gradually from the normal state as in figure 1.7. This
is, for example, the case of indium or tin. Electron-i'mpurity is the dominant scat-
tering mechanism in the normal state around 7, and fhe thermal conductivity in the
superconducting-state drops according to figure 1.4.

The most interesting case, from our point of view, is the case where &, is com-
parable to k.. Figure 1.8 shows the thermal conductivity of NbC [14] in which a
huge peak appears as the temperature drops below T.. The peak is attributed to
an increase in K, due to a reduction in the electron-phonon scattering. A peak also

appears below T, in Y Ba;Cu307_5, which will be discussed in section 1.3

1.2 The YBayCu307_s compound

It is not necessary to repeat the huge advantages and applications of the discovery
of high temperature superconductors. Among the several compounds, a favorite of
researchers is Y Ba;Cu3O~_; although this compound doesn’t have the highest T..
One of the reasons for this is the high sample quality that can be achieved. Most

11
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Figure 1.6: x of lead as an example for the case in which T, is higher than the temperature of the
thermal conductivity peak (after H.M. Rosenberg [12]).

A

|
-2 .
3 / ’
; / |
b4 ,
1 ! \
H S Superconducting
" S . A
"o ; rd :
4 / X
u"‘ ) [
‘."
L)
""
)
&’
0 /] H 3 4 E
T°K

Figure 1.7: x of indium as an example for the case in which T is lower than the temperature of the
thermal conductivity peak (after J.K. Hulm [13]).
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Figure 1.8: Therraal conductivity of NbC: the x curve is a non-superconducting sample; the o are
superconducting samples where the dashed line is an extrapolation from the normal state of this
sample (after L.G. Radosevich et al.[14]).

high T.'s have different ccmpositions and the crystal growth presents difficulties to
achieve uniform one-phase samples. The Y Ba;Cu307_5 compound makes a very good
single crystal with a narrow normal-superconducting transition. The aspect of crystal
growth will be discussed in the next chapter. Here I introduce the structure of the
sample. Figure 1.9 shows the unit cell of the Y Ba;Cu307_5 compound. As the other
Ligh T.'s, all based on Cu and O, Y Ba;Cu307-; is characterized by CuQO; planes in
the a-b plane of tetragonal structure. The Y Ba;CusO7_; has a tetragonal phase (as
it comes out of tk= furnace) with 6 oxygen atoms. After annealing, an additional O is
introduced oa the chain along the b axis, between two Cu atoms (O, (t) in figure 1.9)
to form an orthorhombic phase. It is also important to note that the length of the b
axis in the later phase is larger than the a axis only by 2% to 3%.
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Figure 1.9: The Y Ba;CuaO7_; unit cell (after G. Burns [15]).

1.4 Thermal conductivity of Y BayCu307_s5: A re-
view of the literature

At full oxygen doping (6§ = 0), YBa;Cu307_; is a metal. Above T, = 93K, it has a
fairly high resistivity. As a result, the two components of the thermal conductivity
K = K + Kpn, have comparable importance in the normal state and it is hard to
.separate between them. This issue is a major part of this section.

Several authors [17] have used thermal conductivity to study both the aormal and
superconducting-state of Y Ba;Cu30y._s. Those authors have found a large enhance-
ment in the thermal conductivity as the temperature drops below T, with a peak
around 40 K, 2-2.5 times higher than its value at T,. Particularly interesting to us
are two publications that investigated detwinned single crystals. The later paper, by
Yu et al.[18] (figure 1.10), has opened a big debate about the origin of this peak. It
attributes it to the increase of x,, contradicting the former publication, by Cohn et
al.[{19] (figure 1.11), who claims the peak is due to phonons. '

The motivation for this work was two-fold: first, to establish expezimentally the

correct anisotropy of « in the a-b plane, of high quality fully detwinned Y Ba;CusO7—,
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Figure 1,10: The thermal conductivity of Y Ba;CuysOr_4 detwinned crystal as was measured by Yu

et al.[18].
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given the significantly different results of the two previous investigations (see fig-
ures 1.10 and 1.11). Second, to decide which of the two explanations of the peak is
correct. In this section I will review those two papers (the only papers published on
detwinned single crystals) commenting on the quality of samples, the experimental
set-up and the analysis of the results.

Sample quality: Yu et al. report a relatively low value of 7,=90.5K and a broad

transition width of 6Tc ~ 1K. They estimate resistivities of p, = 140uf2cm and
po = 5Tuldem at 200K using the Wiedemann-Franz law (assuming L = L) and find
these to be in good agreement with data on samples of ”similar quality”{20, 21].
However, these samples, though stated to be of similar quality, have a much higher 7,
with zero-resistance of at least 92K. For comparison, our samples have (to within 15%
accuracy) p, = 200uQcm and p, = 100uQcm at 200K. The (relatively) low T., the
broad transition and low resistivities suggest a low annealing temperature (~ 450°C)

with a full oxygen content of § ~ 0. However, the authors state that § is near 0.1

which would then suggest their samples contain a fair amount of impurities (and there
is an error on the real resistivities of their samples).

Cohn et al. grew their samples in Au crucibles. It is already established that Au
crucibles contribute large amounts of impurities, mainly in the chains[22]. This will
significantly reduvce the a-b anisotropy in the electronic conduction.

Experimental setup: Both authors used chromel-constantan differential thermo-

couples to measure the temperature gradient along the sample. Yu et al claim a
10% uncertainty due to the separation of differential thermocouple junctions. To this
value one has to add the uncertainty due to the thick]ness of the samples. Since the
samples 7.e very thin (=~ 100um), this introduces as a further uncertainty of 10%
-15%. One therefore expects an overall uncertainty in the absolute value of x of +
20-25%. When measuring the Lorenz number this error comes in twice (for x and for
o) hence one should aim to measure the electrical and thermal conductivity on the
same sample so as to cancel out some of the geometrical uncertainties. This wasn’t

done by these authors but is done here.
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Interpretation of results: Cohn et al. believe the peak in the superconducting state

to be phonon dominated by measuring the electrical resistivities and employing the
Wiedemann-Franz law to get an upper limit for the electronic thermal conductivity
i.e. ke < LoT/p where Lg is the Lorenz number. By their calculation x./x < 0.3—0.4.
From this value they conclude that the normal state thermal conductivity is phonon
dominated.

The important scattering mechanisin in this scenario is the electron-phonon pro-
cess. As the temperature drops below T., the number of normal electrons decreases
and the phonon mean free path increases, hence so is the phonon thermal conductiv-
ity, (equation 1.4), s, = icvcir.

The other paper, by Yu et al., assumes the enhancement in the thermal conduc-
tivity is due to electrons by relying on conclusions from other publications[23, 25],
and interpreting their own results in this way. They assume an isotropic £, and weak
electron-phonon coupling. They model x,; as (Wo+aT)™! for all temperatures, where
the linear term in temperature comes from the phonon-phonon scattering rate at high
temperatures, ! o< T. The term W, stands for phonon-electron,phonon-boundary
and phonon-defect which are weakly temperature dependent and approximated as
temperature independent.

To account for the superconducting state they assumed the normal state thermal
conductivity x® = & + Ky where xp5 remains unchanged in the superconducting
state. However this formula cannot be applied at low temperatures since the phonon
thermal conductivity has to drop to zero as T — 0 and this is not the case in their
extrapolation. The suggestion of Cohn et al.[26] is that at low temperatures the
umklapp scattering goes as 7-! o« ezp(—Op/dT) where Op = 400K and b ~ 1.

In the normal-state Yu et al. take the Lorenz number in the Wiedemann-Franz
law as the full Sommerfeld value (L = Lo) so the electronic thermal conductivity of
each axis in the normal state is 7 = LooT, where o is the electrical conductivity.
They argue that since o, o< 1/T, x? along each axis is temperature independent.

They fit their results to x7, = 3.94 + 0.25 W/mK and &7, ~ 8.39 W/mK. This
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is inconsistent with our measurements of non-linearity of the b axis resistivity[27].
We found p,(200)/p5(100) = 1.74 (rather than 2) which implies, by the Wiedemann-
Franz law, that .3(200) = 1.15x.3(100) so &, cannot really be assumed constant.
If one sets k. ;(200) = 8.39 W/mK, one then expects x.4(100) = 7.3 W/mK. Sucha
temperature dependent is not observed.

As for the amplitude of the anisotropy, it can be attributed entirely to electrons,
if L = Lo (so that the deduced o — 0, = %8(ky — Ka) = 9.32 x 10~3(uQem)™* and
24 = 2.1 are reasonable).

Yu et al., with their interpretation, opened the debate about the origin of the
peak in the superconducting-state, suggesting four weak points against the phononic

scenatio.

1. The enhancement in the thermal conductivities, x, and 3, should also show up
as an enhancement in the thermal conductivity along the ¢ axis, x.. But several

reports consistently claimed no anomaly for . helow T,[28].

2. The electronic thermal conductivity, assumed weak, was taken not to be af-
fected or to decrease below T, but recent results show strong suppression of the

scattering rate below T, which should significantly increase «.[23].

3. It is hard to explain the anomalous properties of the normal state, e.g. the linear
pa(T'), by mainly electron-phonon scattering. However, the relative weight of the
other scattering mechanisms (i.e. electron-electron, electron-spin fluctuations)

is still not clear so this point is a little weak.

4. The phonon thermal conductivity has to be at least as large as the peak value in
the absence of electron-phonon scattering but experiments on oxygen-deficient
crystals (with no charge carriers) yield significantly smaller values. However,
this argument assumes that the phonon thermal conductivity is not suppressed

by introducing oxygen vacancies.

The explanation of Yu et al. for the enhancement in the thermal conductivity comes

from the quasi-particle scattering rate. The rapid suppression in the scattering rate
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Figure 1.12: The quantity ne?/mao,(T) provides an estimate of the quasiparticle scattering rate in
Y Ba3CusOr—; for temperatures close to T, [25].
extracted from microwave measurements (figure 1.12) should be reflected as an en-
hancement in the electronic thermal conductivity (entirely due to normal electrons
since Cooper pairs do not carry heat). Of course, the magnitude of such an effect will
depend on the size of x, in the normal state and the size of L(T).

Some authors find the qualitative similarity of the thermal conductivity of
Y Ba3;Cu3O+_; and NbC (with a huge enhancement in thermal conductivity below T,
all due to phonons: figure 1.8) to be in favor of the phononic scenario (24]. The major
difference, however, is in the dominant scattering of electrons. In NbC, electronic
conduction is limited mainly by impurity scattering (this is a dirty #lloy). As the
temperature drops below T, the reduced scattering of phonons by electrons increases
phonon conduction. In Y Ba;CuyOr_; (at least in decent crystals) at temperatures
around T, electronic conduction is limited mainly by inelastic scattering. A decrease
in the electron scattering rate below T, can arise as a result of a less efficient inelastic
scattering. This could cause the electron conduction to rise if the drop in ! is faster
than the drop in the number of quasiparticle. This of course, depends on how fast

and how low below T, the scattering rate drops (in any given sample). The rise in
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Ei:)\;re 1.13: The real part of electrical conductivity extracted from microwave surface resistance
the surface resistance as the temperature drops from 77K to 35K in the microwave
measurement of Bonn et al. (figure 1.13) is exactly this case, hence the similarity of
the two curves (Y Ba;Cu301..5, NbC) cannot account for one scenario or the other.

As for the experimental results themselves, one can see two major differences
between the two papers: ihe first difference is the sizable normal-state anisotropy
seen by Yu et al., compared with the near isotropy seen by Cohn et al.. The second
difference is at the superconducting peak where Yu et al. find x;, > x, whereas Cohn
et al. find x, > x;. This striking disagrzement prompted us to measure with greater
accuracy the ratio £t of high quality fully detwinned crystals.

Several authors[21, 29] argue that the conductivity along the b axis proceed via
two channels i.e. along the Cu-0 chains and in the CuO; planes. In a simple model,
the conductivity in the a direction is the intrinsic conductivity of the plane, the b

axis conductivity is the sum of the conductivities of the a axis and the chains. In this
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picture the Au doping of the chains in Cohn et al. may cancel out the conduction of
this channel and leave an isotropy in the electrical and thermal conductivity.

Yu et al. interpret their anisotropy this way and find the thermal conductivity of
the chains to be constant in the normal state. In the superconducting state x, — &,

has a shallow minimum around 40K and an enhancement below it, which features
they do not attempt to explain. This will be compared and discussed with the results

of this work.
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Chapter 2

The Experiment

2.1 Sample Preparation

High quality Y Ba,Cu307_s single crystals have been grown by a self decanting flux
method. The crystals have been annealed in oxygen, detwinned in a pressure cell
and characterized by means of low field magnetic susceptibility, a-b plane resistivity,

polarized microscope and scanning electron microscope.

2.1.1 Crystal Growth

To grow the crystals we started with two possible mixtures. The first, of Y:Ba:Cu =
1:4:10, was introduced by Rice et al.[30]. The other mixture of Y:Ba:Cu = 1:18:45,
introduced by Wolf et al.[31], uses the same ratio between the Ba and Cu but a lower
amount of Y since they used Yttria Stabilized Zirconia (YSZ) crucibles, part of which
dissolves into the melt. A major aspect of the crystal growth is the crucible material.
The commonly used crucibles are Al;03, MgO, ThO, and YSZ. According to Liang
et al.[32], the Al'® ions contribute large amounts of impurities by substituting for the
Cu in the chain sites and the MgO crucibles give samples with low T. since Mg*? has
the same charge and a similar ionic radius as Zn*?, which is known to substitute for
the Cu in the planes. The ThO; crucibles also contribute large amounts of impurities

since Th** and Y*2 have similar radii. Liang et al. chose an YSZ crucible because
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the Zr** has a much higher charge than the Cu atoms. We also found it to give
the best results. In these crucibles we could not produce crystals from the i:4:10
mixture but we got very good results with 1:18:45. To make the mixture we used
Y203 of 99.9999% purity, BaC O3 of 99.999% and CuO of 99.9999% purity. We found
the purity of the materials to be a crucial aspect of the crystal growth: by using the
same heating program and crucible material with BaCQO; and CuO of 99.9% purity
we could not even melt the mixture properly.

To extract the crystals from the flux we used the self decantation technique which
was introduced by Gagnon et al.[33]. In this method a temperature gradient is applied
along the crucible while crystals grow. Thermodynamically, it is favorable for the flux
to move to the colder side of the crucible, leaving the crystals on the other side. The
advantage of this method is that one need not turn over the crucible while it is at high
temperature and several crystals are flux free. We applied a temperature gradient of
about 4 — 5“C/cem.

The heating program we used is a combination of those used by Liang et al. [32]

and Vanderah et al.[34]:

1. Heat to 870 °C in four hours. Though the furnace can reach 870 °C in a
much shorter time, we chose a slow heating rate to avoid a large temperature

overshoot.

2. Eight hours at 870 °C. In this stage BaC O3 decomposes into BaO for the next

stage.

3. Heat in two hours to a temperature between v90 °C and 1020 °C. This is the
temperature where melting occurs. The idea is to reach the lowest temperature
for chemical reaction and melting of the starting materials so as to reduce the

amount of impurities due to the crucibie.

4, Dwelling for 4 to 8 hours at this temperature. This stage is to ensure homo-

geneity of the melt.
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5. Cool in one hour to 990 °C.

6. Dwell at 990°C for 5 to 20 hours. At this temperature the crystals start to

grow.

7. Cooling for one hour to 950°-970 °C. In this temperature range crystals and

flux coexist.

8. Cooling to 930 °C at a rate of 0.5 to 2 °C/hour. This is the self decantation
stage in which flux moves to the cold side and the crystals are left in the hot

side of the crucible.

9. Cooling to ambient temperature. The natural cooling rate of the furnace is low
hence this stage takes about 12 hours. The low cooling rate results in surface

annealing and twinning of the crystals.

When the samples are taken out of the crucible, they have an inhomogeneous
oxygen content. At this stage we annecled the samples in a slow flow of pure oxygen
so as to fill the chains. We heat the sample to 850 °C, for one day and then anneal
for six days at 500 °C. Both LaGraff et al.[35] and Schleger et al.[36] found that at
500 °C and a pressure of 1 atmosphere, the oxygen deficiency in Y Ba;Cu307.5 is
6=0.08 to 0.1.

In order to eliminate the twinning we used a stress cell. We applied 0.5 kg along
one of the edges of the sample, usually the wider one, at a temperature of 550°C
(a temperature found to be a compromise between increased oxygen mobility as the
temperature rises[35], and a proper function of our stress cell) for about 15 minutes

(in air) and then re-annealed for one day at 500°C in oxygen.

2.1.2 Characterization
Polarized Optical Microscope

After annealing the samples one can observe twins in the a-b plane. Those twins

are just alternating a and b domains due to structural transition (from tetragonal to
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Figure 2.1: Schematic representation of twinned Y BayCusO7_5 (after Gagnon et al.[37]).

orthorhombic, after growth, when the crystals are cooled and the surface is annealed)
as in figure 2.1. In order to observe the twins and the twin boundaries we employed a
polarizing microscope, in two configurations. In both cases the incident light is parallel
to the c axis, so that the electric field is in the basal plane. In the first orientation the
polarizer and the analyzer are perpendicular to each other and parallel to the twin
boundaries, i.e. at 45° to the a or b axes. The incident light exits the polarizer at 45°
to the axes. The reflected beam has electric field components r, and r;, and when
it exits the analyzer the intensity of the light is just I o |rs — m)?. In the adjacent
twin, the indices a and b are interchanged but this does not affect the intensity, so
one cannot observe the different orientations of the a and b axes. Since the domain
boundaries themselves have higher symmetry i.c. this configuration therefore reveals
the boundaries are more isotropic, the intensity I there is much smaller. In the other
configuration of the microscope, the polarizer is moved by 45° so it is parallel to one
of the axes. The intensity in this case is proportional only to r, or 7, and one can
observe different intensities for adjacent twins.

Figure 2.2 presents a picture of a small area of twinned sample when the polarizer
and analyzer are in 45° to each other. Figure 2.3 presents the same zone of figure 2.3
while the polarizer and analyzer are perpendicular to each other. With this technique

one can estimate what fraction of the sample is twinned, how many twin domains
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Figure 2.2: A picture of a small ares of & iwinned sample as it is seen in the polarised microscope
when the polariser and analyser are in 45° to each other.
exist and their size. Typically, before annealing the number of twins in one orientation
is about the same as in the other. After detwinning, typicully about 1% of the sample
is still twinned, generally in one of the corners, due to unequal stress along the side
of the sample.

To look in the a-c and b-c directions we employed a scanning electron microscope.
In the SEM one cannot observe the different orientations in the basal plane since the

electron beam would be parallel to the ¢ direction.

Magnetic Susceptibility

For a more quantitative characterization of the samples we employed two techniques:
AC magnetic susceptibility, which is more of a volume test’, and electrical resistivity

which depends on favorable paths in the sample. The former is preferable, mainly,

10ne should note that a good surface-annealed sample (50 the interior of the sample is ceramic)

will result as if the whole sample is superconducting.
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Figure 2.3: The same sone (of s twinned sample) as the previous figure with the polariser and the
analyser parallel to each other.
because it does not require any special preparation e.g. contacts.

The susceptibility apparatus is shown in figure 2.4. The probe consists of two
secondary coils, 40 gauge Cu wire, 5 mm long, 6-9 mm in diameter and 1000 turns.
The two coils are wound on a Teflon former in opposite directions to each other
80 the induced voltage in one empty coil will cancel the other as much as possible.
The secondary coils are placed in the center of a primary coil, 2230 turns, 40 gauge
Cu wire, 12.5 mm in diameter, and 60 mm long so as to reduce edge effects on the
secondaries. We used an LR-400 resistance and mutual inductance bridge, with a
maximum excitation of 10mA at 17Hz so Brae. = 0.5gauss. The sample was glued
with insulating GE 7031 varnish to a 3mm diameter Cu rod and was placed in the
center of one of the secondaries. The other side of the Cu rod is mechanically attached
to the Cu tip of the probe. A platinum thermometer is mechanically attached to the
other side of the Cu tip so that the heat transport between the sample and the

thermometer is excellent. This apparatus dwells in low pressure of He gas for heat
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Figure 2.4: Susceptibility test

exchange between the "cold finger” and the surrounding walls so as to improve the

thermal link among the several parts of the cold finger. The system is controlled by

one resistance bridge for reading the thermometer and another bridge, the LR-400, in
a mutual inductance mode to measure the susceptibility. While the sample is in the

normal state, its susceptibility is negligible and one measures the difference between
the secondaries (since they are 1.2t identical). A bridge offset can be applied to cancel
this component. As the temperature drops below the transition point, magnetic flux
is screened out of the sample and the effective volume of that secondary drops which
results in a change in the total e.m.f. picked-up. In figure 2.5 one can see the
transition temperature and its width. The high T, of 93.4K and especiully the very
narrow transition of 0.1K (measured by 90% to 10%, - top to bottom) is evidence for

the high quality and homogeneity of the sample.
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Figure 2.6: The transition teraperature by resistivity (o) and susceptibility (O) test.

Electrical resistivity

As we shall see, one of the advantages of our set-up is the ability to measure the
electrical resistivity using the same contacts as emploved for the thermal conductivity.
The motivation for such a design was to allow a measurement of the Lorenz number,
free from geometric factor uncertainties. The electrical resistivity is also a test of the
quality of the sample and its contacts. The description of the system comes later in
this chapter, however, one should note that in this set-up one can measure either p, or
Ps, but not both (a curve of p(T') will be presented in a later chapter). For a relation
between the two quantities on the same sample, a Montgomery test was conducted

in parallel with this work (R. Gagnon et al.[27]) and its results will be used here.
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2.2 The thermal conductivity

To measure the thermal conductivity, x(T'), we employed the steady state technique
in which for every recorded point the temperature of the sample is stabilized around,

say Tp, a constant heat is applied until equilibrium is reached the temperature gra-

heat
temperature gradient

dient across the sample is measured and x = x (geometric factor)
is evaluated. The targeted temperature range is 40K (the peak in the thermal con-
ductivity in the superconducting state), and 150K for the normal state investigation.
Of course, we would like tr expand this range but, as will be discussed later, the
thermometer limitations (at the low temperature end) and radiation losses (at the

high temperature end) constrain us to this range, at least at the moment. For the

purpose of this work, however, this range is satisfactory.

2.2.1 Dewar and probe

For the dewar, we used a similar set-up as for resistivity /suscepiibility i.e. an external
glass dewar containing the cryogenic liquids and two thin wall stainless steel tubes.
one inside the other, inserted into the glass dewar as described in figure 2.6. The
inner tube containing the probe needs to hold high vacuum. The area between the
stainless tubes, called the conduction chamber, contains He gas at a pressure of 1 to
107! mbar, depending on the desired cooling rate.

The requirements for the probe are to hold high vacuum and to have a good
thermal link to the surrounding walls. For the thermal link we used 4 BeCu strips,
5mm wide, 2 shape, attached to the Cu part of the probe (called the cold finger) on
one side and pressed into the walls of the inner tube in the center.

Althcugh the thermnometers are far from the strips, the excellent geometric factor
of the cold finger and the fact that it is solid Cu, especially between the heater and
the thermometer (10mm in diameter, 30mm long) assures uniform temperature along
it. This was tested by cooling down without using the heater and than warming up

using the heater, against a thermometer placed in the sample area. The difference
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Figure 2.6: The dewar, on the right, contains liquid *He, He gas in the conduction chamber and
vacuum in the sample chamber. The shaded arcas on the probe are all Cu. The space for the thermal
conductivity apparatus is about 12mm high, 20mm wid2 and 50mm long.

was smaller than 0.5K at T=130K.

To reduce heat losses through radiation, a thin Cu shield was mechanically at-
tached to the probe so the thermal conductivity apparatus aree is surrounded by a
radiation shield at the same temperature as the sample holder.

In order to estimate the amount of liquid * He boil-off due to the stainless rod
and the Cu wires, we used table XIII of White [38] for the mean value of thermal
conductivity of Cu and stainless steel between 300K and 4K. Using the latent heat
of liquid ‘He, 3 Joule/cm®, we estimated about 1.6 liter/day. This is much smaller

than other loss factors, mainly through the non-perfect vacuum of the glass dewar.

2.2.2 Thermometers and heater

As will be explained later in this chapter, we required two identical resistance ther-
mometers R; and R,, so that % = %.1 in the temperature range of the experiment,
30K < T < 150K. Another constraint is the size of the thermometers and heater.
Since the longest dimension of the sample is approximately (2mm), this should be the
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Figure 2.7: The quantity ﬁﬁ% for Cu as a function of temperature as was measured by us.

size of the other parts if one requires minimal space between all parts of the thermal
conductivity apparatus (to reduce heat exchange with the shield due to radiation or
residual gas conduction). We started with a 2kl carbon resistor, cut slices of 1mm
thick and 3x3 mm on the surface. Silver wires were epoxied with silver epoxy or silver
paste to the surface of the carbon, resulting in contact resistance of O(20002/contact).
The same process was used with silver or gold deposited on carbon surface, which re-
duced the contact resistance to O(30§/contact). A bigger problem was the difference
in the two thermometer zesistances: 50k’ and 58k(l. It was not easy to minimize
that difference.

Finally we chose to make Cu thermometers. The temperature behavior of Cu
is almost linear down to 77K. In fact, the important quantity, %, as it appears
in figure 2.7, is greater than 10% for T>30K. On a 7Tmm long, 0.5mm diameter Cu
base, we wound 65cm of 12um insulated Cu wire, as described in figure 2.8. The
length of the coil itself in each thermometer is Smm and the resistances of the two

thermometers used, are 990 and 98Q. On one side of the Cu base we soldezgd a 40
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Figure 2.8: The Cu thermometer

gauge Cu wire as a lead for electrical resistivity test. On the other side we melted
indium because of its low melting point so as not to burn the fragile insulation of
the 12um wire in the final assembly. With this configuration the components of the
thermal conductivity apparatus make a tight ”package”, and also enable us to measure
the electrical resistance of the sample together with the thermal conductivity.

The same principle guided the design of the heater, replacing the Cu wire by

25um, 100cm long manganin wire which gave 929 Q at room temperature.

2.2.3 Thermal conductivity apparatus
Physical circuit

The technique used to measure thermal conductivity is a 4 probe method which
requires a cold point, a heater and two thermometers in between. To the sample we
silver-epoxied four 100um silver wires as described in figure 2.9. The characteristic
distance along the Ag wires between the sample and the other components is 2mm.
The manganin coils thermally isolate the thermometers and heater from the Cu base.
To estimate the heat leak through these coils, from table I of White [38], the thermal
conductivity of manganin at 150K is 13Wm~'K~'. With 25um diameter and 4cm
long, the thermal leak of each component (i.e. 5 coils) is 1pWK~!. For our sample,
[=2mm and s = 1.1 x 0.09mm?, the thermal conductance is 250uW K~1. With such
a ratio the heat loss through these coils is negligible compared with the heat flow

through the sample. This is even more true at lower temperatures.
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Figure 2.9: A detailed drawing of the thermal conductivity apparatus is shown on the left. Ag
wires are epoxied along the sample, perpendicular to the direction of current. The manganin coils
are connected to the electrical leads of the probe. On the right, an electric analog with power as
current source, and temperature as potential, is shown. The little resistors, R,, stand for contact
zesistances. The one between the heater and the sample, R,, is the most significant resistor since it
includes the manganin insulation in the heater. It was found experimentally to be three times the
sample resistance. R3, much smaller than R;, has no thermal or electrical significance. Rj has an
excellent mechanical contact hence even smaller than R;.

The losses through radiation were more significant. Experimentally we found
that by supplying the heater with a power of 0.25mV\", its temperature increases by
5 - 5.5°C (more or less at any temperature), a value which was obtzined using the
measured temperature dependence of manganin resistance. Assuming an emissivity

factor =1 for all surfaces, the heat lost by the heater per second
Q=0cA[(T+5) - T* = 40AT* x 5

where 0 = 5.67-1072W/cm? K* and A is the surface of the heater. Thus Qloss ~0.12nW
at 150K. This value was found to be consistent with our measuremen’s of the Lorenz
number of silver (which we measured for calibration of the system, see next section) in
which we found L > Lo at T' > 150K. At this point we surrounded the thermometers
and heater with aluminized mylar and shortened the length of Ag wires. Since the
emissivity factor of Al, € ~0.1[38], Qloss becomes less than 5% of the supplied power.
After these improvements we obtained satisfactory results up to 150K.

Another mechanism for heat loss is the heat exchange through the residual gas in
the cryostat. Since the pressure in the sample area ig lower than 10~%torr (actually

10~%torr for high temperatures and 10~ 7torr below 78K) we could rely on the fact
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Figure 2.10: The electrical circuit of the experiment. Ry, , are limiting resistors of 10kQ=x 1%. Ry 3
are thermometers and Ry, , are manganin coils.

that the mean free path of the gas molecules is larger than the distance between the
thermal conductivity apparatus and the radiation shield and employ equation 48 of
ref. (38]

Q = 0.016a0pmm (T: — Th) , a0 <1

where p,,,m is the pressure in mm of Hg, Q is in ;"% and ATHeater = T2 — T1 5. aq,
called the accommodation coefficient, is smaller than one. Using the heater surface

area, 0=0.25uW (for ap=1), which is also a negligible effect.

The electrical circuit

The electrical circuit of the thermal conductivity apparatus is described in figure 2.10.

Before turning to the mathematics we make several approximations:

1. Ry, = Ri, = Ry » R, R;. The limiting resistors Ry are thin film 10k}
+ 1%. In fact we found 10.02kQ and 10.01kQ respectively. The resistance of
the thermometers and manganin coils are less than 1% of Ry throughout the

temperature range of this experiment.

2. Although the resistance of the manganin coils, Ray, is temperature dependent

(and we make use of it Iater) it is negligible compared with Cu, i.e. 42M < 2312 m’ 2,
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This fact was confirmed at the lowest value of =32 'm” in this experiment, i.e. at

30K we measured R; ; (4 probe measurement) and compared 8t with ‘1@%‘%"&1.

3. For a small temperature change, AT, the change'in the thermometer resistances
is

dR

daT

The validity of this linear approximation, in particular at low temperatures will

AR = R(T + AT) - R(T) = —AT

be discussed later.

The potential at point A or B is

Vo(R; + Rm,) . Vi

_ Yo -
Vas(T) = gZ p o = (Bt o) i=1,2

where Vj is the voltage generated by the Lock-in Amplifier. V4 p can be measured as

a function of temperature and one obtains a calibration

dVap _ dR; + 3By, dRy,\ Vo dR;
4T R;, dT " dT ) T R, dT
In fact, within the 1% uncertainty, 48+ = i 50 ‘%.‘ is the calibration for both
dv
thermometers which we will call simply ( )m“bmud.
Next, we apply a small temperature gradient at a constant cold finger temperature

which causes the potential at say, point A, to increase by AV,. Mathematically

AV, = Va(T+AT)—VA(T) = % (R(T + AT) - Ri(T) + Baa(T + AT') — Ry(T")] =

dR; dRy . ., Vo dR;
“ R (dT AT+ 57 AT) roar 2T

where T+ AT’ is some average temperature on the manganin coil between the sample
and the cold finger. Under approximation 2, we ignore the manganin contribution,

hence
(AW4)

(%) i
dT ] calibrated

A /measured

AT =
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The same treatment can be made for the difference in the potentials V4 — Vp = V4_p:
AVip = [VA(T + ATA) - VB(T + ATB)] - [VA(T) - VB(T)] ~

av )
~ | — (AT — ATp)
(dT calibrated
which is just T4y —Tg while the sample has a temperature gradient i.e. if AT, = T4y—Tp
and ATp =Tg — To:
AVup

dv

ATy - ATg=T4 —Tp = (_)
dT ] calibrated

(2.1)

dv.

One should note that we make use of the same (ﬁ.- for both thermometers

)cah'brated
due to the similarity of the resistances. This assumption will be shown later, in

page 43, to be justified.

2.3 Test of Ag sample

At an early stage of the experiment we had the need to test the apparatus. For this
reason we chose to measure a well known material. We used a 100pm Ag wire, 14mm
long, from the same material as for the leads to the sample (from the manufacturer:
99.997% purity). The distance between the thermometersis 11mm so that the thermal
conductance is of the same order as for our YRCO samples, ~0.3x10~3*W/K. The
manufacturer data gives ps;=1.586ufdcmn. The measured sample resistance at room
temperature, R=23.3+0.1m2, deviates from the calculated one, R=22.21m%2, by 5%
due to geometric factor uncertainty.

Figure 2.11 presents the electrical resistance of the sample at low temperatures.
The "steps” reflect the accuracy of the last digit on the resistance bridge, and intro-
duce an error of 5% at 80K to 11% at 40K.

We measured the thermal conductivity of the Ag sampl- at several points between
40K and 170K. At higher temperatures we found the heat loss due to radiation to be
significant as was mentioned earlier (and as a result we later added radiation shields to

all the components of the thermal conductivity apparatus and minimized the length
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Figure 2.11: The measured electrical resistivity of the Ag sample. The distance between adjacent
"steps” is just the last digit on the lowest scale of the resistance bridge.
of the Ag wires between the Y Ba,;Cu307_5 sample and the Cu thermometers, for
the following experiments). The measured Lorenz number is presented in figure 2.12,
Although the error due to the electrical resistance data is large (especially at the
lower temperatures), the measured Lorenz number is in rough agreement with the
expectations. For comparison, figure 2.12 presents published values for the Lorenz
number of Ag of 6N purity[3]. The higher values of our sample can be explained by
the different impurity concentration as was discussed earlier (figure 1.2).
As a result of this experiment we limited our measurements in Y Ba;Cu30+_5 to
temperatures lower than 150K (because in Ag, x < LooT in this temperature range).
Furthermore, we estimate that the in:orovementis implemented for Y Ba;Cu307_;

have reduced heat losses by radiation by at least a factor of 10 at 150K.
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Figure 2.12: Lorens number as was measured by us (o, O) before correcting for radiation, and as
was measured by others (O) for samples of higher purity. Error bars are due to the "steps” of the
previous figure.

2.4 Experimental procedures

Four samples have been measured: two detwinned crystals, one with J|la (labeled
A) and the other with J||b (B), a ‘{winned sample (C) and a deoxygenated sample
(D) with O7_5 of § = 0.7. In all cases we started measurements by cooling while
measuring the sample electrical resistance, the heater resistance, the potential across
one thermometer (including the manganin coil) and the difference in the voltage across
each thermometer, AV. This enabled us tc obtain a curve for R,ampie(T); Virerm.(T'),
and hence also dV/dT and Rpeqter(T'). Once the temperature was stabilized at 90K or
30K we measured the time response of the thermal conductivity apparatus to reach
equilibrium, and estimated it for all temperatures. The final step was to increase the

temperature in steps and recording the heater power and AV to get x(T').

1. Since the cooling rate was kept low, no significant temperature gradient was
found between the sample and the Pt/Ge thermometers (the probe tempera-

ture). This was confirmed during the thermal conductivity experiment when

39



V of hot thermometer (mVolts)

14 T T T Y T v..*' 12.4
12 B b) .."'.. 412.2
. d12.0
lo ...‘
- 4110
8
! & d11.6
e
= .-'. - l l-‘
4 - A J11.2
:-"-
14 [ B | [V S | L 1 .-'.;' ) N 2 )
20— 40 80 120 160 200138 ~ 144 162 teb!?

Temperature (K)

Figure 2.13: a) The Cu thermometer vs. probe temperature (obtained from Ge/Pt thermometer)
while cooling down (circles) and while heating (squares). b) A magnification of the temperature
range with the most significant deviation.

heat was applied to the probe (to stabilize its temperature) and the resistance
of the Cu thermometers was compared to the resistance obtained while cooling

down. The results are shown in figure 2.13, which reveal a maximum deviation

of 0.5%, at 160K.

. The electrical resistance of the samples is presented in figure 2.14. §T, the width

of the transition, for the superconducting samples, 90% to 10% top to bottom, is
0.1K. The resistivity of sample A (the sample with J||a), p,, is calculated using
the measured geometric factor: ! = 1.3mm, s = 1.1mm x 0.09mm. We estimate
the uncertainty on the geometric factor to be 10% to 15%. Now, the anisotropy
of the electrical resistivity was carefully measured by Gagnon et al.[27]: For
nominally identical crystals it is p,/p, = 2.15 + 0.05 at 250K. Dividing this
ratio by the ratio of resistances R,/ R, at 250K results in the ratio between the
geometric factors to within ~3% uncertainty (instead of 2 x 10 - 15%). The
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had

-

same procedure was used for the twinned sample for which the resistivity work
BaAVe Prwinned = %(pa + ps) [27). The uncertainty for the deoxygenated sample
is the usual 10% to 15%.

To measure thermal conductivity in the steady state one should stabilize the
temperature of the probe. We required the temperature controller to be stabi-
. - - AR __ 0010

lized to the last digit e.g. at 150K the fluctuations are of order * = et

which results in AT < 0.025K.

Once the temperature of the probe is stable, the period, from the time heat is ap-
plied on the sample t1l! the whole apparatus reaches equilibrium, is temperature
dependent due to the dependence of the heat capacity and thermal conductiv-
ity. Figure 2.15 presents the time dependence at 90K of the voltage difference

between the two thermometers, V4_g, for J||b, showing equilibrium is reached
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Figure 2.15: Time response of A-B channel at 90K of sample B with applied heater current of
0.866mA (Power=0.66mW).

after 4-5 minutes. The same was done at 30K and we found 7(30K) ~ 30sec.
Next, we estimated 7(T') by linear extrapolation between 7(30K) = 1min. and

T7(90K) = Tmin. to ensure equilibrium has been reached at all temperatures.

5. For each point taken, the system records: 1) the difference potential for the pair
of thermometers (and its standard deviation?) before (V.Z7) and after (V. p)
heat is applied, 2) the heater voltage (Vgeater ) while being heated with constant
current (1), and 3) the probe temperature (T’p, .. ) as obtained from a calibrated

Ge (or Pt) thermometer.

6. Using the measured curve of V(T) for the Cu thermometer without heat (shown

in figure 2.13), we obtain the temperature of that thermometer while heated. |

1t is one of the features of the LIA SR-850, to record values for a certain time (we chose 10sec.)
and return mean value and deviation from it, for both A and A-B channels. This enabled us to

identify bad points due to noise, instrument errors etc.
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From the curve fit of 5(T) we calculate® £X(Thot thermometer). From equa-

tion 2.1:
dav
AT [I,(A B)'uuh Reat ‘,(A B)-ulhotl hut] / ( ) (2'2)
Thot thermomater

and the thermal conductivity x = L—‘-’R‘T‘“‘ x (geometric factor).

At very low temperatures, % changes quickly, hence it does not have the same
value for the hot thermometer as for the cold one and equation 2.2 needs cor-

rections.

Defining Tq to be the temperature at the middle point between the thermometers
while the temperature gradie.t AT is applied, the potential across each thermometer,

e.g. the hot one, is
AT dVy AT 1 (d*V, ATN?
Va (T + 57) = VaTo)+ (’JT)TQ Z *3 ( aT )TQ (F) + @

Va is temperature dependent but V(4_B),.nous neee Was found experimentally to be

constant to within the noise (see figure 2.16), so £¥4(T) = ¢XB(T). Writing equa-
tion 2.3 for Vp (TQ - --—) the measured voltage difference, V4 — Vp with heat, can

be written

Va (TQ + A—2T—) Vs (TQ - %T‘) = Va(To) — Vo (Tq) +

A AT 2 (dV ATN®
“'(JT)T "2—+'31(2‘T‘3)T (F) + (24)
Q Q

Since V4(T') — Vp(T') is constant, the top part of equation 2.4 is just Viu—_B). . ree
on the LHS and V{4-58),..0u neae O the RHS where

‘,(A_B)wnh heat - ‘/(A_B)wﬂhw! heat = AVA"B
To fit V4(T') we used a polynomial of fourth order for the range 30K < T < 80K :

Va(T) = 2.814-107° +8.837-10"5T —2.968 - 10°T% 4+ 5.032. 107373 — 2.5045 - 10~ 1°T*

3The hot thermometer e.nd cold thermometer refer to the one closer to the heater and the one

closer to the base, respectively.
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Figure 2.16: The Voltage difference between the two thermometers, chanuel A-B of the LIA, before
and after applying heat.
and a linear fit from 80K to 150K : V,(T) = 5.1684 - 107® + 7.8666 - 10~*T. The
deviation of the measured values from the fit, %—,"— = I-‘-’ﬂ;ﬁﬁ?—q < 0.7% over the
entire range. To within this accuracy, equation 2.4 has no higher orders than the
cubic term. Rewriting . 1ation 2.4
-1 3 -1 3
aresren ()3 (8), (4 ()] o
Tq Tq Tq
where the last term in equation 2.5 is a correction to the linear expression. For
Tqo = 30K and a characteristic AT < 1K, this correction term is smaller than
0.26mK, much smaller than the accuracy of the fit i.e. equation 2.2 is not really an
approximation in our case, but essentially the correct equation. This is still subject
to the approximaiions of page 35 however.
Since Tg is not known, we start with %(Tho, thermometer ) 10 find AT 80 Teqd =
Thot — AT. Employing new %(Tcom thermometer ), We find a new, recursive, AT which
converges after a few iterations. Just after the first iteration, however, the error on

AT at T=30K and T=40K are 10% and 3% respectively i.e for T > 40K this is
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within the general uncertainty.

The range 30K < T < 40K, however, suffers from another problem due to the
much decreased sensitivity of the Cu thermometers. For a little noise of ~ 0.25pV in
Va-B, the noise on AT is about 24528, Since 5%(40K) = 29pVK~! and 9% (30K) =
11uV K-!, the noise on AT is 0.0I;K and 0.05K respectively. For a AT of 0.5K,
this is noise at the level of 3.5% and 9% (for T = 40K and T = 30K, respectively).
We see that 30K is really the lowest temperature this set-up can reliably access.

As for other possible corrections:

1. The current through the Cu thermometers was 0.1mA so the power generated
by self heating varies from about 1uW at ambient temperature to about 0.2 W
at 30K whereas a characteristic heater current was 0.5mA with Rgeqter =~ 9009

hence self heating corrections are less than 0.4%.

2. The thermal leak through the manganin coils was less than 1% at temperatures

smaller than 150K (page 33).

3. The corrections due to the temperature dependence of the manganin coils (since
we measure the potential across both the Cu thermometer and one manganin
coil) was found to be less than 5% at 30K, and to drop rapidly as the temper-

ature increased (page 36).

4. The major uncertainty comes from heat loss due to radiation. In page 34, we
found it to be less than 5% at T=150K (and dropping rapidly as the temperature

decreases).

As a result, apart from geometrical factor considerations, the uncertainty at all
temperatures on the absolute value of the thermal conductivity is kept under 3%, with
a slight increase at the edges of the temperature range. One should note, however

that these corrections affect all curves in the same way.
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Chapter 3

Results and Discussion

3.1 Results

Figure 3.1 presents the thermal conductivity of all four samples. Before discussing
th