PERY

DESIGN CONSIDERATIONS
OF
A PLANAR CROSS CHANNEL OPTICAL DEMULTIPLEXER

by

Jian-yao Chen

Department of Electrical Engineering
McGill University
Montreal, Quebec
December, 1991

A Thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements for the

degree of Master of Engineering

© Jian-yao Chen 1991



ABSTRACT

In this thesis, several simple and accurate techniques applicable
to the analyses of diffused slab and channel optical waveguide are
discussed A zero-gap coupler type single-mode opticzl wavelength
division demultiplexer by K+—ion exchange in glass is proposed. The
detailed device property studies based upon our own characterization
results on soda-lime glass materials are carried out by the effective
index method (EIM) and beam propagation method (BPM). To overcome the
fabrication difficulties under the present state of art, some improved

device structures are also discussed.



RESUME

Cette thése contient d'abord la description de plusicurs methodes
simples permettant ['analyse de guides d’ondes optiques aux frontiéres
diffuses. Une structure de coupleur monomode zans espacement obtenue par
échange d’ions potassium-positifs dans le verre est ensuite proposee
comme démultiplexeur a déphasage. L'étude des proprietes de ce
demultiplexeur, basée sur nos propres données de characterisation des
verres soda-calcique, est entreprise a l'aide des methodes d'index
effectif et de propagation par rayon (BPM). Finalement, quelques
améliorations a la structure proposée sont discutées dans le but de

réduire les difficultés de fabrication.

ii



-

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Professor
Gar Lam Yip, for this patience, guidance, encouragements and much

persoral assistance during my studies.

I ain also especially grateful to Dr. Kiyoshi Kishioka, now with
Osaka Electro Communriation University, Japan, for his guidance,
encouragement and teachingz me the ion-exchange and device fabrication

techniques experimentally.

I would like to thank Mr. K. Fraser for giving me access to the
micro-VAX computers in the Undergraduate Computer Laboratory, which were
used to do the horrendous amuunt of ‘number crunching’ required for the

BPM simulations.

I must also thank my fellow students for their encouragement and
fruitful discussions. In particular, the contributions from Michael A.
Sekerka-Ba jous, Peter C. Noutsios, John Nikolopoulos, Feng Xiang, Dennis

Kan and Phillippe G Allard are gratefully acknowledged.

Both the technical and secretarial staff provided me with their
always friendly services and  helped solve the ever occurring

admimstrative problems.

This research was supported financially by a Chinese government
scholarship for one year (1988-9), a NSERC operating grant, a tuition
waive from the Graduate Faculty at McGill and two summer research

stipend from the Department of Electrical Engineering (1990, 1991).

iii




CONTENTS

1. Introduction 1

1.1 Overview of Integrated Optics 1

1.2 Wavelength Division Demultiplexer Technology 2
1.3 Chapter Description 4
References 4
Tables 7
2. Analysis of Diffused Optical Waveguides 8
2.1 Introduction e
2.2 Wave Equations 9
2.3 The WKB Approximation 12
2.4 Transverse Resonance Method 17
2.5 Effective Index Modelling 22
2.6 Scalar Variatioral Analysis 26
2.7 Conclusions 30
Appendix 30
References 32
Tables and Figures 34
3. Designs of a Single-Mode X-branch Type Demultiplexer 46
3.1 Introduction 46
3.2 Device Operation Principle 47
3.3 Dispersion Equations 50
3.4 Design Considerations 55
3.5 Improvements 63
3.€ Conclusions 66
References 66

Tables and Figures 69

iv



4. BPM Simulation of a Single-Mode X-branch Type Demultiplexer
4 | Introduction
4 2 Description of BPM
4.3 General Theory of BPM
4.4 Numerical Calculations
4.5 Absorbers
4.6 Applications of the BPM in Integrated Optics
4 7 Result Discussions
4.8 Conclusions
Appendix
References

Tables and Figures

5. Conclusions

81
81
82
83
87
89
91
92
94
95
97
100

109



CHAPTER |

INTRODUCTION

I-1. Overview of the Integrated Optics

The term "integrated optics" (10) was first coined by Stewart |
Miller {1l in 1969 to describe the optics of mimaturized optical
circuits in which light signals are generated, guided and processed by
related effects before finally being detected The feasibihity of this
technology is due to the fact that light can be guided in a thin film
Since the invention of optical fiber during 1960’s, to achieve the full
promise of optical fiber communication link, many discrete functional
components, such as laser diodes, photodiodes, couplers, modulators,
switches as well as transmitter and recewver electronics have been
developed [2]. Currently, increasing efforts are also being applied n
achieving a synthesis of electronic and optical components into an
integrated optoelectronics format which 1s expected to provide a wide
range of systems with miniaturized, high speed, broad-band, reliable and
cost-effective components for telecommunication data processing, optical

computing and other applications in the near and distant future [3].

There are many types of materials currently studied in integrated
optical applications. e.g. glass, lithhum niobate (LiNbOJ) and IlI-V
semiconductors. Since the advantages of their compatibility with optical
fibers, low cost, low propagation losses, and ease of their integration
into the system, glass waveguides made by the 1on-exchange technique are
considered to bte prime candidates for the passive integrated optical
components ([2]. By wvirtue of jts high electro-optic ceefficient, hthium

niobate usually is the premierr material for the integrated electrooptic



components and the Ti indiffused waveguide fabrication technology for
this type of substrates has been most extensively developed [4]. Many
high performance modulators [S] and switches [6] have been envisaged and
even commercialized. However, glass and lithium niobate are all passive
materials so that lasers and detectors can not yet be fabricated on the
same substrate By contrast, semiconductors can be used for constructing
both the passive and active devices so that a monolithic integration in
which all devices are made 1n a single substrate can be realized (3]
But the higher loss and low electro-optic coefficient make the
semiconductor materials less effective for guiding and modulating
purpose Great efforts have been made to improve the optical properties
of semuconductors and an InP/GalnAsP rib waveguide with loss as low as
0.18dB/cm has been reported [7].

Since integrated optics is still a thin film technology, the
implementation  of the proposed devices requires almost the same
thin-film processing techniques as used in the semiconductor technology.
However, main differences arise in the materials and substrates used.
Using glass as a substrate, ion-exchange is the most favorable technique
used to form optical waveguides [8]. Sputtering, plasma etching or
ton-beam milling are also applied to fabricate the ridge type waveguides
(9} For ihe LanO3 material, the most widely employed is the diffusion
of titanwum nto LleO3 {4]. Also, a proton exchange technique has been
developed [9] In the cases of semiconductor materials like GaAs and
InP, the waveguides are formed by methods like liquid phase epitaxy
(LPE), metal organtc chemical vapor deposition (MOCVD)}, and molecular
beam epitaxy (MBE) or ion implantation [10]. Although the packing
density  of  integrated  optics is many times less than in
microelectronics, the required pattern accuracy is  sometimes

considerably greater [l1].

I-2. Wavelength-Division-Multiplexing Technology

The advantages  of the  optical fiber Wavelength  Division




Multiplexing (WDM) communication systems are trarsmission
capacity increase per fiber, system cost reduction, simultaneous
transmission of signals modulated with different schemes, and service
channel expandability after fiber installation. Therefore, 11 15 a
useful means of fully using the large bandwidth provided by low-loss
optical fibers and expected to be broadly applicable to systems in

various field of communications [l12].

In WDM transmission  systems, wavelength  multiplexers and
demultiplexers (MUX/DEMUX) are the essential components employed to
combine and separate wavelengths carrying different information The
realization of single-mode MUX/DEMUX’'s has been accomplished by using
wavelength dispersive elements like optical interference filter, optical
diffraction gratings, and wavelength selective coupling between two
adjacent waveguides In Table [-l, typical performance characteristics

of these classes of multi- /demultiplexers are listed [12].

The optical interference filter type MUX/DEMUX’s have been
experimentally demonstrated by using fiber-optics and microoptics, where
GRIN-lenses [13] or ball lenses [14] have been implemented as beam
collimators. These devices are considered to be of practical importance,
if the transmission system does not require more than about six channels
with a spacing in the order of 30nm. A greater number of channels, e g,
N=20 [(15], with a much narrower channel spacing, eg, L35am [(i6], can
be multiplexed by grating r- mponents. Here, microoptic techniques using
GRIN-lenses and guided w-.ve approaches with gratings, waveguides, and
photodetectors, integrated on one substrate, have been apphied [15, 17]
The wavelength-selective coupling has been utilized in  all fiber [18!
and integrated optic (19] directional couplers Due to the symmetry of
the coupler, this type MUX/DEMUX device can have a periodic wavelength
transmission curve [I8] or exhibit a band-pass behavior [19-20]
Besides, a Y-branch type structure behaving as pass filter either for
the longer or the shorter wavelengths was proposed in the literature
(21].



From the considered fabrication technologies, integrated optics
offere the greatest potenuial of building compact multi/demultiplexers
in 2 stable rugged structure with simplified assembly. Recently, to
overcome the sensitivity of asymmetry to the individual waveguides of
direcrional coupler, a new structure based on the wavelength dependence
of the two-mode interference (TMI) has also been proposed and
experimentally demonstrated [22]. This type of structure, as so called
X-branch type single mode demultiplexer, is more compact and fabrication
tolerant  so that it provides a powerful alternative to directional
coupler structure applied to various applications. Previously, most
people only tried the configuration in the LiNbO3 substrate material.
For the sake of lower cost, a lower refractive index and simpler
fabrication techniques, 1t is also beneficial to apply the same
configuration by 1on-exchange technique on soda-lime glass substrates

which 1s also the main purpose of this thesis work.

I-3. Chapter Description

In  the following chapters, we first discuss some analytical
techniques applied in analyzing the diffused slab and channel optical
waveguides n  Chapter I, which is prepared for further integrated
optical device design applications. Chapter III presents a detailed
analysis for the X-branch type optical wavelength division demultiplexer
properties and design considerations by the effective index method. In
order to verify our analysis by the effective index approach, Chapter IV
apphied the beam propagation method to simulate the X-branch 1type
demultiplexer functions and discuss the Y-branching angle effects on the

scattering loss
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Table I-1. Typical Performance Characteristics of Different

Classes of Wavelength Multi-/Demultiplexers

Number of channels
Insertion loss
Channel spacing

Far-end crosstalk

Interference Grating
filter
2-6 3-20
0.5-5dB 1-4dB
30-100nm 1-40nm
20-70dB 20-30dB

Directional
Coupler
2-8
0.6-2dB
40-200nm
10-13dB



CHAPTER I

METHODS OF ANALYSIS FOR DIFFUSED OPTICAL WAVEGUIDES

Ii-1. Introduction

Ion-exchange is the prime candidate for fabricating passive optical
waveguides in glass substrates [1]. Usually, the refractive index
increment formed in the substrate by this technique is distributed. Fig.
[I-1 shows four of typical glass channel waveguides by the diffusion
processes, in which a step index cladding is deposited onto the
waveguides by RF-sputtering to increase the waveguide’s effective index
in order to enhance waveguide field confinement abilities and/or adjust
waveguide dispersion properties. The characteristics of the propagating
mode in such waveguides are obtained by solving Maxwell’'s equations for
the corresponding boundary-value problem. Due to the vectorial nature of
the electromagnetic field, the geometrical shape and/or the refractive
index distribution of the guides, and the infinite domain of the cross
section, the fully analytical solutions for the vectorial
electromagnetic fields are usually not obtainable for most of the
practical waveguides. Therefore, using some approximate or numerical
methods applicable to the studies of dispersion properties of optical
waveguides with arbitrary index distribution is necessary and important

for engineering device designs and fabrications [2-5].

In this Chapter, we first derive the transverse vector wave
equations from the Maxwell’s equations and briefly discuss the
classification of propagating modes in the optical waveguides under a
weak guidance condition in the Section [I-2. To analyze optical

waveguides with one dimensional arbitrary (step and graded} index




profile, the WKB and transverse resonance methods are presented and
discussed in Section II-3 and II-4, respectively. Also, the effective
index modelling and scalar variational technique to study the
characteristics of two-dimensional diffused channel optical waveguides

are discussed in Section 1I-5 and 11-6, respectively.

II1-2. Wave Equations

For a general graded-index optical waveguide, Maxwell’s equations

may be written as

2 dE _
Vx H=n (x,y)z:° a7 (11-1)
dH
= - e -
V xE CRT: (11-2)
V « [n*(x,y)e E] = 0 (11-3)
Ve eH=0 (1-4)

If we apply the curl operator to equation (II-2), we find

- dH 2 dE )
Vx(VxE)= Mov X di ~ }1°€°n (X',Y)T (11-5)

where equation (II-1) was wused to eliminate H. Using the vector

indentity
V x (V x E) = V(V-E)-V’E (11-6)
together with equation (II-3), equation (II-5) becomes:

2
VE + ¥ E-Vn"(x,y)

+ kinz(x,Y)E

It
(W

5 (I1-7)
n“(x,y)

where the time dependence exp(-jwt) of E has been assumed and the
conventional notation k:=w2u°e° has been used. Equation (II-7) is the

vector wave equation satisfied by the electric field E.



Similarly, the corresponding wave equation for the magnetic field H

can be derived from the equations (II-1) to (II-4) as:

2
VZH + Vn. (x.}') X (v x H) + kfnz(x’y)H = 0 (11'8)

nz(x,y)

Since the fact that n(x,y) is the function of transverse coordinate
x and y only, the vector wave equations just for the transverse field

components can be separated from the equations (II-7) and (II-8) as

2
Et-vln (x,y)

viE + ¥ + [Kn%(x,y) - BIE = 0
it 4 2 ° t
n“(x,y)
(11-9)
2

, von (x,y) - )

VPH + “———— x (V x H ) + [k’n’(x,y) - B*IH = 0

1 2 1 t ° t

n“(x,y)

(1I-10)

where a z-dependence as exp(jBz) is assumed and Vl=82/6x2+62/8y2.

From the above equations, we know the vectorial properties of the
propagating modes in the optical waveguides arise from the terms with
Vlln[n2(x,y)]. For the piecewise uniform medium, it lies in the
discontinuities of Vlln[nz(x,y)] across the boundaries between different
refractive indices. For the glass optical waveguides, the refractive
index of the waveguide does not vary rapidly in the cross-sectional
plane and/or differs only a little across the index discontinuities.
Under this condition, the propagating modes are almost linearly
polarized and can be classified into two groups as TE-like and TM-like
modes for the strong E field components are parallel and perpendicular
to the waveguide surface, respectively. The corresponding transverse

vector wave equation approximately becomes

2 2

8"E  3°E ] a 2 2 2 2
—" A{E —Inln (x,y)]} + [k'n(x,y) - BJE_ =0
2 2 x [} X
ax dy ax dx
(I1-11)
8a*’H  a*H o , 8H 2 2 2
zy + --—-2-—’-’— - —1nfn®(x,y)]—L + [k n"(x,y) -B"IH =0

10



(11-1.2)
for the TM-like modes, and

8°E 8°F 8 3 ) 2 o ,
2y + zy + —{E —Infn (x.y)]} * [k n(x,y) -BIE =0
3x 3y ay\ Yay y
(11-13)
8°H_ °H_ a3 o ., .
2x - —Lnln®(x,y)]—= + [kon'(x,y) -B°JH =0
dx dy ay dy *
(11-14)
for the TE~like modes.
The extreme case is the slab waveguides. Since ——g—;— = (0, the
propagating modes can be rigorously distinguished as TM modes with
g® J dH
E —_-Hx.—.H=0; Ez"’"’_{_H‘ E = _ 2__ﬁ_¥
Y z x we n°(x) 7Y we_n“(x) dx
and TE modes with
B J dE
E =H =F =0 H =-—— F,; H = o _ Y
X y z X “’ﬂo y z o dx

The equations (II-11) to (II-14) are simplified to become

2

8°E a d 2
L -{E{——ln[n (x)]} + [kfnz(x) - leEx =0

c':'x2 ax Ox
(11-15)
a’H 3 , OH ) s ,
zy - —lnln“(x)]— + [k n'(x) - B°IH =0
dx ax 3x Y

(n-le)
for TM modes and

2

8 Ey 2 2 2

——— + [k'n"(x) - B°]JE =0 (r-1n
2 o y

ax
2

8 Hx 2 2 2

+[k'n"(x) - B°JH =0 (11-18)

2 ° X

ax

for TE modes.

11



From the above derivations, we know, under the weak-guidance
condition, glass optical waveguide analysis is possible under certain
approximations. In the following sections, starting from the
cne-dimensional problems, we are gomng 1o discuss some approximate or
numerical methods which are practical for studying arbitrary index

distribution waveguide problems.

11-3. The WKB Approximation

In optical waveguide theory, although the ray optics approach and
the WKB approximation have a similar renge of applicability, both being
suitable for use only when the variation of index is small in distances
of the order of the wavelength, it 1is believed wusually that, in
analyzing surface diffused optical waveguides, the ray theory can
provide a better level of approximation than the WKB theory for being
capable of accounting for the phase changes occurring on reflection from
a dielectric discontinuity. However, this advantage is difficult to be
extended to the analysis of the multilayer waveguide problems. In this
section, we shall see, if the field solutions are matched properly at
the dielectric discontinuities, the first-order WKB approximation can
yield not only identical results with the ray optics approach, but also
can be used to analyze the piecewise graded-index optical waveguide

problems, such as a diffused surface optical waveguide with a cladding.

For the planar diffused optical waveguides, the scalar wave

equation is

8%¢

+ [k2n*(x)-B°I¢ = 0 (I1-19)
dx

where ¢=Eyor Hy for TE and TM modes, respectively. Since the value of

g‘( infn(x)] is very small in the graded-index region, we neglected the
term for TM modes. In fact, for the diffused surface waveguides, the

12




polarization discrepancy of the propagating modes are due 1to the
waveguide surface step-index change mainly. Therefore, different

polarization modes can be determined by the corresponding boundary

) ) @'(x)
conditions as ¢(xl) = ¢(’x:) and gb’(xl) = ¢'(x:) for TE modes; — b
n (x;)
$'(x)
— for TM modes respectively at the dielectric discontinuity
n®(x’)
i

position X=X .

According to the WKB theory [6), the first order approximate

solutions are given

c .
P(x) x _ exp Ltij(x)d.x:] for regions kon(x) > B
/Q(x)
{11-20)
C2 -
¢(x) x ~———— exp tfP(x)dx] for regions k n(x) < B
— L 1+
P(x)

(11-21)

2_ 2 .2 .2 2 . .
where P"'=-Q =8 -kon (x). Although these solutions diverge at the turning
point, two sets of independent connection formulas relating the fields
on either side of the turning point can be obtained by the asymptotic

solutions of the wave equation as

X x
P-V"‘exp {-{ lde] —— Zo—llzsinq Qdx + -%—-]
X X
1
(11-22)

X X
P %exp U lde] — Q 1/zcos[‘[ Qdx + —75-—]

.
X X
1
(11-23)
for Fig. II-2(a), and
2 *2 n -1/2 x
2Q sin[ Qdx + 4] € > P exp[- de]
X X
2
(11-24)
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"N

X
O'llzcosq 2()dx + Z ]

X

x
> P'l/zexp[J de]

x
2

(11-25)

for Fig. II-2(b) respectively, where the upper bounds of the integral

are always greater than the lower bounds.

A general index profile of the diffused surface optical waveguides
1s shown in the Fig. II-3. According to the WKB approximation, the

scalar fields on either side of the discontinuity can be expressed as

X
4 o P'VzeXP[’J' dex] in the region x > o
0
(11-26)
X
¢ x O—l/“cosd‘ Qdx - ":;—] in the region X < x < o
*
(11-27)

In order tn match the fields and their derivatives at x=0, we can have

Cl ° ki 4 CZ
———C0S Qdx - Z = —
Q(07) * ﬁ(o*)
(I1-28)
AR () .
L CIRS U Qdx - _}] - cz————-—-ﬁ(o )
nP¢0") x, nfc0")
(11-29)

where p=0 or 2 for TE and TM modes, respectively. It is worun noting
that the derivatives in (11-28) and (11-29) only include the terms from
the argument of the trigonometric or exponential functions. Since the
derivatives of the coefficients would be of higher order in the WKB

expansion, then it is best not to differentiate these terms {6].

Combining equations ({I-28) and (II1-29) gives the ecigenvalue

equation for modes of N as

14



4

o . nP0™y  P(o%)
Qdx - = Nm + tan ' (N=0,1,2,...)
x nP0’)  Qo7)

2

NILECREN GRS
= Nu + tan

[n"(o‘) [k*n®(07)-g%] }

(11-30)

It is clear that this result is the same as the one given by a rigorous
application of the ray optics theory [7]. Therefore, with the proper
treatment on derivatives, the first-order WKB approximation can yield
identical results with the ray optics approach. In principle, we can
extend this method to the analysis of the piecewice graded-index optical
waveguide problems where the geometrical optics theory cannot Ue

applied.

Fig. II-4 shows a very practical optical waveguide, cladded
diffused surface waveguide, index profile. Similar to the last wavegmde

problem, the fields in each region can be written as

x
¢ Q-I/ZCO_SU Qdx - —%—-] for x >x >0
1
(11-31)
X p 4
¢ CIP'VZexp [J' dex] +CZP_1/zexp [-J I:dx] for t>x>0
0 0
(11-32)
X
¢ o CSP'V zexp[-I de) for x >t
t

(11-373)
In order to match the fields and their derivatives at the discontinuity

x=0, we let

1 0 1
————-———coszdx-Z]= cC +C
— 1 2
VQ(o~) * ﬁ(o')
{11-34)
— - -
- ——‘/Q(O )sinu Qdx - — ] - VRO [Cx - cz]
n®(07) X n®(0")
(11-35)
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Therefore, the coefficient Cl and C2 can be solved from this linear

equations as

/7 P,nt -
_(vPoty ([° n) " O N0y  (f° .
C 3 ————CO0S Qdx- | - sin de—T
00y 9% O Moty x
(I1- 36)
N P/nt ~
+ o} n (O ) - 0
Cz-é #g) {J[ Qdx- Z ]+ S (0 )sm de--—::—-]}
‘/0(0-) X, n() Po") Jxl
(11-37)
Again we match the fields and their derivatives at x=t as
1 [t "t 03
c exp[ de] +C_exp [— Pdx } =
cut 0 2 0 N
P(t ) - ‘ A-’(t )
(I11-38)
- ([t "t e
‘P—(t—){c‘exp( de] -Czexp(- de}} = -Ca‘/I;(t )
n®t™) Jo Jo nP(t*)
(11-39)

Substituting formulas (II-36) and (II-37) into the above equations and
combining them with some algebraic manipulations, we can derive the
eigenvalue equation for the cladded surface diffused optical waveguides

under first-order WKB approximation

Br tgld) 2,22 s, "B,
————— = exp[-2t(B ~k'n )77 -
B - tg(A) © 1+B,
(I1-40)
n 0 22 2,172 n*(0") [Bz_kfnz(o+)]1/2
where =—T - [kofl (X)"B ] dx, BI- N 2 2 - 2.1/2 and
x n?(0") [k n®(07)-B"]
n: lﬁz“kinifl/z
T T e p=0, 2 for TE and TM modes, respectively. With this
n B~k n’]
¢ ¢

eigenvalue equation, the dispersion properties of the propagating modes
in such waveguides can be solved by root-searching techniques. By

assuming the index profile in the graded index region as

nz(x) = n’ + 2Ann exp(—xz/dz) x <0 (11-41)
b b X
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where An is the index change at x=0 and dx is the effective diffsion
depth, Table II-1 and 2 give two calculation examples to demonstrate
that the eigen-equation provides quite accurate results, in which the
exact values are provided by the transverse resonance method (TRM, see
next section) From these we know that, as the cladding thickness
changes, the errors introduced by the WKB first-order approximation for
the cladded diffused surface waveguides are mumimal And, for the fixed
diffusion depth waveguides, by increasing the nc<nb cladding thickness,
the propagation constant will tend to a constant. Comparing with the
numerical TRM method, the WKB approach produces results faster. However,

it systematically underestimates the effective indices.

Although we only discuss the case of n<nb here, for the othet
<
cases, such as nc>[3/'ko, the corresponding eigenvalie equations can alsu

be derived by repeating the similar procedure.

II-4. Transverse Resonance Method

In planar waveguides, the propagating modes can be rigorously
classified into TE and TM types of modes. Therefore, the transverse
resonance method can be applied to study the waveguide dispersion
properties since the transverse impeuances and admittances can be
uniquely defined. However, in the conventional optical waveguide theory,
only the uniform transmission lire theory 1s applied to study thosc
multi-layer homogeneous waveguide problems. In this section, we extend
the transverse resonance method to the studies of diffused
(inhomogeneous) planar waveguide problems By this development, not only
the dispersion properties of the waveguides with an arbitrary ndex
profile can be investigated with any desired accuracy, but also the
inhomogenecus and homogeneous planar waveguides can be treated in the
same fashion thoroughly without considering the modal fields or the

turning points as in the WKB theory.
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According to the uniform transmission line theory [8], for the
graded characteristic impedance transmission lines, the impedance

transformation formula becomes (see Fig II-5)

Z(x) + Z (x)tanh( jB+a)dx
Z(x) + dZ = Z (x) <

c

Zc(x) + Z(x)tanh( jB+a)dx

Z(x) + Zc(x)(ij)dx

1+ [Z(x)/Zc(x) 1( B+ )dx

]

[Z(x) + Zc(x)(jl3+a)dx] [1 - Z(x)/Zc(x)(jB+a)dx]

bed

Z(x) + [Zc(x) - Zz(x)/Zc(x)] ( jRraddx

(I1-42)
where Zc(x) is the characteristic impedance of the graded transmission
line. Therefore, the impedance transform formula for the graded
transmission lines is a nonlinear ordinary differential equation as

given by

iz Z%(x)-Z%(x)
g = ~(JB+a) c (11-43)
Zc( x)

In the planar waveguides, we can define the local transverse
Ey W Ii'z kx
impedances as ZCTE" % and ZcTM= 7 amat) 5 for TE and T™M
2z x 1Y weon

modes respectively, where kx=j[1cinz(x)-Bz]V2 as n(x) > B/ko and

kx=[132--k§nz(x)]v2 as n(x) < B/ko. Substitute these into the equation

(Il-41) and let Z’ =ZcTE/_;wu°; Zrzzzra/‘)w“o for TE modes and

E

Z' =jwe Z ; Z' =jwe Z_ for TM modes, we can have
cT™ o T ™ o TM

M
9Z 1 zrrz: ) Z::z an: ) k;z 2 22 2
x> -k z =k, 1/k = IB -k n)IZ + 1
[+ X
(11-44)
z z:? - z? z'? - k%t
™ ™ c ™ X
= ek ———— E R ———
dx b4 zZ b 4 k /nz
¢ X
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‘ - [R2. 12,2 2 _ 2 ,2
= [B%-k n"(a)]/n*(x) - n*(x)Z] (11-45)

Actually, similar results can be derived directly from the wave

equations (II-16) and (1I-17) [3]. From these, we have

1 d°E > 2 )
= Y = -[k°n®(x)-8°1
E 2 °
v dx
{11-46)
2
1 d°H 2 dH
Y _ _rp2.2, 4 o2y ldn"(x), 2 y
Hoz - HenaB 1*[‘7:;"/" fx’]a;‘/ﬂy
y dx
(11-47)
for TE and TM modes, respectively. Therefore, 1if we define the
transverse impedances as
Ey dE‘y dEy
Ze" 'ﬁ: =Jop oEy/ dx or  Zg™Zpg/der E foT
(11-48)
Ez 1 dHy 1 dHy
Z = - == JH or Z! =jue Z_ = —Y/H
™ Hy jwecnz(x) dx ¥ ™ ™ n%x) dx Y
(11-49)
Then, by differentiating them, we can obtain
, 2
dZTE d Ey Ey 2 2 2 2 2
=1 - /(] = 1 - o8z
dx
(11-50)
’ ?
dZTM ) 1 dnz(x) dHy > 1 dHy ) 1 1 d I:’y
ax s dx dx /Hy—n (x) 2 ax | Tz H 2
n(x) n (x)Hy n“(x) vy dx
= [Bz-kinz(x)]/nz(x) - nz(x)Z;:1
(11-51)

These results are identical to equations (1I1-43) and (li-44). Therefore,

after we obtain the distributed transverse impedance Z'(x), the

corresponding transverse modal field Ey or H as function of x can be
y

deduced by the integrals
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o

x X
E =exp {JOZ /Z 16 x)dx] and Hy=exp (an( x)Z_ ( x)dx]

(11-52)

for TE and TM mode, respectively, where we assume thz field to be unity

at the air-guide interface x=0.

For the guided modes, B/kqis always greater than the index value
n(x) at x=w, therefore, the initial values

Z'(@)=Z " (w)=1/[8"-k 2n*(@)]'/® for TE modes

Z'w)=Z’(@)=(B*~k n*(@)]'"* fn*(w) for TM modes

are purely real generally., Since all variables involved in the
differential equations are also real, Z’(x) will remain purely real, or
in another words, Z(x) is imaginary as x changes along this whole graded
transmission line. This coincides with a conclusion in the uniform
transmission line theory that, when the load is a reactance, the
impedance will be invariably imaginary with open and short circuits
alternatively appearing along the transmission line. Similarly, for the
graded transmission lines, there will be some poles (open -circuits)
appearing which would cause an overflow in the calculations for high
order modes. To avoid them, we can make a transformation by setting

Z;E=tan9 and Z;M=ctane. Then the equations become

de 2 L2 002 2 2
~Ix~ = cos'e + sin 8lk n"(x)-B"]
(I1-53)
for TE modes
de _ 2 2 L 2 0.2 2 2,2
—— = N (x)cos’e + sin®6lk n"(x)-B 1/n"(x)
(I1-54)

for TM modes, respectively.

To solve these nonlinear differential equations, we use a fourth

order Runge-Kutta method [10] as follows

6 ., =06+ (k+2k +Zk +k )/6 (I1-55)

N+
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with

k =hF(x,86)
1 n n
k, = hF( xn+h/2, 9n+k1/2)
k, = hF(x_+h/2, @ +k /2)
k = hF(x +h, 8 +k_)
4 n n 3
(11-5€)
where F(x,8) represents the right hand side of the differential
equations. The associated truncation error is R=0(h®) and, for h=0.005,
one expects accuracy of seven or eight decimal places. To compare the
numerical results with the WKB theory, Fig. 1I-6 (a)-{b) shows {wo
samples of the calculated dispersion curves for the diffused surface
waveguides, in which ne=[3/k° is the mode effective index  The

differences around the cutoff region are apparently demonstrated.

Applying this method to the solution of the cladded diffused

surface ‘/aveguide problems (see Fig. II-7), we set up the transverse

resonance equation

21(3) + ZZ(B) =0 or Z;(B) + Zé(ﬁ) =0
(11-57)
According to the impedance transform formula for the uniform

transmission lines, Z; can be found as follows

Z’ + Z’tanh(k t) 1 kcos(kt)+k sin(kt)
7= 27 a ¢ ¢ - a
! CZ; + Z;tanh(krt) k kacos(kt)-ksin(kt)

for nc>F. / k,

1 (k +k’)exp(k’t)-(k -k’)exp(-k’t)
2 a for nc<f3/k°
K’ (ka+k’)exp(k't)+(ka~k')exp(-k’t)

n

(1+ }cat)/ka for nc=B/ko
(I1-58)
for TE modes, and
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k k cos(kt)-ksin(kt)/n’
AN, - < for nc>[3/k°
I p? kcos(kt)/nc+ksin(kt)
[

2 2 » — ’ 2 - ’
k (k_+k /nc)exp(k t)+(k -k /nc)exp( k’t)
" > > for nc<3/k .
n’ (k_+k /nc)exp(k t)-(k;k /nc)exp(-k t)

k f(1+kt) for n =B/k
(11-59)

212 . As for Z;, it

for TM modes, where k=(k§n:-!3) and k’=(Bz—kfni)
can be provided by the equations (II-49) or (II-50). By root- searching
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equation (II-56), we can find each B of the guided mode in the
waveguide. Table II-1, 2 show the numerical results with comparison to

the WKB method for TE and TM modes, respectively.

Since many trigonometric function evaluations are involved in the
calculations, this scheme usually consumes more computation time than
the WKB method.

1I-5. Eff'ective Index Modelling

In the above two sections, we have discussed the approximate and
numerical methods to study the one dimensiocnal waveguide problems
involving an arbitrary index distribution. They are very useful for the
planar diffused optical waveguide characterization analysis. In fact,
combined with the effective index method [l11], these techniques can be
extended to study two dimensional channel waveguide problems [4]. Since
the weakly guiding condition is always wvalid in glass optical
waveguides, the propagating modes are almost linearly polarized and can
be classified into TE-like and TM-like modes for the strong E field
components parallel and perpendicular to the waveguide surface,
respectively. This property allows for some approximations to provide
quite accurate results for predicting the dispersion properties of
channel waveguides. Next, we are going to illustrate how the wave
equation for the 2-D graded index waveguides can be split into two 1-D

wave equations under the effective index modelling.
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For the diffused glass surface waveguides, since the graded index
variation is very small in distance of the order of the wavelength over
the whole cross section, the terms with Vlln[nz(x,y)] are negligible
from the vectorial wave equations (11-9) and (I1-10). Therefore, the
channel waveguide modes can be studied under the scalar approximation
and the dominant optical field distribution function can be assumed to
have E(x,y) = P(x)Q(y). Hence, equation (11-9) becomes

P"(x)  Q"(y) 2, 2 a2 2,02, ) 2y
By Gty RN ay)-N (9] + K(IN (y)-N"] = 0

(11-60)
where N=/3/1~:o is defined as the effective index of the propagating mode,
Ne(y) is the lateral effective index profile function. Equation (II-54)
can be separated into two 1-D differential equations by using the
effective index method. The effective index essentially slices the 2-D
graded index waveguide in the lateral direction. The mode index Nc(yo)
corresponds to a given thin slice at a specific value y=y . However the
guide with an index profile n(x,yo) at y=y_is now assumed to be
infinitely extended for the purpose of evaluating Ne( yo) Thus the
application of the effective index method results in the following

separated equations:

2
a P(x) + kzlnz(x,y) - NZ()')]P(x) =0
dx2 ° ¢
(I1-61)
2
a7Q¥) | k2(N2yy - N2JOcy) = O
dyZ o e

(11-62)
In (II-60), since y is regarded as a constant, we can sclve Ne(y) at
each value of y by applying the boundary condition along x, that is,
along the depth direction.

The index profile of single channel waveguide formed by the

diffusion process is separable usually which can be assumed as

nX(x,y) = ni t 2n An f(x/fa)g(y/b) x =0



=n x>0
(11-63)
where a=d , b=d are the effective diffusion depths in the depth and
lateral di:ectionz respectively. Substituting (1I-62) into {11-60), we

have

2
d" P
—;—;2—— + kf[ni + anAn f(x/a)g(y/b) - Ni(y)]P =0
(11-64)

After some algebraic manipulation, equations (11-63) and (II-61) can be

normalized as

2

d P

+ Vzg('n)[f(E) - B (p)]P =0 (I1-65)
dgz X m
d ¢ 2

+ Vilgn)B (v) - B 1Q =20 (11-66)
dn y m mn

where Vx=k°dx\/2Annb, Vy=k°dy ZArmb are the normalized frequencies;

“IN%p)-n2i/2 N2
g( n)Bm(n)—[ Ne( ) nb]/ Annb, an (N nbs/ZAnnb, and m, n correspond to the
mode number with respect to the variations in the depth and lateral
direction, respectively. g(n)Bm(n) and an are called the normalized
effective lateral index profile and the normalized effective index,

respectively [5].

By way of the WKB method or ray treatment, the eigenvalue equation

for the equation (II-64) can be expressed as the phase integral form

£
Vx\/g(n) ]' t[f(E)-Bm('rp)]Vzdi;‘ =mu o+ +o (11-67)
0

where q)s:tan'l[n:\/( Bm+.4)/( Z-Bm) ] is the phase shift due to the total
reflection between the air-waveguide interface; p=o for TE-like modes
and p=2 for TM-like modes; A=(n§-1)/(n§-n:) is a measure of the
waveguide asymmetry. ®, is the phase shift experienced by the ray at the

turning point §=€t and equals m/4 [7]. Similarly, for the lateral
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direction, the equation (I1I-65) will give

1

n /2
v [g(w)B (m) - B ]""dn=(m + —)n (11-68)
y n m mn 2

t

where n, is the lateral turning point, i.e. g(nt)B(nt)—B =0. Therefore,
m mn

applying equations (II-66) and (II-67), the diffused optical waveguide

dispersion properties can be studied by the effective index

approximation.

As the matter of fact, in the slab waveguide case, equation (11-66)

becomes
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g€
ty s _ )
ij , [f(‘;/"Bm] d€ = mu + et (11-69)

where V =kd v24nn_ and B =[3m/k. For a fixed m, B is a single value
x % b m m

function of Vx, i.e. Bm=F(Vx). Therefore, as long as we find the

dispersion relation for Bm to Vx in the slab case, the function can be

applied to set up the lateral effective index profile g(n)Bm(n) =

g(n)F[Vx\/g(—7)_;] for any channel diffused waveguide which possesses the
same index distribution function f(x/a) in the depth direction
Therefore, using the normalized notations can save much computation for
analyzing the diffused channel waveguides by the effective index

approximation method [5).

In order to demonstrate the effectiveness of this approach, we
apply the index profile characterized from the K'-Na® ion exchange in
soda-lime glass substrates in the calculation, i.e. the lateral and

depth index profiles in the formula (11-62) are

b
f(x/a)=exp(-x2/a2), respectively, Fig. II-8 (a)-(b) show some samples

g(y/b)-z’erf?w/Zb) [erf[yﬂv/z} -erf [—y—:%ﬁ]] {erf is the error function) and

together with the variational analysis. The results indicate, by

effective index modelling, not only the diffused channel waveguides can
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be studied by the planar techniques with accuracy, but also the
discrepancy between the different polarization modes can be

distinguished by equation (II-66).

I1-6. Scalar Variational Analysis

As we have demonstrated in the previous section, by the effective
index modelling, the 2-D channel waveguide problems can be transformed
into two coupled 1-D planar waveguide problems. Since the effective
index approximation produces larger dispersion values [12] but WKB
method gives smaller ones around the cutoff region (see Fig. I1I-6), the
combination of them can still produce quite good results for predicting
the channel waveguide dispersion property studies under the weak
guidance condition. However, this method is still not suitable for
providing the modal field patterns which is useful for further device
design application. Comparatively, the scalar variational technique is a
more rigorous and flexible method used to study channel waveguides with
an arbitrary index distribution. By the stationary and extreme
properties, this method can produce very reliable dispersion results.
Furthermore, with the modal field information produced by the analysis,
the polarization corrections can also be carried out by this

perturbation techniques [13].

Under the scalar approximation, the wave equation for the

propagating modes can be written as

(V2 + kZn’ay) - 82 = 0
(11-70)
where Ba is the propagation constant of the scalar mode and E=¢x or E=¢y
are the field patterns characterizing the transverse electric fields

which are linearly polarized along x or y directions.

Multiplying equation (II-69) with ¢. and integrating by part yields
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2 2,
. kOJ.Ln (x,y)||? dxdy - ”s{vlqsqz dxdy

B, J‘J‘swz dxdy

(11-71)

where the surface integral is over the entire cross section. The

expression (II-70) is variational, i.e. the exact solution of equation
(II-69) assumes an extrema of Bf in (II-70). Because of the stationary
and extrema properties, the variational method can provide very reliable
results in predicting the dispersion characteristics for waveguides with
an arbitrary index profile. However, the accuracy of the variational
analysis is critically dependent on the proper choice of the field trial

functions.

For the diffused channel waveguides, due to weak guidance and a
step index change on the substrate surface, we can assume that the E

field trial functions are separable, i.e.
d(x,y) = P(x)Q(y) (11-72)

As proposed in the literature {14], we extend the trial function
form to approximate two dimensional channel waveguide [ield
distribution, i.e., on the x and y coordinate directions, we propose the

trial function as following

P(x) = cos(pe)explptan(pc)x/a] xfa 2 0
= coslp(x/a-0)] 0=zxfaz§
= coslp(§-e)]exp{~ptanl p(§-0))(x/a~E)} xfa = €
{11-13)
for even modes
Qe(y) = cos(qy/b) ly/b| s ¢
= cos(qglexpl-qtan(qgX(|y/b|-)] ly/bl 2 ¢
(11-74)
and odd modes
Q_(y) = sin(qy/b) ly/b| = ¢
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[

= sin(qglexplqctan(q¢)|y/b|~C)] ly/b] =2 ¢

(I1-75)
Actually, we choose the trial functions in this form so as to allow the
fields and their derivatives to be continuous at each boundary and
matching point Of the variables in the trial functions, a, b are the
effective  diffusion depths in the depth and lateral directions
respectively; p, o, &, q, £ are all variational parameters. Since we
choose a single function form here wnstead of a sum of orthogonal
functions (Rayleigh-Ritz Procedure), as in some earlier work [l5-16], to
determine these parameters, a nonlinear optimization routine should be
employed. In fact, the single form trmal function not only provides a
better approximation for the fundamental (and low order) modal field of
the diffused waveguide, but also enable us to obtain an analytical
expression of the coupling coefficient which can be more easily

interpreted physically for the multi-waveguide coupling problems.

Substituting the field trial functions and index distribution
functicn (II-62) into the variational expression of the scalar wave

equation (II-70), we obtain

g° = k%n® + 2k%n an Taily, - X2 -I—XE - k% z_l)fx_s
o S T T T T VT
xy x y x
(11-76)
mz mz 4] s
v .ere I =] P(x)dx, I =| Q°(y)dy, I_=|f(x/a)P"(x)dx,
b4 o y o x1 oo

e 2 %8P 2 *8Q 2 o2

Iyx—J’m( y/0)Q%(y)dy, IXZ:J-L I ) dx, IYZ:J_S:F;C—) dy and I"S:II; (x)dx.
For the index profile we discussed in the last section, nearly all of
these integrals are analytically integrable which reduce the computing

time significantly (see Appendix).

By the perturbation approach, i.e. by employing the trial function
used in scalar analysis as a "zero" order solution to the vector wave
equation (II-9), the discrepancy between different polarization modes

can be distinguished by the first-order vector corrections:
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9 & 2.
) J‘IS¢ -—a—§— -5;1— in n (x.y) dxdy

2 2
B.. =B
E 0 2
T ILIQ&[ dxdy
(I1-77)
and
8¢ 38 2
. 2 J‘L¢ 5 Bx In n“(x,y) dxdy
Bru ¥ B - 2
[[.11% axay
(11-78)

for TE and TM modes respectively. In deriving (lI-76) and (I1-77),
equations (II-9) and (II-69) have been used. As for the effect of the
step index change on the waveguide surface, the term (6n2/8x)/n2 gives i

delta function so that the integral in the numerator of (1I-77) becomes

® n%0,y)-1

: Q%y)dy (11-79)
- n(0,y)

sin(2pe) p/2a J

It is worth noting that, in a direction of the refractive index
decrease, the slope of ¢ is negative so that the integrand 1n the
numerators of (II-76) and (II-77) remains nonnegative. Therefore, the
polarization correction always reduces the magnitude of the propagation

constants obtained from the scalar analysis.

With the same channe! waveguide structure as in the last section,
we present the analytical results in Fig. 8 (a}-(b) together with the
EIM analysis. In order to examine the reliability of our analysis, for
the slab case, we compare the variational results with the exact
solution by the transverse resonance method. An excellent agreement Iis
observed even in the vicinity of cutoff. For the channel gudes, the
variational analysis provides an apparent improvement around the cutoff
region compared to the effective index method. Also, both methods show
very good agreement in the region far from cutoff. Fig. II-9 gives an
approximate model field distribution contour for channel waveguide

produced by the variational technique.
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For the wide, i.e. large aspect ratio R, channel waveguides, the
diffusion depth is comparatively small compared with the waveguide
width. The side diffusion effects are, hence, insignificant to the
waveguide properties. Therefore, the 1-D diffusion approximation (i.e.,
g(y)=1) provides very good approximation [ll]. However, for the
waveguide aspect ratio R=0.5, and 2, we find that two dimensional
diffused channel waveguides have quite different dispersion properties
from the one dimensional diffused channel waveguides (Figs. II-10, II-11
and 1I-12). And, because of the side diffusion effects, the waveguide
dispersion properties varied by channel width are much more gentle than
the step index profile (no diffusion in the y direction) waveguides. As
a matter of fact, this property is determined by the lateral index
distribution function g(y). Fig. II-13 shows an example, by keeping the
diffusion depth d=6um, the diffused channel waveguide index distribution
is almost unchanged as the channel width varies from w=éum to w=3um.
Therefore, for the aspect ratio R=w/dx<1 diffusea channel waveguides,

the side diffusion effects can not be ignored (see Fig. II-10}).

I1I-7. Conclusion

In this Chapter, we have discussed some approximate and numerical
methods used for studying the arbitrary index distribution of optical
planar and channel waveguide problems. Under the weakly guiding
condition, the glass integrated optical device designs and analysis can

be well performed with these techniques from the engineering viewpoint.

Appendix:
Substituting the trial functions (II-72) to (II-74) into the

variatiocnal expression (IlI-70), for the index profile function as

discussed in Section II-S, the integrals used in the equation become

©
I;J Pi(x)dx = —%;——[Epmtan( pe)+ctan(plé&-cl)}

-0
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-0

[v]
| (8P y2, . &P
Ixz_[_( 3x Ydx = 2a

Q

o -
1’“{ Fflx/a)P(x)dx = i‘e/—ri—cosz(p[E-O'])exp(t"ﬂ?Et)erfc( E+t) + I”

%5 acosz(po‘)
Ix:s: }:(x)dx = 2ptan(po)

o
where t=ptan(p{€-¢]) and IrfJ cosz(p[x/'a-oﬂ)exp(~x2/a°)ax which should
Ea

be evaluated numerically. For the even mode,

o)
IY:J 0%y)dy = cb+—3-ctan(qc)

©

-t

[g(y/b)o (y)dy = j' g(y/b)o (y)dy = 2b(I +I )

> ao -
Iy2 Ji( 9% )2 dy = q c/b

00

o
where I ‘2=J 8( y’)cosz( g&lexpl-2qtan(ql)(y’-C)1dy’ dand
c

Iglzj g(y’)cosz(qy’)dy' could be evaluated numerically because erf(y’') I
1]

when y’>6. Similarly, for odd mode

i b
J QX yldy = Cb--—tan( qg)
-00
J g(y/b)o (y)dy = J g(y/b)Q (y)dy = 2b(I M S
-0
80 2
Iyz_J_( Vdy = q g/b

)
where IgZ=J gl y’)sinz( qtlexpl-2qtan(qC)X(y’-&)idy’ and
c

Iﬂ-.-[ g(y’)sinz(qy’)dy' can also be evaluated numericalls.
0
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Table II-2. The Effective Indices of Cladded Diffused Waveguides

(T Mode)

1.53um 1.3lum
Exact{TRM) WKB Error Exact(TRM) WKB Error
1.499859 1.49%272 .000287 1.503213 1.502947 .000267
1.429705 1.4%9409 .000295 1.503376 1.203107 .000268
1.469836 1.4S%531 .0001305  1.503517 1.503237 .00Qz8n
1.499949 1.45G54] 000308 1.50363!1 1.503346 .000285
1.500042 1.2%%730 .000312 1.50371¢ 1.503337 .00Q0281
1.500116 1.46¢798 ,000318  1.S03783 1.5034% .000288
1.500173 1.496857 .0CQ0316  1.803822 1.50354+ .00028S
1.500215 1.4$$8%93 ,000322 1.503861 1.50358% .00022%3
1.500248 1.4%9527 .000320 1.503884 1,503522 .000292
1.500271 1.459952 .000320 1.503899 1.50360% .0002¢0
1.500289 1.49996% .000320 1.503%10 1.503620 .0002°%C
1.500301 1.499978 .000323 1.503517 1.503627 .0002%0
1.500311 1.459981 .000327 1.503%22 1.503633 .00028%9
1.500317 1.499991 .000326 1.503925 1.503636 .00Q0289
1.500322 1.499996 .000326 1.503927 1.503638 .000289
1.500325 1.500000 .0C0325 1.50392%9 1.503640 .000289
1.500328 1.500003 .000325 1.503%30 1.503641 .000289
1.500329 1.500005 .000325 1.503930 1.503642 .000289
1.500331 1.500006 .000325 1.503931 1.503642 .000289
1.500332 1.500007 .000325 1.503931 1.503643 .000289
1.500332 1.500008 .000325 1.503931 1.503643 .000288

Remark:
Fabrication Technique: K*-N' ion exchange
a

Diffusion Time: 170 min t: cladding thickness (um)

Cladding Material: SiO2 Substrate: Soda-Lime

1.55um 1.3lpm
Cladding Index: 1.44403 1.44679
Substrate Index: 1.49806 1.50104
Surface Indea. 1.50664 1.50961
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Table II-1. The Effective Indices of Cladced Diffused Waveguides

Exact(TRM)
1.493130
1.499235
1.499325
1.499398
1.499455
1.499501
1.496535
1,498560
1.499579
1.499593
1.499603
1.499610
1.499616
1.499620
1.499622
1.499624
1,.499626
1.499627
1.495628
1.499628
1.499629

Remark:

1.55um
WKB

1.498862
1.498959
1.499041
1.499110
1.495164
1.499207
1.499239
1.499265
1.499278
1.499293
1.499303
1.499311
1.499316
1.499320
1.499323
1.499325
1.499327
1.499328
1.499328
1.499329
1.499329

(TE Mode)
Errer  Exact{TRM)
.000263 1.50253=2
.000276  1.802805
.00028+ 1.502¢904
.000287 1.50297¢
.0002¢2 1.503035
.00029%4  1.503073
.0002%  1.5031C<
.0002%s  1.503124
.000301  1.503137
.000300 1.503146
.000300 1.503153
.000299  1.503157
.000299  1.5031e0
.000299 1.503162
.000299 1.503163
.0002%9 1.503164
.000299 1.503165
.000299 1,503165
.000299 1.5031656
.000299 1.503166
.000299 1.503165

1.3lum
WKB
1.502483

1.502744
1.502793
1.502836
1.502865
1.502882
1.502892
1.802902
1.502909
1.502914
1.502917
1.502%19
1.502920
1.502921
1.502922
1.5Q02922
1.502923
1.502923
1.502923

Fabrication Technique: K'-N" ion exchange
a

Diffusion Time:

Cladding Material:

Cladding Index:

Substrate Index:

Surface Index:

170 min
Si0z

Error
.000222
.00022
.000231
.000236
.000242
.0002359
.000239
.000242
.000245
.000244
.000244
.000243
.000243
.000243
.000243
.000243
.000243
.000243
.000243
.000243
.000243

t: cladding thickness (um)

Substrate: Soda-Lime
1.55um 1.3lum
1.44403 1.44679
1.49806 1.50104
1.50664 1.50961
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Fig. !1-2. Turning point for a mode in smoothly varying index:
(a) increasing index profile,
(b) decreasing index profile.
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Fig. lI-3. The case of an index discontinuity occurring at
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Fig. 1I-9. The approximate modal field pattern for a channel waveguide

produced by the scalar variational technique.
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CHAPTER I

DESIGNS OF A SINGLE-MODE X-BRANCH TYPE DEMULTIPLEXER

II-1. Introduction

Since first proposed as a TIR device in 1978 [1], the X- branch
waveguides, either symmetric or asymmetric, have been extensively
studied in a number of publications [2-3]. Especially, in single mode
integrated optics, the X-branch has become a competitive structure with
the directional coupler in many device designs. Most of these devices
offer important performance advantages such as a low insertion loss,
high extinction ratio, small device dimension, moderaie drive voltage,
simple electrode configuration and etc.. Therefore, it has led to the

possibility of more truly integrated optical circuits [4-5].

Optical multi/demultiplexers are essential components for the
Wavelength-Division-Multiplexing (WDM) optical fiber communication
systems, which can transmit different channels of modulated signals
simultaneocusly. The device functions are to combine and separate the
wavelengths carrying different information channels. Because of their
compact structures, ruggedness with simplified assembly and planar
fabricaticn technology, integrated optical WDM devices are particularly

attractive for single-mode fiber system [6-9].

In this chapter, we will use the X-branch waveguide structure to
design a  single-mode dual-channel integrated optical multi/
demultiplexer which can be fabricated on soda-lime glass by using
single-step ion-exchange techniques [10]. The theoretical background of

the device is introduced in Section 1I-2. Under the effective index
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method approximation, the dispersion equation for studying the X-branch
waveguide properties is derived in Section [II-3. Then, detailed device
property studies and design considerations will be carried out in
Section III-4. Lastly, some further improvements are discussed in
Section III-5.

I11-2. Pevice QOperation Principle

As shown in Fig. III-l, the principle of the X-branch type
single-mode WDM device i{s based on the wavelength-dependent two- mode
interference in a two-mode waveguide, which is adiabatically coupled to
the single-mode input and output waveguides by tapered directional
couplers. The two-mode region of WDM waveguide can be designed to
consist of a  higher refractive index «central region with an
approximately doubled index increase, or a wider central region with an
approximately doubled waveguide width. In an; case, for optimum
operation, the central region must contain two guided modes of each
polarization. In such a waveguide system, due to the adiabatic coupling,
an input signal from one of the arms can be converted into two normal
modes (one symmetric and another antisymmetric). Propagating through the
symmetric entrance taper, two-mode center region, and then the symmetric
exit taper again, these two normal modes do not exchange energy along

the device, i.e.

l/ls(x,y,z)lpi(x,y,z)dxdy =0
s

(1i-1
because the symmetric mode l/ls is orthogonal to the antisymmetric mode :/;a

at any cross section z.

However, since the two normal modes have different propagation
constants, a phase difference is accumulated. The output state of the
coupled guide structure is determined by the interference of these two

modes [11]
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)

2 2
2( asaa)cos (¢/2) + ( ocs—-aa) /2 (I11-2)

P_/P
= In .2 2
2o & Jsin( ¢/2) + (ocs-aa) /2 (111-3)

Px/Pln

where Pln is the input power, a is the relative excitation amplitude of

u

the symmetric mode w. and « is that of antisymmetric mode wa.

The accumulated propagation phase difference ¢ is the sum of that
in the converging and diverging region ¢t and in the two-mode <center

region ¢c

g0 = 3 (A) + ¢ (A) = 8 (WL + | 8B (A2)d:

taper
region

(111-4)
with ABt=Bst(A,z)—Bat(A,z), in the tapering region and ABC=BSC(A)-I3‘C(7\)
in the center region, where ﬁs, Ba are the propagation constants of the
symmetric and antisymmetric modes, respectively, and the subscript t
denotes the taper region and ¢ denotes the two-mode center region. The
accurnulated phase difference ¢ depends on the wavelength as a result of
the different waveguide dispersions of the two modes. Near an operating

wavelength A _, the modal dispersion may be approximated by

ABl(KOJfAA) = ABl(Ao) + A i=t c
(111-5)

where ¥y represents the differential waveguide dispersion at Ao

8([38-' 3a)‘

oA A

-

a'l i=t, ¢

(111-6)
From (III-5), the wavelength dependence of the phase difference in

the two-mode center region can be approximated by
o (A +AX) = AB (A +AAML = ¢  + 7 AAL
c ° [4 ° co c

(I11-7)

where ¢c°=ABc( A_JL is the relative phase difference at Ao.
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On the other hand, as will be shown in Section Il1-34, wavelength
dependence of modal dispersion in the taper region is much smaller than
that in the two-mode center region, i.e., ¢t is much less wavelength
dependant than ¢c. Hence, the relative phase difference in the taper
region can be approximated as being nearly wavelength independent

compared with that in the center region:

¢t(;\°+AA) & ¢t(A°) =4,
(111-8)

(i.e., 6¢t/67\ ¢ 7 L near A=A ).

Combining (III-2), (III-4), (III-5) and (III-8) and assuming the
branch waveguides are sufficiently separated in the input and output
flare, i.e., two a’s will be nearly identical aszocazl/\/é when one arm is

excited, we can have

?o s
R S R
{I111-9a)
where
Ahn=n/a'cL
(111-9b)
From (III-9a) it can be seen that the channel separation, ie,

wavelength difference between ON and OFF wavelength, is mainly dependent
on the waveguide length in the two-mode region and seems to have a

nearly constant value of (II[-9b) regardless of the branching angle.

In order to demultiplex the signal Al and 7\2 which are input
together from port 1, i.e., export them to port 2 and 3 respectively,

the total propagation phase differences should be:

o 7\1)
o( 7\2)

ABC(AI)L + ¢t(kl) = 2nn (111-10)
ABC()\z)L + ¢t(7tz) = (2n+Dn (111-11)

where n is a integral number. Therefore, the output states become:
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P[P (1) = cos’[¢(r )/2] = cos”[nn] = 1 (I11-12)

= ein? = einl - -
Px(?\l)/Pm(Al) = sin [¢(Al)/2] sin“[nn] = 0 (111-13)
and

— 2 = 2 - -
P[P (A,) = cosl¢(r )fe] = cos'l(nt1f2)n] = 0 (IlI-14)
o a2 — a2 - -
P AP (X)) = sin"[¢(d )/2] = sin“[(n+1/2)n] = 1 (II-I5)
These mean that the WDM devices operate like a bandpass filter to
separate the signals Al and )‘z input from the same port 1 to different

output ports 2 and 3, respectively.

However, since the extinction ratios for the two signals Al and A?

are described by the following formulas:

D(Al) = IOLogm(P =/Px)

IOlogm{ctg2[¢(7\1)/2]} (111-15)

D(A) = 10log, (P /P ) = 10log, {tg’I$(A )/2]} (111-16)

any device parameter errors caused by fabrication deviations might

degrade the extinction ratio seriously as:

dD(Al) 20 1
= X
d¢ In10  sinf¢(x )]
(111-17)
dD(Az) 20 1
= X
d¢ In10 sin[¢(A2)]
(I11-18)

since sing=0 when ¢=2nn and ¢=(2n+)n. Therefore, in order to minimize

the fabrication tolerance, the device properties via the structure

parameters should be studied elaborately.

II1-3. Dispersion Equation
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For the symmetric X-branch waveguides, the analysis based upon the
normal mode interference needs not refer to the modal field information
because the condition (III-1) 1is satisfied. Therefore, as we have
discussed in the last chapter, the effective index method provides a
very good approximation to be applied. As shown in Fig. HI-2, in the
taper region, the branched waveguide is equivalent to a five-layer
planar waveguide system with their respective <ffective indices Next,
we apply the transverse resonance method to derive the normal modes’

dispersion equations for this five layer planar waveguide system

In the five-layer waveguide system, because 8/6x=0, for the It

modes, as we have discussed in Chapter II, these are

., 8E _, OF
Ho=-d X and H = 3. %
y wp 8z z WM dy

(111-19)

and the local transverse wave impedances are defined as

+ x - Ex
Z = - — or zZ = —
H

(111-20)
where + means that the propagation is along the y direction and follows
the right-hand screw rule with the tangential field components Ex and
Hz.

The field solution for the five layer planar waveguide system (See

Fig. III-3) can be expressed as

E = E; exp(kby) y=0
= 1-:; exp(-jk_y) + E_ exp(jk y) Osy=w,
= E; exp(-k_y) + E_ exp(k y) W, Sy=w +p
= E; exp(-jk y) + E_ exp(Jk y) W HpSysw +piw,
= E; exp(-kby) w_ *pHw Ty

S1




(I11-21)

where

2 2,2,1/2 2
-n°k") n” -B
b ef

k =(8 and k =( 2y12
(111-22)

Therefore, the local transverse wave impedances in each region are

+ 0 - + -
Zl T Tk 21’ Zz "k 22
b e
(I11-23)
and
+ + + +
Z° =2 =Z", zZ" =2
1 2 4
(I11-24)

where the physical meaning of Z:=Z; is that the media in which the light
wave propagates are reciprocal. Therefore, according to the transmission

line theory, at y=0, we have

. Jeu
Zl;m: Zl = kb
(I11-25)
Since
Z + Z tanh(jk y)
Z =7z 1 c V'
in e Zc + thanh(jkyy)
(111-26)
at y=w, we obtain
. le-nl + Zztanh(,)key) ) Juu, ke + kbtan(kewl)
2. 72 - L tanh( jk y) ke kb - ketan(kewl)
2 inl e
(111--2°1)

and, at y=wl+p,
¢ L, D
Z n

=z
in3 3 -
z + le'nztanh(kby)

+ Zatanh(kby)
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Juu [k +k tan(k w )1k + k [k -k tan(k w )]tanh(k p)
o e b e 1 b e b e e 1 b
k, ke[kb—k tan(kewl)] + kb[ke+kbtan(kcwl)]tanh(kbp)

e

2 2 .2
. ¢ - - ')
Jun Zkbkeﬂk +ke)tan(kew‘)exp( 2kbp)+(;:b ke)tamkeux’

[

2

k 2k k ~(k2+kPtan(k w Jexp(-2k p)+(k>-kStan(k w )
b b e b e e 1 b b e e 1
(11i-28)

On the other hand, at y=wl+p+W2,

(111-29)

and, at y= prw,

R + . .
. Zln4 + Z4tanh(Jkey) ) Jop, k_ o+ kbtan(kcwz)
+ k k- ktan(k w )
4 b e e 2

=27 =
3 R )
zZ + Zl n4tanh(,}key) e

in3

(111-30)

. . L R
To satisfy the transverse resonance condition Zm3+2 m3=0, we have

. 2 .2 _ 2_,2
Jou, Zkbke+(kb+ke)tan(kew1)exp( .2kbp)+(kb ke)tan(kewl)

2 2 2 2
kb Zkbke-(kb+ke)tan(kew1)exp( Zkbp)+(kb ke)tan(kawl)

Jop  k_ o+ kbtan(kewz)

Kk Tk tankwo - °
e b e e 2

+

(111-31)

at y=w +p, that is,

{2k _k +(k>~k )tan(k w )H2k k +(k>-k)tan(k w )}
b e b e e 2 b e b e e |
~exp(~-2k_pX k*+k%)%tan(k w )tan(k w.) = 0
b b e e 1 e 2
(111-32)
This is the dispersion equation for TE modes in the five layer planar
waveguides. When w2=wl=w, i.e., the waveguide is symmetric, the above

equation can be split into
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- il

2 .2 2,2 _
2kbke+( kb-ke)tan( kew)—exp( kbp)( kb+ke)tan(kew) =0
(111-33)
for the even modes
2k ¥ Hk>-k“tan(k witexp(-k p)(k*+k*)tan(k w) = 0
b e b e e P bp b e e
(111-34)

for odd modes, respectively. Actually, because Hz and Ex equal to O at
y=w1+p/2 for TE even and cdd modes, respectively, we can build up the
equivalent boundary conditions as open and short circuits there for them
respectively. By applying the transverse resonance condition again, the
dispersion equations (III-33,34) can be verified directly by repeating

the similar derivations as above.

Similarly, with the definitions of the local transverse wave

impedance for TM modes as

‘- . 2 _ - +_ 2 5
Z= kb/,]mz:onb =Z, z, ke/weonef Z2
(I11-35)
and
+ + + + +
ZT = 2" =27, Z" =27
1 3 2 4
(T111-36)
we can obtain the dispersion equation for TM modes as
{2g g +(g’-g)tan(k w )H2g g +(g*-g Itan(k w )}
gbge gb ge e 2 gbge gb ge e 1
-exp(-2k p)g>+g*)tan(k w Jtan(k w_) = 0
b b e e 1 e 2
(111-37)

2 2 . . . .
where gb--kb/nb and ge—kb/ne. If the waveguide is symmetric, i.e.,
W, =W =w, for the even and odd modes, respectively, the dispersion

equations are
28 g +(g2-g2)tan( k w)-exp(~k p)(g2+g2)tan( kw)=0
b~ e b Te e b b e e

(111-38)

and
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2g g +(g2—g2)t1n(k w)+exp(-k pX g2+gz)tan( kw)=20
b e b e e b b Te e

(111-39)

Same as the TE modes, the equivalent boundary conditions as short and

open circuits can be built up respectively for TM even and odd modes at
y=w1+p/2 since Ey of even modes and Hx of odd modes are zero there. By
satisfying the transverse resonance condition, the equations (111-38,3%)

can also be obtained independently.

It is worth mentioning that the same results can also be found 1n
the literature {i2] by the field-matching approach. However, for the
multilayer dielectric waveguide problems, that approach requires the
solution of a set cf high order linear equations which is difficult to
obtain as the layer number increases On the other hand, the transverse
resonance method provides an easier manner to derive the dispersion

equations as shown above in spite of the layer number increasing

I1I-4. Design Considerations

As we mentioned in the Section III-2, when we design the X-branch

waveguides, there are two ways to obtain the two-mode region [{1].

1} by doubling the index increase.

2) by doubling the guide width.

For the double index choice, since it makes a larger difference of the
propagation constants between the symmetric and antisymmetric modes, the
overall device length can be reduced. However, it also makes the output
of the devices very sensitive to the induced refractive index
perturbation. It may make the fabrication conditions more stringent. In
fact, the required two-step processes might cause an index asymmetry
during fabrication. Further, there may exist many modes 1n the
intersection region as the index is doubled. Therefore, any
unintentional fabrication error may cause the device performances to
degrade [13]. Alternatively, using a wider width to replace the double

refractive index in the intersection region might be simpler on
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fabrication since only one lithography and one ion-exchange step are
involved. To be relatively free from asymmetry (since the device
properties are mainly dependent on the two-mode center region), this
approach could also be easier to get a better extinction ratio than that
using the double index structures. For the soda-lime glass substrate,
since the refractive index can not be adjusted by applying an electric
field as 1n LLNb03 material, it would be better to choose the second

method in the design and the eventual realization of this device.

According to the device configuration in Fig. III-l, the double
width symmetric X-branch waveguide possesses four structure parameters:
the waveguide width W, the waveguide diffusion depth d (or diffusion
time t), two-mode interaction region length L, and the entrance and exit
taper flare angle 6. Essentially for the dual channel WDM devices, three
conditions have to be met. Namely, equations (II1I-10), (III-1l) and n
must be an integral number under the single-mode operation condition.
Next, we are going to discuss the device property dependence on these
parameters. All of the numerical analyses are based upon the ion

exchange characterization data in reference (16] under the working

temperature T=385"C (See Table III-l, in which d=\/l-)et and D‘3 is the

effective diffsuion coefficient).

A. Effect of the taper flare angle

Fig. 1II-4 shows that the propagation constant differences between
the symmetric and antisymmetric local normal modes decrease very rapidly
as the separation between the two branch waveguides increases. It means
that the contribution of the accumulated propagation phase differences
are very small beyond the two-mode center region (a/w=1). Moreover, Fig.
III-5 shows that the wavelength dependence of the accumulated phase
difference ¢t (obtained from equation (IlII-4) where the taper region
length for the integral is set as L=p/2tg(9/2), p=50um is the separation
between the two branches) is very small (A¢t/A7\zO.5 rad/um) as we stated

before. Comparatively, Fig. I1I-4 at a/w=1 also reveals that, in the
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two-mode center region, the wavelength dependence of the phase
difference between the symmetric and antisymmetric modes is much more
significant  since L is long  usually {around 3500um) and
A¢C(A)/AA=ABC(A)L/AAz14.5 rad/um). Therefore, i order to mimmize the
device length, it would be better to choose the taper flare angle as
large as possible. However, since K'-ion exchanged surface waveguides
are weakly guiding structures, too large a branching angle will generate
the apparent radiation field. Therefore, a fuller investigation of this
problem should employ some other numerical methods such as the Beam

Propagation Method (Refer to Chapter 1V).

Since the wavelength dependence of the accumulated phase difference
in the taper region ¢t is small (See Fig. lI-5), and as the branching
angle varies, it changes almost the same amount for all wavelengths,
especially for the larger flare angles. Therefore, the variation of the
branching angle will result in nearly parallel shift of all the channel
wavelengths while maintaining nearly constant channel separation A4A
value (See Fig. 1I1-6) [9]. This property 1s very interesting n
considering the realization of cascaded multichannel WDM devices [14]
especially in soda-lime glass substrates where no electrooptic tuming

can be applied to effect the same shift.

Fig. 1III-7(a) shows a multichannel WDM structure constructed by
cascading dual-channel demultiplexer with proper parameters, where the
angle tuning is adopted. For the structure, it is convenient to let all
individual X-branch waveguides have the same waveguide width and depth
(for one step ion-exchange) in the design. As an example of multichannel
WDM design, a four-channel Wavelength Division Multiplexer 1s shown 1n
Fig. 7(b). The proper operation of this structure requires that thr
channel wavelengths of waveguide 1 and 2 should lie on the successive
channel wavelengths of waveguide 3 as shown in Fig I1I-7(c). For
example, waveguide 3 selects signales Az and A4 to pass by waveguide 2
If the peak and node of the waveguide 2 transmission curve coincide with
the peaks of the waveguide 3 transmission curve, then the signals Az and

A4 can be further separated to port P2 and Pz’ respectively. From the
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two-mode interference model expressed by equation (III-9b), we know that
AAH is inversely proportional to the length of the center two-mode
region. Hence, the channel separation of waveguide 3 can be half that of
waveguides 1 and 2 if the center two-mode region of waveguide 3 is two
times longer than that of waveguides | and 2. Again, by adjusting the
flare angles of X-branch waveguide 1 and 2 to shift their channel
wavelengths horizontally to the desired positions, the four channel

wavelength division multiplexer can be constructed.

B. Effect of the waveguide width

The waveguide width is also an important parameter to determine the
channel separation AX of the WDM devices. Since the total accumulated
phase difference arises mainly from the two-mode center waveguide
region, we can approximately discuss the effect of width on the device

dispersion properties by considering this region first.

Figs. 11I-8,9 show two typical channel waveguide dispersion curves
by the width variations for the TE and TM modes respectively, where the
heavy dark lines indicate the range in which waveguide supports two
modes only for both wavelengths. From them, firstly, we can find that
the propagation constant difference AB(A) between the first two (even
and odd) modes are increased as the waveguide width decreases. This
means that narrower waveguide width for the two-mode center region
produces larger propagation constant differences, hence resulting in
shorter overall WDM device dimension. Secondly, the propagation constant
difference at the longer wavelength is smaller than that at the shorter
wavelength despite being nearer to cutoff. This is because the
refractive index of glass at the longer wavelength is smaller than that
at the shorter wavelength (material dispersion properties [I5]).
Therefore, for the K -ion exchanged glass surface waveguide, material
dispersion has the stronger effects than the waveguide dispersion.
Thirdly, the dispersion curves for the longer wavelength are much

flatter than those for the shorter wavzlength. According to the two-mode
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interference principle, we can expect that, as a WDM device, the output
of the shorter wavelength will be more sensitive to the waveguide width
deviations. To see this more clearly, some further results are presented
in Figs. III-10-14 where all of the width variation ranges correspond to
the case that two modes only are supported in the waveguide for either
wavelength. It can be seen clearly that the AB courves for the shorter
wavelength are almost all linear with large slopes Moreover, the longer

the diffusion time is, the larger slopes they have.

By solving the equations (II1-10) and (IlI-11), for a pair of given
channel wavelengths after setting the diffused time t (i.e. the diffused
depths d), the waveguide width of X-branch type demultiplexer can bte
uniquely determined. Since L is the same in both equations, we can
substitute equation (I1I-10) into (III-11) then solve the resulting
equation by a root-search technique. Hence, we can not choose the
waveguide width arbitraryly to design a demultiplxer, given the diffused
depths or vice versa. In the Figs. I11-10-14, we use the vertical dash
lines to show the solutions of waveguide width 2W for demultiplexers. It
is worth noting that numerical calculations indicate, if we choose a too
shallow waveguide deptn d (or a too short diffusion time t), there may
not exist a proper width 2W to let n take an integer number for the
given channel wavelength pair. Although the device parameter number 1s
one more than the working condition number, these 1s still no vertical
dash line in Fig. 1II-11 which means we can not find a prooer solution

for equations (III-10) and (IlI-11) within the two-mode working range

C. Effects of the Waveguide Parameter Errors

Sir.ce the propagation constant difference between symmetric and
antisymmetric modes is small for btoth wavelengths in the X-branch
waveguide (about 5x10"3rad/um), a few micron length error in the center
two-mode waveguide would hardly cause any extinction ratio to degrad
significantly in device output. The calculations show the length usually

is about 3500um long.
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On the another hand, because the wavegutde depth is determined by
the ion diffusion time. According to our own characterization work of
the K'-ion exchanged in soda-lime glass substrates [16], we know that,
in infrared region, the index profile in the depth direction can be

expressed approximately as
n(x) = n + An exp(-xz/dz) (111-40)
b s

where Ans=0.010 or 0.009 for TM and TE modes respectively and are almost
independent  of the light wavelength, d=(Det)1/2 is the effective
diffusion depth, Dc is the effective diffusion coefficient which depends
on the lhight wavelength and polarization. For example, under a working

temperature T=385C", they are [16]

D =0.06198( um)z/min for TE modes
D =0.06024(um)’ /min for TM modes  at A=l152um
D =0.06918( um)z/min for TE modes
D _=0.06762(um)* /min for TM modes  at A=L523um

As to the data for the other wavelengths, they can be obtained by
interpolation or extrapolation from them (See Table III-1). Therefore, a
diffusion time error will cause the diffused waveguide index to differ
from the design value, namely, cause the effective index errors of the
equivalent waveguides in the effective index modeling (See Fig, I1II-2).
Figs. [II-15 show two computation sample results for t=170min and
t=350min (For both times, the waveguides all support single depth mode
at both wavelength 13lum and 155um). Because the derivative of
exp(-xz/dz) versus d is a monotonic decreasing function as d=(Det)1/2
or t increase. The longer the diffusion time is, the smaller the index
error is caused by the same amount of diffusion time deviation At, i.e.,
ancr(tl)>6nef(t2) if t<t, where snef=nef(t+6t)-nef(t) and n_ is the
effective index of the equivalent channel waveguide (See Fig. III-2). It

seems we can choose a longer diffusion time in design to gain the
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fabrication telerance on the diffusion time. However, as the refractive
index of channel waveguide increases, in order to maintain the single
mode operation in the branch waveguides, the channe! width has to be
narrower which will cause the width deviation to afrect the extinction
ratio more sigmficantly. Therefore, a trade-off is necessary. In our
design, we choose the diffusion time such that the device extinction
ratio due to *2min diffusion time deviation will not decrease to less
than 20dB (See Fig. III-19). Since the effective diffusion coefficients
are not the same for the different wavelengths, the device output
extinction ratio degradations due to the same diffusion time deviations
are also different. With the same amount of the Jdffusion time
deviation, the longer channel wavelength always have more adversc
effects. This is because the ratio Snef//lnef for the longer wavelength
is larger than the shorter wavelength (See Table 111-2), where
Anef=nef—nb is the refractive index difference between the channel and

substrate (See Fig. 11I-2).

Employing the photolithography technique, due to the exposure and
etching qualities, a #0.3um width deviation of the channel waveguide is
unavoidable in fabrication. Figs. III-16. present two design samples
whose output extinction ratio degradations versus the width crrors ot
both wavelengths. They show the degradations at ll=1.31pm are always
worse than those at A2=1.55p.m. Actually, this is because, for Al</\?,

552——“ and An (A )YAn (A), where An =n -n (See Table [III-2),
A A ef 1 ef 2 ef ef b

12
therefore,

an
kbt >
3 Anef(kl)

a2n

A
1 2

An (A)) (111-41)
ef 2

Because 2mn b/A<B<21mM/A, the dispersion curves for the longer
wavelength are always flatter than those of the shorter wavelength (sec
Fig. 111-8,9). Therefore, we can conclude that applying the two-mode
interference principle to design the optical multi-/demultiplexer for
any structure in glass substrates, the extinction ratio degradations
caused by the width deivations at the snorter wavelength is always

larger than that at the longer wavelength. It is very important to
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choose the correct design parameters so that the highest extinction
ratios can he obtained i1n the absence of fabrication errors as designed.
Otherwise, results as shown in Fig. III-17 would be obtained, implying
that some deliberate fabrication error would yield higher extinction

ratios

As for the asymmetry of the waveguide width in the branch region,
since the device dispersion properties are determined mainly by the
center two-mode region, it will not cause more adverse effect on the
extinction ratio at the output [i3]. Actually, this is also a main

advantage of this structure over the directional coupler.

D. Effective Index Calculation.

In most of the integrated optics design, people usually apply the
well-known WKB method to calculate the effective index. The WKB
approximation 1is based upon the assumption that the variation of
dielectric index 1s very small over a distance of optical wavelength
order. From the discussions in the last chapter, we know that WKB method
shows deviation from the TRM (exact) results around the fundamental mode
cutoff region In calculating properties of waveguides by ion-exchange
in the soda-lime glass in the infrared region, the WKB approximation
yields in error within 1x10™* in multimode region and around 2.5x10™" in
the sing:¢ mode region (Refer to Fig. II-6). Although these can satisfy
the design requirements for most of the single-mode integrated optics
devices, they will cause larger design deviations for our X-branch type
WDM device. Table III-3 gives an example to show the differences of the
device design parameter values provided by WKB and transverse resonance
methods, respectively. The reason for the surprising differences is
mainly because the two-mode interference principle is used and our
device length is quite long compared with the wavelengths, a small error
in the effective index calculation (or AB) will be amplified in ¢, which
is the accumulated phase difference over the device length. For example,

by the channel width 2W=17.74um, the effect.ve indices by WKB (see Table
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II1-3) give the propagation constant differences between the even and
odd modes as 2.17\'10_3rad/um and 3.199\10'3rad/um for the wavelengths
L55um and 1.3lum, respectively. However, by 1the transverse resonance
method, the propagation constant differences are obtained as
2.729x10'3rad/pm and 3.38\10_3rad/um for the wavelengths 1.55um and
1.31ym, respectively Multiplying the length 3464um, we will have
accumulated phase differences as A¢WKB(1.55)= 7.5169rad, A(,bWKB(I.JI)r
11.0813rad  and A¢TRM(1.55)=—' 9.4532rad, A¢TRM(1.31)= 11.708.rad The
differences A¢TRM(1.55)—A¢wm(1.55)=1.9363rad is very large (over mn/2)
Hence, to have the same accumulated phase differences, a few hundred
micron of length difference is expected Besides, the longer the
wavelength, the larger error the WKB approximation yelds This
wavelength dependent effective index calculation errors alsn make the
device parameter determinations differ more from the exact values since
for WDM device equations (III-10) and ({IiI-11) should be satisfied at
the same time with n being 4 or 5 usually {(for power divider n=l}
Therefore, we decide to use the transverse resonance method in all of
our design calculation and believe that all passive single-mode
integrated optical device designs, based on the phase interference

principle, should be carried out with caution.

I11-5. Improvements

From the above design calculations and discussions, we know that
fabricating a doutle width X-branch type WDM devices requires only
one-step ion-exchange, hence, involving only one photolithographic
process, which not only simpifies the fabrication process, but also
reduce any asymmetry possibilities induced by a multi-step fabrication
process. However, the above analyses show that the device disper<ion
properties are still very sensitive to the waveguide width deviations
From a practical viewpoint, less than 20dB channe! 1solations due to
+0.3um width deviation 1is still too rigorous to reahize under the
present state of art. Hence, seeking .« compensation method for the

device fabrication is very necessary for obtaining good device
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performances.

Similar problems also occurred in the directional

coupler-type WDM device design [17], where the authors used the cladding

deposition method to adjust

extinction
fabrication
deviation,
wavelength
wavelength

wavelength

the chez.anel wavelength shift (or output

the width deviations in
111-16(a)),

of

ratio degradations) due to

under *0.3um width
the

As discussed above (see Fig.

the extinction ratio degradation longer channel

1s still acceptable and only that of the shorter channel

needs to be improvcd. However, when the shorter channel

shifting is improved by a cladding, the center wavelength at

the longer channel wavelength needs to be adjusted also for the more
sigmificant effective index increment. Therefore, it is difficult to use
a compensation method to improve the device properties for both
wavelengths at the same time. Consequently, a cascaded structure (see
Fig. 1I-18{a)) was proposed [17] to separate two signals first by
coupler A, then compensate their wavelength shifts in couplers B and C
separately. According to the discussion in reference [i18], to function

as multi/demultiplexers, this configuration can also have the advantage

of having higher stop-band rejections since the outputs are described by

P p*
. = = 4 4
Pz/Pxn = — x = cos (¢/2) (I11-42)
P.. Pin
B A
P P
P /P =Xy X = sin‘c¢f2) (I1-42)
4 in A
P Pin
X
and the extinction ratios are
-~ i - 2 -
D(,\l) = 10log (P 2/1>4) = ZOLogm(ctg [¢(A1)/2]} (111-44)
- -— 2 -
D(A) = IOloglo(P4/P2) = 20log f{tg [¢(7\2)/2}} (111-45)

which mean the

(IT1-15,16)).

stopband rejections are doubled (Refer to equations

To solve the similar problems,

II-18(b) the

we also apply the configuration

shown 1n Fig to get ad justable and high stopband
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rejection X-branch type multi/demultiplexers Since our waveguides are

embedding, the cladding compensation effects on the center wavelength

shift are monotonic (See Tables II-12) However, employing the
photolithographic technique, the waveguide width deviation 15
uncontrollable 1n being + or - in fabrication. In order to be able to

compensate for any width fabrication deviation within *0.3um, we let the
width of coupler B be 0.3um larger than the design value In this case,
the outputs for port #2 and #4 are described by

i

cos4[¢(Wl)/2] (111-40)

PZ/Pln

P4/ Pln

sin*l¢(W )/2]xsin’[§(W +0.3)/2] (11-47)

So, the extinction ratios can be written as

2 2
D(Al) = IOloglo(ctg [¢(W1,7\1)/2]}+IOlogm{cos [¢(W1,Al)/2]}
.2 '
~10log {sin“[$(W +0.3,x )/2]} (111-48)
2 2 o
D(}\z) = 10[og10(tg [«p(Wl,Az)/ZII—ZOLoglo{cos [¢(W1,A2)/r_]}

+0log _(sin [¢(W +0.3,2 )/2]) (111-49)

where ¢ is the total accumulated phase difference for passing a single
X-branch waveguide. Figs. III-19,20 present the calculated results of a
design example. They indicate that, when the waveguide width deviations
are positive (within 0.3um), we can ignore the wavelength shift at
A1=1.55um, since the extinction ratios are still very high, and
compensate that at A2=1.31um by depositing a cladding over the two-more
center region of coupler B to get better extinction ratios Principally,
a cladding can 1ncrease the effective 1ndex of a wavegude, hence,
increase the propagation constant difference between the cven and odd
modes in the waveguide. Because positive width deviations reduce  that
difference (See Figs. I1I-8,9), we can apply the cladding compensation
method to offset the effects. The larger the positive width deviation
is, the thicker cladding is required for that purpose In Fig
[11-20(b), the material SiO2 is used (n=1.44679 at 13lum [I5]) where

the signs o indicate the improved output extinction ratio results by the
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corresponding cladding thicknesses. On the other hand, for the negative
width  deviations within  0.3um, the extinction ratios for both
wavelengths are almost all over 30dB. Such extent of the extinction
ratio degradations needs not be compensated. Therefore, applying this
new configuration and with the cladding compensation method for the
positive  width deviations, we, under the condition of the same
fabrication deviations, are able to make a demultiplexer with an

extinction ratio above 30dB.

I11-6. Conclusion

In this chapter, we have carried out the preliminary design of a
single-mode  X-branch type optical WDM device and the fabrication
tolerance studies Based upon these analyses, we know, under the present
laboratory conditions, any passive integrated single-mode device, based
on the phase interference principle in the design for glass materials,
would still be very challenging if we could not find the compensation
method to improve the device properties. Hence, we have applied the
three cascaded zero gap coupler to design an adjustable single-mode
demultiplexer in the soda-lime glass with high stopband rejections. The
theoretical analyses indicate that it is possible to achieve an
extinction ratio greater than 30dB for both wavelengths with the

cladding deposition improvement.

References:

[1l Chen S$. Tsai, Bumman Kim and Fathi R. El-Akkari, "Optical channel
waveguide switch and coupler using total internal reflection”,
IEEE J. Quantum Electron., vol QE-14, pp. 513~ 517, July, 1978.

{2} A. Neyer, "Electro-optic X-switch using single-mode Ti:LiNbO3
channel waveguides", Electron. Lett., pp. 553-514, 1983.

(3] Gary E. Betts and William S. C. Chang, "Crossing-channel waveguide

electrooptic modulators”, IEEE J. Quantum Electron., vol. QE-22,

66




(4]

(5]

{6l

(71

(8]

[9]

[10]

{11}

[12]

[13]

[14]

pp 1027-1038, July, 1986.

A. Neyer, "Optimization of X-switch for integrated optical
switching networks"”, Proceedings of [00C-ECOC, Venise, Italy, pp.
369-372, 198s.
L. Thylen, “Integrated optics in LleOa: recent developments 1n
devices for telecommunications”, IEEE J. Lightwave Technol. vol
LT-6, pp. 847-861, lune, 1988

A. Neyer, "Integrated optical multichannel wavelemgth multiplexer
for monomode systems”, Electron. Lett., vol. 20, pp 744-746, 1984,
F. Rottmann and E. Vcges, "Low-insertion-loss, turnable wavelength
multiplexer on Lithium Niobate", Electron. Lett, vol. 23, pp.
1007-1008, 1987.

F. Rottmann, A. Neyer, W Mevenkamp and E Voges, "Integrated
optical Wavelength Multiplexers on lithium niobate based on
two-mode interference”, J. Lightwave Technol, vol LT-o, pp
946-951, 19883.

Y. Chung, J. C. Y1, S H. Kim and S. S. Choi, "Analysis of a
tunable raultichannel two-mode-interference wavelength division
multi/demultiplener”, J. Lightwave Technol.,, vol. LT-7, pp.
766-776, 1989.

G. L. Yip and J. Albert, "Characterization of planar optical
waveguides by K+—ion exchange in glass", Opitcs Lett., Vol 10, pp
151-153, 1985.

R. A. Forber and E. Marom, "Symmetric directional coupler
switches"”, IEEE J. Quantum Electron., vol. QE-22, pp. 9il- 919,
1986.

H. Yajima, "Theory and applications of dielectric branching
waveguides”, in Proc. Symp. Optical and Acoustical Micro-
Electronics, pp. 339-359, (New York, Apr. 1974).
Kamal Geol & William S. C. Chang, "Extinction ratio degradation duc
to asymmetry in zero-gap directional coupling and crossing channel
switches”, IEEE J. Quantum Electron., vol. QE-23, pp. 2216-2223,
1987.

J. P. Lin, R. Hsiao and S. Thaniyavanrn, "Four-channel wavelength

division multiplexer on Ti:LiNbOs", Electron. Lett., vol. 25,

67



[15]

(16]

(17]

(18]

pp 1608-1609, 1989.

Edward D. Palik, "Handbook of Optical Constants of Solids",
Academic Press Inc., 1985.

G. L. Yip, K. Kishioka, F. Xiang and Jl. Y. Chen, "Characterization
of planar optical waveguides by K+-ion exchange in glass at 1.152
and 1.523 um", Submitted to OE/FIBERS '91, SPIE, Boston, 1991,

K Imoto, H Sano, M Miyazaki, H. Uethuka and M. Maeda,
‘Compensation for fabrication-induced center wavelengzth shift in a
coupled waveguide type Multi/Demultiplexer”, Appl. Opt., vol. 28,
pp. 1904-1909, 1989

K Imoto, H. Sano and M. Miyazaki, "Guided-wave mult.’
demultiplexers with high stopband rejection”, Appl. Opt., vol. 26,
pp. 4214-4219, 1987.

68




Table III-l. Surface Index Change and Effective Diffusion Cocfficient

Alum) AnsTE-3 AnsTM.s DeTE(umz/min) Dem(umz/mm) n
1.152 8.56x10 10.09~10 0.06198 0.06024 1 5030
1.31 8.564x10_3 10.06)(10-3 0.06505 0.06338 1 50104
1.523 8.57>\10-3 10.03><10-3 0.06918 0.06762 1.4984
1.55 8.571)(10‘3 10.02:\10_3 0.06970 0.06816 1.49800

Rzmark: The working temperature of ion exchange is T=385"C

Table III-2. Channel Guide Effective Index Deviations by Diffuston lime

Time 1.55um L3lum

min n én dn_/An n sn én_/an
ef ef ef ef ef el ef ef

167 1.4988299 ~3.83x107> -4.74%  1.5024282 -4.15-10° -2 90%
168 1.4988426 -2.56x107° =3.17%  1.5024420 -2.77.107" -1 947%
169 1.4988555 -1.27x10™° -1.57%  1.5024558 -139.10°° -0.97%
70 1.4983682 0.00x10™° 000% 15024697 0.00-10°° 0.00%
171 1.4988808 1.26x107° 1.56% 1.5024833 1.36x10° 0.95%
172 1.4988936 2.56x107° 3.17% 1.5024969 2.72<10°° 1 90%
173 14989061 3.79x10™° 4.69%  1.5025103 4.06.10° 2 84%
n, =1.49806 An“f=8.08><10—4 n, =1.50104 Anef=1.43-lo‘“

Table III-3. Design Example Comparision

Time  Method nef(1.55um) nd_(l..’ﬂum) Width(um) length{pm)

170 WKB  1.4988682  1.5024697 8.87 3464
min TRM  1.4991346 1.5026902 7.19 2476
o=1° A 2.66x10 % 2.20x107* 1.68 988
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CHAPTER IV

BPM SIMULATION OF A SINGLE MODE X-BRANCH TYPE DEMULTIPLEXER

IV-1l. Introduction

In fiber and integrated optics, a typical waveguide problem
involves the solution of Maxwell’s equations 1n an nfinite  doman,
subject to the radiation condition at infimity and for a given incident
field or source. For many guiding structures of practical nterest
there is no cyvlindrical symmetry and radiation losses need to It
calculated. In this situation, it turns out that the classical elgenmoddir
theory, which is so successful for (closed) metal clad waveguides,
difficult to apply. The complete set of eigenmodes for such open
waveguides must contain the continuum of radiation modes and this make«
the use of eigenmode very unwieldy In 1978, Feit and Fleck introduced a
new numerical modeling method, the so-called Beam Propagation Method
(BPM) [ll. Under appropriate circumstances, the BPM allows a unitied
treatment of guided and radiation modes in optical strv * _. and can
provide a detailed and accurate description of the propagating field fo
a variety of realistic sources of illumination Since then, this method
has gained considerable popularity in the past decade in the area of
guided-wave optoelectronics and fiber optics Many optical structures
such as tapers [2], bends [3-4], gratings [5], coupler [6], Y-junction
{7}, waveguide crossing [8], electrooptic waveguide modulators [9], and
nonlinear directional couplers [10] have been modeled and analyzed by

the Beam Propagation Method.

In order to verify our design considerations in the last chapter

and further study the X-branch waveguide properties, the Beam
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Propagation Method is employed in this chapter to simulate and analyze
the single X-branch type demultiplexer We first give a general
description about the BPM and its development in Section IV-2. Then, a
detailed theoretical derwvation from the scalar wave eguation is
presented in  Section IV-3 Further, the applications of the discrete
Fourier transform techniques and the absorber function chosen in the BPM
are also discussed in Sectuien IV-4 and IV-5, respectively Lastly, the
apphcations of the BPM 1n analyzing integrated optics devices ar
discussed in Section IV-6 and the numerical results for the X-branch
type demultiplexer is presented in Section IV-7. The BPM method has also

been used as a design tool in two previous M. Eng. thesis (9,11].

IV-2. Description of BPM

For a given field or source, the Beam Propagation Method allows one
to observe the optical field evolution as it propagates through a medium

of arbitrary refractive index profile within the following limitations.

First, the BPM is based upon the scalar wave equation. For this to
accurately approximate the true vectorial equation, the polarization
effects must be negligible, which requires that the index profile be a
slowly varying function over one wavelength in transverse directions
However, by taking a reference 1ndex n., typically the value in the
substrate of the circuit or the cladding of fiber, as a periodic
extension of refractive index step between the guide and air [6] or
choosing an extremely small longitudinal integration steps — 24z «
}\nb/[n:‘—ll (n_ 1s the maximum index value in the guiding region) [12],
1t is  still possible  to model the transverse index  profile
discontinutties  such as  those occurring in  integrated  optical

structures.
Second, the BPM converts the boundary value problem into an

initial-value problem for which the solution can be found in a

propagative manner. This requires that the field propagates in a more or
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less paraxial fashion, and all reflections in this direction are
neglected, which implies that all variations of refractive index along =
must be slow or small and not add up coherently. In cases where incident
and reflected waves can be described by means of a coupled mode
formalism {12,13], an extension to the normal BPM algorithm can be
found, but the solution becomes much more complicated because iterations

of forward and backward propagation are necessary [l4].

Most practical fiber and integrated optics applications satisfy the
conditions above. In such «cases, 1t can be shown [} that 1the
propagation of a beam over a small distance can be computed by
propagating the field through a homogeneous medium and later phast
correcting for index inhomogeneities The homogeneous propagation s
most efficiently performed in the angular spectrum, obtained through the
use of the Fast Fourier Transform (FFT) Repeated applications of the
procedure then allows the beam to be followed over any distance The
advantage here is that no distinction between the guided and radiated
field is required, nor are modal decompositions necessary This makes
the method particularly useful when coupling between the radiated field
and the guided modes 1s significant and other methods, which neglect the
effect of the radiated field, cannot be used Although not provided
directly, radiation and modal information can be extracted from the BPM

generated data {15].

1V-3. General Theory of BPM

In an- optical waveguide whose index profile varies very slowly over
one wavelength in the transverse direction, the propagation of a single
frequency light field can be described by the scalar Helmholtz equation

as

62¢ 32¢ 32¢ wZ
+ + — e — n (w)xIYJZ) ¢ = O
ax® 8y’ az° ¢

(Iv-1)
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where ¢(w,x,y,z) is the transverse field distribution function, w is the
angular frequency of the lLight, n(w,x,y,z) is the refractive index.

Under the weakly guiding condition, the index profile can be written as

n(x,y,z) = n, * An(x,y,z), |An/nb| « 1
(IV-2)
where n, 1s a constant, typically the value in the substrate of the

circuit or the cladding of fiter.

In term of the field at z , the solution of equation (IV-1) at z+Az
may be written formally as
d(x,y,z+bz) = exp[ijAz(Vi+kfn2)l/z] o(x,y,2)
(IV-3)
where Vi=62/6x2+62/8y2 and kozw/c is the wavenumber of free space. With
some algebraic manipulation, the square root in the right hand side of

equation (IV-3) can be rewritten as

g2
2 L
(VL+k§n2)V2 =~ + kon
(V_L-rk n) “+k n
o o

(Iv--4)
The essential point in the BPM lies in the following approximation,
in which n(x,y.z} in the denominator of the first term of (IV-4) is
approximated by the constant nb, so that
2
V.L

2 2,172
n') " "+k n
© b o b

22 2.1/2
(Vi+k'n ) x

+kn +kn(n/n-1

(Ve AR
(IV-5)

The approximation gives satisfactory accuracy when the weakly guiding

condition holds.
If the index variation along z is also smail and slow, we can

restrict the solution for a single wave propagation in the positive z

direction, therefore the transverse field can be expressed in the form
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o(x,y,z) = lp(x,y,z)exp(-jkonb:)
(V-b)
Substitute the auvove expression into equation (IV-3) by using the

approximation of equation (IV-5), we have

2
VJ.
(Voekn?

Uix,y,z) + 03(Az)

Ylx,y,z+Az) = exp|-jAz + X(x,y,:)

/2
) T+k n
o b

(N h
where
X(x,y,2) = k n {PX¥.2) ) _ An(x,y,=)
» B e ° b nb ° A | P
LIV -3)

. 3 . .
and the final term 07(Az) gives the remaining computational error 1]
To second order in Az, equation (IV-7) can be rewritten n the

symmetrized split operator form

v’
-1 _L
Wie,y.z+82) = exp ng 2.2 2.1/2 exp(-jAz X )
“’L”&“b) +konb
2
v,
exp jgz 2 2 2 .1/2 ‘J’(X,}'.Z) + 03(A2)
(V_L"'k n”) ’ +Kk n
° b o b

(v a)
where the error also includes those arising from the noncommutation of
VJZ_ and X(x,y,z) (see Appendix). The above expression is suitable {or
generating a numerical solution. Due to the unitarity of the operator«

in equation (IV-9), the solution will be unconditionally stable.

To improve the accuracy of the phase operator, we can introdice iy

mean index change

Az

2z

ko z+0z
X = An(x,y,z) dz

(IV-10)

over the distance Az instead of n=n(z) 116},
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Actually, the operation

72
- 4
exp ng ERCRENRY W(x,y,z)
(Vi+k"n") "+k n
-4 ¢ b o b

= exp [--JAZ/2 [(Vi+k§n§)l/z-k§nz) ] Yix,y,z)
(IV-11)

15 equivalent to solving the Helmholtz equation in a homogeneous medium

+ + + — nz ¢ =0
2 . 2 2 b

dx 3y 6z c

(IvV-12)
for a distance A::/2 with ¢(x,y,z) as the initial condition. Therefore,
the physical interpretation of equation (IV-10) 1s that we have replaced
the actual continuous refractive-index distribution of the optical
elemen® with a series of infinitely small thin lenses separated by a
distance Az in a homogeneous medium with the reference refractive index
n, as shown in Fig IV-1. Each lens gives an coordinate-dependent phase
shift given by X(x.y,z)JAz to the beam, wheras the beam propagating
between lenses 1s governed by equation (IV-12). These enables the

propagation of the beam to be treated in a step-by-step manner.

In many practical applications, the optical fields vary slowly
along the propagation direction over distances of the order of a
wavelength For these problems, the scalar Helmholtz equation can be

approximated sufficiently by the Fresnel equation

. 8¢ 2 2,2 2
—JZkonb~——- + Vg + ko(n —nb)d: =0

dz
(IV-13)
and the BPM algorithm takes the form
z+4z
-~ = _;_J___ 2 ___:_J_-. 2,2 2
Ylx,y,z+0z) exp[ kA bz vy ] exp [ 2K . Az J zk(’(n nb)dz]

.

dJ 2
exp[ 4k°nb Az U ] uix,y,z)
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P |

(Iv-14)
Actually, one can recover it from the equations (1V-7) and (IV-9) by
assuming that Vi is negligible in comparison with kini in the
denominator of the equations This approximation is vaund for smal] beam
divergences (paraxial beam propagation) or steady-state propagation ot
light in dielectric waveguides. In the early stages of propagation,
however, plane waves with large angular deviations from the = axis may
be present in the beam, and the parabolic approximation can break down
Under these conditions, the solutinn form in equation (IV-9) should
still give an accurate description of light propagation  Since  a
numerical solution is no more difficult to generate with equation (IV-'2)
than with the Fresnel or the so call parabolic approximation equition
(IV-14), equation (IV-9) is to be preferred in the applications to the

fiber and integrated optics problems.

With some efforts, the derivation of the BPM can alsu be adapted
for anisotropic media [17]. Since these cases generally involve
nondiagonal dielectric tensor, the Helmholtz equation 1s used 1w 1ts
matrix form. The resulting propagation and phase operators, which are
applied to a two-component electric field vector, contain matrices n

their exponents and are defined by their perturbation series expansions

IV~4. Numerical Calculations

Under the assumption of limited spectral bandwidth, the Samphing
Theory [18] allows the field alternatively to be represented in terms of
its sampled values (p,q)=yY(pAx,qhy,z) at the equally spaced points
x=pAx and y=qAy on the computational grids, where n/Ax and n/Ay are the
highest spectral frequency components of the field in transverse and
lateral directions, respectively. The sampled field values then are
given as a 2-D Fourier series with a finite number of terms, which 15

more suitable for numerical calculations:
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N/2-1 M/2-1

Wix,y,z) = Z z y_(z) exp[_;Zrt(—-— + L_.)]

n=-N/2 m=-M/2
(IV-~15}

where L and L are the lengths of the computational grid area and the
x y
Fourier coefficients wnm(z) have a one-to-one correspondence to the

elements of the discrete Fourier transform [18]

N-1 M-1
Ww(p,q) exp[—JZn(np/N+mq/M)]

p=0 q=0

<
n

nm

(1Iv-16)

Consider one section in Fig. IV-1 which consists of a homogeneous
medium having a refractive index of nb and length Az/2' a thin lens, and
again a homogeneous medium of length Az/2. The Fourier component wnm at
2+L./2 can be obtamed, by substituting equation (IV-15) and X(x,y,z)=0

into equation (IV~7}, as

Az xn ym

U (z+Azf2) =y (z) exp| £Z

nin nm 2 (_kz _kz +k2n2)1/2+k n
Xxn ym ¢ b

o b

(1v-17)

where k ’s and k ’s denote discrete transverse wavenumbers defined as
xn ym

k_=2mn/L and k =zmm/L
xn X ym y
(Iv-18)
and, for kin+kjm>k3ni, the components express the evanescent waves in

the equation (IV-17) [11].

Then, we reconstruct the real-space function § in the real space
just behind the thin lens, that is, Y(z+Az/2-0), by using the Fourier
component wnm(zmz/z). The actual computation can be performed by using
the widely available Fast Fourier Transform (FFT) algorithm [20}. Again,
multiplying it by the "lens" term expl[-jAzX(x,y,z)] in equation (IV-9),
we obtain the function just in front of the thin lens: yix,y,z+Az/2).
the beam propagation in the following homogeneous space of length Az/2

can be calculated again by equation (IV-17) and two FFT processes.
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Thus, the beam propagation over a single section 1s calculated Of
course, the final FFT can be omitted if the beam shape (power
distribution) at this pomnt is not needed, and the calculation is to be

continued to the following section.

In practice, the spectral bandwidth of (x,y,z) is never perfectly
finite. For most optical waveguide studies, lLcowever, it is possible to
set up a configuration space computational grid with sufficient
resolution to keep the spectral power on the boundaries of the
corresponding wavenumber space grid extremely small. Spectral power on
mesh boundaries is normally monitored, making it possible to confirm the

accuracy of a given calculation.

The angle between the direction of a representative plane wave with

a transverse wavevector (k ,ky) and the z axis is given by
X

o = sin-l(k2+k2)/k n

X y ° b
(1v -19)
The value of N and M in equation (IV-16} will be determined by L, [
2 2,172 . XV
max—nb) , the maximum value of 68 for a ray propagating in

optical waveguide. Thus, the minimum spatial bandwidth for y required to

and 8 =(n
max

accommodate the steady-state field is defined by the relations [1]

Nm _ |K™*| > k sin6 (1IV-20)
Lx x max
Mn _ |kmax( > k sine (v 21}
Ly y max

IV-5. Absorbers

The use of discrete Fourier transforms in the BPM algorithm imphes
a periodic continuation of the computational window Lx=NAx and Ly=MAy,
Therefore, there is a problem encountered with the BPM which is of

primary importance in optical loss calculations. When the radiated field
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expands out to the boundary of the computational window, in succeeding
steps, it will be folded back to the opposite edge of the window. In
order to avoid this problem, we must absorb the field at the edge of the
window to simulate the radiation condition. This can be done, for
example, by setting the field to zero over the last few grid points at
the edges of the window or by introducing a large negative complex
component into the refractive index, that acts as a lossy cladding It}
If significant pcwer lies at the window boundaries, however, it has been
found that cutung the field off too abruptly generates strong high
frequency components assoclated with diffraction [4] Thus, an absorber
function must be constructed to bring the f{ield smoothly to zero at
window edges without affecting the guided field distribution 1n the
central area of the window In reference [4]), a suitable absorber 1In
two-dimensional calculation has been obtammed by multiplying the field

with the following function (see Fig. IV-2).

1 fxf<]x|
absorber(x) = 1/2{I+cosr[n(x-xo)/(xl—xo)l} ] X, | <]l <] x, [
0 lx1!<|xl<lw/2]

(1v-22)

where w/2 is the coordinate of the grid boundary, x, denotes the innes
edge of the absorber, and x, is the outer edge. The parameters 7, X, and
x are chosen empirically for each problem configuration and step length
to ensure that the field is absorbed gradually over a sufficiently wide
region |x0(<{x(<[xl{. The distance between x —and x s adjusted
similarly according to the step size and the shape of the Fourier
spectrum of the electric field at large wave numbers to ensure that no
interference effects will occur as a result of folding back of the
electric field at the edges of the computational window x, must  be
chosen far enough from the axis so that in a lossless waveguide the
absorber does not perceptably affect the guided field distributions. In
problems where the radiated field is expected to be significant, the
accuracy of a calculation should be confirmed by comparing the results
of a pair of propagation runs with different choices of the absorber

parameters. For our purposes, the rcle of the parameter ¥y 15 not
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critical, and we have found setting it -equal to unity in the
computations to give good results [il]. The transverse y direction must

be treated likewise.

IV-6. Applications of the BPM in integrated optics

The Beam Propagatior Method described in the previouz sections is
only valid for small changes in refractive index from a reference value
n It is obvious that the large index change between the integrated

optical device and air cannot be treated in this fashion.

For most typical integrated optical waveguides, however, the
refractive index difference in the lateral or y direction is still
plausibly small. This allows one to use the effective index method to
overcome the guidesair interface problem on applying BPM to analyzing
channel waveguide properties. The approach has the advantage of
differentiating between the quasi-TE and quasi-TM modes and at the same
time reducing the three dimensional guide to a corresponding twe
dimensional structure which no longer contains large refractive index
steps. As long as this equivalent structure satisfies the wusual
restriction of the BPM algorithm, i.e., the guidance in the y direction
is sufficiently weak, this formulation can yield excellent results for
both x and y direction polarized modes [14]. It should be pointed out
that this dimension reduction reduces the necessary amount of computer
memory and processor time greatly, since the BPM now only requires a

one-dimensional FFT.

Applying the BPM to the analysis and design of X-branch type
demultiplexer involves the power evaluations in the particular waveguide
branches. Actually, this can be achieved by overlapping the output field

\bout with the normalized guided mode ¢g of the waveguide as

P = "d
out - ‘ l"out‘t,g y‘
(1Iv-23)
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where ¢g is obtained analytically by the effective index approximation
*

and qbg is the complex conjugate of ¢g 19]. Since the demultipliexer we

design here is a single-mode device, the radiation mode power can be

evaluated as

P =P -P -P=1-pP -P
rad in X = x

(1V-24)

which also include the power absorbed by the boundary absorber U"l (A)=1
n

since incident power is normalized). Similarly as we discussed in the

last chapter, the extinction ratio and radiation loss can be calculated

as
D_(A) = 10log [P (A)/P (A)] (1v-25)
L (A) = 10log [P (A)/P (] = 10log [P (M)] (1V-26)
respectively.

IV-7. Discussions of Results

Fig. IV-3 shows a BPM calculation sample for a single-mode straight
channe! waveguide, where the waveguide width is 5.5um and the substrate
and channel indices are nb=1.50012 and n1=1.50370, respectively. By
compromising the computing time consummation and the numericual
calculation accuracy, we choose grid point numbter to be 1024 with a
100um window width and step length Az=Ium (also for Fig 1[V-4). The
numerical results show that the input pulse (generated analytically)
propagates in an unperturbed manner along the waveguide fer a length of
Imm {(A=155pm). Therefore, we believe that our BPM program can
accurately simulate the optical field propagating through the waveguide
(for more complicated structures like Fig. I'I-1, the grid point was

increased to 2048 and 200um window width chosen as explain later).

Since glass is a kind of low refractive index optical material, it

confines the guided modal fields much more weakly than many other
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optical materials. Therefore, more attentions should be paid on
designing waveguide branching, bending or z dependent variations on the
glass substrate. Actually, the radiations due to a waveguide tilt are
caused by a very similar mechanism as a waveguide bending physically.
And, the smaller the t1lt angle is, the smaller the radiated optical
field is induced (see Fig IV-4). Since the EPM can treat the guided and
radiation modes 1n a unified manner, we can use this method to study the
effect of a branching angle on scattered fields and extinction ratio

degradations for the integrated optics device designs.

Fig. IV-5 and Fig. IV-6 show two design examples of an X-branch
type demultiplexer The device functions are well simulated and the
local normal even-odd mode interference due to the propagation phase
dirferences can be seen clearly by the peak variations of the guided
fields in the two mode center region. Actually, when the propagation
phase differences between the local even and odd modes are 2nm (n is an
integral), the two modal fields will subtract to each other on one side
in the waveguide and add up on another side which lets the superposed
field amplitude peak be away from the waveguide center. Similarly, when
the propagation phase differences between the local even and odd modes
are (2n+Dm, the superposition of the modal fields will result the
amplitude peak to be on another side of the waveguide. This verifies the
previous chapter analysis. From Fig. IV-5 and Fig. IV-6, we also know
that longer wavelength signals are scattered more significantly since
the guided modes are weaker guided and nearer to cutoff due to the lower
index value. In spite of their different waveguide widths, both
stuctures produce similar extent of radiated fields due to a large
branching angle (I} This means that the radiation loss can not be
improved significantly by choosing a wider waveguide for the single-mode
X-branch type demultiplexer. By contrast, Fig. IV-7 shows a much better
design by choosing a smaller branching angle (0.5:). Actually, better
extinction ratios are also obtained from the power evaluation.
Therefore, we believe that the appearance of the radiation modes does
not just simply increase the scattering loss, but also reduces the

branch channel isolation due to some radiated power coupled back into
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the guided modes in both branches. However, a smaller branching angle
also requires the device dimension to be increased significantly which
may raise the adverse effects on the fabrication tolerances for the
waveguide width or diffusion depth. Hence, a trade-off 1n the design
process between the various parameters affecting the device perrormances

is necessary.

The fabrication tolerance studies can also be performed by ti.e BPM
Figs IV-8, 9 show the extinction ratio degradations due to the waveguide
width and depth deviations, respectively. Apparently, the output
extinction ratio degradation of the longer wavelength are more sensitive
to the depth deviation and shorter wavelength ones are more sensitive to
width deviation. These agree with our previous analysis. Tavle IV-1 and
Table IV-2 give the compariscns by the BPM and two-mode interference LIM
analysis on A2w and At, respectively. Although similar results are
produced ty both methods, we believe the Bb'*4 results provide some more
comprehensive information on the radiation and guided modes Because of
the computing time limitation (the computing time is proportional to
NlogzN (18], where N is the grid point number. The current computations
take around 2 days to produce one BPM plot in the SPARC station), we
only fix the grid point number to be 2048 and window width as 200um fm
these calculations in Fig. IV-5 to IV-S. Due to the device properties
discussed in the last chapter, the BPM analysis may be further improved

by increasing the grid point number (double or 4 times).

Since our main interest here is to investigate the scattered fields
by the waveguide branching and the BPM calculation also is very time
consuming, we have not applied the method to simulate the cascaded

structure in view of the fact that the single X-branch WDM device

simulations and analyses have been demonstarted.

IV-8. Conclusions

In this chapter, we have presented the powerful and accurate
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numerical methed BPM for solving the scalar wave equation and its
applications in integrated optics. The method is particularly suitable
for analyzing the devices with slowly changing and complicated index
profiles 1nvelving high~order and radiatior modes. The simulation and
analysis of the X-branch type demultiplexer show that, for the K'-ion
exchange glass optical surface waveguides, a smaller branching angle
(about 0.5 ) is needed to reduce the scattering loss and improve the
channel 1solation. Since the light beam propagation can be seen clearly
step by step, the BPM 1s very helpful for s.mulating device functions
and verifying our designs in the last chapter. However, accuracy in
using the BPM method as a design tool has not yet been reached in this

thesis

Appendix

The exponent in equation (IV-7) can be expanded in terms of a

Taylor series as

z \ 2
expl-Jjl A(z’)dz’| =1 - j| A(z’)dz’ -% A(z’)dz’} -
0 ) 0 0
" AZ 3
- j Alz')dz'| +
37
| Jo
where
v;
Alz) = + X(x,y,z)
(Vi+k2n2)1/2+k
° b b
Since
¥4 z’ m » , m
J A(z')dz’ J A(z")dz" = |d A(Z")dz" A(Z")dz" =
0 0 0 0
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me+1
1 " 7"
vy [Jifl( Mdz ]
4]

the terms in the above Taylor series can be replaced as

b - !

rd
exp|-jl| A(z’)dz’| =1 - jrA(z’)dz - J>A(::’)d2' J.A(:")d::"
0 ) 0 0
- jrA(z’)dz’J»A(z")dz"[A(z'")dz'" +orzh
30 0 0

Substituting for A(z) gives

4 2 V4
V.
expl|-j| AZ’)dz’| =1~ j z - jl X(z')Mdz' -
,L (\7_[_1'k2 2)1/2+k n 0
o b
o 2 2 2 z'
V_L 22 Vl
2 212, 2 T2 .2 2a2 z | Xtz)dz -

(V_L+k ) konb (Vl+k°nb) Mconb o
4 2z’

x(z’)dz'J X(z")dz" + 0(z°)
Jo 0

Similarly, the split operator form equivalent to (IV-9) can be
expanded in terms of a perturbation series. To second order, the

individual factors are

N

BE Vi . J v
exp _—_ =1-3
2 l (VJ_+k2 2)1/2 kK n 2 2 znz vz,
o p /- b
2 2
1 VL 1 2

221/2
(Vl+k° b)

and
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4 -
exp[-J[ X(z’)dz’] =1~ er(z’)dz’ - rX(z‘)dz’J,X(z")dz"
0 0 0 0

so that the split operator expression of (IV-7) expands to

VZ
-7 L
exp _._.éz 2 3 2 172 exp -j X(Z’)dz'
(VL+k°nb) +k°nb ’o

2
. v . v
exp ___-;}’z - 5 = 11 -J > 2.L1/z z -
€ (V +k2 2)1/ konb (VJ_ +k n. ) +k n

2 2 z z
v

2*/ 221 - j| x(z)dz’ - | X(z’)dz’
(V k2 )1 2 kanb 0 0

z’ 2 2 2

Jx(z")dz"] [1 -J "L Z -1[ UL ] zz]
2 2 .2 2.1/2 2 _2.1/2

o (VL+k°"b) +konb (V_L +k o ) +k°nb

s

2 2 2
vy V_L zz
=1- 2 2,172 z - | X(z')dz" - 2 2.1/2 z
(Vﬂk ) konb 0 (\7 +k ) konb

v?
1
- z| X(z')dz' - JIX(Z’)dz’J)X(z")dz" + 0(z>)
C 0

(Vi+kn?) 2k n o

Thus, the symmetrically splitted operator form can represent the

solution of the propagation wave equation (IV-7) to second order of z.
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Table IV-l. Extiction ratio degradations due to width deviations (JdB)

AZW{um) 1L.31um 155un
By EIM By BPM LR By EIM By BPM IR
-0.3 10.04 11.31 13.95 20.85 21 1y
-0.2 12.41 12.80 12.72 25.91 22 84 10 74
-0.1  22.06 22.46 13.90 37.02 27 83 11 8s
0.0 o 29.52 14,13 @ 3338 12 a0
0.1 2178 18.06 14.08 23.68 21.65 I R7
0.2 12.87 12.06 12.78 23.41 23 66 1210
03 10.1 10.70 12.98 20.62 18 40 10 75

where LR is the radiation loss calculated by BPM.

Table IV-2. Extinction ratio degradation due to time deviations {JR)

At(min) 1.3lum 1.55um
By EIM By BPM LR By EIM By BPM lR
-2.0 28.27 24.47 13.94 26.7% 21.72 11 70
-1.0 36.74 27.68 14.21 32.34 25.73 12.79
0.0 ® 29.52 14.13 ) 33.38 12 32
1.0 37.51 27.84 14.49 32.51 27.39 It 55
2.0 32.19 26.71 12.87 25.67 25.40 10 82

where LR is the radiation loss calculated by BPM.

Remark: (device structure parameters)

Channel width: 6.lum Diffusion time: 270mun
Two-mode region length: 4188um Branching angle: 0.5°
Grid point number: 2048 Window width: 200um
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Fig IV-l An array of lenses equivalent to the beam-shape
transfomation expressed by (IV-9). One section consists
of a uniform medium with a length (Az/Z). a thin lens, and a

uniform mediur with a length (Az/2).
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Fig 1V-2  Absorber function (see equation IV-22) where -w/2 and w/2

define the edges of the computation window.



Guided field (TM mode) propagating along a uniform smgle

IvV-3

Fig.

mode waveguide (Az=Imm) where 1024 grid points and JOOum

window width are used.




Fig. 1v-4 Optical field (TM modes) scatttered by waveguide tilt
(Az=lmm) (a) «=0.5"; (b) a=1°. In both calculations, 1024
grid points and 100pm window width are used.



Evolution of the optical field (TM modes) in a X-branch type
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Fig.
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CHAPTER V

CONCLUSIONS

Conclusively, the work presented in this thesis can be conveniently

split up into two main aspects.

Chapter II can be possibly summarized as a fairly good discussion
on some analytical techniques applicable to either slab or channel
optical waveguides with the arbitrary index distributions. Since K -ion
exchange technique provides very low index increment as Angﬂ:=8.6><10'3
and AanM=IO.OxZO—3 for TE and TM modes respectively, weakly guiding
condition is widely satisfied by the integrated optics circuits on glass
substrates This property allows us to design and analyze the waveguides
and devices well by using the methods discussed in this thesis. Our
analysis shows, by properly matching the field solutions at the
dielectric discontinuities, the first-order WKB approximation not only
can yield identical results with the ray optics approach, but also can
be extended to studying the piecewise graded-index optical waveguide
problems with accuracy. Furthermore, extending the transverse resonance
method (TRM) to the inhomogeneous waveguide structures, we can analyze
any slab optical waveguides with arbitrary index profiles exactly
without  considering the rmodal fields. Although channel optical
waveguides possess more complicated geometrical structures, by
introducing the lateral effective index profile, the effective index
method can still be applied by combining with the WKB method and becomes
a very favorable method as long as the modal fields are not necessary.
Besides, it was also shown that, with the stationary and extreme
properties, variational technique provides a very reliable and flexible

approach to study arbitrary optical guiding structures even with a
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refractive index discontinuity on the surface.

The second part of this thesis deals with the practical design
considerations for the X-branch type single mode wavelength division
demultiplexer. This includes the device property analysis in Chapter 111
and function simulations by the BPM in Chapter IV As a =zero-gap
coupler, X-branch waveguide possesses maximum propagation constant
difference between even and odd modes. Utilizing the wavelength
dependence properties of the two-mode interference, the structure can
perform as a compact dual channel wavelength demultiplexer Since the
periodic like device transmission curve, a cascaded multichannel

WDM-device can also be constructed.

Generally speaking, the X-branch waveguide properties mainly depend
on the «center two-mode section. To be a wavelength division
demultiplexer, single X-branch waveguide gives a channel separation
inversely proportional to the length of this region. Also, the narrowect
the waveguide width is :n this region, the shorter the total device
length becomes. Since the dsvice length of the X-branch waveguide made
by K" -ion exchange technique is several thousand times of wavelength,
the output crosstalk is quite sensitive to the waveguide width deviation
and refractive index determination. Therefore, utilizing the double
width configuration (for two-mode center region) can not only simphify
the fabrication process, but also provide a better fabrication
tolerance. Owing to glass being a low refractive index material, the
beam propagation method analysis indicates that a smaller Y-branching
angle (around 0.5°) is needed to reduce scattering loss and improve
channel isolations. Besides, by adjusting the Y-branch angle, all the

channel wavelengths can be shifted approximately in parallel.

Fabrication tolerance studies indicate that, for the single
X-branch type demultiplexer, the output extinction ratio of the longer
wavelength is more sensitive to the waveguide depth deviation By
contrast, the counterpart of the shorter wavelength is more apparently

influenced by the waveguide width error. Confirmed by the BPM simulation
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also, the numerica! results show that, under the present state of art,
1t would still be challenging to make glass integrated optical devices
which are based on the two-muic interference principle, especially for
the twao-wavelength device such as wavelength division demultiplexers.
With the proposed cascaded structure by three X-branch waveguides, an
adjustable single-mode demultiplexer with high stopband rejection
becomes possible. Theoretical analysis shows that 30dB extinction ratio
for both wavelengths can be achieved by depositing claddings on the

two-mode center waveguide regions.
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