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ABSTRACT 

ln this thesls, several simple and accurate techniques applicable 

ta the analyses of diffused slab and channel optical waveguide are 

discussed A zero-gap coupler type single-mode optic:::.l wavelength 

division demultlplexer by K+ -ion exchange in glass is proposed. The 

detailed devlce pro pert y studles based upon our own characterization 

results on soda-lime glass materials are carrled out by the effective 

index method (EIMl and beam propagation method (BPM). To overcome the 

fabrication difficulties under the present state of art, sorne improve!d 

devlce structures are also dlscussed. 
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RESUME 

Cette thèse contient d'abord la descripuon de pluJ;,Jurs methodes 

simples permettant l'analyse de guides d'ondes optiques alJX frontières 

diffuses. Une structure de coupleur monomode ::ms espacement obtenue par' 

échange d'ions potassium-positifs dans le verre est ensuite propo,>('c 

comme démultiplexeur à déphasage. L'étude des proprietes de ce 

demultiplexeur, basée sur no'5 propres données de characterisatiOO des 

verres soda-calcique, est entreprise à l'aide des methodes d'index 

effectif et de propagation par rayon (BPM). Finalement, que[qlle~ 

améliorations à la structure proposée sont discutées dans le but de 

réduire les difficultés de fabrication. 
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1 
CHAPTER 1 

INTRODUCTION 

1-1. Overview of the Integrated Optics 

The term "integrated optics" (JO) was first coined by Stcwar't 1 

Miller [1] in 1969 to describe the optlCS of mmwturlzce! optleal 

circuits in whlch light signais are generated, gUidee! and processed hy 

related effects before finally being detected The feaSlbil!ty of th!'; 

technology is due ta the fact that l1ght can be gUided in a thm film 

Since the invention of optIcal flber dunng 1960' s, to acrlleve tlae full 

promise of optical fiber commumcatlOn link, rnany dlscrete functlonal 

components, such as laser diodes, photodIOdes, couplers, modulators, 

switches as weil as transmitter and recel ver electrcnlcs have been 

developed [21. Currently, increasmg efforts are also being applied III 

achieving a synthesis of electromc and Jptlcal components into an 

integrated optoelectronics format which IS expected to provide a wlde 

range of systems with mimaturlzed, high speed, broad-band, reltable and 

cost-effective components for telecommunlcatlOn data processmg, opt ical 

computing and other applications Hl the near and distant future [3]. 

There are many types of matenals currently studted In integrated 

optical applicatIOns. e.g. glass, ht!llum nlobate (LiNbO) and III- V 
J 

semiconductors. Since the advantages of thelr cornpatlbtllty wlth optlcal 

fibers, low cost, low propagation losses, and ease of thcn- II1tegratlOn 

into the system, glass waveguides made by the lon-exchange technique are 

considered to be prime candidates for the passt ve l11tegrated apt Ical 

componenrs (2). By vlrtue of its high electro-optlc coefficient, lithium 

niobate usually is the prenueI' material for the lntegrated electrooptlc 



,:omponents and the Ti indiffused wavegulde fabrication technology for 

thl'> type of slJbstrates has been most extensively developed [4J. Many 

hlgh perfor'mance modulators [5J and sWltches [6J have been envlsaged and 

even commerclallzed. However, glass and lithIUm mobate are all passive 

matenals 50 that lasers and detectors can not yet be fabricated on the 

same substr;1te By contrast, semlconductors can be used for constructmg 

bath the passl ve alJJ aetl ve devlces so that a monolithlc mtegration in 

WhlCh aIl rJevlces are made m a smgle suhstrate can he reaJized 13]. 

But the hlgher loss and low electro-optic coefficient make the 

semlconductor materldls le% effective for gulding and modulating 

pur'pose Great efforts have been made to improve the optical properties 

of senllconductors and an InP/GalnAsP rib wavegUide Wlth loss as low as 

O.18dB/crn has been reported 171. 

Since integrated optics is su11 a thln fllm technology, the 

ImplementatIOn of the proposed devices requires almost the same 

thm-film proceSSlng techniques as used in the semiconductor technology. 

However, mam dlfferences anse in the materials and substrat es used. 

Usmg glass as a substratè, lOn-exchange is the most favorable technique 

used ta form optlcal waveguldes [8]. Sputtering, plasma etching or 

lOn-bf'am mlllmg are also applied ta fabncate the ridge type waveguides 

[9\ for the LINbO material, the most wldely empIoyed is the diffusion 
3 

of tltanlum mto LINbO [4]. AIso, a proton exchange technique has been 
3 

df'veloped 191 In the cases of semiconductor matenals hke GaAs and 

InP. the waveguldes are formed by methods like liquid phase epitaxy 

(LPEl, metal orgamc chemical vapor depositlOn (MOCVD), and molecular 

beam epltdXy (MBEl or ion implantatIOn [l01. Althaugh the packing 

densl ty of IOtegrated 

mlcroelectronlcs, the 

considerably greater [11]. 

optlCS 

required 

is many times Jess 

pattern accuracy is 

1-2. Wavelength-Division-Multiplexing Technology 

The advantages of the aptical fiber Wavelength 

2 

th an in 

sometlmes 

Division 
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Multiplexing (WD~1) communicatiOn 

capacity increase per fiber, system 

systems al'e 

cost reductlnn, 

trdrSnllSSIOIl 

slmul t3n(.'ou.., 

transmission of signais modulatcd wlth different schemf's. dnd service 

channel expandabllIty after flber installatIOn. Therefol'c, lt 15 a 

useful means of fully using the large bandwldth provlded by low-lo".., 

optlcal fi bers and expected to be broadly applicable to systems ill 

various field of communLcations (l2]. 

In WDM tran!:imlssion systems, wavelength multlplexers and 

demultiplexers (MCX/DEMUX) are the essential components employed to 

combine and separate wé.velengths carrymg dlffcrent mfOl'mation The 

realization of single-mode MUX/DEMUX's has been accompllshed by USIlIg 

wavelength disperSive elements llke optlcal interfer'cnce fdter, optlC,ll 

diffractlon gratmgs, and wavelength selective coupling between two 

adjacent waveguides ln Table 1-1, tYPlcal performance chclrclctenst IC'·, 

of these classee; of m'Iltl- /demultlplexers are listed [121. 

The optlcal interference filter type MUX/DEMUX's have bel'Il 

experimentally demonstrated by using fiber-optics and mlcroopties, where 

GRIN-Ienses (131 or ball lenses 114] have been implemented as beam 

collimators. These devices are eonsldered to be of practlcal Importance, 

if the transmission system does not require more than about six channels 

with a spacing in the order of 30nm. A greater nllmber of channels, e g , 

N=20 (15), wlth a mueh narrower channel spaclI1g, e g, 1.35nm [161. GUI 

be multiplexed by grating r' mponents, Here, microoptic techmques usmg 

GRIN-lenses and guided 'II' ·.ve approaches wlth gratmgs, waveguides, r1!1 rJ 

photodetectors, integrated on one substrate, have been applled [15, 171 

The wavelength-sf'lectlve coupling has been utillzed In ail flber \18 1 

and integrated optlc (19] directlOnal couplers Due to the symmetry of 

the coupler, thls type MUX/DEMUX devlee can have a periodlc wavelength 

transmission curve (18) or exhlbit a bund-pass behavlor 119-201 

Besides, a Y-braneh type structure behavmg as pass filter either for 

the longer or the shorter wavelengths was proposed in the literature 

(21]. 

3 



t 
~ rom th,,: consldered fabrIcation technologies, integrated optics 

off cr', the greatest potentlal of bUIldmg compact multi/demultiplexers 

III cl st able rllgw~d structure with slmplifled assembly. Recently, to 

overcome the sensltlvlty of asymmetry to the individual waveguides of 

dlrl'Ltlollal cOllpkr, a new structure based on the wavelength dependence 

of the two-mode interference (TMI) has also been proposed and 

cxp('!"nnent3IJy demonstrated [22J. ThiS type of structure, as so called 

X -brandi type smgle mode demult:plexer. is more comj::3.ct and fabrication 

tolcrant 50 that it provldes a powerful alternative to dlrectional 

coupler st ructure applted ta various applications. Previously, most 

people only trIed the configuration in the LiNbO 5ubstrate material. 
3 

For the sakl~ of lower cost, a lower refractive mdex and simpler 

fabricatIOn techntques, It is al 50 beneficlal to apply the same 

confIguratIon by IOn-t!xchange technique on soda-lime glass substrates 

whlch IS al=-o the mam purpose of this thesls work. 

1-3. Chapter Description 

ln the following chapters, we first discuss sorne analytical 

techmques applied in analyzing the diffused slab and channel optical 

waveguldes 111 Chapter II, WhlCh is prepared for further integrated 

optleal device design applications. Chapter III presents a detailed 

analysis for the X-branch type optlCal wavelength division demultiplexer 

propt'rties and design conslderations by the effective index method. In 

ordel' ta venfy our analysls by the effective index approach, Chapter IV 

appllCd the beam propagatIOn method to s:mulate the X-branch type 

del1lul tlplexel' functlOns and discuss the Y -branchmg angle effects on the 

SC.l ttermg 1055 

References: 

[lI S E. Miller, "Integrated opties: an introduction", Bell 

Tech. J., No. 48. pp. 2059-2069, 1969. 
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Table 1-1. Typical Performance Characteristics of Different 

Classes of Wavelength Multi-/Demultiplexers 

Interference Grating Directional 

fHter Coupler 

Number of channels 2-6 3-20 2-8 
Insertion 1055 0.5-5dB 1-4dB O.6-2dB 

Channel spacing 30-100nm 1-40nm 40-200nm 

Far-end cïosstalk 20-70dB 20-30dB 1O-13dB 
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CHAPTER Il 

METHODS OF ANAL YSIS FOR DIFFUSED OPTICAL WAVEGUIDES 

11-1. Introduction 

Ion-exchange is the prime candidate for fabricating passive optical 

wavegUIdes in glass substrates [1]. Usually, the refractive index 

increment formed in the substrate by this technique is distributed. Fig. 

11-1 shows four of typical glass channel waveguides by the diffusion 

processes, in which a step index cladding is deposited onto the 

waveguides by RF -sputtering to increase the waveguide' s effective index 

in order ta enhance waveguide field confinement abilities and/or adjust 

waveguide dispersion properties. The characteristics of the propagating 

mode 10 5uch wavegUIdes are obtained by solving MaxweU's equations for 

the corresponding boundary-value problern. Due to the vectorial nature of 

the electromagnetic field, the geometrical shape and/or the refractive 

index distribution of the guides, and the infinite domain of the cross 

section, the full y analytical solutions for the vectorial 

electromagnetic fields are u!:.ually not obtainable for most of the 

practical waveguides. Therefore, using sorne approximate or numerical 

rnethods applicable to the studies of dispersion properties of optical 

waveguides with arbitrary index distribution is necessary and important 

for engmeermg device designs and fabrications [2-51. 

In this Chapter, we first der ive the transverse vector wave 

equations from the Maxwell's equations and briefly discuss the 

classification of propagating modes in the optical waveguides under a 

weak gUIdance condition in the Section II-2. To analyze optical 

wavegUIdes with one dimensional arbitrary (step and graded) index 

8 



1 
profile, the WKB and transverse resonance methods are presented and 

discussed in SectlOn 11-3 and II-4, respectively. Also, the effective 

index modelling and scalar vanational technique to study the 

characteristics of two-dimensional diffused channel optical waveguides 

are discussed in SectlOn 1I-5 and Il-6, respectively. 

11-2. Wave Equations 

For a general graded-index optlcal waveguide, Maxwell's equations 

may be written as 

2 dE 
V x H = n (x,Y)c-:o([t (lI -1) 

dH 
'iJ x E = -p. 0 crr- (II-2) 

V • [n
2
(x,y)c El = 0 

o 
(II-3) 

V·H=O (11-4) 

If we apply the curl operator ta equation (II-2) , we find 

(II - 5) 

where equation (II-1l was used to eliminate H. Using the veC'tor 

indentity 

2 V x (V x E) = V(VeEl-V E 

together with equation (II-3), equation (II-5) becomes: 

(IJ-6) 

(II. '1) 

where the time dependence exp( -jwt) of E has been assumed and the 

conventional notation k
2

=w
2

1J. chas been used. Equation (11-7) is the 
o 0 0 

vector wave equation satisfied by the electric field E. 

9 



1 
Similarly, the corresponding wave equation for the magnetic field H 

can be derived from the equations (II-1l to (II-4l as: 

(II-8l 

Since the fact that n( x,y) is the function of transverse coordinate 

x and y only, the vector wave equations just for the transverse field 

components can be separated from the equations (II-7l and (II-8l as 

[ 

E·'il n
2
(x,y) 1 

'il t.L 
.L 2 

n (x,y) 

222 
+ [k n (x,y) - {3 ]E = 0 

o t 

0I-9l 

(II-lOl 

2/ 2 2/ 2 where a z-dependence as exp( j{3Z) is assumed and 'il.L =8 8x +8 a y . 

From the above equations, we know the vectorial properties of the 

propagating modes in the optical waveguides arise from the terms with 

'il ln[n'2(x,y)]. For the piecewise uniform medium, it lies in the 
.L 

discontinuitles of 'il Ln[n
2
(x,y)] across the boundaries between different 

.L 
refractive indice~. For the glass optical waveguides, the refractive 

index of the waveguide does not vary rapidly in the cross-sectional 

plane and/or differs only a Httle across the index discontinuities. 

Under thls condition, the propagating modes are almost linearly 

polarized and can be classified into two groups as TE-like and TM-like 

modes for the strong E field components are parallel and perpendicular 

ta the waveguide surface, respectively. The corresponding transverse 

vector wave equatlOn approximately becomes 

a2
E a2

E 
Je x 

--+ 
ax 2 8y2 

a a 

~ 2 } 22 Z + E -ln[n (x,y)] + [k n (x, y) - {3 JE = 0 
8x xax 0 x 

(II-11l 

a2 H a2 H a aH 
y y 2 Y 22 2 

-2- + -2- .. -ln[n (x,y)]- + [kon (x,y) - {3]H = 0 
8x 8y 8x 8x y 

10 



(II-V) 
for the TM-like modes, and 

(II-IJ) 

a2
H 32 H a aH 

__ x + __ x - -Ln{n2(x,y)} __ X + (k 2n 2(x,y) _ rllH == a 
ax 2 a y 2 a y a y 0 x 

(II-14) 

f or the TE -like modes. 

The extreme case is a the slab waveguides. Since 8y :::: O. 

propagating modes can be rigorously distmguished as TM modes WI th 

E 
y 

= H = H 
x z 

and TE modes with 

(32 J dH 
E = ---- H j E = ________ ~ 

x wc n
2
(x) y Z wc n 2(x) dx 

o 0 

= 0; 

(3 
E = H = E = 0; H = - - E ; H =_ 

x y z x y z 

J dE 
y 

Wf..l o 

The equations (II-Ill ta (1[-14) are simplified ta become 
Wf..l dx 

o 

th!' 

a2
H ô ôH 

(II-1S) 

y 2 Y 22 2 
- - -ln{n (x)J- + {k n (x) - (3 JH = 0 
ax

z 
8x ôx 0 y 

(II -JE,) 

for TM modes and 

222 
+ {k n (x) - {3 JE = 0 

o y (II-Il) 

(II-l8) 

f or TE modes. 

11 
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1 

From the above derivatlOns, we know, under the weak-guictance 

conditIOn, glass optical waveguide analysis is possible under certam 

approxImations. In the following sections, starting from the 

one-dirnenslOnal problerns, we are gomg to discuss sorne approximate or 

numerlcal methods WhlCh are practical for studying arbitrary index 

distrIbution wavegulde problems. 

11-3. The WKB Approximation 

In optical waveguide theory, although the ray optics approach and 

the WKB approximation have a similar rC. nge of applicability. bath being 

suitable for use only when the variation of inàex is small in distances 

of the order of the wavelength, it is believed usually that, in 

analyzing surface diffused optiCdl waveguides, the ray theory can 

provide a better level of approximation than the WKB theory for being 

capable of accounting for the phase changes occurring on reflection from 

a dielectrlc discontinuity. However, this advantage is difficult ta be 

extended ta the analysis of the multilayer waveguide problems. In this 

section, we shall see, if the field solutions are matched properly at 

the dielectric dlscontinuities, the first-order WKB approximation can 

yield not only identical results with the ray optics approach, but al 50 

can be used ta analyze the piecewise graded-index optical waveguide 

problems, such as a diffused surface optical waveguide with a cladding. 

For the pl anar diffused optlcal waveguides, the scalar wave 

equatlon is 

alA. 
'r' 2 2 2 

-- + [k n (x)-(3 J~ = 0 
8x 2 

0 

(II-19l 

where ~=E or H for TE and TM modes, respectively. Since the value of 
y y 

~a ln{n
2
(x)) is very small in the graded-index region, we neglected the 

x 
term for TM modes. In fact, for the diffused surface waveguides, the 

12 
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polarization discrepancy of the propagating modes are due to the 

waveguide surface ster.-index change mainly. Therefore, diffel'ent 

polarization modes can be determined by the cOl'responding boundary 

cp'(x-) 
1 ----- ::: 

2 -n (x ) 
1 

for TM modes respectively at the dielectric discontlOlllty 
n 2(x+) 

1 

position x=x . 
1 

According to the WKB theory [6J. the first arder approxlr:latc 

solutions are given 

C 
exp [±jJQ(X)dX] 4>(x) IX 

1 
for regions k n(x) ) (3 

/OC;; 
0 

(II-20) 

C 
exp [±J P(X)dX] 4>(x) IX 

2 
for regions k n( x) < f3 

.(pC;; 
0 

(II-21l 

where 
2 2 2 2 2 

Although these solutions diverge at the turnmg P =-Q -(3 -k n (x). 
0 

point, two sets of independent connection formulas relating the fields 

on either sicle of the turning point can be obtained by the asymptotlL 

solutions of the wave equation as 

( J
x ) -112 1 

P exp - x Pdx <--------> 20 -I/'sin [I: Odx + ~ 1 
1 

(II-??J 

p-II' exp [I:' Pd" 1 ( (JX ) -1/2 Tl 
) Q cos x Qdx + 4 

1 

([I-?3l 

for Fig. II-2(a), and 

2Q -II' sin [I: 2 
Qdx ++) ( J

x ) -1/2 
P exp - le Pdx 

2 

(II -24l 

13 



(I
X ) -1/2 2 n: 

Q cos X Qdx + 4 (IX ) -1/2 
~-1 P exp x Pdx 

2 
(II-25) 

for Fig. II-2(bl respectively, where the upper bounds of the integral 

are always greater than the lower bounds. 

A general index profile of the diffused surface optical waveguides 

IS shown in the Fig. 1I-3. According to the WKB approximation, the 

scalar fields on either side of the discontinuity can be expressed as 

( Ix ) -1/2 
rp ()( P exp - o~dX 

(JX ) -1/2 n: 
rp ()( Q cos x Qdx - 4 

1 

in the region x > 0'" 

in the region x < x < a­
l 

(U-26) 

(II-27) 

In arder tn match the fields and their derivatives at x=O, we can have 

Cl COS (JO Qdx _ :) = __ C_2_ 

/0(0-') xl .fp~) 
(II-28) 

(U-29) 

where p=O or 2 for TE and TM modes, respectively. It i:s WOr\.i1 noting 

that the derivatives in (lI-28) and (II-29) only include the terms from 

the argument of the trigonometric or exponential functions. Since the 

denvatives of the coefficients would be of higher arder in the WKB 

expansion. then it is best not to differentiate these terms [6]. 

Combining equations (II-28) and (11-29) gives the ~igenvalue 

equation for modes of N as 
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1 I:QdX -
[ nP(O') 

NO:) 1 Tf -1 

~ 
= Nn + tan (N=O.1.2 •... ) 

nP(O' ) 0(0 ) 
1 

-1 
[ nP(O') {(32-k 2n2(0' )ll2 

1 
NTl + 

Q 

= tan 
nP(O· ) {k Zn 2 (0- )_(32 ]1/2 

0 

(II-JOI 

It is clear that this result is the same as the one glven by d rlgorou<, 

application of the ray aptics theot'y [7]. Therefore, wlth th\' prapel' 

treatment on derivatives. the first-OI-der WKB apprOXimatIOn can yleld 

identical results with the ray optics approach. In pnnciplp, wc C,l(1 

extend this method ta the analysis of the pleCeWICe graded-indcx optlc\ll 

waveguide problems where the geometrlcal aptics theory cannat l,e 

applied. 

Fig. II-4 shows a very practical optical wavcguide, claddl'd 

diffuseù surface waveguide, index profile. Similar ta the last waveglllde 

problem. the fields in each region can be written as 

(IX ) -1/2 Tl 
~ ~ Q cos xOdX - ~ 

1 

-1/2 -1/2 

(JX) (JX) ~ ~ C/ exp o~dX +C/ exp - o~dX 

for x > x > 0 
1 

(II -3I) 

for t > x > O· 

(Il-321 

for x > t 

(If -]'11 

In arder to match the fields and their derivatives at the discontlnUlt y 

x=O, we let 

1 COS[fOdx -+l = [c + c ] fp--' 1 Z 
1&(0-') Xl NO' ) 

{II-34) 

/0(;> . [J"Qd n ] 
jp(o·') 

[Cl - Cz] - SLn x --- = 
nP(O-) li 4 n P (O·) l 

(II-35J 
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1 
Therefore, the coefficient C and C can be solved from this linear 

1 2 

eqllations as 

(II-361 

(IJ-37 l 

Agaln we match the fields and their denvatives at x=t as 

(II-38) 

(11-39) 

Substituting formulas (II-36) and (II-37) into the above equations and 

combimng them with sorne algebraic manipulations, we can derive the 

elgenvalue equation for the cladded surface diffused optical waveguîdc!-. 

under first-order WKB approximation 

where 

8 + tg( A) 1 - B
2 1 ____ = exp[-2t(fl-k2n2 )1/21 __ _ 

8 - tg( A) 
1 

() c 
1 + B 

2 

nP(O- ) 

B=----
1 nP(O+) 

(11-40) 

[f32_k2n2(O+ )]1/2 
() 

and 

p=O, 2 for TE and TM modes, respective!y. With thi!' 
[(32_k 2n2}l/2' 

o c 

eigenvalue equation, the dispersion properties of the propagating modes 

in such waveguldes can be solved by root-searching techniques. By 

assuming the index profile in the graded index region as 

2 2 2 2 
n (x) = n + 2tmn exp(-x Id ) 

b b x 
x<O (11-41) 
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1 

.. 

where f:J.n. is ~he index change at x=O and d is the effective diffs\lJn 
x 

depth, Table II-l and 2 give two calculatlOn examples to demonstl'dtc 

that the eigen-equation provides qUlte accurate results, in WhlCh tilt' 

exact values are provided by the tranSVi:!rse resonance method (TRM. sec 

next section) From these we know that, as the claddlOg thlcknesc, 

changes, the errors introduced by the WKB first-order apprOXImatIOn fur 

the cladded diffused surface wavpguldes are mtnlmal And, for the flxed 

diffusion depth wavegUldes, by tncreaslng the n. <n cladc1ing thlckness. 
c b 

the propagation constant wIll tend to a constant. Companng with tllt' 

numerical TRM method, the WKB approach produces result<; fa~ter. HOWt'Vt'l', 

it systematically underestlmates the effective indices. 

Although we only discuss the case of n <n here, for the othel 
c b 

cases, such as n. >I~/k , the corresponding eigenval Je equatlOns can dbu 
c 0 

be derived by repeating the similar procedure. 

II-4, Transverse Resonance Method 

In planar waveguides, the propagating modes can be r'igoro\Js 1 y 

classified into TE and TM types of modes. Therefore, the traO';VI!r'5f~ 

resonance method can be applied to study the waveg 11ide dlsperslOr, 

properties since the transverse impeuances and adm 1 t tances can he 

umquely defined. However, in the conventlOnal optlcal wavegtllde theory, 

only the uniform transmission Ijp,~ theor y IS applled to study thos(' 

multi-layer homogeneous wavegulde problems. ln thls ~ectlOn, we exteml 

the transverse resonance method to the studles of diffu':oed 

Onhomogeneousl planar wavegulde problems By thls development, not only 

the dispersion propcrties of the waveguldes wlth an ar bltr ary tndex 

profile can be investlgated with any desired aCClll'acy, but also the 

inhomogeneous and homogeneous pl anar waveguldes can be treated ln the 

same fashion thoroughly without consldering the modal fields or lh,., 

turning points as in the WKB theory, 
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Accardmg ta the uniform transmission !ine theory [81. for the 

graded characteristlc impedance transmission !ines, the impedance 

transformation formula becomes (see Fig II-5) 

2(x) + 2 (x)tanh( j{3+aJdx 
Z(x) + dZ = 2 (x) ______ c ______ _ 

c 
2 (x) + 2(x)tanh(j{3+aJdx 

c 

2(x) + 2 (x)(j{3+a)dx 
c 

1 + [2(x)j2 (x)J(J(3+a)dx 
c 

:::: [2(X) + Z/X)(j(3+<x)dX] [1 - Z(X)j2/X)(j(3+<x)dX] 

:::: 2(x) + [2/X) - 2
2
(X)j2/X)] (j{3+a)dx 

(11-42) 

where 2 (x) is the charactenstic impedance of the graded transmission 
c 

line. Therefore, the impedance transf('\rm formula for the graded 

transmisslOn lines is a nonlinear ordinary differential equation as 

given by 

d2 crx- - -(j{3+a) 

2 2 2 (x)-2 (x) 
c 

2 (x) 
c 

In the planaI' waveguides, we can define the 
k 

local 

(11-43) 

transverse 
E WI1. E 

Impedances as 2 =---:-;,=-Y-=-j __ O_ and 2 =- Z - j __ X __ for TE and TM 
cTE H k cTM H 2 

'Z X Y wc n 
° 

where k = Jlk 2
n

2
(x)-(32l/2 as 

x 0 
n(x) and modes respectively, 

(I1-·lI) and let Z' =2 !jwp.; 2' =Z !jwp. 
cTE eTE 0 TE TE 0 

f or TE modes and 

Z' = jwc Z ; 2' = JWC Z for TM modes, we can have 
cTM 0 cTM TM 0 TM 

d2' 2,2 _ 2,2 
TE _ TE c 

dx - -kx Z' 
c 

(II-44 1 
d2' 2,2 - 2,2 

n1 -k TM c 
dx - x Z' 

(" 
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222 /2 2 2 = m -k n (X)] Tt (X) - n (X)Z' 
o TM 

(1I-451 

Actually, similar results can be derived directly froIn tilt' \VaVf' 

equations (II-16) and (II-17) [9]. From these, we have 

(11- 46) 

Ol-·rn 
for TE and TM modes, respectively. Therefore, If we define Lht 

transverse impedances as 

E dE 
Z = 2 = jwJ.l. E/--Y- or 

TE H 0 dx 
z 

E 1 dH 

dE 
Z' =Z jjwJ.l. =E/--~ 

TE TE 0 dx 

1 dH 
(II - ott!) 

Z = z - --X..jH or 
™ - Hy jwc n 2(x) dx y 

Z' =jwc Z -YjH 
TM 0 TM n 2(x) dx y 

o 

Then, by differentiating them, we can obtain 

dZ' TM _ 

ax-- -

(II-50) 

? 
1 2 dH [ __ 1 __ dHy] 2+ __ 1 ___ 1_ cl /1 y ___ dn (x) -X...jH -n2(x) _ 

n 4(x) dx dx y n2(x)H dx n 2(x) H y dx 2 

y 

2 2 2 2 2 2 = [(3 -k n (x)1 ln (x) - n (x)Z' 
o l' TM 

III--S]) 

These results are identical to equations 01-43) and (II-44). Therefore, 

after we obtain the distributed transverse impedance Z'(x), the 

corresponding transverse modal field E or H as function of x can be 
y y 

deduced by the integrals 
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and H y =exp rI: n '(xJZ;ixJdX 1 
(II-52) 

for TE and TM mode, respectively, VIIhere we assume th~ field to be unit y 

at the air-gUIde interface x=O. 

For the gUlded modes, f3/k)s always greater than the index value 

n( x) at x=oo, therefore, the initial values 

for TE modes 

for TM modes 

are purely real generally. Since aU variables involved in the 

differential equations are also real, Z'(x) will remain purely real, or 

in another words, Z(x) is imaginary as x changes along this whole graded 

tr.:msmlssion Hne. This coincides with a conclusion in the uniform 

transmission lme theory that, when the load is a reactance, the 

impedance will be invariably imaginary with open and short circuits 

alternatlvely appearing along the transmission Une. Similarly, for the 

graded transmission Hnes, there will be sorne poles (open circuits) 

appearing which would cause an overflow in the calculations for high 

order modes. To avoid them, we can make a transformation by setting 

Z' =tan8 and Z' =Gtan8. Then the equations become 
TE TM 

for TE modes 

d8 
dX 

2 .2 22 2 = cos 8 + Sln fJ[k n (x)-/3 ] 
o 

de 2 2 . 2 2 2 2 2 dX = n (x)cos 9 + sm 8{kpn (x)-/3 JIn (x) 

for' TM modes, respectively. 

(II-53) 

(II-54) 

To solve these nonlinear differential equations, we use a fourth 

order Runge-Kutta method 1101 as follows 

8 = 8 + (k +2k +2k +k ) '6 
n+l n 1 2 3 4" 

(II-55) 

20 



with 

k = hF(x • S ) 
1 n n 

k = hF(x +h/2, e +k /2) 
2 n n 1 

k = hF(x +h/2, e +k!2) 
3 n n 

k = hF(x +h, S +k ) 
4 n n 3 

(II-5él 

where F(x,S) represents the right hand side of the differential 

equations. The associated truncation error is R=O(h
5

) and, for h=O.005, 

one expects accuracy of seven or eight decimal places. Ta compare the 

numerical results with the WKB theary, Fig. Il-6 (a)-(b) shows two 

samples of the calculated dispersion curves for the diffused surfact' 

waveguides, in which '1 =f3/k is the mode effective index 
e 0 

The 

differences around the eut off region are apparently demonstrated. 

Applying this method to the solutIOn of the cladded diffused 

surface \laveguide problems (see Fig. II-7), we set up the transverse 

resonance equation 

2 ((3) + Z ((3) = 0 
1 2 

or 2'(13) + 2'((3) = 0 
1 2 

(II-57) 

Aceording to the impedance transform formula for the uniforrn 

transmission lines, Z' can be found as follows 
1 

Z' 
Z'= Z' a 

1 CZ ' 
C 

+ 2'tanh(k t) 1 kcos( k t)+k sine kt) 
c c a 

+ 2'tanh(k t) k k cos( kt)-ksin(kt) 
a ç a 

1 (k +k')exp(k't)-(k -k')exp(-k't) 
a a - -- ----------------------.--------

k' (k +k')exp(k't)+(k -k')exp(-k't) 
a a. 

= (1 + k t)/k 
a a. 

for TE modes, and 
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l'or n >p/k 
c 0 

for n <f3/k c 0 

for n =(3/k 
c 0 

(II-58) 



Z'= 
1 

k k cos(ktJ-ksin(kt)/n
2 

a c 

n 2 kcos( kt )/n 2 +ksin(kt) 
c c 

k (k +k'/n
2
)exp(k't)+(k -k'jn

2
)exp(-k't) 

a cac 
- -- -----------------------------------

n 2 (k +k'jn2)exp( k't)-(k -k'jn2)exp(-k't) 
cac a c 

= k /0 + k t) 
a a 

for n >f3/k c 0 

for n <f3/k 
c 0 

for n =f3/k c 0 

(II-59) 

for TM modes, where k=(k 2n2_f32yll2 and k'=(f32_k 2n2)l/2. As for Z', it 
o c 0 c 2 

can be provided by the equations (II-49) or (II-SOL By root- searching 

equation (JI-56), we can find each f3 of the guided mode in the 

wavegtllde. Table II-l, 2 show the numerical results with comparison to 

the WKB method for TE and TM modes, respectively. 

Since many trigonometric function evaluations are involved in the 

calculations, this scheme usually consumes more computation time than 

the WKB method. 

Il-S. Effective Index Modelling 

ln the above two sections, we have discussed the approximate and 

numerical methods to study the one dimensional waveguide problems 

involving an arbitrary index distribution. They are very useful for the 

planaI' diffused optical waveguide characterization analysis. In fact, 

combined with the effective index method [11), these techniques can be 

extended to study two dimensional channel waveguide problems [4]. Since 

the weakly guiding condition is al ways valid in glass optical 

waveguides, the propagating modes are almost linearly polarized and can 

be classified into TE-like and TM-like modes for the strong E field 

components parallel and perpendicular to the waveguide surface, 

respectively. This property allows for sorne approximations to provide 

quite accurate results for predicting the dispersion properties of 

channel waveguides. Next, we are going ta illustrate how the wave 

equation for the 2-D graded index waveguides can be split into two l-D 

wave equations under the effective index modelling. 
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J For the diffused glass surface waveguides, since the graded index 

variation is very small in distance of the arder of the wavelength over 

the whole cross section, the ter ms with 'il Ln{ n2
( x ,y) J are negl igible 

.l 

from the vectonal wave equatlOns (II-9) and (Il_. 10 1. Therefore, the 

channel waveguide modes can be studled under the scalar approximation 

and the dominant optical field distribution functlOn can be assumed to 

havp E(x,y) = P(x)Q(y). Hence, equation (11-9) becornes 

(II-60) 

where N=f3/k 0 is defined as the effective index of the propagating mode, 

N (y) is the lateral effective index profile function. Equation (II -5-0 
e 

can be separated into two 1-D differential equations by using the 

effective index method. The effective index essentially slices the 2-D 

graded index waveguide in the lateral direction. The mode index N (y ) 
.. 0 

corresponds to a given thin slice at a specifie value y=y o. Howcver HH' 

guide \Vith an index profile n(x,y) at 
o 

y=y is now assumed ta 
o 

be 

infinitely extended for the purpose of evaluatmg N (y) Thus 
e " 

the 

application of the effective index method results in the following 

separated equations: 

d
2
P(X) 2 2 

--- + k [n (x,y) - N2(y)]Nx) = 0 
dx2 0 e 

(lI-611 

(Il-6ë.) 

In (II-60), since y is regarded as a constant, we can solve N (y) at 
e 

each value of y by applying the boundary condition along x, that is, 

along the depth direction. 

The index profile of single channel waveguide formed by the 

diffusion process is separable usually which can be assumed as 

x :s 0 
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l 

l 

2 = n 
o 

x>O 

(11-63) 

where a=d, b=d are the effective diffusion depths in the àepth and 
x y 

latet'al directions respectively. Substituting (II-62) into 01-60), we 

have 

(II-64) 

After sorne algebraic manipulation, equations (II-63) and (II-60 can be 

normalized a5 

(11-65) 

(11-66) 

where V::k d h~nn, V =k d h~nn are the normalized frequencies; 
x 0x b y 0y b 

2 Z 2 2/ g(T/)B (q)=[N (q)-n 1/2~nn , B =(N-n) 2~nn , and m, n correspond ta the 
m e b b mn b b 

mode nurnber with respect to the variations in the depth and lateral 

direction, respectlvely. g(-q)B (1)) and B are called the normalized 
m mn 

effective lateral index profile and the normalized effective index, 

respectively [5J. 

By way of the WKB method or ray treatment, the eigenvalue equation 

for the equation (11-64) can be expressed as the phase integral form 

(I1-67) 

where rp =tan -llnP/( B +A)f(Z-B ) ] is the phase shift due to the total 
s s m m 

reflection between the air-waveguide interface; p=o for TE-like modes 

and p=z for TM-like modes; A=(n2_l)/(n2_n2
) is a measure of the 

bIs Il 

waveguide asymmetry. rp is the phase shift experienced by the ray at the 
t 

turning point and equals Tr/I,I [7]. Similarly, for the laterai 
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direction, the equation (II-65) will give 

1 
+ -)Tr 

2 
(II-681 

where 1) is the lateral turning point, Le. g(l) )B( l) )-B =0. TherefOl'l', 
t t m t mn 

applying equations (II-66) and (II-67) , the diffused optlcal waveguldf' 

dispersion properties can be studip.d by the effective index 

approximation. 

As the matter of fact, in the slab waveguide case, equatlOn (1\-66) 

becomes 

where V =kd Iztmn 
x x b 

function of V, Le. 
x 

(B-69) 

and B =(3 /k. For a fixed m, B is a single value 
m d m 

B =F(V). Therefore, as long as we find the 
m x 

dispersion relation for B to V in the slab case, the function can l>e 
m x 

applied to set up the lateral effective index profile g(1})B (1}) 
m 

g(1j)F[V /g(1j)'] for any channel diffused waveguide which possesses the 
x 

same index distribution function tex/a) in the depth directlOn 

Therefore, using the norrnalized notations can save much computation for 

analyzing the diffused channel waveguides by the effective index 

approximation method (5]. 

In arder to demonstrate the effectiveness of this approach, we 

apply the index profile characterized From the K+ -Na + ion exchange in 

soda-lime glass substrates in the calculation. i.e. the lateral and 

depth index profiles in the formula (II-62) arC' 

g(Y/b)-2ert~w72b)[erf(y+~/2)-erf(y-~/2)] (erf is the erraI' functlOn) and 

/ 2/ 2 t(x a)=exp( -x a). respectively. Fig. II-8 (a)-(b) show sorne samples 

together with the variational analysis. The results indicate, by 

effective index modelling, not only the diffused channel waveguides carl 
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be studied by the planaI' techniques with accuracy, but aise the 

discrepancy between the different polarization modes can be 

distinguished by equation (II-66l. 

11-6. Scalar Variational Analysis 

As we have demonstrated in the pr .... ·;ious section, by the effective 

index modeUing, the 2-0 channel waveguide problems can be transformed 

into two coupled 1-0 planar waveguide problems. Since the effective 

index approximation produces large!' dispersion values [12] but WKB 

methad gives smaller" anes areund the cutoff region (see Fig. II-6), the 

combmatlOn of them can still produce quite good results for predicting 

the channel waveguide dispersion property studies under the weak 

gmdance condition. However, this method is still not suitable for 

providing the modal field patterns which is useful for further device 

design application. Comparatively, the scalar variational technique is a 

more rigorous and flexible method used to study channel waveguides with 

an arbitrary index distribution. By the stationary and extreme 

properties, this method can produce very reliable dispersion results. 

Furthermore, with the modal field information produced by the analysis, 

the polarization corrections can also be carried out by this 

perturbatiOn techniques [131. 

Under the scalar approximation, the wave equation for the 

propagating modes can be written as 

(11-70) 

where (3 is the propagation constant of the scalar mode and E=I/>x or E=I/>y 
o 

are the field patterns characterizing the transverse electric fields 

which are linearly polarized along x or y directions . 

• Multiplying equation (II-69) with 1/> and integrating by part yields 
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1 {32 = k~ffsn2(x,y)I4>12 dxdy - fJs 1 U.L4> 1 
2 

dxdy 

o IIs l4> 1 
2 

dxdy 

(II-71l 

where the surface integral is over the entire cross sectIOn. The 

expression (II-70l is variational, Le. the exact solution of equation 

(II-69l assumes an extrema of (32 in (lI-70l. Because of the stationat'y 
o 

and extrema properties, the variational method can provide very reliable 

results in predicting the dispersion characteristics for waveguldes with 

an arbltrary index profile. However, the accuracy of the variational 

analysis is critically dependent on the proper C'hoice of the field trial 

functions. 

For the diffused channel waveguides, due to weak guidance and a 

step index change on the substrate surface, we can assume that the E 

field trial functions are separable, i.e. 

4>(x,y) = P(x)Q(y) (11·7:-') 

As proposed in the literature (14), we extend the trial function 

form ta approxima te two dimensional channel waveguide rleld 

distribution, i. e. , on the x and y coordinate directions, we propose· 1 hf' 

trial function as following 

P(x) = cos(pcr)exp[ptan(pG')x/a] 

= cos[p(x/a-O")] 

= cos[ p(ç-cr )]exp( -ptan[ p(ç-cr )](x/a-E)} 

for even modes 

Q (y) = cos(qy/b) 
e 

= cos( q()exp[ -qtan( qC,X 1 y /b I-c,) J 

and odd modes 

Q (y) = sin(qy/b) 
o 
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x/a O!: 0 

(1 ~ x/a O!: ~ 

x/a :s ~ 
(II-.,3) 
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= sine q<)exp[ qctan( q<)( 1 y /b 1-<)] 

(II-75) 

Actually, we choose the triai functions in this form 50 as to allow the 

fields and their denvatives ta be continuous at each boundary and 

matching pomt Of the variables in the trial functions, a, b are the 

effective diffusion depths in the depth and lateral directions 

respectively; p, (J, ~, q, < are aU vanational parameters. Since we 

choosp. a sIngle functlOn form here mstead of a SUffi of orthogonal 

functlüns (Raylelgh-Rltz Procedure), as in sorne earlier work [15-16], to 

deterrnme these parameters, a nonlinear optimization routine should be 

employed. ln fact, the single form tnal function not only provides a 

better' approximation for the fundamental (and low arder) modal field of 

the diffused waveguide, but also enable us ta obtain an analytical 

expression of the coupling coefficient which can be more easily 

interpreted physically for the multi-waveguide coupling problems. 

Substituting the field trIal functions and index distribution 

function (11-62) into the variational expression of the scalar wave 

equation (II-70J, we obtain 

(II-76) 

\, .. ere 1 =J ~2(Y)dY, 1 =Jf~x/a)p2(X)dX' 
y xl 

-00 -00 

1 =J ~ aaCL)2dy and 1 =j;2(X)dX. 

I x=L:2(X!dX. 

J 
00 ] 00 ap 

':12 x x3 
-00 0 

1 = g(Y/b)Q2(y)dy, 1 ;; (-a-idX, 
yI x2 X 

-00 -00 

For the index profile we discussed in the last section, nearly aH of 

these tntegrals are analytically integrable which reduce the computing 

trme significantly (see AppendixL 

8y the perturbation approach, Le. by employing the trial function 

used in scalar analysis as a "zero" arder solution to the vector wave 

equatlOn (11-9), the discrepancy between different polarization modes 

can be distinguished by the first-order vector corrections: 
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j _ JJs~ ..ÊL _8_ ln 2. ) 
2 (32 ay ay n (X,y dxdy 

f3TE 
~ 

0 JLI~12 dxdy 

(1I-77) 

and 

_ JJs~ 84> a 2 

ax --ln n (x,y) dxdy 
2 (32 8x 

{3rM ~ 0 J J s 1 ~ 12 
dxd y 

01-78\ 

for TE and TM modes respectively. In deriving (IJ-76 1 and (II-77J. 

equations (II-91 and (II-69) have been used. As far the effect of t tH' 

step index change on the waveguide surface, the term (ôn z /ax>/n Z gIVf!" a 

delta function 50 that the integral in the numerator of (II-77) becomes 

J 
00 2 . n 0 -1 2 sm(2pcr) p/2a ; ,y) Q (y)dy 

-00 n (0, y) 
(l1-'79J 

It is worth noting that, in a direction of the refractive index 

decrease, the slope of ~ is negative 50 that the integrand In the 

numerators of (11-76) and (II-77) remains nonnegative. Thererore, the 

polarization correction al ways reduces the magnitude of the pl'Opagatlon 

constants obtained from the scalar analysis. 

With the same channel waveguide structure as in the last seetlOn, 

we pre~ent the analytical results in Fig. 8 (al-(~) together wlth the 

EIM analysis. In arder to examine the reliability of our analysis. far 

the slab case, we compare the variational results wlth the exact 

solution by the transverse resonance method. An excellent agreement is 

observed even in the vicinity of cutoff. For the channel gUides. the 

variational analysis provides an apparent improvement around the cutarf 

region compared to the effective index methad. AIso, both metl"lods show 

very good agreement in the regian far from cutoff. Fig. Il-9 glves an 

approximate model field distribution contour for channel waveg l1ide 

produced by the variational technique. 
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1 

For the wide, 

diffusion depth is 

width. The side 

Le. large aspect ratio R, channel waveguides, the 

comparatively small compared with the waveguide 

diffusion effects are, hence, insignificant to the 

wavegulde propertles. Therefore, the I-D diffuslOn approximation (Le., 

g(y);:::1J provide5 very good approximation [11). However, for the 

wavegulde aspect ratio R=O.5, and 2, we find that two dimensional 

diffused channel waveguldes have qUite different dispersion properties 

From the one dlmen<;ional diff t.!c:;ed channel waveguides CFigs. II-lO, II-Il 

and II-I21. And, because of the slde diffusion effects, the waveguide 

dispersJOn propenles var led by d.annel width are much more gentle than 

the step Index profile (no diffusioLl in the y direction) waveguides. As 

a matter of fact, thls property is determined by the lateral index 

distribution function g(y). Fig. II-13 shows an exarnple, by keeping the 

diffUSIOn depth d=6p.m, the diffused channel waveguide index distribution 

is almost unchanged as the channel width varies frorn w=6J.llTl to w=3J.llTl. 

Ther'efore. for the aspect ratio R=w/d <1 diffuse a channel waveguides, 
x 

the side diffusion effects can not be ignored (see Fig. II-lO). 

11-7. Conclusion 

[n this Chapter, we have discussed sorne approxirnate and numerical 

methods used for studying the arbitrary index distribution of optical 

planar and channel wa.veguide problems. Under the weakly guiding 

condition, the glass integrated optical device designs and analysis can 

be weil performed with these techniques from the engineering viewpoint. 

Appendix: 

Substituting the trial functions (II-72) to (11-74) inta the 

variational expression (II-70) , for the index profile function as 

discussed in Section Il-S. the integrals used in the equation becorne 

f
Ol 

2 a 
Ix= _= (x)dx = zp{l;p+ctan(ptT)+ctan(pll;-a-])} 
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1 

2 
acos (pl1') 

2ptan( pa-) 

J
o 2. 2 '7 

where t=ptan(p[t;-crJ) and l = cos (p[xja-a-)exp(-x /:lW)dX 
fi t;a 

be evaluated numerically. For the even mode, 

+- 1 
Il 

where 1 = r g( y' )cos' (ql;!e xp[-2qtan( q()( y' -Ç! ld y' dU" 

J
~ 2 g2 i; 

l = g( y' )cos (qy' )dy' could be evaluated numerically because er f( y') 1 
g1 0 

when y'>6. Similarly, for odd mode 

roo 
where 1 =J g(y' )sin

2
(qi;)expl-2qtan(qi;Xy'-C;,>Jdy' 

g2 i; 

l =Jr.g(Y')Sin
2
(qY')dY• can aiso be evaluated numericall1 • 

gl o 

References: 

31 



l 

----------------------------------------

[1) R V. Ré1maswarny and R. Srtvastava, "Ion-exchanged glass 

waveguldes: a revlew", J. Lightwa ve Technol. , vol. L T -6, pp. 

984-1001. 1988. 

[2) N Mabava, P. E. Lagasse and P Vandenbulcke, "Finite element 

analysis of optical waveguides", IEEE Trans. Microwave Theory 

Tech., vol. MIT-29, pp. 600-605, 1981. 

[3/ S M. Saad, "Revlew of numertcal methods for the analysis of 

arbltranly-shaped mlcrowave and optlcal dielecrtic waveguides", 

IEEE Trans. Mlcrowave Theory Tech., vol. MIT -33, pp. 894-899, 1985. 

[41 .1 Ctyroky, M Hofman . .1. Janta and J. Schrofel, "3-D analysis of 

LiNb03 TI channel waveguides and directional couplers", IEEE .1. 

Quantum Electron., vol. QE-20, pp. 400- 409, 1984. 

[5/ c. M. Kim and R. V. Ramaswamy, "WKB analysis of asymmetric 

dtrectional cOllplers and its application to optical switches", J. 

Lightwave Technol., vol. LT-6, pp. ll09-1118, 1988. 

[6) M. J. Adams, "An introduction to optical waveguides", John Wiley & 

Sons, New York. 1981. 

(7) G. B. Hocker and W. K. Burns, "Modes in diffused optical waveguides 

of arbl trary mdex profile", IEEE J. Quantum Electron., vol. 

QE-11, pp. 270-276, 1975. 

(8) R. E. Collin, "Foundations for microwave engineering" , 

[91 

McGraw-Hlli, New York, 1966. 

E. F. Kuester and D. C. 

dispersion cllaracteristics 

Chang, "Propagation, 

of inhomogeneous 

attenuation and 

dielectric slab 

waveguides", IEEE Trans. Microwave Theory Tech., vol. MTT-23 , pp 

98-106, 1975. 

[10) G. G. Bach, Course notes on "Numerical analysis", Mechanical 

Engineering Department, McGill University, 1982. 

[11) G. B. Hocker and W. K. Burns, "Mode dispersion in diffused channel 

wavefuides by the effective index method". Appl Opt., vol. 16, 

pp. 113-118, 1977. 

(12) c. M Kim. B. G. June and C. W. Lee, "Analysis of dielectric 

rectangular waveguide by moditïed effective-index method", 

Electro. Lett .. vol. 22. No. 6. pp. 296-298, 1986. 

32 



[13J H. A. Haus, W. P. Huang and N. M. Whltaker, "Optical 
wavegulde 

dispersion characteristics from the scala!' wave equatlOn", J 

Lightwave Technol., vol. LT-S, pp. 1748-175-1-, 1987. 

[14J P. K. Mishra and A. Sharma, "Analysis of single mode 

planar waveguides", J. Lightwave Technol., vol. 

204-212, 1986. 

inhomogeneou~ 

L T-4, pp. 

USJ H. F. Taylor. "Dispersion characteristics of diffused channel 

waveguides", IEEE J. Quantum Electron.. vol. QE- t?, pp. 748-7"\2, 
1976. 

[16] R. A. Sam mut and A. W. Snyder, "Graded monomode fibers and plan,lr 

waveguides", Electron. Lett., vo1.16, pp. 32-33, 1980. 

33 



1 
Table II-2. The Effective Indices of Cladded Diffused Waveguides 

(ni Mode) 

1. 55/lffi 1.31/lffi t 

Exact(TR~fl \VKE E:-ror Exact(TR.\!) WKB Er-ror 

1.4'::19559 1..199272 .000287 1.503213 1.502947 .000267 0.0 

1.499705 1.499409 .000295 1.503376 1.50::)107 .000268 0.1 

1.499836 1. d9C,53 l .000105 1.5035iï 1.503237 .OO02Sn 0.2 

1.499949 1. 4996.11 .000308 1.503631 1.503346 .000285 0.3 

1.500042 1.4-99730 .000312 1.S03ïl9 1.503437 .000281 0.4 

1.500116 1..199ï98 .000318 1.503783 1.503496 .000286 0.5 

1.500173 1. .l9935ï .000316 1.503829 1.5035";'.1 .000285 0.6 

1.500215 1.499893 .000322 1.503861 1.503569 .000293 0.7 

1.500248 1.499927 .000320 1.50388.1 1.503592 .000292 0.8 

1.500271 1.499952 .000320 1.503899 1.503609 .000290 0.9 

1.500289 1.499969 .000320 1.503910 1.503620 .000290 1.0 

1.500301 1.499978 .000323 1.503917 1.503627 .000290 1.1 

1.500311 1.499984 .000327 1.503922 1.503633 .000289 1.2 

1.500317 1.499991 .000326 1.503925 1.503636 .000289 1.3 

1.500322 1. 499996 .000326 1.503927 1.503638 .000289 1.4 

1.500325 1.500000 .000325 1.503929 1.503640 .000289 1.S 

1.500328 1.500003 .000325 1.503930 1.503641 .000289 1.6 

1.500329 1.500005 .000325 1.503930 1.503642 .000289 1.7 

1.500331 1.500006 .000325 1.503931 1.503642 .000289 1.8 

1.500332 1.500007 .000325 1.503931 1.503643 .000289 1.9 

1.5003'32 1.500008 .000325 1.503931 1.503643 .000288 2.0 

Remark: 

Fabrication Technique: K+ -N+ ion exchange 
Il 

Diffusion Time: 170 min t: cladding thickness (",m) 

Cladding Material: SiOz Substrate: Soda-Lime 

1. 55"'ffi 1.31",m 

Cladding Index: 1.44403 1.44679 ,. Substrate Index: 1.49806 1.50104 

• Surface Inde.". 1.50664 1.50961 
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Table II-l. The Effec:ive Indices of Clacèed Diffused Waveguidt:s 

J (TE Mode) 

L55/lm 1. 3 lf.Lm t 

Exact(TR~1) WKB Errer Exact(TR~O WKB Erroi 

1.499130 1.498862 .000268 1.50263.!. 1.502463 .000222 00 

1.499235 1.498959 .000276 1.502805 1.502Sï7 .0002:28 0.1 

1. 49932S 1.499CH .00028":- 1.502904- l 5ù26ï2 .000231 0.2 

1.499398 1.499110 .000287 1.502979 1.50274..l .000236 03 

1.4994-56 1. 49916.!. .000292 1.503035 1.502793 .000242 0.4 

1.499501 1..199207 .000294 1.503075 1.502336 .000239 0.5 

1.499535 1.499239 .000296 1.5031.C.!. 1.502365 .000239 0.6 

1.499560 1.499265 .000296 L5031.2.!. 1.502382- .000242 0.7 

1.499579 1.499278 .000301 1.503137 1.502S92 .000245 O.S 

1.499593 1.499293 .000300 1.5031-16 1.502902 .000244 09 

1.499603 1.499303 .000300 1.503153 1.502909 .000244 1.0 

1.499610 1.499311 .000299 1.503157 1.502914 .000243 1.1 

1.499616 1.499316 .000299 1.503160 1.502917 .000243 1.2 

1.499620 1.499320 .000299 1.503162 1.502919 .000243 1.3 

1.499622 1.499323 .000299 1.503163 1.502920 .000243 1.4 

1.499624 1.499325 .000299 1.503164- 1.502921 .000243 1.5 

1.499626 1.499327 .000299 1.503165 1.502922 .000243 1.6 

1.499627 1.499328 .000299 1.503165 1.502922 .000243 1.7 

1.499628 1.499328 .000299 1.503166 1.502923 .0002'D 1.8 

1.499628 1.499329 .000299 1.503166 1.502923 .000243 1.9 

1.499629 1.499329 .000299 1.503166 1.502923 .000243 2.0 

Remark: 

Fabrication Technique: K+ +. h -N iOn exc ange 
a 

Diffusion Time: 170 min t: cladding thickness (flm) 

Cladding Material: SiOz Substrate: Soda-Lime 

1. 55/lm 1.31/lm 

Cladding Index: 1.44403 1.44679 

Substrate Index: 1.49806 1.50104 

Surface Index: 1.50664 1.50961 
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Fig. 11-2. Turning point for a mode in smoothly varying index: 

(a) increasing index profile, 

(b) decreasing index profile. 
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Fig. 11-4. The index profile for the cladded diffused surface 

waveguide, where t is the cfadding thickness . 
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Fig. II-9. The approximate modal field pattern for' a channel waveguide 

produced by the scalar variational technique. 
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CHAPTER III 

DESIGNS OF A SINGLE-MODE X-BRANCH TYPE DEMULTIPLEXER 

111-1. Introduction 

Since flrst proposed as a TIR device in 1978 [1], the X- bran ch 

waveguides, either syrnmetric or asymmetric, have been extensively 

studied in a number of publications [2-31. Especially, in single mode 

integrated optlCS, the X-branch has become a competitive structure with 

the directional coupler in many device designs. Most of these devices 

offer important performance advantages such as a low insertion 1055, 

high extinction ratio, smaU device dimension, modera1 e drive voltage, 

simple electrode configuration and etc.. Therefore, it has led to the 

posslbil1ty of more truly integrated optical circuits [4-51. 

Optical multildemultiplexers are essential components for the 

Wavelength-Division-Multiplexing (WOM) optical fiber communication 

systems, which can transmit different channels of modulated signaIs 

simultaneously. The device functions are to combine and separate the 

wavelengths carrying different information channels. Because of their 

compact structures, ruggedness with simplified assembly and planar 

fabrication technology, integrated optical WDM devices are particularly 

attractive for single-mode fiber system [6-9]. 

In thls chapter, we will use the X-branch waveguide structure to 

design a single-mode dual-channel integrated optical multil 

demultiplexer which can be fabricated on soda-lime glass by using 

single-step ion-exchange techniques [10]. The theoretical background of 

the device is introduced in Section 1II-2. Under the effective index 
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method approximation, the dispersion equation fOl" studying the X-br..lllCh 

waveguide propertiès is denved in Section Ill-3. Then, detatled devlce 

property studies and design considerations will be carried out in 

Section 1II-4. Lastly, sorne further improvernents are disclissed in 

Section III-S. 

111-2. Deviee Operation Prineiple 

As shown in Fig. III-l, the principle of the X-branch type 

single-mode WDM device is based on the wavelength-dependent two- mocl(> 

interference in a two-mode waveguide, which is adiabatically cOllpled \0 

the single-mode input and output waveguides by tapered directlOnal 

couplers. The two-mode region of WDM waveguide can be dec;lgned to 

consist of a higher refractlve index central rcglOn wlth an 

approximately doubled index increase, or a wider central reglon wlth an 

approximately doubled waveguide width. In an} case, fOl' optimunl 

operation, the central region must contain t'Wo guidf'd modes of eaLh 

polarization. In su ch a waveguide system, due to the acliabatlc coupl ing, 

an input signal from one of the arme; can be converted into two normal 

modes (one symmetric and another antisymmetricl. Propagating through the 

symmetric entrance taper, two-mode center reglOn, and then the symmetl'lc, 

exit taper again, these two normal modes do not exchange energy along 

the device. i.e. 

J l/J (x,y,z)l/J (x,J,z)dxdy = 0 
S ;l 

S 

(Ill-! ) 

because the symmetric mode l/J is orthogonal to the antlsymmetric mode I/J 
S ~ 

at any cross section z. 

However. since the two normal modes have different propagation 

constants, a phase difference is accumulated. The output state of the 

coupled guide structure is determined by the interference of these two 

modes (HJ 
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2 / 2 P..IP = 2(a a )cos (ifJ 2) + (a -a ) /2 
- ln sas a 

PJP = 2(a a )sin
z(rp/2) + (a -a i/2 

ln sas a 

(III-2) 

(III-3) 

where P is the input power, a is the relative excitation amplitude of 
ln s 

the syrnrnetric mode I/i • and a is that of antisymmetric mode t/J • 
s a a 

The accumulated propagation phase difference ifJ is the sum of that 

in the converging and divergi:12 region ifJ and in the two-mode ~enter 
t 

region rl>c 

= 'fJ (;\.) + ri> O.) = A(3 O.)L 
etc + J A(3 t o..,z)d..! 

taper 
reg Ion 

(III-4) 

with A{3 ={3 (;\.,z)-{3 (;\.,z), in the tapering region and A{3 =(3 (;\)-(3 (À) 
t st at c sc ac 

in the center region, where t3, t3 are the propagation constants of the 
s a 

symmetric and antisymmetric modes, respectively, and the subscript t 

denotes the taper region and c denotes the two-mode center region. The 

accumulated phase difference '" depends on the wavelength as a result of 

the different wavegUlde dispersions of the two modes. Near an operating 

wavelength À , the modal dispersion may be approximated by 
o 

A(3 (;\. +AÀ) = A(3 (À ) + '(~;\. 
1 0 1 0 1 

i = t, c 

mI-5) 

where '( represents the differential waveguide dispersion at À 
o 

8(t3 - t3 ) 
Il il 1 

i=t, c 
aÀ 

(111-6) 

From (I1I-5), the wavelength dependence of the phase difference in 

the two-mode center region can be approximated by 

ri> C\ +Ai\.J = ll(3 (À +b.À)L = t/J + '( AÀL 
c 0 coco c 

(111-7) 

where ifJ =ll(3 (À )L is the relative phase difference at À • 
CO C 0 0 
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1 
On the other hand, as will be shown in SectIOn Ill-ol, wavelength 

dependence of modal dispersIOn in the taper region is much smaller than 

that in the two-mode center reglOn, i.e., '" is much less wavelength 
t 

dependant than "'. Hence, the relative phase difference in the taper 
c 

region can be approximated as being nearly wavelength independent 

compared with that in the center region: 

4> (i\ +âi\) ~ 4> (i\ ) ;::: 4> 
t 0 toto 

(III -8l 

(Le., 84> lai\ « "1 L near i\=i\ J. 
t c 0 

Combining (III-2), 011-4), (III-S) and (III-8) and assummg the 

branch waveguides are sufficiently separated in the input and output 

flare, Le., two «'s will be nearly identical « ~(l ~1/..f2 when one arm is 
s a 

excited, we can have 

OH-9al 

where 

(III-9bl 

From (I1I-9a) it can be seen that the channel separation, je. 

wavelength difference between ON and OFF wavelength, is mainly dependent 

on the waveguide length in the two-mode region and seems to have a 

nearly constant value of (III-9bl regardless of the branching angle. 

In order ta demultiplex the signal i\ and i\ which are input 
1 2 

together from port 1, Le., export them ta port 2 and 3 respec..tively, 

the total propagation phase differences should be: 

",(i\ ) = â(3 (i\ )L + t/> (i\ ) = 2n1l 
1 c 1 t 1 

<pO. ) = â(3 O. )L + t/> (i\ ) = (2n+1)1l 
2 c 2 t 2 

(IIl-lO) 

(III-lll 

where n is a integral number. Therefore, the output states become: 
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P (;\ ) Ip (À) = cos
2[qJO .. )/21 = cos2[nnJ = 1 

:: 1 1 ln 1 1 (III-I2) 

P (À >/p (À > = sin
2
[tfJO .. )/2J = sin

2
[nn] = 0 

x 1 ln 1 1 
(III-13) 

and 

P,/ÀZ)/PI/ÀZ) ::: COS
2
[tfJ(ÀZJ/21 ::: cos

2
[(n+l/2JnJ = 0 (III-14) 

P (II. ) Ip (À):: sin
2
[tfJ(i\ J 12J = sin2[(n+1 12)nJ :: 1 (I1I-15) x 2 1 ln 2 2 l' l ' 

These mean that the WDM devices operate like a bandpass filter to 

separate the signals i\ and À input from the same port 1 ta different 
1 2 

output ports 2 and 3, respectively. 

However. since the extinction ratios for the two signaIs À and À 
l '2. 

are described by the following formulas: 

Dell. ) :: 10Log (P JP ) = 10Log fctiftfJ('i\ >/2]} 
1 10 - x 10 1 

(IlI-lS) 

D(À ) = lOlog (P!P ) ::: lOlog (ti[tfJ(i\) 12]) 
2 10 = 10 2 l' (I1I-I6) 

any device parameter errors caused by fabrication deviations might 

degrade the extinction ratio seriously as: 

dD(À) 
1 

20 1 
=-x 

dtfJ lnlO sin[tfJ(À )J 
1 

(III-17) 

dD( À ) 
2 

20 1 
:::_-x 

dtfJ lnlO sin[tfJ(À JJ 
2 

(III-18) 

since sintfJ=-O when tfJ=2nn and t/J=(2n+1)n. Therefore, in ordel' ta minimize 

the fabrication tolerance, the device properties via the structure 

par'ameters should be studied elaborately. 

111-3. Dispersion Equation 
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1 For the symmetric X-branch waveguides, the analysls based upon the 

normal mode interference needs not refer to the modal field information 

because the condition (III-Il is satisfied. Therefore. as we have 

discussed in the last chapter. the effective index method provides a 

very good approximation to be applied. As shown ln Fig. IlI-2. in the 

taper region, the branched waveguide is equlvalent to a flve-layt'l' 

pla'1ar waveguidf> system with their respective ~ffectlve indices Next. 

we apply the transverse resonance method to denve the normal modes' 

dispersion equations for this five layer planar waveguide system 

In the five-layer waveguide system, because a/ax=o, for' t!w II· 

modes, as we have discussed in Chapter II, these are 

and 
aE 

;;; - j x 
Hz WIl- ay 

o 

(I1I- J9) 

and the local transverse wave impedances are defined as 

E+ E 
z+ X 

Z 
X = Or ;;; 

H+ H 
Z z 

OIl-20l 

where + mean5 that the propagation i5 along the y direction and follows 

the right-hand screw rule with the tangential field components E dnù 
x 

H. 
z 

The field solution for the five layer planar waveguide system (S(,f' 

Fig. III-31 can be expressed as 

E = E- exp(k y) y!!:.O 
x 1 b 

= E+ exp(-jk yJ + E- exp(jk y) O:sy!!:.w 
2 e 2 e 2 

;;; E+ exp(-k y) + E- exp(k y) w ~y~w +p 
3 b 3 b 2 2 

;;; E+ exp(-jk y) + E- exp(Jk y) w +p~y~w +p+w 
4 e 4 e 2 2 4 

= E+ exp(-k y) w +p+w ~y 
5 b Z 4 
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1 where 

and 

Therefore, the local transverse wave impedances in each region are 

and 

jwlJ, 
Z

+ 0 -

1 = -k- = ZI' 
b 

+ 
Z- = 

1 

+ + z- =Z-
3 s' 

WIJ, 
Z+ = __ 0 = Z-

2 k 2 
e 

+ + 
Z- = Z-

2 4 

011-21) 

OII-22) 

(I1I-23) 

(III-24) 

where the physical meaning of Z+ =Z- is that the media in which the light 
1 1 

wave propagates are reciprocal. Therefore, according to the transmission 

Ime theor"y, at y=O, we have 

Since 

jwlJ, 
-.L - 0 
L. =Z =--

Inl 1 k 
b 

Z + Z tanh(jk y) 
Z = Z 1 c y 

ln c Z + Z tanh(jk y) 
c 1 y 

at y=w, we obtain 
1 

z- =z 
z-

1nl 
+ Z-tanh(jk y) jwlJ, k + k tan(k w) 

2 e 0 e b el 
In2 2 Z- + ZL tanh(j k y) - ~ -:-k-b----k:-e-:t-a-n("'T:k:-e-w-l""t') 

1 nie 

and, at y=w +p, 
1 

2 

ZL + Z-tanh(k y) 
zL 

InJ 

In2 3 b 
= Z3 --------

Z- + t- tanh(k y) 
3 1 n2 b 
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J jWIl [k +k tan(k w J1k + k [k -k tan(k w )]tanh(k p) 
o e b el b ebe el b 

- -k- k [k -k tan(k w )] + k [k +k tan(k w )}t<lllh(k p) 
b eb e el beb el b 

, 2 2. 2 2 
jWl-l

o 
2k k +lk +k )tan(k w )exp(-2k p)+(k -k )tal1(k W) 

be be el b he el 

k 2k k -( k 2+k2. )tan( k w )exp( -2k p)+( k 2 -k 2 )t.:m< kw) 
b be be el b be el 

(lI[-?81 

On the other hand, at y=w +p+w , 
1 Z 

and, at y=p+w
1 

ZR + Z+ tanh(jk v) zR = Z+ _1_"_4 ___ 4 ____ e_"_ 

In3 4 z+ + zR tanh(jk y) 
4 1"4 e 

jWI-l 
o 

= -k­
b 

jWJ! k + k tan( kw) 
o e b e 2. = ---T- k - k tan( kw) 

e b e e 2. 

(I11-291 

(I1I-JOl 

Ta satisfy the transverse resonance condition ZL +ZR =0, we have 
In3 In3 

jWIl 

k 
b 

o 

Z Z 2. z 2k k +(k +k )tan(k W )exp(-2k p)+(k -k )tan(k w) 
be be el b be el 

2 2 2 2 
2k k -(k +k )tan(k w )exp(··2k p)+(k -k )tan(k w) 

be be el b be .,1 

jWIl k + k tan(k w ) 
+ -k---D ~k-e-_b __ ~~e--2.~ = 0 

- k tan(k w ) 
e b e e 2 

at y=W +p. that is. 
1 

Z Z 2 2 
{2k k +(k -k )tan(k w )}(2k k +(k -k )tan(k w») 

be be e2 be be el 

2. 2. 2. 
-exp(-2k pXk +k ) tan(k w )tan(k w ) = a 

b b e el e2 

(II1-31) 

(I1I-J21 

This is the dispersion equation for TE modes in the rive layer pl anar 

waveguides. When w =w =w. Le., the waveguide is symmetric, the above 
2. 1 

equatian can be split into 
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1 (III-33) 

for the even modes 

2 2 2 2 2k )( +(k -k )tan(k w)+exp(-k p)(k +k )tan(k w) = 0 
be b e e b b e e 

(III-34) 

for odd modes, respectively. ActuaIly, because H and E equal ta 0 at z x 
y=w 1 +p/2 for TE even and cdd modes. respectively, we can build up the 

equivalent boundary conditions as open and short circuits there for thern 

respectively. 8y applying the transverse resonance condition again, the 

dispersion equations (III-33,34) can be verified directly by repeating 

the sunllar denvatrons as above. 

Simllarly, with the definitions of the local transverse wave 

impedance for TM modes as 

z+ = k !jwc n2 =2-
1 bob 1 

and 

+ + + 
Z- = 2- =Z-

1 3 5' 

+ ; 2 -2 = k wc n =Z 
2 0 ef Z 

+ Z-
4 

we can obtain the dispersion equation for TM modes as 

{2g g +(/-i)tan(k w )}{2g g +(i-iJtan(k w)} 
be be e2 be be el 

-exp(-2k p)(g2+g 2y2tan(k w )tan(k w J = 0 
b be el e2 

(III-35) 

(III-36) 

(III-37) 

where g =k /n2 and g =k /n2. If the waveguide is syrnrnetric, i.e., 
b b b e b e 

W 2 =w1=w, for the even and odd modes, respectively, the dispersion 

equations are 

2 2 2 2 
2g g +(g -g )tan(k w)-exp(-k p)(g +g Jtan(k w) = 0 

be b e e b b e e 

(III-38) 

and 
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2 Z 2 2 
2g g +(g -g )t1n(k w)+exp(-k p)(g +g )tan(k w) = 0 

be b e e b b e e 

(IlI-391 

Same as the TE modes, the equivalent boundary conditions as short ami 

open circuits can be built up respectively for TM even and odd modes at 

y=w +p/2 since E of even modes and H of odd modes are zero there. B~ 
l Y x 

satisfying the transverse resonance condition, the equations (1I1-J8,Jtl) 

can aiso be obtained independently. 

It is worth mentioning that the same results can also be round III 

the literature [12] by the field-matching approach. However, for the 

muitilayer dielectric waveguide problems, that approach requires the 

solution of a set cf' high order linear equations wluch is difficult tl1 

obtain as the layer number increases On the other hand, the tran~verst' 

resonance method provides an easier manner to derlve the disperSIon 

equations as shown above in spite of the layer number increasing 

111-4. Design Considerations 

As we mentioned in the Section III-2, when we design the X-branch 

waveguides, there are two ways to ob tain the two-mode region [11). 

1) by doubling the index increase. 

2) by doubling the guide width. 

For the double index choice, since it makes a larger difference of the 

propagation constants between the symmetric and antisymmetric modes, the 

overall device length can be reduced. However, it aiso makes the output 

of the devices very sensitive to the induced refractive index 

perturbation. It may make the fabrication conditions more stringent. In 

fact, the required two-step processes might cause an index dsymmetr y 

during fabricatlOn. Further, there may eXlst many modes m the 

intersection reglOn as the index is doubled. Therefore, any 

unintentional fabrication error may cause the device performances ta 

degrade [13]. Alternatively, using a wider width ta replace the double 

refractive index in the intersection region might be simpler on 
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fabrIcation since only one lithography and one ion-exchange step are 

involved. To be relatively free from asymmetry (since the device 

properties are mainly dependent on the two-mode center regionl, this 

approach could also be easier to get a better extinction ratio th an that 

uSlOg the double mdex structures. For the soda-lime glass substrate, 

slflce the refractlve IOdex can not be adjusted by applying an electric 

field as 10 LtNbO materIal, it would be better to choose the second 
3 

method in the de~lgn and the eventual realizatlOn of this device. 

According ta the device configuration in Fig. III -1, the double 

width symmetnc X-branch waveguide possesses four structure parameters: 

the wavegulde wldth ur, the waveguide diffusion depth d (or diffusion 

time tl, two-mode interaction region length L, and the entrance and exit 

taper flare angle e. Essentially for the dual channel WDM devices, three 

conditions have to be met. Namely, equations (III-lOl, (III-11l and n 

must be an integraJ number under the single-mode operation condition. 

Next, we are going to discuss the device property dependence on these 

parameters. Ali of the numerical analyses are based upon the ion 

exchange charactenzation data in reference [16] under the working 

temperature T=385 ° C (See Table III-l, in which d=Vb-; and D is t.he 
e e 

effective diffsuion coefficient). 

A. Errect of the taper flare angle 

Fig. III-4 shows that the propagation constant differences between 

the symmetric and antisymmetric local normal modes decrease very rapidly 

as the separation between the two branch waveguides increases. It me ans 

that the contribution of the accumulated propagation phase differences 

are very small beyond the two-mode center region (a/w=Zl. Moreover, Fig. 

IlI-5 shows that the wavelength dependence of the accumulated phase 

difference </J (obtained from equation (111-4) where the taper region 
t 

length for the integral is set as l=p/2tg(e/2), p=50J.UTl is the separation 

between the two branchesl is very small (A.p t/AÀ-;::,O.5 rad/J.I.ITl) as we stated 

before. Comparatively, Fig. 1II-4 at a/w=l aiso reveals that, in the 
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1 
two-mode center region, the wavelength dependence of the phase 

difference between the symmetric and antisymmetric modes is much more 

significant since L is long usually (around 350011m) and 

f:.cp (ÀJ/t.À=t.(3 O")L/!1À~14.6 rad/J.UTl). Therefore, 
c c 

m order to mlmmlze the 

device length, it would be better to choose the taper' flare angle .1<; 

large as possible. However, since K+ -ion exchanged surface waveguldps 

are weakly guiding structures, tao large a branchmg angle wJll gener'atf' 

the apparent r:!dlation field. Therefore, a fuller investlgatiC'n of thl'. 

problem should employ sorne other numerical methods sueh as the Bealll 

Propagation Method (Refer to Chapter IV). 

Since the wavelength dependence of the accumulated phase differencl' 

in the taper region cp is small (See Fig. III-Sl, and as the branchmg 
t 

angle varies, it changes almost the same amount for ail wavelengths, 

especially for the larger flare angles. 1 herefore, the vanatlOn of the 

branching angle will result in nearly parallel shift of all the channel 

wavelengths while maintainmg nearly constant channel separation t.A 

value (See Fig. 1II-6) [9]. This property IS very interesting III 

considering the realization of cascaded multlchannel WDM devices 114 J 

especially in soda-lime glass substrates where no electrooptlc tumng 

can be appli~d to effect the same shift. 

Fig. III-7(a) shows a multichannel WDM structure constructed by 

cascading dual-channel demultiplexer with proper parameters, where the 

angle tuning is adopted. For the structure, it 1S convel1lent to let ail 

individual X-branch wavegUldes have the same waveguide wldth and dC'pth 

(for one step ion-exchangel in the deSign. As an example of multlchannel 

WDM design, a four-chanm~l Wavelength DiVISion Multiplexer 15 shawn III 

Fig. 7(bl. The proper operation of this structure reqUln:s that tht 

channel wavelengths of waveguide and 2 should lie on the sucees",! VI 

channel wavelengths of waveguide 3 as shawn in Fig III -7(c). .. oc 

example, waveguide 3 selects signales i\ and i\ to pas!> by wavegulde 2 
2 4 

If the peak and node of the wavegUlde 2 transmission curve COJnclde wlth 

the peaks of the waveguide 3 trarlsmission curve, then the signais Il and 
2 

À4 can be further separated to port P 2 and P 3' respectively. From the 
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1 
two-mode interference model expressed by equation (III-9b), we know that 

t:.i\ is inversely proportional to the length of the center two-mode 
Tl 

reglOn. Hence, the channel separation of waveguide 3 can be ha If that of 

waveguldes 1 and 2 if the center two-mode region of waveguide 3 is two 

tlmes longer than that of waveguides 

f lare angles of X-branch waveguide 

and 2. Again, by adjusting the 

and 2 to Shlft their channel 

Wil ve lengths horizonta lly ta the desired positions, the four channel 

wave1pngth division multiplexer can be constructed. 

B. Effect of the waveguide width 

The waveguide width is aiso an important parameter to determine the 

channel separation !J.À of the WDM devices. Since the total accumulated 

phase dlfference arises mainly from the two-mode center waveguide 

region. we can approximately discuss the effect of width on the device 

dispersIOn properties by considering this region first. 

Flgs. III -8, 9 show two typical channel waveguide dispersion curves 

by the width variations for the TE and TM modes respectively, where the 

heavy dark lines indicate the range in which waveguide supports two 

modes only for both wavelengths. From them, firstly, we can find that 

the propagation constant difference llfjO) between the first two (even 

and oddJ modes are increased as the waveguide width decreases. This 

means that narrower waveguide width for the two-mode center region 

produces larger propagation constant differences, hence resulting in 

shorter overall WDM device dimension. Secondly, the propagation constant 

dlfference at the longer wavelength is smaller than that at the shorter 

wavelength despite being nearer to cutoff. This is because the 

refractive index of glass at the longer wavelength is smaller than that 

at the shorter wavelength (material dispersion properties [15]). 

Therefore. for the K+ -ion exchanged glass surface waveguide, material 

dispersion has the stronger effects than the waveguicte dispersion. 

Thirdly. the dispersIOn curves for the longer wavelength are much 

flatter than those for the shorter wav·~length. According to the two-mode 
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1 
interference principle, we can expect that, as a WDM devlce, the output 

of the shorter wavelength will be more sensitive to the waveg\lIde width 

deviations. To see thls more c1early, some further resul ts are presented 

in Figs. III-IO-14 where ail of the width variatIOn ranges correspond to 

the case that two modes only are supported 111 the w3vegulde for èlther 

wavelength. It can be seen clearly that the t:./3 courves for the shurtt'!' 

wavelength are almost aU linear wlth large slopes Moreovt'r, the longer 

the diffusion tim~ is, the larger slopes they have. 

By solving the equations (III-lOl and (III-11l, for a pair of glVt Il 

channel wavelengths after settmg the diffused tlme t (Le. the dlffnsed 

depths d), the waveguide width of X-branch type demultiplexer call be 

uniquely determined. Since L is the same in both equations, we can 

substitute equatlOn (lII-lOl into (III-ll) then solve the resulting 

equation by a root-search techmque. Hence, we can not choast> tht' 

waveguide width arbitraryly ta design a demultlplxer, given the diffllsed 

depths or vice versa. In the Figs. III -10-14, we use the vertical da~h 

lines ta show the solutions of wavegUlde wldth 2W for demultlplexers. It 

is worth noting that numerical calculations indlcate. If we chùose a tao 

shallow waveguide deptn d (or a tao short diffusion Ume tl, there mdy 

not exist a proper width 2W ta let n take an mteger number for tlt( 

given channel wavelength pair. Although the devlce parame ter number 15 

one more than the working condition number, these IS st111 no ver-ticdl 

dash line in Fig. III-lI which means we can not flnd a propcr solution 

for equations (III-ID) and (III-11) within the two-mode workmg range 

c. Effects of the Waveguide Parameter Errors 

Si:.ce the propagation constant difference bctween symmetrlC' ,wrl 

antisymmetric modes is small for bath wavelengths in the X-bralldl 

waveguide (about 5x10-
3rad/IJ.ITl), a few micron length error in the center 

two-mode waveguide would hardly cause any extmction ratio ta degrad 

significantly in device output. The calculations show the length usually 

is about 3500,.un long. 
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On the another hand, because the wavegulde depth is determined by 

the ion dIffusion time. Accordmg to our own characterization work of 

the K+ -ion exchanged in soda-lime glass substrates [16], we know that, 

in infrared regIon, the index profile in the depth direction can be 

expressed approximately as 

011-40) 

where Ân =0.010 or 0.009 for TM and TE modes respectively and are almost 
5 

mdependent of the light wavelength, d=(D t)l/2 is the effective 
e 

diffusion depth, D is the effective diffusion coefficient which depends 
e 

on the hght wavelength and polarization. For example, under a working 
o 

temperatur'e T=J85C , they are [16] 

D =0.06198( fJ./TIl jmLn 
e 

D =O.06024(fJ./TIl jmin 
c 

D =0.069U3(fJ./TIl/mln 
e 

D =0.06762( fJ./TIl /min 
e 

for TE modes 

for TM modes 

for TE modes 

for TM modes 

at À=1.152#J.1Tl 

at À=1.S23#J.1Tl 

As to the data for the other wavelengths, they can be obtained by 

interpolation or extrapolation from them (See Table III-I). Therefore, a 

diffusion time err'or will cause the diffused waveguide index to differ 

from the design value, namely, cause the effective index errors of the 

equivaient waveguides in the effective index modeling (See Fig. III-2). 

FigS. III-lS show two computation sarr.ple results for t=170min and 

t=J50min (For bath times, the waveguides all support single depth mode 

at bath wavelength 1.31f.1J1l and 1.5511fT1). Beeause the derivative of 

exp(-x
2
jd

2
) versus d is a monotonie deeI'easing funetion as d=(D t//2 

c 

or t increase. The longer the diffusion time is, the smaller the index 

error is caused by the same amount of diffusion time deviation M. i.e., 

on (t »on (t) if t <t , where on =n (t+ot)-n (t) and n is the 
ef 1 ef 2 1 2 ef cf cf cf 

effective index of the equivalent channel waveguide (See Fig. 111-2). It 

seems we can choose a longer diffusion time in design to gain the 
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1 
fabrication tolerance on the diffusion time. However, as the refractive 

index of channel waveguide increases, in arder to main tain the single 

mode operation in the braneh waveguides, the channel wldth has to be 

narrower which will cause the wldth deviatlOn to affect the extinction 

ratio more sigmficantly. Therefore, a trade-off is necessary. In our 

design. we choose the diffusion time such that the devlce ext met ion 

ratio due ta ±2min diffusion time deviatlOn will not decl'ease tl) less 

than 20dB (See Fig. 1II-19). Since the effective diffusion coeffiCIents 

are not the same for the different wavelengths, the devlce output 

extinction ratio degradatlOns due to the same diffusIOn Ume devla t IOns 

are aiso different. With the same amollnt of the d'ffuslOn tllne 

deviation. the longer channel wavelength al ways have mOI'e adverse 

effects. This is because the ratio on /t1n for the longer wavelength 
ef ef 

i5 larger than the sharter wavelength (See Table IIl-2l, wher'c 

/ln =n -n is the refractive index difference between the channel and 
ef ef b 

substrate (See Fig. III-2l. 

Employing the photolithography technique, due to the exposure ilnd 

etching qualitles, a ±O.3J.Lffi width deviation of the channel wavegllide is 

unavoidable in fabrication. Figs. III -16. present two deslgn samples 

whose out j'lUt extinction ratio degradations versm: the width crrors dt 

both wavelengths. They show the degradatians at À =1.31/-Lm are always 
1 

worse 
2n>2n 
À ,\ 

1 2 

than those at À =1.55Ilm. Actllally, this is because, for ,\ <,\ , 
2 rw" 1 ? 

and /ln (,\}'/ln (À), where t1n =n -n (See Table III-?), 
ef l ef 2 ef ef b 

therefore, 

~/ln (À»~t1n 0) 
À ef 1 À

2 
ef 2 

(III-41) 

8eco.use 2nnjÀ<W2nn lÀ, 
ef 

the dispersion curves for the longer 

wavelength are al ways flatter than thase of the shorter wavelength (c,ec 

Fig. III-S,9). Therefore, we can conclude that applying the two-mode 

interference prmciple ta design the optical multi -/demultJplexer for 

any structure in glass sllbstrates, the extmction ratio degradations 

caused by the width deivations at the snorter waveiength is always 

larger than that at the longer wavelength. It is very important to 
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choose the correct design parameters 50 that the highest extinction 

ratios can I;e obtained 10 the absence of fabrication errors as designed. 

Otherwise, results as shawn in Fig. III-17 would be obtained, implying 

that sorne deliberate fabrication error would yield higher extinction 

ratios 

As for the asymmetry of the waveguide width in the branch region, 

since the device dispersion properties are determined mainly by the 

center' two-mode region, it will not caU!:ie more adverse effect on the 

extinctiOn ratlO at the output (13). Actually, this is aiso a main 

advantage of this structure over the directionai coupler. 

D. EffecU ve Index Calculation. 

In mast of the integrated optics design, people usually apply the 

well-known WKB method ta calculate the effective index. The WKB 

approximation is based 

d\electrlc index IS very 

upon the assurnption that the variation of 

small over a distance of optical wavelength 

arder'. From the discussions in the last chapter, we know that WKB method 

shows devlation from the TRM (exact) results around the fundamental mode 

cutaff reglOn In calculating properties of waveguides by ion-exchange 

in the soda-lIme glass in the infrared region, the WKB approximation 

ywlds 10 error within 1><10-
4 in multimode region and around 2.5x1O-

4 in 

the s~ng,e mode region (Refer ta Fig. 11-6). Although these can satisfy 

the deslgn requirements for ma st of the single-mode integrated optics 

devlces, they will cause larger design deviations for our X-branch type 

WDM devlce. Table I1I-3 gives an example to show the differences of the 

deVlce design parameter values provided by WKB and transverfie resonance 

rnethods, respectively. The reason for the surprising differences is 

man!ly because the two-mode interference princip le is used and our 

device length is quite long cornpared with the wavelengths, a sm aIl error 

in the effective index calculation (or â(3) will be amplified in rp, which 

is the accumulated phase difference over t~e device length. For example, 

by the channel width 2W=17.74f.U11, the effect.ve indices by WKB (see Table 
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1II-3) give the propagation constant differences between the even and 

odd modes as 2.17xlO-
3
rad/J.Lm and 3.199-dO- 3rad/J.Lm for the wavelengths 

1.55J.L.ffi and 1.31J.LfTl, respectively. However. by the transverse resonance 

method, the propagation constant dlfferences are obt31l1ed a~ 

2.729x1O-3rad/llm and J.3S,1O-3rad/J.Lm for the w3\'elengths 1.55J.LT1! and 

1.31J.Lm, respectlvely Multlplying the length J.f6-+llm. we will ha\'(' 

accumulated phase differences as !::lrfJ (1.55)= 7.5169rad, lIc,/>WKB ( 1.JI)= 
WKB 

11.0813rad and 6rfJ (J.55): 9.t1 532rad, 
TRM 6q)TRM ( Ull= 11.70S.;rad The 

diff erences lIl/> O.55)-l.Il/> (l.55)=1.9363rad 
TRM WKIJ 

is very large (over TIj?) 

Hence, to have the same accumulated phase differences, a few hlll1dred 

micron of length difference is expected Besldes, the longer the 

wavelength, the larger errar the WKB approXllnatlOn ylelds J hlS 

wavelength dependent effective index calcuJatlOn errors alsn rnake the 

device parameter determinatians differ more from the exact v31ues Sll1CC 

for WDM device equations (Ill-IO) and (III-lll should be satlsf led at 

the same time with n being 4 or 5 usually (for power divldpr n=l) 

Therefore, we decide to use the transverSé resonance method tri al! of 

our design calculation and believe that aIl passive smgle-mode 

integrated optical device designs, based on the phase mterference 

principle, should be carried out with caution. 

III-S. Improvements 

From the above design calculations and discussions, we know that 

fabricating a double width X-branch type WOM devlces requlres {Joly 

one-step ion-exchange, hence, involvlOg only one phatolithographJr 

process, which not only simplfies the fabricatIon pr'ocess, but also 

reduce any asymmetry possibilities iflduced by a multl-step fabrlcat 1011 

process. However, the above analyses show that the de\l:c~ disper ',IOll 

properties are still very senSitive ta the wavegulde wldth devlatlons 

From a practlcal viewpoint, less than 20dB channel Isolations due ta 

±O.3Jlm width deviation is still tao rtgorous ta reallze under the 

present state of art. Hence, seeking h campensatlOn method for the 

device fabrication is very necessary for obtaining good devlce 
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performances. Simllar problems also occurred in the directional 

coupler-type WOM device desIgn 1171. where the authors used the cladding 

deposltlOO method ta adju<;t the ché ,mel wavelength 5hift (or output 

extinctIOn ratio degradatlOnsl due ta the width deviations in 

fabncatlon As discussed above (see Fig. III-16(a), under ±0.3Ilm width 

deviatlOn, the extinction ratio degradatlOn of the longer channel 

wavelength lS stIll acceptable and only that of the shorter channel 

wdvelength needs to be imp:'ov:;d. However, when the shorter ;:hannel 

w<1velength shiftmg is improved by a cladding, the center wavelength at 

the long!!r channel wavelength needs ta be adjusted also for the more 

siglllficant effective index increment. Therefore, it is difficult ta use 

a compensation method ta improve the device properties fOî both 

waveJengths at the same time. Consequently, a cascaded structure (see 

Fig. III-l8(a)) was proposed [17] ta separate two signaIs first by 

coupler A, then compensate thelr wavelength ShlftS in couplers Band C 

separately. According ta the discussion in reference [181, to function 

as multl/demultlplexers, thiS configuration cao also have the advantage 

of havmg hlgher stop-band rejections shce the outputs are described by 

pC pA 

plp " " cos\<p12) = - x -- -
ln pA Pin 

(111-42) 

::: 

pB pA 

P Ip 
x x 

si.n
4(<p/2) = X -- = 

4 ln pA Pin 

(1Il-42) 

x 

and the extinction ratios are 

D(;\ ) ::: 10log (PjP) = 20log (ctil~(À) '2]) 
1 10 4 10 l " 

(III-44) 

DCA) = lOlog (P Ip ) = 20log (ti'<p(À )/2)} 
2 10 4 2 10 2 

(II1-45) 

which mean the stopband rejections are doubled (Refer ta equations 

(III-lS,16l). 

Ta solve the simllar problems, we also apply the configuration 

shawn m Fig I11-18(bl to get the adjustable and high stopband 
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" 

rejection X-branch type multl/demultiplexeI's 510ce OUI' waveguldes al'!, 

embedding, the claddmg compensation eff ects on the center wavelength 

shift are monotonie (See Tables II-l 2) However. employmg the 

photolithographlc techmque, the waveguide wldth devlcltlOn 

uncontrollable m bemg + or - in fabricatIOn. ln order ta be able to 

compensate for any wldth fabrication deviatlOl1 wlthm ta.JllIn, we let the 

width of coupler B be 0.3J.UTl larger than the design value ln tl\IS caSt'. 

the outputs for port #2 and #4 are descrlbed by 

p /p = cos 4[cp(W )/2] 
z! ln 1 

(lI!- 4b) 

p /p = sinZl,p(W )!2]xsin
Z
[q,(W +0.3>/21 

4 ln 1 1 
011-47) 

50, the extinction ratios can be written as 

D(À
1
) = 10log <Ctl[tj>(W ,À )/2]}+lOlog (cos

2
Cq,(W,À )/2JJ 

10 1 1 10 1 1 

-lOlog {sin
2
[tj>(W +0.3,À )/2]} 

10 1 1 
(III-48) 

D(Àz) = 10log <tllip(W ,À )!2]}-lOLog {cos2[tj>(W,À )/2/} 
10 1 2 10 1 2 

+lOLog {sin
2
[tj>(W +O.3,À )!2]} 

10 1 2 
(IIl-49) 

where cp is thE total accumulated phase difference for passing a Single 

X-branch waveguide. figs. IIl-19,20 present the calcu!ated results of a 

design example. They indicate that, when the waveguide wldth devldtlOm, 

are positive (within 0.3J..l1Tl) , we can ignore the wavelength Shlft clt 

À =1.55J.1.m, since the extinction ratios ar'e still very hlgh, and 
1 

compensate that at À =1.31J..l1Tl by deposltIng a c!adding over the two-mork 
2 

center region of coupler B to get better extInction ratios Pr1f1CJpally, 

a cladding can mcrease the effective Index of a waveglJlde. hence, 

increase the propagatIOn constant dlfference bet ween the cven and ndd 

modes in the waveguide. Because positive wldth devlatlOns rt~dllce thdt 

difference (See figs. III-8,9), we can apply the c!addmg cornpensdtlOrl 

method to offset the effects. The larger the positive wldth devi<ltlon 

is, the thicker eladdmg is required for that purpose In Fig 

III-20(b), the material SiG is u5td (n=1.44679 at 1.31Jlm [15J) where 
2 

the signs 0 indicate the improved output extinction ratIO re5u!ts by the 
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corresponding cladding thlcknesses. On the other hand, for the negative 

wictth devlatlOns wlthm O.JIJ.l7l. the extinction ratios for both 

wavelengths are almast al! over 30dB. Such extent of the extinction 

ratto degradatians needs not be compensated. Therefore, applymg this 

new configuration and wlth the cladding compensation method for the 

positive wldth deviatiOns, we, under the condition of the same 

f3bncatIOn devlatlOns, are able to make a demultiplexer with an 

extmction !"atia above JOdB. 

111-6. Conclusion 

In thls chapter, we have carried out the preliminary design of a 

single-mode X-branch type optical WDM device and the fabrication 

toler ance studles Based upon these analyses, we know, under the present 

laboratory conditlOns, any passive integrated single-mode device, based 

on the phase interference principle in the design for glass materials, 

wotlld stdl be very challenging if we couid not find the compensation 

method to Improve the device properties. Hence, we have applied the 

three cascaded zero gap coupler ta design an adjustable single-mode 

demultlplexer in the soda-lime glass with high stopband rejections. The 

theoretlcal analyses indicate that it is possible to achieve an 

extlr1ction r-atio greater than JOdB for bath wavelengths with the 

claddmg depositlOn improvement. 
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Table 111-1. Surf ace Index Change and Effective Diffusion COf 'ficwnt 

i\(/-Lm) An An 
sTE sTM 

D (~2jminl o (Ilm2jmlfl) n 
eTE ent h 

1.152 8.56,,10 
-3 

10.09,10 
-3 

0.06198 0.06024 15030 

1.31 8.564xl0 
-3 

1O.06xlO 
-3 0.06505 0.06338 150104 

1.523 8.57:-.10 
-3 

10.03xl0 
-3 

0.06918 0.06762 1.4984 

1.55 8. 571xlO 
-3 

1O.02:dO 
-3 

0.06970 0.06816 1.44800 

R~mark: The working temperature of iO!1 exchange is T=J8!J" C 

Table 111-2. Channel Guide Effective Index Deviations by Diffusion 11[1It, 

Time 1.551lfTl. 

min n on on fAn 
ef ef ef ef 

167 1.4988299 -3.83xW-
5 

-4.747-

168 1.4988426 -2.56><.10-
5 

-3.17'7. 

169 1.4988555 -1.27')(10-
5 

-1.577-

170 1.4988682 0.00xlO-
5 

0 00'7. 

171 1.4988808 1.26xlO-
5 

1.56'7. 

172 1. 4988936 2.56xlO -5 3.17'7. 

173 1.4989061 3.79xlO-5 4.69'7. 

n =1.49806 fJ.n =8.08xlO-
4 

b Ilf 

Table 111-3. Design 

1.J111In 

n 
ef 

on 
ef 

on !Î1n 
~f ~f 

1.5024282 -4.15.10-
5 

-2 90% 

1.5024420 -2.77dO-
5 

-194'7. 

1.5024558 -1 39.10-
5 

-0.97% 

15024697 O.OOdO 
-5 

0.00'7. 

1.5024833 1.36~10 
-5 

0.%'7. 

1.5024969 2.72,dO 
-!> 

190% 

1.5025103 4.06",10 
-5 

284% 

n =1.50104 Î1n =1.43.10-
1 

b ef 

Example Comparision 

Time Method n (1.55~) n (1.31~) Width(llfTl.l Length(j1f1l) 
ef ef 

170 WKB 1.4988682 1.5024697 8.87 346<1 

min 
TRM 1.4991346 1.5026902 7.19 2476 

9=1 
0 

Â 2.66:..10 
-4 

2.20xlO 
-4 

1.68 988 
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CHAPTER IV 

BPM SIMULATION OF A SINGLE MODE X-BRANCH TYPE DEMUL TIPL EXER 

IV -1. Introduction 

ln fiber and integrated opties, a typical wavegulde pr (Ibll'lll 

invoives the solution of Maxwell's equations ln an mfmlte dU[l)dlll, 

subject to the radiatIOn conditlOn at mfimty and for a glVC:>11 lflCldell\ 

field or source. For many gUldwg structures of practlcal llltcr 1 L.t 

there is no cylindrical symrnet:-y and radiation losses nt'ed to h. 

calculated. In this sltuatlOn, it turns out that the c1asslcal elgellTlludl 

theory, which is sa successful fOl' (closed) metal clad waveguldt·", 1'> 

difficult to apply. The complete set of elgenmodcs for such 0P'!ll 

waveguides must contain the contmuum of radiation modes and thl" rndk~" 

the use of elgenmode very unwleldy In 1978, Felt and FIed intl'odllced d 

new numencal fl'odeling method, the so-ealled Bearn Propagation Mt·tl!ur] 

(BP~) [lI. Under appropnate Clrcumstanees, the BPM allow':. a unit wd 

treatment of guided and radiation modes in optlcal str l" _ J,lOti (.,111 

provide a detailed and accurate descnptlOn of the propagatlOg field fnl 

a variety of reallstic sources of illumlnatlOn Smee thcn, thls met!tlJc! 

has gained conslderable popular:ty in the past decade 111 the ared Il! 

guided-wave optoelectronics and flber optlcs Many opt icdl str\Jctur~~, 

such as tapers [21, bends [3-41, gratmgs [51. coupler [6], Y-.)unctlOrI L
, 

[71, waveguide crossing [81, electrooptic waveguide rnàdulators (9), <lrnJ 

nonlinear directional couplers [lOI have been modeled and analyzed by 

the Bearn Propagation Method. 

In or der to verify our design considerations in the last chapter 

and further study the X-branch waveguide properties, the Bearn 
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Propagation Method is employed in this chapter to simulate and analyze 

the single X-branch type demultiplexer We flrst give a general 

description about the BP~ and its development in Section IV -2. Then, a 

detalled theoretlcal denvatlOn from the scalar wave equation is 

presenteri in Section IV -3 Further, the applications of the dlscrete 

Fourier transform techmques and the absorber functlon chosen in the BPM 

art-! also dl5CUS5Cd in ScctlOn IV-..j. and IV-S, respectlvely Lastly, the 

appltcatlOns of the BP~1 ln analyz!ng integrated optlCS devlces c..:-e 

dlscussed in Section IV-6 and the numerical results for the X-branch 

type demultlplexer is presented in Section IV-7. The BPM method has aiso 

been u5ed as a design tool in two prevlous M. Eng. thesis [9,111. 

IV-2. Description of BPM 

FOI' a glven field or source, the Bearn Propagation Method allows one 

to obser've the opttcal field evolution as it propagates through a medium 

of arbltrary refractlve lOdex prnftle within the followlOg limitations. 

First, the BP~ is based upon the scalar wave equation. For this to 

accurate!y approxlmate the true vectorial equation, the polarization 

errects must be negliglble, which requires that the index proflle be a 

slowly vdrymg functlOfl over one wavelength in transverse directions 

Howevf!r, 

substrJte 

by 

of 

takwg a reference mdex n, typically the value in the 
b 

the Circuit or the cladding of flber, as a periodic 

extension of refractive mdex step between the gUIde and air [6] or 

choosmg an extremely small longitudinal mtegratlOn steps 211z« 

Ànjln2-1l (n IS the maximum index value in the guidmg regionl [121. 
s s 

1t is still possible ta model the transverse index profile 

discontinultles such as those occurnng in integrated opticaJ 

structures. 

Second, the BPM converts the boundary value problem into an 

initial-value problem for which the solution can be found in a 

propagatlve manner. This requires that the field propagates in a more or 
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1 
less paraxial fashion, and ail reflections in this direction dl-e 

neglected, WhlCh implies that ail variations of refractlve index along z 

must be slow or small and not add up coherently. In cases where mcident 

and reflected waves cao be described by meaos of a cOllpled mode 

formalism 112,13], an extensIOn to the nOl'mal BP~t algonthm cao be 

found, but the sùlutlOn becomes much more complicated becZluse iteration" 

of forward and backward propagatIOn are necessary [l41. 

Most practical flber and iotegrated optics applications satisfy tilt' 

conditions above. In such cases, 1t can be shawn [Il that the 

propagation of a beam over a small distance can be computed hy 

propagatmg the field through a homogf>neous medium and later pha"t 

correct lOg for index iohomogeneities The homogeneous pl-opagatlon ", 

most efflClently performed in the angular spectrum, obt.11l1ed through the 

use of the Fast Founer Trao<;form (FFTl Rcpcated applic<1tlons of thf' 

procedure then allows the beam to be followed over any distdIlce The 

advantage here is that no distinctIOn betweer. ttw glJldt'd and r.ldi.lted 

field is requlred, nor are modal decomposltlOns necessary ThiS rn3kpc, 

the method partlcularly u~eful when coùplmg betwet'/1 the r:1dldt·~J flCld 

and the guided modes IS slgmflcant and other methods, whlch neglect tht' 

effect of the radlated field, cannot be used Althoueh not provld(·d 

directly, radiatIOn and modal lOf JrmatlOn can be extracted From Uw BP\-I 

generated data [15). 

IV-3. General Theory of BPM 

In an- optical waveguide whose mdex profile varies very ~Iowly over 

one wavelength in the transverse direction, the propagation of a smglf' 

frequency light field cao be described by the scalar Helmholtz f'qu;;t )(UI 

as 

2 
W 

2 
- n (w,x,y,z) 

2 
C 
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1 

• 

where t/J(w,x,y,z) is the tr'ansverse field distribution function, w is the 

angular frequency of the 11ght, n(w,x,y,z) is the refractlve index. 

Under' the weakly gUlding condition, the index profile can be wntten as 

n(x,y,z) ~ n + àn(x,y,z), 
b 

16n/n 1 « l 
b 

OV- 2) 

where n 15 a constant, typically the value in the substrate of the 
b 

Circuit or the c!J.dding of fiber. 

In term of the field at z , the solution of equation (IV -1) at z+!lz 

may be wntten fûrmally as 

[
. 2 2 2 1/2] t/J(x,y,Z+!lz) = exp ±J/}.Z('i] J..+kon ) lP(x,y,z) 

OV-3) 

where 'ili=ô
2jax

2
+a

2
jBy2 and .1<'0 =wjc is the wavenumber of free space. With 

sorne algebralc manipulation, the square root in the right hand side of 

equatlOn OV-3) can be rewntten as 

(IV··4 ) 

The esc;entlal pomt in the BPM lies in the following approximation. 

III whlch n(x,y,z) in the denominator of the first term of (IV-4) is 

approximated by the constant n
b

, 50 that 

(IV-S) 

The approximation gives satisfactory accuracy when the weakly guiclwg 

condl tlOn holds. 

If the index variation along z is also small and slow, we can 

restrict the solution for a single wave propagation in the positive z 

direction, therefore the transverse field can be expressed in the form 
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Ç>(x,y,z) == .p(x,y,z)exp(-jk n ;:) 
o b 

lI\' -b) 

Substitute the aùove expression into equatlon UV-31 by U::>lng the 

approximation of equatlOn (IV-S), we have 

.p(x,y,z+llz) 

(\\ Il 
where 

ll\ -8) 

and the final term 03( llz) gives the remainmg computJtlonêll t'I n,1 III 

Ta second arder in llz, equation (IV-7) can be rewr lUf'It III th, 

symmetrized split operater ferm 

3 o (l:.z) 

(IV () J 

where the error also inc!udes those ansmg from the noncommutcltIOIl 01 

Vi and X(x,y,z) (see AppendixL The above expressIon is sl~ltablt' lOT 

generating a numerical solution. Due ta the umtarity of the Operd\(j[', 

in equation (IV-9), the solution will be unconditionally stable. 

Ta improve the accuracy of the phase operato!" we can mtrodlJu' 1 rI" 
mean index change 

(IV-JO) 

over the distance flz instead of n=n(z) 1161. 
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Actually, the operation 

(IV-Ill 

JS eljulvalent to solving the Helmholtz equation in a homogeneous medium 

a2
q, a2 rp 

+ -- + 
ôx 2 ay2 

2 
W 

2 
+-n q,=o 

~ 2 2 b 
oZ c 

(IV-12) 

fOi' a distance !lz/2 with q,(x.y.z) as the initial condition. Therefore, 

the physical interpretatlOn of equation (IV -10 l 15 that we have replaced 

the actual continuous refractlve-index distribution of the optical 

elemen' wlth a senes of infinitely small th in lenses separated by a 

distance !:J::: 10 a hornogeneous medium wlth the reference refractive index 

Tl as shawn in Fig 
b 

IV-l. Each lens glves an coordinate-dependent phase 

shlft glven by X(x.j'.z)!lz to the beam, wheras the beam propagating 

between lenses 15 governed by equatlOn (IV -12l. These enables 1 ht' 

propagation of the beam to be treated in a step-by-step manner. 

In many practical applications, the optical fields vary slowly 

along the propagatIOn directIOn over distances of the or der of a 

wdvelength For these problems, the scalar Helmholtz equation can be 

approxlmated sufflciently by the Fresnel equation 

and the BPM algorithm take5 the form 

rjJ( x.y ;:.+t.z) = exp [ 4~:nb t.z vi] 
exp [ 4~ :n

b 
t.z vi ] 
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T , 

Actually, one can recover it from the equations 
") 

(1\'-14 ) 

OV-7) anu (IV-9) by 

with k;:n.~ in the that 'i7i is negliglble in comparison 
" b 

denominator of the equatlOns This approximation is valld for smù11 beam 

assuming 

divergences (paraxial bearn propagation) or ste.1dy-state propJgatiùn 01 

light in dielectnc waveguldes. In the early stages of pl'Op.lga\ IOn, 

however, plane waves wlth large angular deVld-tlons from the ::: aXIs tll.W 

be present in the beam. and the parabolic apprOXimatIOn ('an bre.lk dowlI 

Under these conditlOns, the solutlnn form in equatlon (IV-<1) shnllid 

still glve an accurate descnption of light propagatlon SlllCl' d 

numerical solutlon is no more difficult to generate wlth equatlon (1\'-'.1\ 

than with the Fresnel or the 50 call parabolic approxim,HlO1l Cqll,l! Illii 

OV-14), equatlon OV-9) is ta be preferred in the applicatIOn') tD tIlt' 

fiber and integrated optles problems. 

With sorne efforts, the derivation of the BPM can dlsu be adapl ~'d 

for anisotropie media [17]. Since these cases generally lllvn!vl' d 

nondiagonal dielectric tensor, the Helmholtz equatlon IS u'oed ln Ih 

matnx form. The resulting propagation and phase operators, whlch al t' 

applied to a two-component electric field vector. contaln mdtr lees III 

their expanents and are defined by their' perturbatlon serIes exp.in')IOI1', 

IV-4. Numerical Calculations 

Under the assumption of limited spectral bandwlùth, the S,H1lpJ IIlf~ 

Theory [18] allows the field alternatively ta be represented Ifl terrw, of 

its sampled values tjJ( p,q)=tjJ( p6.x,q6.y ,2) at the equally spdc·!d pOInt s 

x=p6.x and y=q6.y on the computatlOnal grrds, where rr./tJ.x and rr/tJ.y are th., 

highest spectral frequency components of the field ln tr aw,versf' ;\I1rl 

laterai directions. respectively. The sampled field vd-lues then al e 

given as a 2-D Fourier senes with a finite number of terrn5, whlch IS 

more suitable for numerical calculatlOns: 
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N/2-1 

'/J(X,y,Z) = L 
n::: -N/2 

(IV-lS) 

where Land L are the lengths of the computatlOnal grid area and the 
x y 

Fourier' coefficients I/J (z) have a one-to-one correspondence to the 
nm 

eknlt'nt'O of the dl'Screte Fourier transform [18J 

N-l M-l 

!/J
nrn 

= I L !/J(p,q) eXP [-J2lt(np/N+mQ/M)] 

p=O q =0 

(IV-16l 

Conslde, one 5ectlOn in Fig. IV-l which consists of a homogeneous 

rnrdlllrn hdvlng a refractive index of n and length llz/2, a thin lens, and 
b 

agalO a homogeneous medium of length t.z/2. The Fourier component!/J at 
nm 

z+L/2 can be obtamed, by substitutmg equation nV-15l and X(x,y,z)=O 

Into equatlOn (IV-7). as 

(IV-l7) 

whe!'e k 's and k '5 denote discrete transverse wavenumbers defined as 
xn ym 

k =21ln/L 
xn x 

and k =2ltm/L 
ym y 

(IV-18) 

i for k 2 +k2 >k 2n2, th h . ant . e components express t e evanescent waves ln 
xn ym 0 b 

the equation (lV-P) [U1. 

Th~ll, we reconstruct the real-space function l/J in the real space 

just behlOd the thin lens. that is. !/J(z+t.z/2-0). by using the Fourier 

cornponent!/J (z+t.z/2). TIle actual computation can be performed by using 
nm 

the wldely avallable Fast Founer Transform (FFT) algorithm [20]. Again, 

multlplying it by the "lens" term exp[-jllzX(x,y,z)] in equatlOn (IV-91. 

we obtain the functlOn just in front of the thin lens: I/J( x,y,z+llz/2). 

the beam propagation in the following homogeneous space of length t.Z/2 

c;:tn be ca1culated again by equation (IV-17 1 and two FFT processes. 
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Thus, the beam pr-opagation over a single section lS calculated Uf 

course, the final FFT can be omitted if the beJ.m shape (pOWt'l 

distribution) at this pomt is not needed, and the calculation is tu be 

continued to the following section. 

In practice, the spectral bandwldth of ljJ(x,y,zl is nevel' perfectly 

finite. For rr.ost optical waveguide studies, LGwever, it is possible 10 

set up a configuration space computational grrd with sufficient 

resolution to keep the spectral power on the boundanes of the 

corresponding wavenumber space grid extremely small. Spectral power on 

mesh boundaries is normally monitored, making it possible to conflrrn the 

accuracy of a given calculation. 

The angle between the directlOn of a representative plane wave wl1b 

a transverse wavevector (k ,k ) and the z axis is given by 
x y 

(IV -19) 

The value of N and M in equation (IV-16) will be deterrnined by L, 1 
x v 

2. 2 1/2 . 
and e ~(n -n) , the maXlmum value of (J for a ray propagating III 

max max b 

optical waveguide. Thus, the minimum spatial bandwidth for t/J required to 

accommodate the steady-state field is defined by the relations [11 

IV -5. Absorbers 

Nn _ Ikmaxi > k sine 
L - x max 

x 
Mn r= 

y 
1 k

max 
1 > k sin8 

y max 

(IV-20) 

(IV Il) 

The use of discrete Fourier transforms in the BPM algorlthm Jmp!Je~, 

a periodic continuation of the computational window L =N/lx and t =M/ly. 
x y 

Therefore, there is a problem encountered with the BPM which is of 

primary importance in optical 1055 calculations. Wh en the radiated field 
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1 
expands out to the boundary of the computational wmdow, in succeeding 

steps, it wIll be folded back to the opposite edge of the wlndow. In 

order ta aVOld this problem. we must absorb tne field at the edge of the 

window to simulate the radIation condItIOn. This can be done, for 

example, by setting the field ta zero over the last few gnd pomts at 

the edges of the wmdo'N or by introducmg a large negatlve cornplex 

component into tr.e refractive inriex, that acts as a 105sy claddmg [11 

If significant t-'.::wer lIes at the window boundancs, howevcl', ;t hdS been 

found that cut"..mg the field off too abruptly generates c;trong hlgh 

frequency components assoclated wlth diffractIOn [4-1 Thus, an absorber 

functiorL must be constructed to br1l1g the field smoothly ta zero al 

window edges ,.,'Ithout a:fecting the guided field distnbution 1I1 the 

central area of the wmdow In reference (4J, a sUitable absorber ln 

two-dimenslOnal calCulation has been obtamed by mul tlplymg the field 

with the followHlg functlOI1 (see Fig. IV-2l. 

Ixl< IXol 
Ixol<lxl<lxll 

IX I !<l xl<lw/21 
(IV-2~) 

where w/2 is the coordinate of the grid boundar'y, Xo denotes the IOnf'! 

edge of the absorber, and x is the outer edge. The parameters ;r. x and 
l 0 

X are chosen empirically for each problem configuration and step length 
1 

ta ensure that the field is absorbed gradually over a sufflClently wrde 

region 

~imilarly 

Ixol<lxl<lxll· 
according ta 

The 

the 

distance 

step size 

bt!tween x and x 
1 0 

and the shape of 

lS adJusted 

the fourwr 

spectrum of the electnc field at large wave numbers to ensure that no 

interference effects will occur as a result of foldinf. back of the 

electric field at the edges of the computational wmdow x must be 
0 

chosen far enough from the axis 50 that in a lossIes<; wavegulde thc' 

absorber does not perceptably affect the guided field distrJ butlOns. In 

problems where the radiated field is expected ta be significant, the 

accuracy of a calculation should be confirmed by campanng the results 

of a pair of propagation runs with different choices of the absorber 

parameters. For our purposes, the role of the parameter ;r IS not 
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l 
critical, and we have found setting it equal to unit y in the 

computations to give good results [11J. The transverse y direction must 

be treated likewise. 

IV-6. Applications of the BPM in integrated optics 

The Bearn Propagatiop Method described in the previOl':: sections is 

only valtd for small changes in refractive index from a reference value 

n 
b 

It is obvious that the large index change between the integrated 

optical device and air cannot be treated in this fashiorl. 

For mast typical integrated optical waveguides, however. the 

refr~ctive index difference in the laterai or y direction is stiU 

plauslbly small. This allows one to use the effective index rnethod to 

oveI'come the guide/air interface problem OIl applying BPM ta analyzing 

channel waveguide properties. The approach has the advantage of 

differentlatmg between the quasi-TE and quasi-TM modes and at the same 

tlme reducing the three dimensional guide to a corresponding tW(' 

dimensionaJ structure which no longer contain!:. large refractive index 

steps. As long as this equivalent structure satisfies the usual 

restriction of the BPM algorithm. i. e., the guidance in the y direction 

is sufficiently weak, this formulation can yield excellent results for 

both x and y direction polarized modes [14 J. It should be pointed out 

that this dimenslOn reduction reduces the necessary amount of computer 

memory and procesGor time greatly, since the BPM now only requires a 

one-dimensional FFT. 

Applying the BPM to the analysis and design of X-branch type 

demultiplexer involves the power evaluations in the particular waveguide 

branches. Actually. this can be achieved by overlapping the output field 

l/J with the norrnalized guided mode t/J of the waveguide as 
out g 

P -= l/J t/J dy J
'II 

out 1 out g 1 

(IV-23) 
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", 

where <P is 
* g 

obtained analytlcally by 1 he effective index appr'OXlmatlon 

and tP is the 
g 

complex conjugate of <P [91. Since the demultlplexer we 
g 

design here is a single-mode device, the radiation mode power can bt:' 

e'laluated as 

p = p -P -P=I-P -p 
rad ln = le 

(Iv-:~·n 

which aise include the power absorbed by the boundary absorber (P CU:: 1 
ln 

since incident power is normahzedl. Similarly as we dlscussed in the 

last chapter, the extinction ratio and radiation loss can be calculdted 

as 

D /;..) = lOlog
lO

[P /Il)/P JIl)] 

L/;") = lozogliPra/;")/P1n0.J] = 

respectively. 

IV-7. Discussions of Results 

lOLog [P (;U] 
10 rad 

CIV-251 

OV-26) 

Fig. IV-3 shows a BPM calculation sample for a single-mode stralght 

channel waveguide. where the waveguide width [s 5.5J.1.m and the substratp 

and channel indices are n =1.50012 and n =1.50370, l'espectlvely. By 
b l 

compromising the computing tlme consummation and the numerical 

calculation accuracy, we choo5e grid point number to be 1024 wlth a 

100J.l.m window width and step length ~z=lJ.l.l71 (a150 f'or Fig IV -4). The 

numerical results show that the input pulse (genera~~d analytlCallyl 

propagates in an unperturbed manner alang the waveguide for a leng1 h of 

Imm {i\=1.55J.1.ml. Therefore, we believe that our BP\i program cali 

accurately simulate the optical field prepagatmg through the wavegUide 

(for more complicated structures like Fig. El-l, the gnd pOint was 

increased ta 2048 and 200J.l.m window width chosen as explain later). 

Since glass is a kind of low refractlve index optical materlal, it 

confines the gulded modal fields much more weakly than many other 
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optical mateT'Ïals. Therefore, more attentions shouid be paid on 

deslgnmg waveglllde branching, bending or z dependent variations on the 

glass substrate. Actually, the radiations due ta a waveguide tilt are 

caused by a very slmilar mechanism as a waveguide bending physically. 

And, the smaller the tilt angle is, the smaller the radiated optical 

field is induced (see Fig IV-4l. Since the EPM can treat the guided and 

radiation modes 10 a unified manner, we can use thls method ta study the 

effect of a branching angle on scattered fields and extinction ratio 

degradations fGr the integrated optlCS device designs. 

Fig. IV-5 and Fig. IV-6 shaN two design examples of an X-branch 

type demultiplexer The device functions are weIl simulated and the 

local normal even-odd mode interference due ta the propagation phase 

dlI'ferences can be seen clearly by the peak variations of the guided 

fields in the two mode center region. ActuaIly, when the propagation 

phase differences between the local even and odd modes are 2nrr (n is an 

integrall, the two modal fields will subtract to each other on one side 

in the wavegUlde and add up on another sid~ which lets the superposed 

field amplitude peak be away from the waveguide center. Similarly, when 

the propagation phase differences between the local even and odd modes 

are (2n+I)rr, the superposition of the modal fields will result the 

amplitude peak to be on another side of the waveguide. This verifies the 

previous chapter analysis. From Fig. IV-5 and Fig. IV-6, we also know 

that longer wavelength signaIs are scattered more significantly since 

the gUlded modes are weaker guided and nearer ta cutoff due ta the lower 

index value. In spite of their different waveguide widths, bath 

stuctures produce similar extent of radiated fields due to a large 

branching angle (la) This means that the radiation loss can not be 

improved slgmficantly by choosing a wider waveguide for the single-mode 

X-branch type demultlplexer. By contrast, Fig. IV-7 shows a much better 

design by choosing a smaller branching angle (O.5a ). Actually, better 

extinction ratios are also obtained from the power evaluation. 

Therefore, we believe that the appearance of the radiation modes does 

not just simply increase t~e scattering loss, but also reduces the 

branch channel isolation due to sorne radiated power coupled back into 
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1 the gmded modes in both branches. However, a smaller branchmg dllglc 

also requires the device dimension to be increased sigmficant Iy which 

may raise the adverse effects on the fabrication toler'anct's for t 1H' 

waveguide wIdth or diffusion depth. Hence, a t"ade-off In the desIgn 

process between the vanous parameters affecting the deVlce pl'r'lOrmaIKes 

is necessary. 

The fabrication tolerance studies can also te performed by tl.e BP~I 

Figs IV-8, 9 show the extinction ratio degradatlOns due to t1w waveg\lide 

width and depth deviations, respectlvely. Apparently, the output 

extinction ratio degradatlOn of the longer wavelength are more sensitive 

ta the depth deviatlOn and shorter wavelength ones ar'e more ';ensitlvP l() 

width devlation. These agree WJth 0'.11' previous analysls. Table IV-] and 

Table IV-2 give the comparisons by the BPM and two-mode interfcrenc:t' FJ~I 

analysis on tJ.2w and M, respectively. Although s!milar results art' 

produced ry bath methods, we believe the BI"A results provlde sorne mort' 

comprehensive information on the radiation and guided modes Because of 

the computing time limitation (the computing time is proportlOnal to 

Nlog N [l8], where N is the grid point number. The current computatIOns 
2 

take around 2 days ta produce one 8PM plot in the SPARC statIOn), Wt' 

only fix the grid point number to be 2048 and window wldth as 200l1nl fOl 

these calculations in Fig. IV -5 ta IV -9. Due to the devlce propert If'S 

discussed in the last chapter, the 8PM analysis may be further improved 

by increasing the grid point number (double or 4 times). 

Since our mam interest here is to investigate the scattered f 1t~ld<, 

by the wavegUlde branching and the BPM calculation also is very tirne 

consuming, we have not applied the method ta siffiulate the cascadee! 

structure in view of the fact that the single X-branch WDM dCVI( f 

simulatIOns and analyses have been demonstarted. 

IV -8. Conclusions 

In this chapter, we have presented the powerful and aCCUT'ôte 
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numcrLcai method BPM for solving the scalar wave equation and its 

applications in integrated optics. The lT'ethod is particularly suit able 

for analyzmg the devices with slowly changing and complicated mdex 

profiles mvolving high-order and radiatior. modes. The simulation and 

ar1dlysls of the X-branch type demultiplexer show that, for the K+ -ion 

exchange glass optical surface waveguides, a smaller branching angle 

(abollt 0.5
0

) is needed to reduce the scatte"ing loss and improve the 

channel IsolatIOn. Smce the llght beam propai"ation can be seen clearly 

step by step, the BP~I 15 very helpful for s~mulatmg device functions 

and veîlfying our designs in the last chaptes, However, accuracy in 

uc:;ing Lhe BPM method as a design tool has not \'~t been reached in thic; 

thesis 

Appendix 

The exponent in equation (IV-7) can be expanded in terms of a 

Taylor series as 

eXP[-j1A(Z')dZ'] = 1 - j1A(Z')dZ' - i[A(Z')dZT -

31[ A(Z')dZT + .,. 

where 

Since 

95 



the terms in the above Taylor series can be replaced as 

Substituting for A( z) gives 

4 + 0(;:: ) 

Similarly, the split operator forrn equivalent to (IV··9) can be 

expanded in terms of a perturbation series. Ta second arder, the 

individual factors are 

and 
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50 that the split operator expresslOn of OV-7l expands to 

exp[-~Z[ 2 2 :11/2 l]exP[-J(X(Z')dZ'] 
(r;; 1 + k n) + k n J 0 

-'- ob ob 

Thus, the symmetrically splitted operator form can represent the 

solution of the propagation wave equation (IV-7) to second order of z. 
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i 
Table IV-l. Extiction ratIo degradatlOns due ta wldth deVl,ltll1l1<; ldB) 

tl2IV(J..lm) 1.31J..lm 155f.JIn 

By ElM By BP~1 L By EI~{ By BP\{ 
R R 

-0.3 10.04 11.31 13.95 20.85 2171 ll~r' 

-0.2 12.-1-1 12.~O 12.72 2J.91 2.2 S·~ 1074 

-0.1 22.06 22.46 13.90 37.02 2781 Il SS 

0.0 cc 29.52 14.13 cc 3338 L' J.' 

0.1 21.78 18.06 14.08 23.68 21.65 11 -'<'7 

0.2 12.87 12.06 12.78 23.-1-1 2366 L) JO 

0.3 10.11 10.70 12.98 20.62 18 40 JO 7" 

where L 
R 

i5 the radiation 1055 calculated by BPM. 

Table IV-2. Extinction ratio degradation due to time devlatillrJ C, (dB) 

At(min) 1.31f.J.lT1 1.55/lm 

By EIM By BPM L By EIM By BPM 
R 

-2.0 28.27 24.47 13.94 26.75 21.72 

-1.0 36.74 27.68 14.21 32.34 25.73 

0.0 cc 29.52 14.13 cc 33.38 

1.0 37.51 27.84 14.49 32.51 27.39 

2.0 32.19 26.71 12.87 25.67 25.40 

where L i5 the radlatlon 
R 

1055 calculated by BPM. 

Remark: (device structure parameters) 

Channel wldth: 6.11ll71 

Twa-made region length: 4188p.m 

Gl'id point number: 2048 

100 

Diffusion Ume' 

Branching angle: 

Window width: 

l 
R 

1170 

12.79 

1232 

11 55 

JO 82 

270mtn 
o 

0.5 

200J1ITl 
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Fig IV-l 

1 

( 1) (2) (3) 
~ . 

Lz/2 
/1" 

Lz ~ .t.z (~ , \ 

\ 11 W W \ / 
1 

z=') 

An ar:-ay of le!1ses equivalent to the bearn-shape 

transfomatlon expressed by (IV -9). One section consists 

of a uniform medium with a length (~zj2). a thin lens. and a 

uniform mediurr with a length (~zj2). 

o +.----~~--~------~--------~--~~--~ 
-W/2 o Wj2 

Fig IV-2 Absorber function (see equation IV-22) where -w/2 and wj2 
define the edges of the computation window. 
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Fig. IV-3 Guided field (TM model propagating along a uDlform Slllgk 

mode waveguide (t.z=lmml where 1024 gnd pOlnts é:Jnct 7OUl1fn 

window width are used. 
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Fig, IV-4 'd tilt wavegul e 
tttered by 1024 

(
TM modes) sca alculations, f'eld 0 1 bath c Optical l 0, (b) 0:=1. n 

( ) 0:=0.5, re used. 
(
f:.-=lmm) a .ndow width a .. 100pm Wl 'd points and gn 

,,' 
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Fig. IV-5 Evolutlon of the optical fIeld (TM modes) in a X-br and type 

WDM devlce, where the structure parameter'5 are cx.=1", 

w=5.45p.m, L=22721J.IT1. (al À=1.31p.m, D =19.66dB. L =I1.85dR, (t) 
e r 

À=1.55p.m. D =14.95dB. L =8.24dB. rn both c:llculJ.tlOns, 204A 
e r 

grid pomts and ZOO/lm wlOdow wtdth are used. 



• 

Fig. IV-6 Evolution of the optical field (TM modes) in a X-branch type 
o 

WDM device. where the structure parameters are a=l • w=6/J.fT!. 

L=J527Ilm. (a) II.=I.J1Ilm, D =18.40dB, L =1O.85dB, (bl i\=1.55/J.fT!, 
e r 

D =16.ï'OdB, L =9.91dB. In both calculations, 2048 grid points e r 

and 200ilm \\'mdow wldth are used. 
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Fig. IV-7 
. a X -br;';'flch type M modes) ln " h optlcal field (T. re «"0.5 , 

Evolution ~f t :here the structure para.meter: ":4. 13d8; (bl 
WOM devlce, D "29.52d8. , . 

(
a) À=Z.3ZJ,lm. e c 2048 L"41881=. h calculatlon" w"6.1~m. -1232d8. In bot 

D -3338dB. Lr - . 
À"1.55p.m, • - • wldth are used. d "OOJ,lm wIndow 'd pOlnts an ~ gn 



Fig IV-3 Evolution of the optical field (TM modes) in the structure as 

Fig. IV-7 

À=1.31J.lm, 

L =12.lOdB 
r 

with O.2J.l1T1 width fabrication deviation. (a) 

D =12.06dB, 1. =12.78dB; (bl À=1.55J.lm, D =23.66dB, 
e r e 

In bath ca!culations, 2048 grid points and 200/lffi 

window width are used. 
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Fig. IV-9 Evolution of the optlcal field (TM modes) in the structure a<. 

Fig. IV-7 wlth -2mm diffusion tlme fabncatlOn de'lI.ltFlJl 

(a) À=l.JIJ.lm, D =24.47dB, L =lJ.94dB; 
e r 

(b) A=1.5511fT!, 

D =21.72dB, L =1l.70dB. In bath calculatlOns, 2cMB p'r Id 
e r 

;. 
points and 20011111 wlndow wldth ar e us/:d. 
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CHAPTER V 

CONCLUSIONS 

Conclusively. the work presented in tbis tbesis can be conveniently 

split up into two main aspects. 

Chapter II can be possibly summarized as a fairly good discussion 

on sorne analytical techniques applicable to eitber slab or channel 

optical waveguides with the arbitrary index distributions. Since K+ -ion 

exchange technique 
-3 and (},.n ;;1O.0xlO 

rTM 

condition is wldely 

-3 provides very 10w index increment as ân =8.6xlO 
sTE 

for TE and TM modes respectively. weakly gui ding 

satlsfied by the integrated optics circuits on glass 

substrat es This property allows us to design and analyze the waveguides 

and devices well by using the methods discussed in this thesis. Our 

analysls shows, by properly matching the field solutions at the 

dielectric discontmuities, the first-order WKB approximation not only 

can yield identical results with the ray optics approach, but also can 

be extended ta studying the piecewise graded-index optical waveguide 

problems wlth accuracy. Furthermore, extending the transverse resonance 

method (TRM) to the inhomogeneous waveguide structures, we can analyze 

any slab optlcal waveguides with arbitrary index profiles exactly 

wlthout consldering the modal fields. Al though channel optical 

waveguides possess more complicated geometrical structures, by 

introducing the lateral effective index profile, the effective index 

method can still be applied by combining with the WKB method and becomes 

a very favorable method as long as the modal fields are not necessary. 

Besldes, it was aiso shawn that. with the stationary and extreme 

properties, variational technique provides a very reliable and flexible 

approach to study arbitrary optical guiding structures even with a 
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refractive index discontinuity on the surface. 

The second part of tbis thesis deals wlth the practlcal tlesign 

considerations for the X-brancb type single mode wavelength diVISIOn 

demultiplexer. This includes the devlce praperty analysis ln Chapter' III 

and function simulations by the BPM in Chapter IV As a zero-g3p 

coupler, X-branch waveguide possesses maximum propagation const<1nt 

difference betwe~n even and odd modes. Utlilzmg the wavelength 

dependence proper-,les of the two-mode Interference. the structure can 

perfarm as a compact dual channel wavelength demultlplexer Slnce the 

periodic like device transmisslOn curve, a cascaded multichannel 

WDM-device can also be canstructed. 

Generally speaking, the X-branch wavegUide propertles mamly depf'nd 

on the center two-rnode section. Ta be a wavelength diVISion 

demultiplexer, single X- branch waveguide gives a channel separatIOn 

inversely proportional to the length of this region. Also, the narr'owc! 

the waveguide width is ln this regian, the shorter the total oevlt {' 

length becomes. Since the device length of the X-branch wavegulde madl' 

by K+ -ion exchange techmque is several thollsand times of wavelength. 

the output crosstalk is quite sensitive to the wavegulde wldth deVlatIwi 

and refractive index determmation. Therefore, utilIzmg the double 

width configuration (for two-mode center regionl can not only slmpl1fy 

the fabrication process, but also provide a better fabïlc3tl011 

tolerance. Owing to glass being a low refractlve index matenal, the 

beam propagation method analysls indicates that a smaller Y-branchl"? 

angle (around 0.5
0

) is needed ta reduce scattermg Joss and Impr OV( 

channel isolations, Besldes, by adjusting the Y-branch angle, al! the 

channel wavelengths can be shifted approximately in paralleL 

Fabrication tolerance studles mdicate that, for the single 

X-branch type demultiplexer, the output extinction ratio of the longer' 

wavelength is more sensitive ta the wavegllide depth deviatlOn Hy 

contrast, the counterpart of the shorter wavelength is more apparently 

influenced by the waveguide width erraI". Confirmed by tbe BPM simulation 

110 



also, the numerica! results show that, un der the present state of art, 

It would still be challenging to make glass integrated optical devices 

whlch are based on the two-rr'ù,ic interference principle, especially for 

the two-wavelength de'liCe sut::h as wavelength division demultiplexers. 

Wlth the proposed cascaded structure by three X-branch waveguides, an 

adjustable single-mode demultiplexer with high stop band rejection 

becomes pO'5slbJe. Theoretlcal analysls shows that 30dB extinction ratio 

for bo~h wavelengths can be achieved by depositing claddings on the 

two-mode center waveguide reglons. 
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