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2.5. Poincaré’s Inequality 22

3. Anisotropic Variable Exponent Sobolev Spaces 23

3.1. Rellich-Kondrachov Theorem 25

3.2. Critical Exponent Sobolev Embedding 27
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Abstract. When attempting to solve nonlinear elliptic equations of critical growth, the

concentration compactness principle of P.L. Lions has proven to be a very useful tool. In

2009-2010, Bonder & Silva and Fu independently generalized this result to variable expo-

nent spaces. Lately, more attention has also been given to anisotropic variable exponent

differential equations, as they seem to provide a good model for describing the filtration of

incompressible fluids through a porous medium. The first aim of this research is to generalize

the results of Bonder & Silva and Fu to the anisotropic variable exponent case. In order

to do this, we first had to prove a critical Sobolev embedding theorem for the anisotropic

variable exponent Sobolev spaces, which, to our knowledge, is non-existent in the literature.

Finally, we apply these results to prove the existence of a weak solution to an anisotropic

variable exponent Laplace type operator with critical growth.

Résumé. Afin de résoudre une équation elliptique non linéaire avec croissance critique, le

principe de compacité-concentrée développé par P.L. Lions s’avère être très utile. En 2009-

2010, Bonder & Silva et Fu ont indépendamment généralisé ce résultat aux espaces avec

exposants variables. Récemment, une attention particulière est orientée vers les équations

anisotropiques à exposants variables, puisqu’elles semblent bien décrire la filtration d’un li-

quide incompressible à travers un medium poreux. Le premier objectif de ce travail est de

généralisé les résultats de Bonder & Silva et Fu aux espaces anisotropiques de Sobolev à

exposants variables. Afin de réussir cela, nous avons dû démontrer un théorem sur le plon-

gement de ces espaces avec exposant critique, ce qui était, à notre connaissance, inexistant

dans la littérature. Finalement, nous appliquons ces résultats pour prouver l’existence d’une

solution faible à une équation aux dérivées partielle avec croissance critique et un opérateur

de Laplace anisotropique à exposant variable.

1. Introduction

In recent years, partial differential equations using variable exponents have been of in-

creasing interest, notably due to its applications to fluid dynamics, more specifically electro-

rheological fluids ([45][1]), and to image processing ([13]). In most cases, it comes down to

solving an equation of the form:

(1)

 −div [a(x, u,∇u)] = f(x, u), in Ω ⊂ Rn

u = 0, on ∂Ω,

where f is a non-linear source such that |f(u(x), x)| ≤ C(1 + |u(x)|q(x) for all x ∈ Ω, and

q : Ω → [1,∞). Of particular importance, we have a(x, u,∇u) = |∇u|p(x)−2∇u, where p :

Ω→ [1,∞) is often assumed to be at least Lipschitz continuous. Then we call its divergence

the p(x)-Laplacian operator ∆p(x) = div(|∇u|p(x)−2∇u). In the case where p(x) = 2, this
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becomes the classical Laplace operator. We refer to [23] for some results related to this

operator.

For example, in image processing, the exponent p(x) is a convex function between 1 and

2, related to the probability that the point x is an edge (see [13]). Similar models are also

useful with regards to the thermistor problem that models an electrical current in a conductor

influenced by a non-constant temperature field, where u(x) is the electric potential and p(x)

is the temperature ([48]).

Now if we let f(x, u) = u|u|q(x)−2, we obtain from (1)

(2)

 −∆p(x) = u|u|q(x)−2, in Ω ⊂ Rn

u = 0, on ∂Ω,

Then we may define, as in the constant exponent case, a notion of critical exponents. One

may refer to the survey by Rădulescu [41] in order to see the substantial amount of research

on (2). We will define the critical exponent pointwise as p∗(x) =
np(x)

n− p(x)
, called the critical

Sobolev exponent for variable exponent spaces.

Next we may come up, assuming some continuity on p(x), with analogs of the Sobolev

embeddings, the Rellich-Kondrachov theorem and the Poincaré inequality, which will be

crucial in solving (2). From this, there are already several results to (2) in the subcritical

case q(x) < p∗(x) − ε, such as [47]. There exists also some results for the critical case, i.e.

q(x) = p∗(x) on some subset of Ω, such as those obtained in [28][10].

The main objective of this thesis will be to extend the latter results to the anisotropic case.

More specifically, we want to prove existence of a weak solution to the following equation

(∗)

−div

(
n∑
i=1

ai(x)|∂iu(x)|pi(x)−2∂iu(x)

)
+ a0(x)|u(x)|p0(x)−2u(x) = f(u(x), x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω,

where the functions ai(x) are positive and a0(x) is nonnegative. As pointed out in [5],

equations of the form (∗) arise from studying the process of filtration of an incompressible

fluid through a porous medium. Although the study of the anisotropic equations is not

as extensive, compared with equations of the type (1), we may still cite some papers on

subcritical equations similar to (∗), such as [4], [32], [34] and [6].

To our knowledge, equations like these, where f has critical growth, have not been studied,

nor has there been a critical exponent embedding theorem. When we have fixed exponents,

we define the critical Sobolev exponent as the critical exponent of the harmonic mean, i.e.

p∗ = np
n−p , where p is the harmonic mean of {pi}.
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Thus when exponents are variable, we define the harmonic mean and critical exponent

pointwise,

p(x) =
n

n∑
i=1

1
pi(x)

and p∗(x) =
np(x)

n− p(x)
.

This exponent is defined, amongst others, in [19], in which the author presents many

theorems related to anisotropic Sobolev spaces, notably a compact embedding theorem for

subcritical exponnents, a Poincaré inequality as well as a density theorem. Yet the author

states that the embedding into the critical exponent Lebesgue space remains an open problem.

Therefore our first main result, theorem 3.12, is proving there exists a continuous embedding

of the type

W 1,~p(·)(Ω) ↪→ Lp
∗(x)(Ω),

where W 1,~p(·)(Ω) is an anisotropic Sobolev space, defined in Section 3, and Lp
∗(x)(Ω) the

Lebesgue space, defined in Section 2, with critical exponent. We follow this later by an

anisotropic variable exponent concentration-compactness principle, Theorem 4.1 and finally

by showing existence of a weak solution, Theorem 6.4, under additional assumptions on f .

1.1. Organization of the Thesis. The first part of this thesis, Section 2, will be to establish

the bases on which we will build our work, i.e., defining the variable exponent Lebesgue

and Sobolev spaces as well as their important properties. Notably, we will give proofs of

some theorems that are classical in the fixed exponent spaces, such as embedding theorems

(Lebesgue and Sobolev), the Rellich-Kondrachov theorem and the Poincaré inequality. The

results in this section have now been well established in the litterature. In fact one may refer

to the book [17], where the authors do a very extensive survey of all the results related to

variable exponent spaces. We have included proofs of these main theorems for three reasons.

First, in order to make this thesis as much self-contained as possible. Second, because we

have reworked some of the proofs in order to simplify them and/or to adapt them to our

setting. Third, the techniques used in these proofs will be useful when proving our main

results, hence they may help the reader familiarize himself to the particularities of variable

exponents.

Section 3 will deal with the anisotropic variable exponent Sobolev spaces. We were first

surprised that, to our knowledge, there is not yet a first order critical exponent Sobolev

embedding for these spaces. Thus we present here such a theorem, which generalizes the one

presented in the previous section, for order one (k = 1). We then proceed to present already

existing results, such as the Rellich-Kondrachov and Poincaré analogues.
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After having established the bases for these Sobolev spaces, we present, in Section 4, a

new concentration-compactness principle, for bounded domains, which is a generalization of

the one presented by Fu ([27]) and Bonder & Silva ([12]).

In Section 6, equipped with the new critical embedding theorem and concentration com-

pactness theorem, we may proceed, after establishing a few restrictions on {ai(x)} and f ,

to using the Mountain Pass theorem (MP) in order to prove existence of a weak solution to

(∗), with critical growth on f . Hence, before getting to this application, we will present, in

Section 5, a proof of (MP). In that section, we have also included a proof of the deformation

theorem, which is the main tool in proving (MP), as well as an analogue of Picard’s theorem

for solving an ordinary differential equation.

1.2. Aknowledgements. I would like to acklowledge of my supervisors, Dr. Jérôme Vétois

and Dr. Pengfei Guan, for their meticulous revisions of my work, suggestions, advices and

overall support for the writing of this thesis.

1.3. Contribution to Original Knowledge. To our knowledgs, Theorems 3.12, 4.1 and

6.4 are contributions to original knowledge.

1.4. Contribution of Author. All chapters in this thesis were done by the author alone.

2. Preliminaries

The following definitions and properties are taken from [17]. The reader may also refer to

the latter and [15] for much more properties of these spaces, as well as the case when the

exponent is unbounded, which will not be treated in this thesis.

2.1. Variable Exponent Lebesgue Spaces. Let Ω be a domain in Rn and µ be a nonneg-

ative Borel measure on Ω. We define the following class of functions:

P(Ω) = {p : Ω→ [1,∞) is measurable : ess sup
x∈Ω
{p(x)} =: p+ <∞}.

We define the variable exponent Lebesgue space as follows:

Lp(x)
µ (Ω) = {u ∈ L1

loc(Ω, µ) :

ˆ
Ω

|u(x)|p(x)dµ <∞},

and equip it with the norm

‖u‖p(x) = ‖u‖
L
p(x)
µ (Ω)

= inf
λ>0

{ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dµ ≤ 1

}
.

Note that the variable exponent Lebesgue spaces are a special case of Musielak-Orlicz

spaces, with the Luxembourg norm. Hence some of the properties outlined further, such as
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reflexivity or completeness, are simply a consequence of this. The reader may refer to [17],

Chapter 2, for further information.

Although it is also possible to define the Lebesgue spaces with unbounded exponents, they

lose many of the porperties that the classical Lebesgue spaces have, such as the density of

simple functions (when the measure is separable, for example any Radon measure on Rn).

Furthermore, the following spaces may not be equivalent to L
p(x)
µ (Ω) when p(x) is unbounded,

but are equivalent for p ∈ P(Ω):

{u is measurable: ∃λ > 0 s.t.

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dµ <∞},

{u is measurable:

ˆ
Ω

|u(x)|p(x)dµ <∞},

{u is measurable: ∀λ > 0 s.t.

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dµ <∞},

{u is measurable: lim
λ→∞

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dµ = 0}.

Throughout this thesis, we will use the following notation:

p+(E) = sup
x∈E
{p(x)},

p−(E) = inf
x∈E
{p(x)}

and we will write simply p+ and p− whenever E = Ω.

Here are some properties of L
p(x)
µ (Ω):

• It is a Banach space.

• Simple functions are dense and the space is separable if µ is separable.

• Let p− > 1 and p′(x) = p(x)
p(x)−1

. Then L
p(x)
µ (Ω) is reflexive with

(Lp(x)
µ (Ω))∗ ∼= Lp

′(x)
µ (Ω).

• Analogues of Fatou’s Lemma, the Monotone Convergence Theorem and the Domi-

nated Convergence theorem hold.

Let ρ(u) =
´

Ω
|u(x)|p(x)dµ. This defines a modular on L

p(x)
µ (Ω) which behaves similarly to

the norm, as can be seen by the following:

• ρ(uj)→ 0 ⇐⇒ ‖uj‖p(x) → 0

• If u 6= 0, then
[
ρ
(
u(x)
λ

)
= 1 ⇐⇒ λ = ‖u‖p(x)

]
• ρ(u) < 1(= 1, > 1) ⇐⇒ ‖u‖p(x) < 1(= 1, > 1)

• If ‖u‖p(x) > 1, then ‖u‖p
−

p(x) ≤ ρ(u) ≤ ‖u‖p
+

p(x)
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• If ‖u‖p(x) < 1, then ‖u‖p
+

p(x) ≤ ρ(u) ≤ ‖u‖p
−

p(x)

• If µ(A) ≥ 1, then µ(A)1/p+ ≤ ‖χA‖p(x) ≤ µ(A)1/p−

• If µ(A) ≤ 1, then µ(A)1/p− ≤ ‖χA‖p(x) ≤ µ(A)1/p+

Notice that by the first point, the topology induced by the norm is the same as the topology

of convergence of the integral, which is an essential tool in proving convergence of sequences.

Note that this may not be the case when p(x) is unbounded. The second point from the

list above will often be used, such as in the next theorem. Finally we will prove Hölder’s

inequality, embeddings of Lebesgue spaces, and another very useful theorem.

Theorem 2.1. Let p, q ∈ P(Ω) be such that 1
p(x)

+ 1
q(x)

= 1, f ∈ Lp(x)
µ (Ω) and g ∈ Lq(x)

µ (Ω).

Then ˆ

Ω

f(x)g(x) dµ ≤ 2 ‖f‖p(x),µ ‖g‖q(x),µ .

Proof. First, note that since p, q ∈ P(Ω), then p+ < ∞ and q+ < ∞, which implies p− > 1

and q− > 1. Let λ = ‖f‖p(x),µ and η = ‖g‖p(x),µ. Then by Young’s inequality, we have

ˆ

Ω

f(x)g(x)

λη
dµ ≤

ˆ

Ω

∣∣∣f(x)
λ

∣∣∣p(x)

p(x)
dµ+

ˆ

Ω

∣∣∣g(x)
η

∣∣∣q(x)

q(x)
dµ

≤
ˆ

Ω

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dµ+

ˆ

Ω

∣∣∣∣g(x)

η

∣∣∣∣q(x)

dµ = 2.

This completes the proof. �

Note that the constant in Hölder’s inequality can be made sharper, by setting it to be
1
p−

+ 1
q−

, which gives back the constant 1 in the fixed exponent case. For the purposes of

our work, we will use the constant 2, in order to avoid it depending on p(x), since we do not

need this constant to be sharp.

Theorem 2.2. If µ(Ω) <∞ and p, q ∈ P(Ω) with p(x) ≤ q(x), then we have

Lq(x)
µ (Ω) ↪→ Lp(x)

µ (Ω)

Proof. Let r(x) be such that 1
p(x)

= 1
q(x)

+ 1
r(x)

. Then, since we have by assumption 0 < p(x)
q(x)
≤

1, we obtain

r(x) =
p(x)q(x)

q(x)− p(x)
=

p(x)

1− p(x)
q(x)

≥ p(x) ≥ 1,
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and r(x) ∈ R on A = {x ∈ Ω : p(x) < q(x)}. Hence we also have 0 < p(x)
r(x)
≤ 1.

Now by applying Young’s inequality, we obtain for f ∈ Lq(x)
µ (Ω) with ‖f‖

L
q(x)
µ (Ω)

= 1

ˆ
A

|f(x)|p(x)dµ ≤
ˆ
A

1
r(x)
p(x)

dµ+

ˆ
A

∣∣ |f(x)|p(x)
∣∣ q(x)
p(x)

q(x)
p(x)

dµ

≤ |A|+
ˆ
A

|f(x)|q(x)dµ

≤ µ(Ω) + 1 := D <∞.

Since D > 1 ˆ
A

∣∣∣∣f(x)

D

∣∣∣∣p(x)

dµ ≤
ˆ
A

|f(x)|p(x)

D
dµ ≤ 1.

Hence by definition of the norm, we have ‖f‖
L
p(x)
µ (A)

≤ D.

Hence for any f ∈ Lq(x)
µ (Ω), we get ‖f‖

L
p(x)
µ (A)

≤ D‖f‖
L
q(x)
µ (A)

≤ D‖f‖
L
q(x)
µ (Ω)

and so

‖f‖
L
p(x)
µ (Ω)

≤ ‖f‖
L
p(x)
µ (Ω\A)

+ ‖f‖
L
p(x)
µ (A)

= ‖f‖
L
q(x)
µ (Ω\A)

+ ‖f‖
L
p(x)
µ (A)

≤ ‖f‖
L
q(x)
µ (Ω\A)

+D‖f‖
L
q(x)
µ (Ω)

≤ 2D‖f‖
L
q(x)
µ (Ω)

,

which completes the proof. �

Note that in the previous theorem, the embedding constant depends only on the measure

of Ω. Also observe that we avoided using Hölder’s inequality, since r(x) may be unbounded,

which is not a class of exponents that we consider here. In the case where inf
x∈Ω
{q(x)−p(x)} > 0,

we may use Hölder’s inequality and get a sharper constant, which would depend on p(x) and

q(x) and µ(Ω). Again, for our purposes, we will avoid it depending on the exponents, but as

in the fixed exponent case, we cannot avoid it depending on the measure of Ω.

The following theorem will be important after having applied Hölder’s inequality. Observe

that in the fixed exponent case, we have s+ = s−, which gives an equality.

Theorem 2.3. Let s be a measurable function and r ∈ P(Ω), with 0 < s− ≤ s(x) ≤ r(x). If

f ∈ Lr(x)
µ (Ω), then we have

min
{
‖f‖s

+

r(x),µ , ‖f‖
s−

r(x),µ

}
≤
∥∥|f |s(x)

∥∥
r(x)
s(x)

,µ
≤ max

{
‖f‖s

+

r(x),µ , ‖f‖
s−

r(x),µ

}
.
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Proof. Let λ = ‖f‖r(x),µ ≤ 1, then by properties of the norm, we have

ˆ

Ω

∣∣∣∣ |f(x)|s(x)

λs−

∣∣∣∣
r(x)
s(x)

dµ ≤
ˆ

Ω

∣∣∣∣f(x)

λ

∣∣∣∣r(x)

dµ = 1 =⇒
∥∥|f |s(x)

∥∥
r(x)
s(x)

,µ
≤ ‖f‖s

−

r(x),µ .

Likewise, we get
∥∥|f |s(x)

∥∥
r(x)
s(x)

,µ
≥ ‖f‖s

+

r(x),µ. Using the same technique for ‖f‖r(x),µ > 1, we

get

‖f‖s
−

r(x),µ ≤
∥∥|f |s(x)

∥∥
r(x)
s(x)

,µ
≤ ‖f‖s

+

r(x),µ ,

establishing the proof. �

This theorem will be particularly usefull in the following setting.

Corollary 2.4. Let p ∈ P(Ω), with p− > 1, and f ∈ Lp(x)
µ (Ω), then

min
{
‖f‖p

+−1
p(x),µ , ‖f‖

p−−1
p(x),µ

}
≤
∥∥|f |p(x)−1

∥∥
p′(x),µ

≤ max
{
‖f‖p

+−1
p(x),µ , ‖f‖

p−−1
p(x),µ

}
.

For the corollary, use the previous theorem with s(x) = p(x) − 1 and r(x) = p(x), which

gives r(x)
s(x)

= p′(x).

2.2. Variable Exponent Sobolev Spaces. Up to know, we have dealt with an abstract

Borel measure on Ω ⊂ Rn. We will need to use some of these properties in the proof of the

concentration-compactness principle, where we will use measures that are not the Lebesgue

measure. But for the remainder of this section, as well as the next one (on anisotropic spaces),

we will only deal with the Lebesgue measure, so we omit the symbol µ and use instead dx

for integration and | · | for the measure of a set.

We define the variable exponent Sobolev spaces as such:

W k,p(x)(Ω) = {u ∈ W k,1
loc (Ω) : ∂αu ∈ Lp(x)(Ω) ∀|α| ≤ k}

W
k,p(x)
0 (Ω) = C∞c (Ω)

Wk,p(x)(Ω)
,

where the norm is defined by:

‖u‖Wk,p(x)(Ω) =
∑
|α|≤k

‖∂α‖Lp(x)(Ω).

Equivalently, for W 1,p(x)(Ω), ‖u‖W 1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω).

If p− > 1, then W k,p(x)(Ω) and W
k,p(x)
0 (Ω) are reflexive, separable Banach spaces. We define

pointwise the critical Sobolev exponent for W k,p(x)(Ω) and p ∈ P(Ω) such that p+ < n
k
:

p∗(x) =
np(x)

n− kp(x)
.
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Before going on to prove our main theorems, we will present a lemma that will prove useful

in using Lp(x) embedding theorem and the classical fixed exponents results on W k,p to prove

results for W k,p(x).

Definition 2.5. We say that an open set Ω ⊂ Rn has the cone property if there exists a cone

C such that for every x ∈ Ω, there exists a cone Cx ⊂ Ω with apex at x that is identical to C

under rigid motion (translations and rotations).

As mentioned in Adams [2], bounded domains with Lipschitz boundary have the cone

condition.

Lemma 2.6. Let Ω ⊂ Rn be an open set with the cone property. Then for any x ∈ Ω and

0 < r < R, we can build a domain Ux with the cone property, such that B(x, r) ∩ Ω ⊂ Ux ⊂
B(x,R) ∩ Ω.

Furthermore, if R is fixed for every x ∈ Ω and r are bounded above by some r0 < R, then

every Ux can satisfy the cone condition using the same cone, under rigid motion.

Proof. Fix x and r as in the statement of the theorem. Let C be the cone that gives the cone

property to Ω. Denote by Cx the cone congruent to C with apex at x such that Cx ⊂ Ω.

Now notice that C is a bounded domain with Lipschitz boundary, thus C has itself the cone

condition.

Let Ux =

( ⋃
y∈B(x,r)

(R− r)Cy

)
∪ B(x, r), where (R − r)Cy = Cy ∩ B(y,R − r), which is

itself a cone. Then we can take a cone C̃ that gives the cone condition to (R − r)C, thus,

by the triangle inequality, it follows that Ux ⊂ B(x,R) ∩ Ω has the cone condition with C̃.

Furthermore, if R is fixed for all x and r are bounded above by some r0 < R, then we may

use the same cone (under rigid motion) for all sets Ux, by using (R− r0)C.

�

Remark 2.7. Observe that if Ω is bounded, then for any cover of Ω by balls {B(x, rx)}x∈Ω,

there exists a finite subcover {B(xi, rxi/2)}ki=1 of Ω. Then by the previous lemma, we can

take a finite cover Uxi such that for each i, Uxi has the cone property and Uxi ⊂ B(xi, rxi)∩Ω.

If on the other hand, if Ω is unbounded, then we can bound {rx} uniformly from above

over Ω and use the same R for all x in order to create a countable cover Uxi of Ω, where

all sets of the cover have the cone condition with the same cone, under rigid motion, and

sup
i
{|Uxi |} <∞.

2.3. Sobolev Embeddings. In this section we will prove the Sobolev embeddings for the

variable exponent Sobolev spaces as defined previously. First, we will state the one for fixed
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exponents, as presented in Adams [2], Theorem 5.4 (p.97). We will omit the part of the

theorem that deals with subspaces of lesser dimension, since we will not be dealing with

these spaces here. Also, we will write p∗ = np
n−kp (the kth-order critical exponent),

Cj
b (Ω) = {f ∈ Cj(Ω) : ∂αf is bounded for all |α| ≤ j}

and

Cj,λ(Ω) = {f ∈ Cj(Ω), 0 < λ ≤ 1 : |∂αf(x)− ∂α(y)| ≤ |x− y|λ for all |α| ≤ j}.

We equip the above spaces with the norms

‖f‖Cjb (Ω) = max
0≤|α|≤j

sup
x∈Ω
|∂αf(x)|

and

‖f‖Cj,λ(Ω) = max
0≤|α|≤j

sup
x,y∈Ω

|∂αf(x)− ∂αf(y)|
|x− y|λ

.

Note that we will be needing the strong local Lipschitz condition for part 2. For this

definition, we refer to [2] Chapter 4. In case of a bounded domain, it simply refers to a

Lipschitz boundary. In case of an unbounded domain, we essentially require the existence of

a “good” cover {Ui} of ∂Ω such that for each i, ∂Ω∩Ui is represented by a Lipschitz function

fi and sup
i
{Lip(fi)} <∞.

Theorem 2.8 (Adams [2]). Let Ω ⊂ Rn be a domain, 1 ≤ p <∞, k ∈ N and j ∈ N ∪ {0}.

Part 1: If Ω has the cone property, then the following embeddings are continuous, with

constants depending only on Ω, n, k, j and the chosen cone;

Case A: If kp < n, then

W j+k,p(Ω) ↪→ W j,q(Ω), for p ≤ q ≤ p∗

or

W k,p(Ω) ↪→ Lq(Ω), for p ≤ q ≤ p∗.

Case B: If kp = n, then

W j+k,p(Ω) ↪→ W j,q(Ω), for p ≤ q <∞

or

W k,p(Ω) ↪→ Lq(Ω), for p ≤ q <∞.

Moreover we have the special case p = 1 and k = n for which
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W k+j,1(Ω) ↪→ Cj
b (Ω).

Case C: If kp > n, then

W k+j,p(Ω) ↪→ Cj
b (Ω).

Part 2:If Ω has the strong local Lipschitz Property, then we can refine case C as follows:

Case C’: If kp > n > (k − 1)p, then

W k+j,p(Ω) ↪→ Cj,λ(Ω), for 0 < λ ≤ k − n

p
.

Case C”: If (k − 1)p = n, then

W k+j,p(Ω) ↪→ Cj,λ(Ω), for 0 < λ < 1.

If p = 1, then the above holds for λ = 1 as well.

Part 3: If we replace W by W0, then the statements in part 1 hold for arbitrary domains.

When dealing with variable exponents, we will include Case B in case A and we will relabel

Case C as Case B.

This is because we now have the case when the exponent the p(x) crosses (or reaches) the

threshold n/k, i.e. p− ≤ n
k
≤ p+. The problem here will be that p∗(x) is unbounded. The

Lebesgue spaces with unbounded exponents lose many of their good properties, so we will

avoid going there.

In order to go around this problem, whenever p− ≤ n
k
≤ p+, we will have an embedding

that holds for any q ∈ P(Ω) such that q(x) ≤ p∗(x). Notice that q ∈ P(Ω) implies q ∈ L∞,

thus we will never have q(x) = p∗(x) for all x ∈ Ω in this scenario, but we may take q to be

as large as we want on the set where p(x) ≥ n, or as p approaches n.

Now we present the modified version of Theorem 2.8 for variable exponent. For the re-

mainder of the thesis, we will denote the Lipschitz continuous functions on Ω by Lip(Ω).

Theorem 2.9 (Sobolev Embedding Theorem). Let Ω ⊂ Rn be a domain, p ∈ P(Ω), k ∈ N
and j ∈ N ∪ {0}.

Part 1: If Ω has the cone property, then the following embeddings are continuous, with

constants depending only on Ω, n, k, j and the chosen cone;
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Case A: If 1 < p− ≤ n
k

and p ∈ Lip(Ω), then

W j+k,p(x)(Ω) ↪→ W j,q(x)(Ω), for q ∈ P(Ω) such that p(x) ≤ q(x) ≤ p∗(x)

or

W k,p(x)(Ω) ↪→ Lq(x)(Ω), for q ∈ P(Ω) such that p(x) ≤ q(x) ≤ p∗(x).

with the embedding constant also depending on the Lipschitz constant of p and on p−.

Case B: If kp− > n, then

W k+j,p(x)(Ω) ↪→ Cj
b (Ω).

Part 2:If Ω has the strong local Lipschitz Property, then we can refine case B as follows:

Case B’: If kp− > n > (k − 1)p−, then

W k+j,p(x)(Ω) ↪→ Cj,λ(Ω), for 0 < λ ≤ k − n

p−
.

Part 3: If we replace W by W0, then the statements in part 1 hold for arbitrary domains.

Part 4: If µ(Ω) <∞, the we can replace the lower bound on q(x) by 1 in Case A.

Before presenting the proof, we give a lemma that will greatly simplify the proof of Case

A.

Lemma 2.10. If the embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) of Case A holds, then all the embed-

dings W k+j,p(x) ↪→ W j,q(x)(Ω) also hold.

As in the case of fixed exponents, if one can prove the embeddings above for the special

cases j = 0 and k = 1, then we can use induction to prove it for larger values of j and k.

Proof. In fact if the embeddings hold for any k ∈ N and j = 0 and q(x) as above, then we

have, for any other j ∈ N, that if u ∈ W k+j,p(x)(Ω), then ∂αu ∈ W k,p(x)(Ω) for all |α| ≤ j,

thus

‖u‖W j,q(x)(Ω) =
∑
|α|≤j

‖∂αu‖Lq(x)(Ω) ≤ C1

∑
|α|≤j

‖∂αu‖Wk,p(x)(Ω) ≤ C2‖u‖Wk+j,p(x)(Ω).

So we showed that we only need to prove the case j = 0. Now we will use induction to

show we only need to prove the case k = 1.

Assume the embeddings holds up to some k ≥ 1 and j = 0, i.e W k,p(x)(Ω) ↪→ Lr(x)(Ω),

for any q ∈ P(Ω) such that q(x) ≤ r(x) = np(x)
n−kp(x)

. Note that r(x) may be infinite. Then
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set s(x) = np(x)
n−(k+1)p(x)

, then by simple calculations, we get q∗(x) ≤ r∗(x) = nr(x)
n−r(x)

= s(x). If

u ∈ W k+1,p(x)(Ω), then for any 1 ≤ i ≤ n, u and ∂iu are in W k,p(x)(Ω). Thus we have:

‖u‖W 1,q(x)(Ω) = ‖u‖Lq(x)(Ω) +
∑

1≤i≤n

‖∂iu‖Lq(x)(Ω)

≤ C1‖u‖Wk,p(x)(Ω) +
∑

1≤i≤n

‖∂iu‖Wk,p(x)(Ω) ≤ C2‖u‖Wk+1,p(x)(Ω).

Then because q∗(x) ≤ r∗(x), we get

‖u‖Lq∗(x)(Ω) ≤ C0‖u‖W 1,r(x)(Ω) ≤ C‖u‖Wk+1,p(x)(Ω).

Therefore by induction, we only need to prove the case j = 0 and k = 1. �

Observe that when p+ < n, we only need to consider the case q(x) = p∗(x), since for any

q ∈ P(Ω) such that p(x) ≤ q(x) ≤ p∗(x), we have for u ∈ W 1,p(x)(Ω) with ‖u‖W 1,p(x)(Ω) = 1,

ˆ
Ω

|u|q(x) dx ≤
ˆ

Ω

|u|p(x) dx+

ˆ
Ω

|u|p
∗(x) dx ≤ 1 + C,

and so for any u ∈ W 1,p(x)(Ω), so by using techniques as in Theorem 2.2, the above leads to

‖u‖Lq(x)(Ω) . ‖u‖W 1,p(x)(Ω).

Furthermore, if p+ ≥ n, then for any q ∈ P(Ω), there exists δ > 0 such that q+ < (n− δ)∗.
By Lemma 2.6 (1), we can cover the open set Ω1 = {x ∈ Ω : p(x) > n− δ

2
} by countably many

sets Ux, such that the union of those sets, denoted E is contained in {x ∈ Ω : p(x) > n− δ}.
Since p is Lipschitz, we may also uniformly control the diameter of the sets Ux and thus also

the cone condition. Therefore E is a domain with the cone condition by construction, on

which we have, by Theorem 2.8,

‖u‖Lq(x)(E) ≤ ‖u‖L(n−δ)∗ (E) ≤ ‖u‖W p(x)(E) ≤ ‖u‖W p(x)(Ω) .

Then, we may likewise cover Ω\Ω1 by a domain D with the cone condition such that D ⊂
{x ∈ Ω : p(x) < n − δ

4
}. Therefore, with the previous lemma, we just showed that the

problem of proving Case A is reduced to proving the embedding

W 1,p(x)(Ω) ↪→ Lp
∗(x)(Ω),

when p+ < n. Before proving this, we will demonstrate this useful lemma, which we will also

need in the anisotropic case later on. The proof of this is actually part of the proof given by

Fan & Zhao in [25] for the embedding W 1,p(x)(Ω) ↪→ Lp
∗(x)(Ω).
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Lemma 2.11. Let p, r, q ∈ P(Ω) such that for all x ∈ Ω and some ε > 0, we have p(x) +ε ≤
r(x) ≤ q(x)− ε. Then for any u ∈ Lq(x)(Ω) with ‖u‖q(x) = 1 and any C > 0, there exists C̃

such that

ˆ
Ω

|u(x)|r(x)| log |u(x)|| dx ≤ C̃

ˆ
Ω

|u(x)|p(x) dx+
1

C
.

Proof. Fix C > 0. Since lim
t→∞

tr(x)−q(x) ≤ lim
t→∞

t−ε = 0, then we can find t0 > 1 such that for

any t > t0 and any x ∈ Ω, the following inequality holds:

(3) tr(x) ≤ 1

C
tq(x).

Then we can define

C̃ =

(
sup
t∈(0,t0]

tε| log t|

)(
sup

t∈(0,t0],x∈Ω

tr(x)−ε−p(x)

)
,

which is finite, since r(x)− ε− p(x) ≥ 0 and lim
t→0+

tε| log t| = 0.

Then we get

(4) sup
t∈(0,t0],x∈Ω

tr(x)| log t| ≤ C̃tp(x).

Thus letting Ω1 = {x ∈ Ω : |u(x)| ≤ t0} and Ω2 = {x ∈ Ω : |u(x)| > t0}, we can calculate

ˆ
Ω

|u(x)|r(x)| log |u(x)|| dx ≤
ˆ

Ω1

|u(x)|r(x)| log |u(x)|| dx+

ˆ
Ω2

|u(x)|r(x)| log |u(x)|| dx

≤ C̃

ˆ
Ω

|u(x)|p(x) dx+
1

C

ˆ
Ω

|u(x)|q(x) dx

= C̃

ˆ
Ω

|u(x)|p(x) dx+
1

C
,

establishing the proof. �

Note that C̃ in the above proof depends on the choice of ε. In fact, for a fixed C, as ε→ 0,

we have t0 →∞, hence C̃ →∞.

Proof of Part 1, Case A:

This proof mainly follows the steps presented by Fan & Zhao in [24]. First, assume

u ∈ W 1,p(x)(Ω) ∩ L∞(Ω) and has compact support in Ω. Thus we know u ∈ Lp
∗(x)(Ω).

Let λ = ‖u‖Lp∗(x)(Ω) and f(x) =

∣∣∣∣u(x)

λ

∣∣∣∣(n−1
n )p∗(x)

.
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Then we get that f ∈ L
n
n−1 (Ω) with ‖f‖

L
n
n−1 (Ω)

= 1, since

ˆ
Ω

f
n
n−1 =

ˆ
Ω

(∣∣∣∣u(x)

λ

∣∣∣∣(n−1
n )p∗(x)

) n
n−1

=

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p∗(x)

= 1.

Since p(x) is Lipschitz, then so is p∗(x), thus |∇p∗(x)| exists almost everywhere and is

bounded by the Lipschitz constant. Hence for almost every x ∈ Ω and 1 ≤ i ≤ n,

∂if(x) =

[
∂i

(
p∗(x)

n− 1

n
log

∣∣∣∣u(x)

λ

∣∣∣∣)] f(x)

=

(
n− 1

n

)(
∂ip
∗(x) log

∣∣∣∣u(x)

λ

∣∣∣∣+ p∗(x)

∣∣∣∣u(x)

λ

∣∣∣∣−1

sign(u)
∂iu(x)

λ

)∣∣∣∣u(x)

λ

∣∣∣∣n−1
n
p∗(x)

Therefore we get the inequality

|∇f(x)| . |∇p∗(x)|
∣∣∣∣log

∣∣∣∣u(x)

λ

∣∣∣∣∣∣∣∣ ∣∣∣∣u(x)

λ

∣∣∣∣n−1
n
p∗(x)

+ |p∗(x)|
∣∣∣∣u(x)

λ

∣∣∣∣n−1
n
p∗(x)−1 ∣∣∣∣∇uλ

∣∣∣∣
.

[
|f(x)|

∣∣∣∣log

∣∣∣∣u(x)

λ

∣∣∣∣∣∣∣∣]+

[
1

λ

∣∣∣∣u(x)

λ

∣∣∣∣n−1
n
p∗(x)−1

|∇u(x)|

]
=: h(x) + g(x)(5)

Now, letting p′(x) = p(x)
p(x)−1

, some elementary calculations yield

n− 1

n
p∗(x)− 1 =

n(p(x)− 1)

n− p(x)

and so (
n− 1

n
p∗(x)− 1

)
p′(x) = p∗(x).

Therefore by applying Young’s inequality, we obtain

ˆ
Ω

g(x) ≤ 1

λ

(ˆ
Ω

(
1

p′(x)

) ∣∣∣∣u(x)

λ

∣∣∣∣(n−1
n
p∗(x)−1)p′(x)

+

ˆ
Ω

1

p(x)
|∇u(x)|p(x)

)

≤ 1

λ

(ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p∗(x)

+

ˆ
Ω

|∇u(x)|p(x)

)

=
1

λ

(
1 +

ˆ
Ω

|∇u(x)|p(x)

)
<∞, since u ∈ W 1,p(x)(Ω)(6)

Now we want to work on h(x). Since p− > 1, then p∗(x)n−1
n
− p(x) ≥ p−−1

n−p− > 0. So we

can pick ε > 0 small enough such that p∗(x)n−1
n
> p(x) + ε and p∗(x)n−1

n
< p∗(x)− ε. Fix a
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constant C > 0 that we will define later and then use lemma 2.11 with r(x) = p∗(x)n−1
n

and

q(x) = p∗(x) to obtain ˆ

Ω

h(x) ≤ C̃

ˆ

Ω

|u|p(x) +
1

3C
.

Therefore by (5), (6) and (67), we get

(7)

ˆ
Ω

|∇f(x)| ≤
ˆ

Ω

g(x) + h(x) ≤ 1

λ

(
1 +

ˆ
Ω

|∇u(x)|p(x)

)
+ C̃

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

+
1

3C
.

Now let C = sup
t∈(0,t0],x∈Ω

tp
∗(x)n−1

n
−p(x), we obtain

ˆ
Ω

|f(x)| ≤
ˆ

Ω

∣∣∣∣u(x)

λ

∣∣∣∣p∗(x)n−1
n

≤
ˆ

Ω1

∣∣∣∣u(x)

λ

∣∣∣∣p∗(x)n−1
n

+

ˆ
Ω2

∣∣∣∣u(x)

λ

∣∣∣∣p∗(x)n−1
n

≤ C

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

+
1

3C
(8)

Combining (7) and (8) with the classical Sobolev inequality for W 1,1(Ω) ↪→ L
n
n−1 (Ω), with

constant C as in (22), gives us

1 = ‖f‖
L

n
n−1 (Ω)

≤ C

(
1

λ

(
1 +

ˆ
Ω

|∇u(x)|p(x)

)
+ C̃

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

+
1

3C
+ C

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

+
1

3C

)

.
C

λ
+
C

λ

ˆ
Ω

|∇u(x)|p(x) + C

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

+
1

3
+ C

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

+
1

3

Removing 2
3

on each side and using a new constant C, we obtain

1 ≤ C

(ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

+
1

λ

ˆ
Ω

|∇u(x)|p(x) +
1

λ

)
.

If λ > 1, then we get λ−p(x) ≤ λ−1, thus

(9) ‖u‖Lp∗(x)(Ω) = λ ≤ C

(ˆ
Ω

|u(x)|p(x) +

ˆ
Ω

|∇u(x)|p(x) + 1

)
.

We may assume that C ≥ 1, thus the above is also true for λ ≤ 1.

Now by (9), we can observe that
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∥∥∥∥ u

‖u‖W 1,p(x)(Ω)

∥∥∥∥
Lp
∗(x)(Ω)

≤ C

(ˆ
Ω

∣∣∣∣ u(x)

‖u‖W 1,p(x)(Ω)

∣∣∣∣p(x)

+

ˆ
Ω

∣∣∣∣ ∇u(x)

‖u‖W 1,p(x)(Ω)

∣∣∣∣p(x)

+ 1

)
≤ 3C

Then, we get that

(10) ‖u‖Lp∗(x)(Ω) ≤ 3C‖u‖W 1,p(x)(Ω)

Observe that C does not depend on the support of u, nor on it’s L∞(Ω) norm. Now if

Ω is bounded, then every u ∈ W 1,p(x)(Ω) has compact support in Ω. If it is unbounded,

then take a sequence {φj} ⊂ D(Rn) such that 0 ≤ φj ≤, |∇φj| ≤ 1 and φj = 1 on B(0, j).

Let u ∈ W 1,p(x)(Ω) ∩ L∞(Ω) and let uj = φju, then uj and has compact support in Ω.

Furthermore, one can notice that |uj| ≤ |u| and |∇uj| ≤ |u∇φj|+ |φj∇u| ≤ |u|+ |∇u|.
So we apply (10) to uj

‖uj‖Lp∗(x)(Ω) . ‖uj‖Lp(x)(Ω) + ‖∇uj‖Lp(x)(Ω) . ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω) = ‖u‖W 1,p(x)(Ω).

By taking the limit j → ∞ on the left hand side, we now have that (10), with a new C,

holds for all u ∈ W 1,p(x)(Ω) ∩ L∞(Ω).

Now for any u ∈ W 1,p(x)(Ω), we define

(11) uk(x) =

 u(x), if |u(x)| ≤ k

k sign(u(x)), if |u(x)| > k

Then uk ∈ W 1,p(x)(Ω) ∩ L∞(Ω),
´

Ω
|uk|p(x) ≤

´
Ω
|u|p(x) and

´
Ω
|∇uk|p(x) ≤

´
Ω
|∇u|p(x), thus

‖uk‖Lp∗(x)(Ω) . ‖uk‖Lp(x)(Ω) + ‖∇uk‖Lp(x)(Ω) ≤ ‖u‖W 1,p(x)(Ω).

So taking k →∞ on the left hand side finishes the proof.

Proof of Part 1, Case B:

By Lemma 2.6, fix a countable cover {Um} of Ω as in the second part of Remark 2.7. As

mentioned in the remark, they all have the cone property with the same cone, under rigid

motion, and furthermore, we can bound from above the measure of the sets Um.

By the Lebesgue embedding and the Sobolev embedding for fixed exponents, for each m, we

have

W k+j,p(x)(Um) ↪→ W k+j,p−(Um) ↪→ Cj
b (Um).

Since {Um} is an open cover of Ω, then it follows that for all |α| ≤ j, ∂αu is continuous on

Ω (up to a set of measure zero).

From the choice of this cover, since the constants in the above embeddings depend only on
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the cone, on the measure of Um, on p(x) and on the dimension, then it follows that there

exists C > 0 such that for all m,

‖u‖Cjb (Um) ≤ C‖u‖Wk+j,p(x)(Um) ≤ C‖u‖Wk+j,p(x)(Ω).

From the definition of ‖·‖Cjb (Ω), it follows that

‖u‖Cjb (Ω) ≤ C‖u‖Wk+j,p(x)(Ω).

Proof of Part 2:

Follows in the same manner as the proof of Case B. Since the strong local Lipschitz property

implies the cone condition, by Lemma 2.6, we can build a cover of bounded domains with

the cone condition. Then, by Theorem 4.8 in [2], we can cover each {Um} by finitely many

bounded domains with uniformly bounded radius and with the strong local Lipschitz condi-

tion, whose constants will depend on the cone (and thus on the original strong local Lipschitz

condition of Ω), on the dimension and on the measure (which is also uniformly bounded).

Thus we can proceed to prove the embeddings as in the proof of Case B.

Proof of Part 3:

This simply follows from the fact that the cone property was only used in order to apply the

classical embedding theorems, thus as in Theorem 2.8, for W
k,p(x)
0 (Ω), the theorem holds for

arbitrary domains.

Proof of Part 4:

This simply follows by Theorem 2.2, since we proved for q(x) = p∗(x) and thus for any other

1 ≤ q(x) ≤ p∗(x), we have

W k,p(x)(Ω) ↪→ Lp
∗(x)(Ω) ↪→ Lq(x)(Ω)

Remark 2.12. It is important to mention here that Theorem 2.9 may be further weakened.

First, cases B and B’ require only continuity of the exponent, i.e. the Lipschitz condition is

not needed. Even for case A, the authors of [17] (chapter 8) proved the case p+ < n for a

class of continuous functions called log-Hölder continuous, which is a weaker condition than

α-Hölder continuous, for any α ∈ (0, 1).

The proof, however, relies on the Hardy–Littlewood–Sobolev fractional integration theo-

rem, which bounds the Lp
∗
(Ω) norm of the Riesz potential of a function by its Lp(Ω) norm.

They show that the log-Hölder condition allows us to generalize the latter inequality to the

variable exponent case so that we can also bound the Lp
∗(x)(Ω) norm of the Riesz potential

of the gradient by the Lp(x)(Ω) norm of the gradient. In the anisotropic case, it is not quite

clear how to solve the problem using this approach.
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Furthermore, this proof allows us to use a more general class of domains than the ones

with the cone condition, which are the α-John domains.

So although we could generalize case A, we have decided to present the proof for a Lipschitz

continuous function, since it is similar to how we will prove that in anisotropic case, whereas

the proof in [17] will not be useful for us.

Observe though, that our proof used the cone condition only in order to apply the classical

Sobolev embedding for W 1,1(Ω). Since it was shown in [9] that part A of Theorem 2.8 holds

for α-John domains, our proof is still valid for this class of domains.

Finally, we will remark that in the anisotropic case, even for fixed exponents, not much

generality has been developped in terms of domain regularity. Up to our knowledge, the

most general type of domain was described by Rakosnik in [40], but they are very similar

to a finite union of rectangles, and in fact a rectangular domain is usually assumed in the

litterature, as was mentionned by [19].

2.4. Rellich-Kondrachov Theorem. Here we present an analogue of the Rellich-Kondrachov

theorem for variable exponents. In the case of the Sobolev embedding for kp+ < n, we re-

quired p to be Lipschitz continuous on Ω with p− > 1. For the compactness of embeddings

though, we will only need p ∈ C(Ω) and p− ≥ 1.

Theorem 2.13 (Rellich-Kondrachov, Fan & Zhao [25]). Let Ω ⊂ Rn be a bounded domain

with the cone property, p ∈ C(Ω) ∩ P(Ω) and q ∈ P(Ω) such that 1 ≤ p(x) < n
k

and

inf
x∈Ω
{p∗(x)− q(x)} > 0. Then we have

W k,p(x)(Ω) ↪→↪→ Lq(x)(Ω).

Proof. Let δ = inf
x∈Ω
{p∗(x)− q(x)} and fix 0 < ε < δ. Since p ∈ C(Ω), then so is p∗. Therefore,

for every x ∈ Ω, pick rx > 0 such that for every y ∈ B(x, rx), |p∗(x) − p∗(y)| < ε/2. By

remark 2.7, it follows that we can cover Ω by finitely many domains {Ui} with the cone

property, such that B(xi, ri/2) ∩ Ω ⊂ Ui ⊂ B(xi, ri) ∩ Ω.

Therefore, for every i, for every x, y ∈ Ui,

p∗(x) > p∗(y)− ε > p∗(y)− δ ≥ q(y).

It follows that (p∗)−(Ui) := inf
x∈Ui

p∗(x) > sup
x∈Ui

q(x) =: q+(Ui).
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Next observe that

(p∗)−(Ui) = inf
x∈Ui

p∗(x)

= inf
x∈Ui

np(x)

n− kp(x)

= inf
x∈Ui

n
n
p(x)
− k

=
n

n
p−(Ui)

− k

= (p−(Ui))
∗.

Now let {uj} be a bounded subset of W k,p(x)(Ω). Then it is also bounded in W k,p−(Ui) for

each i, so by the Rellich-Kondrachev theorem for fixed exponents, there exists a subsequence,

still denote {uj}, that is a Cauchy sequence in Lq
+

(Ui) for all i. Therefore by the Lebesgue

embedding theorem for variable exponents,

‖uj − um‖Lq(x)(Ω) ≤
∑
i

‖uj − um‖Lq(x)(Ui) ≤ 2 (|Ω|+ 1)
∑
i

‖uj − um‖Lq+ (Ui)
→ 0.

It follows from completeness of Lq(x)(Ω), that uj → u in Lq(x)(Ω) (or a subsequence), which

proves the compactness of the embedding. �

Remark 2.14. Observe that if one uses Theorem 2.9 and Lemma 3.4 presented in the next

section, then from Remark 2.12, we can prove compactness for a log-Hölder continuous

exponent and a John domain in a more direct way. Our choice of proof relied on the fact

that we may have even more general exponents, since we showed that p(x) only needs to

be continuous. In fact, because of Lemma 3.4, it follows that the compactness for fixed

exponents also holds on α-John domains, hence by using our proof, we could have also

relaxed the domain condition in Theorem 2.13 without requiring log-Hölder continuity. In

[17], Definition 7.4.1, we can see that we can cover the closure of a bounded α-John domain

by finitely many αi-John domains, thus the proof follows in the same manner.

Corollary 2.15. Let Ω ⊂ Rn be a bounded domain with the cone property, p, q ∈ C(Ω)∩P(Ω)

such that 1 ≤ p(x) < n
k

and 1 ≤ q(x) < p∗(x). Then we have

W k,p(x)(Ω) ↪→↪→ Lq(x)(Ω).

Proof. The above implies by continuity on Ω that inf
x∈Ω
{p∗(x)− q(x)} > 0, hence we can

simply apply the previous theorem. �
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Notice that the cone condition is needed in order to apply the classical embedding theorem

for fixed exponent. Thus if we restrict ourselves to functions in W
k,p(x)
0 (Ω), then we can drop

the cone condition.

2.5. Poincaré’s Inequality. Next, we present the Poincaré inequality for W
1,p(x)
0 (Ω). As

in the fixed exponent case, one can show by induction that this inequality implies that on

W
k,p(x)
0 (Ω), the following are equivalent norms:

‖u‖Wk,p(x)(Ω) '
∑
|α|=k

‖∂αu‖Lp(x)(Ω).

Theorem 2.16 (Poincaré’s Inequality, Fan & Zhao [25]). Let Ω ⊂ Rn be a bounded domain,

p ∈ C(Ω) ∩ P(Ω), then there exists C > 0 such that

‖u‖p(x) ≤ C‖∇u‖p(x), for all u ∈ W 1,p(x)
0 (Ω).

Proof. First, observe that for 1 ≤ p < n,

(12) p∗ =
np

n− p
≥ n

n− 1
p

Let p+ < n and define p0(x) = p(x) and pi+1(x) = min{pi(x)− 1
n
, 1} for i ∈ N. It follows

that for all i ≥ n2, pi(x) = 1, since p+ < n. Now by (12), we get that

(13) p∗i+1(x)− pi(x) = p∗i+1(x)− pi+1(x) + pi+1(x)− pi(x) ≥ 1

n− 1
pi+1(x)− 1

n
>

1

n2

And so we have p∗i+1(x)− 1
n2 > pi(x), so we can apply theorem 2.13 and thus

(14) ‖u‖Lpi(x)(Ω) ≤ C̃i

(
‖u‖Lpi+1(x)(Ω) + ‖∇u‖Lpi+1(x)(Ω)

)
≤ Ci

(
‖u‖Lpi+1(x)(Ω) + ‖∇u‖Lp(x)(Ω)

)
So by repeating the process, after finitely many step, we can apply the Poincaré inequality

for fixed exponents to obtain

‖u‖Lp(x)(Ω) ≤ C̃M
(
‖u‖L1(Ω) + ‖∇u‖Lp(x)(Ω)

)
≤ CM

(
‖∇u‖L1(Ω) + ‖∇u‖Lp(x)(Ω)

)
≤ C‖∇u‖Lp(x)(Ω),(15)

which is Poincaré’s inequality for exponents in C(Ω) ∩ P(Ω) such that p+ < n.

For general p ∈ C(Ω) ∩ P(Ω), we can pick s ∈ [1, n), such that s∗ > p+, and define

r ∈ C(Ω) ∩ P(Ω) by r(x) = min{p(x), s}. Observe then that r(x) ≤ s < n and that
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r(x) ≤ p(x) < r∗(x). Therefore we can apply theorem 2.13, the Lebesgue embedding theorem

and (15) to r(x), to obtain

‖u‖Lp(x)(Ω) ≤ C1‖u‖W 1,r(x)(Ω) ≤ C2

(
‖u‖Lr(x)(Ω) + ‖∇u‖Lr(x)(Ω)

)
≤ C3‖∇u‖Lr(x)(Ω) ≤ C‖∇u‖Lp(x)(Ω)

�

Corollary 2.17 (Poincaré-Sobolev Inequality). Let Ω ⊂ Rn be a bounded domain and p ∈
Lip(Ω) ∩ P(Ω) be such that 1 < p− ≤ p(x) ≤ p+ < n

k
. Then there exists C > 0 such that

‖u‖p∗(x) ≤ C‖∇u‖p(x), for all u ∈ W 1,p(x)
0 (Ω).

Proof. It follows from the Poincaré inequality and the Sobolev embedding theorem Case A:

‖u‖p∗(x) ≤ C1‖u‖W 1,p(x)(Ω) = C1(‖u‖p(x) + ‖∇u‖p(x)) ≤ C‖∇u‖p(x)

�

In the next section, we will discuss anisotropic Sobolev spaces with variable exponents.

Note that these are generalizations of the variable exponent Sobolev spaces, except in the

fact that we will need to restrict ourselves to rectangular-like domains. Therefore, the proofs

presented in the next section will also work for the present section, if we restrict ourselves to

more regular domains. That is why we have decided to present the proofs separately, since

we can benefit from greater generality of domains for the isotropic spaces. Although, the

reader may note that the proof of the anisotropic Poincaré inequality, different from the one

for Theorem 3.16, will also hold for the isotropic case, regardless of the domain.

3. Anisotropic Variable Exponent Sobolev Spaces

The overall aim of this work is to prove and use the Concentration-Compactness principle

for anisotropic variable exponent Sobolev spaces. In order to even consider this, we must

first have a critical embedding theorem, like the one we have in the previous section. To our

surprise, up to our knowledge, this critical embedding has not yet been proven. In fact it

was also stated as an open question by Fan in [19].

We will now establish some notation.

Let ~p(·) = (p1(·), . . . , pn(·)), with each pi ∈ P(Ω). Define

pM(x) = max
1≤i≤n

{pi(x)};

pm(x) = min
1≤i≤n

{pi(x)};

p+ = max
1≤i≤n

p+
i = sup

x∈Ω

{pM(x)};
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p− = min
1≤i≤n

p−i = inf
x∈Ω
{pm(x)};

p(x) =
n

n∑
i=1

1
pi(x)

and

p∗(x) =
np(x)

n− p(x)
.

Observe that when pi(x) = p(x) for all x ∈ Ω and 1 ≤ i ≤ n, then p(x) = p(x) = pm(x) =

pM(x) and p∗(x) = p∗(x). Furthermore, we will have equivalence of the norm ‖·‖W 1,p(·)(Ω) with

the norm for the anisotropic Sobolev spaces defined below. Hence the anisotropic variable

exponent Sobolev space is a generalization of the isotropic one.

As in the isotropic case, if p− > 1, then W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are reflexive and uni-

formly convex Banach spaces (see theorem 2.1 of [19]).

In the remainder of the thesis, it is to be understood that if p(x) ≥ n, then p∗(x) =∞.

We define the anisotropic variable exponent Sobolev space as

W 1,{p0(·)~p(·)}(Ω) =
{
u ∈ Lp0(·)(Ω) : ∂iu ∈ Lpi(·)(Ω), for all 1 ≤ i ≤ n

}
.

We define the norm

‖u‖W 1,{p0(·)~p(·)}(Ω) = ‖u‖Lp0(·)(Ω) +
n∑
i=1

‖∂iu‖Lpi(·)(Ω).

We will also define W
1,{p0(·),~p(·)}
0 (Ω) as the closure of C∞c (Ω) with the W 1,{p0(·),~p(·)}(Ω) norm,

i.e.

W
1,{p0(·),~p(·)}
0 (Ω) = C∞c (Ω).

As mentionned before, we will require more restriction on the regularity of Ω, except when

working with W
1,{p0(·),~p(·)}
0 (Ω), since we may then use the zero extension to assume regularity

of the domain. Hence we have the following definition.

Definition 3.1. Ω is a rectangular domain if it is bounded and can be written as a product

of intervals, i.e.,

Ω = (a1, b1)× · · · × (an, bn).

Ω ⊂ Rn is a rectangle-like domain if for any m ∈ N, Ω ∩ (−m,m)n is a finite union of

rectangular domains.
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Observe that when Ω is bounded and rectangle-like, then it is simply a union of finitely

many rectangular domains. Thus for bounded domains, we will only consider, without loss

of generality, rectangular domains instead of rectangular-like domains.

Before presenting our proof of the critical exponent embedding for the anisotropic vari-

able exponent Sobolev spaces, we will give the embedding theorem for their fixed exponent

counterparts.

Theorem 3.2 (Fan [19]). Let Ω be a rectangular domain and ~pi ∈ [1,∞)n.

(1) If p < n, then W 1,~p(Ω) ↪→ Lp
∗
(Ω) and W 1,~p(Ω) ↪→↪→ Lq(Ω) for all 1 ≤ q < p∗.

(2) If p = n, then W 1,~p(Ω) ↪→↪→ Lq(Ω) for all 1 ≤ q <∞.

(3) If p > n, then W 1,~p(Ω) ↪→ C0,β(Ω), with

0 < β =
α

n
pm

+ α
and α = 1− n

p
.

Furthermore, if we restrict ourselves to W 1,~p
0 (Ω), then the above holds on any domain.

3.1. Rellich-Kondrachov Theorem. As in the previous section with isotropy, we can fairly

easily prove the compactness of embeddings for subcritical exponents by using the classical

embedding theorems for fixed anisotropic exponents. The following proofs are adapted from

[19].

Lemma 3.3. Let Ω be a rectangular domain, p0 ∈ C(Ω)∩P(Ω) and ~p(x) ∈
(
C(Ω) ∩ P(Ω)

)n
,

q(x) = max{p0(x), p∗(x)} and r ∈ P(Ω) such that

inf
x∈Ω
{q(x)− r(x)} ≥ α > 0,

for some α ∈ (0, 1). Then there exists a finite collection of cubes {Qk} ⊂ Ω that cover Ω and

such that for all k, one of the following holds:

(1) r+(Qk) <
(
p−(Qk)

)∗
, where p−(Qk) =

n
n∑
i=1

1
p−i (Qk)

(2) r+(Qk) < (p0)−(Qk)

Proof. For each x ∈ Ω such that p(x) < n, by continuity of ~p and p0, we may pick a small

cube Qx such that q+(Qx) ≤ q−(Qx) + α
2
. Hence we have

r+(Qx) < q+(Qx)−
α

2
≤ q−(Qx).

Then if q(x) = p0(x), we have shown Qx satisfies (2). Otherwise, we may take Qx to be

even smaller, such that p+(Qx) < p−(Qx) + ε. If ε is small enough, then we get

q+(Qx) = (p∗)+(Qx) = (p+)∗(Qx) ≤ (p+)∗(Qx) ≤ (p−)∗(Qx) +
α

2
.
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Observe that when p(x) ≥ n, we can choose a δ > 0 such that r+ < (n − δ)∗ − α
2
, and a

cube small enough such that p−(Qx) > n− δ, which implies (1).

Since Ω is bounded, then we may take a finite cover of such cubes, which completes the

proof. �

Lemma 3.4. Let Ω be a bounded domain with the cone condition. If q ∈ P(Ω) such that

W 1,{p0(·),~p(·)}(Ω) ↪→ Lq(x)(Ω), then for any r ∈ P(Ω) such that inf
x∈Ω
{q(x)− r(x)} = ε > 0,

W 1,{p0(·),~p(·)}(Ω) ↪→↪→ Lr(x)(Ω).

Proof. First, observe that the conditions imply q− ≥ r−+ε ≥ 1+ε > 1. Then we may assume

that r− > 1, otherwise we can take s(x) = max
{
r(x), 1 + ε

2

}
and Ls(x)(Ω) ↪→ Lr(x)(Ω). By

Lebesgue embeddings and Theorem 2.3, W 1,{p0(·),~p(·)}(Ω) ↪→ W 1,1(Ω) ↪→↪→ L1(Ω). If {uj}
is bounded in W 1,{p0(·),~p(·)}(Ω), then it converges to some u ∈ L1(Ω). Then by Hölder’s

inequality, with vj = uj − u,
ˆ

Ω

|vj|r(x) dx =

ˆ

Ω

|vj|
q(x)−r(x)
q(x)−1 |vj|

q(x)(r(x)−1)
q(x)−1 dx

≤ 2
∥∥∥|vj| q(x)−r(x)

q(x)−1

∥∥∥
q(x)−1

q(x)−r(x)

∥∥∥|vj| q(x)(r(x)−1)
q(x)−1

∥∥∥
q(x)−1
r(x)−1

≤ 2M
q+(r+−1)

q−−1 ‖vj‖
ε

q+−1

1 → 0,

where M = sup
j

{
‖vj‖q(x) + 1

}
< ∞, since boundedness in W 1,{p0(·),~p(·)}(Ω) implies weak

convergence in Lq(x)(Ω), because of the continuous embedding, which implies boundedness

in Lq(x)(Ω). Also note that we used the exponent ε
q+−1

in the last term, since ‖vj‖1 → 0, we

may assume ‖vj‖1 < 1. This completes the proof. �

Then from the critical embedding proved before and Lemma 3.4, we get the following

compactness results.

Theorem 3.5 (Fan [19]). Let Ω be a rectangular domain, p0 ∈ C(Ω) ∩ P(Ω) and ~p(x) ∈(
C(Ω) ∩ P(Ω)

)n
.

(1) If r ∈ P(Ω) and there exists ε > 0 such that r(x) < max{p0(x), p∗(x)} − ε for all

x ∈ Ω, then we have the continuous compact embedding

W 1,{p0(x),~p(·)}(Ω) ↪→↪→ Lr(x)(Ω).

(2) If p(x) > n, then there exists β ∈ (0, 1) such that

W 1,{p0(x),~p(·)}(Ω) ↪→ C0,β(Ω) ↪→↪→ C(Ω).
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Furthermore, if we restrict ourselves to W
1,{p0(·),~p(·)}
0 (Ω), then the above holds on any

domain.

Proof. Let {uj} be a bounded sequence in W 1,{p0(·),~p(·)}(Ω). Let {Qk} be a collection of cubes

as in lemma 3.3. Then {uj} is also bounded in W 1,{p0(·),~p(·)}(Qk) for each k.

If Qk satisfies (1), then by the fixed exponent theorems and the fact that , we have that

W 1,{p0(·),~p(·)}(Qk) ↪→ W 1,( ~p )−(Qk) ↪→↪→ Lr
+(Qk)(Qk) ↪→ Lr(x)(Qk),

where ( ~p )− = (p−1 , . . . , p
−
n ). If Qk satisfies (2), then by lemma 3.4

W 1,{p0(·),~p(·)}(Qk) ↪→↪→ Lr(x)(Qk).

Thus it follows that in both cases, {uj} (or a subsequence) is Cauchy in Lr(x)(Qk), hence

we have

‖uj − ui‖r(x) ≤
∑
k

‖uj − ui‖r(x),Qk
→ 0

This proves part (1) of the theorem. For part 2, we may construct cubes similarly to lemma

3.3 to get embedding into C0,βk(Qk) for each k and then take β = min{βk} to complete the

proof. �

3.2. Critical Exponent Sobolev Embedding. We now finally arrive at a new result. As

stated previously, in [19], Fan stated the question of whether there is a critical embedding of

the anisotropic variable exponent Sobolev space, when pM(x) < p∗(x), as an open question,

which, up to our knowledge, has not yet been answered.

Before proving so, we will need some preliminaries. First off, we will assume p0(x) = 1

and p0(x) = pm(x) in the bounded and unbounded domain cases, respectively. We will then

adopt the shorter notation

W 1,{p0(·),~p(·)}(Ω) = W 1,~p(·)(Ω).

Furthermore, we will now always assume that inf
x∈Ω
{p∗(x) − pM(x)} > 0. There are two

main reasons for this. The first is that even in the fixed exponent case, the authors in [35]

gave an example of a ~p with pM > p∗ and Ω is a cube, for which there is no embedding

W 1,{1,~p}(Ω) ↪→ Lp
∗
(Ω). On the other hand, in [40], it was shown that when pM < p∗, then

the embedding exists for rectangular domains. Hence, we may assume that it is also the case

with variable exponents.

The second is that it is still unknown, for the variable exponents, if there is a Poincaré

inequality when pM ≥ p∗, as it was pointed out by Fan ([19]). Since we will be needing

this inequality to prove the concentration-compactness principle, we will stay away from this

scenario.
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In our proof, we will use density of smooth functions. Hence we present the following

theorem, from [19].

Theorem 3.6 (Fan [19]). Let Ω ⊂ Rn be a rectangular domain and ~p(·) ∈
(
Lip(Ω) ∩ P(Ω)

)n
,

then

C∞(Ω) is dense in W 1,~p(·)(Ω)

Note that the above is a stronger version of the theorem, since it actually holds for a

larger class of continuous exponents, namely log-Hölder continuous exponents, as discussed

in Remark 2.12.

Now in order to prove the critical embedding we define the following exponents, which

relate the critical exponent to each component of ~p(·):

σi(x) =
1

n(n− 1)

(
n− 1 +

n∑
j=1

1

pj(x)
− n

pi(x)

)
.

Lemma 3.7. If ~p(·) ∈
(
Lip(Ω)

)n
, p− > 1, p+ < n and inf

x∈Ω
{p∗(x)− pM(x)} = α > 0, then:

(1) σi(x) > 0;

(2)
n∑
i=1

σi(x) = 1 ;

(3) [q(x)σi(x)(n− 1)− 1]

(
pi(x)

pi(x)− 1

)
= q(x); and

(4) there exists ε > 0 such that for any i ∈ {1, . . . , n} and x ∈ Ω,

pi(x) + ε < q(x)σi(x)(n− 1) < q(x)− ε.

Proof. Notice that by definition, pM(·), p(·), q(·) and σi(·) are also Lipschiptz continuous on

Ω, for any i.

For (1), observe that

(16) (n− 1)σi(x) = 1− 1

n
+

1

p(x)
− 1

pi(x)
= 1 +

1

p∗(x)
− 1

pi(x)
≥ 1− 1

p−
> 0.

For (2) and (3), we calculate directly:
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n∑
i=1

σi(x) =
n∑
i=1

(
1

n
+

(
1

n(n− 1)

)( n∑
j=1

1

pj(x)
− n

pi(x)

))

= 1 +
1

n(n− 1)

(
n

n∑
j=1

1

pj(x)
−

n∑
i=1

n

pi(x)

)
= 1

Since 1
q(x)

= 1
p(x)
− 1

n
, then simple calculations yield

[q(x)σi(x)(n− 1)− 1] = q(x)

(
1− 1

n
+

1

p(x)
− 1

pi

)
− q(x)

q(x)

= q(x)

(
1 +

1

q(x)
− 1

pi(x)
− 1

q(x)

)
= q(x)

(
pi(x)− 1

pi(x)

)
Thus we obtain (3) from the above.

Finally, to prove (4), we use (3) and the fact that q(x) > pi(x) + α to get:

q(x)σi(x)(n− 1) =

(
pi(x)− 1

pi(x)

)
q(x) + 1 = q(x)− q(x)

pi(x)
+ 1 < q(x)− α

p+
.

We again use (3) and the inequality above to get:

pi(x)

pi(x)− 1
=

q(x)

q(x)σi(x)(n− 1)− 1
>

q(x)σi(x)(n− 1)

q(x)σi(x)(n− 1)− 1
=⇒ pi(x) < q(x)σi(x)(n− 1).

Then, by using (16), we can see that for any x and i,

(n− 1)σi(x) ≤ 1− α

p+(p+)∗
.

By taking ε < min
{

α
p+ ,

q−α
p+(p+)∗

}
, the proof is complete. �

The following lemma is similar to Lemma 2.11 and it allows us to use u ∈ Lp0(x) in our

definition of W 1,~p(·)(Ω), which will in turn prove that we may use, instead of p0(·), any

r ∈ P(Ω) that satisfies 1 ≤ r(x) ≤ pM(x) in the bounded case or pm(x) ≤ r(x) ≤ pM(x) in

the unbounded case.

Note that the next result should be somewhat standard, since it is very similar to Young’s

inequality, but we have not seen it used directly in the litterature, which is why we give a

proof here.

Lemma 3.8. Let Ω ⊂ Rn, p, q, r ∈ P(Ω) satisfiying 0 < ε = ess inf
x∈Ω
{q(x)−r(x)}, p(x) ≤ r(x)

and u ∈ Lp(x)(Ω) ∩ Lq(x)(Ω). Then for any C > 0, there exists C̃ > 0 such that
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‖u‖Lr(x)(Ω) ≤ C̃‖u‖Lp(x)(Ω) +
1

C
‖u‖Lq(x)(Ω)

Proof. If C ≤ 1, then we can use the pointwise inequality to get

ˆ
Ω

|u(x)|r(x) dx ≤
ˆ
{x∈Ω:|u(x)|≤1}

|u(x)|p(x) dx+

ˆ
{x∈Ω:|u(x)|>1}

|u(x)|q(x) dx

≤ C̃

2

ˆ
Ω

|u(x)|p(x) dx+
1

2Cq+

ˆ
Ω

|u(x)|q(x) dx,

with C̃ = 2.

If C > 1, then set t0 = (2Cq+
)1/ε. Hence for any t ≥ t0,

tr(x)−q(x) ≤ t−ε ≤ t−ε0 =
1

2Cq+ .

Let C̃ = 2tr
+

0 , then for all t < t0,

tr(x)−p(x) ≤ tr
+

0 =
C̃

2
.

We can assume that C̃ ≥ 2, thus from the two inequalities above, we obtain as previously

ˆ
Ω

|u(x)|r(x) dx ≤ C̃

2

ˆ
Ω

|u(x)|p(x) dx+
1

2Cq+

ˆ
Ω

|u(x)|q(x) dx

≤ 1

2

(ˆ
Ω

|C̃u(x)|p(x) dx+

ˆ
Ω

∣∣∣∣u(x)

C

∣∣∣∣q(x)

dx

)
.(17)

Since C̃ does not depend on u, lettting λ = ‖C̃u‖Lp(x)(Ω) + ‖ u
C
‖Lq(x)(Ω) and using u

λ
in place

of u in (17), then by properties of the norm, we obtain

(18)

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣r(x)

dx ≤ 1,

which implies that

(19) ‖u‖Lr(x)(Ω) ≤ C̃‖u‖Lp(x)(Ω) +
1

C
‖u‖Lq(x)(Ω).

Observe that the inequality of the previous lemma can also be stated in terms of integrals,

as was shown in the proof. �

Observe that the preceding lemma proves the continuous embedding

Lq(x)(Ω) ∩ Lp(x)(Ω) ↪→ Lr(x)(Ω).
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Now we are ready to start proving the embedding theorem. For lighter notation, we will

use q(x) = p∗(x) in the following proof only.

Because of the density Theorem 3.6 and the rectangular domain, we are able to follows to

steps of the proof as outlined by Adams in [2], Lemma 5.7. We had to define the exponents

σi(x) in order to use the Gagliardo lemma. These exponents were in turn inspired by those

defined by Rákosńık in [40], when he proved the critical embedding theorem for anisotropic

fixed exponents. Finally, we inspired ourselves as well from the proof of the critical embedding

for the isotropic variable exponent case given by Fan & Zhao in [25], in that we used Lemma

2.11.

Lemma 3.9. Let Ω ⊂ Rn be a rectangular domain and ~p(·) ∈
(
P(Ω) ∩ Lip(Ω)

)n
such that for

all x ∈ Ω, 1 < pm(x) ≤ pM(x) < q(x) = p∗(x) and p(x) < n. Then the following embedding

is continuous:

W 1,~p(·)(Ω) ↪→ Lp
∗(x)(Ω).

Proof. Fix u ∈ C∞(Ω) such that ‖u‖Lq(x)(Ω) = 1. We define the following:

x(i) = (x1, . . . , xi−1, x1+1, . . . , xn);

Ωi(x) = {y ∈ Ω : y(i) = x(i)};

Ωi = the projection of Ω onto {xi = 0}; and

vi(x
(i)) = sup

y∈Ωi(x)

|u(y)|q(y)σi(y).

We know that vi(·) is well defined since u ∈ C∞(Ω) and, as mention previously, p∗(·) and

σi(·) are Lipschitz continous on Ω (see Lemma 5.20). In fact we even know that vi ∈ L∞(Ωi)

Therefore, we can use the famous lemma by Galiardo in conjunction with (2) of Lemma

3.7 to obtain:
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1 =

(ˆ
Ω

|u(x)|q(x) dx

)(n−1)

=

(ˆ
Ω

n∏
i=1

|u(x)|q(x)σi(x) dx

)(n−1)

≤

(ˆ
Ω

n∏
i=1

vi(x
(i)) dx

)(n−1)

≤
n∏
i=1

ˆ
Ωi

[
vi(x

(i))
](n−1)

dx(i)(20)

By a translation and scaling argument, since Ω is rectangular, we can assume without loss

of generality that it is a cube of sidelength 2. 1

For any y ∈ Ω and 1 ≤ i ≤ n, fix a unit vector ei parallel to the axis x(i) = 0, such that

y + (1− t)ei ∈ Ω for all t ∈ [0, 1].

For a fixed x ∈ Ω and a corresponding ei, let fi(t) = |u(x+(1−t)ei)|q(x+(1−t)ei)σi(x+(1−t)ei)(n−1).

Then by integration by parts, we have:

(21)

ˆ 1

0

f(t) dt = f(1)−
ˆ 1

0

tf ′(t) dt.

Note that f(1) = |u(x)|q(x)σi(x)(n−1) and also

ˆ 1

0

f(t) dt ≤
ˆ

Ωi(x)

|u(y)|q(y)σi(y)(n−1) dy

Now we calculate

tf ′(t) = t(1− n)

[(
∂i[qσi] log |u|+ (qσi)sign(u)|u|−1∂iu

)
|u|qσi(n−1)

]
(x+ (1− t)ei)

≤ C0

[(
| log |u||+ |u|−1|∂iu|

)
|u|qσi(n−1)

]
(x+ (1− t)ei),

where C0 depends on n and on the Lipschitz norm of qσi. Hence we may choose it to be

uniform for all i. Combining (21) with the two inequalities above, and denoting s(x) =

q(x)σi(x)(n− 1), we obtain

1Note that in the isotropic case, we can nicely transform a domain Ω with the cone condition into uniform

cubes, but we cannot use this with the anisotropy, since the transformation involved in the integral will also

affect the anisotropy. That is probably why there is not much more generality to be added in terms of the

shape of the domain, although some authors did, such as [40], in the fixed exponent case, they are still quite

resctritive, so we have decided to stick to rectangular-like domains.
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f(1) = |u(x)|s(x)

≤ C0

ˆ
Ωi(x)

(
|u(y)|s(y) + |u(y)|s(y)| log |u(y)||+ |u(y)|s(y)−1|∂iu(y)|

)
dy

= C0

(ˆ
Ωi(x)

|u(y)|s(y)| log |u(y)|| dy +

ˆ
Ωi(x)

|u(y)|s(y)−1 (|u(y)|+ |∂iu(y)|) dy
)

Now we can take the supremum over all elements of Ωi(x) on the left hand side and then

integrate both sides of the previous inequality over Ωi to obtain:

(22)ˆ
Ωi

[vi(x
(i))](n−1) dx(i) ≤ C0

(ˆ
Ω

|u(x)|s(x)| log |u(x)|| dx+

ˆ
Ω

|u(x)|s(x)−1 (|u(x)|+ |∂iu(x)|) dx
)
.

Recall that by Lemma 3.7, [q(x)σi(x)(n− 1)− 1] pi(x)
pi(x)−1

= q(x), hence by Lemma 2.3,

‖|u|q(x)σi(x)(n−1)−1‖
L

pi(x)
pi(x)−1

= ‖u‖Lq(x)(Ω) = 1.

Thus, we can use Hölder’s inequality and the triangle inequality for the second term on

the right hand side of (22) and use Lemma 2.11, with r(x) = q(x)σi(x)(n− 1) and p(x) = 1,

for the first term, where C = 2C0. This yields

ˆ
Ωi

[vi(x
(i))](n−1) dx(i) ≤ C

(
C̃

ˆ
Ω

|u(x)| dx+
1

3C
+ ‖u‖Lpi(x)(Ω) + ‖∂iu‖Lpi(x)(Ω)

)

Using now Lemma 3.8 with p(x) = 1 and r(x) = pi(x), we get, by using a new C̃ that is

uniform over all i,

ˆ
Ωi

[vi(x
(i))](n−1) dx(i) ≤ C

(
C̃

ˆ
Ω

|u(x)| dx+
1

3C
+ C̃‖u‖L1(Ω) +

1

3C
+

n∑
i=1

‖∂iu‖Lpi(x)(Ω)

)(23)

≤ C

(
C̃ ‖u‖W 1,~p(·)(Ω) +

2

3C

)
Using (20) gives us

1 ≤
n∏
i=1

ˆ
Ωi

[vi(x
(i))](n−1) dx(i) ≤ Cn

(
C̃ ‖u‖W 1,~p(·)(Ω) +

2

3C

)n
.

Reworking the inequality and using a new constant C, we now have
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(24) 1 ≤ C ‖u‖W 1,~p(·)(Ω)

Note that this constant depends only on p+, p−, n and the max Lipschitz constants of

{pi}ni=1.

Recall that this stands for any u ∈ C∞(Ω) with ‖u‖Lq(x)(Ω) = 1.

Now pick an arbitrary u ∈ C∞(Ω) and let λ = ‖u‖Lq(x)(Ω). Putting u
λ

into (24) yields

(25) 1 ≤ C
∥∥∥u
λ

∥∥∥
W 1,~p(·)(Ω)

,

which leads to

(26) ‖u‖Lq(x)(Ω) ≤ C‖u‖W 1,~p(·)(Ω).

By density of C∞(Ω) (Theorem 3.6), the result holds for any u ∈ W 1,~p(·)(Ω). �

Remark 3.10. Since Ω is bounded, it follows that for any q ∈ P(Ω) such that q(x) ≤ p∗(x), the

above embedding is true. Hence we will now stop using q(x) = p∗(x), so that we may define

our embeddings in more general terms. Notably, we may have embeddings into exponents

that are critical only on a proper subset of Ω.

For the following, recall that when p(x) ≥ n, p∗(x) =∞.

Lemma 3.11. Let Ω ⊂ Rn be a rectangular domain and ~p(·) ∈
(
P(Ω) ∩ Lip(Ω)

)n
and

q ∈ C(Ω) such that for all x ∈ Ω, 1 < pm(x) ≤ pM(x) < p∗(x) and 1 ≤ q(x) ≤ p∗(x). Then

the following embedding is continuous:

W 1,~p(·)(Ω) ↪→ Lq(x)(Ω).

Proof. Denote Ωδ = {x ∈ Ω : p(x) > n − δ}. Since q ∈ C(Ω) and Ω is bounded, then

q+ < ∞, thus we can pick δ > 0 such that (n − δ)∗ > q+. Now fix some ε ∈ (0, δ). Since

the closure of Ωε is compact, we can cover it by finitely many rectangles {Qk} such that

Ωε ∩Ω ⊂ Q =
⋃
k

Qk ⊂ Ωδ. Therefore for every k and every x ∈ Qk, q(x) < (n− δ)∗ < p∗(x).

Hence by the compact embedding Theorem 3.5, for every k and every u ∈ W 1,~p(x)(Ω),

‖u‖Lq(x)(Qk) ≤ Ck‖u‖W 1,~p(x)(Qk).

Therefore we have
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‖u‖Lq(x)(Q) ≤
∑
k

‖uχQk‖Lq(x)(Q) =
∑
k

‖u‖Lq(x)(Qk) ≤
∑
k

Ck‖u‖W 1,~p(x)(Qk) ≤ C ′‖u‖W 1,~p(x)(Q).

It then follows that Ω∗ = Ω\Q ⊂ Ω\Ωε = {x ∈ Ω : p(x) < n − ε} is a union of finitely

many rectangles Rj. Hence by Lemma 3.9, for any j and u ∈ W 1,~p(x)(Ω),

‖u‖Lq(x)(Rj) ≤ Cj‖u‖W 1,~p(x)(Rj).

Once again we can combine all j to obtain

‖u‖Lq(x)(R) ≤ C̃‖u‖W 1,~p(x)(R).

Now Q ∪R covers Ω up to a set of measure zero, thus we combine to obtain

‖u‖Lq(x)(Ω) ≤ C‖u‖W 1,~p(x)(Ω).

�

Finally we can combine to obtain the most general result we have for critical exponent

anisotropic Sobolev embeddings on rectangular domains.

Theorem 3.12. Let Ω ⊂ Rn be a rectangular domain and ~p(·) ∈
(
Lip(Ω)

)n
such that for all

x ∈ Ω and 1 < pm(x) ≤ pM(x) < p∗(x). Then for any q ∈ P(Ω) that satisfies q(x) ≤ p∗(x)

for all x ∈ Ω, the following embedding is continuous:

W 1,~p(·)(Ω) ↪→ Lq(x)(Ω).

Proof. Since q ∈ L∞(Ω), there exists k ∈ N such that q(x) < k for all x ∈ Ω. Thus we

can take q in Lemma 3.11 to be the truncation of p∗(x) at k, denoted Tk[p
∗](x). Then by

boundedness of the domain and the fact that q(x) ≤ Tk[p
∗](x), we get the desired result. �

By the zero extension and the fact that we can always extend a Lipschitz function on a

compact set to a Lipschitz function on Rn with the same upper and lower bounds (see (40)

in the next section), we get

Corollary 3.13. Let ~p(·) and q(x) satisfy the assumptions of the previous theorem, then for

any bounded domain, the following embedding is continuous:

W
1,~p(·)
0 (Ω) ↪→ Lq(x)(Ω).
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Although it would be nice to obtain such embedding when p− = 1, it was not necessary in

our case, since in order to prove the concentration-compactness principle, we need to assume

p− > 1 in order to use the reflexivity of the space.

The next theorem shows that in our definition of W 1,~p(·)(Ω), we could have taken any

exponent in [1, p∗(x)] and we would have gotten the same space, with equivalent norms.

Theorem 3.14. Under the assumptions of theorem 3.12, we get that for any r ∈ P(Ω) such

that 1 ≤ r(x) ≤ p∗(x) for all x ∈ Ω,

W 1,{r(x),~p(x)}(Ω) = W 1,~p(x)(Ω),

where W 1,{r(x),~p(x)}(Ω) =
{
u ∈ Lr(·)(Ω) : ∂iu ∈ Lpi(·)(Ω), for all 1 ≤ i ≤ n

}
and

‖u‖W 1,{r(x),~p(x)}(Ω) = ‖u‖r(x) +
n∑
i=1

‖∂iu‖pi(x) .

This follows directly form Theorem 3.12 and the Lebesgue embedding theorem. Now

we will prove the embedding for unbounded domain, even though it will not be necessary

in subsequent section. Recall that we define the space W 1,~p(·)(Ω) with p0(x) = pm(x) for

unbounded domains.

Theorem 3.15. Let Ω ⊂ Rn be a rectangular-like domain and ~p(·) ∈
(
Lip(Ω)

)n
such that

1 < p− ≤ p+ < n and inf
x∈Ω
{p∗(x) − pM(x)} > 0. Then for any q ∈ P(Ω) that satisfies

pm(x) ≤ q(x) ≤ p∗(x) for all x ∈ Ω, the following embedding is continuous:

W 1,~p(·)(Ω) ↪→ Lq(x)(Ω).

Proof. We start the proof exactly as in lemma 3.9 for the case p+ < n and q(x) = p∗(x). Fix

u ∈ C∞c (Ω). Using lemma 2.11 with p(x) = pm(x) and r(x) = q(x)σi(x)(n − 1) and lemma

3.8 with p(x) = pm and r(x) = pi(x), equation (23) becomes

ˆ
Ωi

[vi(x
(i))](n−1) dx(i) ≤ C

(
C̃

ˆ
Ω

|u(x)|pm(x) dx+
1

3C
+ C̃‖u‖Lpm(x)(Ω) +

1

3C
+

n∑
i=1

‖∂iu‖Lpi(x)(Ω)

)
Using (20) gives us

1 ≤
n∏
i=1

ˆ
Ωi

[vi(x
(i))](n−1) dx(i) ≤ Cn

C̃ ˆ
Ω

|u|pm(x) dx+ C̃ ‖u‖W 1,~p(·)(Ω) +
2

3C

n

.

Reworking the inequality and using a new constant C, we now have
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(27) 1 ≤ C

ˆ
Ω

|u|pm(x) dx+ ‖u‖W 1,~p(·)(Ω)

 .

Note that this constant depends only on p+, p−, n and the max Lipschitz constants of

{pi}ni=1.

Recall that this stands for any u ∈ C∞c (Ω) with ‖u‖Lq(x)(Ω) = 1.

Now pick an arbitrary u ∈ C∞c (Ω) and let λ = ‖u‖Lq(x)(Ω). Putting this into (27), we get

for λ ≥ 1,

1 ≤

ˆ
Ω

∣∣∣u
λ

∣∣∣pm(x)

dx+
∥∥∥u
λ

∥∥∥
W 1,~p(·)(Ω)


≤ C

λ

ˆ
Ω

|u|pm(x) dx+ ‖u‖W 1,~p(·)(Ω)


≤ C

λ

ˆ
Ω

|u|pm(x) dx+ ‖u‖W 1,~p(·)(Ω) + 1


Note that by multiplying both sides by λ and assuming C > 1, we now have an inequality

that also trivially holds for λ < 1. Thus we write for any u ∈ C∞c (Ω),

(28) ‖u‖Lq(x)(Ω) ≤ C

(
max
1≤i≤n

{ˆ
Ω

|u(x)|pi(x) dx

}
+ ‖u‖W 1,~p(·)(Ω) + 1

)
Finally, we replace u by u

‖u‖
W1,~p(·)(Ω)

to obtain

∥∥∥∥ u

‖u‖W 1,~p(·)(Ω)

∥∥∥∥
Lq(x)(Ω)

≤ C

(ˆ
Ω

∣∣∣∣ u(x)

‖u‖W 1,~p(·)(Ω)

∣∣∣∣pm(x)

dx+

∥∥∥∥ u

‖u‖W 1,~p(·)(Ω)

∥∥∥∥
W 1,~p(·)(Ω)

+ 1

)
≤ 3C

Hence by the above and by Theorem 3.6, we have the following inequality for all u ∈
W 1,~p(·)(E), where E is the support of u. Because the constant in the inequality does not

depend on u nor on E, then we may take any u ∈ W 1,~p(·)(Ω) ∩ L∞(Ω) multiplied by a

sequence of smooth cutoff functions φk → 1 in L∞(Ω). Thus we get that the theorem hold

for all u ∈ W 1,~p(·)(Ω) ∩ L∞(Ω). Taking now an arbitrary u ∈ W 1,~p(·)(Ω), we may take its

truncations, which will converge to it in the norm, thus completing the first statement of the

proof. Then, for any q ∈ P(Ω) such that pm(x) ≤ q(x) 6= p∗(x) everywhere, we use the fact
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that ˆ

Ω

|u|q(x) dx ≤
ˆ

Ω

|u|pm(x) dx+

ˆ

Ω

|u|p∗(x) dx.

By techniques similar to the proof of Lemma 3.8, we get ‖u‖q(x) ≤ 2
(
‖u‖pm(x) + ‖u‖p∗(x)

)
,

which completes the proof.

�

By using Lemma 3.8, we can show, as in Theorem 3.14, that when the domain is un-

bounded, we can choose any p0(x) ∈ [pm(x), pM(x)] and obtain the same space with equiva-

lent norms.

3.3. Poincaré-Sobolev Inequality. The Poincaré-Sobolev inequality is another major com-

ponent of the concentration compactness principle. In the case of the anisotropic Sobolev

space, a new special case arise, which remains as mentionned previously, quite unanswered,

even in the fixed exponent spaces, i.e. when there exists pM(x) > p∗(x). Thus, recall that

we will always assume here that pM(x) < p∗(x).

Theorem 3.16 (Poincaré-Sobolev Inequality). Let Ω ⊂ Rn be a bounded domain, ~p ∈(
P(Ω) ∩ Lip(Ω)

)n
be such that 1 < p− ≤ pM(x) < p∗(x) and q ∈ P(Ω) such that 1 ≤

q(x) ≤ p∗(x), for all x ∈ Ω. Then there exists S > 0 such that for every u ∈ W 1,~p(·)
0 (Ω):

S‖u‖q(x) ≤
n∑
i=1

‖∂iu‖pi(x)

Proof. First, note that by Theorem 3.12, we only need to prove it for q ≡ 1, i.e. that there

exists S > 0 such that for all u ∈ W 1,~p(·)
0 (Ω),

(29) S‖u‖1 ≤
n∑
i=1

‖∂iu‖pi(x).

Assume the theorem doesn’t hold, then there exists a sequence {uk} such that for all k ∈ N,

(30) ‖uk‖1 > k

n∑
i=1

‖∂iuk‖pi(x).

We may also assume without loss of generality that ‖uk‖W 1,~p(·)(Ω) = 1 for all k ∈ N. Then

by the Rellich-Kondrachov theorem and reflexivity, we get that there exists u ∈ W 1,~p(·)
0 (Ω)

with ‖u‖W 1,~p(·)(Ω) = 1 such that, up to a subsequence, uk → u strongly in L1(Ω) and weakly

in W
1,~p(·)
0 (Ω). Also we rework (30) to get

n∑
i=1

‖∂iuk‖pi(x) <
1

k
.
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Let Λ ∈
(
W

1,~p(·)
0 (Ω)

)∗
be defined by 〈Λ, v〉 =

n∑
i=1

´
Ω

|∂iu|pi(x)−2∂iu∂iv dx. Then, since ‖u‖W 1,~p(·)(Ω) =

1,

n∑
i=1

ˆ

Ω

|∂iu|pi(x) dx = 〈Λ, u〉 = lim
k→∞
〈Λ, uk〉

≤ lim
k→∞

n∑
i=1

∥∥|∂iu|pi(x)−1
∥∥
p′i(x)
‖∂iuk‖pi(x)

≤ lim
k→∞

n∑
i=1

‖∂iuk‖pi(x) ≤ lim
k→∞

1

k
= 0

Therefore ∇u ≡ 0 almost everywhere. Since u ∈ W
1,~p(·)
0 (Ω), this implies u ≡ 0 almost

everywhere, which contradicts the assumption that ‖u‖W 1,~p(·)(Ω) = 1. Hence we have that

(29) holds.

Now we use Theorem 3.12 to complete the proof. �

4. Concentration-Compactness Principle

We are now at the section where we prove our main theorem. Up to our knowledge, there is

no concentration-compactness principle for anisotropic variable exponents Sobolev spaces in

the litterature. This principle was first developped by P.L. Lions ([36]), for fixed exponents,

and has proven quite useful in applications. We will start by stating our concentration

compactness principle for anisotropic variable exponent Sobolev spaces, and then we will

build up to the proof at the end of this section.

The concentration-compactness principle for isotropic variable exponents was first devel-

opped by Fu in [27] and by Bonder & Silva in [12] independently. Our proof is greatly inspired

by a combination of the two proofs from the latter papers. Drawing from the strengths of

each, we were able to give a more direct proof, which works also in the isotropic case. Be-

cause of the critical embedding theorem, we had to restrict ourselves to Lipschitz continuous

exponents, rather than log-Hölder continuous ones, as was done by Bonder & Silva. In the

proof, we only use the Lipschitz assumption in order to apply the critical embedding. Hence

by using our proof for the isotropic case, we may as well assume the log-Hölder condition.

Theorem 4.1 (Concentration-Compactness Principle). Let Ω ⊂ Rn be a bounded domain,

~p ∈
(
P(Ω) ∩ Lip(Ω)

)n
and q ∈ C(Ω), such that 1 < p− ≤ pM(x) < p∗(x) and 1 ≤ q(x) ≤

p∗(x) for all x ∈ Ω.

If {uj} is a bounded sequence in W
1,~p(·)
0 (Ω), then there exists measures ν, µ ∈ Mb(Ω), a

subsequence, still denoted with indices j, and an element u ∈ W 1,~p(·)
0 (Ω) such that
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(1) uj → u weakly in W
1,~p(·)
0 (Ω);

(2) uj → u strongly in Lr(x)(Ω) for all r ∈ P(Ω) such that inf
x∈Ω
{p∗(x)− r(x)} > 0;

(3) if |uj|q(x)dx = dνj, then νj → ν weak∗ in Mb(Ω) with dν = |u|q(x) dx+
∑̀
∈L
ν`δx`;

(4) if
n∑
i=1

|∂iuj|pi(x)dx =
n∑
i=1

dµi,j, then for all i, µi,j → µi weak∗ in Mb(Ω) with
n∑
i=1

µi = µ

(5) dµ ≥
n∑
i=1

|∂iu|pi(x)dx+
∑̀
∈L
µ`δx`,

with {x`}`∈L ⊂ A = {x ∈ Ω : p∗(x) = q(x)}, L is countable and S(ν`)1/q(x`) ≤ (µ`)1/p(x`),

where S is the best Sobolev constant as in theorem 3.16 and δx` is the Dirac Delta function

for x`.

4.1. Convergence of Borel Measures. Before going any further, we will clarify the notion

of weak∗ convergence in the sense of measures.

For a compact Hausdorff space X, we denote the collection of R-valued regular Borel

measures on X with bounded variation by Mb(X). Note that if µ is a nonnegative measure

on X, then µ(X) <∞ ⇐⇒ µ ∈Mb(X). From the Riesz-Representation theorem (Theorem

2.14 in [44]), we get that

(C(X))∗ ∼=Mb(X).

Thus, from the Banach-Aloaglu theorem, if {µi} is a bounded sequence in Mb(X), then

there exists a subsequence (that we still denote with indice i) and a µ ∈Mb(X) such that

(31)

ˆ
X

f dµi →
ˆ
X

f dµ ∀f ∈ C(X).

Hence, if µi ≥ 0 for all i, then µ is also nonnegative.

Now let Ω ⊂ Rn be a bounded domain, {uj} be a bounded sequence in W
k,p(x)
0 (Ω) and

q ∈ P(Ω) with q(x) ≤ p∗(x) almost everywhere, then by the embedding theorems, the

measures defined by νj(E) =
´
E
|uj|q(x)dx, for any Borel set E ⊂ Ω, form a bounded sequence

in Mb(Ω). Although {uj} and q(x) are only defined on Ω, the measures can be extended to

Ω by setting νj(∂Ω) = 0. The regularity follows from the fact that by the above, for every j,

νj is absolutely continuous to the Lebesgue measure.

Therefore there exists, after possibly taking a subsequence, a nonnegative ν ∈Mb(Ω) such

that if |uj|q(x)dx = dνj, then

νj → ν weak∗ in the sense of measure,

i.e. (31) is satisfied.
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Similarly, we can do the same for every 1 ≤ i ≤ n, i.e. find a µ ∈ Mb(Ω) such that if

|∂iuj|p(x)dx = dµi,j, then, up to a subsequence,

µi,j → µi weak∗ in the sense of measure.

4.2. The Concentration-Compactness Lemma. We will first show a weaker version of

the concentration-compactness principle, in that we will assume uj → 0 weakly in W
1,~p(·)
0 (Ω).

In order to do so, we will need to build specific sequences of functions converging to any

relatively open set in Ω.

Lemma 4.2. Let Ω ⊂ Rn be a bounded domain and U ⊂ Ω be a relatively open set. Then

there exists a sequence {φk}k∈N ⊂ C∞(Ω) such that 0 ≤ φk ≤ χU for every k ∈ N and

φk(x)→ χU(x) for every x ∈ Ω.

Proof. Define the following continuous functions on Ω:

(32) fε(x) =

 1, if dist(x,Ω\Uε) ≥ ε

dist(x,Ω\Uε)
ε

, if dist(x,Ω\Uε) < ε

where Uε = {x ∈ U : dist(x,Ω\U) > ε}.
Then let ϕ be a bump function such that φ̃ε = fε ∗ ϕε is a standard mollification, then

{φk = φ̃1/k ·χΩ} satisfies the conditions of the lemma, since for all k large enough, φk ≡ 0 on

Ω\U , φk ≡ 1 on U2/k and
⋃
k∈N

U2/k = U . �

The following is a well known result in the constant exponent case, known as the Brezis-

Lieb lemma. It is also well known for variable exponents, but it is often stated without proof.

We have included a proof here, since it uses the Vitali convergence theorem, which we will

use in the section on applications of the concentration-compactness principle.

It uses some other important measure theory notions, such as the Lebesgue dominated

convergence theorem and Fubini’s theorem. The reader may refer to Fitzpatrick [42], chapters

4 and 5, and Bogachev [8], Chapters 2,3 and 4. In our case, i.e., in a bounded domain, with

a sequence that converges pointwise almost everywhere to another element of the space, the

Vitali convergence theorem essentially reduces to proving equi-integrability of the sequence,

which we will explain in the proof.

Lemma 4.3. Let µ be a finite Borel measure on a subset Ω of Rn, p ∈ P(Ω) and {um} be a

bounded sequence in L
p(x)
µ (Ω) such that um → u pointwise almost everwhere. Then we have

(33) lim
m→∞

(ˆ
Ω

|uj|p(x)dµ+

ˆ
Ω

|uj − u|p(x)dµ

)
=

ˆ
Ω

|u|p(x)dµ.
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Proof. We know, by Fatou’s lemma and boundedness of {uj}, that u ∈ Lp(x)
µ (Ω), sinceˆ

Ω

|u|p(x) dµ ≤ lim inf
j→∞

ˆ

Ω

|uj|p(x) dµ ≤ sup
j∈N

ˆ

Ω

|u|p(x) dµ <∞.

We will split this problem into two cases: p(x) > 1 for all x ∈ Ω and p(x) = 1 for all x ∈ Ω.

Observe that if we prove (33) for those two cases, then we may simply split Ω into two

measurable sets A = {x ∈ Ω : p(x) > 1} and B = {x ∈ Ω : p(x) = 1}. Then A ∪ B = Ω and

A∩B = ∅. Thus the result will follow by spliting the integral and applying (33) to A and B.

Let fj = u(uj − ηu)|uj − ηu|p(x)−2. Note that when p(x) < 2, we actually have

(uj(x)− ηu(x))|uj(x)− ηu(x)|p(x)−2 = sign[uj − ηu](x) |uj(x)− ηu(x)|p(x)−1.

So for the first case, let p(x) > 1 for all x ∈ Ω. We will use the Vitali convergence theorem

to show that for all η ∈ (0, 1), we have fj → f = (1− η)|u|p(x) in L1
µ(Ω).

Since µ is a finite Borel measure, this means that we need to show that fj → f in measure

and that {fj} is uniformly bounded in L1
µ(Ω) and equi-integrable, i.e.

lim
µ(E)→0

ˆ

Ω

fj dµ→ 0 uniformly.

First, we know that fj → f in measure, since uj → u pointwise implies that fj → f

pointwise, which implies convergence in measure. We will then show boundedness and equi-

integrability at the same time. Before doing so, we will just state the facts that p ∈ (0, 1),

we have the inequality
´
|u + v|p ≤

´
|u|p +

´
|v|p. When p ≥ 1, we use convexity to show

that |u+ v|p ≤ 2p−1(|u|p + |v|p).
Let E be any µ-measurable subset of Ω and Es = {x ∈ E : p(x) > s > 1}. Set M =

sup
j

{
‖uj‖p(x) + 1

}
. Then by Hölder’s inequality and theorem 2.3, we obtain

ˆ

Es

|fj| dµ =

ˆ

Es

∣∣u(uj − ηu)|uj − ηu|p(x)−2
∣∣ dµ =

ˆ

Es

|u| |uj − ηu|p(x)−1 dµ

≤ 2p
+−1

ˆ
Es

η|u|p(x) dµ+

ˆ

Es

|u| |uj|p(x)−1 dµ


≤ 2p

+−1

ˆ
E

|u|p(x) dµ+ 2 ‖u‖p(x),Es

∥∥|uj|p(x)−1
∥∥
p′(x),Es


≤ 2p

+−1

ˆ
E

|u|p(x) dµ+ 2Mp+−1 ‖u‖p(x),E


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Letting s → 1 on the left hand side, we get that
´
E

fj dµ → 0 as µ(E) goes to zero, since

|u|p(x) ∈ L1
µ(Ω), hence the right hand side goes to zero. Note that by placing E = Ω, this

shows uniform boundedness of {fj} in L1
µ(Ω).

Therefore, we have that fj → f in L1
µ(Ω). Using basic calculus, the Fubini theorem and

the Lebesgue dominated convergence theorem, we can now prove the desired result.

lim
j→∞

(ˆ
Ω

|uj|p(x)dµ+

ˆ
Ω

|uj − u|p(x)dµ

)
= lim

j→∞

ˆ

Ω

[
|uj − ηu|p(x)

]0
1
dµ

= lim
j→∞
−
ˆ

Ω

1ˆ

0

d

dη

(
|uj − ηu|p(x)

)
dη dµ

= lim
j→∞

ˆ

Ω

1ˆ

0

p(x)u(uj − ηu)|uj − ηu|p(x)−2 dη dµ

=

1ˆ

0

 lim
j→∞

ˆ

Ω

p(x)u(uj − ηu)|uj − ηu|p(x)−2 dµ

 dη

=

1ˆ

0

ˆ

Ω

p(x)(1− η)p(x)−1|u|p(x) dµ dη

=

ˆ

Ω

|u|p(x)

 1ˆ

0

p(x)(1− η)p(x)−1 dη

 dµ

=

ˆ
Ω

|u|p(x)dµ(34)

Now for the case p(x) = 1, we will simply use the Lebesgue dominated convergence theo-

rem. Observe that by the reverse triangle inequality, for any x ∈ Ω and any j, we have∣∣∣∣ |uj(x)| − |uj(x)− u(x)|
∣∣∣∣ ≤ |u(x)|,

so we may take the limit inside the integral, which will be |u|. This completes the proof. �

Observe that when p− > 1, then by reflexivity, for a bounded sequence, there always exists

a function u ∈ Lp(x)(Ω) such that uj → u pointwise almost everywhere.

Lemma 4.4 (Concentration-Compactness Lemma). With the assumptions of Theorem 4.1,

if uj → 0 weakly, then there exists a subsequence, still denoted with indices j, such that

(1) uj → 0 strongly in Lr(x)(Ω) for all r ∈ P(Ω) with inf
x∈Ω
{p∗(x)− r(x)} > 0;
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(2) if |uj|q(x)dx = dνj, then νj → ν =
∑̀
∈L
ν` weak∗ in Mb(Ω);

(3) if
n∑
i=1

|∂iuj|pi(x)dx =
n∑
i=1

dµi,j, then for all i, µi,j → µi weak∗ in Mb(Ω) with
n∑
i=1

µi = µ,

where {x`}`∈L ⊂ A = {x ∈ Ω : p∗(x) = q(x)} and L is countable.

We will prove this in 4 steps. Note that although the elements of {uj} and {∂iuj} are only

defined a.e. on Ω, we define the measures {νj} and {µj} to be zero on ∂Ω.

Claim 1: For all φ ∈ C∞(Ω),

(35) S ‖φ‖q(x),ν ≤
n∑
i=1

‖φ‖pi(x),µi

Proof. Fix non trivial φ ∈ C∞(Ω), then φuj ∈ W 1,p(x)
0 (Ω) for any j. Thus by Theorem 3.16

S ‖φ‖q(x),νj
= S ‖φuj‖q(x) ≤

n∑
i=1

‖∂i(φuj)‖pi(x) ≤
n∑
i=1

(
‖φ∂iuj‖pi(x) + ‖uj∂iφ‖pi(x)

)
=

n∑
i=1

(
‖φ‖pi(x),µi,j

+ ‖uj∂iφ‖pi(x)

)
(36)

By the compact embedding theorem, up to a subsequence, uj → 0 in Lpi(x) for all i ∈
{1, . . . , n}, so as j →∞,

(37) ‖uj∂iφ‖pi(x) ≤ ‖∂iφ‖∞ ‖uj‖pi(x) → 0

Now fix ε ∈ (0, ‖φ‖q(x),ν) and let λ = ‖φ‖q(x),ν + ε, then by weak∗ convergence in measure,

as j →∞, we get ˆ
Ω

∣∣∣∣φλ
∣∣∣∣q(x)

dνj →
ˆ

Ω

∣∣∣∣φλ
∣∣∣∣q(x)

dν < 1.

Observe that for the above to be true, we need
∣∣φ
λ

∣∣q(x)
to be continuous, i.e. we need continuity

of the exponent. Then, for all j large enough, we have
ˆ

Ω

∣∣∣∣φλ
∣∣∣∣q(x)

dνj < 1,

which implies that lim sup
j→∞

‖φ‖q(x),νj
≤ λ = ‖φ‖q(x),ν + ε. This holds for all such ε.

Similarly, if we let λ = ‖φ‖q(x),ν − ε, then we obtain lim inf
j→∞

‖φ‖q(x),νj
≥ λ = ‖φ‖q(x),ν − ε,

for all such ε. Thus, we obtain lim
j→∞
‖φ‖q(x),νj

= ‖φ‖q(x),ν . We can apply the same proof to

show that lim
j→∞
‖φ‖q(x),µi,j

= ‖φ‖q(x),µi
for all i ∈ {1, . . . , n}. Then taking j → ∞ on the left

and right hand side in (47), then we have proven the claim.

�

Claim 2: ν = 0 on Ω\A.
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Proof. By continuity of p and q, we get that Ω\A is relatively open. Then for any x ∈ Ω\A,

we can pick an open rectangular neighborhood U ⊂ Ω\A such that

(38) inf
y∈U
{p∗(y)− q(y)} > 0.

Therefore W 1,~p(x)(U) is compactly embedded into Lq(x)(U).

Thus we can pick a sequence φk as in Lemma 4.2 for U , and we compute for any k ∈ N:

(39) 0 ≤
ˆ

Ω

φk dν = lim
j→∞

ˆ
Ω

φk dνj = lim
j→∞

ˆ
Ω

φk|uj|q(x)dx ≤ lim
j→∞

ˆ
U

|uj|q(x)dx = 0.

For any x ∈ ∂Ω\A, we can pick a rectangular neighbourhood U ′ ⊂ Rn such that U =

U ′ ∩ Ω ⊂
(
Ω\A

)
and (38) is satisfied. We use the zero extension on {uj} to make them

functions on U ′. We can extend each pi to p̃i ∈ Lip(U ′) ∩ P(U ′), with p̃−i = p−i > 1. We do

it by defining p̃i : U ′ → R as such:

(40) p̃i(x) = max

{
sup
y∈Ω

{pi(y)− C|y − x|} , p−i

}
,

where C is the Lipschitz norm of pi. If needed, we can also make U ′ smaller so that

p̃M(x) < p̃
∗
(x) for all x ∈ U ′.

We can also extend q to a function q1 that is continuous on U ′, as shown by Diemling

(Proposition 1.1 in [16]). Now if we let

q̃(x) = max
{

min
{
q1(x) , p̃

∗
(x)
}
− dist(x,Ω) , 1

}
,

then q̃ ∈ C(Ω) with q̃ ≡ q on Ω and 1 ≤ q̃(x) < p̃
∗
. Therefore W 1,~p(x)(U ′) is compactly

embedded into Lq(x)(U ′), i.e. uj → 0 in Lq(x)(U ′).

Thus, similarly to (39), we have

(41) 0 ≤
ˆ

Ω

φk dν ≤ lim
j→∞

ˆ
U

|uj|q(x)dx = lim
j→∞

ˆ
U ′
|uj|q(x)dx = 0.

Hence in (39) and (41), for any k ∈ N,
´

Ω
φk dν = 0, so taking k →∞ gives ν(U) = 0. We

do it for every x ∈ Ω\A and take a countable cover of Ω\A to prove the claim.

Note that since q ∈ C(Ω), q+ <∞, then there exists δ > 0 such that (n− δ)∗ > q+, which

means that {x ∈ Ω : p(x) ≥ n− δ} ⊂ Ω\A. Hence on A, we have that p(x) < n.

�

Claim 3: ν � µ
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Proof. First, recall that by properties of the of the norm, for any measurable set A ⊂ Ω, we

have

(42) min{ν(A)1/q− , ν(A)1/q+} ≤ ‖χA‖q(x),ν ≤ max{ν(A)1/q− , ν(A)1/q+}

The same holds for µi and the norms ‖·‖pi(x),µi
. Now fix some relatively open set U ⊂ Ω and

a corresponding sequence φk as in Lemma 4.2. By (35), (42) and the dominated convergence

theorem, we obtain:

Smin{ν(U)1/q− , ν(U)1/q+} ≤ S ‖χU‖q(x),ν

= S lim
k→∞
‖φk‖q(x),ν

≤ lim
k→∞

n∑
i=1

‖φk‖pi(x)µi

≤
n∑
i=1

‖χU‖pi(x),µi

≤
n∑
i=1

max{µi(U)1/p−i , µi(U)1/p+
i }(43)

So if µ(U) = 0, then for all i, µi(U) = 0, hence ν(U) = 0. Since ν and {µi}ni=1 are regular

Borel measures, then so is µ, hence this proves the claim. �

Claim 4: ν =
∑̀
∈L
ν`δx` with {x`} ⊂ A and L countable.

Proof. By Claim 3 and the Radon-Nikodym theorem (see Rudin theorem 6.10 in [44]), there

exists a unique nonnegative f ∈ L1
µ(Ω) such that dν = f dµ.

By Claim 2, we already know that f(x) = 0 for all x ∈ Ω\A. Fix x ∈ A, then we can pick

R > 0 such that inf
y∈BR(x)

{q(y)} = q−x > p+
x = sup

y∈BR(x)

{p(y)}.

Assume x is not an atom of µ, then it’s not an atom of ν. Then by (43), there exist

r ∈ (0, R) such that max {ν(Br(x)) , µ(Br(x))} ≤ 1, from (43) again, we get

(44) Sν(Br(x))
1

q−x ≤
n∑
i=1

µi(Br(x))
1

p+x ≤ nµ(Br(x))
1

p+x

where q−x
p+
x
> 1.

If for some r > 0, µ(Br(x)) = 0, then trivially, f(x) = 0. Otherwise, by (43) and the

Lebesgue differentiation theorem, for µ-almost every x ∈ Ω, hence also ν-almost everyhwere
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by absolute continuity,

0 ≤ f(x) = lim
r→0

ν(Br(x))

µ(Br(x))
≤ lim

r→0

(n
S

)q−x
µ(Br(x))

q−x
p+x
−1

= 0.

If x is an atom of µ, but it is not an atom of ν, then, letting α = µ({x}), we have

0 ≤ f(x) ≤ lim
r→0

ν(Br(x))

α
= 0.

Therefore f(x) 6= 0 ⇐⇒ x is an atom of ν and µ and is contained in A. Therefore we

have that

(45) lim
j→∞
|uj|q(x) dx =

∑
`∈L

ν`.

We know L is countable since it is contained in the collection of atoms of µ and µ(Ω) <∞.

�

4.3. Proof of the Concentration-Compactness Principle. We are now in a good posi-

tion to complete the proof of Theorem 4.1. By Lemmas 4.3 and 4.4, since uj → u weakly,

which implies that (uj − u)→ 0 weakly, we get for every φ ∈ C(Ω),
ˆ

Ω

φ dν = lim
j→∞

ˆ
Ω

φ|uj|q(x)dx

=

ˆ
Ω

φ|u|q(x)dx+ lim
j→∞

ˆ
Ω

φ|uj − u|q(x)dx

=

ˆ
Ω

φ|u|q(x)dx+
∑
`∈L

ν`φ(x`).

Thus using sequences {φk} for all relatively open sets in Ω and the regularity of ν, we

obtain dν = |u|q(x)dx+
∑̀
∈L
ν`δx` .

By continuity, for all ` ∈ L, lim
r→0

q+(Br(x`)) = lim
r→0

q−(Br(x`)) = q(x`). And so taking r → 0

in (43) with x`, we obtain

S(ν`)1/q(x`) ≤
n∑
i=1

(µ`i)
1/pi(x`).

Therefore it is only left to show the inequality in point (5) of the theorem. Using Lemma

4.2 again for U , by Fatou’s lemma, we get

n∑
i=1

ˆ
Ω

φk|∂iu|pi(x)dx ≤
n∑
i=1

lim inf
k→∞

ˆ
Ω

φk|∂iuj|pi(x)dx =

ˆ
Ω

φkdµ ≤ µ(U)

Taking k →∞ on the lefthand side, we get by regularity that µ ≥
n∑
i=1

|∂iu|pi(x)dx.
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Trivially, µ ≥
∑̀
∈L
µ` and since

n∑
i=1

|∂iu|pi(x)dx is non-atomic, we get

µ ≥
n∑
i=1

|∂iu|pi(x)dx+
∑
`∈L

µ`.

5. Mountain Pass Theorem

The objective of the section is to provide a proof of the Mountain pass theorem as self-

contained as possible. In fact, the Mountain pass theorem is a consequence of the deformation

theorem, which is much more difficult to prove. Rabinowitz presents a more general proof of

the latter in [39], Annex A, but we have included a slightly different proof here. The reason

is that much of the proof relies on building a locally Lipschitz map from X → X, where X is

a Banach space, and although the author did not prove directly the local Lipschitz condition,

it doesn’t appear to be so trivial. Hence we have shown a direct proof of this property, and

followed the rest of the proof along the same lines as in [39].

Furthermore, the aforementionned map is used to solve an ordinary differential equation

for Banach space valued functions. A proof of this is difficult to come by in the literature,

and so we have adapted from classical proofs given, when X = R and X = Rn, to this more

general setting.

Before going over the proof of the Mountain Pass theorem, we will first start by setting

the structure which allows us to integrate Banach space valued functions in a similar fashion

as we do over R with the Lebesgue measure.

5.1. Banach Space Valued Integration.

Definition 5.1. Let X be a Banach space with norm ‖·‖ and G be a Lebesgue measurable

subset of R. A function s : G→ X is simple if it can be written as

s(t) =
N∑
i=1

χEi(t)ui,

where {ui} ⊂ X, {Ei} are Lebesgue measurable subsets of G and χE is the characteristic

function of the set E.

Then we can define the integral operator on simple functions as such:

ˆ
G

s(t) dt =
N∑
i=1

m(Ei)ui,

where m(·) denotes the Lebesgue measure.
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Now we may extend this operator to all the functions that can be pointwise approximated

by simple functions, i.e. f : G → X such that for all t ∈ G, ‖f(t)− sk(t)‖ → 0 as k → ∞,

where {sk} are simple functions. If f is such a function, we say that it is strongly measurable.

The next theorem will give a nice characterization of such functions. It is taken from [46],

chapter V, section 4.

Theorem 5.2 (Pettis). Let X ′ be the topological dual of X and 〈·, ·〉 denote the duality

pairing, then

f is strongly measurable ⇐⇒


• g(t) = 〈φ, f(t)〉 is Lebesgue measurable for all φ ∈ X ′;

• ∃ a measurable set E ⊂ G such that m(G\E) = 0

and f(E) ⊂ X is separable.

Here we use the classical definition of Lebesgue measurable functions, i.e. g : G → R is

Lebesgue measurable if g−1(B) is a Lebesgue measurable set for every Borel set B. By this

definition, all continuous functions are measurable.

Remark 5.3. Let I ⊂ R be a possibly unbounded interval, closed, open or half-closed, and let

f : I → X be continuous, then if tn → t in I, ‖f(tn)− f(t)‖ → 0 in X. Therefore, since norm

convergence implies weak convergence, it follows that for any φ ∈ X ′, 〈φ, f(tn)− f(t)〉 → 0,

i.e. 〈φ, f(t)〉 is continuous. Furthermore, the continuity of f implies that {f(t)}t∈Q is dense

in f(I). Hence, f is strongly measurable.

Definition 5.4. We say that a function f : G→ X is integrable if it is strongly measurable

and there exists a sequence of simple functions {sk} such thatˆ
G

‖f(t)− sk(t)‖ dt→ 0 as k →∞,

Then we define ˆ
G

f(t) dt = lim
k→∞

ˆ
G

sk(t) dt.

The following theorem, taken again in [46], gives us familiar properties of the integral.

Theorem 5.5 (Bochner).

f is integrable ⇐⇒
ˆ
G

‖f(t)‖ dt <∞.

Furthermore, we have the following properties,∥∥∥∥ˆ
G

f(t) dt

∥∥∥∥ ≤ ˆ
G

‖f(t)‖ dt and〈
φ,

ˆ
G

f(t) dt

〉
=

ˆ
G

〈φ, f(t)〉 dt for all φ ∈ X ′.
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We can also define the derivative of a Banach space valued function, in such a way:

Definition 5.6. If there exists u ∈ X such that

lim
ε→0

∥∥∥∥f(t+ ε)− f(t)

ε
− u
∥∥∥∥ = 0,

then we say that f is differentiable at t and write f ′(t) = u.

Remark 5.7. Observe that if f is differentiable at t, then lim
ε→0+

‖f(t+ε)−f(t)‖
ε

= ‖v‖, so we must

have that lim
n→∞

‖f(tn)− f(t)‖ = 0 whenever tn → t, i.e. f is continuous.

From the last property of Theorem 5.5, we can write an analogue to the Fundamental

Theorem of Calculus (FTC).

Corollary 5.8. Let X be a Banach space and f : [0, T ]→ X.

(1) If f is differentiable in [0, T ], then for any a, b ∈ [0, T ],

f(b)− f(a) =

ˆ b

a

f ′(t) dt.

(2) If f if continuous and F (t) =
t́

0

f(s) ds, then

F ′(t) = f(t).

Proof. By remarks 5.3 and 5.7, we know that f and F are measurable. For proof of (1),

observe that from definition 5.6, we have for any φ ∈ X ′,∣∣∣∣ ddt 〈φ, f(t)〉 − 〈φ, f ′(t)〉
∣∣∣∣ = lim

ε→0

∣∣∣∣〈φ, f(t+ ε)〉 − 〈φ, f(t)〉
ε

− 〈φ, f ′(t)〉
∣∣∣∣

= lim
ε→0

∣∣∣∣〈φ, f(t+ ε)− f(t)

ε
− f ′(t)

〉∣∣∣∣
≤ ‖φ‖X′ limε→0

∥∥∥∥f(t+ ε)− f(t)

ε
− f ′(t)

∥∥∥∥ = 0(46)

Therefore, for any φ ∈ X ′,

(47)

〈
φ,

ˆ b

a

f ′(t) dt

〉
=

ˆ b

a

〈φ, f ′(t)〉 dt = 〈φ, f(b)− f(a)〉 .

Note that we could have simply mentionned that (47) follows from the fact that strong

convergence implies weak convergence.

For (2), first observe that if f is continuous with respect to the norm topology of X, then it

is also continuous with respect to the weak topology, therefore for any φ ∈ X ′, the mapping

t 7→ 〈φ, f(t)〉 is continuous.
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Then for any φ ∈ X ′, by (46) and the Lebesgue differentiation theorem, we have

(48) 〈φ, F ′(t)〉 = lim
ε→0

〈
φ,

1

ε

ˆ t+ε

t

f(s) ds

〉
= lim

ε→0

1

ε

ˆ t+ε

t

〈φ, f(s)〉 ds = 〈φ, f(t)〉 .

By Hanh Banach’s theorem, if u ∈ X is not 0, then there exists φ ∈ X ′ such that 〈φ, u〉 =

‖u‖ > 0. Thus from (47) and (48), we have proven the corollary. �

5.2. Picard’s Theorem. Now we are in a good position to prove an analogue of Picard’s

theorem, also know as Picard-Lindelöf’s theorem or Cauchy-Lipschitz theorem. It states the

existence and uniqueness of a solution to a nonlinear ordinary differential equation (ODE).

The proof of this theorem will use Picard’s iteration process, as can be found in [29], where

the ODE is solved for X = R. We will adapt this method to our needs here. Note that

Khalil has proven a similar theorem for X = Rn in [31] by using a fixed point theorem. But

with the tools defined in the preceding theorems, we will have enough to prove this theorem

for general Banach spaces.

Before doing so, we will present the Gronwall-Bellman inequality, for which a more general

version can be found in [31], Appendix A.

Lemma 5.9 (Gronwall-Bellman). Let C,L > 0 and w : [0, T ]→ R be a continuous function

such that for any t ∈ [0, T ],

w(t) ≤ C + L

tˆ

0

w(s) ds,

then for every t ∈ [0, T ], w(t) ≤ CeLt.

Proof. Since w is continuous, then the function v(t) = C +L
t́

0

w(s) ds is differentiable, with

v′(t) = Lw(t) and w(t) ≤ v(t), for all t ∈ [0, T ]. Then

d

dt
e−Ltv(t) = e−LtLw(t)− e−LtLv(t) = e−LtL(w(t)− v(t)) ≤ 0.

So we get e−Ltv(t) ≤ v(0) = C, hence w(t) ≤ CeLt for all t ∈ [0, T ]. �

Observe that if 0 ≤ w(t) and C = 0, then w(t) = 0.

Theorem 5.10 (Picard). Let X be a Banach space, u0 ∈ X, T > 0 and f : [0, T ]×X → X

be continuous with respect to [0, T ]. Assume there exists r > such if we let B = {u ∈ X :

‖u− u0‖ ≤ r}, we have

M := sup
t∈[0,T ],u∈B

‖f(t, u)‖ <∞ and L := sup
t∈[0,T ],u,v∈B

‖f(t, u)− f(t, v)‖
‖u− v‖

<∞.
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Then there exists c ∈ (0, T ] and a solution u : [0, c]→ X, to the ODE

(49)

 u′(t) = f(t, u(t)), on [0, c],

u(0) = u0.

Proof. First, we observe that if u(t) is a solution to (49), then by Remark 5.7, u is continuous.

Since f is continuous in t and u is continuous, then so is f(·, u(·)). Observe also that for

any bounded function g, if v is given by v(t) = v0 +
´ t

0
g(s) ds, then ‖v(t+ ε)− v(t)‖ ≤

sup
s∈[0,t]

{g(s)}ε, so v is continuous if g is bounded.

Note that by Corollary 5.8, u : [0, c]→ X is a solution to (49) if and only if

u(t) = u0 +

tˆ

0

f(s, u(s)) ds

for all t ∈ [0, c]. By the previous comment, all the functions involved are measurable, so the

integration is well-defined.

Now we use Picard’s iteration method, i.e. we write u0(t) = u0 and for all n ∈ N,

un+1(t) =

tˆ

0

f(s, un(s)) ds.

Again, by previous comments, all these functions are measurable.

We first want to show that {un} converges to a solution u. We define the constants

C = max{M,L} and c = ln(r+1)
C

. Note that c depends on r and that the assumptions of the

theorem are analoguous to a local Lipschitz condition.

By the Taylor series of ex − 1, we know that for any t ∈ [0, c] and N ∈ N,

N∑
j=1

(Ct)n

n!
< eCt − 1 ≤ r.

Then for any t ∈ [0, c],

‖u1(t)− u0‖ ≤
tˆ

0

‖f(s, u0)‖ dt ≤Mt ≤ Ct < r.

Hence we know that u1(t) ∈ B for all t ∈ [0, c]. Thus, we can show that u2(t) ∈ B for all

t ∈ [0, c] as well, since

‖u2(t)− u1(t)‖ ≤
tˆ

0

‖f(s, u1(s))− f(s, u0)‖ ds ≤ L

tˆ

0

‖u1(s)− u0‖ ds ≤ C2

tˆ

0

s ds =
(Ct)2

2!
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and so

‖u2(t)− u0‖ ≤ ‖u2(t)− u1(t)‖+ ‖u1(t)− u0‖ ≤ Ct+
(Ct)2

2!
< r.

By repeating the process as above, we obtain

‖un(t)− un−1(t)‖ ≤
tˆ

0

‖f(s, un−1(s))− f(s, un−2(s))‖ ds ≤ L

tˆ

0

‖un−1(s)− un−2(s)‖ ds

≤ · · · ≤ (Ct)n

n!

and so

‖un(t)− u0‖ ≤
n∑
j=1

‖uj(t)− uj−1(t)‖ ≤
n∑
j=1

(Ct)j

j!
< r.

Therefore the sequences {un(t)} ⊂ B for all t ∈ [0, c]. Now for any m,n ∈ N, assuming

without loss of generality that m > n, we get for any t ∈ [0, c],

‖um(t)− un(t)‖ ≤
m∑

j=n+1

‖uj(t)− uj−1(t)‖ ≤
m∑

j=n+1

(Ct)j

j!
−→ 0 as n,m→∞.

Therefore for every t ∈ [0, c], {un(t)} is a Cauchy sequence in X, so it converges to a unique

u(t) ∈ X.

Since ‖u(t)− u0‖ < ‖u(t)− un(t)‖ + r, then {u(t)}t∈[0,c] ⊂ B and for every s ∈ [0, c] and

n ∈ N large enough, we have ‖f(s, u(s)− f(s, un(s))‖ ≤ L ‖u(s)− un(s)‖ ≤ L, so by the

Lebesgue dominated convergence theorem (LDCT),

lim
n→∞

∥∥∥∥∥∥
tˆ

0

f(s, u(s) dt−
tˆ

0

f(s, un(s)) dt

∥∥∥∥∥∥ ≤ lim
n→∞

tˆ

0

‖f(s, u(s)− f(s, un(s))‖ dt

≤ L

tˆ

0

lim
n→∞

‖u(s)− un(s)‖ dt = 0.

Therefore, taking the limit in the norm topology of X, we get for every t ∈ [0, c],

u(t) = lim
n→∞

un+1(t) = u0 + lim
n→∞

tˆ

0

f(s, un(s)) ds = u0 +

tˆ

0

f(s, u(s)) ds.

Therefore u(t) is a solution to (49). �

We now define a property that we will use in a corollary to the previous theorem.

Definition 5.11. Let f : R×X → X. We say that f is uniformly locally Lipschitz continuous

if for every u ∈ X, there exists L(u) ∈ (0,∞) and a neighbordhood U(u) such that

sup
t∈R

sup
v∈U(u)

{
‖f(t, u)− f(t, v)‖

‖u− v‖

}
= L(u).
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Corollary 5.12. Let X be a Banach space and f : R×X → X be uniformly locally Lipschitz

continuous, with ‖f(t, u)‖ ≤M <∞ for all (t, u) ∈ R×X.

Then the solution to (49) is unique and defined for all t ∈ R.

Proof. First, look at a finite interval [0, T ]. Because f is uniformly locally Lipschitz and

bounded, we can satisfy the conditions of Theorem 5.10 for any initial condition, for which

we know there exists at least one solution. Assume that we have two distinct solutions u(t)

and ũ(t) to (49) with initial value u0 and c = T . Hence we know that u(t) and ũ(t) are in B

for all t ∈ [0, T ]. Set w(t) = ‖u(t)− ũ(t)‖, then for all t ∈ [0, T ],

w(t) ≤
tˆ

0

‖f(s, u(s))− f(s, ũ(s))‖ ds ≤ L

tˆ

0

‖u(s)− ũ(s)‖ ds = L

tˆ

0

w(s) ds.

Observe that |w(t+ ε)− w(t)| ≤
´ t+ε
t
‖f(s, u(s))− f(s, ũ(s))‖ ds ≤ 2Mε.

So w is continuous, thus by Lemma 5.9, we have w(t) = 0, which proves uniqueness of

the solution. Likewise, if u(t) is a solution on [0, T1] and ũ(t) is a solution on [0, T2], with

T1 < T2, then as above, u(t) = ũ(t) on [0, T1]. Therefore it follows that if a solution exists on

R, then it is unique (we can use g(−t, u) = f(t, u) for t ≤ 0).

Next, we want to show that the solution is actually defined on all of R. As mentionned

above, it will suffice to show this for [0,∞). If the solution is defined on [0, T ], then we may

pose a new ODE in the form of

(50)

 v′(t) = f(t, v(t)), on [0, T1],

v(0) = u(T ),

for some T1 > 0. Since f is uniformly locally Lipschitz uniformly over all t ∈ R, then we can

satisfy the conditions of Theorem 5.10 with any initial value. Hence there exists {v(t)} ⊂ X

that satisfy (50) on [0, δ1] for some δ1 > 0. Now set

(51) ũ(t) =

 u(t), on [0, T ],

v(t− T ), on (T, T + δ1].

Then for t ∈ (T, T + δ1], we get

ũ(t) = u(T ) +

ˆ t

T

f(s, v(s− T )) ds = u0 +

T̂

0

f(s, u(s)) ds+

ˆ t

T

f(s, v(s− T )) ds

= u0 +

tˆ

0

f(s, ũ(s)) ds,

so ũ is a solution to (49) on [0, T + δ1].
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Now we may repeat this infinitely to get a solution u(t) to (49) on

[
0, T +

∑
n∈N

δn

)
.

Assume that c = T +
∑
n∈N

δn <∞ and that it is maximal, i.e. u(t) is not defined or is not

a solution at t = c. Then we can take a strictly increasing sequence {tn} such that tn → c.

Then

‖u(tm)− u(tn)‖ =

∥∥∥∥∥∥
tmˆ

tn

f(s, u(s)) ds

∥∥∥∥∥∥ ≤ 2M |tm − tn| → 0,

as n,m→∞. Thus {u(tn)} is Cauchy in X, so it converges to some unique uc. Then using

again LDCT, we get

u(c) := uc = lim
n→∞

u(tn) = u0 + lim
n→∞

ˆ tn

0

f(s, u(s)) ds = u0 +

ˆ c

0

f(s, u(s)) ds.

We have thus a solution on [0, c], which is a contradiction, therefore u is defined on all

[0,∞). �

5.3. Semigroup Properties of Solutions. From Theorem 5.10, we can write a function

η : R×X → X such that for a fixed u0 ∈ X, η(t, u0) = ηu0(t) = u(t) is the solution to (49)

with initial value u0 and with the added conditions of Corollary 5.12. Thus we can define

the operators ηt : X → X by ηt(u) = η(t, u). Now we will show that these operators form a

semigroup.

Definition 5.13 ([18]). A family {ηt}t∈I⊂R of operators X → X is called a semigroup if it

satifies the following for all u ∈ X:

• η0(u) = u;

• ηt+s(u) = ηt(ηs(u)) = ηs(ηt(u)); and

• the mapping t 7→ ηt(u) is continuous on I.

Proposition 5.14. If {ηt}t∈R are the operators X → X defined by the solutions to (49),

then they form a semigroup.

Proof. The first property is immediate from (49). The second property can be seen from our

construction of v and ũ in (50) and (51). There, we had, for s = t−T , ηT+s(uo) = ũ(T +s) =

ũ(t) = v(s) = ηs(u(T )) = ηs(ηT (u0)). A similar argument shows ηT+s(u0) = ηT (ηs(u0)).

The third property follows from the FTC and the norm inequality of the integral, i.e.

‖ηt(u)− ηt0(u)‖ ≤
ˆ t

t0

‖f(s, ηs(u))‖ ds ≤M |t− t0|.

�

We will know show how every element of this family of operators is in fact a homeomor-

phism.
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Theorem 5.15. If {ηt}t∈R is a semigroup of operators X → X, then for any fixed t ∈ R,

ηt : X → X is a homeomorphism.

Proof. Fix t ∈ R. Using the first and second properties of semigroups, if w = ηt(u) = ηt(v),

then u = η−t+t(u) = η−t(w) = η−t+t(v) = v, therefore ηt is injective.

Now fix u ∈ X. Let v = η−t(u), then by the first two properties of semi-groups, ηt(v) = u,

so it is surjective.

By the third property of semigroups, ηt is continuous, and so is η−t. By the first and

second properties, we have that (ηt)
−1 = η−t, thus for every fixed t ∈ R, ηt : X → X is a

continuous bijective map with continuous inverse, i.e. it is a homeomorphism. �

5.4. Differentiation of Banach Space Functionals. Previously, we defined a way of

differentiating a function R→ X in order to solve a specific ODE. Now we will define ways

to differentiate a functional I : X → R, where X is a Banach space, with norm ‖·‖, and the

values of the derivative are in X ′, the topological dual of X, which has norm ‖·‖∗.
Before giving the definition, we will establish a convention. When we write that a lim

w→0
F (w) =

0 for some functional F : X → R, we mean that for every ε > 0, there exists δ > 0 such that

if ‖w‖ < δ, then |F (w)| < ε.

Also note that 〈·, ·〉 refers to the duality pairing between X ′ −X.

Definition 5.16 ([3]). If there exists v ∈ X ′ such that

(52) lim
w→0

|I[u+ w]− I[u]− 〈v, w〉 |
‖w‖

= 0,

then we say that I is Fréchet differentiable at u, with I ′[u] = v.

If there exists v ∈ X ′ such that for any w ∈ X,

(53) lim
ε→0+

|I[u+ εw]− I[u]− 〈v, εw〉 |
ε

= 0,

then we say that I is Gateaux differentiable at u, with I ′[u] = v.

Essentially, the Gateaux derivative restricts the limits to directional ones, whereas the

Fréchet derivative includes all possible limits. Hence Fréchet differentiable implies Gateaux

differentiable and the derivatives coincide, but the converse is not always true (see [3], section

1.1).

Proposition 5.17. If I is Fréchet or Gateaux differentiable at u, then I ′[u] is unique.
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Proof. Let v and z both satisfy (78) for a fixed u ∈ X. Then we have

lim
w→0

| 〈v − z, w〉 |
‖w‖

= lim
w→0

|(I[u+ w]− I[u]− 〈z, w〉)− (I[u+ w]− I[u]− 〈v, w〉)|
‖w‖

≤ lim
w→0

|I[u+ w]− I[u]− 〈z, w〉|
‖w‖

+ lim
w→0

|I[u+ w]− I[u]− 〈v, w〉|
‖w‖

= 0

The above shows that for every w ∈ X with ‖w‖ = 1,

|〈v − z, w〉| = 0.

Therefore ‖v − z‖∗ = sup
‖w‖=1

|〈v − z, w〉| = 0, i.e. v = z.

Observe that the same proof works for Gateaux diffrentiable, thus the proof is complete.

�

We can now define some classes of functionals. We say that I ∈ C1(X;R) if I : X → R
is Fréchet differentiable at every u ∈ X and I ′ : X → X ′ is continuous with respect to the

norm topologies. Note that similarly to Remark 5.7, we can show that if I is Fréchet/Gateaux

differentiable at u ∈ X, then it is continuous at u.

We also define the class C to be functionals in C1(X;R) such that I ′ is bounded on bounded

sets.

Finally, before presenting the main theorems of this section, we will present an analogue

of the mean value theorem.

Theorem 5.18 ([3]). Let I : X → R be Gateaux differentiable everywhere, then for any

u, v ∈ X, there exists λ ∈ (0, 1) such that

(54) I[u]− I[v] = 〈I ′[λu+ (1− λ)v], u− v〉 .

This leads to the estimate

(55) |I[u]− I[v]| ≤

(
sup
λ∈[0,1]

{‖I ′[λu+ (1− λ)v]‖}

)
‖u− v‖ .

Proof. Let γ(t) = tu + (1 − t)v and h(t) = I[γ(t)], for t ∈ [0, 1]. Then, since γ(t + ε) =

tu + (1 − t)v + ε(u − v) = γ(t) + ε(u − v), by the definition of the Gateaux derivative, for

every t ∈ [0, 1],

h′(t) = lim
ε→0

h(t+ ε)− h(t)

ε

= lim
ε→0

I[γ(t) + ε(u− v)]− I[γ(t)]

ε
= 〈I ′[γ(t)], u− v〉 .
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By the classical mean value theorem, there exist λ ∈ (0, 1) such that

(56) I[u]− I[v] = h(1)− h(0) = h′(λ) = 〈I ′[γ(λ)], u− v〉 = 〈I ′[λu+ (1− λ)v], u− v〉 .

Then we obtain the inequality

(57) |I[u]− I[v]| ≤ |〈I ′[λu+ (1− λ)v], u− v〉| ≤

(
sup
λ∈[0,1]

{‖I ′[λu+ (1− λ)v]‖}

)
‖u− v‖ .

�

Corollary 5.19. If I ∈ C, then I is Lipschitz on bounded sets, i.e. for every R > 0, there

exists MR ∈ (0,∞) sur that for any u, v ∈ BR = {w ∈ X : ‖w‖ ≤ R},

|I[u]− I[v]| ≤MR ‖u− v‖ .

Proof. Since I ∈ C, then for any R > 0 there exists MR such that sup
u∈BR

{‖I ′[u]‖∗} ≤ MR.

Since u, v ∈ BR implies ‖λu+ (1− λ)v‖ ≤ R, we obtain

sup
λ∈[0,1]

{‖I ′[λu+ (1− λ)v]‖} ≤MR.

Applying this to (57) completes the proof. �

5.5. Lipschitz Functions. Soon we will present the two main theorems of this section.

Once we are done with the deformation theorem, then the Mountain Pass theorem becomes

an easy consequence of the former. Before jumping in, we will be needing the following two

lemmas concerning the Lipschitz property.

Lemma 5.20. Let X be a normed vector space with norm ‖·‖X . Let {fi : X → R}ni=1 be a

finite collection of Lipschitz function, with Lipschitz constants {Li}ni=1.

Then we have that g =
n∑
i−1

fi is Lipschitz with constant at most
n∑
i=1

Li.

If {|fi|} are bounded above with bounds {Mi}, then h =
n∏
i=1

fi is Lipschitz with constant at

most (
n∏
i=1

Mi

)(
n∑
i=1

Li

)
.

If |fi| and |fi + fj| are bounded below by ri > 0 and ri,j > 0 respectively, then 1
fi

and fi
fi+fj

are Lipschitz with constants at most Li
r2
i

and
max{Li,Lj}

ri,j
respectively.

Proof. For the first part, we simply use the triangle inequality:

|g(x)− g(y)| =

∣∣∣∣∣
n∑
i=1

fi(x)−
n∑
i=1

fi(y)

∣∣∣∣∣ ≤
n∑
i=1

|fi(x)− fi(y)| ≤

(
n∑
i=1

Li

)
‖x− y‖ .
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For the second part, we may use induction. First, we start with 1 and 2.

|f1(x)f2(x)− f1(y)f2(y)| ≤ |f1(x)| |f2(x)− f2(y)|+ |f2(y)| |f1(x)− f1(y)|

≤ (M1L2 +M2L1) ‖x− y‖ .

Now substitute f1 by f1f2 and f2 by f3 in the above, to obtain

|f1(x)f2(x)f3(x)− f1(y)f2(y)f3(y)| ≤ (M1M2)L3 +M3(M1L2 +M2L1) ‖x− y‖

≤

(
3∏
i=1

Mi

)(
3∑
i=1

Li

)
‖x− y‖ .

Assume the last inequality to be true up to j − 1, then by denoting hj−1 =
j−1∏
i=1

fi, we get

|fj(x)hj−1(x)− fj(y)hj−1(y)| ≤Mj

(
j−1∏
i=1

Mi

)(
j−1∑
i=1

Li

)
+

(
j−1∏
i=1

Mi

)
Lj ‖x− y‖

≤

(
j∏
i=1

Mi

)(
j∑
i=1

Li

)
‖x− y‖ .

Finally, we will prove the last part. First,∣∣∣∣ 1

fi(x)
− 1

fi(y)

∣∣∣∣ ≤ |fi(x)− fi(y)|
|fi(x)| |fi(y)|

≤ Li
r2
i

‖x− y‖ .

For the final one, we will first remark the following, for any a, b, c, d ≥ 0 with a+ b > 0 and

c+ d > 0, we have∣∣∣∣ a

a+ b
− c

c+ d

∣∣∣∣ =
|ad− bc|

(a+ b)(c+ d)
=
|ad− ab+ ba− bc|

(a+ b)(c+ d)
=
a|b− d|+ b|a− c|

(a+ b)(c+ d)

≤ max{|b− d|, |a− c|}
c+ d

(58)

Setting a = fi(x), b = fj(x), c = fi(y) and d = fj(y), we get from (58),∣∣∣∣ fi(x)

fi(x) + fj(x)
− fi(y)

fi(y) + fj(y)

∣∣∣∣ ≤ max{Li, Lj}
ri,j

‖x− y‖ .

�

Observe that the previous lemma also applies to the local Lipschitz condition, since we are

dealing with finitely many compositions of functions, and any finite intersection of open sets

are open.

Lemma 5.21 ([39], Annex A). Let X be a Banach Space, I ∈ C1(X;R) and E = {u ∈ X :

I ′[u] 6= 0}. Then there exists a locally Lipschitz continuous map W : E → X that satisfies

(1) ‖W (u)‖ ≤ 2 ‖I ′[u]‖∗ and
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(2) 〈I ′[u],W (u)〉 ≥ ‖I ′[u]‖2
∗,

for every u ∈ E.

The following proof is the one given in [39], but we have added the proof that W is locally

Lipschitz, which was stated without proof by the author.

Proof. Note that by construction, E is open. Since X is a Banach space, then E is a metric

space, so it is paracompact (see [43]), i.e. any open cover {Ũα} has a refinement {Uα} such

that every u ∈ E, there exists a neighborhood of u which intersects only finitely many

elements of {Uα}.
By definition of the dual norm, we know that for any u ∈ E, there exists w ∈ X with

‖w‖ = 1 such that 〈I ′[u], w〉 > 2
3
‖I ′[u]‖∗. Set z = 3

2
‖I ′[u]‖∗w, then we see that

(59) ‖z‖ < 2 ‖I ′[u]‖∗

and

(60) 〈I ′[u], z〉 =
3

2
‖I ′[u]‖∗ 〈I

′[u], w〉 > ‖I ′[u]‖2
∗ .

By continuity of I ′, we know there exists a neighborhood Nu of u such that (1) and (2)

are satisfies for all v ∈ Nu. Doing so for all u ∈ E provides and open cover of E, of which we

can take a local refinement. Denote this refinement by {Mα}, for some index set A. Then

for each α ∈ A, there exists u ∈ E such that Mα ⊂ Nu.

Define for each α the function ρα : E → [0,∞) by ρα(u) = dist(u,E\Mα). Thus if u /∈Mα,

then ρα(u) = 0.

Now define βα = ρα(u)∑
γ∈A

ργ(u)
Note that because {Mα} is a local refinement, then the sum in

the denominator of βα is actually a finite sum, so the mapping is well-defined. Furthermore,

observe that
∑
α∈A

βα(u) = 1 for all u ∈ E. Finally, we define zα to be the element of E that

satisfies (59) and (60) for Nuα and

W (u) =
∑
α∈A

zαβα.

Now fix u ∈ E and denote by Ũ its open neighborhood which intersects only finitely many

elements of {Mα}, which we will denote by {Mj}j∈J . Then we have

‖W (u)‖ ≤
∑
j

‖zj‖ βj ≤ 2 ‖I ′[u]‖∗
∑
j

βj = 2 ‖I ′[u]‖∗

and

〈I ′[u],W (u)〉 =
∑
j

〈I ′[u], zj〉 βj ≥ ‖I ′[u]‖2
∗

∑
j

βj = ‖I ′[u]‖2
∗ .
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Therefore, since the above holds for any u ∈ E, it is only left to prove the local Lipschitz

property. Define

U =
⋂
j

(
Mj ∩ Ũ

)
.

Because j’s are finite, then U is open, hence we can pick r > 0 such that B2r = {v ∈ E :

‖u− v‖ < 2r} ⊂ U . Thus for all v ∈ Br, ρα(v) = 0 whenever α /∈ J and r < ρj(v) for

all j ∈ J . Since the distance function is Lipschitz with constant 1, letting N ∈ N be the

cardinality of the index set J associated to u, we get by lemma 5.20 that for each j ∈ J ,

Lip(βj) = Lip

 ρj
ρj +

∑
i 6=j

ρi

 ≤ max

{
Lip(ρj),Lip

(∑
i 6=j

ρi

)}

inf
v∈Br

{∑
j

ρj(v)

} ≤ (N − 1)

Nr
.

Applying again lemma 5.20, we get our final inequality

(61) ‖W (u)−W (v)‖ ≤
∑
j

‖zj‖ |βj(u)− βj(v)| ≤ 2 ‖I ′[u]‖∗
(
N − 1

r

)
‖u− v‖ ,

for any v ∈ Br. Since u ∈ E was arbitrary, then W has the local Lipschitz condition. �

We also need to define a condition on I ∈ C in order to ensure some compactness.

Definition 5.22 (PS). We say that a functional I ∈ C1(X;R) satisfies the local Palais-Smale

(PS) condition for energy level c > 0 if for every sequence {uk} ⊂ X such that

• lim
k
{|I[uk]|} = c and

• lim
k→∞

I ′[uk] = 0,

{uk} is precompact in X.

5.6. The Deformation Theorem. As in the classical setting of real numbers, we define

critical points and values.

Definition 5.23. We say that u ∈ X is a critical point of the functional I if I ′[u] = 0.

We say that c ∈ R is a critical value, if there exists a critical point u such that I[u] = c.

We will denote the following sets for some c ∈ R:

• Ac = {u ∈ X : I[u] ≤ c} and

• Kc = {u ∈ X : I[u] = c and I ′[u] = 0}.

The following theorem is known as a deformation theorem. It says that if c is not a critical

value, then we can “nicely” deform the set Ac+δ into Ac−δ, for some δ > 0. The general idea

is to solve an ODE of the form (49) with a proper choise of f , that is somewhat related to

I ′.
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Theorem 5.24 (Deformation, [18], [39]). Let I ∈ C satisfy the local Palais-Smale condition

for energy level c ∈ R and

Kc = ∅.

Then for any ε > 0 sufficiently small, there exists a δ ∈ (0, 1) and a function

η : C([0, 1]×X;X)

such that the mappings

ηt(u) = η(t, u), (t ∈ [0, 1], u ∈ X)

satisfy

(i) η0(u) = u, for all u ∈ X;

(ii) η1(u) = u, for all u /∈ I−1[c− ε, c+ ε];

(iii) I[ηt(u)] ≤ I[u], for all u ∈ X and t ∈ [0, 1] and

(iv) η1(Ac+δ) ⊂ Ac−δ.

The following proof is a combination of the one given by Evans in [18] for Hilbert Spaces

and the one given by Rabinowitz in [39] for a more general version. Once again, we have

added the proof that V is locally Lipschitz.

Proof. First, we want to show that because c is not a critical value, then there exist ε > 0

and σ > 0 such that

(62) if I[u] ∈ [c− ε, c+ ε], then ‖I ′[u]‖ ≥ σ

Assume not, then we get a sequence εk → 0, σk → 0 and {uk} ⊂ X such that c − εk ≤
I[uk] ≤ c + εk and ‖I ′[uk]‖ < σk. Therefore by the (PS) condition, there exists u ∈ X such

that uk → u in the norm (by extracting a subsequence if necessary). Hence by continuity of

I and I ′, I[u] = c and I ′[u] = 0, i.e. Kc 6= ∅, which is a contradiction.

Now we will fix ε > 0 and σ ∈ (0, 1) that satisfy the claim above and then fix some δ such

that

(63) 0 < δ < min

{
ε,
σ2

2

}
.

We now define the sets

A = {u ∈ X : I[u] ≤ c− ε or I[u] ≥ c+ ε},

B = {u ∈ X : c− δ ≤ I[u] ≤ c+ δ} and

D = X\(A ∪B).
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We now claim that the function

(64) g(u) :=
dist(u,A)

dist(u,A) + dist(u,B)

is Lipschitz on bounded domains, which implies that it is locally Lipschitz.

First, we already know that the distance function is Lipschitz with constant 1. Therefore,

in order to apply part 3 of Lemma 5.20, we want to show that for any r > 0, there exists

αr > 0 such that for any u ∈ X with ‖u‖ ≤ r,

(65) d(u) := dist(u,A) + dist(u,B) ≥ αr > 0.

By corollary 5.19, we have for any v ∈ A and w ∈ B with max {‖v‖ , ‖w‖} ≤ r + 1,

0 < ε− δ ≤ |I[v]− I[w]| ≤Mr+1 ‖v − w‖ .

By taking infimums in the above, we get that for any u ∈ A ∪B, d(u) ≥ ε−δ
Mr+1

.

Now fix u ∈ D with ‖u‖ ≤ r and d(u) < 1. By definition of the distance function, we can

pick sequences {vk} ⊂ A and {wk} ⊂ B such that for k large enough,

‖u− vk‖ <
1

2k
+ dist(u,A) ≤ 1, and ‖u− wk‖ <

1

2k
+ dist(u,B) ≤ 1.

Thus, for k large enough, max {‖vk‖ , ‖wk‖} ≤ r + 1. Furthermore, we have that

(66) d(u) ≥ ‖u− vk‖+ ‖u− wk‖ −
1

k
≥ ‖vk − wk‖ −

1

k
≥ ε− δ
Mr+1

− 1

k
.

Taking k →∞ in (66), we obtain (65) with

αr = min

{
ε− δ
Mr+1

, 1

}
> 0.

So by Lemma 5.20, we get that g is bounded on bounded sets, with Lipschitz constant at

most α−1
r on {u ∈ X : ‖u‖ ≤ r}.

Finally, we observe that 0 ≤ g ≤ 1, g ≡ 0 on A and g ≡ 1 on B.

Now let

(67) h(t) =

1, if t ∈ [0, 1]
1

t
, if t > 1.

Note that |h| ≤ 1 for all t ∈ [0,∞).

Next, we fix a mapping W : E = {u ∈ X : I ′[u] 6= 0} → X as in Lemma 5.21. Next, define

W (u) = 0 if I ′[u] = 0. This extension of W is also locally Lipschitz, since for each u ∈ E,

there exists r such that Br(u) ⊂ E. Hence if v /∈ E, then

‖W (u)−W (v)‖ = ‖W (u)‖ ≤ 2 ‖I ′[u]‖∗ ≤ 2 ‖I ′[u]‖∗
N − 1

r
r ≤ 2 ‖I ′[u]‖∗

N − 1

r
‖u− v‖ .
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Finally, we set

(68) V (u) = −g(u)h (‖I ′[u]‖)W (u).

We already know that g is locally Lipschitz. Thus if we can show that h (‖I ′[u]‖)W (u) is

locally Lipschitz, then by Lemma 5.20, we will have that V is locally Lipschitz.

First observe that if ‖I ′[u]‖∗ < 1, then by continuity of I ′, we can pick a small neighbor-

hood U such that for all v ∈ U , ‖I ′[v]‖∗ ≤ 1, in which case we have h (‖I ′[v]‖)W (v) = W (v)

for all v ∈ U , which is locally Lipschitz.

Now if u > 1, then we can also pick a neighborhood U such that for all v ∈ U , ‖I ′[v]‖∗ ≥ 1.

We can intersect that neighbordhood with Br(u) as in the proof of Lemma 5.21. By (61),

we have for all v ∈ Br(u) ∩ U ,∥∥∥∥ W (u)

‖I ′[u]‖∗
− W (v)

‖I ′[v]‖∗

∥∥∥∥ ≤∑
j

‖zj‖
∣∣∣∣ βj(u)

‖I ′[u]‖∗
− βj(v)

‖I ′[v]‖∗

∣∣∣∣
≤ 2

∑
j

|βj(u)− βj(v)| ≤ 2
N − 1

r
‖u− v‖(69)

If ‖I ′[u]‖∗ = 1, then h (‖I ′[u]‖)W (u) = W (u) and we can pick a small neighborhood U for

which (69) hold for all v ∈ U with ‖I ′[v]‖∗ ≥ 1. This completes the proof that V is locally

Lipschitz.

Set f(t, u) = V (u) for all t ∈ R, then it is trivially continuous on R and is is locally Lips-

chitz on X uniformly over all t’s. Since ‖W (u)‖ ≤ 2 ‖I ′[u]‖∗ and |g(u)| ≤ 1 for all u ∈ X, we

get that sup
t∈R
‖f(t, u)‖ = ‖V (u)‖ ≤ 2 for all u ∈ X. Therefore f satisfies all the conditions of

Corollary 5.12.

Therefore by Proposition 5.14, there exists a unique semigroup of continuous operators

{ηt}t∈R : X → X such that for every u ∈ H, ηt(u) = η(t, u) is the solution to the ODE

(70)

 d
dt
η(t, u) = V (u), on R,

η(0, u) = u.

By construction, ηt satisfy (i). If u is such that I[u] /∈ [c − ε, c + ε], then u ∈ A, so

g(u) = 0, which implies V (u) = 0. Then, when applying the Picard iteration process, we get
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u1(t) = u +
t́

0

V (u) dt = u and more generally un(t) = u for all n ∈ N and t ∈ R, thus the

solution η(t, u) = u for all t ∈ R. Hence we have satified (ii).

For (iii), it will suffice to show that d
dt
I[η(t, u)] ≤ 0 for all t ∈ [0, 1] and u ∈ X, since this

will imply I[η(t, u)] ≤ I[η(0, u)] = I[u]. In order to calculate this derivative, we will use the

definition of the Gateaux derivative given by (53), with u = η(t, u) and w = η(t+ε, u)−η(t, u).

Then we have

d

dt
I[η(t, u)] = lim

ε→0

I[η(t+ ε, u)]− I[η(t, u)]

ε

= lim
ε→0

〈
I ′[η(t, u)],

η(t+ ε, u)− η(t, u)

ε

〉
=

〈
I ′[η(t, u)],

d

dt
η(t, u)

〉
=

〈
I ′[η(t, u)], V (η(t, u))

〉
= −g(η(t, u))h (‖I ′[η(t, u)]‖) 〈I ′[η(t, u)],W (η(t, u)〉

≤ −g(η(t, u))h (‖I ′[η(t, u)]‖) ‖I ′[η(t, u)]‖2
(71)

≤ 0

So now it is only left to prove (iv) in order to conclude the proof. First, observe that by

(71), if u ∈ X, is such that there exists some t ∈ [0, 1] with η(t, u) ∈ Ac−δ, then I[η(1, u)] ≤
I[η(t, u)] ≤ c− δ, so η(1, u) ∈ Ac−δ.

Otherwise, if u ∈ Ac+δ is such that for all t ∈ [0, 1], η(t, u) ∈ B. Then g(η(t, u)) = 1 for all

t ∈ [0, 1], hence by (71),

d

dt
I[η(t, u)] ≤ −h (‖I ′[η(t, u)]‖) ‖I ′[η(t, u)]‖2

, for all t ∈ [0, 1].

By (62), we have for ‖I ′[η(t, u)]‖ ≤ 1,

d

dt
I[η(t, u)] ≤ −‖I ′[η(t, u)]‖2 ≤ −σ2

and for ‖I ′[η(t, u)]‖ > 1,

d

dt
I[η(t, u)] ≤ −‖I ′[η(t, u)]‖ ≤ −1 < −σ2.

Then by the FTC and (63), we get

I[η(1, u)] = I[u] +

ˆ 1

0

d

dt
I[η(s, u)] ds ≤ (c+ δ) + (−σ2) < c+ δ − 2δ = c− δ.

Therefore we have showed that η1(Ac+δ) ⊂ Ac−δ, i.e. (iv), which concludes the proof. �
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Remark 5.25. By Theorem 5.15, we see that {ηt}t∈[0,1] is a family of homeomorphismsX → X.

Now we are finally in a good position to prove the Mountain Pass theorem, which can be

viewed as a generalization of the Morse lemma, as seen in [38], to infinite dimensional Hilbert

spaces.

Theorem 5.26 (Mountain Pass, [18]). Assume that

(i) I[0] = 0,

(ii) there exists constants r, a > 0 such that

I[u] ≥ a if ‖u‖ = r

and

(iii) there exists v ∈ X with

‖v‖ > r and I[v] ≤ 0.

Define

Γ := {g ∈ C([0, 1];X) : g(0) = 0 and g(1) = v}.

and

c = inf
g∈Γ

max
t∈[0,1]

I[g(t)]

If I ∈ C satisfies the (PS) condition for energy level c, then c is a non-zero critical point of

I.

Imagine that I is a mapping that sends R2 → R, then its graph would ressemble a land-

scape. Then Γ is the collection of paths that join the point 0 to the point v. The conditions

(ii) and (iii) “impose” a mountain between 0 and v, so we are looking for the path with the

least altitude. The highest point of that path will then either be a saddle point or a maximal

point, if we have just one hill.

Proof. Fix g ∈ Γ. Since it is continuous, then for any ε > 0, there exists δ > 0 such that

|t− s| < δ =⇒ ‖g(t)− g(s)‖ < ε.

Because | ‖g(t)‖ − ‖g(s)‖ | ≤ ‖g(t)− g(s)‖, then it follows that f(t) := ‖g(t)‖ is continuous.

Therefore by the intermediate value theorem (IVT), since f(0) = 0 and f(1) > r (by (iii)),

then there exists t ∈ [0, 1] such that ‖g(t)‖ = r. By (ii), I[g(t)] ≥ a > 0. Since it is true for

any g ∈ Γ, then

(72) c ≥ a > 0.
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Assume that Kc = ∅ and pick ε ∈ (0, a
2
). By the deformation theorem, we can pick ε small

enough such that there exists δ > 0 and a homeomorphism η such that η(Ac+δ) ⊂ Ac−δ and

η(u) = u if u /∈ I−1([c− ε, c+ ε]).

By definition of c as an infimum, we can pick g ∈ Γ such that

max
t∈[0,1]

I[g(t)] ≤ c+ δ.

Because η ∈ C(X;X) and g ∈ C([0, 1];X), it follows that ĝ := η ◦ g is in C([0, 1];X).

Furthermore, by choice of ε, I[0] < c − a
2
< c − ε, so g(0) = 0 /∈ I−1([c − ε, c + ε]), thus

ĝ(0) = η(0) = 0.

Similarly, by (iii), I[v] ≤ 0 < c− ε, so ĝ(1) = η(v) = v.

Therefore ĝ ∈ Γ. But by choice of g,

ĝ([0, 1]) = η(g([0, 1])) ⊂ η(Ac+δ) ⊂ Ac−δ.

This means that max
t∈[0,1]

I[ĝ(t)] ≤ c− δ < c, which in turn contradicts that c is an infimum.

This contradiction means that Kc 6= ∅, i.e. c is a critical value, so there exists u ∈ X such

that I ′[u] = 0 and I[u] = c > 0, implying that u 6= 0 by (i), and I ′[u] = 0. �

6. Applications of the Concentration-Compactness Principle

We will now see how the mountain pass theorem can prove the existence of a weak solution

to a anisotropic variable exponent PDE problem. We will always assume n ≥ 3.

6.1. Preliminaries. For this section, we will assume the following:

• Ω ⊂ Rn is a bounded domain with n ≥ 3;

• ~p(x) = (p1(x), p2(x), . . . , pn(x)) ∈ (P(Ω) ∩ Lip(Ω))n;

• 1 ≤ p0(x) ≤ pM(x) for all x ∈ Ω;

• 1 < pm(x) ≤ pM(x) < p∗(x) for all x ∈ Ω.

Note that in this section, p0(x) can take on any values between 1 and pM(x), contrary to

Section 3.2.

We will use the notation a(x)� b(x), which means that inf
x∈Ω
{b(x)− a(x)} > 0 and S will

always be the best constant for the Sobolev embeddings, for any valid exponent. Finally, we

will use the convention ‖u‖ = ‖u‖
W

1,~p(·)
0 (Ω)

.

Let f be a function mapping R×Ω→ R. We will define here our first important assump-

tion:
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(A1) f ∈ C(R× Ω;R) such that for all (z, x) ∈ R× Ω, |f(z, x)| ≤ C + c(x)|z|q(x)−1, where

C ≥ 0, c ∈ L∞(Ω) is nonnegative and q ∈ P(Ω) satisfies pM(x) � q(x) ≤ p∗(x) for

all x ∈ Ω.

For this section, we will also define

F (z, x) =

ˆ z

0

f(t, x) dt,

which implies that for all x ∈ Ω, F (0, x) = 0 and dF
dz

(z, x) = f(z, x).

Furthermore, one can observe that if f satisfies (A1), then we have for z ≥ 0,

|F (z, x)| ≤
ˆ z

0

|f(t, x)| dt ≤ |z|(C + c(x)|z|q(x)−1) = C|z|+ c(x)|z|q(x).

and likewise for z < 0, by a change of variable s = −t,

|F (z, x)| =

∣∣∣∣∣
ˆ |z|

0

−f(−s, x) ds

∣∣∣∣∣ ≤
ˆ |z|

0

|f(−s, x)| ds ≤ |z|(C+c(x)|z|q(x)−1) = C|z|+c(x)|z|q(x).

The following proof is adapted from Proposition B.1 in [39] to our setting with variable

exponants.

Theorem 6.1. Let f satisfy (A1). Define J(u) =
´
Ω

F (u(x), x) dx.

Then the mapping f̃ : Lq(x)(Ω) → Lq
′(x)(Ω) defined by f̃ [u](x) = f(u(x), x) is continuous,

J ∈ C1(Lq(x)(Ω);R) and we have the duality pairing, for all v ∈ Lq(x)(Ω),

〈J ′(u), v〉 =

ˆ

Ω

f(u(x), x)v(x) dx.

Furthermore, J ′ is bounded on bounded sets.

Proof. First, we will show that for any u ∈ Lq(x)(Ω), f̃ [u] ∈ Lq′(x)(Ω). We may assume C ≥ 1,

thusˆ

Ω

|f(u(x), x)|q′(x) dx ≤
ˆ

Ω

|C + c(x)|u(x)|q(x)−1|q′(x) dx

≤ 2(q′)+−1

C(q′)+ |Ω|+ max{(c+)(q′)+

, (c+)(q′)−}
ˆ

Ω

|u(x)|q(x) dx

 <∞(73)

Fix some w ∈ Lq(x)(Ω) and some small u ∈ Lq(x)(Ω). Let Ω1(u) = {x ∈ Ω : |u(x)| ≤ δ̃}
and A(w) = {x ∈ Ω : |w(x)| ≤ K}, for some δ̃ ∈ (0, 1) and some large K > 0. By continuity,

for any K > 0, f is uniformly continuous on [−K − 1, K + 1] × Ω. This implies that for

any K > 0 and ε̃ > 0, there exists δ̃ such that |f(u(x) + w(x), x) − f(w(x), x)| < ε̃ on

Ω1(u) ∩ A(w). For a fixed ε > 0, pick ε̃ small enough such that |Ω|ε̃(q′)− < ε(q
′)+

6
.
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Since w ∈ L1(Ω), then as K → ∞, |Ω1(u)\A(w)| ≤ |Ω\A(w)| → 0. Then by (73), there

exists K large enough such that

(74)

ˆ

Ω1(u)\A(w)

|f(u(x) + w(x), x)− f(w(x), x)|q′(x) dx <
ε(q′)+

6

Fix this K and then choose δ̃ small enough such that

(75)

ˆ

Ω1(u)∩A(w)

|f(u(x) + w(x), x)− f(w(x), x)|q′(x) dx <
ε(q′)+

6

Combining (74) and (75), we get

(76)

ˆ

Ω1(u)

|f(u(x) + w(x), x)− f(w(x), x)|q′(x) dx <
ε(q′)+

3

Note that now we have fixed an ε > 0 and a δ̃ ∈ (0, 1). Let Ω2(u) = Ω\Ω1(u) = {x ∈ Ω :

|u(x)| > δ̃} and assume ‖u‖q(x) < δ for some δ ∈ (0, 1). Then we have

|Ω2(u)|δ̃q+

<

ˆ

Ω2(u)

|u(x)|q(x) dx ≤ ‖u‖q
−

q(x) < δq
−
.

Since δ̃ is fixed without depending on δ, we get that

|Ω2(u)| < 1

δ̃q+
δq
− → 0, as δ → 0.

Now by convexity of exponents and similar calculations as in (73), we get

ˆ

Ω2(u)

|f(u(x) + w(x), x)−f(w(x), x)|q′(x) dx

≤ 2(q′)+−1

ˆ

Ω2(u)

|f(u(x) + w(x), x)|q′(x) + |f(w(x), x)|q′(x) dx

≤ C̃(q, C, c)

|Ω2(u)|+
ˆ

Ω2(u)

|u(x)|q(x) dx+

ˆ

Ω2(u)

|w(x)|q(x) dx


≤ C̃

( 1

δ̃q+
+ 1

)
δq
−

+

ˆ

Ω2(u)

|w(x)|q(x) dx


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Since |w(x)|q(x) ∈ L1(Ω), then
´

Ω2(u)

|w(x)|q(x) dx → 0 as δ → 0. Thus we can pick δ small

enough such that

max


(

1

δ̃q+
+ 1

)
δq
−
,

ˆ

Ω2(u)

|w(x)|q(x) dx

 <
ε(q′)+

3C̃
.

So we have

‖f(u(x) + w(x), x)− f(w(x), x)‖q′(x) ≤

ˆ
Ω

|f(u(x) + w(x), x)− f(w(x), x)|q′(x) dx

 1
(q′)+

< ε.

Letting u = v − w for some v ∈ Lq(x)(Ω), then for any ε > 0, we can choose some δ > 0

such that if ‖v − w‖q(x) < δ, then

‖f(v(x), x)− f(w(x), x)‖q′(x) < ε,

which proves that f ∈ C(Lq(x)(Ω);Lq
′(x)(Ω)).

Now observe that for any u,w ∈ Lq(x)(Ω), g : [0, 1]→ R defined by

g(s) = ‖f(u(x) + s(w(x)− u(x)), x)− f(u(x), x)‖q′(x)

is continuous, since for any s, t ∈ [0, 1],

|g(s)− g(t)| = ‖f(u(x) + s(w(x)− u(x)), x)− f(u(x) + t(w(x)− u(x)), x)‖q′(x)

and ‖u(x) + s(w(x)− u(x))− u(x)− t(w(x)− u(x))‖ = |s − t| ‖w(x)− u(x)‖. Therefore, if

we fix u, then for any w ∈ Lq(x)(Ω), there exists sw ∈ [0, 1] such that for any s ∈ [0, 1],

(77)

‖f(u(x) + s(w(x)− u(x)), x)− f(u(x), x)‖q′(x) ≤ ‖f(u(x) + sw(w(x)− u(x)), x)− f(u(x), x)‖q′(x) .

By the fundamental theorem of calculus, we have

F (w(x), x)− F (u(x), x) =

ˆ 1

0

(w(x)− u(x)) f(u(x) + s(w(x)− u(x)), x) ds.
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Therefore by Fubini’s theorem, Hólder’s inequality and the above, we get

∣∣∣∣∣J(w)− J(u)−
ˆ

Ω

f(u(x), x)(w(x)− u(x)) dx

∣∣∣∣∣
(78)

=

∣∣∣∣∣∣
ˆ 1

0

ˆ

Ω

(w(x)− u(x)) (f(u(x) + s(w(x)− u(x)), x)− f(u(x), x)) dx ds

∣∣∣∣∣∣
≤
ˆ 1

0

ˆ

Ω

|w(x)− u(x)| |f(u(x) + s(w(x)− u(x)), x)− f(u(x), x)| dx ds

≤ 2

ˆ 1

0

‖w − u‖q(x) ‖f(u(x) + s(w(x)− u(x)), x)− f(u(x), x)‖q′(x) ds

≤ 2 ‖w − u‖q(x) ‖f(u(x) + sw(w(x)− u(x)), x)− f(u(x), x)‖q′(x)(79)

Since ‖u+ sw(w − u)− u‖q(x) = sw ‖w − u‖q(x) ≤ ‖w − u‖q(x) for all w ∈ Lq(x)(Ω), then as

‖w − u‖q(x) → 0,

‖f(u(x) + sw(w(x)− u(x)), x)− f(u(x), x)‖q′(x) → 0,

we therefore get that

lim
w→u

|J(w)− J(u)−
´
Ω

f(u(x), x)(w(x)− u(x)) dx|

‖w − u‖q(x)

= 0.

Since u and w are arbitrary, this proves that J is Fréchet diffrentiable and that

〈J ′(u), v〉 =

ˆ

Ω

f(u(x), x)v(x) dx.

Furthermore, since f̃ ∈ C(Lq(x)(Ω);Lq
′(x)(Ω)), then J ∈ C1(Lq(x)(Ω);R). Hence to complete

the proof, it is left to show that J ′ : Lq(x)(Ω) → Lq
′(x)(Ω) is bounded on bounded sets. Let

‖v‖q(x) = 1, then by Hölder’s inequality, we have

‖J ′(u)‖q(x) ∼ ‖J
′(u)‖∗ ≤ 〈J

′(u), v〉 ≤ 2 ‖f(u(x), x)‖q′(x) .

By (73) and the above, we know that ‖f(u(x), x)‖q′(x) is bounded on bounded sets. �

Now we will add some more assumptions on f .

(A2) There exists γ ∈ P(Ω) such that p+ < γ− and γ(x)F (z, x) ≤ zf(z, x) for all (z, x) ∈
R× Ω.

(A3) There exists an open set Ω0 ⊂ Ω such that for all x ∈ Ω0 and z 6= 0, zf(z, x) > 0.
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Observe that for z > 0 and x ∈ Ω0, f(z, x) > 0, thus F (z, x) > 0. For z < 0 and x ∈ Ω0,

by a change of variable, we get

F (z, x) =

ˆ z

0

f(t, x) dt = −
ˆ |z|

0

f(−s, x) ds =

ˆ |z|
0

(−s)f(−s, x)

s
ds > 0.

Therefore, if f satisfies (A2), then for all x ∈ Ω0 and z 6= 0, F (z, x) > 0.

Proposition 6.2. If f satisfies (A1) and (A2), then for any z ∈ R, x ∈ Ω and t ≥ 1,

F (tz, x) ≥ tγ(x)F (z, x).

Proof. Fix any x ∈ Ω and let g(z) = F (z,x)

|z|γ(x) . Then

g′(z) =
z

|z|γ(x)+2
(zf(z, x)− γ(x)F (z, x))

≥ 0, when z > 0

≤ 0, when z < 0

Therefore, as |z| → 0, g(z) decreases, i.e.

F (tz, x)

|tz|γ(x)
≥ F (z, x)

|z|γ(x)
=⇒ F (tz, x) ≥ tγ(x)F (z, x).

�

Corollary 6.3. If f satisfies (A1), (A2) and (A3), and u ∈ W 1,~p(·)
0 (Ω) is such that it has

compact support in Ω0 and u ≥ 1 on a ball B ⊂ Ω0, then

I2(u) =

ˆ

Ω

F (u, x) dx ≥
ˆ

B

F (1, x) dx.

Proof. By (A3), we get that F (u, x) ≥ 0 for all x ∈ Ω, hence
´
Ω

F (u, x) dx ≥
´
B

F (u, x) dx.

Then by Proposition 6.2, F (u, x) ≥ |u|γ(x)F (1, x) for all x ∈ B, which concludes the proof.

which concludes the proof. �

6.2. Existence problem. In this section, we will use the Mountain Pass theorem to prove

the following theorem.

Theorem 6.4. Let Ω ⊂ Rn be a bounded domain, ~p ∈
(
Lip(Ω) ∩ P(Ω)

)
, p− > 1 and 1 ≤

p0(x) ≤ pM(x) < p∗(x) for all x ∈ Ω.

Consider the following equation:

(∗)

−div

(
n∑
i=1

ai(x)|∂iu(x)|pi(x)−2∂iu(x)

)
+ a0(x)|u(x)|p0(x)−2u(x) = f(u(x), x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω.

Assume ~a(x) = (a1(x), . . . , an(x)) satisfies 0 < a− ≤ ai(x) ≤ a+ <∞, for all i ∈ {1, 2, . . . , n}
and x ∈ Ω, a0(x) ≥ 0 and f satisfies (A1), (A2) and (A3). Then there exists a weak solution

to (∗) if we have one of the following:
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• q(x) < p∗(x) for all x ∈ Ω; or

• There exists x0 ∈ Ω0 and D > 0, such that p(x0) < n and F (1, x0) ≥ D + c(x0), and

c+ < K, where K > 0 is a constant that depends only on ~p, ~a, q, γ, n and D.

Recall that in (∗), we used ∂0u = u. We must first mention that although the previous the-

orem provides new knowledge, this section is influenced by the articles of Fu [27] and Bonder

& Silva [12], who obtained somewhat similar results in the isotropic case. Furthermore, we

will give a concrete example of Theorem 6.4 in Corollary 6.6.

In order to show existence of a weak solution, we need to find u ∈ W 1,~p(·)
0 (Ω) such that for

all v ∈ W 1,~p(·)
0 (Ω),

n∑
i=0

ˆ

Ω

ai(x)∂iu|∂iu(x)|pi(x)−2∂iv(x) dx =

ˆ

Ω

f(u(x), x)v(x) dx.

Note that for simplificity, we will write f(u(x), x) = f(u, x) and F (u(x), x) = F (u, x). Also,

we used the convention that ∂0u = u.

Letting I2(u) =
´
Ω

F (u, x) dx, by the continuity of the embedding W
1,~p(·)
0 (Ω) ↪→ Lq(x)(Ω)

and (A1), we can apply Theorem 6.1 to get that for all v ∈ W 1,~p(·)
0 (Ω), 〈I ′2(u), v〉 =

´
Ω

f(u, x)v dx.

Let gi(z, x) = ai(x)z|z|pi(x)−2, Gi(z, x) =
´ z

0
gi(t, x) dt = ai(x) |z|

pi(x)

pi(x)
dx and Ji(u) =´

Ω

Gi(u, x) dx, then by theorem 78, we know that Ji ∈ C1(Lpi(x)(Ω);R) and 〈J ′i(u), v〉 =

´
Ω

ai(x)u|u|pi(x)−2v dx. Since the mapping W
1,~p(·)
0 (Ω)→ Lpi(x)(Ω) defined by u→ ∂iu is linear

and continuous, then if we define I1(u) =
n∑
i=0

Ji(∂iu) =
n∑
i=0

´
Ω

ai(x) |∂iu|
pi(x)

pi(x)
dx, we have that

I1 ∈ C1(W
1,~p(·)
0 (Ω);R) with

〈I ′1(u), v〉 =
n∑
i=0

ˆ

Ω

ai(x)∂iu|∂iu|pi(x)−2∂iv dx, for all v ∈ W 1,~p(·)
0 (Ω)

Thus, if we let I(u) = I1(u)−I2(u), then it follows that if u ∈ W 1,~p(·)
0 (Ω) satisfies I ′(u) = 0,

then u is a weak solution to (∗). Furthermore, by applying Hölder’s inequality, because of

(A1) and Theorem 2.3, it follows that I ′ is bounded on bounded sets, i.e. I ∈ C.
So now we want to show that I satisfies the conditions of the Mountain pass theorem, in

order to find a weak solution. Since we already showed that I ∈ C, it is left to show that

(i) there exists r ∈ (0, 1) such that inf
‖u‖=r

I(u) > 0;

(ii) there exists v ∈ W 1,~p(·)
0 (Ω) such that ‖v‖ > r and I(v) ≤ 0; and

(iii) I satisfies the local Palais-Smale condition for energy level c0 = inf
g∈Γ

max
t∈[0,1]

I[g(t)], with

Γ defined as in Theorem 5.26 for some v chosen in (ii).
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Concretely, to prove (iii), we want to show that any sequence {um} ⊂ W
1,~p(·)
0 (Ω) such that

lim
m→∞

|I(um)| = c0 and lim
m→∞

‖I ′(um)‖
(W

1,~p(·)
0 (Ω))∗

= 0 is precompact in W
1,~p(·)
0 (Ω).

Note that the type of sequence outlined here will be referred to as a Palais-Smale sequence.

Before proving each point, we want to remark that by convexity of the function (·)p, for

p ≥ 1, and induction, we know there exists Ĉ such that for any finite subset {x`} ⊂ R,(∑̀
x`

)p
≤ Ĉ−1

∑̀
xp` .

By the Poincaré-Sobolev inequality, we may use ‖u‖ =
n∑
i=1

‖∂iu‖pi(x). For any u ∈

W
1,~p(·)
0 (Ω), since for any 1 ≤ i ≤ n, we have ‖u‖ ≥ ‖∂iu‖pi(x), then if λ = ‖u‖, we have∥∥∂iu
λ

∥∥
pi(x)
≤ 1. Therefore, we get

max

{
1

λp−
,

1

λp+

} n∑
i=0

ˆ

Ω

|∂iu|pi(x) dx ≥
n∑
i=1

ˆ

Ω

∣∣∣∣∂iuλ
∣∣∣∣pi(x)

dx ≥
n∑
i=1

∥∥∥∥∂iuλ
∥∥∥∥p+

pi(x)

≥ Ĉ

(
n∑
i=1

∥∥∥∥∂iuλ
∥∥∥∥
pi(x)

)p+

= Ĉ
∥∥∥u
λ

∥∥∥p+

= Ĉ

Hence we have the inequality

(80)
n∑
i=0

ˆ

Ω

|∂iu|pi(x) dx ≥ Ĉ min
{
‖u‖p

+

, ‖u‖p
−
}
.

Proof of (i):

Let ‖u‖ = 1 and r < 1, then by (A1), proposition 6.2, with t = 1
r
, and (80) we obtain

I(ru) =
n∑
i=0

ˆ

Ω

ai(x)
|r∂iu|pi(x)

pi(x)
dx−

ˆ

Ω

F (ru, x) dx

≥ rp
+ a−

p+

n∑
i=1

ˆ

Ω

|∂iu|pi(x) dx− rγ−
ˆ

Ω

F (u, x) dx

≥ rp
+

(
Ĉ
a−

p+
‖u‖p

+

− rγ−−p+
(
C ‖u‖L1(Ω) + c+ max{‖u‖q

−

q(x) , ‖u‖
q+

q(x)}
))

≥ rp
+

(
Ĉ
a−

p+
‖u‖p

+

− rγ−−p+
(
CS ‖u‖+ c+ max{(S ‖u‖)q− , (S ‖u‖)q+}

))
≥ rp

+

(
Ĉ
a−

p+
− rγ−−p+

(
CS + c+ max{Sq− , Sq+}

))
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Hence, in order to prove (i), we can pick

(81) r < min

1,

(
Ĉ (a

−

p+ )

CS + c+ max{Sq− , Sq+}

) 1
γ−−p+

 .

Proof of (ii) To prove this part, we will make good use of (A3) by choosing ũ ∈ W 1,~p(·)
0 (Ω)

with compact support in Ω0, so that F (ũ, x) ≥ 0, and ‖ũ‖ = r as given by (i).

Let t > 1, then by proposition 6.2, we get

I(tũ) =
n∑
i=0

ˆ

Ω0

ai(x)tpi(x)|∂iũ|pi(x) dx−
ˆ

Ω0

F (tũ, x) dx

≤ tp
+

n∑
i=0

ˆ

Ω0

ai(x)|∂iũ|pi(x) dx− tγ−
ˆ

Ω0

F (ũ, x) dx

= tp
+

 n∑
i=0

ˆ

Ω0

ai(x)|∂iũ|pi(x) dx− tγ−−p+

ˆ

Ω0

F (ũ, x) dx


−→ −∞ as t→∞

Since g(t) = I(tũ) is continuous on [1,∞) and g(1) > 0, then we can pick t > 1 such that

I(tũ) = 0. We will write v = tũ to prove (ii).

Remark 6.5. Since I(tũ) = 0, we have 0 = I(tũ) ≤ tp
+
I1(ũ)− tγ−I2(ũ), which leads to

t ≤
(
I1(ũ)

I2(ũ)

) 1
γ−−p+

≤

(
a+rp

−

I2(ũ)

) 1
γ−−p+

.

For any s ∈ (0, 1), using the fact that ‖ũ‖ = r and the inequality (81), we have

I(stũ) ≤ I1(stũ) ≤ (n+ S̃)a+tp
+

rp
−

≤ (n+ S̃)a+

(
a+rp

−

I2(ũ)

) 1
γ−−p+

rp
−

= (n+ S̃)(a+)
1+ 1

γ−−p+

(
1

I2(ũ)

) 1
γ−−p+

,

where S̃ = max
{
Sp

+
0 , Sp

−
0

}
. Let K1 = (n+ S̃)(a+)

1+ 1
γ−−p+ .

Setting g(s) = sv, where v = tũ, we get that g ∈ Γ, as presented in the mountain pass

theorem. Hence we get

(82) c0 ≤ max
s∈[0,1]

I(stũ) ≤ K1

(
1

I2(ũ)

) 1
γ−−p+

.
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Proof of (iii): For this part, we will first need to show that a Palais-Smale sequence is

bounded in W
1,~p(·)
0 (Ω). Let {um} be a Palais-Smale sequence with energy level c0, then

I(um) ≥ 1

p+

n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x) dx− 1

γ−

ˆ

Ω

γ(x)F (um, x) dx

≥ 1

p+

n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x) dx− 1

γ−

ˆ

Ω

f(um, x)um dx

=

(
1

p+
− 1

γ−

) n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x) dx+
1

γ−

 n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x) dx−
ˆ

Ω

f(um, x)um dx



=

(
1

p+
− 1

γ−

) n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x) dx+
1

γ−
〈I ′(um), um〉

(83)

Since ‖I ′(um)‖
(W

1,~p(·)
0 (Ω))∗

→ 0, then for m large enough, we get |〈I ′(um), um〉| ≤ ‖um‖. If

‖um‖ ≤ 1, then it is bounded. Thus we will assume that ‖um‖ > 1.

Thus we can combine (80) and (83) to obtain

a−
(

1

p+
− 1

γ−

)
Ĉ ‖um‖p

−
≤
(

1

p+
− 1

γ−

) n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x) dx

≤ I(um)− 1

γ−
〈I ′(um), um〉

≤M +
1

γ−
|〈I ′(um), um〉|

≤M +
1

γ−
‖um‖ ≤

(
M +

1

γ−

)
‖um‖

Therefore for all m large enough, we have

(84) ‖um‖ ≤ max

1,


(
M + 1

γ−

)
a−
(

1
p+ − 1

γ−

)
Ĉ


1

p−−1


The next step is to prove that under additional assumptions on f , um → u in Lq(x)(Ω).

By the boundedness of {um}, we have strong convergence of um → u in Lr(x)(Ω) for any

r(x)� p∗(x) and we can apply the concentration compactness principle to get
ˆ

Ω

φ(x)|um|q(x) dx→
ˆ

Ω

φ(x)|u|q(x) dx+
∑
j

φ(xj)νj(x
j) and
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n∑
i=1

ˆ

Ω

φ(x)|∂ium|pi(x) dx→
ˆ

Ω

φ(x) dµ ≥
n∑
i=1

ˆ

Ω

φ(x)|∂iu|pi(x) dx+
∑
j

φ(xj)µ(xj),

for any φ ∈ C(Ω), for some countable set {xj} ⊂ A and with the relation

(85) Sν(xj)
1

q(xj) ≤
n∑
i=1

µi(x
j)

1

pi(x
j) .

If the set of atoms of ν is empty, including the case when q(x) < p∗(x) for all x ∈ Ω (which

implies a compact embedding W
1,~p(·)
0 (Ω) ↪→ Lq(x)(Ω)), then by the Brezis-Lieb Lemma 4.3,

we get that um → u in Lq(x)(Ω). Otherwise, fix any xj that is an atom of ν. Let φ ⊂ C1
c (Rn)

be nonnegative with compact support in the cube Q =
(
−1

2
, 1

2

)n
, such that ‖φ‖∞ = 1,

max
1≤i≤n

{‖∂iφ‖∞} =: Mφ <∞ and φ(0) = 1.

Now let φε(x) = φ

((
x1 − xj1
εη1(xj)

, . . . ,
xn − xjn
εη1(xj)

))
, where ηi(x) =

1

pi(x)
− 1

p∗(x)
> 0. We get

for every small ε > 0 that φε(x
j) = 1 and the support of φε is contained in the rectangle

Rε =

(
xj1 −

εη1(xj)

2
, xj1 +

εη1(xj)

2

)
× · · · ×

(
xjn −

εηn(xj)

2
, xjn +

εηn(xj)

2

)
,

which has measure going to zero.

Furthermore, the functions ηi are Lipschitz continuous on Ω by Lemma 5.20 and satisfy

for all x ∈ {y ∈ Ω : p(y) < n}

(86)
n∑
i=1

ηi(x) =
n∑
i=1

(
1

pi(x)
− 1

p(x)
+

1

n

)
=

(
n∑
i=1

1

pi(x)

)
− n

p(x)
+ 1 = 1

and

(87) si(x) := pi(x)

(
p∗(x)

pi(x)

)′
=

pi(x)p∗(x)

p∗(x)− pi(x)
=

1

ηi(x)
.

Because xj is an atom, we know that it is in A, so p(xj) < n. Therefore we may assume

that ε is small enough such that p+(Rε) < n, i.e. Rε ⊂ {y ∈ Ω : p(y) < n}.
Since I ′(um)→ 0, then we get

n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium∂i(φεum) =

ˆ

Ω

f(um, x)φεum dx+ o(1)

≤ C

ˆ

Ω

|um|φε dx+ c+

ˆ

Ω

|um|q(x)φε dx+ o(1).(88)
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On the right hand side, taking m → ∞ first and then taking ε → 0, because we get

convergence to u in L1(Ω), we obtain

(89) c+ν(xj).

Observe that if c is continuous, then we may keep c(x) in the integral when taking the

limit, giving us the sharper estimate c(xj)ν(xj) in place of (89).

On the left hand side, we have

n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium∂i(φεum)

=

 n∑
i=0

ˆ

Ω

ai(x)φε|∂ium|pi(x) dx+
n∑
i=1

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium(um∂iφε) dx

 .

For the first term on the right hand side of the above, we can put a lower bound

(90)
n∑
i=0

ˆ

Ω

ai(x)φε|∂ium|pi(x) dx ≥ a−
n∑
i=1

ˆ

Ω

φε|∂ium|pi(x) dx.

Taking m→∞ first and then taking ε→ 0 in (90), we obtain

(91) a−
n∑
i=1

µi(x
j) = a−µ(xj).

Now we will show that

(92) lim
ε→0

 lim
m→∞

n∑
i=1

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium(um∂iφε) dx

 = 0.

First, since u is bounded in W
1,~p(·)
0 (Ω), set M := sup

m∈N
{‖∂ium‖ + 1}p+−1 < ∞. Then by

Hölder’s inequality, the Rellich-Kondrachov theorem and the fact that 0 < ηi < 1, by (86),

we have for any ε small,

lim
m→∞

∣∣∣∣∣∣
n∑
i=1

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium(um − u)∂iφε) dx

∣∣∣∣∣∣ ≤ lim
m→∞

2Mφ

ε
M

n∑
i=1

‖um − u‖pi(x) = 0.

Thus we can rewrite (92) as

(93) lim
ε→0

 lim
m→∞

n∑
i=1

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium(u∂iφε) dx

 .
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Now we will evaluate the following integral, for any ε small enough:

ˆ

Ω

|∂iφε|si(x) dx =

ˆ

Rε

∣∣∣∣∣∣∣∣
∂iφ

((
x1−xj1
εη1(xj)

, . . . , xn−x
j
n

εη1(xj)

))
εηi(xj)

∣∣∣∣∣∣∣∣
si(x)

dx

≤ 1

εs
+
i (Rε)ηi(xj)

ˆ
Rε

∣∣∣∣∣∂iφ
(
x1 − xj1
εη1(xj)

, . . . ,
xn − xjn
εη1(xj)

)∣∣∣∣∣
s+

dx . . .(94)

. . . +

ˆ

Rε

∣∣∣∣∣∂iφ
(
x1 − xj1
εη1(xj)

, . . . ,
xn − xjn
εη1(xj)

)∣∣∣∣∣
s−

dx


=

ε

∑
i
ηi(x

j)

εs
+
i (Rε)ηi(xj)

ˆ
Q

|∂iφ(x)|s
+

dx+

ˆ

Q

|∂iφ(x)|s
−
dx


= ε1−s+i (Rε)ηi(x

j)

ˆ
Q

|∂iφ(x)|s
+

dx+

ˆ

Q

|∂iφ(x)|s
−
dx

 .(95)

(96)

Let r := min
1≤i≤n

{ηi(xj)} > 0, so that for all ε ∈ (0, 1) and 1 ≤ i ≤ n, we have εηi(x
j) ≤ εr.

By Lemma 5.20, we know that si is Lipschitz, hence there exists C > 0 such that for all

x ∈ Rε, we have

(97) |si(x)− si(xj)|2 ≤
C2

n
|x− xj|2 =

C2

n

n∑
i=1

|x1 − xj1|2 ≤
C2

n

n∑
i=1

ε2ηi(x
j) ≤ C2ε2r,

which implies that |s+
i (Rε)− si(xj)| ≤ Cεr.

Using (87) for xj and (97), we can calculate the limit

0 ≤ lim
ε→0+

(s+
i (Rε)ηi(x

j)− 1) ln
1

ε
= lim

ε→0+
ηi(x

j)(s+
i (Rε)− si(xj)) ln

1

ε

≤ Cηi(x
j) lim
ε→0+

εr ln
1

ε
= 0.(98)

This in turn implies that lim
ε→0+

ε1−s+(Rε)ηi(x
j) = 1, hence from (95) and Theorem 2.3, there

exists some C ∈ (0,∞) such that

(99) lim sup
ε→0+

∥∥|∂iφε|pi(x)
∥∥

p∗(x)
p∗(x)−pi(x)

≤ C.

Now we can show by Hölder’s inequality that for any 1 ≤ i ≤ n and ε small enough,ˆ

Ω

|u|pi(x)|∂iφε|pi(x) dx ≤ 2
∥∥|u|pi(x)χRε

∥∥
p∗(x)
pi(x)

∥∥|∂iφε|pi(x)
∥∥

p∗(x)
p∗(x)−pi(x)

≤ 2C ‖uχRε‖
p+

p∗(x) .



80

Since u ∈ Lp∗(x)(Ω), then the above implies that

(100) lim
ε→0+

‖|u|∂iφε‖pi(x) = 0.

So now using again Hölder’s inequality combined with (100) on (93) , we obtain

lim
ε→0+

 lim
m→∞

∣∣∣∣∣∣
n∑
i=1

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium(u∂iφε) dx

∣∣∣∣∣∣


≤ 2a+ lim
ε→0+

(
lim
m→∞

n∑
i=1

∥∥|∂ium|pi(x)−1
∥∥
p′i(x)
‖|u|∂iφε‖pi(x)

)

≤ 2a+M
n∑
i=1

(
lim
ε→0+

‖|u|∂iφε‖pi(x)

)
= 0.

Using the above, (89), (91) and (88), we finally arrive at the inequality

(101)
a−

c+
µ(xj) ≤ ν(xj).

Combining with (85), we have

a−

c+
µ(xj) ≤

(
1

S

n∑
i=1

µi(x
j)

1

pi(x
j)

)q(xj)

≤
(n
S
µ(xj)

1

p`(x
j)

)q(xj)
,

where p`(x
j) ∈ {pi(xj)}ni=1 is the exponent that maximizes µ(xj). Rearranging the above, we

obtain, for some K2 that depends on ~p, q, ~a and n,

(102) K2

(
c+
) −p`(x

j)

q(xj)−p`(xj) ≤ µ(xj).

Going back to the inequality (83) and combining with (102), we can now take limits to

obtain, for a Palais-Smale sequence of energy level c,

c0 = lim
m→∞

I(um) ≥ lim
m→∞

(
1

p+
− 1

γ−

) n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x) dx+ lim
m→∞

1

γ−
〈I ′(um), um〉

≥ a−
(

1

p+
− 1

γ−

)∑
j

µ(xj) +
n∑
i=1

ˆ

Ω

|∂iu|pi(x) dx


≥ a−

(
1

p+
− 1

γ−

)
µ(xj)

≥ a−
(

1

p+
− 1

γ−

)
K2

(
c+
) −p`(x

j)

q(xj)−p`(xj)

= K3

(
c+
) −p`(x

j)

q(xj)−p`(xj) ,(103)



81

where K3 depends on γ, ~p, q, ~a and n.

So now we can use (103) and (82) to obtain

K3

(
c+
) −p`(x

j)

q(xj)−p`(xj) ≤ K1

(
1

I2(ũ)

) 1
γ−−p+

.

Rearranging all, we can get a constant K4 > 0 that depends only on γ, ~p, q, ~a and n, such

that

K4 ≤
(

1

I2(ũ)

)
(c+)

p`(x
j)(γ−−p+)

q(xj)−p`(xj) .

By assumptions of theorem 6.4, we can fix x0 = (x0
1, . . . , x

0
n) ∈ Ω0 such that p(x0) < n and

F (1, x0) ≥ D + c(x0), for some D > 0. Denote Qb =
∏n

i=1 (x0
i − b, x0

i + b) for b > 0. Fix

a > 0 such that Q2a ⊂ Ω0. Pick ψ ∈ C∞c (Q2a) such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 on Qa. If

‖ψ‖ ≤ r, then we may take ũ = Rψ, where R ≥ 1 is such that ‖ũ‖ = r, then ũ ≥ 1 on Qa.

Otherwise, similarly as was done for φ, we define ψε(x) = ψ

(
x1

ε
1

p1(x0)
, . . . , xn

ε
1

pn(x0)

)
. Then,

since
n∑
i=1

1
pi(x0)

= n
p(x0)

, we obtain

ˆ

Ω

|∂iψε|pi(x) dx ≤ ε
−p+
i

(Q2ε)

pi(x0)

ˆ

Ω

∣∣∣∣∂iψ( x1

ε
1

p1(x0)

, . . . ,
xn

ε
1

pn(x0)

)∣∣∣∣pi(x)

≤ ε
n

p(x0)
−
p+
i

(Q2ε)

pi(x0)

ˆ
Ω

|∂iψ|p
+

dx+

ˆ

Ω

|∂iψ|p
−
dx

 .

By continuity, lim
ε→0

p+
i (Qε)

pi(x0)
= 1, therefore ‖ψε‖ → 0. So we can pick ε such that ‖ψε‖ = r.

Let ũ = ψε, then ũ = 1 on some ball B ⊂ Ω0. Then by corollary 6.3, I2(ũ) ≥
´
B

F (1, x) dx.

By contitnuity, we can make B smaller if necessary such that inf
x∈B
{F (1, x)} dx ≥ D

2
, giving

us I2(ũ) ≥ |B|D
2

. Finally, we get a constant K, that depends on γ, ~p, q, ~a, n, D and |B|,
such that

(104) K ≤ c+.

Notice that the choice of B depends on ~p, r and Ω0. By (81) and F (1, x0) ≥ D, which

implies that C 6= 0, if we make c+ smaller, then we may pick a larger r, hence also a bigger

ball B. Since Ω0 depends only on where F > 0 and not on how big or small F is, then

making c+ smaller will not affect |B|.
Therefore if c+ is small enough, then the above inequality may not hold, which would

imply that µ(xj) = 0 for all atoms xj, i.e. dη = |u|q(x) dx, which implies that um → u in
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Lq(x)(Ω). Now in order to finish the proof of the theorem, it is left to show that um → u in

W
1,~p(·)
0 (Ω).

Note that by weak convergence, we know that ∂ium → ∂iu pointwise. Hence, to apply the

Vitali convergence theorem to

n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium∂iu dx,

we only need to prove equi-integrability. By Hölder’s inequality, we have

lim
|E|→0

∣∣∣∣∣∣
n∑
i=0

ˆ

E

ai(x)|∂ium|pi(x)−2∂ium∂iu dx

∣∣∣∣∣∣ ≤ 2a+M
n∑
i=0

(
lim
|E|→0

‖∂iuχE‖pi(x)

)
= 0.

This implies that

(105) lim
m→∞

n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium∂iu dx = lim
m→∞

n∑
i=0

ˆ

Ω

ai(x)|∂iu|pi(x) dx.

Now, observe that since {um} is bounded in W
1,~p(·)
0 (Ω),

lim
m→∞

∣∣∣∣∣
n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium∂i(u− um) dx−
ˆ

Ω

f(um, x)(u− um) dx

∣∣∣∣∣
= lim

m→∞
|〈I ′(um), (u− um)〉|

≤ lim
m→∞

‖I ′(um)‖∗ (‖u‖+M)

= 0.

Since we proved that um → u in Lq(x)(Ω), then by continuity of f , we get that M̃ =

sup
m
{‖f(um, x)‖q′(x)} <∞. Considering that I ′(um)→ 0, we have

lim
m→∞

∣∣∣∣∣∣
n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x)−2∂ium∂i(u− um) dx

∣∣∣∣∣∣ = lim
m→∞

∣∣∣∣∣∣
ˆ

Ω

f(um, x)(u− um) dx

∣∣∣∣∣∣
≤ lim

m→∞
2M̃ ‖u− um‖q(x) = 0.(106)

Using (105) with (106), we get

(107) lim
m→∞

n∑
i=0

ˆ

Ω

ai(x)|∂ium|pi(x) dx =
n∑
i=0

ˆ

Ω

ai(x)|∂iu|pi(x) dx.

Fix i, then by lemma 4.3 (Brezis-Lieb), we getˆ

Ω

ai(x)|∂iu− ∂ium|pi(x) dx =

ˆ

Ω

ai(x)|∂iu|pi(x) dx−
ˆ

Ω

ai(x)|∂ium|pi(x) dx.
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Summing over all i, by (107), we get

lim
m→∞

n∑
i=0

ˆ

Ω

ai(x)|∂iu− ∂ium|pi(x) dx = 0.

which implies that um → u in W
1,~p(·)
0 (Ω), since a− > 0 and a0(x) ≥ 0 for all x ∈ Ω.

Hence if c+ is small enough, then I satisfies the local Palais-Smale condition for energy

level c0, and therefore also the conditions of the Mountain pass theorem, which completes

the proof of existence of a weak solution.

Corollary 6.6. Under the assumption on Ω, ~p and ~a for Theorem 6.4, consider the equation

(108)

−div

(
n∑
i=1

ai(x)|∂iu|pi(x)−2∂iu

)
= λ(x)|u|r(x)−2u+ c(x)|u|q(x)−2u, x ∈ Ω

u(x) = 0, x ∈ ∂Ω,

where λ, c ∈ C(Ω) are positive, r, q ∈ C(Ω), with p+ < r− ≤ r(x) < q(x) ≤ p∗(x).

Then there exists a K ∈ (0,∞], that depends only on ~p, ~a, q, r, λ and n, such that if,

c+ < K,

there exists a weak solution to (108).

Proof. From the above, we have the source function

f(u(x), x) = λ(x)|u(x)|r(x)−2u(x) + c(x)|u(x)|q(x)−2u(x).

Then we can see that f satisfies (A3) on all of Ω, since zf(z, x) = λ(x)|z|r(x) + c(x)|z|q(x).

Furthermore, we get

F (z, x) = λ(x)
|z|r(x)

r(x)
+ c(x)

|z|q(x)

q(x)
.

Setting γ(x) = r(x), we get

γ(x)F (z, x) = λ(x)|z|r(x) +
r(x)

q(x)
|z|q(x) < λ(x)|z|r(x) + |z|q(x) = zf(z, x),

since r(x) < q(x). This proves that f satisfies (A2).

As in the proof of Lemma 3.8, for any ε < 0, the can find C(ε) such that |u|r(x) ≤
C(ε) + ε|u|q(x). Thus we get (A1), since

|f(u, x)| ≤ C(ε) ‖λ‖∞ + (c(x) + ε)|u|q(x)−1

and by the continuity of λ, c, q and r, f is continuous.

Now observe that we can take any ε > 0, so we could define c+ in (104) with this c(x), no

matter what λ(x) is.
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If p(x) ≥ n for all x ∈ Ω, then it follows that q(x) < p∗(x) = ∞ for all x ∈ Ω. Therefore

by Theorem 6.4, we have a weak solution, hence we can take K =∞.

Otherwise, there exists x0 such that p(x0) < n. Also, for all x ∈ Ω, F (1, x) = λ(x)+c(x) ≥
λ− + c(x). Hence we can make D = λ−. So by Theorem 6.4, there exists K ∈ (0,∞) such

that if c+ < K, then there exists a weak solution to (108). �

Discussion

The critical embedding Theorem 3.12 allows us to now solve a bigger class of partial

differential equations. Equipped with this embedding, it may now be possible to generalize

many differential equation results obtained either in the variable exponent isotropic case, or

in the fixed exponent anisotropic case. Here we proved only existence of a weak solution,

hence we may also look at uniqueness and regularity of such solutions.

Another relevant question to pursue is whether the embeddings holds true on the class of

log-Hölder continuous functions, as it does in the isotropic variable exponent case. The class

of domains for which the anisotropic embeddings hold is another important avenue, but it is

a problem still precarious even for the fixed exponent case.

In [37], the authors showed that if an exponent is critical only on parts of the domain,

then under some conditions related to how ”fast” it approches the critical set, we may still

have compact embedding of the isotropic variable exponent Sobolev space into the Lebesgue

space. Therefore it may be interesting to pursue this question in the anisotropic spaces.

Furthermore, one may wonder if the spread of ~p, i.e. how far apart the pi exponents functions

are, affects how quickly the critical function must approach the critical set.

The concentration-compactness principle, Theorem 4.1, will also be useful in solving dif-

ferential equations. As a follow-up, one may also, as did Bonder, Saintier & Silva in [11],

following [12], study the existence of extremals of a critical Sobolev embedding, i.e. the

existence of a u ∈ W 1,~p(·)
0 (Ω) such that

‖u‖
W

1,~p(·)
0 (Ω)

‖u‖q(x)

= inf
v∈W 1,~p(·)

0 (Ω)

{
‖v‖

W
1,~p(·)
0 (Ω)

‖v‖q(x)

}
.

Conclusion

The main objective of this thesis was to prove weak existence of a partial differential

equation involving an anisotropic variable exponent Laplacian type operator and a source

with critical growth. The first challenge was to prove that there even is an embedding with

critical exponents, which was achieved mainly by adapting existing proofs, for the classical

isotropic fixed exponent case, to our needs. We then proceeded to prove the concentration-

compactness principle, by combining the best of both existing proofs for the isotropic case
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([27],[12]). Finally, we were able to use the Mountain Pass theorem in order to achieve our

main goal.
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