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Abstract

In high-dimensional (HD) data, where the number of covariates (p) greatly exceeds the num-

ber of observations (n), estimation can benefit from the bet-on-sparsity principle, i.e., only

a small number of predictors are relevant in the response. This assumption can lead to more

interpretable models, improved predictive accuracy, and algorithms that are computation-

ally efficient. In genomic and brain imaging studies, where the sample sizes are particularly

small due to high data collection costs, we must often assume a sparse model because there

isn’t enough information to estimate p parameters. For these reasons, penalized regression

methods such as the lasso and group-lasso have generated substantial interest since they

can set model coefficients exactly to zero. In the penalized regression framework, many

approaches have been developed for main effects. However, there is a need for developing

interaction and mixed-effects models. Indeed, accurate capture of interactions may hold

the potential to better understand biological phenomena and improve prediction accuracy

since they may reflect important modulation of a biological system by an external factor.

Furthermore, penalized mixed-effects models that account for correlations due to groupings

of observations can improve sensitivity and specificity. This thesis is composed primarily of

three manuscripts. In the first manuscript, we propose a method called sail for detecting

non-linear interactions that automatically enforces the strong heredity property using both

the ℓ1 and ℓ2 penalty functions. We describe a blockwise coordinate descent procedure for

solving the objective function and provide performance metrics on both simulated and real

data. The second manuscript develops a general penalized mixed effects model framework

to account for correlations in genetic data due to relatedness called ggmix. Our method

can accommodate several sparsity-inducing penalties such as the lasso, elastic net and group

lasso and also readily handles prior annotation information in the form of weights. Our

algorithm has theoretical guarantees of convergence and we again assess its performance

in both simulated and real data. The third manuscript describes a novel strategy called

eclust for dimension reduction that leverages the effects of an exposure variable with broad

vi



impact on HD measures. With eclust, we found improved prediction and variable selection

performance compared to methods that do not consider the exposure in the clustering step,

or to methods that use the original data as features. We further illustrate this modeling

framework through the analysis of three data sets from very different fields, each with HD

data, a binary exposure, and a phenotype of interest. We provide efficient implementations

of all our algorithms in freely available and open source software.
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Abrégé

Avec des données de grande dimension (GD), où le nombre de covariables (p) dépasse large-

ment le nombre d’observations (n), l’estimation peut profiter du principe «miser sur la

sparsité», c’est à dire, seulement un petit nombre de prédicteurs de la variable réponse sont

réellement pertinents. Cette hypothèse permet d’obtenir des modèles interprétables, améliore

leur précision et facilite l’implémentation d’algorithmes efficaces sur le plan des calculs. Dans

les études d’imagerie génomique et cérébrale, où la taille des échantillons est particulière-

ment faible en raison des coûts élevés associés à la collecte de données, nous devons souvent

supposer un modèle «sparse» car l’information est insuffisante pour estimer les p paramètres.

Pour ces raisons, les méthodes de régression pénalisées telles que lasso et group lasso ont

suscité un intérêt considérable, car elles permettent d’obtenir des estimés des coefficients du

modèle égaux à zéro. Dans le cadre de la régression pénalisée, de nombreuses approches

ont été développées pour les effets principaux. Cependant, il y un besoin d’adapter ces ap-

proches pour les modèles d’intéraction et les modèles mixtes. En effet, une capture précise

des interactions permettrait de mieux comprendre les phénomènes biologiques et d’améliorer

la précision des prédictions, car elles reflètent souvent une modulation importante d’un sys-

tème biologique par un facteur externe. De plus, les modèles mixtes pénalisés qui tiennent

compte des corrélations dues aux regroupements d’observations peuvent améliorer la sensi-

bilité et la spécificité. Cette thèse est composée principalement de trois manuscrits. Dans

le premier manuscrit, nous proposons une méthode appelée sail pour détecter les interac-

tions non linéaires qui applique automatiquement la propriété d’hérédité forte à l’aide des

pénalités ℓ1 et ℓ2. Nous décrivons une procédure de descente de coordonnées par blocs pour

optimiser la fonction objective, et nous démontrons la performance sur des données simulées

et réelles. Le deuxième manuscrit développe un cadre général de modèles mixtes pénal-

isés pour tenir compte des corrélations dans les données génétiques issues de familles. Notre

méthode, appelée ggmix, peut tirer profit de plusieurs pénalités, telles que lasso, elastic net et

group lasso. Elle permet également d’intégrer des informations d’annotation antérieures sous
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forme de poids. Notre algorithme a des garanties théoriques de convergence et nous évaluons

à nouveau ses performances à l’aide de données simulées et de données réelles. Le troisième

manuscrit décrit une nouvelle stratégie appelée eclust pour la réduction de la dimension des

variables qui exploite les effets d’une variable d’exposition ayant un impact important sur

les mesures GD. Avec eclust, nous avons constaté une amélioration de la performance pré-

dictive et de la sélection de variables par rapport aux méthodes qui ne tiennent pas compte

de l’exposition lors de l’étape de clustering ou des méthodes utilisant les données d’origine

comme des effets principaux. Nous illustrons ensuite ce cadre de modélisation en analysant

trois ensembles de données provenant de domaines très différents, chacun avec des données

GD, une exposition binaire et une variable réponse. Nous fournissons des implémentations

efficaces de tous nos algorithmes dans les logiciels gratuits et à source ouverte.
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Chapter 1

Introduction

In this thesis, we consider the prediction of an outcome variable y observed on n individuals

from p variables, where p is much larger than n. Challenges in this high-dimensional (HD)

context include not only building a good predictor which will perform well in an independent

dataset, but also being able to interpret the factors that contribute to the predictions. This

latter issue can be very challenging in ultra-high dimensional predictor sets. For example,

multiple different sets of covariates may provide equivalent measures of goodness of fit (J. Fan

et al., 2014), and therefore how does one decide which are important?

When p >> n, standard generalized linear models (GLMs) methodology cannot uniquely

estimate the unknown coefficient vector β. Moreover, even when p ≤ n with p close to n,

standard errors of GLMs are likely to be inflated and parameter estimates unstable (Reid

et al., 2016). In these instances it may be useful to assume the Bet on Sparsity Principle

which says:

Use a procedure that does well in sparse problems, since no procedure does well

in dense problems (J. Friedman et al., 2001).

In fact, sometimes this assumption is necessary since we often do not have a large enough

sample size to estimate so many parameters. Even when we do, we might want to identify a
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relatively small number of predictors that play an important role on the response. Applied

researchers in the health sciences might prefer a simpler model because it can shed light on

the etiology of disease. The sparsity assumption may also result in faster computations and

more stable predictions on new datasets.

With the advent of high-throughput technologies in genomics and brain imaging studies,

computational approaches to variable selection have become increasingly important. Broadly

speaking, there are three main approaches to analyze such HD data: 1) univariate regression

followed by a filtering step often based on multiple testing corrections, and then subsequently

a multivariable model using the reduced set of variables 2) multivariable penalized regression

and 3) dimension reduction followed by a multivariable regression.

In this thesis, we focus on the use of penalized regression methods for variable selection

and prediction in HD settings. In Chapter 2, we provide a critical review of the literature

on penalized regression methods and the computational algorithms used to fit these mod-

els. In Chapter 3, we develop the sparse additive interaction learning model called sail

for detecting non-linear interactions with a key environmental or exposure variable in HD

data. In Chapter 4, we develop a general penalized linear mixed model framework called

ggmix that simultaneously selects and estimates variables while accounting for between in-

dividual correlations in one step. Chapter 5 explores whether use of exposure-dependent

clustering relationships in dimension reduction can improve predictive modelling in a two-

step framework that we develop called eclust. Chapters 3, 4 and 5 were originally written

as stand-alone papers and as a result, there is some inconsistency in notation and overlap

with the literature review chapter. Chapter 5 has been published in Genetic Epidemiol-

ogy. Chapters 3 and 4 will be submitted for publication shortly after the submission of

the thesis. We have published open source and freely available R packages for each of the

methods developed Chapters 3, 4 and 5 (available at https://github.com/greenwoodlab

and https://github.com/sahirbhatnagar). Table 1.1 provides an overview of our soft-

3

https://github.com/greenwoodlab
https://github.com/sahirbhatnagar


ware packages including some of their key characteristics. In Chapter 6, we conclude with

an overview of the three manuscripts.

Table 1.1: Overview of our software packages
for the three methods developped in the the-
sis. Model describes the type of loss function
that has been developped in the thesis for a
given method. Penalty are the penalty func-
tions that can applied to the loss function. Fea-
ture describes the defining characteristics of the
method. Data describes the inputs required for
these methods, where x is the design matrix, y is
the response, e is a single exposure variable and Ψ
is an empirical covariance matrix. See Chapter 2
for more details.

eclust sail ggmix

Model

Least-Squares ✓ ✓ ✓

Binary Classification ✓

Penalty

Ridge ✓ ✓

Lasso ✓ ✓ ✓

Elastic Net ✓ ✓

Group Lasso ✓ ✓

Feature

Interactions ✓ ✓

Flexible Modeling ✓ ✓

Random Effects ✓

Data (x, y, e) (x, y, e) (x, y,Ψ)
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Chapter 2

Literature Review

The Literature Review is comprised of five sections. The first is a description of three general

analytic strategies for high-dimensional data. The second and third sections describe two

penalization methods that this thesis builds upon, namely the lasso and the group lasso.

For each method we detail the algorithms used to fit these models and their convergence

properties. In the fourth section we introduce penalized interaction models. This is followed

by a brief introduction to linear mixed-effects models.

2.1 High-dimensional regression methods

We briefly introduce three of the main analytic strategies used to analyze HD data using

the following notation. For n observations and p covariates, consider the multiple linear

regression model

y = β0 + Xβ + ε, (2.1)

where y ∈ Rn is the response, X ∈ Rn×p is the design matrix, β0 ∈ R is the intercept,

β ∈ Rp is the coefficient vector corresponding to X and ε ∈ Rn is a vector of iid random

errors.
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2.1.1 Univariate regression

Genome-wide association studies (GWAS) have become the standard method for analyz-

ing genetic datasets. A GWAS consists of a series of univariate regressions followed by a

multiple testing correction. This approach is simple and easy to implement, and has suc-

cessfully identified thousands of genetic variants associated with complex diseases (https://

www.genome.gov/gwastudies/). Despite these impressive findings, the discovered markers

have only been able to explain a small proportion of the phenotypic variance known as the

missing heritability problem (Manolio et al., 2009). One plausible explanation is that there

are many causal variants that each explain a small amount of variation with small effect

sizes (J. Yang et al., 2010). GWAS are likely to miss these true associations due to the

stringent significance thresholds required to reduce the number of false positives (Manolio

et al., 2009). Most statistical methods for performing multiple testing adjustments assume

weak dependence among the variables being tested (Leek & Storey, 2008). Dependence

among multiple tests can lead to incorrect Type 1 error rates (X. Lin et al., 2013) and highly

variable significance measures (Leek & Storey, 2008). Even in the presence of weakly depen-

dent variables, adjusting for multiple tests in whole genome studies can result in low power.

Furthermore, the univariate regression approach does not allow for modeling the joint effect

of many variants which may be biologically more plausible (Schadt, 2009).

Univariate regression results may serve as a filtering step for subsequent multivariable models

using the reduced set of predictors. Polygenic risk scores, which combine multiple genetic

markers (based on a univariate filter) into a single score, have increased the explanatory

power of a set of variables for predicting disease risk (Dudbridge, 2013). However, the final

model may not perform as well as it could because filtering, i.e., assessing whether to keep a

variable in the final model, is performed separately for each predictor. In the next section,

we introduce multivariable penalized regression approaches which have been proposed to

address some of these limitations.

6

https://www.genome.gov/gwastudies/
https://www.genome.gov/gwastudies/


2.1.2 Multivariable penalized regression

The least squares estimate for β in the standard linear model is given by β̂ =
(
XTX

)−1 XTy .

In high-dimensional data, the problem is that XTX is singular because the number of co-

variates greatly exceeds the number of subjects. For example RNA microarrays measure the

expression of approximately 20,000 genes. However, due to funding constraints, the sample

size is often less than a few hundred. A common solution to this problem is through penalized

regression, i.e., applying a constraint on the values of β. The problem can be formulated as

finding the vector β that minimizes the penalized sum of squares:

n∑
i=1

(
yi − β0 −

p∑
j=1

Xijβj

)2

  
goodness of fit

+

p∑
j=1

p(βj;λ, γ)  
penalty

(2.2)

The first term of (2.2) is the squared loss of the data and can be generalized to any loss func-

tion, while the second term is a penalty which depends on non-negative tuning parameters λ

and γ that control the amount of shrinkage to be applied to β and the degree of concavity of

the penalty function, respectively. Several penalty, p(·), terms have been developed in the lit-

erature. Ridge regression places a bound on the square of the coefficients (ℓ2 penalty) (Hoerl

& Kennard, 1970) which has the effect of shrinking the magnitude of the coefficients. This

however does not produce parsimonious models as none of the coefficients can be shrunk

to exactly 0. The Lasso (Tibshirani, 1996) overcomes this problem by placing a bound on

the sum of the absolute values of the coefficients (ℓ1 penalty) which effectively shrinks some

of them to 0, thereby simultaneously performing variable selection. The Lasso, along with

other forms of penalization (e.g. SCAD J. Fan & Li (2001), Fused Lasso (Tibshirani et al.,

2005), Adaptive Lasso (Zou, 2006), Relaxed Lasso (Meinshausen, 2007), MCP (C.-H. Zhang,

2010)) have proven successful in many practical problems. Despite these encouraging results,

such methods have low sensitivity for identifying associated variables in the presence of high

empirical correlations between covariates, because only one variable tends to be selected from
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the group of correlated or nearly linearly dependent variables (Bühlmann et al., 2013). As a

consequence, there is rarely consistency on which variables are chosen from one dataset to an-

other (e.g. in cross-validation folds). This behavior may not be desirable in high-dimensional

datasets in which large sets of predictors are highly correlated and are also associated with

the response since it may limit interpretability of results. The elastic net was proposed to

benefit from the strengths of ridge regression’s treatment of correlated variables and lasso’s

sparsity (Zou & Hastie, 2005). By placing both an ℓ1 and ℓ2 penalty on β, the elastic net

achieves model parsimony while yielding similar regression coefficients for correlated vari-

ables (Zou & Hastie, 2005). These methods however do not take advantage of any (possibly

known) grouping structure in the data. For example, cortical thickness measurements from

magnetic resonance imaging (MRI) scans are often grouped into cortical regions of the Au-

tomated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). Genes involved

in the same cellular process (e.g. KEGG pathway (Kanehisa et al., 2008)) can also be placed

into biologically meaningful groups. When regularizing with the ℓ1 penalty, each variable

is selected individually regardless of its position in the design matrix. Existing structures

among the variables (e.g. spatial, networks, pathways) are ignored even though in many

real-life applications the estimation can benefit from this prior knowledge in terms of both

prediction accuracy and interpretability (Bach et al., 2012). The group lasso (Yuan & Lin,

2006) (and generalizations thereof) overcomes this problem by producing a structured spar-

sity (Bach et al., 2012), i.e., given a predetermined grouping of variables, all members of

the group are either zero or non-zero. The main drawback when applying these methods is

that these groups may not be known a priori. Even in genomics, known pathways may not

be relevant to the response of interest, and the understanding of gene networks is still in its

infancy.
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2.1.3 Dimension reduction together with regression

Due to the unknown grouping problem, several authors have suggested a two-step procedure

where they first cluster or group variables in the design matrix and then subsequently proceed

to model fitting where the feature space is some summary measure of each group. This idea

dates back to 1957 when Kendall (Kendall, 1957) first proposed using principal components in

regression. Hierarchical clustering based on the correlation of the design matrix has also been

used to create groups of genes in microarray studies and for each level of hierarchy, the cluster

average was used as the new set of potential predictors in forward-backward selection (Hastie

et al., 2001) or the lasso (Park et al., 2007). Bühlmann et al. (2013) proposed a bottom-up

agglomerative clustering algorithm based on canonical correlations and used the group lasso

on the derived clusters. There are some advantages to these methods over the ones previously

mentioned in Sections 2.1.1 and 2.1.2. First, the results may be more interpretable than the

traditional lasso (and related methods) because the non-zero components of the prediction

model represent sets of genes as opposed to individual ones. Second, by using genes which

cluster well, we bias the inputs towards correlated sets of genes which are more likely to have

similar function. Third, taking a summary measure of the resulting clusters can reduce the

variance in prediction (overfitting) due to the compressed dimension of the feature space.

Lastly, from a practical point of view this approach is flexible and easy to implement because

efficient algorithms exist for both clustering (Müllner, 2013) and model fitting (J. Friedman

et al., 2010; Y. Yang & Zou, 2014).

In this context, we introduce a new two-step procedure called eclust (Bhatnagar et al., 2018)

in Chapter 5 of the thesis. Our method is motivated by the fact that exposure variables (e.g.

smoking) can alter correlation patterns between clusters of high-dimensional variables, i.e.,

alter network properties of the variables. However, it is not well understood whether such

altered clustering is informative in prediction. In this paper, we explore whether use of

exposure-dependent clustering relationships in dimension reduction can improve predictive
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modelling in a two-step framework.

Now that these three general strategies for predictive modelling with p >> n have been

described, the next section describes several penalized methods in detail.

2.2 Lasso

For least-squares loss, the lasso estimator (Tibshirani, 1996; Zou, 2006) is defined as

β̂(λ) = argmin
(β0,β)

1

2

n∑
i=1

wi(yi − β0 − (Xβ)i)
2 + λ

p∑
j=1

vj|βj| (2.3)

where (Xβ)i is the ith element of the n-length vector Xβ, λ > 0 is a tuning parameter

which controls the amount of regularization, wi is a known weight for the ith observation,

and vj is the penalty factor for the jth covariate. These penalty factors are assumed to

be known and allow parameters to be penalized differently. In particular, when vj = 1 for

j = 1, . . . , p then all parameters are regularized equally by λ, and when vj = 0 the jth

covariate is not penalized, i.e., it will always be included in the model. Note also that the

intercept is not penalized. The estimator (2.3) simultaneously does variable selection and

shrinks the regression coefficients towards 0. Depending on the choice of λ, β̂j(λ) = 0 for

some j’s, and β̂j(λ) can be thought of as a shrunken least squares estimator (Bühlmann &

Van De Geer, 2011). There are two potential benefits brought on by imposing a penalty

term to the loss function. First, the least-squares estimate has low bias but a large pre-

diction variance. Prediction accuracy can sometimes be improved by shrinking or biasing

the regression coefficients towards 0. This is known as the bias-variance trade-off. Second,

interpretation of the model becomes easier when only a small subset of predictors have been

identified in being relevant to the response.

The lasso estimator can produce biased estimates for large coefficients (Zou, 2006). In
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Section 2.2.4 we present the adaptive lasso which is a method that can mitigate this bias. It

is also worth noting that (2.3) is a convex optimization problem and thus can be solved very

efficiently using a block coordinate descent algorithm (J. Friedman et al., 2007; Tseng & Yun,

2009) for which we provide further details in Section 2.2.1. Other algorithms for solving this

problem exist, including LARS (Efron et al., 2004) and the homotopy algorithm (Osborne

et al., 2000), but these have been largely succeeded by the coordinate descent algorithm due

to its speed and computational efficiency.

2.2.1 Block coordinate descent algorithm

In a series of seminal papers, Tseng laid the groundwork for a general purpose block coor-

dinate descent algorithm (CGD) (Tseng, 2001; Tseng et al., 1988; Tseng & Yun, 2009) to

minimize the sum of a smooth function f (i.e. continuously differentiable) and a separable

convex function P of the form

Qλ(Θ) = argmin
Θ

f(Θ) + λP (Θ) (2.4)

At each iteration, the algorithm approximates f(Θ) in (2.4) by a strictly convex quadratic

function and then applies block coordinate descent to generate a descent direction followed

by an inexact line search along this direction (Tseng & Yun, 2009). For continuously dif-

ferentiable f(·) and convex and block-separable P (·) (e.g. P (β) =
∑

i Pi(βi)), Tseng & Yun

(2009) show that the solution generated by the CGD method is a stationary point of (2.4) if

the coordinates are updated in a Gauss-Seidel manner, i.e., Qλ(Θ) is minimized with respect

to one parameter while holding all others fixed. The separability of the penalty function into

a sum of functions of each individual parameter is the key to applying this algorithm to

lasso type problems. Indeed, the CGD algorithm has been successfully applied in fixed

effects models (J. Friedman et al., 2010; Meier et al., 2008) and linear mixed models (Schell-

dorfer et al., 2011). Following Tseng & Yun (2009), the general purpose CGD algorithm for
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solving (2.4) is given by Algorithm 1.

Algorithm 1 Coordinate Gradient Descent Algorithm to solve (2.4)

1: Set the iteration counter k ← 0 and choose initial values for the parameter vector Θ(0)

2: repeat
3: Approximate the Hessian ∇2f(Θ(k)) by a symmetric matix H(k):

H(k) = diag

[
min

{
max

{[
∇2f(Θ(k))

]
jj
, 10−2

}
109
}]

j=1,...,p

(2.5)

4: for j = 1, . . . , p do
5: Solve the descent direction d(k) := dH(k)(Θ

(k)
j )

dH(k)(Θ
(k)
j )← argmin

d

{
∇f(Θ(k)

j )d+
1

2
d2H

(k)
jj + λP (Θ

(k)
j + d)

}
(2.6)

6: Choose a stepsize

α
(k)
j ← line search given by the Armijo rule

7: Update
Θ̂

(k+1)
j ← Θ̂

(k)
j + α

(k)
j d(k)

8: k ← k + 1
9:

10: until convergence criterion is satisfied

The Armijo rule is defined as follows (Tseng & Yun, 2009):

Choose α(k)
init > 0 and let α(k) be the largest element of

{
αk
initδ

r
}
r=0,1,2,...

satisfying

Qλ(Θ
(k)
j + α(k)d(k)) ≤ Qλ(Θ

(k)
j ) + α(k)ϱ∆(k) (2.7)

where 0 < δ < 1, 0 < ϱ < 1, 0 ≤ γ < 1 and

∆(k) := ∇f(Θ(k)
j )d(k) + γ(d(k))2H

(k)
jj + λP (Θ

(k)
j + d(k))− λP (Θ(k)

j ) (2.8)

Common choices for the constants are δ = 0.1, ϱ = 0.001, γ = 0, α(k)
init = 1 for all k (Bertsekas,

1999). We use Algorithm 1 to solve the lasso estimator with least-squares loss given by (2.3).
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We provide a full derivation below as two of our methods, sail and ggmix, build on this

algorithm to solve their respective objective functions. Without loss of generality, we assume

the penalty factors (vj) are all equal to 1.

Descent Direction

For simplicity, we remove the iteration counter (k) from the derivation below.

For Θj ∈ {β1, . . . , βp}, let

dH(Θj) = argmin
d

G(d) (2.9)

where

G(d) = ∇f(Θj)d+
1

2
d2Hjj + λ|Θj + d|

Since G(d) is not differentiable at −Θj, we calculate the subdifferential ∂G(d) and search

for d with 0 ∈ ∂G(d):

∂G(d) = ∇f(Θj) + dHjj + λu (2.10)

where

u =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 if d > −Θj

−1 if d < −Θj

[−1, 1] if d = −Θj

(2.11)

We consider each of the three cases in (2.10) below

1. d > −Θj

∂G(d) = ∇f(Θj) + dHjj + λ = 0

d =
−(∇f(Θj) + λ)

Hjj
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Since λ > 0 and Hjj > 0, we have

−(∇f(Θj)− λ)
Hjj

>
−(∇f(Θj) + λ)

Hjj

= d
def
> −Θj

The solution can be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

where mid {a, b, c} denotes the median (mid-point) of a, b, c.

2. d < −Θj

∂G(d) = ∇f(Θj) + dHjj − λ = 0

d =
−(∇f(Θj)− λ)

Hjj

Since λ > 0 and Hjj > 0, we have

−(∇f(Θj) + λ)

Hjj

<
−(∇f(Θj)− λ)

Hjj

= d
def
< −Θj

Again, the solution can be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

3. dj = −Θj

There exists u ∈ [−1, 1] such that

∂G(d) = ∇f(Θj) + dHjj + λu = 0

d =
−(∇f(Θj) + λu)

Hjj

14



For −1 ≤ u ≤ 1, λ > 0 and Hjj > 0 we have

−(∇f(Θj) + λ)

Hjj

≤ d
def
= −Θj ≤

−(∇f(Θj)− λ)
Hjj

The solution can again be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

We see all three cases lead to the same solution for (2.9). Therefore the descent direction

for Θ
(k)
j ∈ {β1, . . . , βp} for the ℓ1 penalty is given by

d = mid
{
−(∇f(βj)− λ)

Hjj

,−βj,
−(∇f(βj) + λ)

Hjj

}
(2.12)

Solution for the β parameter

If the Hessian ∇2f(Θ(k)) > 0 then H(k) defined in (2.5) is equal to ∇2f(Θ(k)). Using

αinit = 1, the largest element of
{
α
(k)
initδ

r
}

r=0,1,2,...
satisfying the Armijo Rule inequality is

reached for α(k) = α
(k)
initδ

0 = 1. The Armijo rule update for the β parameter is then given

by

β
(k+1)
j ← β

(k)
j + d(k), j = 1, . . . , p (2.13)

Substituting the descent direction given by (B.11) into (2.13) we get

β
(k+1)
j = mid

{
β
(k)
j +

−(∇f(β(k)
j )− λ)

Hjj

, 0, β
(k)
j +

−(∇f(β(k)
j ) + λ)

Hjj

}
(2.14)
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We can further simplify this expression. First, we can re-write the loss function in (2.3)

as

g(β(k)) =
1

2

n∑
i=1

wi

(
yi −

∑
ℓ̸=j

Xiℓβ
(k)
ℓ −Xijβ

(k)
j

)2

(2.15)

The gradient and Hessian are given by

∇f(β(k)
j ) :=

∂

∂β
(k)
j

g(β(k)) = −
n∑

i=1

wiXij

(
yi −

∑
ℓ̸=j

Xiℓβ
(k)
ℓ −Xijβ

(k)
j

)
(2.16)

Hjj :=
∂2

∂β
(k)
j

2 g(β
(k)) =

n∑
i=1

wiX
2
ij (2.17)

Substituting (2.16) and (2.17) into β(k)
j +

−(∇f(β
(k)
j )−λ)

Hjj

β
(k)
j +

∑n
i=1wiXij

(
yi −

∑
ℓ̸=j Xiℓβ

(k)
ℓ −Xijβ

(k)
j

)
+ λ∑n

i=1wiX2
ij

= β
(k)
j +

∑n
i=1wiXij

(
yi −

∑
ℓ̸=j Xiℓβ

(k)
ℓ

)
+ λ∑n

i=1wiX2
ij

−
∑n

i=1wiX
2
ijβ

(k)
j∑n

i=1wiX2
ij

=

∑n
i=1wiXij

(
yi −

∑
ℓ ̸=j Xiℓβ

(k)
ℓ

)
+ λ∑n

i=1wiX2
ij

(2.18)

Similarly, substituting (2.16) and (2.17) in β(k)
j +

−(∇f(β
(k)
j )+λ)

Hjj
we get

∑n
i=1wiXij

(
yi −

∑
ℓ̸=j Xiℓβ

(k)
ℓ

)
− λ∑n

i=1wiX2
ij

(2.19)
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Finally, substituting (2.18) and (2.19) into (2.14) we get

β
(k+1)
j = mid

⎧⎨⎩
∑n

i=1wiXij

(
yi −

∑
ℓ̸=j Xiℓβ

(k)
ℓ

)
− λ∑n

i=1wiX2
ij

, 0,

∑n
i=1wiXij

(
yi −

∑
ℓ̸=j Xiℓβ

(k)
ℓ

)
+ λ∑n

i=1wiX2
ij

⎫⎬⎭
=
Sλ
(∑n

i=1wiXij

(
yi −

∑
ℓ̸=j Xiℓβ

(k)
ℓ

))
∑n

i=1wiX2
ij

(2.20)

Where Sλ(x) is the soft-thresholding operator

Sλ(x) = sign(x)(|x| − λ)+

sign(x) is the signum function

sign(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−1 x < 0

0 x = 0

1 x > 0

and (x)+ = max(x, 0). Since there is a closed form solution, which can be computed very

quickly for each parameter update (given by (2.20)), the CGD algorithm is an attractive

approach for solving the lasso estimator.

2.2.2 Lambda sequence

In general, the solution to (2.3) is computed over a decreasing sequence of values for the

tuning parameter λ, beginning with the smallest value λmax for which the entire coefficient

vector β̂ = 0p (J. Friedman et al., 2010). To determine λmax, we turn to the Karush-Kuhn-
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Tucker (KKT) optimality conditions for (2.3). These conditions can be written as

1

vj

n∑
i=1

wiXij

(
yi −

p∑
j=1

Xijβ̂j

)
= λγj,

γj ∈

⎧⎪⎪⎨⎪⎪⎩
sign(β̂j) if β̂j ̸= 0

[−1, 1] if β̂j = 0

, for j = 1, . . . , p

(2.21)

where γj is the subgradient of the function f(x) = |x| evaluated at x = β̂j. From (2.21),

we can solve for the smallest value of λ such that the entire vector (β̂1, . . . , β̂p) is 0. This is

given by

λmax = max
j

{⏐⏐⏐⏐⏐ 1vj
n∑

i=1

wiXijyi

⏐⏐⏐⏐⏐
}
, j = 1, . . . , p (2.22)

Following J. Friedman et al. (2010), we can choose τλmax to be the smallest value of tuning

parameters λmin, and construct a sequence of K values decreasing from λmax to λmin on the

log scale. The defaults are set to K = 100, τ = 0.01 if n < p and τ = 0.001 if n ≥ p. The

optimal value of λ can be chosen using 5-fold or 10-fold cross-validation. For least-squares

loss, this corresponds to choosing the λ which minimizes the mean squared error.

2.2.3 Warm starts

The way in which we have derived the sequence of tuning parameters using the KKT con-

ditions (Section 2.2.2), allows us to exploit warm starts which has been shown to lead to

computational speedups (J. Friedman et al., 2010). That is, the solution Θ̂ for λk is used as

the initial value Θ(0) for λk+1.
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2.2.4 Adaptive lasso

It has been shown that the lasso estimator can produce biased estimates for large coefficients

and give inconsistent variable selection results at the optimal λ for prediction, i.e., many noise

features are included in the prediction model (Zou, 2006). To overcome the bias problems of

the lasso, Zou (2006) proposed the adaptive lasso which allows a different amount of shrinkage

for each regression coefficient using adaptive weights. Adaptive weighting has been shown to

construct oracle procedures (J. Fan & Li, 2001), i.e., asymptotically, it performs as well as

if the true model were given in advance. The adaptive lasso can be described as a two-stage

procedure:

1. Calculate the initial regression estimates β̂init from (2.3)

2. Refit (2.3) using penalty factors vj equal to 1/
⏐⏐⏐β̂init,j⏐⏐⏐ for j = 1, . . . , p.

As we can see from the weights, the adaptive lasso will shrink larger coefficients less which

leads to consistent variable selection results under weaker conditions than the lasso (Bühlmann

& Van De Geer, 2011). We detail the adaptive lasso procedure in Algorithm 2.

Algorithm 2 Adaptive lasso algorithm
1. For a decreasing sequence λ = λmax, . . . , λmin, fit the lasso with vj = 1 for j = 1, . . . , p
2. Use cross-validation or a data splitting procedure to determine the optimal value for

the tuning parameter: λ[opt] ∈ {λmax, . . . , λmin}
3. Let β̂[opt]

init,j for j = 1, . . . , p be the coefficient estimates corresponding to the model at
λ[opt]

4. Set the weights to be vj =
(⏐⏐⏐β̂[opt]

init,j

⏐⏐⏐)−1

for j = 1, . . . , p

5. Refit the lasso with the weights defined in step 4), and use cross-validation or a data
splitting procedure to choose the optimal value of λ

2.3 Group Lasso

One main drawback of the lasso is that it ignores the grouping structure of the design

matrix. When given a predetermined grouping of non-overlapping variables, we might want
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linear

quadratic

credit card balance

age

height

(a) Lasso

linear

quadratic

credit card balance

age

height

(b) Group Lasso

Figure 2.1: The selected components from Model (2.23) for (a) the lasso and (b) the group
lasso. The origin of the xyz axis is zero which means both the linear and quadratic terms
are 0. In this toy example, the lasso selects only the quadratic term for age while the group
lasso selects both linear and quadratic terms.

the coefficients of all members of the group to be either zero or non-zero. For example,

when dealing with categorical predictors where each factor is expressed through a set of

indicator variables, removing an irrelevant factor is equivalent to setting the coefficients of

all the indicator variables to 0. In a generalized additive model (Hastie & Tibshirani, 1987),

where each variable is projected on to a set of basis function, e.g. fj(Xj) =
∑mj

ℓ=1 ψjℓ(Xj)βjℓ,

we would want all {βjℓ}
mj

ℓ=1 to be either zero or non-zero. This key difference between the

lasso and group lasso penalty is illustrated in Figure 2.1. Suppose we want to predict

an individual’s credit card balance from their age and height using the following additive

model:

credit card balance = β0 + β11age + β12age2 + β21height + β22height2 + ε (2.23)

In Figures 2.1a and 2.1b we see that both the lasso and group lasso set the linear and

quadratic terms for height (β̂21, β̂22) to 0. However, the lasso estimates only a nonzero

quadratic term for age (β̂11 = 0, β̂12 ̸= 0) while the group lasso estimates both linear and

quadratic terms to be nonzero (β̂11 ̸= 0, β̂12 ̸= 0). We now provide details on the group lasso

estimator.
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Assume that the predictors in the design matrix X ∈ Rn×p belong to K groups and define the

cardinality of index set Ik to be pk. These groups are known a priori such that (1, 2, . . . , p) =⋃K
k=1 Ik, and are also non-overlapping, i.e., Ik

⋂
Ik′ = ∅ for k ̸= k′. Therefore, group k

contains pk predictors corresponding to X(k), i.e., the columns of the design matrix Xj for

j ∈ Ik, and 1 ≤ k ≤ K. The intercept belongs to its own group, i.e., I1 = {1}. The group

lasso partitions the variable coefficients into K groups β = ([β(1)]⊺, [β(2)]⊺, · · · , [β(K)]⊺)⊺,

where β(k) denotes the segment of β corresponding to group k. For least-squares loss, the

group lasso estimator (Yuan & Lin, 2006) is given by:

β̂(λ) = argmin
(β0,β)

1

2

n∑
i=1

wi(yi − β0 − (Xβ)i)
2 + λ

K∑
k=1

vk∥β(k)∥2 (2.24)

where
β(k)


2
=
√∑

j∈Ik β
2
j and λ > 0 is the tuning parameter. As in the lasso estima-

tor (2.3), there are both observation weights wi, and penalty factors vk ≥ 0 which control

the relative strength of the terms within the group lasso penalty. These penalty factors

are often set to √pk (Yuan & Lin, 2006). Note that the same penalty factor is applied to

all the coefficients in a group. Solving the group lasso estimator is more challenging than

the lasso since there is no closed form solution for (2.24). In the next section, we detail a

majorization-minimization (MM) type algorithm (Lange et al., 2000; Y. Yang & Zou, 2015)

used to solve (2.24).

2.3.1 Groupwise majorization descent algorithm

This description of the groupwise majorization descent (GMD) algorithm used to solve (2.24)

follows mainly from Y. Yang & Zou (2015). The main difference here is that we consider a

more general loss function of the form

L(β | D) =
1

2
[y − ŷ ]⊤W [y − ŷ ] (2.25)
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where ŷ = β̂0 + Xβ̂, D is the working data {y ,X}, and W is an n × n nonsingular and

known weight matrix. This weight matrix can be used when the elements of y are correlated

as is done in generalized least squares. The original proposal in Y. Yang & Zou (2015)

is a special case of (2.25) where W is a diagonal matrix with entries equal to wi. The

loss function (2.25) satisfies the quadratic majorization (QM) condition, since L(β | D) is

differentiable as a function of β, i.e., ∇L(β|D) = − (y − ŷ)⊤WX, and there exists a p× p

matrix H = X⊤WX which only depends on the data D, such that for all β,β∗,

L(β | D) ≤ L(β∗ | D) + (β − β∗)⊤∇L(β∗|D) +
1

2
(β − β∗)⊤H(β − β∗). (2.26)

We can exploit the fact that the loss function (2.25) satisfies the QM condition to majorize

the loss function in (2.24) by (2.26), and that the penalty term
∑K

k=1 vk∥β
(k)∥2 in (2.24) is

separable with respect to the indices of the variables k = 1, . . . , K to performs groupwise

updates for each β(k).

Let β̃ denote the current solution of β and define H(k) as the sub-matrix of H corresponding

to group k. For example, if group 2 is {2, 4} then H(2) is a 2× 2 matrix with

H(2) =

⎡⎢⎣ h2,2 h2,4

h4,2 h4,4

⎤⎥⎦ ,

where hi,j is the i, jth entry of the H matrix. Write β such that β(k′) = β̃
(k′)

for k′ ̸= k.

Given β(k′) = β̃
(k′)

for k′ ̸= k, the estimator for β(k) is given by

β̂
(k)
(λ) = argmin

β(k)
L(β | D) + λvk∥β(k)∥2. (2.27)

Using β − β̃ = (0, . . . , 0  
k−1

,β(k) − β̃
(k)
, 0, . . . , 0  

K−k

) and the majorization defined in (2.26) we can
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write

L(β | D) ≤ L(β̃ | D)− (β(k) − β̃
(k)
)⊤U (k) +

1

2
(β(k) − β̃

(k)
)⊤H(k)(β(k) − β̃

(k)
). (2.28)

where

U (k) =
∂

∂β(k)
L(β | D) = − (y − ŷ)⊤ WX(k), (2.29)

H(k) =
∂2

∂β(k)∂β(k)⊤L(β | D) = (X(k))⊤WX(k). (2.30)

The upper bound in (2.28) can be majorized even further to avoid expensive matrix mul-

tiplications and storing H(k) in memory. Let ηk be the largest eigenvalue of H(k). We set

γk = (1 + ε∗)ηk, where ε∗ = 10−6 and substitute γk for H(k) in (2.28):

L(β | D) ≤ L(β̃ | D)− (β(k) − β̃
(k)
)⊤U(k) +

1

2
γk(β

(k) − β̃
(k)
)⊤(β(k) − β̃

(k)
). (2.31)

It is important to note that the inequality strictly holds unless when β(k) = β̃
(k)

. Substituting

the upper bound in (2.31) for L(β | D) in (2.27) we get the following estimator for β(k)

argmin
β(k)

L(β̃ | D)− (β(k)− β̃
(k)
)⊤U (k)+

1

2
γk(β

(k)− β̃
(k)
)⊤(β(k)− β̃

(k)
)+λvk∥β(k)∥2. (2.32)

Let β̃
(k)
(new) be the solution to (2.32) which has a simple closed-from expression:

β̃
(k)
(new) =

1

γk

(
U (k) + γkβ̃

(k)
)(

1− λvk

∥U (k) + γkβ̃
(k)
∥2

)
+

. (2.33)

Algorithm 3 summarizes the details of GMD for the group lasso with least-squares loss func-

tion given by (2.25). The GMD algorithm has the strict descent property and converges to

the right answer. The proof follows directly from Section 3.1 of Y. Yang & Zou (2015).
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In Figure 2.2 we provide an illustration of the quadratic majorization technique for updating

a parameter βj. The solution lies at the minimum of the F curve but we cannot solve for

this directly since there is no closed form solution. Instead we majorize F using Q1 which is

a function consisting of the quadratic approximation of F plus the penalty term evaluated

at β(m)
j . The minimum of Q1, for which there is a closed form solution, corresponds to the

next iteration β
(m+1)
j . We then majorize again using Q2 and solve for the minimum. This

process is repeated until convergence.
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Figure 2.2: Illustration of the quadratic majorization technique for updating the coefficient
βj from the m step to the (m+1) step. F is the objective function for which there is no closed
form solution. Q1 and Q2 are the surrogate functions for which we can find the minimum.
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Algorithm 3 The GMD algorithm for group lasso with least-squares loss function given
by (2.25).

1. For k = 1, . . . , K, compute γk, the largest eigenvalue of H(k) = (X(k))⊤WX(k)

2. Initialize β̃.
3. Repeat the following cyclic groupwise updates until convergence:

— for k = 1, . . . , K, do step (3.1)–(3.3)
3.1 Compute U(β̃) = −∇L(β̃|D) = − (y − ŷ)⊤WX(k)

3.2 Compute β̃
(k)
(new) = 1

γk

(
U (k) + γkβ̃

(k)
)(

1− λvk

∥U(k)+γkβ̃
(k)∥2

)
+

.

3.3 Set β̃
(k)

= β̃
(k)
(new).

2.3.2 Lambda sequence

Similar to Section 2.2.2, we compute the solution to (2.24) over a decreasing sequence of

values for the tuning parameter λ starting with λmax. From the update formula (2.33) we

have that for all k⎧⎪⎪⎨⎪⎪⎩
β̃

(k)
= 1

γk

(
U (k) + γkβ̃

(k)
)(

1− λvk

∥U(k)+γkβ̃
(k)∥2

)
if ∥U (k) + γkβ̃

(k)
∥2 > λvk

β̃
(k)

= 0 if ∥U (k) + γkβ̃
(k)
∥2 ≤ λvk .

We can then directly obtain the KKT conditions for k = 1, . . . , K:

−U (k) + λvk ·
β̃

(k)

∥β̃
(k)
∥2

= 0 if β̃
(k)
̸= 0,

U (k)

2
≤ λwk if β̃

(k)
= 0 .

(2.34)

Using (2.34) we can solve for the smallest value of λ such that the entire vector
{
β̂

(k)
}K

k=1

is 0. This is given by

λmax = max
k

1

vk

U (k)

2
, k = 1, . . . , K, vk ̸= 0 (2.35)
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2.3.3 Warm starts and adaptive group lasso

Warm starts can also be implemented for the group lasso as described in Section 2.2.3 for

the lasso. Furthermore, the adaptive group lasso can be computed using Algorithm 2; the

main difference is that the coefficient estimates in Step 1 are obtained from a group lasso fit

and the weights for group k are given by vk =
(β̂(k)


2

)−1

.

2.4 Penalized interaction models

In this section, we introduce penalized regression methods in the context of interaction

models. We consider a regression model for an n-length outcome variable y which follows

an exponential family. Let E = (e1, . . . , en) be the binary environment or exposure vector

and X the n× p matrix of high-dimensional data. Consider the regression model with main

effects and their interactions with E:

g(µ) =β0 + β1X1 + · · ·+ βpXp + βEE  
main effects

+α1E(X1E) + · · ·+ αpE(XpE)  
interactions

(2.36)

where g(·) is a known link function and µ = E [y |X, E,β,α]. Due to the large number

of parameters to estimate with respect to the number of observations, we might consider

adding the lasso penalty introduced in Section 2.2. A natural extension of the lasso penalty

applied to the interaction model (2.36) is

argmin
β0,β,α

1

2
∥Y − g(µ)∥22 + λ (∥β∥1 + ∥α∥1) , (2.37)

where ∥Y − g(µ)∥22 =
∑

i(yi − g(µi))
2, ∥β∥1 =

∑
j |βj|, ∥α∥1 =

∑
j |αj| and λ ≥ 0 is the

tuning parameter that can set some of the coefficients to zero when sufficiently large. A

limitation of (2.37) is that the selected model may have main effects that are 0 but the

corresponding interaction terms are not. This is due to the penalty which treats both main

26



effects and interactions equally. While there may exist situations where this can occur,

statisticians have long argued that large main effects are more likely to lead to detectable

interactions than small ones (Cox, 1984) and therefore, main effects should enter the model

before interactions. This is known as the strong heredity principle (Chipman, 1996):

α̂jE ̸= 0 ⇒ β̂j ̸= 0 and β̂E ̸= 0 (2.38)

In words, the interaction term will only have a non-zero estimate if its corresponding main

effects are estimated to be non-zero. One benefit brought by hierarchy is that the number of

measured variables can be reduced, referred to as practical sparsity (Bien et al., 2013; She

& Jiang, 2014). For example, a model involving X1, E,X1 · E is more parsimonious than a

model involving X1, E,X2 · E, because in the first model a researcher would only have to

measure two variables compared to three in the second model.

There have been several proposals for modeling interactions with the strong heredity con-

straint in the penalization literature including Composite Absolute Penalties (CAP) (Zhao

et al., 2009), Variable selection using Adaptive Nonlinear Interaction Structures in High di-

mensions (VANISH) (Radchenko & James, 2010), Strong Hierarchical Lasso (hierNet) (Bien

et al., 2013), Group-Lasso Interaction Network (glinternet) (Lim & Hastie, 2015), Group

Regularized Estimation under Structural Hierarchy (GRESH) (She & Jiang, 2014) and a

Framework for Modeling Interactions with a Convex Penalty (FAMILY) (Haris et al., 2014).

A popular approach to achieve this structured sparsity is via the group lasso penalty where

each group contains both main effects and their corresponding interactions. For example,

consider a two-way interaction model of the form

y =β0 + β1X1 + β2X2 + β3X3

+ β12X1X2 + β13X1X3 + β23X2X3 + ε
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A grouping structure that would satisfy the strong heredity property is:

group 1 2 3 4 5 6
parameter β1 β2 β3 β1 β2 β12 β1 β3 β13 β2 β3 β23

A limitation of this approach is that its impossible to select one variable without selecting

all the groups containing it (Jacob et al., 2009). This implies that if a main effect has been

selected, all the interaction terms with that main effect will necessarily be selected as well

which can be an issue when the truth contains no interactions.

In Chapter 3 of the thesis, we introduce a new structured sparsity called sail which satisfies

the strong heredity property while overcoming this issue, i.e., a selected main effect does not

automatically imply that the corresponding interactions will also be selected. Furthermore,

our method can accommodate non-linear interaction effects on the response. The context of

Chapter 3 is summarized in Table 2.1.

Table 2.1: Overview of methods with structured sparsity for penalized regression
models

Type Method Software

Linear CAP (Zhao et al., 2009) ✗

SHIM (Choi et al., 2010) ✗

hiernet (Bien et al., 2013) hierNet(x, y)

GRESH (She & Jiang, 2014) ✗

FAMILY (Haris, Witten, & Simon, 2016) FAMILY(x, z, y)

glinternet (Lim & Hastie, 2015) glinternet(x, y)

RAMP (Hao et al., 2018) RAMP(x, y)

LassoBacktracking (Shah, 2016) LassoBT(x, y)

Non-linear VANISH (Radchenko & James, 2010) ✗

sail (Chapter 3 of the thesis) sail(x, y, e)
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2.5 Linear mixed-effects models

Linear mixed-effects models (LMMs) (Laird & Ware, 1982) are a class of statistical models

used to account for correlations induced by a natural grouping of the observations such as

students in schools or repeated measurements on the same individual. By introducing a

subject specific random effect, LMMs can simultaneously model the mean and covariance

structure to produce valid standard errors. In this section we briefly introduce LMMs as a

preface to Chapter 4 of the thesis which is about penalized LMMs.

Let i = 1, . . . , N be the grouping index, j = 1, . . . , ni the observation index within a group

and NT =
∑N

i=1 ni the total number of observations. For each group let y i = (y1, . . . , yni
) be

the observed vector of responses, Xi an ni× (p+1) design matrix (with the column of 1s for

the intercept), b i a group-specific random effect vector of length ni and εi = (εi1, . . . , εini
)

the individual error terms. Denote the stacked vectors Y = (y i, . . . , yN)
T ∈ RNT×1, b =

(b i, . . . , bN)
T ∈ RNT×1, ε = (εi, . . . , εN)

T ∈ RNT×1, and the stacked matrix

X = (X1, . . . ,XN)
T ∈ RNT×(p+1). Furthermore, let β = (β0, β1, . . . , βp)

T ∈ R(p+1)×1 be a

vector of fixed effects regression coefficients corresponding to X. We consider the following

LMM with a single random effect:

Y = Xβ + b + ε (2.39)

where the random effect b and the error variance ε are assigned the distributions

b ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I) (2.40)

Here, ΦNT×NT
is a known positive semi-definite and symmetric covariance matrix, INT×NT

is

the identity matrix and parameters σ2 and η ∈ [0, 1] determine how the variance is divided
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between b and ε. The joint density of Y is multivariate normal:

Y|(β, η, σ2) ∼ N (Xβ, ησ2Φ+ (1− η)σ2I) (2.41)

In high-dimensional contexts, the classic LMM is no longer applicable for the same reasons

why the linear model does not apply, i.e., singularity of XTX. However, naively applying

a penalized method such as the lasso to clustered data is also invalid. Indeed, ignoring the

grouping structure can lead to incorrect inference due to biased standard errors of parameters,

and can also violate the normality of residuals assumption. In Chapter 4 of this thesis,

we develop a general framework for penalized mixed models that simultaneously performs

variable selection while accounting for the correlations induced by the natural clustering of

the observations.
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Chapter 3

Sparse Additive Interaction Learning

Preamble to Manuscript 1. Through interactions with some colleagues we became aware

that there was a need for interaction models where one key factor possibly interacted with a

high dimensional set. After a literature review, we found that the majority of methods being

developed for interactions lacked two key features for our real data applications: 1) non-linear

interaction effects and 2) interaction with a single exposure variable. Hence we developed

sail to provide a solution for detecting non-linear interactions with a key environmental or

exposure variable in high-dimensional settings, which respected the heredity principle.
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Abstract

Diseases are now thought to be the result of changes in entire biological networks whose

states are affected by a complex interaction of genetic and environmental factors. In general,

power to estimate interactions is low, the number of possible interactions could be enormous

and their effects may be non-linear. Existing approaches such as the lasso might keep

an interaction but remove a main effect, which is problematic for interpretation. In this

work, we introduce a sparse additive interaction learning model called sail for detecting

non-linear interactions with a key environmental or exposure variable in high-dimensional

settings. Our method can accommodate either the strong or weak heredity constraints.

We develop a computationally efficient fitting algorithm with automatic tuning parameter

selection, which scales to high-dimensional datasets. Through an extensive simulation study,

we show that sail outperforms existing penalized regression methods in terms of prediction

error, sensitivity and specificity when there are non-linear interactions with an exposure

variable. We apply sail to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data to

select non-linear interactions between clinical diagnosis and Aβ protein in 96 brain regions

on mini-mental state examination. Our algorithms are available in an R package (https://

github.com/greenwoodlab).
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3.1 Introduction

Computational approaches to variable selection have become increasingly important with the

advent of high-throughput technologies in genomics and brain imaging studies, where the

data has become massive, yet where it is believed that the number of truly important vari-

ables is small relative to the total number of variables. Although many approaches have been

developed for main effects, there is an enduring interest in powerful methods for estimating

interactions, since interactions may reflect important modulation of a genomic system by an

external factor. Accurate capture of interactions may hold the potential to better under-

standing biological phenomena and improving prediction accuracy. For example, a model

that considered interactions between brain imaging data and genetic features had better

classification accuracy compared to a model that considered the main effects only (Ning et

al., 2018). Furthermore, the manifestations of disease are often considered to be the result

of changes in entire biological networks whose states are affected by a complex interaction

of genetic and environmental factors (Schadt, 2009). However, there is a general deficit of

such replicated interactions in the literature (Timpson et al., 2018). Indeed, power to detect

interactions is always lower than for main effects, and in high-dimensional settings (p >> n),

this lack of power to detect interactions is exacerbated, since the number of possible interac-

tions could be enormous and their effects may be non-linear. Hence, analytic methods that

may improve power are essential.

Interactions may occur in numerous types and of varying complexities. In this paper, we

consider one specific type of interaction models, where one (exposure) variable is involved in

possibly non-linear interactions with a high-dimensional set of measures X leading to effects

on a response variable, Y . We propose a multivariable penalization procedure for detecting

non-linear interactions X and E. The proposed approach uses a simple change of variable

to implement the heredity property (Chipman, 1996). This allows us to combine both the

ℓ1 and ℓ2-norm penalties to achieve sparse solutions while modeling both non-linear main
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effects and non-linear interaction effects.

3.1.1 A Sparse additive interaction model

Let Y = (Y1, . . . , Yn) ∈ Rn be a continuous outcome variable, XE = (E1, . . . , En) ∈ Rn a

binary or continuous environment vector, and X = (X1, . . . , Xp) ∈ Rn×p a matrix of predic-

tors, possibly high-dimensional. Furthermore let fj : R → R be a smoothing method for

variable Xj by a projection on to a set of basis functions:

fj(Xj) =

mj∑
ℓ=1

ψjℓ(Xj)βjℓ (3.1)

Here, the {ψjℓ}mj

1 are a family of basis functions in Xj (Hastie et al., 2015). Let Ψj be the

n×mj matrix of evaluations of the ψjℓ and θj = (βj1, . . . , βjmj
) ∈ Rmj for j = 1, . . . , p (θj is

a mj-dimensional column vector of basis coefficients for the jth main effect). In this article

we consider an additive interaction regression model of the form

g(µ) = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

(XE ◦Ψj)τ j (3.2)

where g(·) is a known link function, µ = E [Y |Ψ, XE], β0 is the intercept, βE is the coefficient

for the environment variable, τ j = (τj1, . . . , τjmj
) ∈ Rmj are the basis coefficients for the

jth interaction term, and (XE ◦ Ψj) is the n × mj matrix formed by the component-wise

multiplication of the column vector XE by each column of Ψj. For a continuous response,

we use the squared-error loss to estimate the parameters:

L(Θ|D) =
1

2n

Y − β0 · 1−
p∑

j=1

Ψjθj − βEXE −
p∑

j=1

(XE ◦Ψj)τ j


2

2

(3.3)

where Θ := (β0, βE,θ1, . . . ,θp, τ 1, . . . , τ p) and D := (Y,Ψ, XE) is the working data. Here

we assume that p is large relative to n, and particularly that
∑p

j=1mj/n is large. Due to
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the large number of parameters to estimate with respect to the number of observations, one

commonly-used approach is to shrink the regression coefficients by placing a constraint on

the values of (βE,θj, τ j). Certain constraints have the added benefit of producing a sparse

model in the sense that many of the coefficients will be set exactly to 0 (Bühlmann & Van

De Geer, 2011). Such a reduced predictor set can lead to a more interpretable model with

smaller prediction variance, albeit at the cost of having biased parameter estimates (J. Fan

et al., 2014). In light of these goals, we consider the following objective function:

argmin
Θ

L(Θ|D) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE∥τ j∥2 (3.4)

where ∥θj∥2 =
√∑mj

k=1 β
2
jk, ∥τ j∥2 =

√∑mj

k=1 τ
2
jk, λ > 0 and α ∈ (0, 1) are adjustable tuning

parameters, wE, wj, wjE are non-negative penalty factors for j = 1, . . . , p which serve as a

way of allowing parameters to be penalized differently. The first term in the penalty penalizes

the main effects while the second term penalizes the interactions. The parameter α controls

the relative weight on the two penalties. Note that we do not penalize the intercept.

An issue with (3.4) is that since no constraint is placed on the structure of the model, it is

possible that an estimated interaction term is nonzero while the corresponding main effects

are zero. While there may be certain situations where this is plausible, statisticians have

generally argued that interactions should only be included if the corresponding main effects

are also in the model (McCullagh & Nelder, 1989). This is known as the strong heredity

principle (Chipman, 1996). Indeed, large main effects are more likely to lead to detectable

interactions (Cox, 1984). In the next section we discuss how a simple reparametrization of

the model (3.4) can lead to this desirable property.
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3.1.2 Strong and weak heredity

The strong heredity principle states that an interaction term can only have a non-zero

estimate if its corresponding main effects are estimated to be non-zero. The weak heredity

principle allows for a non-zero interaction estimate as long as one of the corresponding

main effects is estimated to be non-zero (Chipman, 1996). In the context of penalized

regression methods, these principles can be formulated as structured sparsity (Bach et al.,

2012) problems. Several authors have proposed to modify the type of penalty in order to

achieve the heredity principle (Bien et al., 2013; Haris et al., 2014; Lim & Hastie, 2014;

Radchenko & James, 2010). We take an alternative approach and highlight it’s novelties

in Section 3.1.4. Following Choi et al. (2010), we introduce a new set of parameters γ =

(γ1, . . . , γp) ∈ Rp and reparametrize the coefficients for the interaction terms τ j in (3.2) as

a function of γj and the main effect parameters θj and βE. This reparametrization for both

strong and weak heredity is summarized in Table 3.1.

Table 3.1: Reparametrization for strong and weak heredity principle for
sail model

Type Feature Reparametrization

Strong heredity τ̂ j ̸= 0⇒ θ̂j ̸= 0 and β̂E ̸= 0 τ j = γjβEθj

Weak heredity τ̂ j ̸= 0⇒ θ̂j ̸= 0 or β̂E ̸= 0 τ j = γj(βE · 1mj
+ θj)

To perform variable selection in this new parametrization, we penalize γ = (γ1, . . . , γp)

instead of penalizing τ as in (3.4), leading to the following objective function:

argmin
Θ

L(Θ|D) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj| (3.5)

This penalty allows for the possibility of excluding the interaction term from the model even

if the corresponding main effects are non-zero. Furthermore, smaller values for α would lead

to more interactions being included in the final model while values approaching 1 would
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favor main effects. Similar to the elastic net (Zou & Hastie, 2005), we fix α and obtain a

solution path over a sequence of λ values.

3.1.3 Toy example

We present here a toy example to better illustrate our method. With a sample size of

n = 100, we sample p = 20 covariates X1, . . . Xp independently from a N(0, 1) distribution

truncated to the interval [0,1]. Data were generated from a model which follows the strong

heredity principle, but where only one covariate, X2, is involved in an interaction with a

binary exposure variable, E:

Y = f1(X1) + f2(X2) + 1.75E + 1.5E · f2(X2) + ε (3.6)

For illustration, function f1(·) is assumed to be linear, whereas function f2(·) is non-linear:

f1(x) = −3x, f2(x) = 2(2x− 1)3. The error term ε is generated from a normal distribution

with variance chosen such that the signal-to-noise ratio (SNR) is 2. We generated a single

simulated dataset and used the strong heredity sail method with cubic B-splines to estimate

the functional forms. 10-fold cross-validation (CV) was used to choose the optimal value of

penalization. We used α = 0.5 and default values were used for all other arguments. We

plot the solution path for both main effects and interactions in Figure 3.1, coloring lines to

correspond to the selected model. We see that our method is able to correctly identify the

true model. We can also visually see the effect of the penalty and strong heredity principle

working in tandem, i.e., the interaction term E · f2(X2) (orange lines in the bottom panel)

can only be nonzero if the main effects E and f2(X2) (black and orange lines respectively in

the top panel) are nonzero, while nonzero main effects doesn’t necessarily imply a nonzero

interaction.
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Figure 3.1: Toy example solution path for main effects (top) and interactions (bottom).
{X11, X12, X13} and {X21, X22, X23} are the three basis coefficients for X1 and X2, re-
spectively. λ1SE is the largest value of penalization for which the CV error is within one
standard error of the minimizing value λmin.

In Figure 3.2, we plot the true and estimated component functions f̂1(X1) and E · f̂2(X2),

and their estimates from this analysis with sail. We are able to capture the shape of the

correct functional form, but the means are not well aligned with the data. Lack-of-fit for

f1(X1) can be partially explained by acknowledging that sail is trying to fit a cubic spline

to a linear function. Nevertheless, this example demonstrates that sail can still identify

trends reasonably well.

39



−
3

−
2

−
1

0
1

X1

f(
X

1)

0.0 0.2 0.4 0.6 0.8 1.0

Truth
Estimated

−
3

−
2

−
1

0
1

2
3

X2
f(

X
2)

⋅E
0.0 0.2 0.4 0.6 0.8 1.0

●

●

E=0
E=1

Figure 3.2: Estimated smooth functions forX1 and theX2 ·E interaction by the sail method
based on λmin.

3.1.4 Related Work

Methods for variable selection of interactions can be broken down into two categories: linear

and non-linear interaction effects. Many of the linear effect methods consider all pairwise

interactions in X (Bien et al., 2013; Choi et al., 2010; She & Jiang, 2014; Zhao et al., 2009)

which can be computationally prohibitive when p is large. The computational limitation can

be perceived through the relatively small number of variables used in simulations and real

data analysis in (Bien et al., 2013; Choi et al., 2010; She & Jiang, 2014; Zhao et al., 2009).

More recent proposals for selection of interactions allow the user to restrict the search space

to interaction candidates (Haris, Witten, & Simon, 2016; Lim & Hastie, 2015). This is useful

when the researcher wants to impose prior information on the model. Two-stage procedures,

where interaction candidates are considered from an original screen of main effects, have
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shown good performance when p is large (Hao et al., 2018; Shah, 2016) in the linear setting.

There are many fewer methods available for estimating non-linear interactions. For example,

Radchenko and James (2010) (Radchenko & James, 2010) proposed a model of the form

Y = β0 +

p∑
j=1

fj(Xj) +
∑
j>k

fjk(Xj, Xk) + ε

where f(·) are smooth component functions. This method is more computationally expensive

than sail since it considers all pairwise interactions between the basis functions, and its

effectiveness in simulations or real-data applications is unknown as there is no software

implementation.

While working on this paper, we were made aware of the recently proposed pliable lasso (Tib-

shirani & Friedman, 2017) which considers the interactions between Xn×p and another matrix

Zn×K and takes the form

Y = β0 +

p∑
j=1

βjXj +
K∑
j=1

θjZj +

p∑
j=1

(Xj ◦ Z)αj + ε (3.7)

where αj is a K-dimensional vector. Our proposal is most closely related to this method

with Z being a single column matrix; the key difference being the non-linearity effects of our

predictor variables. As pointed out by the authors of the pliable lasso, either their or ours

can be seen as a varying coefficient model, i.e., the effect of X varies as a function of the

exposure variable E or Z in equation 3.7.

The main contributions of this paper are threefold. First, we develop a model for non-linear

interactions with a key exposure variable, following either the weak or strong heredity prin-

ciple, that is computationally efficient and scales to the high-dimensional setting (n << p).

Second, through simulation studies, we show improved performance over existing methods

that only consider linear interactions or additive main effects. Third, all of our algorithms

are implemented in the sail R package hosted on GitHub with extensive documentation
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(https://github.com/sahirbhatnagar/sail). In particular, our implementation also al-

lows for linear interaction models, user-defined basis expansions, a cross-validation procedure

for selecting the optimal tuning parameter, and differential shrinkage parameters to apply

the adaptive lasso (Zou, 2006) idea.

The rest of the paper is organized as follows. Section 3.2 describes our optimization procedure

and some details about the algorithm used to fit the sail model for the least squares case.

In Section 3.3, through simulation studies we compare the performance of our proposed

approach and demonstrate the scenarios where it can be advantageous to use sail over

existing methods. Section 3.4 contains some real data examples and Section 3.5 discusses

some limitations and future directions.

3.2 Algorithm and Computational Details

In this section we describe a blockwise coordinate descent algorithm for fitting the least-

squares version of the sail model in (3.5). We fix the value for α and minimize the ob-

jective function over a decreasing sequence of λ values (λmax > · · · > λmin). We use the

subgradient equations to determine the maximal value λmax such that all estimates are zero.

Due to the heredity principle, this reduces to finding the largest λ such that all main effects

(βE,θ1, . . . ,θp) are zero. Following Friedman et al. (J. Friedman et al., 2010), we construct

a λ-sequence of 100 values decreasing from λmax to 0.001λmax on the log scale, and use the

warm start strategy where the solution for λℓ is used as a starting value for λℓ+1.
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3.2.1 Blockwise coordinate descent for least-squares loss

The strong heredity sail model with least-squares loss has the form

Ŷ = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

γjβE(XE ◦Ψj)θj (3.8)

and the objective function is given by

Q(Θ) =
1

2n

Y − Ŷ 2
2
+ λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj| (3.9)

Solving (3.9) in a blockwise manner allows us to leverage computationally fast algorithms for

ℓ1 and ℓ2 norm penalized regression. We show in Supplemental Section A.1 that by careful

construction of pseudo responses and pseudo design matrices, existing efficient algorithms can

be used to estimate the parameters. Indeed, the objective function simplifies to a modified

lasso problem when holding all θj fixed, and a modified group lasso problem when holding

βE and all γj fixed.

Denote the n-dimensional residual column vector R = Y − Ŷ . The subgradient equations

are given by

∂Q

∂β0
=

1

n

(
Y − β0 · 1−

p∑
j=1

Ψjθj − βEXE −
p∑

j=1

γjβE(XE ◦Ψj)θj

)⊤

1 = 0 (3.10)

∂Q

∂βE
= − 1

n

(
XE +

p∑
j=1

γj(XE ◦Ψj)θj

)⊤

R + λ(1− α)wEs1 = 0 (3.11)

∂Q

∂θj

= − 1

n
(Ψj + γjβE(XE ◦Ψj))

⊤R + λ(1− α)wjs2 = 0 (3.12)

∂Q

∂γj
= − 1

n
(βE(XE ◦Ψj)θj)

⊤R + λαwjEs3 = 0 (3.13)
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where s1 is in the subgradient of the ℓ1 norm:

s1 ∈

⎧⎪⎪⎨⎪⎪⎩
sign (βE) if βE ̸= 0

[−1, 1] if βE = 0,

s2 is in the subgradient of the ℓ2 norm:

s2 ∈

⎧⎪⎪⎨⎪⎪⎩
θj

∥θj∥2
if θj ̸= 0

u ∈ Rmj : ∥u∥2 ≤ 1 if θj = 0,

and s3 is in the subgradient of the ℓ1 norm:

s3 ∈

⎧⎪⎪⎨⎪⎪⎩
sign (γj) if γj ̸= 0

[−1, 1] if γj = 0.

Define the partial residuals, without the jth predictor for j = 1, . . . , p, as

R(−j) = Y − β0 · 1−
∑
ℓ̸=j

Ψℓθℓ − βEXE −
∑
ℓ̸=j

γℓβE(XE ◦Ψℓ)θℓ

the partial residual without XE as

R(−E) = Y − β0 · 1−
p∑

j=1

Ψjθj

and the partial residual without the jth interaction for j = 1, . . . , p, as

R(−jE) = Y − β0 · 1−
p∑

j=1

Ψjθj − βEXE −
∑
ℓ ̸=j

γℓβE(XE ◦Ψℓ)θℓ
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From the subgradient equations (3.10)–(3.13) we see that

β̂0 =

(
Y −

p∑
j=1

Ψjθ̂j − β̂EXE −
p∑

j=1

γ̂jβ̂E(XE ◦Ψj)θ̂j

)⊤

1 (3.14)

β̂E = S

⎛⎝ 1

n · wE

(
XE +

p∑
j=1

γ̂j(XE ◦Ψj)θ̂j

)⊤

R(−E), λ(1− α)

⎞⎠ (3.15)

λ(1− α)wj
θj

∥θj∥2
=

1

n
(Ψj + γjβE(XE ◦Ψj))

⊤R(−j) (3.16)

γ̂j = S

(
1

n · wjE

(βE(XE ◦Ψj)θj)
⊤R(−jE), λα

)
(3.17)

where S(x, t) = sign(x)(|x| − t) is the soft-thresholding operator. We see from (3.14)

and (3.15) that there are closed form solutions for the intercept and βE. From (3.17),

each γj also has a closed form solution and can be solved efficiently for j = 1, . . . , p using a

coordinate descent procedure (J. Friedman et al., 2010). Since there is no closed form solu-

tion for βj, we use a quadratic majorization technique (Y. Yang & Zou, 2015) to solve (3.16).

Furthermore, we update each θj in a coordinate wise fashion and leverage this to implement

further computational speedups which are detailed in Supplemental Section A.1.2. From

these estimates, we compute the interaction effects using the reparametrizations presented

in Table 3.1, e.g., τ̂ j = γ̂jβ̂Eθ̂j, j = 1, . . . , p for the strong heredity sail model. We provide

an overview of the computations in Algorithm 4. A more detailed version of this algorithm

is given in Section A.1.1 of the Appendix.
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Algorithm 4 Blockwise Coordinate Descent for Least-Squares sail with Strong Heredity.
For a decreasing sequence λ = λmax, . . . , λmin and fixed α:

1. Initialize β(0)
0 , β

(0)
E ,θ

(0)
j , γ

(0)
j for j = 1, . . . , p and set iteration counter k ← 0.

2. Repeat the following until convergence:
(a) update γ = (γ1, . . . , γp)

i. Compute the pseudo design: X̃j ← β
(k)
E (XE ◦Ψj)θ

(k)
j for j = 1, . . . , p

ii. Compute the pseudo response Ỹ by removing the contribution of every term
not involving γ from Y

iii. Solve:

γ(k)(new) ← argmin
γ

1

2n

Ỹ −∑
j

γjX̃j


2

2

+ λα
∑
j

wjE|γj| (3.18)

iv. Set γ(k) = γ(k)(new)

(b) update θ = (θ1, . . . ,θp)
— for j = 1, . . . , p
i. Compute the pseudo design: X̃j ← Ψj + γ

(k)
j β

(k)
E (XE ◦Ψj)

ii. Compute the pseudo response (Ỹ ) by removing the contribution of every term
not involving θj from Y

iii. Solve:

θ
(k)(new)
j ← argmin

θj

1

2n

Ỹ − X̃jθj

2
2
+ λ(1− α)wj∥θj∥2 (3.19)

iv. Set θ
(k)
j ← θ

(k)(new)
j

(c) update βE
i. Compute the pseudo design: X̃E ← XE +

∑
j γ

(k)
j Ψ̃jθ

(k)
j

ii. Compute the pseudo response (Ỹ ) by removing the contribution of every term
not involving βE from Y

iii. Soft-threshold update (S(x, t) = sign(x)(|x| − t)+):

β
(k)(new)
E ← S

(
1

n · wE

X̃⊤
E Ỹ , λ(1− α)

)
(3.20)

iv. Set β(k+1)
E ← β

(k)(new)
E , k ← k + 1
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3.2.2 Maximum penalty parameter (Lambda max)

The subgradient equations (3.11)–(3.13) can be used to determine the largest value of λ such

that all coefficients are 0. From the subgradient Equation (3.11), we see that βE = 0 is a

solution if
1

wE

⏐⏐⏐⏐⏐⏐ 1n
(
XE +

p∑
j=1

γj(XE ◦Ψj)θj

)⊤

R(−E)

⏐⏐⏐⏐⏐⏐ ≤ λ(1− α) (3.21)

From the subgradient Equation (3.12), we see that θj = 0 is a solution if

1

wj

 1n (Ψj + γjβE(XE ◦Ψj))
⊤R(−j)


2

≤ λ(1− α) (3.22)

From the subgradient Equation (3.13), we see that γj = 0 is a solution if

1

wjE

⏐⏐⏐⏐ 1n (βE(XE ◦Ψj)θj)
⊤R(−jE)

⏐⏐⏐⏐ ≤ λα (3.23)

Due to the strong heredity property, the parameter vector (βE,θ1, . . . ,θp, γ1, . . . , γp) will be

entirely equal to 0 if (βE,θ1, . . . ,θp) = 0. Therefore, the smallest value of λ for which the

entire parameter vector (excluding the intercept) is 0 is:

λmax =
1

n(1− α)
max

⎧⎨⎩ 1

wE

(
XE +

p∑
j=1

γj(XE ◦Ψj)θj

)⊤

R(−E),

max
j

1

wj

(Ψj + γjβE(XE ◦Ψj))
⊤R(−j)


2

}
(3.24)

which reduces to

λmax =
1

n(1− α)
max

{
1

wE

(XE)
⊤R(−E),max

j

1

wj

(Ψj)
⊤R(−j)


2

}
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3.2.3 Weak Heredity

Our method can be easily adapted to enforce the weak heredity property:

α̂jE ̸= 0 ⇒ β̂j ̸= 0 or β̂E ̸= 0

That is, an interaction term can only be present if at least one of it’s corresponding main

effects is nonzero. To do so, we reparametrize the coefficients for the interaction terms

in (3.2) as αj = γj(βE · 1mj
+ θj), where 1mj

is a vector of ones with dimension mj (i.e. the

length of θj). We defer the algorithm details for fitting the sail model with weak heredity

in Section A.1.3 of the Appendix, as it is very similar to Algorithm 4 for the strong heredity

sail model.

3.2.4 Adaptive sail

The weights for the environment variable, main effects and interactions are given by wE, wj

and wjE respectively. These weights serve as a means of allowing a different penalty to be

applied to each variable. In particular, any variable with a weight of zero is not penalized

at all. This feature is usually selected for one of two reasons:

1. Prior knowledge about the importance of certain variables is known. Larger weights

will penalize the variable more, while smaller weights will penalize the variable less

2. Allows users to apply the adaptive sail, similar to the adaptive lasso (Zou, 2006)

We describe the adaptive sail in Algorithm 5. This is a general procedure that can be

applied to the weak and strong heredity settings, as well as both least squares and logistic

loss functions. We provide this capability in the sail package using the penalty.factor

argument and provide an example in Section A.3.6 of the Appendix.
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Algorithm 5 Adaptive sail algorithm
1. For a decreasing sequence λ = λmax, . . . , λmin and fixed α run the sail algorithm
2. Use cross-validation or a data splitting procedure to determine the optimal value for

the tuning parameter: λ[opt] ∈ {λmax, . . . , λmin}
3. Let β̂E

[opt]
, θ̂

[opt]

j and τ̂
[opt]
j for j = 1, . . . , p be the coefficient estimates corresponding

to the model at λ[opt]
4. Set the weights to be

wE =

(⏐⏐⏐⏐β̂E [opt]
⏐⏐⏐⏐)−1

, wj =
(
∥θ̂

[opt]

j ∥2
)−1

, wjE =
(
∥τ̂ j

[opt]∥2
)−1

for j = 1, . . . , p

5. Run the sail algorithm with the weights defined in step 4), and use cross-validation
or a data splitting procedure to choose the optimal value of λ

3.2.5 Flexible design matrix

The definition of the basis expansion functions in (3.1) is very flexible, in the sense that our

algorithms are independent of this choice. As a result, the user can apply any basis expansion

they desire. In the extreme case, one could apply the identity map, i.e., fj(Xj) = Xj which

leads to a linear interaction model (referred to as linear sail). When little information is

known a priori about the relationship between the predictors and the response, by default, we

choose to apply the same basis expansion to all columns of X. This is a reasonable approach

when all the variables are continuous. However, there are often situations when the data

contains a combination of categorical and continuous variables. In these cases it may be

sub-optimal to apply a basis expansion to the categorical variables. Owing to the flexible

nature of our algorithm, we can handle this scenario in our implementation by allowing a

user-defined design matrix. The only extra information needed is the group membership of

each column in the design matrix. We provide such an example in the sail package showcase

in Section A.3.7 of the Appendix.
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3.3 Simulation Study

In this section, we use simulated data to understand the performance of sail in different

scenarios.

3.3.1 Comparator Methods

Since there are no other packages that directly address our chosen problem, we selected

comparator methods based on the following criteria: 1) penalized regression methods that

can handle high-dimensional data (n < p), 2) allows at least one of linear effects, non-linear

effects or interaction effects, and 3) has a software implementation in R. The selected methods

can be grouped into three categories:

1. Linear main effects: lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006)

2. Linear interactions: lassoBT (Shah, 2016), GLinternet (Lim & Hastie, 2015)

3. Non-linear main effects: HierBasis (Haris, Shojaie, & Simon, 2016), SPAM (Ravikumar

et al., 2009), gamsel (Chouldechova & Hastie, 2015)

For GLinternet we specified the interactionCandidates argument so as to only consider

interactions between the environment and all other X variables. For all other methods we

supplied (X, XE) as the data matrix, 100 for the number of tuning parameters to fit, and

used the default values otherwise1. lassoBT considers all pairwise interactions as there is

no way for the user to restrict the search space. SPAM applies the same basis expansion to

every column of the data matrix; we chose 5 basis spline functions. HierBasis and gamsel

selects whether a term in an additive model is nonzero, linear, or a non-linear spline up to

a specified max degrees of freedom per variable.

We compare the above listed methods with our main proposal method sail, as well as
1R code for each method available at https://github.com/sahirbhatnagar/sail/blob/master/my

_sims/method_functions.R
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with adaptive sail (Algorithm 5), sail weak which has the weak heredity property and

linear sail as described in Section 3.2.5. For each function fj, we use a B-spline basis

matrix with degree=5 implemented in the bs function in R (R Core Team, 2016). We center

the environment variable and the basis functions before running the sail method.

3.3.2 Simulation Design

To make the comparisons with other methods as fair as possible, we followed a simulation

framework that has been previously used for variable selection methods in additive mod-

els (Huang et al., 2010; Y. Lin et al., 2006). We extend this framework to include interaction

effects as well. The covariates are simulated as follows. First, we generate z1, . . . , zp, u, v inde-

pendently from a standard normal distribution truncated to the interval [0,1] for i = 1, . . . , n.

Then we set xj = (zj+t·u)/(1+t) for j = 1, . . . , 4 and xj = (zj+t·v)/(1+t) for j = 5, . . . , p,

where the parameter t controls the amount of correlation among predictors. The first four

variables are nonzero (i.e. active in the response), while the rest of the variables are zero

(i.e. are noise variables). This leads to a compound symmetry correlation structure where

Corr(xj, xk) = t2/(1 + t2), for 1 ≤ j ≤ 4, 1 ≤ k ≤ 4, and Corr(xj, xk) = t2/(1 + t2), for

5 ≤ j ≤ p, 5 ≤ k ≤ p, but the covariates of the nonzero and zero components are indepen-

dent. The exposure variable XE is generated from a standard normal distribution truncated

to the interval [-1,1]. We consider the case when p = 1000 and t = 0. The outcome Y is

then generated following one of the models and assumptions described below.

We evaluate the performance of our method on three of its defining characteristics: 1) the

strong heredity property, 2) non-linearity of predictor effects and 3) interactions. Simulation

scenarios are designed specifically to test the performance of these characteristics

1. Hierarchy simulation

Scenario (a) Truth obeys strong hierarchy. In this situation, the true model for
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Y contains main effect terms for all covariates involved in interactions.

Y =
4∑

j=1

fj(Xj) + βE ·XE +XE · f3(X3) +XE · f4(X4) + ε

Scenario (b) Truth obeys weak hierarchy. Here, in addition to the interaction,

the E variable has its own main effect but the covariates X3 and X4 do not.

Y = f1(X1) + f2(X2) + βE ·XE +XE · f3(X3) +XE · f4(X4) + ε

Scenario (c) Truth only has interactions. In this simulation, the covariates in-

volved in interactions do not have main effects as well.

Y = XE · f3(X3) +XE · f4(X4) + ε

2. Non-linearity simulation scenario

Truth is linear. sail is designed to model non-linearity; here we assess its per-

formance if the true model is completely linear.

Y = 5X1+3(X2+1)+4X3+6(X4− 2)+βE ·XE +XE · 4X3+XE · 6(X4− 2)+ ε

3. Interactions simulation scenario

Truth only has main effects. sail is designed to capture interactions; here we

assess its performance when there are none in the true model.

Y =
4∑

j=1

fj(Xj) + βE ·XE + ε
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The true component functions are the same as in (Huang et al., 2010; Y. Lin et al., 2006)

and are given by f1(t) = 5t, f2(t) = 3(2t − 1)2, f3(t) = 4 sin(2πt)/(2 − sin(2πt)), f4(t) =

6(0.1 sin(2πt)+0.2 cos(2πt)+0.3 sin(2πt)2+0.4 cos(2πt)3+0.5 sin(2πt)3). We set βE = 2 and

draw ε from a normal distribution with variance chosen such that the signal-to-noise ratio

is 2. Using this setup, we generated 200 replications consisting of a training set of n = 200,

a validation set of n = 200 and a test set of n = 800. The training set was used to fit the

model and the validation set was used to select the optimal tuning parameter corresponding

to the minimum prediction mean squared error (MSE). Variable selection results including

true positive rate, false positive rate and number of active variables (the number of variables

with a non-zero coefficient estimate) were assessed on the training set, and MSE was assessed

on the test set.

3.3.3 Results

The test set MSE results for each of the five simulation scenarios are shown in Figure 3.3,

while Figure 3.4 shows the mean true positive rate (TPR) vs. the mean false positive rate

(FPR) ±1 standard deviation (SD).
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Figure 3.3: Boxplots of the test set mean squared error from 200 simulations for each of
the five simulation scenarios. Linear main effects: lasso (Tibshirani, 1996), adaptive
lasso (Zou, 2006). Linear interactions: lassoBT (Shah, 2016), GLinternet (Lim & Hastie,
2015), linear sail. Non-linear main effects: HierBasis (Haris, Shojaie, & Simon, 2016),
SPAM (Ravikumar et al., 2009), gamsel (Chouldechova & Hastie, 2015). Non-linear interac-
tion effects: sail, adaptive sail, sail weak.

We see that sail ,adaptive sail and sail weak have the best performance in terms of

both MSE and yielding correct sparse models when the truth follows a strong hierarchy

(scenario 1a), as we would expect, since this is exactly the scenario that our method is
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trying to target.
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Figure 3.4: Means ±1 standard deviation of true positive rate vs. false positive rate from
200 simulations for each of the five scenarios. |S0| is the number of truly associated variables.

Our method is also competitive when only main effects are present (scenario 3) and performs

just as well as methods that only consider linear and non-linear main effects (HierBasis,

SPAM), owing to the penalization applied to the interaction parameter. Due to the heredity

property, our method is unable to capture any of the truly associated variables when only
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interactions are present (scenario 1c). However, the other methods also fail to capture any

signal, with the exception of GLinternet which has a high TPR and FPR. When only linear

effects and interactions are present (scenario 2), we see that linear sail has a high TPR

and low FPR as compared to the other linear interaction methods (lassoBT and GLinternet)

though the test set MSE is not as good. The lasso and adaptive lasso have good test

set MSE performance but poor sensitivity. Additional results are available in Section A.2 of

the Appendix. Specifically, in Figure A.1 we plot the mean MSE against the mean number

of active variables ±1 standard deviation (SD). Figures A.2 and A.3 show the true positive

and false positive rates, respectively. Figure A.4 shows the number of active variables.

We visually inspected whether our method could correctly capture the shape of the associa-

tion between the predictors and the response for both main and interaction effects. To do so,

we plotted the true and predicted curves for scenario 1a) only. Figure 3.5 shows each of the

four main effects with the estimated curves from each of the 200 simulations along with the

true curve. We can see the effect of the penalty on the parameters, i.e., decreasing prediction

variance at the cost of increased bias. This is particularly well illustrated in the bottom right

panel where sail smooths out the very wiggly component function f4(x). Nevertheless, the

primary shapes are clearly being captured.

To visualize the estimated interaction effects, we ordered the 200 simulation runs by the eu-

clidean distance between the estimated and true regression functions. Following Radchenko

et al. (Radchenko & James, 2010), we then identified the 25th, 50th, and 75th best simu-

lations and plotted, in Figures 3.6 and 3.7, the interaction effects of XE with f3(X3) and

f4(X4), respectively. We see that sail does a good job at capturing the true interaction

surface for XE · f3(X3). Again, the smoothing and shrinkage effect is apparent when looking

at the interaction surfaces for XE · f4(X4)
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3.4 Real Data Application with Alzheimer’s Disease Neu-

roimaging Initiative

Alzheimer’s is an irreversible neurodegenerative disease that results in a loss of mental func-

tion due to the deterioration of brain tissue. The overall goal of the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) is to validate biomarkers for use in Alzheimer’s disease clin-

ical treatment trials (Petersen et al., 2010). The patients were selected into the study based

on their clinical diagnosis: controls, mild cognitive impairment (MCI) or Alzheimer’s disease

(AD). PET amyloid imaging was used to asses amyloid beta (Aβ) protein load in 96 brain

regions. The response we use here is general cognitive decline, as measured by a continuous

mini-mental state examination score. We applied sail to this data to see if there were any

non-linear interactions between clinical diagnosis and Aβ protein in the 96 brain regions on

mini-mental state examination.

There were a total of 343 patients who we divided randomly into equal sized training/valida-

tion/test splits. We ran the strong heredity sail with cubic B-splines and α = 0.1. We also

applied the lasso, lassoBT, HierBasis and GLinternet to this data. Using the same

default settings and strategy as the simulation study, we ran each method on the training

data, determined the optimal tuning parameter on the validation data, and assessed MSE

on the test data. We repeated this process 200 times.
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Figure 3.8: Mean test set MSE vs. mean number of active variables (±1 SD) for ADNI data
based on 200 train/validation/test splits.

In Figure 3.8 we plot the mean test set MSE vs. the mean number of active variables ±1 SD.

We see that sail produces the sparsest models but doesn’t perform as well as HierBasis and

GLinternet in terms of MSE. sail achieves a similar MSE to both the lasso and lassoBT

with fewer variables on average. GLinternet produces the largest models and seems to be

sensitive to the train/validate/test split as evidenced by the large standard deviations.

To visualize the results from the sail method, we chose the train/validate/test split which

led to the best test set MSE, and then plotted the interaction effects in Figure 3.9. The

left panel shows the middle occipital gyrus left region in the occipital lobe known for visual

object perception. We see that more Aβ protein loads leads to a worse cognitive score for the

MCI and AD group but not for the controls. The right panel shows the cuneus region which

is known to be involved in basic visual processing, and we see that more Aβ proteins leads to

better cognitive scores for the MCI and AD group and poorer scores for the controls.
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Figure 3.9: Estimated interaction effects by sail for the ADNI data.

3.5 Discussion

In this article we have introduced the sparse additive interaction learning model sail for

detecting non-linear interactions with a key environmental or exposure variable in high-

dimensional settings. Using a simple reparametrization, we are able to achieve either the

weak or strong heredity property without using a complex penalty function. We developed

a blockwise coordinate descent algorithm to solve the sail objective function for the least-

squares loss function. All our algorithms are implemented in a computationally efficient,

well-documented and freely available R package. Furthermore, our method is flexible enough

to handle any type of basis expansion including the identity map, which allows for linear

interactions. Our implementation allows the user to selectively apply the basis expansions

to the predictors, allowing for example, a combination of continuous and categorical pre-

dictors. An extensive simulation study shows that sail, adaptive sail and sail weak
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outperform existing penalized regression methods in terms of prediction error, sensitivity

and specificity when there are non-linear main effects only, as well as interactions with an

exposure variable.

Our method however does have its limitations. sail can currently only handle XE · f(X) or

f(XE)·X and does not allow for f(X,XE), i.e., only one of the variables in the interaction can

have a non-linear effect and we do not consider the tensor product. The reparametrization

leads to a non-convex optimization problem which makes convergence rates difficult to assess,

though we did not experience any major convergence issues in our simulations and real data

analysis. The memory footprint can also be an issue depending on the degree of the basis

expansion and the number of variables.

To our knowledge, our proposal is the first to allow for non-linear interactions with a key

exposure variable following the weak or strong heredity property in high-dimensional settings.

We also provide a first software implementation for these models.
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Chapter 4

A General Framework for Variable

Selection in Linear Mixed Models with

Applications to Genetic Studies with

Structured Populations

Preamble to Manuscript 2. At the most recent Genetic Analysis Workshop (GAW 20),

there was a need for methods that selected variables strongly associated with an exposure.

However, since GAW 20 data consisted of families, standard variable selection techniques

were not applicable. Several groups calculated residuals to remove the family structure and

then followed up with their primary analyses, which could have resulted in a large number

of false positives. Hence we developed ggmix as an alternative approach that could be used

for selecting variables while accounting for the familial structure of the data in a penalized

mixed model.
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Abstract

Complex traits are known to be influenced by a combination of environmental factors and

rare and common genetic variants. However, detection of such multivariate associations can

be compromised by low statistical power and confounding by population structure. Linear

mixed effect models (LMM) can account for correlations due to relatedness but have not

been applicable in high-dimensional (HD) settings where the number of fixed effect pre-

dictors greatly exceeds the number of samples. False positives can result from two-stage

approaches, where the residuals estimated from a null model adjusted for the subjects’ rela-

tionship structure are subsequently used as the response in a standard penalized regression

model. To overcome these challenges, we develop a general penalized LMM framework

called ggmix that simultaneously, in one step, selects variables and estimates their effects,

while accounting for between individual correlations. Our method can accommodate several

sparsity-inducing penalties such as the lasso, elastic net and group lasso, and also read-

ily handles prior annotation information in the form of weights. We develop a blockwise

coordinate descent algorithm which is highly scalable, computationally efficient and has

theoretical guarantees of convergence. Through simulations, we show that ggmix leads to

correct Type 1 error control and improved variance component estimation compared to the

two-stage approach or principal component adjustment. ggmix is also robust to different kin-

ship structures and heritability proportions. Our algorithms are available in an R package

(https://github.com/greenwoodlab).
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4.1 Introduction

Genome-wide association studies (GWAS) have become the standard method for analyzing

genetic datasets owing to their success in identifying thousands of genetic variants associated

with complex diseases (https://www.genome.gov/gwastudies/). Despite these impressive

findings, the discovered markers have only been able to explain a small proportion of the

phenotypic variance; this is known as the missing heritability problem (Manolio et al., 2009).

One plausible explanation is that there are many causal variants that each explain a small

amount of variation with small effect sizes (J. Yang et al., 2010). Methods such GWAS, which

test each variant or single nucleotide polymorphism (SNP) independently, may miss these

true associations due to the stringent significance thresholds required to reduce the number of

false positives (Manolio et al., 2009). Another major issue to overcome is that of confounding

due to geographic population structure, family and/or cryptic relatedness which can lead to

spurious associations (Astle et al., 2009). For example, there may be subpopulations within

a study that differ with respect to their genotype frequencies at a particular locus due to

geographical location or their ancestry. This heterogeneity in genotype frequency can cause

correlations with other loci and consequently mimic the signal of association even though

there is no biological association (Marchini et al., 2004; Song et al., 2015). Studies that

separate their sample by ethnicity to address this confounding suffer from a loss in statistical

power.

To address the first problem, multivariable regression methods have been proposed which

simultaneously fit many SNPs in a single model (Hoggart et al., 2008; Li et al., 2010). Indeed,

the power to detect an association for a given SNP may be increased when other causal SNPs

have been accounted for. Conversely, a stronger signal from a causal SNP may weaken false

signals when modeled jointly (Hoggart et al., 2008).

Solutions for confounding by population structure have also received significant attention in

the literature (Eu-Ahsunthornwattana et al., 2014; Kang et al., 2010; Lippert et al., 2011;
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Yu et al., 2006). There are two main approaches to account for the relatedness between

subjects: 1) the principal component (PC) adjustment method and 2) the linear mixed model

(LMM). The PC adjustment method includes the top PCs of genome-wide SNP genotypes

as additional covariates in the model (Price et al., 2006). The LMM uses an estimated

covariance matrix from the individuals’ genotypes and includes this information in the form

of a random effect Astle et al. (2009).

While these problems have been addressed in isolation, there has been relatively little

progress towards addressing them jointly at a large scale. Region-based tests of association

have been developed where a linear combination of p variants is regressed on the response

variable in a mixed model framework (Oualkacha et al., 2013). In case-control data, a step-

wise logistic-regression procedure was used to evaluate the relative importance of variants

within a small genetic region (Cordell & Clayton, 2002). These methods however are not

applicable in the high-dimensional setting, i.e., when the number of variables p is much larger

than the sample size n, as is often the case in genetic studies where millions of variants are

measured on thousands of individuals.

There has been recent interest in using penalized linear mixed models, which place a con-

straint on the magnitude of the effect sizes while controlling for confounding factors such as

population structure. For example, the LMM-lasso (Rakitsch et al., 2013) places a Laplace

prior on all main effects while the adaptive mixed lasso (Wang et al., 2011) uses the L1

penalty (Tibshirani, 1996) with adaptively chosen weights (Zou, 2006) to allow for differen-

tial shrinkage amongst the variables in the model. Another method applied a combination

of both the lasso and group lasso penalties in order to select variants within a gene most

associated with the response (Ding et al., 2014). However, these methods are normally per-

formed in two steps. First, the variance components are estimated once from a LMM with

a single random effect. These LMMs normally use the estimated covariance matrix from

the individuals’ genotypes to account for the relatedness but assumes no SNP main effects
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(i.e. a null model). The residuals from this null model with a single random effect can be

treated as independent observations because the relatedness has been effectively removed

from the original response. In the second step, these residuals are used as the response

in any high-dimensional model that assumes uncorrelated errors. This approach has both

computational and practical advantages since existing penalized regression software such as

glmnet (J. Friedman et al., 2010) and gglasso (Y. Yang & Zou, 2015), which assume in-

dependent observations, can be applied directly to the residuals. However, recent work has

shown that there can be a loss in power if a causal variant is included in the calculation of

the covariance matrix as its effect will have been removed in the first step (Oualkacha et al.,

2013; J. Yang et al., 2014).

In this paper we develop a general penalized LMM framework called ggmix that simul-

taneously selects variables and estimates their effects, accounting for between-individual

correlations. Our method can accommodate several sparsity inducing penalties such as the

lasso (Tibshirani, 1996), elastic net (Zou & Hastie, 2005) and group lasso (Yuan & Lin, 2006).

ggmix also readily handles prior annotation information in the form of a penalty factor, which

can be useful, for example, when dealing with rare variants. We develop a blockwise coordi-

nate descent algorithm which is highly scalable and has theoretical guarantees of convergence

to a stationary point. All of our algorithms are implemented in the ggmix R package hosted

on GitHub with extensive documentation (http://sahirbhatnagar.com/ggmix/). We pro-

vide a brief demonstration of the ggmix package in Appendix B.3.

The rest of the paper is organized as follows. Section 2 describes the ggmix model. Section

3 contains the optimization procedure and the algorithm used to fit the ggmix model. In

Section 4, we compare the performance of our proposed approach and demonstrate the

scenarios where it can be advantageous to use over existing methods through simulation

studies. Section 5 discusses some limitations and future directions.
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4.2 Penalized Linear Mixed Models

4.2.1 Model Set-up

Let i = 1, . . . , N be a grouping index, j = 1, . . . , ni the observation index within a group

and NT =
∑N

i=1 ni the total number of observations. For each group let y i = (y1, . . . , yni
) be

the observed vector of responses or phenotypes, Xi an ni × (p + 1) design matrix (with

the column of 1s for the intercept), b i a group-specific random effect vector of length

ni and εi = (εi1, . . . , εini
) the individual error terms. Denote the stacked vectors Y =

(y i, . . . , yN)
T ∈ RNT×1, b = (b i, . . . , bN)

T ∈ RNT×1, ε = (εi, . . . , εN)
T ∈ RNT×1, and the

stacked matrix

X = (X1, . . . ,XN)
T ∈ RNT×(p+1). Furthermore, let β = (β0, β1, . . . , βp)

T ∈ R(p+1)×1 be a

vector of fixed effects regression coefficients corresponding to X. We consider the following

linear mixed model with a single random effect (Pirinen et al., 2013):

Y = Xβ + b + ε (4.1)

where the random effect b and the error variance ε are assigned the distributions

b ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I) (4.2)

Here, ΦNT×NT
is a known positive semi-definite and symmetric covariance or kinship matrix

calculated from SNPs sampled across the genome, INT×NT
is the identity matrix and param-

eters σ2 and η ∈ [0, 1] determine how the variance is divided between b and ε. Note that η

is also the narrow-sense heritability (h2), defined as the proportion of phenotypic variance

attributable to the additive genetic factors (Manolio et al., 2009). The joint density of Y is
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therefore multivariate normal:

Y|(β, η, σ2) ∼ N (Xβ, ησ2Φ+ (1− η)σ2I) (4.3)

The LMM-Lasso method (Rakitsch et al., 2013) considers an alternative but equivalent

parameterization given by:

Y|(β, δ, σ2
g) ∼ N (Xβ, σ2

g(Φ+ δI)) (4.4)

where δ = σ2
e/σ

2
g , σ2

g is the genetic variance and σ2
e is the residual variance. We instead

consider the parameterization in (4.3) since maximization is easier over the compact set

η ∈ [0, 1] than over the unbounded interval δ ∈ [0,∞) (Pirinen et al., 2013). We define the

complete parameter vector as Θ := (β, η, σ2). The negative log-likelihood for (4.3) is given

by

−ℓ(Θ) ∝ NT

2
log(σ2) +

1

2
log (det(V)) +

1

2σ2
(Y−Xβ)T V−1 (Y−Xβ) (4.5)

where V = ηΦ+ (1− η)I and det(V) is the determinant of V.

Let Φ = UDUT be the eigen (spectral) decomposition of the kinship matrix Φ, where

UNT×NT
is an orthonormal matrix of eigenvectors (i.e. UUT = I) and DNT×NT

is a diagonal

matrix of eigenvalues Λi. V can then be further simplified (Pirinen et al., 2013)

V = ηΦ+ (1− η)I

= ηUDUT + (1− η)UIUT

= UηDUT + U(1− η)IUT

= U (ηD + (1− η)I)UT

= UD̃UT (4.6)

70



where

D̃ = ηD + (1− η)I (4.7)

= η

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Λ1

Λ2

. . .

ΛNT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ (1− η)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

1

. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 + η(Λ1 − 1)

1 + η(Λ2 − 1)

. . .

1 + η(ΛNT
− 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= diag {1 + η(Λ1 − 1), 1 + η(Λ2 − 1), . . . , 1 + η(ΛNT

− 1)} (4.8)

Since (4.7) is a diagonal matrix, its inverse is also a diagonal matrix:

D̃
−1

= diag

{
1

1 + η(Λ1 − 1)
,

1

1 + η(Λ2 − 1)
, . . . ,

1

1 + η(ΛNT
− 1)

}
(4.9)

From (4.6) and (4.8), log(det(V)) simplifies to

log(det(V)) = log
(
det(U) det

(
D̃
)
det(UT )

)
= log

{
NT∏
i=1

(1 + η(Λi − 1))

}

=

NT∑
i=1

log(1 + η(Λi − 1)) (4.10)
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since det(U) = 1. It also follows from (4.6) that

V−1 =
(
UD̃UT

)−1

=
(
UT
)−1
(
D̃
)−1

U−1

= UD̃
−1

UT (4.11)

since for an orthonormal matrix U−1 = UT . Substituting (4.9), (4.10) and (4.11) into (4.5)

the negative log-likelihood becomes

−ℓ(Θ) ∝ NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2
(Y−Xβ)T UD̃

−1
UT (Y−Xβ)

(4.12)

=
NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2

(
UTY−UTXβ

)T D̃
−1 (

UTY−UTXβ
)

=
NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2

(
Ỹ− X̃β

)T
D̃

−1
(
Ỹ− X̃β

)

=
NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
1 + η(Λi − 1)

(4.13)

where Ỹ = UTY, X̃ = UTX, Ỹi denotes the ith element of Ỹ, X̃ij is the i, jth entry of X̃

and 1 is a column vector of NT ones.

4.2.2 Penalized Maximum Likelihood Estimator

We define the p + 3 length vector of parameters Θ := (Θ0,Θ1, . . . ,Θp+1,Θp+2,Θp+3) =

(β, η, σ2) where β ∈ Rp+1, η ∈ [0, 1], σ2 > 0. In what follows, p+ 2 and p+ 3 are the indices

in Θ for η and σ2, respectively. In light of our goals to select variables associated with the

response in high-dimensional data, we propose to place a constraint on the magnitude of

the regression coefficients. This can be achieved by adding a penalty term to the likelihood
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function (4.13). The penalty term is a necessary constraint because in our applications, the

sample size is much smaller than the number of predictors. We define the following objective

function:

Qλ(Θ) = f(Θ) + λ
∑
j ̸=0

vjPj(βj) (4.14)

where f(Θ) := −ℓ(Θ) is defined in (4.13), Pj(·) is a penalty term on the fixed regression

coefficients β1, . . . , βp+1 (we do not penalize the intercept) controlled by the nonnegative

regularization parameter λ, and vj is the penalty factor for jth covariate. These penalty

factors serve as a way of allowing parameters to be penalized differently. Note that we do

not penalize η or σ2. An estimate of the regression parameters Θ̂λ is obtained by

Θ̂λ = argmin
Θ

Qλ(Θ) (4.15)

This is the general set-up for our model. In Section 4.3 we provide more specific details on

how we solve (4.15).

4.3 Computational Algorithm

We use a general purpose block coordinate gradient descent algorithm (CGD) (Tseng & Yun,

2009) to solve (4.15). At each iteration, we cycle through the coordinates and minimize the

objective function with respect to one coordinate only. For continuously differentiable f(·)

and convex and block-separable P (·) (i.e. P (β) =
∑

i Pi(βi)), Tseng and Yun Tseng & Yun

(2009) show that the solution generated by the CGD method is a stationary point of Qλ(·)

if the coordinates are updated in a Gauss-Seidel manner i.e. Qλ(·) is minimized with respect

to one parameter while holding all others fixed. The CGD algorithm has been successfully

applied in fixed effects models (e.g. Meier et al. (2008), J. Friedman et al. (2010)) and linear

mixed models with an ℓ1 penalty Schelldorfer et al. (2011). In the next section we provide

some brief details about Algorithm 6. A more thorough treatment of the algorithm is given
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in Appendix B.1.

We emphasize here that previously developed methods such as the LMM-lasso (Rakitsch

et al., 2013) use a two-stage fitting procedure without any convergence details. From a

practical point of view, there is currently no implementation that provides a principled way

of determining the sequence of tuning parameters to fit, nor a procedure that automatically

selects the optimal value of λ. To our knowledge, we are the first to develop a CGD algorithm

in the specific context of fitting a penalized LMM for population structure correction with

theoretical guarantees of convergence. Furthermore, we develop a principled method for

automatic tuning parameter selection and provide an easy-to-use software implementation in

order to promote wider uptake of these more complex methods by applied practitioners.

Algorithm 6 Block Coordinate Gradient Descent

Set the iteration counter k ← 0, initial values for the parameter vector Θ(0) and conver-
gence threshold ϵ
for λ ∈ {λmax, . . . , λmin} do

repeat
β(k+1) ← argminβQλ

(
β, η(k), σ2 (k)

)
η(k+1) ← argminηQλ

(
β(k+1), η, σ2 (k)

)
σ2 (k+1) ← argminσ2 Qλ

(
β(k+1), η(k+1), σ2

)
k ← k + 1

until convergence criterion is satisfied:
Θ(k+1) −Θ(k)


2
< ϵ

4.3.1 Updates for the β parameter

Recall that the part of the objective function that depends on β has the form

Qλ(Θ) =
1

2

NT∑
i=1

wi

(
Ỹi −

p∑
j=0

X̃ij+1βj

)2

+ λ

p∑
j=1

vj|βj| (4.16)
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where

wi :=
1

σ2 (1 + η(Λi − 1))
(4.17)

Conditional on η(k) and σ2 (k), it can be shown that the solution for βj, j = 1, . . . , p is given

by

β
(k+1)
j ←

Sλ
(∑NT

i=1wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

))
∑NT

i=1wiX̃2
ij

(4.18)

where Sλ(x) is the soft-thresholding operator

Sλ(x) = sign(x)(|x| − λ)+

sign(x) is the signum function

sign(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−1 x < 0

0 x = 0

1 x > 0

and (x)+ = max(x, 0). We provide the full derivation in Appendix B.1.1.

4.3.2 Updates for the η paramter

Given β(k+1) and σ2 (k), solving for η(k+1) becomes a univariate optimization problem:

η(k+1) ← argmin
η

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2 (k)

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(Λi − 1)

(4.19)

We use a bound constrained optimization algorithm (Byrd et al., 1995) implemented in

the optim function in R and set the lower and upper bounds to be 0.01 and 0.99, respec-
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tively.

4.3.3 Updates for the σ2 parameter

Conditional on β(k+1) and η(k+1), σ2 (k+1) can be solved for using the following equation:

σ2 (k+1) ← argmin
σ2

NT

2
log(σ2) +

1

2σ2

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
1 + η(Λi − 1)

(4.20)

There exists an analytic solution for (4.20) given by:

σ2 (k+1) ← 1

NT

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(k+1)(Λi − 1)

(4.21)

4.3.4 Regularization path

In this section we describe how determine the sequence of tuning parameters λ at which to

fit the model. Recall that our objective function has the form

Qλ(Θ) =
NT

2
log(σ2)+

1

2

NT∑
i=1

log(1+ η(Λi− 1))+
1

2

NT∑
i=1

wi

(
Ỹi −

p∑
j=0

X̃ij+1βj

)2

+λ

p∑
j=1

vj|βj|

(4.22)

The Karush-Kuhn-Tucker (KKT) optimality conditions for (4.22) are given by:

∂

∂β1, . . . , βp
Qλ(Θ) = 0p

∂

∂β0
Qλ(Θ) = 0

∂

∂η
Qλ(Θ) = 0

∂

∂σ2
Qλ(Θ) = 0

(4.23)
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The equations in (4.23) are equivalent to

NT∑
i=1

wiX̃i1

(
Ỹi −

p∑
j=0

X̃ij+1βj

)
= 0

1

vj

NT∑
i=1

wiX̃ij

(
Ỹi −

p∑
j=0

X̃ij+1βj

)
= λγj,

γj ∈

⎧⎪⎪⎨⎪⎪⎩
sign(β̂j) if β̂j ̸= 0

[−1, 1] if β̂j = 0

, for j = 1, . . . , p

1

2

NT∑
i=1

Λi − 1

1 + η(Λi − 1)

⎛⎜⎝1−

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
σ2(1 + η(Λi − 1))

⎞⎟⎠ = 0

σ2 − 1

NT

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
1 + η(Λi − 1)

= 0

(4.24)

where wi is given by (4.17), X̃
T

−1 is X̃
T

with the first column removed, X̃
T

1 is the first column

of X̃
T
, and γ ∈ Rp is the subgradient function of the ℓ1 norm evaluated at (β̂1, . . . , β̂p).

Therefore Θ̂ is a solution in (4.15) if and only if Θ̂ satisfies (4.24) for some γ. We can

determine a decreasing sequence of tuning parameters by starting at a maximal value for

λ = λmax for which β̂j = 0 for j = 1, . . . , p. In this case, the KKT conditions in (4.24) are

equivalent to
1

vj

NT∑
i=1

⏐⏐⏐wiX̃ij

(
Ỹi − X̃i1β0

)⏐⏐⏐ ≤ λ, ∀j = 1, . . . , p

β0 =

∑NT

i=1wiX̃i1Ỹi∑NT

i=1wiX̃2
i1

1

2

NT∑
i=1

Λi − 1

1 + η(Λi − 1)

⎛⎜⎝1−

(
Ỹi − X̃i1β0

)2
σ2(1 + η(Λi − 1))

⎞⎟⎠ = 0

σ2 =
1

NT

NT∑
i=1

(
Ỹi − X̃i1β0

)2
1 + η(Λi − 1)

(4.25)

We can solve the KKT system of equations in (4.25) (with a numerical solution for η) in
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order to have an explicit form of the stationary point Θ̂0 =
{
β̂0,0p, η̂, σ̂

2
}

. Once we have

Θ̂0, we can solve for the smallest value of λ such that the entire vector (β̂1, . . . , β̂p) is 0:

λmax = max
j

{⏐⏐⏐⏐⏐ 1vj
NT∑
i=1

ŵiX̃ij

(
Ỹi − X̃i1β̂0

)⏐⏐⏐⏐⏐
}
, j = 1, . . . , p (4.26)

Following Friedman et al. J. Friedman et al. (2010), we choose τλmax to be the smallest value

of tuning parameters λmin, and construct a sequence of K values decreasing from λmax to

λmin on the log scale. The defaults are set to K = 100, τ = 0.01 if n < p and τ = 0.001 if

n ≥ p.

4.3.5 Warm Starts

The way in which we have derived the sequence of tuning parameters using the KKT con-

ditions, allows us to implement warm starts. That is, the solution Θ̂ for λk is used as the

initial value Θ(0) for λk+1. This strategy leads to computational speedups and has been

implemented in the ggmix R package.

4.3.6 Prediction of the random effects

We use an empirical Bayes approach (e.g. Wakefield (2013)) to predict the random effects

b. Let the maximum a posteriori (MAP) estimate be defined as

b̂ = argmax
b

f(b|Y,β, η, σ2) (4.27)
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where, by using Bayes rule, f(b|Y,β, η, σ2) can be expressed as

f(b|Y,β, η, σ2) =
f(Y|b,β, η, σ2)π(b|η, σ2)

f(Y|β, η, σ2)

∝ f(Y|b,β, η, σ2)π(b|η, σ2)

∝ exp

{
− 1

2σ2
(Y−Xβ − b)TV−1(Y−Xβ − b)− 1

2ησ2
bTΦ−1b

}
= exp

{
− 1

2σ2

[
(Y−Xβ − b)TV−1(Y−Xβ − b) +

1

η
bTΦ−1b

]}
(4.28)

Solving for (4.27) is equivalent to minimizing the exponent in (4.28):

b̂ = argmin
b

{
(Y−Xβ − b)TV−1(Y−Xβ − b) +

1

η
bTΦ−1b

}
(4.29)

Taking the derivative of (4.29) with respect to b and setting it to 0 we get:

0 = −2V−1(Y−Xβ − b) +
2

η
Φ−1b

= −V−1(Y−Xβ) +

(
V−1 +

1

η
Φ−1

)
b

b̂ =

(
V−1 +

1

η̂
Φ−1

)−1

V−1(Y−Xβ̂)

=

(
UD̃

−1
UT +

1

η̂
UD−1UT

)−1

UD̃
−1

UT (Y−Xβ̂)

=

(
U
[
D̃

−1
+

1

η̂
D−1

]
UT

)−1

UD̃
−1
(Ỹ− X̃β̂)

= U
[
D̃

−1
+

1

η̂
D−1

]−1

UTUD̃
−1
(Ỹ− X̃β̂)

where V−1 is given by (4.11), and (β̂, η̂) are the estimates obtained from Algorithm 6.
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4.3.7 Choice of the optimal tuning parameter

In order to choose the optimal value of the tuning parameter λ, we use the generalized

information criterion (GIC) (Nishii, 1984):

GICλ = −2ℓ(β̂, σ̂2, η̂) + an · d̂fλ (4.30)

where d̂fλ is the number of non-zero elements in β̂λ (Zou et al., 2007) plus two (representing

the variance parameters η and σ2). Several authors have used this criterion for variable

selection in mixed models with an = logNT (Bondell et al., 2010; Schelldorfer et al., 2011),

which corresponds to the Bayesian information criterion (BIC). We instead choose the high-

dimensional BIC (Y. Fan & Tang, 2013) given by an = log(log(NT )) ∗ log(p). This is the

default choice in our ggmix R package, though the interface is flexible to allow the user to

select their choice of an.

4.4 Simulation Study

To assess the performance of ggmix, we simulated random genotypes from the BN-PSD

admixture model using the bnpsd package (Ochoa & Storey, 2016a,b). We used a block

diagonal kinship structure with 5 subpopulations. In Figure 4.1, we plot an estimated kinship

matrix (Φ), based on a single simulated dataset, in the form of a heatmap. Each block

represents a subpopulation, and a darker color indicates a closer genetic relationship.
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Empirical Kinship Matrix with Block Structure
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Figure 4.1: Empirical kinship matrix with block diagonal structure used in simulation studies.
Each block represents a subpopulation.

In Figure 4.2 we plot the first two principal component scores calculated from the block

diagonal kinship matrix in Figure 4.1, and color each point by subpopulation membership.

We can see that the PCs can identify the subpopulations which is why including them as

additional covariates in a regression model has been considered a reasonable approach to

control for confounding.
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Figure 4.2: First two principal component scores of the block diagonal kinship matrix where
each color represents one of the 5 simulated subpopulations.

For other parameters in our simulation study, we define the following quantities:

• c: percentage of causal SNPs

• X(fixed): n× pfixed matrix of SNPs that will be included as fixed effects in our model.

• X(causal): n×(c∗pfixed) matrix of SNPs that will be truly associated with the simulated

phenotype, where X(causal) ⊆ X(fixed)

• X(other): n × pother matrix of SNPs that will be used in the construction of the kin-

ship matrix. Some of these X(other) SNPs, in conjunction with some of the SNPs in

X(test) will be used in construction of the kinship matrix. We will alter the balance be-

tween these two contributors and with the proportion of causal SNPs used to calculate

kinship.

• X(kinship): n× k matrix of SNPs used to construct the kinship matrix.
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• βj: effect size for the jth SNP, simulated from a Uniform(0.3, 0.7) distribution for

j = 1, . . . , (c ∗ pfixed)

We simulate data from the model

Y = X(fixed)β +P+ ε (4.31)

where P ∼ N (0, ησ2Φ) and ε ∼ N (0, (1−η)σ2I). The values of the parameters that we used

were as follows: narrow sense heritability η = {0.1, 0.5}, sample size n = 1000, number of

fixed effects pfixed = 5000, number of SNPs used to calculate the kinship matrix k = 10000,

percentage of causal SNPs c = {0%, 1%} and σ2 = 1. In addition to these parameters, we

also varied the amount of overlap between the causal SNPs and the SNPs used to generate

the kinship matrix. We considered two main scenarios:

1. None of the causal SNPs are included in the calculation of the kinship matrix:

X(kinship) =
[
X(other)

]

2. All the causal SNPs are included in the calculation of the kinship matrix:

X(kinship) =
[
X(other);X(causal)

]
.

Both kinship matrices are meant to contrast the model behavior when the causal SNPs

are included in both the main effects and random effects versus when the causal SNPs are

only included in the main effects. These scenarios are motivated by the current standard

of practice in GWAS where the candidate marker is excluded from the calculation of the

kinship matrix (Lippert et al., 2011). This approach becomes much more difficult to apply

in large-scale multivariable models where there is likely to be overlap between the variables

in the design matrix and kinship matrix.
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We compare ggmix to the lasso and the twostep method. For the lasso, we include the first 10

principal components of the estimated kinship as unpenalized predictors in the design matrix.

For the twostep method, we first fit an intercept only model with a single random effect using

the average information restricted maximum likelihood (AIREML) algorithm (Gilmour et

al., 1995) as implemented in the gaston R package (Dandine-Roulland, 2018). The residuals

from this model are then used as the response in a regular lasso model. Note that in the

twostep method, we have removed the kinship effect in the first step and therefore do not

need to make any further adjustments when fitting the penalized model. We fit the lasso

using the default settings in the glmnet package (J. Friedman et al., 2010) and select the

optimal value of the regularization parameter using 10-fold cross-validation.

Let λ̂ be the estimated value of the optimal regularization parameter selected via cross-

validation or GIC, β̂λ̂ the estimate of β at regularization parameter λ̂, S0 = {j; (β)j ̸= 0}

the index of the true active set, Ŝλ̂ =
{
j; (β̂λ̂)j ̸= 0

}
the index of the set of non-zero estimated

coefficients, and |A| the cardinality of set A.

We evaluate the methods based on correct sparsity defined as 1
p

∑p
j=1Aj, where

Aj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 if (β̂λ̂)j = (β)j = 0

1 if (β̂λ̂)j ̸= 0, (β)j ̸= 0

0 if else.

We also compare the model error (∥Xβ−Xβ̂λ̂∥2), true positive rate (|Ŝλ̂ ∈ S0|/|S0|), false posi-

tive rate (|Ŝλ̂ /∈ S0|/|j /∈ S0|), and the variance components for the random effect and error term.

The following estimator is used for the error variance of the lasso (Reid et al., 2016):

1

n− Ŝλ̂

Y−Xβ̂λ̂

2
2

(4.32)
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4.4.1 Results

We first plot the correct sparsity results for the null model (c = 0) and the model with 1%

causal SNPs (c = 0.01) in Figures 4.3 and 4.4, respectively. When the true model has no

causal SNPs, we see that ggmix has perfect Type 1 error control across all 200 replications

while both the twostep and lasso methods sometimes estimate a model with a large number

of false positives. When the true model contains some causal SNPs, ggmix again outperforms

the other two methods in terms of correct sparsity. The distribution of Ŝλ̂ for each of the

three methods is shown in Figure B.1 for c = 0 and Figure B.2 for c = 0.01 of Supplemental

Section B.2.
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N
o causal SN

Ps in Kinship
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Method twostep lasso ggmix
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Correct Sparsity Results for the Null Model

Figure 4.3: Boxplots of the correct sparsity from 200 simulations by the true heritability
η = {10%, 50%} for the null model (c = 0).
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Correct Sparsity results for the Model with 1% Causal SNPs

Figure 4.4: Boxplots of the correct sparsity from 200 simulations by the true heritability
η = {10%, 50%} and number of causal SNPs that were included in the calculation of the
kinship matrix for the model with 1% causal SNPs (c = 0.01).

The true positive vs. false positive rate for the model with 1% causal SNPs (c = 0.01) is

shown in Figure 4.5. Both the lasso and twostep outperform ggmix in terms of identifying

the true model. This accuracy however, comes at the cost of a very high false positive rate

compared to ggmix.
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True Positive Rate vs. False Positive Rate (Mean +/- 1 SD) for the Model with 1% Causal SNPs

Figure 4.5: Means ±1 standard deviation of true positive rate vs. false positive rate from
200 simulations by the true heritability η = {10%, 50%} and number of causal SNPs that
were included in the calculation of the kinship matrix for the model with 1% causal SNPs
(c = 0.01).

We plot the twostep and ggmix heritability estimates for c = 0 (Figure B.3, Supplemental

Section B.2) and c = 0.01 (Figure 4.6). We see that both methods correctly estimate the

heritability in the null model. When all of the causal SNPs are in the kinship matrix, both

methods overestimate η though ggmix is closer to the true value. When none of the causal

SNPs are in the kinship, both methods tend to overestimate the truth when η = 10% and

underestimate when η = 50%.
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Figure 4.6: Boxplots of the heritability estimate η̂ from 200 simulations by the true heri-
tability η = {10%, 50%} and number of causal SNPs that were included in the calculation
of the kinship matrix for the model with 1% causal SNPs (c = 0.01).

In Figures B.4 (Supplemental Section B.2) and 4.7, we plot the error variance for c = 0 and

c = 0.01, respectively. The twostep and ggmix methods correctly estimate the error variance

while the lasso overestimates it for the null model and for when 1% of the causal SNPs are

in the kinship matrix. We see an inflated estimated error variance across all three methods

when c = 0.01 and none of the causal SNPs are in the kinship matrix with the lasso and

ggmix performing similarly.
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Figure 4.7: Boxplots of the estimated error variance from 200 simulations by the true heri-
tability η = {10%, 50%} and number of causal SNPs that were included in the calculation
of the kinship matrix for the model with 1% causal SNPs (c = 0.01).

We compare the model error as a function of Ŝλ̂ in Figures B.5 (Supplemental Section B.2)

and 4.8 for c = 0 and c = 0.01, respectively. Lasso achieves the smallest model error across

all scenarios (for c = 0.01), albeit with a large number of active variables. ggmix has a

smaller model error compared to twostep when all causal SNPs are in the kinship matrix

and similar performance when none of the causal SNPs are in the kinship matrix.
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Figure 4.8: Means ±1 standard deviation of the model error vs. the number of active
variables by the true heritability η = {10%, 50%} and number of causal SNPs that were
included in the calculation of the kinship matrix for the model with 1% causal SNPs (c =
0.01).

Overall, we observe that variable selection results for ggmix are similar regardless of whether

the causal SNPs are in the kinship matrix or not. This result is encouraging since in practice

the kinship matrix is constructed from a random sample of SNPs across the genome, some of

which are likely to be causal. ggmix has very good Type 1 error control, while both the lasso

and twostep have a very high false positive rate. Inclusion of the causal SNPs in the kinship

calculation has a strong impact on the variance component estimation with the heritability

and error variance estimates working in opposite directions. That is, when all causal SNPs

are in the kinship matrix, the heritability estimates are biased towards 1 while the error
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variance is correctly estimated. Conversely, when none of the causal SNPs are included in

the kinship matrix, the estimated heritability is closer to the true value, while the error

variance is inflated. Both the lasso and twostep methods have better signal recovery, i.e.,

a smaller model error, as compared to ggmix. However, this signal is being spread across

many variables leading to many falsely selected variables, or Type 1 errors.

4.5 Discussion

We develop a general penalized LMM framework for population structure correction that si-

multaneously selects and estimates variables, accounting for between individual correlations,

in one step. Our CGD algorithm is computationally efficient and has theoretical guarantees

of convergence. We provide an easy-to-use software implementation of our algorithm along

with a principled method for automatic tuning parameter selection. Through simulation

studies, we show that existing approaches such as a two-stage approach or the lasso with

a principal component adjustment lead to a large number of false positives. Our proposed

method has excellent Type 1 error control and is robust to the inclusion of causal SNPs in

the kinship matrix. This feature is important since in practice the kinship matrix is con-

structed from a random sample of SNPs across the genome, some of which are likely to be

causal.

Although we derive a CGD algorithm for the ℓ1 penalty, our approach can also be easily

extended to other penalties such as the elastic net and group lasso with the same guarantees

of convergence.

A limitation of ggmix is that it first requires computing the covariance matrix with a com-

putation time of O(n2k) followed by a spectral decomposition of this matrix in O(n3) time

where k is the number of SNP genotypes used to construct the covariance matrix. This

computation becomes prohibitive for large cohorts such as the UK Biobank (Allen et al.,
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2012) which have collected genetic information on half a million individuals. When the ma-

trix of genotypes used to construct the covariance matrix is low rank, there are additional

computational speedups that can be implemented. While this has been developed for the

univariate case (Lippert et al., 2011), to our knowledge, this has not been explored in the

multivariable case. We are currently developing a low rank version of the penalized LMM

developed here, which reduces the time complexity from O(n2k) to O(nk2).

While the predominant motivation for our approach has been association testing, we be-

lieve that there are other applications in which it can be used as well. For example, in

the most recent Genetic Analysis Workship 20 (GAW20), the causal modeling group inves-

tigated causal relationships between DNA methylation (exposure) within some genes and

the change in high-density lipoproteins ∆HDL (outcome) using Mendelian randomization

(MR) (Davey Smith & Ebrahim, 2003). Penalized regression methods could be used to

select SNPs strongly associated with the exposure in order to be used as an instrumental

variable (IV). However, since GAW20 data consisted of families, two step methods were used

which could have resulted in a large number of false positives. ggmix is an alternative ap-

proach that could be used for selecting the IV while accounting for the familial structure of

the data. Our method is also suitable for fine mapping SNP association signals in genomic

regions, where the goal is to pinpoint individual variants most likely to impact the underlying

biological mechanisms of disease (Spain & Barrett, 2015).
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Chapter 5

An analytic approach for interpretable

predictive models in high dimensional

data, in the presence of interactions with

exposures

Preamble to Manuscript 3. This paper was in fact the first project of my thesis, intended

to explore the benefits of dimension reduction when prediction is the goal and interactions

are expected. The eclust algorithm proposed in the following manuscript, published in

Genetic Epidemiology, leverages correlations induced by an exposure factor to reduce the

dimensionality of the data and improve prediction performance. This manuscript provides

an extensive simulation study as well as three real data applications to demonstrate its

utility.
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Abstract

Predicting a phenotype and understanding which variables improve that prediction are two

very challenging and overlapping problems in analysis of high-dimensional data such as those

arising from genomic and brain imaging studies. It is often believed that the number of truly

important predictors is small relative to the total number of variables, making computational

approaches to variable selection and dimension reduction extremely important. To reduce

dimensionality, commonly-used two-step methods first cluster the data in some way, and

build models using cluster summaries to predict the phenotype.

It is known that important exposure variables can alter correlation patterns between clus-

ters of high-dimensional variables, i.e., alter network properties of the variables. However,

it is not well understood whether such altered clustering is informative in prediction. Here,

assuming there is a binary exposure with such network-altering effects, we explore whether

use of exposure-dependent clustering relationships in dimension reduction can improve pre-

dictive modelling in a two-step framework. Hence, we propose a modelling framework called

ECLUST to test this hypothesis, and evaluate its performance through extensive simulations.

With ECLUST, we found improved prediction and variable selection performance compared

to methods that do not consider the environment in the clustering step, or to methods that

use the original data as features. We further illustrate this modelling framework through

the analysis of three data sets from very different fields, each with high dimensional data, a

binary exposure, and a phenotype of interest. Our method is available in the eclust CRAN

package.
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5.1 Introduction

In this article, we consider the prediction of an outcome variable y observed on n individuals

from p variables, where p is much larger than n. Challenges in this high-dimensional context

include not only building a good predictor which will perform well in an independent dataset,

but also being able to interpret the factors that contribute to the predictions. This latter

issue can be very challenging in high dimensional predictor sets. For example, multiple

different sets of covariates may provide equivalent measures of goodness of fit (J. Fan et al.,

2014), and therefore how does one decide which are important? If many variables are highly

correlated, interpretation may be improved by acknowledging the existence of an underlying

or latent factor generating these patterns. In consequence, many authors have suggested a

two-step procedure where the first step is to cluster or group variables in the design matrix in

an interpretable way, and then to perform model fitting in the second step using a summary

measure of each group of variables.

There are several advantages to these two-step methods. Through the reduction of the

dimension of the model, the results are often more stable with smaller prediction variance,

and through identification of sets of correlated variables, the resulting clusters can provide

an easier route to interpretation. From a practical point of view, two-step approaches are

both flexible and easy to implement because efficient algorithms exist for both clustering

(e.g. (Müllner, 2013)) and model fitting (e.g. (J. Friedman et al., 2010; Kuhn, 2008; Y. Yang

& Zou, 2014)), particularly in the case when the outcome variable is continuous.

This two-step idea dates back to 1957 when Kendall first proposed using principal compo-

nents in regression (Kendall, 1957). Hierarchical clustering based on the correlation of the

design matrix has also been used to create groups of genes in microarray studies. For ex-

ample, at each level of a hierarchy, cluster averages have been used as new sets of potential

predictors in both forward-backward selection (Hastie et al., 2001) or the lasso (Park et al.,

2007). Bühlmann et al. proposed a bottom-up agglomerative clustering algorithm based on
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canonical correlations and used the group lasso on the derived clusters (Bühlmann et al.,

2013). A more recent proposal performs sparse regression on cluster prototypes (Reid & Tib-

shirani, 2016), i.e., extracting the most representative gene in a cluster instead of averaging

them.

These two-step approaches usually group variables based on a matrix of correlations or some

transformation of the correlations. However, when there are external factors, such as ex-

posures, that can alter correlation patterns, a dimension reduction step that ignores this

information may be suboptimal. Many of the high-dimensional genomic data sets currently

being generated capture a possibly dynamic view of how a tissue is functioning, and demon-

strate differential patterns of coregulation or correlation under different conditions. We il-

lustrate this critical point with an example of a microarray gene expression dataset available

in the COPDSexualDimorphism.data package (Sathirapongsasuti, 2013) from Bioconductor.

This study measured gene expression in Chronic Obstructive Pulmonary Disease (COPD)

patients and controls in addition to their age, gender and smoking status. To see if there was

any effect of smoking status on gene expression, we plotted the expression profiles separately

for current and never smokers. To balance the covariate profiles, we matched subjects from

each group on age, gender and COPD case status, resulting in a sample size of 7 in each

group. Heatmaps in Figure 5.1 show gene expression levels and the corresponding gene-gene

correlation matrices as a function of dichotomized smoking status for 2,900 genes with large

variability. Evidently, there are substantial differences in correlation patterns between the

smoking groups (Figures 1a and 1b). However, it is difficult to discern any patterns or major

differences between the groups when examining the gene expression levels directly (Figures

1c and 1d). This example highlights two key points; 1) environmental exposures can have a

widespread effect on regulatory networks and 2) this effect may be more easily discerned by

looking at a measure for gene similarity, relative to analyzing raw expression data.
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Figure 5.1: Heatmaps of correlations between genes (top) and gene expression data (bottom
- rows are genes and columns are subjects), stratified by smoking status from a microarray
study of COPD (Sathirapongsasuti, 2013). The 20% most variable genes are displayed (2,900
genes). There are 7 subjects in each group, matched on COPD case status, gender and age.
Data available on Bioconductor in the COPDSexualDimorphism.data package.

Many other examples of altered co-regulation and phenotype associations can be found. For

instance, in a pediatric brain development study, very different correlation patterns of cortical

thickness within brain regions were observed across age groups, consistent with a process of

fine-tuning an immature brain system into a mature one (Khundrakpam et al., 2013). A

comparison of gene expression levels in bone marrow from 327 children with acute leukemia

found several differentially coexpressed genes in philadelphia positive leukemias compared

to the cytogenetically normal group (Kostka & Spang, 2004). To give a third example, an

analysis of RNA-sequencing data from The Cancer Genome Atlas (TCGA) revealed very

98



different correlation patterns among sets of genes in tumors grouped according to their

missense or null mutations in the TP53 tumor suppressor gene (Klein et al., 2016).

Therefore, in this paper, we pose the question whether clustering or dimension reduction

that incorporates known covariate or exposure information can improve prediction models

in high dimensional genomic data settings. Substantial evidence of dysregulation of genomic

coregulation has been observed in a variety of contexts, however we are not aware of any

work that carefully examines how this might impact the performance of prediction models.

We propose a conceptual analytic strategy called ECLUST, for prediction of a continuous

or binary outcome in high dimensional contexts while exploiting exposure-sensitive data

clusters. We restrict our attention to two-step algorithms in order to implement a covariate-

driven clustering.

Specifically, we hypothesize that within two-step methods, variable grouping that considers

exposure information can lead to improved predictive accuracy and interpretability. We

use simulations to compare our proposed method to comparable approaches that combine

data reduction with predictive modelling. We are focusing our attention primarily on the

performance of alternative dimension reduction strategies within the first step of a two-step

method. Therefore, performance of each strategy is compared for several appropriate step

2 predictive models. We then illustrate these concepts more concretely by analyzing three

data sets. Our method and the functions used to conduct the simulation studies have been

implemented in the R package eclust (Bhatnagar, 2017), available on the comprehensive R

archive network (CRAN). Extensive documentation of the package is available at http://

sahirbhatnagar.com/eclust/.
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5.2 Methods

Assume there is a single binary environmental factor E of importance, and an n × p high

dimensional (HD) data set X (n observations, p features) of relevance. This could be genome-

wide epigenetic data, gene expression data, or brain imaging data, for example. Assume there

is a continuous or binary phenotype of interest Y and that the environment has a widespread

effect on the HD data, i.e., affects many elements of the HD data. The primary goal is to

improve prediction of Y by identifying interactions between E and X through a carefully

constructed data reduction strategy that exploits E dependent correlation patterns. The

secondary goal is to improve identification of the elements of X that are involved; we denote

this subset by S0. We hypothesize that a systems-based perspective will be informative when

exploring the factors that are associated with a phenotype of interest, and in particular we

hypothesize that incorporation of environmental factors into predictive models in a way that

retains a high dimensional perspective will improve results and interpretation.

5.2.1 Potential impacts of covariate-dependent coregulation

Motivated by real world examples of differential coexpression, we first demonstrate that

environment-dependent correlations in x can induce an interaction model. Without loss of

generality, let p = 2 and the relationship between X1 and X2 depend on the environment

such that

Xi2 = ψXi1Ei + εi (5.1)

where εi is an error term and ψ is a slope parameter, that is:

Xi2 =

⎧⎪⎪⎨⎪⎪⎩
ψXi1 + εi when Ei = 1

εi when Ei = 0
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Consider the 3-predictor regression model

Yi = β0 + β1Xi1 + β2Xi2 + β3Ei + ε∗i (5.2)

where ε∗i is another error term which is independent of εi. At first glance (5.2) does not

contain any interaction terms. However, substituting (5.1) for Xi2 in (5.2) we get

Yi = β0 + β1Xi1 + β2ψ (Xi1Ei) + β3Ei + εiβ2 + ε∗i (5.3)

The third term in (5.3) resembles an interaction model, with β2ψ being the interaction pa-

rameter. We present a second illustration showing how non-linearity can induce interactions.

Suppose

Yi = β0 + β1Xi1 + β2Xi2 + β3Ei + β3max
text

j∈{1,2}

(
Xij − X̄i

)2
+ ε∗i (5.4)

Substituting (5.1) for Xi2 in (5.4) we obtain a non-linear interaction term. Equation (5.4)

provided partial motivation for the model used in our third simulation scenario. Some mo-

tivation for this model and a graphical representation are presented below in the Simulation

Studies section.

5.2.2 Proposed framework and algorithm

We restrict attention to methods containing two phases as illustrated in Figure 5.2: 1a) a

clustering stage where variables are clustered based on some measure of similarity, 1b) a

dimension reduction stage where a summary measure is created for each of the clusters, and

2) a simultaneous variable selection and regression stage on the summarized cluster measures.

Although this framework appears very similar to any two-step approach, our hypothesis is

that allowing the clustering in Step 1a to depend on the environment variable can lead to
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improvements in prediction after Step 2. Hence, methods in Step 1a are adapted to this end,

as decribed in the following sections. Our focus in this manuscript is on the clustering and

cluster representation steps. Therefore, we compare several well known methods for variable

selection and regression that are best adapted to our simulation designs and data sets.

Figure 5.2: Overview of our proposed method. 1a) A measure of similarity is calculated
separately for both groups and clustering is performed on a linear combination of these two
matrices. 1b) We reduce the dimension of each cluster by taking a summary measure. 2)
Variable selection and regression is performed on the cluster representatives, E and their
interaction with E.

Step 1a: Clustering using co-expression networks that are influenced by the

environment

In agglomerative clustering, a measure of similarity between sets of observations is required

in order to decide which clusters should be combined. Common choices include Euclidean,

maximum and absolute distance. A more natural choice in genomic or brain imaging data

is to use Pearson correlation (or its absolute value) because the derived clusters are bio-
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logically interpretable. Indeed, genes that cluster together are correlated and thus likely

to be involved in the same cellular process. Similarly, cortical thickness measures of the

brain tend to be correlated within pre-defined regions such as the left and right hemisphere,

or frontal and temporal regions (Sato et al., 2013). However, the information on the con-

nection between two variables, as measured by the Pearson correlation for example, may

be noisy or incomplete. Thus it is of interest to consider alternative measures of pairwise

interconnectedness. Gene co-expression networks are being used to explore the system-level

function of genes, where nodes represent genes and are connected if they are significantly

co-expressed (B. Zhang & Horvath, 2005), and here we use their overlap measure (Ravasz

et al., 2002) to capture connectnedness between two X variables within each environmental

condition. As was discussed earlier, genes can exhibit very different patterns of correlation

in one environment versus the other (e.g. Figure 5.1). Furthermore, measures of similarity

that go beyond pairwise correlations and consider the shared connectedness between nodes

can be useful in elucidating networks that are biologically meaningful. Therefore, we propose

to first look at the topological overlap matrix (TOM) separately for exposed (E = 1) and

unexposed (E = 0) individuals (see Supplemental Section C.1 for details on the TOM). We

then seek to identify nodes that are very different between environments. We determine

differential coexpression using the absolute difference TOM(Xdiff) = |TOME=1 − TOME=0|

(Klein et al., 2016). We then use hierarchical clustering with average linkage on the derived

difference matrix to identify these differentially co-expressed variables. Clusters are auto-

matically chosen using the dynamicTreeCut (Langfelder et al., 2008) algorithm. Of course,

there could be other clusters which are not sensitive to the environment. For this reason we

also create a set of clusters based on the TOM for all subjects denoted TOM(Xall). This

will lead to each covariate appearing in two clusters. In the sequel we denote the clusters

derived from TOM(Xall) as the set Call = {C1, . . . , Ck}, and those derived from TOM(Xdiff)

as the set Cdiff = {Ck+1, . . . , Cℓ} where k < ℓ < p.
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Step 1b: Dimension reduction via cluster representative

Once the clusters have been identified in phase 1, we proceed to reduce the dimensionality

of the overall problem by creating a summary measure for each cluster. A low-dimensional

structure, i.e. grouping when captured in a regression model, improves predictive perfor-

mance and facilitates a model’s interpretability. We propose to summarize a cluster by

a single representative number. Specifically, we chose the average values across all mea-

sures (Bühlmann et al., 2013; Park et al., 2007), and the first principal component (Langfelder

& Horvath, 2007). These representative measures are indexed by their cluster, i.e., the vari-

ables to be used in our predictive models are X̃all =
{
X̃C1 , . . . , X̃Ck

}
for clusters that do not

consider E, as well as X̃diff =
{
X̃Ck+1

, . . . , X̃Cℓ

}
for E-derived clusters. The tilde notation

on the X is to emphasize that these variables are different from the separate variables in the

original data.

Step 2: Variable Selection and Regression

Because the clustering in phase 1 is unsupervised, it is possible that the derived latent

representations from phase 2 will not be associated with the response. We therefore use

penalized methods for supervised variable selection, including the lasso (Tibshirani, 1996)

and elasticnet (Zou & Hastie, 2005) for linear models, and multivariate adaptive regression

splines (MARS) (J. H. Friedman, 1991) for nonlinear models. We argue that the selected

non-zero predictors in this model will represent clusters of genes that interact with the

environment and are associated with the phenotype. Such an additive model might be

insufficient for predicting the outcome. In this case we may directly include the environment

variable, the summary measures and their interaction. In the light of our goals to improve

prediction and interpretability, we consider the following model

g(µ) = β0 +
ℓ∑

j=1

βjX̃Cj
+ βEE +

ℓ∑
j=1

αj

(
X̃Cj

E
)
+ ε (5.5)
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where g(·) is a known link function, µ = E[Y |X, E,β,α] and X̃Cj
are linear combinations

of X (from Step 1b). The primary comparison is models with X̃all only versus models with

X̃all and X̃diff. Given the context of either the simulation or the data set, we use either linear

models or non linear models. Our general approach, ECLUST, can therefore be summarized

by the algorithm in Table 5.1.

Table 5.1: Details of ECLUST algorithm

Step Description, Softwarea and Reference

1a) i) Calculate TOM separately for observations with E = 0 and E = 1 using
WGCNA::TOMsimilarityFromExpr (Langfelder & Horvath, 2008)
ii) Euclidean distance matrix of |TOME=1 − TOME=0| using stats::dist
iii) Run the dynamicTreeCut algorithm (Langfelder et al., 2008, 2016) on the distance
matrix to determine the number of clusters and cluster membership using
dynamicTreeCut::cutreeDynamic with minClusterSize = 50

1b) i) 1st PC or average for each cluster using stat::prcomp or base::mean
ii) Penalized regression model: create a design matrix of the derived cluster
representatives and their interactions with E using stats::model.matrix
iii) MARS model: create a design matrix of the derived cluster representatives and E

2) i) For linear models, run penalized regression on design matrix from step 1b) using
glmnet::cv.glmnet (J. Friedman et al., 2010). Elasticnet mixing parameter alpha=1
corresponds to the lasso and alpha=0.5 corresponds to the value we used in our
simulations for elasticnet. The tuning parameter alpha is selected by minimizing 10 fold
cross-validated mean squared error (MSE).
ii) For non-linear effects, run MARS on the design matrix from step 1b) using
earth::earth (Milborrow. Derived from mda:mars by T. Hastie and R. Tibshirani.,
2011) with pruning method pmethod = "backward" and maximum number of model
terms nk = 1000. The degree=1,2 is chosen using 10 fold cross validation (CV), and
within each fold the number of terms in the model is the one that minimizes the
generalized cross validated (GCV) error.

aAll functions are implemented in R (R Core Team, 2016). The naming convention is as follows:
package_name::package_function. Default settings used for all functions unless indicated otherwise.

5.3 Simulation Studies

We have evaluated the performance of our ECLUST method in a variety of simulated scenar-

ios. For each simulation scenario we compared ECLUST to the following analytic approaches

105



1) regression and variable selection is performed on the model which consists of the origi-

nal variables, E and their interaction with E (SEPARATE), and 2) clustering is performed

without considering the environmental exposure followed by regression and variable selec-

tion on the cluster representations, E, and their interaction with E (CLUST). A detailed

description of the methods being compared is summarized in Table 5.2. We have designed 6

simulation scenarios that illustrate different kinds of relationships between the variables and

the response. For all scenarios, we have created high dimensional data sets with p predictors

(p = 5000), and sample sizes of n = 200. We also assume that we have two data sets for

each simulation - a training data set where the parameters are estimated, and a testing data

set where prediction performance is evaluated, each of size ntrain = ntest = 200. The number

of subjects who were exposed (nE=1 = 100) and unexposed (nE=0 = 100) and the number

of truly associated parameters (|S0| = 500) remain fixed across the 6 simulation scenarios.

Let

Y = Y ∗ + k · ε (5.6)

where Y ∗ is the linear predictor, the error term ε is generated from a standard normal

distribution, and k is chosen such that the signal-to-noise ratio SNR = (V ar(Y ∗)/V ar(ε))

is 0.2, 1 and 2 (e.g. the variance of the response variable Y due to ε is 1/SNR of the variance

of Y due to Y ∗).

5.3.1 The Design Matrix

We generated covariate data in blocks using the simulateDatExpr function from the WGCNA

package in R (version 1.51). This generates data from a latent vector: first a seed vector

is simulated, then covariates are generated with varying degree of correlation with the seed

vector in a given block. We simulated five clusters (blocks), each of size 750 variables, and

labeled them by colour (turquoise, blue, red, green and yellow), while the remaining 1250

variables were simulated as independent standard normal vectors (grey) (Figure 5.3). For
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Table 5.2: Summary of methods used in simulation study

General Approach Summary
Measure of
Feature
Clusters

Descriptiona,b

SEPARATE NA Regression of the original predictors {X1, . . . , Xp} on
the response i.e. no transformation of the predictors is
being done here

CLUST 1st PC,
average

Create clusters of predictors without using the
environment variable {C1, . . . , Ck}. Use the summary
measure of each cluster as inputs of the regression
model.

ECLUST 1st PC,
average

Create clusters of predictors using the environment
variable {Ck+1, . . . , Cℓ} where k < ℓ < p, as well as
clusters without the environment variable
{C1, . . . , Ck}. Use summary measures of {C1, . . . , Cℓ}
as inputs of the regression model.

aSimulations 1 and 2 used lasso and elasticnet for the linear models, and simulation 3 used MARS for
estimating non-linear effects bSimulations 4, 5 and 6 convert the continuous response generated in
simulations 1, 2 and 3, respectively, into a binary response cPC: principal component

the unexposed observations (E = 0), only the predictors in the yellow block were simulated

with correlation, while all other covariates were independent within and between blocks.

The TOM values are very small for the yellow cluster because it is not correlated with any

of its neighbors. For the exposed observations (E = 1), all 5 blocks contained predictors

that are correlated. The blue and turquoise blocks are set to have an average correlation of

0.6. The average correlation was varied for both green and red clusters ρ = {0.2, 0.9} and

the active set S0, that are directly associated with y, was distributed evenly between these

two blocks. Heatmaps of the TOM for this environment dependent correlation structure

are shown in Figure 5.3 with annotations for the true clusters and active variables. This

design matrix shows widespread changes in gene networks in the exposed environment, and

this subsequently affects the phenotype through the two associated clusters. There are

also pathways that respond to changes in the environment but are not associated with the

response (blue and turquoise), while others that are neither active in the disease nor affected
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by the environment (yellow).

Figure 5.3: Topological overlap matrices (TOM) of simulated predictors based on subjects
with (a) E = 0, (b) E = 1, (c) their absolute difference and (d) all subjects. Dendrograms
are from hierarchical clustering (average linkage) of one minus the TOM for a, b, and d and
the euclidean distance for c. Some variables in the red and green clusters are associated with
the outcome variable. The module annotation represents the true cluster membership for
each predictor, and the active annotation represents the truly associated predictors with the
response.

5.3.2 The response

The first three simulation scenarios differ in how the linear predictor Y ∗ in (5.6) is defined,

and also in the choice of regression model used to fit the data. In simulations 1 and 2 we use
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lasso (Tibshirani, 1996) and elasticnet (Zou & Hastie, 2005) to fit linear models; then we use

MARS (J. H. Friedman, 1991) in simulation 3 to estimate non-linear effects. Simulations 4, 5

and 6 use the GLM version of these models, respectively, since the responses are binary.

Simulation 1

Simulation 1 was designed to evaluate performance when there are no explicit interactions

between X and E (see Equation (5.3)). We generated the linear predictor from

Y ∗ =
∑

j∈{1,...,250}
j∈ red, green block

βjXj + βEE (5.7)

where βj ∼ Unif [0.9, 1.1] and βE = 2. That is, only the first 250 predictors of both the red

and green blocks are active. In this setting, only the main effects model is being fit to the

simulated data.

Simulation 2

In the second scenario we explicitly simulated interactions. All non-zero main effects also

had a corresponding non-zero interaction effect with E. We generated the linear predictor

from

Y ∗ =
∑

j∈{1,...,125}
j∈ red, green block

(βjXj + αjXjE) + βEE (5.8)

where βj ∼ Unif [0.9, 1.1], αj ∼ Unif [0.4, 0.6] or αj ∼ Unif [1.9, 2.1], and βE = 2. In this

setting, both the main effects and their interactions with E are being fit to the simulated

data.
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Simulation 3

In the third simulation we investigated the performance of the ECLUST approach in the

presence of non-linear effects of the predictors on the phenotype:

Y ∗
i =

∑
j∈{1,...,250}

j∈ red, green block

βjXij + βEEi + αQEi · f(Qi) (5.9)

where

Qi = −max
text

j∈{1,...,250}
j∈ red, green block

(
Xij − X̄i

)2 (5.10)

f(ui) =

ui − min
i∈{1,...,n}

ui

− min
i∈{1,...,n}

ui
(5.11)

X̄i =
1

500

∑
j∈{1,...,250}

j∈ red, green block

Xij

The design of this simulation was partially motivated by considering the idea of canalization,

where systems operate within appropriate parameters until sufficient perturbations accumu-

late (e.g. Gibson (2009)). In this third simulation, we set βj ∼ Unif [0.9, 1.1], βE = 2 and

αQ = 1. We assume the data has been appropriately normalized, and that the correlation

between any two features is greater than or equal to 0. In simulation 3, we tried to capture

the idea that an exposure could lead to coregulation or disregulation of a cluster of X’s,

which in itself directly impacts Y. Hence, we defined coregulation as the X’s being similar

in magnitude and disregulation as the X’s being very different. The Qi term in (5.10) is

defined such that higher values would correspond to strong coregulation whereas lower values

correspond to disregulation. For example, suppose Qi ranges from -5 to 0. It will be -5 when

there is lots of variability (disregulation) and 0 when there is none (strong coregulation).

The function f(·) in (5.11) simply maps Qi to the [0,1] range. In order to get an idea of the
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relationship in (5.9), Figure 5.4 displays the response Y as a function of the first principal

component of
∑

j βjXij (denoted by 1st PC) and f(Qi). We see that lower values of f(Qi)

(which implies disregulation of the features) leads to a lower Y . In this setting, although the

clusters do not explicitly include interactions between the X variables, the MARS algorithm

allows for the possibility of two way interactions between any of the variables.

1st P
C

f(Q
)

Y

1st P
C

f(Q
)

Y

Figure 5.4: Visualization of the relationship between the response, the first principal compo-
nent of the main effects and f(Qi) in (5.9) for E = 0 (left) and E = 1 (right) in simulation
scenario 3. This graphic also depicts the intuition behind model (5.4).

Simulations 4, 5 and 6

We used the same simulation setup as above, except that we took the continuous out-

come Y , defined p = 1/(1 + exp(−Y )) and used this to generate a two-class outcome z

with Pr(z = 1) = p and Pr(z = 0) = 1 − p. The true parameters were simulated as βj ∼

Unif[log(0.9), log(1.1)], βE = log(2), αj ∼ Unif[log(0.4), log(0.6)] or αj ∼ Unif[log(1.9), log(2.1)].

Simulations 4, 5 and 6 are the binary response versions of simulations 1, 2 and 3, respec-

tively. The larger odds ratio for E compared to the odds ratio for X is motivated by certain

environmental factors which are well known to have substantial impacts on disease risks and

phenotypes. For example, body mass index has been estimated to explain a large proportion

of variation in bone mineral density (BMD) in women (10-20%) (Felson et al., 1993). This
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can be converted to a slope of 0.31-0.44 assuming variables are standardized, i.e., changes of

0.3-0.4 standard deviations in BMD per standard deviation change in weight. In contrast,

the majority of SNPs and rare variants have effect sizes under 0.10 standard deviations on

BMD (Kemp et al., 2017).

5.3.3 Measures of Performance

Simulation performance was assessed with measures of model fit, prediction accuracy and

feature stability. Several measures for each of these categories, and the specific formulae

used are provided in Table 5.3. We simulated both a training data set and a test data

set for each simulation: all tuning parameters for model selection were selected using the

training sets only. Although most of the measures of model fit were calculated on the test

data sets, true positive rate, false positive rate and correct sparsity were calculated on the

training set only. The root mean squared error (RMSE) is determined by predicting the

response for the test set using the fitted model on the training set. The area under the

curve is determined using the trapezoidal rule (Robin et al., 2011). The stability of feature

importance is defined as the variability of feature weights under perturbations of the training

set, i.e., small modifications in the training set should not lead to considerable changes in

the set of important covariates (Toloşi & Lengauer, 2011). A feature selection algorithm

produces a weight (e.g. β = (β1, . . . , βp)), a ranking (e.g. rank(β) : r = (r1, . . . , rm))

and a subset of features (e.g. s = (s1, . . . , sp), sj = I {βj ̸= 0} where I {·} is the indicator

function). In the CLUST and ECLUST methods, we defined a predictor to be non-zero if

its corresponding cluster representative weight was non-zero. Using 10-fold cross validation

(CV), we evaluated the similarity between two features and their rankings using Pearson

and Spearman correlation, respectively. For each CV fold we re-ran the models and took

the average Pearson/Spearman correlations of the
(
10
2

)
combinations of estimated coefficients

vectors. To measure the similarity between two subsets of features we took the average of the
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Jaccard distance in each fold. A Jaccard distance of 1 indicates perfect agreement between

two sets while no agreement will result in a distance of 0. For MARS models we do not

report the Pearson/Spearman stability rankings due to the adaptive and functional nature

of the model (there are many possible combinations of predictors, each of which are linear

basis functions).

Table 5.3: Measures of Performance

Measure Formula

Model Fit
True Positive Rate (TPR) |Ŝ ∈ S0|/|S0|

False Positive Rate (TPR) |Ŝ /∈ S0|/|j /∈ S0|

Correct Sparsity (Witten et al., 2014) 1
p

∑p
j=1Aj

Aj =

⎧⎪⎨⎪⎩
1 if β̂j = βj = 0

1 if β̂j ̸= 0, βj ̸= 0

0 if else

Prediction Accuracy
Root Mean Squared Error (RMSE) ∥Ytest − µ̂(Xtest)∥2
Area Under the Curve (AUC) Trapezoidal rule
Hosmer-Lemeshow Test (G = 10) χ2 test statistic

Feature Stability using K-fold Cross-Validation on training set (Kalousis et al., 2007)

Pearson Correlation (ρ) (Pearson, 1895)
(
K
2

)−1 ∑
i,j∈{1,...,K},i ̸=j

cov(β̂(i),β̂(j))
σ
β̂(i)

σ
β̂(j)

Spearman Correlation (r) (Spearman, 1904)
(
K
2

)−1 ∑
i,j∈{1,...,K},i ̸=j

[
1− 6

∑
m

(
rm(i)

−rm(j)

)2

p(p2−1)

]

Jaccard Distance (Jaccard, 1912) |Ŝ(i)∩Ŝ(j)|
|Ŝ(i)∪Ŝ(j)|

aµ̂: fitting procedure on the training set bS0: index of active set =
{
j;β0

j ̸= 0
} cŜ: index of the set of non-zero

estimated coefficients =
{
j; β̂j ̸= 0

}
d|A|: is the cardinality of set A
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5.3.4 Results

All reported results are based on 200 simulation runs. We graphically summarized the results

across simulations 1-3 for model fit (Figure 5.5) and feature stability (Figure 5.6). The results

for simulations 4-6 are shown in the Supplemental Section C.2, Figures A.1-A.6. We restrict

our attention to SNR = 1, ρ = 0.9, and αj ∼ Unif [1.9, 2.1]. The model names are labeled

as summary measure_model (e.g. avg_lasso corresponds using the average of the features

in a cluster as inputs into a lasso regression model). When there is no summary measure

appearing in the model name, that indicates that the original variables were used (e.g. enet

means all separate features were used in the elasticnet model). In panel A of Figure 5.5,

we plot the true positive rate against the false positive rate for each of the 200 simulations.

We see that across all simulation scenarios, the SEPARATE method has extremely poor

sensitivity compared to both CLUST and ECLUST, which do much better at identifying

the active variables, though the resulting models are not always sparse. The relatively

few number of green points in panel A is due to the small number of estimated clusters

(Supplemental Section C.3, Figure A.7) leading to very little variability in performance

across simulations. The better performance of ECLUST over CLUST is noticeable as more

points lie in the top left part of the plot. The horizontal banding in panel A reflects the

stability of the TOM-based clustering approach. ECLUST also does better than CLUST in

correctly determining whether a feature is zero or nonzero (Figure 5.5, panel B). Importantly,

across all three simulation scenarios, ECLUST outperforms the competing methods in terms

of RMSE (Figure 5.5, panel C), regardless of the summary measure and modeling procedure.

We present the distribution for the effective number of variables selected in the supplemental

material (Figures A.8 and A.9). We see that the median number of variables selected from

ECLUST is less than the median number of variables selected from CLUST, though ECLUST

has more variability.
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Figure 5.5: Model fit results from simulations 1, 2 and 3 with SNR = 1, ρ = 0.9, and
αj ∼ Unif [1.9, 2.1]. SEPARATE results are in pink, CLUST in green and ECLUST in blue.

While the approach using all separate original variables (SEPARATE) produce sparse mod-

els, they are sensitive to small perturbations of the data across all stability measures (Fig-

ure 5.6), i.e, similar datasets produce very different models. Although the median for the

CLUST approach is always slightly better than the median for ECLUST across all stability

measures, CLUST results can be much more variable, particularly when stability is measured

by the agreement between the value and the ranking of the estimated coefficients across CV

folds (Figure 5.6, panels B and C). The number of estimated clusters, and therefore the num-

ber of features in the regression model, tends to be much smaller in CLUST compared to
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ECLUST, and this explains its poorer performance using the stability measures in Figure 5.6,

since there are more coefficients to estimate. Overall, we observe that the relative perfor-

mance of ECLUST versus CLUST in terms of stability is consistent across the two summary

measures (average or principal component) and across the penalization procedures. The

complete results for different values of ρ, SNR and αj (when applicable) are available in the

Supplemental Section C.4, Figures A.10-A.15 for Simulation 1, Figures A.16 - A.21 for Sim-

ulation 2, and Figures A.22 - A.25 for Simulation 3. They show that these conclusions are

not sensitive to the SNR, ρ or αj. Similar conclusions are made for a binary outcome using

logistic regression versions of the lasso, elasticnet and MARS. ECLUST and CLUST also

have better calibration than the SEPARATE method for both linear and non-linear models

(Supplemental Section C.2, Figures A.3-A.6). The distributions of Hosmer-Lemeshow (HL)

p-values do not follow uniformity. This is in part due to the fact that the HL test has low

power in the presence of continuous-dichotomous variable interactions (Hosmer et al., 1997).

Upon inspection of the Q-Q plots, we see that the models have difficulty predicting risks

at the boundaries which is a known issue in most models. We also have a small sample

size of 200, which means there are on average only 20 subjects in each of the 10 bins. Fur-

thermore, the HL test is sensitive to the choice of bins and method of computing quantiles.

Nevertheless, the improved fit relative to the SEPARATE analysis is quite clear.

We also ran all our simulations using the Pearson correlation matrix as a measure of sim-

ilarity in order to compare its performance against the TOM. The complete results are in

the Supplemental Section C.5, Figures A.26-A.31 for Simulation 1, Figures A.32 - A.37 for

Simulation 2, and Figures A.38 - A.41 for Simulation 3. In general, we see slightly better

performance of CLUST over ECLUST when using Pearson correlations. This result is prob-

ably due to the imprecision in the estimated correlations. The exposure dependent similarity

matrices are quite noisy, and the variability is even larger when we examine the differences

between two correlation matrices. Such large levels of variability have a negative impact on

the clustering algorithm’s ability to detecting the true clusters.
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Figure 5.6: Stability results from simulations 1, 2 and 3 for SNR = 1, ρ = 0.9, and
αj ∼ Unif [1.9, 2.1]. SEPARATE results are in pink, CLUST in green and ECLUST in blue.

5.4 Analysis of three data sets

In this section we demonstrate the performance of ECLUST on three high dimensional

datasets with contrasting motivations and features. In the first data set, normal brain devel-

opment is examined in conjunction with intelligence scores. In the second data set we aim to

identify molecular subtypes of ovarian cancer using gene expression data. The investigators’

goal in the third data set is to examine the impact of gestational diabetes mellitus (GDM)
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on childhood obesity in a sample of mother-child pairs from a prospective birth cohort. The

datasets comprise a range of sample sizes, and both the amount of clustering in the HD

data and the strength of the effects of the designated exposure variables vary substantially.

Due to the complex nature of these datasets, we decided to use MARS models for step 2

of our algorithm for all 3 datasets, as outlined in Table 5.1. In order to assess performance

in these data sets, we have computed the 0.632 estimator (Efron, 1983) and the 95% confi-

dence interval of the R2 and RMSE from 100 bootstrap samples. The R2 reported here is

defined as the squared Pearson correlation coefficient between the observed and predicted

response (Kvaalseth, 1985), and the RMSE is defined as in Table 5.3. Because MARS models

can result in unstable predictors (Kuhn, 2008), we also report the results of bagged MARS

from B = 50 bootstrap samples, where bagging (Breiman, 1996) refers to averaging the

predictions from each of the MARS models fit on the B bootstrap samples.

5.4.1 NIH MRI Study of Normal Brain Development

The NIH MRI Study of Normal Brain Development, started in 2001, was a 7 year longitudinal

multi-site project that used magnetic resonance technologies to characterize brain matura-

tion in 433 medically healthy, psychiatrically normal children aged 4.5-18 years (Evans et al.,

2006). The goal of this study was to provide researchers with a representative and reliable

source of healthy control subject data as a basis for understanding atypical brain development

associated with a variety of developmental, neurological, and neuropsychiatric disorders af-

fecting children and adults. Brain imaging data (e.g. cortical surface thickness, intra-cranial

volume), behavioural measures (e.g. IQ scores, psychiatric interviews, behavioral ratings)

and demographics (e.g. socioeconomic status) were collected at two year intervals for three

time points and are publicly available upon request. Previous research using these data

found that level of intelligence and age correlate with cortical thickness (Khundrakpam et

al., 2013; Shaw et al., 2006), but to our knowledge no such relation between income and
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cortical thickness has been observed. We therefore used this data to see the performance

of ECLUST in the presence (age) and absence (income) of an effect on the correlations in

the HD data. We analyzed the 10,000 most variable regions on the cortical surface from

brain scans corresponding to the first sampled time point only. We used binary age (166

age ≤ 11.3 and 172 > 11.3) and binary income (142 high and 133 low income) indicator as

the environment variables and standardized IQ scores as the response. We identified 22 clus-

ters from TOM(Xall) and 57 clusters from TOM(Xdiff) when using age as the environment,

and 86 clusters from TOM(Xall) and 49 clusters from TOM(Xdiff) when using income as

the environment. Results are shown in Figure 5.7, panels C and D. The method which uses

all individual variables as predictors (pink), has better R2 but also worse RMSE compared

to CLUST and ECLUST, likely due to over-fitting. There is a slight benefit in performance

for ECLUST over CLUST when using age as the environment (panel D). Importantly, we

observe very similar performance between CLUST and ECLUST across all models (panel

C), suggesting very little impact on the prediction performance when including features de-

rived both with and without the E variable, in a situation where they are unlikely to be

relevant.

5.4.2 Gene Expression Study of Ovarian Cancer

Differences in gene expression profiles have led to the identification of robust molecular

subtypes of ovarian cancer; these are of biological and clinical importance because they

have been shown to correlate with overall survival (Tothill et al., 2008). Improving pre-

diction of survival time based on gene expression signatures can lead to targeted therapeu-

tic interventions (Helland et al., 2011). The proposed ECLUST algorithm was applied to

gene expression data from 511 ovarian cancer patients profiled by the Affymetrix Human

Genome U133A 2.0 Array. The data were obtained from the TCGA Research Network:

http://cancergenome.nih.gov/ and downloaded via the TCGA2STAT R library (Wan et al.,
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2015). Using the 881 signature genes from Helland et al. (2011) we grouped subjects into

two groups based on the results in this paper, to create a “positive control” environmental

variable expected to have a strong effect. Specifically, we defined an environment variable in

our framework as: E = 0 for subtypes C1 and C2 (n = 253), and E = 1 for subtypes C4 and

C5 (n = 258). Overall survival time (log transformed) was used as the response variable.

Since these genes were ascertained on survival time, we expected the method using all genes

without clustering to have the best performance, and hence one goal of this analysis was to

see if ECLUST performed significantly worse as a result of summarizing the data into a lower

dimension. We found 3 clusters from TOM(Xall) and 3 clusters from TOM(Xdiff); results

are shown in Figure 5.7, panel B. Across all models, ECLUST performs slightly better than

CLUST. Furthermore it performs almost as well as the separate variable method, with the

added advantage of dealing with a much smaller number of predictors (881 with SEPARATE

compared to 6 with ECLUST).

5.4.3 Gestational diabetes, epigenetics and metabolic disease

Events during pregnancy are suspected to play a role in childhood obesity development but

only little is known about the mechanisms involved. Indeed, children born to women who

had GDM in pregnancy are more likely to be overweight and obese (Wendland et al., 2012),

and evidence suggests epigenetic factors are important piece of the puzzle (Bouchard et al.,

2012, 2010). Recently, methylation changes in placenta and cord blood were associated with

GDM (Ruchat et al., 2013), and here we explore how these changes are associated with

obesity in the children at the age of about 5 years old. DNA methylation in placenta was

measured with the Infinium HumanMethylation450 BeadChip (Illumina, Inc (Bibikova et al.,

2011)) microarray, in a sample of 28 women, 20 of whom had a GDM-affected pregnancy, and

here, we used GDM status as our E variable, assuming that this has widespread effects on

DNA methylation and on its correlation patterns. Our response, Y , is the standardized body
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mass index (BMI) in the offspring at the age of 5. In contrast to the previous two examples,

here we had no particular expectation of how ECLUST would perform. Using the 10,000 most

variable probes, we found 2 clusters from TOM(Xall), and 75 clusters from TOM(Xdiff). The

predictive model results from a MARS analysis are shown in Figure 5.7, panel A. When using

R2 as the measure of performance, ECLUST outperforms both SEPARATE and CLUST

methods. When using RMSE as the measure of model performance, performance tended to

be better with CLUST rather than ECLUST perhaps in part due to the small number of

clusters derived from TOM(Xall) relative to TOM(Xdiff). Overall, the ECLUST algorithm

with bagged MARS and the 1st PC of each cluster performed best, i.e., it had a better R2

than CLUST with comparable RMSE. The sample size here is very small, and therefore the

stability of the model fits is limited stability.
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Figure 5.7: Model fit measures from analysis of three data sets: (A) Gestational diabetes
birth-cohort (B) TCGA Ovarian Cancer study (note that we have artificially created an
environmental variable expected to have a strong effect using 881 signature genes) (C) NIH
MRI Study with income as the environment variable (D) NIH MRI Study with age as the
environment variable.

The probes in these clusters mapped to 164 genes and these genes were selected to conduct

pathway analyses using the Ingenuity Pathway Analysis (IPA) software (Ingenuity System).

IPA compares the selected genes to a reference list of genes included in many biological

pathways using a hypergeometric test. Smaller p values are evidence for over-represented

gene ontology categories in the input gene list. The results are summarized in Table 5.4 and

provide some biological validation of our ECLUST method. For example, the Hepatic system

is involved with the metabolism of glucose and lipids (Saltiel & Kahn, 2001), and behavior
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and neurodevelopment are associated with obesity (Epstein et al., 2004). Furthermore, it

is interesting that embryonic and organ development pathways are involved since GDM is

associated with macrosomia (Ehrenberg et al., 2004).

Table 5.4: Ingenuity Pathway Analysis Results – top-ranked diseases and disorders, and physio-
logical system development and function epigentically affected by gestational diabetes mellitus
and associated with childhood body mass index

Category Name p values na

Diseases and Disorders Hepatic System Disease [9.61e−7 – 5.17e−7] 75

Physiological System Devel-
opment and Function

Behavior [1.35e−2 – 7.82e−8] 33
Embryonic Development [1.35e−2 – 2.63e−8] 26
Nervous System Development
and Function [ 1.35e−2 – 2.63e−8] 43

Organ Development [1.35e−2 – 2.63e−8] 20
Organismal Development [1.35e−2 – 2.63e−8] 34

anumber of genes involved in each pathway

5.5 Discussion

The challenge of precision medicine is to appropriately fit treatments or recommendations

to each individual. Data such as gene expression, DNA methylation levels, or magnetic

resonance imaging (MRI) signals are examples of HD measurements that capture multiple

aspects of how a tissue is functioning. These data often show patterns associated with

disease, and major investments are being made in the genomics research community to

generate such HD data. Analytic tools increasing prediction accuracy are needed to maximize

the productivity of these investments. However, the effects of exposures have usually been

overlooked, but these are crucial since they can lead to ways to intervene. Hence, it is

essential to have a clear understanding of how exposures modify HD measures, and how

the combination leads to disease. Existing methods for prediction (of disease), that are

based on HD data and interactions with exposures, fall far short of being able to obtain
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this clear understanding. Most methods have low power and poor interpretability, and

furthermore, modelling and interpretation problems are exacerbated when there is interest

in interactions. In general, power to estimate interactions is low, and the number of possible

interactions could be enormous. Therefore, here we have proposed a strategy to leverage

situations where a covariate (e.g. an exposure) has a wide-spread effect on one or more

HD measures, e.g. GDM on methylation levels. We have shown that this expected pattern

can be used to construct dimension-reduced predictor variables that inherently capture the

systemic covariate effects. These dimension-reduced variables, constructed without using the

phenotype, can then be used in predictive models of any type. In contrast to some common

analysis strategies that model the effects of individual predictors on outcome, our approach

makes a step towards a systems-based perspective that we believe will be more informative

when exploring the factors that are associated with disease or a phenotype of interest. We

have shown, through simulations and real data analysis, that incorporation of environmental

factors into predictive models in a way that retains a high dimensional perspective can

improve results and interpretation for both linear and non linear effects.

We proposed two key methodological steps necessary to maximize predictive model inter-

pretability when using HD data and a binary exposure: (1) dimension reduction of HD

data built on exposure sensitivity, and (2) implementation of penalized prediction models.

In the first step, we proposed to identify exposure-sensitive HD pairs by contrasting the

TOM between exposed and unexposed individuals; then we cluster the elements in these

HD pairs to find exposure-sensitive co-regulated sets. New dimension-reduced variables that

capture exposure-sensitive features (e.g. the first principal component of each cluster) were

then defined. In the second step we implemented linear and non-linear variable selection

methods using the dimension-reduced variables to ensure stability of the predictive model.

The ECLUST method has been implemented in the eclust (Bhatnagar, 2017) R package

publicly available on CRAN. Our method along with computationally efficient algorithms,

allows for the analysis of up to 10,000 variables at a time on a laptop computer.
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The methods that we have proposed here are currently only applicable when three data

elements are available. Specifically a binary environmental exposure, a high dimensional

dataset that can be affected by the exposure, and a single phenotype. When comparing the

TOM and Pearson correlations as a measure of similarity, our simulations showed that the

performance of ECLUST was worse with correlations. This speaks to the potential of devel-

oping a better measure than the difference of two matrices. For example, we are currently

exploring ways in which to handle continuous exposures or multiple exposures. The best

way to construct an exposure-sensitive distance matrix that can be used for clustering is

not obvious in these situations. One possible solution relies on a non-parametric smoothing

based approach where weighted correlations are calculated. These weights can be derived

from a kernel-based summary of the exposure covariates (e.g. (Qiu et al., 2016)). Then,

contrasting unweighted and weighted matrices will allow construction of covariate-sensitive

clusters. The choice of summary measure for each cluster also warrants further study. While

principal components and averages are well understood and easy to implement, the main

shortcoming is that they involve all original variables in the group. As the size of the groups

increase, the interpretability of these measures decreases. Non-negative matrix factoriza-

tion (Lee & Seung, 2001) and sparse principal component analysis (SPCA) (Witten et al.,

2009) are alternatives which find sparse and potentially interpretable factors. Furthermore,

structured SPCA (Jenatton et al., 2009) goes beyond restricting the cardinality of the con-

tributing factors by imposing some a priori structural constraints deemed relevant to model

the data at hand.

We are all aware that our exposures and environments impact our health and risks of disease,

however detecting how the environment acts is extremely difficult. Furthermore, it is very

challenging to develop reliable and understandable ways of predicting the risk of disease

in individuals, based on high dimensional data such as genomic or imaging measures, and

this challenge is exacerbated when there are environmental exposures that lead to many

subtle alterations in the genomic measurements. Hence, we have developed an algorithm
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and an easy-to use software package to transform analysis of how environmental exposures

impact human health, through an innovative signal-extracting approach for high dimensional

measurements. Evidently, the model fitting here is performed using existing methods; our

goal is to illustrate the potential of improved dimension reduction in two-stage methods,

in order to generate discussion and new perspectives. If such an approach can lead to

more interpretable results that identify gene-environment interactions and their effects on

diseases and traits, the resulting understanding of how exposures influence the high-volume

measurements now available in precision medicine will have important implications for health

management and drug discovery.
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Appendix C – Supplemental Methods and Simulation Re-

sults

Contains the following sections:

C.1 Description of Topological Overlap Matrix - detailed description of the TOM

C.2 Binary Outcome Simulation Results - results of simulations 4, 5 and 6

C.3 Analysis of Clusters - number of estimated clusters by different measures of simi-

larity

C.4 Simulation Results Using TOM as a Measure of Similarity - detailed simulation

results using TOM as a measure of similarity

C.5 Simulation Results Using Pearson Correlations as a Measure of Similarity

- detailed simulation results using Pearson Correlations as a measure of similarity

C.6 Visual Representation of Similarity Matrices - similarity matrices based on Pear-

son’s correlation coefficient
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Chapter 6

Conclusion

6.1 Summary

The three manuscripts (Chapters 3, 4 and 5) presented in this thesis describe a body of work

all within the context of penalized regression methods for interactions and mixed-effects

models in high-dimensional data analysis. The first work (Chapter 3) introduces a sparse

additive interaction learning model called sail for detecting non-linear interactions with

a key environmental or exposure variable in high-dimensional settings. Through a simple

re-parametrization, we demonstrate how our method can accommodate either the strong or

weak heredity constraints. The second work (Chapter 4) develops a general penalized linear

mixed-model framework called ggmix that simultaneously, in one step, selects variables and

estimates their effects, while accounting for between individual correlations. We develop a

blockwise coordinate descent algorithm which is highly scalable, computationally efficient

and has theoretical guarantees of convergence. This work provides a roadmap for incorpo-

rating many other penalty functions in a mixed-model context. The final manuscript (Chap-

ter 5) proposes a strategy for dimension reduction that leverages the effects of an exposure

variable with broad impact on high-dimensional measures. We show how these dimension-
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reduced variables, constructed without using the response, can be used in predictive models

of any type. Furthermore, we demonstrate how environment-dependent correlations can

induce an interaction model.

The simulation studies in each chapter provide us with a better understanding of the

strengths and limitations of each method developed in the thesis. In the first manuscript, the

simulation study shows that sail has very good performance in terms of both prediction er-

ror and yielding correct sparse models when the truth follows either strong or weak hierarchy

as well when only main effects are present. The simulation study in the second manuscript

demonstrates that in the context of variable selection in high-dimensional LMMs, existing

approaches such as a two-stage method or the lasso with a principal component adjustment

lead to a large number of false positives. We then show that ggmix leads to correct Type 1

error control, improved variance component estimation, and is also robust to different kin-

ship structures and heritability proportions. In the third manuscript, we found improved

prediction and variable selection performance compared to methods that do not consider the

environment in the clustering step, or to methods that use the original data as features.

The first manuscript contains an analysis of the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) data using sail, with the objective of selecting non-linear interactions between

clinical diagnosis and Aβ protein in the 96 brain regions on mini-mental state examination.

This analysis selected both the middle occipital gyrus left region in the occipital lobe known

for visual object perception, and the cuneus region which is known to be involved in basic

visual processing. We found that more Aβ protein loads in the middle occipital gyrus left

region lead to a worse cognitive score for the MCI and AD group but not for the controls.

For the cuneus region we found that more Aβ proteins lead to better cognitive scores for

the MCI and AD group and poorer scores for the controls. In the third manuscript, we

applied eclust to three data sets, from very different fields, each with high dimensional

data, a binary exposure, and a phenotype of interest. In the first data set, normal brain
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development was examined through brain imaging in conjunction with intelligence scores. In

the second data set, we identified molecular subtypes of ovarian cancer using gene expression

data. In the third data set, we examined the impact of gestational diabetes mellitus on DNA

methylation and childhood obesity in a sample of mother-child pairs from a prospective birth

cohort. The genes that were selected by eclust were implicated in several pathways related

to the physiological system development and function.

A freely available and open source R software package has been created for all three methods

developed in the thesis. We also provide extensive documentation to demonstrate a typical

analysis pipeline for each package, and how all the functions are tied together. Each package

has been tested on all three platforms (Mac, Windows, Linux), and a series of unit tests have

been written for each package to ensure the quality of the code. We hope that our methods

get included in future simulation studies that build upon this work. As statisticians, we

believe our role is to provide analytic tools for applied researchers. In providing our code to

the scientific community, we hope that the true potential of our work can be reached.

6.2 Future work

The methods in Chapters 3 and 4 have only been developed for continuous responses. Further

work on these topics would involve extending these models to binary outcomes, which are

often measured in clinical settings.

A limitation of ggmix is that it first requires computing the covariance matrix with a com-

putation time of O(n2k) followed by a spectral decomposition of this matrix in O(n3) time

where k is the number of SNP genotypes used to construct the covariance matrix. This

computation becomes prohibitive for large cohorts such as the UK Biobank (Allen et al.,

2012) which have collected genetic information on half a million individuals. As a method-

ological improvement, it would be extremely useful to reduce this computational burden so
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that multivariable LMMs can be applied to the larger and more heterogeneous cohorts being

assembled today.

There are also methodological advancements that can be made to the eclust approach. For

example, extending eclust to handle continuous exposures or multiple exposures. The best

way to construct an exposure-sensitive distance matrix that can be used for clustering is

not obvious in these situations. In the modeling step, one might also consider alternative

nonconvex penalties such as SCAD (J. Fan & Li, 2001) or MCP (C.-H. Zhang, 2010).

6.3 Concluding remarks

Accurate prediction and understanding which variables improve that prediction are two very

challenging and overlapping problems in analysis of high-dimensional data, such as those

arising in medical imaging, genomics, and neuroscience. Penalized regression methods are a

beneficial modeling choice for high-dimensional data for a number of reasons, most notably

due to the fact that we must often assume a sparse model because there is not enough

information to estimate so many parameters. Given the vast amounts of data being generated

at a rate faster than we can analyze it, there is a great need for faster and more efficient

algorithms with good convergence properties. High-quality software implementations of

these algorithms are likely to promote widespread usage of penalized regression methods by

researchers in the applied sciences.
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Appendix A

Supplemental Methods and Simulation

Results for Chapter 3

A.1 Algorithm Details

In this section we provide more specific details about the algorithms used to solve the sail ob-

jective function.

A.1.1 Least-Squares sail with Strong Heredity

A more detailed algorithm for fitting the least-squares sail model with strong heredity is

given in Algorithm 7.
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Algorithm 7 Blockwise Coordinate Descent for Least-Squares sail with Strong Heredity
1: function sail(X, Y,XE , basis, λ, α, wj , wE , wjE , ϵ) ▷ Algorithm for solving (3.9)
2: Ψj ← basis(Xj), Ψ̃j ← XE ◦Ψj for j = 1, . . . , p

3: Initialize: β
(0)
0 ← Ȳ , β(0)

E = θ
(0)
j = γ

(0)
j ← 0 for j = 1, . . . , p.

4: Set iteration counter k ← 0
5: R∗ ← Y − β

(k)
0 − β

(k)
E XE −

∑
j(Ψj + γ

(k)
j β

(k)
E Ψ̃j)θ

(k)
j

6: repeat
7: • To update γ = (γ1, . . . , γp)

8: X̃j ← β
(k)
E Ψ̃jθ

(k)
j for j = 1, . . . , p

9: R← R∗ +
∑p

j=1 γ
(k)
j X̃j

10:

γ(k)(new) ← argmin
γ

1

2n

R−
∑
j

γjX̃j


2

2

+ λα
∑
j

wjE |γj |

11: ∆ =
∑

j(γ
(k)
j − γ

(k)(new)
j )X̃j

12: R∗ ← R∗ +∆

13: • To update θ = (θ1, . . . ,θp)

14: X̃j ← Ψj + γ
(k)
j β

(k)
E Ψ̃j for j = 1, . . . , p

15: for j = 1, . . . , p do
16: R← R∗ + X̃jθ

(k)
j

17:
θ
(k)(new)
j ← argmin

θj

1

2n

R− X̃jθj

2
2
+ λ(1− α)wj∥θj∥2

18: ∆ = X̃j(θ
(k)
j − θ

(k)(new)
j )

19: R∗ ← R∗ +∆

20: • To update βE

21: X̃E ← XE +
∑

j γ
(k)
j Ψ̃jθ

(k)
j

22: R← R∗ + β
(k)
E X̃E

23:

β
(k)(new)
E ← S

(
1

n · wE
X̃⊤

ER, λ(1− α)

)
▷ S(x, t) = sign(x)(|x| − t)+

24: ∆ = (β
(k)
E − β

(k)(new)
E )X̃E

25: R∗ ← R∗ +∆

26: • To update β0

27: R← R∗ + β
(k)
0

28:
β
(k)(new)
0 ← 1

n
R∗ · 1

29: ∆ = β
(k)
0 − β

(k)(new)
0

30: R∗ ← R∗ +∆

31: k ← k + 1
32:
33: until convergence criterion is satisfied:

⏐⏐⏐Q(Θ(k−1))−Q(Θ(k))
⏐⏐⏐/Q(Θ(k−1)) < ϵ
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A.1.2 Details on Update for θ

Here we discuss a computational speedup in the updates for the θ parameter. The partial

residual (Rs) used for updating θs (s ∈ 1, . . . , p) at the kth iteration is given by

Rs = Y − Ỹ (k)
(−s) (A.1)

where Ỹ (k)
(−s) is the fitted value at the kth iteration excluding the contribution from Ψs:

Ỹ
(k)
(−s) = β

(k)
0 − β

(k)
E XE −

∑
ℓ̸=s

Ψℓθ
(k)
ℓ −

∑
ℓ ̸=s

γ
(k)
ℓ β

(k)
E Ψ̃ℓθ

(k)
ℓ (A.2)

Using (A.2), (A.1) can be re-written as

Rs = Y − β(k)
0 − β

(k)
E XE −

p∑
j=1

(Ψj + γ
(k)
j β

(k)
E Ψ̃j)θ

(k)
j + (Ψs + γ(k)s β

(k)
E Ψ̃s)θ

(k)
s

= R∗ + (Ψs + γ(k)s β
(k)
E Ψ̃s)θ

(k)
s (A.3)

where

R∗ = Y − β(k)
0 − β

(k)
E XE −

p∑
j=1

(Ψj + γ
(k)
j β

(k)
E Ψ̃j)θ

(k)
j (A.4)

Denote θ(k)(new)
s the solution for predictor s at the kth iteration, given by:

θ(k)(new)
s = argmin

θj

1

2n

Rs − (Ψs + γ(k)s β
(k)
E Ψ̃s)θj

2
2
+ λ(1− α)ws∥θj∥2 (A.5)

Now we want to update the parameters for the next predictor θs+1 (s+ 1 ∈ 1, . . . , p) at the

kth iteration. The partial residual used to update θs+1 is given by

Rs+1 = R∗ + (Ψs+1 + γ
(k)
s+1β

(k)
E Ψ̃s+1)θ

(k)
s+1 + (Ψs + γ(k)s β

(k)
E Ψ̃s)(θ

(k)
s − θ(k)(new)

s ) (A.6)
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where R∗ is given by (A.4), θ(k)
s is the parameter value prior to the update, and θ(k)(new)

s is

the updated value given by (A.5). Taking the difference between (A.3) and (A.6) gives

∆ = Rt −Rs

= (Ψt + γ
(k)
t β

(k)
E Ψ̃t)θ

(k)
t + (Ψs + γ(k)s β

(k)
E Ψ̃s)(θ

(k)
s − θ(k)(new)

s )− (Ψs + γ(k)s β
(k)
E Ψ̃s)θ

(k)
s

= (Ψt + γ
(k)
t β

(k)
E Ψ̃t)θ

(k)
t − (Ψs + γ(k)s β

(k)
E Ψ̃s)θ

(k)(new)
s (A.7)

Therefore Rt = Rs + ∆, and the partial residual for updating the next predictor can be

computed by updating the previous partial residual by ∆, given by (A.7). This formulation

can lead to computational speedups especially when ∆ = 0, meaning the partial residual

does not need to be re-calculated.

A.1.3 Least-Squares sail with Weak Heredity

The least-squares sail model with weak heredity has the form

Ŷ = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

γj(XE ◦Ψj)(βE · 1mj
+ θj) (A.8)

The objective function is given by

Q(Θ) =
1

2n

Y − Ŷ 2
2
+ λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj| (A.9)
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Denote the n-dimensional residual column vector R = Y − Ŷ . The subgradient equations

are given by

∂Q

∂β0
=

1

n

(
Y − β0 · 1−

p∑
j=1

Ψjθj − βEXE −
p∑

j=1

γj(XE ◦Ψj)(βE · 1mj
+ θj)

)⊤

1 = 0

(A.10)

∂Q

∂βE
= − 1

n

(
XE +

p∑
j=1

γj(XE ◦Ψj)1mj

)⊤

R + λ(1− α)wEs1 = 0 (A.11)

∂Q

∂θj

= − 1

n
(Ψj + γj(XE ◦Ψj))

⊤R + λ(1− α)wjs2 = 0 (A.12)

∂Q

∂γj
= − 1

n

(
(XE ◦Ψj)(βE · 1mj

+ θj)
)⊤
R + λαwjEs3 = 0 (A.13)

where s1 is in the subgradient of the ℓ1 norm:

s1 ∈

⎧⎪⎪⎨⎪⎪⎩
sign (βE) if βE ̸= 0

[−1, 1] if βE = 0,

s2 is in the subgradient of the ℓ2 norm:

s2 ∈

⎧⎪⎪⎨⎪⎪⎩
θj

∥θj∥2
if θj ̸= 0

u ∈ Rmj : ∥u∥2 ≤ 1 if θj = 0,

and s3 is in the subgradient of the ℓ1 norm:

s3 ∈

⎧⎪⎪⎨⎪⎪⎩
sign (γj) if γj ̸= 0

[−1, 1] if γj = 0.
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Define the partial residuals, without the jth predictor for j = 1, . . . , p, as

R(−j) = Y − β0 · 1−
∑
ℓ ̸=j

Ψℓθℓ − βEXE −
∑
ℓ̸=j

γℓ(XE ◦Ψℓ)(βE · 1mℓ
+ θℓ)

the partial residual without XE as

R(−E) = Y − β0 · 1−
p∑

j=1

Ψjθj −
p∑

j=1

γj(XE ◦Ψj)θj

and the partial residual without the jth interaction for j = 1, . . . , p

R(−jE) = Y − β0 · 1−
p∑

j=1

Ψjθj − βEXE −
∑
ℓ̸=j

γℓ(XE ◦Ψℓ)(βE · 1mℓ
+ θℓ)

From the subgradient Equation (A.11), we see that βE = 0 is a solution if

1

wE

⏐⏐⏐⏐⏐⏐ 1n
(
XE +

p∑
j=1

γj(XE ◦Ψj)1mj

)⊤

R(−E)

⏐⏐⏐⏐⏐⏐ ≤ λ(1− α) (A.14)

From the subgradient Equation (A.12), we see that θj = 0 is a solution if

1

wj

 1n (Ψj + γj(XE ◦Ψj))
⊤R(−j)


2

≤ λ(1− α) (A.15)

From the subgradient Equation (A.13), we see that γj = 0 is a solution if

1

wjE

⏐⏐⏐⏐ 1n ((XE ◦Ψj)(βE · 1mj
+ θj)

)⊤
R(−jE)

⏐⏐⏐⏐ ≤ λα (A.16)

137



From the subgradient equations we see that

β̂0 =

(
Y −

p∑
j=1

Ψjθ̂j − β̂EXE −
p∑

j=1

γ̂j(XE ◦Ψj)(β̂E · 1mj
+ θ̂j)

)⊤

1

(A.17)

β̂E = S

⎛⎝ 1

n · wE

(
XE +

p∑
j=1

γ̂j(XE ◦Ψj)1mj

)⊤

R(−E), λ(1− α)

⎞⎠ (A.18)

λ(1− α)wj
θj

∥θj∥2
=

1

n
(Ψj + γj(XE ◦Ψj))

⊤R(−j) (A.19)

γ̂j = S

(
1

n · wjE

(
(XE ◦Ψj)(βE · 1mj

+ θj)
)⊤
R(−jE), λα

)
(A.20)

where S(x, t) = sign(x)(|x|−t) is the soft-thresholding operator. As was the case in the strong

heredity sail model, there are closed form solutions for the intercept and βE, each γj also

has a closed form solution and can be solved efficiently for j = 1, . . . , p using the coordinate

descent procedure implemented in the glmnet package (J. Friedman et al., 2010), while we

use the quadratic majorization technique implemented in the gglasso package (Y. Yang &

Zou, 2015) to solve (A.19). Algorithm 8 details the procedure used to fit the least-squares

weak heredity sail model.

Lambda Max

The smallest value of λ for which the entire parameter vector (βE,θ1, . . . ,θp, γ1, . . . , γp) is 0

is:
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Algorithm 8 Coordinate descent for least-squares sail with weak heredity
1: function sail(X, Y,XE , basis, λ, α, wj , wE , wjE , ϵ) ▷ Algorithm for solving (A.9)
2: Ψj ← basis(Xj), Ψ̃j ← XE ◦Ψj for j = 1, . . . , p

3: Initialize: β
(0)
0 ← Ȳ , β(0)

E = θ
(0)
j = γ

(0)
j ← 0 for j = 1, . . . , p.

4: Set iteration counter k ← 0
5: R∗ ← Y − β

(k)
0 − β

(k)
E XE −

∑
j Ψjθ

(k)
j −

∑
j γ

(k)
j Ψ̃j(β

(k)
E · 1mj + θ

(k)
j )

6: repeat
7: • To update γ = (γ1, . . . , γp)

8: X̃j ← Ψ̃j(β
(k)
E · 1mj + θ

(k)
j ) for j = 1, . . . , p

9: R← R∗ +
∑p

j=1 γ
(k)
j X̃j

10:

γ(k)(new) ← argmin
γ

1

2n

R−
∑
j

γjX̃j


2

2

+ λα
∑
j

wjE |γj |

11: ∆ =
∑

j(γ
(k)
j − γ

(k)(new)
j )X̃j

12: R∗ ← R∗ +∆

13: • To update θ = (θ1, . . . ,θp)

14: X̃j ← Ψj + γ
(k)
j Ψ̃j for j = 1, . . . , p

15: for j = 1, . . . , p do
16: R← R∗ + X̃jθ

(k)
j

17:
θ
(k)(new)
j ← argmin

θj

1

2n

R− X̃jθj

2
2
+ λ(1− α)wj∥θj∥2

18: ∆ = X̃j(θ
(k)
j − θ

(k)(new)
j )

19: R∗ ← R∗ +∆

20: • To update βE

21: X̃E ← XE +
∑

j γ
(k)
j Ψ̃j1mj

22: R← R∗ + β
(k)
E X̃E

23:

β
(k)(new)
E ← S

(
1

n · wE
X̃⊤

ER, λ(1− α)

)
▷ S(x, t) = sign(x)(|x| − t)+

24: ∆ = (β
(k)
E − β

(k)(new)
E )X̃E

25: R∗ ← R∗ +∆

26: • To update β0

27: R← R∗ + β
(k)
0

28:
β
(k)(new)
0 ← 1

n
R∗ · 1

29: ∆ = β
(k)
0 − β

(k)(new)
0

30: R∗ ← R∗ +∆

31: k ← k + 1
32:
33: until convergence criterion is satisfied:

⏐⏐⏐Q(Θ(k−1))−Q(Θ(k))
⏐⏐⏐/Q(Θ(k−1)) < ϵ
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λmax =
1

n
max

⎧⎨⎩ 1

(1− α)wE

(
XE +

p∑
j=1

γj(XE ◦Ψj)1mj

)⊤

R(−E),

max
j

1

(1− α)wj

(Ψj + γj(XE ◦Ψj))
⊤R(−j)


2
,

max
j

1

αwjE

(
(XE ◦Ψj)(βE · 1mj

+ θj)
)⊤
R(−jE)

}
(A.21)

which reduces to

λmax =
1

n(1− α)
max

{
1

wE

(XE)
⊤R(−E),max

j

1

wj

(Ψj)
⊤R(−j)


2

}

This is the same λmax as the least-squares strong heredity sail model.

A.2 Simulation Results
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Figure A.1: Test set MSE vs number of active variables results.
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Figure A.4: Number of active variables results.
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Figure A.5: Selection rates across 200 simulations of scenario 1a) for strong heredity sail.

A.3 sail Package Showcase

In this section we briefly introduce the freely available and open source sail package in

R. More comprehensive documentation is available at https://sahirbhatnagar.com/sail.

Note that this entire section is reproducible; the code and text are combined in an .Rnw1 file

and compiled using knitr (Xie, 2015).
1scripts available at https://github.com/sahirbhatnagar/sail/tree/master/manuscript
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A.3.1 Installation

The package can be installed from GitHub via
install.packages("pacman")

pacman::p_load_gh('sahirbhatnagar/sail')

A.3.2 Quick Start

We give a quick overview of the main functions and go into details in other vignettes. We

will use the simulated data which ships with the package and can be loaded via:
library(sail)

data("sailsim")

names(sailsim)

## [1] "x" "y" "e" "f1" "f2" "f3"

## [7] "f4" "f3.inter" "f4.inter"

We first define a basis expansion. In this example we use B-splines with degree 5.
library(splines)

f.basis <- function(x) splines::bs(x, degree = 5)

Next we fit the model using the most basic call to sail

fit <- sail(x = sailsim$x, y = sailsim$y, e = sailsim$e, basis = f.basis)

fit is an object of class sail that contains all the relevant information of the fitted model

including the estimated coefficients at each value of λ (by default the program chooses its own

decreasing sequence of 100 λ values). There are print, plot, coef and predict methods of

objects of class sail.

When expand = TRUE (i.e. the user did not provide their own design matrix), the df_main

and df_interaction columns correspond to the number of non-zero predictors present in

the model before basis expansion. This does not correspond to the number of non-zero

coefficients in the model, but rather the number of unique variables. In this example
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we expanded each column of X to five columns. If df_main=4, df_interaction=2 and

df_environment=1, then the total number of non-zero coefficients would be 5 × (4 + 2) +

1.

The entire solution path can be plotted via the plot method for objects of class sail. The

y-axis is the value of the coefficient and the x-axis is the log(λ). Each line represents a

coefficient in the model, and each color represents a variable (i.e. in this example a given

variable will have 5 lines when it is non-zero). The numbers at the top of the plot represent

the number of non-zero variables in the model: top panel (df_main + df_environment),

bottom panel (df_interaction). The black line is the coefficient path for the environment

variable.
plot(fit)
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The estimated coefficients at each value of lambda is given by (matrix partially printed here

for brevity)
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coef(fit)[1:6,50:55]

## 6 x 6 sparse Matrix of class "dgCMatrix"

## s50 s51 s52 s53 s54

## (Intercept) 5.2908242 5.2837492 5.2803715 5.2753572 5.2717869

## X1_1 -0.9792849 -0.9604046 -0.9449616 -0.9220738 -0.9171304

## X1_2 1.6903252 1.7894886 1.8924485 1.9952094 2.1042358

## X1_3 1.6463057 1.7049842 1.7722916 1.8251613 1.8951562

## X1_4 1.5224653 1.5433528 1.5663095 1.5854332 1.6102159

## X1_5 3.3386403 3.4183219 3.4908074 3.5763781 3.6633809

## s55

## (Intercept) 5.2695399

## X1_1 -0.9270958

## X1_2 2.2058453

## X1_3 1.9642875

## X1_4 1.6322047

## X1_5 3.7453708

The corresponding predicted response at each value of lambda (matrix partially printed here

for brevity):
predict(fit)[1:5,50:55]

## s50 s51 s52 s53 s54 s55

## [1,] 6.244693 6.199302 6.185402 6.177991 6.156173 6.124271

## [2,] 3.002799 2.995418 3.038701 3.079700 3.143715 3.209065

## [3,] 2.073305 2.043476 2.016319 1.997172 1.966900 1.957271

## [4,] 13.488945 13.490766 13.360998 13.384370 13.350671 13.324117

## [5,] 1.225516 1.210346 1.134420 1.156355 1.156696 1.156135

The predicted response at a specific value of lambda can be specified by the s argument:
predict(fit, s = 0.8)[1:5, ]

## [1] 5.624232 4.940944 3.847965 6.687777 3.058125

You can specify more than one value for ‘s‘:
predict(fit, s = c(0.8, 0.2))[1:5, ]

## 1 2

## [1,] 5.624232 6.523025

## [2,] 4.940944 2.975046

## [3,] 3.847965 2.326672
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## [4,] 6.687777 13.956092

## [5,] 3.058125 1.568897

You can also extract a list of active variables (i.e. variables with a non-zero estimated

coefficient) for each value of lambda:
fit[["active"]][50:55]

## [[1]]

## [1] "X1" "X2" "X3" "X4" "X8" "X10" "X11" "X20"

## [9] "X1:E" "X2:E" "X3:E" "X4:E" "X8:E" "X11:E" "E"

##

## [[2]]

## [1] "X1" "X2" "X3" "X4" "X6" "X8" "X10" "X11"

## [9] "X20" "X1:E" "X2:E" "X3:E" "X4:E" "X8:E" "X11:E" "E"

##

## [[3]]

## [1] "X1" "X2" "X3" "X4" "X6" "X8" "X10" "X11"

## [9] "X16" "X20" "X1:E" "X2:E" "X3:E" "X4:E" "X8:E" "X11:E"

## [17] "E"

##

## [[4]]

## [1] "X1" "X2" "X3" "X4" "X6" "X8" "X10" "X11"

## [9] "X15" "X16" "X19" "X20" "X1:E" "X2:E" "X3:E" "X4:E"

## [17] "X8:E" "X11:E" "E"

##

## [[5]]

## [1] "X1" "X2" "X3" "X4" "X5" "X6" "X8" "X10"

## [9] "X11" "X15" "X16" "X19" "X20" "X1:E" "X2:E" "X3:E"

## [17] "X4:E" "X8:E" "X11:E" "E"

##

## [[6]]

## [1] "X1" "X2" "X3" "X4" "X5" "X6" "X8" "X10"

## [9] "X11" "X15" "X16" "X19" "X20" "X1:E" "X2:E" "X3:E"

## [17] "X4:E" "X8:E" "X11:E" "E"
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A.3.3 Cross-Validation

cv.sail is the main function to do cross-validation along with plot, predict, and coef

methods for objects of class cv.sail. We run it in parallel:
set.seed(432) # to reproduce results (randomness due to CV folds)

library(doMC)

registerDoMC(cores = 8)

cvfit <- cv.sail(x = sailsim$x, y = sailsim$y, e = sailsim$e, basis = f.basis,

nfolds = 5, parallel = TRUE)

We plot the cross-validated error curve which has the mean-squared error on the y-axis and

log(λ) on the x-axis. It includes the cross-validation curve (red dotted line), and upper and

lower standard deviation curves along the λ sequence (error bars). Two selected λ’s are indi-

cated by the vertical dotted lines (see below). The numbers at the top of the plot represent

the total number of non-zero variables at that value of λ (df_main + df_environment +

df_interaction):
plot(cvfit)
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lambda.min is the value of λ that gives minimum mean cross-validated error. The other

λ saved is lambda.1se, which gives the most regularized model such that error is within

one standard error of the minimum. We can view the selected λ’s and the corresponding

coefficients:
cvfit[["lambda.min"]]

## [1] 0.2788355

cvfit[["lambda.1se"]]

## [1] 0.4238052

The estimated nonzero coefficients at lambda.1se and lambda.min:
predict(cvfit, type = "nonzero", s="lambda.1se") # lambda.1se is the default

## 1

## (Intercept) 5.42162330

## X1_1 -0.78259292

## X1_2 0.13434743

## X1_3 0.43872182

## X1_4 0.79452833

## X1_5 1.92193021

## X3_1 3.45123833

## X3_2 1.56772288

## X3_3 -1.27179135

## X3_4 -2.27792209

## X3_5 -1.23352137

## X4_1 4.47182924

## X4_2 -2.87488058

## X4_3 -6.65073351

## X4_4 -3.44085202

## X4_5 -0.47032703

## X8_1 0.17507051

## X8_2 0.11619435

## X8_3 0.01783624

## X8_4 -0.10505726

## X8_5 -0.24485431

## X11_1 0.13691003

## X11_2 0.02857999

## X11_3 -0.07324928

## X11_4 -0.20944262
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## X11_5 -0.22648392

## E 1.99575642

## X3_1:E 1.80711590

## X3_2:E 0.82088128

## X3_3:E -0.66592746

## X3_4:E -1.19275137

## X3_5:E -0.64588877

## X4_1:E 8.31249627

## X4_2:E -5.34399523

## X4_3:E -12.36277025

## X4_4:E -6.39605585

## X4_5:E -0.87427125

predict(cvfit, type = "nonzero", s = "lambda.min")

## 1

## (Intercept) 5.43619834

## X1_1 -1.23832799

## X1_2 0.48736979

## X1_3 0.88915804

## X1_4 1.10813495

## X1_5 2.68123247

## X2_1 -0.21985179

## X2_2 -0.95071069

## X2_3 -0.76066212

## X2_4 -0.17413616

## X2_5 -0.06845895

## X3_1 4.42751615

## X3_2 2.28700197

## X3_3 -1.36817303

## X3_4 -2.56642377

## X3_5 -1.03093978

## X4_1 5.37962120

## X4_2 -3.35568118

## X4_3 -8.07355346

## X4_4 -3.50305791

## X4_5 -0.55031385

## X8_1 0.47925233

## X8_2 0.33992532

## X8_3 0.07652614

## X8_4 -0.28114406

## X8_5 -0.66616044
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## X11_1 0.34768804

## X11_2 0.06274138

## X11_3 -0.20149241

## X11_4 -0.67859653

## X11_5 -0.69589312

## X20_1 0.10225010

## X20_2 -0.03831915

## X20_3 -0.17781683

## X20_4 -0.18564133

## X20_5 0.09741855

## E 2.06410796

## X1_1:E -0.53459297

## X1_2:E 0.21040020

## X1_3:E 0.38385439

## X1_4:E 0.47838792

## X1_5:E 1.15750273

## X3_1:E 2.37995847

## X3_2:E 1.22935061

## X3_3:E -0.73544508

## X3_4:E -1.37955047

## X3_5:E -0.55416937

## X4_1:E 8.87349228

## X4_2:E -5.53507578

## X4_3:E -13.31703694

## X4_4:E -5.77816841

## X4_5:E -0.90772296

A.3.4 Visualizing the Effect of the Non-linear Terms

B-splines are difficult to interpret. We provide a plotting function to visualize the effect of

the non-linear function on the response.

Main Effects

Since we are using simulated data, we also plot the true curve:
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plotMain(cvfit$sail.fit, x = sailsim$x, xvar = "X3",

legend.position = "topright",

s = cvfit$lambda.min, f.truth = sailsim$f3)
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Interaction Effects

Again, since we are using simulated data, we also plot the true interaction:
plotInter(cvfit$sail.fit, x = sailsim$x, xvar = "X4",

f.truth = sailsim$f4.inter,

s = cvfit$lambda.min,

title_z = "Estimated")
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A.3.5 Linear Interactions

The basis argument in the sail function is very flexible in that it allows you to apply any

basis expansion to the columns of X. Of course, there might be situations where you do

not expect any non-linear main effects or interactions to be present in your data. You can

still use the sail method to search for linear main effects and interactions. This can be

accomplished by specifying an identity map:
f.identity <- function(i) i

We then pass this function to the basis argument in cv.sail:
cvfit_linear <- cv.sail(x = sailsim$x, y = sailsim$y, e = sailsim$e,

basis = f.identity, nfolds = 5, parallel = TRUE)

Next we plot the cross-validated curve:
plot(cvfit_linear)
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And extract the model at lambda.min:
predict(cvfit_linear, s = "lambda.min", type = "nonzero")

## 1

## (Intercept) 5.4385240

## X1_1 2.4568930

## X2_1 -1.6517024

## X3_1 -5.1516226

## X4_1 -7.1356296

## X7_1 -1.1055458

## X8_1 -0.8602620

## X11_1 -2.1990021

## X14_1 -1.9208459

## X16_1 3.2004798

## X18_1 1.0234994

## X20_1 -0.2161983

## E 2.4466403

## X1_1:E -4.3995787

## X2_1:E -2.7115733

## X3_1:E -4.7198552

## X4_1:E -12.9777976

## X7_1:E 2.3705634
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## X11_1:E -2.1462985

## X14_1:E -0.9788318

## X16_1:E 6.9268058

## X18_1:E 1.9005742

A.3.6 Applying a different penalty to each predictor

Recall that we consider the following penalized least squares criterion for this problem:

argmin
θ
L(Y ;θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj| (A.22)

The weights wE, wj, wjE are by default set to 1 as specified by the penalty.factor argument.

This argument allows users to apply separate penalty factors to each coefficient. In particular,

any variable with penalty.factor equal to zero is not penalized at all. This feature can be

applied mainly for two reasons:

1. Prior knowledge about the importance of certain variables is known. Larger weights will

penalize the variable more, while smaller weights will penalize the variable less 2. Allows

users to apply the Adaptive sail, similar to the Adaptive Lasso

In the following example, we want the environment variable to always be included so we set

the first element of p.fac to zero. We also want to apply less of a penalty to the main effects

for X2, X3, X4:
# the weights correspond to E, X1, X2, X3, ... X_p, X1:E, X2:E, ... X_p:E

p.fac <- c(0, 1, 0.4, 0.6, 0.7, rep(1, 2*ncol(sailsim$x) - 4))

fit_pf <- sail(x = sailsim$x, y = sailsim$y, e = sailsim$e, basis = f.basis,

penalty.factor = p.fac)

plot(fit_pf)
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We see from the plot above that the black line (corresponding to the XE variable with

penalty.factor equal to zero) is always included in the model.

A.3.7 User-Defined Design Matrix

A limitation of the sail method is that the same basis expansion function f(·) is applied to

all columns of the predictor matrix X. Being able to automatically select linear vs. nonlinear

components was not a focus of our paper, but is an active area of research for main effects

only e.g. gamsel and HierBasis.

However, if the user has some prior knowledge on possible effect relationships, then they

can supply their own design matrix. This can be useful for example, when one has a com-

bination of categorical (e.g. gender, race) and continuous variables, but would only like

to apply f(·) on the continuous variables. We provide an example below to illustrate this

functionality.
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We use the simulated dataset sailsim provided in our package. We first add a categorical

variable race to the data:
set.seed(1234)

library(sail)

x_df <- as.data.frame(sailsim$x)

x_df$race <- factor(sample(1:2, nrow(x_df), replace = TRUE))

table(x_df$race)

##

## 1 2

## 55 45

We then use the model.matrix function to create the design matrix. Note that the intercept

should not be included, as this is computed internally in the sail function. This is why

we add 0 to the formula. Notice also the flexibility we can have by including different basis

expansions to each predictor:
library(splines)

x <- stats::model.matrix(~ 0 + bs(X1, degree = 5) + bs(X2, degree = 3) + ns(X3, df = 8) +

bs(X4, degree = 6) + X5 + poly(X6,2) + race, data = x_df)

head(x)

## bs(X1, degree = 5)1 bs(X1, degree = 5)2 bs(X1, degree = 5)3

## 1 0.0001654794 0.003945507 0.0470361237

## 2 0.2470181057 0.345144379 0.2411253263

## 3 0.1299195522 0.007832449 0.0002360971

## 4 0.3808392973 0.121815907 0.0194821217

## 5 0.1737663057 0.014898419 0.0006386822

## 6 0.1184145931 0.281407715 0.3343772913

## bs(X1, degree = 5)4 bs(X1, degree = 5)5 bs(X2, degree = 3)1

## 1 2.803692e-01 6.684809e-01 0.3272340

## 2 8.422768e-02 1.176866e-02 0.3065738

## 3 3.558391e-06 2.145244e-08 0.1896790

## 4 1.557896e-03 4.983113e-05 0.4100900

## 5 1.368987e-05 1.173746e-07 0.3946500

## 6 1.986587e-01 4.721047e-02 0.3175164

## bs(X2, degree = 3)2 bs(X2, degree = 3)3 ns(X3, df = 8)1 ns(X3, df = 8)2

## 1 0.41274967 0.173537682 0.06566652 0

## 2 0.04879618 0.002588901 0.00000000 0

## 3 0.01508834 0.000400076 0.00000000 0
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## 4 0.12345871 0.012389196 0.00000000 0

## 5 0.35302552 0.105263760 0.00000000 0

## 6 0.05370432 0.003027827 0.00000000 0

## ns(X3, df = 8)3 ns(X3, df = 8)4 ns(X3, df = 8)5 ns(X3, df = 8)6

## 1 0.000000000 0.000000e+00 0.0000000 -1.589937e-01

## 2 0.000000000 5.775107e-04 0.3179489 5.395130e-01

## 3 0.000000000 4.989926e-03 0.4147696 4.830810e-01

## 4 0.133404268 6.839146e-01 0.1826811 3.022366e-08

## 5 0.000000000 8.944913e-05 0.2775548 5.564842e-01

## 6 0.001578195 3.415384e-01 0.6070588 4.566909e-02

## ns(X3, df = 8)7 ns(X3, df = 8)8 bs(X4, degree = 6)1 bs(X4, degree = 6)2

## 1 4.436233e-01 -2.846296e-01 0.1820918880 0.3088147022

## 2 1.732713e-01 -3.131078e-02 0.0120101010 0.0000608354

## 3 1.434410e-01 -4.628144e-02 0.0002900763 0.0044075535

## 4 7.673343e-09 -4.923233e-09 0.2978877432 0.0579746877

## 5 1.863219e-01 -2.045032e-02 0.0114895681 0.0645689076

## 6 1.159471e-02 -7.439189e-03 0.0102152807 0.0595722132

## bs(X4, degree = 6)3 bs(X4, degree = 6)4 bs(X4, degree = 6)5

## 1 2.793213e-01 1.421126e-01 3.856204e-02

## 2 1.643482e-07 2.497444e-10 2.024070e-13

## 3 3.571755e-02 1.628127e-01 3.958163e-01

## 4 6.017595e-03 3.513419e-04 1.094046e-05

## 5 1.935272e-01 3.262743e-01 2.933747e-01

## 6 1.852831e-01 3.241534e-01 3.024572e-01

## bs(X4, degree = 6)6 X5 poly(X6, 2)1 poly(X6, 2)2 race1 race2

## 1 4.359896e-03 0.51332996 -0.13705545 0.09851639 1 0

## 2 6.835086e-17 0.02643863 0.18835303 0.22584415 0 1

## 3 4.009478e-01 0.76746637 -0.15841216 0.16140597 0 1

## 4 1.419483e-07 0.69077618 -0.03664279 -0.07954100 0 1

## 5 1.099135e-01 0.27718210 0.13128945 0.05620199 0 1

## 6 1.175889e-01 0.48384748 0.08486354 -0.03559388 0 1

One benefit of using stats::model.matrix is that it returns the group membership as an

attribute:
attr(x, "assign")

## [1] 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 6 6 7 7

The group membership must be supplied to the sail function. This information is needed

for the group lasso penalty, which will select the whole group as zero or non-zero.
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Fit the sail Model

We need to set the argument expand = FALSE and provide the group membership. The first

element of the group membership corresponds to the first column of x, the second element

to the second column of x, and so on.

We can plot the solution path for both main effects and interactions using the plot method

for objects of class sail:
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In this instance, since we provided a user-defined design matrix and ‘expand = FALSE‘, the

numbers at the top of the plot represent the total number of non-zero coefficients.

Find the Optimal Value for λ

We can use cross-validation to find the optimal value of lambda:

We can plot the cross-validated mean squared error as a function of lambda:
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The estimated non-zero coefficients at lambda.1se:
## 1

## (Intercept) 5.427451767

## bs(X1, degree = 5)1 -0.525424522

## bs(X1, degree = 5)2 0.052358374

## bs(X1, degree = 5)3 0.271119758

## bs(X1, degree = 5)4 0.554195548

## bs(X1, degree = 5)5 1.330393115

## ns(X3, df = 8)1 2.349455333

## ns(X3, df = 8)2 2.089923982

## ns(X3, df = 8)3 0.666828606

## ns(X3, df = 8)4 -1.200690572

## ns(X3, df = 8)5 -1.662360501

## ns(X3, df = 8)6 -1.365480040

## ns(X3, df = 8)7 0.516186563

## ns(X3, df = 8)8 -1.215186213

## bs(X4, degree = 6)1 4.466614577

## bs(X4, degree = 6)2 -0.252832683

## bs(X4, degree = 6)3 -4.706674900

## bs(X4, degree = 6)4 -4.868782936

## bs(X4, degree = 6)5 -2.105379737
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## bs(X4, degree = 6)6 -0.213392506

## race1 0.006726548

## race2 -0.006726548

## E 1.963105161

## ns(X3, df = 8)1:E 1.170879214

## ns(X3, df = 8)2:E 1.041538657

## ns(X3, df = 8)3:E 0.332322025

## ns(X3, df = 8)4:E -0.598378532

## ns(X3, df = 8)5:E -0.828457273

## ns(X3, df = 8)6:E -0.680503338

## ns(X3, df = 8)7:E 0.257247758

## ns(X3, df = 8)8:E -0.605602609

## bs(X4, degree = 6)1:E 8.430067510

## bs(X4, degree = 6)2:E -0.477183905

## bs(X4, degree = 6)3:E -8.883145495

## bs(X4, degree = 6)4:E -9.189100187

## bs(X4, degree = 6)5:E -3.973589620

## bs(X4, degree = 6)6:E -0.402746465
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Appendix B

Supplemental Methods and Simulation

Results for Chapter 4

B.1 Block Coordinate Descent Algorithm

We use a general purpose block coordinate descent algorithm (CGD) (Tseng & Yun, 2009)

to solve (4.15). Following Tseng and Yun Tseng & Yun (2009), the complete CGD algorithm

is given by Algorithm 9.

The Armijo rule is defined as follows (Tseng & Yun, 2009):

Choose α(k)
init > 0 and let α(k) be the largest element of

{
αk
initδ

r
}
r=0,1,2,...

satisfying

Qλ(Θ
(k)
j + α(k)d(k)) ≤ Qλ(Θ

(k)
j ) + α(k)ϱ∆(k) (B.5)

where 0 < δ < 1, 0 < ϱ < 1, 0 ≤ γ < 1 and

∆(k) := ∇f(Θ(k)
j )d(k) + γ(d(k))2H

(k)
jj + λP (Θ

(k)
j + d(k))− λP (Θ(k)) (B.6)
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Algorithm 9 Coordinate Gradient Descent Algorithm to solve (4.15)

1: Set the iteration counter k ← 0 and choose initial values for the parameter vector Θ(0)

2: repeat
3: Approximate the Hessian ∇2f(Θ(k)) by a symmetric matix H(k):

H(k) = diag

[
min

{
max

{[
∇2f(Θ(k))

]
jj
, cmin

}
cmax

}]
j=1,...,p

(B.1)

4: for j = 1, . . . , p do
5: Solve the descent direction d(k) := dH(k)(Θ

(k)
j )

6: if Θ
(k)
j ∈ {β1, . . . , βp} then

dH(k)(Θ
(k)
j )← argmin

d

{
∇f(Θ(k)

j )d+
1

2
d2H

(k)
jj + λP (Θ

(k)
j + d)

}
(B.2)

7: Choose a stepsize

α
(k)
j ← line search given by the Armijo rule

8: Update
Θ̂

(k+1)
j ← Θ̂

(k)
j + α

(k)
j d(k)

9: Update

η̂(k+1) ← argmin
η

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2 (k)

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(Λi − 1)

(B.3)

10: Update

σ̂2
(k+1)

← 1

NT

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(k+1)(Λi − 1)

(B.4)

11: k ← k + 1
12:
13: until convergence criterion is satisfied
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Common choices for the constants are δ = 0.1, ϱ = 0.001, γ = 0, α(k)
init = 1 for all k (Schell-

dorfer et al., 2011).

Below we detail the specifics of Algorithm 9 for the ℓ1 penalty.

B.1.1 ℓ1 penalty

The objective function is given by

Qλ(Θ) = f(Θ) + λ|β| (B.7)

Descent Direction

For simplicity, we remove the iteration counter (k) from the derivation below.

For Θ
(k)
j ∈ {β1, . . . , βp}, let

dH(Θj) = argmin
d

G(d) (B.8)

where

G(d) = ∇f(Θj)d+
1

2
d2Hjj + λ|Θj + d|

Since G(d) is not differentiable at −Θj, we calculate the subdifferential ∂G(d) and search

for d with 0 ∈ ∂G(d):

∂G(d) = ∇f(Θj) + dHjj + λu (B.9)

where

u =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 if d > −Θj

−1 if d < −Θj

[−1, 1] if d = Θj

(B.10)

We consider each of the three cases in (B.9) below
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1. d > −Θj

∂G(d) = ∇f(Θj) + dHjj + λ = 0

d =
−(∇f(Θj) + λ)

Hjj

Since λ > 0 and Hjj > 0, we have

−(∇f(Θj)− λ)
Hjj

>
−(∇f(Θj) + λ)

Hjj

= d
def
> −Θj

The solution can be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

where mid {a, b, c} denotes the median (mid-point) of a, b, c (Tseng & Yun, 2009).

2. d < −Θj

∂G(d) = ∇f(Θj) + dHjj − λ = 0

d =
−(∇f(Θj)− λ)

Hjj

Since λ > 0 and Hjj > 0, we have

−(∇f(Θj) + λ)

Hjj

<
−(∇f(Θj)− λ)

Hjj

= d
def
< −Θj

Again, the solution can be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

3. dj = −Θj
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There exists u ∈ [−1, 1] such that

∂G(d) = ∇f(Θj) + dHjj + λu = 0

d =
−(∇f(Θj) + λu)

Hjj

For −1 ≤ u ≤ 1, λ > 0 and Hjj > 0 we have

−(∇f(Θj) + λ)

Hjj

≤ d
def
= −Θj ≤

−(∇f(Θj)− λ)
Hjj

The solution can again be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

We see all three cases lead to the same solution for (B.8). Therefore the descent direction

for Θ
(k)
j ∈ {β1, . . . , βp} for the ℓ1 penalty is given by

d = mid
{
−(∇f(βj)− λ)

Hjj

,−βj,
−(∇f(βj) + λ)

Hjj

}
(B.11)

Solution for the β parameter

If the Hessian ∇2f(Θ(k)) > 0 then H(k) defined in (B.1) is equal to ∇2f(Θ(k)). Using

αinit = 1, the largest element of
{
α
(k)
initδ

r
}

r=0,1,2,...
satisfying the Armijo Rule inequality is

reached for α(k) = α
(k)
initδ

0 = 1. The Armijo rule update for the β parameter is then given

by

β
(k+1)
j ← β

(k)
j + d(k), j = 1, . . . , p (B.12)
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Substituting the descent direction given by (B.11) into (B.12) we get

β
(k+1)
j = mid

{
β
(k)
j +

−(∇f(β(k)
j )− λ)

Hjj

, 0, β
(k)
j +

−(∇f(β(k)
j ) + λ)

Hjj

}
(B.13)

We can further simplify this expression. Let

wi :=
1

σ2 (1 + η(Λi − 1))
(B.14)

.

Re-write the part depending on β of the negative log-likelihood in (4.13) as

g(β(k)) =
1

2

NT∑
i=1

wi

(
Ỹi −

∑
ℓ̸=j

X̃iℓβ
(k)
ℓ − X̃ijβ

(k)
j

)2

(B.15)

The gradient and Hessian are given by

∇f(β(k)
j ) :=

∂

∂β
(k)
j

g(β(k)) = −
NT∑
i=1

wiX̃ij

(
Ỹi −

∑
ℓ̸=j

X̃iℓβ
(k)
ℓ − X̃ijβ

(k)
j

)
(B.16)

Hjj :=
∂2

∂β
(k)
j

2 g(β
(k)) =

NT∑
i=1

wiX̃
2
ij (B.17)

Substituting (B.16) and (B.17) into β(k)
j +

−(∇f(β
(k)
j )−λ)

Hjj

β
(k)
j +

∑NT

i=1wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ − X̃ijβ

(k)
j

)
+ λ∑NT

i=1wiX̃2
ij

= β
(k)
j +

∑NT

i=1wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
+ λ∑NT

i=1wiX̃2
ij

−
∑NT

i=1wiX̃
2
ijβ

(k)
j∑NT

i=1wiX̃2
ij

=

∑NT

i=1wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
+ λ∑NT

i=1wiX̃2
ij

(B.18)
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Similarly, substituting (B.16) and (B.17) in β(k)
j +

−(∇f(β
(k)
j )+λ)

Hjj
we get

∑NT

i=1wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
− λ∑NT

i=1wiX̃2
ij

(B.19)

Finally, substituting (B.18) and (B.19) into (B.13) we get

β
(k+1)
j = mid

⎧⎨⎩
∑NT

i=1wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
− λ∑NT

i=1wiX̃2
ij

, 0,

∑NT

i=1wiX̃ij

(
Ỹi −

∑
ℓ ̸=j X̃iℓβ

(k)
ℓ

)
+ λ∑NT

i=1wiX̃2
ij

⎫⎬⎭
=
Sλ
(∑NT

i=1wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

))
∑NT

i=1wiX̃2
ij

(B.20)

Where Sλ(x) is the soft-thresholding operator

Sλ(x) = sign(x)(|x| − λ)+

sign(x) is the signum function

sign(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−1 x < 0

0 x = 0

1 x > 0

and (x)+ = max(x, 0).
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B.2 Additional Simulation Results
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Method twostep lasso ggmix

Based on 200 simulations

Number of Active Variables for Null Model

a variable is active if its estimated coefficient is non-zero

Figure B.1: Boxplots of the number of active variables from 200 simulations by the true
heritability η = {10%, 50%} for the null model (c = 0).
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Figure B.2: Boxplots of the number of active variables from 200 simulations by the true
heritability η = {10%, 50%} and number of causal SNPs that were included in the calculation
of the kinship matrix for the model with 1% causal SNPs (c = 0.01).
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horizontal dashed line is the true value

Figure B.3: Boxplots of the heritability estimate η̂ from 200 simulations by the true heri-
tability η = {10%, 50%} for the null model (c = 0).
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Figure B.4: Boxplots of the estimated error variance from 200 simulations by the true heri-
tability η = {10%, 50%} for the null model (c = 0).
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Figure B.5: Means ±1 standard deviation of the model error vs. the number of active
variables by the true heritability η = {10%, 50%} for the null model (c = 0).
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B.3 ggmix Package Showcase

In this section we briefly introduce the freely available and open source ggmix package in R.

More comprehensive documentation is available at https://sahirbhatnagar.com/ggmix.

Note that this entire section is reproducible; the code and text are combined in an .Rnw1 file

and compiled using knitr (Xie, 2015).

B.3.1 Installation

The package can be installed from GitHub via
install.packages("pacman")

pacman::p_load_gh('sahirbhatnagar/ggmix')

To showcase the main functions in ggmix, we will use the simulated data which ships with

the package and can be loaded via:
library(ggmix)

data("admixed")

names(admixed)

## [1] "y" "x" "causal"

## [4] "beta" "kin" "Xkinship"

## [7] "not_causal" "causal_positive" "causal_negative"

## [10] "x_lasso"

For details on how this data was simulated, see help(admixed).

There are three basic inputs that ggmix needs:

1. Y : a continuous response variable

2. X: a matrix of covariates of dimension N × p where N is the sample size and p is the

number of covariates

3. Φ: a kinship matrix
1scripts available at https://github.com/sahirbhatnagar/ggmix/tree/master/manuscript
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We can visualize the kinship matrix in the admixed data using the popkin package:
# need to install the package if you don't have it

# pacman::p_load_gh('StoreyLab/popkin')

popkin::plotPopkin(admixed$kin)
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B.3.2 Fit the linear mixed model with Lasso Penalty

We will use the most basic call to the main function of this package, which is called ggmix.

This function will by default fit a L1 penalized linear mixed model (LMM) for 100 distinct

values of the tuning parameter λ. It will choose its own sequence:
fit <- ggmix(x = admixed$x, y = admixed$y, kinship = admixed$kin)

names(fit)

## [1] "result" "ggmix_object" "n_design" "p_design"

## [5] "lambda" "coef" "b0" "beta"

## [9] "df" "eta" "sigma2" "nlambda"

## [13] "cov_names" "call"

class(fit)
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## [1] "lassofullrank" "ggmix_fit"

We can see the solution path for each variable by calling the plot method for objects of

class ggmix_fit:
plot(fit)
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We can also get the coefficients for given value(s) of lambda using the coef method for

objects of class ggmix_fit:
# only the first 5 coefficients printed here for brevity

coef(fit, s = c(0.1,0.02))[1:5, ]

## 5 x 2 Matrix of class "dgeMatrix"

## 1 2

## (Intercept) -0.3824525 -0.030227753

## X62 0.0000000 0.000000000

## X185 0.0000000 0.001444670

## X371 0.0000000 0.009513604

## X420 0.0000000 0.000000000

Here, s specifies the value(s) of λ at which the extraction is made. The function uses linear
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interpolation to make predictions for values of s that do not coincide with the lambda

sequence used in the fitting algorithm.

We can also get predictions (Xβ̂) using the predict method for objects of class ggmix_fit:
# need to provide x to the predict function

# predict for the first 5 subjects

predict(fit, s = c(0.1,0.02), newx = admixed$x[1:5,])

## 1 2

## id1 -1.19165061 -1.3123396

## id2 -0.02913052 0.3885921

## id3 -2.00084875 -2.6460045

## id4 -0.37255277 -0.9542455

## id5 -1.03967831 -2.1377274

B.3.3 Find the Optimal Value of the Tuning Parameter

We use the Generalized Information Criterion (GIC) to select the optimal value for λ. The

default is an = log(log(n)) ∗ log(p) which corresponds to a high-dimensional BIC (HD-

BIC):
# pass the fitted object from ggmix to the gic function:

hdbic <- gic(fit)

class(hdbic)

## [1] "ggmix_gic" "lassofullrank" "ggmix_fit"

# we can also fit the BIC by specifying the an argument

bicfit <- gic(fit, an = log(length(admixed$y)))

We can plot the HDBIC values against log(λ) using the plot method for objects of class

ggmix_gic:
plot(hdbic)
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The optimal value for λ according to the HDBIC, i.e., the λ that leads to the minium HDBIC

is:
hdbic[["lambda.min"]]

## [1] 0.05596623

We can also plot the BIC results:
plot(bicfit, ylab = "BIC")
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bicfit[["lambda.min"]]

## [1] 0.05596623

B.3.4 Get Coefficients Corresponding to Optimal Model

We can use the object outputted by the gic function to extract the coefficients corresponding

to the selected model using the coef method for objects of class ggmix_gic:
coef(hdbic)[1:5, , drop = FALSE]

## 5 x 1 sparse Matrix of class "dgCMatrix"

## 1

## (Intercept) -0.2668419

## X62 .

## X185 .

## X371 .

## X420 .

We can also extract just the nonzero coefficients which also provide the estimated variance

components η and σ2:
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coef(hdbic, type = "nonzero")

## 1

## (Intercept) -0.26684191

## X336 -0.67986393

## X7638 0.43403365

## X1536 0.93994982

## X1943 0.56600730

## X2849 -0.58157979

## X56 -0.08244685

## X4106 -0.35939830

## eta 0.26746240

## sigma2 0.98694300

We can also make predictions from the hdbic object, which by default will use the model

corresponding to the optimal tuning parameter:
predict(hdbic, newx = admixed$x[1:5,])

## 1

## id1 -1.3061041

## id2 0.2991654

## id3 -2.3453664

## id4 -0.4486012

## id5 -1.3895793

B.3.5 Extracting Random Effects

The user can compute the random effects using the provided ranef method for objects of

class ggmix_gic. This command will compute the estimated random effects for each subject

using the parameters of the selected model:
ranef(hdbic)[1:5]

## [1] -0.02548691 -0.10011680 0.13020240 -0.30650997 0.16045768
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B.3.6 Diagnostic Plots

We can also plot some standard diagnotic plots such as the observed vs. predicted response,

QQ-plots of the residuals and random effects and the Tukey-Anscombe plot. These can be

plotted using the plot method on a ggmix_gic object as shown below.

Observed vs. Predicted Response

plot(hdbic, type = "predicted", newx = admixed$x, newy = admixed$y)
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plot(hdbic, type = "QQranef", newx = admixed$x, newy = admixed$y)
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plot(hdbic, type = "QQresid", newx = admixed$x, newy = admixed$y)
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Tukey-Anscombe Plot

plot(hdbic, type = "Tukey", newx = admixed$x, newy = admixed$y)
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Appendix C

Supplemental Methods and Simulation

Results for Chapter 5

C.1 Description of Topological Overlap Matrix

Starting with a similarity measure sij = |cor(i, j)| between node i and node j, one could

apply a hard threshold to determine if this pair is considered connected or not resulting in

an un-weighted network (a matrix of 0’s and 1’s). Instead, Zhang and Horvath (B. Zhang &

Horvath, 2005) propose a soft thresholding framework that assigns a connection weight to

each gene pair using a power adjacency function aij = |sij|β. The parameter β determines

the sensitivity and specificity of the pairwise connection strengths e.g. a larger β will result

in fewer connected nodes which can reduce noise in the network but can also eliminate signal

if too large. A measure of similarity is then derived using the symmetric and non-negative

topological overlap matrix (Ravasz et al., 2002) (TOM) Ω = [ωij]:

ωij =
lij + aij

min {ki, kj}+ 1− aij
(C.1)
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where lij =
∑

u aiuauj, ki =
∑

u aiu is the node connectivity, and the index u runs across all

nodes of the network. Basically, ωij is a measure of similarity in terms of the commonality

of the nodes they connect to. If i and j are unconnected and do not share any neighbors

then ωij = 0. An ωij = 1 means that i and j are connected, and the neighbors of the node

with fewer connections are also neighbors of the other node.

187



C.2 Binary Outcome Simulation Results
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Figure C.1: Model fit results from simulations 4, 5 and 6 for SNR = 1, ρ = 0.9, and
αj ∼ Unif [log(1.9), log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST
in blue.
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Figure C.2: Stability results from simulations 4, 5 and 6 for SNR = 1, ρ = 0.9, and
αj ∼ Unif [log(1.9), log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST
in blue.
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Figure C.3: Hosmer-Lemeshow statistics from simulations 4, 5 and 6 for SNR = 1, ρ = 0.9,
and αj ∼ Unif [log(1.9), log(2.1)]. SEPARATE results are in pink, CLUST in green and
ECLUST in blue.
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Figure C.4: Hosmer-Lemeshow p-values from simulation 4 for SNR = 1, ρ = 0.9, and
αj ∼ Unif [log(1.9), log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST
in blue.
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Figure C.5: Hosmer-Lemeshow p-values from simulation 5 for SNR = 1, ρ = 0.9, and
αj ∼ Unif [log(1.9), log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST
in blue.
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Figure C.6: Hosmer-Lemeshow p-values from simulation 6 for SNR = 1, ρ = 0.9, and
αj ∼ Unif [log(1.9), log(2.1)]. SEPARATE results are in pink, CLUST in green and ECLUST
in blue.
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C.3 Analysis of Clusters

Figure C.7: Number of estimated clusters from applying the dynamicTreeCut algorithm to
hierarchical clustering of the dissimilarity matrix with average linkage. Left panel: CLUST
uses 1 − Cor(Xall) and ECLUST uses the euclidean distance of Cor(Xdiff) as measures of
dissimilarity. Right panel: CLUST uses 1 − TOM(Xall) and ECLUST uses the euclidean
distance of TOM(Xdiff) as measures of dissimilarity. Empirical distributions based on 200
simulation runs.
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Figure C.8: Effective number of selected variables for simulations 1-3 for SNR = 1, ρ = 0.9.
A variable was considered “selected” if its corresponding cluster representative was selected.
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Figure C.9: Effective number of selected variables for simulations 4-6 for SNR = 1, ρ = 0.9
and αj ∼ Unif [log(1.9), log(2.1)]. A variable was considered “selected” if its corresponding
cluster representative was selected.
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C.4 Simulation Results Using TOM as a Measure of Sim-

ilarity

Simulation 1

Figure C.10: Simulation 1 – Root mean squared error on an independent test set using
the TOM as a measure of similarity from 200 simulation runs. Vertical panels represent
varying correlation between active clusters. Horizontal panels represent different signal-to-
noise ratios.
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Figure C.11: Simulation 1 – Correct Sparsity based on the training set using the TOM as a
measure of similarity from 200 simulation runs. Vertical panels represent varying correlation
between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.12: Simulation 1 – True positive rate vs. false positive rate based on the training
set using the TOM as a measure of similarity. Each point represents 1 simulation run (there
are a total of 200 simulation runs). Vertical panels represent varying correlation between
active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.13: Simulation 1 – Average Jaccard Index from 10 CV folds of the training set
using the TOM as a measure of similarity. We fit the model to each of the 10 CV folds
resulting in 10 sets of selected predictors. We then calculate the Jaccard Index between all(
10
2

)
possible combinations of these sets and take the average. This process is repeated for

each of the 200 simulation runs. Vertical panels represent varying correlation between active
clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.14: Simulation 1 – Average Spearman correlation from 10 CV folds of the train-
ing set using the TOM as a measure of similarity. We fit the model to each of the 10 CV
folds resulting in 10 sets of estimated regression coefficients. We then calculate the Spear-
man correlation between all

(
10
2

)
possible combinations of these sets and take the average.

This process is repeated for each of the 200 simulation runs. Vertical panels represent vary-
ing correlation between active clusters. Horizontal panels represent different signal-to-noise
ratios.
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Figure C.15: Simulation 1 – Average Pearson correlation from 10 CV folds of the training
set using the TOM as a measure of similarity. We fit the model to each of the 10 CV folds
resulting in 10 sets of estimated regression coefficients. We then calculate the Pearson corre-
lation between all

(
10
2

)
possible combinations of these sets and take the average. This process

is repeated for each of the 200 simulation runs. Vertical panels represent varying correlation
between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Simulation 2

Figure C.16: Simulation 2 – Root mean squared error on an independent test set using
the TOM as a measure of similarity from 200 simulation runs. (A) αj ∼ Unif [0.4, 0.6],
(B) αj ∼ Unif [1.9, 2.1]. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent different signal-to-noise ratios.
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Figure C.17: Simulation 2 – Correct Sparsity based on the training set using the
TOM as a measure of similarity from 200 simulation runs. (A) αj ∼ Unif [0.4, 0.6],
(B) αj ∼ Unif [1.9, 2.1]. Vertical panels represent varying correlation between active clus-
ters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.19: Simulation 2 – Average Jaccard Index from 10 CV folds of the training set using
the TOM as a measure of similarity. (A) αj ∼ Unif [0.4, 0.6], (B) αj ∼ Unif [1.9, 2.1]. We fit
the model to each of the 10 CV folds resulting in 10 sets of selected predictors. We then
calculate the Jaccard Index between all

(
10
2

)
possible combinations of these sets and take

the average. This process is repeated for each of the 200 simulation runs. Vertical panels
represent varying correlation between active clusters. Horizontal panels represent different
signal-to-noise ratios.
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Figure C.18: Simulation 2 – True positive rate vs. false positive rate based on the training set
using the TOM as a measure of similarity. (A) αj ∼ Unif [0.4, 0.6], (B) αj ∼ Unif [1.9, 2.1].
Each point represents 1 simulation run (there are a total of 200 simulation runs). Vertical
panels represent varying correlation between active clusters. Horizontal panels represent
different signal-to-noise ratios.
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Figure C.20: Simulation 2 – Average Spearman correlation from 10 CV folds of
the training set using the TOM as a measure of similarity. (A) αj ∼ Unif [0.4, 0.6],
(B) αj ∼ Unif [1.9, 2.1]. We fit the model to each of the 10 CV folds resulting in 10 sets
of estimated regression coefficients. We then calculate the Spearman correlation between all(
10
2

)
possible combinations of these sets and take the average. This process is repeated for

each of the 200 simulation runs. Vertical panels represent varying correlation between active
clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.21: Simulation 2 – Average Pearson correlation from 10 CV folds of the training set
using the TOM as a measure of similarity. (A) αj ∼ Unif [0.4, 0.6], (B) αj ∼ Unif [1.9, 2.1].
We fit the model to each of the 10 CV folds resulting in 10 sets of estimated regression
coefficients. We then calculate the Pearson correlation between all

(
10
2

)
possible combinations

of these sets and take the average. This process is repeated for each of the 200 simulation
runs. Vertical panels represent varying correlation between active clusters. Horizontal panels
represent different signal-to-noise ratios.
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Simulation 3

Figure C.22: Simulation 3 – Root mean squared error on an independent test set using
the TOM as a measure of similarity from 200 simulation runs. Vertical panels represent
varying correlation between active clusters. Horizontal panels represent different signal-to-
noise ratios.
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Figure C.23: Simulation 3 – Correct Sparsity based on the training set using the TOM as a
measure of similarity from 200 simulation runs. Vertical panels represent varying correlation
between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.24: Simulation 3 – True positive rate vs. false positive rate based on the training
set using the TOM as a measure of similarity. Each point represents 1 simulation run (there
are a total of 200 simulation runs). Vertical panels represent varying correlation between
active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.25: Simulation 3 – Average Jaccard Index from 10 CV folds of the training set
using the TOM as a measure of similarity. We fit the model to each of the 10 CV folds
resulting in 10 sets of selected predictors. We then calculate the Jaccard Index between all(
10
2

)
possible combinations of these sets and take the average. This process is repeated for

each of the 200 simulation runs. Vertical panels represent varying correlation between active
clusters. Horizontal panels represent different signal-to-noise ratios.
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C.5 Simulation Results Using Pearson Correlations as a

Measure of Similarity

Simulation 1

Figure C.26: Simulation 1 – Root mean squared error on an independent test set using the
Correlation as a measure of similarity from 200 simulation runs. Vertical panels represent
varying correlation between active clusters. Horizontal panels represent different signal-to-
noise ratios.
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Figure C.27: Simulation 1 – Correct Sparsity based on the training set using the Pearson
correlation as a measure of similarity from 200 simulation runs. Vertical panels represent
varying correlation between active clusters. Horizontal panels represent different signal-to-
noise ratios.
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Figure C.28: Simulation 1 – True positive rate vs. false positive rate based on the training set
using the Pearson correlation as a measure of similarity. Each point represents 1 simulation
run (there are a total of 200 simulation runs). Vertical panels represent varying correlation
between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.29: Simulation 1 – Average Jaccard Index from 10 CV folds of the training set
using the Pearson correlation as a measure of similarity. We fit the model to each of the
10 CV folds resulting in 10 sets of selected predictors. We then calculate the Jaccard Index
between all

(
10
2

)
possible combinations of these sets and take the average. This process is

repeated for each of the 200 simulation runs. Vertical panels represent varying correlation
between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.30: Simulation 1 – Average Spearman correlation from 10 CV folds of the training
set using the Pearson correlation as a measure of similarity. We fit the model to each of
the 10 CV folds resulting in 10 sets of estimated regression coefficients. We then calculate
the Spearman correlation between all

(
10
2

)
possible combinations of these sets and take the

average. This process is repeated for each of the 200 simulation runs. Vertical panels
represent varying correlation between active clusters. Horizontal panels represent different
signal-to-noise ratios.
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Figure C.31: Simulation 1 – Average Pearson correlation from 10 CV folds of the training
set using the Pearson correlation as a measure of similarity. We fit the model to each of
the 10 CV folds resulting in 10 sets of estimated regression coefficients. We then calculate
the Pearson correlation between all

(
10
2

)
possible combinations of these sets and take the

average. This process is repeated for each of the 200 simulation runs. Vertical panels
represent varying correlation between active clusters. Horizontal panels represent different
signal-to-noise ratios.
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Simulation 2

Figure C.33: Simulation 2 – Correct Sparsity based on the training set using the Pearson
correlation as a measure of similarity from 200 simulation runs. (A) αj ∼ Unif [0.4, 0.6],
(B) αj ∼ Unif [1.9, 2.1]. Vertical panels represent varying correlation between active clusters.
Horizontal panels represent different signal-to-noise ratios.
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Figure C.35: Simulation 2 – Average Jaccard Index from 10 CV folds of the train-
ing set using the Pearson correlation as a measure of similarity. (A) αj ∼ Unif [0.4, 0.6],
(B) αj ∼ Unif [1.9, 2.1]. We fit the model to each of the 10 CV folds resulting in 10 sets
of selected predictors. We then calculate the Jaccard Index between all

(
10
2

)
possible com-

binations of these sets and take the average. This process is repeated for each of the 200
simulation runs. Vertical panels represent varying correlation between active clusters. Hori-
zontal panels represent different signal-to-noise ratios.
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Figure C.36: Simulation 2 – Average Spearman correlation from 10 CV folds of the train-
ing set using the Pearson correlation as a measure of similarity. (A) αj ∼ Unif [0.4, 0.6],
(B) αj ∼ Unif [1.9, 2.1]. We fit the model to each of the 10 CV folds resulting in 10 sets of
estimated regression coefficients. We then calculate the Spearman correlation between all(
10
2

)
possible combinations of these sets and take the average. This process is repeated for

each of the 200 simulation runs. Vertical panels represent varying correlation between active
clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.37: Simulation 2 – Average Pearson correlation from 10 CV folds of the train-
ing set using the Pearson correlation as a measure of similarity. (A) αj ∼ Unif [0.4, 0.6],
(B) αj ∼ Unif [1.9, 2.1]. We fit the model to each of the 10 CV folds resulting in 10 sets
of estimated regression coefficients. We then calculate the Pearson correlation between all(
10
2

)
possible combinations of these sets and take the average. This process is repeated for

each of the 200 simulation runs. Vertical panels represent varying correlation between active
clusters. Horizontal panels represent different signal-to-noise ratios.
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Simulation 3

Figure C.38: Simulation 3 – Root mean squared error on an independent test set using the
Pearson correlation as a measure of similarity from 200 simulation runs. Vertical panels
represent varying correlation between active clusters. Horizontal panels represent different
signal-to-noise ratios.
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Figure C.39: Simulation 3 – Correct Sparsity based on the training set using the Pearson
correlation as a measure of similarity from 200 simulation runs. Vertical panels represent
varying correlation between active clusters. Horizontal panels represent different signal-to-
noise ratios.
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Figure C.41: Simulation 3 – Average Jaccard Index from 10 CV folds of the training set
using the Pearson correlation as a measure of similarity. We fit the model to each of the
10 CV folds resulting in 10 sets of selected predictors. We then calculate the Jaccard Index
between all

(
10
2

)
possible combinations of these sets and take the average. This process is

repeated for each of the 200 simulation runs. Vertical panels represent varying correlation
between active clusters. Horizontal panels represent different signal-to-noise ratios.
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C.6 Visual Representation of Similarity Matrices

Pearson Correlation Matrix

(a) Cor(XE=0) (b) Cor(XE=1)

(c) |Cor(XE=1)− Cor(XE=0)| (d) Cor(Xall)

Figure C.42: Pearson correlation matrices of simulated predictors based on subjects with
(a) E = 0, (b) E = 1, (c) their absolute difference and (d) all subjects. Dendrograms are
from hierarchical clustering (average linkage) of one minus the correlation matrix for a, b,
and d and the euclidean distance for c. The module annotation represents the true cluster
membership for each predictor, and the active annotation represents the truly associated
predictors with the response.
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Figure C.32: Simulation 2 – Root mean squared error on an independent test set
using the Pearson correlation as a measure of similarity from 200 simulation runs.
(A) αj ∼ Unif [0.4, 0.6], (B) αj ∼ Unif [1.9, 2.1]. Vertical panels represent varying correla-
tion between active clusters. Horizontal panels represent different signal-to-noise ratios.
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Figure C.34: Simulation 2 – True positive rate vs. false positive rate based on the train-
ing set using the Pearson correlation as a measure of similarity. (A) αj ∼ Unif [0.4, 0.6],
(B) αj ∼ Unif [1.9, 2.1]. Each point represents 1 simulation run (there are a total of 200
simulation runs). Vertical panels represent varying correlation between active clusters. Hor-
izontal panels represent different signal-to-noise ratios.
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Figure C.40: Simulation 3 – True positive rate vs. false positive rate based on the training set
using the Pearson correlation as a measure of similarity. Each point represents 1 simulation
run (there are a total of 200 simulation runs). Vertical panels represent varying correlation
between active clusters. Horizontal panels represent different signal-to-noise ratios.
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