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ABSTRACT

ABSTRACT

Over half of the earth’s dry surface is inaccessible to wheeled or tracked vehicles.
Even relatively structured indoor or urban environments with steps. stairs. or narrow
hallways, are challenging for most wheeled or tracked systems. This is one of the
primary motivations for the study of mobile robots with legs.

We propose a new type of quadruped robot with maximum mechanical simplicity
- the SCOUT class. Most robots built to date possess many actuated degrees of
freedom (DOF) (three or four per leg) thus making them too expensive for practical
use. SCOUT robots. on the other hand, feature only one actuated degree of freedom
per leg. SCOUT dynamics, while still non-trivial, is greatly simplified compared to
that of higher degree of freedom robots. In our analysis. we assume instantaneous
plastic impacts occur when a leg touches the ground, and consequently, a momentum
transfer occurs that causes step changes in the linear and angular velocities. The
calculations of these changes are based on the principle of conservation of angular
momentum with respect to the impact toe. since it is that point which acts as pivot,
or a free pin joint. A set of walking algorithms based on the controlled momentum
transfer have been developed, and validated, using numerical simulations. These
algorithms have subsequently been implemented on our walking robots. SCOUT I
and SCOUT IIL

This thesis will show that, with very simple mechanical design and control strate-
gics, stable walking is achievable. However, it is important to note that research
currently being undertaken in the ARL group will establish that. with only minimal

structural changes, SCOUT will have the ability to run and climb stairs.
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RESUME

RESUME

Plus de la moitié de la masse continentale de la Terre est inaccessible aux véhicules
a roues ou a chenilles. Méme des environnements intérieurs ou urbains relativements
structurés représentent un défi pour la plupart des systémes a roues ou a chenilles.
C’est P'une des principales motivations pour I'étude de robots mobiles a jambes.

Nous proposons un nouveau type de robot quadrupéde avec une simplicité méca-
nique maximale - la classe SCOUT. La plupart des robots construits jusqu’ici possédent
beaucoup de degrés de liberté motorisés (trois ou quatre par jambe). ce qui les rend
trop cher en pratique. Les robots SCOUT. par contre, n‘ont qu'un seul degré de
liberté (DDL) motorisé par jambe. La dynamique des SCOUT. tout en restant non
triviale, est grandement simplifiée comparée a celle des robots avec plus de degrés de
liberté. Dans notre analyse, nous supposons que des impacts plastiques instantanés
ont lieu quand une jambe touche le sol, et. par conséquent, un transfer de momentum
se produit qui cause un échelon dans les vitesses angulaires et linéaires. Les calculs
pour ces changements sont basés sur le principe de conservation du momentum angu-
laire par rapport au point d’impact, puisque c’est ce point qui agit comme pivot. Un
ensemble d’algorithmes de marche, basés sur le commande du transfer du momen-
tum, ont été développés et validés par l'utilisation de simulations numériques. Ces
algorithmes ont par la suite été implémentés sur nos robots marchants. SCOUT [ et
SCOUT II.

Cette thése montrera que, avec une conception mécanique et des stratégies de
controle trés simples, une marche stable est atteignable. Cependant. il est important

de noter que la recherche présentement effectuée au sein du groupe ARL établira que,
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RESUME

. avec des changements structuraux minimes, SCOUT aura la capacité de courir et de

gravir des escaliers.
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1.1.1 MOTIVATION

CHAPTER 1

INTRODUCTION

1.1. Motivation

Humans and legged animals can move quickly and easily over soft. hard or difficult
terrain, such as mountains. valleys. craters and crevices. The hope is that legged
robots with similar dexterity as their biological counterparts perform better over
these types of surfaces than wheeled or tracked machines. Legged robots are needed
in a variety of fields: land or space exploration. surveillance or work in dangerous
environments, police operations, forestry. civil and medical applications and even the
entertainment industry. In most applications. a legged robot should either provide
a means of locomotion or take over the human role, particularly where the use of
humans would be expensive. dangerous. or occasionally, impossible. The applications
for legged robots involve activities which pose a significant challenge to a wheeled
or tracked vehicle, such as running, climbing or descending stairs. walking on rocky
terrain and passing or jumping over obstacles. However. current research in legged
robotics is still in its infancy, and, therefore, has a long way to go in building practical
dextrous and agile legged robots which can successfully and effectively deal with

various types of terrain.



1.1.2 RESEARCH ON LEGGED LOCOMOTION

1.2. Research on Legged Locomotion

Legged robots generally fall into two classes; those designed for static walking and
those capable of dynamic operation. In static walkers. stability is assured through
kinematics by keeping the machine’s center of mass within the polygon formed by
the supporting feet. This requires that these machines have at least four legs. al-
though they are often built with six legs to improve mobility. Static walkers do not
balance actively and, since dynamics of motion are not considered. speeds are low in
comparison with the performances obtained by the dynamic walkers of the same leg
length.

Dynamic operation requires that balance is actively maintained at all times. Dy-
namic robots have a potential for higher speeds and power efficiency. Moreover. they
require fewer legs, and consequently simpler designs. Unlike statically stable robots.
which operate around the equilibrium position, the actively balanced robots can op-
erate away from the static equilibrium configuration, with a direct consequence on an
increased mobility. Due to their agility, dvnamic legged robots can move more easily
around different obstacles or can negotiate a larger variety of terrains.

Important research in dvnamically stable locomotion was developed by Raibert
who started with a one legged hopping robot and went on to build various bipeds
and a quadruped [16]. The concepts developed for the one legged robot were used
in the control of the three dimensional biped and the quadruped robot. Miura and
Shimoyama [15] developed the BIPER family of statically unstable biped robots that
perform dynamically stable walking. Channon, Hopkins, and Pham [3] presented
alternative ways of designing walking algorithms using optimization techniques. The
same idea was used by Kajita, Tani. and Kobayashi [7] in designing a potential energy
conserving trajectory for their biped robot. The design of the walking gait based on
energy minimization was used also by Marhefka and Orin [10]. Dunn and Howe [4, 5]
analvzed the smooth motion, with constant body height. of a bipedal robot. During
the leg impacts, the angular momentum of the entire machine about the impacting

leg is conserved. The same conservation principle was used by McGeer [11, 12, 13] in

N



1.1.3 SCOUT LEGGED ROBOTS

his analysis of a bipedal locomotion, by Smith and Berkemeier [19] in their research
on quadrupedal walking, and by Sano and Furusho [18] in designing walking gaits
for the BLR-G2 biped. So far. the research on dvnamically stable robots proved the
important effect of impacts, and the use of these impacts in maintaining a walking

motion.

1.3. SCOUT legged robots

FIGURE 1.1. Photos of SCOUT I (left) and SCOUT II (right)

A review of the available legged robots indicates that these machines are sophis-
ticated and quite expensive. In contrast, we aimed at a low cost. mechanically simple
machine - the SCOUT robots (Figure 1.1). Despite the design constraints. our robot
should still be able to perform walking, running and stair climbing tasks. Two genera-
tions of SCOUT robots (Figure 1.1) have been designed and built in the Ambulatory
Robotics Laboratory (ARL). According to the design requirements, SCOUT has a
very simple structure featuring only one degree of freedom (DOF) per leg.

Current research conducted in the ARL group is focused on designing control
algorithms for walking, running, and stair climbing, as well as improvements in the

mechanical design. Ken Yamazaki built the first prototype, SCOUT I, and designed
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1.1.4 CONTRIBUTIONS

and implemented successfully the first walking controller on SCOUT I. This thesis
will present control algorithms designed for walking gaits. Moreover, some of the
presented algorithms were implemented on SCOUT II, and the experimental results
will show the performance of the walking controllers. Robert Battaglia designed and
built SCOUT II and currently is developing algorithms for stair climbing. Joseph
Sarkis designed control schemes for running gaits. Sami Obaid equipped SCOUT
II with two triangulation laser proximity sensors used for different sensing tasks.
The third generation of SCOUT robots is already being researched: Geoff Hawker is
analyvzing the behavior of SCOUT equipped with legs with unactuated knees.

This thesis is dedicated to the design and analysis of walking control algorithms.
We consider the motion in the sagittal plane where the back legs act in unison. as
do the front legs. The analysis of the walking gait will prove, via simulations and
experiments, that using the conservation of angular momentum of the system around

the impact leg, it is possible to develop simple control algorithms that vield stable

walking.

1.4. Contributions

e The kinematic and dvnamic mode] of SCOUT will be derived and validated
via the MOBILE [8] simulation package (Section 2.2).

e The kinematic momentum model that governs the impact of a leg will be
developed and validated via the WORKING MODEL [17] simulation package
(Section 2.3).

e Three different control schemes will be proposed and validated via numerical
simulations. A numerical stability analysis will be included in the study of the
proposed controllers (Chapter 3).

e Two walking controllers have been implemented experimentally on the SCOUT

IT robot (Chapter 4).



1.1.6 ORGANIZATION OF THE THESIS

. 1.5. Terminology
The following terms will be used throughout this thesis:

e back leg: leg representing the pairwise motion of the two back (with respect to
the direction of motion) legs

e front leg: leg representing the pairwise motion of the two front legs

e back leg support: SCOUT is supported only by the back leg

e front leg support: SCOUT is supported only by the front leg

e single stance: either back leg or front leg are in contact with the ground

e double stance: both back and front leg are in contact with the ground

e step: the succession of back leg support, front leg impact, front leg support
and back leg impact

e turn over: the robot falls backwards or head over forwards and lands on its

back

1.6. Organization of the Thesis

Chapter 2 derives the mathematical model governing the SCOUT motion in single
stance and the model governing the back leg or front leg toe impact. Chapter 3
presents the three proposed control strategies together with their numerical stability
analyses. Chapter 4 shows experimental results obtained from the implementation of
two controllers on SCOUT II and Chapter 5 summarizes the results of our research

and presents some recommendations for future work.



2.2.1 MODELING CONSIDERATIONS

CHAPTER 2

MATHEMATICAL MODEL

2.1. Modeling Considerations

This thesis is dedicated to the design and analysis of walking algorithms. The
analysis will be done via computer simulations which will require a mathematical
svstemn model. In modeling the system we made several simplifving assumptions:

e SCOUT has only planar motion; therefore, our model has only one back leg

and one front leg;

e the legs are rigid and massless;

e the joints are friction-less ;

e when the tcos are in contact with the ground. they behave as free. friction-less

pin connections (the toes do not slip on the ground).

Figure 2.1 shows a schematics of our model. The body is connected to the legs
through friction-less rotational joints, the back and front hips (H,. Hy). The virtual
leg (ly. s in Figure 2.1) is a virtual element connecting the toe (7,. Ty) to the body

center of mass (C). The actuators are placed at the hips (H,, Hy). and control the



2.2.1 MODELING CONSIDERATIONS

/ 27////////7//////

b

FIGURE 2.1. SCOUT model

hip angle (¢y. @). As a consequence, the length of the virtual leg is controlled via

the hip actuators.

Given that SCOUT is a planar robot with stiff legs, it can perform only dvnamic
walking; that is, at any given instant, SCOUT is statically unstable. This implies
that SCOUT is standing either on the front leg or the back leg. With this assumption,
we ruled out the possibility of SCOUT being in a double support phase. Therefore.

SCOUT can be modeled

e as an inverted double pendulum: the first link is the stance leg, and the second

link is the body:

~1



2.2.1 MODELING CONSIDERATIONS

e as a variable length pendulum: the pendulum is the supporting virtual leg of

variable length [, ;.

It is important to note that. due to the assumption of massless legs. only the
supporting leg influences the dvnamics of the system. Both modeis, inverted double
pendulum or variable length pendulum, are two DOF systems with only one actuator
(the motor acting at the hip joint); therefore, it is an under-actuated system.

In Section 2.2 the equations that govern the motion while on either back leg
support or front leg support will be presented. The mathematical model that governs
the exchange of support will be introduced in Section 2.3. Tables 2.1 and 2.2 show

the notation that will be used in the following sections and chapters.

[ | leg length

L | half the distance between hip joints

m | body mass

I | body moment of inertia about the center of mass
r | body radius of gyration (I = mr?)

body angle w.r.t. the horizontal

>r | hip angle between body and leg

virtual leg length

7r | torque applied by the hip actuator

8

H

6
!

TABLE 2.1. Notation for SCOUT variables

X, | support on back leg

Xy | support on front leg

Xy,sr | support on either back or front leg
X, | n-th step

X# | value at back leg impact

X¥ | value at front leg impact
X' 8- | value just before back leg impact
X7~ | value just before front leg impact
X B+ | value just after back leg impact
X+ | value just after front leg impact
X* | desired value

TABLE 2.2. Subscripts and superscripts used with SCOUT variables



2.2.2 EQUATIONS OF MOTION

2.2. Equations of Motion

In this section the equations of motion (EOM) describing SCOUT's single stance
behavior will be presented: the inverted double pendulum model is considered in
developing these equations. Different state variables describe the dyvnamics of the
svstem while on back leg support or front leg support. Consequently, two different
sets of EOM will be derived: however. a simple coordinate transformation between
the states used in back leg support and front leg support will make the equivalence
between the two sets of equations. The derivation of the EOM was done using the
Lagrange Method.

In both back leg support and front leg support it is expected to derive a set of
non-linear EOM. For some control analysis purposes the linearized version of these
EOM might be of interest. The non-linear EOM describe accurately the motion of
the syvstem at any given configuration; however, the linear model approximates the
dynamics of the system as long as the variables are close to the values specified in

the linearization point.

2.2.1. Back leg Support. The non-linear EOM describing the dyvnamics of

the system while on back leg support are given by,

[r2 + L2 + 12 — 2Ll cos ¢5)0 — I[l — L cos é]és
+2lLépdsin ¢, — LLdE sin ¢ — gl cos(§ — &) + gL cosf = 0 (2.1)
~!l[l = Lcos Q')b]é + (2¢, — LLO? sin ¢y, + gl cos(8 — ¢p) = /M,

with the back hip torque 7, being the input. In developing these equations we chose as
state variables the body angle # and hip angle ¢,. The derivation of these equations
is presented in Appendix A. Even though for controller development we assume the
input to be the hip angle, for purposes of simulation we need a torque input model.
A high gain PD controller will track the desired reference trajectory in @,.

Eq. (2.1) was used in developing a numerical simulation in MATLAB [6]. For

verification, the results of this simulation were compared with the results obtained

9



2.2.2 EQUATIONS OF MOTION

from a MOBILE simulation. In the MOBILE simulation the user specifies only the
kinematic chain and mass, inertia properties describing the system under analysis,
but not the EOM. This comparison, presented in Figure 2.2, validates the derived

EOM.

I 1 13

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04

|

4 L 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04
time [s]

1

FIGURE 2.2. Body angle (8) obtained from MOBILE simulation (dashed
line) and from the MATLAB simulation (solid line)

The linearized model of the system is often needed for control analysis purposes.
During walking the body will have an oscillatory motion around 8 = 0 rad; the leg will
move around ¢, = 7 /2 rad configuration and. given the future developed algorithms.

with a constant angular velocity ¢, = @b;. As a consequence, we linearized the EOM

around

0=0.0=0, ¢ =7/2, ¢5b=f/5b,i

10



222 EQUATIONS OF MOTION

. to obtain

([ {[r? + L2 + 2L126y:6 — gL2[dy — 7/2] ~ 2L1%64[06 — Db,

—[rp/m — gL] — LI?&%, =0
T Ur? + Loy + 2L1%¢y 0 — g[2L% + r?)[éy — 7/2] ~ 2LI%04 ,[05 — 0b.i]
+g[r? + L0 ~ [r? + L? + *][ry/m — gL}/l — LI?6%, — gL[r* + L*]/l = 0.

(2.2)

The validity of these linear EOM was investigated. and Figure 2.3 shows a comparison
between the body angle 6 and body angular velocity @ resulting from the integration
of the linear (dashed line) and non-linear (solid line) EOM, for a constant back leg
hip angular velocity ¢,; = 2 rad/s. The results presented in Figure 2.3 were obtained

from a MATLAB simulation (using the adaptive step size ODEA45 integrator).

0.4 i T T T — —_ T

0.3
0.2

1 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04
time [s]

FIGURE 2.3. Comparison between the linear (dashed line} and non-lincar
(solid line) back leg support model

11



2.2.2 EQUATIONS OF MOTION

2.2.2. Front leg Support. The non-linear EOM while on front leg support

are

[r? + L2 +[*> — 2Ll cos &;]0 + I[l — L cos o7]o; + 20Lé0sin oy + Llo? sin oy
+glcos(f + o) — gLcos@ =0
[l — Lcosog)f + 126y — IL6* sin &) + gl cos(8 + o) = 7;/m.
(2.3)
Again. the state variables are the body angle 6 and the front leg hip angle o;. These

equations can be obtained from eq. (2.1) by the coordinate transformation

68 — 0-—-=
oy, — 27— éf.
With the same considerations as presented in the Section 2.2.1, the linearization point

was set as

to obtain the linearized EOMNI

([ U[r2 + L?)0 + 2L126,.0 — gL[o; — /2] + 2L126;.[6; — 67.4]

+l[rp/m — gL] + LI*0%, = 0
[[r? + L6y — 2L12¢ ;0 — gr3[o; — 7/2] — 2L1%6s.:(0r ~ 014
{ ~g[r? + L0 — [r? + L + P][ry/m — gL}/l — LI*&%, — gL[r* + L*]/l = 0.
(2.4)

The detailed derivation of the linear and non-linear EOM is given in Appendix A. A
MATLAB simulation was used to compare the results given by the linear and non-

linear models. The body angle # and angular velocity 0 resulting from linear (eq.
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(2.4)) and non-linear (eq. (2.3)) model. for a constant front leg hip angular velocity

or: = 2 rad/s. are presented in Figure 2.4.

0.2 T 1 1 T T S I
/7

0.1 ’,

_4 ) 1 1 1 ]
0 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4
time [s]

FiIGURE 2.4. Comparison between the linear (dashed line) and non-linear
(solid line) front leg support model

2.3. Impact Model

According to [14] for a system of interconnected bodies, under planar motion. for

a finite time interval. AT, the change of angular momentum of the system, AHg. is

given by

(™)
(S]]
e

t+AT
/ Z A'[Odt = (AHO)systeme ( .
t
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where O is a fixed reference point and Hp the angular momentum. The moment
summation includes only the effect of external forces (equal and opposite actions and
reactions at the interconnections are internal to the system and cancel one another).
Using the above definition we can determine the change in the angular momentum
at the exchange of the supporting leg (impact of the free leg). During the impact the
only external force comes from gravity. but the impact time is very short. that is AT
approaches zero, and therefore the angular momentum of the system with respect to

the impacting toe is conserved,

(AHO)system = 0. (26)

This result was used also by McGeer [11, 13, 12] in his analysis of the rimless wheel
and gravity powered wheel, and by Dunn and Howe [4, 5] in their analysis of binedal

walking.

\(D

(0)

FIGURE 2.5. Angular momentum of a body w.r.t a point

The angular momentum of of a body about any point O (Figure 2.3) is given by

14
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Ho =Iw+rxmv,

where Ho is the vector of angular momentum about point O. I is the body inertia
matrix about the centre of mass, w is the vector of body absolute angular velocity,
r is the position vector from the leg toe to the body center of mass. m is the body
mass. and v is the center of mass velocity vector.

Since SCOUT is assumed to have planar motion we are only interested in the
angular momentum about the axis perpendicular to the plane. We can also express
the moment of inertia about this axis as the product between the mass and square of
the radius of gyration; hence, from the above vectorial expression we can extract the

z component to obtain

[AV]
=1
~—

Hr = mr?0 + m(rr.c X ve)s . (2.

where Hr, is the z component of the angular momentum with respect to back leg 7T,
or front leg toe Ty (see Figure 2.1), rr,¢ is the position vector from the impacting toe
(Tp or Ty) to the center of mass (C) . and v¢ is the center of mass velocity vector.
The conservation of angular momentum during impact will allow us to determine
the after-impact state for the system. As in the case of the derivation of the EOMI,
where we distinguished between the back leg and front leg support cases. two sets of
equations must be derived in terms of the supporting leg. In both cases we start with

conservation of angular momentum (eq. (2.6)),
H =H~

where H~ and H* are the angular momentum just before and immediately after
impact.
The following two sections will present the model describing the front leg and back

leg impact. Subsection 2.3.1 presents the impact model based on the states used in
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double pendulum model (body angle 8 and supporting leg hip angle ¢, or éf). Sub-
section 2.3.2 considers the states used in the variable length pendulum model (body
angle 8 and length of supporting virtual leg /, or /). The impact models presented
in Subsection 2.3.2 are equivalent, through simple coordinate transformations. to the
models presented in Subsection 2.3.1. The detailed derivations of the momentum

transfer equations are presented in Appendix B.

2.3.1. Impact Model Based on the Double Pendulum Model. From
eqs. (2.7) and (2.6), and conservation of angular momentum when the back leg

impacts gives

[l[~lcos(¢y + &F) + Lcos6f] + % — L? + (L cos &7 ] 65~

- B
+i[—lcos(@p + 67) + Lcosof oy

= [l[l = Lcos¢f] +r* + L* — L cos ] 05" ~ [l — Lcos of o)™ . (2.8)

The known variables are the ones that define the configuration at back leg impact
(hip angles of, (:')f) and the before-impact angular velocities 85—, éf". The change
of support is very short; therefore, we assume that the configuration of the system
remains the same and that only the velocities undergo step changes in their values.
The unknown values are the after-impact angular velocities of the body and the
impacting leg’s hip (§2+ and 6F7).

A second equation can be determined from the conservation of angular momen-
tum about the impacting leg hip. For simplicity of the control scheme. we make
the additional assumption that it is possible to control the angular velocity of the
impacting hip (d)f*‘) during the support exchange. With this assumption. eq. (2.8)
can be used to determine the after-impact angular velocity of the body 68+ .

In order to check the validity of the above momentum transfer equation. we
used another simulation package, WORKING MODEL. This package does not use
an algebraic calculation for the after impact velocities as in eq. (2.8). but rather

integrates all moments over a finite period of time, as in eq. (2.3). Starting from

16
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68+ [rad/s] (eq. (2.8)) -0.57 {-0.74 ] -0.83 | -0.63
82+ [rad/s] (WORKING MODEL) |[-0.56 | -0.73 | -0.82 | -0.61
Error [%)] 0.85| 1.32| 1.50] 2.58

TABLE 2.3. Validation of momentum transfer equation

a given before-impact states (93‘,éf_,éf,é?), Table 2.3 contains in its first row
the theoretical obtained value (eq. (2.8)) and on the second row the value resulting
from the WORKING MODEL simulation. The impact model used in WORKING
MODEL can explain the errors indicated in the last row. In developing eq. (2.8).
it was assumed that the impact between the leg and ground is perfectly plastic and
just after the impact the connection between the leg and ground can be modeled
as a free pin join. In WORKING MODEL a more realistic model is used. namely
the connection between the leg and ground. produced after the impact. is a result of
the friction properties of both leg and ground materials. Given these differences. the
small errors obtained confirm the validity of the momentum transfer eq. (2.8).

Eq. (2.9) expresses the conservation of angular momentum when the front leg

impacts.
[l[~lcos(of +of) + Lcosof] +r® — L* + [Lcos 6] 8~
—l[—lcos(df + &f) + L cos of1oy ~
= [{[{ = Lcos @'f] +ri+ L% - chos,o’ﬂ 07+ + 1[I — Lcos@f]éf*’. (2.9)

Detailed derivations of egs. (2.8) and (2.9) are given in Appendix B.

2.3.2. Impact Model based on the Virtual Leg Model. The polynomial
controller (Section 3.2) will use the variable length pendulum syvstem model. In this
model the variables defining the degrees of freedom are the body angle € and the
length of the supporting virtual leg [,. This section will present the mathematical

model describing the impact of the virtual back leg and virtual front leg.

17
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Referring to eq. (2.7), the conservation of angular momentum when the virtual

back leg impacts with the ground is given by

72+ 817 cos 87167 + (1 sin 37 — CPIP1Y cos 37,

B+

= [r® + (17)%)6%* — CE(18)*), (2.10)

where Cf. C7 are constants depending only on SCOUT'’s dimensions (body length
and leg length) and on the configuration at back leg impact (/2. I£). Their explicit
form is given in Appendix B.
The same principle of conservation of angular momentum is used in deriving the
mathematical model (eq. (2.10)) governing the impact of the front virtual leg,
[r? + I1F cos 87167~ — [IF sin 87 + CFIFLE cos 87l

= [r2 + (5)06F+ — CFUFy, (2.11)

The constants Cf . C,F are, again, depending on SCOUT’s dimensions and configu-

ration at impact.

18
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CHAPTER 3

WALKING CONTROL ALGORITHMS

3.1. Problem Formulation

As introduced in Section 2.1. SCOUT can be modeled as two 2-DOF systems,
one for back leg stance and one for front leg stance. The single actuator per model
is placed at the hip joint (either H, or H; in Figure 2.1). For purposes of controller
design we assume that we can control directly and instantaneously the hip angles
and angular velocities; thus, our inputs are ¢,(t) and ¢,(t). However. the simulations
(and. of course, the experiments) used a PD controller to determine the hip torque
necessary to track the hip angle desired trajectory. The states of interest to be

controlled are the body angle and angular velocity

é

=1 .
6

One complete step consists of two leg support phases, one for each leg, and two

impacts, as illustrated by the block diagram in Figure 3.1. For purposes of analysis it

19
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is convenient to examine the variable of interest, ©. at only one instant in this step.
and we chose the instant immediately following the back leg impact.
98
A
0,=0°8%=| . (3.1)
984»
Now we can define a discrete step-to-step return map, S. which maps the body states

just after impact from step n to step n + 1. as a function of the inputs @,(¢). of(t).

On+1 = S(On. 0(t). 04(t)). (3.2)

Back Leg Support oF- Front Leg Impact
(eq. (2.1)) (eq. (2.9))
eB+ @F-:~
Back Leg Impact Front Leg Support
(eq. (2.8)) (eq. (2.3))
1 @B_ ¥
FalEa
- B+ . é—
@b Qf

FI1GURE 3.1. Control inputs during a complete step

For the polynomial controller (Section 3.2} and saturated ramp controller (Section
3.4) the controlled inputs already determine 62, so eq. (3.2) becomes a scalar return
map for 8+, The control objective can be stated as finding continuous hip angle

trajectories, oy(t). @¢(t), which make the desired body states, ©*, an asymptotically

20
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stable fixed point of the return map &. In the remainder of this section. we will

present three such hip angle trajectories.

3.2. Polynomial Controller

The initial approach was to simplify the problem by analyzing the syvstem formed
by the virtual legs (I, {; in Figure 2.1). As a result, the system that needs to be
analyzed is a biped with variable leg length. Our control algorithm is based on the
idea of imposing a certain after-impact angular velocity for the body 8~ and 6F*.
Using the momentum transfer eqs. (2.11) and (2.10). from the desired after-impact
angular velocity for the body 7+ (or #8+), and assuming that the impacting virtual
leg has a constant length lf+ = 0 (or lf* = 0), we can fully determine the RHS
of the momentum transfer eq. (2.11) (or eq. (2.10)). On the LHS of the eq. we
have two unknowns, the angular velocity of the body at touch down. 8~ (or 68~ ),
and the time rate of change of the length of the supporting virtual leg, l.,f‘ (or [f'
) (we refer to [ as being the linear velocity of the leg). Because we are analvzing an
underactuated system, of the two variables [§F~,iF ] (or [§5~. [}3"]). we are able to
control only the velocity of the virtual leg directly via the hip actuator. Therefore.
the momentum transfer can be controlled through the velocity of the supporting leg
at impact time, via

IF~ = 67 + .67 (3.3)

j?_ = CgéB_ + CA(O-B-‘L, (34)

where the ¢; are functions of the virtual leg lengths, and are given in detail in Ap-
pendix B. If, at front leg impact, [f' has the value given in eq. (3.3). then using eq.
(2.11). one can observe that 87+ will result in its desired set point value. The same
observation is valid for the back leg impact, with l.};“ given by eq. (3.4). Unfortu-
nately, the body angular velocity just before the impact 87~ (or 5~) is not known a

priori since it is coupled dynamically to the applied control input.
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In order to solve this problem. we use an estimate of this value. That is. after
cach time step. we assume that from that moment on, until front or back leg impact,
the virtual leg will have a constant length - therefore the system will behave like an
inverted pendulum. Using the dynamics of an inverted pendulum. we predict the
touchdown angular velocity, 68~ (or 6F ~), at each controller time step. On the other
hand. we assume that we specify the kinematic configuration at impacts, via [2. lf .
a priori, and assume those to be known.

With this, the supporting virtual leg length should satisfy four conditions: the
initial length. final length, initial and final linear velocities. It was mentioned that
the impacting leg will have constant length just after the impact, that is. [f+ =0 and
Z'f‘:‘ = 0. For simplicity, the actuation will start when the body reaches the apex. A
third order polynomial in the absolute body angle that describes the variation of the

virtual leg length suffices to meet all four conditions,

lb,f(g) = 0393 + (1202 + a6 + aq. (35)

The coefficients of the polynomial are determined from the initial and final con-

ditions.
l(Binit) = a3biniy + a2binyy + @18inie + a0 = s,
L(BF) = a3(07)3 +a:(0F)* +a,0F +a0 =1f
I5(0imic) = (30362, + 2a28imis + @1)inic =l (3.6)
L,(0F) = (3a3(8F)? + 2a,0" +a)0F~ =10,

The equations form a linear system in the unknown coefficients of the polynomial.
For simplicity we presented only the conditions imposed on the back virtual leg, but
similar expressions can be written for the front virtual leg. Given that the final
angular velocity of the body, 85~ (88~), is predicted continuously, this system will
have to be solved, for the polynomial coefficients, after each prediction. The initial

conditions (0;ni¢, Ginit- ls,,,, - L., ) are set as their current values. The final conditions

(8]
n



3.3.2 POLYNOMIAL CONTROLLER

6c (68). If (l?) are determined by the configuration at impacts and l.bF_ (l.an) is

re-computed from eq. (3.4) (or (3.3)) according to the new 8~ (§5~) prediction.

In order to implement this algorithm. we need to specify information bevond
the body states just after back leg impact, ©2+, which is used for purposes of anal-
vsis in the return map. In particular, we need to specify the configurations at ex-
change of support ({67 . ¢7]. [6f . 65]) and desired after-impact body angular velocities
(§F+.68+). The possible combinations of these parameters are limited by the solu-
tions for the system of linear egs. (3.6). Furthermore, the 8+, ¥+ values are limited

by the turn over. We selected the following set points.

éf = 1.71 rad
@’f = 1.53 rad
: 9F+ = —1.00 rad/s
@'f = 1.43 rad
of = 133 rad
{ 68+ = 1.00 rad/s.

The particular choice for the configuration at impacts was motivated by hardware
limitations on SCOUT (maximum available torque from the hip actuators). The
#B+ . @7+ set point values resulted from a set of NMOBILE simulations. These values
are large enough to prevent premature touchdown of the flight leg, and small enough
Lo prevent turn over.

The results of a MOBILE simulation are shown in Figure 3.2. The top and
middle graphs present the body angle § and body angular velocity 6 variation during
the simulated walking motion. The bottom graph presents the variation, according to
eq. (3.3), of the supporting hip angle ¢4 s. The dashed lines show exchange of support
(the motion starts when the back leg is in stance). The simulation started from an
arbitrary initial configuration; as shown in the the top graph. this configuration was
away from the desired steady state motion. However, Figure 3.2 shows that just one

step is sufficient to recover from this initial error.
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FIGURE 3.2. Polynomial controller with continuous update of §8~. §F~

\We are interested in control strategies which are robust and can be implemented
with minimal sensing. So far the control scheme requires that the stance virtual leg
remains at a constant length until the body reaches its apex (maximum body angle).
At that instant, a polynomial for the supporting virtual leg length is planned accord-
ing to eq. (3.3). The polynomial coefficients calculations require the prediction of
the before-impact angular velocity. A further simplification is introduced. namely the
prediction of the touch down body angular velocity, which is done only once at apex.
\When the single prediction of 68~ ( 67 ) is adopted. a fixed, second order polynomial
for the length of the supporting virtual leg is sufficient. This is a major simplification,

but. as shown in Figure 3.3, results in a periodic motion with performances close to

the desired set points of 68+ = 1.0 rad/s, 6F+ = —1.0 rad/s.
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FIGURE 3.3. Polynomial controller with no update

The differences between using a third order polynomial (hence continuous update
of #8= or #~) and a fixed, second order polvnomial are evident in the resulting after-
impact body angular velocities. Figure 3.4 shows the resulting 68+ from a large initial
error using the third degree polynomial (‘+°) and the fixed, second order polynornial
(‘07); the dashed line indicates the desired set point value. The one time estimation
of the before-impact body angular velocity results in an error of less than 5%. This
represents an acceptable error in practice. Furthermore, the reduced complexity of
the controller recommends it for practical implementations. Figure 3.4 indicates that
the steady state value obtained for the after-impact angular velocity 88+ is offseted

from its desired value. To eliminate this offset. an integral term can be added in the
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FIGURE 3.4. 65 (‘+°) with update on polynomial coefficients and (o)
without update

control scheme, or a look-up table for compensation terms can be developed. This
subject has not been pursued at this time.

A successful controller must still be able to compensate disturbances. If there
is a sufficient range of permissible lf' (if‘) around the nominal value, egs. (3.3)
and (3.4) can be utilized to eliminate errors online and to achieve the desired body
angular velocities F+ (§8+). Figure 3.5 shows the large range of disturbances in §5+
from which recovery is still possible, even when a fixed, second order polvnomial is
used. This range is limited by either turn over or toe stubbing. A simplified version
of this control algorithm has been implemented on SCOUT I and resulted in stable

walking [2].
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FIGURE 3.5. Recovery from severe disturbances using a fixed. second order polynomial

3.3. Ramp Controller

With the experience gained from the implementation of the controller presented
in Section 3.2 on SCOUT I, we moved towards control algorithms that require simpler
actuation functions which are easier to implement. In particular, we will show that
a constant angular velocity for the back hip during back leg support and a fixed hip
angle for the front leg will result in stable walking. During the back leg support phase
we will prescribe a ramp function for ¢,(¢) (Figure 3.6). The after-impact back leg
hip angle ¢2 and the slope of the ramp op. will be design parameters. The parameters
defining the ramp input, [¢f, éb], will also determine the value of the back leg hip
angle at front leg impact.

A set of MATLAB simulations was used to determine the influence of different

parameters on the overall motion. These simulations integrated the inverted double
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FIGURE 3.6. Ramp input for the back hip angle

pendulum mathematical model of the system for one step (Figure 3.1). For a certain
constant angular velocity of the back hip actuator, we investigated the influence of the
front leg orientation c')f on the initial body angular velocity for the front leg support
phase 8F+. Figure 3.7(a) shows that, as the front leg angle increases. the resulting
magnitude of 7+ decreases: for large cﬁf values we expect 5+ > 0. which means that
the impact of the front leg will not result in a lift off of the back leg. Ideally we would
like to have the magnitude of 8F* as large as possible. Consequently. the front leg
should be positioned at a small angle. In the back leg support phase, the supporting
leg sweeps from a small angle to a large one. giving a forward displacement for the
center of mass. In the front leg support phase, a sweep of the supporting leg from a
small value to a large value will induce an unwanted backwards displacement for the
center of mass. For this reason, we decided to keep the front legs fixed at all times.

Next. we investigated the optimal orientation of the front legs that will result in a
periodic motion (8%}, = 6B8+). Starting with 62+ = 1 rad/s the results presented
in Figure 3.7(b) show that the periodic motion condition is satisfied for a front leg
orientation of ¢y = 1.31 rad. We also investigated the effect of the back hip actuator
angular velocity on the next step initial body angular velocity. Figure 3.7(c) shows
the possible 827, for a span of possible &, and 85+ = 1 rad/s. Again, considering the

periodic motion condition, we chose ¢, = 0.85 rad/s.
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FIGURE 3.7. Effect of ¢f (a) on 8F* and on (b) éf:l : (c) effect of ¢ on éf:l
With all of these factors analvzed. a numerical simulation with
of = 1.05rad
&% = 0.85rad/s (3.7)
oy = 131 rad

was performed. and the results are presented in Figure 3.8.

This simulation of the open loop ramp controller suggests that the chosen sct
point does not only correspond to a fixed point of the step-to-step map. as intended.
but also was at least locally stable. To further investigate the possible stability of

this open loop controller around the set point, we added a severe perturbation after
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FIGURE 3.8. Stable motion produced by the open loop ramp controller

the first step, and, to our great surprise, the svstem converged rapidly back to the
desired set point, 8+ = 1 rad/s. The response (resulting after-impact #3+%) of the
svstem to this disturbance is shown in Figure 3.9.

For a more complete insight into the range of initial body angular velocities which
will converge to the desired set point (the domain of attraction of the controller),
we plot the numerical evaluation of the step-to-step return map for the open loop
ramp controller in Figure 3.10. This plot confirms the unusual and exciting fact that
the open loop controller has a domain of attraction which is global for all practical
purposes, from almost zero initial body angular velocity, to a maximum body angular

velocity of 8% = 2.3 rad/s, above which the robot would fall over backwards.
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FIGURE 3.9. System response with open loop ramp controller after severe disturbance

As predicted by the return map (Figure 3.10), the open loop controller exhibits
fast convergence to the fixed point, despite severe perturbations. In order to increase
the convergence further. a feedback control will now be designed. There are several

parameters that influence the behavior of the system:

e configuration when back leg impacts (o7, 67).
e configuration when front leg impacts (¢}, ¢%),

e the constant angular velocity of the back hip (&) during back leg stance.

Given that the front leg remains fixed at all times (_@‘f = @}3), and that the input
angular velocity for the back hip will determine its final position @[ . there are three
elements (¢f. 67, &) that fully determine the resulting motion. At this time. we
chose to maintain a fixed configuration at the back leg impact (o’f, ,o’f), so that

the only parameter that can still influence the behavior of the system is the back
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FIGURE 3.10. Numerical evaluation of the step-to-step return map for the
open loop ramp controller

leg angular velocity. The feedback control will adjust the back leg angular velocity
as a function of the initial body angular velocity 68+. For a range of after-impact
body angular velocities 5+, and a range of back leg hip angular velocities @y. a look-
up table has been generated. The input in this table is the actual (measured) 5+
and the output is the required &y which, during the back leg support of the (n + 1)
step, will result in the desired set point 827 = irad/s. The look-up table has 180
entries (from 63+ = 0 rad/s to 68+ = 1.79 rad/s, in steps of 0.01 rad/s). For entries
different from the tabulated values, a linear interpolation function is used to generate

the outputs. This look-up table is used to simulate walking for several steps. with
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FIGURE 3.11. Closed loop motion shows one step recovery from disturbances

50% error in the 88+ (step 3) and 30% error for ¥+ (step 7). As it can be seen in
Figure 3.11 the recovery in both cases is accomplished in just one step.

Figure 3.12 shows that the feedback mechanism has an important effect on the
stability. That is, the recovery from [-100% ; 80%)]| error between initial angular
velocity of the body 68+ and the desired set point value is accomplished in just one
step. This is indicated by the zero slope of the step-to-step return map in that range.

In Figure 3.8, the bottom graph shows the required back leg hip torque. These val-
ues will never be a realistic requirement when this controller is implemented on the ex-
perimental set-up. In order to perform simulations that reflect hardware limitations.
we repeated the simulation shown in Figure 3.8 with the constraint |7,| < 40Nm.
The resulting stable behavior is presented in Figure 3.13. and it can be seen that,
due to this torque limitation. there is a tracking error in @, (dashed line indicates the

required trajectory and the solid line shows the actual value).
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FIGURE 3.12. Step-to-step return map for closed loop (LUT) ramp controller

The analysis of the domain of attraction was necessary in order to investigate the

stability of the system as a result of torque limitations. Figure 3.14 (solid line) shows

that SCOUT, with no feedback information, and torque limitations, will be able to

recover. in several steps. from a maximum error of 250% in the desired set point

value. Figure 3.14 also includes (the dashed line) the domain of attraction presented

in Figure 3.10. The comparison between the two curves indicates that hardware

limitations imposed on the hip torques should not affect the svstem’s stability.
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FIGURE 3.13. Stable motion produced by the open loop ramp controller,
with added torque limitations

3.4. Saturated Ramp Controller

The results for the ramp controller presented in Section 3.3 show that the walk-
ing sequence will be characterized by small hip angle sweep. resulting in small steps
(approx. 0.07 m). Furthermore, the required angular velocities for the back hip were
almost five times lower than the limit imposed by the motors. In the ramp controller.
the potential disturbances that occurred during the motion can be compensated by
adjusting one parameter, &,. However, this can be a limiting factor for the feedback
mechanism. Consequently, increasing the number of parameters that completely de-
fine the controlled input will result in potentially better performances of the feedback

mechanism.
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With these observations, we decided to try an approach in which the back leg had
an imposed travel from ¢2. ¢f (Figure 3.15). Using the considerations presented in
Section 3.3, we decided to keep the front leg fixed throughout the motion (the actual
value of this angle will be determined from simulations). In the back leg support
phase. the back leg hip angle will be kept at a constant value for ‘T” seconds. In a
given ‘dT" time the back leg hip angle will sweep between the desired limits 62 and
of . and remain at the final value for the rest of the back leg support. This controller
is fully described by five parameters (as opposed to three in the ramp controller).
namely.

limits for the back leg sweep (¢f, of)

e front leg orientation (¢} )

time at which the actuation on the back leg begins (T')

e & (or equivalently dT shown in Figure 3.15).

In order to simplify the analysis we will keep a fixed configuration at the moments
of support exchange, as we did in the ramp controller algorithm. That leaves us
with two parameters that will fully determine the input, namely [T. éb]. We chose
again ¢f = 1.05 rad, ¢; = 1.31 rad, and. to avoid slipping during the experiments.
of =1.83 rad.

With the input defined by two parameters ([T, @)]). a simulation was used in
determining the combination of the two parameters that will yield a periodic motion
(657, = 6B+). The simulation involved a numerical search in a two dimensional space.
The range for the first search direction, T, was set to [0;0.1s], and. for the second
scarch direction, o, [2 rad/s; 8 rad/s| (the upper limit for the o range is dictated
by the hardware limitations). For each point in the search space. the mathematical
model was integrated, and the results are shown in Figure 3.16. The data points
(denoted by ‘0’) on each curve are obtained for different back hip angular velocities
oy; moreover, each curve corresponds to a certain value of T (see Figure 3.15). Ap-
parently, the effect of the T and @, parameters on éfjl is minimal. Also. with the

current settings, according to Figure 3.16, starting with 68+ =1 rad/s. the next step
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FIGURE 3.16. Range of possible 827, for 63+ = 1.0 rad/s

n+1

will be characterized by 88+ =~ 0.93 rad/s for a large range of &,. This violates the
periodic motion condition (85% = éf:l). However we simulated the motion of our

syvstemn having the desired set points,

r

of = 1.05 rad
of = 1.83 rad

J o = 3.30 rad/s (3.8)
T = 000 s

| ¢y = 131 rad.

As depicted in Figure 3.17. the open loop motion is stable around a set-point

9,{” = 0.93 rad/s. The step to step return map, presented in Figure 3.18, confirms
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FIGURE 3.17. Periodic motion resulted from the open loop saturated ramp controller

that the convergence set-point is at the mentioned value. The domain obtained for
this type of controller is different from the one presented in Figure 3.10. and suggests
that, even with an open loop control algorithm, any disturbance (unless it causes turn
over) in #B+ is compensated in one step.

To illustrate this, we simulated the walking for ten steps. and added a 50% error
in 67+ (step 3) and in 68* (step 7). As expected, the recovery was complete in just
one step. As a conclusion, even if our control algorithm does not use any feedback
information, we demonstrated that the recovery from disturbances can be done in
just one step. Therefore, the design of a closed loop control algorithm based on a

saturated ramp function for @, it is not necessary.
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FIGURE 3.18. Step-to-step return map

In Figure 3.17 is shown the back hip actuator torque requirements. Limiting this
torque at |75] < 40Nm will result in tracking errors for ¢, leading to a premature
front leg impact (back leg did not complete its sweep). As a consequence, a fixed
point of the step to step return map was not found. This suggested to us that the

implementation of this controller will not be successful.

3.5. Summary and Conclusions

Three different control algorithins have been proposed. The polvnomial controller
is a scheme in which the length of the supporting virtual leg is controlled via a
third order polvnomial in body angle. The polvnomial coefficients are determined

from the initial and final conditions. The final linear velocity for the virtual leg is
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FIGURE 3.19. Open loop motion shows one step recovery from disturbances
in 8+

imposed so that a certain value for the after-impact angular velocity is obtained.
The polvnomial coefficient calculations also involved the value of the body angular
velocity at touch down time. Given that this value is influenced by the applied
controller. assumptions had to be considered in determining this touch down body
angular velocity. If accurate predictions were considered for 6F-. 68—, the resulting
after-impact body angular velocity had exactly the desired set point value; if coarser
predictions about 7=, B~ were made. a constant error between the desired set
point. and obtained value was observed. However. in both cases (accurate or coarser
67, B~ prediction), numerical simulations indicated that both stable and periodical
walking will be obtained.

During experimental implementation of the polyvnomial controller on SCOUT

I hardware limitations (available torque and speed) indicated the need for simpler
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control schemes. Moreover. the actuation should be distributed during the stance
phase. A very simple control algorithm was used in the ramp controller. We proposed
a ramp input for the supporting hip angle. Simulation results indicated that only the
sweep at a constant angular velocity of the back leg had a positive effect on both
forward displacement and transfer of momentum. Therefore. in this control scheme
the front legs are fixed all the times. The parameters (identified as the walking
parameters) that need to be specified for the ramp controller are the hip angles at
back leg and front leg impact moments and the back leg constant angular velocity
while on back leg support. The walking parameters have been determined through
a series of simulations using the desired set point (#8+ = 1 rad/s) and the periodic
motion condition (0,1,3;"1 = 65+). It has been shown that, even with the determined
walking parameters an open loop motion is stable and converges towards the desired
set point. Next, a look up table was used as a feedback mechanism. to determine
the appropriate back leg angular velocity (ég) as a function of the measured after-
impact body angular velocity (é‘“’). The feedback is introduced with the purpose
of reducing the number of steps required to recover from possible disturbances and
increasing the range of disturbances from which the system can recover in onc or
several steps. The entry in this look up table is 9',?”" and the output is the necessary
back leg hip angular velocity that will yield éf:'l at the set point value, or very close
to it. In order to make our simulations more realistic, torque limitations have been
introduced in the mathematical model. However, these limitations did not influence
cither the performance of the system or its stability noticeably.

The performance given by the ramp controller indicated that SCOUT will take
short steps. That is why we changed the controlled input to a modified saturated
ramp function. Using this control scheme, one will have control over the step size
through the limits defining the saturated ramp. In this new control scheme. the
back leg will end its sweep motion before the front leg impact occurs. Hence. the
after-impact angular velocity 68+ will be a result of only the before-impact angular

velocity #8-. As in the ramp controller, simulations showed that the contribution of
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the front leg to the overall motion is most effective if it is kept at a fixed position.
The same set point (§8% = 1 rad/s) was considered and walking parameters have
been determined via numerical simulations. The stability analyvsis indicated that this
tvpe of control algorithm has a fast convergence (one step) towards the desired set
point. even when an open loop control algorithm is used. However. the required
torques attain much larger peak values than those observed in the ramp controller
simulations. This indicated potential problems in implementing this type of controller

on the experimental set-up.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1. Experimental Set-up

SCOUT II is a quadruped robot with a mass of 27 kg and measures 0.275 m in
height. 0.532 m in length and 0.48 m in width. The legs are basically rigid sticks and
connect to the body through rotational joints. Each joint is driven independently by
the combination of DC motors, reduction gear set and timing belt. Given that during
walking important impacts will occur, each leg’s toe is protected by a rubber ball.

Two laser sensors are added at the front and back of body for body angle measure-
ments. On each motor shaft optical encoders are mounted and are used to measure
the hip angles. Furthermore, current measurements from each motor amplifier indi-
cate the actual applied torques. Inside the legs. linear potentiometers are mounted,
and used in detecting the contact with the ground. Hall effect sensors are used to

calibrate the offsets for the incremental hip angle sensors.
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FIGURE 4.1. Schematics of experimental set-up

SCOUT II is controlled by a PC. running under the QNX environment [9]. The
control algorithms are implemented in the experimental code, where a PD controller.
with optional feedforward terms, will track the desired reference trajectory for the hip
angles. The interconnection between the control unit (PC) and SCOUT II is sketched
in Figure 4.1. The Standard Parallel Port / Serial Peripheral Interface (SPP/SPI) is

the interface between the PC and peripheral serial I/O modules.

4.2. Ramp Controller

The ramp controller described in Section 3.3 has been implemented on SCOUT II.
The configuration at the moments of exchange of support and required back actuator

angular velocity were set according to eq. (3.7).
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In performing the simulations, the mathematical model developed in Chapter 2
was used (see Figure 3.1). It was mentioned in the previous chapters that a dynamic
walking sequence would be designed and implemented. hence SCOUT would be either
on its back or front leg. However, during the experimental work, it was clear that
there existed a non-negligible double stance phase. No control algorithm has been

developed for the double stance, so two alternatives were available,

e after back leg impact. even if SCOUT is still in double stance. start the de-
signed control algorithm (a ramp or a saturated ramp): or.
e keep the hip angles at their prescribed position ([6f: ¢%] or [of : 6F]) until the

single support phase is detected.

In implementing the ramp controller, we used the first alternative. which led to
stable walking, as presented in Figure 4.2. In the top two graphs, different symbols
were used to delimit the beginning of different states: ‘o’ start of back leg support,
“** of double stance phase and ‘+’ for front leg support. These delimiters show that
during the experiments the double stance accounts for approx. 20% of the step time.
The effect of this double stance is one of the factors that can explain the differences
between the simulations (Figure 3.13) and the experimental results (Figure 4.2).

In designing a control algorithm the controlled momentum transfer idea was con-
sidered with the goal of obtaining a periodic motion. From the experiments it has
been observed that the periodic motion condition has been satisfied. Hence, it is still

needed to validate the mathematical model derived for the impact of either back or

front leg.

We performed two different sets of experiments. In one of themm SCOUT II walked
on our linoleum tile covered laboratory floor. and in the other one on carpet. The
purpose of these two experiments was to analyze the effect of toe slipping on the
ground on the momentum transfer, given that the mathematical model considers the

toe to be pin connected to the ground after the impact. For these two different
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1

47
time [s]

FIGURE 4.2. Experimental results for ramp controller : **° indicates the
beginning of the double stance phase; "0’ indicates the beginning of the back
leg support and ‘+° the beginning of the front leg support; the dashed line
indicates the desired value and the solid line the actual value

experiments. the states at the end of the single stance and beginning of the next
single stance were recorded. Using these states the theocetical value for the angular
velocity 8+ (8B+) was compared to the experimental value.

Figure 4.3 shows the predicted (represented by a ‘0’) and experimentally obtained
(**°} value for 63+, The left graphs (a) correspond to the experiments on the linoleum
floor. and the right graphs (b) are obtained from the experiments done on the carpet.
As it can be observed, the effect of increased friction between the toe and the ground
decreased the error between the theoretically predicted value and the actual value.

Furthermore, the 83+ values obtained from the experiments on the carpet, were closer
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FIGURE 4.3. Back leg impact momentum transfer (a) on linoleum tiles and
(b) on carpet [‘0’ theoretical value: ‘** experimental valuc]

to the desired set point value 83+ = 1 rad/s. In this control algorithm. the back leg
is still sweeping when the front leg impact occurs. Hence, at front leg impact, the
effect of toe slipping on the ground is more evident due to the large forward body
linear velocity. In the experiments conducted on linoleum floor the resulting 8+ is
larger than its theoretically predicted value. This indicates that the dynamics of the
double stance and the actuation strategy during the double stance have an important
effect on the momentum transfer, an effect which our mathematical model did not

take into account.
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FIGURE 4.4. Front leg impact momentum transfer equation (a) on linoleum
tiles and (b) on carpet [0’ theoretical value; ** experimental value]

The same experiment revealed even more drastic differences for the front leg im-
pact. The left graphs (a) presented in Figure 4.4 (corresponding to the experiments
performed on the linoleum tile floor) show the important difference between the the-
oretical predicted value (denoted by ‘0’) and the experimental one (‘*'). The right
graphs (b) (obtained from the experiments performed on the carpet) emphasise the
importance of preventing toe slippage, where we get fairly good correspondence be-
tween the experimental and theoretical values. On linoleum tiles (Figure 4.4(a)), toe
slippage occurs and causes the loss of most of the body angular momentum. Figures

4.3 and 4.4 show that the impact of the front legs is more sensitive to the slippage
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effect. During the motion, only in the back leg support phase there is an actual for-
ward displacement of the body. This forward motion increases the slippage effect at

the impact of the front legs.

4.3. Saturated Ramp Controller

Another set of experiments have been dedicated to the implementation of the
saturated ramp controller described in Section 3.4. With the parameters set according

to eq. (3.8) and no actuation during double stance, the resulting stable motion is

shown in Figure 4.5.

time [s]

FIGURE 4.5. Experimental results for ramp controller ; ‘*’ indicates the
beginning of the double stance phase: ‘o’ indicates the beginning of the back
leg support and ‘+° the beginning of the front leg support: the dashed line
indicates the desired value and the solid line the actual value
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As predicted from the numerical simulations, tracking problems have an impor-
tant effect on the experimental implementation. The third graph presented in Figure
4.5 shows the difference between the required back leg hip angle (dashed line) and
the actual one (solid line). Again we have delimited different stages (‘0" beginning of
back leg support, ** beginning of double stance, ‘+ beginning of front leg support) to
emphasise the importance of the double stance time. Furthermore. in the third graph
one can observe that the back leg is still in motion when front leg impact occurs. This
poor tracking is a direct result of the hardware limitations on the maximum torque
that can be delivered by the hip motors. Furthermore. the bottom graph presented in
Figure 4.5 shows that even when a peak torque is required (dashed line) the delivered
value (solid line) is not always the required value (again due to hardware limitations).
This experiment showed that, despite the poor tracking, a periodical motion has been

obtained.

In Figure 4.6 we analyse the momentum transfer for front leg impact (a) and
back leg impact (b). As mentioned before, the back leg is still moving when front leg
impact occurs; hence the front toe slippage is increased by the body forward velocity
(this experiment has been conducted on the linoleum floor). The slippage combined
with the effect of the double stance are the major elements that can explain the
large differences between the theoretically predicted 6F+ (represented by ‘o’ in Figure
4.6(a)) and the experimentally obtained value (**’ in the same figure). When back
leg impact occurs, the slippage of the back toe is less significant; hence. lower errors
between theoretical and experimental values for g8+ (Figure 4.6(b)). However. the
resulting 8+, in the range of [1.1; 1.4] rad/s, is away from the desired set point value

68+ =1 rad/s.
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FIGURE 4.6. Momentum transfer at (a) back leg impact and (b) front leg
impact[‘o’ theoretical value; ‘*’ experimental value]

4.4. Summary and Conclusions

This section presented the experimental results obtained from the implementation
of the ramp controller and saturated ramp controller. Both experiments resulted in
periodic motion.

When implementing the ramp controller, two different sets of experiments have
been conducted; one on standard laboratory linoleum tiles, one on carpet. These
experiments showed the disastrous effect of toe slippage on the momentum transfer
when walking on linoleum tiles. Carpet floor reduced toe slipping without completely

eliminating it. The experiments used to validate the saturated ramp controller were
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conducted only on linoleum floor. These experiments were clearly influenced by poor
tracking in the desired input trajectory and important toe slipping.

Tracking problems and significant double stance time were present in both con-
troller implemeuntations; however, in the ramp controller the tracking error resulted
in an error only in the final value for the hip angle. not its angular velocity. That
is why the set point 68+ = 1 rad/s used in developing the theoretical simulations
was observed, within an acceptable range, in the experiments as well (see Figure
4.3(b)). The same set point g8+ =1 rad/s was used in designing the saturated ramp
controller, and Figure 4.6 shows its experimentally obtained value. Still, this experi-
mental value is the result of the combined effect of an error in the final hip angle and
the presence of the hip angular velocity.

As a conclusion, it has been observed that implementing a very simple control
algorithm, the ramp or saturated ramp controller, one can obtain a periodic motion.
Experimental results showed that the ramp controller is easier to implement. because

it requires less actuator torque.
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CHAPTER 5

CONCLUSIONS

5.1. Summary

This thesis presented walking control algorithms for a new class of dynamically
stable legged robots. Different control schemes were developed and tried on nu-
merical simulations. These simulations required the mathematical model associated
with SCOUT. The modeling considerations demonstrated that SCOUT is a two DOF
svstem. with only one actuator (hip motor). Three different control strategies (poly-
nomial, ramp and saturated ramp controllers) were presented and the experimental

results for the implementation of the last two were shown.

5.2. Conclusions

An analysis of the theoretical results presented in Chapter 3 and the experimental
results (Chapter 4) shows several differences. This disagreement can be explained by

the modeling assumptions presented in Chapter 2. There are several factors that are
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present in the physical system and were not accounted for in the theoretical model of
the system.

One of the effects that we were able to prove to have a significant effect on the
results was the toe - floor interaction. The current approach used in the design of
walking control algorithms relies critically on the momentum transfer. The momen-
tum transfer is based on the assumption that a pin connection between toe and ground
is formed as a result of their impact. Video recordings showed an important slippage
between toe and floor. This slippage was minimized by the presence of a rough mate-
rial. like a carpet, on the floor. The influence of slippage was not as evident on smaller
robots, like SCOUT I, but become an important effect on larger robots (SCOUT II).
Moreover, the legs were modeled as stiff elements. Nevertheless. the toe material and
leg design introduces compliant effects, for which the model did not account. This
compliance will also have influence over the assumption of perfect plastic impact be-
tween toe and floor. Furthermore. the combined effect of the compliance and slippage
can explain the presence of the double stance. whose effect on the dynamics was not
considered in the modeling part.

Several other elements influence the experimental results, such as overcoming the
friction in the mechanical transmissions. Simulations of the ramp controller consid-
cred the hardware limitations on the maximum torque delivered by the hip motors.
but did not consider the efficiency of motor. gear or belt transmission.

With all of these un-modeled factors. experimental implementation of both ramp
controller and saturated ramp controller was successful. However, the ramp controller
is closer to the theoretical expected behaviour, due to lower actuation requirements.
Although it takes smaller steps, the superiority of the overall performance recom-
mends this control scheme over the saturated ramp controller.

Consequently, the current approach used in the design of walking gaits. if imple-
mented with proper care, can result in periodic, stable walking motions. However.
this approach is vulnerable to slippage problems and un-modeled properties. such as

compliance in legs.
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5.3. Recommendations for Future Work

Simulations for both ramp controller and saturated ramp controller showed that
increasing leg length can improve the overall behavior. for example, lower required
hip torques, faster steps, etc. Nevertheless. a more in-depth analysis is required.

The implementation of the polynomial controller on SCOUT II could result in
successful experiments. Its potential has vet to be tested, and is the only control
scheme in which both front and back leg contribute to the forward displacement of
the body.

For future control algorithms. significant attention has to be paid to the model-
ing part. With our conclusions from the experimental work. some of the assumptions
made in developing the mathematical model have to be revised. The most important
ones are the modeling of toe - floor interaction. In developing future control algo-
rithms, the use of optimization techniques might be successful. These methods will
allow the design of control strategies that consider the energy consumption issue, or
consider the hardware limitations on available actuator torque.

The conclusions showed that the success of the designed controllers is highly de-
pendent on the closeness between the model and physical system. Currently, SCOUT
II is equipped with legs that can be adapted for running experiments, where com-
pliance is an important factor. However, during walking important impacts occur:
therefore a more robust leg design should be considered. Furthermore, the slippage
of the foot on the floor is a direct result of the interaction between the foot material
and floor surface. The use of sticky materials for the leg toes and floor can reduce
the slipping effect.

Some work should be put into the experimental software. Different sets of gains
are used as a function of the current state, for example, support on back or front legs
and double stance. However, in double stance there is a tendency for the legs to work
against each ocher, in order to attain their desired position. Consequently, different
sets of gains need to be set on the back legs and front legs for the double stance

following the back leg support, and the double stance following front leg support.

36



5.5.3 RECOMMENDATIONS FOR FUTURE WORK

. The experimental software can accommodate the walking backwards and forwards.
However, some work has to be done towards proper gain settings at the switch between

walking backwards and forwards.
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APPENDIX A. EQUATIONS OF MOTION

APPENDIX A

EQUATIONS OF MOTION

! ’ yﬁ i N\
A T

Ay s

1 T
/2 7[///////////////7

h

FIGURE A.1. SCOUT model

The notation used in this appendix is the one defined in Tables 2.1 and 2.2 and Figure

A.1. The detailed derivation of the equations of motion for the back leg support case
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A.A.1 BACK LEG SUPPORT

will be presented. Then. using coordinate transformations, it is possible to express

the same set of equations for the front leg support phase.

A.1. Back leg Support

(0 — &) sin(@ — o) — LOsin6

—lcos(8 — op) + Lcos b
: Xp = . . .
—1(0 — &) cos(8 — @) + LOcos b

Xy =
—Isin(f — op) + Lsin8
S G
T = 57Xy Xp + Smr-o
1 92 2 ) 2 09 ; N
= Zm [[r‘ + L* + (? — 2Ll cos )6* + 07 — 2|l — Lcos ob]ﬂo'b]
V = mg[—Isin(6 — &) + Lsin6)]
L = T-V
aC 2 2 b4 n . i
5 =m [r® + L* + 1 — 2LLcos 0,]6 — I[1 — L cos 6]
C . .
9L (26, =il - Lecos o’,,]e]
doy, -
dc’iﬁ_ ['2 2 29 l P ‘)l..", Dt
Tioe m [ + L° +1° — 2Ll cos ¢3]0 — [l — L cos ¢ + 2L sin ¢80, — Llsin obob]
d dc - e e
(—1;—874, = m {l &y — [l — L cos ¢p)8 — LIBo, sin o,,]
oL ,
26 = ™ [l cos(@ — @) — L cos 8]
L ) ..
-a—, = m [Ll sin ¢p8% — Ll sin ¢p0¢, — gl cos(f — @b)]
doy

So, the non-linear equations of motions are
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A.A2 FRONT LEG SUPPORT

[r2 + L? + 12 — 2L cos )8 — [l — L cos o]
+2{Lo,0sin ¢, — LIG2 sin ¢ — gl cos(8 — &) + gL cos® =0 (A1)
—I[l — L cos cbb]é + 26y — [ L6 sin &y + glcos(0 — op) = 75/m.
Letz=1[6 0 & éb]T be the state vector. Then eq. (A.1) can be written in state

space form

;i'l = I
S — 1 _ 2 .- 2 -
o = m[l;(l L cos :L’;;)Ic_, sinxr3 + Ll.’l,“; Sin 3

—2lLxyxysinzy + gL coszzcos(zy — z3) — gL cos
+1[l — L cos z3] ]

i’g = Iy

) — {-L S Z: _ 2 o3 2 o3

Iy ——+—l<r2+L§§.n‘f n)[[’(l Lcoszs3)zssinzy + Lirysinr,

—2{Lzsxysinx3 + gL coszzcos(zy — r3) — gL cos

‘ +1[l — Lcos 73] 2] + IqSlnI:;_ﬂCOS(Il—I';)-{-ﬁ-'n

Using the technique presented in [1] and the linearization point " = [00 /2 ¢;]7.

the linear set of equations for back leg support. in state space form is

(i, = z,
By = A - Bl 4 ot (n - §)
+ 384 (x4~ 8) + ip (2~ gL)
J I3 = Iy
Beo= H k- - wi'"
+IELED (1 — ) + 2l (2, ~ &)
\ +at + (2 —9L)'

A.2. Front leg Support

From eq. (A.1) using the simple coordinate transformation



A.A2 FRONT LEG SUPPORT

0 —60—x

Qb—)Q‘IT—Of

the non-linear equations of motion are

[

(r? + L? +[% — 2Ll cos ¢f]§+ [l — Lcosoylof + 2[Léfésino’f + le;}"- sin oy
+glcos(f + &5) —gLcosf =0
I{l — Lcos o718 + 26y — LL6? sin o; + gl cos(8 + o5) = 7;/m.

Let 7 = [0 0 & &/]T be the state vector. Then eq. A.2 can be written in state

space form
( Iy = I
s —_ 1 2 - 2 -
I, = m[—L(l — L cos z3)z3 sinzz — Ll sinzy
—2lLzyxysinzs — gL coszzcos(x, + z3) + gL cos 1,
1 T
4 —T[l - LCOS.’L‘;;]—"f]
j?g = Iy
ry = ——Jd=kcoszz r - 2 o _ 2
Iy CERErTY: I3)[ L(l = Lcoszs)xssinzy — Llzisin z;
—2lLzszysinzz — gL cosxzzcos(zy + z3) + gL cos 1y
1 TSy L2 LT
\ —1ll = Lcosz3]-L] + fx5sinzy — cos(z), + 13) + 4.

Again using the technique presented in [1] and the linearization point
r*={00w/2 éi]T, the linear set of equations for front leg support. in state space

form is
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A.A2 FRONT LEG SUPPORT

Ia

Li$? ')[L¢'

S - B+ o (aa— B
~ 2o (24 - &) — =i (2 —gL)
Z4

rzL—'fL— + 4+ 9 + ”"Z'ﬂxo
+————,‘(’,%;zi"<rs )+ oo = 6)
o el - gL
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B.B.1 IMPACT EQUATIONS BASED ON DOUBLE PENDULUM MODEL

APPENDIX B

IMPACT MODEL

B.1. Impact equations based on double pendulum model

B.1.1. Back Leg Impact. With reference to the notation presented in
Figure A.1. and the definition of the angular momentum given in eq. (2.7), the
angular moment just before and immediately after the impact. with respect to the

back leg toe are

H- = [8B% + m(zpYs — TsYs)
= m[[l[~tcos(ef +of) + Leosoff] +r? — L* + IL cos o' |67~
+l[—lcos(¢f + o‘f) + L cos Gf]éfa_]
HY = I8%" + m(zsyp — Toys)

= m [[l[l - LCOS@E] +1r2+ L? —IL cos @bB]GBT _ l[l — L cos ObB]ObB"'] .

With H— = H*, the impact is governed by



B.B.2 IMPACT EQUATIONS BASED ON VIRTUAL LEG MODEL

[l[~Lcos(¢f + &F) + Lcoso?] +r* — L? + [L cos 67165~
+I[—lcos(af + ,o'?) + L cos q‘)f]o"fa_ =
[[[{ = Lcos ®f] + 2 + L? — L cos 9P)6B* — {[l — L cos of)o5+.
B.1.2. Front Leg impact. Again. with reference to the notation presented

in Figure A.1. and the definition of the angular momentum given in eq. (2.7). the

momenta just before and immediately after the impact, with respect to the front leg

toe are
H- = [H-F* <+ m(Ifyb - i‘byf)
= m [[l[—l cos(df + ¢F) + Lcosof| +r® — L? + [Lcos ¥ [0~
—l[~lcos(af + d)f) + L cos qu]cﬁbp_]
HY = 19F++m(lfyf—ifyf)

= [[l[l — Lcosof] +r? + L* — [Lcos 65107 + 1[I — LcosOf]é,""] :

So the impact is governed by :

(l[—lcos(éf + oF) + Lcosof] + 1% — L2 + IL cos oF )67~
~l[—lcos(df + &) + Lcos ofléy =
[[[l = LcoséF] + r* + L* — ILcos 3167+ + 1[I — L cos oo .

B.2. Impact Equations Based on Virtual Leg Model

In this section we will use the notations presented on Figure A.1. The vector along

the back or front virtual leg
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B.B.2 IMPACT EQUATIONS BASED ON VIRTUAL LEG MODEL

Ty f le COs rp . i‘bJ l.b’f COS vy f — lb,fa"b_f sin Qp,
. ' Xor = | . P .
Yo.f lossinayg g Y. lo.ssinap g + ly gl g cOS Qg

Xb.f =

B.2.1. Back Leg Impact. Again. starting from eq. (2.7), the angular

momenta just before and immediately after the back leg impact with the ground are

H~ = I8% + mlzpy; — yuiy]

= m [rzéB" —1Pi;sin3® + 1B18 af cos 33}
HT = I0%" + mlzsgis — ysTo]

= m[r*08* + (1B)*af*).

In the above equation we made use of 3% = o7 — af. Using trigonometric identities

it is possible to show that
dor =0 —Choslys (B.1)

where Cp s is a constant that depends only on the geometry of the system. that is

3L + ([bf)
. (B.2)
4y IL \/1 )2)2

Given H~ = H™, the conservation of angular momentum is given by

Cor =

[r? + (P12 cos 38108~ + [IE sin 35 — CPIEIE cos _38]1}3_

= [r? + (18)%68+ — CB(1E)%,"~ . (B.3)

From eq. (B.3), the velocity of the front virtual leg, just before back leg impact. can

be expressed as,



B.B.2 IMPACT EQUATIONS BASED ON VIRTUAL LEG MODEL

[r? + 1812 cos 38165~ — [r? + (1F)?]65+

iB- = B.4
4 Cflfl?cos,ﬂa—lfsin 3B (B-4)
Therefore, in eq. (3.4).
[r? + (P17 cos 37]
“l CPLPIP cos 38 — [f sin 38
2 B2
¢y = r+ (b)) (B.5)

) CPUP1F cos 38 — 1P sin 38~
B.2.2. Front Leg Impact. From the basic momentum transfer relation

shown in eq. (2.7) and eq. (B.2)

H- = mrof + mlz gy — yrLs)
= m [rzéF“ wl'flfsin,[)”:-i-lflfdf' oS BF]
HT = mrzﬂ.p*—#m[xﬂj/—y/r’f]
= m [r%“’ + (lf)gdf*] X
Using the results presented in Sections B.1 and B.2 the conservation of angular

momentum is expressed as

[r? + 15 1f cos BF)9F~ — [Lf sin 3F + CFUf1f cos SF]l},F_ =

[r2 + (IF)2)67+ — CF(f 2 (B.6)

The velocity of the virtual back leg just before front impact can be expressed as:

jro _ [P+ 50 cos BFI6F— — [r? + (1F)2)0F+

= B.7
b lf sin 8F + C,flflfcos 8F (B.7)

Therefore, in eq. (3.3)
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B.B.2 IMPACT EQUATIONS BASED ON VIRTUAL LEG MODEL

r2 +lflf cos BF
If sin B85 + CEIfIf cos BF
rr+ (17)?
I§ sin 3F + CFIF1E cos BF

(B.8)

Cy3 =

(B.9)
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