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ABSTR--\CT

AB8TRACT

O\·er half of the earth 's dry surface is inaccessible ta wheeled or tracked vehicles.

E\·en relatively structured indoor or urban environments \Vith steps, stairs. or narrow

hallways, are challenging for most wheeIed or tracked systems. This is one of the

primary motivations for the study of mobile robots with legs.

\Ve propose a new type of quadruped robot \Vith maximum mechanicaI simplicity

- the SCOUT cIass. ::\,[ost robots built ta date possess many actuated degrees of

freedom (DOF) (three or four per leg) thus making them too expensive for practical

use. SCOCT robots, on the other hand, feature only one actuated degree of freedom

per leg. SeOeT dynamics, while still non-trivial, is greatly simplified compared ta

that of higher degree of freedom robots. In our analysis, we assume instantaneous

plastic impacts occur when a leg touches the ground, and consequently, a momentum

transfer occurs that causes step changes in the linear and angular velocities. The

caIculations of these changes are based on the principle of conservation of angular

momentum \Vith respect to the impact toe. since it is that point which acts as pivoL

or a free pin joint. :\ set of walking algorithms based on the controlled momentum

transfer ha\'e been dcveloped, and vaIidated, using numerical simulations. These

algorithms have subsequently been implemented on our waIking robots. SCOl"T r
and SCOUT II.

This thcsis will show that, with very simple mechanical design and control strate­

gies, stable waIking is achievable. HoweveL it is important to note that research

currently being undertaken in the ARL group will establish thaL \Vith only minimal

structural changes, SCOUT will have the ability ta run and climb stairs.
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RÉSC~IÉ

, ,
RESUME

Plus de la moitié de la masse continentale de la Terre est inaccessible aux véhicules

à roues ou à chenilles. ~Iême des environnements intérieurs ou urbains relati\'enlents

structurés représentent un défi pour la plupart des systèmes à roues ou à chenilles.

C~est rune des principales motivations pour l'étude de robots mobiles à jambes.

Xous proposons un nouveau type de robot quadrupède avec une simplicité méca­

nique maximale -la classe SCOUT. La plupart des robots construits jusqu'ici possèdent

beaucoup de degrés de liberté motorisés (trois ou quatre par jambeL ce qui les rend

trop cher en pratique. Les robots SCOUT~ par contre~ n~ont qu'un seul degré de

liberté (DDL) motorisé par jambe. La dynamique des SCOUT, tout en restant non

trh'iale, est grandement simplifiée comparée à celle des robots avec plus de degrés de

liherté. Dans notre analyse, nous supposons que des impacts plastiques instantanés

ont lieu quand une jambe touche le sol, et, par conséquent, un transfer de momentum

se produit qui cause un échelon dans les vitesses angulaires et linéaires. Les calculs

pour ces changements sont basés sur le principe de conservation du momentum angu­

laire par rapport au point d'impact, puisque c'est ce point qui agit comme pivot. Cn

ensemble d'algorithmes de marche~ basés sur le commande du transfer du momen­

tum, ont été développés et validés par l'utilisation de simulations numériques. Ces

algorithmes ont par la suite été implémentés sur nos robots marchants. SCOCT l et

SCOCT II.

Cette thèse nlontrera que, avec une conception mécanique et des stratégies de

contrôle très simples, une marche stable est atteignable. Cependant, il est important

de noter que la recherche présentement effectuée au sein du groupe ARL établira que~
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avec des changements structuraux minimes~ SCOUT aura la capacité de courir et de

gravir des escaliers.
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1.1.1 ~[OTIVATION

CHAPTER 1

INTRODUCTION

1.1. Motivation

Humans and legged animaIs can move quickly and easily over soft. hard or difficult

terrain~ such as mountains~ valleys~ craters and crevices. The hope is that legged

robots with similar dexterity as their biological counterparts perform better o\-er

these types of surfaces than wheeled or tracked machines. Legged robots are needed

in a \'ariety of fields: land or space exploration~ surveillance or work in dangerous

environments~ police operations~ forestry~ civil and medical applications and even the

cntertainment industry_ In most applications~ a legged robot should either provide

a rneans of locomotion or take over the human role~ particularly where the use of

hurnans would be expensive. dangerous~ or occasionall'y~ impossible. The applications

for legged robots involve activities which pose a significant challenge to a wheeled

or tracked vehicle~ such as running: climbing or descending stairs~ walking on rocky

terrain and passing or jumping over obstacles. However. current research in legged

l'oboties is still in its infancy~ and~ therefore: has a long way ta go in building practical

dextrous and agile legged robots which can successfully and effectively deal \Vith

various types of terrain.
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1.1.2 RE5EARCH ON LEGGED LOCO:\IOTION

1.2. Research on Legged Locomotion

Legged robots generalIy falI into t\Vo classes; those designed for static walking and

those capable of dynamic operation. In static walkers~ stability is assured through

kinematics by keeping the machine 's center of mass within the polygon formed by

the sup;Jorting feet. This requires that these machines have at least four legs~ al­

though they are often built with six legs to improve mobility. Statie walkers do not

balance actively and~ since dynamics of motion are not considered~ speeds are low in

comparison with the performances obtained by the dynamic walkers of the same leg

length.

Oynamic operat.ion requires that balance is actively maintained at ail times. Oy­

namic robots have a potential for higher speeds and power efficiency. ~Ioreo\'er, they

rcquire fewer legs~ and consequently simpler designs. C nlike statically stable robots.

which operate around the equilibrium position, the actively balaneed robots can op­

erate away from the static equilibrium configuration, with a direct consequence on an

increased mobility. Due ta their agility, dynamic legged robots can move more easily

around different obstacles or can negotiate a larger variety of terrains.

Important research in dynamically stable locomotion was developed by Raibert

who started with a one legged hopping robot and went on to build various bipeds

and a quadruped [16]. The concepts developed for the one legged robot were üsed

in the control of the three dimensional biped and the quadruped robot. ~1iura and

Shinl0yama [15] developed the BIPER family of statically unstable biped robots that

perfornl dynamically stable walking. Channon, Hopkins, and Pham [3] presented

alternative ways of designing walking algorithms using optimization techniques. The

sanle idea was used by Kajita~ TanL and Kobayashi [7] in designing a potential energy

eonserving trajeetory for their biped robot. The design of the walking gait based on

energy rnininIization was used also by ~'1arhefka and Orin [10]. Ounn and Howe [4, 5]

analyzed the smooth motion, with constant body height~ of a bipedal robot. Ouring

the leg impacts~ the angular nlomentum of the entire machine about the impacting

leg is conserved. The same conservation principle was used by :\IcGeer [11, 12, 13] in

2
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1.1.3 SCOUT LEGGED ROBOTS

his analysis of a bipedallocomotion~ by Smith and Berkemeier [19J in their research

on quadrupedal walking~ and by Sano and Furusho [18] in designing walking gaits

for the BLR-G2 biped. So faL the research on dynamically stable robots proved the

important effect of inlpacts~ and the use of these impacts in maintaining a walking

motion.

1.3. SCOUT legged robots

FIGURE 1.1. Photos of SCOUT 1 (left) and SCOUT II (right)

A rcview of the available legged robots indicates that thesc machines are sophis­

ticated and quite expensive. In contrast~ we aimed at a law cost. mechanically simple

machine - the SCOUT robots (Figure 1.1). Despite the design constraints~ our robot

should still be able to perform walking~ running and stair climbing tasks. Two genera­

tions of SCOUT robots (Figure 1.1) have been designed and built in the Ambulatory

Robatics Laboratory (ARL). According to the design requircments~ SCOUT has a

,·cry simple structure featuring only one degree of freedom (DOF) per leg.

Current research conducted in the ARL group is focused on designing control

algorithms for walking, running, and stair climbing, as weIl as improvements in thc

mechanical design. Ken Yamazaki built the first prototype, SCOUT I~ and designed

3
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1.1.4 CONTRIBUTIONS

and implemented successfully the first walking controller on SCOUT 1. This thesis

will present control algorithms designed for walking gaits. :'vloreoveL sorne of the

presented algorithms were irnplemented on SCOCT II, and the experimental results

will show the performance of the walking controllers. Robert Battaglia designed and

built SCOVT II and currently is developing algorithms for stair climbing. Joseph

Sarkis designed control schernes for running gaits. Sami Obaid equipped SCOCT

II with two triangulation laser proximity sensors used for different sensing tasks.

The third generation of SCOUT robots is already being researched: Geoff Hawker is

analyzing the behavior of SCOUT equipped with legs with unactuated knees.

This thesis is dedicated to the design and analysis of walking control algorithms.

\Ye consider the motion in the sagittal plane where the back legs act in unison. as

do the front legs. The analysis of the walking gait will prove, via simulations and

experiments, that using the conservation of angular momentum of the system around

the impact leg, it is possible to develop simple control algorithms that yield stable

walking.

1.4. Contributions

• The kinematic and dynarnic model of SCOUT will be derived and validated

via the :'vIOBILE [8] simulation package (Section 2.2).

• The kinematic rnomentum model that governs the impact of a lcg will he

developed and validated via the \VORKING NIODEL [17J simulation package

(Section 2.3).

• Three different control schemes will be proposed and validated via numerical

simulations. A numerical stability analysis will be incIuded in the study of the

proposed controllers (Chapter 3).

• Two walking controllers have been implemented experimentally on the SCOL"T

II robot (Chapter 4) .

4
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1.1.6 ORG:\l'nZATIO~ OF THE THESIS

1.5. Terminology

The following terms will be used throughout this thesis:

• back leg: leg representing the painvise motion of the two back (with respect to

the direction of motion) legs

• front leg: leg representing the pairwise motion of the two front legs

• back leg support: SCOUT is supported only by the back leg

• front leg support: SCOUT is supported only by the front leg

• single stance: either back leg or front leg are in contact \Vith the ground

• double stance: both back and front leg are in contact with the ground

• .step: the succession of back leg support, front leg impacL front Ieg support

and back leg impact

• turn over: the robot fails backwards or head over fonvards and lands on its

back

1.6. Organization of the Thesis

Chapter 2 derives the mathernatical model governing the SCOCT motion in single

stance and the model governing the back leg or front leg toe impact. Chapter 3

presents the three proposed control strategies together with their numerical stability

analyses. ehapter 4 shows experimental results obtained from the implenlentation of

t,,·o controllers on seoCT II and Chapter 5 summarizes the results of our research

and presents sorne recommendations for future work.
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2.2.1 MODELING CONSIDERATIONS

CHAPTER 2

MATHEMATICAL MODEL

2.1. Modeling Considerations

This thesis is dedicated ta the design and analysis of walking algorithms. The

analysis will be done via computer simulations which will require a mathematical

system mode!. In modeling the system we made several simplifying assumptions:

• SCOUT has only planar motion; therefore~ our model has only one back leg

and one front leg;

• the legs are rigid and massless;

• the joints are friction-less ;

• when the tc~" are in contact with the ground~ they beha\·e as free~ friction-less

pin connections (the toes do not slip on the ground).

Figure 2.1 shows a schematics of our modeI. The body is connected ta the legs

through friction-Iess rotational joints~ the back and front hips (Hb~ Hf). The JirtuaL

Ley (h~ If in Figure 2.1) is a virtual element connecting the toe (Tb~ Tf) to the body

center of mass (C). The actuators are placed at the hips (Hb~ Hf), and control the

6
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2.2.1 MODELING CONSIDERATIONS

forward
---------~t:=:-

FIGURE 2.1. SCOUT model

hip angle (9b~ ljJf). As a consequence~ the length of the virtual leg is controlled \-ia

the hip actuators.

Given that SCOUT is a planar robot with stiff legs, it can perform only dynamic

walking; that is~ at any given instant, SCOUT is statically unstable. This implies

that SCOUT is standing either on the front leg or the back leg. \Vith this assumption,

we ruled out the possibility of SCOUT being in a double support phase. Therefore.

SeOeT can be modeled

• as an inverted double pendulum: the first link is the stance leg~ and the second

link is the body:

ï
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2.2.1 MODELING CONSIDERATIOXS

• as a variable length pendulum: the pendulum is the supporting ,'irtual leg of

variable length lb,J.

It is important to note that. due to the assumption of massless legs~ only the

supporting leg influences the dynamics of the system. 80th models~ inverted double

pendulum or variable length pendulum~ are two DOF systems \Vith only one actuator

(the motor acting at the hip joint); therefore~ it is an under-actuated system.

In Section 2.2 the equations that govern the motion while on either back leg

support or front leg support will be presented. The rnathematical model that go\·erns

the exchange of support will be introduced in Section 2.3. Tables 2.1 and 2.2 show

the notation that will be used in the following sections and chapters.

l leg length
L half the distance between hip joints
m body mass
1 body moment of inertia about the center of mass
r body radius of gyration (1 = mr2

)

() body angle W.Lt. the horizontal
4Jx hip angle between body and leg
lx virtual leg length
T x torque applied by the hip actuator

TABLE 2,1. Notation for SCOUT variables

"\b support on back leg
.\f support on front leg

..\b,J support on either back or front leg
.Yn n-th step
.,\B value at back leg impact
.yF value at front leg impact

.'\B- value just before back leg impact

.,\F- value just before front leg impact
X· B+ value just after back leg impact
.,\F+ value just after front leg impact

..y. desired value

TABLE 2.2. Subscripts and supcrscripts used with SCOUT variables

8
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2.2.2 EQUATIONS OF ~[OTION

2.2. Equations of Motion

In this section the equations of motion (EONI) describing SCOUT~s single stance

beha,·ior will be presented: the inverted double pendulum model is considered in

dc\·eloping these equations. Different state variables describe the dynamics of the

system while on back leg support or front leg support. Consequently, two different

sets of EO~i[ will be derived: however. a simple coordinate transformation between

the states used in back leg support and front leg support will make the equivalence

between the two sets of equations. The derivation of the EO"'I \vas done using the

Lagrange ~[ethod.

In both back leg support and front leg support it is expected to derive a set of

non-linear EOl'vI. For sorne control analysis purposes the linearized version of these

EO).[ might he of interest. The non-linear EON[ describe accurately the motion of

the system at any given configuration; however, the linear model approximates the

dynamics of the system as long as the variables are close to the values specified in

the Iinearization point.

2.2.1. Back leg Support. The non-lïnear EO:\I describing the dynamics of

the system while on back leg support are given by,

[r2 + L2 + l2 - 2Ll cos q)b]B - l[l - L cos d>b]~b

+2lL~i}sin q;b - LlJ>~ sin 4Jb - gl cos(O - <!>b) + gL cos () = a (2.1)

-l[l - L cos <Pb]B + l24>b - tLip sin 1>b + gl cos(O - q;b) = Tb/m,

with the back hip torque Tb being the input. In developing these equations we chose as

state variables the body angle () and hip angle 1>b. The derivation of these equations

is presented in Appendix A. Even though for controller development we assume the

input to he the hip angle~ for purposes of simulation wc need a torque input model.

A high gain PD controller will track the desired reference trajectory in q)b.

Eq. (2.1) was used in dcveloping a numerical simulation in ~L\.TLAB [6]. For

verification, the results of this simulation \Vere compared with the results obtained

9
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2.2.2 EQt:ATIO~S OF ~[OTIO;X

from a :VIOBILE simulation. In the ~\'IOBILE simulation the user specifies only the

kincmatic chain and mass, inertia properties describing the system under analysis,

but not the EO~I. This comparison, presented in Figure 2.2, validates the derived

EO:\1.

0.3 r--~------r--~~===:::::c::::::::;;:~--.-----.----""-------'

0.2

o

-0.1a 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

4

(j)
2-"'Ccu
0.=..

ê5
"C

a:>
-2

-4a 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
time [s]

FIGURE 2.2. Body angle (8) obtained from lVlüBILE simulation (dashed
line) and from the MATLAB simulation (solid line)

The linearized model of the system is often needed for control analysis purposes.

During walking the body will have an oscillatory motion around () = 0 rad: the leg will

rnO\'e around $b = ii/2 rad configuration and, given the future developed algorithms.

with a constant angular velocity 9b = cbb•i . As a consequence. we linearized the EO:\I

around

() = O. () = 0, dJb = 7i/2, cPb = 4Jb.i

10
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ta obtain

l[r2 + L2 ]0 + 2Ll2dJb,J} - gL2[9b - iï /2] - 2Ll2 6b,i[6b - 6b.d
-l[Tb/m - gLJ - Ll20~.i = 0

l[r2+ L2]cbb + 2Ll2~b,i) - g[2L2 + r2][d>b - iï/2J - 2Ll2Ç;b,I[~b - Qb.d

+g[r2 + L 2 ]8 - [r2 + [2 + l2J[Tb/m - gLJll - Ll2 ti>L - gL[r2 + [2J11 = O.

(2.2)

The validity of these linear EO:\I \Vas investigated, and Figure 2.3 shows a comparison

bet",cen the body angle 8 and body angular veloeity il resulting from the integratioll

of the linear (dashed line) and non-linear (solid line) EO~vL for a constant back leg

hip angular veloeity d>b,i = 2 rad/s. The results presented in Figure 2.3 were obtained

from a ~vl:\.TLAB simulation (using the adaptive step size ODE45 integrator).

0.4 r-------,....---~------,...___--~---........__--~--~"""'"'T"'""--____,

0.3

=0- 0.2
.ê.
~ 0.1

o

- - - _.-.-

0.40.350.30.25
-0.1 '---__-.L- .L--__---L.. -'-__----L. -'-__---I. .....

o 0.05 0.1 0.15 0.2

4.-------,-----r------,..-----,----,.-----,.-----....----,

Il

0.40.350.30.15 0.2 0.25
time [5]

0.10.05
-4 L..-__---J- -J..- L...--__---&... ..L...-__--! -.L-__---'

o

FIGURE 2.3. Comparison between the linear (dashed Hue) and non-lincar
(solid Hne) back leg support model•
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2.2.2 EQUATIO~S OF :\lOTION

2.2.2. Front leg Support. The non-linear EO~I while on front leg support

are

[r 2 + L2 + l2 - 2Ll cos 6JJO + l[l - L cos 6/J6/ + 2lL6JÔsin 6J + LldJ} sin of

+gl cos(B + <!JJ) - gL cos () = 0

1[1 - L cos cPJ]O + 126f -ILÔ2 sin 6J + gl cos(B + dJf) = TJ/TT!.

(2.3)

Again, the state variables are the body angle () and the front leg hip angle 0 J. These

equatians can be obtained from eq. (2.1) by the coordinate transformation

~ (J-ii

•

\Vith the same considerations as prescnted in the Section 2.2.1, the linearization point

was set as

ta abtain the linearized EOi\-1

l[r 2 + L 2 JO + 2Ll2 6J.iÔ - gL 2 [o[ - ii/2J + 2Ll2 d>f.;[9f - Of,;]

+l[TJ/m - gLJ + Ll'26}.i = 0

l[r 2 + L2]~f - 2Ll2 ;PJ,/J - gr2 [lj>f - ;r/2] - 2Ll2;P/A~/ - 6J.iJ

-g[r2 + L 2 ]8 - [r2 + L2 + l2J[Tf/m - gLJll - L[26}.i - gL[r2 + L 2 J1l = O.

(2...l)

The detailed derivation of the linear and non-linear EO~I is given in A.ppendix A. A

~I.-\.TLAB simulation was used to compare the results given by the linear and non­

linear models. The body angle () and angular velocity iJ resulting from linear (eq.

12
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(2.4)) and non-linear (eq. (2.3)) modeL for a constant front leg hip angular velocity

(]) f,i = 2 rad/s~ are presented in Figure 2.4.

0.2
/

/

0.1 /

/

:c- O
.ê.
CD -0.1

-0.2
- _.-

-0.3
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

6

4

:w
2~ca=.

ëO
'0

CD

-2

-4a 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4
lime [s]

FIGURE 2.4. Comparison between the linear (dashed line) and non-lincar
(solid line) front leg support model

2.3. Impact Model

.-\ccording to [14] for a system of interconnected bodies~ under planar motion. for

a finite time interval. ~T: the change of angular momentum of the system~ ,j.,Ho . is

givcn by

•
( .) -)_.iJ

13
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2.2.3 ThIPACT ~IODEL

where 0 is a fixed reference point and Ho the angular momentum. The moment

summation includes only the effect of externai forces (equal and opposite actions and

reactions at the interconnections are internaI to the system and cancel one another).

Csing the above definition we can determine the change in the angular momentum

at the exchange of the supporting leg (impact of the free Ieg). During the impact the

only external force cornes from gravity. but the impact time is very shore that is ~T

approaches zero~ and therefore the angular momentum of the system with respect to

the impacting toe is conserved,

(~Ho)5Y5tem= o. (2.6)

•

This result was used also by ~IcGeer [11, 13, 12] in his analysis of the rimless wheel

and gravity powered wheeI, and by Dunn and Howe [4, 5] in their analysis of bipedai

walking.

FIGURE 2.5. Angular momentum of a body w.r.t a point

The angular momentum of of a body about any point 0 (Figure 2.5) is given by

14
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2.2.3 Il\IPACT ~IODEL

Ho = Iw + r x mv ~

where Ho is the veetor of angular momentum about point 0, 1 is the body inertia

matrix about the centre of mass, w is the veetor of body absolute angular velocity,

r is the position veetor from the leg toe to the body center of mass. m is the body

mass. and v is the center of mass velocity vectoL

Since SCOCT is assumed to have planar motion we are only interested in the

angular momentum about the axis perpendicular to the plane. vVe can also express

the moment of inertia about this axis as the product between the mass and square of

the radius of g)Tation; hence, from the above vectorial expression we can extract the

z component to obtain

( .) -)_.1

•

\\'here HTr is the z component of the angular momentum with respect to back leg Tb

or front leg toe Tf (see Figure 2.1), rTrC is the position vector from the impacting toe

(Tb or Tf) to the center of mass (C) ~ and Vc is the center of mass velocity vector.

The conservation of angular monlentum during impact will allo\\" us ta determine

the after-impact state for the system. As in the case of the derivation of the EO~I,

where we distinguished between the back leg and front leg support cases. two sets of

equations must be derived in terms of the supporting leg. In both cases wc start with

conscn'ation of angular momentum (eq. (2.6)),

where H- and H+ are the angular momentum just before and immediately after

impact.

The following t\Vo sections will present the model describing the front leg and back

leg impact. Subsection 2.3.1 presents the impact model based on the states used in

15
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double pendulum model (body angle () and supporting leg hip angle (jJb or dJf). Sub­

section 2.3.2 considers the states used in the variable length pendulum model (body

angle () and lengt h of supporting virtual leg lb or lf ). The impact rnodels presented

in Subsection 2.3.2 are equivalent~ through simple coordinate transfornlations. to the

rnodels presented in Subsection 2.3.1. The detailed derivations of the momentum

transfer equations are presented in Appendix B.

2.3.1. Impact Model Based on the Double Pendulum Model. From

•

eqs. (2.7) and (2.6L and conservation of angular momentuln when the back ieg

impacts gives

U[-l cos(q)~ + d>7) + L cos d>7J + r 2
- L 2+ lL cos d>fJ iJB­

+l[-l cos((jJf + d>7) + L cos d>7]<bf B-

- (L[l - L cos 4Jf] + r 2 + L 2
- iL cos d>f] iJB+ - l[i - L cos d>f]<lJ~+. (2.8)

The known variables are the ones that define the configuration at back leg impact

(hip angles 6f~ ci>f) and the before-impact angular velocities iJB-. <lJY-. The change

of support is very short; therefore~ we assume that the configuration of the system

remains the same and that only the \'elocities undergo step changes in their \"alues.

The unknown values are the after-impact angular velocities of the body and the

impacting leg~s hip (OB+ and 6f+).

A second equation can be determined from the conservation of angular momen­

tum about the irnpacting leg hip. For simplicity of the control scheme. we make

the additional assumption that it is possible to control the angular velocity of the

impacting hip (~~+) during the support exchange. \Vith this assumption. eq. (2.8)

can he used to determine the after-impact angular velocity of the body OB+.

In order to check the validity of the above momentmn transfer equation. we

used another simulation package~ \VORKING ~IODEL. This package does not use

an algebraic calculation for the after impact velocities as in eq. (2.8). but rather

integrates aIl moments over a finite period of time, as in eq. (2.5). Starting from

16
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(}B+ [rad/s] (eq. (2.8)) -0.57 -0.74 -0.83 -0.63
(}B+[rad/s] (\VORKING ~/IODEL) -0.56 -0.73 -0.82 -0.61
Error [%] 0.85 1.32 1.50 2.58

TABLE 2.3. Validation of momentum transfer equation

a gi\'en before-impact states (iJ B - ~ dJ7- ~ d>f ~ dJ7)~ Table 2.3 contains in its first ro\\"

the theoretical obtained value (eq. (2.8)) and on the second row the value resulting

[rom the \VORKIXG ~IODEL simulation. The impact model used in \VORKI:\G

~IODEL can explain the errors indicated in the last ra\\". In developing eq. (2.8L

it \Vas assumed that the impact between the leg and ground is perfectly plastic and

just after the impact the connection between the leg and ground can be modeled

as a free pin join. In \VORKING ~TODEL a more realistic model is used: namely

the connection between the leg and ground. produced after the impacL is a result of

the friction properties of both leg and ground materials. Given these differences. the

small errors obtained confirm the validity of the momentum transfer eq. (2.8).

Eq. (2.9) expresses the conservation of angular momentum when the front leg

impacts.

(L[-l cos(4>[ + a>;) + L cos dJ[] + r 2
- L 2 + lL cos 4>f] iJF-

i[ 1 ( .F .F) L 'FJ .. F-- - cos (/Jb + a>f + cos a>b Ob

Detailed derivations of eqs. (2.8) and (2.9) are given in Appendix B.

2.3.2. Impact Model based on the Virtual Leg Model. The polynomial

•
controller (Section 3.2) will use the variable length pendulum system mode!. In this

rnadcl the variables defining the degrees of freedom are the body angle () and the

lcngth of the supporting virtual leg lx. This section will present the mathematical

model describing the impact of the virtual back leg and virtual front leg.

17
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Referring to eq. (2.7)! the conservation of angular momentum when the virtual

back leg impacts with the ground is given br

[r 2 + [BlB cos 8 B]iJB- + [LB sin 8 B _ CBlBl B cos 3B]l B-bl' b, Ibl' 1

= [r2 + (lf)2]iJ B+ - Ct: (lf)2l~ B+. (2.10)

•

where Cf!. Cy are constants depending only on SCOCT~s dimensions (body length

and leg length) and on the configuration at back leg impact (lr: ~ l7). Their explici t

fornl is given in Appendix B.

The same principle of conservation of angular momentum is used in deri"ing the

mathematical model (eq. (2.10)) governing the impact of the front virtual leg~

(r 2 + LFLF cos BF]iJF- - (L F sin 3F + CFlFlF cos BFJi F-bl· 1· bbl· b

= [r2+ (lfr~]oF+ - Cf(lf) 2liF
+. (2.11)

The constants Cr:. Cr are! again~ depending on SCOCT!s dimensions and configu­

ration at impact.

18
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3.3.1 PROBLE:\l FOR..\[L-r.ATION

CHAPTER 3

WALKING CONTROL ALGORITHMS

3.1. Problem Formulation

As introduced in Section 2.L SCOUT can be modeled as two 2-00F systems,

one for back leg stance and one for front leg stance. The single actuator per model

is placed at the hip joint (either H b or Hf in Figure 2.1). For purposes of controller

design we assume that we can control directly and instantaneously the hip angles

and angular velocities: thus, our inputs are 4Jf(t) and 4Jb(t). Howeyer. the simulations

(and. of course, the experiments) used a PD controller to determine the hip torque

necessary to track the hip angle desired trajectory. The states of interest to be

controlled are the body angle and angular velocity

One complete step consists of t\,"O leg support phases, one for each leg, and two

impacts, as illustrated by the block diagram in Figure 3.1. For purposes of analysis it

19



(3.1)

•
3.3.1 PROBLE~1 FO~rt:L.-\TIO!\

is convenient to examine the variable of interest~ e~ at only one instant in this step~

and we chose the instant immediately following the back leg impacL

8 n ~ e B + = [ ~B ] .
(}B+

~ow we can define a discrete step-to-step return map, S~ which maps the body states

j ust after impact from step n to step n + L as a function of the inputs Ob Ct). (j) f (t).

[q;~L ][q;;L ]
4>b (t)

Back Leg Support e F - Front Leg Impact
(eC{. (2.1)) (eq. (2.9))

e B + e F +

Back Leg Impact Front Leg Support
(eq. (2.8)) (eq. (2.3))

e B -
T

GD[ ,~t ] [.~Z- ]
lJ)b qJf

(3.2)

•

FIGURE 3.1. Control inputs during a complete step

For the polynomial controller (Section 3.2) and saturated ramp controller (Section

304) the controlled inputs already determine OB ~ 50 eq. (3.2) becomes a scalar return

map for iJB+. The control objective can be stated as finding continuous hip angle

trajectories~ a>b(tL dJf(t), which make the desired body states~ e*, an asymptotically

20
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stable fixed point of the return DIap S. In the remainder of this section. we will

present three such hip angle trajectories.

3.2. Polynomial Controller

The initial approach \Vas to simplify the problem by analyzing the system formed

by the \'irtual legs (lb, l f in Figure 2.1). .-\S a resulL the system that needs to be

analyzed is a biped with variable leg length. Our control algorithm is based on the

idea of inlposing a certain after-impact angular velocity for the body iJB'" and iJF -+-.

Csing the momentllm transfer eqs. (2.11) and (2.10), from the desired after-impact

angular velocity for the body iJF+ (or iJB+L and assuming that the iInpacting virtual

leg has a constant length ij+ = 0 (or ir+ = OL we can fully determine the RHS

of the momentum transfer eq. (2.11) (or eq. (2.10)). On the LHS of the eq. we

han' two unknowns, the angular velocity of the body at touch clown, ÔF - (or iJB- ),
and the time rate of change of the length of the sllpporting virtual leg, i[- (or i7­
) (we refer to i as being the linear velocity of the leg). Because we are analyzing an

underactuated system, of the t\\'o variables [(jF-, i[-] (or (ÔB-. i7-J) , we are able to

control only the velocity of the virtual leg directly via the hip actuator. Therefore,

the momentum transfer can be controlled through the velocity of the supporting leg

at impact time, via

l'F-
b -

I·B-
f -

(3.3)

(3.-1)

•

where the Ci are funetions of the virtual leg lengths, and are given in detail in .-\p­

pendix B. If. at front leg impact~ i[- has the value given in eq. (3.3), then using eq.

(2.11). one can observe that ÔF + \vill result in its desired set point value. The same

observation is valid for the back leg impact, with ir- given by eq. (3.4). unfortu­

nately: the body angular velocity just before the impact iJF- (or iJB-) is not known a

plÎori since it is coupled dynamically to the applied control input.

21
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In order to solve this problem, we use an estimate of this value. That is. after

each time step. we assume that from that moment on! until front or back leg impact!

the \'irtual leg will have a constant length - therefore the system will behave like an

in\'erted pendulum, Using the dynamics of an inverted pendulum. we predict the

touchdown angular velocity! iJB- (or iJF-), at each controller time step. On the other

hand. we assume that we specify the kinematic configuration at impacts! via lf! lf!

a priori. and assume those to be known.

'Vith this, the supporting virtual leg length should satisfy four conditions: the

initial length. final length, initial and final linear velucities. It was mentioned that

the impacting leg will have constant length just after the impacL that is. if+ = 0 and

if-+- = O. For simplicity, the actuation will start when the body reaches the apex. :\.

third order polynomial in the absolute body angle that describes the variation of the

\"irtual leg length suffices to meet aIl four conditions!

(3.5)

•

The coefficients of the polynomial are determined from the initial and final con-

ditions.
h((}inzt) - a3(}rnit + a2(}rnit + al (}init + ao = lban,t

lb«(}F) a3«(}F)3 + a2«(}F)2 + alOF + aa -lF- - b

ib«(}init) - (3U3(};nit + 2U2(}init + al )iJinit = lb1n,t (3.6)

ib«(}F) - (3U3«(}F)2 + 2U20F + adiJF- = iF-,

The equations form a linear system in the unknown coefficients of the polynomial.

For simplicity we presented only the conditions imposed on the back virtual leg, but

similar expressions can be written for the front virtual Ieg. Given that the final

angular velocity of the body, iJF- (iJ B-), is predicted continuously! this systenl will

have to be solvcd, for the polynomial coefficients, after each prediction. The initial

conditions (Binit , Ôinib lb1n,t JbIn,t) are set as their current \'al ues, The final conditions

22
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()F (8 BL Ir: (if) are determined by the configuration at impacts and l~F- (l~B-) IS

re-computed from eq. (3.4) (or (3.3)) according to the new iJF- (iJB-) prediction.

In order to implement this algorithm~ we need to specify information beyond

the body states just after back leg impact, eB + ~ which is used for purposes of anal­

ysis in the return map. In particulaL we need to specify the configurations at ex­

change of support ([q>f ~ <p7]~ [cPt:. of]) and desired after-impact body angular \"elocities

(iJ F+. iJB-+-). The possible combinations of these parameters are limited by the solu­

tions for the system of linear eqs. (3.6). Furthermore~ the iJB~. iJF-+- "alues are limited

by the turn over. \Ve selected the following set points.

cPt: - 1.71 rad

'F 1.53 rad<lJf -
iJF+ - -1.00 rad/s

'B 1.43 radq>b

'B 1..53 rad([Jf -
iJB+ - 1.00 rad/s.

The particular choice for the configuration at impacts was motivated by hardware

limitations on SCOUT (rnaximum available torque from the hip actuators). The

iJB .... iJF+ set point values resulted from a set of ).IOBILE simulations. These '"alues

are large enough to prevent premature touchdown of the flight leg~ and small enough

to prevent turn oveL

The results of a ~vIOBILE simulation are shown in Figure 3.2. The top and

middle graphs present the body angle () and body angular velocity iJ variation during

the simulated walking motion. The bottom graph presents the variation~ according to

cq. (3.5) ~ of the supporting hip angle <Pb.!. The dashed lines show exchange of support

(the motion starts when the back leg is in stance). The simulation startecl from an

arbitrary initial configuration; as shown in the the top graph~ this configuration was

away frorn the dcsired steady state motion. However~ Figure 3.2 shows that just one

step is sufficient to recover from this initial error.
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FIGURE 3.2. Polynomial controller witb continuous update of iJB-. iJF-

•

\ Ve are interested in control strategies which are robust and can be implemented

with minimal sensing. 50 far the control scheme requires that the stance virtual leg

remains at a constant length until the body reaches its apex (maximum body angle).

At that instant~ a polynomial for the supporting virtualleg length is planned accord­

ing to eq. (3.5). The ~0lynomial coefficients calculations require the prediction of

the before-impact angular velocity. A further simplification is introduced~ namely the

prediction of the touch down body angular velocity~ which is done only once at apex.

\\1wn the single prediction of iJB- ( iJF-) is adopted~ a fixed: second order polynomial

for the length of the supporting virtualleg is sufficient. This is a major simplification~

but. as shown in Figure 3.3, results in a periodic motion with performances close to

the desired set points of iJB+ = 1.0 rad/s! iJF+ = -1.0 rad/s .
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FIGURE 3.3. Polynomial controller with no update

•

The differences between using a third order polynomial (hence continuous updatc

of iJB- or iJF-) and a fixed: second order polynomial are evident in the resulting after­

impact body allgular velocities. Figure 3.4 shows the resulting iJB+ from a large initial

error using the third degree polynomial C+:) and the fixed: second order polynomial

Co:); the dashed Hne indicates thc desired set point value. The one time estimation

of the beCore-impact body angular velocity results in an error of less than 5%. This

represents an acceptable error in practice. Furthermorc: the reduced complexity of

th~ controller recommends it for practical implementations. Figure 3.4 indicates that

thc steady state value obtained for the after-impact angular velocity iJB+ is offseted

from its dcsired value. To eliminate this offset: an integral term cao he added in the



3.3.2 POLYXOMIAL CONTROLLER

• 1;( -,J- --....! -I- L- .... -- ... -

0.9

0.8

Ci):c 0.7
ca..::.

ciJ -8:>.6
<D

0.5

0.4

0.3

0.2
0 1 2 3 4 5

time (s]

FIGURE 3.4. iJB+ ('+~) with update on polynomial coefficients and (·0')
without update

control scheme~ or a look-up table for compensation terms can be developed. This

subject has not been pursued at this time.

A successful controller must still be able to compensate disturbances. If there

is a sufficient range of permissible i::- (i7-) around the nominal value~ eqs. (3.3)

and (3.4) can be utilized ta eliminate errors online and to achieve the desired body

angular velocities iJF+ (f}B+). Figure 3.5 shows the large range of disturbances in iJB+

froIn which recovery is still possible~ even when a fixed. second arder polynomial is

uscd. This range is limited by either turn o\"er or toc stubbing. A simplified version

of this control algorithm has been implemented on SCOCT land resulted in stable

walking [2J .
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FIGuRE 3.5. Recovery from severe disturbances using a fixed~ second order polynomial

3.3. Ramp Controller

\Vith the experience gained from the iOlplementation of the controller presented

in Section 3.2 on SCOCT I~ we moved towards control algorithms that require sinlpler

actuation functions which are easier ta implement. In particular~ we will show that

a constant angular \'elocity for the back hip during back leg support and a fixed hip

angle for the front leg will result in stable walking. During the back leg support phase

wc will prcscribe a ramp function for 9b(t) (Figure 3.6). The after-impact back leg

h~p angle (j>f and the slope of the ramp ;Pb~ will be design parameters. The pararneters

defining the ramp input, [qif, 4>bL will also determine the value of the back lcg hip

angle at front leg impact.

A set of ~IATLAB simulations was used ta determine the influence of different

pararncters on the overall motion. These simulations integrated the inverted double
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r/Jb [rad]

t F tirne[sJ

FIGURE 3.6. Ramp input for the back hip angle

pendulum mathematical model of the system for one step (Figure 3.1). For a certain

constant angular velocity of the back hip actuatoL we investigated the influence of the

front leg orientation dJf on the initial body angular velocity for the front leg support

phase iJF+. Figure 3.7(a) shows thaL as the front leg angle increases. the resulting

magnitude of iJF+ decreases; for large of values we cxpect iJF+ > 0, which means that

the impact of the front leg will not result in a lift off of the back leg. Ideally we would

like to have the magnitude of iJF+ as large as possible. Consequently. the front leg

should be positioned at a small angle. In the back leg support phase, the supporting

leg s,,"eeps from a smaIl angle to a large one, giving a forward displacement for the

center of mass. In the front leg support phase, a sweep of the supporting leg from a

small ,·alue to a large value will inducc an unwanted backwards displacement for the

center of mass. For this reason, we decided to keep the front legs fixed at aIl times.

\""ext. wc investigated the optimal orientation of the front legs that will result in a

periodic motion (0:::1 = 0:;+). Starting \Vith 0:;+ = 1 radis the results presented

in Figure 3. ï(b) show that the periodic motion condition is satisficd for a front leg

orientation of fjJf = 1.31 rad. \Ve also investigated the effect of the back hip actuator

angular velocity on the next step initial body angular velocity. Figure 3.7(c) shows

the possible 8:;:1 for a span of possible ;Pb and 0::4- = 1 rad/s. Again, considering the

periodic motion condition, we chose 6b = 0.85 rad/s.
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FIGURE 3.7. Effect of 4Jf (a) on iJF+ and on (h) iJ:::1: (c) effect of ~b on iJ~:l

\Yith aH of these factors analyzed~ a numerical simulation with

'B 1.05 radfJ>b

</>b - 0.85 radis (3.7)

<PI - 1.31 rad

•

"'as pcrformed~ and the results are presented in Figure 3.8.

This simulation of the open loop ramp controHer suggests that the chosen set

point does not only correspond to a fixed point of the step-to-step map~ as intended.

but also was at least locally stable. To further investigate the possible stability of

this open loop controller around the set point~ we added a severe perturbation after
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FIGURE 3.8. Stable motion produced by the open loop ramp controller

•

the first step, and, ta our great surprise, the system converged rapidly back to the

desired set point, iJB-+- = 1 rad!s. The response (resulting after-impact OB-+-) of the

system to this disturbance is shown in Figure 3.9.

For a more complete insight into the range of initial body angular velocities which

will converge to the desired set point (the domain of attraction of the controllerL

we plot the numerical evaluation of the step-to-step return map for the open loop

ramp controller in Figure 3.10. This plot confirms the unusual and exciting fact that

the open loop controller has a domain of attraction which is global for ail practical

purposes, from almost zero initial body angular velocity~ to a maximum body angular

\·elocity of OB+ = 2.3 rad/ s~ above which the robot would falI over backwards.
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FIGURE 3.9. System response with open loop ramp controller aCter severe disturbance

As predicted by the return map (Figure 3.10)~ the open loop controller exhibits

fast convergence ta the fixed point, despite severe perturbations. In order to increa~c

the convergence further, a feedback control will now be designed. There are several

pararneters that influence the behavior of the system:

• configuration when back leg impacts (dJf, 4J7),

• configuration when front leg impacts (fjJf, f/JfL

• the constant angular velocity of the back hip (1)b) during back leg stance.

•

Given that the front leg remains fixed at aIl times (dJf = f/17L and that the input

angular velocity for the back hip will determine its final position f/1f:, there are three

elements (cI>f, 1;7, <Pb) that fully determine the resulting motion. At this time, we

chose to maintain a fixed configuration at the back leg impact (f/Jf, 97), sa that

the only parameter that can still influence the behavior of the system is the back
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FIGURE 3.10. Numerical evaluation of the step-to-step return map for the
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leg angular velocity. The feedback control will adjust the back leg angular \Oelocity

as a function of the initial body angular velocity iJB+ ° For a range of after-impact

body angular velocities iJB+ ~ and a range of back leg hip angular velocities d>b~ a look­

up table has been generated. The input in this table is the actual (measured) 0;;+
and the output is the required 4>b which~ during the back leg support of the (n + 1)

step~ will result in the desired set point iJ~:l = lradl.s. The look-up table has 180

entries (from O:f+ = a radIs to iJ:f+ = 1.79 rad/s~ in steps of 0.01 radIs). For entries

different from the tabulated values~ a linear interpolation function is used to generate

the outputs. This look-up table is used ta simulate walking for several steps, \Vith
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FleURE 3.11. Closed loop motion shows one step recovery from disturbances

.50% error in the iJB+ (step 3) and 30% error for iJF+ (step 7). As it can be seen in

Figure 3.11 the recovery in both cases is accomplished in just one step.

Figure 3.12 shows that the feedback mechanism has an important effect on the

stability. That is~ the recovery from [-100% ; 80%] error between initial angular

\"clocity of the body iJB+ and the desired set point '"aiue is accomplished in just one

step. This is indicated by the zero slope of the step-to-step return map in that range.

In Figure 3.8, the bottom graph shows the required back leg hip torque. These val­

ues will never be a realistic requirement when this controller is implernented on the ex­

perimental set-up. In order to perform simulations that reflect hardware limitations~

wc repeated the simulation shown in Figure 3.8 \Vith the constraint [Tbl :::; 40~Vm.

The resuiting stable behavior is presented in Figure 3.13~ and it can be seen thaL

due to this torque limitation~ there is a tracking error in <Pb (dashed line indicates the

required trajectory and the soHd line shows the actual ,·alue) .
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FIGURE 3.12. Step-to-step return map for closed loop (LUT) ramp controller

The analysis of the domain of attraction was necessary in order to investigate the

stability of the system as a result of torque limitations. Figure 3.14 (solid line) shows

that SCOCT~ with no feedback inforulation, and torque limitations, will be able to

recover, in seyeral steps. froul a maximum error of 250% in the desired set point

value. Figure 3.14 also includes (the dashed line) the domain of attraction presented

in Figure 3.10. The comparison between the t\Vo curves indicates that hardware

limitations imposed on the hip torques should not affect the system's stability.
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FleURE 3.13. Stable motion produced by the open loop ramp controlleL
with added torque limitations

3.4. Saturated Ramp Controller

•

The results for the ramp controller presented in Section 3.3 show that the walk­

ing sequence will be characterized by small hip angle sweep~ resulting in small steps

(approx. 0.07 m). Furthermore~ the required angular velocities for the back hip were

ahnost five tinles lower than the limit imposed by the motors. In the ramp controIleL

the potential disturbances that occurred during the motion can be compensated by

adjusting one parameteL dJb' However~ this can be a limiting factor for the feedback

rnechanism. Consequently~ increasing the number of paraIneters that completely de­

fine the controlled input will result in potentially better performances of the feedhack

mechanism .
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FIGURE 3.15. Saturated ramp input for the back hip angle
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\Vith these observations, we decided to try an approach in which the back leg had

an imposed t rave1 from cPf, 4J[ (Figure 3.15). Using the considerations presented in

Section 3.3~ we decided to keep the front leg fixed throughout the motion (the actual

yalue of this angle will be determined from simulations). In the back leg support

phase, the back leg hip angle will be kept at a constant value for 'T' seconds. In a

gi\'en ·dT~ time the back leg hip angle will sweep between the desired limits d>f and

Qr:. and remain at the final value for the rest of the back leg support. This controller

is fully described by five parameters (as opposed to three in the ramp controlIer).

namely.

• limits for the back leg sweep (4Jf ~ or:)
• front leg orientation (tPj)

• time at which the actuation on the back leg begins (T)

• 6b (or equivalently dT shown in Figure 3.15).

In order to simplify the analysis we will keep a fixed configuration at the moments

of support exchange, as we did in the ramp controller algorithm. That leaves us

with two parameters that will fully determine the input, namely [T. dJb ]. \Ve chose

again of = 1.05 rad, d>f = 1.31 rad~ and~ ta avoid slipping during the experiments~

or: = 1.83 rad.

\Vith the input defined by two parameters ([T~ q;bJ), a simulation ",as used in

dctcnnining the combination of the t\Vo parameters that will yield a periodic motion

(8:?:1 = 0:;+). The simulation involved a numerical search in a two dimensional space.

The range for the first search direction~ T: was set to [O;O.lsL and. for the second

scarch direction, cf>b' [2 radis; 8 radis] (the upper limit for the 6b range is dictated

by the hardware limitations). For each point in the search space. the mathematical

model \Vas integrated, and the results are shown in Figure 3.16. The data points

(denoted by '0') on each curve are obtained for different back hip angular \·cloci tics

6b; moreovcr: cach cun-e corresponds to a certain value of T (see Figure 3.15)..-\p­

parently, the effect of the T and ;Pb parameters on 0~:1 is minimal. Aiso. with the

current settings, according ta Figure 3.16~ starting with iJB+ = 1 radis, the next step
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FIGURE 3.16. Range of possible il:;:l for il/!+ = 1.0 rad/s

will he characterized by iJB+ ~ 0.93 radis for a large range of 6b' This violates the

periodic nlotion condition (iJ:;+ = 0:::1). However we simulated the motion of our

system ha'·ing the desired set points,

'B 1.05 rad<Pb -

'F 1.83 rad<Pb -
dJb - 3.30 radis (3.8)

T - 0.00 s

9/ 1.31 rad.

•
As depicted in Figure 3.17, the open loop motion is stable around a set-point

6;;+ = 0.93 radis. The step to step return map, presented in Figure 3.18, confirms
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FIGURE 3.1 ï. Periodic motion resulted from the open loop saturated ramp controller

•

that the convergence set-point is at the mentioned value. The domain obtained for

this type of controller is different from the one presented in Figure 3.10, and suggests

thaL even \Vith an open loop control algorithm, any disturbance (unless it causes turn

o,·cr) in iJB+ is compensated in one step.

Ta illustrate this, we simulated the walking for ten steps. and added a .50% error

in iJF+ (step 3) and in iJB+ (step 7). As expected, the recovery was complete in just

one step. As a conclusion, even if our control algorithm does not use any feedback

information, we demonstrated that the recovery from disturbances can be done in

just one step. Therefore, the design of a closed loop control algorithm based on a

saturated ramp function for 1Jb it is not necessary.
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FIGURE 3.18. Stcp-to-step return rnap

In Figure 3.17 is shown the back hip actuator torque requirements. Limiting this

torque at ITbl ::; 40lVm will result in tracking errors for cPb lcading to a premature

front lcg ilnpact (back leg did not complete its sweep). As a consequencc~ a fixed

point of the step to step return map \Vas not round. This suggested to us that the

irnplcmentation of this controller will not be successful.

3.5. Summary and Conclusions

Thrce different control algorithrns have been proposed. The polynomial controller

15 a schcmc in which the length of the supporting yirtual lcg is controlled via a

third order polynomial in body angle. The polynomial coefficients are dcterrnined

from the initial and final conditions. The final linear vclocity for the virtual leg is
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FIGURE 3.19. Open loop motion shows one step recovery [rom disturbanccs
in iJB+

imposed 50 that a certain value for the after-impact angular velocity is obtained.

The polynomial coefficient calculations also involved the value of the body angular

\'elocity at touch down time. Civen that this value is inftuenced by the applied

controller. assumptions had to be considered in deternlining this touch clown body

angular vclocity. If accurate predictions were considered for ÔF-, iJB- ~ the resulting

after-impact body angular velocity had exactly the desired set point value: if coarser

predictions about iJF- ~ iJB- were made~ a constant error between the desired set

point. and obtained value was observed. HoweveL in both cases (accurate or coarser

iJF- ~ iJB- predictionL numerical simulations indicated that bath stable and periodical

walking will be obtained.

During experimental implementation of the polynomial controller on SCOCT

1 hardware limitations (available torque and speed) indicated the need for simpler
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control schemes. YIoreover. the actuation should be distributed during the stance

phase. A very simple control algorithm \Vas used in the ramp controller. \Ve proposed

a ramp input for the supporting hip angle. Simulation results indicated that only the

sweep at a constant angular velocity of the back leg had a positive effect on bath

forward displacement and transfer of momentum. Therefore~ in this control scheme

the front legs are fixed ail the times. The parameters (identified as the wa/king

parameter8) that need to be specified for the ramp controller are the hip angles at

back leg and front leg impact moments and the back leg constant angular ,·elocity

while on back leg support. The walking parameters have been determined through

a series of simulations using the desired set point (OB+ = 1 radis) and the periodic

motion condition (0:;:1 = iJ~+). It has been shown that~ even with the determined

walking parameters an open loop motion is stable and converges to\Vards the desired

set point. :\""ext, a look up table \Vas used as a feedback mechanism~ to determine

the appropriate back leg angular velocity (9B) as a function of the measured after­

impact body angular velocity (0 8 +). The feedback is introduced with the purpose

of reducing the number of steps required to recover from possible disturbances and

increasing the raI~ge of disturbances from which the system can recover in one or

several steps. The entry in this look up table is 0;:+ and the output is the necessary

back leg hip angular velocity that will yield 0:;:1 at the set point value~ or very close

ta it. In order to make our simulations more realistic l torque limitations have been

introduced in the mathematical mode!. However~ these limitations did not influence

eithcr the performance of the system or its stability noticeably.

The performance given by the ramp controller indicated that seoCT will take

short steps. That is why we changed the controlled input to a modificd saturated

ramp function. Using this control scheme~ one will have control o'"er the step size

through the limits defining the saturated ramp. In this ne\\" control scheme. the

back leg will end its sweep motion before the front leg impact occurs. Hence. the

after-impact angular velocity iJB+ will be a result of only the before-impact angular

vclocity iJ B -. As in the ramp controller l simulations showed that the contribution of
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the front leg ta the overall motion is most effective if it is kept at a fixed position.

The same set point (iJ B + = 1 radis) \Vas considered and walking paranleters have

been determined via numerical simulations. The stability analysis indicated that this

type of control algorithm has a fast convergence (one step) towards the desired set

point. e\·en when an open loop control algorithm is used. However. the required

torques attain much larger peak values than those observed in the ramp controller

simulations. This indicated potential problems in implementing this type of controller

on the experimental set-up.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1. Experimental Set-up

SCOCT II is a quadruped robot with a mass of 27 kg and measures 0.275 m in

heighL 0.552 m in length and 0.48 m in width. The legs are basically rigid sticks and

connect to the body through rotational joints. Each joint is driven independently by

the cornbination of OC motors~ reduction gear set and timing belt. Given that during

walking important impacts will occur. each leg~s toe is protected by a rubber baIl.

Two laser sensors are added at the front and back of body for body angle measure­

ments. On each motor shaft optical encoders are mounted and are used ta measure

the hip angles. Furthermore~ current measurements from each motor amplifier indi­

cate the actual applied torques. Inside the legs. linear potentiometers are mOllnted~

and llsed in detecting the contact \Vith the grollnd. Hall effect sensors are used to

calibrate the offsets for the incremental hip angle sensors.
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FIGURE 4.1. Schematics of experimental set-up

SCOCT II is controlled by a PC~ running under the Qr\X environment [9]. The

control algorithms are implemented in the experimental code~ where a PD controller.

with optional feedfor",ard tenns~ will track the desired reference trajectory for the hip

angles. The interconnection bet",een the control unit (PC) and SCOCT II is sketched

in Figure 4.1. The Standard Parallel Port / SeriaI Peripheral Interface (SPP/SPI) is

the interface between the PC and peripheral seriaI 1/0 modules.

4.2. Ramp Controller

The ramp controller described in Section 3.3 has been implemented on SCOCT II.

The configuration at the moments of exchange of support and required back actuator

angular velocity were set according to eq. (3.7) .
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In performing the simulations, the mathematical model developed in ehapter 2

\Vas used (see Figure 3.1). It was mentioned in the previous chapters that adynamie

walking sequence would be designed and implemented, hence seoCT would be either

on its back or front leg. HoweveL during the experimental work, it \Vas clear that

there existed a non-negligible double stance phase. No control algorithm has been

developed for the double stance, so two alternatives were available~

• after back leg impact. even if SeOCT is still in double stance~ start the de­

signed control algorithm (a ramp or a saturated ramp): or.

• keep the hip angles at their prescribed position ([of: 97J or [of: Qf]) until the

single support phase is detected.

In implementing the ramp controlleL we used the first alternative. which led to

stable walking, as presented in Figure 4.2. In the top two graphs, different symbols

\Vere used to delimit the beginning of different states: '0' start of back leg support,

.*' of double stance phase and '+' for front leg support, These delimiters show that

during the experiments the double stance accounts for approx. 20% of the step tîme.

The effect of this double stance is one of the factors that can explain the differences

between the simulations (Figure 3.13) and the experimental results (Figure 4.2).

In designing a control algorithm the controlled momentum transfer idea was con­

sidered with the goal of obtaining a periodic motion. From the experiments it has

been observed that the periodic motion condition has been satisfied. Hence, it is still

nceded to validate the mathematical model derived for the impact of either back or

front leg.

\Ve performed two different sets of experiments. In one of them seoCT II walked

on our linoleum tHe covered laboratory fIoor, and in the other one on carpet. The

purpose of these two experiments \Vas to analyze the effect of toe slipping on the

ground on the momentum transfer, given that the mathematical model considers the

toc to be pin connected ta the ground after the impact. For these two different
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FIGURE 4.2. Experimental results for ramp controller : "*' indicates the
beginning of the double stance phase~ '0' indicates the beginning of the back
leg support and '+' the beginning of the front leg support; the dashed line
indicates the desired value and the solid Hne the actual value

experiments. the states at the end of the single stance and beginning of the next

single stance were recorded. Csing these states the theoretical value for the angular

,-elocity iJF-+. (iJB+) \Vas compared ta the experimental value.

Figure 4.3 shows the predicted (represented br a '0') and experimentally obtained

C*') value for iJB+. The left graphs (a) correspond ta the experiments on the linoleum

floor. and the right graphs (b) are obtained from the experiments done on the carpet.

As it can be observed, the effect of increased friction between the toe and the ground

decreased the error between the theoretically predicted value and the actual value.

Furthermore, the iJB+ values obtained from the experiments on the carpet, \Vere doser
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FIGURE 4.3. Back leg impact momentum transfcr (a) on linoleum tiles and
(b) on carpet [~o~ theoretical value; '*~ experimental value]

•

ta the desired set point value iJB+ = 1 rad/s. In this control algorithm~ the back leg

is still sweeping when the front leg impact occurs. Hence~ at front leg impacL the

effect of toe slipping on the ground is more evident due ta the large forward body

linear velocity. In the experiments conducted on linoleum floor the resulting iJB+ is

larger than its theoretically predicted value. This indicates that the dynamics of the

double stance and the actuation strategy during the double stance have an important

effect on the momentum transfer~ an effect which our mathematical model did not

take into account .
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The same experiment revealed even more drastic differences for the front leg im­

pact. The left graphs (a) presented in Figure 4.4 (corresponding ta the experiments

pcrformed on the linoleum tile Roor) show the important difference betwecn the thc­

orctical predicted value (dcnoted by :0') and the experiruental one C*'). The right

graphs (b) (obtained from the experiments performed on the carpet) emphasise the

importance of preventing toe slippage, where we get fairly good correspondence be­

tween the experimental and theoretical values. On linoleum tiles (Figure 4.4(a», toe

slippage occurs and causes the 10ss of most of the body angular momentum. Figures

4.3 and 4.4 show that the impact of the front legs is more sensitive ta the slippage
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effect. During the motion! only in the back leg support phase there is an actual for­

ward displacement of the body. This forward motion increases the slippage effect at

the impact of the front legs.

4.3. Saturated Ramp Controller

Another set of experiments have been dedicated to the implementation of the

saturated ramp controller described in Section 3.4. \-Vith the parameters set according

to eq. (3.8) and no actuation during double stance! the resulting stable motion is

shown in Figure 4.5.

2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9
1.8

15' 1.6
ca.=. 1.4
-e-1.2

2 3 4 5 6 7 B 9
40

E 20
~ 0

1:..;0-20
-40 L......L. -L- -'-- ~_____'_ ._....... _'_ '_____I

2 3 4 5 6
time [s]

7 B 9

•
FIGURE 4.5. Experimental results for ramp controller ; ~*! indicates the
beginning of the double stance phase: 'o! indicates the beginuing of the back
leg support and ~+! the beginning of the front leg support: the dashed line
indicates the desired value and the solid line the actual value
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As predicted from the numerica! simulations, tracking problems have an impor­

tant effect on the experimental implementation. The third graph presented in Figure

-1..5 shows the difference between the required back leg hip angle (dashed Hne) and

the actual one (solid line). Again we have delimited diffcrent stages Co' beginning of

back leg support, .*. beginning of double stance, '+' beginning of front leg support) to

emphasise the importance of the double stance time. Furthermore, in the third graph

one can observe that the back leg is still in motion when front leg impact occurs. This

poor tracking is a direct result of the hardware limitations on the maximum torque

that can be delivered by the hip motors. Furthermore. the bottom graph presentee! in

Figure 4.5 shows that even when a peak torque is required (dashed line) the delivered

\'alue (solid line) is not always the required value (again due to hard\\"are limitations).

This experiment showed that, despite the poor tracking, a periodical motion has been

obtained.

In Figure 4.6 we analyse the momentum transfer for front leg impact (a) and

back leg impact (b). As mentioned before, the back leg is still moving when front leg

irnpact occurs; hence the front toe slippage is increased by the body forward velocity

(this experiment has been conducted on the linoleum floor). The slippage combined

with the effect of the double stance are the major elements that can explain the

large differences between the theoretically predicted iJF+ (represented by '0' in Figure

4.6(a)) and the experimentally obtained value ('*' in the same figure). \Vhen back

leg impact occurs~ the slippage of the back toe is less significant; hence, lower errors

bctwcen theoretical and experimental values for iJB+ (Figure 4.6(b)). However, the

resulting iJB+, in the range of [1.1; lAJ rad/s, is away from the desired set point value

iJ EJ+ = 1 radis .
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FIGURE 4.6. 1Vlomentum transfer at (a) back leg impact and (b) front leg
impact['o' theoretical value; '*' expcrimental value]

4.4. Summaryand Conclusions

•

This section presented the experimental results ohtained from the implementation

of the ramp controller and saturated ramp controller. Both experiments resulted in

periodic motion.

\"lwn implementing the ramp controller, two different sets of experiments have

been conducted; one on standard laboratory linoleum tiles, one on carpeL These

experiments showed the disastrous effect of toe slippage on the momentum transfer

when walking on linoleum tiles. Carpet floor reduced toe slipping without completely

elirninating it. The experirnents used to validate the saturated ramp controller were
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conducted only on linoleum fioor. These experiments \Vere clearly influenced br poor

tracking in the desired input trajectory and important toe slipping.

Tracking problems and significant double stance time \Vere present in both con­

troller inlplementations; however, in the ramp controller the tracking error resulted

in an error only in the final value for the hip angle, not its angular velocity. That

is why the set point iJB+ = 1 radis used in developing the theoretical simulations

was observed, within an acceptable range, in the experiments as weIl (see Figure

4.3(b)). The same set point iJB-+- = 1 radis was used in designing the saturated ramp

controller, and Figure 4.6 shows its experimentally obtained value. Still, this experi­

mental value is the result of the combined effect of an error in the final hip angle and

the presence of the hip angular velocity.

As a conclusion, it has been observed that implementing a very sinlple control

algorithm. the ramp or saturated ramp controller, one can obtain a periodic motion.

Experimental results showed that the ramp controller is easier to implement. because

it requires less actuator torque.
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CHAPTER 5

CONCLUSIONS

5.1. Summary

This thesis presented walking control algorithms for a new dass of dynamically

stable legged robots. Different control schemes were developed and tried on nu­

merical simulations. These simulations required the mathematical model associated

with seoCT. The modeling considerations demonstrated that SCOCT is a two Düf

system. with only one actuator (hip motor). Three different control strategies (poly­

nomiaL ramp and saturated ramp controllers) were presented and the experimental

results for the implementation of the last two were shown.

5.2. Conclusions

An analysis of the theoretical results presented in Chapter 3 and the experimental

results (Chapter 4) shows several differences. This disagrcement can he explained by

the modeling assumptions presented in Chapter 2. There are several factors that are
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present in the physical system and were not accounted for in the theoretical model of

the system.

One of the effects that we \Vere able to prove to have a significant effect on the

resuIts was the toe - floor interaction. The current approach used in the design of

walking control algorithms relies critically on the momentum transfer. The momen­

tum transfer is based on the assumption that a pin connection between toe and ground

is formed as a result of their impact. Video recordings showed an important slippage

between toe and floor. This slippage \Vas minimized by the presence of a rough mate­

rial. like a carpet~ on the floor. The influence of slippage was not as evident on smaller

robots~ like SCOCT l, but become an important effect on larger robots (SCOCT II) .

.\Ioreover~ the legs \Vere modeled as stiff elements. Xevertheless~ the toe material and

leg design introduces compliant effects, for which the model did not account. This

compliance will aIso have influence over the assumption of perfect plastic impact be­

tween toe and floor. Furthermore~ the combined effect of the compliance and slippage

can explain the presence of the double stance~ \\rhose effect on the dynamics was not

considered in the modeling part.

Se\'eral other elements influence the experimental results, such as overcoming the

friction in the mechanicaI transmissions. Simulations of the ramp controller consid­

cred the hardware limitations on the maximum torque delivered by the hip motors.

but did not consider the efficiency of motor. gear or belt transmission.

\Vith aH of these un-modeled factors, experimental implementation of both ramp

controller and saturated ramp controller was successful. However. the ramp controller

is c10ser to the theoretical expected behaviour~ due to lower actuation requirements .

.\lthough it takes smaller steps, the superiority of the overall performance recom­

mends this control scheme over the saturated ramp controller.

Consequently~ the current approach used in the design of walking gaits. if imple­

rnented with proper care~ can result in periodic, stable walking motions. However.

this approach is vulnerable to slippage problems and un-modeled properties, such as

eompliance in legs.
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5.3. Recommendations for Future Work

Simulations for both ramp controller and saturated ramp controIIer showed that

increasing leg length can improve the overall behavior, for example~ lower required

hip torques, faster steps, etc. ~evertheless, a more in-depth analysis is required.

The implementation of the polynomial controller on SCOCT II could result in

successful experiments. Its potential has yet to be tested, and is the only control

scheme in which bath front and back leg contribute to the forward displacement of

the body.

For future control algorithms, significant attention has ta be paid to the model­

ing part. \Vith our conclusions from the experimental work. sorne of the assumptions

made in developing the mathematical model have to be revised. The most important

ones are the modeling of toe - fioor interaction. In developing future control algo­

rithms, the use of optimization techniques might be successful. These methods will

allo\\" the design of control strategies that consider the energy consumption issue, or

consider the hardware limitations on available actuator torque.

The conclusions showed that the success of the designed controllers is highly de­

pendent on the closeness between the model and physical system. Currently, SCOCT

II is equipped with legs that can be adapted for running experiments, where com­

pliance is an important factor, However, during walking important impacts occur:

therefore a more robust leg design should be considered. Furthermore, the slippage

of the foot on the fioor is a direct result of the interaction between the foot material

and fioor surface. The use of sticky materials for the leg tocs and fioor can reduce

the slipping effect.

Sorne work should be put into the experimental software. Different sets of gains

are used as a function of the current state, for example, support on back or front legs

and double stance. However, in double stance there is a tendency for the legs to work

against each oeher, in order to attain their desired position. Consequently, different

sets of gains need to be set on the back legs and front legs for the double stance

following the back leg support, and the double stance following front leg support .
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The experimental software can accommodate the walking backwards and forwards.

Howe\·er~ sorne work has to be done towards proper gain settings at the switch between

walking backwards and forwards .
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APPENDIX A. EQUATIONS OF ).[OTIOX

APPENDIX A

EQUATIONS OF MOTION

FIGURE A.l. SCOUT model

The notation used in this appendix is the one defined in Tables 2.1 and 2.2 and Figure

:\.1. The detailed derivation of the equations of motion for the back leg support case
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will be presented. Then~ using coordinate transformations~ it is possible ta express

the same set of equations for the front leg support phase.

A.l. Back leg Support

_ [ -{ cos(O - Ob} + L cos 0 ]
Xb -

-1 sin(O - (J)b) + L sin 8

1 Tl? ·2
T - -mx Xb + -mr-8

2 b 2

- ~m [[r2 + L 2 + 12
- 2Ll cos d>b]02 + 12d>i - 2l[[ - L COS 6b]il6b ]

V - mg(-lsin(8-dJb)+Lsin8]

e - T-V

So~ the non-lïnear equations of motions are

61

- mg (i cos(8 - (,7)b) - L cos 8J

m [[r2+ L 2 + 12 - 2Ll cos tPb]O - [[t - L cos q)b]Q;b + 2Li sin r?b96b - Li sin (J)boi]

ln [l2~b - i[l - L cos 4>b]O - Lt04>b sin lPb]

m [[r 2 + L 2 + l2 - 2Ll cos 6b]0 - t[l - L cos Ob]6b ]

- m [12 0b - [(1 - L cos (,7)b]O]

ae
ag
ae
86b

d ae
dt ail
d ae
dt 86b -

8e
ao
ae
8dJb
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[r 2 + L 2 + i2 - 2Li cos <Pb]O - i[i - L cos <i>b]~b

+2iL<t>biJ sin f/>b - LiJ>~ sin <Pb - gi cos(8 - <Pb) + gL cos () = 0

-i[i - L cos <Pb]O + i26b - iLiJ2sin </Jb + gi cos(8 - <Pb) = Tb/m.

(.-\.1 )

Let x = [ () il <Pb cPb]T be the state vector. Then eq. (A.1) can he written in state

space forro

., , L.,1, oS [L(i - L cos X3)X; sin X3 + Lix2
t sin X3r--r - SIfi- X3 - •

-2iLx2x4sinx3 + gLCOSX3COS(X1 - X3) - gLCOSXI

+t[i - L cos X3]~]

X·I

l-Lcosx~ [L(i L ) 2 • Li 2 .
l(r2+L2 sinFx3) - cos X3 x 2 Sln X3 + X4 sin X3

-2iLx2X.1 sin X3 + gL cos X3 COS(XI - X3) - gL cos Xl

+![[ - L COSX3]!tLJ + ~X~ sinx3 - 9. COS(Xl - X3) + ~!rL.l m l - l . l- rn

•

Csing the technique presented in [1] and the linearization point x· = [00 Tl/2 odT .

the linear set of equations for back leg supporL in state space forro is

Xl X2

X?_ LltPf _ 2lLd" X + gL2 (x _ E)
-- r2+L2 r 2+L2 2 l(r2+L2) 3 2

2LldJ, ( : ) 1 (!li. L)+ r2+L2 X-1 - Oi + r2+L'~ m - 9

X3 - X.I

. Ll~~ ~!J..f.!l. 2lLO.
X·I - r 2 +L2 1 l2 - ,Xl - r2+L2X2

g(2L2+ r 2) ( ") 2LldJ. ( : )+ l(r2+L2) X3 - '2 + r2+L2 X·t - lVi

+[r2;L2 + frJ(~ - gL).

A.2. Front leg Support

From eq. (A.l) using the simple coordinate transformation
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{

() ------+ () - if

<Pb ------+ 2if - Q f

the non-linear equations of motion are

[r2 + L 2 + i 2
- 2Li cos 4JfJO + l[i - L cos cPfJ6f + 2lLdJf ilsin of + Ll6} sin rPf

+gl cos(O + Qf) - gL cos () = 0

l(l - L cos q)f]O + [2;Pf - lLip sin fjJf + gl cos«(} + d>f) = Tf lm.

•

Let x = [ () il <!Jf 6f]T he the state vector. Then eq. --\..2 can he written in state

space form

., . Cl. » [-L(l - L cos X3)X; sin X3 - Llx~ sin X3r-...,.. -sm- X3 -

-2iLx2X-t sin X3 - gL cos X3 COS(XI + X3) + gL cos XI

-tri - L cos X3J~]

. {- L cos X3 [ L (l L ) 2 • Li 2 .
X-t - - l(r2 +L2 sin:.! X3) - - COS X3 X 2 SIn X3 - X.I sin X3

-2lLx2x-t sin X3 - gL cos X3 COS(XI + X3) + gL cos XI

-t[l - L COSX3]~J + fx~ sin X3 - TCOS(XI + X3) + ir~·

--\.gain using the technique presented in [1] and the linearization point

.r- = [ 0 0 if12 d>i]T~ the linear set of equations for front leg support. in state space

[orm is
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- X4

Ll<iJr !l.f.!l 21 Lt1J.
r 2 +L'! + [2 + 1Xl + r 2 +L2 X 2

g(2L2 +r2) ( 7ô) 2Llt1J. ~ )+ l(r2+L2) X3 - 2" + r2+L2 (X-t - ([Ji

+[r~1L2 + b](~ - gL) .
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APPENDIX B

IMPACT MODEL

B.I. Impact equations based on double pendulum model

B.1.1. Back Leg Impact. \Vith reference ta the notation presented in

Figure :\.1, and the definition of the angular momentum given in eq. (2.7L the

angular moment just before and immediately after the impacL \Vith respect to the

back leg toe are

H- - IO B
- + m(xbY! - x!Yb)

m [[l[-lcos(4)f +qJ7) + Lcosç;7J +r2 -L2 + lL cos 0f]OB-

l( l ( .B B) L .BJ .. B-]+ - cos lPb + (J)f + cos (J)f (J) f

H+ - IO B + + m(xbYb - XbYb)

- m [Url - L cos q;f] + r 2 + L2
- lL cos q;fJOB+ - l[l - L cos ofJ6f+] .

\Vith H- = H+ ~ the impact is governed by
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[l[ -l cos(4>f + l/J7) + L cos q>7] + r 2
- L 2 + tL cos dJf]8 B

­

+i[-l cos(l/Jf + q>7) + L cos 4>7]</1fB- =

[l[i - L cos (j)B] + r 2 + L2 - lL cos (j)B]OB+ - t[l - L cos dJBJdJB+.b b b b

B.1.2. Front Leg impact. Again. \Vith reference ta the notation presented

in Figure A.L and the definition of the angular momentum given in eq. (2.n. the

nlomenta just before and immediately after the impacL \Vith respect ta the front leg

toc are

- [Ô F
- + m(xfYb - xbYf)

m [[l[-l cos(dJ[ + (,Of) + L cos dJ[] + r 2
- L2 + iL cos (,O~]oF-

-L[-Lcos(q>[ + d>~) + L cos q>[]Ç;b
F
-]

- [OF+- + m(xfYf - XfYf)

[[l[l - L cos tP~] + r 2 + L2
- iL cos @~JOF+ + I[l - L cos ~~Jd>~+] .

Sa the impact is governed by :

[l[-icos(4)[ + dJf) + LcosdJ[] + r 2
- L 2 + lLcosq)f]OF-

lr i ( 'F .F) L F] ~ F-- .- cos ([)b + <Pf + cos ([)b <Pb =

[i[1 - L cos et>f] + r2 + L2 - iL cos </JfJOF + + t[1 - L cos dJf]df+-

B.2. Impact Equations Based on Virtual Leg Modet

In this section we will use the notations presented on Figure --\.1. The vector along

the back or front virtual leg
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B.2.1. Back Leg Impact. Again~ starting from eq. (2.7) ~ the angular

momenta just before and immediately after the back leg impact with the ground are

H- - fiJB- + m[xbY/ - YbX/]

- m [r 2
iJB- - Ififsin3 8 + if[707- cosJ B

]

H+ fil B+ + m[XbYb - YbIb]

- m[r2(j8+ + (lffof+]·

In the abo\'e equation we made use of ,88= 0'f - Q:~. Csing trigonometric identities

it is possible to show that

(B.I)

where Cb.f is a constant that depends only on the geometry of the system. that is

Given H- = H+: the conservation of angular momentunl is given by

. . B-
[r 2 + ifi7 cos 3 8 ]08 - + [lf sin ,38

- Cfifi7 cos 3 8 ]if

= [r2 + (lt)2]iJB+ _ Cf (lr)2l~B+.

(B.2)

(B.3)

•
From eq. (B.3L the velocity of the front virtualleg: just before back leg impact. can

he expressed as~
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iB- = [r 2 + leif cos ;3B]OB- - [r2 + (lff]OB+
/ CBlBlB cos (3B - lB sin .8B .

/ b / . b

Therefore~ in eq. (3AL

[r2+ if l7 cos pB]
Cl - Cflflf cos BB - lf sin pB

r 2+ (lf)2

(BA)

(B ..5)

•

B.2.2. Front Leg IDlpact. From the basic mornentum transfer relation

shown in eq. (2.7) and eq. (B.2)

H- - mr2
iJF- +m[xJ!jb - Y/Ib]

m [r 2(jF- - i[lfsinJF + l[lfà:[- cos 3 F]

H+ - mr20F + + m[x!'y/ - yri/]

_ m [r 2(jF+ + (lf)2aj+] .
Csing the results presented in Sections B.l and B.2 the conservation of angular

momentum is expressed as

. . F-
[r 2 + lf:lf cos 8 F]8F- - [if sin j3F + C[lf:lf cos âF]lb =

[r 2 + {lf)2JOF+ - Cf(lfFljF+ (B.6)

The velocity of the virtual back leg just before front impact can be expressed as:

(B.7)

Therefore~ in eq. (3.3)
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C3 - lf sin j3F + Crl[lf cos ,BF

r 2 + (lf)2
lf sin.3F + C[l[lf COSBFo

(B.8)

(8.9)
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