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Abstract

The necessity of modelling multibody systems with flexible links in high-speed
operations and space structures has become apparent. In this thesis, a general
formulation for the simulation of multibody systems with multiple kinematic
loops and flexible links of arbitrary shapes is developed, Parallel manipulators,
space structures, multi-armed manipulators, and cooperating serial manipulators
are examples of these systems.

Finite element method is used for discretization of the flexible links, while the
Lagrange formulation is used to derive the equations of motion of the uncoupled
links. The kinematic constraint equations are generated next by using the natural
orthogonal complement (NOC) of the twist-constraint matrix. Here, the formu-
lation of the problem is obtained both in joint and in Cartesian spaces. Using
the NOC, the constraint forces are eliminated from the equations of motion to
obtain the governing equations of the system in minimum coordinates. Moreover,
the formulation incorporates geometric nonlinearities in the elastic displacements,
which can be very crucial in large rigid-body motions.

A simulation environment is developed to perform the procedures underlying
the above formulations for different types of robotic manipulators with kinematic
loops and flexible links. To highlight the link flexibility effect, the governing
equations of motion are used in the simulation of the aforementioned systems to

compare the results obtained with the rigid and the flexible-link models.
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Résumé

La modélisation de la flexibilité des membres est nécessaire pour les systemes
mécaniques opérant a hautes vitesses ou pour les structures spatiales. L’autcur
de cette theése présente une formulation générale de la dynamique des systémes
mécaniques a multiples boucles cinématiques et membres flexibles & géométries ar-
bitraires. Les manipulateurs paralléles, les structures spatiales, les manipulateurs
a plusieurs bras, ainsi que les manipulateurs sériels en opérations coordonnées,
sont des exemples de tels systemes.

La méthode des éléments finis est utilisée pour discrétiser les membres flexi-
bles, alors que la formulation de Lagrange est utilisée pour obtenir les équations
du mouvement des membres non couplés. Les contraintes cinématiques sont
déterminées au moyen du complément orthogonal naturel de la matrice de con-
traintes de vitesses. La formulation du probleme est obtenue a la fois dans
Pespace articulaire et cartésien. En utilisant ledit complément, les forces de con-
traintes sont éliminées des équations du mouvement, obtenant ainsi, un systeme
d’équations en coordonnées minimales. En outre, la formulation inclut la géométrie
non-linéaire des déplacements élastiques, qui peuvent étre cruciaux lors de grands
mouvements.

Un logiciel de simulation a été développé afin d’étudier différents types dc
manipulateurs robotiques 4 multiples boucles cinématiques et membres flexibles.
L’effet de la flexibilité des membres est démontré en comparant les résultats de

simulations utilisant un modele rigide et flexible.
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Claim of Originality

"The major contribution in the course of this thesis is the development of a general
formulation for the modelling and simulation of multibody systems with flexible
links of arbitrary shapes and multiple kinematic loops.

Additional contributions are also made as a result of the thesis, namely,

¢ Development of a methodology to generate kinematic constraint equations
that is applicable to general multiple kinematic loops using the natural

orthogonal complement of the velocity-constraint matrix;

e Modelling and simulation of cooperating serial manipulators as well as pla-
nar paralle]l manipulators with flexible links in both Cartesian and joint

spaces,

¢ Kinematic and dynamic simulations of a spatial parallel manipulator with

flexible links.

These contributions have been partly reported in a preliminary form in {Fattah,
Angeles, and Misra, 1995-a, 1995-b, 1994-a, 1994-b) and (Fattah, Misra, and
Angeles, 1995, 1994).
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Notation

Mathematical Symbols

Bold-face upper-case letters are used to denote matrices, while bold-

face lower-case letters denote vectors. Italic letters denote scalars
[-]it vector or matrix (-) expressed in frame F;

[-i: subscripts 7 and j i. vector or matrix (-) stand for the labels of
link ¢ and element j, respectively

|| + |I: Euclidean norm of vector (-)

Greek Symbols

a;: angle between joint axes Z; and Z;;3
v:: joint angle associated with the flexibility of link ¢

~ki: components of the rotation of the tip of the link ¢ associated with
the flexibility of the same link

I';: mapping between v; and §;

[e]7: nonlinear terms in Green’s strain tensor
Ox: joint angle centred at origin O

8: vector of generalized coordinates

0p: vector of dependent generalized coordinates

@r: vector of independent generalized coordinates

61: vector of independent generalized speeds

Xv



J: dimension of vector 9

&;: number of elements of link 3

A;: mapping between q; and v;

v: number of joints of the system

I1%: power developed by nonworking kinematic constraint forces
pi: mass density of link ¢

[o)ij: state of stress because of the inertia loading of element j of

link ¢
T;: vector of the external torques applied at joint ¢

¢:: angle of orientation (planar system) of frame JF; with respect to

Fo
&;;: connectivity matrix of element j of link 2

®{;: connectivity matrix of the rigid-body position vector of element

7 of link ©

;: total angle of rotation of the joint centred at O;
pl: j** column of ®;,,, an n;-dimensional eigenvector
W,..: modal matrix

w;, wi: angular velocity of frame F; with respect to Jo in the spatial

and planar case, respectively

we: angular velocity of the moving platform of the spatial parallel

manipulator
2;: cross-product matrix of w;

2c: cross-product matrix of we

Latin Symbols

a;;: position vector from O, origin of the frame F;, to Of , origin of

frame F, expressed in the inertial frame

xvi



a;: position vector from O; to O;13 on link 7 expressed in the inertial
frame (spatial case)

A: twist-constraint matrix

bP, bP: dissipative wrench of link i and that of the system, respec-
tively

b¥, bE: external wrench of link i and that of the system, respectively
b, bC: gravity forces of link 7 and that of the system, respectively

b¥, bX: kinematic constraint wrench of link i and that of the system,

respectively
b?, bS: system wrench of link i and that of the system, respectively
c: position vector of the centre of mass of the moving-plattorm

i, Cis, C&, C", C*: constant matrices for computing the mass
matrix of link ¢

d;: position vector of any point P; expressed in the inertial frame

[dei]ij, [desi: elastic displacement of point P; expressed in the F;; and
F; frames, respectively

DOF: degree(s) of freedom
D;: cross-product matrix of vector d;

E: 2 x 2 orthogonal matrix that rotates vectors in plane through $0°

counterclockwise
f;: vector of generalized forces of link i

fA: algebraic constraint wrench of link 7 due to the algebraic con-
straint among the components of the Euler parameters

fP: dissipative wrench of link ¢

fE: external wrench of link ¢

fS: gravity forces of link ¢

£X: kinematic-constraint wrench of link 7 resulting from the kinematic
coupling of the links

£5: system wrench of link i

xvil



F;: rotation matrix associated with the flexibility of link ¢

F;: spatial coordinate frame X;Y;Z; or planar frame X;Y;, attached
to link 2

Fo: spatial inertial coordinate frame XoYoZp or planar XoYo

Fi;: spatial coordinate frame X;;Yi;Z;; or planar frame Xj;Y};, at-

tached to element j of link 7

Fo: coordinate frame attached to the centre of mass of the moving-
platform of the spatial parallel manipulator

I;: inertia matrix of link ¢

K;: stiffness matrix of link ¢

K;;: stiffness matrix of element j of link 2

K5;: conventional stiffness matrix of element j of link 2
K{': geometric stiffness matrix of element j of link ¢

Li( Poi), Li;{ Poi): shape-function matrices of link ¢ and element j of
the same link evaluated at point F; in the undeformed configuration
of link ¢

L{(Po:), L{;(Po;): shape-functio. matrices for the rigid-body position
vector evaluated at point Fp; of link 7 and element 7 of the same link

L?*(Po:): shape-function matrix based on the modal coordinates

m;: dimension of vector uf

+ dimension of vector v;

m;

m': dimension of vector v
M: generalized extended mass matrix of the system
M;: mass matrix of link ¢
M: generalized inertia of the system
n;: dimension of vector u;(t)
!

n{: dimension of vector q;

N: natural orthogoral complement matrix of the twist-constraint ma-
trix A

xviil



P;: a nominal point on element j of link ¢

pi: position vector of point P; in the inertial frame

g: number of degrees of freedom of the system

g;: prescribed manoeuvre for the actuated joint centred at O;
q;: vector of the flexible-pose of link :

d;: vector of Euler parameters representing the orientation of the
frame F;

r: number of all moving links in the system
ry: number of all flexible links in the system

r;: position vector of origin O; in the inertial frame defining the global
position

R;: rotation matrix of frame JF; with respect to the inertial frame
Re: rotation matrix of frame Fg with respect to the inertial [rame
t: time

T: simulation time

T;: kinetic energy of link ¢

u;(t), u;(2): vectors of generalized coordinates (nodal elastic displace-
ments of link ¢ and element j of the same link) associated with link
flexibility

u?: nodal rigid-body position vector of link 3

u*(t): modal coordinates (modal elastic displacements) of link ¢

v;: volume of link ¢

Vit elastic strain energy of link ¢

V;;: elastic strain energy of element j of link ¢

Vi: conventional elastic strain energy of element j of link

Vi™: elastic strain energy due to the effect of geometric nonlin-arities

in the elastic displacements of element j of link :
v: vector of generalized flexible-twist of the system

v;: vector of flexible-twist of link ¢
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Wik, Wik: spatial and planar angular velocities of frame F; with re-

spect to frame JF; resulting from the elastic displacement of link 1
y: state-space vector
Y;: rotation matrix of frame J;; with respect to F;

zi: unit vector parallel to the joint axis Zj
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Chapter 1

Introduction

1.1 Basic Robotic Manipulator Terminology

A mechanical system can be modelled for dynamical analysis as a kinematic chain
of interconnected rigid and flexible links. In turn, a kinematic chain may be sim-
ple or complex. It is simple if each link is connected to, at most, two other links.
Moreover, a simple kinematic chain is closed if all links are connected to two other
links; otherwise, it 1s open, these two concepts being illustrated in Fig. 1.1. Open
kinematic chains appear frequently in serial robotic manipulators, while closed
kinematic chains appear in linkages. Complex kinematic chains are composed of
more than one simple kinematic chain and contain both open and closed sub-
chains. Complex kinematic chains with open subchains are known as tree struc-
tures, while complex kinematic chains comprise closed subchains as kinemadtic
loops, as depicted in Fig. 1.2. Tree structures can appear in multi-armed manip-
ulators such as the Special Purpose Dexterous Manipulator (SPDM), shown in
Fig. 1.3, one of the robotic manipulators of the Mobile Servicing System (MSS) of
the International Space Station Program. Kinematic loops occur in many appli-

cations. Examples are parallel manipulators, space structures, cooperating serial
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Open Closed

(4

Figure 1.1: Simple kinematic chains

manipulators and multi-armed manipulators in a coordinated activity.

Robotic manipulators, as defined above, can be classified into three basic

groups, namely,
a) serial manipulators;
b) multi-armed manipulators;
c) paralle] manipulators.

Most industrial robotic manipulators have traditionally been designed as an-
thropomorphic serial manipulators. Serial manipulators usually have merits such
as larger workspace and larger reachability; higher dexterity; simpler modelling
requirernents. However, they also have drawbacks such as low rigidity because of
their cantilever-type configuration, poor dynamic performance during high-speed
operations, low accuracy and larger inertia load. To overcome these drawbacks, an
alternative type of manipulators, comprising kinematic loops, known as parailel
manipulators, has been proposed. The main advantages of parallel manipula-
tors, as compared with their serial counterparts, are greater rigidity, lower inertia
load, higher accuracy due to the lack of cantilever structures, and higher load-
carrying capacity. Parallel manipulators have potential applications where the
demands on workspace and dexterity are low but the dynamic loading is severe,

and high-speed operation and precision motion are of primary concern.
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Tree Structure Kinematic Loops

(

Figure 1.2: Complex kinematic chains

From the kinematic and dynamic modelling points of view, multi-armed and
serial manipulators can be considered the same, while multi-armed manipulators
in a coordinated activity, cooperating serial manipulators and parallel manipu-
lators can be regarded as robotic manipulators with kinematic loops. Therefore,

. from now on, the term robotic manipulators with kinematic loops shall be used to

refer to these manipulators.

Robotic manipulators can be modelled with rigid links in some instances.
However, in high-speed operations, the inertia forces become large and the system
undergoes substantial elastic dispiacements. Moreover, space structures usually
contain long and light-weight links, and thus, the elasticity of the links becomes
important. In these situations, the necessity of modelling robotic manipulators
with flexible links becomes apparent. In this thesis, a modelling procedure will he

introduced that is applicable to robotic manipulators with kinematic loops and

fiexible links.



s

Chapter 1, Introduction

JoyemdIueul pauLIe-1)nw y :¢°[ 24ndiy




Chapter 1. Introduction

o

1.2 (General Background and Motivation

Robotic manipulators are modelled for dynamical analysis as multibody mechan-

ical systems, as described in the previous section.

1.2.1 Dynamics of Multibody Mechanical Systems

The modelling of multibody meckanical systems with flexible links is a challeng-
ing task. Extensive research in this area, especially for closed kinematic chains,
such as linkages and mechanisms, has been reported. The achievements of the
seventies have been reviewed by Erdman and Sandor (1972) and Lowen and Jan-
drasits (1972). A review paper on the subject was published later by Lowen and

Chassapis (1986). Recently, some important works in this area are addressed in

(Erdman, 1993).

Earlier modelling efforts can be classified into two groups. Some research
works were based on a method that considered the elastic body as a continuous
system (Jasinski et al., 1971; Chu and Pan, 1975; Badlani and Kleinhenz, 1979;
Badlani and Midha, 1982; Tadjbakhsh, 1982; Tadjbakhsh and Younis, 1986).
This method assumes infinite degrees of freedom for elastic links, which brings
about some difficulties in modelling the system. For this reason, in most cases,

researchers considered examples with only one elastic link in the mechanism.

Some other investigators used a method that was based on discretizing the
links, so that they have a finite number of elastic degrees of freedom. Farlier
work in this group was based on the assumption that elastic displacements have
no effect on the rigid-body motion of the systern (Winfry, 1972; Erdman et al.,
1972; Imam et al., 1973; Imam and Sandor, 1973; Baghat and Willmert, 1976;
Ho, 1977; Midha et al., 1979; Cleghorn et al., 1981; Sunada and Dubowsky, 1981;
Turcic and Midha, 1984-a; Naganathan and Soni, 1986). This assumption cannot
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give accurate results when high-speed operations come into play, since it ignores

the coupling between the rigid-body motion and the elastic displacements.

Later, Song and Haug (1980), Shabana and Wehage (1983; 1984) and Yoo
and Haug (1986) used a method that attempted to consider the coupling be-
iween rigid-body motion and elastic displacements. They used the Lagrange
equations of motion and either the finite-element method or the assumed-mode
method to account for the elastic displacements of the links. Lagrange multipli-
ers were introduced in order to account for the constraint forces. By considering
the coupling between the rigid-body motion and the elastic displacements, a sys-
tem of nonlinear algebraic equations was adjoined to the differential equations
of motion. This method thus increases the number of equations and leads to a
mixed set of differential and algebraic equations, which brings about additional
numerical difficulties. Nagarajan and Turcic (1990-a; 1990-b) used an approach
that was similar to the above method but the differential equations of motion
were in symbolic form and in terms of minimum variables. In their approach, the
dependent rigid-body constraint variables were eliminated and expressed in terms
of the rigid-body degrees of freedom. However, constraint forces still should be

computed.

An alternative approach can be used to derive the governing equations of mo-
tion in terms of a minimum number of equations. Extensive research works using
different methods to reduce the generalized coordinates and also to eliminate
the constraint forces have been reported, namely, the joint-coordinate method
based on a velocity transformation (Jerkovsky, 1978; Kim and Vanderploeg,
1986; Chang and Shabana, 1990; Nikravesh and Gim, 1993), the singular-value-
decomposition method (Mani, 1984; Singh and Linkins, 1985); the zero eigenvalue
method (Kaman and Huston, 1984); orthogonal complement arrays (Amirouche
and Huston, 1988; Ider and Amirouche, 1988); and the pseudo-upper triangular-

decomposition method (Amirouche and Jia, 1988). Another method uses Kane’s
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equations (Kane and Levinson, 1985; Singh et al. 1985; Everett, 1989; Amirouche
and Xie, 1993). In this method, the constraint forces are eliminated from the
equations of motion by introducing partial velocities and partial angular veloci-
ties derived from the kinematic constraints. Cyril et al. (1991), Saha and Angeles
(1991), Ma (1991) and Darcovich et al. (1992) used the Lagrange or Newton-
Euler equations of motion and incorporated the natural orthogenal complement
{Angeles and Lee, 1988) to eliminate the constraint forces from the equations of

motion to obtain the governing equations in minimum coordinates.

One of the important issues in the area of multibody dynamics is consideration
of the effect of geometric nonlinearities in the elastic displacements of the flexible
links, also known as geometric stiffening and dynamic stiffening. Although we
can, in some instances, obtain acceptable simulation results without considering
this effect, we can also obtain incorrect results in simulations involving large
rigid-body motions. The effect of geometric nonlinearities has been studied by
numerous investigators (Likins et al., 1973; Turcic and Midha, 1984-b; Kane et
al., 1987, Modi and Ibrahim, 1988; Ider and Amirouche, 1989-a; Hanguad and
Sarkar, 1989; Banerjee and Dickens, 1990; Banerjee and Lemak, 1991; Meirovitch,
1991; Sadigh and Misra, 1993; Banerjee, 1993). Most of these rosearchers studied
the geometric nonlinearities in beam-shaped links, while Banerjee and Dickens
(1990), Banerjee and Lemak (1991) and Sadigh and Misra (1993) considered this

effect in the dynamics of multibody systems with elastic links of arbitrary shapes.

1.2.2 Dynamics of Robotic Manipulators

The governing equations of motion of a robotic manipulator can be derived in
terms of nonlinear differential equations by modelling the manipulator as a multi-

body mechanical system. Two basic problems related to the dynamics of robotic
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manipulators arise, namely, inverse dynamics and direct dynamics. Inverse dy-
namics is defined as follows: Given the motion of a robotic manipulator, determine
the actuator forces or torques required to produce the desired motion. Direct dy-
namics, also known as dynamic simulation. is defined as follows: Given the time
histories of the actuator forces or torques and the initial state of the system,

determine the motion of the robotic manipulator.

Extensive research work on the dynamics of serial manipulators with flexible
links has been reported (Hughes, 1979; Kelly and Huston, 1981; Sunada and
Dubowsky, 1983; Book, 1984; Usoro et al., 1986; Sharf and D'Eleuterio, 1988;
Nagathan and Soni, 1988; Bricout et al., 1990; Bremer and Pfeiffer, 1992; Cyril
et al., 1991; De Luca and Siciliano, 1991; Sharf and D’Eleuterio, 1992; Hu and
Ulsoy, 1994). A literature survey on the subject was published by Gaultier and

Cleghorn (1989). Some works in this research area are explained below,

Hughes (1979) used the recursive Newton-Euler formulation for chains of elas-
tic bodies and carried it out for simulation of the Shuttle Remote Manipulator
System. Sunada and Dubowsky (1983) used the finite-element method to con-
sider the dynamical behaviour of robotic manipulators with elastic complex-shape
links. However, they did not consider the effect of elastic displacements on the
rigid-body motion of the system. One of the earlier important works on the
dynamics of elastic serial manipulators was presented by Book (1984). He used
4x4 transformation matrices to represent the joint and deflection motion. The
recursive Lagrangian formulation, which has been proven efficient in the rigid-link
modelling (Hollerbach, 1980), was used for developing the governing equations of
motion for elastic-link manipulators. Moreover, Book considered the coupling be-
tween elastic displacements and rigid-body motions. Usoro et al. (1986) used the
finite element and the Lagrangian formulation to model a two-link flexible ma-
nipulator. Sharf and D’Eleuterio (1988) proposed a general simulation procedure

for chains of elastic bodies using the recursive Newton-Euler scheme (Hughes,
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1985). They used this method to study the effect of flexibility on the dynamics
of robotic manipulators. Sharf and D’Eleuterio (1992) studied parallel simula-
tion dynamics for elastic serial manipulators, which is a new solution method for
the simulation of these systems. They used the modelling procedure that was
suggested in a series of works (Sincarsin and Hughes, 1989; Hughes and Sincar-
sin, 1989; D’Eleuterio, 1992) describing the dynamics of an arbitrary multibody
system composed of chains of elastic bodies. The advantage of this method is
that it concurrently evaluates the solution for constraint forces, using parallel
iterative techniques, and the accelerations of the bodies. While the above investi-
gators studied robotic manipulators with open and single closed-chain structures,
Bremer and Pfeiffer (1992) treated systems of elastic bodies, such as elastic ma-

nipulators, with tree structures.

Nevertheless, the study of the dynamics of robotic manipulators with kine-
matic loops has been the subject of very few investigations (Lee and Shah, 1988;
Sugimoto, 1989; Ma and Angeles, 1989; Reboulet and Berthomieu, 1991; Ma,
1991; Lbert et al., 1993; Gosselin, 1993; Sun ¢; al., 1994; Lilly and Orin, 1994).
Most of these works studied the dynamics of rigid-link parallel manipulators,
except the last one (Sun et al., 1994), which reported a solution to the inverse
dynamics ard force optimization of multi-armed manipulators with flexible links.
Moreover, Lilly and Orin (1994) presented an algorithm for the dynamic simula-

tion of multiple-chain rigid robotic mechanisms.

Until now, to the best of the author’s knowledge, most of the formulations
for the modelling of robotic manipulators with flexible links have been confined
to open, tree-structure, and single closed-chain systems, while the modelling of
robotic manipulators with kinematic loops and flexible links has remained vir-
tually untouched. One of the motivations behind this work is to a{ivance the
state-of-the-art of modelling and simulation of robotic manipulators with kine-

matic loops and flexible links, besides the many applications in space structures
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Figure 1.4: Robotic manipulators with kinematic loops

that give rise to robotic manipulators with kinematic loops. Moreover, long and
light-weight links, high-speed and accuracy are some important features of space
structures whereby consideration of link flexibility in the computation scheme is
required. As an example, Carr et al. (1990) consider the SSRMS (Space Station
Remote Manipulator System) and the SPDM mounted on the Mobile Servic-
ing System (MSS), and participating in a coordinated activity consisting of the
SPDM servicing a payload held by the SSRMS, as shown in Fig. 1.4. These ma-
nipulators have long flexible arms and form muitiple kinematic loops during their

activity.
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1.3 Research Objectives and Scope of the The-

Sis

This research aims at furthering the modelling and simulation techniques meant
for robotic manipulators, while extending it to multibody systems containing
kinematic loops and flexible links. To achieve this goal, the research work is

divided into the following items:

1. Develop a formulation for the simulation of multibody mechanical systems
with multiple kinematic loops and flexible links of arbitrary shapes, which

can be accomplished through the following steps:

a) Model each link as a discrete system. To this end, the continuous system
is reduced to a discrete system with a finite number of degrees of freedom
using a finite-element approximation. Finite-element analyses (FEA) pro-
vide a reliable and systematic modelling technique for mechanical systems
with flexible links of arbitrary shapes. The Lagrange dynamical equations
of motion for the link are then derived under no consideration of kinematic

coupling;

b) Generate kinematic constraint equations. This will be accomplished
using the natural orthogonal complement (NOC) of the twist-constraint
matrix and will be applicable to muliinle kinematic loops. The NOC will
eliminate the constraint forces, thereby leading to a minimum number of

equations of motion;
c) Incorporate geometric nonlinearities in the elastic displacements, which
can be very important in high-speed operations;

d) Transform the nodal coordinates to modal coordinales, so as to reduce
the number of the generalized coordinates. In large mechanical systems,

using finite elements results in a large number of generalized coordinates,
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because of the number of nodal coordinates of each link.

2. Develop a stmulation environment to implement the procedures underly-
ing the above formulations for different types of robotic manipulators with

kinematic loops and flexible links, namely,
a) parallel manipulators;
b) multi-armed manipulators in a coordinated activity;

c¢) cooperating serial manipulators.

1.4 Thesis Outline

The kinematics of multibody systems with closed-chains and flexible links is dis-
cussed in Chapter 2. The first part of this chapter is devoted to deriving the
kinematic analysis of a flexible link. Here, a flexible link is discretized by us-
ing finite elements. The flexible pose and flexible twist of a link are defined to
specify the global position and velocity of the link. The formulation of kinematic
constraints is derived by using the methodology of the natural orthogonal comple-
ment in the second part of Chapter 2. It is also described here how to formulate
the problem in Cartesian space as well as in joint space. Moreover, the procedure

to calculate the natural orthogonal complement is explained.

In Chapter 3, the dynamics of multibody systems with kinematic loops and
flexible links is discussed. First, the modelling of an individual link is described.
Here, using expressions for the kinetic and potential energies of the link, the La-
grange equations of the link are derived. Then, the governing equations of motion
of the system are obtained by assembling all the links together via their kinematic
constraints, as explained in Chapter 2. The number of the generalized coordi-
nates can be reduced by changing the nodal coordinates to modal coordinates,

which is explained in this chapter. Thereafter, the approach to consider the effect
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of geometric nonlinearities in the elastic displacements is addressed. Finally, a

simulation scheme is proposed in this chapter.

The next three chapters are devoted to developing a simulation scheme to
carry out the modelling formulations described in Chapters 2 and 3 for different
types of robotic manipulators with kinematic loops. The dynamics modelling and
simulation of two cooperating flexible-link manipulators are obtained in Chap-
ter 4. The simulation results of the formulation in Cartesian space and joint space
are compared in order to obtain insight into the speed of operations for both for-
mulations, as well as to show the accuracy of the simulation results. Moreover,

the effect of structural damping on the simulation is studied in this chapter,

Chapter 5 covers another type of robotic manipulators, namely, planar paralle!
manipulators. The modelling of the manipulator at hand is formulated both in
Cartesian and in joint spaces. Some simulation results are presented in this

chapter as well.

The first part of Chapter 6 is devoted to the direct kinematics solution of
a spatial parallel manipulator. Direct position and direct velocity kinematics
solutions are accomplished in this part. The modelling and simulation of this

manipulator are carried out later in this chapter.

In Chapter 7, conclusions are drawn based on the achievements of this research

work. Some suggestions for further research are also put forward.

Three appendices are included for completeness of this thesis. Euler param-
eters and several important relations, which are used in Chapters 2 and 3, are
presented in Appendix A. Appendices B and C give the detailed description of

the derivations of two equations in Chapter 3.



Chapter 2

Kinematics of Multibody
Systems with Kinematic Loops

and Flexible Links

2.1 Introduction

As mentioned in the previous chapter, robotic manipulators with kinematic loops
can be modelled for dynamical analysis as multibody mechanical systems. The
pre-requisite to the modelling of a multibody system is the understanding of the
underlying kinematics. To this end, the kinematics of multibody systems with

kinematic loops and flexible links is studied in this chapter.

First, an arbitrary elastic link, which is a continuous system, is approximated
as a discrete system, with the assumption that its dynamics can be described
by a finite number of degrees of freedom. Different means for discretizing a.
flexible link such as the assumed-modes method, the cubic-splines method, the
finite-element method, etc. exist. Some of these methods are confined to beam-

shaped links. Nevertheless, the finite-element analysis (FEA) provides a reliable
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and systematic technique for discretizing the flexible links of arbitrary shapes.
Therefore, the finite-element approximation is used here in order to reduce the
continuous link to a discrete system with a finite number of elastic degrees of
freedom. However, there are some drawbacks associated with FEA, such as large
CPU time consumption, and the appearance of a large number of elastic degrees
of freedom in large mechanical systems. To overcome these drawbacks, FEA is
often done off-line, the results being used in on-line simulation in order to reduce
the execution time, which is very important for real time control. Moreover,
tne nodal coordinates can be transformed into modal coordinates in order to
reduce the number of elastic degrees of freedom. Both finite-element and assumed-
modes methods can be applied to simple flexible links such as beams and plates.
However, the main advantage of FEA, as compared with the assumed-modes
method, is that the former can be applied to flexible links of complex and general
shapes. Using FEA and modal coordinates together with the classical theory of
elasticity for the discretization of the elastic displacements lead to a linearization
of kinematics and dynamics relationships {(Shabana, 1991; Banerjee, 1993). This
linearization may lead to errors in large rigid-body motions. How to overcome

these errors, which are very crucial in high-speed operations, will be discussed in

Chapter 3.

Here, the position and velocity vectors of any point on link i are obtained in

order to use them in the next chapter for derivation of the equations of motion.

The kinematic constraints are then formulated using the methodology of the
natural orthogonal complement, henceforth abbreviated as NOC. It is also ex-
plained here how to define the NOC. Finally, the procedure to evaluate the NOG,
which depends on whether the formulation of the problem is in Cartesian space

or in joint space, is discussed.
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2.2 Some Definitions

For modelling of a flexible link, a general multibody mechanical system with
multiple kinematic loops and flexible links of arbitrary shapes is considered first,
as shown in Fig. 2.1. Then, an arbitrary link ¢, which is connected to v; links at

joints Oy, O%, ---, OF, ... and 0¥ is studied.

Figure 2.1: A multibody system with kinematic loops

In order to specify the global position and velocity of link 7 in space, the
ni{= 7 + n;)-dimensional vector of flexible-pose of link 7, with n; determining the

number of nodal coordinates of the same link, is defined as
T
a=a i T ] 2.1)
and the mi{(= 6 4 n;)-dimensional vector of flezible-twist of the same link is

T
vi=|of # | (2.2)

1} t

where, with reference to Fig. 2.2,

O; is the origin of the coordinate frame X;Y;Z; (F;) attached to link 3;

q; is the 4-dimensional vector of Euler parameters representing the

orientation of the frame F;;
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Figure 2.2: An arbitrary link ¢

r; is the position vector of origin O; in the inertial frame X¢YpZy (Fo)

defining the global position;

u; is the n;-dimensional vector of independent nodal coordinates asso-
ciated with the link flexibility of link ¢ (u; shall be described in more

detail later on in this chapter);

w; is the angular velocity of the frame F; with respect to Fq.

Moreover, vectors q; and v;, defined in eqgs.(2.1) and (2.2), are composed of
three parts, the first two are related to the rigid-body motion of link ¢ and the
third is related to the generalized coordinates and their time rates of change

associated with link flexibility.

Note that the vector of flexible-twist v; is not simply the time derivative of
the vector of flexible-pose because w; is not a time-derivative of any quantity.

One can write instead,

v; =T'§; (2.3a)
or

G = Awv; (2.3b)
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Element 7

Figure 2.3: Modelling of a flexible link 7

where T'; is an m! x n; matrix, while A; is an n} x m} matrix. The forms of T';
and A; are found from the relation between w; and (::1,- (Angeles, 1988) and are

included in Appendix A.

2.3 Modelling of Flexible Links

rom now on, a vector a or a matrix A expressed in frame F; is represented as [a];
or [A};, respectively, except for the inertial frame Fo, in which neitter brackets
nor the subscript 0 are used. Note that the subscripts 7 and j in all vectors and

matrices stand for the labels of link ¢ and element j, respectively.

To model a flexible link, link ¢ is considered as shown in Fig. 2.3. The position
vector, in JF; coordinates, of any point P; on link ¢ can be written from Fig. 2.3

as

[di); = [dos]i + [dei)i (2.4)

where [dg;]; is the position vector of point Py in the undeformed configuration
of link 7 in frame F;, while [d.]; is the elastic displacement of point P; after the

deformation of the same link.
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To obtain [de:];, an element j, with point P; being located on it, of link / is
considered. The elastic displacement [d.];; of point P; is first expressed in the
F;; frame, which is attached to the j** element of link i, as shown in Fig. 2.3.

The elastic displacement [d.;];; can be discretized by the finite-element method

as follows:

[deili; = Li;( Poi)ui;(£) (2.5)

in which all the quantities have been expressed in the F;; frame, L;;( ;) is the
3 x n;; shape-function matrix of element j evaluated at point Py; and u;;(t) is
the n;;-dimensional vector of nodal elastic displacements of that element, with
n;; determining the number of nodal elastic displacements of the same ¢lement.
The form of L;; depends on the approximation chosen for the problem at hand.
The type of the elements used for the flexible links depends on the complexity
of the shape of the links (Cook, 1981; Zienkiewicz, 1979). It is assumed that
the elastic displacements of link 7 are small, so that eq.(2.5) can be used. This
relation cannot be used for large elastic displacements because the components

of matrix L;;( Po;) are only functions of the spatial coordinates.

Furthermore, u;;(t) can be expressed as a linear transformation of u;(¢), where
u;(t) is the vector of independent nodal elastic displacements of the whole link,
namely,

u;;(t) = ®yjui(t) (2.6)
with ®;; defined as the n;; x n; connectivity matriz of element j, whose entrics
are filled with zeros and ones to indicate the locations in u;(t) to which elements
of u;;(t) are to be assigned. It may be noted that u;(f) is used as generalized

coordinates associated with link flexibility, as shown in eq.(2.1).

Moreover, [d.;]; and [d.;];; can be related by Y;;, the rotation matrix of the
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j*h-element coordinate system with respect to the frame JF; as

[deili = Yis[dei)is (2.7)

Finally, [d.:]; can be expressed using eqgs.(2.5)-(2.7) as
[dei]i = Yi;Li;(Por)®i5u:(2) (2.8)
or in a more compact form
[dei]i = Li(Poi)ui(?) (2.9)

where

L.(Po:) = Yi;Li; (Po; ) ®y; (2.10)

Here, L;(Po;) is 2 3 X n; matrix. Note that, at any time, one of the L;{Fo:)
matrices (the one associated with point Pp;) has a nonzero value and the other

ones are all zero.

The other component of [d;]; from eq.(2.4), i.e., the position vector [dg]; can
now be written as

[doi}i = L{;(Foi)uf; (2.11)

where uf; is the m;;-dimensional nodal rigid-body position vector of element
j measured in the frame F; and is constant (Nagarajan and Turcic, 1990-a;
Zienkiewicz, 1979), while L{;(Po;) is the 3 x m;; shape-function matrix for the
rigid-body position vector evaluated at point Fy; of element j. Moreover, m;;
is the dimension of the nodal rigid-body position vector of that element. The

m;-dimensional nodal rigid-body position vector of link ¢, u?, is related to ug; by
uf; = ®7u;? (2.12)

where ®f; is the m;; x m; connectivity matrix of the rigid-body position vector
of element 7, with m; determining the dimension of the nodal rigid-body position

vector of the link i.
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Upon substitution of uf; from eq.(2.12) into eq.(2.11), one obtains
[doi]; = L (Poi)u? (2.13)
in which
L{(Fo) = L (Poi) @} (2.14)

where L§(Po;) is a 3 X m; matrix.

Therefore, the position vector [d;]; can be obtained substituting egs.(2.9) and
(2.13) into eq.(2.4) as

[di]: = L{( Poyud + L Poi)uy(2) (2.15)

2.4 Position Vector and Velocity of a Point on

link 2

The position vector, in Fy coordinates, of any point P; of link 7, can be written

from Fig. 2.3 as

pi =r; +d; =r; + Ri[d;}; (2.16)
where R; is the rotation matrix of the frame F; with respect to the inertial frame,
while d; and [d;]; are the position vectors of point F; in F; coordinates expressed

in Fo- and Fi-coordinates, respectively. Note that, [d;]; is defined in eq.(2.15).

The velocity of point P; on link i is then obtained by differentiating both sides
of eq.(2.16) with respect to time as

Bi = ;4 Ry[di}i + Ri[dy)i (2.17)

By differentiating both sides of eq.(2.15) with respect to time and recalling that

the first component of [d;]; is constant, [d;); can be expressed as

() = Le(Por)ia; (£) (2.18)
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Mareover, by substituting [d;]; from eq.(2.18) into eq.(2.17), P; can be expressed

as

p: = F; 4+ Ri[di); + RiLi( Po:)tui(2) (2.19)

where R,-[d,'],- can be written as

R;[d]; = R;RTR:[d}]; = R.RTd; (2.20)

Now, we use the above equation and take advantage of the relation
RRT =, (2.21)

where §2; is the cross-product matrix of the vector w;, that can be defined as

O(w; x c)

Q=
: dc

, ¥V ¢ (2.22)
It is then possible to write Ri[d;]; as
R;[di]; =0:d; =w; xd; = -D;w; (2.23)

where D; is the cross-product matrix of vector d;.

Upon substitution of R;[d,-]; from the above equation into eq.(2.19), one ob-
tains p; as

p;i = 1; — Diw; + RiL;(Poi )0 (t) (2.24)

Moreover, DD; in Fg takes the form
D; = R;[D;;RY (2.25)

where [D;); is the cross-product matrix of vector [d;};.

Thus, from eq.(2.24), Pp; can be written as a linear transformation of the
flexible-twist vector, namely,

pi = Wiv, (2.26)
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where
Wi = [ --D,' 133 R.‘L,‘(Pg,') ] (?..2?)

W; being a 3 X m; matrix, while 133 is the 3 x 3 identity matrix; v; is defined in

eq.(2.2).

2.5 Formulation of the Kinematic Constraints

In the course of this thesis, it will be assumed that all links are coupled to each
other by lower kinematic pairs of the rotational type. Hence, the constraint equa-
tions for the system at hand can be expressed in terms of generalized coordinates
of the system, i.e, only holonomic systems are considered here. In addition, it is
assumed that all joints are rigid. Moreover, the constraint equations are derived
in linear homogeneous form in the flexible twists, with possibly time-dependent
coeflicients. In other words, there are no prescribed motions in the system, and

so, the systems considered are assumed to be catastatic.

The twist-constraint equations of the multibody system at hand with kine-

matic loops, as shown in Fig. 2.1, can be expressed as

Av =0, (2.28)

where v is the m'(= Y[, m})-dimensional vector of generalized flexible-twist,

which is composed of the vectors of flexible twist of all moving links, namely,

T
v=[w}‘ ¥ oaf ..o Wl #T ﬁT] (2.29)

r r

with r defined as the number of all moving links in the system, matrix A is the
p X m' twist-constraint matrix, and 0, is the p-dimensional zero vector, with p

defined as the number of kinematic constraint equations of the whole system.
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Figure 2.4: Kinematic coupling of links ¢ and &

The twist-constraint matrix can be derived using the kinematic constraint
equations of kinematic couplings of the links as a series of equations in terms of

the flexible-twist vectors of all moving links.

As an example, we derive the kinematic constraint equations due to the kine-
matic coupling of links 7 and & of Fig. 2.1, that are coupled by a revolute joint,

as depicted in Fig. 2.4.

The derivation below is the same for the kinematic coupling of link ¢ and all
other links. The position vector of point 0¥, the origin of frame Fy (XYiZy)
attached to link k, as shown in Fig. 2.4, in Fy, takes on the form

ri = r; +ag = 1 + Rifa)i = ri + Rifaou + 2l (2.30)
where [a;]; can be obtained using eq.(2.15) as
[ai]): = Li(Ooix)ui + Li(Ooik)us(t) (2.31)

Here, Li{Ogix) and L{(Og; ) are the same as defined in eqs.(2.10) and (2.14),
but evaluated at point Of; in the undeformed configuration of link ¢, and other

quantities are as defined earlier.
Upon differentiating both sides of eq.(2.30) with respect to time, one obtains

fr = F + Rifaas + Rifan); (2.32)
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Using egs.(2.18) and (2.23) and replacing the position vector [d;}; with [a; )i, Tx

becomes

Iy = Iy + w; X ag + RiLi(Ooip (1) (2.33)

The kinematic constraint equations due to the coupling of links ¢ and k can

then be expressed, in light of eq.(2.33), as

wr=w; + ékzk + Wi (2.34a)

Ty =T +w; Xa; + RiLg(Ou;‘k)fl,'(t) (2.34b)

where w; is the angular velocity of the frame Fi with respect to the inertial
frame. Moreover, wy; is the angular velocity of F). with respect to F;, resulting
from the elastic displacement of link ¢, while §; is the joint angle and =z, is the

unit vector parallel to the joint axis Z;.

There are six scalar linear homogeneous equations for each kinematic coupling
of the two links, e.g., eqs.(2.34) for coupling of links ¢ and k; it can be readily
shown that these equations are linearly dependent (Saha, 1993). In fact, the
number of dependent equations are related to the number of degree-of-freedom
(DOF) of the kinematic pair, e.g., the number of dependent equations is one for
a revolute joint that permits one DOF. Moreover, the general spatial six DOF of
a rigid kinematic pair is restricted to one due to the five independent constraint
equations for a revolute joint. Here, link 7 is connected to v; links, which leads
to 6v; kinematic constraint equations. Therefore, the number of twist-constraint

equations p is 6, where v is the number of all joints in the system at hand.

2.6 The Natural Orthogonal Complement

For a g-degree-of-freedom (DOF) system, the generalized flexible-twist v can he

expressed as a linear transformation of 8;, which is defined as a ¢g-dimensional
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vector of independent generalized speeds, namely,
v =N, (2.35)

and N is an m’' x ¢ matrix.

Upon substitution of v from eq.(2.33) into eq.(2.28), one obtains

ANg; =0, (2.36)

Since all the components of @; are independent, the above equation holds if
and only if
AN =0, (2.37)

where O, is the p x ¢ zero matrix.

Therefore, from eq.(2.37), it is apparent that N is an orthogonal complement
of A, which was termed the natural orthogonal complement of A in (Angeles and

Lee, 1988).

The DOF of the multibody mechanical system (Fig. (2.1)), g, is composed of
two parts: the rigid-body DOF, g,, plus the DOF associated with link flexibility,

ge, namely,

9=q + ¢ (2.38)

The rigid-body DOF for the system at hand is obtained using Chebyshev-Griibler-

Kutzbach formula as
g- = 6r — 5v (2.39)

where r is defined just after eq.(2.29) and » is defined already as the number
of all joints in the system. It may be noted that the first part of the above

equation, i.e, 6r, determines the DOF for all moving links under no consideration
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of kinematic coupling of the links, while the second part determines the number
of independent constraint equations that arises because of the kinematic joints,

which are assumed to be all revolute. The DOF associated with link flexibility

can be written as

rs
ge = ni (2.40)

i=1
Here, n; is defined just before eq.(2.1) and r; is the number of all flexible links in
the system. Therefore, upon substitution of eqs.(2.39) and (2.40) into eq.(2.38),
one obtains the DOF of the system as

g
q=6r—-5v+> n; (2.41)

i=1

2.7 Formulatiocn of the Problem in Cartesian

and in Joint Spaces

It is apparent from eq.(2.35) that the form of N depends on the definition of .
The vector of independent generalized speeds 8; depends, in turn, on whether the
system is being modelled in joint space or in Cartesian space. The formulation
of the problem in joint and in Cartesian spaces are discussed in the subsecctions

below.

2.7.1 Formulation of the Problem in Joint Space

In open-chain systems, vector 8; is usually composed of joint speeds plus the
generalized speeds associated with link flexibility. All joints are actuated and
independent of each other so that they can be considered as components of the
vector of independent generalized speeds. Therefore, the components of v can be
specified in terms of @;, which leads to N by using the equations constraining

only the twists of the two coupled links, i.e, eqs.(2.34).
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On the other hand, not all joints are actuated in systems with kinematic loops.

Here, the ¥-dimensional vector of generalized coordinates can be defined as
T
0= [ 87 6% ] (2.42)

where 8 is the g-dimensional vector of independent generalized coordinates com-
prising the vector of actuated joint angles and generalized coordinates associated
with link flexibility and 8p is the (J — ¢)-dimensional vector of dependent gen-
eralized coordinates consists of the vector of unactuated joint angles. The loop-
constraint equations, which are usually nonlinear, allow one to solve numerically
for the dependent generalized coordinates in terms of the independent ones. The
form of the loop-constraint equations for different examples will be obtained later

in detail.

Additionally, §p can be expressed in terms of 6; as follows: Upon differenti-

ating the loop-constraint equations with respect to time one obtains
N[é[ + NDQD = 0 (243)

where Ny is an [ x ¢ matrix and Np is an { x (# — ¢) matrix, with { denoting the
number of loop-constraint equations, while 0; is the {-dimensional zero vector.
Note that, usually, | = 4 — g, i.e, the number of loop-constraint equations equals
the number of dependent joint angles in the system. Hence, @p can be expressed

as a linear transformation of 8;, namely,

8p = —N3'N;8; (2.44)

The components of vector v from eq.(2.29) can now be expressed in terms
of the independent generalized speeds by substituting 8p from eq.(2.44) into
the kinematic constraint equations, i.e., egs.(2.34). Finally, using eq.(2.35) leads
to N, which is the linear transformation mapping the independent generalized

speeds into the generalized flexible-twist.
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This procedure, however, needs some time-consuming kinematical analysis,
e.g., the direct kinematics solution in case of a parallel manipulator. Nevertheless,
we will show that there is no need for this task in formulating the problem in

Cartesian space.

2.7.2 Formulation of the Problem in Cartesian Space

Vector 8; can be defined, in Cartesian space, as the array containing the end-
effector flexible-twist plus the generalized speeds associated with link flexibility,
namely, ‘

0r=|w? T o7 al af ... ol ]7 (2.45)
where w,, T, and 1, are the end-effector flexible-twist. The formulation of the
problem in Cartesian space is possible when the end-effector motion is prescribed,
as is the case in many applications. Matrix N can then be evaluated using the
equations expressing vector v in terms of 8; and resorting to the linear rela-
tions between the flexible twists of the links and ;. Then, using the kinematic
constraint equations and rearranging the expressions thus resulting, one obtains
expressions for all components of v, eq.(2.29), in terms of 8;. Therefore, vector

v can be specified as a linear transformation of 8;, which leads to N.

The approaches explained in Subsections 2.7.1 and 2.7.2 will be examined
later in detail with different examples to show how 8; and matrix N are derived

for robotic manipulators with kinematic loops.



Chapter 3

Dynamics of Multibody Systems
with Kinematic Loops and

Flexible Links

3.1 Introduction

As mentioned in Chapter 1, many methods for modelling the dynamics of robotic
mechanical systems have been reported, namely, Newton-Euler, Lagrange equa-
tions, virtual-work principle, Hamilton’s principle, and Kane’s method, also known
as Lagrange’s form of d’Alembert’s principle. Among them, the Lagrange equa-
tions (Nagarajan and Turcic, 1990-a; Bricout et al., 1990; Serna and Bayo, 1989;
Cyril et al., 1991), and Kane’s method (Kane and Levinson, 1983; Everett, 1989;
Ider and Amirouche, 1989-b; Banerjee and Lemak, 1991) have been found to
be more efficient for modelling the dynamics of mechanical systems with flexible

links.

Some researchers derived the equations of motion of an individual body first

and then obtained the model of the mechanical system by assembling all the
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bodies together {(Sunada and Dubowsky, 1983; Nagrajan and Turcic, 1990; Cyril
et al, 1991). The drawback of this method is to consider the kinematic-constraint
forces which should be eliminated from the equations of motion. On the other
hand, other investigators considered the mechanical system as a whole and derived

the equations of motion for the whole system. As an example, Lieh (1991) used

. the virtual-work principle to derive directly the equations of motion of flexible-

link manipulators for the whole system. The drawback of this approach is that

it leads to lengthy, and cumbersome equations.

In this chapter, the equations of motion of an individual link are first derived
for an uncoupled body using the Lagrange equations. Here, nodal coordinates are
transformed into modal coordinates to reduce the number of generalized coordi-
nates associated with the link flexibility. The effect of geometric nonlinearities
in the elastic displacements is considered by adding a term to the elastic strain
energy which requires introduction of a geometric stiffness matrix in addition
to the conventional one. This consideration results in compensating for the er-
rors caused by the use of finite-element analyses and modal coordinates together
with the classical theory of elasticity in high-speed operations, as mentioned in
the previous chapter. Thus, large rigid-body motions can be considered even in

high-speed operations.

Then, the governing equations of motion of the entire mechanical system
is obtained by assembling all the links together. The method of the natural
orthogonal complement, applied previously to systems with open-chain or single-
closed chain structures, is used to eliminate the constraint forces and to derive

the minimum number of equations of motion.
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3.2 Dynamics of Link ¢

Basic to any modelling of a mechanical system is the understanding of the dy-
namics of each link. To this end, the position and velocity vectors of any point
on link 7, which were obtained in the previous chapter, are used to model link i.
First, an expression for the kinetic energy of the link is derived in terms of the
link mass matrix. Then, the elastic strain energy due to the elastic displacements
of the link is obtained in terms of the conventional stiffness matrix plus the ge-
ometric stiflness matrix. Next, the nodal coordinates are transformed to modal
coordinates in order to reduce the number of the generalized coordinates. Finally,
the Lagrange equations of motion for link 7 are derived without consideration of

kinematic couplings.

3.2.1 Kinetic Energy of Link i
The kinetic energy of link 1 is given by
1.r.
Ti= | 3Pipipidv; (3.1)
where p; and v; are the mass density and volume of the ¢ link, respectively. It
may be pointed out that the expression inside the integral is in‘egrated over the

entire volume of all the elements of link . Moreover, for each element, the proper

value of p; should be chosen from eq.(2.26), in light of eqs.(2.27) and (2.10).

Introducing the values of p; from eq.(2.26) into eq.(3.1) yields
_ [ lorwrT
T,- = »[u. §Vi W,- W.'V,'p;dv,‘ (3.2)

The kinetic energy can thus be written as a quadratic form in the flexible twist,
namely,

T,' = —VTM.'V,' (3.3)

1
2 1
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where M; is the m} x m} positive-definite and symmetric mass matrix of link 7,

defined as

M; = ] P W W, dy; (3.4)

Matrix M; can be obtained by inserting W; from eq.(2.27) into eq.(3.4), namely,
-D? D; DR Li( Foi)

M; = fv -D; 133 R/L;(Py) |pidvi (3.52)

—Li(Pou)RID: LI(Pou)RT L (Por)Li(Po)

in which all quantities were defined in eq.(2.27).

Thus, M; can be written in block form as
M:;r M:-d M»I:e
M; = | M¥ M#¥ M (3.5b)

M:;r Mfd M:;e

where
MY = — f piDidy, (3.5¢)
M = (M{")" = f piDidv; (3.5d)
M = (M?)7 = [ pDRL(Pu)doy (3.5¢)
M = J’ pilsady; (3.51)
M = (M%) = | pRiLi( P} (3.5¢)
Mz = [ oL (Poo)Li( P} (3.5h)

in which MI", M7¢ and M# are all 3 x 3 matrices, while M and M® are 3 x n;
matrices and M is an n; x n; matrix, with n; as defined in eq.(2.1). Moreover,

133 is the 3 x 3 identity matrix.
Inserting D; from eq.(2.25) into eq.(3.5¢) and noting that

(D) = —[DJ7 (3.6)
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with the understanding that the rotation matrix of link 7, R;, is not a function

of v;, matrix MiI" can be written as
M = R;VI"RT (3.7)
In the foregoing equation, VI" is the 3 x 3 symmetric matrix defined as
VI = Jﬁ DT [Diipicv (3.8)
where [D;]7[D;); can be expressed in terms of vector [d;]; as
(D7 (D) = f{diil*1as — [dili[di]] = ||| Las — [did]): (3.9)

he last equality follows because the Euclidean norm is frame-invariant. More-

over, the components of vector [d;}; are
d; = Fui(t) + (12)Twg j=1,2,3 (3.10)

where dj is the j* component of [d;];, while I¥ and (12)T are j* rows of matrices
L;(Fo;) and L¢(Py;), defined in egs.(2.10) and (2.14), respectively. Furthermore,
u;(¢) and uf are n;- and m;~dimensional vectors, as defined in eqs.(2.6) and {2.12).

Now, we introduce 27 constant matrices, namely,

Cg = —/u- ljlfp,-dv,- (3.11&)
Cit = / 15(12)7 pidu (3.11b)
G = [ 1,0 pids (3.11¢c)

in which £ =1,2,3 and j = 1,2, 3. It is then possible to express the components

of VI" as

of' = uf (IN(CE + CR)ui(t) + 207 (1)(Cf; + CH)uf + ug"(Ch + Cit)uf
(3.12a)
v}2 = o' = — [uf ())CHui(t) + vl (¢) (CF + CF) u¢ + ufTCltug|  (3.12b)
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while other components are obtained by using suitable permutations. Here, Ci:'j-,
C};‘_’,- and C}iﬁ, are n; X n;, m; X m; and n; X m; matrices, respectively.

Upon substitution of D; from eq.(2.25), into M* and expanding the equation

thus resulting, one obtains

M = f _Ri[Di];R?p;du;=Ri{ _%([df]i X c)p,-du,-}R,?' Ye (3.13)

Using eq.(2.15) for [d;]; and noting that u;(t) and u? are not functions of v;, M7*
can be written as
M = RVIRT (3.14a)
in which V7? is the cross-product matrix of vector vi¢, defined, in turn, as
vit = Gy (2) + C2ug (3.14b)
where C'! and C*2 are 3 X n; and 3 x m; constant matrices, defined as
c' = f L Po)pidu; (3.150)
Ci? = ] L(Po)pidv; (3.15b)
Moreover, L;(Py;) and L{(Py;) are defined in egs.(2.10) and (2.14), respectively.

Finally, expanding eqs.(3.5¢), (3.5g) and (3.5h), M}¢, M and M$® are ob-

tained as

M = R,V!® (3.162)
M® = R,C" (3.16h)
M = C% + C5 + CJ, (3.16¢)

in which
uf () (C5 - CF) + we” (C - CiY'
Vie=| uf(2)(Cf - CF) +we" (C5 - Cy)’ (3.16d)
uf (t) (Cf} ~ Cf) +us” (Cfy - €)'
It may be noted that all constant integrals can be calculated off-line and the

results can then be used to develop the mass matrix of link :.
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3.2.2 Potential Energy of Link :

The potential energy of link i comprises two parts: the elastic strain energy and
the potential energy due to other sources such as gravity. The latter will be
considered later in this chapter. The elastic strain energy of the element j of link

i, as shown in Fig. 2.3, can be written as
Vi = ViV (3.17)

where V{ is the standard elastic strain encrgy of the element j of link ¢ (Cook,

1981; Zienkiewicz, 1979), namely,

1

Vi= §ﬂ§(i)Kf-uﬁ(t) (3.18)

b

where u;;(2) is defined in eq.(2.5) and K§; is the n;; x ny; conventional stiffness
matrix of element 7 of link ¢, and can be obtained for different types of elements
from the literature, e.g. (Przemieniecki, 1967), or from direct integration for-
mulas (Cook, 1981). The elastic strain energy V2" arises because of the effect of
geometric nonlinearities in the elastic displacements of element j of link 7, namely,

V" = Sl (K uy () (3.19)

where K" is the geometric stiffness matrix, to be obtained in Subsection 3.2.3.

Introducing V;j and V" from egs.(3.18) and (3.19) into eq.(3.17), one obtains

1
Vi = 5ui (DK;uit) (3.20)

in which
K;; =K§ + K (3.21)

‘Therefore, the stiffness matrix K;; can be thought of as composed of two parts:
the conventional stiffness matrix, which is constant, plus a geometric stiffness

matrix, which is configuration-dependent.
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The elastic strain energy can be written for link 7 by assembling the stiffness

matrices of all elements as

Vi = —ul (1)K wi(t) (3.22)

B —

where u;(t) was defined in eq.(2.6), while the n; x n; stiffness matrix K7 of link

i is a matrix defined as
K{ =Y &TK;®; (3.23)
j=1
where ®;; was defined in eq.(2.6) and «; is the number of elements of link i.

It is also possible to write the elastic strain energy in terms of the flexible

pose q; of link 7, namely,
Vi = -q] Kiq; (3.24)

in which K, the n} x n} stiffness matrix of link 7, is defined as

O4 O3 Oy
Ki=| O3 Og; O3, (3.25)
0n.~4 0n;3 K{

Here, O,,, is the m X n zero matrix.

3.2.3 Effect of Geometric Nonlinearities in the Elastic Dis-

placements

High-speed operations give rise to significant coupling of the longitudinal and
transverse displacements of the flexible links of multibody systems. This coupling
results from consideration of the effect of geometric nonlinearities in the elastic
displacements of the flexible links. As a simple example, in a laterally loaded
beamed-shaped link, it accounts for the fact that axial compression tends to
increase the transverse displacement and, thus, decrease transverse stiffness, while

axial tension tends to decrease the transverse displacement and, thus, increase
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the transverse stiffness. This is the effect of geometric stiffening that has been

introduced for the modelling of the rotating beams by Likins (1974).

The effect of geometric nonlinearities in the elastic displacements of the flexible
links arises because of a term that should be added to the standard elastic strain

energy of the element j of link 7, i.e., V;I". This term can be written as

f [e™]Eo]isdv;; (3.26)

in which [&];; and [€™];; are 6-dimensional vectors of state st-ess because of the
inertia loading and nonlinear terms in Green'’s strain tensor (Novozhilov, 1961},
respectively, i.e.,

T

[o]i; = [ oxx Oyy 0Ozz OXy Oxz 0yz L_ (3.27a)
| T
[en]ij = [ EXX €yy €zz €xy €Xgz €vz ] (3.27b)
® :
Here,
Qo LfOuy, Ov ow
lexxli =3 [(ﬁ) (OX) +(35) l (3.27¢)
1{,0u d d
levylii =5 [(5,;) +(op) (6—3)2] (3.27d)
1{,0 2
[ezz]i; = 5 l(b—;)z + (55 v) (BZ) ] (3.27¢)

[Ou Bu  Ov Qv Ow dw
[exy)i; = E_X-W + XY + 'E'X-a—y] i} (3.27f)

[Qu Ou  Ov Ov  Ow Ow

lexzli; = BCAD LA ﬁﬁ] ; (3.27g)
[Ou Ou  Ov Ov  Owdw

[crz]ij = 3_Y§Z + B_Yﬁ + Wﬁ] 5 (3.27h)

where u;j, v;; and w;; are the three components of the elastic displacements [d.;];;
from eq.(2.5). Moreover, X;;, Yi; and Z;; are three orthogonal axes, as shown in

. Fig. 2.3. Furthermore, the state stress vector {¢];; is the same as explained in
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Banerjee and Lemnak (1991), i.e., it is a 6-dimensional array containing the distinct

entries of the stress tensor,

Using the same approach as in Zienkiewicz (1979), V" can be written as

n_ 1 2 5%
Vi =§u3_;-K,g';uij {3.28)

Hence, KiI' can be obtained as
K = / HIZ;Hidv; (3.29)
Uiy
in which X;; is the 9 x 9 matrix defined as

(oxx)ijlas (oxy)ijlas (oxz)ijlas
i = (oxv)ijlas (oyv)ijlas (ovz)ijlas (3.30)
‘(sz)ijlas (ovz)ijlas (0zz)i;1as

with H;; being the 9 x n;; matrix defined, in turn, as

OL;( Poi) [0 X35
Hi; = | 0L;(Po)/0Y:; (3.31)

OLy;(Poi)[0Z;;
where L;;( Py;) is the 3 x n;; matrix defined in eq.(2.5), and 133 is the 3 x 3 identity
matrix. The form of KI' will be obtained later for links that can be modelled
as beams. An empirical speed limit can be used as a condition where the effect
of geometric nonlinearities in elastic displacements of the flexible links becomes
significant. This limit can be defined as follows: if the ratio of the rigid-body
angular rates to the lowest natural frequency of the system be of the order 0.1 or

more, the effect of geometric nonlinearities should be considered.

3.2.4 Modal Coordinates

In large mechanical systems, using finite elements results in quite a large di-

mension of the flexible-pose q; and the flexible-twist v; of link i, because of the
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number of nodal coordinates of the same link. The number of nodal c¢oordinates
can be reduced by changing the nodal coordinates to modal coordinates, using

the standard component-mode technique (Hurty, 1965), as explained below.

The n;-dimensional vector of nodal coordinates u;(t), as defined in eq.(2.6),
and the /;-dimensional vector of modal coordinates of link ¢, ul* (¢}, can be related
as:

u;(t) = 'Ifgmu,'-"(t) (3.32)

where Wy, is the n; x [; modal matrix, which can be evaluated by computing the
normal modes of link 7. The n; normal modes of the elastic displacement of the
same link can be evaluated by solving the eigenvalue problem derived from the

model, namely,

Mecii (¢) + Kfu;(2) = 0, (3.33)

where Oy, is the n;-dimensional zero vector and M$® was defined in eq.(3.5h).
Moreover, K/ is the same as given in eq.(3.23), unless only the conventional

stiffness matrix K; is used to derive K;;.

By choosing the first {; eigenvectors (mode shapes) of the above model, ¥;,,

takes on the form

‘I'im=[v,b1 P .. qb"] (3.34)

i
where ¥, the j”‘ column of ¥;,,, is an n;-dimensional eigenvector. The value of

[; is chosen based on the desired accuracy for the computation and also the CPU

time. It will be shown later how ; is chosen for different numerical examples.

Upon substitution of u;(t) from eq.(3.32) into eq.(2.9), the elastic displacement

of any point P; of link ¢, [d.;];, can be written in terms of modal coordinates as

[dei)s = L (Poi)ul™(t) (3.35)
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with
L (Poi) = Li( Poi) ¥im (3.36)
where L;(Fy;) is the same as defined in eq.(2.10), while L™*( Fy;) 1s a 3 x I; matrix.

The above transformation should be carried out in order to use modal coordi-
nates. This transformation leads to modifications in thie definitions of the vector
of flexible-pose, q;, as well as the vector of the flexible-twist of link 7, v;, as de-
fined in egs.(2.1) and (2.2), respectively. The n;-dimensional nodal coordinates
u;(t) and its time-rate of change, 0;{t), should be replaced by the {;-dimensional
modal coordinates u?*(¢) and a*(t), respectively. To this end, the dimension of
vectors q; and v; are changed from nj(= 7+ n;) and mi(= 6 +n;) to ni(= 7+ 1)

and mi{= 6 + [;), respectively.

3.2.5 Lagrange Equations of Motion of Link i

Having the expressions for the kinetic and the elastic strain energies, the Lagrange
equations of motion of link ; are written as
d 9T, 0T, oV
dt*0q;” Odq; Oq;

where T; and V; are the kinetic and the elastic strain energies of the link i, as

=f; (3.37)

given in eqs.(3.3) and (3.24), respectively, and q; is the vector of flexible-pose of
link 7, given in eq.(2.1). Moreover, f; is the ni-dimensional vector of generalized

forces, decomposed as
f; = €8 42 +£P 4+ £F +£F (3.38)

where %, f#, f°, £X and fF are generalized-force vectors accounting for ex-
ternal wrenches, algebraic constraint wrenches, dissipative wrenches, kinematic-
constraint wrenches, and gravity forces, respectively. The wrench f# arises due
to the algebraic constraint among the components of the Euler parameters, while

X results from the kinematic coupling of the links.
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The gravity wrench f€ can be evaluated, in turn, as

on¢
G _ t
7 =5 & (3.39)
where 11 is the power developed by gravity forces and is defined as
¥ = po, - 8 = &7 bo (3.40)

in which g; is the 3-dimensional vector representing the gravity force acting on
link 7 and Pg¢; is the velocity of the centre of mass C; of the same link, with
respect to the inertial frame. Inserting II¢ from eq.(3.40) into eq.(3.39) and
differentiating the result with respect to q;, with the understanding that g; is not

a function of q;, one obtains

o (gfpc) op%,

¢ = . = g, 41
' aq; d4; & (3.41)
Now, using eq.(2.26), pg; can be written as
l-)c‘- = Wc‘-v,' (3.42)
where
W, = [ -D¢, 133 RiLi(Co:) ] (3.43)

in which D¢, and L;(Cy;) are evaluated at point C;, while other quantities are
defined in eq.(2.27). Introducing pe,; from eq.(3.42) into eq.(3.41) and recalling

that W, is not a function of q;, one obtains

ovT
f:.G = EEWE' gi

Inserting v; from eq.(2.3a) into the above equation, and noting that I'; = T';(q;, t)

(3.44)

is not a function of q;, leads to

£ = ITW.g; (3.45)

The external wrench f¥ can be derived, in turn, as
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where I1¥ is the power developed by the external wrench and is defined as
HE =V, WE = (WE)TV;' (347)

provided that all external wrenches w? are applied at the joints. Using the same

i

procedure as in deriving f€, one may readily show that
fF =TTwf (3.48)

Upon substitution of eq.(2.3a) into eq.(3.3), the form of the kinetic energy is

obtained in terms of the time-rate of change of the flexible-pose of link i as
T.= %Q?P?MJ‘{Q: (3.49)
Now, the inertia matrix I; of link ¢ is defined as
I; = TTMT; (3.50)

which is a positive-definite n’ x n’ matrix. Thus
t 1 k)

1,4 .
T;= 5‘31{1;% (3.51)

By differentiating the kinetic energy, eq.(3.51), with respect to §; and then
with respect to time, d(87;/3¢;)/dt can be obtained as

¢ om
di " 0g;

»

d . . . )
)= EE(I" i) = La: + Lq; (3.52)
Similarly, 87T;/8q; is obtained by differentiating the kinetic energy given by

€q.(3.51) with respect to q; as

O, _ 0 1l.p . -
Ec-l_i_ a(L'(Q iIth) (303)

Introducing d(87:/04;)/dt and 8T;/dq; from above equations into eq.(3.37),

the dynamics model of link 7 is obtained as

Lg; = f‘fs' + f; (3.54)
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where the system wrench of link 7 is defined as

0,1 : ov;
5 — - T AN - t
fi 3q;(2q‘ Itqt) I:qt 3qf (355)

while f; is as defined in eq.(3.38).
Moreover, the dynamics model can be expressed in terms of the flexible twist

as follows: Introducing I; from eq.(3.50) into eq.(3.54) and multiplying both sides
of the equations thus obtained by A7, with A; as defined in eq.(2.3b), one obtains

ATTIMTG; = AT + ATH: (3.56)

Differentiating eq.(2.3a) with respect to time leads to
vi = D + D (3.57)
Therefore, substituting I';q; from above equation into eq.(3.56) and, in light of

eq.(A.10), one obtains the m!-dimensional vector of the dynamics model of link ¢

in terms of flexible twist as

M;¥; = ATES + MiTuq; + ATE; (3.58a)
or

M;V; = bf + bZ + bP + b’ + bf (3.58b)

where
bf = ATfS + Mil\q; (3.58¢)
bf = ATEF (3.58d)
bP = ATfP (3.58¢)
b¥ = ATEF (3.58f)
b¢ = ATEF (3.58g)

Here, introducing f¢ and f® from eqs.(3.45) and (3.48) into egs.(3.58g) and
{3.58d), in light of eq.(A.10), bf and b? can be written as
bf = ATTT Wi g = Wi g (3.58h)

bf = ATTTwF = wf (3.581)
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Moreover, if all links are connected by revolute joints, the external wrench bf

can be decomposed as
E T .
b = [ 7 o ol } (3.58))
where T; is the 3-dimensional vector of external torque applied at joint i.

For most structures, the exact form of the damping matrix is unknown, since
the mechanisms of energy loss are complicated. TFor structural damping it is
generally assumed that the existence of damping does not cause coupling of the
undamped natural modes of vibration. In this thesis, structural damping is ap-
proximated by a suitable viscous damping coefficient for different modes as in

Midha et al. (1979} and Turcic and Midha (1984-a).

It may be noted that A7f# vanishes (Cyril et al., 1991), i.e.,
ATEA = 0 (3.59)

where 0y, is the m/-dimensional zero vector.

Determination of the System Wrench b}

The system wrench b given in eq.(3.58c), in light of eq.(3.55), can be simplified
as (Cyril et al, 1991)
1

5 _
bf = 3

AT [a%(vfM,-v,-)] - A?(%) — 2ATT T Mv; — Myv; (3.60)

The first term of b? is written in this form providing that the derivative of
(vIM;v;) with respect to q; is only applied on M;. In other words, it is assumed
that v; is not a function of ;. This modification is applied to ease partial-
derivative computation, namely, by taking the partial derivatives of a scalar and
a vector, instead of a matrix, with respect to q;. The latter leads to Christoffel

symbols in tensor analysis which we try to avoid. Expressing the flexible-pose
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vector ; in terms of components, d(vI M;v;)/dq; obtains as

A(viM;vi)/0a;
d
Fq;(ViMivi) = | a(vTMivi) /o (3.61)
A(vIM;vi)[ du;
Using eqs.(3.5) and (2.2) and expanding the result thus obtained, vIM;v; is

evaluated as
vIMv; = 2w MU 4 w! MiTw; + 2wl M, +
tTM%5; + 20T M + a7 M, (3.62)

Using the above relation and eliminating the terms which are not functions of q;,

in light of egs.(3.5), the components of eq.(3.61) are given by

25%;(wTME°u1) + a%(w?Mrfw,) (3.63a)
r?ir,-(v‘rM‘v‘) =0 (3.63b)
;J;(V;'TM;'Vt) = ?.aiui(w,-TMfdr,) + 25%.(“’?1\4?11;) 4

aiu,. Wi Mw;) (3.63¢)

The detailed derivation of eqs.(3.63a) and {3.63¢) are included in Appendices B

and C, respectively.
M:; is obtained by differentiating M; given in eq.(3.5) with respect to time.

We now take advantage of the relations

R; = Q:R; (3.64a)
R7 = RTQT = —RTQ; (3.64b)
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e

where §; is cross-product matrix of w; as defined in eq.(2.22); heace, the com-

ponents of matrix M.- can be identified as

M[" = QMY - MI"; + R, VIR] (3.652)
M = (V)T = QM - MEQ, + R, VIR (3.65b)
M = (My)" = M + RiV}* (3.65¢)
M = Oy, (3.65d)
M = (MET = .M (3.65¢)
M = O, (3.65f)

where V¢ is the cross-product matrix of vector vI¢, while ¥4 is obtained by

1

differentiating vi? from eq.(3.14b) with respect to time as
v = Clug(t) (3.65g)

and V," can be evaluated by differentiating eq.(3.16d) with respect to time,

namely,

a7 (1) (Ci3 - )
Vit =| af(1)(C§ - Cf) (3.65h)

af (t) (C§ — C})
Moreover, differentiating the components cf VI" given in eq.(3.12) with respect

to time leads to V7", namely,
o}t = 207 (1) (C5, + CB) ui(t) + 207 (¢) (C5 + CH) ¢ (3.651)
81 = — [oul ()CHui(t) + 67 ()CHS + wl (H)CHu?] (3.65])
with other components of V'™ obtained by suitable permutations.

Finally, inserting d(vIM;v;)/dq; from eqs.(3.63) into eq.(3.60), expanding
. A:I'I‘,T using eqs.(A.8), and substituting the result thus obtained into eq.(3.60),
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vecior bf can be decomposed into rotational, translational and elastic parts as

follows:
bf = | (b5)r (3.652)

where (bf)g and (b¥)y are 3-dimensional vectors, while (bf)z is n;-dimensional.

These vectors are defined as

(b)n = TGi2 (6T M) + 25 (TMEG) + 2 (T M) +

o (TME )] — 2G G ME + M7 +

Myeu] — (M2 + MY w; + M, ) (3.66b)
(bf)r = — (M5 + M w; + M) (3.66¢)
(65 = - (WTMEE) + o (M) + 20 (M)

~K/u; — (M + My w; + Miei;) (3.66d)

where the components of M,- are defined, in turn, in eqs.(3.65), while K{ and G;

are defined in eqs.(3.23) and (A.4a), respectively.

3.3 Dynamics of the Entire Mechanical System

The dynamics model of the overall mechanical system is obtained by assembling

the dynamics models of all links, represented by egs.(3.58), thereby obtaining
Mv = b5 4+ bf 4 b? + b¥ + b° (3.67)

where v is the m'-dimensional vector of generalized flexible twist defined in
eq.(2.29) and M is the m’ x m’ generalized extended mass matrix of the sys-

tem, given by

M=diog( M, M; - M, ) (3.68)
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Here, M; is the m} x m! extended mass matrix of link ¢ defined in eqs.(3.5), while
b%, bX, b¥ bP and b® are m'-dimensional generalized-force vectors accounting
for system wrenches, kinematic-constraint wrenches, external wrenches, damping
or dissipative wrenches and gravity forces, respectively. Morcover, b?, b€ and
b5 can be written by assembling external wrenches, gravity forces and system

wrenches of all links as

bE=[(bf7)T (b5 ... (bf)T]T (3.69)
b = [ of” g - (7| (3.70)
v = [ @ g o] @)

where b¥, b¥ and bf are as defined in eqs.(3.58i), (3.58h) and(3.66), respectively.

By definition, the power II¥ developed by the nonworking kinematic con-

straint wrench b¥ vanishes, i.e.,
0¥ =vTb® =0 (3.72;
Upon substitution of v from eq.(2.35) into eq.(3.72), one obtains
¥ = 9T NTb¥ = 0 (3.73)
Since all components of #; are independent, the above equation lcads to
NTb* <0, (3.74)

where 0, is the m'-dimensional zero vector, i.e., b’ lies in the nullspace of N7.

Upon multiplication of both sides of eq.(3.67) by N7, the vector of nonworking
constraint wrenches is eliminated from the dynamical equations of motion. Thus,

the dynamics model of the mechanical system is given by

NTMv = N7b® + NTb” 4+ NTb? + NTb° (3.75)
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Morcover, differentiation of eq.(2.35) with respect to time yields

v = N@; + N&, (3.76)

Upon substitution of v from eq.(3.76) into eq.(3.75), ¢ independent dynamical
equations of the mechanical system, which are the minimum number of equations,

are derived as

P

M8; = NTb% + N7b®Z + NTb? 4+ N7b% — NTMNE; (3.77)
where M is the ¢ x ¢ positive-definite matrix of generalized inertia, defined as

M = NTMN (3.78)

Therefore, it has been shown that using the methodology of NOC leads to the
elimination of the nonworking kinematic-constraint wrenches as well as to the

derivation of the minimum number of equations.

3.4 Simulation

The dynamics model of the manipulator represented by eq.(3.77) involves highly
nonlinear coupled ordinary differential equations defining an initial-value problem
that is solved with Gear’s method (Gear, 1971) for numerical integration, as

available in the DIVPAG package from IMSL.

The dynamic simulation can be performed using the following steps:

o Off-line computations

— compute constant matrices C*!, C*%, C{%, Ci} and C{’; using egs.(3.15)

and (3.11);
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— Compute conventional stiffness matrix of each element of a link using

expressions available in the literature (Przemieniecki, 1968) or direct

integration formulas (Cook, 1981).

¢ On-line computation

Give initial values for 8; and ; as well as the time history of the actuated

joint torques.

For:=1,---,rdo

— Compute p; and r using eqs.(2.16) and (2.30), respectively;

— Compute p;, wi and Iy using eqs.(2.26), (2.34a) and (2.34b), respec-
tively;

— Compute the mass matrix M; and its time-rate of change, My, using
. eqs.(2.5) and (3.65), respectively;
— Compute the geometric stiffness matrix K of each element of the ith
link nsing eq.(3.29);
— Compute the stiffness mairix of link i, K;, using eq.(3.25);

— Compute the system wrenches b?, b and bf using eqs.(3.66), (3.58i)
and (3.58h), respectively;

end do

— Compute b?, b® and b® using eqs.(3.69), (3.70) and (3.71), respec-
tively;

— Compute M using eq.(3.68);

— The following steps depend on whethier the formulation of the problem
is in joint or in Cartesian space.

. Formulation of the problem in joint space:
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* Compute @p as described in Subsection 2.7.1;

* Compute @p using eq.(2.44);

* Compute NOC matrix N as described in Subsection 2.7.1;
Formulation of the problem in Cartesian space:

* Compute p and @p as described in Subsection 2.7.2;

* Compute NOC matrix N as described in Subsection 2.7.2;
— Compute M using eq.(3.78);
~ Compute 8; using eq.(3.77);

— Compute the state-space vector y (change 8 to first order derivatives)

as
0
y=|" 1= (3.79a)
| Y2 | i 0; |
and
* ] i 9 7
y={" =" (3.79b)
| Y2 | | 0; ]

— Use a direct numerical integration scheme (Gear method) to compute

the state vector for a new step in time, i.e, £ + t + At.

The inverse dynamics can be carried out by rearranging the dynamical equa-

tions of the mechanical system represented by eq.(3.77), namely,

NTBE = M8; — N7b¥ — NTb? — NTb¢ + NTMN4, (3.80)

The time history of motion of the mechanical system, namely, 8(t), 8;(t) and
6 1(t), is given, while M, N and M are computed as explained in the simulation
algorithm. However, all computations are carried out by setting to zero the

generalized coordinates associated with link flexibility, namely, u;(¢) and 0;(t).

Therefore, using eq.(3.80), in light of eqs.(3.69} and (3.581), the time histories

of the actuated joint torques can be derived for the rigid-link model.



Chapter 4

Dynamics of Two Cooperating

Flexible-link

Manipulators—Planar Case

4.1 Imntroduction

Cooperating serial and multi-arrned manipulators are expected to be used in
many situations, especially in space applications. This has prompted rescarch
work in this area. Some researchers have studied the dynamics of multi-armed
manipulators with rigid links (Lilly and Orin, 1994; McMillan et al., 1992; Zheng
and Luh, 1989). However, long and light-weight links, high-speed, and accurate
manoeuvres atre some important features of space systems, requiring considera-
tion of link flexibility in the corresponding models. Cooperating manipulators
can be modelled as multibody systems with kinematic loops. Hence, the mod-
elling formulations described in Chapters 2 and 3 can be used for modelling these
manipulators. As an example, the dynamics simulation of two planar cooperating

manipulators is considered here using for both rigid and flexible-link models to
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show the effect of link flexibility. It may be easier to develop the dynamical equa-
tions of motion for planar systems starting from the beginning instead of using
the general ones developed earlier. Therefore, modelling of the planar system at
hand is first carried out. The formulation of the problem is usually carried out in
Cartesian space, since the end-effector motion is prescribed in many applications
for cooperating manipulators. On the other hand, the formulation of the problem
in joint space is also conducted to compare the speeds of operation for the two
formulations. In addition, the effect of structural damping on the simulation re-
sults is also considered. The chapter concludes with the comparison of the results
of the formulation in Cartesian and joint spaces in order to shew the consistency

of the simulation scheme.

iyo

Figure 4.1: Two cooperative flexible-link manipulators

Figure 4.1 shows two identical planar manipulators separately mounted on the
same base structure and participating in changing the position and orientation of
a rigid object coupled to the manipulators via revolute joints of centres Os and

Os. The two manipulators have four flexible links O;0;,.,, for 2 = 1,...,4, which
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are connected to each other by revolute joints. The DOF of this example can ke
obtained by rewriting eq.(2.41) for planar systems, namely,

di
g=3r—2v+) n (4.1)

=1

where
r=number of moving links=5,
v= number of joints =6,
rs= number of flexible links=4,

and n; determining the number of nodal coordinates of link 7 associated with
link flexibility. Inserting the above relations into eq.(4.1), one obtains the DOF
of the system at hand as

q=3+z4:m (4.2)

i=1

Hence, this example has three rigid DOF. Four motors, located at 0y, Oa, Q4 and
04, drive the joints. However, the motor at joint O4 becomes idle by using a clutch
when the two manipulators are participating in a coordinated activity, which gives
rise to a manipulator with a kinematic loop. Moreover, #;, for i = 1,...,5, is the
angle of rotation of the joint at O;, while 8, and r. describe the orientation of the

manipulated object and the position vector of its centre of mass, respectively.

4.2 Modelling of the Flexible Links

The approach for modelling the dynamics of link ¢ is similar to that described in
Sections 2.3, 2.4 and 3.2. However, some modifications are applied on some of

the definitions, in order to ease the modelling for the planar systems as follows:

The mi(= 3 + n;)-dimensional vector of flezible-pose of link ¢ is de'ined as

q; = [ & T w(t)T ]T (4.3)
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Figure 4.2: Modelling of the planar flexible links

while the mi-dimensional vector of flezible-twist, v;, of the same link is defined,

for this particular case of planar motion, simply as the time-derivative of ¢;, i.e.,
Vi =q; (4.4)

With reference to Fig. 4.2, O; is the origin of the coordinate frame X;Y; (F;)
fixed to link ¢, r; is the 2-dimensional position vector of O; in the inertial frame
XoYo (Fo), ¢ is the angle of orientation of X; with respect to X and u;(¢) is the
n;-dimensional vector of generalized coordinates associated with link flexibility,
with n; determining the number of nodal elastic displacement of link i. The 2-
dimensional position vector, in Fy coordinates, of any point P; of link i can be

written from Fig. 4.2 as
p:=r;+d; = + Ridi); (4.5)

where R; is the rotation matrix of frame F; with respect to the inertial frame,
while d; and [d;]); denote the position vector of point F;, of frame JF;, expressed
in the inertial frame Fp and in frame F;, respectively. The position vector [d;];
. can be obtained using eq.(2.15). Here, it may be noted that L;( F:) and L{{( Foi)

are 2 x n; and 2 X m; matrices, as defined in eqs. (2.10) and (2.14), respectively.
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o

The velocity of any point P; of link ¢ can then be written as
Pi = & + Ri[d]: + RiLi( o )i (t) (4.6)
where R;[d;]; can be written for planar systems as
Ri[di]; = wiEd; = Ediw; = ER;[d;)iw (4.7)

while w; = ¢ is the scalar angular velocity of the frame F; of link  with respect
to the inertial frame and E is the 2 x 2 orthogonal matrix that rotates vectors

through 90° counterclockwise, namely,
0 -1
E = (4.8)
1 0

It is thea possible to write p; as
i = & + Bduw; + R;Li( Poi )i (¢) (4.9)

Thus, from eq.(4.9), p; can be written as a linear transformation of the vector of

flexible twist, namely,
pi = Wyv; (4.10)
where W; is a 2 X m} matrix, namely,
W, = [ Ed; 1, R:Li(Py) ] (4.11)
while 132 is the 2 x 2 identity matrix.

Now one can derive an expression for the 1 *etic energy of link 7 as
1
2

where p; and v; are the mass density and volume of the link i, respectively.

Ti= viMivi, with Mi= [ pWIWidv (4.12)

Moreover, M; is the m} x m! mass matrix of link ¢ derived by introducing W;
from eq.(4.11) into the above equation, and is given by
dfd, dTET  dTETR:L(Py)
M= [ Ed, 12 RiLi(Py) |pidui (413)
" | L ERTEA: LERIRT L(RL(R)
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Finally, the Lagrange equations of motion for link 7 can be derived from

i(@ - E 4+ % _
dt 6(51;) da;  Jg; -

in which T; and V; are the kinetic and elastic strain energies of link 2, eqs.(4.12)

f; (4.14)

and (3.24), respectively, whilef; is the m-dimensional vector of generalized forces,
defined as

f; =% + P +£5 4 £° (4.15)

in which £€, £2, £ and f° are the contributions to the generalized forces from
the external forces and torques, dissipative or damping forces, nonworking kine-
matic constraint forces resulting from kinematic coupling of the links, and gravity
forces, respectively. Upon substitution of eqs.(4.4) and (4.12) into eq.(4.14), the

dynamics model of link 7 is obtained as
MV =£7 +1; (4.16)

where the system wrench of link i, f°, is defined as

a 1 T . 6‘/1
a—(li(i-v,- M;v;) — M;v; — 3a

s
i

(4.17)

4.3 Formulation of the Kinematic Constraints

The m/ = Y, m!-dimensional vector of generalized flexible-twist is obtained for

this example by using eq.(2.29) as

T

v=lw § 6 - ow € O w | (4.18)

where w, = 6§, is the angular velocity of the manipulated object and r. is the
velocity of the centre of mass of the manipulated object. The position vector of
point Q. of F;, expressed in the inertial frame, as shown in Fig. 4.1, takes on

the form

a;iit2 = Ri[aiia)i = Rifaoiiso)i + Rifaeiise)i, i=1,...,4  (4.19)
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where [2gi,i+2)i and [ag; ;42]; are, respectively, the position vector of point Q42 in
the undeformed configuration of link ¢ and the elastic displacement of point O;,.2,

expressed in link 7. Differentiating a; ;42 with respect to time leads to
4442 = wiBag i + RiLi(Ooigpe)i(t), i=1,...,4 (4.20)

where egs. (4.6) and (4.7) are recalled and L;(Cg;,iz2) is the 2 x n; shape-function
matrix evaluated at point Oz in the undeformed configuration of link i, as
defined in eq.(2.31). Hence, the components of v are computed by using eqs.(2.34)
for planar systems, in light of eq.(4.20), as

w; = 0 (4.21a)
r; =0, (4.21b)
wire = wi + fipr + Wiie2 (4.21c)
Fipa = + Bagipaws + RiLi(Ogiigz)(2) (4.214)
we = 01 + 03 + w1z + was + b5 (4.21e)
b= b %chass + Eagsws + RoLa(Ouss)is(t) (4.211)

where ¢ = 1,2, and w; 42 is the angular velocity of the frame F;,, with respect
to F;, resulting from the elastic displacement of link #, that can be written for

small displacements as

wizrz = X7 0(t) = (IF /flaoieall) a(t) (4.21g)

Here, X; is n n;-dimensional vector, while I¥ is defined as the second row of

L;(Ooi,i42) and |j.|| is the Euclidean norm of the vector (-}.
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4.4 Formulation in Joint Space

The approach explained in Subsection 2.7.1 is now applied to this example. The

(¢ + 2)-dimensional vector of generalized coordinates is obtained as

T
6= [ 87 ef,] (4.22a)
where 8 is the g-dimensional vector of independent generalized coordinates, de-
fined as
T
Or=j0, 0, 6 ul(t) ul(t) ui(®) ul(2) (4.22b)

Here, 0;, for i = 1,2,3, is the actuated joint angle and u;(¢) is defined in eq.(4.3).
Moreover, @p is the 2-dimensional vector of dependent generalized coordinates,

defined as
T
BD = [ 94 05 ] (422C)

in which &;, for j = 4,5, is the unactuated joint angle, as shown in Fig. 4 1 The
loop-constraint equation for the problem at hand can be derived using Fig. 4.1,
as

a3+ 835 + a5 — Ay —Az¢ —A12 = 0y (4.23}
It is possible to write the above equation in terms of local coordinates as

Ri[ai3]; + Ra[ass]s + Rs[ass]s — Ra[assls — Ro[az)e — 212 =0, (4.24)

with R;, the rotation matrix of frame F; with respect to the inertial frame, given
as

R; =Q; for i=1,2 (4.25a)

R,‘+2 = R.‘F,‘QH_? for 1= 1, 2,3 (425]3)

where
cos(f;) —sin(8;)

for i=1,...,5 (4.25¢)
sin(f;) cos(9;)
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Moreover, F; is the rotation matrix associated with the flexibility of link 7, which

can be written for small displacements as
1 -
Fi— 7 (4.25d)
o1

where +; is the joint angle associated with the link flexibility, as depicted in

Fig. 4.1, and is given by

¥ = tan™! (—————([a°"‘+ 2]‘)2) (4.25¢)

||30£,:‘+2l]
Here, [ae;,,-+2]i and ag; 2 are defined in eq.(4.19), while ()2 is the second coin-
poner. of vector (-}, Introducing R; from eqs.(4.25) into eq.(4.24) and expand-
ing the equation thus resulting, one obtains two nonlinear scalar equations that
should be solved numerically to obtain the dependent generalized coordinates 8
in terms of the independent ones, 8;. The Newton-Raphson method is used to

solve the above-mentioned equations.

The vector of dependent generalized speeds 8p can be expressed in terms of
6, by differentiating both sides of =q.(4.23) with respect to time and applying
eqs.(4.20)-(4.21) and azs = w.Easg, namely,

RiL;(Oo1,3) i1 (1) + 61 Eays + RyLa(Ooas)0s(t) + (01 + O3+
x7 1y (¢)]Bags + [f1 + 05 + 05 -+ xT 0y (¢) + x3 35(t)] Bags — 0;Bay
~RzL3(O0uz.4)05(t) — [0 + 01 + %] s (1) Eass — RaLa(Oos6)0s(t) = 0
(4.26)

The above equation can be written in compact form as
N;é; + NDQD =0, (1.27)

where Ny is the 2 x ¢ matrix defined as

NI=[Cl c, ¢z Cy C5 Cq C7] (428)
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with further definitions, as follows:

c; = E(a)3 + azs + ass) (4.29a)
cs = —E(ass + az) (4.29b)
cs = E(ags + age) (4.29c)
Ci = R,L; + E(ass -+ ags)x] (4.29d)
Cs = —R;L; — Eagex] (4.29¢)
Cs = R3Ls + Eagex? (4.29f)
Cr = —R4Ly (4.29g)

In addition, Np is a 2 x 2 matrix, namely,
Np = [ —Bay Ease] (4.30)
Now, use of eq.(4.27) leads to
8p = —N3'N,8; (4.31)

Here, the inverse of the 2 x 2 matrix Np can be readily computed as

1 Eag)T al
Np' = % (Base) EE% °6 (4.32)
_(Ea46)T _a?;s
with E—agsEms.

Upon substitution of N7 from eq.{4.32) into 6 p, one obtains the dependent
generalized speeds in terms of independent generalized speeds as

. [a.] [_gagﬁw,él
GD‘__ =

. . (4.33)

Introducing 9p from the above equation into egs.(4.21), the components of v can
then be expressed in terms of the independent generalized speeds 8;, which leads

to the m’ x ¢ NOC matrix N, in light of eq.(2.35), as follows:

T
N=[n Of NJ O N m N m NP| (439
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while the g-dimensional row vectors nZ, n{, and n] together with other matrices

are given by

nl = [ 100 of of of of ] (4.35a)
T _ T T AT T 1 7 :
n;=|010 0] xj of of |- Za“N’ (4.35b)
T_ | T T T T 1 7 "
n2 - 1 0 1 Xl 0!12 X3 an + ZaulsNI (4.30(:)
NO — Oﬂl Oﬂl Oﬂl lﬂ;‘ﬂl On';"n.z On;ng 01‘1;11.4 (4-35(1)
] 1 0 0 On] 0,12 Om 0nd
Oﬂz Oﬂz Oﬂz Oﬂzﬂl 1712712 Oﬂzﬂa Oﬂznq
1 0 1 xIT of o7 o7
N; = ' moooTm T (4.35¢)
Ea; 0, 0, Ry Oy, Oz, Oy
L 01!3 Ona 01’;3 071311.1 Oﬂanz 17!31’1.3 Oﬂ3ﬂ4 ]
. N, = 0; Eayy 0; ©Oj, RpLz Oz Ogn, | (4.35)
| 0114 an an 0114!1.1 an,nz anﬂa 11’1411..1

N3 = [ E(ays + ags + %356) 0 E(ass + %ass) E(ags + %ass)xr{ + R Ly

1
Oz, 31Eagex] + Rsls Osa, |+ 2—AEaseafeN1 (4.35g)

where 0; is the j-dimensional zero vector, O;; is the i x j zero matrix and 1;; is the
j x j identity matrix. Moreover, N; is as given in eq.(4.28), while L; = L;(Ooi i42)
is defined just after eq.(4.20).

4.5 Formulation in Cartesian Space

The approach explained in Subsection 2.7.2 is used for the problem at hand.
The g-dimensional vector of independent generalized speeds @; can be defined in

Cartesian space as

9:=[wc 7 oal() ol(@) al@) ﬁ;f“(t)]T (4.36)
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The NOC matrix N is obtained by resorting to the linear relations between the
flexible twists of the links and @; as follows. The position vector r. can be

obtained using two different paths in Fig. 4.1 as

1
Ie = a3 + a5 + 55 (4.37a)
1
r. = a2 + a4 + a4 — 53-56 (4.37b)

Differentiating eqs.(4.37) with respect to time and introducing a; ;4 from egs.(4.20)

and ass = w.Eagg into the equations thus obtained yields
) ) . 1,
tc = w Bayz + R L0 (1) + waEagzs + Raliana(t) + Echam (4.38a)
. . . 1.
re. = ngam -+ Rszllg(t) + w4Ea46 + R4L4U4(t) - "2—ch353 (4381’))

The scalar angular velocity w;, for 7 = 1,...,4, is obtained in terms of o; by

rearranging eqs.(4.38) as

W
Whin

where Y ;42 is the 2 x ¢ matrix given by

= Y,'.,'.;.gg[ for 1= 1,2 (439&)

Yiiy2 = [ Eajitz: BEajygip ]Xt‘,i-ﬂ (4.39b)

and
Xz = [ ~1Bass 1z —Rily Oz, —Rslz Og,, ] (4.39¢)
Xy = [ iBass 12 Oz, —Roly 05, —Ryly ] (4.39d)

Inserting w; from eqs.(4.39a) into eq.(4.21d), Fi42 can also be expressed in terms

of 8; as

Firz = Bag 12X 02 (1) 01 + RiLsu(t) for i=1,2 (4.40)

h

where (-)(¢) is ¢** row of matrix (-). Hence, using eq.(2.35), the m' x ¢ NOC

matrix N takes on the form shown below:

T
N=[Y§‘3(1) ol NT of NI NI NI NP Ng"] (4.41)
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One has, additionally, the definitions given below:

Onl 0n12 lnln; Onlnz 0n|n3 0111114

N4 = (4.42&)
_ Yau(1)

N5 _ On; Oﬂz2 Onzm 1nzn2 Oﬂzﬂs Oﬂzﬂ-a (4.421))
L Y 15(2)

NG:Ea13X13(1)+[02 Oz R1L; Og,, Oy 02:14] (4.42c)

N7= 0,13 01132 0n3n1 01131;2 11!3“3 Oﬂaﬂd (442(1)

You(2)
Ne = BagiXa()+ | 0, O Opy, Raly Onp O, |  (4:420)

011.4 01’142 Omnl annz 01’14 na 11’14 14
No=|[1 of of of of of (4.42f)
02 122 02111 0'2712 0211.3 02714

while all quantities we already defined above.

The comparison of the two formulations shows that the formulations in joint
space requires more computational work than the one in Cartesian space. The for-
mer needs the direct kinematic solution, which requires the solution of nonlinear
equations. Moreover, the direct kinematic solution will be a very time-consuming
task in case of systems with more than two cooperating manipulators. It will be
shown later that the CPU time for simulation of a numerical example of the

problem at hand, formulated in Cartesian space, is 75% of the one formulated in

joint space.

4.6 Simulation Results

The equations of motion of the entire mechanical system are obtained by assem-

bling all the individual link models together, as mentioned in Section 3.3.
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Table 4.1: Physical parameters of two cooperative manipulators

Link Length | Mass | EI
(metre) | (Kg) | (Nm?)
1{0,03), 200,07 0.45 |.0623 | 7.815
3(0305), 4(040¢) 0.55 | .0761 | 7.815
manipulated object{Os0g) | 0.40 | 0.665 | Rigid

The physical parameters of this example are given in Table 4.1. It may be
noted that 2, 4, 6 and 8 beam elements for each flexible link are used to discretize
the flexible links, the results in all cases being nearly the same. Hence, from now
on, two beam elements for each flexible link are used to discretize the flexible
links in our examples in order to reduce the simulation time. Similarly, it has
been found that using the first two, four or six modes of each fiexible link for
defining modal coordinates leads to nearly the same results. In this example, two
beam elements for each flexible link are used to discretize the flexible links as

well, and the first two modes of each flexible link are used.

4.6.1 Comparison of the Simulation Results in Cartesian

and Joint Spaces

The simulation of the problem at hand is performed for formulations in both
Cartesian and joint spaces under the same conditions in order to compare the

simulation results for both cases.

A prescribed cycloidal manoeuvre for the centre of mass of the manipulated
object, which undergoes a horizontal translation, and the angle of orientation of

the manipulated object, are chosen as follows:

z.=02+05 (i — j—sin 2nt)

T 2r T/ 0st=T



Chapter 4. Dynamics of Two Cooperating Flexible-link Manipulators-Planar Case 67
90=%(%—-21;sin2Tﬁ) 0<t<T
Here, z. is a horizontal translation, i.e., the component of r. along the Xy axis,
measured in metres, and 8, is the angle of orientation, measured in radians, of the
manipulated object, as shown in Fig. 4.1, while T' = 0.5 s. Hence, one may carry
out the simulation based on the prescribed motion of the manipulated object in
Cartesian space. To this end, the inverse kinematics of the rigid-link mode! is
used to derive the nominal actuated joint angles and their time-rates of change,

which are shown in Fig. 4.3.
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Figure 4.3: Actuated joint angles and their time-rates of change of the two coop-
erative manipulators

On the other hand, the joint trajectories shown in Fig. 4.3 are chosen for the
prescribed manoceuvres of the actuated joints for the simulation in joint space.
The actuated joint torques are then computed using inverse dynamics for formu-
lations in both Cartesian and joint spaces, the results of which are dep.-ted in

Fig. 4.4. Next, the actual motion of the manipulated object, i.e., its orientation
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and translation, are computed by performing the simulation of the formulations
in Cartesian space as obtained in Section 4.5. At the same time, the manipulated
object motion is also computed based on the formulations in joint space using
eqs.(4.21e) and (4.21f) for the actual model. The simulation results for both cases
are depicted in Figs. 4.5 and 4.6. Given the manipulated object motion and joint
angles «; associated with link flexibility, as depicted in Fig. 4.1, the total angles of
rotation ¢;, as well as the joint angles 6; and their time-rates of change are derived
using the inverse kinematics for the model containing flexible links in Cartesian
space. On the other hand, using the simulation of the model in joint space, as
obtained in Section 4.4, joint angles and their time-rates of change are computed
for the given joint torques using a model containing flexible links, The results for
both formulations are shown in Figs. 4.7-4.9. Significant elastic displacements
are observed in the flexible links, the results of which are shown for both cases
in Figs. 410-4.13. The simulation results for both formulations are shown in
the same plots in order to compare them. The overall results presented in the
above-mentioned figures show that the simulation scheme is quite consistent for

both formulations.
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Figure 4.5: Orientation of the manipulated object and its time-rate of change of

the two cooperative manipulators (rigid —, Cartesian - -, joint — - —)

o
<]

o
[=:]
T

g
=~
T

Translation of EE, m

Time, 5

Trans. rate of EE, m/s

041

0.2

0.3 0.4 05
Time, §
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Figure 4.9: Joint angle 3 and its time-rate of change of the two cooperative

manipulators (rigid —, Cartesian ~ -, joint — - —)
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4.6.2 Structural Damping

In order 1o illustrate the effect of structural damping, simulations have been per-
formed for two cases, one including structural damping and one without it. The
damping coefficient for all the modes of the fiexible links are taken equal to 1%.
The simulation results for manipulated object motion, joint angles and tip de-
flections of the flexible links along with their time-rates of change are shown in
the following ligures. As it is apparent from the figures, the oscillations grow un-
hounded especially toward the end of the simulation, in the absence of structural
damping. However, there is no scurce of energy in the system to explain the
growth of the oscillations. Moreover, the smoothness of the trajectory for the ac-
tuated joint Lorques doesn’t allow any initiation of real elastic oscillations. Hence,
this growth is not due to physical reasons but rather numerical integration errors
associaled with discretization. On the other hand, consideration of structural
damping does not allow the growth of spurious oscillations. It is evident from
the results that consideration of structural damping leads to a reduction of the
oscillations at the end of the simulation. Moreover, it is possible to increase the
time step of the simulation time by including structural damping in the system.
FFurthermore, constderation of structural damping and small time step compen-
sale for the errors that result from using the tabulated values of the actuated
joint torques, computed based on a rigid-link model, to obtain the actual motion

of the system at hand.
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Figure 4.22: Tip deflection and its time-rate of change for link 3 of the two
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Chapter 5

Dynamics of Planar Flexible-Link

Parallel Manipulators

5.1 Introduction

In this chapter, another type of robotic manipulators with kinematic loops and
flexible links, namely, planar parallel manipulators, is presented. Parallel manip-
ulators are mechanical systems with multiple kinematic loops. They comprise
two platforms, one fixed to the ground and one movable. The modelling formu-
lations described in Chapters 2 and 3 are applied here to perform the simulation
of the manipulators at hand. Some modifications in the modelling are made in
order to simplify the formulation for planar systems, in the light of the modelling

described in Section 4.2,

[Migure 5.1 shows a planar parallel manipulator that contains flexible links and
kinematic loops, the end-effector being assumed rigid. It has six flexible links,

003, for i =1,...,6, and a rigid triangular end-effector, O;0s0y.
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o,
(4

Figure 5.1: A planar flexible-link parallel manipulator

The DO of the system at hand can be obtained hy using cq.(4.1), namely,

6
g=3+4+Y ni=3+6n (5.1)

i=1
where the number of generalized coordinates associated with flexibility for all
flexible links is assumed to be the same, l.e., all flexible links have the same
number n of nodal coordinates. Equation (5.1) shows that the system has three
rigid DOF. The motion of all links is planar and three motors, located at Oy, Oy

and Oj, drive the fixed joints.

If the end-effector motion is prescribed, the formulation of the problem in
Cartesian space should be applied, which is discussed in Section 5.2. Here, to show
the effect of geometric nonlinearities in the elastic displacements, a prescribed
manoeuvre for the centre of mass of the end-effector is given with a very small
time period T, in order to account for a high-speed operation. Structural damping

is not considered in this example.

On the other hand, the formulation of the problem in joint space is used
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when the motion of the actuated joint angles and their time-rates of change are
prescribed; which is studied in Section 5.3. In formulating the problem in joint
space, the direct kinematic solution of the parallel manipulator, which is a very
time-consuming task, is required. However, there is no need for this task in

formulating the problem in Cartesian space.

5.2 Dynamics of the Planar Parallel Manipula-

tor in Cartesian Space

The dynamics of the planar parallel manipulator, as shown in Fig. 5.2, in Carte-
stan space 1s modelled first. With reference to Iig. 5.2, 4; is the joint angle
associated with the {lexibility of link ¢, while ¢; is the total angle of rotation of
the joint centred at O, i.ce., it is the sum of the joint angle, ¢;, and that due to
the link flexibility. Using this model, some simulation results are obtained, and

presented subsequently.

5.2.1 Modelling

The dynamical model of an individual beam-shaped link ¢, as shown in Fig. 5.3,
is first formulated as an uncoupled body, as explained in Section 4.2. Then, the
dynamical model of the entire system in Cartesian space is obtained by assembling
all links together via their kinematic constraints, using the method of the natural

orthogonal complement.

The twist-constraint cquations of the holonomic system at hand can be ex-

pressed as

A.V = Op (52)
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Figure 5.2: Geometric configuration of the planar parallel manipulator

where v is the m/(= 31 m! + 3)-dimensional vector of generalized twist, whicly
is composed of the vectors of flexible twists of all moving links, which are the

same as defined in eq.(4.4), plus the twist of the rigid end-clfector, namely,
al il e T g M I
V= [ Prow af L R w0 et ] (5.3)

With reference to Fig. 5.3, r; is the 2-dimensional position vector of origin O; with
respect to the inertial frame and w; is the scalar angular velocity of the frame
Fi(X;Y:), attached to link 7, with respect to the inertial frame. Morcover, 1 and
¢ denote the angle of orientation of the end-effector and the position vecior of the
centre of mass of the end-effector with respect to the inertial frame, respectively,
as shown in Fig, 5.2. In addition, » is the number of all moving links in the
system, which is six here, and the matrix A appearing in ¢q.(5.2) is the p x m/
twist-constraint matrix, while 0, is the p-dimensional zero vector, with p defined
as the number of twist-constraint equations. Additionally, u; = u;({) is the n-
dimensional vector of generalized coordinates associated with the flexibility of
link i. Vector v, defined in eq.(5.3), can be expressed as a linear transformation

of 85, which is defined for a ¢-degree-of-freedom system as a g-dimensional vector
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ol independent generalized speeds, namely,
v = N&; (5.4)

where N is the m/ x ¢ natural orthogonal complement (NOC) of matrix A.
g P

Figure 5.3: Modelling of the flexible beam-shaped link ¢

The form of 8; depends on whether the system is being modelled in joint
spacc or Cartesian space. Vector 8; is usually composed of actuated joint speeds
plus the generalized speeds associated with flexibility in joint space; while, in
Cartesian space, 9 ; can be defined as the array containing the end-effector twist
plus the generalized speeds associated with flexibility. The (3 + 6n)-dimensional

veetor 84, in the latter case, can be written as:

. ) T

0= [ o ¢ oal af o al af of ] (5.5)
where all quantities are as defined just after eq.(5.3).

In formulating the problem in Cartesian space, using an expression for the

position vector of the centre of mass of the end-effector, it is possible to express
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v as a linear transformation of & 1. which leads to the NOC N as ollows. Vector
¢ can be determined using three different paths in Fig. 5.2, naely, O40,0:(,
010,0505C and 0103050,C to go from erigin Oy to ', the centre of mass of

the end-effector, as shown in I"ig. 5.2, T'hesc three paths then yield

c=ay +aytar (H.6a)
C = a2+ Az +ass + ag (5.6}
C= a3+ Az + Asy T Ay (Hh.6¢)

where a; 43, for i = 1,...,6, is the position vector of point Owpy in Fy, and a;,
for j =17,8,9, is a vector on the end-eflector 070304 from the origin O; to point
C, expressed in the inertial frame, as shown in Fig. 5.2, while veclors apy and
a3 are fixed. Using the same approach as in Section 4.3, the time derivative of

vector a; ;43 takes on the form

s':.l;“;‘.;.;; = W,‘Ea,",‘+3 + R,‘Lifll‘(ﬂ), p = 1, Ceay ] ( .

adg |
-1
—

where L; = Li(Op; 43} is the 2 x n shape-function matrix evaluated al point O
in the undeformed configuration of link 7, as defined in eq.(2.31).
Differentiating eqs.(5.6) with respect to time and applying eqs.(5.7) lor &y ipn

and using a; = yEa;, for 7 =7,8,9, one obtains

c= leal,; - RlLlfll -+ w.|Ea.;7 + R.]L;]ﬁ.] + ':frEa7 (5.3&)
¢ = W2Ea25 -+ Rngl:lQ + UJ5E353 + Rsle:lr, -+ T/;Eag (58'))
¢ = wyBags + RaLatls + weBagy + ReLstls + yEay (5.8¢)

Rearranging eqs.(5.8), w; is obtained in terms of 6; as:
twy -1 . _
= [ Ea;;yz BEaips e } Xi.i+f%91 (5.9)

Wita

where 1 = 1,2,3, and X; ;43 are 2 x (3 4+ 6n) matrices defined as

Xy =[-Eay 15, -RL, O Oz -—RL; Oy Oy] (5.10)
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Xos =[-Bag 1:z 02, —R;L; Oz 0Oz, —RsLs Oz, (5.11)

Xys ={-Eag 12 Oi, Ozx —Rzls 0;, O, —RgLg] (5.12)

with 142 defined alrcady as the 2 x 2 identity matrix, while Og,, is the 2 X n zero
matrix. Here, the 2 x 2 inverse appearing in eq.(5.9) can be readily computed as
~1 1 | (Baysye)”

T
_ Aita,iz6
Ea;i13 Eajisi4e =A T E= t - (5.13)
—(Bajita) —R 43

|-

. —_ 'I'
with A = —a; 4 Ea; s

Now, 1, the velocity vector of O; in the inertial frame, as shown in Fig. 5.2,

can be derived, in light of eq.(5.7), as

i',‘ = 02., (5.14&)
f‘i+3 = wiEa,-,,-+3 + R,‘L,‘I:l;(t) (5.14b)

where 1 = 1,2, 3, and 0, is the 2-dimensional zero vector, while other quantities

have heen defined already. Upon substitution of w; from eqs.(5.9) into eqs.(5.14),
Iirs can also be expressed in terms of 8;. Therefore, substituting eqs.(5.9) and
(5.14) into eq.(5.3), v can be expressed as a linear transformation of @7, which
lcads to N. Upon assembling the dynamics equations of all links and using the
above modelling scheme for deriving the NOC N, the model of the system at
hand can be obtained by using eq.(3.77). It may be noted that, in this example,
m' = 21 + 6n, while g = 3 + 6n.

Effect of Geometric Nonlinearities

As mentioned in Chapter 3, coupling of the longitudinal and transverse displace-
ments of the beam-shaped links results from consideration of the effect of geomet-
ric nonlinearities in the elastic displacements. The latter arise, in turn, because

of a term that should be added to the elastic strain energy of the beam element j
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of link ¢ in Fig. 5.3, This term can be obtained by using eq.(3.26) for planar

beam-shaped links as
Vﬂﬂ — 1 [ SR
ij =g [ cxxoxxdv y (5.15)
where the following assumptions for planar beam-shaped links are recalled.
lovyliy = {oz2)i; = loxvlis = loxzly = [ovzli =0 (5.16)
Introducing [ex x];; from eq.(3.27¢) into eq.(5.15), one obtains

U FIX, 1) ax n{] (5.17)

where [;; is the length of the element j of link ¢ and v;; is its transverse dis-

placement. Moreover, f;;(X,t)} is the axial internal force, which can result rom
sources such as centrifugal effects associated with the angular velocity of link 7.
Equation (5.17) is obtained under the following assumptions: The beam has a
constant cross-section throughout the element and the axial displacement can be

ignored, i.e., the first term of eq.(3.27c) vanishes.

Then, using eqgs. (3.28)-(3.31), one obtains K for the beam element j of

link 7 as

oL
gra: < 4 .f".
K Uf)\ ) (54X . (5.18)

where Ly; = L;;(Py) is the 2 x n;; shape-function matrix of element j evaluated
at any point P; in the undeformed configuration of link 7, as defined in eq.(2.5).
If it is assumed that fi;(X,1) is constant along the element, the form of K¥}', for
a given axial force, can be obtained from (Przeniieniecki, 1967). Therefore, the
stiffness matrix can be thought of as composed of two parts: the conventional

stiffness matrix (Cook, 1981), which is constant, plus a geometric stilfness matrix,

which is configuration-dependent, namely,

K; = K + K (5.19)
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Table 5.1: Physical parameters of the planar parallel manipulator

Link Dimension | Mass El
{metre) (Kg) | (Nm?)
[(0;0y), 2(0,05) 0.45 1 0.0623 | 7.815
and 3(0304)
4(040+), 5(0sO0s) 0.55 0.0761 | 7.815
and ()(OGOQ)
Snd-effector(0;0505) 0.40 0.0959 | Rigid

This expression is used to account for the effect of geometric nonlinearities, which
lead to a coupling that has a considerable effect on the elastic displacements of

beams in high-speed operations.

5.2.2 Simulation Results

The physical parameters used in this example are given in Table 5.1. In this
example, lwo beam elements for each flexible link are used to discretize them
and the first two modes of each flexible link are used for defining the modal

coordinates.

A prescribed cyeloidal manoeuvre for the centre of mass of the end-effector,

which undergoes a horizontal translation, at a constant orientation, is given below:
1 1
rb‘=g+-(:§-—-Lsin3“—*) (5.20)

lere, @ is mcasured in metres and 7' = 0.25 s, which amounts to a high-speed
operation. The inverse kinematics of the rigid-link model is used to obtain nom-
inal joint angles and their time-rates of change. Actuated joint torques for the
rigid-link model are then derived using inverse dynamics, the results of which are
shown in Fig. 5.4. The actual end-effector motion and elastic displacements of

the links are computed solving the equations of motion given by the the model
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Actuated joint torques, Nm

-4 < Torque 3
: . Torque 2
-8l .
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Time, s

Figure 5.4: Actuated joint torques of the planar parallel manipulator

described in Section 5.2.1. Figure 5.5 displays the horizontal displacement of the
centre of mass of the end-effector and its time-rate of change for the rigid-link
model(dashed lines), as well as for the flexible-link mode! (solid lines). The joint,
angles and their time-rates of change for the model containing flexible links have
also been calculated using the inverse kinematics of the parallel manipulator; as

a sample, those for link 1 are shown in Fig. 5.6.

Finally, in order to illustrate the effect of the geometric nonlincaritics, siin-
ulations for two cases have been performed, one including the above-mentioned
effect (all the other results include this eflect) and one without it. Tip deflcctions
of links 1 and 4 and their time-rates of change for the two cases arc shown in
Figs. 5.7 and 5.8. One can observe from these figures that the simulation is un-
stable if geometric nonlinearities are not included. This is because the cffect of
geometric nonlinearities in the elastic displacements of flexible links is very cru-

cial in high speed operations and without considering them, we could not obtain

correct results,
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0 0.05 0.1 0.15 0.2 0.25
Time, s

0 0.05 0.1 0.15 0.2 0.25
Time, s

IFigure 5.5: End-effector motion and its time-rate of change for the planar parallel
manipulator (flexible —, rigid - - -)

5 0
=-0.2;
2
%D-OA
£06
= -0.8
3

g

g

&

Bl

=

o

E

= 0.05 0.1 0.15 0.2 0.25

Time, s

Figure 5.6: Joint angle and its time-rate for link 1 of the planar parallel manip-
ulator {flexible —, rigid - - -)
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Tip deflection, m

Tip defl. rate, m/s

0 0.05 0.1 0.15 0.2 0.25

Figure 5.7: Tip deflection and its time-rate of change for link | of the planar
parallel manipulator (with geometric nonlinearities —, without them - - -)
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Tip deflection, m
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Time, s

Tip defl. rate, m/s

0 005 0.1 0.15 02 025
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Figure 5.8: Tip deflection and its time-rate of change for link 4 of the planar
parallel manipulator (with geometric nonlinearities —, without them - - -)
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5.3 Dynamics of the Planar Parallel Manipula-

tor in Joint Space

In this section, the modelling and simulation of the planar parallel manipulator,
as shown in Fig. 5.1, in joint space is presented. The geometric configuration of
the example at hand is shown in Fig. 5.9, while v, ¢; and 8; are the same as
shown in [fig. 5.2, The vector of independent generalized speeds is composed of
three time-rates of change of actuated joint angles plus the generalized speeds
associaled with link flexibility. The unactuated joint rates are the dependent
generalized speeds. The model of an individual link is formulated in the same
way as in Section 4.2, Then, the entire system is modelled by assembling all
links together via their kinematic constraints. The kinematic constraints are

formulated and the system dynamics for this example is simulated below.

Figure 5.9: Geometric properties of the planar parallel manipulator



Chapter 5. Dynamics of Planar Flexible-Link Parallel Manipulators a4

5.3.1 Formulation of Kinematic Constraints

in formulating the problem in joint space, for systems with kinematic loops, the
NOC N can be evaluated using the equations constraining the twists of two
coupled links as well as considering the loop-constraint equations of the system,

This procedure needs the direct kinematics solution of the parallel manipulator.

The kinematic constraint equations of the parallel manipulator are derived

using eqs.(2.34) for the planar systems, in light of cq.(4.20), which leads to

Wi = ¢ (H.21a)
#; =0, (5.21h)
wips = w; + Oips + Wi i3 (h.21¢)
I:43 = Bayipaw; + RiLa(¢) (5.21d)
wr = wy + 07 - iy (h.21¢e)
r; = Iy + Bagswy + RyLauy (L) (5.210N

where ¢ = 1,2,3 and ¢; is the actuated joint angle of the joint centred at O,
while L; = Li(Oq; i+3) was defined in eq.(5.7). All other quantitics are as defined

earlier.

[t is apparent from Fig. 5.9 that there are three loops in this parallel manip-
ulator, narnely, 01040703050201, 01040709060301 and 020503090(;()3()2.
However, from Euler’s formula for graphs (Harary, 1969), only two of these three

loops are independent. There is a 2-dimensional vector constraint equalion for

each loop, these equations taking on the forms

a4 +ay7+ arg — asg — axs +az =0, (5.22a)

a14 + a47 + a9 — agy — Az + ay; = Oy (5.22h)

By differentiating the loop-constraint equations from eqs.(5.22) with respect to
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time, one obtains

RyLia(¢) + g1 Bayy + RsLyta (i) + (¢ + 0, + xFy)
Eay + (g + 0':1 + 07 + X’{‘llh + x.’{ﬁal)EaTS — 2 Eays

~RoLota(1) — (g2 + 05 + x1112)Bass — RsLsiig(t) = 0, (5.23a)

RyLyiy (1) + ¢1Bayy + RaLat(t) + (¢ + 05 + xT1y)
Ea;+ (¢ + 0.4 + 07 + X;I‘l'll + x:‘,"t'u)Eam — ¢sEagg
~R3Lsts(t) — (G + 06 + x4 13)Bage — RgLetig(t) = 05 (5.23b)

where eqs.(5.7) and (5.21) have been recalled, while x; is defined as 17 /||agii+a |,
with 1" defined, in turn, as the second row of L;(Qo; i43) of eq.(5.7) and ||ag; ivs]
is the Euclidean norm of the position vector of point O;y3 in the undeformed

confliguration of link ¢, as depicted in Fig. 5.9.

The above two equations can now be expressed in compact form as
N;0; 4+ Npp =0, (5.24)

where 8; is the (3+6n)-dimensional vector of independent generalized speeds,

and @p is the 4-dimensional vector of dependent generalized speeds, namely,

M F 3 " + 13 . T
9;=[q. G ¢z ub o wf al ol of ué] ) GD:[B‘; 05 0 07]
(5.25)
while N is the 4 x (3 + 6n) matrix defined as
N, = fi f2 0, By By Oz By —RsLs Oo (5.26)

g1 0 g G; O Gy Gs O2. —-RsLs

Morcover, Oy, is the 2 x n zero matrix. One has, additionally, further definitions,

as follows:

fi = E(aiy + ayr + azs) f; = —E(ass + azs) (5.27a)
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B: = R;L; + E(ass +ars)x! By = —R,L; — Eagex!
B; = RyLyg + Eagsx] g1 = E(ay + as; + ag)

g2 = —E(ags + azg) Gs =R\L; + E{a;; + a,—g)x'f'
G, = —RsLj — Eagyx? G; = RyL, + Eagx,

while Np in eq.(5.24) is a 4 x 4 matrix defined by

E(ayy+ams) —Basyy 0,  Eag
E(a;z +2am) 0; —Eag BEagp

Np =

(H.23)

Therefore, from eq.(5.24), the dependent generalized speeds can be expressed in

terms of the independent ones, as indicated below:

. 1 B
04 = A2A1 [(AA1a53 + Hiptaas ) 'hy — Aﬂla(lmh'z]

b = AzA {[AA atr+ar8)+ﬂsuzaos] 'hy - Ama(,l,h‘,}

éG = E {.u.;agéhx — [Aazg — puy(aur + am)]T hz}
1

07 = A_Al (ﬂzagslll —_ Aag:allg)
with
A= s = [, Al = A#lﬂE - Azi.t(;
and

T "
= aESEa7s, to = agB(ayr + a), ps = (a7 + az)’ Bagy

Ha = a’-{gE(a‘;? +ay), ps = a:I;;Eass, He = a?;;,Ea75,
One has, additionally, the definitions given helow:

h; = ¢if; 4 ¢fs + B + Bou, + Baiy — RsEs;

hy = g1 + @ag2 + Gauy + Gy + Gruy — ReLgti

(5.29a)
(H.29H)
(5.29¢)

(5.294)

(5.30)

(h.31a)
(5.31h)

(h.32a)

(5.32h)
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Table 5.2: Physical parameters of the planar parallel manipulator

Link Dimension | Mass | Stiflness
(m) (Kg) | EI(Nm?)
H{O04), 2(0,05) 0.8 0.1108 7.815
and 3(0305)
4(0407), 5(0503) 1.2 0.1652 7.815
and 6(0s0,)

Having obtained the values of 04, 05, 05 and 07 from the above equations, one
can derive the vector of generalized speeds v in terms of the independent gener-
alized specds. Thus, vector v can be expressed as a linear transformation of the

independent generalized speeds, namely,
v = N6, (5.33)

where N is (21 + 6n) x (3 + 6n) NOC and v is a (21 + 6n)-dimensional vector,
i.c.

K

_ T I T . .
V=10 w a4 Ty w Uy ... I7 wy (5.34)

5.3.2 Simulation Results

Now, using the formulation of kinematic constraints obtained in the previous
subsection, the entire system can be modelled by assembling all links together

via their kinematic constraints, using eq.(3.77).

The physical parameters of the light-weight example are given in Table 5.2.
Modal coordinates are used for this example using the first two mode shapes
ol the flexible links as obtained from the finite element model. The damping

coeflicient for all the modes of the flexible links are taken equal to 0.01.
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A prescribed manoeuvre is chosen for the actuated joints as follows:
{ 1 . (2=t .

g = ¢(0) + [g;(ty) —;(0)] |— — —sin | — ]|, for j=1,2,3 (5.35)
ty 2w tr

where t; =15, and

ql(o) = ﬂ-/3 Q2(0) = 27"1'/'3 q;(l)) = 71'/2

qi(ty) =27/3 Qtf) =7/3 @s(ty) =27 /3

Nominal joint torques are calculated using the inverse dynamics of the rigid-link
model for the prescribed joint trajectories, which are plotted in Fig. 5.10. Then,
simulating the direct dynamics, joint angles and their time-rales of change are
calculated for the given joint torques using a model containing flexible links.
There are some remarkable deviations in the casc of joint angles due to the
structural flexibility, as depicted in I"ig. 5.11. It is seen in Ifig. 5.12 thal greater
deviations from the rigid-link model are observed in the time-rates of change of
the joint angles. Significant elastic displacements are also observed in the {lexible

links, as shown for link 1 in Fig. 5.13.
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IMigure 5.10:
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Figure 5.11: Joint angles of the planar parallel manipulator (flexible —, rigid
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Figure 5.12: Time-rates of change of the joint angles for the planar parallel
manipulator (flexible —, rigid - - -)
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Figure 5.13: Tip deflection and its time-rate of change for link 1 of the planar
parallel manipulator



Chapter 6

Kinematics and Dynamics of a
Spatial Flexible-Link Parallel

Manipulator

6.1 Introduction

Many research works in direct kinematics of parallel manipulators have been re-
ported. Some works (Merlet, 1992; Raghavan, 1993) focus on the direct kinemat-
ics ol parallel manipulators to find all possible moving platform poses {positions

and orientations).

The study of the direct kinematics of parallel manipulators to find the twist
of the moving platform, i.e, the velocity of centre of mass of the moving plat-
form and its angular velocity is the subject of other investigations. Mohamed
and Dufly (1985), and Sugimoto (1989) used screw theory for solving the direct
kinematics of parallel manipulators, while Shi and Fenton (1992, 1994) presented
a method for solving the direct kinematics of a general 6-DOF Stewart Platform,

which is based on the velocities of three points attached to the moving platform.
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Lee and Shah (1988) have also studied the kinematics of a 3-DOF parallel ma-
nipulator. Until now, most of the methods for solving the direct kinematics of
parallel manipulators are based on rigid legs, while the direct kinematics of par-
allel manipulators with flexible legs has remained virtually untouched. In some
applications, link flexibility cannot be neglected. For example, in space applica-
tions, two or more robotic manipulators that usually have long arms, separately
mounted on the same base structure and participating in a coordinated activity,

give rise to a mechanical system with the aforementioned features.

A method is introduced for solving the direct kinematics o a 3-DOI" spatial
parallel manipulator with flaxible links in Section 6.2. The method is based on
the position vectors and velocities of three noncollinear points on the moving
platform, that is assumed rigid. Many techniques to obtain the twist of a rigid
body, i.e., the velocity of one of its points and the angular velocily, [rom the
given position and velocity vectors of the three noncollinear points, are available.
Fenton and Willgoss (1990) reported a comparison of different methods. Here,
the method reported in (Angeles, 1986}, which is both robust and numerically

well conditioned, is used.

As mentioned above, many research works on kinematics of parallel manipu-
lators have been reported, but the study of the dynamics of parallel manipulators
has been the subject of very few investigations (Reboulet and Berthomicu, 19915
Gosselin, 1993). Moreover, most of the works on the dynamics of parallel manip-
ulators are based on rigid links. The modelling and simulation of the manipulator

at hand are discussed in Section 6.3.

Shown in Fig. 6.1 is a parallel manipulator composed of three legs 0;0;450:44,
for i = 1,2,3, a rigid moving triangular platform 070505, henceforth abbreviated
as MP, and a fixed platform 0,0,0;, assumed rigid as well. Each leg contains

two flexible links that are coupled by a revolute joint. The legs are connected to
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Figure 6.1: A 3-DOT spatial parallel manipulator

the MP by spherical joints and coupled to the base by revolute joints.

The DOF of the manipulator at hand can be obtained by using eq.(2.41) with

the following values:
r = number of moving links = 13,
v = number of joinis = 15,
7; = number of flexible links = 6,
n; = number of nodal coordinates of link ¢ associated with link flexibility = n

wherc the generalized coordinates associated with flexibility for all flexible links
arce assumed to have the same dimension, i.e., all flexible links have the same
number n of nodal coordinates. Here, note that each spherical joint may be
replaced by 3 revolute joints and 2 intermediate links with negligible length.
Therefore, the DOF of the manipulator is
6
g=3+> n;=3+6n (6.1)
=1
This manipulator has three rigid DOF and three motors, located on the fixed

platform, that drive the actuated joints.
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6.2 Direct Kinematics Solution

6.2.1 Modelling of Flexible Legs

Figure 6.2 shows the manipulator of Fig. 6.1 with its leg links in their deformed
configuration, leg i carrying the flexible links 7 and 7 + 3. The [lexible link i is
now modelled as follows: The position vector of point O;y3 on link 7, in frame
X:YiZ(F;), which is attached to link ¢, as shown in Fig. 6.3, exprossed in the

inertial frame Fg, can be written as
a; = Rifa)i (6.2)
where R; is the rotation matrix of the frame JF; with respect to the inertial

frame, while [a;]; is the position vector of point O;y3 in frame F;. Morcover, from
Fig. 6.3,

i = [a0il; + [aeil: (6.3)
where [ag;}; is the position vector of point Oys in the undeformed configuraiion

of link ¢, i.e., point Og;i4a and [a.]i is the elastic displacement ol point Oipg in

the deformed configuration of link i, both in frame F;.
Using eq.(2.31), a; can be expressed as
a; = Ri[aj]; = Ri{[ao)i + Li(Oviiva)ui(t)} (6.4)

where L;(Og;i+3) is the 3 x n dimensional shape-function matrix evaluated at
point Og; i3 in the undeformed configuration of link 7, as defined in eq.(2.31),
and u;(¢) is the n-dimensional vector of generalized coordinates associated with

link flexibility. The time derivative of &; can be derived as
a; = Ri[a]i + RiLi(Opi i) (1) (6.5)
Here, ]::{;[a,-],- can be written as

lf{,'[a,-],- = W; X a; (6.6)
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Oir6t05)/ Xo

X Ao

Figure 6.2: Geometric properties of leg ¢ and MP of the spatial parallel manipu-
lator

where w; is the angular velocity of the frame F; with respect to Fp. Thus,

a =w; Xa;+ RJL:'(ODz',1'+3)ﬁz'(t) (67)

6.2.2 Direct Position Kinematics

The direct position kinematics is defined as follows: Given the vector of indepen-
dent generalized coordinates €, which is composed of actuated joint angles and
generalized coordinates associated with link flexibility, determine the pose of the
MP in Cartesian space, i.e., the position and orientation of the MP. The vector
of independent generalized coordinates 87 can be written as
T

0r=|0, 0, 0 W) WI) WI() WO WIQ) Wl (6.5)

where fy, 8> and 03 are the actuated joint angles measured in radians, as shown

in Fig. 6.4 and u;(¢) is as defined after eq.(6.4).
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Figure 6.3: Modelling of spatial flexible links

The configuration of the MP is obtained from the position vectors of the three
noncollinear points on the MP, 1.e., 07, Oy and Oy. The position veclor ol point
Oi6, depicted in Fig. 6.2, can be written as

risg =T;+a;+aip3, for 1=1,2,3 (6.9)

where r; is the position vector of the origin O;. Upon substitution of a; {rom

eq.(6.4) into eq.(6.9), one obtains

rive = Iy + Rifai)i + Riga[aigalins for 2=1,2,3 (6.10)

with
R; = Ro:Q: (6.11a)
R,z = RiAF.Qiys (6.11h)

Here,

cosf; —sind; 0
Q; = sin0; cosl; 0 for 7=1,---,6 (6.12)
0 0 1
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where 0; is the angle of rotation of the j** joint. Ry; is the rotation matrix of
frame Xo; Yo: Zo;, attached to frame F;(X;Y;Z;) at the home configuration ¢; = 0,

as shown in ig. 6.4. This matrix is constant, while A,; takes on the form

1 0 0
A;=|0 cosa; —sing; (6.13)
0 sina; cosoy
where «; is the angle between joint axes Z; and Z;43, depicted in Fig. 6.4. More-
over, F; is the rotation matrix associated with the flexibility of link ¢, which,

under the assumption of small displacements, can be written as

1 —vei s
Fi=| 40 1 0 (6.14a)
-y 0 1
with
i = tan™? (([a""]")") for k=23 (6.14b)
[|2ai]

where 7y; and ~3; are the components of the rotation of the tip of the link ¢
associated with the link flexibility, depicted in Fig. 6.3, and {a.:]; and [ag;]; are
defined in eq.(6.4). Moreover, (-); is the k'* component of vector (-), and || - || is

the Euclidean norm of the same.

Substituting R; and R;4s from eqs.(6.11} into eq.(6.10) and expanding the
equation thus resulting, one obtains r;ys in terms of the independent generalized
coordinates and three dependent joint angles, 84, 05 and ;. These dependent
joint angles can be expressed in terms of independent generalized coordinates by
using three constraint equations, which can be obtained by writing the expression

for the Euclidean norm of the three sides of the MP as

llazsl|* = afgars (6.15a)
llazs||* = afgare {6.15b)

”339“2 = asTgagg (6.15c¢)
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Fized Platform

Figure 6.4: Geometric configuration of the spatial parallel manipulator

Here, azs, arg and agg are derived by writing three loop equations, as shown in

Fig. 6.4, namely,

ri+a;+as+ag—as—a; —ry =03 (()l()rl)
r1+a1+a4+a79—a3-—a3-—r3=03 (616]))
r2+a2+a5+agg—a6—a3—r3=03 (()”)L)

where 03 is the 3-dimensional zero vector. Moreover, vectors aqg, arg and agy are
obtained by substituting a; from eq.(6.4) into the above equations and expanding
them, with the aid of eqs.(6.11) for R;. Then, these vectors can be substituted into
eqs.(6.15) to derive three nonlinear equations that should be solved numerically to
obtain the three dependent joint angles in terms of known quantitics. Therelore,
one can express the position vectors of points O7, Oz and Oy in lerms of the

independent generalized coordinates.

The position vector of point C, centre of mass of the MP, depicted in Iig. 6.2,

can be readily written as

1
C = §(P7+I‘B+I‘g) (6]7)
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Finally, to determine the orientation of the MP with respect to the inertial
frame, one assigns frame F¢ to point C of the MP, with unit vectors e, e, and e.
along Xe, Yo and Zg, respectively. Here, X¢ is parallel to the side O;0g of the
MP and Z¢ is perpendicular to the plane of points O, Os and Og. The rotation

malrix Re of frame F¢ with respect to inertial frame can then be written as
R¢ = [ e, e, e } (6.18)

with e, e, and e, expressed in the inertial frame. These unit vectors are, in

turn, calculated as

g — Iy
e, = — 6.19a
il (6:192)
€ X e7g
o, = = X8 6.10b
o x oral (6.19b)
e, =¢€.Xe; (6.19¢)

where ezg is the unit vector along the side 0;0g of the MP.

6.2.3 Direct Velocity Kinematics

The direct velocity kinematics is defined as follows: Given the vector of inde-
pendent generalized speeds 8}, with 8; defined as in eq.(6.8), and the geometric
configuration of the manipulator, determine the twist of the MP, i.e., the velocity
of the centre of mass of the MP and its angular velocity. This can be done by
using the velocity of three noncollinear points on the MP, i.e., Oz, Og and Os.
The velocities of these three points can be obtained by differentiating both sides

of ¢q.(6.9) with respect to time, thus obtaining
Figs = &; + 843, for 1=1,2,3 (6.20)

where it is recalled that r;, for ¢ = 1,2,3, in eq.(6.9) is constant. Substituting a;

from eq.(6.7) into eq.(6.20) yields

Fiye = wi X &; + RiLi0i(1) + wiga x apa + RipaLipatys(t)  (6.21)
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where L; = L;{Oq; j+3) is as defined in eq.(6.4) and

W; = 0,‘2-; (G.'l'lil)

wWiya = Wi+ ipaZiys -+ Wiiga (6.22h)

where ¢ = 1,2,3 and z; is the unit vector parallel to joint axis Z;, depicted in
Fig. 6.4. Moreover, w;;ss is the angular velocity ol Fipy with respect to F;,
resulting from the elastic displacement of link i, that can be written [or small
displacements as
Wisgs = o [ 0 —(Liti)s (L{a,-);!] (6.23)
1l
with [ag]; defined in eq.(6.4) and (-); is the j** component of vector (+). lere, u;

and L; are as defined in eq.(6.4) as well.

Upon substitution of eqs.(6.22) into eq.(6.21) aud expansion of the equalion
thus obtained, one derives three equations for the velocity of the three non-
collinear points, that are expressed in terms of the independent generalized speeds
and the three dependent joint rates 04, 05 and 0. Three constraint cquations arce
required to eliminate the dependent joint rates {rom these equations. They are

obtained by differentiating both sides of eqs.(6.15) with respect to time, namely,

algdzg =0 (6.24a)
alidre =0 (6.24)))
alidge =0 (6.24¢)

where arzg, arg and agy can be obtained {rom eqs.(6.16), while their time deriva-
tives are derived from differentiation of the both sides of the eqs.(6.16) wilh
respect to time, Upon expansion and simplification of eqs.(6.24), onc derives
three linear equations involving the dependent joint rates. By solving these three
linear equations for 0,, 05 and 0, 2nd substituting the results into eq.(6.21), one
obtains the velocity of three nor:collinear points that are now expressed in terms

of vector of the independent generalized speeds.
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The method presented in (Angeles 1986, 1988) is used to obtain the twist of
the MP from given velocities of three noncollinear points. The velocity of point

C of the MP is calculated as

A
¢ = 5(1’7 + Fg + Fg) (6.25)

Now, the 3 x 3 matrices P and P are defined as

P=[r7—c rs—cC I‘g—c] (6.26a)
15=[i7—é g — & fg—e] (6-26D)

where ¢ and € are defined, in turn, in eqs.(6.17) and (6.25). Moreover,
P =QcP (6.27)

where Q¢ is the cross-product matrix of the angular velocity of MP, we. If one

takes the vector of both sides of eq.(6.27), one obtains

vect(P) = vect(QeP) = Twe (6.28a)
with
T = (1/2)[tr(P) 133 — P] (6.28b)

with 133 defined as the 3 x 3 identity matrix (Angeles, 1988). Thus, the angular

velocity we can be obtained as
we = T vect(P) (6.29)

with T=! derived, under the condition that neither tr{P) nor tr?(P) — tr(P?)

vanish, in the form (Angeles, 1988)

2 4 ,
o) R - a (6.30)
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Table 6.1: Physical parameters of the spatial parallel manipulator

Dimension o Mass | K., Ly,
(m) (deg) | (IXg) | (Nm?) | (Nm?)
Leg 1 (O10,) 2.109 25 10.292 ¢ 7.815 | 31.25

and (0407)
Teg 2 (0:0s) | 2470 | 25 | 0342 | 7.815 | 31.25

and (OSOS)

Leg 3 (O306) 2,700 25 10373 ) 7.815 | 31.25
and (OsOq)

MP (0;0505) | 2x2x3 | — |2.748 | Rigid | Rigid

6.2.4 Numerical Example

As an example, consider the geometric parameters in Table 6.1 for the manip-
ulator of Fig. 6.1. In this example, beam elements are used to discretize the
flexible links and two elements for each flexible link are used, cach element thus
having eight nodal elastic displacements. Moreover, the generalized coordinates
associated with the flexibility of all flexible links are assumed to be grouped in
12-dimensional vectors. At a certain instant, the vector of independent gener-

alized coordinates 8; and the vector of independent generalized specds 84, are

given as
8;=[2570 2732 2.027 ul u! uf ul ol W]
;=[1.047 0523 —1047 07 af of af al ]’
with (6.31)

u; =[0.00 0.00 0.00 0.00 0.05 0.02
0.06 0.03 0.4 0.07 0.13 o0.11]"
W; = [0.00 0.00 ©.00 0.00 0.65 0.11
0.50 0.13 1.40 0.35 1.25 0.45)7
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Table 6.2: Configuration of the MP of the spatial paralle] manipulator

Rigid Legs

I'lexible Legs

-0.943, 0.102, 0.317

c(m) | [0.05, 2.35, -1.55]7 | [0.03, 2.11, -1.72]"
20.200, 0.588, -0.784 | -0.248, 0.405, -0.850
Re | -0.266, -0.802, -0.533 | -0.337, -0.889, -0.313

-0.908, 0.219, 0.356

113

Table 6.3: Twist of the MP of the spatial parallel manipulator

Rigid Legs Flexible Legs
& |46, -3.05, -0.49]7 | [-1.20, -3.92, -1.02 "
(m/s)
we | [-0.76, 1.60, 1.92]T
(rad/s)

[-0.37, 1.33, 0.29]"

where the values given for u; and u;, for ¢ = 1,...,6, are arbitrary. However,
these values are obtained from the simulation for a practical application, as will be
shown in Section 6.3. In order to highlight the effect of leg flexibility, the above-
mentioned example is solved for two cases, one with rigid legs, and one with
llexible legs. Upon substitution of the numerical values of 8 into the equations
given in Subsection 6.2.2, the configuration of the MP is obtained for both cases,
as shown in Table 6.2. The twist of the MP is also calculated by substituting
the numerical values of ¢ and the geometric configuration of the manipulator, as
shown in Table 6.2, into the equations given in Subsection 6.2.3. The velocity
of poinl C of the MP and the angular velocity of the latter for both rigid and
flexible cases are shown in Table 6.3. The results show that there is noticeable
elfect of the flexible legs on the motion of the moving platform, especially for the

differential motion.
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6.3 Modelling and Simulation

6.3.1 Modelling of the Manipulator

The dynamics model formulated in Chapters 2 and 3 is applied here for the
manipulator of Fig, 6.1. The modelling of the dynamics of each flexible link is

first carried out as explained in Section 3.2, Then, we rewrite eq.(2.35) as
v = N8, (6.32)

where N is the m’ x ¢ NOC and 8;, for the manipulator at hand, is the time
derivative of 8; defined in eq.(6.8). Moreover, the m/(= 42 + 6n)-dimensional

vector of generalized flexible twist v is defined as
"
_ T =T . T e . T L ' aye

where w;, for i = 1,...,6, is defined in €q.(6.22), while ¢ and we are oblained,
respectively, from egs.(6.25) and (6.29). Furthermore, vy, for i = 1,...,6, is the
position vector of the point O;, as shown in Fig. 6.3. The NOC N can be eval-
uated by using the kinematic constraint equations as well as the loop-constraint,
equations of the manipulator at hand. This requives the direct kinematic solution
of the manipulator, which was derived in Section 6.2. The dependent generalized
coordinates can be expressed in terms of the independent ones by considering the

loop-constraint equations using the method explained in Subscetion 6.2.2,

Upon substitution of w; and f; from eqgs.(6.22) and (2.34D) into eq.(6.33),
and expansion of the equation thus obtained, vector v is obtained in terms of
é,r and three dependent joint rates, 64, 05 and ()(;. Therelore, upon climination
of the dependent joint rates with the method explained in Subsection 6.2.3, v
can be expressed as a linear transformation of é;, which leads to N. Finally,
using the NOC N, the dynamics model of the manipulator is obtained from

eq.(3.77). The model formulated herein has considered the effect of geometric
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clastic nonlinearities with the same method as suggested for planar beam-shaped

links using Subsections 3.2.3 and 5.2.1.

6.3.2 Simulation Results

Some numerical results are obtained using the governing equations of motion of
the manipulator at ha— for both rigid and flexible-link models. The physical
parameters of this example are given in Table 6.1. In this example, two beam
elements for each flexible link arc used to discretize the flexible links, the first
four modes of each flexible link being used for defining the modal coordinates.
The damping coeflicients for all the modes of the flexible links are taken equal
to 0.03. We choose a larger number of modes for each flexible link in fhe spatial
case, as compared with the planar one, because the link has more elastic degrees

of frecedom in this case.
A prescribed manoeuvre was chosen for the actuated joints as follows:
iy .
0; = 0;(0) + [c: — 0;(0)] |t — Lsin (mt/ts)] /1.35 (6.34)

where 7 = 1,2,3 and 6,(0) = L.872, 0,(0) = 2.340, 63(0) = 2.987, ¢, = 2.570,
¢; = 2,776 and ¢; = 1.940, all in radians and iy = 0.15 s. Nominal joint torques
were calculated using inverse dynamics of the rigid-link model for the prescribed
joint trajectories, which are plotted in Fig. 6.5. Then, joint angles and their
time-rates of change were calculated for the given joint torques using a model
containing flexible links by performing the simulation of the model obtained in
Subsecction 6.3.1. The results show considerable differences between rigid links
and flexible links. As an example, Figure 6.6 shows the deviation between rigid
and flexible link, in the case of joint angle and its time-rate of change, for link 1.
Significant elastic displacements are also observed in the flexible links, as shown
for link 4 in Figs. 6.7 and 6.8. It may be pointed out that the tip deflections u,

and u, are along the Y; and Z; axes of Fig. 6.3, respectively.
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Although there are noticeable elastic displacements, there are no clastic oscil-
lations in the simulation results due to the smoothness of the trajectory for the

actuated joint torques that don’t allow any initiation of vibrations.

It was noticed that in this manipulator, flexible links 3 and 6 of leg 3 have
larger elastic displacements than those of the other two legs, because they have
longer length as well as higher angular velocities, which aflect directly the clastic

displacements of the flexible links.
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Figure 6.5: Actuated joint torques of the spatial parallel manipulator
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Figure 6.7: Tip deflection and its time-rate of change along the Y axis for link 4
of the spatial parallel manipulator
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Chapter 7

Conclusicons

In this chapter, conclusions are drawn based on the results of this thesis work.

Some suggestions for future research are also put forward.

7.1 Summary of the Work in This Thesis

In this thesis, a general formulation for the modelling and simulation of multibody
systems with multiple kinematic loops and flexible links was presented. This
thesis links together the subject of the isolated field of flexible manipulators and

that of the ones with kinematic loops in a very efficient way.

The kinematics and dynamics modelling were presented in Chapters 2 and 3.
The prerequirement for the modelling of a multibody system is the knowledge
of the underlying kinematics. To this end, two descriptions of the global posi-
tion and velocity of a link are defined together: a description using the notion of
flexible-pose of a link and a description introducing the flexible-twist. These two
sets of variables are linked together via two maps. Thereafter, the finite-element
approximation is used to reduce the continuous link to a discrete system with

a finite number of elastic degrees of freedom. After defining the velocity of any



Chapter 7. Conclusions 120

point of the link in terms of the flexible-twist, the kinetic energy of the link can
be written as a quadratic form in the flexible twist. The clastic strain encrgy is
then obtained as a quadratic form in the flexible-pose. Here, the cffect of geomet-
ric nonlinearities in the elastic displacements, also known as dynamic stiffening
and geometric stiffening, which cannot be ignored in high-speed operations, was
considered. Moreover, the Lagrange equations of motion for the link are written
in terms of the vector of flexible pose and using the mapping relations between
the flexible pose and the flexible twist, the dynamics model of the fink can be
expressed in terms of the flexible twist. The formulation of kincmatic constraints
allow us to assemble the equations of motion of the system. The natural or-
thogonal complement (NOC) of the twist-constraint matrix was used to derive
the minimum number of equations of motion and to eliminate the nonworking
kinematic constraint forces due to the kinematic coupling of the links. The formu-
lation of the problem, which depends on whether the end-effector motion or the
manoeuvres of the actuated joints and their time-rates of change are prescribed,

was obtained in Cartesian space as well as in joint space.

Chapters 4-6 were devoted to developing a simulation scheme based on the
modelling described in the preceding chapters for different types of robotic ma-
nipulators with kinematic loops, namely, two cooperating manipulators; planar,
and spatial parallel manipulators. To highlight the link flexibility effect, the gov-
erning equations of motion were used in the simulation of the alorementioned
systems to compare the results obtained with the rigid and the flexible-link mod-
els. Several researchers have developed dynamics models of multibody systems
but they have often used some simple examples for simulation results. However,
results for several realistic systems were presented in this thesis. The simulation
results are needed to produce a realistic representation and understanding of the

system in the absence of a physical prototype.
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The dynamics simulation of two planar cooperating manipulators was pre-
sented in Chapter 4. To this end, the modelling of the planar systems was carried
oul from the beginning to simplify the formulations for the problem at hand. The
formulation of the problem in both Cartesian and joint spaces were conducted
in order to compare the results and the eflort involved in the two formulations.
It was observed that the formulation in joint space requires more computational
work. Moreover, the results show that the simulation scheme is equally accurate

for both formulations.

Structural damping was approximated by a suitable viscous damping coef-
ficient for different modes. It is evident from the results that consideration of
structural damping leads to a reduction of the oscillations at the end of the simu-
lation. Structural damping also avoids the growth of oscillations due to numerical

roundofl crrors.

The overall results presented in Chapters 4-6 show that there are some sig-
nificant differences in the end-effector motion and the behaviour of joint angles
as well as their time-rates of change between robotic manipulators with flexible
links and those with rigid links. Significant elastic displacements were also ob-
served in the {lexible links. These results indicate the importance of considering
link flexibility in modelling the light-weight robotic manipulators with long arms
as well as in high-speed operations. We believe that the dynamics of robotic
manipulators with flexible links is a subject that is of significant importance in

robotics.

7.2 Recommendation for Further Research

The following topics for further research are recommended in order to improve

the formulation for the simulation of muitibody systems with flexible links and
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kinematic loops:

o Consideration of nonholonomic as well as acatastatic systems;
o Incorporation of other types of kinematic pairs as well as joint. flexibility;

o [nvestigation of the use of other numerical integration schemes as well as

supercomputers to reduce the execution time of the simulation;

o Comparison of the results with experimental data obtained [rorn an actual

prototype;
e Singularity analysis of flexible-link manipulators with kinematic loops;

o Solution of the inverse dynamics for (lexible-link modcl in order to increase

the accuracy of the results.
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Appendix A

Euler Parameters

The Euler parameters of the orientation of a frame F;, as defined in eq.(2.1), with

respect to an inertial frame Fy, are defined as

r;
fli = (A].a..)
0 |
o
where
r; = e;sin (¢:/2), ¥ = cos(¢i/2) (A.1b)

Here, €; is the unit vector along the axis of rotation, and ¢; is the angle of
rotation about that axis. The algebraic constraint among the Euler parameters
is expressed as
& aqi=1 (A.2)
The rotation matrix R; of frame F; with respect to the inertial frame Fy can be
related to the Euler parameters (Angeles, 1988} as
R:’ = [(27'?)2 —_ 1] 133 -+ 2[‘{1‘? + Qr?fl,- = G,LtT (AS&)
where R is the cross product matrix of ri, namely,
_  O(r; xv)

R,’ = ———av—- Vv (A.3b)
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Moreover, G; and L; are 3 x 4 matrices that have the forms (Nikravesh et al.,

1985-a; 1985-b):
G, = [ Ri 41905 -1 ] (A )
L,‘ = [ -—R,‘ + 7'0133 —T; ] (A“))

where 133 is the 3 x 3 identity matrix. The Euler parameters can be expressed in

terms of R; (Angeles, 1991) as follows:

;= vect(\/ﬁ.’), Ty = ﬂ@:l {A.D)

-~

where VR; is the proper orthogonal square root of R;.

The angular velocity w; of F; with respect to Fy can be related to éli as

w; = 2G;§; (A.6a)
or

I .

q:' = §G1 Wy (A.()l))

The flexible twist of link 7, v;, and the time-rate change of its llexible pose, g,

are related by

v; =T, (A.7a)

or

fh- = A,‘V,‘ (A?l))

where T'; and A; are m! x n} and n} x m} matrices, respectively, that are defined

as

9G; Oy Ou,
Fi = 034 1as 03,“ (AS(I)
\_ On.'d 011..'3 111,‘71,-

LGT O O,

A= 033 133 03n. (A.Sb)
|_On.-3 On.-S 1n,‘n,‘
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where Ojg and 1,,,, are the j xk zero and the m xm identity matrices, respectively.

Morcover, n; is as defined in eq.(2.1)

Using eq.(A.4a) for Gy, it can be readily shown that
G:GT =14 (A.9)

where 1 is the 3 x 3 identity mairix. Moreover, using the above equation, it

may be shown that T'; and A; are related by
AT] =1, (A.10)

where 1,,1,,.¢ is the m: x m} identity matrix.



Appendix B
Derivation of -2 (VTM-V-)
oq;\ vt Ve

Upon substitution of M, Mr¢, Mt and M% from eqs.(3.7), (3.14), (3.16a) and
(3.16b) into eq.(3.63a), one obtains

0 (viMiv)) =2 9 ——(w/ R VIR )—|—9——(r’RV"°u,)

04; ‘98
;l( FRV’”"u,)+5?—(w"RV”"R" w;) (B.1)

It may be noted that R; is the only term which is a function of &; inside the

parentheses with the assumption made just alter eq.(3.60).

The derivation of the above equation leads to the computlation of partial
derivatives of af R;b; and a? R;H;RTb; with respect to &;. Iere, a; and b; are
3-dimensional vectors and H; is a 3 x 3 matrix. For simplicity, subscript 4 is

henceforth deleicd.
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B.1 Partial Derivatives of a’Rb

The derivative of the expression of interest with respect to § can be represented
as
d(aTRb)/Or
a ., 4
—(a'Rb) = B.2
2 (&"Rb) (B.2)
d(aTRb)/dr°

By differentiating a’ Rb with respect to r and 9, respectively, we obtain

8, por. T  AOBTRT)  [a®b)]"
g Bb) = o4 ——a= =] 2 (B.32)
g . ga’  9(bTRT)  [aRb)]’
ss@Rb)= =5+ ——T—a= =" a (B.3b)

where a is not function of r, and hence, da”/8r and 3aT/° vanish. Upon

substitution of R from Appendix A into Rb, one obtains
Rb = (2(+°)2 = 1)b + 2(bTr)r + 2°(r x b) (B.4)

Differentiating the above equation with respect to r and r°, respectively, one has

d(Rb) r)B[(bTr)r] 5.0

"% ar +2rB (B.5a)
3(;::’) = 4°b + 2(r x b) (B.5b)

where B is the cross-product matrix of b. Recalling that dv7/dv =1,V v,

and expanding eq.(B.5a}, one obtains

a—(gﬂ = 2rb” 4 2(b”r)135 + 2/°B (B.6)

where 1y is the 3 x 3 identity matrix. Finally, substituting egs.(B.5b) and (B.6)
into egs.(B.3), 3(a"Rb)/8¢ becomes
2brTa 4 2(b’r)a — 2+°Ba
a 7
— b) = .
ae!(a Rb) (B.7)
4r%(bTa) + 2(r x b - a)
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B.2 Partial Derivative of a’RHR'b

The derivative of the expression of interest with respect to § can be represented
as
d(a’Re)/0r
0, r a ., .
B_Q(aj RHR'b) = %(arRe) = (B.8)
daTRe) /0"
where e = HRTb. Differentiating a’ Re with respect to r and %, we oblain
a e’ .. J'R)
T T 1
—(a'R = —_ Ha
(a e) = (e RPa) = BrR a- o © (13.9a)
) %) e’ .  9&a"R
50(a Re) = =5(e"RTa) = =5 R7a + ((')r” ) (13.9h)

Upon differentiation of e with respect to r and ¥, and using the value of R from

Appendix A, one obtains

] R”b
ai Ha(ar )=H%[(2( 02— )b + 2(bTr)r — 20(r x b)] (B.104)
) R7b
“a?izHa(aro ), Ha—aa (2(r°)2 = 1)b + 2(b7)r — 2:°(r x b)] (13.10b)

Expanding the above expressions and performing the corresponding differentia-

tions gives

gj 2(b"r)H + 2Hrb” — 2:HB (B3.11a)
de _ 40 2 b B
ﬁ = 47 Hb H(l" X ) ( \ ))

Finally, by substituting the above equations into the cqs.(13.9) and applying
eq.(B.7) for d(a’R)e/dr and d(a?R)e/Or® and substituting the resull into eqs.(13.9),
one derives

1] 7 " u
- = By
atsl(a RHR'b) [ l } (13.12)
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o4y,
wheroe

u=2b"e)f +2(r"F)b + 2°Bf + 2er’a + 2(e’r)a - 2r°Ea  (B.13)
[ = 4°b7f = 2(r x b)'f + 4r%eTa) + 2(r x e - a) (B.14)

and E is the cross-product matrix of e and f = H'R7a.



Appendix C
Derivation of %(V? M;v;)

Upon substitution of M, MZ¢ and M?® from eqs.{3.7), (3.14) and (3.16a) into
eq.(3.63c), one obtains

a T a T d T e .
an(v, M;v;) au;(b' Vis:) + au;(b' V, )+
3(?1. (b Vi'by) (C.la)

where s; and b; are 3-dimensional vectors defined as
b; = Rlw; (C.1h)
s; = R7 Iy (C.le)
Note that b; and s; are not function of u;.

The three terms of the right-hand side of eq.(C.1a) are derived helow.

C.1 Derivation of %(b?V{dsz')

The derivative of the expression of interest with respect to u; can be rewritten as

o (b} V') =

o 9 (ble;) (C.2a)

A
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t)u
where
= V,’-’”’s,- (C.2Db)

Upon diflerentistion of the eq.(C.2a) with respect to u; and noting that b; is not

function of u;, one obtains

J . dcl AHViis)T
F—(bic;) = ==b; = AVESi) (C.3)
du; du; du;
IHence, we note the relation
Vids; = —S;vi? (C.4)
where v! “js the vector of the skew-symmetric matrix V{‘i and S; is the cross-

product matrix of vector s;; it is then possible to write

a(V’:dS;)T 8(—Siv'-"“)T
: b; = by C.5
Bu.- au,' ( O)
Differentiating —S;v'® with respect to u; and, in light of eq.(3.14b), one obtains
A(=SiviH)" i\ . INT(Q\T
Tb = (-8:C¥) bi = —(C)"(S:)"b; (C.6)
Thus, inserting the above equation into eq.(C.2a), one obtains
d
bFVrd il T b 7
(b VIts:) = =(CH)T(8)7b, (©)

where s; and b; are defined in eqs.(C.1c) and {C.1b), respectively.

C.2 Derivation of -aaT(b?Vg'?'bi)

Upon differentiation of the expression of interest with respect to u;, one obtains

) O(Virb;)T

—(bivVrp) =
Bu;(b’ Vith) Ju;

b; (C.8)

The 3-dimensional vector (V}"b;) can be written as

T
(Vi'b) = [ vib vib viIb ] (C.9)
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where (v;)7 is the j** row of the matrix VI, Substituting cq.(C.9) into eq.(C.8)
and differentiating the result thus obtained with respect 1o u;, one obtains

%,

Kl a(ViTb;)T
Bu,-

Bui
= [ (@vT/ow)b (gvi/ow)b (dvi/ou)b ] by (C.10)

]

(bIVi'b;) = b;

Here,

ovT ‘ | |
u |, = [ dupi/ou Juppfdu duvyfou ] (C.11)

where 7 = 1,2, 3, and the components of the 3 x 3 matrix [(')v}'/i)u]_ arc oblained

using eqs.(3.12) as

a'U i 1 P i5 5 o .
( 81111) (C 2t C'-"%) (L) + 2 (C'zz + C:s.’s) u; (C.12)
a—“v i i 15 o -
( 8:12)1- = —2CHui(t) - (€ + € ui (C.13)

——av ¢ i5 th o \
( 8:13) C;'all:( ) - (Cw + 031) u; (C.14)

The other components are obtained by suitable permutatious. Here, b; is defined
in eq.(C.1b) and matrices Ci} were defined in cqs.(3.11). Morcover, u(f) and u¢

are defined in eqs.(2.1) and (2.12).

C.3 Derivation of (bf Vicw;)

Differentiating the expression of interest with respect to u; leads to

8
du;

o(Vitu)!

Txrre -
—(b; VI®u;) = au;

b; (C.15)

Using the same approach as in Sections C.1 and C.2, one thus obtains

)

. — (b V) = I[*b; (C.16)
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where I is the n; x 3 matrix defined as

= [ (ciy - ciyi (G - CRi (CH-Cia; | (CI7)
where b; is defined in eq.(C.11:) and matrices CY are defined in eqs.(3.11). More-

over, u; (1) and u? are defined in eqs.(2.1) and (2.12).





