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(i)

ABSTRACT

Two opposite approaches have been used in the past for the prediction of
plastic anisotropy in deformed materials : (i) the crystallographic Taylor-
Bishop and Hill approach; and (ii) that of continuum mechanics. The latter
method has proved its ability to represent the plastic anisotropy of metals in a
simple way. However, major deficiencies in the predictions obtained by this

means are observed, which are reviewed in the present report.

)An alternative method, called CMTP (continuum mechanics of textured
polycrystals), is described, which combines aspects of both the crystallographic
and continuum approaches. Two parameter yield functions are used, the
principal axes of which are selected to coincide with the <100> axes of the
texture component of interest. These two parameters are adjusted so that the
continuum loci give best fits to the Bishop and Hill polyhedron pertaining to a
disoriented single crystal displaying a given scatter width. The macroscopic
yield locus for a metal containing several texture components is calculated by
combining the appropriate CMTP surfaces, each of which corresponds to an
observed ideal orientation. Stress and strain rate characteristics are deduced
from the size and shape of this locus, respectively. Three types of averaging
procedure are used in this work : the Taylor (uniform strain), Sachs (uniform
stress direction) and Kochendorfer (law of mixtures) grain interaction models.

Typical experimental pole figures for FCC and BCC metals are decomposed into
a limited number of texture components, each of which is characterized in
terms of its Miller indices, volume fraction and scatter width. A comparison
between the CMTP predictions and Bishop and Hill calculations for yield
§urfaces as well as strain rate R(6) and yield stress 0(8)/0(0) ratios is carried
out using the three deformation models mentioned above. The CMTP
predictions give satisfactory results when compared with experirhental
observations reported in the literature. The present method is also employed to
account for the axial strains produced during free end torsion testing as well as
for the ‘anomalous behaviour’ of rolled sheet in terms of the texture displayed
by the material under consideration.



(ii)

RESUME

Deux approches ont été généralement utilisées pour la prévision de
I'anisotropie plastique de matériaux déformés. La premiére, de nature
purement cristallographique, se refére aux travaux de Bishop et Hill ainsi que
de Taylor. La seconde, & l'inverse, consiste essentiellement en une description
macroscopique du comportement du polycristal étudié. Sa formulation
extrémement simple 1ui confére un certain nombre de faiblesses qui sont

discutées dans ce rapport.

Une méthode intermédiaire, appelée CMTP (continuum mechanics of
textured polycrystals) est décrite. Elle combine les principaux attraits des deux
modeéles cités plus haut, & savoir simplicité et prise en compte directe de la
texture du matériau. Pour cela, une surface d'écoulement continue est utilisée,
dont les axes principaux coincident avec les axes <100 > de la composante de
texture considérée. Les deux parameétres qu’elle contient sont calculés de telle
sorte que la surface continue s’ajuste le mieux possible a la surface
d’écoulement cristallographique d’'un monocristal désorienté. La courbe limite
d'écoulement plastique d’'un polycristal contenant plusieurs orientations
idéales est alors calculée en moyennant de fagon appropriée les surfaces

-correspondant & chacune d’elles. Les propriétés de contrainte et de vitesse de

déformation sont alors déduites respectivement a partir de la taille et de la
forme de cette courbe résultante. Trois modeles de déformation plastique ont
été utilisés pour la dérivation de ces propriétés plastiques; le premier, dot a
Taylor, suppose que tous les grains sont soumis au méme état de déformation;
le second (hypothese de Sachs) soumet tous les cristaux a la méme direction de
contrainte; finalement le modéle de Kochendérfer permet de calculer la vitesse
de déformation du polycrystal soumis & une traction uniaxiale par une simple

loi des mélanges.

Des figures de poles typiques des métaux CFC et CC sont décomposées en un
nombre fini d'orientations idéales. Chacune d’elles est caractérisée par ses
indices de Miller, sa fraction volumique et sa dispersion. Les prévisions
obtenues par la méthode CMTP ainsi que par un calcul classique de Bishop et
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Hill sont comparées a des résultats expérimentaux publiés dans la littérature,
comprenant surfaces d’écoulement, coefficients d’anisotropie R(0) et rapports de
contraintes d'écoulement 0(6)/0(0). Il en résulte qu'un bon accord d’ensemble
est obtenu entre les propriétés plastiques expérimentales et celles calculées par
la méthode CMTP. De facon analogue, les déformations axiales produites lors
d’un essai de torsion A longueur libre ainsi que le comportement ‘anormal’ de
certaines tdles laminées sont expliqués grace a cette technique par la présence
dans le matériau de certaines composantes de texture.
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System of coordinate axes for rolled sheet.

Uniaxial yield stress curves 0(6) for (a) an Al-killed steel
and (b) Cu-1/4H. (¢ ) experimental values; (—-—- —)
predictions based on Hill 1948 criterion, ( ) Gotoh
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Refs. [30,36]. Note that the predictions based on the Hill
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{111} pole figures of high purity cube textured
aluminum. From Ref. [90].

Representation of the orientation difference between two
grains by the rotation axis d (referred to in terms of the
angles § and y) and the angle of rotation w about this

axis.

{100} pole figures corresponding to a series of gaussian
distributions of increasing scatter width wq. (a) wo=0°
(single crystal), (b-f) wg=5°,10° 15°, 20°,45°, (g) random.

{111} pole figures using contour lines corresponding to
gaussian distributions of increasing scatter widths : (a)
w0 =5° (b) wg=10° and (c) wg=15°. Plotting subroutine
from Ref. [98].

The mean Taylor factor IW, averaged over all the grains,
is represented by the distance to the tangent hyperplane
associated with a particular applied strain rate. The
broken line represents the projection of the yield surface
onto two dimensions defined as the inner envelope of all
the hyperplanes.

n-plane sections of the polycrystal yield surface
corresponding to increasing scatter widths : (a-f). wg=0,
5, 10, 15, 20, 45°; (g) random distribution

Shear plane sections of the polycrystal yield surfaces
corresponding to increasing scatter widths : (a-f) wp=0,
5,10, 15, 20, 45°; (g) random distribution.
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Dependence of the mean Taylor factor M on scatter width
wo. For each value of wg, M was calculated for a set of 400
grains. (8) M| (uniaxial tension); (#) My (plane strain
tension); ( @) ratio M;/M3. After [98].

Determination of the yield strength as well as the plastic
strain rate ratio from the (n, Sj2) section of the yield
surface. @ is the projection on the n-plane of this three-
dimensional yield surface and Py is the projection of the
loading point. The yield strength is determined from the
distance OPg and the strain rate ratio from the tangent
to the projection @ at the point Py.

(a) Yield stress ratio 0(6)/0(0) and (b) strain rate ratio
R(6) vs. loading direction 8 in the plane of the sheet for
the present grain distributions: '

n-plane cross-sections of the yield surface corresponding
to a cube textured sheet. The perfect hexagon pertaining
to a single crystal (wg=0°) is derived from Eqs. 3.22 or
from Eqs. 3.25 with n=«, The rounded hexagon
corresponds to a cube texture with a spread wo=7.5° and
has been calculated from Eqs. 3.25 with n =8.75.

Dependence of the coefficients A, B, C (normalized by V6
T¢) and n on the gaussian spread wo.
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Two-dimensional section of the five dimensional
crystallographic yield surface (schematic). The three
vertices S;, S, and S of the critical polyhedron should be
compared with the points S,’, S;" and S’ of the ellipsoidal
yield surface to which they correspond. In the fitting
procedure for the determination of a and p, the sum of the
squares |S, S;’| 2 is minimized.

n-plane sections of the Bishop and Hill polyhedron
(broken line) and the generalized CMTP yield surfaces
for five values of the exponentn.

Shear plane sections of the Bishop and Hill polyhedron
(broken line) and the generalized CMTP yield surfaces
for six values of the exponent n.

Intersections of the Bishop and Hill polyhedron (broken
line) and the CMTP locus with the planes
S12+S23+S31=K for K=0, 0.5 and 1. (a) n=2 (b)
n=1.7. '

System of coordinate axes in torsion testing.

Relative positions of the four orientations {hkl}<uvw>,
{bkl} <uvw>, {hkl}<uvw> and {hkl} <uvw> on a pole
figure for a rolled material.

{111} pole figures for the ideal orientations known as : (a)

Goss {110}<001>; (b) Bs {110}<112>; (¢) Cu
{112}<111>; and(d) S {123} <634 >.
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(a) Combination of two yield surfaces by the Taylor
mwethod. The crystals associated with each of the loci
strain at the same rate as the polycrystal.

(b) Combination of two yield surfaces by the Sachs
method. The crystals associated with each of the loci
experience the same stress direction as the polycrystal.

(a-b) Crystallographic yield surface cross-sections
associated with a random polycrystal. (a) n-plane; (b)
shear stress plane section.
(c-d) Continuum yield surface cross-sections associated
with Eqs. 4.75 and 4.76, respectively. (¢) n-plane; (d)
shear stress plane section.

(a) Typical {100} pole figure for rolled steel. After [108].
(b) Typical {111} pole figure for rolled FCC metals. After

(116].

Values of R(6) predicted by the CMTP, method for
common ideal orientations. The symmetry requirements
of the rolling process are taken into account. ( )
Taylor uniform strain assumption; (- — — —) Sachs
model. (a) CMTP n=2; (b) CMTPn=1.7; (c) CMTP PL4
criterion and; (d) crystallographic (Bishop and Hill)
approach,.

Comparison of CMTP predictions (——) Taylor and
(= — — =) Sachs models) and experimental data (4 ) for
various metals displaying the texture components
indicated. The predictions are based on the CMTP n=1.7

criterion

(a) copper with a strong {100} <001 > texture; data from
Ref. [38].

(b) iron single crystal sheet - {100} <011> orientation;
data from Ref. [122]. ~
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Figure
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(cont’d)
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(c) cold, rolled and annealed low C steel - {100}<012>
orientation; data from Ref. [106)].

(d) iron single crystal sheet - {110}<001 > orientation;
data ( v ) from Ref[122]; cold rolled steel sheet : 70%
{110}<001>+ 20% {211}<011> + 10% random
components; data (A ) from Ref. [123]. .
(e) cold rolled and annealed low C steel : 60%
{111}<uvw> + 30% {554}<225> + 10% random
orientations; data from Ref. {106].

(f) iron single crystal sheet : {112}<110> orientation;
data from Ref. [122].

(g) cold rolled and annealed low C steel : {411}<148>
orientation; data from Ref. [106].

(h) cold rolled steel sheet : {511} < 149> orientation; data
from Ref. [123].

Earing in aluminum deep drawn cups as related to their
textures ({111} pole figures).

(a) strong cold rolling “tube” texture associated with
earing at 45°;

(b) "balanced” eight ear texture with small ear
amplitude;

(c) strong cube texture associated with earing at 0 and
90°. Adapted from Ref. [125].

(a) {100} pole figure for the {111}<112> (4 ) and
{554} <225 > (A) orientations. _

(b) CMTP (Taylor n=1.7) predictions for a steel
containing 50% {554}<225> + 25% {111}<110> and
25% {111}<112>. Experimental data ( 4 ) from Ref.
(126].
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CMTP predictions for the yield strength ratio 6(8)/0(0) of
cube textured copper sheet containing 8(?% {100} <001 >
+ 20% {100}<011>. Experimental data ( 4 ) from Ref.

[14).

Orientations leading to R>1.35 together with AR<0.2
as calculated by the CMTP n=2 criterion. The
crystallographic planes (a) and directions (b) associated
with these orientations are plotted on Fricke [129]

‘diagrams.

Orientations leading to R>1.50 together with AR<0.2
as calculated by the CMTP PL4 criterion. The
crystallographic planes (a) and directions (b) of these
orientations are plotted on Fricke {129] diagrams.

Ratio of the biaxial over the average uniaxial yield stress
vs R as predicted by the Hill non-quadratic yield
criterion (Eq. 2.49) for various exponents m.
Experimental values from Pearce [50] (®) and
Woodthorpe and Pearce [49] (+).

~

Ratio of the biaxial over the average uniaxial yield stress
vs R as predicted by the CMTP n=2 criterion for
randomly generated orientations.

(a) Ratio of the biaxial over the average uniaxial yield
stress vs R as predicted by the CMTP PL3 criterion for
randomly generated orientations.

(b) Crystallographic planes and directions of the
orientations leading to 0y/0,>1 together with R <1 as
predicted by the CMTP PL3 criterion.
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Figure

5.12

5.13

5.14

5.15

(a) Ratio of the biaxial over the average uniaxial yield
stress vs R as predicted by the CMTP PL4 criterion for
randomly generated orientations.

(b) Crystallographic planes and directions of the
orientations leading to 0p/Gy>1 together with R <1 as
predicted by }.he CMTP PL4 criterion.

R-values (top number in pair) and O(b1axial’O(untaxial) for
ideal transversely isotropic textures, as calculated by the
crystallographic (Bishop and Hill) model. Each point on
the spherical triangle designates an ideal transversely
isotropic texture [76,77].

Ratio of the elongation strain rate () to the torsion or
shear strain rate (y) as a function of the angle a between
the (100) and tangential directions for different ideal
orientations. (————) CMTP prediction, n=2; ( © )
experimental data and (- - — —) theoretical
calculations of Ref. [91].

Comparison between the experimental
(O(tangential),O(axial)) yield surface cross-sections of
Althoff and Wincierz [63] and the present theoretical
predictions for a strong cube texture {100}<001>
(orientation spread wo=5°) normalized by the uniaxial
tangential yield stress. The Sachs and Taylor models are
in this case equivalent. Note that the experimental data
are represented by squares and lines for the stress and
strain rate characteristics, respectively.

(a) crystallographic (Bishop and Hill) model

(b) CMTP predictions, n =2

(¢) CMTP predictions,n=1.4

(d) CMTP predictions, PL4 criterion.
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Figure

5.16

5.17

5.18

/
»

Comparison between the experimental’

(O(tangential),O(axial)) yield surface cross-sections of
Althoff and Wincierz [63] and the present theoretical
predictions for a strong {100} <011> texture (orientation
spread wo=5°) normalized by the uniaxial tangential
yield stress. The Sachs and Taylor models are in this case
equivalent, Note that the experimental data are
represented by squares and lines for the stress and strain
rate characteristics, respectively.

(a) crystallographic (Bishop and Hill) model

(b) CMTP predictions, n=2

(c) CMTP predictions,n=1.7

(d) CMTP predictions, PL4 criterion.

Comparison between the experimental
(O(tangential),O(axial)) yield surface cross-sections of
Althoff and Wincierz [63] and the present theoretical
predictions for a strong {001} <370> texture (orientation
spread wp=5°) normalized by the uniaxial tangential
yield stress. The Sachs and Taylor calculations are
displayed as inner and outer loci, respectively. Note that
the experimental data are represented by squares and
lines for the stress and strain rate characteristics,
respectively.

(a) crystallographic (Bishop and Hill) model

(b) CMTP predictions, n=2 '

(c) CMTP predictions,n=1.7

(d) CMTP predictions, PL4 criterion.

Comparison between the experimental
(O(tangential),O(axial)) yield surface cross-sections of
Althoff and Wincierz (63] and ‘the present theoretical
predictions for a {112}<110> texture (orientation
spread wo=10 to 15°) noftnalized by the uniaxial
tangential yield stress. The Sachs and Taylor
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Figure

5.18
cont'd

5.19

5.20

5.21

5.22

calculations are displayed as inner and outer loci,
respectively. Note that the experimental data are
represénted by squares and lines for the stress and strain
rate characteristics, respectively.

(a) crystallographic (Bishop and Hill) model

(b) CMTP predictions, n=2

(c) CMTP predictions,n=1.7

(d) CMTP predictions, PL4 criterion.

Experimental {111} pole figures for rolled and
recrystallized sheets. After Hirsch et al. [12]. "R" - as
rolled ; "P" - partially recrystallized; and "F" - fully
recrystallized materials.{a) Cu; (b) Cu-5%z2n; and (c) Cu-
20%Zn.

Experimental (100) pole figures for rolled and annealed
steel sheets. After [135].(a) Al-killed steel; and (b)
rimming steel.

Simulated {111} pole figures (employing about 600
grains) for rolled and recrystallized sheets. Texture data
(ideal orientations + volume fractions + spreads) from
Hirsch et al. (12] (see also Table V.4). "R" - as rolled ; "P"
- partially recrystallized; and "F"- fully recrystallized
materials.(a) Cu; (b) Cu-5%Zn; and (c) Cu-20%Zn.

Simulated {100} pole figures (employing about 600

grains) for rolled and annealed steel sheets. Texture data
(ideal orientations + volume fractions + spreads)
estimated from Ref. [135].(a) Al-killed steel; and (b)
rimming steel.
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Figure

5.23 .

5.24

5.25

5.26

—

4

Crystallographic n-plane loci calculated for 6=0, 22.5
and 45° for the (a) Cu-R, (b) Cu-20%Zn-R, (¢) Cu-F and (d)
Cu-20%Zn-F sheets. The outer locus is computed using a
classical Taylor (uniform strain) approach with
restricted distributions made up of about 200 grains
representing each of the pole figures of Fig. 519; it
corresponds to the inner envelope of the hyperplanes
specified by Eq. 3.6. The inner locus 1s obtained from the
combination of loci by the Sachs method using Egs. 3.18
in conjunction with the texture data of Table V.4.

Crystallographic n-plane loci calculated for 6 =0 and 45°
for (a) an Al-killed steel and (b) a rimming steel The
outer locus 1s computed using the Taylor approach with
restricted distributions made up of about 200 grains
representing each of the pole figures of Fig. 5.20. The
ipn\esr/(ocus is obtained from the combination of loci by
the Sachs method using Eqs. 3.18 in conjunction with the
texture data of Table V.5.

Theoretical CMTP n-plane yield surface cross-sections
calculated for 6 =0, 22.5 and 45° for (a) Cu-R, (b) Cu-
20%Zn-R, (c¢) Cu-F and (d) Cu-20%Ze-F sheets. Texture
data from Table V.4 [12]. Quter locus . Taylor model;
inner locus : Sachs model. Predictions based on the
CMTP n =1.7 criterion.

Theoretical CMTP n-plane yield surface cross-sections
calculated for 8 =0 and 45° for (a) an Al-killed steel and
(b a rimming steel. Texture data from Table V.5 [135].
Outer locus : Taylor model; inner locus : Sachs model.
Predictions based on the CMTP n=1.7 criterion.

[
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Figure

5 27

528

5.29

5.30

Theoretical CMTP n-plane yield surface cross-sections
calculated for 8 =0, 22.5 and 45° for (a) Cu-R, (b) Cu-
20%Zn-R, (¢) Cu-F and (d) Cu-20%Zn-F sheets Texture
data from Table V.4 [12]. Outer locus : Taylor model;
inner locus . Sachs model. Predictions based on the
CMTP PLA4 criterion.

Theoretical CMTP n-plane yield surface cross-sections
calculated for 6 =0 and 45° for (a3 an Al-killed steel and
(b) a rimming steel. Texture data from Table V 5 [135].
Outer locus : Taylor model; inner locus * Sachs model
Predictions based on the CMTP PL4 criterion

Comparison between the experimental (01),022) yield
surface cross-sections of Viana et al [38) and the
theoretical predictions obtained from the CMTP n=1.7
criterion. The curves are normalized by the uniaxial
yield stress 01). Texture data from Table V.6 [38]. Outer
locus : Taylor model; inner locus : Sachs model. (a) 50%
cold rolled and annealed rimming steel; and (b) 70% cold
rolled and annealed Ti-bearing steel

C{)mparison between the experimental (011,022) yield
surface cross-sections of Viana et al. [38] and the
theoretical predictions obtained from the CMTP PL4
criterion. The curves are normalized by the uniaxial
yield stress 011. Texture data from Table V.6 (38]. Outer
locus : Taylor model; inner locus : Sachs model. (a) 50%
cold rolled and annealed rimming steel; and (b) 70% cold
rolled and annealed Ti-bearing steel
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Figure

5.31

5.32

5.33

5.34

~ Comparison between the experimental (011,022) yield

surface cross-sections of Viana et al. [38] and the
theoretical predictions obtained from the disoriented
crystallographic locus of Egs. 3.18. The curves are
normalized by the uniaxial yteld stress 011. Texture data
from Table V.6 [38]. Outer locus : Taylor model; inner
locus : Sachs model. (a) 50% cold rolled and annealed
rimming steel; and (b) 70% cold rolled and annealed Ti-

bearing steel.

Comparison between the experimental (011,022) yield
surface cross-sections of Althoff and Wincierz [63] and
the theoretical predictions obtained from the (a) n=1.7,
(b) PL4 and (c) dispriented crystallographic (Eqs. 3.18)
criteria for recrystallized Al tubes. Texture data from
(63]. The yield stresses have been normalized by the
uniaxial yield stress 011.

Comparison between experimental (011,022) yield
surface cross-sections (—) of Viana et al. [38] and their
theoretical calculations based on a pencil glide model
(= == =). Outer locus : Taylor model; inner locus :
Sachs model. (a) Rimming steel; (b) Ti-bearing steel.
Taken from (38].

(a) n-plane yield locus for rolled copper calculated from
the experimental CODF data (70]; (b-c) (011,092) section
of the yield locus using the CODF texture representation
for a mild steel sheet, at ® =0 and 45°. (b) according to the
FC model; and (c) according to the RC (pancake) model.
Taken from [134].
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Figure

5.35

5.36

5.37

5.38

5.39

o
n-plane representation of a theoretical yield surface after

a rolling reduction of €33= —2. The texture data have
been calculated using an RC model. Note that the 11 and
22 axes must be imrverted for comparison with the

previous figures. Taken from [11].

Derivation of the yield stress 0(8) and strain rate R(6)
ratio from a yield surface. 0(8) is the distance from the
origin to the locus in the loading direction S;; and R(8) is
deduced from the normal to the surface at the loading
point. 0(n/2 —6) and R(n/2-08) are derived from the
characteristics of the yield surface in the Sq9 direction

R(6) curves for the following rolled sheets : (a) Cu-R, (b)
Cu-5%Zn-R, (¢) Cu-20%Zn-R, (d) Cu-P, (e) Cu-5%Zn-P, (f)
Cu-20%Zn-P, (g) Cu-F, (h) Cu-5%Zn-F and (i) Cu-20%Zn-
F. (@) experimental R-values taken from Ref.[12]; (x) R-

values derived geometrically from the Bishop and Q‘l/

loci of Fig. 5.23 and ( ) R(8) curves calculated fro
the disoriented crystallographic yield function of Egs.

3.18.

R(8) curves deternfined by the CMTP method for the
sheets of Fig. 5.37 : (a) Cu-R, (b) Cu-5%Zn-R, (c) Cu-
20%Zn-R, (d) Cu-P, (e) Cu-5%Zn-P, (f) Cu-20%Zn-P, (g)
Cu-F, (h) Cu-5%Zn-F and (i) Cu-20%Zn-F. (e)
experimental R-values taken from Ref. 12. (———)
n=2;(=-=———— ) n=1.7 and ( -~——-—) PL4
predictions. The texture data used are those reported in
Table V 4.

Experimental earing behaviour of rolled (R), partially
recrystallized (P) and fully recrystallized (F) Cu, Cu-
5%Zn and Cu-20%Zn. After(12].

r4
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Figure

_ 5.40

N

541

5.42

5.43

R(8) curves for copper and brass sheets; (#® )experimental
R-values from Ref. (140]. ( ) CMTP n=2;
(——=——= )CMTP n=1.7 and —-—" —) CMTP PL4
predictions. The texture components employed are
{311}<112>, {110}<112> and {110}<001> in the
volume fraction ratios : (a) 4:2:0 for Cu ( € ) and Cu-
2.5%Zn ( & ) ; (b) 3:2:1 for Cu-5%Zn; (c) 1:4:2 for Cu-
10%Zn and; (d) 0:5:2 for Cu-15%Zn, Cu-20%Zn, Cu-
25%Zn, Cu-30%Zn and Cu-35%Zn.

R(8) curves for various grades of steel; ( €@ )
experimental R-values taken from Ref. [126]. ((———)
CMTPn=2;(-=-= - — — YCMTPn=1.7and ((—— —-
CMTP PL4 predictions. The texture components used are
{554} <225>, {111}<110>, {111}<112> and
{110} <001 > in the volume fraction ratios : (a) 25:25:50:0
for steel 1; (b) 15:35:50:0 for steel 2; (c) 30:40:30:0 for
steel 3; (d) 50:20:30:0 for steel 4 and (e) 45:20:20:5 for
steel 5.

R(6) curves for two grades of low"C steel sheet; ( @ )
experimental R-values from Ref. [106). (————) CMTP
n=2;(—-—-—-—-~ )CMTPn=1.7 and (—-—--) CMTP
PL4 predictions for (a) a rimmed steel with 40%
{100}<011> + 40% {111}<112> + 20% random; and
(b) an Al-killed steel with 50% {111}<110> + 25%

{111}<112> +25% {554} <225 > components.

R(8) curves for cold rolled steel sheet; ¢ 4 ) experimental
R-values taken from Ref. [123]). (————— ) CMTP n=2;
(=== =~=- ) CMTP n=1.7 and (———--) CMTP PL4
predictions for steel sheets displaying
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Figure ‘ Page

5.43 (a) 60% {111}<011> +10% {111}<112> + 10%

cont’d {110}<001> + 20% random; (b) 10% {110}<001> +
20% {111}<112> + 70% random; and (c) 60%
{110}<001> + 20% {112}<110> +20% random .
orientations. 196

¢

5.44 R(8) curves for an Al-killed steel; experimental R-values
taken from Refs. 108.( O ) and 104 (@ ). ( ) CMTP
n=2;(—-————— ) CMTP n=1.7; and (— — -) CMTP
PL4 predictions. The texture was decomposed into 40%
(111}<110> + 25% {111}<112> + 25% {554} < 225>
+ 10% random orientations. 197

5.45 R(6) curves for (a) an Al-killed steel and (b) a rimming
' steel; ( @ ) experimental R-values taken from Ref. [135].
(x) R-values derived geometrically from the Bishop and
Hill yield surfaces of Fig. 5.24; (————) R(0) curves
deduced from the disoriented crystallographic function of
Eqs. 3.18. In case (a), the two crystallographic
predictions lie entirely outside the frame of the drawing. 197

5.46 R(6) curves for (a) an Al-killed steel and (b) a rimming
steel; ( @ ) experimental R-values taken from Ref. {135].
(——)CMTPn=2;(= - — — — - )CMTPn=1.7; and
(— — —«)CMTP PL4 predictions. The textures used for
the two steels are displayed in Table V.5. 197

5.47 R(6) curves for a commercial purity aluminum sheet; (4 )
experimental R-values taken from Ref. [65]. (————)
CMITPn=2;(— — — — -~ — YCMTPn=1.7; and (—-—-9
CMTP PL4 predictions. The texture employed consisted
of 25% {100}<001> + 25% {110}<112> + 15%
{123}<634> + 5% {112}<111> + 30% random
components [65]. v’ 198



Figure

5.48

5.49

5.50

Yield stress ratio 0(8)/0(0) curves for Cu and brass
sheets; ( A ) experimental stress ratios taken from Ref.
(140]. ( )CMTPn=2;(- - - - - — ) CMTP
n=1.7; and (——-——- —) CMTP PL4 predictions. The
texture components used are the {311}< 112>,

.{110}<112> and {110}<001> orientations in the

volume fraction ratios : (a) 4:2:0 for Cu and Cu-2.5%Zn;
(b) 3:2:1 for Cu-5%2Zn; (c) 1:4:2 for Cu-10%Zn and (d) 0:5:2
for Cu-15%%Zn, Cu-20%Zn, Cu-25%7Zn, Cu-30%Zn and Cu-
35%Zn.

Yield stress ratio 6(8)/0(0) curves for rolled and annealed
Cu and brass; ( A ) experimental stress ratios taken from
Refs. (14,15). (—————— )CMTP n=2; (- = = = — — )
CMTPn=1.7; and (—- —- —) CMTP PL4 predictions for
(a) Cu rolled to 90% reduction with 30% {110}<112> +
30% {123}<634> + 30% {112}<111> + 10% random;
(b) Cu-10%Zn cold rolled to 90% reduction with 60%
{110}<112> + 10% {123}<634> + 10% {111}<110>
+ 20% random; (¢) Cu-30%Zn cold rolled to 90%
reduction with 65% {110} <112> + 10% {123}<634> +
25% random; (d) annealed Cu with 70% {100}<001> +
10% {100}<011> + 20% random and (e) annealed Cu-
30%Zn with 20% {111}<112> + 20% {100}<011>
+20% {110} <112> + 40 % random.

Yield stress ratio 0(6)/0(0) curves for aluminum and
steel sheets; (A ) experimental stress ratios taken from
Refs.[28,32]. ( JCMTPn=2;(- - - - - - )
CMTP n=1.7 and (—-—-) CMTP PL4 predictions for
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Figure

5.50
cont'd

9.51

5.52

5.53

5.54

(a) aluminum cold rolled to 80% reduction with 40%
{311}<112> + 40% {110}<112> + 20% random; (b)
aluminum cold rolled to 10% reduction with 40%
{100}<001> + 60% random; and (c) steel cold rolled to
80% reduction with 50% {113}<141> + 30%
{001}<110> + 20% random.

Yield stress ratio 6(8)/0(0) curve for highly textured
copper sheet; ( A ) stress ratios [38] for a texture severity
of 8.57; (w) stress ratios [69] for a texture severity of 5.64
and (A ) stress ratios [69] for a texture severity of 1.72.
(——————— )CMTPn=2;(—- = - = - — )CMTPn=17;
and —- —--) CMTP PL4 predictions for a texture made
up of 75% {100} <001 > + 25% random components.

Geometric derivation from the (0,,,09;) yield surface
cross-section of: (a) the axial stress developed during
fixed end torsion testing; and (b) the rate of length
change produced by a free end torsion test.

(022,092) yield surface cross-sections corresponding to the
{111}<1 10> orientation for three values of the tilt angle
¢ around the radial direction observed on experimental
pole figures: $= —5°, $=0°and ¢=+5°. (a) CMTP n=2
predictions and (b) crystallographic approach.

(a) Experimental [133] and (b) simulated {111} pole
figures corresponding to a copper bar twisted to £=0.84
at room temperature.
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Figure

5.55

6.1

6.2

6.3

6.4

(042,00z) vield surface cross-sections corresponding to a
copper bar twisted to €=0.84 at room temperature. (a)
crystallographic results obtained from a 200 grain
orientation distribution; (b) CMTP n=2 and (¢) CMTP
n=1.7 calculations based on a texture made up of 60%
A/A (tilt = ~5°) + 10% B/B (tilt = 0°) + 25% C (tilt =
—5°) 4+ 5% A * (tilt = 0°) orientations.

Yield stress ratios 0(0)/0(0) predicted by the CMTP n =2
method used in conjunction with the CODF technique of
texture representation. An averaging procedure similar
to that specified by Eq. 6.1 was used. Calculations and
experimental points from Ref. [142]. Commercial purity
1100 Al (a) cold rolled 30%; (b) cold rolled 60%; (c) cold
rolled 60% and annealed; (d) cold rolled 90%; and (e) cold
rolled 90% and annealed.

R-value vs length strain for an 1100 Al sheet cold rolled
30%. (a) 6 =0 and; (b) 6 =60°. From Ref. [142].

Values of R(8) predicted by the CMTP n=1.7 criterion
for common ideal orientations. The symmetry
requirements of the rolling process are taken into
account. (—+—) uniform strain model; (— + —) law of
mixtures model.

Values of R(8) predicted by the CMTP PL1, PL2, PL3 and
PL4 (from left to right) criteria using the Kochendorfer
(law of mixtures) model. The symmetry requirements of
the rolling process are taken into account. (a)
{100}<001>; (b) {100}<012>; (¢) {110}<001>; (d)
{110}<112>; (e) {111}<110>; () {112}<110>; (g)
{123}<634>; (h) {554}<225>; and (i) {411}<148>

~ orientations.
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:D Figure

6.5

6.6

6.7

6.8

Values of R(0) predicted by the CMTP two exponent
(————)andthen=1.7(= = - — — ) criteria using the
Kochendorfer model for selected ideal orientations. The
symmetry requirements of the rolling process are taken
into account.

Values of R() predicted by the CMTP two exponent
criterion for various grades of steel using the
Kochendorfer model. (a) 25% {554}<225> + 25%
{111}<170> + 50% {111}<112>, after [126]; (b) 50%
(554} < 225> + 20% {111}<110> + 30% {111}<112>,
after [126]; (¢) 60% {111}<110> +10% {111}<112> +
10% {110}<001> + 20% random, after {123]; (d) 60%
{110}<001> + 20% {221}<110> + 20% random, after

[123]; (e) and (f) ideal orientations and volume fractions'

of Table V 5, after [135].

Position of the loading point in the (012, n-plane)
subspace for (i) strictly uniaxial (point Pg) and (b) not-
strictly-uniaxial (point P}) tensile testlng, as specified by
Eqs. 6.10 and 6.11, respectively. oo and 80 are the stress
and strain rate vectors corresponding to the completely
uniaxial test (Eq. 6.10); GT and 8_1’ correspond to the non-
uniaxial test (Eq. 6.11).

R(8) curves predicted by the CMTP two exponent
criterion for an Al-killed steel using the Kochenddrfer
model. ( A ) experimental values from Ref. (114]. CMTP

predictions ( ) before tensile deformation; (— - — —)
after tensile deformation in the rolling direction; and
(—-——- —) after tensile deformation in the transverse
direction.
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Figure

6.9

I.2.1
V.1.1

V.1.2

R-value vs length strain (n;) at various angles 8 for a
rolled copper sheet. After (107].

Definition of the (LTl, GE) vectors.

Geometric derivation of the convexity condition for a
. ?.
general yield surface. £ is the normal to the locus at the

point (S).

Yield surface combination at constant stress ratios. F

and Fg are convex, whereas "F; + F2” is not.
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CHAPTER 1

INTRODUCTION

Because of the fabrication processes employed in its manufacture, e.g.
solidification, hot and cold rolling, annealing, etc., a sheet of metal 1s frequently
anisotropic. Its constituent grains adopt elongated shapes and specific preferred
orientations. As a consequence of this crystallographic anisotropy, the physical
properties and particularly the mechanical properties of the polycrystal as a

whole are anisotropic.

In processes such as press forming, deep drawing and stamping, the limit
strains attainable along either of the two extreme strain paths (drawing or
stretching), depend on the anisotropy characteristics of the sheet. Because of
the effect of anisotropy on metal formability, e.g. of steel sheets in the motorcar
industry and aluminum alloys in the production of beverage cans, numerous
attempts have been made to both predict and control the anisotropy.

For this purpose, it is necessary to know (i) the influence of the
metallurgical parameters affecting texture evolution during the fabrication
process and (ii) the relation between the texture and the plastic properties. It is
the latter topic which is the main concern of this study.

Texture information can be obtained relatively easily by means of pole
figures or CODF (crystallite orientation distribution function) data, both of
which are derived from X-ray diffraction measurements.-Only gualitative and
semi quantitative estimates of the ideal orientations are given by the former,
whereas the latter is an accurate, albeit more sophisticated representation of
the grain distribution.

Having quantified the texture information, we then face the problem of
calculating the macroscopic plastic properties. The following sequence has
frequently been used -



1. Define the single crystal yield surface.

2. Define the plastic deformation model.

3. Calculate the polycrystal yield surface using the texture data.
4. Derive the plastic flow properties. '

One can ask why the calculation begins with the single crystal yield surface
The main reason is that the plastic behaviour of a single crystal 1s quite well
known and understood. The yield locus can be readily derived from knowledge
of the slip systems activated in the crystal. Assuming for example that plastic
deformation occurs on the {111} crystallographic planes in the <110>
crystallographic directions, Bishop and Hill [1] showed that the single crystal
yield surface for FCC metals is a polyhedron in stress space, whose
characteristics have been well identified.

The second critical step is then concerned with the transition single crystal
-»polycrystal. Since the texture has a crystallographic (and hence microscopic)
nature and since the pl—astic behaviour is a polycrystalline (and hence
macroscopic) characteristic, 1t 18 necessary to make some assumptions
regarding the interactions between the individual grains of the workpiece.For
example, assuming homogeneity of the deformations in the polycrystal (2]
generally leads to different results than when the polycrystal is considered as a
superposition of single crystals, without any interaction (3].

Texture data, single crystal yield surface, plastic deformation model . we
now have everything in hand to calculate the polycrystal yield locus. The
texture information is used to reorient the yield surfaces of the individual
crystals into the testpiece axes, and the plastic deformation model provides the
averaging technique to be used over the complete set of grains. This sequence
Jeads to the polycrystal locus.

[}
The plastic properties, as expressed by yield strength or strain rate

characteristics, are then readily deduced from the size and shape, respectively,
of this overall yield surface.

This crystallographic approach is considered to give a reasonably accurate

~_estimate of some important plastic properties. However, the two first steps in
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the computation sequence described above are based on questionable
assumptions. What is the ‘exact’ single crystal yield surface and what are the
‘exact’ interactions between the individual grains? Obviously each grain has its
rwn characteristics of shape, orientation, hardness and degree of
a sorientation, for example. All these parameters influence the size and shape
of th.. yield locus applicable to each grain and/or the interaction each crystallite
has w th its neighbours. Furthermore, because of the hundreds or even
thousands of grains involved in this type of approach, extensive computations
have to be carried out to obtain reasonable predictions, leading to

incompatibility with on-line measurements or the rapid analysis of data.

A potential alternative to the above approach exists in'the analyses of
continuum plasticity. According, to this method, the calculation sequence
described above is greatly simplified and reduces to -

1. Determination of the polycrystal yield surface from a finite
number of experiments
2. Derivation of the plastic properties in analytic form

7

As can be seen, no reference is made to the orientations of the individual
grains, so that this approach remains essentially macroscopic. The yield locus
of the polycrystal under consideration is described by an assumed analytical
function, the parameters of which are determined experimentally. As an
example, the quadratic yield function derived by Hill (4] in 1948 for orthotropic

materials contains six parameters. However, only two experiments are needed

in the particular case of plane stress loading and only one if planar isotropy is
further assumed. The extreme simplicity of such continuum approaches makes
them especially suitable for engineering applications related to metal forming.
The different anisotropic yield criteria proposed in the literature are not,
however, of general applicability and only lead to rough estimates of the plastic
properties. Two of the main limitations of such continuum approaches can be
summed up as follows :
1. Theydo not take account of the erystallographic texture, which
is the primary source of plastic anisotropy.
2. Generally more than one experiment is necessary to derive the
parameters of the yield function.



The prediction of the yield surfaces and plastic properties of anisotropic
media has thus been approached by two alternative extreme methods. On the
one hand, the crystallographic (Bishop and Hill) analysis is unsuitable for the
rapid assessment of macroscopic properties; on the other, the continuum
approach is seriously limited in many instances since it does not take account of
the texture of the material and is generally restricted to fairly simple cases.

Recently, Montheillet et al. [5] have proposed an alternative method which
combines aspects of both the previous approaches; it is known as the continuum
mechanics of textured polycrystals (CMTP). This has been the first attempt to
correlate analytically the plastic anisotropy of a polycrystal with its texture. It
is somewhat surprising that such a general theory is missing in the literature.
The method is based on a modification of Hill's anisotropic continuum theory
which permits the observed ideal orientations to be linked directly with the
consequent plastic anisotropy of the material. The macroscopic stress and
strain rate characteristics can thus be readily obtained from knowledge of the
texture components displayed by the polycrystal.

In this report, the continuum yield surfaces found in the literature are first
reviewed critically, with special attention being paid to their applications in
metal forming. The pﬁnciples of the CMTP method are then described in detail
and it is shown how plastic properties and texture data can be correlated in a
fairly simple way. Specific polycrystal yield surfaces are then described by the
CMTP method and the corresponding plastic properties are calculated. Finally,
these are compared with crystallographic (Bishop and Hill) predictions and
with experimental observations taken from the literature.



CHAPTERII

CONTINUUM YIELD SURFACES AND PLASTIC PROPERTIES
-AREVIEW -

Crystallographic texture is recognized to be the primary source of plastic
anisotropy. The non-isotropic distribution of grain orientations leads to non-
isotropic macroscopic properties. As described above, two extreme approaches
have been used to describe this anisotropy, namely the crystallographic and
continuum or macroscopic approaches.

In the former, plastic deformation 18 usually assumed to be accommodated
by the activation of five independent slip systems. Each grain is generally
considered to undergo the same uniform strain as the aggregate. For FCC
metals, the five activated {111} <110> systems are those for which the
absolute sum of the glide shears is a minintdm (2]. The Taylor model was
confirmed some 13 years later by Bishop and Hill (1,6] through the use of the
principle of maximum work. These two basic analyses have been proved to be
strictly equivalent (7]. They were used by Backofen and coworkers (8,9] in
successful attempts to predict yield surfaces and R-values for textured sheets
(see also Ref. [10]). Recently, both full and relaxed constraint models have been
used by Canova et al.[11]. Yield surfaces with fairly sharp corners were
obtained in this way for two deformation paths, rolling and torsion, and
reasonable agreement was observed between predicted and experimental R-
values. Furthermore, the crystallographic methods for the calculation of
macroscopic anisotropic properties have received considerable attention during
the past two decades [12-15] in correlation with development of the CODF
(crystallite orientation distribution function) analysis (see for example Ref.
[16]). However, the mathematical complexity of these approaches makes them
difficult to manipulate and is not conducive to a ready physical understanding
of the phenomenon (i.e. of the link between a given ideal orientation and its
effect on formability). Furthermore, they require extensive computer



calculations and are thus unsuitable in their current form for rapid on-line

measurements.

The anisotropic continuum plasticity theory of Hill [4,17], on the other
hand, has the great advantage of simplicity. However, because of some
important deficiencies in its predictions, more complicated yield criteria have
been proposed, which are nevertheless simple enough to be used for
engineering applications. It is the purpose of the discussion that follows to
develop some of these points.

#

II.1. SOME GENERAL PROPERTIES OF CONTINUUM YIELD SURFACES

To begin with, it is very important to point out two major characteristics of

the continuum yield locj described in the literature :

- They are all expressed in terms of macroscopic stresses and thus
do not directly account for crystallographic textiire.

- They are all represented by analytical functions, whose forms are
assumed without any detailed justification.

The most general form of this function may be written :
F(Ou) =0 (2.1)

where the 0j; are the six components of the stress tensor expressed in the
reference frame of interest. If the material is deformed plastically, the
corresponding flow stresses are expressed by Eq. 2.1. If it only deforms
elastically, the stress vector remains inside the surface characterized by this
equation. This kind of transition between elasticity and plasticity is not quite
so sharp in the case of an actual polycrystal. Should the aggregate be
considered to deform plastically at the exact moment when one of its grain
begins to do so, or when all its crystals are finally in the plastic state? It seems




that the second assumption has received much more attention than the first in
the classical approaches.

It is furthermore generally assumed that the material under consideration
does not exhibit any Bauschinger effect, i,e. that

F(—0,)=F(oy) (2.2)

~

Extension to the hexagona? metals is thus somewhat questionable and has not
provided particularly impressive results.

A second major hypothesis regards the absence of any effect of the
hydrostatic pressure. As a consequence, the yield surface is a function of the
deviator stre$sesonly, i.e.

F(011—022,092-033,033~011,012,023,031) =0 (2.3a)
or, equivalently,

F(S11-S22, S22—-S33,533-S11,812,5S23.531) = 0 (2.3b)
where S, = 0j;— (0K /3) 8 are the stress deviator components.

As pointed out by Saint-Venant in 1870 and then by Levy in 1871 and von
Mises in 1913, the strain increment characteristics of a material can be deduced
from the deviator stresses themselves

where dA is a positive scalar which depends on the hardening properties. This
speculative hypothesis appeared to be a particular case of the more general
relation between plastic strain increments and stresses known as the
normality principle or flow rule: '

de, = dAdF(0,) /430y (2.5)



where F(0jj) is the yield function corresponding to the material being
considered. Equation 2.5 leads to the Saint-Venant principle when the von
Mises isotropic criterion is used. Furthermore it leads to a simple geometric
interpretation of the flow behaviour, i.e. the vector de= (de,) is normal to the

yield surface at the point (0y), Fig. 2.1.
[0.2. THE TRESCA AND VON MISES CRITERIA

Two criteria were widely used in the past to reproduce the yield behaviour of
an isotropic material. The first was proposed by Tresca [18] in terms of

principal stresses :
a7 — 0Oy = 09 if 0120120/ (2.6)
and the second by von Mises [19] who put forward the quadratic function :
(Oxy—Oyy)? +(0 2y -0,,)2‘+(oyy —0;,)2 +6(0y2 +05,2 +0y,2) =20¢° (2.7)

Plastic deformation is assumed to occur when the maximum shear stress in the
former case or the elastic energy of distortion in the latter reaches a critical

value.
[1.3. THE HILL 1948 CRITERION

After being ;;rocessed, a material is generally anisotropic. As a consequence,
the flow behaviours characterized by the Tresca and von Mises functions only
provide a rough and frequently an incorrect, estimate of the plastic properties.
For this reason, Hill (4] proposed in 1948 a generalization of the von Mises
criterion which takes the anisotropy into partial account:

2F(0y) = F(0yy =02 +G(01: =022 +H(0xy —0yy )
+2L 0y,2 +2M 0:,° +2N 04,2 = 1 (2.8)




Fig.2.1 Yield locus F(0j, 02)=ct in a two-dimensional (g1, 02) stress space.
The stress vector O terminates on the locus and the corresponding strain rate
vector £ is normal to the yield surface at the loading point.
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Fig.2.2 System of coordinate axes for rolled sheet.
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This criterion is restricted to materials with orthotropic physical symmetry,
i.e. to those with three mutually orthogonal symmetry planes. These can
generally be inferred from the symmetry of the strain path employed to produce
the anisotropy. The F, G, H, L, M and N parameters characterize the current
state of anisotropy and can be determined by means of six uniaxial tension or

pure shear tests :
G+H=1X F+H=1/Y? F+G=122.
2L = 1/R? 2M =1/8? 2N =1/T? (2.9)

where X, Y and Z are the tensile yield stresses in the principal directions of
anisotropy and R, S and T the yield stresses in shear with respect to these axes.
In the case of isotropy

L=M=N-=3F=3G =3H (2.10)
and expression 2.8 reduces to the von Mises criterion.

The Hill 1948 yield criterion has been widely used to evaluate the plastic
properties of anisotropic metals. The sections that follows present a critical
examination of some of its main applications.

II.3.1. YIELD STRESS a(6)

The anisotropy displayed by a rolled sheet can be characterized by a set of
tensile experiments carried out at different angles 6 in the rolling plane (Fig.
2.2). The dependence of the yield stress on orientation can be calculated very
simply from a ‘reduced’ (plane stress) criterion

(G+H)o.?+(F+H)o,?-2H 0,0,+2N 0% = 1 (2.11)

The tensile stress in the 8 direction is then given by
0(8) = [(G+H) cos*0+(F +H) sin*0 +2(N —H) s1n?0 cos®0] —172 (2.12)




11.

leading to

a(0) =(G+H)-1?

0(90) = (F+H) -1? (2.13)
and 0(45) = [(F+G+2N)/4] -2

Bramley and Mellor [20,21] applied the Hill theory to the case of steel,
titanium and zinc sheets. The parameters F, G, H and N were determined
experimentally and used to calculate the yield stress anisotropy, as expressed
by the ratios 0(0)/0(90) and 0(0)/0(45). Since the theoretical values they
derived did not seem to conform to the values ex‘:ected from Equations 2.13,
these were recalculated by the present author and are shown separately in
Table II.1. Reasonable, although not ‘perfect’, agreement between the Hill
analysis and the experimental observations is seen for the steels and zinc,
whereas some discrepancy is observed for the titanium ; i.e. 0(0) is greater than
0(45) and 0(90), while the theory predicts the reverse condition. This was
attributed by the authors [20] to a difference in the rate of work hardening
between the rolling and transverse directions, which cannot be accounted for by
the Hill analysis.

For materials obeying power law work hardening, 0 =K €", the ratio of thé
tensile flow stresses has been shown to depend on the hardening coefficient n
[22-24]

0(8)/0(0) = [A/(G+H) ~12]n+1 (2.14)

where A is the right hand side of Eq. 2.12. The predictions of the Hill quadratic
criterion were nevertheless shown to diverge from the experimental
observations [24] for various grades of steel.

-

/
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Is[2
_ Steel | Ti | 2n Steels (21]

20 20 20

(20] | [20] | [20] A B C D
[ ow0o(as) [
theoretical | 951 | 984 | 933 | .854 | 886 | 870 | .951
present work
0(0)/0(45)
L{experimental 983 | 1.039| 862 | .953 | 944 | .968 | .983
0(0)/a(90) '
theoretical 932 | 874 625 | 990 | 980 971 | 932
Refs.[20,21]
g(0)/6(90)
theoretical | .953 | 936 | .644 | .988 | .981 973 | .953
present work
0(¢0)/0(90) -
Lexperimental | 992 | 1.063 ] 694 |1.011 ] 989 ]1.013 | .992

Table II.1. Theoretical (Eq. 2.13) and experimental (from Refs. [20]
and (21] ) yield stress ratios; A, B, C and D refer to the four steels
investigated in Ref. (21]

Gotoh [25,26] also reported large discrepancies between Hill type
calculations of yield stress anisotropy and experimental points for an Al-killed
steel and for Cu-1/4H, as shown in Fig. 2.3. This is more striking in the case of
the steel which displayed strong anisotropy, as expressed by an R-value
varying from 1.5 to 2.4. Similar conclusions can be drawn from the work of
Dillamore et al. (27] on a rimming steel.

By contrast, Svensson [28] reported very good agreement when comparing
theoretical (Hill quadratic) and experimental 0.05% proof stresses in cold rolled
and annealed steel and aluminum.
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Fig.2.3 Uniaxial yield stress curves 0(8) for (a) an Al-killed steel and (b) Cu-
1/4H. ( o ) experimental values; (— - ——--) predictions based on Hill 1948
) Gatoh calculations (Eq. 2.61). After [25].
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Fig.2.4 (a) Typical variations in the R(6) curves for low carbon steel; (b)
relative sizes of the deepest cups that can be drawn from the materials with the
average strain rate ratios indicated. After [31].
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I1.3.2. STRAIN RATE RATIO R(68)

The anisotropy of a rolled sheet is often characterized by the strain rate
ratio R(8) [29] calculated from tensile tests carried out at various angles 6 to the
rolling direction (Fig. 2.2). It is defined as the ratio of the incremental strains in

the width and thickness directions
R(B) = éyy/ézz (2.15)
Whiteley {30] demonstrated the importance of this ratio in the evaluation of

directionality in steel sheet. The R-value 1s readily derived from the yield
function (Eq 2 11) by using the associated flow rule (Eq. 2.5). It can be shown

that
V4
R(0) = [H+(2N —F -G —4H) sin®*0 cos?0]/ [F sin?€ + G cos*8] (2 16)
so that -
R(0) =H/G
R(90) =H/F (217)
R(45) = N/(F+QG) -1/2 0
and

1+ 2(R(45VR(0)+ R(45V/R(90)— 2] sin %8 cos’0 (2.18)

R(®)= > 2
stn“0/R(90) + cos"8/R(0)

-

The strain rate ratfko R is a measurement of the degree of anisotropic flow
that occurs during drawing. The lack of drawability is in turn related to the
inability of a material to resist localized thinning in the tube wall. A high R-
value favors resistance to thinning and a large variation in R is related to
extensive earing. Two parameters are commonly used to characterize the
drawability of a sheet. The average strain rate ratio .
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R = [R(0) +2R(45) +R(90)) / 4 (2.19)

is a measure of the degree of normal anisotropy and 1s related to the depth of
draw [30]: the higher the R value, the deeper the draw, as illustrated in Fig. 2.4
[31]. By contrast, the planar strain or anisotropy ratio

a

2

R =[R(0)-2R(45)+R(90)] /2 (2.20)

/p

is a measure of te degree of planar anisotropy. For an isotropic material, R=1

and AR =0

Ml S = ~E

Equation 2.18 has been widely used for assessment of the R(8) curves
pertaining to various metals. In most cases, good agreement with experimental
points is reported [20,21,26,27,32-34], as shown for illustration in Fig 25
However, this result i1s not really surprising since the R(8) curves must coincide
by construction with the experimental points 1n the rolling, transverse and
diagonal directions. More interesting conclusions can be drawn regarding the
limitations of the Hill predictions when more than four ears are obtained in
deep drawn cups, as shown in the next section.

I¥.3.3. EARING BEHAVIOUR

When a sheet of metal is deep drawn, the resulting cup very often exhibits
peaks and troughs along its periphery. This inhomogeneous deformation,
known as earing, originates in the crystallographic anisotropy of the workpiece
(35]. As shown by Wilson and Butler (36], ears form in the rolling and
transverse directions (Fig. 2.6) in the case of a material displaying a major cube
component and in the diagonal directions if a rolling-type texture is present in
the specimen. Little earing is observed, however, 1n the case of a balanced
texture (see also Ref. [37]).

Asdiscussed by Bourne and Hill (34], the positions of the ears depend on the
relative values of the parameters F, G, H and N. Although their locations
correspond theoretically to R(6) maxima for uniaxial stresses applied in the
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Fig. 2.6 Earing behaviour and
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circumferential direction, there is experimental evidence that ears form at
positions where R(8) is maximum for a uniaxial test performed in the radial
direction. For a material displaying a strong cube texture, for example,
experimental R-values vary from about 1 in the 8 =0 and 90° directions to about
0.1 in the diagonal (8 =45°) direction [38]; this situation is consistent with the
observed earing behaviour (Fig. 2.6).

Aust and Morral (33] reported that the Hill quadratic criterion predicts the
right ear positions for annealed 2S aluminum. However, Bourne and Hill {34]
have cited the counter example of a brass sheet in which six ears are found. In
this case, the Hill quadratic criterion (Eq. 2.11) is revealed to be unsuitable,
since it can only predict four maxima (corresponding to four ears) in the R(6)
curve. A cubic plastic potential would be more appropriate for this material,
following the remark [34] that a homogeneous yield function of degree n can

lead to the prediction of a maximum of 2n ears.
<

Logan [39] used a Hill type of flow criterion with planar anisotropy in FEM
simulations of sheet metal formability. The calculated mean ear height was
lotted versus the planar anisotropy parameter 2AR/ R suggested by Wilson
ind Butler (36]. It was concluded that thesHill 1948 yield function
underestimates the true earing behaviour for various degrees of anisotropy.
Furthermore, it was shown that it overpredicts the amount of strain under the
punch (i.e.in the biaxial region) relative to that in the flange.

[01.3.4. LIMITING DRAWING RATIO (L.D.R.)

An interesting characteristic of a given material being deep drawn 1s the
largest blank that can be successfully drawn with a given die. This property is
usually quantified as the limiting drawing ratio

LDR =D/d (2 21)

%

where D is the diameter of the largest blank successfully drawn and d is the
diameter of the drawn cup. Whiteley [30] demonstrated the importance of the
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average strain ratio R in the assessment of a high LDR (Fig. 2.7). His analysis
was based on the fact that a high R-value is indicative of a high wall strength
together with a low resistance to width (circumferential) strain. These two
combined properties allow larger blanks to be drawn without failure.
Whiteley's work was confirmed by other authors for different kinds of metals
(36,40-46]. The LDR was shown [30] to be related theoretically to the ratio f§ of
two plane strain flow stresses corresponding to €¢yy, =0 and £,,=0:

In(LDR) = n p (2.22)

where n is an efficiency coefficient essentially associated with frictional forces;
normally n =0.7 to 0.8. When using the Hill anisotropic theory (Eq. 2.11),
Whiteley further demonstrated that, for radial isotropy, B can be predicted
quite easily to be:

Bp=VIRFI)T2 (2.23)

so that LDR = exp(n V(R +1)/2) (2.24)

As can be seen, the drawing ratio is very dependent on how well the Hill
criterion approximates the shape of the yield locus for real materials, since its
value is based on two flow stresses and one strain rate (normal to the yield
surface) derived from the assumed locus. Furthermore, planar isotropy is
assumed through the use of the R-value, a condition which is more the
exception than the rule. Moreover, no work hardening is considered. Under
these conditions, the curve of LDR vs R expressed by Eq. 2.24 has been proved
to be highly deficient. The trend generally reported is that the theoretical
results obtained from the Hill theory indicate a far greater dependence on R-
value than actually observed in practice, as illustrated in Fig. 2.8.
Furthermore, the discrepancy seems to increase with increasing R [41]. On
some aluminum alloys, however, Riggs [42] has observed that a better
correlation between LDR and strain ratio is obtained when the minimum
instead of the average R-value is taken into consideration.
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Meuleman [40] studied the effects of mechanical properties on the deep
drawability of a selection of sheet metals, i.e. annealed BCC and FCC metals,
annealed zinc, as well as some as-cold-rolled materials. His results (Fig. 2.9)
show that the annealed cubic materials follow a definite trend, which is not,
however, reproduced by the Hill quadratic analysis. By contrast, the
drawabilities of the annealed zinc and the as-cold-rolled metals seemed to be
almost independent of the average strain ratio and fell well below the predicted

l 'm-'l

values.
0.3.5. WORK HARDENING CHARACTERISTICS

As discussed above, the comparison between predicted and experimental
R(0) curves is not a very sensitive test for the Hill anisotropic theory. A more
realistic assessment consists of calculating the hardening characteristics of a
metal following a certain deformation path (say biaxial tension) and then
comparing them with those obtained along another path (say uniaxial tension).

It can be readily shown [21] from Eq. 2.11 that the biaxial stress op; and
strain €p; can be calculated from knowledge of the uniaxial behaviour:

k 1+R(O) _1+ROVRO0) ,
T o % = | e (2.25)

%% T T+ ROVRE0) 0 b 1+R(0)
“ 1+R(90) 1 +R(90V/R(0) (2.26)
g = | =——————————— *0 E =\ *C
&  "1+R@OOVR(O) % b 1+RO90) =~
1+R 2
LY _r—2 2.27
d W=l 0 % =R (227

where (0, eo)%nd (090, €90) are the flow properties in the rolling and
transverse directions, respectively, and (Oay, €av) are taken from the stress-
0 strain curve corresponding to the average R-value.
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An interesting consequence of Eq. 2.27 is that the R-value can be calculated
from knowledge of the stress-strain curves determined in biaxial tension and in
a uniaxial tension test carried out in the direction corresponding to R [47.48]. If
these curves are fitted to the empirical expressions

Op = Aep™ (2.28)
Oay = B gg," (2.29)

and if it is assumed that the two hardening exponents m and n are equal, as is
implicit in the Hill anisotropy theory, then from Eq. 2.27

Ry = 2(A/B) 2"+ ] ‘ (2.30)

Bramley and Mellor {21] carried out simple tension testsin the 8 =0, 45 and
90° directions of four stabilized steel sheets. The biaxial curves were obtained
by the diaphragm method. Eqs. 2.25 to 2.27 were then employed as theoretical
bases for prediction of the latter. As shown in Fig. 2.10 for one of the tested
steels, good agreement is observed when the average R-value is used. Similar
conclusions were drawn for the other steels.

Nevertheless, these results have been contradicted by many other
investigations carried out on different metals. Bramley and Mellor [20], for
example, reported good agreement for titanium (R=2.85) but a very poor one
for zinc sheet (R=0.31). In further studies, Woodthorpe and Pearce [49] and
Pearce [50] demonstrated that a low average strain ratio (R < 1) is conducive to
a strong underestimate of the strain hardening behaviour in biaxial tension
(Fig. 2.11a). However, better results were obtained for materials having higher
R-values (Fig. 2.11b). Similar comments are applicable to the work of Ranta-
Eskola [51], Horta et al. [52], Kular et al. (53] and Vial and coworkers [22,23].

/
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Fig.2.10 Work-hardening characteristics for a killed steel. (1) Experimental
curve, simple tension, 0° to rolling direction; (2) experimental curve, simple
tension, 45° to rolling direction; (3) exiaerimental curve, simple tension, 90° to
rolling direction; (4) experimental curve, diaphragm test; (5) theoretical curve
based on average R-value and corresponding work-hardening characteristics;
(6) theoretical curve based on 90° tensile curve; and (7) theoretical curve based
on 0° tensile curve. After (21].

il Ve

Preamgtes /
-,
s/
//
’
S
a0~ e
~ W
U
’
- //
/e
J
-
nm—/
B
/. ¢ 0 twens tee L NS (7e) B}
#0 0000~

Fig.2.11 Uniaxial and biaxial stress-strain curves for (a) an annealed rimmed
steel (R =0.38) and (b) annealed titanium (R =3.8). After [50].
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I1.3.6. ANOMALOUS BEHAVIOUR

One of the interesting features of Eq. 2.27 is that the ratio 0y, / 04, must lie
on the same side of unity as the average strain ratioR ;

R<1&0p /04 <1
R>1&0p/0q 21 (2.31)

Woodthorpe and Pearce (49] carried out experiments on commercial purity
aluminum cold rolled to different reductions. Although the corresponding R-
values were less than unity, all the measured 0y, / 0,y ratios were above 1, thus
contradicting Eqs. 2.31. This behaviour has thus been qualified as ‘anomalous’.
Pearce [50] reported similar conclusions for 70/30 brass, as did Vial [22] for
brass 260 : in these cases, the biaxial curves were considerably above the
uniaxial ones although R < 1. The theoretical and experimental 0y, / 04y vs R
curves derived by Pearce [50] are shown in Fig. 2.12. With the exception of the
‘anomalous’ metals mentioned above, the experimental relationship is similar
in shape to the predicted one, but displaced to a higher level

It is also interesting to compare the Hill predictions expressed by Eq. 2.27
with calculations carried out on a crystallographic basis. Dillamore [54]
concluded from a crystal plasticity analysis that the Hill theory approximates
the biaxial/uniaxial stress ratio reasonably well for R-values between 1 and 2.
He furthermore demonstrated that the maximum value of Oy, / Oy, is 1.18; by
contrast, according to Eq. 2.27, increasing the R-value to infinity should lead to
an infinite value of this ratio.

Logan and Hosford [55] also calculated the dependence of the
biaxial/uniaxial stress ratio on the strain rate ratio R for randomly chosen
rotationally symmetric mixed textures. It can be seen from Fig.2.13 that the
Hill analysis does not fit these crystallographically calculated points at all well.
Similar conclusions were drawn regarding other strength ratios, i.e. the plane
strain/uniaxial or plane strain/biaxial stress ratios (Fig. 2.14).
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Fig.2.14 Dependence of the plane
strain (€y=0)/ uniaxial strength
ratio, A, on the strain rate ratio R.
Each point corresponds to a
randomly chosen rotationally
symmetric mixed texture. The Hill
theory prediction is given by the
line a =2 and the Hosford prediction
(Eq. 2.50) by the line a=6. After
(55]. .
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I1.3.7. LIMIT STRAINS IN SHEET MngAL

Many metal forming processes, such as stretch drawing, bulging or to a
certain extent de?f) drawing, involve uniaxial or biaxial stretching paths. The
main limitation of such deformation techniques is that fracture generally
occurs at relatively low strains. For this reason, it is of interest to predict the
maximum strain that can be undergone by a sheet without fracture. In
principle, this critical value is the equivalent for stretching of the LDR for a
drawimg process.

The basis for limit strain prediction was first formulated by Marciniak and
Kuczynski [56] in a well-known paper. An initial inhomogeneity in the sheet
(such as a groove, see Fig. 2.15) is assumed to develop with increasing strain
into a localized neck in the direction perpendicular to the largest principal
stress. Their theoretical analysis made use of the Hill anisotropic criterion (Eq
2.8) applied to the cases of plane stress and planar isotropy (i.e. the R coefficient
Is- assumed to be constant in all directions of the sheet). This leads to the
reduced plastic potential

(R+1)02+(R+1)02?—2R0102 =2 V(2R +1)/3 0,* (2.32)

where 0p denotes the equivalent yield stress for an isotropic material, and the 1
and 2 directions are those shown in Fig. 2.15. The classical flow rule (Eq. 2.5)
was used to derive the strain rate characteristics corresponding to the above
yield locus and the following strain hardening law was assumed

Op = 0o (€g+¢g)" (2.33)
[
,
, ¥
zf by *’* Fig.2.135Schematic
- g# _5____ representation of
-— . ,,.—/-‘:é P groove geometry.
— i __. After (56]. ‘
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In this investigation, the material properties, as expressed by the hardening
coefficient n and the strain rate ratio R, as well as the loading conditions of an
element of the metal, are supposed to remain unchanged during groove
evolution. However, as pointed out by Sowerby and Duncan [57], this is
unlikely to be true in real sheet forming operations. Marciniak and Kuczynski
(56) were able to derive the stress state in the groove in this way, as well as the
relative strains inside and outside the localization. The evolution of the latter
quantities is illustrated in Fig. 2.16 for the case of equal biaxial tension 02 =0,
and for different geometric factors ty/ts =fg of the initial inhomogeneity. The
limit strain €° is then defined as the maximum strain that can be attained
before all the deformation is concentrated in the groove, as characterized by the
points identified as C on the curves. This localization results in the loss of

stability of the stretched sheet.

Marciniak's work, originally focused on biaxial loading, was extended by
Sowerby and Duncan [57] to include all positive strain ratios ranging from
plane strain to equal biaxial tension. 'fhey derived the principal consequences
of the theory "non-mathematically” by considering the plane stress yield locus.
Conclusions regarding the influence of the various material properties were
drawn which are similar to those of the original paper by Marciniak and

Kuczynski, as explained in more detail below.

Venter et al.[58] compared the predictions of the Marciniak analysis with
the experimental limit strains obtained from the hydrostatic bulging of
annealed aluminum plates. The results are presented in Fig. 2.17 as a forming
limit diagram (FLD). Empirical values of the material properties were used (g,
n, 09, tu/ta); however, the strain rate ratio R was determined by fitting the
corresponding yield surface (Eq.2.32) to experimental points, leading to a value
R=1.036 (rather high for aluminum), compared to a measured Lankford
coefficient R=0.54. "Encouraging ag'reeme'nt" was reported, although the
predictions are very sensitive to all the parameters listed above.

In a further paper, Marciniak et al.[59] generalized their original work by
introducing the strain rate sensitivity m and planar anisotropy, as expressed by

Op = Og(gg+€)" €™ ' (2.34)
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and

RO+R) = 2R (2.35)

a - g,0,=0
L R(1+R)2 1+R 172

where R; and Rg are the strain rate ratios pertaining to the two principal--—-—
directions in the sheet plane. A distinction was made between the two extreme
positions of the fracture, i.e. parallel to or normal to the rolling direction,
leading to an asymmetry in the FLD. The experimental results reported for

steel and copper (Fig. 2.18.a-b) closely approached the theoretical curves for
geometric ratios fg =tp/ta 0of 0.99 and 0.97 or 0.98, respectively. For aluminum,
however, considerable discrepancy was observed (Fig. 2.18.¢).
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From the different theoretical investigations carried out on the basis of the
Hill anisotropy analysis (56-62], the following trends concerning the influence
of material properties on the limit strain can be summarized:

(1) The geometric (or inhomogeneity) factor fo = ty/ts, which is very
difficult to estimate experimentally, has a very strong influence on the limit
strain £*. The latter increases dramatically when fj is increased, i.e. when the
inhomogeneity is made smaller A shown by Azrin and Backofen (62], fy is a
function of the accumulated strain as well as of the ratio of the surface strains

(i1) The hardening coefficient n and strain rate sensitivity m have

similar effects on the limit strain [59], which is increased when nor mislarger.

(111) The strain rate ratio R seems to have only a secondary influence
on the forming limit curve [56]. However, this predicted i1nfluence (smaller
limit strains for higher R-values) still cverestimates the experimental ones
associated with steel sheets [61].

(iv) The initial strain £¢ has an effect similar to that of the Lankford

coefficient R.
These variationsin £* were quantified by Marciniak and Kuczynski [56]
de" = 74dfp—-0294 dR +1'25dn—-0 76 deg (2.36)

where the relation expresses the departure from the ‘typical’ plastic properties
described by fg=0.95, R=1, n=0.25 and €9 =0.05. It is of interest to note that
the strain rate ratio R has opposite influences on stretching and drawing : an
increase in R leads to better drawability but concurrently to a deterioration in
the behaviour during extension. Stretch forming thus requires a material
having high n and low R values.
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I1.3.8. YIELD SURFACES

Experimental yield surfaces:

The approximate validity of the Hill anisotropy theory can be verified by
comparing the yield surfaces predicted by this analysis with experimental loci.
In this way, the plane strain and biaxial behaviours of a workpiece can, for

example, be readily visualized. v

Only a few experimental yield surfaces have been determined ‘completely’.
Completely here means that more than the five conventional loading conditions
shown in Fig. 2.19 have been examined. Five points in the principal stress
plane appear in fact to be enough to estimate the yield locus, as they are
sufficient to determine the size of the locus. However, there is a great deal of
indeterminacy concerning the shape of the yield surface, which is closely linked
to the strain rate behaviour of the material. The Hill quadratic criterion
obviously predicts a smooth yield locus, which will fit the yield stress data
reasonably well. The question then remains: what about the strain rates? It is
clear that much more data are required regarding the experimental surfaces, in
particular their local inclinations, i.e. the values of the strain rate components.

w5

Fig. 2.19 Schematic
representation of various loading

uT2

points on a two-dimensional
locus: uniaxial tension in the
(UT1, 02=0) and (UT2, 01=0)
directions; biaxial (BT, o;=09)
and plane strain (PS1, €2 =0, and
PS2, £, =0) tension.
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In 1971, Dillamore et al.[27] carried out experiments on stabilized stainless
steels using combination of axial loading and internal pressure. One of the loci
obtained in this way is displayed in Fig. 2.20&.‘As noted by the authors, these
experimental yield surfaces cannot be fitted by an expression of the form
proposed by Hill, but require at least a sixth power equation in the stresses.
Similar loading conditions (biaxial loading under internal pressure and
simultaneous axial tension or compression) were used by Althoff and Wincierz
(63] for yield locus measurements of annealed copper and aluminum. The
specimens tested were prepared so as to exhibit rather sharp textures. As
shown in Fig. 2.20b, the yield surface of copper tubes with a (001){110] sheet
orientation displays rounded corners and flat edges, a geometry which cannot
be accommodated by a Hill quadratic criterion (Fig 2.20c). These are better
duplicated by crystallographic calculations (63]. However, the experimental
yield locus pertaining to recrystallized aluminum tubes 1s more rounded (Fig.
2.20d) and may be fitted by an analytic function of the Hill type (Eq. 2.11 or
2.32). From this work, it can be deduced that the classical continuum approach
does not seem to fit the yielding behaviour of highly textured metals.

In an investigation of copper and aluminum single crystals, Grzesik (64]
found good agreement between experimental and crystallographic yield loci.
Nevertheless, the lack of values in the uniaxial directions due to his use of the
Knoop hardness test renders any comparison with analytic yield functions
difficult, if not questionable.

Vial et al. [22,23] measured the uniaxial tension, uniaxial (through
thickness) compression, balanced biaxial tension (bulge test) and plane strain
compression proberties of sheets of various metals (steel, Al, Cu and brass). It
was shown that the Hill 1948 criterion is not able to give a good fit to the plastic
behaviour of all the samples tested (Fig. 2.21). Its inability to reproduce both
the plane strain and biaxial behaviours was partially overcome by the use of
more sophisticated criteria, as discussed in section II1.4. Similar conclusions
were reached by Benferrah [65] regarding the behaviour of cold rolled Al sheet.
Also of interest is the investigation carried out by Stout et al. (66] who studied
systematically the behaviour of 1100 aluminum from yield to large strains
(>1.0). Their measured (back extrapolated) yield stresses diverge from the von
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Fig. 2.20 (a) Yield locus plotted in the n-plane for a mild steel. The arrows,
indicating the externally directed normal to the yield locus, are determined
from strain rate ratio measurements. After {27]. (b) Experimental locus
corresponding to a (001)(110] texture. After (63]. (c) Hill 1948 prediction based
on yield strength measurement and R=0 for a {100} <011 > texture. After [63].
(d) Measured yield locus for a recrystallized aluminum tube. After [63].
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Mises locus and are better approximated by the theory of polycrystal plasticity
(67].

Calcixlat,ed vield surfaces :

>
Polycrystal yield surfaces can also be calculated by various crystallographic
approaches, as explained in more detail in chapter [II. These methods are based
on the Taylor/Bishop and Hill theory [1,2,6] of polycrystal plasticity, according
to which the overall yield locus is calculated as an average over the reoriented
single crystal loci. Canova et al.[11] used a modified version of this analysis (i.e.
the relaxed constraints (RC) method of texture prediction) to calculate the
grain orientation distribution after a given deformation This calculated
distribution was used to plot some yield locus projections, an example of which
is shown in Fig. 2.22. Although the vertices and edges displayed by these
surfaces are probably too sharp when compared with experimental loci (because
the textures predicted by the RC model are too pronounced), it is evident that
the overall shape cannot be reproduced by some quadratic function.

Similar comments can be made with regard to the use of experimental
(instead of calculated) orientation distributions (OD's). Bunge (10,68], Da C.
Viana et al. [38,69] and van Houtte [70] have all employed OD facilities to
determine the yield loci of deformed metals. The surfaces obtained in this way
by the Bishop and Hill (or modified Bishop and Hill) method display smoother
shapes than the ones of Canova et al.[11] (see Fig. 2.23). However, the presence
of some flat regions still renders the Hill quadratic criterion unsuitable.
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Fig.2.22 n-plane representation of a calculated FCC yield surface after a
rolling reduction of £33= — 2. After [11].
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(a) ¢ (b)

Fig. 2.23 (a) n-plane representation of the FCC theoretical yield surface
corresponding to a copper rolling texture. The texture data were taken from a
CODF representation. The three angles 6 =0, 30 and 45° pertain to the angle
between the l-axis and the rolling direction. After (70]. (b) Yield locus
calculated from CODF data-for a 90% cold rolled copper sheet. After (10].
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[1.4. OTHER YIELD CRITERIA

During the last decade, some new yield criteria have been introduced in
order to overcome some of the deficiencies observed in the original Hill (1948)
analysis, as reviewed above. The general properties of such functions remain
unchanged; i.e. they are expressed in terms of macroscopic stresses, the
Bauschinger effect is not taken into account, the hydrostatic pressure is not
considered to influence yielding and the parameters of the yield function are
determined experimentally. These new criteria will be classified into four
groups : those of (i) Hill 1979, (ii) Hosford, (iii) Bassani and (iv) some
miscellaneous yieid surfaces proposed in the literature.

I1.4.1. Hill 1979 yield function

Following the work of Woodthorpe and Pearce [49] on the anomalous
behaviour of aluminum, Hill in 1979 ([71] (and prior to this date in private
communication) put forward a new non-quadratic yield function for orthotrapic

metals

floz—03f" +glo3—01f" +h [o; ~02f" +a 20, 02 — 03"
+bf20og-01-03/" +cRo3-02—0if" = 0™ (2.37)

Here the 0 are principal components and m is an exponent which can be a non-
integer. When m=2, Eq. 2.37 returns to the form of Eq. 2.8. Eight parameters
have to be determined experimentally, i.e. a, b, ¢, f, g, h, m and 0. As noted by
Hosford [24], this general form recognizes the possibility of planar anisotropy.
However, it cannot be used for loading conditions which involve shear relative
to the 1, 2 and 3 principal axes of anisotropy. If in-plane isotropy is assumed,
then the criterion is valid; i.e. shear stress terms are not necessary since the 1

" and 2 axes may be oriented in any direction in the sheet.

a
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By applying the normality rule and assuming in-plane isotropy, Hill {71}
calculated the biaxial/uniaxial stress and strain rate ratios as a function of the
locus parameters

>

2™ ') (a -0

0,/0. = (1 +RI(1+ Y (2 38)
“ a+2m—zc+f
A -
R:[(Z\XI+2)a—c+h//[(2'"“’—l)a+2c+f/ (239)
[ 3

For practical use, truncated forms for planar isotropy and plane stress

conditions (03 = 0) were derived with the following coefficients
(1)a=b=0,f=g,h=0

claj+ogf +f(joi" +Jogf") = o™ (2.40)
(ii)a=b,c=0,f=g=0

a([20; —09/" +202—0ayf") + hjo;-0Og/* =a™ (2.41)
(ili)a=b,c=0,f=g, h=0

a%/201 —agf" +[202—0yf") + f( o1/ +[oof*) = o™ (2.42)
(iv)ya=b=0,f=g=0

cloy +agf*+h Jo;—02f" = o™ (2.4%)

®
: ]

However, if exception is made for the work of Kobayashi et al. (72] and Dodd
and Caddell [73], only case (iv) has been investigated experimentally to any
degree [22-24,55,60,74-78]. The advantage of these Hill criteria is that they
provide greater flexibility than does the earlier 1948 version. The shape of the
yield locus can be changed by considering different exponents m, leading to
differencesin the R-value predictions (Eq. 2.39).

r\.



‘%(‘ .
b S

38.

Dodd and Caddell [73] studied the relation between the parameter R and the
exponent m which is required to encompass the anomalous behaviour [49]. The
four cases derived by Hill (Eqs. 2.40 to 2.43) were considered, but only under
the simplified assumption of planar isotropy. For a given ratio 0y/0, >1, the
limit curve m(R) was calculated using Eq. 2.38. It was shown that case (iii)
requires special attention since its use is limited to a minimum value of R.
Apart from this restriction, Dodd and Caddell (73] showed that the exponent m
can be bounded as the Lankford coefficient R varies. Reporting also the strain
rate ratio results obtained from Refs. [49,60,74], they stated that cases (i) to (iii)
require m values greater than 2 to predict anomalous behaviour, whereas case
(iv) induces m exponents less than 2 (see Table I1.2).

Similar results were obtained by Kobayashi et al. [72]), who derived the
stress-strain relations for plane-strain compression, as expressed by the ratio
o(plane strain)/o(uniaxial). One of the problems involved in the equivalence
between the two tests (as in the case of the biaxial vs uniaxial relationship) is to
define the generalized stress and strain increments. As proposed by Mellor and
Parmar (78], these can be calculated by considering the equivalence of the
plastic work : the work per unit volume should be the same when derived from
the stress-strain behaviours of the two tests under consideration.

R m Reference Material
0.6 1.47 49 Aluminum
0.5 1.38 49 Aluminum
0.44 1.5 60 Rimming Steel
- 0.72 1.8 60 Soft Aluminum
0.63 1.7 74 Soft Aluminum
0.86 1.8 74 70/30 Brass

Table I1.2. Experimental values of R and m (from Ref. (73])
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If Ou = Ku Eu"u ' (2.44)

then the equality wy =wp implies that

Kyeynutl/(ny+1) = Kyepnp+1/(np+1) (2.46)
so that
e =[Mcnu+1]ll(np+l)) (247)
{ P Kp(nu+l) u

Similar relations were derived for the biaxial case. The plane strain stress gy is
then calculated as follows :

Op =0u(0p/0y) = Kyu(0p/0,)"*  epnp (2.48)

where £, is given by Eq. 2.47 and 0 /0y is obtained theoretically from the yield
surface (Eqs. 2.37) and the normality rule.

Using the experimental results of Vial et al. (23] on Al, Cu and brass,
Kobayashi et al. [72] reported m-values (fitted from data obtained at a strain
€=0.1)in the range 1.717 to 1.743 for case (iv) of the Hill equation and above 2
when the other reduced criteria are employed. The reverse results were
obtained for an Al-killed steel. Except for the latter example, the correlation
between the calculated and experimental true stress-true strain curves was
reasonable, as shown in Fig. 2.24. The slight discrepancies observed were
attributed to the observed dependence of the exponent m on strain as well as to
the questionable assumption of in-plane isotropy : the R-values given by Vial
(23] vary from 1.47 to 2.32 for the steel and are in the range [0.45, 0.87] for the
copper sheet, for example.

As discussed above, the most commonly used Hill 1979 criterion corresponds

~'to case (iv), Eq. 2.43. When expressed in terms of R (planar isotropy), this gives
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(1+2R)[o;—ag/™ + [o;+09/” =2(1 +R)0,™ (2.49)

Such a potential is of particular interest for materials with strain rate ratios
less than unity, since their plastic properties are not well reproduced by the
quadratic function of Eq. 2.8. The influence of the exponent m on the shape of
the yield locus is shown in Fig. 2.25. As can be seen, a decrease in-m results in
an increase in the biaxial and plane strain stresses. Mellor and Parmar (78]
used the experimental work of Taghvaipour et al. [79] to determine the flow
curves in simple and biaxial tension, employing Eq. 2.38 applied to case (iv). As
illustrated in Fig. 2.26 for a steel, the use of an exponent m=1.5 gives a
satisfactory fit to the biaxial stress-strain curve, despite the low R-value (0.44).
In the case of aluminum (R=0.72), m=1.8 is best.

This ‘experimentally’ determined m-value was used by Parmar and Mellor
[60] for the prediction of limit strains. The Marciniak-Kuczynski model [56]
described in section [1.3.7 was used, and the principle of the equivalence of
plastic work was assumed. The influence of m on the forming limit calculated in
this way is shown in Fig. 2.27. It can be appreciated that the use of an exponent
m = 1.8 instead of 2 in the yield criterion reduces dramatically the limit strain
in aluminum near balanced biaxial tension. This is of particular interest when
the experimental points of Marciniak et al. [59], reported in Fig. 2.18c¢, are
examined, as these are overestimated by the Hill 1948 function. However, it
must be borne in mind that the effect of m (as well as of R) on limit strain is
probably less than that predicted by the Marciniak model. Thus, care is
required in the conclusions drawn from studies of the critical influence of the
various parameters included in this kind of model.



Fig.2.26 Estimation of m-
value from  work-
hardening characteristics
in simple and biaxial
tension for a particular
steel (R=0.44). (1)
experimental curve, simple
tension, based on average
of curves along 0, 45 and
90° to rolling direction; (2)
experimental curve,
diaphragm test; (3)
balanced biaxial tension
curve predicted from curve
(1), based on Eq. 2.49 with
m=1.5; and (4) balanced
biaxial tension curve
predicted from curve (1),
based on average R-value
and Hill 1948 criterion.

After [78].
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I0.4.2. Hosford criteria

Hosford and coworkers (8,23,24,41,43,55,75,80] have carried out many
theoretical and experimental investigations on sheet anisoti‘opy. Some of them
were focused on a comparison between the predictions obtained from
continuum and crystallographic methods of analysis. Their basic technique
consists of the generation of textures with rotational symmetry about an (hkl)
direction normal to the sheet, averaging the Taylor factor M vs R curves for the
individual orientations, and then calculating the R-value (by determining the
minimum of the M vs R locus), as well as some stress ratios of interest. Both the
Taylor/Bishop and Hill [1,6] crystallographic approach based on {111}<110>
or {110} < 111> slip (8,41,75,81] and the Piehler technique (9] founded on
<111>-pencil glide [(55] were employed in these studies in order to calculate
the various parameters ofinter&\t (M, R, oy/0y, LDR,...)

As already discussed in section I1.3, the Hill 1948 theory predicts a.greater
dependence of LDR on R than observed experimentally, underestimates the
biaxial flow stress for R<1 and overestimates the plane strain strength for
R>0.5[41]. To overcorne these difficulties, Hosford considered a generalized
anisotropic yield criterion which appears to be a particular case of the Hill 1979
function (Eq. 2.37) :

o/ + foy/® + R [or—0y/¢ =(1+R)Y® (2.50)

This criterion was used [55,75] to evaluate theoretically some stress ratios
corresponding to biaxial tension, uniaxial tension and plane strain
compression. In contrast to the Hill case (iv) function, Eq. 2.50 is not able to
explain the “"anomalous” behaviour reported by Woodthorpe and Pearce [49].
When compared to the crystallographic calculations for FCC or BCC metals
(with {111}<110> or {110}< 111> slip), it was shown [75] that the best fit
corresponds to an exponent a=8 to 10 in Eq. 2.50. When compared with the
predictions obtained with the <111> pencil Elide assumption [55], a similar
continuum criterion proved to give good agreement with an exponent a near 6
(see Fig. 2.14). The same value was obtained when fitting to the calculat):d
isotropic yield locus for a randomly oriented material. However, it was not
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known how well these upper-bound calculations are able to represent the

yielding behaviour of actual materials.

In that spirit, a very interesting experimental investigation was carried out
by Vial et al. [22,23]). Two main questions were asked, namely :

(i) How can stress-strain curves under complex loading paths be
predicted from simple uniaxial tension tests and strain rate ratios ?

(ii) Which yield criterion best fits the experimental data ?

For that purpose, the three functions expressed by Egs. 2.11 (Hill quadratic),
2.49 (Hill 1979) and 2.50 (Hosford 1979) were employed, but the first and third
equations were somewhat modified to take account of a certain degree of planar

anisotropy.
Ro,? + Po,? + RP(0,—0,)* = P(R+1)a? (2.51)
R fo,/° + P[oy/® + RP [oy-0y/° =P(R+1)a° (2.52)

Here R and P represent the strain rate ratios in the rolling and transverse
directions, respectively. The exponent a was equal to 6 for FCC and 8 for BCC
metals. In Eq. 2.49, the exponent m was fitted to the experimental
observations. Four sheet metals with quite different R-values and hardening
behaviours, were tested, i.e. Al, Cu, brass and an Al-killed steel. From the
comparison between the experimental and theoretical biaxial/uniaxial tension
curves and plane strain data, it was concluded that no single criterion can
provide the best prediction for all the materials investigated. This is also
illustrated in ng. 2.21, where it can be seen that the "old” Hill, "new” Hill and
Hosford criteria give sequential good fits to the experimental yield loci.

In a recent paper [24], Hosford reviewed briefly the effect of the different
flow criteria on th¥ prediction of the yield stress ratio 0(8)/0(0) (see section
I1.3.1). The latter is overestimated by the Hill 1948 analysis. The introduction
of shear terms in his own function (Eq. 2.52) proved to be inconsistent since it
led to an obligatory exponent a =2, whereas much larger values are intended.

\
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To overcome this difficulty, it was proposed that the yield function should be
expressed in the principal stress axes, i.e.

Rofo;/® + RJog/® + RiR2 Jo1—02/® = Ro(R; +1) Y ° ’ (2.53)
This is formally the same function as Eq. 2.52, but is expressed in different
axes. Applying this yield criterion to different directions 8 and assuming power
law work hardening 0 =Kg", it was shown that

a(90) 1 6(0) = [ R(90XR(0) +1)/ R(OXR(90) +1) fn+1ra (2.54)
0(45)/0(0) = [2R(90)(R(0) +1)/(R(0)+R(90))(1 +R(45)) fr*!Va (2.55)

The experimental data displayed in Fig. 2.28 indicate the necessity of a high
exponent near 8 in the Hosford criterion in order to reproduce the o(8)/6(0)
variations for 6 =45 and 90°. )

Clearly, all the data reported by the Hosford team are better reproduced by
high exponents (6 or 8) when using Eq. 2.50 or Eq. 2.52. This is in apparent
contradiction with the results obtained with the Hill 1979 criterion (case (iv)),
from which the best exponent seem to lie in the range [1.6,2.0].

More recently, it was shown by Dodd and Caddell (73] that different
versions of the Hill 1979 function can lead to completely different exponents m,
some of which can ackéommodate the anomalous behaviour. For example, case
(iii) (Eq. 2.42) leads to m-values as high as 5 or 7 for a material exhibiting a
strain rate ratio of around 0.4. By contrast, for case (iv) (Eq. 2.43), the
corresponding exponent is in the range [1.3, 1.5]. Furthermore, it is easily
shown that, for R-values less than unity, the biaxial vs uniaxial behaviour
(Op/0y) is a decreasing function of m in the Hill locus (Eq. 2.49), but an
increasing function of the exponent a in the Hosford criterion (Eq. 2.50). Thus,
the above apparent contradiction may be due simply to the difference in the
type of standard considered.
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Fig.2.28 Experimental flow
stress ratios O0gg/0g and #45/0¢
compared with parameters for
predicting these ratios (Egs. 2.54
and 2.55, R=R(0), Q=R(45) and
P=R(90)). Data are for various
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I1.4.3. Bassani criterion

Bassani [76,77] has also characterized the yielding behaviour of metals with
transversely isotropic plastic properties. His approach was similar to the one
adopted, more or less at the same time, by the Hosford group: namely, the
fitting of continuum yield functions to crystallographically calculated loci.

His study was restricted to ideal transversely isotropic textures as specified
by their Miller indices [hkl]. In such a case, all the crystals of the aggregate
have an <hkl> crystallographic direction parallel to the 3-axis of transverse
isotropy. The crystallographic calculations were carried out using a classical
Bishop and Hill method for restricted {111}<110> or {110}<111> slip. Both
the envelope construction and stress averaging techniques [82] were used for
this purpose. The results obtained for the [100] and (110] ideal textures are
shown in (Fig. 2.29.

&
A pew continuum function was introduced by Bassani to fit these loci :

| " =" =1 0
20, 2t (2.56)

N

which was found to be flexible enough to incorporate the behaviour of a wide
range of transversely isotropic textures. Note the presence of two different
exponents in this criterion, which have to be greater than or equal to one for
convexity requirementsymin rate ratio R is expressed by

5

m 9, 20

so that Eq. 2.56 can be written

[o1+02f* + (nim)(1+2R)0,"™ o1 —02f* = a,"[1+(n/m)(1+2R)] (2.58)
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This reduces to the Hill 1979 criterion (Eq. 2.49) when n=m. The relationship
between R, 0, and 0p, derived from this function is thus

0p/ 0y = #[ 1 +(n/m)(1+2R) ]I ‘ (259

which can incorporate the ‘anomalous’ behaviour. Three of the four parameters
(Ob, Oy and R) were fitted to the data of the Bishop and Hill yield surfaces. m
was equated to 1, 2 or n for convexity purposes (m>1). In this way, the two
classes of loci (crystallographic and continuum) coincide in the uniaxial and
biaxial directions, and their slopes for uniaxial loading are identical, as
illustrated in Fig. 2.29. The best fit was found to correspond to m=1 with n-
values varying in the range (1.3, 5.6) for the different textures investigated.
Even though such criteria are not homogeneous in the stresses, they appear to
be of greater flexibility tharf the Hill 1979 function.

Another set of textures was investigated by Bassani (76], namely the
orthotropic textures, such as the one produced by rolling. Planar isotropy was
also assumed. In this case, an ideal orthotropic rolling texture (hkl) [uvw] was
defined as one comprised of equal percentages of (hkl) [uvw], (hkl) [uvw], (hkl)
(uvw] and (hkl) [uvw] (because of symmetry requirements). Bishop and Hill
calculations were carried out for single textures and combinations of ideal
orientations (Fig. 2.30). These loci were then approximated by a family of
orthotropic yield loci

Ci /01 +09f + C2Jo1 —09f + C3(01-202)* + C4(02-201)% =1 (2.60)

The necessary five parameters were fitted to the calculated (crystallographic)
values of 0y,, Oy,, Ri, R2 and Oy, so that the corresponding yield stresses and
slopes coincide for both the crystallographic and continuum loci. However, such
functions, for a particular ratio 02/ 01 , have generally more than one solution
in the stresses, some of them violating the convexity requirements. In the
examples investigated [76], only one of the yield surfaces was found to be
convex for each case. The locus predictions made in this way are presented in
Fig. 2.30, from which a reasonable agreement is observed. Nevertheless, it is
not known how well functions such as Eq. 2.60 are able to represent a wide
range of plastic behaviours. It can be objected also that too many parameters
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are necessary for practical use : the more coefficients (and hence the more
complicated the yield function), the better the results, but at the cost of a loss in
simplicity.

«n=3T72(R,1) w BISHOP-HILL

YIELD LOCUS

4 O/x

BISHOP-HILL
YIELD LOCUS

4

Fig.2.30 (a) {110}<112> ideal orthotropic texture and (b) 40% {100}<001 >
+ 20% {213} <475> + 10% {112} <110> + 10% {112} <111> + 20% isotropic
texture. Broken line : phenomenological yield function of Eq. 2.60 After(76].
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Fig.2.31 Experimental and theoretical R-values for (a) an Al-killed steel and
(b) Cu-1/4H. ( © ) experimental values; (——- ——- —) Hill 1948 predictions
and (—————) Gotoh calculations. After [25].
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1.4.4. Other yield behaviour descriptions
.

Gotoh criterion

After a stz}téinent of some of the disadvantages of the Hill quadratic yield

function, Gotoh [26] proposed a fourth order criterion which includes nine

parameters

+ (Ag0,% +A 70,0y +Ag0y%) Tpy? +Ag 1yy* (2.61)

The expressions of the strain rate and stress ratios derived from Eq. 2.61
depend on the A; coefficients, as is the case for the type of ear formation. Gotoh
determined the range of variation of his function parameters so as to be able to
reproduce the occurrence of 0, 2, 4, 6 or 8 ears in drawn cups (as shown by
Bourne and Hill [34], a polynomial yield locus of degree n can predict a
maximum of 2n ears). All the information required for the determination of the
A/sis given by a series of 4 uniaxial tests at 6 =0, 22.5, 45 and 90° as well as by
a biaxial (or plane-strain) tension experiment. In this way, the theoretical and
experimental R(08) and 0(8) curves coincide at the four directions 8 mentioned

above.

In a further paper [25], an investigation was carried out on a commercial Al-
killed steel and on Cu-1/4H sheets in order to verify the validity of such fourth
order criteria. The results obtained for the R(8) and 0(8) curves are shown in
Figs. 2.31 and 2.3, from which it can be seen that a much better fit is produced
by the Gotoh criterion rather than with the Hill quadratic function. This is
however not surprising since the A; parameters were chosen so as to permit the
predicted yield stress curve to pass through the four experimental points.

Shih and Lee criterion

An interesting extension of Hill's formulation for anisotropic plasticity was
carried out by Shih and Lee [83]. The proposed yield function
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has the following characteristics:

(1) F is a quadratic criterion involving linear terms in the principal

stresses.

(ii) the M,j coefficients describe the dependence of yield stress on
orientation (“distortion” of the yielq surface)

x T~

/ v
(iii) the a; parameters describe the strength differential between
tensile and compressive behaviour (Bauschinger effect)

(iv) k quantifies the size of the locus.

These parameters were all determined from uniaxial tension and compression
tests carried out along the principal axes under the assumption of orthotropy.
The Shih and Lee formulation proved to give good agreement with experiment
for the yield strength and yield locus calculation (Fig. 2.32) for HCP metals.
However, the R-value predictions were sorr{ewhat less convincing and only a
reasonable consistency with the experimentaf points was reported.

Benferrah criterion

In an experimental study of the development of anisotropy during the cold
rolling of aluminum sheet, Benferrah [65] was confronted with the anomalous
behaviour reported in [2]; the Hill quadratic locus was found to diverge from
the experimental one in the biaxial region (Fig. 2.33). The use of the
generalized 1979 criterion to overcome this difficulty led to an average
experimental exponent m=1.7 in Eq. 2.49. However, because of the planar
anisotropy observed, a somewhat modified Hill type criterion was proposed

X

[Fo;+Gogf" + H [ -0/ +2N 012™ = 1 (2.63)
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This criterion does not violate the condition of the non-influence of the
hydrostatic pressure, since the first term on the L.H. side of Eq. 2.63 can be
thought to come from a more general criterion involving
|(F+G)o3 —Fo) —Gog|™. Although no evidence of the reliability of such a
function has been demonstrated, it has the advantage of taking into account the
in-plane anisotropy often observed in rolled and annealed materials.

¥

|

[0.5. CONCLUSIONS AND SUMMARY

l

As illustrated by all the examp‘es given above, the correlation between
theory and experiment is relativepy poor. No single criterion is able to
reproduce the behaviour of a wide frange of metals and to fit an extensive
variety of plastic properties. In fact) most of the characteristics reviewed are
strongly dependent on how well the assumed criterion approximates the shape
of the real locus. Continuum quadratic or non-quadratic yield functions are
thought to be unable to characterize the complete shape and size of actual yield
surfaces.

The properties predicted by the classical criteria used in the literature (Hill
1948, Hill 1979, Hosford 1979, Bassani and Gotoh functions) are summarized in
Table I1.3. The blanks correspond to situations which, to our knowledge, have
not been investigated. The interested reader is referred to the following review
papers for more information : Hosford and Backofen (8], Backofen {82], Sowerby
and Johnson (84], Hosford and Caddell (80], Mellor and Parmar [78], Blickwede
[31], Sowerby [85], Mellor [86,87] and Hosford (81].



& TABLE I1.3
Hill 1948 Hill 1979 Hosford 197 Bassani Gotoh
Yield stress | variations - better than Hill - very good
ratio overestimated 1948 witha =8
Strain rate | good - - - . very good
ratio R(0)
Earing underestimated - - - right no of ears with
behaviour | maxi. no of ears:4 - adequate parameters
LDRvs.R greater dependence | better than Hill {good in certain. - -
than observed 1948 with m<2 cases
Biaxial work | underestimated |
hardening | for R<1 better than Hill |good in certain - -
character. | overestimated 1948 with m <2 cases
forR>1
Anomalous | not predicted predicted not predicted predicted predicted
behaviour with me]1 ,2[
Limit strains | too large rather good - - —
dependenceon R forR<landm<2
Yield too smooth irregular good agreement reasonable -
surfaces | irregular predictions with B&H calc. approximation
predictions - with a =6 (BCC) of B&H loci
and a=8 (FCC) Possibility of corners
General best with mat. adjustable exp. m |high exp. (6 to 8) 2 exp. n and m with 9 adjustable
comments | having Rg1,2[ m varies with compared.to m <2 m=1,2 or n(adjustable | parameters
or planar isotropy strain for Hill 1979 and greater than 2)

»e
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CHAPTER IO

CRYSTALLOGRAPHIC YIELD SURFACES OF PERFECT
AND DISORIENTED SINGLE CRYSTALS

I1.1. DESCRIPTION OF THE SINGLE CRYSTAL YIELD SURFACE

The yield surface of a ‘perfect’ cubic single crystal is well known. It is
derived from knowledge of the activated slip systems®. More precisely, if the
slip plane is represented by {hkl} and the slip direction by <uvw>, then the
shear stress acting on the (hkl} <uvw> system s

T =b,0yn (3.1)

where g, is the state of stress and b, and nj are the normalized components of
the slip direction and slip plane normal, respectively. On A}xe assumption thaf
the {111}<110> family of slip systems is dominant i FCC metals (or
equivalently that the {110}< 111> systems dominate in BCC metals), Bishop
and Hill (1, 6] demonstrated that the yield surface is a polyhedron in stress
space with 56 vertices and 24 faces. Each of the latter is associated with one of
the 24 {111}<110> possible slip systems and is characterized by Eq. 3.1. When
the stress vector terminates on a face, slip occurs on the corresponding system,;
when it intersects an edge, the two to six adjacent systems are activated;
finally, when it intersects a vertex, the adjﬁning 6 or 8 systems can be
activat,eg. '

* This chapter is based substantially on Ref. (88].
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Similar polyhedra can be constructed by assuming that other slip systems
operate as well, e.g. the {112}<111> in BCC metals [89). However, such
models are more tomplex because the different sets of systems generally have
different critical resolved shear stresses associated with them.

I.2. ANALYTIC REPRESENTATION OF THE SCATTER OBSERVED IN
EXPERIMENTAL POLE FIGURES

A given polycrystal cannot be realistically described by the superposition of
discrete ideal orientations since a spread is generally observed around the
various texture components detected experimentally. An example is presented
in Fig. 3.1 for an Al sheet containing a cube texture taken from the work of
Lucke et al. [90] (see also Rose and Stuwe [91} and Althoff and Wincierz (63]).
Similar conclusions can be drawn regarding melt-grown single crystals, in
which a scatter of around 2° has been reported for Al and Cu single crystals
grown by the Bridgman technique [64]. In coarse grained crystals deformed by
rolling [92, 93], this can increase up to 5°. Furthermore, Van Houtte [(94] and
Lucke et al. [90] have repoi’ted still larger misorientations (e.g. 10 to 15°) in
rolled polycrystals. '

5

For computational purposes, it is useful to represent such an orientation
spread by means of a gaussian distribution. Although not entirely realistic
physically, the scatter is generally assumed to have rotational symmetry about
the <100 > axes, which leads to simplifications in subsequent calculation. This
approach was adopted by Bunge [16], who proposed the following function for
the distribution density of a particularorientation g:

f(g) = f(go) exp( —w?/ wg?) (3.2)

Here w is the rotation angle responsible for the spread, and wy is the scatter
width, both of which are defined in more detail below.
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Let us consider two different orthogonal reference systems : (Cg) associated
with the <100 > axes of the ideal orientation go, and (C) associated with the
<100> axes of each disoriented crystal g. In the present case, the Cy axes
coincide with the sample axes, which provide the reference system with respect
to which the strain rate tensor is defined. It is always possible to go from the
first to the second orthogonal system by a single rotation w about a specific axis
of rotation d. The orientation of this axis can be characterized by the spherical
coordinates 8, y (Fig. 3.2), so that the orientation of grain gis in turn specified
by the three angles (§, y, w). These angles should not be confused with the
Euler angles which are also associated with the orientation of grain g, but
which are less usgful for the present purpose. The transformation matrix for
passage from the (Cg) to the (C) axes as well as the relation between the two
sets of angles are given in Appendix II1.1.

A rotationally symmetric gaussian distribution of misorientation wg about
the ideal orientation go can thus be generated by randomizing :

\
(i) the position of the rotation axis (i.e. by setting up random
values of cos 8 and y according to uniform distributions in
the ranges(0,1] and (0,2n]); and ’

(ii) the rotation angle w itself, according to the gaussian
probability distribution specified below:

p(w) = p(wo) exp( —4( w/wg )?) (3.3)

Figures 3.3a to 3.3f show the evolution of {100} pole figures corresponding to
a series of gaussian distributions of increasing scatter width wg. For this
purpose, 200 orientations were used with scatter widths wg =0,5, 10, 15,20 and
45°. It should be noted that this definition of the scatter width differs from the
one used in the metallurg'i’cal literature (Eq. 3.1), but is consistent with the
notation generally employed in statistics. The {111} pole figures pertaining to
wg=5, 10 and 15° are shown in Figs. 3.4a to 3.4c. This representation, with
lines of equal intensity, should be compared with the experimental pole figures
of Fig. 3.1, from which it can be seen that the experimental scatter width is
about 10°. -
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(b) Wo=5* . (C) wo=l0° (d) Wea =15°

(e) wo=20" (f) wo=45° (g) random

Fig.3.3 {100} pole figures corresponding to a series of gaussian distributions
of increasing scatter width wo. (a) wg=0° (single crystal), (b-f) wg=5°, 10°, 15°,
20°, 45°, (g) random. -
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Fig.3.4 {111} pole figures using contour lines corresponding to gaussian
distributions of increasing scatter widths : (a) wg=5° (b) wo=10° and (¢}
wq =15°. Plotting subroutine from Ref. [98]. )
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The random orientations were generated by employing the following
elementary volume (16,95] :

‘3 dg =(1/n?)sin?(w/2) dw d(cos8) dy (3.4)

—

An example of the distribution obtained in this way is given in Fig. 3.3g.

-~

II1.3. CALCULATION OF THE POLYCRYSTAL YIELD SURFACE -
TAYLOR MODEL

In the present investigation, the Taylor uniform strain assumption [2] as
well as the Bishop and Hill maximum work principle (1] were employed and
applied to each crystallite of the various }epresentat.ive polycrystals described
above. The relevant corner or edge of the single crystal yield locus is the one for
which the rate of plastic work per unit volume:

-

W=S,8¢,8 (3.5)

attains a maximum value. In the above equation, Sj® and &;8 are the
components of the deviator stress and strain rate tensors associated with each

grain,

The yield locus of the polycrystal as a whole was then calculated from the
averages of the power terms associated with the individual grains [(11,76,77], as
given by :

W=S,¢,=8,9¢,8 =§,%¢, 1,)=1,2,3 (3.6)

for all &;;. Here use is made of the Taylor assumption €;;8 = €;;, where &;j and Sj;
refer to the polycrystal, summation over repeated indices is indicated, and the
bars denote averaging over the single crystal orientations b;eing considered. For
all éu, expression 3.6 defines a set of hyperplanes in stress space, the inner
envelope of which characterizes the yield surface. As the power dissipated isa -
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scalar quantity, this computation only gives the distance from the origin to the
tangent hyperplane representing each particular strain rate (see Fig. 3.5) and
not the stress component itself.

> ‘

Because of the lack of influence of the hydrostatic pressure on the yield
stress, there are only five independent components of the stress tensor, and the
yield surface can therefore be represented in terms of five, as opposed to six,
dimensions. In carrying out this simpliﬁcation, there is nevertheless some
freedom of choice regarding the representation of the stress components in the
reduced stress space. Kocks et al.[96], for example, selected the sets:

S =(S) = ((S;1—S22)/2,3S33/2. S93.S31.S12) (3.7)

€ =(¢8) = (€17—€29,€33 2€93, 2637,2¢12 ) (3.8)

for their stress and strain rate vectors. Canova et al.[11] have shown that, as
long as the S and & vectors are work-conjugate (i.e. if Si &y = Sk &k), the
normality rule is satisfied in the r;spective five-dimensional space. However,
as a result of the differences in scaling between the various stress and strain
rate components, care is required when plotting or deriving yield surface
sections because of the normalizations that are required. To simplify the
plotting procedure, the following modified notation® is therefore proposed :

S = (S) =((S22—S11)/V2,V3/2 S33, V2 S23, V2831, VZ2S12) (3.9

‘E::.= (¢) = ((é22—é”)/\/5, V3/2 633, V2823, V2 é31, V2¢;12) (3.10)

* Van Houtte [97] has independently derived a similar type of apace, differing
only in the definitions of the two unit vectors in the n-plane (Van Houtte's axes
are rotated clockwise by 15° with respect to the ones used here). Any rotated
reference system in this particular subspace will in fact lead to such an
improved representation as long as the condition S € = Sj; é; is respected.

7
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Fig. 3.5 The mean Taylor factor M, averaged over all the grains, is
proportional to the distance from the origin to the tangent hyperplane
associated with a particular applied strain rate. The broken line represents the
projection of the yield surface onto two dimensions defined as the inner
envelope of all the hyperplanes.
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Note that, as these vectors are work conjugate, the normality rule continues
to apply, and that, unlike earlier reference frames, the present one is
orthonormal: the five base vectors defining the five dimensional stress or strain
rate space have the same length. The derivations of the transformation matrix,
as well as of the unit vectors used in this work, are given in Appendix II1.2**,

The hyperplanes defined by Eq. 3.6 can be represented by :
S, 6, = 8,88, L=1to5 (3.11)

For each grain, the stress vector (S,8) is calculated using the maximum work
principle or/équivalently the flow rule: i.e. the prescribed strain rate vector (£;)
is taken as normal to the yield surface associated with the single crystal being
considered at the point S8.

In this way, a section [11] of the locus in the n-plane (S3=S4=S5=0), for
example, is characterized by the inner envelope of the lines

Si8;+Soép = §F’é1 +S_2?é2 +S58¢ 3 + S8 4 + S58¢5 (3.12)

The four ratios €9/€1, £3/€1, €4/¢1 and €s5/¢; thus have to be varied for the
“complete description of such a two dimensional section.

By contrast, the projection onto the n-plane (€3=€4=£5=0) is given by the
envelope of another set of lines specified by

Sié1+Sota = Si8¢; + 82862 ‘ (3.13)
for all £, and €3.

** It should be noted that, with the present five-dimensional notation, the von
Mises equivalent strain rate is defined as €.q=(3¢;€ij)} =(3€i€; )1 so that the
equivalent stress is given by Geq= W/ £eq= 0jj €5/ €eq- By contrast, when the
Kocks ef al. notation (Eq. 3.8) is used, the von Mises equivalent strain rate is
given by £eq =(3€12 + 2 +(£32 + £42 + £52)/6)4.

——



It is readily seen that the projection leads to much simpler computations
because only the ratio £2/€; needs to be varied in order to define the operative
stress vector. The determination of S;f from a section necessitates instead the
‘sweeping’ of strain rate space with up to four parameters.

The envelope method described above is only valid under the Taylor uniform
strain assumption and can only lead, from a practical point of view, to two
dimensional projections of the polycrystal yield surface. /

The two dimensional subspaces presented below were prepared with the aid
of the ‘equilibrated’ components described above, which lead directly to n-plane
and other stress space projections of suitable shape. Because of the orthotropic
symmetry, the different subspaces used in this work (n-plane and shear stress
planes) are ‘closed’ in terms of the definitions of Canova and coworkers [11] and
the hyperplanes defined by Eq. 3.11 describe projections of the yield surface
which coincide with its sections. Thus, in each sub?pace, the distance from the
origin to the tangent is M V273, where M is the mean Taylor factor defined by
M=Wr, €eq- Here T¢ is the critical resolved shear stress and €eq is the
conventional equivalent strain rate.

[II.4. YIELD SURFACE INTERSECTIONS FOR CUBE TEXTURED
POLYCRYSTALS

hY

Two types of yield surface intersections were prepared by the method
described above : (i) the n-plane (S1), S22, S33) cross-section (Fig. 3.6); and (ii)
that containing two of the shear stress axes (Sj;, Six) and therefore passing
through the origin (Fig. 3.7). For this purpose, the minimum number of grains
required for an acceptable representation of the yield surface was first
determined. This was done by calculating the dependence of the mean Taylor
factor along three loading directions in the n-plane (plane strain, €3=0;
uniaxial tension along the 1 direction £2=¢1/V3; and plane strain, €2 =¢€,V3)
on the number of grains under consideration for the random and gaussian
(gcatter width wg= 10°) cases. As illustrated in Table IIl.1, about 800




6.

crystallites are required to attain representativity for the random material,
whereas 400 grains are sufficient for-a good approximation of the behaviour of
- the textured samples (which only contain a single texture component, of
course). '

——— .
” \ Taylor factor M
Orientation Number of
of the grains grains g9 =0 €2 = €2 = €y
n K él/\/§ V3
~ 200 2.820 2.999 2.831
random 400 2.861 3.042 2.860
" 800 2.893 3'062. 2.861
gaussian - 200 2.336 | 2.421.| 2.367
scatter width 400 . 2.347 2.424 2.360
wo=10° 800 2.349 2.424 2.359

Table III.1. Dependence of the mean Taylor factor M on the
number of grains along three loading directions €2 = 0 (plane
strain), 2 = €1/ V3 (simple tension) and £2 = £; V3 (plane
strain). ’

The evolution of yield surface shape in the n-plane with increasing scatter
width is presented in Fig. 3.6. The initial form of the yield surface i is, the well-
known single crystal hexagon which corresponds to a scatter width wq =0° The
hexagon becomes more and more rounded as wg is increased to 5 and then to
10°; it then remains relatively circular in the interval 10°<w9<20° and thus
_ corresponds fairly well to the Hill quadratic yield criterion (with cubic
symmetry) in this interval. For scatter widths above 20°, flattened faces appear
once again, separated by rounded vertices; finally, as the random distribution is
“approdached, the ‘rounded Tresca’ shape first found by Bishop and Hill [6]
becomes evident. )

¢
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The_secshape changes find a ready explaxiatiofx in the evolution of the mean
Taylor factor as wg is increased, which is different for uniaxial and plane strain
deformation [98). In uniaxial tests, M decreases from 2.45 at w9 =0° to about
2.42 in the range 7.5°<w0<10° finally tending to 3.07 in the random
configuration (Fig. 3.8). By contrast, in the plane strain case, M increases
regularly from 2.12 at wg =0° to a value of 2.85 in the random polycrystal. Thus
the n-plane cross section has the same approximately hexagonal shape when
the ratio M (uniaxial terision)/ M (planp strain) = 1.07 (e.g. at wg=5°and in the
random polycrystal, see Fig. 3.8), but conversely is roughly circular when this
ratio has a value of about 1.02, i.e. in the range 12.5°<w<17.5%.

The evolution of the shear plane cross section is somewhat different (Fig.
3.7). Although it begins with a clearly defined polyhedron for wg=0°, whichis a
square in this case, progress towards a circular shape is much slower, and the
latter is only attained when the polycrystals are randomly orientated. It is of
particular interest that the yield surface still exhibits a relatively angular form
in this subspace when the scatter widths are in the range commonly observed
experimentally (i.e. wp=7.5 to 15°). The somewhat rounded vertices in these
cases are associated with loading in pure or simple shear on planes normal to
(and in directions parallel to) two of the <100> axes..

It should be noted that the two types of cross section illustrated above only
give partial information on the shape of the yield locus as a whole. This is
because they show the shape in the vicinity of only 12 of the 56 Bishop and Hill
vertices,.i.e. the 6 n-plane vertices of the normal stress type (type A in the
Kocks [99] classification) and the 6 C type vertices in the three perpendicular
shear stress planes passing’through the origin. Thus Figsﬁ 3.6 and 3.7 do not
throw any light on locus shape in the vicinity of the 44 other vertices (i.e. near
thee 8, 24 and 12 cornets of the B, D and E types). '




(d) wes15° (f) Wo=45° (g) random

—

Fig. 3.7 Shear plane sections of the polycrystal yield surface corresponding to
increasing scatter widths : (a-f) wp=0, 5, 10, 15, 20, 45°

; (g) random
distribution.
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Fig.3.8 Dependence of the mean Taylor factor M on scatter width wg. For

each value of wg, M was calculated for a set of 400 grains. (o) l\—/I_l (uniaxial
tension); (4 ) M2 (plane strain tension);(®) ratio M{/Ms. After [98).
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II.5. DEGREE OF ANISOTROPY

As shown in Ref. [88], the yield locus of an isotropic material must be
circular in any two-dimensional shear stress space (and for any reference
frame)&Fig. 3.7 clearly shows that this necessary condition is fulfilled by the
random polycrystal. Thus the shear stress cross-sections provide direct
evidence for the anisotropic nature of a given material. The degree of plastic
anisotropy which results from the application of a normal stress cannot be
judged with the same ease, however, from the n-plane sections presentéd in Fig.
3.6. This is because the section of the yield surface associated with the isotropic*
(random) material is not circular, whereas the nearly circular yield loci
presented above (e.g. for scatter widths of 10 to 15°) are, by contrast, not
identified with planar isotropy. Thus the shape of the n-plane yield locus is not
of direct utility for an evaluation of the degree of anisotropy present in these
materials’. Two measures which are by their nature more useful for this
purpose are the dependencies on orientation of the ‘uniaxial’ yield stress and of
the transverse strain rate ratio or Lankford coefficient.

The usual experimental test for the determination of both the yield stress
and the strain rate ratio can be described by the following stress and strain rate

———

tensors :
i 2. 0 0 €17 2 °?
ga=|0 0 0 and e =| 2 2 2 (3.15)
~ ~J
0 0 0 2 2 2

Here the reference axes are those of the sample, £ is imposed and the
remaining strain rate components are unknown. Note, however, that for the

* Some of the conditions affecting the possible shapes of the m-plane loci
pertaining to both cubic and isotropic materials are discussed in Ref. [88].
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present cube texture, as for rolled (or orthotropic) materials more generally, the
Z axis or normal direction (Fig. 2.2) is an axis of mirror symmetry. As a result,
prescribing 013 =0 is equivalent to the condit.ion'é13=0, and likewise for 093
and £93. Thus the strain rate tensor can be simplified to give:

€172 0
S= 2.2 0 (3.16)
0 0 ?

-

In anisotropic materials, the condition 0;2=0 generally implies that €;2#0.
Consequently, the tensors described by Eqs. 3.15 and 3.16 are rigorously valid
only for long samples (because of the constraints due to the shoulders in short

" samples).

The yield stress 011(8) and strain rate ratio R(B) pertaining to such a 'true’
uniaxial tensile test carried out on a sample orierted along the 8 direction (Fig.
2.2) can in principle be calculated from average polycrystalline yield surface
data as follows. A Taylor approach is generally used in which strain rate
directions are imposed on the polycrystal as well as on its constituent grains.
However, it can be seen from Eq. 3.16 that two degrees of freedom are left in
defining these directions, i.e. €33 (or €22) and £12. The yield surface section
(G12=013=023=0) is thus completely determined by the inner envelope of the
hyperplanes:

Si€1 +So82 :W:.S_,é1+8_2é2+85é5 (3.17)

when expressed in the five dimensional notation of Eqs. 3.9 and 3.10 for all

directions -é’ It is evident that the necessary variation of both the €9 /¢) and

£5/€) ratios would lead to extensive computation; for this reason the following

simpler method, used in Refs.[11] and [16], was employed. o
AN

In this case the tensile test is specified by the following stress and strain
rate components:
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2 2?2 2 €71 0 0
o=(? 0 ? and £=|0 ?2 0 (3.18)
~ LY}
2 2 0 0 0 ?

Here €11 is imposed, £22 and £33 are unknown, and the nul values of the shear
strain rates can be associated with non prescribed (and generally non-zero)
values of the corresponding S,;. The latter are considered to be induced by the
shoulders or grips. Since the normal direction is an axis of mirror symmetry
(see above), the conditions 013=0 and 023=0 can be additionally specified,

leading to :

2 2 0
oc=1?2 0 0, (3.19)
~

0 0 0

Note that the condition 612#0 cannot be fulfilled at the free surface of thé™
specimen, so that Eq. 3.19 only applies to the interior of the specimen. It can be

seen from the strain rate tensor specified by Eq. 3.18 that only one degree of

freedom is left since £12=0. The calculation of yield surfaces is greatly

simplified in this way. Under these conditions, the locus projection ? in the n-

plane (see Fig. 3.9) is readily determined for a given grain distribution (i.e. a

given value of W) by the inner envelope of the hyperplanes

Si€1 +S9€2 = W= 51-531 +S_2é2 (3.20)
when varying just the ratio £2/¢,. The yield stress 011(6) is then deduced from
the locus obtained in this way and the strain rate ratio R(8) from the tangent to
the surface at the loading point Py(see Fig. 3.9).
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fangent T,

S|

Fig.3.9 Determination of the yield strength as well as the plastic strain rate—
ratio from the (n1, S19) section of the yield surface. P is the projection on the n-
plane of this three-dimensional yield surface and Py is the projection of the
loading point. The yield strength is determined from the distance OP( and the
strain rate ratio from the tangent to the projection P at the point Pg.
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Figure 3.10a shows the dependence on scatter width of the 011(6)/G11(0)
curves obtained with the yield surface projections (€12=0). Note that 011(8) is
constant for the random distribution, which is a requirement for isotropy, but a
property-that is not evident from the n-plane yield locus for this material. The
fairly smooth dependence of the single crystal flow stress is also of interest.
This contains two cusps, which do not, however, violate the normality rule
regarding the yield surface itself. The cusps disappear when the scatter width is
increased. For the range wo=10 to 20°, which is of interest from a practical
point of view, it can be seen that the 011(8)/011(0) plot has a generally
undulatingshape.

The dependence on orientation 6 of the strain rate ratio
-

R(6) = €22(8)/€33(0) = (V3 €1(6)/€9(8) —1)12 (3.21)

was calculated for the same type of tensile test as employed for the yield stress
ratio dependencies presented above. Here the ratio —€1/€3 is the slope of the
tangent at the loading point Py which is part of the projéction ® described
above. The R(6) curves are illustrated as a function of increasing scatter width {
in Fig. 3.10b.

It should be noted that, whereas the yield stress ratio was determined with
reasonable accuracy using only 400 orientations, calculation of the strain rate
ratio requires a larger number of grains (600), particularly when the n-plane
cross-section exhibits fairly sharp curvature near the S;; axis. The latter
description applies to small scatter widths (wg<7.5°), and to 6 values close to
the symmetry axes of the material. Under these conditions, as well as for a
random distribution, the R(8) values obtained in this study involve errors of up
to £10%. '

It is evident from Fig. 3.10 that, whereas the single crystal yield stress ratio
exhibits two cusps, which are linked to changes of vertex, the strain rate ratio
varies smoothly at the same values of 6. It displays instead an approximately
parabolic shape in the central region, with singular points in the rolling and
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Fig.3.10 (a) Yield stress ratho 6(8)/0(0) and (b) strain rate ratio R(8) vs. loading
direction 6 in the plane of the sheet for the present grain distributions.
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transverse directions. On increasing the scatter width, the discontinuities
disappear and the shape of the central part of the curve is essentially
unchanged, even for a scatter width of 45°. This is essentially due to the strong
anisotropy displayed (over the whole range of scatter levels) by the shear plane
sections (see Fig. 3.8a-f). By contrast, when the orientations are fully
randomized, the ratio changes dramatically and adopts a constant value of 1, as
required. The large difference between the flow behaviours of random and

o

wo=45° samples is of particular interest.

The large variations in R value with 8 associated-with scatter widths in the
‘realistic’ range 10 to 20° display the qualitative features expected from the
literature [38]. By contrast, R(8) curves for low scatter widths (see Fig. 3.10b)
are in apparent contradiction with experimental investigations carried out on
single crystals. The cups drawn from crystals of {100} <001 > orientation have
four ears (35], whereas eight ears of unequal size are predicted for the single
(00=0°) and near single (wg=2.5°) crystals of Fig. #10b. At this point it must
be recalled that the texture itself changes during deep drawing [114],
modifying the anisotropy of the testpiece. Hence a drawn single crystal will no

. longer retain its unique and precise starting orientation, but will instead

increase its ‘'spread’ and perhaps contain some secondary texture components as
well. For this reason, the crystallographic predictions based on higher
misorientations (e.g. wg>10°) are probably more suitable for comparison with
experimental single crystal observations, as in this case four ears are predicted.

-

I1.6. ANALYTICAL REPRESENTATION OF THE YIELD SURFACES
PERTAINING TO PERFECT’ AND ‘DISORIENTED’ SINGLE CRYSTALS

-

I11.6.1. Single crystal case

It is now of interest to quantify the evolution of the single crystal locus with
increasing misorientation. For this purpose, a five dimensional representation
of the classical Bishop and Hill polyhedron will first be given, and then
extended to the case of disoriented crystals.
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As described above, the yield surface of a cubic single crystal displaying
{111}<110> or {110}< 111> slip is a polyhedron in stress space, with 24 faces
and 56 vertices. These faces are characterized by Eq. 3.1. When these equations
are expressed in terms of the components S, (referred to the crystal <100>
axes, Eq. 3.9), it is readily shown that

[2S1] + [S3/ + [S4f = V2 '
[S1—=V3Saf +[Sqf + S5/ = V2 (3 22)
/St +V3Sof + [S3/ + [Ss/ = V2

The single crystal locus is defined as the inner envelope of these planes. This is
of particular interest when a section of the polyhedron referred to particular
axes (say the specimen axes) is desired. In this case, the stress deviator
cor;ponents Sic) have to be expressed in terms of the S,(s) values in this new
reference frame

Sic) = Qy Sy(s) (3.23)

The matrix Q employed for this purpose characterizes the position of the crystal
axes with respect to the specimen axes. For a grain having its <hkl> and
<uvw> directions parallel to the normal and rolling directions of a sheet,
respectively, Q is given by

((r2-re? +ug?-ui?)2V3(uf-ri)i2 uguz-rory  ujuz-rir3 ujug-rire |
V3(ni-n;?)2 (3ng?-1)/2 V3nan3 V3n;n3 V3ning

Q@ = | ugng-ujng V3uzng uong +u3zng upng+ugn; upng +uanjg
rong-ring V3r3n.3 rong+rang ring+ran; ryng+rong
ugra-ujry , \/§u3r3 ugry+ugre uirg3tuzry uprgtugrg |

(3.24)

wheren;=h VR ++E, ng=k/V R+ +Z ng=IV R+ +1]
r1=u/Vu§+?+|?,r2=v/Vu3+?+P,r3=wNu!+?+P

u=nxr



Eqgs. 3.22 can thus be expressed in terms of macroscopic stress components,
from which any section in stress space is easily derived. An example of such a
calculation is shown in Fig: 3.11 for the cube {100} <001 > component.

I11.6.2. Case of a disoriented crystal

As the misorientation around an ideal orientation is increased, it has been
shown (Figs. 3.6 and 3.8) that the shape as well as'the size of the corresponding
yield surface both vary. An attempt to quantify these variations has been made,
which consists of calculating the evolution of specific points on the locus with
increasing scatter width wg. These points were chosen to be half the vertices
(28) and half the mid-points of the faces (12) of the polyhedron (because of the

symmetry).

In order to carry out this calculation in a simple way, a Taylor approach was
used in which some strain rate directions are prescribed to the disoriented ideal
orientation. Ferty (28 + 12) such vectors were selected as follows:

(i) 12 correspond to the normals to the faces of the single crystal
polyhedron; ‘

(ii) the 28 others are the central ‘normals’ to the yield surface at the
vertices. Given that a vertex is defined as the intersection of 6 or 8 planes, each
such normal can be taken as the average over the 6 or 8 corresponding vectors.
When these 40 strain rate directions are applied, the corresponding stress
vectors can be péiculated using the normality rule and then averaged over the
crystalldistribut.ion. The angles @y between the stress vectors calculated in this
way and the ones associated with the single crystal were also determined : this
gives an estimate of the progressive distortion of the locus as the rm'soréntation
is increased.

The positions of the vertices and mid-points of the faces, as well as of the
‘quasi’ vertices and of the mid-points of the ‘quasi’ faces, are given in Tables
II1.2. and IT1.3 for the wp = Q° (single crystal) and wo=15° grain distributions,

-




Fig.3.11 n-plane cross-sections
of the yield surface corresponding
to a cube textured sheet. The
perfect hexagon pertaining‘ to a
single crystal (wg=0°) is derived
from Eqgs. 3.22 or from Egs. 3.25
with n =« The rounded hexagon
corresponds to a cube texture
with a spread wg=7.5° and has
been calculated from Egs. 3.25
with n =8.75. ’
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Fig. 3.12 Dependence of the coefficients A, B, C (normalized by V6 Tc)andnon
the gaussian spread wg.
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Table III.2. Positions of the vertices (types A, B, C, D and E) and of the mid-
points of the faces in the 5-dimensional stress space of Eq. (3.9). Case of the

Bishop and Hill polyhedron (wg = 0°). Stress units = V6 t.

Type [Vertex S1 S2 S3 S4 S5 IS
: 1 “onE| o 0 0
A] 2 1/\?_ 1/\/\fq_?6 0 0 0 V23
3 |-1V2 Ve 0 0 0
4 0 0 V2 0 0
cC| 5 0 0 0 V2 0 V2
6 0 0 0 0 V2
7 -1/2://2 _3/2{5_ 0 1/@ 0
8 |-1/2V2|-3/2 0 —1/V2 0
E 9 -1/2\/2 3/2\/§‘ 1/\\//2_— 0 0 1\
10 [~1/2 22 3/2V6 | -1/V2 0 o\/_
11 | v 0 0 0 1/V2
12 | 11V2 0 0 0 -1V2
13 | 1/2VZ] -1/2ﬁ 1//\67: 0 1/%
14 | 12V2]|-1/2 -1 ) 1/
HE e AR AR S
- - 0 -1/ V2
17 _1/2://% -1/2V6 0 1//% Y
D %g -1/3 \/z_ -%g\/‘ 0 -1 ‘/z 1/ V6
Y, - 0 1V2 | -1/V2
gtl) -1/2V?2 -1/12/‘\/‘/66; o\/_ _1/\/\_/'2' -1/V?
0 1/ 1/ 0
22 0 1/ﬁ -1 \/_z 1/\/z 0
23 0 1/ vg 0 -1/V?2 0
24 0 Ve | =1/V2 |-1/V2 0
| 25 0 0 1/://"2_ 1/\\//2_‘ -1VZ
26 0 0 1 \/g_ -1/ \/‘2' 1/ \/2'
B 27 0 0 -1/ ‘/z_ 1/ 1/ V372
28 0 0 W2 | e | uwve |.
29 0 0 0 -1V2Z | 1V2Z
30 0 0 W2 1] ' -1/V?2
31 0 0 -1VvVe | 11 V2 0 __
32 0 0 0 e | 11Vv2
33 0 0 -1VZ] o -1/V2
Faces gg g 8 uve -1/\/; 0\/_ 1
0 1/ -1VZ
36 0 ) 0 wz | o V2
37 0 0 ~1/ V2 —1/ﬁ 0
38 0 0 0 -wUV2 |1 V2
39 0 0 _1/‘\%'2_ 0 1/V2
40 0 0 W2 | V2 0




Tabie II1.3. Positions of the vertices and the mid-points of the f;xces in the 5-
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dimensional stress space of Eq. 3.9. W is the angle between the stress vector .
of interest and the corresponding one associated with the Bishop and Hill
polyhedron. Disoriented yield surface corresponding to wg = 15°.

Type [Vertex| S1 S2 S3 S4 S5 [|IS) |¥(deg)
1 0.005 | -0.823 | 0.015| 0.008 | 0.005{0.824| 1.28

A 2 0.706 | 0.423 | -0.006 | 0.001 | 0.003 |0.823| 1.04
3 [-0.703 | 0426 0.000| —0.002 {-0.003 |0.822 | 1.24

’ 4 0.012 [ -0.023 1.322 0.018 | 0.013[1.322] 1.48
C 5 |-0.015 |—-0.023 | —0.013| 1.322 | 0.013|1,322| 1.43
6 |[-0.021 |-0.003 | -0.010 | —0.009 | 1.324 (1.326| 1.09

7 |~-0.322 |-0.548 | —0.015| 0.806 | 0.001{1.026| 6.80
8 |-0314 |-0.542 | 0.002| —-0.796 |-0.014 |1.013| 6:85 .

9 |-0312| 0535 0.805] 0.015| 0.006|1.016| 7.48

E 10 {-0.321 | 0.542 | -0.813 | -0.007 |-0.012 |1.029| 7.28
11| 0628 | 0.010|-0.016 | —0.005{ 0790 1.009| 6.61

12 | 0.628 {-0.002| 0.008| 0.013 |-0.811]1.026| 7.30

13| 0310 |-0.202| 0.713| 0.086 | 0.699|1.068| 5.13

14 | 0.315 {-0.177 | —0.683 | —0.075 | 0.726 |1.063| 4.93 .

15| 0.346 |-0.191 | 0.699 | —0.059 |-0.697 |1.0656| 3.23

16 | 0.325 {-0.175 | -0.710 [ 0.078 |-0.705 [1.070 | 4.66

17 |-0.328 |-0.196 | 0.063| 0.712 | 0.694|1.067| 3.66

D 18 {~0.337 | -0.171 | —0.075 | —0.683 | 0.723 [1.067| 4.67
19 |-0.307 |-0.191 | —0.085| 0.701 [—-0.716 [1.068 | 5.21

20 {-0.300 {-0.185| 0.082| —-0.704 |-0.714 | 1.067| 5.29

21 |-0.002 | 0370 0.699| 0.703 | 0.0841.062| 4.86

] 22 |-0.014 | 0.370| -0.7{1| 0.696 |-0.076 | 1.064 | 4.57
23 | 0010 | 0.380| 0.701| —0.699 | -0.078 | 1.064 | 4.41

24 | 0.001 | 0.400|—0.693 | -0.703 | 0.071/1.068| 3.84

25 | 0.016 |-0.022 | 0.667| 0.676 (—0.667 {1.161| 1.39

26 |-0.003 | 0.005] 0.678| -0.661 | 0.681(1.166| 0.80

B 27 |-0.020 |{-0.003 | -0.685| 0664 | 0.668|1.165| 1.26
28 |-0.014 |[~-0.018! 0.656| 0.677| 0.686|1.166| 1.55

29 | 0.068 |-0.089| 0.018] -0.686 | 0.736|1.012| 6.74

30| 0070 | 0.099| 0.681 | -0.025 [-0.736(1.010 7.38

31 {-0.116 {-0.009 | —0.690 | 0.743 | 0.005[1.021}| 6.88

32 | 0.051 |-0117| 0.008| 0.718| 0.6991.010| 7.31

33| 0055 | 0.114| —0.690 | —0.043 [ ~0.740 | 1.020 | 7.79
Faces| 34 [-0.121 | 0.009| 0.695{ -0.713 | 0.026[1.004| 7.14
35| 0.069 |-0.116| 0.019| 0.675 (-0.749{1.018| 8.25

36 | 0041 | 0.109! 0.749| 0.020| 0.671{1.012| 7.40

37 |-0.125 | 0.014| —0.699 { -0.713 | 0.021}1.006| 7.30

38 | 0.066 |~-0.107 | —0.007 | —0.743 |-0.677 | 1.013} 7.62

39 | 0062 | 0.087| -0.718 | -0.011 | 0.715]1.019} 6.05

40 |-0.121 [-0.012| 0.696 | 0.722 | 0.024]1.011} 7.12
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!
respectively. It can be seen that the A, B and C vertices evolve isotropically

when the scatter width is increased, as expressed by low values of the angle y.
This is not surprising since these corners belong to "closed” subspaces, as

defined by Canova et al. [11]. -

In a manner analogous to the one employed for the case of the perfect single
crystal, the equation of the yield surface pertaining to the disoriented grain can
be expressed as the inner envelope of the four loci

[ /2S11C/ +[S3/B| + [S4 /B[ = 1
fS;1-V3S2)/C| +[Sq/B| + [S5/B[ = 1
1/S;+V3S2)/C| +/S3/B| + Ss/Bf =1 (3.25)
L/251/" + /Sy =V3Sy/" + [S; +V3Sg/" = A"

Here A, B, C and n depend on the misorientation wg and A=4 (2 +2"!'"C. For
the perfect crystal (wg=0°), A=B=C=V?2 and n =, The fourth expression 1n
Eq. 3.25 has been added to take into account the evolutio“n of the shape of the
locus in the n-plane (Sy, Sg) : the exponent n equals 2 for wg=15°, since the n-
plane section is almost circular (Fig. 3.6). It is to be noted that the slightly
rounded faces and vertices observed in the shear stress plane (Fig. 3.8) for
typical scatter widths wg<20° has not been considered here The evolution of
the A, B, €C and n parameters is shown in Fig. 3.12 as a function of wg. The yield
locus of a polycrystal displaying a strong cube component (wg=7.5°) calculated
using Eq. 3.25 is also illustrated in Fig. 3.11. It should be noted that this
method permits an estimate to be made of the yielding behaviour of highly
textured aggregates, by the use of only one ideal orientation (together with the
components required by the symmetry). When many texture components are
present in a given material, the corresponding loci can be readily combined, as

shown in more detail in chapter V.

1.7. SUMMARY

Idealized cube textures were set up which (i) are rotationally symmetric,
and in which (ii) the misorientation angle obeys a gaussian distribution of

©
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scatter width increasing from 0° (single crystal) to 45°. Crystallographic yield
surfaces were calculated for these textures, leading to the following
conclusions:

(1) The five dimensional form of the yield surface can be given an
improved representation by employing the following ‘equilibrated’ deviator
stress and strain rate ‘vectors’:

S= (S) = ((Sg2—S811)/V2, V312833, V2 S23,V2S3,,V28S;2)
g (¢) = ((égg—é”)/\/é—, VvV 3/2 é33,\/§é23,\/2_631,\/2_é12)

This representation has the advantage over earlier notations that it leads

directly to the two dimensional cross sections\of\the yield surface.

(2) As the scatter width of the idealized cube texture is increased, the
yield surface cross-sections 1n shear stress space gradually evolve from a square
form (single crystal) to a circular one (when the orientations are fully random)
For the scatter widths of 5 to 20° commonly found experimentally, the three-
dimensional yield locus remains distinctly angular Thus materials of cubic
symmetry can be readily distinguished from isotropic materials (with spherical
yield loci) in this subspace

(3) As the scatter width of the i1dealized cube texture is increased, the
yield surface cross sections in the n-plane gradually evolve from a hexagonal
form (single crystal) to a néarly circular one (when the scatter widths are in the
range 12.5 to 1%%°), to a rounded hexagonal form once again (when the
orientations are fully random). Thus analytical descriptions such as the
quadratic yield criterion of Hill can give a good approximation of the yielding
behaviour i this subspace for scatter widths of 15°12.5°.'Because the same
rounded hexagonal form is observed at 6° (for the idealized cubic materials), as
well as for the fully randomized samples, materials of cubic symmetry cannot
be distinguished from fully isotropic ones in this subspace.

(4) Because the degree of planar anisptropy cannot be readily evaluated
from the shape of the n-plane yield locus alone, it is more useful to represent the
directionality in stress properties in terms of the yield stress and strain rate
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ratios. These are highly anisotropic for the single crystal, become slightly less
‘lobed’ as the scatter width is increased, but only adopt constant values when
the orientations are fully random. By these measures, samples with a scatter
width of 6°, as well as random materials (both of which have n-plane cross-
sections of identical shape) display distinctly different degrees of plastic
anisotropy, essentially because of the changing contributions made by their
shear properties as the scatter width is iricreased.

(5) Analytical representations of the yield surfaces pertaining to ‘perfect’
and ‘disoriented’ single crystals have been proposed. Sections of the loci
corresponding to highly textured polycrystals can be readily assessed using
these functions. As the texture of an aggregate can be decomposed into a finite
number of disoriented ideal orientations (each with a specific volume fraction
and scatter width), the overall yielding behaviour can be derived in a semi-
analytic manner from suitable combinations of the individual yield surfaces.
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« CHAPTERIV

THE CONTINUUM MECHANICS OF TEXTURED
POLYCRYSTALS : BASIC METHOD

The CMTP (continuum mechanics of textured polycrystals) method was
developed so as to permit the anisotropy of textured polycrystals to be described
in a simple way. It has the advantage that it involves a straightforward
analytical representation of the yield surface, and that the yield locus 1s
spatially oriented with respect to the ideal orientation of interest rather than
with respect to the symmetry axes of the workpiece. In this way, the direct link
between texture and anisotropy is made explicit rather than implicit. .

In the original work of Montheillet et al. (5], the quadratic yield criterion
proposed by Hill (4]:

F(S)=f1Syy-Sz2)? +8(Sz2-Sxxf + h(Sxi-Syy)* +21Sy,2 +2m S, 2h 2n S, ) F = 1

(4.1)
was assumed to give a good approximation of the Bishop and Hill single crystal
yield surface. As explained in more detail below, the six parametersf, g, h, |, m
and n (which reduce to two for cubic symmetry) are adjusted so that they give a
best fit to the Bishop and Hill polyhedron. A question regarding the fitting
process can be asked by the reader at this point : what kind of information is
lost when the single crystal polyhedron is approximated by a smooth yield
locus of the present type? In terms of the yield stresses, the loss is probably not
too important as long as the assumed function does not significantly over- or
underestimate the distance from the origin of the various vertices of the
polyhedron. In terms of the strain rate characteristics, however, (which are
gwen by the normals to the yield surface) the assumption is more questlonable
and can be thought to give rise to possibly undesirable errors in plastic
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properties such as the strain rate ratios. Fortunately, the crystallographic
calculations of the yield surface for a disoriented single crystal presented in
Chapter III give a partial justification of the CMTP assumption : i.e. a crystal
with a spread of around 15° has'a circular yield locus in the normal stress plane.
Nevertheless, the extent to which the shape of the yield surface is faithfully
reproduced in other types of stress space remains to be assessed critically.

IV.1. PRINCIPLES OF THE CMTP METHOD

The calculations carried out on the disoriented single crystals clearly lead to
the following comments. For typical experimental scatter widths (5 to 15°), the
yield surface does not exhibit any vertices in the n-plane (Fig. 3.6) : it has a
smooth rounded shape. In consequence, it could be well approximated by a near
quadratic continuum yield function. A Hill type locus, as will be seen below,
gives a quasi-perfect fit in this particular subspace. However, one has to keep in
mind that the shear stress cross section shown in Fig. 3.7 does exhibit some
rather sharp vertices. Thus it can be expected that a good representation could
only be obtained by means of an analytical function with an exponent of low

value, that isnear 1.4.

The above remarks indicate that the crystallographic locus of a disoriented
single crystal can at least be approximated by a continuum yield function
without the loss of an unacceptable amount of information regarding the size
and shape (stress and strain rate characteristics, respectively) of the yield
surface.

In the CMTP method (originally proposed by Montheillet et al. [5] for the
quadratic case) a yield function of the Hill type:

F(S)=a([S11-Szz/" + [S22-S33/"+ [S33-S11/™) 1 (VET ) "
+2B([S19/™+ [Sa3f™ + [S31]/™) I ( VETe)™ =1 (4.2)

is assumed to represent the yielding behaviour of a highly textured fce or bec
polycrystal containing a dispersion of orientations about a single ideal
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orientation. In this expression, the Sj; are the components of the deviator stress
tensor § referred to the <100> axes of the ideal orientation; a and f are two
coefficients to be determined (see section IV.1.1); 1. is the critical resolved shear
stress; and n and m are two exponents equal to or greater than 1. This condition
arises from convexity requirements, asshown in Appendix [V.1.

At this point it is important to underline the two main features of the CMTP
method , as opposed to the traditional continuum methods :

(i) The principal axes of anisotropy are chosen to coincide with the
< 100> axes of the texture domponent of interest (rather than with
those of the specimen);

(ii) The values of the yield function coefficients a and P are determined
from crystallographic (as opposed to mechanical) considerations.

IV.1.1. Evaluation of the coefficients a and f of the yield function

In the CMTP method, a and  are adjusted so that a ‘best’ fit is obtained
between the yield function of Eq. 4.2 and the crystallographic yield surface for
fee or bee disoriented single crystals displaying {111} <110> or {110} <1I1>
slip, respectively. The fitting process is carried out by minimizing the root
mean square distance I between some specific points of the
crystallographically calculated locus and the continuum yield surface taken
along the radii leading to the points considered (see Fig.4.1).

Some freedom regarding the choice of the crystallographic yield locus as
well as the points to be considered is available. One possibility consists of
minimizing the I associated with the vertices of the Bishop and Hill
polyhedron. An alternative, more complicated method is to carry out the fitting
process by considering both the ‘rounded’ vertices as well as the faces of the loci
calculated above for the different scatter widths. v
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ellipsoidal’
yleld surface

critical
polyhedron

Fig.4.1 Two-dimensional section of the five dimensional crystallographic
yield surface (schematic). The three vertices S;, S; and Sy of the critical
polyhedron should be compared with the points S/, ;" and Sy’ of the ellipsoidal
yield surface to which they correspond. In the fitting procedure for the
determination of a and B, the sum of the squares |S, S;’| ?i$ minimized.

¢




90.

Once different sets of N vectors 6§i in the five dimensional stress space have
been selected, the root mean square distance I can be calculated in the
following way. If ', is defined as the intersection of OS; with the yield function
F(S, qa, B)=1given by Eq. 4.2 (see Fig.4.1), then

-
L= Z (S‘Sl)z (4.3)
1=l
k\\
. N —
i.e. 5= z (A‘—I)OS? (4.4)
=1
where }; is defined by
()—S-.’[-: A‘ O_.S": ( AlSI‘, , A( S5() (45)

Since (S’,) belongs to the yield function F(S, a, B)=1, A, can be calcilated by
solving the equation :

F( Alsllv . A‘S5¢, a, p) = 1 (4.6)
Using Egs. 4.2 in conjunction with the 5-dimensional notation of Eq. 3.9:

MNJra2-"2[[2S1 /" +/S1,—V3Sa /" +[S;, +V3Sa "]
+/Al/”‘521‘"‘/2[/53,/’"4-/54,,/"'4-/55,/’"/ -1 =0 ‘ (4.7)

—

For a given set of vectors OS; and for given exponents n and m, a and § are

calculated so as to minimize the distance Z. Tables IV.1 to IV.3 show the results
obtained with different sets of vectors (-)_S*.

In Table IV.1, the two exponents n and m of the yield function were assumed
to be equal and the fitting process was carried out using the vertices of the
Bishop and Hill polyhedron. The minimum of the L values is obtained with an
exponent n=m=1.6. This indicates that the ‘best’ fit between the single crystal
polyhedron and the Hill type yield function with one exponent is obtained for
n=1.6,a=0.46 and $=0.51. It is to be noted that the quadratic criterion used
primarily by Montheillet et al. (5], also leads to a good approximation of the

—

Cwn
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yield surface. It is also of interest that a perfect fit (£=0) with respect.to.the

(E vertices is obtained in normal stress space with a=1/2, whatever the exponent
n; by contrast, when solely the shear stresses are taken into consideration, a
perfect fit corresponds to the values f=1/2 and an exponentn=1.6.

n a B z
1.0 0.37 0.39 1.168
1.4 0.42 0.46 0.085
1.6 0.46 0.51 - 0.030
1.7 0.47 0.54 0.041
1.8 0.49 0.57 0.065 ‘
2.0 0.52 0.64 0.138
g 2.2 0.55 0.72 0.223
N 2.5 0.59 0.88 0.352
3.0 0.63 1.24 0.537
4.0 0.64 2.49 0.784
6.0 0.65 9.38 1.009
12.0 0.68 416. 1.202

Table IV.1. Dependence on ex%%:lent n of the coefficients a and §§ in
the CMTP yield criterion. The root mean square distance Z
indicates the quality of the overall fit, which is best forn=1.6

[r—— —
w0 n a g __ z
I 0° 1.6 0.46 0.51 0.030
10° 1.6 0.47 0.53 0.024
15° 1.7 0.46 0.56 0.015
20° 1.7 0.45 0.60 0.009

Table IV.2. Dependence on scatter width wq of the coefficients a and P and the
exponent n when the CMTP method is based on the ‘disoriented’ single
crystal. For each value of wo, a,  and n were optimized so as to minimize the
0 root mean square distance L.
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wQ n m a B z

0° 3.0 1.4 0.47 0.58 0.366
15° 2.6 1.5 0.49 0.62 0.213
15° 1.7 1.7, 0.43 0.68 0.280

~ \
Table I'V.3. Dependence on scatter width wg of the coefficients a and f§ and the
exponents n and m when the CMTP method is based on the ‘disoriented’ single
- crystal. For each value of wg, q, B, n and m were optimized so as to minimize
the root mean square distance .

In Table IV.2, the minimization of £ was carried out using the ‘vertices’
calculated for various grain distributions (Table II1.3) and the one exponent
(n=m) yield function of Eq. 4.2. The minimum Z-value was obtained with the
exponent n=1.6 for the cases wg=0° (single crystal) and wg=10° and with

n=1.7 for higher spreads, i.e. wg=15 and 20°.

In Table IV .3, the same type of fitting process was carried out using both the
‘vertices’ as well as the mid-points of the faces of the disoriented yield surface
(Tables 1.2 and 3). Two different exponents n and m were considered in Eq.
4.7. The introduction of these extra points (mid-points of the faces) led to an
improvement in the fit of the locus. Only the two grain distributions
corresponding to wg=0° and wg=15° were treated. The difference in the two
parameters n and m (n =2.6 and m=1.5 for wg=15°) finds a ready explanation
in the discrepancy observed ir the normal and shear stress behaviours of Figs.
3.6 and 3.7. The higher values of T reported in Table I'V.3 compared to the ones
shown in Tables IV.1 and IV.2 are readily explained by the introduction of the
mid-points of the faces. If the two exponents are equated to give n=m=1.7, for
example, it is found that a=0.43, $=0.68 and £=0.280, so that the condition
n=m, for which £=0.213, provides an improvement in the fit (see Table [V.3).

IV.1.2. Yield surface cross-sections

The yield loci established by the first method (Table IV.1) are illustrated in
Figs. 4.2 and 4.3 in terms of their n-plane and shear plane intersections,
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Bishop & Hill

Fig.4.2 n-plane sections of the Bishop and Hill polyhedron (broken line) and
the generalized CMTP yield surfaces for five values of the exponent n.
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Fig. 4.3 Shear plane sections of the Bishop and Hill polyhedron (broken line)
and the generalized CMTP yield surfaces for six values of the exponent n.
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respectively. It can be seen from Fig. 4.2 (which corresponds to the fit to the
Bishop and Hill polyhedron) that the n-plane section of the CMTP yield surface
evolves from a hexagonal shape to a circular one as the exponent n is increased
from 1 to 2. As n is further increased in the range 2-to 12, flat edges and
rounded vertices begin to appear, until finally a rounded hexagon is seen at
n=12. In the shear planes (Sjj, Sik) (Fig. 4.3), a somewhat similar behaviour is
observed. In this case, the yield surface cross-section is a square when n=1,
becomes circular for the quadratic case (n=2), and evolves towards a square
again as n approaches 12, but inclined at 45° to the original one. It should be
noted that the effect of increasing n in the n-plane cross-section of Fig. 4.2
(hexagon —» circle—» hexagon) is qualitatively similar to that of increasing the
scatter width shown in Fig. 3.6. Similar remarks apply to the shear plane cross-
sections (Fig. 3.7), except that the effect of increasing the scatter width is fully
represented by n-valuesin therange1 < n <2

Some further information regarding the extent of convergence and
divergence displayed by the CMTP and crystallographic yield surfaces may be
gained from the shear cross-sections taken at some distance from the origin.
This can be done by setting S;2 +S13+S23 =K, and then representing the cross-
sections in a manner analogous to that employed for the deviator stresses in the
n-plane. We refer to this cross-section here as the n’-plane (which ig not a closed
subspace, although the three-dimensional subspace (S12, S13, S23) is closed), in
which the coordinates are (S{—K/3, S13—-K/3, S23~K/3). For purposes of
illustration, cross-sections corresponding to n=2 and n=1.7 have been
prepared and are presented in Figs. 4.4a and 4.4b, respectively, for three values
of K (K=0, 0.5 and 1.0). It should be noted that the Bishop and Hill vertices of
the B type [99] (<111> tension or compression) are located on the K=0.5
section and that these are reasonably well simulated by both continuum yfeld
surfaces (n=1.7 and n=2.0). By contrast, the yield corners of the C-type
({100} <010> shear), which are on the K =1.0 section, are better circumscribed
by the n=1.7 than the n =2.0 representation. It thus appears that, whereas the
quadratic yield surface is easier to use (e.g. the normality rule can be readily
applied analytically), a non-quadratic yield function with an exponent of 1.7
provides a closer approximation in this particular subspace'to the ones
calculated from crystallographic considerations.




Fig.4.4 Intersections of the Bishop and Hill polyhedron (broken line) and the

CMTP locus with the planes S12+S23+S3;=K for K=0,0.5and 1. (a) n=2 (b)
n=1.17.

‘96
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We now examine the differences in the extent to which the five classes of
single crystal vertices [99] are suitably fitted by the various sets of coefficients
n, a and p listed in Table IV.1 (and interpolated values when necessary). For
example, the six A type vertices corresponding to <100> tension or
compression are best fitted by the yield locus with the exponent n=2.1; bty
contrast, the eight B type corners (<111> tension or compressiofi) are better
circumscribed when n = 1.8. The six C type vertices in turn, which correspond to
{100} < 001> shear, lie close to the yield surface with an exponent n=1.6.
Finally, n values of 1.5 and 3.5, respectively, are in the best agreement with the
24 D (<100> tension or compression + {100}<011> shear) and 12 E
({100} <010> shear + {110} < 110> shear) type vertices.

Thus, depending on the sharpness of the texture present and on the type of
loading encountered (which determines the class of vertex that is the most
frequently activated), different values of the yield locus exponent are likely to

lead to the most precise results.

When ‘inhomogeneous’ functions are considered (n # m), such as those
referred to in Table I'V.3, similar shapes of the loci are obtained, but with a
somewhat different size, in the two subspaces investigated (n-plane and shear

stress plane). , \\

As a result of these computations, the following conclusions pertaining to
the choice of the exponents n and m as well as the parameters a and f§ can be

drawn :

. The ‘best’ fit between the Bishop and Hill polyhedron and a one
exponent yield surface of the Hill type is obtained with n=1.6, a=0.46 and
B=0.51.

. A good estimate is also given by a quadratic criterion with n=2,
a=0.52 and p=0.64; the latter is easier to manipulate for analytical

calculations. &

. A further significant improvement is obtained when two different
exponents are considered and when both the ‘rounded’ vertices and mid-points
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of the faces corresponding to the disoriented single crystal are taken into
account. In this case, the best fit corresponds to n=2.6, m=1.5, a=0.49 and
p=0.62.

IV.1.3. Different typesof continuum yield surfaces

In this study, different types of continuum or semi-continuum yield
functions were used, which were assumed to give a good representation of the
locus of a single or disoriented single crystal. The simplest of these 1s the Hill

quadratic yield function [4], which can be written :
-

al(Si1-S22)2+(S11-S33)2+(S22—-S33)%] +2B[S122+8132+S23%] =1
(4.8)

or

w2 /[(281)2+(S;=V3S2)2+(S;+V3S9)2] +p[S32+S42+S52] =1 (4.9
when using Eq.3.9.

This expression, when developed, reducestoa very simple one:

3a(S;2+8S92) + B(S3?+8S42+8S5%) =1 (4.10)

«

As shown above,a =0.52 and p=0.64.
\

\

As will be demonstrated in paragraph IV 2, this simple function permits the
plastic properties of samples containing several different texture components to
be derived in a straightforward manner.

The second type of locus used is the Hill non-quadratic function [71] with a
single exponent :

al[S11=S22/"+[S11—S33/"+[Se2 —S33/™ ] +2B( [S12/"+[S13/"+[S23/" ] =1
or a2-"2[ 28,/ +/S; -V'3So/"+[S;+V3Sy"] (4.11)
+B21-v2[[Ss/"+[S4/"+/S5["] = 1
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The coefficients a and § pertaining to the above two criteria are given in
Table IV.1 as a function of the exponent n. Although more accurate, the
generalization of the quadratic case involves longer and more complicéted
calculations, especially when the normality principle has to be-inverted, i.e.
when stress components have to be derived from knowledge of the strain rate
components. This criterion will be referred to as the “new” Hill criterion.

The yet more complex (in terms of computations) Hill yield function with
two different exponents (Eq. 4.2) was also investigated. It will be referred to as

the Hill "two-exponent” criterion.

Other yield functions based on the Bishop and Hill locus were also used in
this work, Recalling that slip occurs on the {111} <110> or {110} <111>
systems in the fcc and bec metals, respectively, it was shown by Bishop and Hill
(28] that the condition for slip can be written :

A+G+H=1+V6r1,
B+F+H =+V6rt, (4.12)
C+F+G =1V6rt,

where A=022—-033, B=033-011, C=011-022, F=023, G=031, H=012 and
Tcis the critical resolved shear stress.

When written in the five dimensional notation of Eci.3.9, this leadsto :

[2S1/+/S3/+/Sq] = V2 -
[S1 —V3Saf+/S4/+[S5] = V2. (4.13)
/S1 +\/§SQ/+/S3/+/S5/ =V2

where the stress deviator components are normalized by V6 T .

The single crystal yield surface is then given by the inner envelope of these
three polyhedra and can thus be expressed by means of the two relations:
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F(S) = [ 2S1]+[S3/+/S4/- V2] [|S;1—V3Sg]+[S4+[S5/-V2]
[ /S +V3Sas/+[S3/+[Se/-V2] =0 (4.14)

J

and S;2+ S22+ S32+ S42 + S52 minimum
for a given stress direction.

It is interesting to note that development of Eq.4.14 produces.

(1V2)[[2S1]+[S1+V3Sof+|S1 ~V3Saf ] +(21N2) [ [S3] +[S4/+/Ss] ] -1
+ terms (S, 82S,,8,:5,Sk. S2. S.S,) =0 (4.15)

The first two terms look familiar : they have exactly the same form as the Hill
criterion (Eq.4.2), with an exponent n=1, however, and a =p=1/V2. They thus
represent a kind of ‘partial’ development of the Bishop and Hill criterion
involving only the linear terms.

One could also take into consideration only the squared terms i1n order to
obtain anothemﬂanalytic yield function which represents another partial
development of the Bishop and Hill criterion. Finally, if the stresses are raised
to a power n, the following type of equation isobtained .

al[28;/"/S;—V3So/" +[2S1/"S1 +V3Sa/"+[S; —N3S2/"/S; + V38" ]

+BL([S3/"+[Sa/")([Sa/™+[Ss5]") + ([|S3]"+/S4f ") [S3/™ +/S5]™) (4.16)

+([Saf"+[Ss[" ) ([S3[+[Ss[) ] + y [ [2S1]" ( [S3|"+[Sa[" +2[S5[")
+/S1-V3S2["(2/S3["+|S4q/"+|Ss/™) +/S1 +V3S2/*( [S3/" +2[S4/ " +/S5/")] =1

When n=1 and a=f=y=1/2, the squared terms of Eq. 4.15 are found. When
n=2, the expression reduces to:

9a(S1%+S9%)2+P((S3%+S4%2+S52)2+83°S4%+853%S5°+84%857)
+y[S3%7S12+9822—-2V3SS2) +S4 %7512 +9S22 +2V38,S3)
+ S5%1081%+682%) ] =1 (4.17a)

which is a quartic yield function. The coefficients a, f and y were calculated
using the same method as for the Hill criteria described above and it was found
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that a=0.205 and =y =0.305. If the condition y =0 is now prescribed in order
to avoid the presence of mixed stress terms (i.e. normal x shear stresses), then
the fitting process leads to a=0.40 and f=0.48. These two new criteria (i.e.
n=2 with y#0 and n=2 with y=0) will be referred to as PL1 and PL2,

respectively.
Two other criteria were derived in a similar way :

9a(S12+822)2+P(S32+S42+S52)%2 =1 (4.17b)

and
3a(S;%2+822)+P(S32+S42+8S52%) +y([S3S4/+/S3S5/+/S4Ss)) = 1 (4.17¢)

identified here as PL3 (a =0.38 and p=0.59) and PL4 (a=0.54, $=0.60 and
y=0.20), respectively.

[V.2 THE PREDICTION OF PLASTIC PROPERTIES

In this section, the manner in which plastic properties can be predicted from
texture data is considered. Only the Hill “one-exponent” function is treated for
simplicity, whereas most of the analytical results were obtained with the

simpler "quadratic” criterion.

It is assumed that the crystallographic texture of a given material is known
in terms of sets of Miller indices {hkl}<uvw> or Euler angles (see Appendix
II.1). These data can be obtained experimentally from X-ray diffraction
measurements, which lead to pole figures and eventually to CODF (crystallite
orientation distribution function) data (16]. They can also be calculated
theoretically : the full constraint (FC) and relaxed constraint (RC) methods of
texture prediction have proved their ability to reproduce experimental pole
figures satisfactorily [98, 100-102]. However, they generally predict textures
which are too sharp when compared to experiment and do not reproduce the
differences observed between materials such as Al and Cu.
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The basic information needed for the CMTP method can be summed up as
follows :

(i) a set of ideal orientations (Miller indices or Euler angles) into which
the polycrystalline texture has been decomposed;

(ii) the volume fraction of each of these ideal orientations, as well as the
spread around them, if possible;

(iii) the volume fraction of the random component (i.e. of the
“"background” generally observed in pole figures).

Two sets of axes need to be considered :

(a) the specimen axes (S), i.e. those in which the experiment (tension, .
torsion,...) is carried out for the measurement of the plastic properties of
interest;

(b) the crystal axes (C), i.e. the <100> directions of the ideal orientation
under discussion. The CMTP function F(§) =1 (see paragrapb}.2.2) is taken to
represent the yield surface of this crystal.

The material under investigation is assumed to be submitted to arbitrary
stress and strain rate tensors, which are expressed in the axes of the specimen :

—

0(s)=(0y(s)) and g5) = (8y(s)) (4.18)

Here the prescribed 0,j components correspond to non-prescribed éu’ values and
vice versa. For example, in the case of a uniaxial tensile test, the only unknown
0jj is the tensile stress 01; (the other 0,’s are prescribed to be zero); the
corresponding strain rate component £;; is by contrast the only fixed
component of the tensor 5 (S)-
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IV.2.1. Plastic anisotropy induced by a single ideal orientation

Actual materials usually exhibit more than one ideal orientation. However,
it is of interest to see the influence eath texture component {hkl}<uvw> can
have on the plastic properties. In the section that follows, tensor analysis is
used to derive these stress and strain rate characteristics. The equivalent
vector technique will be employed in the next section, for comparison purposes.

First case - Prescribed strain rate tensor.

Here the material is considered to be submitted to the following arbitrary
strain rate tensor, which is prescribed in the axes of the specimen (S) :

é(s) = (€y(s)) (4.19)

v

Using the crystallographic {hkl} plane and <uvw> direction, the orientation of
the specimen axes (S) can be deduced with respect to that of the crystak(C) axes
through a transformation matrix P whose coefficients depend only on the Miller
indices. To derive the deviator stress tensor S in the (S) coordinate system, 8 (S)
must first be converted into the (C) representatxon

s (c) = Pg (S) P (4.20)

Here ﬁ is the transpose of P. § (C) is then obtained from the CMTP yield
criterion and the normality principle :

€ = A aF /38 (c) (4.21)

where A is a positive scalar (it should be noted that the differentiations
involving Sjjand S;i must be carried out separately). This leads to:

&
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where the éiJ and S;jj are expressed in the crystal axes. The stresses themselves
can then be derived when inverting these expressions. For a non-quadratic
function (n and m #2), this is done numerfcally, as shown in Appendix IV.2.
However, for the quadratic case, a complete analytic calculation can be carried
out. It isreadily shown that

38y 45,3 453
4812/3 4Syz/3 3822

———

and that

Exx/3  3Exy/4  3€:./4
S(c) = 1A |3Eyid  £yy/3  3€,,/4 (4.24)
3804 38,4 €,43



105.

Finally, since it can be demonstrated that X=V.V/2, where W= S.£ is the power
dissipated per unit volume, the desired stress tensor S(s) can be readily deduced
by transforming § (C) onto the (S) axes:

§(S) = 5§ «c)P (4.25)

The stresses themselves can in turn be derived from the boundary conditions
regarding the hydrostatic pressure at the surface of the workpiece.

The plastic anisotropy of strongly textured cubic polycrystals displaying a
single ideal orientation can be predicted in this way with relative ease.

The quadratic theory was applied to the case of the fixed end torsion test by
Montheillet et al. [5]. The developed axial stress G,; was of particular interest.
It was demonstrated that the latter is associated with specific texture
components, as well as with small rotations of these components about the
radius of the specimen away from the nominal ideal orientation. The predicted
axial stress vs. crystallographic texture relationships were in good agreement
with experimental observations relating to the torsion of Al, Cu and a-Fe over a
wide range of temperatures, strains and strain rates. The analysis is extended
here to the case of the free end torsion test [103].

In this case, the strain rate tensor is specified by

-2 0 0
€5 = 0 -2 ¢ (4.26)
0 £ n

where 2¢ is the applied torsional strain rate and n is the induced rate of change
of the specimen length. The specimen axes (S)= (r, 0, z) are shown in Fig. 4.5. If
{hkl} is the crystallographic plane parallel to the shear plane (r, 8) and <uvw>
is the crystallographic direction near the shear direction 6, then the
transformation matrix P from the specimen to the crystal axes is
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ry uy nj
P=1\re u2 na (4.27)
r3 uz3  n3

whereu j=u/V u3+?+53,u2 =v/V u3+?+m,u3=w/\/ WP Fur
ni=h!VRZ+EZ+Z ng =k/VR+E+E, n3 =l/VRI+EZ+12

r=uxn

Following the method described above, and employing the quadratic yield
criterion, it is readily shown that
[Srr(s) =N0/2M( =1/6a~3(1/p—=1/30)/2r%n, 2] —€/N(1Ip=1/3a)r,?nu,
Seg(s) = 0/2A [ =1/6a =3 (1/B—1/13a)/2 u,?n,? ] —¢/A(1/B~1/3a)u,’n,
Suz(s) =0/2M[ —1/6a—=3(1/p—1/3a)/2n,*] —&/X(1/B=1/3a) un®  (4.28)
1S605) = =n/2A(3(1/B=1/3a)/2 rn, 2u, ] —€/A(1/p—1/3a) rn,u,?
Srats) = —0/2X[3(1B—1/3a)/2 rn,3 ] =/ N(1/B=1/3a) ruen, ?
(S6z(5) = —10/2A[3(1/IB-1/3a)/2un,? ]
—&/M(1/p=1/3a) (un, 2 - 1I2B(1/B = 1/3a)]

withA= W/2 = {31 2/8 [ 3/2B —1/6a -3 (1/p—1/3a)/2 n,*]
+82{1/2p - (1/p—=1/3a) u,*n, 21 =-ne 3/12(1/B —1/3a) u;n,* } "2 (4.29)

Sense of
the sheaqr

-~
o

Fig. 4.5 System ofcoordinate axesin torsion testing.
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The boundary conditions imposed on the sample are concerned with the free
end (0,; =0) and free surface (0, =0), leading to S;r =S;; (deviator stresses). It

is thus readily deduced that
n/é¢ = —4/3(un,r,?—u,n,®)/(n,2r2—n, 4+ 1/p/(1/ — ¥/3a)) (4.30)

which expresses the rate of length change per unit torsional strain rate which is
induced by the presence of a given ideal orientation. For an isotropic medium,

p=3a, so that 7 =0.

The link between the fixed end and free end torsion tests can now be made
explicit. This is done by calculating the ratio of the rate of length change n
(02=0, free end) to the axial stress 0,,( n =0, fixed end). Using Eqgs. 4.28, it is
found that

2p ' p 3a v (4.31)

For all the ideal orientations investigated, the RHS term of Eq. 4.31 is
negative, leading to the following conclusions:

Fixed end torsion Free end torsion
02<0 compression lengthening
02>0 tension shortening
0z2=0 no axial effect no length change

This is in complete agreement with the intuitive comment that a compressive
force should correspond to the lengthening of the sample, and vice versa. These
predictions will be compared with experimental observations in Chapter V.

Second case - Prescribed stress tensor - Strain rate ratio R(6)

The plastic anisotropy of a sheet can be characterized in terms of the so-

" called R-value. Following Lankford et al.‘L;ZQ], we define the strain rate ratio
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R(0) pertaining to a direction inclined at an angle 8 to the rolling direction (Fig.
2.2) as

R(8) = £,,(8)/£,,(8) (4.32)

where €y, and £,; are the width and thickness strain rates experienced by a
tensile sample which was oriented and is being pulled along the 8 direction.

In the literature, different strain levels have been employed for the
measurement of R(6). For example, Semiatin et al.[104] carried out tensile tests
to elongations of 18%, Goodman and Hu [105] and Helias and coworkers [106]
adopted a strain of 15%, whereas Truszkowski and Jarominek [107) measured
R(8) at the limit of uniform elongation as well as at zero elongation (obtained by
back extrapolating the R(8) vs. €44 relation determined over a range of strains).
In a similar manner, Stickels and Mould [(108] made their measurements at
maximum load. Unfortunately, the lack of a standard procedure for
determining the Lankford coefficient leads to difficulties when the observations
of different workers are compared. As a result, when the other sources of error
are taken into consideration, there remains an uncertainty of as much as 10 to
20% in the published values of this ratio for a given stat?fofmaterial.

During the tensile test employed for the determination of R, the form of the
stress tensor is prescribed :

Oyx O 0
o (xy2) = | O 0 0 (4.33)
0 0 0

although the value of Gxx is generally not known.

\J
L4

The g (C) tensor with respect to the crystal axes can then be deduced from
the developed G (xy;) tensor and the experimentally determined ideal
orientation. é(C) is derived next from the CMTP criterion and the normality
principle, after which € (xyz) is obtained by transforming € (c) onto the specimen
axes. The detailed calculation is presented in Appendix I'V.3 for the quadratic
case and leads to:

o

4
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1 3
H 4—2(u:+ r?—2 u?r?)sm229+2(ulzr?)cos228+§2 (r‘u?-—u‘ri3 )sm49-—g
R@)= 2 = : n

‘u 2(r?n?)cos26+£(u?n‘z)smze+2(r‘uln?)sm29—g

(4.34)
where the parameters rj, uj, nj (i=1,2,3) are the components of the specimen
axis vectors (RD, TD, ND) along the (C) axes and the summations over the
index i are extended from 1 to 3. The stress parameter Oy is also easily derived:

Ox2(08) =[5/6Z(r,cos®+u,stn®)* +1/6] 17 (4.35)

as is the yield strength ratio :

5L (r$)+1 " (4.36)

o B®/o (0)={
= = 52(r‘oose+u‘sm6)4+l

Symmetry considerations :

In rolling, the deformation path is such that the texture normally has three
planes of symmetry, viz. the planes normal to ND, TD and RD, respectively
(Fig. 2.2). The strain rate ratio must also obey these symmetry conditions, the
last two of which lead to :

R(-8) = R(0) (4.37)
R(T1-6) = R(6) (4.38)

It is evident from the form of Eq. 4.34 that relations 4.37 and 4.38 cannot be
satisfied for an arbitrary ideal orientation. However, the symmetry
requirement can be met by recognizing [109] that an ideal orientation described
by the set of Miller indices {hkl} <uvw> generally consists of as many as four
distinct otrientations {hkl}<uvw>, {hkl}<uvw>, {hkl}<uvw> and
{(hkl} <uvw>. As shown on the pole figure of Fig. 4.6, each of the last three
orientations can be deduced from the first by a suitable symmetry operation.
Nevertheless, orientations of maximum symmetry, such as {100}<001>,
{100}<011>, {110}<001> and {110}<110>, are completely described by a
single set of poles; orientations with intermediate symmetry, such as
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’,

{110}<112> and {112} <111 >, require two sets of poles; whereas orientations
O of minimum symmetry, e.g. {123}<634> require the maximum of four
equivalent sets, see Fig. 4.7. As a result, in the most general case, the R-value
must be calculated by taking a weighted (0.25) average over the four equivalent

sets :
¢ (hkD<uvw>)+é (hkl}<uvw>)+¢ (hhb<uwow>)+é (hkll<aomw >)
R(9)= Yy YY — Yy — Yy — S—
éu({hkl}<uuw>)+éu({hkl)<uvw>)+éu({hkl}<uvw >)+Eu({hkl)<uuw >)
(4.39)

which leads to :

1 3
~ B (utrt 20 ) an%20)+ 8 (w2 r?) cos 420) - -
RO) 4 i ! ' o 5 (440)

. 3
Z(r?n?)msME(u?n‘Z)sznzB—-g

A similar procedure must be employed to satisfy symmetry conditions 4.37 and
4.38 for the yield strength ratio, Eq. 4.36.

It should be noted that this averaging procedure does not correspond to a

classical Taylor model and is presented here for its ease of use. It will be

discussed in more detail in Chapter VI. A more realistic averaéing technique,

h as that of Taylor, leads to comparable results. However, this comment only

~"applies to the quadratic or near quadratic yield criteria, which are by-nature
smooth.

The strain rate R(0) and yield strength 0(8)/0(0) ratio predictions obtained
in this way for the commonly observed ideal orientations will be presented in
section V. These will concern the Hill quadratic and non-quadratic functions
applied to the textures present in cubic metals.
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(hk!) mvw]

Fig.46 Relative positions of the four orientations {hkl}<uvw>,
(hkl}<uvw>, {hkl}<uvw> and {bkl}<uvw> on a pole figure for a rolled

material. N4

RO RD

RD

(d) -

Fig. 4.7 {111} pole figures for the idea] orientations known as : (a) Goss
{110}<001>;(b)Bs{110}<1I2>;(c)Cu(112}<11f>;a(d)S{123}<634>.
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IV.2.2. Plastic anisotropy of textured polycrystals

Deformed aggregates of actual materials usually exhibit more than one
ideal orientation. Their plastic properties must therefore be calculated as some
particular average over the distribution of grains (or orientations). For this
purpose, it is necessary to define the interactions between the individual
grains. Sachs [3}\took the view that all the grains are subjected to the same
macroscopic strei ‘direction’ (the magnitude of the stress components may
differ, however)}&This assumption does not allow for any accommodation
between individual crystals, nor does it permit stress equilibrium to be
attained; thus it is not conducive to a satisfactory description of real metals. At
the other extreme, Taylor (2] assumed that all the grains deform at the same
macroscopic strain rate. The latter approach leads to the better agreement
between prediction of the plastic properties and experimental observations.
More recently, some mixed boundary condition methods have been proposed in
which only a part of the macroscopic strain rate tensor is prescribed, together
with the complementary stress components These models, known as the
‘relaxed constraint’ (98, 100-102] and ‘continuous constraint’ {110} methods, are
intermediate between the Sachs and Taylor approaches. They involve
considerations of the change in shape of the grains during deformation, as a
result of which some of the conditions regarding the shear components
associated with the grain ‘edges’ can be relaxed.

Only the two extreme deformation models (i.e. Taylor and Sachs) are
employed here; they can be considered to indicate the two limits for the effects
of grain interaction. .

For simplicity, the section that follows will be restricted to the evaluation of
R(6) in rolled sheet. As mentioned above, the strain rate ratio R(8) is measured
in a uniaxial tension test carried out along a direction inclined at an angle 6 to
the rolling direction (Fig.2.2). It is defined as the ratio of the width to thickness
strain rates (Eq. 4.32).
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Taylor model

In order to apply the Taylor model, in which all the grains undergo the same
strain as the polycrystal, it is useful to characterize the tensile test as follows

or11 012 0 €77 0 0
Orxyz) =012 0 0 €ixyz) = 0 €22 0 (4 41)
0 0 0 0 0 é33

This is the condition usually employed when crystallographic Taylor/Bishop
and Hill calculations are carried out (11, 16]. However, the possible non-zero
value of the shear stress 012 is in contradiction with the boundary condition
012=0 related to the free surface of the specimen. Thus Egs. 4 41 only apply to
the interior of the sample. When expressed in terms of vectors and deviator

stresses, these relations become :

S €1

. Se =8;/V3 . )

Sizyz) =|0 € (xyz) = |0 (4 42)
0 0
Ss 0

The strain rate vector must now be transformed into the crystal axes
. €)= Q) éj(xyz) ) =12 L (4.43)

The matrix Q employed for this purpose is given by :

[ c0s26 0 0 0  —sin2e]
0 1 0 0 0
Q= 0 0 cosB -sinbB 0 . Qo (4.44)
0 0O sinB® cosB 0
| sin 206 0 0 0 cos 20

where Qq is given by Eq. 3.24 and corresponds to Q(8 =0). In order to derive the
stress components S; (C), the normality rule is applied :
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&..c) = LaF (S /3S,(c) _ 1 =1toh (4.45)
where F is the CMTP yield function, for example Eq. 4.2. For simplicity, only
the case of the Hill quadratic (n=2) yield surface is considered, since a non-
integer criterion renders the inversion of the normality rule more difficult (see

Appendix IV.2).

Setting the exponent n in the Hill locus equal to two, the strain rate

components can be readily deduced

with A= Ao=6aand A3= Ay= As= 2[. This leads, equivalently, to

Sie) =€C)/AAL = Q€ (xy ! KA, 1=1to5 (4 47)
and then to
Sk(xyz) = QrN Qp é} (xyz)/).\Azl k=1toh (4.48)

Since the function being considered is homogeneous and of degree 2 in the

stresses, A can be calculated as follows :

W =S,c)€.C) = ASic)8F(S)13S.c) = 2\ (4.49)
Thus A = SyC)€.(C)/2 = Skxyz) Sk (xyz) /2 (4.50)
and A= €k (ry2) Qui [ Q&) (xy2) 1 2V A, ]
or A= {Ek(xyz) Qb [ Qi € (xyz)/ AL] 12} 12 (4.51)

When more than one ideal orientation is present, the deviator stress
components (Eq. 4.48) are averaged on a volume fraction basis.
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g
The yield stress as well as the strain rate ratio R(8) can now be calculated as
follows : the ratio €1/€2 in Eq. 4.42 is varied until the loading direction
LSz(xyz)/SI(xyz) = 1/V3 derived from Eq. 4.48 is reached. Under these conditions,
the complete stress vector is determined (i.e. the yield@'iress 011 and the shear
stress 012) and the R-value is given in turn by

R(B)=éyy/ézz=(\/§é1;é2—1)/2 <(4.52)
Sachs model

In the case of the Sachs model, the uniaxial tensile test can be characterized
in the normal way by the following stress and strain rate tensors :

o 0 0 €17 €12 0
0 (xyz) =|0 0 0 S(xyz) ={¢12 €322 0 (4.53)
0 0 0 0 0 €33

Here the stress direction is imposed on the polycrystal, but not the value of 01
itself. By contrast, €1, is prescribed and €39, £€33= —€)] —£22 and €2 are
unknown. The possible non-zero value of €12 (corresponding to the condition
012 =0) makes the tensors strictly valid only for long samples. In the five
dimensional notation of Eq. 3.9, the deviator stress and strain rate vectors are .

S; £]
So =8;/ V3 €2
— —>
S (xy2) =|0 € (xyz) = |0 (4.54)
0 0
0 v ' és ~

When using this kind of vector, the Taylor deformation model is difficult to
apply because both of the strain rate ratios €2/ €; and €5/ €1 need to be varied
simultaneously (see section III.3), leading to extensive computations. By
contrast, the Sachs approach can be readily employed in the following way.

First the stress direction Sg/ S is imposed on each grain of the polycrystal
with the specimen axes oriented along the 6 direction. If the ideal orientation of
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v/

the grain is {hkl} <uvw>, then the stress vector can be transformed 'into the
crystal axes by means of the matrix Q, which is the transpose of Q (Eq. 4.44). In
this way

— ~—
S(C) = QS (xy2) (4.55)
so that Sic)/ Si (xyz) = Q(1.1) +Q(2,1) S2(xy2) / St (xy2) (4.56)

—
Since the vector S (c) must terminate at the yield surface specified by Eq 4.2,
the following relation applies -

Sy (xyz) = {a2 —V2 [ |281 )/ S1 (x’yz)l n+“Sl (C)+\/§SQ(C))/SI (xyz)l "
+](S1(0)-V382(C)) /St (xyn | ™ +2p2 ™ [[S3(C)/ St (xyn) "
+[S4(C)/ St ixynl "+I85) / St xyn| "1} (4 57)

When more than one ideal orientation is present, the Sy (xyz) values associated
with each of them have to be averaged on a volume fraction basis

Thus, the tangent to the overall polycrystal yield surface can be calculated
by prescribing three different stress ratios So /1Sy = 1/V3, 1/(V3-0.01) and
1/(V3+0.01), fitting a suitable polynomial, and then evaluating the R-value in
the B direction by means of the normality rule.

Both the Taylor and Sachs deformation models will be used in Section V for
derivation of the strain rate and yield stress ratios pertaining to rolled and
recrystallized metals.
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IV.3. PREDICTION OF MACROSCOPIC YIELD SURFACES

One of the objectives of the CMTP method is the derivation of macroscopic
yield surfaces from knowledge of the polycrystalline texture. The following

sequence is used for this purpose:

(i) The yield surface of a disoriented crystal is assumed to be represented
by a CMTP yield function of one of the types described in section [V.1.2, '

(ii) For each ideal orientation, this yield surface is reoriented into the

testpiece axes by means of the texture information.

(iil) The loci reoriented in this way for the various grains of the
aggregate are averaged (on a volume fraction basis) using a suitable
deformation model (Taylor, Sachs or intermediate techniques), leading to the

overall macroscopic surface.

If the yield function is given by F(S; (c)) = 1 in the crystal <100> axes, it
can be readily expressed in the specimen (S) reference frame by means of the
atrix Q (Eq. 3.17). This leads to

m
K F(QiS;s)) =1 (4.58)

which is the equation of the yield surface in the specimen axes pertaining to a
single texture component. When dealing with more than one ideal orientation,

these loci are combined :

(i) at constant strain rate ratio (Fig. 4.8a). In this case, all the grains are
sﬁxbjected to the same strain rate as the polycrystal (Taylor model); or

(ii) at constant stress ratio (Fig. 4.8b). The same stress direction is
prescribed to each crystal (Sachs technique).
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-
crystals |,
1+2

Fig. 4.8 (a) Combination of two yield surfaces by the Taylor method The
crystals associated with each of the loci strain at the same rate as the
polycrystal.

(b) Combination of two yield surfaces by the Sachs method. The
crystals associated with each of the loci experience the same stress direction as
the polycrystal.
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In each case, the strain rate or stress ratio has to sweep the subspace of
interest (shear stress plane, normal stress or n-plane, etc...) by increments,
which can be varied depending on the desired accuracy of the polycrystalline
locus. Three-dimensional loci are theoretically accessible. However, the
necessary two dimensional sweeping (a direction in three dimensional space is
characterized by two parameters) renders the computations unrealistically
lengthy {111]. For this reason, only planar cross sections of the yield surfaces
were calculated in this study, as discussed in Chapter VI.

[V.4. CONTRIBUTION FROM THE RANDOMLY ORIENTED GRAINS

A polycrystalline texture very often cannot be realistically represented by
only a finite number of disoriented texture components. As much as 10 to 20%
of the grains can remain randomly oriented in many deformed materials, as
characterized by the more or less uniform ‘background’ observed in pole figures.
For the present analysis, it is necessary to incorporate the effect of this random
background by means of an analytic function representing the yield surface of a

random polycrystal.

If the crystallographic loci of Figs. 3.6g and 3.7g (random aggregate) are
compared to the continuum surfaces of Figs. 4.2 and 4.3, respectively, the
following comments can be made :

(}) In the shear stress plane (S;, S;) (i, j=3, 4, 5), the yield locus of a
randomly oriented polycrystal can be represented by a quadratic function

S;2+8,2=Y,? 1,7=3,4,5 (4.59)

(ii) in the n-plane (S;, Sg), the shape of the crystallographic surface
suggests a representation of the form

£2S1/"+[S1~V3Sg[" +[S; +V3Ss[" = Yon (4.60)
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Let us first derive the three parameters n, Y;and Y2 . It is well known (6] that
the Taylor factors in uniaxial and plane strain tension for a random aggregate
are respectively M7=3.06 and MpsT =2.86. This has been confirmed by our
calculations (Table [TI.1). The coefficients n and Y9 of Eq. 4.60 can be estimated
from these two values. Defining the Taylor factor (6] as

M=W/Tt, (4.61)

and using the normality rule (Eq. 4.45) at a specific point (S,) together with the

definition of the equivalent strain rate
€ =(23¢,8,)!" (4.62)

it is readily shown that

V. Fo o, (4.63)
M‘%’-Jgr[&?(&o’s.o“[gs—‘sm’ |
[ i

Furthermore, if the yield function F(S,) =constant=c is homogeneous and of

degree n
aF/aS,(S;)S; =n ¢ (4.64)

leading to ’

M(S‘o):\/g%nc/[g-l(sw)ﬁ’ (4.69)
Applying this relation to the yield criterion of Eq. 4.60, itis seen that:
for uniaxial tension : Mr =V32-1"Yy/ \/6—% ¢ (4.66)
for plane strain tension : MpsT =3(2+2")-1"Yq/ V61 ¢ | (4.67)
Consequently MpsT/ V3Mp = (1+20-1) -ln (4.68)

Substituting for MT=3.06 and MpsT =2.86, it is found that
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n=29 (4.69)
and Yo=1908 V61, (4.70)

The parameter Y| can now be derived by considering some symmetry
properties. For this purpose, let us define two sets of axes:

(1) (Sp), in which the n-plane section of the locus pertaining to a random

aggregate is given by Eq. 4.60; and

(i1) (S), derived from (Sg) by a matrix Q (Eq. 3.17). By choosing Q in a
suitable way (r;= cos 6,rg= sin6, r3=0, u;= —sinB,ug= cosB, uz=0,
n1=n2=0,n3=1)itcan be shown that

(SI =81%cos28 —S5%s51n 26

Sg = Sy°

1S3 =S83%c0s0—-S4°s1n6 (4.71)
S4 =S3°sin 0 +S4°cos 6

\85 =87%381n26 +8S5° cos 20

From the definition of isotropy, the yield locus in the n-plane, referred to the (S)
axes, isgiven by :

S3=54=55=0 (4.72)
281" +/S1 —V3Sg/" +[S; +V3Saf" = Yo"

which leads (with 8 =n/4) to

S =842 =8,2=0 (4.73)
2850/ " +[S5° -\/5520/" +[S5° +\/§Szo/" =Yo"

This proves the strict equivalence between S and Ss (and by symmetry S3 and
S4), i.e. the Taylor factors in plane strain tension and pure shear are identical
for the random grain distribution. Applying Eq. 4.65 to the yield criterion of Eq.
4.59, it is seen that
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Y; =MpsT/3 V6T, =0953 V61, (4.74)

Furthermore, as shown by Canova et al [11], any of the coordinate axes can be
taken as an »-fold axis : it therefete appears that the yield surface pertaining to
a random aggregate is a sphere in the subspace (S, S3, S4, Ss).

The locus corresponding to a random polycrystal can thus be described in
different subspaces by the following two functions:

*

Plane (S,,5,) 1=1,3,4,5

[2S"+/S.—V3Sg/" +/S,+V3Sa/" = Yo~ (4.75)
withn =9and Yy = 1908 V61,

Subspace (Sy, S3, S4, Ss)

S12+832+84%2+S5%2=Y;? (4.76)
withY; = 0953 V6t .

A comparison between the n-plane and-shear stress plane cross-sections
calculated by both the Taylor/Bishop and Hill and the present models is carried
outin Fig. 4.9.
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Fig. 4.9 (a-b) Crystallographic yield surface cross-sections associated with a
random polycrystal. (a) n-plane; (b) shear stress plane section.

(c-d) Continuum yield surface cross-sections associated with Eqgs. 4.75
and 4.76, respectively. (c) n-plane; (d) shear stress plane section.
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CHAPTERYV

YIELD SURFACES AND PLASTIC PROPERTIES
— RESULTS -

In this chapter are reported most of the results obtained by the
crystallographic and CMTP methods. In the first section, attention is focussed
on the influence of each common experimental ideal orientation on the yield
locus of rolled sheet and on its plastic (strain rate) properties. In the second
section, the present predictions are extended to polycrystalline textures aqd
compared with experimental data published in the literature.

V.1. YIELD SURFACES AND PLASTIC PROPERTIES FOR COMMONLY
OBSERVED IDEAL ORIENTATIONS

V.1.1. Principal ideal orientations observed in rolled or annealed sheets

BCC metals - Rolled BCC metals, such as plain carbon steels, commonly exhibit
the {111} < 110> and {111}< 112> components [108, 109, 115-120]. After
annealing, two further components, the {100}<011> and {112}<110>, are
generally reported [106, 109, 115]. The above ideal orientations, together with
others that are less frequently cited, are collected for reference in Table V.1. An
example of a typical experimental texture is reproduced in Fig. 5.1a.

FCC metals - The rolling textures observed in the FCC metals depend on both
the stacking fault energy and the homologous temperature. The principal
components in the high stacking fault energy metals are {112} < 111> (the Cu
texture), {123}<634> (the S component) and {110}<112> (the brass or Bs
texture), whereas the {110}<112> (Bs) and {110} <001 > (Goss) are the most
intense in the low stacking fault energy metals [14, 15, 109, 121). Annealing
leads to the appearance of the cube texture {100} <001 > [14]. These



125.

Metals and characteristics Textures Ref.
Vbee metals {100¥<0;1>, 112;<fo> 109,115,116
{111} < 110>, {111}< 112>
Low carbon steel, £, = 0.96 {111} < 110>, {111}< 112> 117
{100}<011>
Steel major component 116,117,119
{111}<110>
Steel 0.2%C {100}<011>,{112}<110> 120
Al-killed low carbon steel, (111}< 110>, {111}<112> 108
£,=0.64 at room temp. (554} <225>
Al-killed low carbon steel {111}<110>
Rimmed steel , _
£, =0.95, annealed at 870°C 1411¥<148> 106
€-=099, annealed at 870°C 100} <012>

£:=0.99, annealed at
1090°C

{100}< 011>, {111}<112>

Fig.5.1

Table V.1. Principal ideal orientations observed in rolled or annealed bce

sheet. g, is expressed in terms of reduction in height.

(a) Typical {100} pole figure for rolled steel. After [108]. (b) Typical
{111} pole figure for rolled FCC metals. After (116].




126.

Metals and

characteristics Textures Ref.
— =
{112}<111>,{18 24 51}< 322>,
fcc metals {8 1223} < 734>, {135} <211>, - | 116, 154,155
{20 3564} <945>, (146} < 211>
fcc metals _
high stacking fault {112})< 111> {123}<412>,
energy {110}<112> 109
low stacking fault {110} < 112>, {110}< 001>
energy
Brass, £,=0.96,room | {110}<112>, minor{110}<001> 116
temperature 156
a-brass, £, =0.90, {110}< 112>, {123}<412>, 15
room temperature {111}<110>
a-brass, annealed {111}< 112>, {110} <011 >, 14
30mn at 350°C {110}<112>
Al, £,=0.96 at room {146}<211> 157
temperature
Al, £,=0.80 at room {110}<112>,{311}<112> 32
temperature
Aland Cu, £,>0.99 {110}<112> 116, 156,158
Cu {110}<112>,{112}<111> 116, 159
Cu {135}<211>,{110}< 112>, 116, 160
{112}<111>
Cu, £,=0.96 at room {123}<412>,{110}< 112>, 116, 157
temperature {112}<111>
Cu, £,=0.90 at room {112})<117>,{123}<412>, 15
temperature {110}<112>
Cu, annealed 30mn at| {100}<001 >, minor {100} <011> 14
350°C
Gilding metal, {110}< 112>, {123} <412 >, 15
e-=0.90 at room {111}<110>
temperature

Table V.2. Principal ideal orientations observed in rolled or annealed fec

sheet. ¢ is expressed in terms of reduction in height.
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components, and others less frequently cited, are listed in Table V.2 and a
typical experimental texture is reproduced in Fig. 5.1b.

V.1.2. Strain rate and yield strength ratios predicted by the CMTP method for

selected ideal orientations.

The strain rate R(8) ‘as well as yield strength 0(6)/0(0) ratios predicted by
the CMTP method are now presented for the main ideal orientations observed
experimentally. The two types of experiment represented by Eqs. 4.41 (not
strictly uniaxial tensile test) and 4.53 (uniaxial tensile test) will be considered
in turn to describe the tension test carried out to measure the R-values. The
former will be used in conjunction with the uniform strain (Taylor) model,

whereas the latter with the uniform stress direction (Sachs) assumption.

In Fig. 5.2, R(8) predictior;s are illustrated for the following orientations :
{100}<001> (cube), {100}<011>, {100}<012>, {110}<001> (Goss),
{110}<112> (Bs), {111}<110>, {111}<112>, {112} <110>, {112}<111>
(Cu), {123}<412>, {123}<634> (S) and {554} <225>. Sepérate sets of
predictions are given in Figs. 5.2a to 5.2d for the CMTP Hill quadratic, CMTP
Hill n=1.7, CMTP PL4 and crystallographic yield surfaces, respectively. By
ideal orientation, we refer here to a group of four sets of Miller indices, as
discussed in the previous chapter. The full and dashed lines in Figs. 5.2a to 5.2d
represent the predictions obtained by the Taylor and Sachs models,

respectively.

It is immediately apparent that the two types of predictions do not differ
significantly for most of the cases when the continuum yield functions are
involved (Figs. 5.2a to 5.2c¢). This can be readily explained by the relatively
smooth contours of such yield loci; as a result, when the rounded continuum
surfaces associated w;;.h the four sets of Miller indices are combined, whether at
constant stress ratio (Sachs) or at constant strain rate ratio (Taylor), similar
overall yielding characteristics are obtained. Nevertheless, as the yield locus
becomes more angular (PL4 function, Fig. 5.2¢), the difference between the
Taylor and Sachs approaches is increased, i.e. there is a stronger dependence of
the strain raté characteristics on the stress state and small variationsin the
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Values of R(0) predicted by the CMTP method for common ideal

(b) CMTP n=1.7; (c¢)
crystallographic (Bishop and Hill) approach.

4

orientations. The symmetry requirements of the rolling process are taken into
account. (
CMTP n=2;

) Taylor uniform strain assumption; (- — — —) Sachs model. (a)
CMTP PL4 criterion and; (d)
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(100} [001] (100) [ON] (100) (012]

' o 4
05 L Y ) 45 90

Fig.5.2 Values of R(8) predicted by the CMTP method for common ideal
orientations. The symmetry requirements of the rolling process are taken into

account. (——) Taylor uniform strain assumption;(—~ — — —) Sachs model. (a)
CMTP n=2; (b) CMTP n=1.7; (¢) CMTP PL4 criterion and; (d)
crystallographic (Bishop and Hill) approach.
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Fig.5.2 Values of R(8) predicted by the CMTP method for common ideal
orientations. The symmetry requirements of the rolling process are taken into

account. (

CMTP n=2; (b) CMTP n=1.7; (c¢)
crystallyrapbic (Bishop and Hill) approach.
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) Taylor uniform strain assumption; (— — — —) Sachs model. (a)
CMTP PL4 criterion and; (d)



(o)

(d)

131.

* (100) (001) (100} ' (too) (2]
[ou]
ML 1L 1L
R R R
o] 0 L 0 N
o] 45 90 0 45 90 ©0 a5 S0
8 g 8
1 (1o){ool] T '
oL 2} 2L
R R R
5| ] L
(nol (2] (1) (ol
O 1 O 1 O 1
o} 45 90 0 45 90 0 45 90
] 8 8
2L 2L 2
R R R
I 1L L
e ezl (112) (ol (u2) tur}
O 1 o S O 2
0 45 90 © 45 90 © 45 90
8 8 8
2L 2L 2 J
R R R
(S ! e
(123) (412] (123) [634] \j\ (554) (225]
0 i o 1 o |
0 45 0 0 45 90 O 45 90
6 8 8

Fig.5.2 Values of R(6) predicted by the CMTP method for common ideal
orientations. The symmetry requirements of the rolling process are taken into
account. ( ) Taylor uniform strain assumption; (- — — —) Sachs model. (a)
CMTP n=2; (b) CMTP n=1.7; (¢) CMTP PL4 criterion and; (d)
crystallographic (Bishop and Hill) approach.
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applied stress induce large variations in the strain rate ratio. The strain rate vs
stress relationship becomes even more sensitive in the Bishop and Hill model,
for which the R-coefficient often attains an infinite and therefore unreasonable
value (Fig. 5.2d). This comment is expected to remain valid when calculations
are carried out on polycrystalline materials displaying a combination of texture
components.

Several features of the dependence of strain rate ratio on ideal orientation
are worth noting. These are highlighted below by comparing the Taylor and
Sachs predictions obtained from the CMTP n =1.7 criterion with experimental
data.

Cube component {100}<001> - All the continuum functions investigated
predict a large dependence of R on angle 8 for this component. A value of 1 is

found in the rolling and transverse directions, whereas the diagonai (8 =45°)
tensile test is characterized by a low expected R-value near 0.1. These
predictions are in very good agreement with the experimental data reported by
Viana et al. (38] on a very strong cube textured copper street (Fig 5.3a).

{100} <011 > component - Similar comments can be made for this ideal

orientation as it is simply the cube component rotated by 6 =45° around the
normal to the sheet plane. Experimental measurements reported by Parniére
and Roesch [122] on iron single crystal sheets led to R(0)=0.05, R(45)=1.00
and R(90)=0.04. These values are also consistent with the CMTP predictions
(Fig. 5.3b).

{100} <012> component - This unique orientation is produced experimentally
in cold rolled and annealed low carbon steel sheets [106]. As shown in Fig. 5.3¢,
the CMTP predictions obtained with the n=1.7 criterion (as well as with the
other continuum functions, see Fig. 5.2) are in good agreement with the

experimental points.

Goss component {110} <001 > - The general shape of the R(8) curve is again
similar for the various continuum yield criteria (Fig. 5.2); a high R-value is
obtained in the transverse direction, indicative of a high resistance to thinning.
Parniére and Roesch [122] reported values of up to 32 at 0 =80° for iron single




133.

O 1 0 1
0 45 90 O 45 90
6 8
Fig.5.3 Comparison of CMTP predictions ((——————) Taylor and ( = = — =)

Sachs models) and experimental data (A ) for various metals displaying the
texture components indicated. The predictions are based on the CMTP n=1.7

criterion -

(a) copper with a strong {100}<001> texture; data from Ref. [38].

(b) iron single crystal ieet {100}< 011> orientation;data from
Ref.[122].

(c) cold rolled and annealed low C steel - {100} <012 > orientation;
data from Ref. [106].

(d) iron single crystal sheet - {110} <001 > orientation; data(v)
from Re%[122 ; cold rolled steel sheet: 70% {110} <001 > +
20% {211} <0 1> + 10% random components; data (A) from
Ref. [123].

(e) cold rolled and annealed low C steel : 60% {111} <uvw> + 30%
{554}<225> + 10% random orientations; data from Ref.[106].

() iron smgle crystal sheet : {112} <110 > orientation; data from
Ref. [122]

(g) cold rolled and annealed low C steel: {411} < 148> orientation;
data from Ref. (106].

(h) cold rolled steel sheet : {511} < 149> orientation; data from
Ref. [123].
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crystals. By contrast, the results of Ito and coworkers (123] fall well below the
CMTP predictions (Fig. 5.3d), the best agreement being obtained with the n=2
criterion, Fig. 5.2a. As their data pertain to a steel having only 70 or 80% of its
grains in the Goss orientation, better agreement is observed if the CMTP
calculation is modified to include a more realistic distribution of grain
orientations : e.g. 70% {110}<001> + 20% {21 1}<0i1 > +10% random, see

Fig. 5.3d.
AN

{111} <uvw > compbnent - This type of texture has beer shown experimentally
to increase the drawability of steel sheet [124] because it entails the presence of
a high average R-value together with a low planar anisotropy ratio AR. These
requirements are consistent with the CMTP predictions obtained from the
Sachs and to a lesser degree the Taylor models The conditions for optimum
drawability as predicted by the CMTP method are discussed in more detail in
section V.1.3. Comparison with the R-values corresponding to a cold rolled and
annealed low C steel containing a strong {111} <uvw> texture together with
the {554)}< 225> component [106] shows that the CMTP method slightly
underestimates the variation of R with 8 (Fig. 5.3e).

{112} <110 > component - The study by Parniére and Roesch [122] of iron single
crystal sheets having orientations near the {112} <110> led to experimental R-
values of around 0.65 in the rolling direction, between 2 and 3 in the diagonal

direction and between 0 and 1 in the transverse direction. These trends are well
reproduced by the CMTP predictions (the Taylor results are best), as illustrated
in Fig. 5.3f, especially when it is taken into account that the experimental R-
values refer to single crystals, which are considerably more anisotropic tha‘x_x
highly textured aggregates.

{411} <148 > component - Fig. 5.3g shows some experimental R data reported
by Elias et al. {106] for a low C steel displaying a strong {411}< 148> texture.
The CMTP predictions are in good agreement with the measured values.

{511}<149> component - The texture and R-value results of Ito and coworkers
(123] pertaining to a cold rolled steel sheet can be used in a similar manner. In
this case, the continuum predictions based on the observed strong {511} < 149>
texture underestimate the experimental R-values near the rolling direction
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(Fig. 5.3h). However, they predict the overall magnitude of R with reasonable
accuracy. Note also the difference in measured R-coefficient between the
dependences of Figs. 5.3g and 5.3h, which correspond to similar orientations.
This underlines the errors (up to 10 or 20%) that characterize the measurement
of strain rate ratio. This is accentuated by the lack of a standard procedure for
determining the Lankford coefficient, which leads to additional difficulties
when the observations of different workers are being compared: i.e. different
strain levels are frequently employed for the definition of R-value.

FCC rolling texture (Bs, Cu and S components) - The Bs, Cu and S ideal
orientations are the most commonly observed components in rolled FCC
metals. They form the so-called ‘rolling tube’ in the CODF representation. As
can be seen from Fig. 5.4a [125], such a combination of orientations leads to
ears at 45°, the presence of which is consistent with our continuum calculations.
The relative absence of ears (R=ct) (Fig. 5.4b) can be ensured by balancing
these components against another which promotes ear formation at 6 =0° and
90°. This is done industrially [125] by introducing appropriate quantities of the
recrystallization (cube) texture (Fig. 5.4c), whose R(0) peaks and troughs are
also well reproduced by the CMTP predictions (Fig. 5.2).

BCC rolling texture - The {111}<112> and {554} <225> orientations
commonly appear together in rolled steel sheets. They are,very close on a pole
figure (Fig. 5.5a) and thus are rather difficult to distinguish. However, it
appears from our calculations (see Fig. 5.2) that distinct flow behaviours are
predicted for these two orientations, especially when the Hill quadratic
criterion (Fig. 5.2a) is used. This underlines the importance of being able to
determine with accuracy the presence of the various ideal orientations as well
as their respective weights, as can be done with the CODF (crystallite
orientation distribution function) method of texture representation. It is also of
interest that the PL4 yield function predicts less divergence in the properties of
these-two close orientations. The experimental R-values reported for a steel
(126] having around 50% of {554}<225> and 50% of {111}<uvw > are
compared with the CMTP predictions (n =1.7) for this material in Fig. 5.5b.
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Fig.g.4 Earing in aluminum deep drawn cups as related to their textures
({111} pole figures).
(a) strong cold rolling “tube” texture associated with earing at 45°
(b) “balanced” eight ear texture with small ear amplitude;
(c) strong cube texture associated with earing at 0 and 90°. Adapted
from Ref. [125]. .

‘981
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Fig.5.5 (a) {100} pole figure for the {111}<112> (a) and {554}<225> (&)
orientations.

(b) CMTP (Taylor n=1.7) predictions for a steel containing 50%
(554} <225> + 25% {111} < 110> and 25% {111}<112>. Experimental data
(a) from Ref. [126].
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Finally, it should be mentioned that the predicted yield strength ratios
0(8)/0(0) are also consistent with experimental data reported in the literature,
as illustrated in Fig. 5.6 for an annealed sheet of cube textured copper [14].
Nevertheless, the predictions seem to slightly overestimate the yield strength
ratio in the diagonal direction. —

V.1.3. Optimum drawability

As discussed in section II1.3.2., the drawability of a metal sheet can be
quantified in terms of the R and AR parameters (Eqs. 2.19 and 2.20). The
drawability is strongly influenced by the crystallographic texture (124, 127-
129] and it has been shown [124] that, in the case of a steel sheet, the former is
enhanced by the presence of a {111}<110> type texture. A high R in
conjunction with a low AR is desirable since they lead to a deeper draw and to
less earing, respectively.

Although the R and AR coefficients have been generally expressed by Egs.
2.19 and 2.20, somewhat different definitions will be used here, following the
work of Meuleman [40]. This modification is related to the observation that a
material exhibiting R(0)=0.5, R(45)=1.0 and R(90)=1.5 has the same R and
AR values as a sheet with planar isotropy and R=ct=1. More rigorous
definitions can be given as follows :

2|
Il

R(8) d6

= I )

J"” (5.1
0

N ["’2 (5.2)
n

| R —R(0) | d®
0

v
-

The latter equation has the advantage of giving a true indication of the extent
of planar anisotropy. Furthermore, Eq. 5.1 gives a true average value of the
strain rate ratio, even in the case of six or eight ears. A possible development of
these expressions leads to, for example :
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—

R =[R(0)+2R(5)+ +2R(45)+ +2R(85)+R(90)]/36 (5.3)

AR =[[R-R(0)[+2/[R —R(5)[+ .+2[R—R(45)[+
+2/R —~R(85)[+[R —R(90)[ ]/ 36 (5.4)

These are the equations which were used in our calculations.

In order to determine the texture components which should lead to
optimum drawability, random ideal orientations were generated by means of
three randomly chosen Euler angles. For each component derived in this way
(plus the three symmetrical components mentioned earlier), R and AR were
calculated using the Taylor model. The results are displayed on Fricke
diagrams [129] which provide a simple way of plotting ideal orientations, Figs.
5.7 and 5.8.

The CMTP quadratic criterion (n=2,a=J.52 and § =0.64) was used in Fig.
5.7 to calculate the average R and planar AR strain rate ratios. Only the
orientations which lead to R>1.35 together with AR<0.2 were retained. No
orientation was found to fulfill the more severe condition R>1.40 and AR<0.2.
It can be seen from this diagram that optimum drawability is obtained when
the crystallographic plane (111) lies in the plane of the sheet, whatever the
crystallographic direction (which must lie between the (110) and (112)
positions). The calculations also indicate that no other texture component can
provide the same combination of properties. This prediction provides
quantitative confirmation of the observation which is well known empirically
[124]. Similar results were obtained with the new Hill criterion (h=1.7,
a=0.47 and $=0.54). N

Identical predictions are shown in Fig. 5.8 , which were obtained with the
PL4 yield function. In this case, however, the imposed conditions were
somewhat more severe : R>1.5 and AR <0.2. The conclusions are the same as
those reported for the Hill quadratic criterion, i.e. a {111} <uvw> texture
favors the drawability. However, the larger R-values obtained with the PL4
yield function (compared to the n =2 locus) can be associated with predictions of

8
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Fig.5.7 Orientations leading to R>1.35 together with AR <0.2 as calculated
by the CMTP n =2 criterion. The crystallographic planes (a) and directions (b)
associated with these orientatiohs are plotted on Fricke [129] diagrams.
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Fig.5.8 Orientations leading to R>1.50 together with AR<0.2 as calculated
by the CMTP PL4 criterion. The crystallographic planes (a) and directions (b) of
these orientations are plotted on Fricke [129) diagrams.
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a deeper draw and are closer to the experimental measurements reported in the

literature (R max = 2).

By contrast, calculations carried out with the PL3 yield function (Eq. 4.17b)
lead to the prediction that the presence of both the (111) and (112) planes will
improve drawability. The latter result is not, however, confirmed
experimentally. Furthermore the R-values attained with the PL3 criterion are
relatively small (maximum of around 1.2).

Since no method was found which permits the application of the Taylor
model to the PL1 and PL2 (Eq. 4.17a) functions (because of the problems
associated with inversion of the normality rule), only the Sachs approach was

\ used in this case. When such a combination is employed over the four sets of

Miller indices t{hkl}* <uvw>, all the yield functions investigated (n=2,
n=1.7,PL 1, 2, 3 and 4 functions) lead to the necessary {111}<uvw> texture
for optimum drawability.

It was also of interest to investigate the 'influence of the different
experimental ideal orientations on drawability. This isillustrated in Table V.3
for the n=2 and PL4 yield functions. it can be seen that the drawability
requirements (R maximum and AR minimum) are best satisfied by the
{111}<110> and {111}<112> components (observed only in BCC materials)
and to a lesser degree by the {123} <412> orientation. By.contrast, the common
FCC deformation and annealing textures (Bs, Cu, Cube, Goss and S) are all
intrinsically unsuitable for deep drawing applications. The Goss component, for
example, is expected to give rise to a very deep draw (associated with a high R-
value) but concurrently to highly developed ears (associated with a high AR-
value).

{
V.1.4. Anomalous behaviour

-
As already discussed in section I1.3.6, the so-called ‘anomalous behaviour’
refers to a material simultaneously displaying the two properties
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0
R AR

Texture component
n=2 PL4 n=2 PL4
{100}<001 > (cube) 0.461 0.408< 0.270 0.288
. {100}<011> 0.461 1 0.408 0.270 0.288
{100}<012> 0.403 0.339 0.070 0.073
{110}<001 > (Goss) 1.943 2.873 1.501 3.041
{110}<112> (Bs) 1.159 1.240 0.219 0.386
{111;<1Io> 1.365 1.814 0 10.357
{i11}<11'2'> 1.365 1.814 0 0.357
{112}<110> 1.199 1.400 0.255 0.551
{112}<111> (Cu) 1.199 1.400 0.255 0.551
{123}<412> 1.159 1.263 0.105 0.179
{123}<634> (S) 1.157 1.357 0.182 0.372
{146}<211> 1.085 1.195 0.188 0.358
{554} <225 > 1.365 1.805 0.131 0.389

Table V.3. Average R and planar AR strain rate ratios (Eqs.5.3 and 5.4) for the
main ideal orientations, taking into account the symmetry requirements of
Fig. 4.6. R and AR are calculated from the n =2 and P14 yield functions.
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R<I _ (5.5)
and 0p/0y>1 (5.6)

These experimental values are in contradiction with the predictions of the
classical Hill macrogcopic theofy which indicates that R and 0/, should lie on
the same side of unity. It is therefore of interest to see if the various CMTP
criteria, which are more soundly based from a crystallographic point of view,

can explain this anomaly.

A procedure was used which is similar to the one described in the previous
section; i.e. random orientations were generated and R and oy/G, values were
calculated according to the uniform strain rate model. The Hill quadratic, PL3
and PL4 functions weré/used for this purpose. For ease of reference, the 0/3y vs
R curves predicted by the classical Hill approach (0p/05 =(2(1 +R))V™ /2 from
Eq. 2.49) are reported in Fig. 5.9 together with some experimental
measurements. The computational results obtained with the Hill quadratic
criterion are shown in Fig. 5.10. It can be seen that such a yield function does
not allow for any anomalous behaviour. Furthermore, the calculated points
(0y/0y, R) fall close to the m = 2.0 curve of Fig. 5.9.

When the PL3 function is used (Fig. 5.11a), a léss extended 0p/0, vs R
relationship is observed; in this case, all the simulated orientations lead to R in
the range (0.45, 1.2]. However, some of the data can indeed account for the
anomalous behaviour, R<1 and op/d;>1. They are plotted on a Fricke [129]
diagram, Fig. 5.11b, and correspond to orientations having their
crystallographic planes near the (011) or (012) planes.

When the PL4 criterion is used, Figs. 5.12a and 5.12b, a smoother and mor;
dispersed version of the 0,/Ty vs R curve is obtained. It falls just below the
m=1.7 plot of Fig. 5.9. The orientations leading to the anomalous behaviour
are shown in Fig. 5.12b and are all concentrated near the (012) plane. This
supports the Bishop and Hill calculations carried out by Bassani [76,77] on

" ideal transversely isotropic textures, as shown in Fig. 5.13.

/
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O I-0 = 20

Fig.5.9 Ratio of thez biaxial over the average uniaxial yield-stress vs R as
predicted by the Hill non-quadratic yield criterion (Eq. 2.49) for various
exponents m. Experimental values from Pearce (50] () and Woodthorpe and

Pearce [49]) (+).
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Fig.5.10 Ratio of the biaxial over the average uniaxial yield stress vs R as
predicted by the CMTP n =2 criterion for randomly generated orientations.
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Fig.5.11 (a) Ratio of the biaxia] over the average uniaxial yield stress vs R as
pre(dicted by the CMTP PL3 criterion for randomly generated orientations.

(b) Crystallographic planes and directions of the orientations leading
to 0/, > 1 together with R <1 as predicted by the CMTP PL3 criterion.
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Fig.5.12 (a) Ratio of the biaxial over the average uniaxial yield stress vs R as
predicted by the CMTP PL4 criterion for randomly generated orienfations.

(b) Crystallographic planes and directions of the orientations leading
to 0,/0y > 1 together with R <1 as predicted by the CMTP PL4 criterion.
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Fig.5.13 R-values (top number in pair) and O(biaxial)/O(uniaxial) for ideal
transversely isotropic textures, as calculated by the crystallographic (Bishop

and Hill) model. Each point on the spherical triangle designates an ideal
transversely isotropic texture (76,77].
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It should be noted that, to the author’s knowledge, no experimental evidence
of the textures leading to the anomalous behaviour has been reported in the
literature. Thus the present predictions regarding the role of the (012)

component remain to be confirmed.

It must also be stated that, although the continuum functions investigated
here allow for the anomalous behaviour, they do ngt reproduce the high op/ou
values (near 1.3 or 1.4 with R < 1) reported by Pedrce [50] on aluminum. It is of
course possible that some combination of textur¢ components would lead to

such an ensemble of properties. “
V.1.5. Axial stresses and length changes in torsion testing

Several papers have been published [91, 130-133] dealing with the axial
stresses developed and length changes taking place during torsion testing. The
most complete study was carried out by Montheillet and coworkers [133], in
which the axial forces induced and the textures developed during fixed end
tests were determined for polycrystalline samples of Al, Cu and a-Fe over the
temperature ranges 20 to 400, 500 and 800°C, respectively. Depending on the
temperature and strain range, the experimental ideal orientations were
observed to be rotated about the radial axis either parallel to, or in the sense
opposite to, that of the shear. From the evolution of the inclinations with
respect to the sample axes, the signs (tension or compression) and magnitudes
of the axial stresses were predicted by the CMTP quadratic method and found
to be in good agreement with those observed [5].

The length changes reported [91, 130, 131] during the free end torsion
testing of metals are not normally correlated with the textures developed.
However, the link between the plastic anmisotropy and the preferred
orientations can also be made explicit by means of the CMTP method, as shown
in section IV.2.1. The approach described permits the deviator stress
components Sj; with respect to the specimen axes to be determined as linez{u-
functions of the axial strain rate n and y =2¢g,. By means of suitable boundary
conditions (0,; =0 for the free end and 0,r=0 at the surface), n and y can be
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linked analytically (Eq. 4.30). Thus n can be positive, negative or zero; its sign
and relative magnitude depend on (i) the particular texture component
developed in the material; and (ii) the degree of asymmetry (or inclination) of
the relevant ideal orientation with respect to the axial (z) and tangential (8)
directions of the specimen. As an illustration, the CMTP quadratic predictions
for the {100} <Ovw > texture (i.e. {100} plane parallel to the shear plane of the
specimen and <0vw?> direction parallel to the shear direction) are shown in
Fig. 5.14 [103], together with the experimental data and calculations of Rose
and Stuwe [91] relating to the twisting of copper at room temperature, The
agreement is reasonable, particularly when it is recognized that a 100% volume
fraction of the {100}<0Ovw> component was employed in the present
calculation, whereas the experimental fraction was likely to be somewhat

lower.
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Fig.5.14 Ratio of the elongation strain rate (1) to the torsion or shear strain rate
(y) as a function of the angle a between the (100) and tangential directions for
different ideal orientations. ¢(————) CMTP prediction, n=2; (0 ) experimental
data and (- — — —) theoretical calculations of Ref. [91].

V.1.6. Yield surface prediction

Yield surface cross-sections were calculated following the method described
in section IV.3 with the various CMTP functions studied. The experimental

1
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results used for comparison purposes are taken from the work of Althoff and
Wincierz {63]. Their investigation included three sets of annealed copper
tubular specimens having a {001}<100>, {001}<110> or {001}<730>
texture (here {hkl} refers to the radial and <uvw> to the axial directions,
respectively) and one set of aluminum specimens with a pronounced
112} < 110> texture. The experimental points are displayed as solid points in
Figs. 5.15 to 5.18. All the yield surfaces (of the uniform strain type) have been
normalized to the uniaxial tensile stress in the tangential direction.

Bishop and Hill surfaces (Figs. 5.15a to 5.18a) - As can be seen, the agreement
between calculated and experimental surfaces is relatively good for the
{100}<001>, {001}<110> and {001}<730> components. Nevertheless, the
vertices predicted seem to be too sharp when compared to the apparently more
rounded zones of the experimental loci. In the case of the {112} < 110> texture,
the shape of the experimental yield surface reported by Althoff and Wincierz
[63] is better approximated by the Sachs model. It should be added that the first
three orientations studied were associated with very small spreads (around
wo=5°), whereas the {112}<110> component appears to be more dispersed
(wg=10 to 15°). This suggests that such crystallographic calculations are more
appropriate for very strong textures, where the polycrystal can be identified as
a ‘quasi’ single crystal.

Hill quadratic surface (Fig. 5.15b to 5.18b, Eq. 4.9) - As expected from the form
of Eq. 4.9, which has to be reoriented for the different ideal orientations of
interest, the loci obtained have elliptical shapes. Thus, the rounded corners and
flats edges observed in the case of the three above-mentioned components
cannot be reproduced in an accurate way, although the general symmetry of the
surface is maintained. By contrast, for the locus corresponding to the
{112}<110> texture (Fig. 5.18b), an almost perfect fit is obtained. The latter
orientation displays a higher experimental scatter (around 10 to 15°) than the
cube texture (around 5°). The CMTP n =2 function thus seems to be again more
suitable for orientations displaying conventional scatter.

CMTP n=1.4 surface (Fig. 5.15¢ to 5.18¢, Eq. 4.11) - In this case, much less
smooth surfaces are obtained. Good agreement is observed for the cube and
{100} <011 > textures, which have low experimental scatters. For the
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T (axlal)

T (tangential)

Fig.5.15 Comparison between the experimental (G(tangentia!),O(axial)) yield
surface cross-sections of Althoff and Wincierz {63] and the present theoretical
predictions for a strong cube texture {100} <001 > (orientation spread wg=5°)

(c)

normalized by the uniaxial tangential yield stress. The Sachs and Taylor
models are in this case equivalent. Note that the experimental data are
represented by squares and lines for the stress and strain rate characteristics,
respectively.

(a) crystallographic (Bishop and Hill) model

(b) CMTP predictions,n=2

O (¢) CMTP predictions,n=1.4
(d) CMTP predictions, PL4 criterion.
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F‘ig.5.16 Comparison between the experimental (O(iangential),O(axial)) yield
surface cross-sections of Althoff and Wincierz [63] and the present theoretical
predictions for a strong {100}<011> texture (orientation spread wg=5°)
normalized by the uniaxial tangential yield stress. The Sachs and Taylor
models are in this case equivalent. Note that the experimental data are
represented by squares and lines for the stress and strain rate characteristics,
respectively.
(a) crystallographic (Bishop and Hill) model
(b) CMTP predictions,n=2
: (c) CMTP predictions,n=1.4
' o (d) CMTP predictions, PL4 criterion.
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Fig.5.17 Comparison between the experimental (O(iangential)O(axial)) yield
surface cross-sections of Althoff and Wincierz (63] and the present theoretical
predictions for a strong {001}<370> texture (orientation spread wo=5°)
normalized by the uniaxial tangential yield stress. The Sachs and Taylor
calculations are displayed as inner and outer loci, respectively. Note that the
experimental data are represented by squares and lines for the stress and
stlrain rate characteristics, respectively.

(a) crystallographic (Bishop and Hill) model

(b) CMTP predictions,n=2 '

(c) CMTP predictions, n=1.4
"o (d) CMTP predictions, PL4 criterion.
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Fig 5.18 Comparison between the experimental (O(tangential),O(axial) yield
surface cross-sections of Althoff and Wincierz (63] and the present theoretical
predictions for a {112}<1I0> texture (orientation spread wo=10 to 15°)
normalized by the uniaxial tangential yield stress. The Sachs and Taylor
calculations are displayed as inner and outer loci, respectively. Note that the
experimental data are represented by squares and lines for the stress and
strain rate characteristics, respectively.

(a) crystallographic (Bishop and Hill) model

(b) CMTP predictions, n =2

(c) CMTP predictions, n=1.4

(d) CMTP predictions, PL4 criterion.
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{001}<730 > orientation, the curve predicted by the CMTP method approaches
the one corresponding to the cube component and underestimates the “pure
shear” behaviour (O(axial) = —O(tangential)). Finally, the {112}<1I0>
experimental locus does not seem to be well reproduced by either a Taylor or a
Sachs model. Both of these underestimate the plane strain (€(axal)=0 and
é(tangenm])=0) vs uniaxial behaviours as well as the ratio of the uniaxial

stresses Ouy(tangential)Ou(axial)-

PL4 function (Fig. 5.15d to 5.18d, Eq. 4.17¢) - This function has a form similar
to that of the Hill quadratic criterion except for some complementary shear
components (see Eqs. 4.9 and 4.17) The predi’ctlons are thus similarin the case
of the three (100) type components. For the {112} <110> orientation, however,
the additional shear terms produce a less regular form. The agreement with the
experimental points is acceptable, but the plane strain (é(tangentlal)zo) Vs
uniaxial behaviour as well as the uniaxial stress ratio cited above are

underestimated.

PL1 and PL2 functions (Eq. 4.17a) - These predictions are not reported here. In
both cases, the yield surfaces are smooth and comparable to those obtained with
the n=2 or PL4 criterion. However, for the {100} <011> component, the PL2
\?b«nction predicts a rounded square shape rotated 45° (about the radial
direction) away from the experimental locus, and is thus in disagreement with

it.

As can be seen, no unique surface, whether crystallographic or continuum,
is able to predict the whole range of experimental yield loci. Nevertheless, some
general trends can be discerned :

- The Bishop and Hill method predicts the shape of the yield surfaces
corresponding to highly textured polycrystals (with scatters wg less than 5°)
very well.

- The quadrag:(or near quadratic) CMTP locus as well as the PL4
function give reasonable fits to yield surfaces corresponding to more scattered
orientations, i.e. with spreads of around 15°.
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- It seems that there is a relationship between the spread wq and the
exponent n in the Hill type of function (Eq. 4.11). A lower exponent (n=1.4, for
example) leads to a better approximation of the locus pertaining to highly
textured aggregates (e.g. wg=>5°, Figs. 5.15¢ and 5.16¢), whereas an exponent
n=2 is more appropriate for more dispersed orientations (e.g. wg=10 to 15°,
Fig. 5.18b) |

- For typical experimental scatters (around 10 to 15°), the best
compromise seems to be attained by a Hill type of criterion with an exponent n
between 1 4 and 2.0 (say n=1.7) or by the PL4 function (the latter leading to
much easier computations).

At this point, it 1s worth noting that such comparisons between theoretical
and experimental two-dimensional surfaces only provide an incomplete
assessment of the validity of one method or another A more faithful test would
consist of a comparison of the plastic behaviours (which are related to the size
and shape of the overall five-dimensional yield locus) in different directions of
the workpiece. These can include the strain rate or stress ratios, the biaxial vs
uniaxial behaviour, length changes or axial stresses in torsion testing etc..., as

shown previously.

V.2. PLASTIC PROPERTIES AND YIELD SURFACES FOR TEXTURED
POLYCRYSTALS
l‘\

In this section, the results of the CMTP predictions for the ideal orientations
presented above are generalized to the case of more complex polycrystalline
textures in FCC and BCC metals. The first step in this study requires the
accurate determination of the distribution of grain orientations in the sample.
This can be done approximately by looking at the experimental pole figures and
deducing the principal ideal orientations that are present together with their
respective volume fractions [134]). This, of course, only leads to a first
approximation of the real grain distribution. However, as long as the CMTP
yield functions already take into account the scatter around a given texture
component observed experimentally, such an estimate may be sufficient for

'/
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c many purposes, as will be seen below. For use of the crystallographic model,
more accurate representation of the polycrystalline texture is necessary; in this
case, the Bishop and Hill polyhedron represents the yield surface of a ‘perfect’
single crystal without any misorientation. The complete information needed
can be provided by a CODF (crystallite orientation distribution function)

“analysis (see for example Ref. [16]) which gives the probability that a crystal
has a given orientation. The many applications of this method to various kinds
of metals (FCC, BCC, HCP...) have proved its ability to give a good
representation of the true grain distribution.

-~ In this study, the CMTP calculations were carried out using the
decomposition of polycrystalline textures into a finite number (1 to 9 plus the
symmetrical components, i.e. 4 40 36) of ideal orientations. For the
crystallographic (Bishop and Hill) model, the distribution of the crystals was
simulated from CODF data, which were generally found in the form of (i)
texture component; (ii) scatter width; and (iii) volume fraction.

V.2.1. Typical rolling and recrystallization textures

V.2.1.1. Experimental observations

FCC metals - The sheets of copper and a-brass investigated by Hirsch and
coworkers (12] were tested by these authors in three different states : (i) as-
rolled (R), (ii) annealed to a partially recrystallized state (P) and (iii) annealed
~to a fully recrystallized state (F). For ease of reference, their experimental (111)
pole figures are reproduced in Fig. 5.19 for the.Cu, Cu-5%Zn and Cu-20%Zn
metal sheets. The effect of increasing the Zn content and the annealing time (a -- -
few minutes for the partially recrystallized and 30 minutes for the fully
recrystallized states, respectively) is well illustrated in these pole figures. The
typical rolling textures (copper-, transition- and Bs-type) and recrystallization
textures (cube componént with twins, mixed texture and Bs-type) are seen in
the first and third rows of Fig. 5.19, respectively. As expected, the partially
e' recrystallized state leads to an intermediate, and therefore balanced, texture.
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CuS'%2n -F Cu20*Zn-F

(a) (b) (c)

Fig.5.19 Experimental {111} pole figures for rolled and recrystallized sheets.
After Hirsch et al. {12]. "R" - as rolled ; "P" - partially recrystallized; and "F" -
fully recrystalized materials. (a) Cu; (b) Cu-5%zn; and (c) Cu-20%Zn.
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The quantitative analysis based on the published CODF data [12] is reported in
Table V .4.

BCC metals - In Fig. 5.20, some typical pole figures are reported for Al-killed
and rimmed mild steels, taken from the work of Parniére [135]. These display
the classical (111) type texture ({111}<110> and/or {111}<112> components),
together with some {554}<225> and to a lesser degree some of the
{100}<O‘11> and {310}<001> orientations. A detailed ODF analysis was
unfortunately not available for these steels. The various texture components
present were thus derived only approximately, directly from the pole figures, by
taking account of the intensity levels. They are listed in Table V.5.

V.2.1.2. Texture simulation

S

The pole figures shown in Figs. 5.21 and 5.22 were reconstructed (and not
predicted) from the texture data pertaining to Figs. 5.19 and 5.20. This
operation was carried out in order to check whether the ideal orientation /
scatter width / volume fraction method leads to a reasonably faithful
reproduction of the experimental distribution of grain orientations in each
material. For the copper/brass series, the quantitative analysis of Hirsch et al.
(12] reported in Table V.4 was used. Good agreement with the experimental
pole figures (Fig. 5.19) is observed. In the case of the rolled steels, the simplified
estimates of the ideal orientations, together with their volume fractions and
scatter widths, also appear to simulate the experimental pole figures of Fig.
5.20 quite well.

V.2.2. Prediction of polycrystalline yield surfaces

Yiéld‘ surface cross-sections were calculated for the various grain
distributions considered in the previous section. These were performed for both
Taylor and Sachs conditions (see Fig. 4.8), and by both the crystallographife as
well as the continuum methods.
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Cu-{112}<111> |29.1| 791 - [19.4]107] - I -
S-{123)<634> |473]225| 43 13654391206 - | = | -

{ (;ross- - - - 4.1 | 24 | 58 |17.1]146] 7.5
011}<100>

{236} <385 > - - - - - - —- | 4891727

Cube- - 129.7]1440} - 20 { 7.8 - - -
{100}<001> .

{122} <221> - l177]221) - - - - - -

148} < 744> + - - 1233 - - }208] - - -

437i< 184> +
418}< 744>

5271<12510> | = | = | = | = | = |3at| = [ = | =
(625})<79 12>

Table V.4. Volume fractions (%) of the main texture components observed in
Cu, Cu-5%Zn and Cu-20%Zn : (R) = rolled; (P) = partially recrystallized; (F)
= fully recrystallized. From Ref. [12].

w&;g;; . Rimmed steel Al-killed steel
(111}<110> 46 54
(111}<112> 8 16

| {564} < 225> 23 30
‘ {100}<011> 8 0
@g<oo1> | 15 ] o |

Table V.5. Volume fractions (%) of the main texture
cox/ﬁponents observed in two grades of steel as estimated
/ from the pole figures of Ref. [135]. \
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Fig.5.20 Experimental {100} pole figures for rolled and annealed steel sheets.

After[135].(a) Al:killed steel; and (b) rimming steel.
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(a) (b) (c)

Fig.5.21 Simulated {111} pole figures (employing about 600 grains) for rolled
and recrystallized sheets. Texture data (ideal orientations + volume fractions
+ spreads) from Hirsch et al. (12] (see also Table V.4). "R" - as rolled ; "P" -
partially recrystallized; and "F"- fully recrystallized materials.(a) Cu; (b) Cu-
5%Zn;and (c) Cu-20%Zn. ,
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(q) | (b)

Fig.5.22 Simulated {100} pole figures (employing about 600 grains) for rolled
and annealed steel sheets. Texture data (ideal orientations + volume fractions
+ spreads) estimated from Ref. [135].(a) Al-killed steel; and (b) rimming steel.
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V.2.2.1. Crystallographic calculations

Taylor averaging - The crystallographic approach is easy to employ under these
conditions. The envelope method described in section II was applied to
restricted distributions made up of around 200 crystals (symmetry included) (in
order to keep the computation time within reasonable limits). The results of
some of these computations are shown as outer loci in Fig. 5.23 for the rolled
and fully recrystallized copper and brass and in Fig. 5.24 for the two steels.
Three 0 directions were considered (8=0, 22.5 and 45°) for the first series and
only two (6=0 and 45°) for the second one. These correspond to three and two

different positions, respectively, of the S;; axis in the sheet plane. Sgg is,
associated with the (6 +n/2) direction and S33 with the normal to the rolling
plane.

The behaviours of the rolled copper and brass (Figs. 5.23a and 5.23b) are
completely different because of their differences in texture : the former is
charac@zed by a mix of the Bs, Cu and S components, whereas the Bs
componélNt is much stronger than the others in the latter. In the’cage of the
fully recrystallized materials (Pigs. 5.23c and 5.23d), the above-mentioned
difference is more striking in directions other than the rolling direction (6 # 0);
in these cases, the copper locus is elongated along the S;; =0 direction. Note
that the symmetry in S1; and S22 observed when the axes are oriented 45° away
from the rolling direction simply reflects the symmetry of the rolling process. It
is of interest that no really sharp edges (corners in the yield surface projection)
are obtained with the present method. This contrasts with the predictions of
Canova et al.[11] for rolled sheet, which were obtained by means of the full and
relaxed constraint methods of texture prediction, and which implied the
presence of sharp corners after rolling. The introduction of disoriented grains in
our calculations (in the simulated distributions) leads to a smoothing of the
overallMNocus, which is considered to be more faithful to the nature of deformed
materials.

- ~-
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Fig.5.23 Crystallographic n-plane loci calculated for 8=0, 22.5 and 45° for the (a) Cu-R, (b) Cu-20%Zn-
R, (c)'Cu-F and (d) Cu-20%Zn-F sheets. The outer locus is computed using a classical Taylor (uniform
strain) approach with restricted distributions made up of about 200 grains representing each of the pole
figures of Fig. 5.19; it corresponds to the inner envelope of the hyperplanes specified by Eq. 3.6. The
inner locus is obtained from the combitzat.ion of loci by the Sachs method using Egs. 3.25 in conjunction

with the texture data of Table V 4.
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In the case of the two steels (Fig. 524), very few differences are observed
when changing the direction 8 of the Sy; axis, 1e when considering different
projections of the overall 5-dimensional yield surface. This 1s readily explained
by the presence of a more or less strong fiber texture of the {111} type 1e. a
(111) direction which lies parallel to the normal to the sheet plane However, a
more dispersed fiber in the case of the second steel leads to a yi1eld surface which
looks more random when compared to the one of Fig 3 6¢g

Averaging by the Sachs method - We turn now to the Sachs deformation model,

for which a completely different approach must be used Here the disoriented
single crystal yield loci of Eq. 3 25 (instead of the Bishop and Hill polyhedron)
were reoriented in the specimen axes by means of the various texture
components. They were then combined at constant stress ratios, as illustrated
in Fig. 4.8b. The results obtained 1n this way are plotted as inner loci in Figs.
523 and 5.24 for the Cu/brass and steel series, respectively These surfaces are
smaller than the Taylor loci, which is an expression of the geometric condition
" that a projection (say €12=€13 =€23 =0) is always at least equal to if not larger
than a section (say O012=013=023=0). As a result, the presence of large
differences between the loci obtained with the two approaches generally
suggests that higher shear stresses 0, are associated with the corresponding

prescribed strain rate components £,;.

Of particular interest is the non-convexity of the Sachs polycrystal loci in
most of the cases, which is inconsistent with the thermodynamuics of flow [136)]
By contrast, as shown in Appendix V.1, a Taylor model always leads to a convex
overall yield surface, provided that the loci being combined are also convex,
which is the case for ours. It can be anticipated that R(8) curves predicted from
these non-convex Sachs loci will be ‘unreasonable’, since they are related to
their shape.

V.2.2.2. CMTP model predictions

The continuum surfaces were also evaluated by the two methods illustrated
in Figs. 4.8a and b, i.e. the uniform strain rate and constant stress ratio
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methods of averaging. For simplicity, only the'two CMTP predictions obtained
with the n=17 and PL4 criteria will be shown here. The other CMTP yield
functions generally led to similar shapes of the plotted sections. The texture
data of Tables V.4 and V.5 were employed to reorient the CMTP criteria in the
specimen axes (using the Miller indices of the ideal orientations). The
reoriented surfaces were then averaged on a volume fraction basis (using the

experimental weights)

L)

The results obtained with the n=1 7 locus are shown i1n Figs 5.25 and 5 26
and those pertaining to the PL4 criterion in Figs. 5.27 and 5.28 for the Cu/brass
and steel series, respectively. Once again, three angles (6=0, 225 and 45°)
were used for the FCC calculations and two (6 =0 and 45°) for the BCC ones. As
can be seen from these figures, the differences between the Taylor and Sachs
yield surfaces (outer and inner loci) are small, so that the dissimilarities in the
derived R(B) curves can be expected to be small. This contrasts with the
observations reported above for the crystallographic method. It should also be
noted that the departures from convexity mentioned for the Sachs averaging
condition remain theoretically possible in the CMTP calculations, although no
actual concavities were observed in the predicted yield surfaces.

The lack of sharp differences between the Sachs and Taylor predictions is
primarily due to the smooth nature of the continuum yield surfaces. The
combination of such rounded surfaces at constant stress ratios (Sachs) or
constant strain rate ratios (Taylor) is thus seen to result in similar overall
yielding characteristics.

When compared to the crystallographic loci of Figs. 5.23 and 5.24, the CMTP
surfaces (Figs. 5.25 to 5.28) look different : i e. they are much smoother.
Nevertheless, the PL4 predictions are somewhat less smooth in the case of the
steel series, and some rounded vertices as well as flatter regions can be
detected. It is also of interest that the general orientation of the CMTP surfaces
is similar to that displayed in Figs. 5.23 and 5.24. This is particularly striking
for the case of the Cu-20%Zn-R at 8=0°, where the polycrystalline locus is
oriented along the S1; =0direction. It should be noted that the overall sizes are
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(b)

-0 8=225 G=45

Fig 525 Theoretical CMTP n-plane yield surface cross-sections calculated for
8 =0, 22.5 and 45° for (a) Cu-R, (b) Cu-20%Zn-R, (c) Cu-F and (d) Cu-20%Zn-F
sheets Texture data from Table V.4 [12]. Outer locus : Taylor model; inner
locus : Sachs model. Predictions based on the CMTP n=1 7 criterion.
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Fig.5.25 Theoretical CMTP n-plane yield surface cross-sections calculated for
8=0, 22.5 and 45° for (a) Cu-R, (b) Cu-20%Zn-R, (c) Cu-F and (d) Cu-20%Zn-F
sheets. Texture data from Table V.4 {12]. Outer locus : Taylor model; inner
locus : Sachs model. Predictions based on the CMTP n=1.7 criterion.
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(b)

6:=0 6

45°

Fig.5.26 Theoretical CMTP n-plane yield surface cross-sections calculated for
6=0 and 45" for (a) an Al-killed steel and (b) a rimming steel, Texture data
from Table V.5 (135]. Outer locus : Taylor model; inner locus : Sachs model.
Predictions based on the CMTP n=1.7 criterion.




Fig.5.27 Theoretical CMTP n-plane yield surface cross-sections calculated for
0 =0, 22.5 and 45° for (a) Cu-R, (b) Cu-20%Zn-R, (¢) Cu-F and (d) Cu-20%Zn-F
sheets. Texture data from Table V.4 [12]. Outer locus : Taylor model; inner
locus : Sachs model. Predictions based on the CMTP P14 criterion.
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Fig.5.27 Theoretical CMTP n-plane yield surface cross-sections calculated for
0=0, 22.5 and 45° for (a) Cu-R, (b) Cu-20%Zn-R, (c) Cu-F and (d) Cu-20%Zn-F

sheets. Texture data from Table V.4 [12]. Outer locus : Taylor model; inner

locus : Sachs model. Predictions based on the CMTP PLA criterion.
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Fig.5.28 Theoretical EMTP n-plane yield surface cross-sections calculated for
8=0 and 45° for (a) an Al-killed steel and (b) a rimming steel. Texture data
from Table V.5 [135). Outer locus : Taylor model; inner locus : Sachs model.
Predictions based on the CMTP PL4 criterion. '
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2

similar for the crystallographic and continuum calculations (at least for the
Taylor case). This is not surprising, since the yield criterion coefficients were
fitted to the Bishop and Hill polyhedron (section 4.1.1).

V 2.2 3. Comparison with experimental loci

The previous section dealt with the parallel between the crystallographic
and CMTP calculations. We turn now to a comparison between the CMTP
predictions and experimentally determined yield surfaces. Here the
experimental results of Viana et al. [38] (shown as tangent lines) are used
together, with their CODF data for two steels : (a) a 50% cold rolled and
annealed rimming steel and (b) a 70% cold rolled and annealed Ti-bearing steel.
The constituent texture components as well as their respective weights are
reported, for ease of reference, in Table V.6.

The results of these computations are shown in Figs. 5.29 and 5.30 for the
n=1.7 and PL4 criteria, respectively. The surfaces obtained from the simplified
‘disoriented’ crystallographic approach described by Eqs. 3 25 are plotted in
Fig. 5.31. For comparison purposes, the calculated loci have been normalized by
the uniaxial tensile stress in the rolling direction. In the case of the two steels,
the two CMTP predictions as well as the simplified crystallographic result give
a good approximation of the tensile stress ratio 0(Tpy0(rD), which equals 1.02.
However, different conclusions have to be drawn when the R-valuesare
examined, as well as the plane strain stresses, which are given by the tangents
to the yield surfaces in the TD and RD tensile directions.

For the rimming steel, the ratios of the plane strain to the uniaxial stresses
are markedly underestimated by the three yield functions under consideration.
The Sachs model appears to give somewhat better results when applied to the
n=1.7 or to the PL4 criteria. The two continuum functions also lead to good
estimates of the strain rate ratios in the TD and RD directions, whereas the
crystallographic model shows a much stronger divergence from the
experimental tangents.
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\ c (;rni;zlx;x;; . Rimmed steel Ti-bearing steel

{160}<011> 11

{211}<011> 18

{111}<110> 16 20

(111}<112> 12 19

{223}<110> 18 15

{332}<110> 12 14
{11118} 13 20
<4411>

Table V.6. Volume fractipns (%) of the main texture

components observed in rimmed and Ti-bearing steel
' sheet. From Ref. [38].

(b)

gy

Fig.5.29 Comparison between the experimental (0;1,022) yield surface cross-
sections of Viana et al. (38] and the theoretical predictions obtained from the
CMTP n=1.7 criterion. The curves are normalized by the uniaxial yield stress
O11. Texture data from Table V.6 (38]. Outer locus : Taylor model; inner locus :
Sachs model. (a) 50% cold rolled and annealed rimming steel; and (b) 70% cold
rolled and annealed Ti-bearing steel.
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(b)

Fig.5.30 Comparison between the experimental (011,022) yield surface cross-
sections of Viana et al. (38] and the theoretical predictions obtained from the
CMTP PL4 criterion. The curves are normalized by the uniaxial yield stress
011. Texture data from Table V.6 [38]. Outer locus ! Taylor model; inner locus :
Sachs model. (a) 50% cold rolled and annealed rimming steel; and (b) 70% cold
rolled and annealed Ti-bearing steel.

/ :
/ (b) |- \\/
/

Fig.5.31 Comparison between the experimental (01],022) yield surface cross-
sections of Viana et al. (38] and the theoretical predictions obtained from the
disoriented crystallographic locus of Eqs. 3.25. The curves are normalized by
the uniaxial yield stress g1). Texture data from Table V.8 (38]. Quter locus :
Taylor model; inner locus : Sachs model. (a) 50% cold rolled and annealed
rimming steel; and (b) 70% cold rolled and annealed Ti-bearing steel.

(a)
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By contrast, the predictions obtained for the Ti-bearing steel are in much
better agreement with experiment. An almost perfect fit is seen when the
Taylor averaging technique is applied to the n=1.7 and PL4 continuum yield
functions. The crystallographic approach also gives a good estimate of the plane

—strain vs uniaxial behaviour. However, the strain rate ratios in the latter case

are in rather poor agreement with those reported by Viana et al. [38].

Similar sets of results are shown in Figs. 5.32a to 5.32c for the recrystallized
aluminum tubes tested by Althoff and Wincierz [63]. Here the 1 and 2 axes
refer to the tangential and axial stresses, respectively. As suggested by the
authors [63], the texture was decomposed into 4 ideal orientations :
{011}<1i1>, <111> fiber (approximated by equal parts of {112}<111> +
{123}<111> + {184}<111>), {011} <611> and {001}<310> (where {hkl} and
<uvw> are parallel to the radial and axial directions, respectively) in the
volume fraction ratio 5:3:1:1. The CMTP continuum predictions normalized by
the uniaxial tangential yield stress are in rather good agreement with the
experimental loci. The experimental strain rate ratios (tangents to the locus)
are in this case rather well approximated. However, the near plane strain
stresses (étangemm:O) are somewhat overestimated. By contrast, while the
simplified crystallographic approach based on Egs. 3.25 leads to a reasonable fit
for the stresses, it fails to reproduce the strain rate ratios, especiélly in the near

biaxial region (Gtangential = Taxial)-

V.2.2.4. Comparison with other models -

Such comparisons are difficult to carry out since‘the inputs are generally
non-uniform due to the different methods employed by the various authors.
However, some interesting comments can be made at least from a qualitative
point of view. ”

Viana et al. (38] carried out calculations of the upper bound (Taylor) and
lower bound (Sachs) solutions of polycrystalline pencil glide yield loci. For this
purpose, they employed the spherical harmonic (CODF) analysis of texture
data. Both the rimming and Ti-bearing steels of section V.2.2.3 were treated.
The results they obtained using the pencil glide model are shown in Fig.5.33 in
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022 (c)

Fig.5.32 Comparison between the experimental (011,022) yield surface cross-
sections of Althoff and Wincierz [63] and the theoretical predictions obtained
from the (a) n=1.7, (b) PL4 and (c) disoriented crystallographic (Egs. 3.25)
criteria for recrystallized Al tubes. Texture data from [63). The yield stresses
have been normalized by the uniaxial yield stress 0.;. )
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the form of broken lines. The yield loci predicted in this way display a rounded
shape similar to the ones calculated by the CMTP method (see Figs. 5.29 and
5.30). Nevertheless the latter are somewhat more faithful to the experimental
yield surfaces. These similarities can be explained in that the yield locus of a
BCC single crystal in which pencil glide takes place ismuch more rounded than
the Bishop and Hill polyhedron for a BCC metal undergoing {110} < 111> slip
Such a yield surface is thus probably better approximated by the rounded
CMTPyield functions

Fig.5.33 Comparison between experimental (011,022) yield surface cross-
sections (—) of Viana et al. [38] and their theoretical calculations based on a

pencil glide model (~ - — —) Outer locus Taylor model; inner locus : Sachs
model. (a) Rimming Steel; (b) Ti-bearing Steel.Taken from [38).
¢

CODF data, as expressed by spherical harmonic coefficients, have been
widely used in the past fifteen years to reproduce accurately the distribution of
grain orientations in deformed materials. The distribution function, which
gives the probability that a crystal has a given orientation, is used as a
weighting factor in the calculation of macroscopic values which must be
averaged over the orientation distribution. By applying this technique to the
Taylor factor, the polycrystalline yield surface can be readily calculated. The

o
’ \\
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Fig 534 (a) n-plane yield locus for rolled copper calculated from the
experimental CODF data [70); (b-¢) (011,022) section of the yield locus using the
CODF texture representation for a mild steel sheet, at =0 and 45°. (b)

according to the FC model: and (c) according to the RC (pancake) model. Taken
from (134].
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results obtained in this way by Mols et al. [70] for a pure Taylor model (all €,
prescribed in the crystals as well asin the aggregate) applied to an FCC rolling
texture are presented in Fig. 5.34a. These calculations based on {111}<110>
slip lead to a behaviour which is similar to the one calculated for the rolled
copper (Fig. 5.23a) using the present crystallographic model.

The use of more complicated (and also more realistic) deformation models
can lead to rather different shapes of the surfaces. In a more recent paper, van
Houtte (111]employed a relaxed constraint (RC) theory, in which only a part of
the strain rate tensor in the crystals was prescribed. This in turn is related to
the change in shape of the grains as the deformation proceeds. Their flat
pancake aspect at large strains renders the prescription of some of the shear
components unrealistic. This difference between the RC and FC deformation
models is illustrated in Fig. 5.34 b-c for a mild steel (111] in which the operation
of both {110} and {112} <111> slip systems was assumed. It appears that
sharper vertices are obtained in the latter case.
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e theoretical yield surface
\ after a rolling reduction of
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In a similar vein, the calculations carried out by Canova et al. [11] for a
texture predicted by the RC model also show this apparent accentuation of the
flat regions and sharp corners (Fig. 5.35). By comparing it to the loci displayed
in Fig. 5.23a, it is seen to resemble the surface obtained by the Sachs aVeraging
technique (note, however, the permutation of the 1 and 2 axes). This suggests
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that the 012 shear stress associated with the €12 =0 prescribed condition may
not be too large. Associated with the further requirements 013=023=0 of the
RC theory, a small value of 012 can be expected to lead to a yield surface
projection (€12=€13=¢€23=0) which would be more or less identical to its
section (012=0,3=023=0). The above statement is verified for the Cu
component (for which the conditions 012 =0 and £12 =0 are associated), which is
the most intense orientation found in rolled FCC metals, and is also true to a
lesser degree for the S component



184.

V.2.3. Prediction of the plastic properties of textured polycrystals

The stress and strain rate characteristics of a metal workpiece can be
readily deduced from knowledge of its yield surface. More specifically, the locus
size gives the amplitude of the stresses, whereas its shape leads to the values of
the strain rates, as obtained from the normality rule. In this way, once the
polycrystalline yield surface has been determined (see section V.2.2), yield
stresses as well as Lankford coefficients can be assessed geometrically, as
illustrated in Fig. 5.36.

533

(11/2-6)

22

Fig. 5.36 Derivation of the yield stress 0(8) and strain rate R(8) ratio from a
yield surface. 0(8) is the distance from the origin to the locus in the loading
direction Sy; and R(8) is deduced from the normal to the surface at the loading
point. 0(n/2 —8) and R(r/2 —6) are derived from the characteristics of the yield
surface in the Sgg direction.
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However, as long as only a part of the yield locus pertaining to the aggregate
is needed or "useful” for many applications, somewhat more direct methods can
be employed, as described in Chapter IV for the CMTP Taylor and Sachs
predictions. For example, the yield stress vector 0(6) induced during a tensile
test, carried out in a direction inclined at an angle 6 to the rolling direction and
in the rolling plane, describes a single curve on the complete five-dimensional
yield surface. Determination of the normal to this "loading” curve (which is
related to the R-value) necessitates, however, some knowledge of its
neighborhood on the locus. It can thus be readily understood that the
computing time involved in R-value calculations can quickly attain
unreasonable limits.

V.2.3.1 R-valuepredictions in the literature

The relation between texture and plastic properties has been investigated in
the past by many authors. If exception is made of the predictions based on the
traditional continuum analyses (see Chapter II), the strain rate R(8) and yield
stress G(0)/0(0) ratios have usually been calculated by crystallographic
methods. Tucker [35] first succeeded in predicting the important features of
earing in cups pressed from aluminum single crystals. The criterion of the
maximum resolved shear stress for slip on {111}< 110> systems was used for
this purpose. Fukuda [68] extended this analysis in a successful attempt to
correlate crystallographic texture and R-value in steel sheet. In this case the 48
{110}, {112} and {123} <111 > slip systems were assumed to be activated in the
same order as the sequence of magnitude of their resolved shear stresses. 'T’he
{111} and {100} types of texture were found to lead to high and low R-values,
respectively. Svensson (32] expanded the Taylor calculation (minimum of the
sum of the glide shears) for polycrystalline yield strenéth predictions by
introducing specific volume fractions for averaging over the orientation
distribution. Reasonable agreement with yield stress ratios measured in an
1100 Al cold rolied sheet was obtained. ) r

The CODF analysis which appeared in the 1960's received a considerable
amount of attention because it attempted to quantify the texture/plastic
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properties relationship in an improved way. As the CODF gives a “true”
representation of the probability that a grain has a specific orientation, it can
be used as a weighting factor in the prediction of the various properties of
interest. The method generally employed (see for example Refs.[8] and [10])
consists in calculating the Taylor factor M(q) by means of a classical Bishop and
Hill approach. Here q (unknown) is the contraction ratio q=R/(R+1). The
mean value of ﬁ(q) for all the orientations presentin the material is given by

M(q)=[Mq g fg dg (5.7)

where flg) is the orientation distribution function of the crystallites. The
contraction ratio of the specimen is then assumed to be that value of q for which
M(q) is a minimum. R is readily deduced from R=q/(1-q). Such a technique
generally leads to reasonable but not perfect agreement with experimental R-
values and stress ratios. For example, Bunge [10] reported quite good results
for a stabilized steel sheet, whereas Dabrowski et al. [114] observed that the
discrepancies with respect to the measured R-values of an Al-killed steel can be
fairly large, depending on the type of slip system selected. Sowerby et al. (69]
stated that a good fit to experimental yield stress ratios can be calculated, but
obtained some divergence with regard to the R(6) curves pertaining to
commercial purity copper sheet. Semiatin et al. [104], on the other hand, found
reasonable agreement in their investigation of three cold-rolled and annealed
low C steels. More sophisticated approaches including the solution of the stress
equilibrium in the flange of drawn cups as well as the addition of a work
hardening law [37,137] were conducive to adequate predictions of ear shape in
cups of an aluminum alloy. Similarly, Kanetake et al. [138] satisfactorily
reproduced the cup height in a drawn Al-Mg alloy and in Cu sheets by varying
two parameters in the work hardening rule pertaining to a single crystal. Mols
et al. [70] and van Houtte [111] have derived general methods of yield surface
prediction from CODF’s. They both used the hyperplane method in suitable
five-dimensional stress spaces. However, the lengthy computations necessary
for reasonable R(0) predictions render this method unsuitable in its actual
form for on line use.

Finally, the publications of Avery et al. [139], Elias et al. (106] and Wei
(134] are worth noting in that they differ completely from the previous ones.
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They developed methods which permit the rapid prediction of plastic anisotropy
for any crystallographic texture, using (222) pole figures. Although reasonable
predictions were reported for the HCP [139] and BCC [106) metals, fairly large
divergences were observed in the case of aluminum sheets [134).

The sections that follow deal with a comparison between the experimental
strain rate R(6) and yield stress 0(6)/0(0) ratios found in the literature and the
theoretical calculations obtained from both the present crystallographic and
CMTP methods. The fundamental bases for these predictions have been
reviewed in Chapter IV for the continuum mode!l. Similar procedures are used
for the disoriented Bishop and Hill (Egs. 3.25) crystallographic method, the
principles of which can be very simply visualized from Fig. 4.8.

V 2.3.2 R-value predictions using the crystallographicand CMTP methods

The aim of this section is to illustrate the validity as well as the limitations
of the CMTP method for predicting R(8) curves for polycrystalline sheets. Only
the Taylor predictions are shown since the non-convexity of the Sachs type of
crystallographic surface renders the use of the normality rule unsuitable. The
results obtained from the crystallographic (and disoriented crystallographic)
approach, as well as from the present n=2, n=1.7 and PL4 criteria are
compared to experimental R-values.

Results of Hirsch et al. {12]

R(B) curves were first determined geometrically (see Fig. 5.36) from the
" Bishop and Hill yield surfaces of Fig. 5.23 for the five angles 8 =0, 22.5, 45, 67.5
and 90°. The predictions obtained in this way are shown as crosses in
Figs.5.37a-i. The texture ¢data displayed in Table V.4 were then used in the
conjunction with the disoriented crystallographic locus (Eqs. 3.25) to produce.
the light continuous lines in Figs. 5.37 a-i. Finally, the three CMTP criteria
cited above were employed to obtain the predictions shown in Figs. 5.38 a-i. It
can be seen that the crystallographic models strongly overestimate the-
experimental variationsin R-value, especially in the diagonal direction 8 = 45°.
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Fig.5.87 R(6) curves for the following rolled sheets : (a) Cu-R, (b) Cu-5%Zn-R,
(c) Cu-20%Zn-R, (d) Cu-P, (e) Cu-5%Zn-P, (f) Cu-20%Zn-P, (g) Cu-F, (h) Cu-
5%2Zn-F and (i) Cu-20%Zn-F. (8) experimental R-values taken from Ref.[12]; (x)
R-values derived geometrically from the Bishop and Hill loci of Fig. 5.23 and
(=———— ) R(8) curves calculated from the disoriented crystallographic yield
function of Eqs. 3.25.
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Fig.5.38 R(8) curves determined by the CMTP method for the sheets of Fig.
5.37:(a) Cu-R, (b) Cu-5%Zn-R, (c) Cu-20%2Zn-R, (d) Cu-P, (e) Cu-5%Zn- P (H) Cu-
20%Zn-P, (g) Cu-F, (h) Cu-5%Zn-F and (i) Cu-20%Zn-F. (8) experimental R-
values taken from Ref. 12. (—————)n=2;(- - - - - jn=1.7and (— — -
PL4 predictions. The texture data used are those reported in Table V .4.
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'i'he most likely explanation for this observation is the questionable nature of
the Taylor assumption that all the grains undergo exactly the same strain as
the polycrystal as a whole. If instead the pancake-shaped grains are permitted
to shear, as in the relaxed model [11], a better representation of the properties
in the ©=45° direction is obtained, at least in the case of rolled copper, as
reported by Canova et al. [11]. In the rolling and to a lesser degree transverse
directions, on the other hand, the predictions obtained from our

crystallographic calculations agree quite well with experiment.

In the case of the rolled copper and brasses tested by Hirsch et al.[12] (Figs.
5.38 a-c), the CMTP predictions deduced from the n=2, n=1.7 and PL4
functions underestimate the experimental values. It should be noted that the
experimental R(0) curve for the Cu-5%Zn brass is probably in error since it does
not reproduce th?é\z):ring behaviour shown in Fig. 5.39. In particular, the high
R-value measurec; at 8 =90° does not coincide with the relatively small ear
observed at 8=0° as it should. Similar comments apply to the partially
recrystallized Cu-5%Zn sheet. Note that the n=1.7 and PL4 CMTP predictions
give somewhat better results, in that the calculated variations are larger than
the ones associated with the quadratic criterion. If exception is made for the
experimental R-value mentioned above, then the predicted CMTP curves are in
good qualitative agreement with experiment in terms of the positions of the
maxima and minima, which are expected to correspond to the experimental
peaks and troughs in the drawn cups. One has to keep in mind that very large
uncertainties were involved in the experimental determination of R-value in
the case of the rolled and of the partially recrystallized copper and brass, since
inhomogeneous deformation and early fracture were reported [12].

Turning now to the recrystallized materials, it can be seen from Figs. 5.38d-i
that the CMTP calculations lead to good quantitative agreement with the
measured anisotropy. Except perhaps for the fully recrystallized copper sheet,
the continuum calculations seem to be more accurate than those of the
crystallographic methods, which call for R(6) variations which are too large.
Finally, it can be observed that the n=1.7 and PL4 criteria lead to almost
identical predictions, although the latter has the advantage that it permits
much easier and faster computation. Its quadratic form facilitates the
necessary inversion of the normality principle.

H
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Fig. 5.39 Experimental earing behaviour of rolled (R), partially recrystallized
(P) and fully recrystallized (F) Cu, Cu-5%Zn and Cu-20%Zn. After(12].




Results of Stephens [163]

Stephens studied texture and mechanical anisotropy in the copper-zinc
system. Since no CODF facility was available to him, the v\olume fractions of
the various texture components present in his materials were estimated
directly from the pole figures, i.e. with a certain degree of uncertainty.
Specimens were cut from the various cold rolled sheets at angles of 0, 10,..., 90°
to the rolling direction in order to measure both the yield stresses and the
strain rate ratios. Three major texture components were detected, i.e. the
{311}<112>, {110}<112> (Bs) and {110}<001> (Goss) orientations in
different volume fraction ratios. The results obtained with the three CMTP
criteria are presented in Fig. 5.40 a-d. The predictions of the disoriented
crystallographic method are not reported here, as these were found to
overestimate the R(6) variations by a very large amount and to lead to
unreasonably pronounced peaks and troughs. By contrast, the CMTP
predictions agree well with the experimental values for all four materials
investigated. As mentioned earlier, the n=1.7 and PL4 functions lead to very
similar results and show an acceptable ability to reproduce the experimental R
variations, although a slight overestimation of the Lankford coefficients is

observed.

Results of Arminjon (1261

The textures pertaining to the five grades of steels studied by Arminjon
were decomposed into the four major components {111}< 110>, {111}<112>,
{554} <225> and {011}<100>. The experimental and theoretical R(6) curves
are shown in Figs. 5.41 a-e. It can be seen that the n=2 predictions
underestimate the variation in the Lankford coefficients to a considerable
degree. This is not surprising when reference is made to Fig. 5.2a for the
orientations considered here. By contrast, the PL4 criterion seems to
overestimate the R variation amplitude. Furthermore, the peaks predicted at
8=30 and 60° (see also Fig. 5.2c) do not appear in the cups drawn from these
steels. Finally, the calculations based on the n=1.7 function are in reasonable
agreement with the experimental R-values but are still unable to reproduce the
full range of the deviations with 6.
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Fig.5.40 R(8) curves for copper and brass sheets; ( ® )experimental R-values
from Ref. [140]. ( )CMTPR=2;(== =~ - ) CMTPn=1.7and (— — 3
CMTP PL4 predictions. The texture components employed are {311}<112>;
{110}<112> and {110}<001> in the volume fraction ratios : (a) 4:2-0Tor Cu

( @ )and Cu-2.5%Zn (4 );(b) 3:2:1 for Cu-5%Zn;(c) 1:4:2 u-10%Zn and (d)
0:5:2 for Cu-15%Zn, Cu-20%2Zn, Cu-25%Zn, Cu-30%/Znind Cu-35%Zn.
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Results of Eliaset al [106]

These are related to two grades of low C steel sheet - an Al-killed steel with a
{111} type of texture and a rimmed steel heavily reduced and annealed
displaying a combination of {100} <011> and {111}<112 > components. The
three CMTP cniteria investigated lead to good agreement with experiment in
the former case (Fig 5 42a); in the latter (Fig 5 42b), however, the limitations
pertaining to the results of Arminjon [126] once again seem toapply

Resultsof Ito et al. [123)

The texture determinations of Ito and coworkers on cold rolled steel sheet
were used in the same manner. Three different textures were produced and
tensile tests were carried out to measure the R-values at a strain of 015 Itis
evident from Fig 5 43c that the sharp R-value varnation 1s well predicted
However, in the case of the first two steels, a somewhat less convincing
prediction is obtained (F1g 5.43 a-b), in that the overall levelof R 1s somewhat
high

Results of Stickels and Mould [108] and Semuatin et al.[104]

R-value measurements for an Al-killed steel taken flrom these two papers
are reported 1n Fig. 544. The CMTP predictions are consistent with the
experimental strain rate ratios, but call for somewhat more variation than may
be detectable experimentally, as already noted for the other types of steel-
discussed above.

Results of Parniére [135]

Similar comments hold for the R(6) predictions obtained from the work of
Parniére. The texture components used are those of Table V.5. The
crystallographic predictions based on the Bishop and Hill yield surfaces of Figs.
5.24 at the five angles 0=0, 22.5,45, 67.5 and 90° are illustrated in Fig. 5.45b.
In the case of the first material (Al-killed steel), the results lie entirely outside
the plotting frame; for the rimming steel, they also strongly overestimate the
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{100}<011> + 40% {111}<112> + 20% random; and (b) an Al-killed steel
with 50% {111}<110> + 25% {111}<112> +25% {554} <225> components.
OO 415 g0 Fig 5.43 R(8) curves for cold rolled steel sheet; ( 4 ) experimental R-values
S taken from Ref. [123}. (—— )CMTPn=2; (- — — — — — yCMTPn=1.7 and

(

) CMTP PL4 predictions for steel sheets displaying (a) 60%

{111}<011> +10% {111}<112> + 10% {110} <001 > + 20% random; (b) 10%
{110}<001> + 20% {111}<112> + T70% random: and (c) 60% {110}< 001> +
20% {112} <110> +20% random orientations.
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Fig 5.44 R(6) curves for an Al-killed steel:
> | experimental R-values taken from Refs 108
[\\00‘#3 Srg-1] (Q)and 104 (#). (——————) CMTP n=2,
RW (e — = - ) CMTP n=17; and (— — 4
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decomposed into 40% {111}<110> + 25%
0. , (111} < 112> + 25% {554}<225> + 10%
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Fig. 5.45 R(B) curves for (a) an Al-killed steel and (b) a nmming steel; ( ® )
experimental R-values taken from Ref. [135]. (x) R-values derived
geometrically from the Bishop and Hill yield surfaces of Fig. 5.24; (—————)
R(8) curves deduced from the disoriented crystallographic function of Eqs. 3.25
In case (a), the two crystallographic predictions lie entirely outside the frame of
the drawing.
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Fig.5.46 R(8) curves for (a) an Al-killed steel and (b) a rimming steel; ( @ )
experimental R-values taken frﬁn Ref. (135). (——————) CMTP n=2;
(= —===- ) CMTP n=1.7; and (—-——- —) CMTP PL4 predictions. The
textures used for the two steels are displayed in Table V.5.
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R(8) curve. Similar divergences are obtained with the disoriented
crystallographic method (Egs. 3.25). By contrast, much better agreement is
observed with respect to the CMTP predictions, Fig. 5.46, although the
variation in R-value is not fully foreseen.

Results of Benferrah [65]

I

In a study of the development of anisotropy during the cold rolling of
aluminum sheet, Benferrah carried out some tensile experiments at three
angles 6 =0, 45 and 90° on his rolled materials. Only the R-values pertainingto
small rolling reductions (£<0.52) could be measured directly, as
inhomogeneous deformation occurred inthe thinner sheets. His experimental
results together with the CMTP predictions are illustrated in Fig 5.47, in
which relatively good agreement is observed.

Fig. 5.47 R(0) curves for a commercial purity

y) aluminum sheet; ( A ) experimental R-values

i taken from Ref. [65]. (——————) CMTP n=2;

(e = )CMTP n=1.7;and (—- —

A CMTP PL4 predictions. The texture employed

Ee==——=""=""""1  consisted of 25% {100}<001> + 25%

{(110}<112> + 15% {123}<634> + 5%

0. ! {112}<111 > + 30% random components [63].
0 45 30

General considerations

From all these comparisons, carried out on both FCC and BCC metals, it can
be concluded that the CMTP predictions agree better in most of the cases with
the experimental R-values than the results of the crystallographic approach. It
should be kept in mind, however, that these calculations are all based on a

\
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uniform strain approach. A more detailed discussion of the various deformation
models will be carried out in Chapter VI. It should be noted here that large
errors can be produced in the crystallographic calculations when fitting
tangents to angular yield loci. Of interest also is the fact that CMTP
calculations based on the Sachs assumption (and not reported here) do not lead
to significant differences with respect to those carried out according to the
Taylor model. As already discussed above for the yield surface predictions, this
can be attributed to the much smoother nature of the CMTP functions.

An important feature of the present results involves the relative weakness
of the CMTP functions in reproducing the full extent of the R-variations,
especially for the steels displaying a {111} type of texture. In this case, a slip
plane lies parallel to the rolling plane, so that very large shear stresses are
expecied to develop in the deformed materials The predictions obtained are
consequently highly dependent on how well the CMTP functions fit the ‘real’
locus in this particular subspace. This is illustrated in F1g. 4.4 fof the n =2 and
n=1.7 loci, from which it can be noted that the C types of vertices are better
approximated by the latter criterion. It is thus not surprising that the n=1.7
yield function leads in this case to a better reproduction of the R(8) curves.
However, these improvements are obtained at the cost of increased computing
time. To be more specific on this point, some data are reported in Table V.7.
These are related to the time needed on an IBM PC AT microcomputer fitted
with a DSI32 acceleration board in order to calculate the strain rate ratio R(8),
as well as the uniaxial 0(6) and biaxial Op yield stresses for one ideal
orientation (including the four rolling symmetries) at a specific angle 8. The
large difference observed between the n=2 or PL4 criterion on the one hand
and the n =1.7 function on the other is solely due to the necessary inversion of
the normality rule, which has to be carried out numerically (as opposed to
analytically) in the latter case.

V.2.3.3. Yield stress predictions

Yield stresses can be predicted by the classical crystallographic method, as
has been done by Svensson [32] or Sowerby et al. [69], for example. In this
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Time to compute R(6) at 19
valuesof 8 (6=0, 5,...,90°

Computing time per

- for 3
Yield - . _ orientation ( +symmetries)
C for 3 orientations
criterion ) , ) and per angle 6 (no random
orientations (+their
. . component)
(+ their symmetries)
symmetries) + random
component
CMTPn=2 24 sec 40 sec 0.42 sec
CMTPn=1.7 360 sec 403 sec 6.32 sec
CMTP PL4 35 sec 51 sec 0.61 sec
CMTP PL3 39 sec 55 sec 0.68 sec
disoriented
crystallogra. 90 sec 107 sec 1.58 sec
function
(Eqs.3.18)

Table V.7. Comparison of the computing times necessary to calculate R(8)
values according to different CMTP criteria when using the uniform strain
assumption. The computer employed was an IBM PC AT extended with a DSI

32 acceleration board.
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section, the texture components displayed by the material before the tensile
test is performed are used to estimate the yield stress ratio 0(6)/0(0) by means
of the various CMTP criteria. The theoretical bases for these calculations have
been given in ChapterIV.

Results of Stephens [140]

The experimental investigation carried out by Stephens and already
presented in the previous section included yield stress measurements These
are reported in Figs. 548 a-d for the various brasses studied. The CMTP
predictions based on the n =2 (full lines), n =1 7 (dashed lines) and PL4 (mixed
lines) criteria are seen to be in good agreement with experiment, especially
when it is considered that the textures were decomposed 1nto only two or three
components (plus their symmetries).

Resultsof Kallend and Davies[14,15]

Kallend and Davies employed the'\CODF technique of texture
characterization togeth@r with Taylor averaging and the Bishop and Hill
maximum work procedure to calculate yield stresses in cold rolled and
annealed copper and brasses. They found good agreement with the
experimental measurements of the 0.2% proof stresses (14,15]. CMTP
predictions were made by using the texture components they reported. The
results obtained in this way are presented in Figs. 5.49 a-e. It is apparent that
the predicted yield stress ratios are consistent with the observed values for both
the rolled and annealed materials. Nevertheless, the theory leads to larger
deviations in this case than those measured, especially in the brasses and in the
near diagonal (8 =45°) tensile directions.

Results of Svensson [28,32]

Svensson studied the anisotropy of yield strength (0.05% proof stress) in
aluminum and steel sheets cold rolled to various reductions. The experimental
and CMTP stress ratios are shown in Figs. 5.50 a-c, from which it can be seen
that the agreement is not good in the case of the two aluminum sheets: i.e. the
measured 0(6)/0(0) variations are considerably overestimated by the three
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Fig.5.48 Yield stress ratio 0(6)/0(0) curves for Cu and brass sheets; ( A )
experimental stress ratios taken from Ref. [140]. ( ) CMTP n=2;
(== —==—=— ) CMTP n=1.7; and (—-——- —) CMTP PL4 predictions. The
texture components used are the (311}<112>, {110}<1I2> and {110}<001>
orientations in the volume fraction ratios : (a) 4:2:0 for Cu and Cu-2.5%Zn; (b)
3:2:1 for Cu-5%Zn; (c) 1:4:2 for Cu-10%Zn and (d) 0:5.2 for Cu-15%Zn, Cu-
20%Zn, Cu-25%Zn, Cu-30%Zn and Cu-35%2Zn.
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Fig. 5.49 Yield stress ratio 0(8)/0(0) curves for rolled and annealed Cu and
brass; ( A ) experimental stress ratios taken from Refs. [14,15]). (——————)
CMTPn=2; (== === — ) CMTP n=1.7; and (——- —— —) CMTP PL4
predictions for (a) Cu rolled to 90% reduction with 30% {110}<112> + 30%
{123}<634> + 30% {112} <111> + 10% random; (b) Cu-10%Zn cold rolled to
90% reduction with 60% (110}<112> + 10% {(123}<634> + 10%
{111}<110> + 20% random:; (c) Cu-30%Zn cold rolled to 90% reduction with
65% {110}<112> + 10% {123}<634> + 25% random: (d) annealed Cu with
70% {100} <001> + 10% {100}<011> + 20% random and (e) annealed Cu-
30%Zn with 20% {111}<112> + 20% {100}<011> +20% {110}<112> + 40
% random.
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(a) (b) (c)

Fig. 5.50 Yield stressratio a(8)/0(0) curves for aluminum and steel sheets; (A )
experimental stress ratios taken from Refs.[28,32]. ( ) CMTP n=2;
(= —— ) CMTP n=1.7 and (—— - — - — CMTP PL4 predictions for (a)
aluminum cold rolled to 80% reduction with 40% {311}<112> + 40%
{110}<112> + 20% random; (b) aluminum cold rolled to 10% reduction with
40% {100}<001> + 60% random; and (c) steel cold rolled to 80% reduction
with 50% {113}<141> + 30% {001}<110> + 20% random.

Fig.5.51 Yield stress ratio 0(8)/0(0) curves for highly textured copper sheet;

(A ) stress ratios [38] for a texture severity of 8.57; ( w) stress ratios [69] for a
texture severity of 5.64 and ( A ) stress ratios (69] for a texture severity of 1.72.
(———)CMTPn=2;(= = - = — - )CMTP n=1.7;and (— — —) CMTP
PL4 predictions for a texture made up of 75% {100}<001> + 25% random

——components.
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criteria used. This can be explained, at least in the first case of the specimen
containing a high volume fraction of cube component, by the relative inability
of the CMTP functions to reproduce the ‘true’ yield surface in shear stress
space, as already noted in the previous section

Results of Viana et al. [38,69] “

Experimental stress-strain data were reported by Viana et al. on highly
textured copper sheets exhibiting the cube component. An excellent fit was
obtained with the CMTP calculations, when the experimental and theoretical
R(B) curves, Fig. 5.3a, were compared. However, the CMTP yield stress
predictions are in complete disagreement with the measured values, as seen 1n
Fig. 5.51. The theory predicts an increase in stress ratio followed by a
diminution when the test direction 6 changes from 0 to 45° and from 45 to 90°;
the experimental measurements indicate a reverse variation. However, an
interesting feature in the data of Viana et al. is worth noting. The first set of
values (38] (4 in Fig. 5.51) is related to a very severe cube texture (severity
parameter * =8.57); the specimen in this case is nearly equivalent to a single
crystal, as noted by the authors [38]. The second set of stresses [69] (¥ in Fig.
5.51) refers to a similar component, but with a texture severity of 5.64: i.e. the
cube orientation is more dispersed, as confirmed by the experimental pole
figures. The stress ratio in the diagonal direction is observed to be much higher
(0.98) than in the first example (about 0.77). Finally, the A symbols
characterize a cube textured sheet with a severity parameter of only 1.72. In
this case, some sgcondary texture components are present in the material. Fig.
5.51 shows a still higher stress ratio (1.05) pertaining to a tensile test carried
out at 6=45°. The CMTP calculations are in somewhat better agreement, at
least from a qualitative point of view, with the last data. This suggests (and
also confirms) that the CMTP criteria are more suitable for dispersed
orientations (spreads of around 15°) than for near ‘single crystal’ components.

*The severity parameter is defined as the standard deviation of the orientation
distribution function from that for a random material (141].
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V.2.3.4. Prediction of other plastic properties

Strain rate and yield stress ratio calculations are of practical importance as
long as they characterize the anisotropic properties of the rolled and annealed
sheets used in the production of beverage cans (for Al alloys) or motorcar parts
(for steels). From a more theoretical point of view, however, it is of interest to
study the plastic behaviour of twisted bars (or tubes), since torsion testing, as
opposed to rolling, allows very large deformations to be attained without

intermediate annealing.

Torsional axial stresses

No attempt was made in the present investigation to solve completely the
texture/plastic anisotropy relationship in twisted samples. This is because
Montheillet et al. (5] have already explained the main features of the link
between the axial (tensile or compressive) stresses induced during the torsion
testing of Al, Cu and a-Fe bars [133] and the textures developed. In this work,
the CMTP n =2 criterion was used and successful qualitative predictions were
obtained by means of an analytical description of the axial stresses developed.
The aim of the present short section is to review the geometrical derivationgf
this behaviour, as also discussed by Canova etal. [11].

For this purpose, the (0;;,0¢;) yield surface section has to be plotted. When
dealing with fixed end torsion testing, the boundary condition £,; =0 can lead to
a positive or a negative (i.e. tensile or compressive) induced axial stress 0, as
shown in Fig. 5.52a. Similarly, when the specimen is permitted to lengthen or
to shorten (free end testing, 0,;=0), the €;; component can be derived from the
normality principle and characterizes the rate of length change of the sample
(Fig. 5.52b). This purely geometric approach can be applied to the various
texture components observed in twisted bars in order to explore their influence
on the axial stresses. These are the {111}<110>, {T11}<1i0>, {111}<112>,
{111}<112>, {112}<110>, {112}<110> and {100}<011> orientations in
FCC metals, respecti%ely referred to as A, A, A1*, A2*, B, B and C in Ref. [133];
here {hkl} is the crystallographic plane near the transverse shear plane and
<uvw> is the crystallographic direction near the macroscopic sKear direction.
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Fig.5.52 Geometric derivation from the (0,4, Og;) yield surface cross-section of:

(a) the axial stress developed during fixed end torsion testing; and (b) the rate of !

len@ change produced by a free end torsion test .
#

The crystalographic and CMTP (n=2) (0,;,0¢;) yield surfaces for the A texture
component are compared in Fig. 5.53 for three values of the tilt ¢ around the
radial direction frequently observed in torsion pole figures (133]. It can be seen
that the axial stresses induced during the fixed end torsion testing of a sample
containing this unique orientation are highly dependent on the small tilt angle
¢. It is also to be noted that the CMTP and crystallographic models predict
similar signs for the 0., component. The results obtained for the other
orientations mentioned above confirm the ones obtainéd analytically by
Montheillet et al. {5].

An attempt to generalize the above predictions to polycrystalline materials
containing several texture components is shown in Figs. 5.54 and 5.55. An
experimental (111) pole figure pertaining to a copper bar twisted to a strain of
0.84 at room temperature (Fig. 5.542) was simulated in a manner similar to
that described in section V.2.1.2. The texture was in this case decomposed into
60% of A/A (tilt ¢ = —5°), 10% of B/B (tilt ¢ =0°), 25% of C (tilt & = —5°) and 5%




208.

(a) (b)

!
Fig.5.53 (0,;,08;) yield surface cross-sections corresponding to the
{111} < 110> orientation for three values of the tilt angle ¢ around the radial
direction observed on experimental pole figures: ¢ = -5°, $ =0° and ¢ =+5".
(a) CMTP n =2 predictions and (b) crystallographic approach.

3 )
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of Ay* (tilt $=0°), all with a spread wg=12.5°. The result of this simulation is
’ shown in Fig 5.54b, from which a reasonable similarity with the experimental

pole figure is observed. The (0,,,09;) yield surfaces (calculated from a
representatlve set of 200 grain orientations in the case of the crystallographic

-g@proach and from the 6 components cited above with their respective weights
in the case of the two CMTP calculations) are shown in Fig. 555. Slight
inclinations of these loci are observed, which are nevertheless difficult to
quantify, indicative of a positive (compressive) axial force. This is consistent
with the experimental axial force/strain curves reported in Ref (133] However,
as accurate quantitative forces are difficult to produce from this simple
geometric approach, it is not known if the amplitudes of the predicted stresses
are reasonable or not

Fig.5.54 (a) Experimental [133] and (b) simulated {111} pole figures
corresponding to a copper bar twisted to £ =0.84 at room temperature
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Fig. 5.55 (022,09;) yield surface cross-sections corresponding to a copper bar
twisted to €=0.84 at room temperature. (a) crystallographic results obtained
from a 200 grain orientation distribution: (b) CMTP n =2 and (¢c) CMTPn=17
calculations based on a texture made up of 60% A/A (tilt = —5°) + 10% B/B
(tilt = 0°) + 25% C (tilt = ~5°% + 5% A, *(tilt = 0°) orientations.
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Anomalous behaviour

3

The study of anomalous behaviour (0p/T,< 1 together with R > 1) carried
out in section V.1.4 will now be generalized to polycrystalline materials
containing more than one ideal orientation. In this case, the average strain rate
ratio R and uniaxial yield stress 0y (here averaging means over the angles 6)
can be evaluated, for example, by the uniform strain assumption applied to the
various CMTP criteria. The biaxial stress only needs to be calculated in one
direction 6, as long as it does not depend on the testing direction. This is
because a biaxial stress state (01] =0922) is equivalent to a through thickness
(033) compression state, as long as t.ﬁe superposition of a hydrostatic pressure 1s
assumed not to influence plastic yielding. Thus the through thickness
behaviour is not modified by the planar anisotropy which may be observed 1n
the sheet plane. ¥ )

Such calculations of the 0y/dy and R ratios were carried out for all the
examples investigated in sections V.2.3 1 and V 2.3.2. The n=2, n=17 and
PL4 criteria were tested on the various materials using the experimental i1deal
orientations and their respective weights. From all these data, only one case of
‘anomalous behaviour’ was found, and that was for the copper sheet studied by
Stephens [140]. The latter was rolled to 96% reduction and displayed two major
{311}< 112> and {110}< 112> components in a volume fraction ratio 2:1. For
this material, the PL4 criterion predicts R = 0.973 and Op/0,=1.012. It is not
known, however, if the latter value is consistent with the experimental
observations, as the biaxial stress was not measured by Stephens (140].
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CHAPTER VI

DISCUSSION

Considerable attention has been focussed in the fabricating industry on the
metallurgical aspects of plastic anisotropy, i.e. on how changes in the
fabrication processes affect the texture on the one hand and the macroscopic
anisotropy on the other. However, a link has been missing in this chain,ie. a
simple quantitative relationship between the texture and the consequent
plastic properties has not been available. Such quantifications have in fact been
derived and are based on the crystallographic methods associated with the
Biéhop and Hill single crystal yield surface. This approach has even been
extended to the case of slip by pencil glide. The predictions obtained by these
means appear to be consistent with experimental results when the crystal
orientation distribution is described by the full CODF. However, the
crystallographic methods unfortunately lead to lengthy computations and are
consequently unsuitable for the rapid assessment of plastic properties.
Moreover, they are still undergoing rapid development and have not yet been
stabilized into a standardized procedure. By contrast, the CMTP method
provides an alternative, very simple way to quantify the texture/plastic

»

anisotropy relationship, as discussed in the previous chapters.

In this chapter, the first section is concerned with some of the metallurgical
parameters that can affect the texture of metal sheets. Some of the practical
uses of the CMTP method are also given, before a critical examination of the
various deformation models is carried out. Finally, the main advantages and
limitations of the CMTP model are considered in turn.
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VI.1. The relationship between texture and certain metallurgical parameters

The study of the plastic properties induced in deformed materials is a very
difficult matter if one wants to take account of the full set of parameters which
can play a role in the fabrication process. In this work, only the crystallographic
anisotropy (or texture) has been considered as long as it is recognized to be the
primary source of plastic anisotropy. However, one has to keep in mind that the
final texture of a sheet results from all the successive modifications undergone
by the initial texture during the various fabrication stages. For example, the
hot rolled texture depends on the hot rolling characteristics, e.g. the
temperature of the ingot as well as the rolling and cooling temperatures. The
cold rolling texture, on the other hand, is influenced by the total reduction
applied to the sheet, by the amount of reduction per pass, as well as by the hot
rolling texture. Finally, the annealing texture 1s dependent on the heating rate,
the annealing time and temperature, the atmosphere employed and the
previous treatments of the sheet. It is thus possible to favor or to diminish the
volume fraction of certain texture components ‘at will’ by varying these

parameters.

Blickwede [31] published an excellent review paper on the influence of some
of the rolling and material characteristics on the strain rate ratio R as well as
on the strain hardening exponent n. For good stretchability, a high valueof nis
desired in order to avoid localized necking early in the stretching process.
Similarly, high R and low planar AR strain rate ratios are recommended for
good drawability. The problem is thus : how to obtain these two specific

properties in combination?

It appears (31] that control of the strain hardening exponent of steel sheets
can be reduced mainly to control of the grain size : a larger grain size is
associated with a higher value of n. However, the former is concurrently
detrimental to the surface appearance after forming. The average strain rate
ratio R is raised by the presence of a {111} type of texture, which also reduces
the planar anisotropy (AR). The latter texture is frequently observed after
recrystallization at the expense of the {100} exponent; this is because the {111}-
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oriented grains have the highest stored energy, so that they are the first to
recrystallize. A larger R-value seems to be obtained by increasing both the
annealing temperature and the grain size. In this case, the recrystallized {111}
grains continue to grow at the expense of the other orientations; such oriented
grain growth thus favors the production of higher R-values. Consequently, a
low heating rate (leading to a larger grain size) as well as a long time at high
temperature are both desirable. The interested reader is referred to Ref. [31] for

a detailed discussion of these metallurgical factors.

V1.2 Some practical uses of the CMTP method

N
A question the reader may ask is the following : how can the CMTP method

be applied to on-line measurements? The comparisons carried out in chapter V
between theoretical (CMTP) and experimental R(6) curves show that good
agreement is observed when only a few texture components (say 3 or 4 plus
their rolling symmetries) are considered. It is thus not unrealistic to think of an
experimental device which could assess quickly the relative intensities of these
3 or 4 orientations. Such a device would be composed of 3 or 4 X-ray facilities

. oriented in 3 or 4 specific Bragg directions of interest. The assessment of the

relative weights of the texture components is in this case very fast, as is the
CMTP estimation of the corresponding R(8) and/or o(8) curves. The
metallurgical parameters affecting the texture can consequently be adjusted on
line until the desired anisotropy (or absence of anisotropy) is attained. For
rofled FCC metals, the orientations that play a significant role are the Bs-
{011}<112>, S- {123}<634>, Cu- {112}<11T> and Cube- {100}<001 >
components; by contrast,the {100} and {111} types of textures have to be
investigated ir. steel sheets.

Another interesting practical application of the CMTP method is related to
the possible series development of the calculated analytical expressions for R(6)
and 0(0). This approach is currently under investigation at the ALCAN
research laboratories in Kingston [142]. According to this method, the
orientation distribution function f{g) is used as a weighting factor in the
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calculation of the R(8) (or 0(8)) coefficients pertaining to the polycrystalline
aggregate -

R(8) (polycrystal) = [ fg) R(0.g ) dg (6.1)

Here R(6,g) is the analytic CMTP expression for the strain rate ratio
corresponding to a given orientation g. Normally the CODF flg) is not known
analytically (unfortunately!); thus R(6,g) has to be éxpanded in the form of a
Fourier series with certain Ripn coefficients to give R((?') for the polycrystal.
The application of such a technique to aluminum alloys, Fig. 6.1, reveals the
weakness of the n=2 criterion (which was the only one to be tested) in
reproducing the full extent of actual 0(8) variations, as already noted above.
This problem is accentuated by the variability in the R(6) measurements which
are generally used for comparison purposes, as shown in Fig. 6.2. Here it can be
seen that the strain rate ratio is highly dependent on the length strain in the
tensile test and that accurate R-values cannot be ascribed to the specimens at
low strains. Nevertheless, without entering into detailed comparisons, it
appears that the R(8) curves predicted by the CMTP n=2 function and
averaged by the CODF technique (Eq. 6.1) are not able to reproduce the
observed variations with accuracy. A possible improvement could come from
the use of the n=1.7 or PL4 criteria. Also another averaging technique could be
used such as the following :

[ Rg),,0.8)dg (6.2)
(polycrystal) ~ fﬂg)i':as (B,g)dg

R (®)

This is based on the Kochendorfer [143] (law of mixtures) model of averaging,
which is discussed in more detail in section VI.3 below. Furthermore, the
necessity of using a CODF representation in conjunction with the CMTP model
should also be questioned. It has been shown indeed (see chapters III and IV)
that the CMTP function already takes into account a certain dispersion (10 to
15°) about a specific ideal orientation. As a result, the complete texture of a
given material need only be decomposed into a limited number of disogjented
components. In fact, using the full CODF apparently leads to an
‘oversmoothing’ of the CMTP polycrystal yield surface (in as much as the ‘single
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Fig. 6.1 Yieldstress ratios 0(6)/0(0) predicted by the CMTP n =2 method used
in conjunction with the CODF technique of texture representation An
averaging procedure similar to that specified by Eq. 6.1 was used. Calculations
and experimental points from Ref. [142]. Commercial purity 1100 Al (a) cold
rolled 30%; (b) cold rolled 60%; (c) cold rolled 60% and annealed; (d) cold rolled
90%; and (e) cold rolled 90% and annealed.




217.

R VALUE ves LENGTM STRAIN FOR 30X, AA. 0 Df£8

.ot —O— SANPLE 1
—Q— SamPLE 2

R (PLASTIC STRAIN RATIO}

LENGTH STRAIN (X}

R VALUE vs LENGTH STRAIN FOR 30X AR 80 DEG

(b)

LN o g
—
.«
s et
)y
v —O— SAMPLE 1|

— = SAMPLE 2

R {PLASTIC STRAIKN RATIO}
-
3

[N ad
.o g—0—38——q
.:. [ ] ‘e [ ] ae [ ] L ) e L 2 ) 0 L) LN

LENGTH STRAIN (X)

Fig. 6.2 R-value vslength strain for an 1100 Al sheet cold rolled 30%. (a) =0
and (b) 8 =60°. From Ref. [142].
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crystal’ surface is relatively smooth). Such 'oversmoothing’ is responsible for
the reduced extent of the R(6) and 0(6) variations. In that spirit, it would be of
interest to apply the CMTP method only to those orientations which correspond
to the peaks of the orientation function f(g). The weights of the texture
components derived in this way could simply be the required components of f(g).

One of the other practical applications of the CMTP model could be
associated with FEM calculations. Most of the codes in service are based on the
isotropic, von Mises flow behaviour. Obviously, after large deformations, the
metal workpieces investigated (motorcar parts, for example) are textured; these
induced anisotropic effects strongly influence the flow of the metal when a
further deformation is applied. It is believed that the employment of anisotropic
yield criteria (of the CMTP type, for example) could considerably improve the
accuracy of FEM calculations without adding too much computing time to what

may already be a long calculation.

V1.3. Grain interaction models

The predictions of plastic properties obtained by crystallographic means are
very dependent on the grain interaction model employed, i.e. on how the
various crystals of the aggregate are assumed to behave. In the previous
chapters, only the two Taylor and Sachs deformation models were employed. In
the former case, all the grains are assumed to undergo the same uniform strain
as the polycrystal; in the latter, the same stress direction is prescribed to all the
crystals (Fig. 4.8). In this way, two different overall yield surfaces are obtained
from the unique yield locus pertaining to a single crystal.

The Sachs model does not allow for any accommodation between individual
crystals, nor does it permit stress equilibrium to be attained internally; thus it
is not conducive to a satisfactory description of real metals. This is confirmed by
the occasional non-convexity of the polycrystalline surfaces calculated using
this assumption. At the other extreme, the Taylor uniform strain model (FC or
full constraints) is often considered to give a reasonable approximation of the
behaviour of equiaxed grains, for which strain compatibility is an important
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requirement. However, after large deformations, the grains are no longer
equiaxed and adopt elongated pancake shapes. In this case, some of the strain
components can be ‘relaxed’, as long as the respective small boundary
interfaces can allow for some strain incompatibilities without inducing large
reaction stresses. This model has generally been referred to as the RC (relaxed
constraints) model, see for example Refs. [67,98,101,102,111,144], and has been
shown to lead to better agreement with experimental pole figures. Canova et al.
(11] used such an approach successfully to calculate the yield surfaces of
textured polycrystals, as well as the R(8) curve for rolled copper. Of interest
also is the self-consistent model, as developed by the team of Berveiller and
coworkers [145,146], in which each grain is considered as an inclusion
embedded in a hOmo_gelgeous matrix.
\

In the previous chapters, the Taylor and Sachs models have been applied to
the different CMTP functions and have been shown (see Figs. 5.25 to 5.28, for
example) to lead to similar overall behaviours. This is again essentially due to
the smooth nature of the CMTP surfaces. Consequently, an intermediate
model, such as that of relaxed constraints, is not expected to lead to significant
improvements in the predictive accuracy of the CMTP method. Nevertheless,

there are other reasons for trying further grain interaction models. This is
because the uniform strain assumption leads to rather long computations when
the non-quadratic (n#2) function is used (see Table V.7). It is therefore of
interest to now examine other models for the calculation of R(68) which take
much less computing time than that of Taylor.

As already noted in Chapter IV, the use of the uniform strain model for
predicting R-values necessitates the definition of the stress tensor as a non-
uniaxial stress tensor, i.e. with a possible non-zero shear component 012. By
contrast, it appears that the tensile test actually carried out to measure strain
rate ratios is purely uniaxial, i.e. it is specified by the following stress and ‘
strain rate tensors:

? 0 0 €11 2 0
,{:, (xy) = | 7 2 0| (6.3)
0 0 0 0 0 ?

o
o
S

2(:0«2) =
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in the (xyz) i.e. the tensile axes (see Fig. 2.2). The value of the strain rate
component €1) is prescribed and 011 is unknown. The above conditions are
ideally suited to the application of the Kochendorfer [(143] hypothesis :i.e. that
each crystal is submitted to the same stress direction (0jj=0 for (i,j) # (1,1)) as
well as to the same arbitrary value of €11 as the polycrystal. A calculation
sequence similar to that developed in section IV.2.1 (Eqs 4.33 to0 4.39) can then
be employed for any analytic CMTP function, a procedure which can be

summed up as follows :

(1) Transform Q(xyz) in the crystal (C) axes by means of the matrix P (Eq.
IV.3.3 in Appendix IV.3)

g(C) = Pg(xyz)ﬁ - (6.4)

(2) Apply the normality rule to obtain the strain rate components

pertaining to the crystal axes

€y(C) = AaF(Sy)13Sy(c) (6.5)
Here F(S;;) =0 is the CMTP function selected.

(3) Calculate the scalar factor A. For a homogeneous function F(S,)=0 of

degree n, it is readily shown that '

W= Sy éu C) = XSU((;) oF/138,.c) = nA (6.6)
so that A=W/in=o0p¢11/n (6.7)

~

when expressed in the (xyz) axes. As £) is prescribed (£1) =1s ~!, for example),
011 is readily calculated since the stress vector must lie on the CMTP yield

surface.
(4) Transformg (C) into the (xyz) reference frame

- ~ I3
E(xy2) =Pg(C) P (6.8)
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By this means, the complete strain rate tensor g (xyz) can be very simply
assessed for each texture component under consideration since the normalijty
rule does not need to be inverted. When the polycrystalline texture is
decomposed into N texture components, the resulting g (xyz) tensor can be
obtained by applying the following Kochendorfer averaging procedure :

1
~ (xyz) 4

N 4
6.
z Z (xw Uk zu){uuuuwul} (6.9)

1=1 ~

=1 \

~

where the summation over j includes the four necessary sets of Miller indices
(hkD[{uvw), (hkD)[uvw], (hk})[uvw] and (hk)[uvw]. This averaging procedure is
not equivalent to Taylor averaging, in which a single set of strain rate
components is calculated from the overall locus. ~——

Fig. 6.3 illustrates the differences in the predictions obtained from the
Taylor and Kochendorfer models when the CMTP n=1.7 yield surface is
employed. It can be seen that the general trends remain the same in the two
cases, and that the amplitudes of the R variations are similar. Nevertheless,
the Kochendorfer predictions are somewhat smoother than those founded on
Taylor's model. However, an important practical difference must be pointed out
which involves the times necessary to compute the R-value ata specific angle 8
and for a single orientation (plus the required symmetries). The latter is about
3 sec for the Taylor averaging technique (see Table V.7) and only about 0.08 sec
for the present model. This ratio of about 40 renders the Kochendorfer type of
calculation very attractive.

The PL1, PL2, PL3 and PL4 functions were also employed in conjunction
with the latter model. The results obtained are presented in Fig. 6.4 for some
common orientations. It can be seen that the general features of the R(8) curves
remain the same for the four types of yield criterion : in particular, strong
anisotropy can be observed for the cube (a), Goss (c), Bs (d), {112}<110> (f), S
(g) and {554} <225> (h) orientations. Concurrently, nearly planar isotropy is
predicted for the {111} type of components, Fig. 6.4e. The PL2 and PL4 criteria
seem to best reproduce the relatively highoR values (near 2.5) frequently
observed in steel sheets displaying both {l111}<uvw> and {554}<225>
components. The four functions cited above also lead to predictions thatare
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Fig. 6.3 Values of R(8) predicted by the CMTP n=1.7 criterion for common
ideal orientations. The symmetry requirements of the rolling process are taken
into account. (—* —) uniform strain model; — + —) law of mixtures model.
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{411}< 148> orientations.
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similar to the ones reported in section V.2 for multicomponent textures.
However, the PL3 criterion (because of its quartic form) is unable to reproduce
the large R values pertaining to steels.

The Kochendorfer analysis also permits the use of a Hill type of yield
function with two different exponents. This criterion is very attractive since it
takes account of the different behaviours observed in the normal and shear
stress subspaces (see Chapters IIT and I'V). The uniform strain assumption was
difficult to apply in this case because the necessary inversion of the normality
rule led to unreasonable computing times. By contrast, when the Kochendorfer
model is used, rapid assessment of the R(6) curves can be made (0.17 sec of
computing time for each value of 6 and for each orientation compared with 0.08
sec for the single exponent calculation). It 1s the inhomogeneity of the yield
function which requires the use of a numerical method to determine the scalar
factor A of the flow rule (Eq. 6.5), and is responsible for the latter increase.

The R(8) results obtained with the aid of the two exponent yield surface for
some common ideal orientations are shown in Fig. 6.5. When dealing with
multicomponent textures, the predictions obtained by the present analysis do
not differ significantly from-the ones displayed in Fig. 5.38 for the Cu-brass
series of Hirsch [12], determined using the n=1.7 and PL4 criteria. Only slight
changes are observed, which still do not predict the full R variations measured
in these rolled metals. For the various steels investigated in section V.2.3, by
contrast, better predictions are obtained with the present two exponent locus
than with the PL4 or n=1.7 criteria. This is illustrated in Fig. 6.6. When
compared with the corresponding predictions reported in Figs. 5.41 to 5.46, it
can be seen that fewer undesirable peaks and troughs are observed than in the
PL4 calculations. The curves are smoother and predict the R-values quite well
and the planar anisotropy AR to a lesser degree. The two exponent yield locus
thus appears to lead to the best overall predictions when used with the
Kochendorfer analysis.
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Fig. 6.6 Values of R(9) predicted by the CMTP two exponent criterion for
various grades of steel using the Kochendorfer model. (a) 25% (554} <225> +
95% {111}<110> + 50% {111}<112>, after [126}; (b) 50% {554}<225> +
20% {111}<110> + 30% {111}<11Z >, after [126]; (¢)60% {111} < 110> +10%
{111}<112> + 10% {110}<001> + 20% random, after (123]; (d) 60%
{110} <001> - 20% {221}<110> + 20% random, after (123]; (e) and (f) ideal
orientations and volume fractions of Table V.5, after [135].



228.

VI1.4. The CMTP method : advantages and limitations

Ay

In this section, a critical examination of the CMTP model is carried out. As
already noted in the course of this report, the CMTP technique has many
advantages as well as some deficiencies which are underlined below.

(i) Simplicity of the procedure - Once the main texture components of a
deformed material are known, the CMTP technique provides an easy way to
assess the corresponding R(6) or a(6) curves. This is because the analytic forms
of the various functions are very supple and allow the plastic (strain rate)
properties to be expressed analytically in most of the cases. This is especially
true when the Kochendorfer hypothesis is used (section VI.3), which gives
results comparable to those obtained from the somewhat less direct Taylor
deformation model. In the former case, it should be noted that some of the
calculations (involving the n=2 criterion for example) can be carried out on a
hand held calculator.

(ii) Fast assessment of the plastic anisotropy - This property, which is
essential for on line-measurement purposes, is directly related to the analytic
character of the CMTP analysis. The law of mixtures (Kochendorfer) grain
interaction model applied to the uniaxial tensile test leads to the fastest
computation. At the other extreme, the uniform strain (Taylor) method is
rather slow when used with the non-quadratic criteria.

(iii) Finite number of orientations - The crystallographic calculations
carried out in Chapter [IT on disoriented single crystals led to yield surface
cross-sections which are quite smooth in the n-plane. For typical experimental
spreads (around 10 to 15°), these are almost circular and thus permit
representation in near quadratic form. This conclusion only holds, however, in
the subspace containing the normal stresses. The CMTP functions considered
in this work can thus be considered to approximate rather well the yield locus
pertaining to a disoriented grain with an orientation sprea'd of around 10 to 15°,
For more general polycrystalline predictions, the texture of a given aggregate
can be represented by the superposition of a finite number of such disoriented
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grains, each with its own CMTP locus. By contrast, when the Bishop and Hill
polyhedron is used instead of the present continuum approach, the full CODF
must be known since the former surface only relates to a "pure” cubic single
crystal. For accurate predictions of R(8), it has been shown (Chapter ITI) that at
least 600 grains are necessary for the crystallographic approach, whereas less
than 10 (plus the rolling symmetries) are sufficient for the CMTP model. The
computing time saved is thus appreciable.

(iv) Good R(6) and 0(8) predictions - From all the comparisons carried

out with experimental data, 1t can be concluded that the CMTP technique leads
to good approximations of observed stress and strain rate ratios. However, the
average R-value is generally better reproduced than the planar AR coefficient,
e.g. the high R(8) variations observed in rolled FCC metals are underestimated.
Thisis essentially due to the sooth nature of the CMTP functions, which lead
to yet smoother loci when they are combined. There was some hope that the
PL1, PL2, PL3 and PL4 functions which were derived from the equations of the
Bishop and Hill polyhedron would overcome this deficiency. Unfortunately,
because of the difficulties encountered in the inversion of the normality rule
when the Taylor assumption is used, only the quadratic types were kept. As a
result, the interesting features of such functions are not readily available. The
law of mixtures grain interaction model allows these 4 criteria to be used with n
exponents less than 2. In these cases, they could lead to improvements in the
calculated R-values. This possibility remains to be verified as only the
quadratic form was investigated and this was not able to reproduce the full
extent of the R(0) variations. .

(v) Yield surface predictions - No final comment can be made here
regarding the accuracy of the CMTP predictions of macroscopic yield loci. This
is because a yield surface has 5 dimensions in stress space, whereas the
experimentally determined yield strengths almost always pertain to two
dimensional sections and only provide a very limited representation of the
overall yielding behaviour. It seems, nevertheless, that the CMTP functions are
poor in reproducing the strain rate features of the loci pertaining to the highly
textured materials which are similar to single crystals. In these cases, there is
some experimental evidence suggesting the presence of rounded corners on the
yield surfaces, a feature which is ignored by the CMTP predictions (Figs. 5.15 to
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5.17). However, when dealing with polycrystalline materials displaying larger
dispersions around their various texture components, much better agreement is
found (Figs.5.18 and 5.32).

There is considerable question in literature [11, 147] about the presence (or
absence) of vertices on polycrystalline yield surfaces. Canova et al.[1]] found
very sharp corners in the loci they calculated (Fig. 5.35) using a rolling texture
predicted by the RC method. By contrast, the yield surfaces corresponding to
torsion were found to be much smoother, although flat edges were reported.
Van Houtte [111] predicted FC and RC loci pertaining to fcc and bec metals
using the CODF technique of texture representation. In the latter case, both
{110} and {11Z}<111> types of slip system were considered, leading to an
overall smoothing of the surfaces, so that no vertices were obtained.
Nevertheless, his isotropic n-plane section of the fcc yield locus was
characterized by a corner (for S92 =S33=0) when calculated by the relaxed
constraint model {111]. The presence of a vertex is of practical importance since
it can be related to the occurrence of flow localization. Indeed, a small stress
variation around such a corner can be associated with a large variation in
strain direction. Such small changes in the stresses are not unrealistic, when

the material is not severely constrained.

The CMTP criteria (n=1.7 and PL4) display a kind of vertex in the shear
stress plane section (see for example Fig. 4.3); these are, however, not
pronounced. When the functions are averaged over different orientations, the
corners disappear and a smooth overall locus is obtained. Consequently, the
CMTP formulation in its present form is not suitable for even a qualitative
study of flow localization or shear band formation [148].

(vi) What is the "best” yield surface? - One of the major problems
encountered in the use of the CMTP model is the selection of an appropriate
yield function. By ‘appropriate’ is meant a criterion which is able to reproduce
the main features of the five dimensional yield surface pertaining to a
disoriented grain. It is indeed easy to find criteria which give almost perfect fits
in various sections of the crystallographic locus. However, it is much more
difficult to invent a function of the stresses which is able to reproduce the
surface shape and size in the normal, shear, and mixed (normal + shear) stress
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subspaces. Such an attempt was carried out with the PL1 to PL4 criteria which
are kinds of ‘partial developments’ of the Bishop and Hill palyhedron (see
section [V.1.2). The necessity of using them in quadratic form (with the Taylor
analysi®) renders them less attractive and convincing. The $wo exponent type of
criterion was also introduced for the purpose of providing a better fit to the
crystallographic surfaces. The two exponents take into account the two
different yielding behaviours observed in the normal and shear stress planes
(see Chapter ITI). The improvement brought about by the introduction of these
criteria is significant. Indeed, in the work carried out to date with the
Kochendorfer (law of mixtures) assumption, the PL4 and two exponent yield
functions seem to best reproduce the plastic properties (R-values)
corresponding to a wide range of textures. However, it is possible that the law of
mixtures analysis (section V1.3) applied to the PL1 to PL4 criteria with
exponents less than 2 (or even with two different exponents) may lead to still
better agreement with experimental observations.

(vii) What kind of loading conditions? - As already noted in the previous

chapters, the R-value is calculated from a tensile test carried out along a
certain direction 0 of a sheet. Two types of testing condition can be considered :

’
»

(a) the uniaxial tensile test characterized by a possible non-zero £12
shear component :

? 0 0 €17 2 0
0= 0 0 0 £ = 2 2 0 (6.10)
~ ~

0 0 0 0 0 ?

£11 is imposed on the polycrystal. Such a test is rigorously valid only for long
samples, in which the constraints due to the shoulders are small. The sheet type
of specimen recommended in ASTM standard A370 is not fully consistent with
these loading conditions (because the gage length is only 2 inches);

(b) the not-strictly uniaxial tensile test characterized by the following
stress and strain rate tensors:

¥
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? ? 0 é” 0 0
g = ? 0 0 £E=10 0 (6.11)
0 0 0 0 0 ?

Here £ is imposed, and €22 and €33 are unknown. Note that the condition
012#0 cannot be fulfilled at the free surface of the specimen, so that Eq. 6.11
only applies to the interior of the sample, where the homogeneity of the
deformation is questionable. These loading conditions are the ones usually
adopted in R(8) calculations (10, 11, 13, 16]. This is because the strain rate
tensor only has one degree of freedom (since £12=0 and €33= —€1] —€£22) and
thus allows easy computation when the Taylor assumption is used.

It should be noted that in both cases the conditions 613=0 and €;3=0 (or
023=0 and £23=0) are equivalent. This is due to the fact that for rolled (or
orthotropic) materials, the Z-axis or normal direction is an axis of mirror
symmetry [11]. The differences attributable to the two tensile conditions are
illustrated in terms of the stress and strain rate characteristics in Fig. 6.7 for a
hypothetical (012,n-plane) anisotropic yield surface.

The lengths of the samples used for R(6) measurements in the literature are
generally small : Benferrah (65] and Truskowski and Jarominek [107] used 1
inch spegimens, whereas 3.5 and 4 inch lengths are reported by Eliaset al. [106]
and Stickels and Mould [108], respectively. Thus the “not-strictly-uniaxial”
tensile test may be more appropriate for the representation of at least the first
two sets of experimental conditions.

(viii) Texture prediction - The theory of texture prediction is based on the
possible activation of slip systems in order to accommodate the imposed
macroscopic deformation. From knowledge of these activated systems, the
orientation of a crystal can be calculated as the deformation proceeds. As long
as the CMTP continuum functions are not strictly crystallographically based,
crystal rotations cannot be calculated since no reference to any slip system is
made. Nevertheless, since the CMTP criterion is fitted to the Bishop and Hill
polyhedron, it has been suggested [153] that it may still be possible to extend
the method so that texture predictions can be made. '
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Fig.6.7 Position of the lé'gding point in the (012, n-plane) subspace for (i)
strictly uniaxial (point Pg) and (b) not-strictly-uniaxial (point P}) tensile
testing, as specified by Eqs. 6.10 and 6.11, respectively. 30 and _é’o are the stress
and strain rate vectors corresponding to the completely uniaxial test (Eq. 6.10);
5; and E; correspond to the non-uniaxial test(Eq. 6.11).
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V1.5. Sources of error
V1.5.1. Errors associated with the CMTP method

The intrinsically ellipsoidal shape of the CMTP criterion is its most
attractive aspect as well as its major source of error. However, the latter may
not be large. Indeed, the functions considered should not be compared to the
Bishop and Hill polyhedron (which relates to a pure cubic single crystal) but to
the yield surface of a disoriented grain, as calculated in chapter III. This is
because, in its spirit, the CMTP model is applied to a finite number of scattered
ideal orientations into which the overall texture has been decomposed. When
such a comparigon is carried out, it appears that : ““

(a) the general symmetries of the locus are retained;

(b) the normal stress plane section is very well approximated by all the

criteria considered;

(c) the shear stress plane sections are generally oversmoothed (to various
degrees) by the CMTP approximations;

(d) it is difficult to estimate the quality of the fit in the mixed stress

spaces;

(e) the errors attibutable to the CMTP model are more important with
regard to the strain rate characteristics (which are related to the shape of the
locus) than with regard to the stress state (given by its size).

e

It is difficult to quantify the error due to oversmoothing of the yield surface,
as it depends very much on the texture and loading conditions being considered.
Furthermore, an error must be defined with respect to something known.
Unfortunately, the loci calculated by purely crystallographic means do not give
a fully accurate estimate of the plastic properties (in fact, the CMTP loci may be
more realistic). When it comes to the experimental R-values, these are always
determined with a fair degree of uncertainty, as discussed in more detail below.




238.

A word must be added here regarding the slip systems considered in the
crystallographic calculations (i.e. {111}<110> and {110}§111>). Obviously
more slip systems can be employed in the BCC metals in which pencil glide (or
restricted {110}, {1 12} and {123} <111> glide) is often assumed. However, such
additions lead to more rounded crystallographic yield surfaces [149], the sizes of
which are not significantly different from the ones calculated above (Chapter
II) for disoriented grains. Consequently, the CMTP fit to such surfaces is not
expected to be changed to a significant degree.

V1.5.2 Errors associated with texture characterization

Texture characterization is also a possible source of error. This is not
necessarily because of error in the determination of the main ideal orientations
produced by rollipg (these can be derived from simple pole figures, except in a
few cases), but because of errors in the estimates of their respective volume
fractions. The difference between 30 and 40% of the Goss component can lead to
significant differences in the R(90) predictions (see for example Fig. 6.4c).
Furthermore, the percentage of random component is difficult to estimate when
a CODF analysis is not performed. It plays a non-negligible role as it can be
quite intense, even in highly textured metals in which it has been estimated
(69] to represent about 15% of the complete orientation distribution.

An important factor which has not been investigated too extensively in the
literature is the change in the texture that occurs during tensile deformation.
Interesting studies have been carried out by Ruano and ‘Gonzalez [150] on
aluminum alloys, as well as by Dabrowski et al. (114] on various grades of steel.
In the former case, deformation tends to align a <111> direction with the
tensile axis, whether the tensile direction is parallel or normal to the rolling
direction. Although these results hold for large tensile deformations (greater
than 100%), it appears that such texture evolution can even affect the R-value
significantly under more conventional experimental conditions (i.e. at
deformations of around 10 to 15%).

A

___In the case of a cold rolled and annealed Al-killed steel sheet, Dabrowski et

al. [114] demonstrated that the {111}<110> texture component increases
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considerably at the expense of the {111}< 112> orientation (or more precisely
the {554} <225 >) during tensile testing in the rolling direction. The reverse
occurs after tension in the transverse direction. In these examples, the tensile
elongations were about 20%. R(6) predictions based on the CODF method of
texture representation (10,16] showed a small increase in the strain rate ratio
in the transverse direction. Similar calculations were carried out in this
investigation with the CMTP model Their texture was decomposed into
{111}<110>, {554} <225> and random components in the density ratios 5:3:2
before tensile deformation, 9:2:2 after testing in the rolling direction and 3:7:2
after testing in the transverse direction. As can be seen from Fig. 6.8, only a
small difference in the R(B) predictions is produced by the second orientation
distribution. Nevertheless, the larger volume fraction of the {554} <225 >
component obtained after tensile deformation parallel to the transverse
direction, i.e. in the third distribution, induces a more pronounced anisotropy
and leads to an R(90) value greater than in the undeformed state. These
simplified simulations are consistent with the calculations reported by
Dabrowski et al. [114].

0 35 30
8 Y

Fig.6.8 R(8) curves predicted by the CMTP two exponent criterion for an Al-
killed steel using the Kochendorfer model. ( A ) experimental values from Ref.
(114]. CMTP predictions ( ) before tensile deformation; (— — — =) after
tensile deformation in the rolling direction; and (—-——- —) after tensile

deformation in the transverse direction.
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Finally, it should be kept in mind that a texture gradient is always present
through tle thickness of a rolled sheet, with a more intense shear type of
texture at the surface because of friction against the rolls. Such a gradient can
also influence the R-value measurements, and should, ideally, be taken into
account when predictions are being made.

V1.5.3. Errors associated with R-value measurement

Measurements of strain rate ratio are always very critical, in that the R-
value can vary with strain, as described above, and therefore take different
values at different strains. In its origigal form [29], the R-value was defined as
“the ratio of the width ¢y and thickness €, strains in the tensile test”. It is thus
related to the slope of the £y vs £¢ curve. However, as these strains frequently
vary in a non-linear manner during tensile deformation, an instantaneous
criterion relating the instantaneous rates of contraction in the width and
thickness directions 1s preferred [151). Welch et al. [152], among others, have
discussed the differences associated with these two definitions, as well as with
other integrated forms. Of the various possibilities, the incremental formula
(R =dey/dey) has become the most popular for R-measurements. Furthermore,
as the strain rate ratio should indicate the anisotropy of the sheet prior to
tensile deformation, a back-extrapolation of the €y vs € curve to zero tensile
strain should be carried out, the slope of which at the origin gives the R-value.
As illustrated in Fig. 6.2, such a definition can lead to difficulties at low strains
when applied to rolled materials. Benferrah (65] avoided these problems in his
extrapolations by using least square fittings on nearly linear ¢,, vs g curves
and neglecting the points associated with very small strains. After high
reductions (€>0.52), inhomogeneous deformation takes place, as in the
experiments of Hirsch et al. [12], so that still larger uncertainties are
associated with the measured values after significant processing strain. An
illustration of the difficulty of giving a “true” value to the Lankford coefficient
is given in Fig. 6.9, taken from the work of Truskowski and Jarominek (107] on
a rolled copper sheet; very different R ratios can be deduced from the
experimental points, depending on the way these are treated.

In order to avoid the difficulties involved in such extrapolations, Welch et al.
(152] proposed the use of an “integral” anisotropy parameter P defined over a.

]
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particular strain range :

— (o) de

< g,

P=

54
However, this definition necessitates more computational work than the slope-
based methods described above. In the literature, R-values have been generally
determined at different strain levels, as already noted in this report. Because of
the lack of a standard procedure, comparisons between different authors are
difficult to carry out. Similarly, comparison with predicted R-values, which
correspond to the ratios of incremental strains at zero tensile deformation, also

1 J“? de (6.12)

Anvolves ambiguities.
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Fig.6.9 R-value vs length strain (n,) at various angles 8 for a rolled copper
sheet. After (107].
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CONCLUSIONS

The CMTP (continuum mechanics of textured polycrystals) method, first
introduced by Montheillet et al. [5] for the prediction of axial stresses in torsion
testing, has been generalized to permit the calculation of plastic anisotropy in
rolled sheet. New yield functions have been introduced, and three different
averaging techniques employed over various grain orientation distributions
pertaining to FCC and BCC metals. For comparison purposes, crystallographic
calculations were also carried out according to the Bishop and Hill method.
From this work, the followirdg conclusions can be drawn :

1. Quadratic or near quadratic yield criteria are useful for approximating the
yielding behaviour of grains displaying an experimental spread of around 10 to
15°. This conclusion is based on the shapes of the yield surfaces obtained from a
classical Taylor/Bishop and Hill analysis applied to rotationally symmetric
gaussian distributions of misorientations with scatter widths varying from 0°
(single crystal) to 45°. For typical experimental spreads (10 to 15°), the
crystallographic n-plane (or normal stress) sections are almost circular and can
therefore be given a near quadratic (n=2) representation. However, the shear
stress plane sections remain quite angular, and so are better fitted with lower
exponents (n=1.5). An overall good fit is obtained with n=1.7. The disoriented
yield surfaces described above thus provide a good physical basis for the CMTP
yield eriteria.

2. Different continuum yield functions were derived according to the trends
displayed by the crystallographic yield surfaces. Of these, the two exponent
criterion gives the best fit to the shear and normal stress behaviours. Other
functions based on the classical Hill criteria (quadratic and non-quadratic) as
well as on a partial development of the equation of the Bishop and Hill
polyhedron (PL1 to PL4), have also been investigated. In order to retain the
relative simplicity of the analysis, only the homogeneous forms were
considered. All these yield criteria give good fits to the n-plane cross-section of
the yield surface pertaining to a disoriented grain, By contrast, they lead to
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smoother loci in the shear stress planes than the crystallographic surfaces
(with the exception of the PL4 and two exponent functions, which give

reasonable overall fits).

3. Yield surfaces as well as R(9) and 0(8)/0(0) curves pertaining to
polycrystalline materials were evaluated by considering three different grain
interaction models. On the one hand, the Taylor approach assumes that all the
grains undergo the same strain as the polycrystal. The Sachs model, by
contrast, prescribes the stress direction to be identical in all the grains of the
aggregate. In these two cases, the overall loci can be readily calculated, from
which the stress and étrain rate characteristics can be derived. Finally, the
Kochendorfer hypothesis, in which the uniaxial stress direction as well as the
value of the €1 strain rate component are prescribed for all the crystals, was
employed for the calculation of R(8). This method does not lead to the
preparation of a yield surface. The predictions obtained from the three models
are similar, because of the smooth nature of the CMTP functions.
Consequently, it appears that a more sophisticated approach, such as that of
relaxed constraints, will not lead to significant improvements in the CMTP
predictions. Nevertheless, the Kochendorfer or law of mixtures analysis, which
allows for much faster computation than the Taylor approach because of an
almost completely analytical description of the yielding behaviour, appears to
be the most promising for industrial purposes.

4. The CMTP yield surfaces calculated using either the Taylor (uniform strain)
or Sachs (uniform stress direction) grain interaction models were compared to
those obtained from crystallographic calculations. In the continuum cases, a
limited number of disoriented texture components was sufficient to represent
the behaviour, whereas, according to the classical approach, a simulated
orientation distribution made up of a minimum of 200 grains is required. The
CMTP functions, although they respect the symmetries of the crystallographic
loci, are much smoother. Nevertheless, some flat regions are observed for the
PL4 and n<1.5 criteria in some cases. When the crystallographic approach is
used, the Sachs assumption leads to concave yield surfaces, which violate the
thermodynamics of flow and which thus differ distinctly from the fully convex
ones obtained from the Taylor model. By contrast, the Sachs and Taylor
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surfaces obtained from the CMTP predictions lead to similar overall shapes
because of the smooth nature of the functions investigated.

5. Good agreement is observed between the predicted CMTP yield surface
sections and experimental data for various metals when the orientations have
dispersions of around 15°. However, for the highly textured polycrystals which
can be considered as near single crystals, the CMTP method is unable to
reproduce the rounded corners and flat edges of the experimental loci.

6. The strain rate R(B) and yield stress 0(6)/0(0) ratios pertaining to rolled
sheet were calculated for the common ideal orientations observed in both FCC
and BCC metals. The general features of empirical R(8) curves are given a
ready analytical formulation in this way. In FCC metals, the cube {100} <001 >
orientation leads to ears (maxima in the R(8) curves) in the rolling and
transverse directions, whereas the Cu- {112}<111>, Bs- {110}<112> and S-
{123} <634 > components favor ear formation at 8 =45°. In BCC materials, the
{111} type of texture is conducive to almost planar isotropic flow as well as to a
high average R-value (and thus to a better drawability), similarly the Goss-
{110} <001 > orientation is characterized by a very hi\g'h resistance to thinning
(high R-value) near the transverse direction. All these predictions are
confirmed experimentally. When compared to experimental data pertaining to
polycrystalline sheet, the CMTP calculations lead to a gdod estimate of the R(6)
and 0(0)/0(0) curves. However, the average value R of the Lankford coefficient
is generally better reproduced than its variation (AR) with the angle 0,
especially in the case of rolled FCC sheet. The positions of the extrema in the
strain rate ratio curves (which give the locations of the earsin deep drawn cups)
are also well approximated. There is a slight trend that the two exponent and
PL4 criteria are better able to reproduce the full range of R(6) curves observed
in different cubic metals, especially when used in conjunction with the

Kochendorfer analysis.

7. The CMTP method was also used to predict the rate of axial deformation in
torsion esting as well as to reproduce the anomalous behaviour of sheet metals.
In the former case, a good estimate of the ratio of longitudinal to torsional
strain rate is produced whgn—{«l-OO-}<va> textures are present in tubes
submitted to free end torsion testing. In the latter, the PL4 criterion is able to
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explain the anomalous behaviour when applied to a {012} type of texture or to
some specific combinations of the texture components found in rolled copper
sheet, although no experimental evidence has yet been found to support these
predictions. Finally, a study of the orientations leading to optimum drawability
(R maximum and AR minimum) was carried out, which indicates that the
presence of the {111} type of texture is required, whatever the CMTP criterion
considered. The two exponent function was not investigated in these examples.

8. Finally, it is suggested that the PL4 and two exponent criteria can be
readily used for on line control purposes when a Kochendorfer (law of mixtures)
analysis is employed. This is because the plastic anisotropy present in the
material can be linked analytically and id a rapid way to the main texture
components as well as to their respective weights. The ideal orientations
displayed must of course be assessed on line for this purpose by using ultrasonic
test methods or X-ray devices oriented in the Bragg directions of the specific
orientations of interest.
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SUGGESTED TOPICS FOR FURTHER INVESTIGATION

The CMTP analysis described above is a practical tool for correlating the
plastic anisotropy of a metal workpiece to its texture in a simple and
satisfactory way. For this reason, further investigations in which the validity of
the CMTP method is tested should be carried out. These could include the

following :

1. The derivation of new yield criteria in order to better reproduce the R-
variations observed in FCC metals.

2. The theoretical and experimental study of the relation between limiting
drawing ratio and texture.

3. The theoretical and experimental investigation of the effect of texture on
the characteristics of biaxial and plane strain work hardening compared to that
ofuniaxial deformation.

¢
4. The theoretical and experimental evaluation of the influence of various
orientations on limit strain in sheet metals, i.e. on the forming limit diagram.

The last three projects should lead to particularly useful data as the
predictions depend sensitively on the shape of the locus being considered.
Finally, further investigations should be carried out regarding the possibility of
predicting deformation textures with CMTP yield functions.

.
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STATEMENT OF ORIGINALITY AND CONTRIBUTION TO
KNOWLEDGE

N

The present work includes the following original contributions :

1. A new five-dimensional orthonormal reference frame was introduced in
which the five base vectors defining the stress and strain rate spaces have the
same length. In this way, stress and strain rate vectors can be decomposed onto
a single set of axes along which the five unit vectors lead to equilibrated work
conjugated components. Compared to older representations, this notation
facilitates the plotting of yield surface cross-sections. Furthermore, it permits
an orthogonal 5x5 transformation matrix to be defined which enables changes
of reference frame to be carried out more rapidly.

2. Classical Taylor/Bishop and Hill crystallographic calculations were
performed on a series of idealized cube textures which were specified in terms of
a rotationally symmetric gaussian distribution of misorientations with scatter
widths increasing from 0° (single crystal) to 45°. The normal stress (n-plane)
cross-sections were shown to evolve from a hexagonal form (single crystal) to a
nearly circular one (when the scatter widths are in the range 10 to 15°), to a
rounded hexagonal form once again (when the orientations are fully random).
This evolution has not been previously described in the literature. By contrast,
in the shear stress planes, the shape of the yield surface cross-sections was
demonstrated to evolve gradually from a square form (single crystal) to a
circular one (random aggregate). This analysis of the effect of scatter width on
the shape of crystallographic yield surfaces provides a good foundation for the

fitting of continuum yield functions.

3. New continuum yield functions were derived, which were formulated so as
to represent the yield surface of a disoriented grain. These were generalizations
of the quadratic CMTP criterion first proposed by Montheillet et al. [5]. Some of
these new functions were deduced from a development of the equation of the
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Bishop and Hill polyhedron and adapted so as to preserve the relative
simplicity of the present type of calculation.

4. The random contribution to plastic properties was simulated using a simple
analytic representation. In the n-plane, the random Taylor/Bishop and Hill
yield surface was fitted by an analytic function of the 9th order. By contrast, a
quadratic criterion was used to reproduce the spherical shape calculated in the
shear stress subspace. The parameters of these functions were computed from
knowledge of the uniaxial and plane strain tension Taylor factors calculated by
the Bishop and Hill technique. This new representation of the random yield
surface allows the contribution to the plastic anisotropy made by the random
“background” observed in experimental pole figures to be calculated in a simple

manner.

5. Algorithms were developed which permit the calculation of (a) strain rate
ratio R(8) curves; (b) yield stress ratio 0(8)/a(0) curves; (c) the biaxial stress o,
and (d) any two dimensional cross-section of the macroscopic yield surface. The
method applies to any combination of texture components (with their respective
weights) and employs the Sachs (uniform stress direction), Taylor (uniform
strain) or Kochendorfer (law of mixtures) grain interaction models for
averaging purposes. The particular advantages for engineering calculations of
the lattermost method of averaging have been illustrated. The R(8) and g(6) vs.
ideal orientation relationships which have been implicit in the past with the
use of crystallographic methods, have received for the first time an explicit and
simple formulation. Similarly, the "anomalous behaviour” of metals is linked
readily to the presence of certain texture components. The only investigation
carried out earlier, to our knowledge, on this particular subject was based on a
crystallographic Bishop and Hill analysis [(77]. Finally, the axial effects
" observed in free end torsion tests have been correlated analytically to the
orientations present. Only a rough description of this relationship has been
proposed in the past [91].

&
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"APPENDIX II.1

RELATIONS BETWEEN THE ROTATION AXISd AND ANGLE W AND
THE EULER ANGLES

Three independent parameters are required for the description_of the
orientation of a crystallite in a polycrystalline material. For ease of reference,
the relations derived by Pospiech [95] between the Euler angles of Bunge (¢4,
d, ¢2) and the rotation axis d(3, ) and angle w employed here (see Fig. 3.2) are

given below. 7
) sin(w/2) sin8 = sin (/2) ,
cos (w/2) = cos (D/2) cos((d1 +¢2)/2) ' (II.1.1)
' vy = $(d1—2)

The transformation matrix for passage from the Cg reference system to the C

system is (16,95] : .

cosdicosdz-sind1sindocos® - sindjcosdz +cospsindacosd s;ncpzsmﬁ’1

P = | -cosdsinda-sindicosdacos® -sind1sind2+ cosdpcosdacos® cosdpzsin®d

singsind -cosdprsind cos® )

(0I1.1.2)

(1-dj?)cosw +djp? didao(1 —cosw) +d3sinw djd3(1 —cosw) —d2sinw)

=|djda(l —cosw)—d3zsinw (1 —-d2?)cosw +dg? dad3(1 —cosw) +djsinw
did3(1 —cosw) +dgsin@  dad3(1 —cosw)-dsinw (1 —d3?)cosw + d7? /

whered; = sin8 cosy, dg = sin8 siny and d3 = cos8

An element of volume in each of the two orientation spaces is specified as
follows : —

-~

dg =d(cos®D) dp; dipa / 8n? ) _ ",
dg = sin®(w/2) dw d(cos8) dyp / n?2 ' , (01.1.3)

12 ~
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- APPENDIX ITI.2

FIVE-DIMENSIONAL REPRESENTATION OF STRESS AND STRAIN
RATE VECTORS

It is the aim of this appendix to express the stress and strain rate vectors of
interest to crystal plasticity in a five-dimensional orthonormal reference frame.
This preoccupation is related to the fact that the six component tensors under
consideration only have 5 independent components.

-
Let us consider a vector V =(Vj;) that can be decomposed on a 9-dimensional

o+,

orthonormal basis (i-;:) :

-+ - - - ~ - - - - -
V=Vi1i1+Vagig+ Vag+Vasg+Vans+Vizig+ Vaar+Vigig+ Vang

(ImI.2.1)
From symmetry considerations, let us also define five vectors (0%) as follows : <
2]] la;z a2 az3 0 0 0 O 0 0o | [i
3| a1 a2 azg 0 0 0 o0 o0 0o | |z
ug|=l0 0 O az¢ O O a3z O O (IF.2.2)
ug¢| |0 0 0 0 ags 0 0 aqg 0 i
us ) _0 0 0 0 0 ase O 0 asg | l-s;

Here, the a;’s must be calculated so that the () vectors form an orthonormal
set. The i} and a3 vectors are chosen arbitrarily in a plane perpendicular to the
direction (1,1,1,0,0,0,0,0,0) : this plane corresponds to the so-called n-plane in ~—
" deviator stress space (Sy1 +Sz2 +S33 =0) (see Fig. I11.2.1). In this way
- - = “
ur = aj2(ig—i1)
i3 = aga (i3~ (i1 +i2)/2) ‘ -
{ u3 =aseig+asriy (I1.2.3) -

el > e

ug = aq515+a4818

- kg -
| u5 = as6 IG+a59 13

b
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Fig.II.2.1 Definition of the (d,35) vectors.

Since the (i]:) setis o'rﬂiogonal by definition, the (Gi) oneis also orthogonal in as

much as:

Uk .uj=0 forj # k (01.273)

The (a}) reference frame will therefore be orthoriormal if . -

Jurl =1 fork =1t5 (IIL.2.5)
thatis, if - ‘Fa12=1/\/.‘—2- -
az3 =V 2/3 kj
! asd 35372 =1 ‘ {[I:2.8)
| 045® +aqg® =1
| as6® +asg® = 1
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-t
- -
{”can now be expressed in the two bases (Eq. [I.2.1 and V =V} uy), from which
it can be shown that :

(V1= =V1/IVZ2-V3/VE

Va2 = :fV]/\/E-Vg/\/E
Vig= +VaV2/3 —-
X V2s =a34 Vy
1V3z=a37V3 (I.2.7)
V31 =aq5V4
Vis=a4gVs
Vig=as6Vs |
| V21 =a59 V5

If the 'sl;ear’ components of {l’are assumed to be symmetrical (Vi; = Vj;), which

Jis the case for the current stress and strain rate vectors, Eq. ITI.2.6 can be

empioyed to deduce that

azg =az7 = +1/V?2
ags =agg = +1/V2 (r1.%.8)
as6 =as9 = +1/V2

G

although only the positive values are retained here.

N \
A vector V verifying thg conditions Vi;=Vj;and V11 + V22+V33=0 can thus
be decomposed onto two different reference frames :’ .

V = Viif + Vasiz + Vasig + Vaslig +17) +Var(i5+15) + V1a(is +13)
= Viui+Viug+Vausj+Veug+Vsus : (O1.2.9)

with [ u] =(i2-i)I1VZ N
a§ = V273 (i3—(i1 +i2)/2) , L
a3 = (g +i)/ V2 V (IIL.2.10)
, ug =+ VZ

| 5 = (l5+i3) I VT - e

A
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7/

[ Vi=(Voa-Vi)IVZT -

| Ve =V312Vy B '
{1 V3 =V2 Va3 (IL.2.11)

Ve=V2Vy

| Vs = ﬁVm

and

An mterest.mg consequence of Eq. III.2.11 is that the two sets of stress S and
strain rate vectors“are work conjugate, i.e.

Sk€r = Sy & (I1.2.12)

1

A verification of the g;)rmality rifle can also be performed. The problem
the &=(&)) vector expressed by Eq. III.2.11 is

consists of determining
perpendicular to the 5-dimensional yield surface-F'(Sk)=0, provided that Y

=(gjj) is normal to the 9-dimensional locus F(S;) =0.
"
tf =

¥

The latter condition is represented by

&j=haF/aSy (I1.2.13)

The differential dF can be expressed in the following two ways :

dF = (aF 13Sy) dSij = (3F"/3Sp) dSi (I1.2.14)

.

\
since F(S;j) =F(S;j(Sk)) =F(Sk). Furthermore, using Eq. III\2 11 and the
condition that dSu +dS92+dS33=0, it can be shown that B

[dS; = ~d811/\/§+d822/\/§

dSp = — V32 (dS11+dSz22) .

d83 = VZ2dSz3 N a (I.2.15)
=V2dS3; " e
=V2dS;2

(=9

»
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so that, by identity :

[ aF’/ 88 = (3F /3892 —aF /3S11) I V2 = (699 —€11)/ V2Ih = é1/4
aF'/8Se = V3/23F /3833 = V3/2¢33/A =é2/4

{1 aF'/3S3 = V2aF/3S23 = V2¢93/ A =é3/A (II1.2.16)
aF'1384 =V2aF/3S31 = V2é31/ A =¢4/A
L&F'/BS5:\/§&F/BSIQ=\/—2_E':12/X ;é5/X

The normality principle is thus obeyed in the 5-dimensional space specified by
Eq. I1.2.10, aslong as it is valid in the complete 9-dimensional space.

It should be noted that the same kind of demonstration could have been
carried out starting directly with the conventional 6-dimensional stress or
strain rate space (in which the ‘shear’ components are already symmetrical).
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APPENDIXIV.1

CONVEXITY REQUIREMENTS OF THE YIELD SURFACES
ASSOCIATED WITH MATERIALS OF CUBIC SYMMETRY

/

I
[PE—

The convexity of a general yield function defined by

F(Sy) = al[S11—S22/"+[S22 —S33/" +/S33—Su11/" ]
+2B(/S12/™ +/S23/™+/S31/"] ~1 =0 (IV.1.1)

can'be tested using.the so:called Hessian matrix {112,113). The € x £ elements
of this matrix are defined as

hy = 3 2F(Sy) /38, 3S, (IV.1.2)

The function F(S,) = 0 is concave with respect to the origin if H is a positive
semi-definite matrix, i.e. if all its € eigenvalues are positive or zero :

A 20 1=1,2, .., ¢ (IV.1.3)

In this appendix, it is shown that the continuum yield functions defined by Eq.
IV.1.1 are convex in the present five-dimensional space (S;, Sg, S3, S4, Ss),
whatever the two exponentsn and m > 1. Using the definitions of Eq. 3.9 :

S1=(S20—-811)/V2, 82 = V32 S33,S3 = V2S23,84 = V2S37,85 = V28,2
' (IV.1.4)

the yield function can be written as:

F(S) = a2-"2[[281/" +/S;—V/3So/" +/S1 +V3Ss/" ]
+2P2-™2 [ [S3/™ +[Sy/™ +[S5/™ ] -1 = 0 (IV.1.5)

~
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where the coefficients a and  are positive. When the cubic symmetry of the
present materials is taken into account, the convexity requirements can be

restricted to the ranges:

-—

S; >0;S22S;/V3:S320; S4>0; S50 (IV.1.6)

-

The two first conditions follow from the symmetry properties of the n-plane

yield locus for cubic materials.

In thisreduced range, the yield function can be expressed more simply as :

F(S) = a2-"2[(281) "+(~S; +V3S9) "+(S; +V3Sg) " ]
+2B2-™2[S3m+8S4™+8S5/" -1 =0 (IV.1.7)

The non-zero second derivatives of F(S,) are the following .

(h11 = 3°F/3S1? = an(n—1)222[2"S "2 +{3/3S7 —S1)*~2 +(S1 + V389)"~?]
hge = 32F/3Sg? = an(p-1)2-"23 [ (V383 —S1)"-2 +(S; +V3Sg)"-2]

{hi2 = ho; = 3%F /1351982 = 32F /38238

=an(n—1)2-"2V3[ —(V382-S8;)"-2 +(S; + V3S9)"-2]

hy = 3%F/3S,? = 2Bm(m—-1)2-"2§m-2 ;=345 (IV.1.8)

-~

The eigenvalues of the Hessian matrix are the roots ofithe equation :

RII—X . h12Z 0 0 7

0
hi2 h22 -\ 0 0 0
0

det(H—-Al) = 0 ‘ 0 h33—-A 0 =0 (IV.1.9)
0 0 0 h44-)\ 0
0 0 0 0' h65-A\
which leads to :

A —(hj1+h22)A+hp1hog—h122 =0

A= h3g

A= hyy (IV.1.10)

A = hss

T - —
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or to:
Ardo=hy1 hoa—hjo?
Ai+Ao = hi1+hoo
{Ag = h33 (IV.1.11)
Ag = hyy
| A5 = hss
It can be seen from Eqs. IV.1.8 that
Af+Ag =hy1+hag 20 forn > 1 (IV.1.12)
and that A‘ = h“ >0 (l =3,4,5) fOrm 21 (IV113)

Furthermore, it is easily shown that hjjhga—hj2? 2 0, so that, whatever the
exponent n,

ArA2 20 (IV.1.14)

It therefore follows that the five eigenvalues of H are positive or zero, so that
the five-dimensional yield locus defined by Eq. IV.1.7 is convex for all n and
m2=1.
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INVERSION OF THE NORMALITY RULE IN THE CASE OF A HILL

TWO EXPONENT YIELD FUNCTION

The prediction of certain plastic properties as well as the calculation of
polycrystalline yield surfaces on the basis of Taylor (uniform strain) averaging
necessitates the inversion of the normality principle. In such cases, the stress
components have to be calculated from the knowledge of the characteristics of

the strain rate.

This can be done by first expressing the Hill two exponent yield function in
the present five-dimensional stress space (Eq. 3.9)

F(Sy =a2-"2[[2S;/"+/S; —ﬁég/"+/31+\/§32/"]

+2B2-™2 [ [S3/™ +[Sqf ™ +[Ss[™ ] -1 = 0

Applying the normality (or flow) rule

é;—‘-i&F/aS;

it is readily shown that :

o

N

é—anz-"’?[zﬂls“n IS, +V3s|" |s,-V3s "

+ +
1 S, sl+\/§s2 -sl-\/is2

IS +V3s," ISI-V?SZI"
§,+V3Ss, ~ §,-V3s,

é2=}«an2'w\/-3—[ ]

s | -

< _ 3 1-m2 .
c‘-ABm2 -—-s i=3,4,5

(Iv.2.1)

(IvV.2.2)

(Iv.2.3)
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Here the ¢; components are prescribed, and the S;’s are unknown.

"

No attempt will be made to describe the complete method used in this work;
only the key points will be outlined. )

It is first of interest to note that {
e, =08,=0 fori=1to6 —- (Iv.2.4)

(ii) Si and €; have the same sign (IV.2.5)
/
This is an expression of the symrﬁ try of the yield function being considered .
The discussion that follows is restrifted to the case €;20. When £; =0, similar
techniques can be used for the estimation of the S;'s.

Bearing in mind that

S; =Scosd
S =Ssind (Iv.2.6)
we calculate the ratio 's;:z/él from Eq. IV.2.3 in order to eliminate the factors A
and S:
2cos(¢p-m/3)" 2cos(p+mw3)|" 2 "
(Vi —é,)l or(@-mBNT_|zp gy 20t @rWT | Reosel o (vV.2D)
1 2 cos (¢ —n/3) 172" 2008(¢p+1/3) 2 2c08¢

A secant method can be used at this point in order to calculate ¢, leajd_ing to the
ratio Xg= S9/S) = tan 9.

We compute now the ratio ¢i/€1 (i=3, 4, 5) from Eq. IV.2.3:

m-1 o n n
ISII _|i‘-l an 2("‘_")/2[2"+|1+\/§X2| +|l—ﬁf2| - (Nz.s)
|s |*-t &, 2Bm 1+V3X, & 1-Vax, '

1
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Since the vector (Si) must terminate on the yield loéus, the value of S; can be

evaluated from the following equation :

/Si/t{a2-"2[2"+[l +V3Xa[*+|l -V3X3[" ]}

(Iv.2.9)

_,_731/";(.‘-1)/(».—1; { p2! -m/2 [/Xslm./(m—l) +/X4/ml(m-l) +/X5/m/(m—1)]}_1 =0

The other stress components Sz, S3, S4 and S are then derived using the

respective calculated ratios X;.

When the Hill one exponent yield function (n=m) is employed, the
computations are somewhat shorter since the value of S; is given directly by
Eq. IV.2.9. In the case of the quadratic criterion (n =m=2), however, analytical

expressions for the S; components can be derived, i.e.

Si=¢,/6ak 1=1,2
S;=¢/288  j5=3,4,5
The scalar A is then calculated : e

A=W/2=8i¢,/2 ={(é12+622)/12a + (632 +842+852)/ 4B}/ A

so that AN={(12+622)/12a + (632 +642+852)/ 4B} 12

' (IV.2.10)

(Iv.2.11)

(Iv.2.12)
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APPENDIX IV.3

PREDICTION OF R(6) AND 0(6) BY THE CMTP QUADRATIC
METHOD

Let {hkl} <uvw> represent the ideal orientation of interest, where {hkl}isa
crystallographic plane close€ to the rolling plane, and <uvw> is a
crystallographic direction close to the rolling direction. For the present
purpose, the subscripts (S), (C) and (xyz) represent the specimen (RD,TD,ND),
crystal <100>, and reference axes for the measurement of R(0), respectively
(see Fig.2.2). Let Py and Pg be the matrices for transformation from the crystal
to the specimen and from the specimen to the (xyz) axes, respectively.

ri uj n;
P; = re ug n (Iv.3.1
r3 u3 n3

wherer; =u/Vul+vi+wlro=v/Vul+vi+wsry=w/ Vul+v2+uw?
ng=h/Vhi+k2+1ng =k/VhI+k2+12n3=1/VhZ+k2+I]?

and u =nxr

cos 6 —-sin® O
Py = sin O cos® O (Iv.3.2)

0 0 1
The matrix for transformation from the crystal to the (xyz) axes is therefore P :

aj by cl
P=P;Py = |a2 b €2 (IV.3.3)
a3 b3 c3
where {a,- = r;co80 + u;si1n0 |

bi = ~r;sin® + u, cosd fori=1,2,3 (IV.3.4)
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{

The stress tensor in the crystal axes can now be expressed as

(0] 0 0
g (C) = Pg (xyz) P where 0 (xy2) = 0 0 0 (IV.3.5)
' 0 0 0
which leads to .
a’® ajaz  aja3
0)=0 | araz az? as a3y (IV.3.6)
aja3 as a3 a3z?
The deviator stress tensor is then given by
ar?-1/3 ajaz aj a3
§(c) =0 | ara2 ag?-1/3 az az (Iv.3.7
aja3 agas az?-1/3

Applying the normality principle to the CMTP yield criterion, we obtain

(3a;2-1)/2 2ajaz/3 2a1a3/3
S(c)=2X0 -| 2ayas/3 (3a22~1)/2 2agay/3 (IV.3.8)
2a1a3/3 2asa3/3 (3a32-1)/2

and finally, € (zy;) = PEc)P,or
(6(aij*)+1)/3 5(a;%b)/3 5(aijiny)/3
g(xyz) =AC| 5(0‘ 3b|_)/3 (5 (ag 2b; 2)/3—1 5(a¢2b;n(_)/3 (IV.3.9)
5(a,’n)/3 5(a;%biny) /3 5§(a;’n,?)/3-1

where the summations over the index i are extended from 1 to 3.
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The strain rate ratio can be deduced from this tensor to be :

> -

-

: > E(alb?)-1 -
RO = 2 = (IV.3.10)

fu 2 p(aln?)-1
3 ] ]

With the aid of Eq. IV.3.4, this leads to

1 3
¢ ~T (ut+ r4—2‘u2r2)sm2‘29+2(u2r2)oo8229+}2(r udl—u r¥)sind0 - -
yy ] i t 1 t i ] t [ 5
R@)=7== 3

[
u E(rint)cos™+E (uln))en 8+ L (r,u n})sin20 - -

(IV.3.11)

Furthermore, since W = 2 A = g(xyz)ff(ryz) =A02(5Za,*+1)/3,itcan be
shown that
00) ={(5Za;*+1)/6}-'?

or 0(0) = {[5Z(rjcosO+u,sin@)*+1)/6}-'? (IV.3.12)
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APPENDIX V.1

'CONVEXITY OF A YIELD SURFACE DERIVED FROM A

COMBINATION OF CONVEX YIELD LOCI

In this appendix, it is shown that the combination of convex yield loci at
constant strain rate ratios (Taylpr) leads to a convex overall surface, whereas
the Sachs av'graging technique (carried out at a constant stress ratio, Fig. 4.8)
may lead to localiy concave results.

Definitions of the convexity

(i) geometric definition

—

A function F(S;) =0 (and thus its representation in S; space) is convex if

-~

(S’'=S)

’}

<0 (V.1.1)

™

-

pring - -
whatever the vectors g and S’ located on the locus F(S;)=0. Here, £ is the
normal to the surface at the point S (Fig. V.1.1). This expresses the geometric
fact that the point S' can never be exterior to the tangent to the locus at the

point S~

—

Fig. V.11 Geometric
derivation of the convexity
condition for a general yield
surface. -é’is the normal to the
locus at the point S.
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(ii) mathematical definition

A function F(S;)=0 (and thus its representation in S; space) is convex if the
_Hessian matrix H=4 2F / §5; 4S; is positive semi-definite, i.e. all its eigenvalues
are positive (or zero). This definition provides a very practical test for the
convexity of a continuum yield function whose equation is known. It was used
successfully in appendixIV:1.

Yield surface combination at constant strain rate ratio

In this case, the first definition is the easiest’to use. Let us define N yield
surfaces, Fi(Sk)=0 (for i=1 to N and k=1 to P),which are assumed to be
convex. The ‘average’ locus is defined as the locus of the points

’ N
s=> aS, J=1tP (V.1.2)

J
where a; are the weighting factors‘ =(IE aj=1). The N components Sj; are
calculated from the imposed strain rate components by means of the normality
rule
Y GF;;S") (v.1.3)/
applied to the ith yield locus F; (Sksj= 0 and inverted to give the Sj; components.

Each of the N functions F; is convez, so that
> -

(8 -8)éi=<0 VS €F, (V.1.4)

where S; is the point on the ith loéqs whose normal is €. It is equivalent to write
Eq.V.1.4.in terms of the Sj and € components

P
2 (8,~8 )¢ s0 VS €F, (V.1.5)
J=1
Since the aj parameters are posiﬁve (ai €[0,1]), it follows that
P » ’ v
Y (a,S, -a S )E S0 VS €F Vi€l (V.1.6)
J=1

so that
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¢ xor .
| gl [El (a,S, -a,5 )% 1s0 VS €F, (V.1.7)
- We permissible permutation of the sums, the following is obtained
. P P N i N * . .
: zl [Zl a,S, - Zla‘ $,1¢ =0 VS €F, (V.1.8)
= = 1=

As long as the S'; vectors can be chosen arbitrarily on each surface Fj, it is
possible to select them to correspond to the same strain rate state. In this way,
the vector S’ defined as 8’j =L a; S’jj belongs to the overall locus since its
components satisfy Eq. V.1.2. Eq. V,1.8 thus leads to :

P
Zjl (S ~8,)8 =0 B _ (V.1.9)
and then to:
> > = . -
(S =8)E <0 (V.1.10)

whatever the vector &, As long as this demonstration can be carried out for any
vector & and therefore for any vector S of the overall locus, the latter is convex.

Yield surface combination at constant stress ratios

The simple example shown in Fig. V.1.2 illustrates the local non-convexity of
such a combination. The two functions F) and F3 are obviously convex, whereas

their combination is not.

%2

=

4
Fig.V.1.2 Yield surface
combination -at constant
stress ratios. F; and Fq are
convex, whereés “F1+F2” is

not. .

Fr B
Tk, ’

S
5

M




