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Abstract 

Strategic planning involves determination of the production schedule, destination policy, and 

down-stream decisions. Traditionally, these components are optimized sequentially, beginning 

with the destination policy, formulated as a cut-off grade optimized through Lane’s method. Next 

the production schedule is optimized, defining when and where to extract material, however 

equipment access is largely ignored at this stage. Lastly, down-stream decisions are optimized, 

defining how material is distributed and treated. Importantly, all these components depend upon 

each other, meaning sequential optimization results in a local optimum, rather than a globally 

optimal strategic plan. Additionally, traditional approaches to strategic planning are deterministic, 

ignoring the uncertainty inherent in mine planning. Significant improvements over the traditional 

strategic planning practices have been developed, providing methods that consider multiple 

sources uncertainty, such as geological, equipment performance, and market uncertainty, and 

simultaneously optimize production schedules, destination policies, and down-stream decisions 

under a single mathematical formulation. However, these developments do not explicitly consider 

equipment access constraints when optimizing the production schedule, and do not provide cut-

off grades for multiple elements. Recent studies have developed methods for optimizing 

production schedules and ramp designs, but do not consider uncertainty and explicit equipment 

access to mining blocks. Additionally, research on optimizing cut-off grades has largely focused 

on deterministic methods for single elements with a stockpile and processor. Optimizing multi-

element cut-off grades with multiple destinations under geological uncertainty has not received 

treatment in literature. In this thesis, two methods are proposed for addressing (1) the joint 

stochastic optimization of long-term open pit production schedules with ramp design, while 

ensuring feasible equipment access to mining blocks, and (2) the determination of optimal long-

term multi-element cut-off grade policies under geological uncertainty from an optimal production 

plan is presented. 

The first chapter in this thesis presents a literature review on deterministic and stochastic mine 

planning developments, and geostatistical simulation methods. The concept of a mining complex 

as it relates to the traditional framework, geological uncertainty, and the state-of-the-art 

simultaneous stochastic optimization is introduced. Next, deterministic optimization methods for 

production schedules, cut-off grades, and ramp design are presented. A review of geostatistical 
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simulation methods follows, covering gaussian, multi-point, and high-order methods follows. 

Lastly, state-of-the-art literature on simultaneous stochastic optimization of mining complexes is 

reviewed. 

The second chapter presents a new two-stage stochastic integer programming formulation for 

jointly optimizing long-term open pit mine production schedules and ramp design while ensuring 

feasible equipment access to mined blocks under geological uncertainty. The objective function 

aims to maximize value while considering the cost required for placing and removing ramps, while 

managing risk. A case study is presented at a gold mine, demonstrating the methods ability to 

generate operationally feasible schedules and ramp designs that manage risk of deviating from 

production targets. 

The third chapter in this thesis presents a reinforcement learning framework for optimizing multi-

element cut-off grades under geological uncertainty for optimal production schedules. The method 

aims to produce long-term multi-element cut-off grade policies minimizing deviations from 

optimal production forecasts. Two possible multi-element cut-off grades are presented: 

Orthogonal, and Diagonal, and tested at a gold-copper mining complex. Both multi-element cut-

off grades are shown to meet production forecasts, with the Diagonal cut-off grade performing 

slightly better. 

Future research in theses areas may explore integrating the joint optimization of long-term open 

pit mine production schedules with ramp design into the larger simultaneous stochastic 

optimization of mining complexes framework and investigate alternative multi-element cut-off 

grades. 

  



vi 
 

Resume 

La planification stratégique implique la détermination du calendrier de production, de la politique 

de destination et des décisions en aval. Traditionnellement, ces composantes sont optimisées de 

manière séquentielle, en commençant par la politique de destination, formulée sous forme de 

teneur de coupure optimisée par la méthode de Lane. Ensuite, le calendrier de production est 

optimisé, définissant quand et où extraire le matériau, cependant, l'accès des équipements est 

largement ignoré à ce stade. Enfin, les décisions en aval sont optimisées, définissant comment le 

matériau est distribué et traité. Il est important de noter que toutes ces composantes dépendent les 

unes des autres, ce qui signifie qu'une optimisation séquentielle conduit à un optimum local, plutôt 

qu'à un plan stratégique globalement optimal. De plus, les approches traditionnelles de la 

planification stratégique sont déterministes, ignorant l'incertitude inhérente à la planification 

minière. Des améliorations significatives par rapport aux pratiques traditionnelles de planification 

stratégique ont été développées, proposant des méthodes qui prennent en compte plusieurs sources 

d'incertitude, telles que les incertitudes géologiques, de performance des équipements, et du 

marché, et optimisent simultanément les calendriers de production, les politiques de destination et 

les décisions en aval sous une seule formulation mathématique. Cependant, ces développements 

ne considèrent pas explicitement les contraintes d'accès des équipements lors de l'optimisation du 

calendrier de production, et ne fournissent pas de teneurs de coupure pour plusieurs éléments. Des 

études récentes ont développé des méthodes pour optimiser les calendriers de production et la 

conception des rampes, mais ne prennent pas en compte l'incertitude ni l'accès explicite des 

équipements aux blocs miniers. De plus, la recherche sur l'optimisation des teneurs de coupure 

s'est largement concentrée sur des méthodes déterministes pour des éléments uniques avec un stock 

et un processeur. L'optimisation des teneurs de coupure multi-éléments avec plusieurs destinations 

sous incertitude n'a pas été traitée dans la littérature. Dans cette thèse, deux méthodes sont 

proposées pour aborder les deux problèmes mentionnés précédemment. Premièrement, une 

méthode d'optimisation conjointe des calendriers de production à long terme des mines à ciel 

ouvert et de la conception des rampes, tout en garantissant un accès viable des équipements aux 

blocs minés, est présentée. Deuxièmement, une méthode pour déterminer les teneurs de coupure 

multi-éléments optimales sous incertitude à partir d'un plan de production optimal est présentée. 
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Le premier chapitre de cette thèse présente une revue de la littérature sur les développements en 

planification minière déterministe et stochastique, ainsi que sur les méthodes de simulation 

géostatistique. Le concept d'un complexe minier en relation avec le cadre traditionnel, l'incertitude 

géologique et l'optimisation stochastique simultanée à la pointe de la technologie est introduit. 

Ensuite, les méthodes d'optimisation déterministes pour les calendriers de production, les teneurs 

de coupure et la conception des rampes sont présentées. Une revue des méthodes de simulation 

géostatistique suit, couvrant les méthodes gaussiennes, multi-points et d'ordre supérieur. Enfin, la 

littérature de pointe sur l'optimisation stochastique simultanée des complexes miniers est 

examinée. 

Le deuxième chapitre présente une nouvelle formulation de programmation stochastique en deux 

étapes pour l'optimisation conjointe du calendrier de production à long terme des mines à ciel 

ouvert et de la conception des rampes, tout en garantissant un accès viable des équipements aux 

blocs minés sous incertitude géologique. La fonction objective vise à maximiser la valeur tout en 

prenant en compte le coût requis pour placer et retirer les rampes, en gérant le risque. Une étude 

de cas est présentée dans une mine d'or, démontrant la capacité des méthodes à générer des 

calendriers et des conceptions de rampes opérationnellement faisables qui gèrent le risque de 

déviation, par rapport aux objectifs de production. 

Le troisième chapitre de cette thèse présente un cadre d'apprentissage par renforcement pour 

l'optimisation des teneurs de coupure multi-éléments sous incertitude géologique pour des 

calendriers de production optimaux. La méthode vise à produire des politiques de teneur de 

coupure multi-éléments à long terme minimisant les écarts par rapport aux prévisions de 

production optimales. Deux teneurs de coupure multi-éléments possibles sont présentées : 

Orthogonale et Diagonale, et testées dans un complexe minier d'or et de cuivre. Les deux teneurs 

de coupure multi-éléments montrent qu'elles respectent les prévisions de production, la teneur de 

coupure Diagonale offrant des performances légèrement meilleures. 

Les recherches futures dans ces domaines pourraient (1) explorer l'intégration de l'optimisation 

conjointe des calendriers de production à long terme des mines à ciel ouvert avec la conception 

des rampes dans le cadre plus large de l'optimisation stochastique simultanée des complexes 

miniers et (2) enquêter sur les alternatives des teneurs de coupure multi-éléments.  
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Chapter 1. Introduction and Literature Review 

A mining complex is an interconnected system, in which raw material flows from its in-situ source, 

through transformative intermediary value adding destinations, and eventually out to the market 

(Pimentel et al., 2010; Goodfellow and Dimitrakopoulos, 2016; Montiel et al., 2016). 

Traditionally, such a system is optimized sequentially, where individual components are optimized 

in isolation, relying on estimated inputs. First, a cut-off grade policy is optimized using Lane’s 

method, which relies on the global distribution of material (Lane, 1988). Next, the so-called 

ultimate pit limit is determined using Lerch Grossman, relying on block values determined from 

estimated grades (Lerchs and Grossman, 1965). Next pushbacks may be determined from a nested-

pits procedure where the value of metal is varied, after which a schedule may finally be determined. 

However, at all steps in the traditional process, uncertainty is ignored, and synergies that may exist 

between the various components of the mining complex are unable to be captured (Whittle, 2007). 

Of the many sources of uncertainty ignored in the traditional framework, geological uncertainty is 

the most impactful. Baker and Giacomo (2001) published a study showing that geological 

uncertainty is the main factor for not meeting production targets. Vallee (2000) further 

demonstrates the impact of geological uncertainty on mining operations, showing significant 

deviations from forecasted ore reserves, and realized production within the first year. 

Dimitrakopoulos et al. (2002) show that forecasts based upon deterministic inputs differ 

significantly from forecasts obtained from simulated inputs, and that including uncertainty enables 

risk to be quantified and incorporated into the planning process. For these reasons stochastic mine 

planning has seen significant development, as it enables quantification of risk at every component 

in the value chain and considers uncertainty in every decision. 

The simultaneous stochastic optimization framework optimizes all components of a mining 

complex simultaneously, considering all sources of uncertainty. Under this framework, it is useful 

to model a mining complex as a graph, where nodes represent locations that transform material, 

and edges represent valid material flows. The transformation applied to material at each node is 

often referred to as a transfer function and need not be linear. The simultaneous optimization of 

all components enables exploitation of advantageous relationships between components and 

management of deleterious relationships (Goodfellow and Dimitrakopoulos, 2016; Montiel et al., 
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2016). Traditional, sequential frameworks fail in this regard as each component is optimized 

individually of all other components. Mining operations are large, interconnected systems, which 

may consist of multiple mines, stockpiles, waste facilities, transportation systems, etc. In the 

simultaneous stochastic optimization framework, material from multiple mines may be blended to 

produce better feed to downstream nodes. However, in the traditional sequential framework the 

blending opportunity can not be fully captured as each component is optimized individually. 

Hoerger et al. (1999) presents one of the first applications of simultaneous optimization of a large 

mining complex at Newmont’s Nevada operations, finding increased value because of previously 

uncaptured synergies. Since then, Whittle has incorporated a form of global optimization into their 

software, and has become the industry standard for long term planning (Whittle, 2018). 

Goodfellow and Dimitrakopoulos (2016) present the first simultaneous stochastic optimization 

framework for entire mining complexes (in-situ source to final customer), capturing synergies and 

managing risk. 

The remainder of this chapter will discuss deterministic mine planning literature, geostatistical 

simulation methods and simultaneous stochastic optimization. 

 

1.1 Deterministic Optimization 

The conventional mine planning framework considers all input parameters to be known with 

certainty. Typically, the input parameters consist of an estimated block model, operating costs, and 

metal price. The operating costs, and metal prices may be forecasted to change over the life of 

mine, but are commonly fixed and, again, assumed to be known with certainty. 

The first step of the conventional mine planning framework begins with optimization of the cut-

off grade policy through Lane’s method (Lane, 1988). Lane’s method considers a mining operation 

to be limited by one of, or a combination of the mine, mill, or market. If the mining operation is 

limited by one of those components individually, the optimal cut-off grade is the limiting cut-off 

grade for the limiting component. However, if the mining operation is limited by more than one 

component, the optimal cut-off grade is a balancing cut-off grade of the limiting components. In 

total, there are 6 possible cut-off grades that may provide the optimal value (3 limiting and 3 

balancing). Lane’s method provides optimal cut-off grade for each period over the life of mine, 

considering the global distribution of material, however, the global distribution of material differs 
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significantly from the distribution of material available in each year once a production schedule 

has been defined. 

In its original form, Lane’s method is equipped to deal with stockpiles, and multi element mines 

with different market conditions/requirements. However, this approach to stockpile management 

is not necessarily optimal, as any material with a grade above the lowest cut-off grade over the 

life-of mine and below the current cut-off grade is stockpiled. Additionally, convergence of Lane’s 

method becomes problematic in for multiple elements. Asad (2005) presents an implementation 

of Lane’s method for two elements with stockpiling, addressing the issue of convergence with a 

grid search technique. However, any material with a grade above the marginal cut-off grade and 

below Lane’s cut-off grade is stockpiled, and all stockpiled material is processed only after mining 

concludes. Ganguli (2011) presents a mixed integer linear program (MILP) for multi-element cut-

off grade optimization, considering operational constraints and sequencing, however, the method 

does not directly optimize cut-off grades, rather material destinations are optimized. Additionally, 

none of these methods are suitable for optimizing multi-element cut-off grades when more than a 

stockpile and processor destination are available for ore. 

Once the cut-off grade policy is determined, a series of nested pits are computed by varying the 

commodity price. Each nested pit corresponds to the ultimate pit limit for the associated 

commodity price, and is entirely contained within nested pits associated with higher prices (Lerchs 

and Grossman, 1965; Seymour, 1995). Note, here, the ultimate pit limit corresponds to the pit 

extents that maximize the undiscounted cashflow, rather than the extents of the pit that contains 

the schedule which maximizes NPV. This property makes nested pits useful to guide the direction 

of mining and design pushbacks. The ultimate pit problem was first formulated as graph problem 

in (Lerchs and Grossman, 1965). More recent methods for solving the ultimate pit frame the 

problem as a maximum flow problem, where ore blocks are connected to the source with a capacity 

equal to the value of the block, waste blocks are connected to the sink with a capacity equal to the 

absolute block value, and internal arcs of infinite capacity connect predecessors and successors. 

After solving the maximum flow, any ore block with incoming flow from the source less than its 

block value is in the ultimate pit. Presently the fastest algorithm for solving such a problem is the 

pseudo-flow algorithm presented in (Hochbaum, 2008). The nested pits can then be grouped into 

pushbacks, which are used to guide the direction of mining, and grouped to maximize NPV while 
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satisfying operational constraints such as mining width. Once pushbacks are defined the 

production schedule can be determined, constrained to the sequence of mining defined by the 

pushbacks.  

In the traditional approach described above, each component is optimized individually, first the 

cut-off grade is optimized without a production schedule, followed by the pushbacks and 

extraction sequence. Such a procedure leads to local optimal solutions, rather than a global optimal. 

Hoerger et al. (1999) present a linear program that optimizes multiple mines, and material flow 

from the mines to shared resources in the Carlin trend. Though the model had several limitations: 

(1) blocks were grouped into push backs, (2) non-linear transformations such as blending and 

stockpiling are not included in, and (3) uncertainty is ignored. However, optimizing multiple 

components in a single mathematical modeled captured more value than the traditional sequential 

framework. 

Whittle (2007) also recognized the shortcomings of the sequential optimization approach and 

incorporated more components of mine planning into a single mathematical framework. The 

prober optimizer incorporated in the whittle software randomly samples feasible solutions and 

locally optimizes each sample. This process does not guarantee a global optimal solution; however, 

sufficient samples should provide confidence in the quality of the solution. Additionally, many 

steps are required to reduce the problem to a tractable size, such as aggregation of mining blocks 

into panels and parcels of material. None the less, the whittle software has become the industry 

standard, and their approach has provided significant value (Whittle, 2018). 

Similarly, the BHP mine planning optimisation group also recognized the value of simultaneous 

optimization. Stone et al. (2004) presents the BLASOR optimizer, and its application to the Yandi 

mining complex. The Yandi mining complex consisted of 11 open pits, to be scheduled over 20 

periods, with strict product requirements on the marketable ore. Material is not classified as waste 

or ore a priori, the classification/destination of material is optimized by BLASOR. To reduce the 

optimization problem to a tractable size, BLASOR relies on an aggregation technique, where 

groups of blocks with similar properties are clustered together, reducing the number of decision 

variables required for optimizing the extraction sequence. Extraction scheduling is performed of 

the aggregated groups of blocks, which is then used for phase design, and lastly, panel sequencing. 
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However, notably, human input is required for the phase design to ensure mineability and 

preventing “rat-holing”. 

Optimizing a production schedule, while ensuring mineability is complex, as equipment access 

must be ensured for every block in the period in which it is mined. As a result, most approaches 

do not provide an explicit guarantee, instead, softer constraints, such as mining width and sink rate 

are used promote more mineable schedules. However, these do not explicitly guarantee 

mineability, as space for ramps is not considered, and the mining width constraint is insufficient 

to guarantee that a suitable surface for a road exists. Yarmuch et al. (2021) presents a binary integer 

program (BIP) for optimizing mineable pushback designs considering access, however, the method 

optimizes cashflow, rather than NPV, and requires tuning of hyper-parameters to ensure mineable 

shapes. 

The simultaneous optimization approaches provide significant value compared to the traditional 

sequential optimization framework. However, the presented methods discussed above all share 

several common limitations: (1) they do not consider uncertainty, relying solely on deterministic 

inputs, and (2) simplification procedures are used to reduce the size of the problem, however, 

simplification techniques artificially reduce selectivity, reducing NPV. 

 

1.2 Modeling Supply Uncertainty and Spatial Variability 

Supply uncertainty presents a significant challenge for mining operations and is the greatest 

contributor to deviations from forecasted performance (Vallee, 2000; Baker and Giacomo, 2001). 

Quantifying the uncertainty and variability of the in-situ grades is critical to mine planning, 

enabling risk aware forecasts, and better decision making (Ravenscroft, 1992; Dowd, 1994; Dowd, 

1997; Dimitrakopoulos et al., 2002). 

The goal of spatial modeling is to determine the attribute value 𝑧 at all locations 𝑢 in the domain 

𝐷 of interest. Estimation methods, provide the best local estimate in the least squares sense, 

estimating the value of 𝑧 at location 𝑢, 𝑧∗(𝑢) as the value that minimizes 𝑉𝑎𝑟{𝑍∗(𝑢) − 𝑍(𝑢)}. 

However, maps of local best estimates smooth out local variability and are not best in a global 

sense. Estimation methods, by construction, tend to overestimate low values and under estimate 

high values (David, 1977; Journel and Huijbregts, 1978; David, 1988; Isaaks and Srivastava, 1989; 
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Goovaerts, 1997; Rossi and Deutsch, 2014). The smoothing effect of estimation methods has 

serious implications for mine planning, as high grade values, and their connectivity drive value 

(de Carvalho and Dimitrakopoulos, 2019). Additionally, mining operations are complex systems, 

where material undergoes numerous non-linear transformations on its journey from it in-situ 

source to its final destination. The non-linearity of the transformations is critically important for 

mine planning because 𝐸[𝑓(𝑥)] ≠ 𝑓(𝐸[𝑥]) if 𝑓(⋅) is a non-linear function, meaning that forecasts 

produced from estimated models may be misleading, as shown in Dimitrakopoulos et al. (2002). 

Conversely, stochastic methods provide equiprobable realizations that reproduce the desired 

statistics of the conditioning data, such as the mean, variance, variogram, etc….  

Geostatistical simulations employ the random function (RF) model, where the values of 𝑧 at 

unknown locations 𝑢 are regarded as spatially corelated random variables. The random variable 

(RV) at location 𝑢, 𝑍(𝑢) is fully characterized by its conditional cumulative probability function 

(cdf) 𝐹(𝑢; 𝑧) = 𝑃𝑟𝑜𝑏 {𝑍(𝑢) ≤ 𝑧} (Goovaerts, 1997). Given conditioning data Λ = {𝑢ఈ, 𝛼 =

1, … , 𝑛}, simulated realizations which reproduce the desired statistic can be generated by sampling 

the N-variate ccdf modeling the joint uncertainty at N locations 𝐹൫𝑢௜
ᇱ, … , 𝑢ே

ᇱ ; 𝑧ଵ, … , 𝑧ேห(Λ)൯ =

𝑃𝑟𝑜𝑏{𝑍(𝑢௜
ᇱ) ≤ 𝑧ଵ, … , 𝑍(𝑢ே

ᇱ ) ≤ 𝑧ே|(Λ)}. The commonly employed sequential simulation 

paradigm recursively employs Baye’s axiom to decompose the N-variate ccdf of the RV 𝑍(𝑢) into 

the product of N one-point ccdfs 𝐹൫𝑢௜
ᇱ, … , 𝑢ே

ᇱ ; 𝑧ଵ, … , 𝑧ேห(n)൯ = 𝑓(𝑢ଵ,  𝑧ଵ|(𝑛)) ⋅

𝑓൫𝑢ଶ; 𝑧ଶห(𝑛 + 1)൯ ⋅ … ⋅ 𝑓൫𝑢ே; 𝑧ேห(𝑛 + 𝑁 − 1)൯ =   ∏ 𝑓(𝑢௜; 𝑧௜|(𝑛 + 𝑖 − 1))ே
௜ୀଵ , enabling each 

location 𝑢௜ , 𝑖 = 1, … , 𝑁 to be simulated sequentially. 

Modelling of the subsurface is a challenging task as the available data is usually sparse, and the 

properties of interest may exhibit complex spatial patterns. This chapter will first discuss Gaussian 

simulation methods, which reproduce second-order spatial statistics. Next multi-point simulation 

methods will be discussed, which can reproduce complex structures, but rely heavily on training 

images. Lastly, high-order simulation methods will be presented, which share many of the 

desirable properties of multi-point methods, without relying as strongly on training images. 

1.2.1 Sequential Gaussian Simulation 

Sequential Gaussian simulation (SGS) relies on the multi-Gaussian assumption, under which, the 

conditional distribution of any RV 𝑍(𝒖), given conditioning data (𝑛) of another subset is also 
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Multi-gaussian (Abramowitz and Stegun, 1964). Under this assumption, the mean and variance of 

any gaussian ccdf are identical to the simple kriging mean and variance (Journel and Huijbregts, 

1978), allowing the ccdf of each node to be constructed from simple kriging. The general steps of 

sequential gaussian simulation are as follows. 

1. Transform the conditioning data into Gaussian space. 

2. Define a random path visiting each node to be simulated exactly once. 

3. Select the next empty node in the path. 

4. Compute the kriging mean and variance for the selected node. 

5. Construct and sample the Gaussian ccdf with mean and variance defined above. 

6. Add the simulated value to the conditioning set. 

7. Repeat from 3 for all nodes in path. 

8. Back transform the simulated values into data space. 

9. Validate the results (mean, variance, histogram, variogram, etc…) 

Two notable limitations of SGS are: (1) the gaussian distribution maximizes entropy, maximizing 

spatial disorder beyond the covariance model (Journel and Deutsch, 1993) , negatively effecting 

connectivity of extreme values , and (2) identification of the conditioning data for calculation of 

the mean and variance is computationally expensive and SGS requires a significant amount of 

redundant searching. The following methods presented below address these concerns to some 

extent by changing the structure of the random path and reducing the number of redundant spatial 

searches for conditioning data. 

1.2.2 LU Simulation 

Davis (1987) introduces conditional simulation through lower-upper (LU) decomposition of the 

covariance matrix. The simulated map of values is defined as 𝑧 = 𝐿𝑤, where 𝐿 is the lower 

triangular decomposition of the covariance matrix 𝐶, and 𝑤 is a vector of independent 𝑁(0,1) 

random values. Similarly, conditional LU simulation is defined as 𝑧 = 𝐿௚ௗ𝐿ௗௗ
ିଵ 𝑧ᇱ + 𝐿௚௚𝑤, where 

𝑧′ is the conditioning data, 𝐿௚ௗ is grid-data portion of the decomposed covariance matrix, 𝐿ௗௗ is 

the data-data covariance portion, and 𝐿௚௚ is the grid-grid covariance portion. Inversion of 𝐿ௗௗ is 

computationally expensive, unstable, and can be avoided by solving 𝐿ௗௗ
் 𝑥் = 𝐿௚ௗ

்  (transposed as 

most linear algebra libraries provide solved of the form Ax=b, rather than xA=b), which, is very 
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efficient since 𝐿ௗௗ is triangular. After solving for 𝑥, the resulting simulation algorithm is 𝑧 =

𝑥𝑧ᇱ + 𝐿௚௚𝑤. Though this method may eliminate redundant special searching of conditioning data, 

it quickly becomes intractable as the size of the simulation domain increases. The required 

covariance matrix is a square matrix with side length of (𝑛 + 𝑁), where 𝑛 is the number of 

conditioning data, and 𝑁 is the number of points to simulate. As a result, the memory requirements 

are (𝑛 + 𝑁)ଶ, and the time complexity is 𝑂((𝑛 + 𝑁)ଷ). 

1.2.3 Generalized Sequential Gaussian Simulation 

Dimitrakopoulos and Luo (2004) provides a generalization of SGS and LU simulation, where 

groups of nearby nodes are simulated simultaneously. Simulating nearby nodes simultaneously 

reduces redundant spatial searching as nearby nodes are likely to share conditioning data, and only 

one spatial search is required for each group. With screen effect approximation, where only 

𝑣୫ୟ୶  conditioning data may be used, the running time of SGS is 𝑂(𝑁𝑣௠௔௫
ଷ ), LU is 

𝑂(𝑣௠௔௫ + 𝑁)ଷ), and GSGS is 𝑂(
ே

௩
(𝑣௠௔௫ + 𝑣)ଷ), where 𝑣 is the group size. From a purely 

computational perspective GSGS achieves its best performance when 𝑣 = 0.8𝑣௠௔௫, however, the 

quality of the simulation should also be considered. GSGS is sensitive to the group size and 

neighborhood size, and a small neighborhood size can lead to artifacts. 

1.2.4 Direct Block Simulation 

Godoy (2003) presents a direct block simulation algorithm (DBSIM), substantially reducing 

memory requirements and speeding up simulations. In this method, the internal points of a block 

are simulated using the group decomposition approach of GSGS, then (1) the internal points are 

back transformed from normal space to data space and averaged into a block value which can be 

exported to a file and discarded, and (2) the points are averaged into a block value in normal space 

and stored in the conditioning set. The construction of the covariance matrix involves determining 

point-block covariance, and the block-block covariance values. The point-block covariance can be 

computed as the volumetric average of the point-point covariance between the point 𝑢଴ and all 

internal points of the volume as follows. 

𝐶(𝑢଴, 𝑣) =
1

|𝑉|
න 𝐶(𝑢଴. 𝑢)𝑑𝑢 ≈

1

|𝑉|
෍ 𝐶(𝑢଴, 𝑢௩)

௩

 

௩

(1) 

Similarly, the block-block covariance can be computed as: 
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𝐶(𝑣௔, 𝑣௕) =
1

|𝑉௔| |𝑉௕|
න න 𝐶(𝑢௔. 𝑢௕)𝑑𝑢௔𝑑𝑢௕

 

௩್

≈
1

|𝑉௔| |𝑉௕|
෍ ෍ 𝐶(𝑢௔, 𝑢௕)

௩್௩ೌ

 

௩ೌ

(2) 

Averaging internal nodes into a block values, and discarding the simulation points significantly 

reduces memory requirements. Compared to SGS, if the simulation grid is intended to be re-

blocked with ൣ𝑁௫ , 𝑁௬ , 𝑁௭൧ internal nodes in each block, then DBSIM would require 
ଵ

ேೣ∗ே೤∗ே೥
 as 

much memory. Additionally, DBSIM realizations exhibit better connectivity than SGS 

realizations, which may be attributed to the structure of the path. 

1.2.5 Simulation of Multiple Attributes 

The methods presented above simulate single attributes, however, it is common for orebody 

models to be contain multiple attributes. The above methods can be adapted to simulate multiple 

attributes, but require fitting many cross-covariance models, and expand the covariance matrix 

considerably. Another approach is to first decorrelate the attributes, simulate each decorrelated 

attribute independently, then back transform the decorrelated realizations into dataspace. Such an 

approach eliminates the need to model cross-variograms and does not require larger covariance 

matrices. 

Desbarats and Dimitrakopoulos (2000) simulate multiple attributes by decorrelating with 

minimum/maximum autocorrelation factors (MAF). The general steps to simulating with MAF are 

as follows. 

1. Transform data into normal space 𝑍(𝑢) = {𝑍ଵ(𝑢), 𝑍ଶ(𝑢), … , 𝑍௞(𝑢)} →  𝑌(𝑢) =

{𝑌ଵ(𝑢), 𝑌ଶ(𝑢), … , 𝑌௞(𝑢)} 

2. Compute the linear model of coregionalization Γ௒(ℎ) = ∑ 𝐵௦𝛾௦(ℎ)௦  

𝐵 = lim
||୦||→ஶ

Γ௒(ℎ) 

3. Transform the normal scores into independent MAF facts by 𝐹ெ஺ி(𝑢) = 𝑀𝑌(𝑢) 

a. Computing 𝑀 

i. Compute Spectral decomposition 𝐵 = 𝑄்Λ𝑄 

ii. Rotate normal score variables to PCA factors 𝑌௉஼஺(𝑢) = Λି
భ

మ𝑄𝑍(𝑢)  

iii. LMC of 𝑌௉஼஺: Γ௒ು಴ಲ
(ℎ) = 𝐴𝐵𝐴்𝛾ଵ(ℎ) + 𝐴𝐵଴𝐴்൫𝛾଴(ℎ) −  𝛾ଵ(ℎ)൯𝐴் 

𝐴𝐵𝐴் = 𝐼 
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𝐴𝐵଴𝐴் = 𝑉 

iv. Compute spectral decomposition 𝑉 = 𝑄ଵ
்Λଵ𝑄ଵ 

v. Rotate PCA factors using eigenvectors of 𝑉 

𝐹ெ஺ி(𝑢) = 𝑄ଵ𝑌௉஼஺(𝑢) = 𝑄ଵ𝐴𝑍(𝑢) = 𝑄Λିଵ\ଶ𝑄𝑍(𝑢) = 𝑀𝑍(𝑢) 

4. Simulate MAF factors independently 

5. Back transform to normal score space 𝑌(𝑢) = 𝐴ିଵ𝑄ଵ
்𝐹ெ஺ி(𝑢) 

6. Back transform to data space 𝑌(𝑢) = {𝑌ଵ(𝑢), 𝑌ଶ(𝑢), … , 𝑌௞(𝑢)} →  𝑍(𝑢) =

{𝑍ଵ(𝑢), 𝑍ଶ(𝑢), … , 𝑍௞(𝑢)} 

Using this method (Desbarats and Dimitrakopoulos, 2000) simulated multiple pore-sizes, 

reproducing the cross-relations between different pore sizes. Boucher and Dimitrakopoulos 

(2007), and Boucher and Dimitrakopoulos (2009) present direct block simulation with MAF 

(DBMAFSIM), which follows the same algorithm as DBSIM, with the addition of a back rotation 

of the internal nodes transforming the values into normal space, before the normal to data space 

transform is performed. 

1.2.6 Multi-point Simulation 

The Gaussian simulation methods presented above reproduce second-order statistics, which are 

suitable for Gaussian random functions. However, geological phenomena are non-Gaussian, non-

linear, complex structures that cannot be faithfully reproduced with gaussian methods (Guardiano 

and Srivastava, 1993; Strebelle, 2002; Journel, 2003). Multi-point simulation methods infer 

higher-order statistics from a training image (TI), allowing reproduction of complex, non-

Gaussian, non-linear phenomena. The training image serves as a database of spatial patterns, 

allowing computation of the ccdf conditioned to the available data at each simulation node. 

Guardiano and Srivastava (1993) propose the ENESIM algorithm, which computes the ccdf at 

each simulation node by scanning the TI for replicates of the data configuration around the 

simulation node and storing the frequency of central node values. A value is then sampled from 

the histogram defined by the central node frequencies and added to the conditioning set. Though 

capable of reproducing complex non-Gaussian phenomena, ENESIM is computationally 

expensive as simulation of each node requires a full scan of the TI, making it unsuitable for large 

simulations with large training images. Strebelle (2002) proposes SNESIM, which improves upon 
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ENESIM by eliminating the need to scan the training image for each node. SNESIM introduces a 

tree data structure which stores central node frequencies for all observed data configurations in the 

training image, allowing the construction of the ccdf from a tree lookup. The tree can be 

constructed from a single scan of the TI, drastically reducing the computations requirements 

compared to ENESIM. However, these methods are limited in that they are only suitable for 

simulating categorical attributes. 

Zhang et al. (2006) overcomes this limitation with FILTERSIM, a multiple-point simulation 

method suitable for continuous attributes. FILTERSIM first scans the TI, classifying all observed 

patterns with a filter score, which is later used to group patterns into a predefined number of bins. 

A representative member (prototype) for each bin is computed as the average of all patterns 

contained within. At each step of the simulation, a pattern sampled from the bin with the prototype 

that best matches the data event is pasted onto the simulation grid. An inner patch of the pasted 

pattern may be frozen to speed up the simulation procedure but may lead to discontinuities. Wu et 

al. (2008) improve upon computational aspects of FILTERSIM with a score-based distance 

function and dual template, enabling fast simulation of large 3D models with continuous and 

categorical attributes. 

Mariethoz et al. (2010) proposes direct sampling for multiple-point simulation, where at each 

simulation node the TI is randomly scanned for a matching pattern. The TI is scanned in a random 

order and the distance from each observed pattern and the data event computed, and best is stored. 

If the observed pattern has a distance less than a predefined threshold, or the number of search 

iterations is reached, the best matching is pasted into the simulation grid. Mariethoz et al. (2010) 

also proposes syn-processing to improve pattern reproduction. Syn-processing functions by 

postponing the simulation of a node if the best matching pattern does not satisfy the threshold, and 

recursively deleting and re-simulating neighboring nodes until the threshold can be satisfied. 

Straubhaar et al. (2011) propose IMPALA, an efficient and parallelizable multi-point simulation 

algorithm. Rather than standard tree data structures used in most multi-point methods, IMPALA 

uses a list to store patterns, reducing ram requirements, and facilitating easy parallelization for 

computation of the ccdf. The list stores tuples of (𝑑, 𝑐), where 𝑑 is the data event, and 𝑐 is a vector 

and 𝑐௜ is the frequency of the central node of the associated data event being facies 𝑖. By iterating 

over the list, the frequency of matches and central node values can be determined and used to 
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construct ccpdf. However, exhaustive iteration of the list consumes significant CPU resources, and 

can be reduced through sorting grouping. 

Gravey and Mariethoz (2020) propose the QuickSampling simulation algorithm (QS), designed to 

leverage modern hardware for fast simulation of categorical and continuous attributes. The method 

decomposes standard distance metrics (Manhattan and Euclidian) as sums of cross-correlations, 

enabling fast computation of a mismatch map using fast Fourier transforms. An optimized partial 

sorting algorithm is then used to quickly identify candidate patterns that are suitable for insertion 

into the simulation grid. 

1.2.7 High-Order Simulation 

The reliance of multi-point methods on the TI may result in simulations reproducing the statistics 

of the TI, rather than the statistics of the samples; an issue that becomes more apparent as the 

density of the conditioning data increases (Osterholt, 2007; Goodfellow et al., 2012). Though, the 

sparsity of the data may make multi-point methods suitable for the oil and gas industry, the mining 

industry uses substantially denser data sets that make the use of multi-point methods challenging, 

as multi-point methods reproduce the statics of the TI and not that of the data. Dimitrakopoulos et 

al. (2010) presents high-order statistics of spatial fields, enabling reproduction of high-order 

statistics using spatial cumulants, which provide a measure of anisotropic spatial connectivity. The 

relationship between the in-situ phenomena and cumulants are presented for many examples, 

providing an intuition between the observed behaviour of the phenomena and associated 

cumulants. Mustapha and Dimitrakopoulos (2010) provide an implementation for calculating 

experimental spatial cumulants, and provides further exploration of spatial templates, effect of data 

density, and the relationship between the spatial phenomena and cumulants. 

Mustapha and Dimitrakopoulos (2010) introduce HOSIM, a high-order simulation algorithm using 

Legendre polynomials. First, a search tree is constructed, storing spatial cumulants, which are 

computed from the conditioning data where possible, but fall back to the TI when insufficient data 

is available. Then, at each simulation node, a spatial template is defined by the neighboring 

conditioning data and used to obtain the high-order spatial cumulants from the search tree. The 

spatial cumulants are then used to compute the coefficients of the Legendre series and construct a 

ccpdf, after which a value is then drawn from the ccpdf and added to the conditioning set. Several 

case studies are presented, demonstrating the methods ability to reproduce the data statistics 
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(histogram, variogram, and higher-order statistics), and the data driven approach of the method 

reduces reliance on the TI, making the algorithm less sensitive to the TI than multi-point methods. 

Minniakhmetov and Dimitrakopoulos (2017) extend HOSIM to jointly simulate multi-variate 

deposits. Yao et al. (2018) provides a new computation model of computing the Legendre 

polynomial series using moments, improving reproduction of statistics compared to the original 

method as truncation Legendre series if not required. 

Minniakhmetov et al. (2018) improve upon the HOSIM algorithm with Legendre like splines, 

improving the stability of the ccpdf approximation. Low order Legendre polynomials poorly 

approximate the ccpdf, while high order polynomials are unstable. Legendre like splines provide 

better, more stable approximations, improving the quality of simulations in terms of reproduction 

of statistics. De Carvalho et al. (2019) extend this method to directly simulate block values, 

improving the computational efficiency and memory requirements of the algorithm. 

Minniakhmetov and Dimitrakopoulos (2022) provide high-order sequential simulation algorithm 

suitable for categorical attributes based on Legendre like splines. Yao et al. (2021) provides a TI 

free high-order simulation method utilizing a statistical based learning method capable of inferring 

the ccpdf from spare drill hole data. 

 

1.3 Strategic Mine Planning with Uncertainty 

The previous sections highlight the limitations of estimated models and deterministic optimization. 

Many methods of generating stochastic orebody realization were presented in the previous section, 

providing the foundation for stochastic mine planning. In this section stochastic mine planning 

will be presented. 

1.3.1 Managing Risk 

Early methods for mine planning considering geological uncertainty focused on generating 

deterministic designs for a set of geological scenarios and selecting from the generated designs the 

one that performed best according to a predefined set of criteria. Dimitrakopoulos et al. (2007) 

proposes the maximum upside, minimum downside approach, where, for each geological scenario, 

a deterministic design is generated, and its performance assessed on all other geological scenarios. 

The designs are evaluated by the minimum acceptable return and upside potential. Though this 
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method enables quantification of risk, it does not integrate and directly manage the geological 

uncertainty in the generation of production schedules, leading to sub-optimal designs. 

Godoy (2003) proposes a multi-step process for considering geological uncertainty in production 

scheduling, using the notion of a stable solution domain (SSD). The SSD is defined as the area 

bounded between all best-case and worst-case lines on a waste-ore plot. Each best- and worst-case 

line combo is generated from a deterministic optimization on the respective geological scenario. 

The SSD defines the feasible production rates across all scenarios. Next, the optimal rate of waste 

and ore production are determined within the SSD, and for all geological scenarios, a production 

schedule satisfying the optimal production rates is generated. Lastly, the production schedules are 

combined into a single schedule using simulated annealing. Godoy (2004) showcases the 

importance of incorporating uncertainty in production scheduling, as the risk-based approach 

achieves a 28% increase in value compared the deterministic approach in the Femistone case study. 

Additionally, the case study also shows the misleading forecasts that can be obtained from 

deterministic mine planning. However, this is still a sequential procedure, and the last step of 

merging the schedules minimizes deviations from the productions rates, rather than directly 

maximizing NPV. 

Ramazan (2004) proposes uncertainty-based production scheduling which minimizes the 

probability of not meeting production targets. Using a set of stochastic orebody models, each block 

is assigned a probability of being ore, which is used to compute 𝑌ଵ
௧, the deviation from 100% 

probability that the material mined in period 𝑡 has desirable properties. The objective function 

minimizes the weighted sum of 𝑌ଵ
௧ over the life of mine, with weight decreasing with time. The 

decreasing weight introduces the notion of a geological distribution rate, which promotes the 

extraction of more certain material in early periods and delays the extraction of uncertain/riskier 

material to later periods, when more information becomes available. Additionally, to promote 

smooth operational production schedules a mining width penalty is imposed, incurring a cost 

whenever a block is extracted in a period different than its neighbors. The case study on a Nickel 

Laterite deposit demonstrates the benefit of the uncertainty-based approach, compared to the 

traditional approach, with 6% increase in probability of achieving production targets in the first 

year. However, the uncertainty-based approach does not explicitly maximize NPV, rather it 

promotes the extraction of desirable material. 



15 
 

Though the previous methods provide a means of considering risk in strategic planning, none of 

them explicitly maximize NPV while directly considering geological uncertainty. Formulating the 

open pit mine production scheduling problem as a two-stage stochastic integer program (SIP) with 

recourse overcomes this issue  (Birge and Louveaux, 2011), explicitly maximizing NPV while 

considering supply uncertainty. Ramazan and Dimitrakopoulos (2005); Dimitrakopoulos and 

Ramazan (2008); Ramazan and Dimitrakopoulos (2013) present two-stage SIPs for open pit mine 

production schedule, maximizing expected NPV while directly managing geological risk. The 

production scheduling decisions are first stage, and the second stage decisions are the deviations 

from targets (tonnage, grade, and metal), resulting from the production scheduling decisions (first 

stage). Formulating open pit mine production scheduling as an SIP provides significant benefit 

compared to the previous methods. The value of the stochastic solution (Birge and Louveaux, 

2011) guarantees that solutions obtained from the previous methods can be no better than the 

production schedules obtained from the SIP, and many studies have demonstrated significant 

positive value (Godoy, 2004; Ramazan and Dimitrakopoulos, 2005; Leite and Dimitrakopoulos, 

2007; Dimitrakopoulos and Ramazan, 2008; Ramazan and Dimitrakopoulos, 2013). 

Benndorf and Dimitrakopoulos (2013) present a SIP for optimizing open pit mine production 

schedules under joint multi-element uncertainty. The formulation also includes a term for 

penalizing highly selective schedules, promoting smoother more operationally feasible extraction 

sequences. The case study showcases the methods ability to provide optimized production 

schedules which maintain grades within tight windows. The case study also explores the effect of 

selectivity, providing three cases generated with different smoothness penalties. Generally, 

compliance to production targets becomes more strained as the smoothness penalty increases. 

However, appropriately tuned smoothness penalties are able to produce smooth schedules, which 

provide adequate compliance to production targets. 

Menabde et al. (2018) provides stochastic mixed integer program (MIP) formulation for jointly 

optimizing production schedules and cut-off grades under supply uncertainty. The MIP does not 

contain any second stage or recourse variables, instead the production constraints are enforced 

through chance constraints, which must be satisfied for a certain proportion of the scenarios. The 

decision variables represent the decision to mine selective mining unit 𝑖 under cut-off grade 𝑗 in 

period 𝑡, requiring that a set of pre-defined cut-off grades be provided. As a result, the quality of 
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the cut-off grade optimization is highly dependent on quality of the provided cut-off grade 

discretization. The provided case study demonstrates 20% increase in value when the schedule and 

cut-off grade are jointly optimized. Similarly to cut-off grades from Lane’s method, the cut-off 

grade starts high and trends downward over the life of the mine. 

Quigley et al. (2018) simulates rare earth elements and optimizes the life of asset production 

schedule and destination policy of blocks. First, the domains are simulated using SNESIM, then 

block grade values are simulated with DBMAFSIM. The life of asset production schedule and 

destination policy are then optimized, maintaining strict product quality requirements. The 

proposed method increases the NPV by 12% compared to the conventional base case comparison. 

Macneil and Dimitrakopoulos (2017) propose a method stochastically optimizing the transition 

from open pit mining to underground operations. The method requires a set of candidate crown 

pillars, which defines the maximum depth of the open pit. For each candidate location, the open 

pit is stochastically optimized (Ramazan and Dimitrakopoulos, 2013), followed the underground 

operations, using a similar formulation with modified precedence constraints for UG. The best 

transition depth is selected as the one which maximize the combined NPV from both the UG and 

open pit operations.  

Dimitrakopoulos and Jewbali (2013) proposes a multi-step method for optimizing short- and long-

term production schedules, incorporating grade control data. First, high density future grade 

control data is simulated using exploration data and grade control data from previously mined out 

areas. Exploration models are updated using simulation by successive residuals (Vargas-Guzmán 

and Dimitrakopoulos, 2002), and stochastic optimization is re-performed on the updated models. 

Incorporation of grade control data provides short scale information, not captured by the widely 

spaced exploration data, potentially leading to better reconciliation. In the presented case study, 

the method provides better forecasts that more closely match the mines reconciliation. 

Khan and Asad (2019) provide a stochastic cut-off grade optimization method, considering the 

uncertain supply of material. The method provides an optimal cut-off grade schedule over the life 

of mine (LOM), maximizing NPV. Similar to Menabde et al. (2018), a grade binning approach is 

used to discretize the space of all possible cut-off grades. The first stage decisions represent the 

quantity of material to extract from grade bin 𝑏 and send to destination 𝑑. However, the method 

does not consider stockpiling or multiple elements. 
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Two-stage SIPs, like those discussed above, provide no means of adapting to realizations of 

outcomes of the unknown parameters (grade, equipment availability, commodity price, etc.). 

However, mine planning defines a sequence of decisions over time, and decisions that occur latter 

in time can react to realizations of outcomes that result from decisions made earlier in time. Multi-

stage stochastic programming provides the model for optimal decision-making in this setting 

(Birge and Louveaux, 2011). Boland et al. (2008) provides multi-stage stochastic programs for 

optimizing open pit mine production schedules under geological uncertainty. The first formulation 

provides scenario dependent processing decisions, while the second formulation includes scenario 

dependent mining decisions. Both formulations include non-anticipativity constraints, which 

ensure that the same decisions must be applied when the scenarios cannot be distinguished. 

However, the formulation requires some strong assumptions which are not reasonable in practice. 

One such assumption is the grade order preserving assumption which assumes that selective 

mining unit (SMU) 𝑖 has a grade higher than SMU 𝑗 in simulation 𝑠, then that relationship holds 

in simulation 𝑟. Additionally, multi-stage production scheduling poses a significant computational 

challenges, requiring aggregation to maintain tractability. 

All methods discussed in this section directly integrate and manage risk associated with geological 

uncertainty, presenting a significant advantage over deterministic counterparts. However, they are 

all based upon the economic value of blocks, and lack in their ability to model and optimize for 

the true value of products sold. 

1.3.2 Simultaneous Stochastic Optimization 

Unlike the methods discussed in the previous section, where economic values of blocks drive the 

optimization, simultaneous stochastic optimization (SSO) maximizes the value of products sold 

considering all components of a mining complex (Montiel and Dimitrakopoulos, 2015; 

Goodfellow and Dimitrakopoulos, 2016; Montiel et al., 2016; Goodfellow and Dimitrakopoulos, 

2017; Montiel and Dimitrakopoulos, 2017; 2018). Generally, a mining complex models material 

supply, stockpiles and storage, value adding transformative nodes, transportation, markets, and 

clients. The flexibility of SSO enables all relevant components to be modelled, capturing all 

transformative actions applied to mined material. The transformations may take any form and need 

not be linear. 
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Simultaneous optimization of entire mining complexes enables exploitation of the relationship 

between various internal components. For example, if multiple mines feed the same processing 

facility, simultaneous optimization would advantageously blend material from the mines to 

provide the optimal blend to the mill. However, sequential optimization would be unable to capture 

this synergy as each mines schedule would be optimized in isolation from the other. By exploiting 

relationships between various mining complex components, higher value solutions that better 

satisfy production targets can be obtained. 

Montiel and Dimitrakopoulos (2013) stochastically optimize a mining complex using a sequential 

approach, similar to (Godoy, 2004). First, an initial solution is generated, then using simulated 

annealing, the solution is improved, minimizing deviations from targets. The perturbations can 

affect the schedule, and destination of blocks. However, if the material classification of a block is 

not constant across all provided scenarios, the destination is not perturbed to avoid material 

misclassification issues. An application of this method on Escondida Norte shows significant 

improvement in deviations from targets. Additionally, even though this method does not directly 

maximize NPV, the case study demonstrates a 4% increase in NPV. However, this method is not 

a true simultaneous approach, and further improvements can be obtained with better destination 

policies and directly maximizing NPV. 

(Montiel and Dimitrakopoulos, 2015); Montiel et al. (2016); Montiel and Dimitrakopoulos (2017; 

2018) extend the previous method, formulating an SIP that maximizes NPV and minimizes 

deviations from targets. The NPV is calculated from the value of products sold and the costs 

incurred, rather than economic block values, enabling blending and material transformations to be 

exploited. Simulated annealing is used to solve the SIP, with three main classes of perturbations. 

Block perturbations may change the period and or destination of block, operating based 

perturbations effect the operating mode at processing nodes (ex: fine vs coarse grinding), and 

transportation-based perturbations effect utilization of possible transportation streams at output 

nodes. Simultaneously considering all these components under a single mathematical formulation 

enables synergies to be leveraged, increasing NPV and decreasing deviations. A case study at a 

mining complex consisting of two pits and 5 processing stream destinations shows significant 

improvement in deviations from targets and increases in NPV (Montiel and Dimitrakopoulos, 

2015). An application the Nevada’s Twin Creek mining complex finds a 7% increase in NPV over 
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the LOM, 6% increased recovered gold, and reduced deviations from targets (Montiel and 

Dimitrakopoulos, 2018). 

Goodfellow and Dimitrakopoulos (2016; 2017) propose a two-stage SIP for simultaneously 

optimizing mining complexes. The first stage decisions define the extraction sequence and the 

destination policy, and second stage decisions control the downstream flow of material. A meta-

heuristic is used, enabling optimization of exceptionally large problems (millions of blocks over 

20+ years) and modeling of non-linear material transformations. The formulation defines two types 

of properties: (1) primary, which are additive and may be transferred between nodes, and (2) 

hereditary, which are defined as functions of primary attributes and need not be additive. 

Previously, primary attributes have been well addressed in literature, however, the complexities of 

dealing with non-linearity has resulted in hereditary attributes largely being ignored. The proposed 

metaheuristic efficiently handles non-linearities imposed by the hereditary properties, allowing 

modeling and optimization of entire mining complexes, focusing on the value of products sold, 

rather than economic block values. 

Goodfellow and Dimitrakopoulos (2016) proposes a cluster-based destination policy suitable for 

multiple elements in the presence of uncertainty. Under the cluster-based destination policy, the 

destination of a block is scenario dependent and defined by the cluster to which it belongs. The 

cluster membership is defined by the block’s properties in each scenario. Using k-means++, 𝑘 

centroids are defined, and in each scenario a block is assigned to the nearest cluster centroid. The 

locations of the centroids are optimized such that the within cluster similarity and the out of cluster 

dissimilarity are maximized. The number of clusters 𝑘 is required as input, and the algorithm will 

define the location of 𝑘 centroids, assigning each block to the cluster associated to its nearest 

centroid. Destinations can then be assigned to each centroid, enabling blocks to be sent to different 

locations in different scenarios depending on their properties. Such a destination policy is effective 

for multiple elements under supply uncertainty. However, the resulting policy is difficult to 

interpret, as determining the destination of a block requires first determining the cluster to which 

it belongs, and then identifying the destination of that cluster in the period of interest. Identifying 

the cluster to which a block belongs requires finding the nearest cluster centroid, which is not a 

trivial task. Compared to a cut-off grade policy, where a blocks destination can be determined by 

simply comparing its properties to the cut-off thresholds, the cluster-based policy introduces 



20 
 

additional complexity making operational use difficult. Mult-element cut-off grades provide a 

more operationally usable destination policy; however, no previous research has explored 

optimizing multi-element cut-off grade policies under uncertainty with multiple destinations. 

Capital expenditures are a challenging component of simultaneous stochastic optimization of 

mining complexes. Typically, capital expenditures are predefined, and not included in the 

optimizer. However, the value of a mining complex and how it operates is dependent on capital 

expenditure decisions as they effect mining rates, processing rates, transportation, tailings 

capacity, etc. Thus, optimizing capital expenditures simultaneously with all other components of 

a mining complex desirable. 

Goodfellow (2014) incorporates CAPEX decisions for increasing or decreasing production. The 

CAPEX decisions are incorporated into the formulation presented in (Goodfellow and 

Dimitrakopoulos, 2016) as first stage decisions. The formulation incorporates lead-times and 

CAPEX timing constraints to ensure feasible CAPEX decisions. An application of the method on 

a copper mining complex, with CAPEX for increasing mining rates through the purchase of trucks 

and shovels demonstrates a 5.7% increase in NPV compared to a deterministic equivalent. 

Farmer (2016) extends (Goodfellow and Dimitrakopoulos, 2016) to optimize CAPEX decisions in 

the pre-production stage, incorporating metal price uncertainty into downstream decisions, and 

financial contract based revenues. The formulation is applied to a copper-gold mining complex, 

showing an 11% improvement in NPV compared to a stochastic optimization with fixed capacities. 

The milling capacity was modelled as a one-time CAPEX decision executed in the first year, with 

a 2-year lead time, and the mining capacity CAPEX decision could be made throughout the LOM 

but had a 2-year lead-time. 

Zhang and Dimitrakopoulos (2017) develop a decomposition method for optimizing mining 

complexes. The method first optimizes the production schedule, defining the tonnages of each 

material type available, then the down stream decisions are optimized. The down stream optimizer 

can buy or sell material, which is used to update the value of each material type. If material is sold, 

then the schedule provided to much of it and its value is decreases, whereas if material is 

purchased, the schedule didn’t provide enough, and its value is increased. The production schedule 

is then reoptimized and the process is iteratively repeated until the value update is sufficiently 
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small. Application of the method on a mining complex consisting of two copper mines, stockpiles, 

and 15 material types yielded a 6% improvement in NPV compared to local optimization approach. 

Del Castillo and Dimitrakopoulos (2019) develops an adaptive simultaneous stochastic 

optimization framework for optimizing mining complexes, considering feasible CAPEX 

decisions. The method allows the solution to branch if a representative number of scenarios makes 

the same CAPEX decision, allowing the mining complex to adapt to uncertainty as it is revealed. 

Requiring a representative number for branching prevents overfitting to the scenarios. Once a 

scenario branches, all previous decisions are fixed, enabling a mine plan to be followed through 

the LOM. A case study on a copper mining complex, with CAPEX decisions for purchasing trucks, 

shovels and a secondary crusher is presented. Branching is enabled for the decision to purchase a 

secondary crusher, allowing for specialized mine plans able to fully utilize the available capacity. 

The case study finds a 3% increase in NPV compared to the base case 2-stage SIP without 

branching. 

1.3.3 Smarter Solvers for Simultaneous Stochastic Optimization of Mining Complexes 

Simultaneous stochastic optimization of mining complexes is computationally challenging, often 

requiring millions of binary decision variables, with non-linear transfer functions, and complex 

constraints. Smarter more capable optimization algorithms provide higher quality solutions in a 

shorter amount of time, enabling more complex formulations, considering more aspects of a 

mining complex. 

Lamghari and Dimitrakopoulos (2012) optimizes mine production schedules with diversified Tabu 

search. Two diversification strategies are used; a long term memory approach which moves blocks 

into period in which they are less frequently scheduled, and a variable neighborhood approach 

based on (Hansen and Mladenović, 2001). The long-term memory diversification approach was 

found to perform better than the variable neighborhood approach on larger problems. 

Lamghari et al. (2014) presents variable multi-neighborhood descent for optimizing open pit mine 

production schedules. The neighborhoods are defined: swap, which selects two blocks and swaps 

their periods, shift after, delaying the extraction of a block, and shift before, accelerating the 

extraction of a block. Each neighborhood is exhaustively searched until no more improving 

perturbations are found, in an iterative procedure until no improving moves exist in all three 
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neighborhoods. The method requires an initial solution but is not sensitive to the quality of the 

solution.  

Lamghari and Dimitrakopoulos (2020) proposes three hyper heuristics and compares their 

performance. The first hyper heuristic keeps scores for low-level heuristics and uses reinforcement 

learning principles to select low-level heuristics and update their scores. The second hyper 

heuristic employs a more sophisticated scheme for selecting and updating heuristics. The third 

hyper heuristic utilizes a scoring scheme which incorporates the heuristics effect on objective 

function value and it’s time, and selects low-level heuristics probabilistically based on its score. 

The third hyper-heuristic was found to perform best, with an average gap from the linear relaxation 

of 0.79% compared to 35.1% for the first and 48.34% for the second heuristic. 

Reinforcement learning (RL) (Sutton and Barto, 2018) is a machine learning approach aimed at 

solving sequential decision-making problems in complex and uncertain environments. It operates 

by training an agent to make decisions that maximize long-term cumulative rewards based on 

interactions with the system. In mining optimization, RL presents a flexible methodology for 

addressing challenges such as resource allocation and scheduling, where traditional optimization 

methods may struggle to adapt to the system's evolving nature. By continuously refining its 

strategy through feedback, RL enables more efficient exploration of possible solutions, particularly 

in highly dynamic and stochastic contexts. 

Yaakoubi and Dimitrakopoulos (2023) proposes the learn-to-perturb hyper heuristic, which learns 

the best low-level heuristics to apply in different problem states. The sampling of the low-level 

heuristics is biased by the performance on the heuristic in previous iterations, with more 

performant heuristics being favored. The score of each low-level heuristic is a combination of its 

performance and weighting according to an agent. Testing on several mining complex instances 

with multiple RL agents, learn-to-perturb hyper heuristic was found to reduce computation time 

by 80%. 
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1.4 Goal and Objectives 

The goal of the research presented in this thesis is to further develop and incorporate operational 

components in stochastic strategic mine planning. To this end, joint stochastic optimization of 

long-term production schedules with ramp design while ensuring equipment access to scheduled 

blocks and optimizing multi-element cut-off grades under geological uncertainty for optimal 

production plans are explored in detail. The following objectives are set to meet this goal: 

 Review the technical literature related to open pit mine production scheduling with ramp 

design, cut-off grade optimization, deterministic and stochastic methods for strategic mine 

planning, and geostatistical simulation methods. 

 Examine geostatistical simulation methods for incorporating geological uncertainty into 

the mine planning process 

 Develop a stochastic optimization model for jointly optimizing open pit mine production 

schedules and ramp design considering geological uncertainty. 

 Develop a reinforcement learning framework for optimizing multi-element cut-off grades 

under supply uncertainty given an optimal production schedule. 
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1.5 Thesis Outline 

This thesis is organized into the following chapters. 

Chapter 1 presents a review of the literature related to deterministic and stochastic mine planning, 

joint production schedule and ramp design, cut-off grade optimization, and geostatistical 

simulation methods. 

Chapter 2 presents a stochastic integer program for jointly optimizing long-term open pit mine 

production schedules and ramp under geological uncertainty. An application at a gold mine is 

presented demonstrating the methods ability to generate feasible production schedules that meet 

production targets while managing risk. 

Chapter 3 presents reinforcement learning framework for optimizing multi-element cut-off grade 

under supply uncertainty for an optimal production schedule. Application at a gold-copper mine 

demonstrates the methods ability to generate cut-off grade policies that meet target production 

forecasts under supply uncertainty. 

Chapter 4 summarizes the contributions in the previous chapters and overall conclusions and 

presents suggestions for future work. 
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Chapter 2. Joint Stochastic Optimization of Open Pit Mine 

Production Scheduling with Ramp Design 

2.1 Introduction 

Open pit mining is a large-scale extractive activity in which substantial quantities of material are 

excavated from a continually expanding pit and transported for further treatment. The 

transportation of mined material from its point of excavation to its next destination requires a road 

and ramp network, connecting mining locations to material destinations (Hustrulid et al., 2013). 

Ramps are usually placed adjacent to the pit wall and enable equipment to travel between benches, 

while roads enable equipment to traverse across flat terrain, such as a bench, or from the pit exit 

to the crusher. Typically, the ramp and road network are designed after the long-term production 

schedule has been optimized, as the schedule defines when and where equipment access is 

required. However, ramps and haul roads are relatively large pieces of infrastructure which not 

only effect the geometry of the pit defined by the long-term schedule, but also the availability of 

material. The modifications required to accommodate a ramp and road network can decrease the 

performance of the long-term schedule, decreasing net present value (NPV). As a result of the co-

dependence between the ramp and road design, sequential optimization of either component 

individually can lead to sub-optimal results. In this work, the joint optimization of the long-term 

production schedule and ramp and road design while ensuring feasible equipment access to 

scheduled mining blocks is proposed, to address the issues arising from the sequential process.  

Conventionally, open pit mine production schedules are formulated deterministically, however, 

orebodies are heterogenous, and a single smooth estimate of the orebody provides no information 

about the variability and uncertainty of the material in the ground. Stochastic optimization for open 

pit mine production scheduling improve upon their deterministic counterparts by taking as input a 

set of geostatistical simulations (Goovaerts, 1997), which represent the variability and uncertainty 

of material in the ground. Ramazan and Dimitrakopoulos (2005) first proposed a two-stage 

stochastic integer program for open pit mine production scheduling, which was limited to a single 

element mine with-out a stockpile. The value of the stochastic solution as it relates to mine 

production scheduling was then demonstrated in Dimitrakopoulos and Ramazan (2008). Since 

then, stochastic formulations for mine planning have been extended to include stockpiles 
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(Ramazan and Dimitrakopoulos, 2013), multiple elements (Benndorf and Dimitrakopoulos, 2013; 

Quigley et al., 2018), and entire mining complexes (Goodfellow, 2014; Montiel and 

Dimitrakopoulos, 2015; Goodfellow and Dimitrakopoulos, 2016; 2017; Montiel and 

Dimitrakopoulos, 2018). Simultaneously optimizing entire mining complexes in the presence of 

uncertainty increases values, improves forecasts, and reduces risk (Goodfellow, 2014; Montiel and 

Dimitrakopoulos, 2015; Goodfellow and Dimitrakopoulos, 2016; Montiel et al., 2016; Goodfellow 

and Dimitrakopoulos, 2017; Montiel and Dimitrakopoulos, 2018; Kumar and Dimitrakopoulos, 

2019; Dimitrakopoulos and Lamghari, 2022). Concurrently, the optimization of large stochastic 

problem has been extensively studied, leading to the development of many advanced heuristic 

methods (Lamghari and Dimitrakopoulos, 2012; Lamghari et al., 2014; Lamghari and 

Dimitrakopoulos, 2020; 2022), and smart solvers leveraging reinforcement learning (Yaakoubi 

and Dimitrakopoulos, 2023) . However, in all past approaches, block access is defined solely 

through the slope constraints, and does not explicitly consider the ramp and road network required 

to facilitate equipment access to the scheduled mining blocks. As a result, the optimized production 

schedules require modification to accommodate the placement of ramps and roads, while ensuring 

feasible equipment access to scheduled mining blocks, affecting the value of the previously 

optimized solution. 

Previous work to optimize ramp and road design considers it to be separate from open pit mine 

production scheduling and has focused on optimizing ramp design for a predefined ultimate pit 

limit (UPL). Gill (1999) provides a dynamic programming approach, which optimizes the ramp 

design for a given ultimate pit limit. The dynamic program discretizes ramps into single bench 

segments and identifies the combination of segments providing access from the surface to the 

lowest bench, while considering the cost of stripping additional material (expanding the predefined 

pit) and leaving material unmined (shrinking predefined pit). Nancel-Penard et al. (2019) propose 

a method which, takes as input a set of pre-defined pushbacks, and generates an optimal ramp 

design considering the cost of additional blocks to be extracted, while also modifying the pushback 

design to provide space for ramp placement. Yarmuch et al. (2020) optimize the design of both the 

ramp within the pit, and the ex-pit haul road, considering construction, haulage and maintenance 

costs. The ex-pit haul roads are optimized using a shortest path approach, while the ramp design 

is optimized via a binary linear program, which minimizes the ramp costs. Morales et al. (2023) 

develop a mathematical program which optimizes the discretized pushback design, while ensuring 
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adequate space between pushbacks for ramp placement and then uses an algorithm to construct an 

operational push back design. However, in all previously presented methods the schedule is not 

informed by the placement of ramps and the accessibility which it provides. In an operating mine, 

equipment requires road access to all scheduled mining activities, meaning that mining is required 

to progress outwards from the ramp. The co-dependence of the schedule and ramp/road design 

means that any optimization process which does not jointly consider both the schedule, and the 

ramp design results in a sub-optimal solution that does not leverage the relationship between the 

two components. In this study, the goal is to introduce a novel approach for jointly optimizing 

open pit mine production scheduling and ramp design. Accordingly, a two-stage stochastic integer 

program (SIP) (Birge and Louveaux, 2011) for optimizing long-term open pit mine production 

schedules while ensuring equipment access through ramps and road is presented. This differs from 

previous methods in that scheduling and ramp design are jointly considered under one 

mathematical formulation, rather than considering them separately in a stepwise approach as done 

in previous studies. The SIP builds upon the formulation presented in Ramazan and 

Dimitrakopoulos (2013) to ensure feasible equipment access by requiring that all mined blocks be 

accessible from a road that leads to the top of the pit in the period in which they are mined. Roads 

are modelled as two separate components; intra-bench roads which facilitate traversal across 

benches, and ramps which facilitate traversal between benches similarly to Gill (1999). Intra-bench 

roads are constructed such that they join ramps to a set of predefined locations on each bench 

called checkpoints, and a block is considered accessible from that road if it is within the 

checkpoints window. Formulation of the SIP requires the set of all checkpoints, ramps and intra-

bench roads to be predefined, which may be achieved through the pre-processing procedure 

presented below.  

In the following section the preprocessing procedures and proposed stochastic mathematical 

program are first presented. Next, the method is applied to a gold mine and results are discussed. 

Conclusions and directions for future work follow. 

2.2 Method 

This section presents a stochastic mathematical program which jointly optimizes the long-term 

open pit mine production schedule and ramp design under grade uncertainty, while ensuring 

feasible equipment access to scheduled mining blocks. First, checkpoints, ramps and intra-bench 
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roads are discussed in more detail. Then, the notation, constants, sets, and variables are presented, 

followed by the SIP.  

2.2.1 Checkpoints 

Checkpoints are regularly spaced nodes, which, when active provide access to all mining blocks 

within their window. For a checkpoint to be active, there must exist a road connecting it to the top 

of the pit. An example of an active checkpoint is provided in Figure 2-1, where an isometric view 

of a bench containing a checkpoint, road, and ramp is shown. The sphere represents the checkpoint 

node, and the shaded rectangular prism denotes the area which the checkpoint provides access to. 

The arrow represents the path through which a road may progress to reach and activate the 

checkpoint. 

 

2.2.2 Ramp Segments 

Ramp segments are single bench ramps, modeled as a collections of mining blocks which 

approximate the true shape of the ramp. Modeling ramp segments as a collection of mining blocks 

allows ramp design decisions to be easily translated to the schedule and mining blocks which they 

effect. To fully define a ramp the following components are required; location (𝑖): index of the 

Figure 2-1: Isometric view of a bench depicting a 
checkpoint (sphere), accessible blocks (shaded volume), 

road (arrow) and ramp. 
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block at the top of the ramp, period (𝑡): Time period when the ramp is present, and design (𝑑): Set 

of blocks contained in the ramp. 

2.2.3 Intra-bench Roads 

Intra-bench roads define the set of blocks connecting two points on the same bench and are 

modeled as the composition of sub- and super-roads. Sub-roads are short high resolutions paths, 

joining adjacent checkpoint nodes, while super-roads are long low-resolution paths joining blocks 

at large distances. Figure 2 shows an isometric view of a bench, with checkpoints, sub-roads, and 

a super road. Sub-roads define the exact set of blocks through which the road progresses, while 

super roads define the general area through which a road must progress. In Figure 2-2, the super-

road provides access to the bottom left most checkpoint, and the super-road may be traversed by 

any of the sub-roads connecting the checkpoints through which the super-road progresses. 

Modeling intra-bench roads as the composition of these two components reduces the number of 

decisions variables required in the stochastic mathematical program, while still providing multiple 

access strategies, as the sub-road network provides multiple ways of traversing each super-road. 

 

Figure 2-2:  Isometric view of a bench depicting 
checkpoints (spheres), sub-roads (grid of arrows), and a 

super-road (curved arrow). 
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2.2.4 Road and Ramp Generation 

Automatic generation of both ramps, and intra-bench roads can be achieved using a graph traversal 

algorithm with unique stopping criteria to identify when a ramp/intra-bench road has been 

generated. Here, depth first search (DFS) (Knuth, 1997) is used as the traversal algorithm, which 

starts at a defined initial location and constructs a path by recursively adding/removing extensions 

to the current path at each recursive step. Extensions to the path are generated such that they 

maintain the desired path width, and satisfy any operational constraints such as turning radius, 

length, complexity, etc. Maximum road grade can be enforced by ensuring that all ramp segments 

exceed a minimum required centerline length. An example of automatic path generation through 

DFS is provided in Figure 2-3, where path extensions (orange) are added to the path, and fill blocks 

are inserted (yellow) as required to maintain path width. Switch backs may be constructed by 

combining multiple segments across benches. 

 

 

2.2.5 Definitions and Notation 

The tables in this section present the indices, sets, constants and variables used to define the 

proposed SIP. Table 2-1 presents the index notation, while Table 2-2 contains all sets of variables 

used throughout the formulation. Table 2-3 and Table 2-4 present the constants and variables, 

respectively. 

Start point 

Current 

Extension 

Width fill 

Figure 2-3:  Ramp and road generation tree. The children of each node compose the set 
of all possible roads that can be constructed by adding a single extension. 
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Table 2-1: Indices. 

𝑖 Mining block index 

𝑠 Simulation index 

𝑡 Period 

𝑑 Ramp design index 

𝑗 Check point index 

𝑘 Super-road index 

𝑙 Sub-road index 

𝑔 Super-road segment index 

 

 

Table 2-2: Sets. 

𝐶𝑃𝐼(𝑖) Set of checkpoints with windows overlapping block 𝑖 

𝐴𝐷𝐽ோ(𝑘) Set of ramps (described by their location 𝑖, and design 𝑑) which terminate 
adjacent to the beginning of super road 𝑘 

𝑃𝑅𝐸𝐷(𝑖, 𝑑) Set of predecessor blocks for ramp located at 𝑖, with design 𝑑 

𝑋𝑆𝐸𝐶(𝑖, 𝑑) Set of ramps intersecting ramp at location 𝑖, with design 𝑑 

𝑆𝐸𝐺(𝑘) Set of segments composing super-road 𝑘 

𝐴𝐷𝐽௦ି(𝑔) Set of sub-roads traversing super-road segment 𝑔 

𝐴𝐷𝐽௦ା(𝑗) Set of super-roads adjacent to checkpoint 𝑗 

S Set of simulations 

I Set of mining blocks 

T Set of years 

D Set of ramp designs 

K Set of super-roads 
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L Set of sub-roads 

J Set of checkpoints 

 

 

Table 2-3: Constants. 

𝑣௜,௦
௧  Economic value of block 𝑖 in period 𝑡 for scenario 𝑠 

𝑟𝑐௧ Cost of placing or removing a ramp in period 𝑡 

𝑐௢
௧ି,ା Penalty cost for deviating below (−) or above (+) ore target 

𝑐௚
௧ି,ା Penalty cost for deviating below (−) or above (+) metal target 

 

 

Table 2-4: Variables 

𝑏௜ 
௧ Binary Mine block 𝑖 period 𝑡 

𝑟௜
௧,ௗ Binary Ramp with design 𝑑 exists at 𝑖 period 𝑡 

𝑟̌௜
௧,ௗ Binary Ramp with design 𝑑 placed/removed at 𝑖 in period 𝑡 

cp௝
௧  Binary Checkpoint 𝑗 is active in period 𝑡 

𝑠௞
௧ା Binary Super-road 𝑘 ∈ 𝐾 is active in period 𝑡 

𝑠௟
௧ି Binary Sub-road 𝑙 ∈ 𝐿 is active in period 𝑡 

𝑑௦
௧௢ି, 𝑑௦

௧௢ା Continuous 
Deviation below/above target for ore tonnage in scenario 𝑠 in 
period 𝑡 

𝑑௦
௧௚ି

, 𝑑௦
௧௚ା Continuous Deviation below/above target for grade in scenario 𝑠 in period 𝑡 
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2.2.6 Stochastic Integer Program 

2.2.6.1 Objective Function 

The objective function, shown in Equation 1 consists of 3 main parts. Part 1 maximizes the 

discounted cumulative cashflow of the extraction sequence, Part 2 incurs the cost of placing and 

removing ramps over the life of the mine, and Part 3 penalizes deviations from grade and ore 

tonnage targets. Part 1 and Part 3 are identical to the objective function described in Ramazan and 

Dimitrakopoulos (2013) without stockpiling. 

𝑚𝑎𝑥
1

|𝑆|
෍ ෍ ෍ 𝑏௜

௧𝑣௜,௦
௧

௧∈்௜∈ூ௦∈ௌᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௉௔௥௧ ଵ

− ෍ ෍ ෍ rc௧𝑟̌௜
௧,ௗ

ௗ⊂஽௧∈்௜∈ூᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
௉௔௥௧ ଶ

  (1)

1

|𝑠|
෍ ෍(𝑐௢

௧ି𝑑௦௢
௧ି + 𝑐௢

௧ା𝑑௦௢
௧ା

௧∈்

+ 𝑐௚
௧ି𝑑௦௚

௧ି + 𝑐௚
௧ା𝑑௦௚

௧ା)

௦∈ௌᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௉௔௥௧ ଷ

 

2.2.6.2 Constraints 

The following sub-sections present the constraints of the stochastic mathematical program, which 

when combined ensure equipment access to scheduled mining blocks. 

Ramp Placement/Removal Constraints: The ramp placement/removal constraints in Equations 2 

and 3 ensure ramp placement/removal variables are greater than zero whenever a ramp is placed 

or removed, storing the absolute value of 𝑟௜
௧,ௗ − 𝑟௜

௧ିଵ,ௗ in 𝑟̌௜
௧,ௗ, which incurs a cost in the objective 

function. 

𝑟̌௜
௧,ௗ ≥ 𝑟௜

௧,ௗ − 𝑟௜
௧ିଵ,ௗ ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑑 ∈ 𝐷 (2) 

𝑟̌௜
௧,ௗ ≥ 𝑟௜

௧ିଵ,ௗ − 𝑟௜
௧,ௗ ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑑 ∈ 𝐷 (3) 

 

Checkpoint Accessibility Constraint: The checkpoint accessibility constraint in Equation 4 

ensures that a block may only be mined if it is within the window of an active checkpoint. Since a 

block may be within the window of multiple checkpoints the activation state of all intersecting 

checkpoints must be summed, which is achieved by summing over all 𝑐𝑝௝
௧ ∀ 𝑗 ∈ 𝐶𝑃𝐼(𝑖). Figure 

2-4 shows a cross-section view of a bench with a ramp, checkpoint, and accessible blocks, 
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providing a visual representation of the constraint. The checkpoint represented by the hatched 

square has a window size of 5, providing access to all blocks annotated with hatched circles. Since 

the two blocks to the right of the checkpoint have already been mined the only blocks available 

for mining are the two to the left of the checkpoint.  

𝑏௜
௧ ≤ ෍ cp୨

୲

 

௝∈େ୔୍(௜)

 ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (4) 

 

 

Ramp Location Accessibility Constraint: The ramp location accessibility constraint in Equation 

5 requires that ramps only be present where the start of the ramp is directly under an accessible 

location. By ensuring ramps are only placed under accessible blocks, a traversable road from the 

top of the pit to all ramps can be guaranteed in all periods. Since a start of a ramp may be under 

multiple checkpoint windows, the state of all checkpoints with windows intersecting the location 

directly above the start of the ramp (𝑖ି) must be summed. In Figure 2-5, depicting the cross section 

of a bench, the vertically hatched ramp is valid because it starts directly below an accessible 

location, while the horizontally hatched ramp is invalid because it starts directly below a block that 

is not within the window of an active checkpoint. 

𝑟௜, ௗ
௧ ≤ ෍ cp௝

௧

 

௝∈େ୔୍(௜ష)

∀ 𝑖 ∈ 𝐼,  𝑡 ∈ 𝑇,  𝑑 ⊂ 𝐷 (5) 

Check point valid invalid 

Figure 2-4:  Bench cross-section 
containing a ramp, checkpoint (hatched 
square), mined blocks (white), unmined 
blocks (shaded), and accessible blocks 

(hatched circles). 
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Ramp Placement Constraint: The ramp placement constraint in Equation 6 ensures that ramps are 

both placed in and underlain by solid material. This constraint is modelled by requiring all blocks 

associated with active ramps to be unmined by the period in which the ramp is present.  

෍ ෍ 𝑏௜ᇲ
ఛ ≤ |𝑑|

௜ᇲ∈ௗ

∗ ൫1 − 𝑟௜,ௗ
௧ ൯

௧

ఛୀଵ

 ∀ 𝑡 ∈ 𝑇,  𝑖 ∈ 𝐼,  𝑑 ⊂ 𝐷 (6) 

 

Ramp Predecessor Constraint: The ramp predecessor constraint in Equation 7 ensures that ramps 

may only be present if their predecessors are mined. Since ramps contain multiple blocks, the 

predecessors of all blocks within the ramp must be mined to ensure that slope constraints are not 

violated. In the bench cross-section depicted in Figure 2-6, the vertically hatched ramp is valid 

because all blocks in its predecessor set are mined, while the horizontally hatched ramp is placed 

below unmined blocks making it invalid. 

෍ ෍ 𝑏௜∗
ఛ ≥ |PRED(𝑖, 𝑑)| ∗ 𝑟௜,ௗ

௧  

௜∗∈୔ୖ୉ୈ(௜, ௗ)

௧

ఛୀଵ

∀ 𝑖 ∈ 𝐼,  𝑡 ∈ 𝑇,  𝑑 ⊂ 𝐷 (7) 

\ 

Check point valid invalid 

Check point valid invalid 

Figure 2-5:  Bench cross-section of 
accessible and in-accessible ramp 

placement. Vertically hatched ramp is 
accessible and horizontally hatched ramp 

is inaccessible. 

Figure 2-6: Bench cross-section of valid 
(vertically hatched) and invalid 

(horizontally hatched) ramp placements. 
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Ramp Intersection Constraint: The ramp intersection constraint in Equation 8 prevents two 

intersecting ramps from being present in the same period. In the bench cross-section shown in 

Figure 2-7, the placement of both ramps is invalid because they share a block, meaning they are 

intersecting. 

෍ 𝑟௜∗, ௗ∗
௧ ≤ 1 − 𝑟௜,ௗ

௧

(௜∗, ௗ∗)∈ଡ଼ୗ୉େ(௜, ௗ)

∀ 𝑡 ∈ 𝑇,  𝑖 ∈ 𝐼,  𝑑 ⊂ 𝐷 (8) 

 

 

Super-road Ramp Adjacency Constraint: The super-road ramp adjacency constraint in equation 

9 ensures that all valid super-roads are adjacent to the end of a ramp, which is one of the three 

basic traverasbility requirements discussed above. To model this constraint the variable associated 

with the super-road must be less than or equal to the sum of all ramp variables associated to ramps 

that terminate adjacent to the beginning of the super-road. In the bench cross-section presented in 

Figure 2-8, the solid super-road is valid because it begins adjacent to the end of a ramp, while the 

dashed super-road is invalid because no ramp terminates adjacent to the start of the road. 

෍ 𝑟௜, ௗ
௧ ≥ 𝑠௞

௧ା

(௜, ௗ)∈୅ୈ୎౎(௞)

∀ 𝑡 ∈ 𝑇,  𝑘 ∈ 𝐾 (9) 

 

 

 

 

Check point valid invalid 

Figure 2-7: Bench cross-section with 
intersecting ramp placements. 
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Active Sub-Road Constraint: The active sub-road constraint in Equation 10 ensures that active 

roads are unobstructed and underlain by solid material.  This constraint can be formulated by 

summing the mining decisions for blocks in the path and subtracting mining decisions for blocks 

directly below the path. If the expression is equal to the length of the path, then the path must be 

unobstructed and underlain by solid material, meaning the road may be active. If the expression 

has a value less than the length of the path, it is either obstructed, not underlain by solid material, 

or both. In Figure 2-9, a plan view of a bench, containing a ramp, checkpoints, and sub- and super-

roads is depicted and serves as a visual aid for explanation of the following constraints. The sub-

roads denoted by the solid black arrows are valid because they progress through mined blocks, and 

are entirely underlain by solid material, however, the dotted-grey sub-roads are invalid because 

they progress through unmined blocks. 

෍ ෍ 𝑏௜
ఛ − 𝑏௜శ

ఛ

௧

ఛୀଵ

 

௜∈௟

≥ |𝑙| ∗ 𝑠௟
௧ି ∀ 𝑙 ∈ 𝐿,  𝑡 ∈ 𝑇 (10) 

Active Super-Road Constraint: The active super-road constraint in Equation 11 ensures that each 

segment of an active super-road is traversable by at least one active sub-road. The constraint can 

be formulated by ensuring that for each segment of the super-road, the super-road variable is less 

than or equal to the sum of active sub-roads traversing the segment. In the bench plan-view 

provided in Figure 2-9, the super-road denoted by the set of contiguous red arrows is valid because 

each segment (individual red arrow) of the super-road can be traversed by at-least one valid sub-

road (black arrow).  

෍ 𝑠௟
௧ି

 

௟∈஺஽௃ೞష(௚)

≥ 𝑠௞
௧ା   ∀𝑔 ∈ SEG(𝑘),  𝑡 ∈ 𝑇,  𝑘 ∈ 𝐾 (11) 

Check point valid invalid 

Figure 2-8: Bench cross-section with 
valid (solid) and invalid (dashed) super-

roads. 
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Active Checkpoint Constraint: The active checkpoint constraint in Equation 12 ensures that 

checkpoints are only active in the periods in which they may be accessed through a valid haul road. 

The constraint is formulated by ensuring that the sum of all variables associated to super-roads 

that intersect that the checkpoint is greater than or equal to the variable associated to the 

checkpoint. 

෍ 𝑠௞
௧ା

 

௞∈୅ୈ୎౩శ(௝)

≥ 𝑐𝑝௝
௧ ∀ 𝑗 ∈ 𝐽,  𝑡 ∈  𝑇 (12) 

 

2.2.7 Complexity 

The size of the models required to optimize the design of ramps, while ensuring feasible equipment 

access to every scheduled mining block grows quickly with the size of the block model. If the 

complexity of the model is inspected on a per bench basis, then on a bench with 𝑁 blocks, there 

are 𝑁 ∙ (𝑁 − 1) possible ordered block pairings, each required to be connected by a set of intra-

7 8 9 

4 5 6 

1 2 3 

R 

Figure 2-9: Plan view of bench with a ramp (R), 
checkpoints (numbered blocks), sub-roads (straight) 

and super-roads (curved). 
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bench roads 𝑅ௌ. Meaning that on a per bench basis the number of binary decision variables required 

to model accessibility can be roughly described by 𝑁 ∙ (𝑁 − 1) ∗ |𝑅ௌ|തതതതത, where |𝑅ௌ|തതതതത is the average 

size of the intra-bench road sets. This complexity is problematic as both the number and size of 

the road sets 𝑅ௌ grows exponentially quickly with the size of the bench. 

To solve the related SIP, the proposed method employs an iterative solution procedure, presented 

in Figure 2-10. The iterative solution procedure splits the entire problem into two components: a 

ramp configuration component, and a scheduling component. First, an incumbent ramp and road 

configuration are generated, containing only a small subset of ramps and roads that are to be 

included in the SIP, limiting the number of binary decision variables and constraints required to 

model accessibility. The SIP is then optimized using CPLEX, and the algorithm continues by 

perturbing the incumbent set of ramps and roads, reoptimizing and accepting/rejecting the 

perturbation using the simulated annealing acceptance criteria (Kirkpatrick et al., 1983). 

2.3 Case Study 

The method described above is applied to a gold deposit, consisting of a single mine and 

processor. The mine’s block-model contained 10, 500 blocks (10m x 10m x 10m), with gold grade 

uncertainty described by 10 equiprobable geostatistical simulations, generated via high-order 

Initialize ramp 
configuration. 

Generate roads. 

Accept/reject 
perturbation. 

Optimize (CPLEX). 
Perturb ramp 
configuration. 

Figure 2-10: Optimization loop. 
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simulation (Minniakhmetov et al., 2018), shown in Figure 2-11. The deposit was scheduled over 

a period of 7 years, with a mining capacity of 15 Mta, and a processing capacity of 6 Mta. 

 

Pre-processing of the block model resulted in the construction of 357 checkpoints, 1942 sub-roads, 

and 2640 super-roads. The ramps were required to have a width of two blocks, and a centerline 

length of 3 blocks. The optimization parameters are summarized in Table 2-5. 

Table 2-5: Optimization parameters 

Parameter Value 

Metal Price ($/oz) 1200 

Recovery (%) 90% 

Mining cost ($/t) 5 

Processing cost ($/t) 15 

Ramp placement/removal cost ($) 300,000 

 

Cross sections of the schedule are provided in Figure 2-12 and Figure 2-13, and snapshots of the 

scheduled blocks and placed ramps for periods 2, 4, and 7 are provided in Figure 2-14. Initially, 

Figure 2-11: Simulated gold grades. 
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all mining activity in year 2 and earlier is largely focused on the left side of the pit, providing space 

for ramp placement, and allowing early access to ore deeper in the mine. As the mine life 

progresses much of the mining activity migrates to the right wall, where it is uniformly mined until 

the last period when ore in the bottom of the pit cleaned up. 

 

Figure 2-12: Cross-section at x = 39 

 

 

Figure 2-13: Cross-section at x = 52 
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Figure 2-14: Plan view of the open pit denoting mined blocks (light colors) and ramps (dark 
blue) in years 2, 4, and 7. 

 

A plan view of the final ramp placement can be found in Figure 2-15 and shows that the ramp is 

placed against the left pit wall. Though several of the ramp segments could be pushed a few blocks 

tighter to the wall, the overall shape of the ramp closely follows the contour of the pit from crest 

to the floor. The left side of the pit is also significantly steeper than the right side of the pit, which 

may result from the blocks on the left side of the pit being closer to the ramp, requiring shorter 

access roads. Blocks on the right side of the pit are significantly further from the ramp, requiring 

longer roads, which are much easier than their shorter counterparts to invalidate. As a result, the 

blocks on the right side of the pit are much harder to access, and the optimizer may have been 

forced to leave unmined regions to ensure the scheduled blocks can be accessed through the 

provided roads. 
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Figure 2-15: Plan view of the open pit 
denoting final ramp placement (dark 

blue). 
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The schedule was forced to dig deep early to meet production targets, resulting in the placement 

of seven ramp segments in the first period, with only 3 ramp segments placed throughout the 

remainder of the schedule. The ramp placement profile over the life of mine, along with the 

cumulative ramp construction cost is provided in Figure 2-16.  In total, ramp construction costs 

$2.8 million over the life of mine, however, this does not include the additional cost of stripping 

the required over burden to place the ramps. 

 

Though the SIP had the option to place multiple ramps on the same bench or remove previously 

placed ramps it chose too never do so. Instead, the optimizer only placed one ramp per bench and 

left them untouched for the duration of the mine life. The singular ramp per bench strategy likely 

results from two causes: the ramp configuration provided poor quality options for additional 

ramps, or the schedule is unable to utilize the benefit provided by an additional ramp. In the first 

case, the additional ramp options may not provide earlier or more access to ore, meaning the 

optimizer only incurs the construction cost if the ramp is placed. In the second case, though the 

ramp may provide earlier or more access to ore, the schedule may be able to saturate production 

with high grade material using only one ramp, making the additional ramp redundant. 

Figure 2-16:  Ramp placement profile and 
cumulative construction costs of optimized 

ramp design. 
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The cumulative discounted cashflow, including ramp construction cost is provided in Figure 2-17. 

Over the life-of-mine the schedule and ramp design achieve an NPV of $1.1 billion. Though the 

direct construction cost of the ramps is low, the total effect of ramps on the cashflow is significant 

as ramps control material availability, impacting when and where mining can happen in the pit. 

Ramps also require additional stripping of waste material, which incurs a cost, but also consumes 

production capacity which may otherwise be used for ore. 

 

The gold production and average head grade over the life of mine is provided in Figure 2-18. 

Excluding year 2, where the schedule is likely to exceed the target grade ceiling, the head grade is 

maintained within its target range of 1.25g/t - 1.5g/t. The corresponding gold production profile 

mimics the shape of head grade profile, with a peak production of 9 million grams in year 2, and 

7-8 million grams in all other years. In the final year, even though the head grade is at its lowest, 

gold production is maintained relatively high due to the ore tonnage. 

Figure 2-17: Forecasted cumulative discounted cash 
flow of production schedule and ramp design. 
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Figure 2-19 provides the ore tonnage and total tonnage profiles over the life-of-mine. Except for 

year 5, where a dop in production is observed, the ore production is maintained near the 6 Mta 

capacity limit. The corresponding total tonnage profile over the life of mine exhibit’s large 

variations in production. In years 1,2,3, and 5 production is at or near the 15 Mta limit, while in 

years 4, 6, and 7 production decreases to 11, 12, and 11 Mta respectively.  

2.4 Conclusions 

An extension to the two-stage SIP proposed in Ramazan and Dimitrakopoulos (2013) for jointly 

optimizing long-term open pit mine production schedules and ramp design while ensuring feasible 

equipment access was proposed. The method maximizes the NPV of the production schedule and 

ramp design while ensuring feasible equipment access to scheduled mining blocks and managing 

risk of not meeting production targets. The method requires a library of ramps and roads to be 

Figure 2-18: Forecasted gold quantity and grade of life-of-
mine production schedule. 

Figure 2-19: Forecasted ore and total tonnages of production 
schedule. 
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predefined, which can be automatically generated by the DFS algorithm presented. From the pre-

defined library of ramps and roads, an optimal ramp design and schedule is generated, while 

ensuring equipment access through the selected ramps and provided roads. 

The method was applied to a gold deposit, with gold grade represented by 10 geostatistical 

simulations, to develop a life of mine production schedule and ramp design. The optimized ramp 

design closely followed the contour of the pit on the left side and the associated optimized 

production schedule maintained gold grade within the target range, while satisfying processing 

and mining capacities. The results demonstrate the methods ability to jointly optimize the ramp 

design and schedule, producing a ramp design that provides access to desirable material in each 

period and an optimized schedule that utilizes the material access provided by the ramp.  

The joint stochastic optimization of long-term open pit mine production schedules and ramp design 

extends the formulation proposed in Ramazan and Dimitrakopoulos (2013). Future research in this 

direction should seek to incorporate this method into the simultaneous optimization of mining 

complexes (Dimitrakopoulos and Lamghari, 2022). Additionally, the method only considers the 

construction cost of the ramps and not the associated haulage costs. Extending the method to 

incorporate haulage costs would enable better haul road design. 
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Chapter 3. Optimizing Multi-element Cut-off Grades for a 

Strategic Production Plan Under Geological Uncertainty 

3.1 Introduction 

Conventionally, mine planning is conducted in several sequential steps, with each successive step 

relying upon the previous. The process starts with cut-off grade optimization, which is traditionally 

optimized through Lane’s method (Lane, 1964), providing the optimal cut-off grades in each year 

over the life-of-mine to maximize net present value (NPV) considering a global deterministic 

distribution of material. However, mines operate in uncertain heterogenous environments, which, 

in combination with the long-term schedule, significantly influence the quantity and quality of 

material available each year. Additionally, the sequential process of the conventional approach 

leads to sub-optimal strategic plans, as the cut-off grade, production schedule, and other 

components of a mining complex are interdependent. Here, a method for optimizing long-term 

multi-element cut-off grades for an optimal production plan under geological uncertainty is 

proposed, addressing the issues inherent in the traditional stepwise sequential process. 

Lane's theory provides the optimal cut-off grade policy over the life of the mine, defining the 

optimal cut-off grades in each year to maximize NPV (Lane, 1964; 1988; Rendu, 2014). Lane's 

method considers the grade tonnage curves based upon deterministic estimate of the deposit 

(David, 1977; Journel and Huijbregts, 1978), fixed costs, and the concept of an opportunity cost 

to solve for the optimum cut-off grade in each year over the life of the mine. The opportunity cost 

is the penalty incurred for not receiving future cash flows earlier due to the cut-off grade decision 

taken now. Though, typically used for single elements, Lane's method can be extended to multiple 

elements by including the contribution of both elements in the cashflow, enabling computation of 

the optimal cut-off grade for each element. However, Lane's method does not consider the 

production schedule, which defines the quantity and quality of material mined each year, as a 

result, the global grade-tonnage curves which Lane’s method relies upon are not representative of 

the material available in each period, and it is difficult to extend Lane’s method to consider 

geological uncertainty. 

Asad and Dimitrakopoulos (2013) provide an extension of Lane’s method which considers 

geological uncertainty and defines a single-element cut-off grade policy suitable for single mine 

operations with multiple processing stream destinations. Geological uncertainty is represented by 
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a set of geostatistical simulations, modeling the uncertainty and variability of grades in space 

(Goovaerts, 1997). Accounting for geological uncertainty when optimizing cut-off grades allows 

risk to be managed and increases value as mined material is subjected to non-linear transfer 

functions and as it is transformed from a raw material into a sellable product. However, the 

extension is limited to non-stockpiling destinations. Nonetheless, the method demonstrates the 

importance of incorporating the geological uncertainty into the determination of cut-of grades. 

Menabde et al. (2018) provides a stochastic integer programming formulation for jointly 

optimizing open pit mine production schedules and cut-off grades for a single element under 

geological uncertainty. In this formulation the standard extraction decision variable 𝑥௜௧ (decision 

to extract block 𝑖 in year 𝑡) is extended to 𝑥௜௝௧, representing the decision to extract block 𝑖 under 

cut-off grade 𝑗 in year 𝑡. This approach requires discretizing the range of possible cut-off grades 

into a finite set of predefined cut-off grades, and the optimal cut-off grade is chosen from within 

that set for each year. As a result of the discretization process, the optimized cut-off grades are 

approximations of the true optimal cut-off grades in each year and depend on the quality of the 

discretization. Additionally, the formulation is limited to a single element and two destinations. 

Nonetheless, this method presents a significant departure from the traditional framework, in that 

cut-off grades are jointly optimized with the production schedule, making cut-off grades an output 

of the method, rather than an input. 

Asad et al. (2016) present a literature review of cut-off grade optimization. The review covers 

Lane’s method and its extensions to include multiple elements, multiple destinations, and 

uncertainty from various sources, and mathematical programming methods. The authors note the 

limitations of Lane’s method, which become more problematic for complex mining operations, 

causing the method to miss optimum cut-off grades, an issue which is largely addressed by 

mathematical programming methods.  

The simultaneous stochastic optimization (SSO) framework optimizes entire mining complexes 

considering uncertainty from multiple sources under a single mathematical formulation (Montiel 

and Dimitrakopoulos, 2015; Goodfellow and Dimitrakopoulos, 2016; 2017; Montiel and 

Dimitrakopoulos, 2017; 2018; Kumar and Dimitrakopoulos, 2019; Dimitrakopoulos and 

Lamghari, 2022). The SSO framework optimizes production schedules, destination policies, and 

downstream decision variables. For single elements, the destination policy is defined as a single 
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element cut-off grade policy and optimized similarly to (Menabde et al., 2018), however for 

multiple elements a block based or cluster based destination policy is employed. Block and cluster-

based destination policies used in the SSO framework have a high degree of resolution and can 

send material in advantageous ways, positively effecting the value of the mining complex. 

Block based destination policies are useful tools for optimizing production schedules, however, 

the are operationally difficult to implement, limiting their usefulness for strategic planning. Block 

based destination policies assign a destination directly to a mining block and can either be scenario 

independent or dependent. Scenario independent policies may misclassify material as the 

properties of the block change from one simulation to the next and may result in waste being sent 

to the mill or ore being sent to the waste dump. Scenario dependent policies address the issue of 

material misclassification by enabling blocks to be sent to different destinations in different 

scenarios, however, they are of little operational use as reality does not perfectly align with the 

scenarios.  

Cluster based destination policies function differently, in that they can assign destinations to 

regions in grade space, rather than directly to blocks. Clusters may be constructed from k-nearest-

neighbor (KNN) (Fix and Hodges, 1989), which assigns blocks to clusters based on the nearest 

centroid. Since the grades of a block change from one simulation to the next, the destination of 

that block can also change as the nearest centroid depends on the grade values in each simulation, 

addressing the issue of misclassification. Similarly, any point in grade space can be classified 

based on the nearest centroid, allowing unseen blocks of any grade to be classified. The ability of 

cluster-based destination policies to classify unseen blocks makes them technically amenable to 

operational use. However, their complexity and lack of interpretability make them difficult to use. 

For presentation purposes, an example of a cluster-based destination policy is shown in Figure 3-1, 
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which, though simplified, still demonstrates the complexity of such a destination policy, as the 

boundary between destination regions is complex, and non-linear. 

Though such destination policies are advantageous in that they are simultaneously defined with 

the production schedule and are thus optimal for the spatial distribution of grades, production plan, 

and configuration of the mining complex. They are not directly translatable to cut-off grades, 

which, are required to define where to send material upon extraction in an operating environment. 

Additionally, previously discussed methods for directly defining cut-off grades are to 

computationally expensive to be effectively employed in the SSO framework. 

This work proposes two multi-element cut-off grade definitions, and a method for optimizing 

multi-element cut-off grades under geological uncertainty considering an optimal production plan. 

The method is similar to (Menabde et al., 2018), in that the cut-off grades are optimized 

considering the long-term schedule, however, the proposed method is suitable for multiple 

elements and destinations. The cut-off grades are optimized using reinforcement learning (Sutton 

and Barto, 2018) to minimize deviations from long-term mine plan forecasts. In the following 

sections the method is presented, followed by an application on a gold and copper mine with 

conclusion following.   

Figure 3-1: Cluster based destination policy 
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3.2 Method 

3.2.1 Formulation 

To optimize multi-element cut-off grades for an optimal production schedule to minimize 

deviations from long term mine plan forecasts (e.g. metal production, mill tonnage, stockpile 

tonnage, etc.), the proposed stochastic mathematical program minimizes the deviation 𝑑 for each 

property 𝑝 ∈ 𝑃, in each year 𝑡 ∈ 𝑇 for each geological scenario 𝑠 ∈ 𝑆. The deviation 𝑑௣,௦,௧ is 

formulated as the absolute difference between the target forecast value 𝐹ത௣,௦,௧ and the forecasted 

value under the cut-off grade policy 𝐹௣,௦,௧. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

|𝑆|
෍ ෍ ෍ 𝑑௣,௦,௧

௣∈௉௧∈்௦∈ௌ

 (13) 

𝑑௣,௦,௧ ≥ 𝐹௣,௦,௧ − 𝐹ത௣,௦,௧∀𝑝 ∈ 𝑃, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇 (14)

𝑑௣,௦,௧ ≥ 𝐹ത௣,௦,௧ −  𝐹௣,௦,௧∀𝑝 ∈ 𝑃, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇 (15)
 

The target forecast value  𝐹ത௣,௦,௧ is required as input, but 𝐹௣,௦,௧ is computed as a function of the cut-

off grades in the current period and the current state of the mining complex. For each year 𝑡 and 

scenario 𝑠, 𝐹௣,௦,௧ can be computed as follows, where 𝑓 denotes a function, 𝑐𝑜𝑔௧ is cut-off grade 

policy for period 𝑡, defining the threshold values for all elements, and 𝓈௦,௧ is the state of the mining 

complex in scenario 𝑠 in period 𝑡. The state contains relevant information about the mining 

complex for each scenario in each period, such as grade-tonnage curves, and stockpile properties 

per scenario. 

𝐹௣,௦,௧ = 𝑓௣൫𝑐𝑜𝑔௧, 𝓈௦,௧൯∀𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (16) 

The state 𝓈௦,௧ is dependent on the previous state 𝓈௦,௧ିଵ and the cut-off grade policy cog୲, allowing 

formulating the problem as a Markov decision process (MDP) (Howard, 1960). The state space 𝕊 

of the MDP is continuous, containing information about the mining complex in each period, such 

as the grade-tonnage curves, and stockpile properties. The action space 𝔸 is continuous and 

contains all parameters to define cut-off grades, with each action 𝒂 being a vector in ℝ௡, where 𝑛 

is the number of parameters required to define cut-off grade. 

𝒂 = (𝑎ଵ, … , 𝑎௡) (17) 
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 The reward for taking action 𝑎 in state 𝓈 and transitioning to state 𝓈′ is computed per equation 18, 

where 𝑤௣ is a weight applied to each property and 𝑑௣,𝓈ᇱ is the deviation from forecast from property 

𝑝 in state 𝓈′, and is computed similarly to above. 

𝑅௔(𝓈, 𝓈ᇱ) =  ෍ 𝑤௣𝑑௣,𝓈ᇲ

௣∈௉

 (18) 

Transitioning from state 𝓈 to 𝓈′ is performed by sending material flow through the mining complex 

according to the cut-off grade policy defined by action 𝑎. Some components of the state 

representing the mining complex do not depend on the previous state, such as grade tonnage 

curves, as the action 𝑎 taken in state 𝓈 does not affect the grade tonnage curve in state 𝓈′. However, 

other components, such as stockpiles, which retain material across periods, depend on the previous 

state 𝓈 and action 𝑎. The transition from state 𝓈 to 𝓈′ after taking action 𝑎 is defined by the 

transition function. 

𝓈ᇱ = 𝑇(𝓈, 𝑎) (19) 

Minimizing the sum of rewards received over the length of an episode aligns with the goal of 

minimizing deviations from forecasts over the life of mine and requires optimizing a policy 𝜋 for 

action selection in each state. An optimal policy 𝜋∗ is defined as follows. 

𝜋∗(𝓈) = arg min
௔

൭𝑅(𝓈, 𝑎) + 𝛾 ෍ 𝑝(𝓈, 𝑎, 𝓈ᇱ)𝑉(𝓈ᇱ)

𝓈ᇲ

൱ (20) 

To find the optimal policy minimizing deviations from target forecasts, Proximal Policy 

Optimization (PPO) (Schulman et al., 2017), a reinforcement learning algorithm, is employed, as 

it is suitable for continuous action and state spaces. PPO tries to take large steps, without collapsing 

the solution. Generally, there are two main variations of the algorithm, PPO-Penalty, which 

penalizes large changes in the policy, and PPO-Clip which clips large changes in the policy. Here, 

PPO-Clip is used. 

3.2.2 Cut-off Grade Policies 

Cut-off grade policies define decision boundaries delineating the space of grades. To minimize 

deviations from forecasts (Eq. 1) the cut-off grade policy must consider the combined contribution 
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of all elements and the decision boundary must be defined as a function of all elements. Here, two 

multi-element cut-off grade policies are proposed; termed the orthogonal and diagonal cut-off 

grade policies, which may be applied to any number of elements and destinations.  

3.2.2.1 Orthogonal Cut-Off Grade Policy 

The orthogonal multi-element cut-off grade policy is a natural extension of the single element cut-

off grade policy. Threshold values are defined for each element, functioning as orthogonal decision 

boundaries, dividing the space of all possible grades into two or more regions. Each region is 

assigned a destination, and any material with grade values corresponding to a point within that 

region is sent to that destination. For the 2-element example provided in Figure 3-2, the action 

vector (Eq. 4) would be defined in ℝସ as (𝐸ଵ೗೚ೢ
, 𝐸ଶ೓೔೒೓

, 𝐸ଶ೗೚ೢ
, 𝐸ଶ೓೔೒೓

), having two cut-off grades 

for each element, dividing the space of all possible grades into nine rectangular regions. Though 

the example is formulated for two economic minerals, handling deleterious elements is trivial and 

can be achieved by assigning regions with greater quantities of deleterious elements as waste or 

stockpile. More elements can be considered with this cut-off grade policy by adding more 

dimensions. The size of the regions is controlled by increasing or decreasing the low and high cut-

off values for each element Each threshold value corresponds to an entry in the action vector, and 

each year, the agent acts by selecting these cut-off values and receives a reward as described above. 

Additionally, the corresponding destination for each region can also be controlled, allowing for 

fine control over where material is sent upon extraction. However, the orthogonal policy poorly 

captures the combined contribution of elements towards the decision of where to send material 

upon extraction. For example, consider a block with a grade slightly below the low cut-off for 

element 1 and 2 in the example provided. Under this policy, that block would be sent as waste. 

However, it is likely that the combined contribution of both elements (assuming they are both 

economic) would make the block worth stockpiling. 
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Figure 3-2: Orthogonal cut-off grade policy for two elements and three destinations. 

3.2.2.2 Diagonal Cut-Off Grade Policy 

Like before, threshold values are defined for each element, however, each element is required to 

have the same number of threshold values. Each of the thresholds defines the intersection points 

of the decision boundary. In the two-element example in Figure 3-3, two thresholds are defined 

for each element, dividing the space into three regions. The decision boundary between the waste 

and stockpile material is defined by the low threshold for each element, and the decision boundary 

between the stockpile and mill material is defined by the high threshold for each element. 

Deleterious elements can be handled by this policy, in the provided two-element example, the 

slope of the lines simply need to be positive. Like the Orthogonal cut-off grade policy, more 

elements may be included by adding more dimensions. For example, the diagonal policy could be 

defined for three elements, with each threshold defining a surface in the three-dimensional grade 

space. Like the Orthogonal policy, each threshold corresponds to an entry in the 𝑐𝑜𝑔௧ vector, and 

each year the agent acts by selecting the high and low threshold values for each element and 

receives a reward corresponding to the deviations from forecast. Though the diagonal method has 

fewer regions than the orthogonal policy, the size and shape of the regions are controllable, 

enabling fine control over how to send material upon extraction from the mine. Additionally, since 

the decision boundaries are non-orthogonal, they may be better able to capture the combined 

contribution of multiple elements. 
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Figure 3-3: Diagonal cut-off grade policy for two elements and three destinations 

3.3 Case Study 

The mining complex, shown in Figure 3-4 used for testing the multi-element cut-off grade policies 

is composed of a mine, which can send material to a waste dump, stockpile, or mill. The mine has 

two economic minerals, gold and copper, with grade uncertainty and variability represented by 15 

simulations obtained with direct block simulation of multiple correlated attributes (Boucher and 

Dimitrakopoulos, 2009). The entire mining complex was simultaneously optimized using the SSO 

framework (Goodfellow, 2014), providing an optimized production schedule, destination policy, 

and downstream decisions.  

Both previously presented multi-element cut-off grade policies are tested, and their performance 

compared. The policies are optimized to minimize deviations from the SSO forecasts that were 

generated with the cluster-based destination policy. 
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Figure 3-4: Gold and copper mining complex 

The reward (Equation 4) was constructed such that deviations in mill and stockpile tonnage, and 

deficits in mill metal were penalized. The mill tonnage and metal were deemed to be the most 

important forecasts, and thus weighed greater in the reward. Only metal deficits were penalized, 

rather than deviations because it was difficult to reproduce the exact forecasted quantities for both 

metals, usually resulting in one metal being below forecast. Penalizing only deficits improved 

performance in this regard as the agent was more likely to develop multi-element cut-off grade 

policies that met or exceeded both metal forecasts. 

The state space was formulated as defined in Section 3.2, with grade-tonnage curves for each 

element in each scenario, and the stockpile properties in each scenario. The grade-tonnage curves 

in each period are independent of the cut-off grade policy, thus can simply be computed from the 

scheduled blocks. However, the stockpile retains material across periods, thus, depends on the 

stockpile properties in the previous period, the cut-off grades, and the grade-tonnage curves. 

3.3.1 Orthogonal Multi-Element Cut-Off Grade Policy 

The forecasted gold quantities for both the SSO (denoted as SSO), and the orthogonal cut-off grade 

policy (denoted as COG) are shown in Figure 3-5. The orthogonal multi-element cut-off grade 

policy reproduces reasonably well the SSO gold forecast achieved using the cluster-based 

destination policy. The P50 line matches best in the first five years, but trends slightly downward 

away from the SSO forecasts towards the end of the mine life. The P10 line is also reproduced 

well by the multi-element cut-off grade policy, but the P90 line of the multi-element cut-off grade 

policy falls below that of the original SSO forecast. 
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Figure 3-5: Orthogonal cut-off grade policy vs SSO mill gold forecast 

 

The copper forecasts are also well reproduced as shown in Figure 3-6. Like with the gold forecasts, 

the copper forecasts are reproduced best in the first few years, but trend slightly downward away 

from the SSO forecasts toward the end of the mine-life. However, in contrast to the gold forecasts, 

the P90 lines are similar for the orthogonal cut-off grade policy and the SSO forecasts, but the P10 

differ. The orthogonal multi-element cut-off grade policy has a much higher P10 line compared to 

the SSO forecast. 

 



59 
 

 

Figure 3-6: Orthogonal cut-off grade policy vs SSO mill copper forecast 

 

The mill tonnage forecasts are shown in Figure 3-7. The mill tonnage forecast for orthogonal cut-

off grade policy is similar to the mill tonnage SSO forecast. The P90 forecast of the orthogonal 

cut-off grade policy is higher than the P90 SSO forecast and exceeds the 30 mt mill capacity. The 

high P90 results from the method trying to satisfy the metal forecasts. In all years at least one of 

the metal forecasts is low, thus encouraging the agent to send more material to the mill. 
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Figure 3-7: Orthogonal cut-off grade policy vs SSO mill tonnage forecast 

 

The stockpile tonnage forecasts for the orthogonal cut-off grade policy and SSO are provided in 

Figure 3-8. The deviation weights for the stockpile tonnage were low compared to the mill metal 

and tonnage deviation weights, thus exact reproduction of the stockpile tonnage forecast was not 

expected. However, the two forecasts have similar shapes, with a peak towards the beginning and 

another towards the end of the mine life. To better reproduce the SSO stockpile forecasts, the 

weight for stockpile deviations could be increased, however, this would likely deteriorate 

reproduction of other forecasts, or the additional cut-off grades could be added to increase the 

resolution of the policy. 
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Figure 3-8: Orthogonal cut-off grade policy vs SSO stockpile tonnage forecast 

 

The NPV of the orthogonal policy is notably lower than the original SSO forecasts, with a P50 of 

$1.5B compared to $1.9B. The lower NPV of the orthogonal policy results from the lower Au 

production at similar mine tonnages. The Risk profile of the NPV for the orthogonal policy is also 

wider, with a P10/P90 of $1.0B/$2.0B compared to $1.8B/$2.1B for the SSO forecasts. The larger 

risk profile results from the orthogonal policy having lower resolution than the cluster-based 

destination policy. 

 

3.3.2 Diagonal Multi-Element Cut-Off Grade Policy 

The mill tonnage forecast for the diagonal cut-off grade policy is presented in Figure 3-9. The 

diagonal policy matches the SSO forecasts for the duration of the mine life, with the exception of 
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year 6, where the cluster-based policy has a significant increase in gold which is not captured in 

the cut-off grade policy. Compared to the orthogonal cut-off grade policy, the diagonal cut-off 

grade policy performs much better in terms of reproducing the SSO gold forecast. 

 

Figure 3-9: Diagonal cut-off grade policy vs SSO gold forecast 

 

The diagonal cut-off grade policy is also able to closely match the copper forecasts, as shown in 

Figure 3-10. The P50 and P90 lines are similar throughout the mine life, however, the P10 line for 

the diagonal cut-off grade policy is higher than the P10 line for the SSO forecast. Compared to the 

orthogonal cut-off grade policy, the diagonal cut-off grade policy better reproduces the SSO 

copper forecasts. 
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Figure 3-10: Diagonal cut-off grade policy vs SSO copper forecast 

 

The mill tonnage forecasts for the diagonal cut-off grade policy are similar to the SSO forecasts, 

as shown in Figure 3-11. Similarly, to the orthogonal cut-off grade policy, the diagonal cut-off 

grade policy matches well to the SSO forecasts in terms of the P50, but the P90 line is high. The 

high P90 line results from the agent trying to satisfy the metal forecasts at the mill, thus 

encouraging the agent to accept the penalty incurred. 
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Figure 3-11: Diagonal cut-off grade policy ss SSO policy mill tonnage forecast 

 

The stockpile tonnages for the diagonal cut-off grade policy are provided in Figure 3-12. The 

deviation penalty cost for the stockpile tonnages was lower than the penalty cost for mill tonnage 

and metal deviations, thus exact reproduction of the stockpile tonnage forecast was not expected. 

However, the tonnage profile for the diagonal cut-off grade policy has a similar shape to the SSO 

forecast, with a peak towards the beginning and the end of the mine life. Additionally, the tonnage 

profile for the diagonal cut-off grade policy is very similar to the tonnage profile for the orthogonal 

cut-off grade policy. To better reproduce the SSO stockpile forecasts, the weight for stockpile 

deviations could be increased, however, this would likely deteriorate reproduction of other 

forecasts, or the additional cut-off grades could be added to increase the resolution of the policy. 
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Figure 3-12: Diagonal cut-off grade policy vs SSO stockpile tonnage forecast 

 

The NPV of the diagonal cut-off policy performs similarly to the SSO forecast, with a P50 NPV 

of $1.8B compared to $1.9B. However, the risk profiles remain wider, with a P10/P90 of 

$1.3B/$2.0B, compared to $1.8B/$2.1B for the SSO forecasts. The lower NPV of the diagonal 

policy again result from the lower resolution of the cut-off grade policy compared to the cluster-

based SSO forecast. 

 

3.3.3 Cut-off Grades 

The optimized cut-off grades are presented Figure 3-13. Notably, the optimal cut-off grades do not 

follow the standard intuition that cut-off grades are high in early years and decrease over the life 

of mine. These unintuitive cut-off grades may result from the cut-off grades coming from the 
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schedule; thus, the cut-offs are informed by the spatial distribution of grades and quantity and 

quality of material available in each year. In early years of production, low quantities of high-grade 

material may be uncovered, requiring low cut-off grades. However, in later periods, after 

significant excavation, more high-grade material may be uncovered, allowing higher cut-off 

grades. 

 

Figure 3-13: Optimized cut-off grades 

 

3.4 Conclusions 

A reinforcement learning framework for optimizing multi-element cut-off grades under supply 

uncertainty given a production schedule is presented and applied to a gold and copper mining 

complex. The orthogonal multi-element cut-off grade policy defines orthogonal decision 

boundaries dividing the space of grades into rectangular regions, which, though simple, are unable 

to capture the combined contribution of multiple elements. The diagonal multi-element cut-off 

grade policy improves upon the orthogonal cut-off grade policy in this regard, by allowing a linear 

relationship to be modelled, however, this comes at the cost of increased complexity.  

Both proposed multi-element cut-off grades were applied to a gold and copper mining complex 

composed of a mine, waste dump, stockpile, and mill. The reinforcement learning framework 
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optimized orthogonal and diagonal cut-off grade policies and the performance of the multi—

element cut-off grades was assessed. Though both methods were found to perform well, the 

diagonal multi-element cut-off grade policy performed better than the orthogonal multi-element 

cut-off grade policy, better reproducing the target forecasts with higher NPV. However, other 

mining complexes may exist where the orthogonal policy performs better as the performance of 

each method is highly dependent on the distribution of material. Additional research in the area 

may also identify superior policies that performs better than both the orthogonal and diagonal 

policies. 

The proposed multi-element cut-off grade policies provide operationally usable multi-element 

destination policies capable of meeting target forecasts. The diagonal cut-off grade policy was 

found to perform better than the orthogonal cut-off grade policy on the presented case study. Both 

methods deviated from the stockpile forecasts as stockpile deviations were not weighed as greatly 

as mill metal and tonnage deviations. Future research should aim to improve stockpiling 

performance through different cut-off grade definitions, or by increasing the number of cut-off 

grades. Additionally, the performance of the method with three or more elements should be tested 

as additional elements increases the dimensionality of the problem. 
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Chapter 4. Conclusions 

Conventional strategic mine planning is performed in a stepwise sequential process, starting with 

cut-off grade optimization through Lane’s method, defining the cut-off grade policy over the life 

of the mine. Next, production scheduling is conducted, defining when and where material is to be 

extracted from the pit. Lastly, down stream decisions are determined, defining where and how 

material should be treated. However, all of these components are interdependent, meaning that the 

sequential process provides a locally optimal mine plan, rather than a globally optimal mine plan. 

Additionally, traditional mine planning is deterministic, ignoring the uncertainty inherent in mine 

planning. Recent stochastic methods have improved upon the traditional framework by 

considering uncertainty, and simultaneously optimizing all components of the mineral value chain 

under one mathematical formulation. However, both the traditional and state of the art stochastic 

approaches do not (1) consider equipment access when optimizing production schedules, and (2) 

provide optimal multi-element cut-off grades under supply uncertainty. These observations 

motivated the development of two stochastic methods to address the noted limitations, while 

considering geological uncertainty. The first method presented in this thesis jointly optimizes 

production schedules and ramp design, while ensuring feasible equipment access to mined blocks. 

The second method determines optimal multi-element cut-off policy over the life-of-mine for an 

optimal production plan.  

The first method presented in Chapter 2 jointly optimizes long-term open pit mine production 

schedules and ramp design while ensuring equipment access to mined blocks under geological 

uncertainty. The proposed two-stage SIP maximizes NPV, while considering the cost of 

constructing and removing ramps and managing deviations from targets. The method outputs a 

long-term production schedule and ramp design, defining when, where ramps should be placed 

and what designs ramps should have. The method guarantees that some road surface exists from 

all mined blocks to the surface of the pit, where the road surface may only change benches through 

ramps, ensuring that equipment can access all scheduled blocks. The method is applied to a gold 

mine, and the optimized production schedule and ramp design are presented. Each ramp segment 

is placed tightly against the left side of the pit wall, minimizing the quantity of trapped ore beneath 

the ramp. Though ramps could have been removed or added, the optimizer only placed the minimal 

number of ramps required to reach the bottom of the pit, and never modified a ramp segment after 
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placement. The schedule focused most mining activity on the left pit walls in the early years to (1) 

provide space to place ramp segments and (2) provide early access to ore, enabling the production 

schedule to meet production forecasts. 

The second method, presented in Chapter 3 determines the optimal multi-element cut-off grade 

policy over the life-of-mine for an optimal production plan under geological uncertainty. A 

reinforcement learning framework is presented, leveraging PPO to minimize deviations between 

optimal production forecasts, and multi-element cut-off grade forecasts. The method is applied to 

a gold-copper mining complex that was optimized using the state-of-the-art simultaneous 

stochastic optimization of mining complexes framework, and two multi-element cut-off grades 

were tested, orthogonal and diagonal. The cut-off grades were optimized to minimize deviations 

from optimal mill metal production, mill tonnage, and stockpile tonnage. Both multi-element cut-

off grades were found to perform well, largely reproducing the optimal production forecasts. 

However, the diagonal policy was found to perform slightly better. 

4.1 Recommendations for Future Research 

Future research on the proposed topics can build upon both methods in numerous ways. Integrating 

the join stochastic optimization of long-term open pit mine production schedules into the 

simultaneous stochastic optimization of mining complexes framework would provide significant 

value as equipment access constraints drive large changes in the production schedule. 

Simultaneously considering the impacts of such changes on the destination policy, and 

downstream decisions may contribute to significantly altered mine plans and forecasts. 

Additionally, the method could be extended to consider the cost of roads, and optimize their design, 

rather than simply ensuring a possible road surface exists. The second method could benefit from 

further investigation into alternative cut-off grade designs, and more testing on larger mining 

complexes with more destinations and elements.  
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