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ABSTRACT

Precise material architectures and interfaces can generate attractive properties in materials. For
example, Topologically Interlocked Materials (TIMs) are architectures that can turn brittle
materials like ceramics into tough, deformable and impact-resistant material systems. This strategy
has been adapted from biological materials such as nacre and tooth enamel, which have been in
nature for millions of years. There are, however, some challenges in the mimicking of the
biological materials and the production of TIMs. Designing TIMs for thermomechanical
applications require in-depth thermomechanical finite element modelling (FEM). All possible
architectures in the vast design space, containing many potential structures and configurations
arranged in numerous ways, should be considered that is a computationally expensive process.
This problem can be addressed by leveraging Machine learning algorithms that are mathematical
models and a branch of artificial intelligence (Al).

This work consists of an extensive literature review on (1) bioinspired architectured materials,
especially topologically interlocked structures and (2) machine learning techniques and their
applications in manufacturing, especially laser cutting of ceramic panels for the production of
TIMs and (3) the designing of architectured materials using ML algorithms. Later, in this study,
we propose a new approach to design TIMs, using machine learning (ML), trained with finite
element modeling (FEM) data and together with a self-learning algorithm, to discover high-
performance ceramics in thermomechanical environments. First, a parametric study is conducted
over topologically interlocked ceramic panels. A limited number of architectures is subjected to a
thermal load and is studied using ANSYS finite element package. Finally, the multilinear
perceptron is used to train the machine learning model on FEM data to predict the
thermomechanical performance of architectured panels (TIMs) with varied design parameters (e.g.
interlocking angle and number of blocks).

Overall, the developed machine learning based framework can boost the design algorithm
efficiency and provides new designs for various high-temperature applications in aerospace
industries. This study demonstrates that architectured ceramic panels with ML-assisted engineered
patterns can demonstrate up to 30% improvement in frictional energy dissipation and 7% in the
sliding distance of the tiles and 80% reduction in the strain energy that results in a higher safety

factor and structural failure delay compared to plain ceramics subjected to a thermal load.



RESUME

Des architectures et interfaces de matériaux précises peuvent générer des propriétés
intéressantes dans les matériaux. Par exemple, les matériaux topologiquement imbriquées (TIM)
sont des architectures qui peuvent transformer des matériaux fragiles comme la céramique en
systemes solides, déformables et résistants aux chocs. Cette stratégie s’inspire de matériaux
biologiques tels que la nacre et I'émail dentaire qui sont utilisés avec succés dans la nature depuis
des millions d'années. L'imitation de ces matériaux biologiques présente cependant de multiples
défis : la conception de TIM pour des applications thermomécaniques nécessite une analyse par
éléments finis (FEM) approfondie, et I’exploration de 1’espace des configurations possible est
couteuse en calcul. Ce probleme peut étre résolu en tirant parti des algorithmes d'apprentissage
automatique qui sont des modeles mathématiques et une branche de I'intelligence artificielle (1A).

Ce travail consiste donc en une vaste revue de la littérature sur (1) les matériaux architecturés
bioinspirés, et notamment les structures topologiquement imbriquées, (2) les techniques
d'apprentissage automatique et leurs applications dans la production, en particulier la découpe laser
de panneaux céramiques pour la production de TIM ainsi que sur (3) la conception de matériaux
architecturés a l'aide d'algorithmes ML. Plus tard, dans cette étude, nous proposons une nouvelle
approche pour concevoir des TIM avec l'apprentissage automatique (ML), formés avec des
données de modélisation par éléments finis (FEM) et avec un algorithme d'auto-apprentissage.
Ceci afin de développer des céramiques haute performance dans des environnements sous
contrainte thermomécaniques. Afin de mener ce projet a bien, une étude paramétrique est tout
d’abord menée sur des panneaux céramiques imbriqués topologiquement. Un nombre limité
d’architectures sont congues, soumises a une charge thermique étudiée a l'aide des methode
d'éléments finis ANSYS. Enfin, le perceptron multilinéaire est utilisé pour entrainer le modéle
d'apprentissage automatique sur les données de FEM pour prédire les performances
thermomécaniques des panneaux architecturés (TIM) avec des paramétres de conception variés
(tel que I'angle de verrouillage et le nombre de blocs).

Dans I'ensemble, le cadre basé sur I'apprentissage automatique ainsi développé peut augmenter
I'efficacité de l'algorithme de conception et fournir de nouvelles conceptions pour diverses
applications a haute température dans les industries aérospatiales. Dans cette étude, il est démontré
que les panneaux céramiques architecturés a motifs d'ingénierie congu par ML montrent jusqu'a

30% d'amélioration de la dissipation d'énergie de frottement et 7% de la distance de glissement
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des carreaux et une réduction de 80% de I'énergie de déformation. Ceci conduisant a un facteur de
sécurité plus elevé et le délai de rupture structurelle par rapport aux céramiques simples soumises

a une contrainte thermique.
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1 Introduction

1.1 Architectured Materials

For decades mechanical and material engineers came together to find and produce materials
with outstanding performances; however, they have suffered from significant mechanical and
chemical trade-offs. For example, high strength in materials is at the expense of having low
toughness [1] and high thermal stability at the expense of high density [2]. For instance, ceramics
have great thermal performance and strength; however, controlling the brittleness of ceramics and
manufacturing desired shapes out of ceramics are always a challenge that limits their usage in

high-temperature applications.

Nature has always taught and provided human beings to survive and improve their life. As
history advanced, natural materials such as bone and wood have slowly experienced an evolution.
Scientists and engineers are amazed by the complex architectures of natural structures such as
teeth, which can offer combinations of mechanical properties and surpass those of their constituent
materials by orders of magnitude. This fascinating idea leads to the development of a new branch
of advanced materials, i.e. bioinspired materials [3]. One example from nature is biomineralized
ceramic tissues, which are particularly fascinating due to their remarkable mechanical resilience.
Despite their brittle constituent building blocks, ceramic tissues have found ways to survive in
harsh environments. A well-known example is nacre [4-7], in which plates of aragonite can boast
far greater toughness than calcium carbonate individually. Aragonite tablets are combined with a
soft material with lower Young’s modules, helping them to become a tougher material. Another
example is the skeleton of a sea sponge, which exhibits exceptional hierarchical levels of
complexity, each providing the essential components of structural design necessary to convert the
brittle constituent material (silica) into a sophisticated architecture [3]. This complex structure
helps them to survive in a harsh environment. The tooth enamel also has unique characteristics.
The enamel architecture has evolved to fulfill hard functions requiring cutting, crushing, and
tearing of aliments. In humans, the enamel micro-architecture mainly consists of tightly packed
(~96% vol.) hydroxyapatite rods. Hydroxyapatite is also constituent of bones in the human body
and they are combined with proteins, making them the most mineralized and hardest material in
the body [8]. Examples are shown in Figure 1.1 for different organisms and constituent materials.
Superior mechanical performance of these structures has brought the idea of mimicking their
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architectures in the form of architectured materials. As opposed to the conventional materials,
which gain their properties merely from their material composition, architected solids gain their
extraordinary multifunctional properties mainly from their underlying architecture [9]. The next
chapter will focus on human adaptations of interlocking structures, namely Topologically
Interlocked Materials (T1MSs).
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Figure 1.1: (a) Microarchitecture of nacre and the crack propagation [6]. (b) The fracture surface of the nacre
showing the arrangement of tablets resulting in improving their toughness [7]. (c)The microstructure of tooth
enamel [8]. (d) The glass sponge is showing the basket-like cage structure [10]. (e) The toughness of natural

composite materials exceeding far from their constituents' toughness [11]. Reproduced with permission from the

publisher.
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1.2 Machine Learning

To this day, most of us have heard the word Atrtificial Intelligence (Al). No one can deny the
importance of Artificial Intelligence in our daily life. When a person googles a topic, powerful
algorithms are used to bring the most interesting results based on the previous search.
Recommendation systems suggest items of interest and enjoyment to people based on their
preferences. Machine learning (ML) algorithms is a branch of Al based on the idea that systems
can learn from data, identify patterns and make decisions based on previous data. ML algorithms'
usage is not limited to recommendation systems and can be expanded to other industries such as
manufacturing and designing structures. As mentioned, bioinspired materials mimic the
mechanical and biological characteristics of natural biomaterials from nature while difficult to
design due to the complexity of their hierarchical and heterogeneous structures [3, 11-13]. The
complexity of compositional and topological structures of bioinspired materials leads to vast
design spaces that exceed the limit of available computers. It has been found that artificial
intelligence (Al) and especially machine learning algorithms can address these problems.
Numerous research articles in this topic are coming out in specific materials or mechanics
branches, involving energy materials [14, 15], glasses [16], composites [17], polymers[18],
bioinspired materials [19, 20], additive manufacturing, [13, 21-23]. Chapter 2 introduces several
of the most important machine learning concepts, especially regression problems. Although some
sophisticated machine learning algorithms might sound like daunting topics, they are in fact,
straightforward and applicable in most engineering problems. Later we illustrate the usage of
regression models in manufacturing, especially laser cutting. At the end of this work, machine
learning techniques are used for investigating the thermomechanical performance of architectured

ceramics.

1.3 Research objectives and goals of the thesis

1. Athorough literature review over:
a) Bioinspired architectured materials, especially topologically interlocked structures.
b) Machine Learning algorithms and their usage in manufacturing and design of
architectured materials.
2. Developing machine learning algorithms trained by FEM data and designing
architectured ceramics with tunable thermal resistance via the hybrid machine learning and FEM.
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2 Literature Review

2.1 Architectured materials

As we discussed in the introduction, architectured Materials have brought us attractive
characteristics and properties. For example, specific geometries can turn brittle materials such as
ceramics into tough and impact-resistant materials. Many efforts have been made in improving the
performance of materials, only focusing on their architectures [24]. High-performance structures
that are stronger, tougher and lighter can be achievable by controlling structures at length scales
that are intermediate between the microscale and the component's size. The mechanical properties,
namely strength, wear resistance, stiffness, flexibility, fracture toughness and energy absorption,
can be improved by having Fibrous, Helical, Gradient, Layered, Tubular, Cellular, Suture,
Overlapping structures.

Fibrous structures are required for producing high tensile strength in a single direction. They
are commonly found in soft biological materials, such as tendons [25] and silks [26]. These
structures occur within the nano to microstructures of biological materials. Helical structures
provide increased strength and toughness in multiple directions by employing layers with varying

angles (twisted-ply structures).

Helically reinforcing structures are generally observed in the macrostructure of biological

materials and organisms such as sea-sponge exoskeletons [27] and insect exoskeletons [28].

Gradient structures combine different materials with different mechanical properties, result in
a structure gradient through their cross-section or thickness, such as fish scales [29]and crab claws
[30].

Layered structures are employed to improve the toughness of brittle materials. the layers in
these structures experience large changes in mechanical properties such as deep-sea sponges [31]

and the brick and mortar structure of the abalone shell [32].

Tubular structures consist of arrays of long aligned pores within a bulk material such as horse

hooves [33] and ram horns [34].
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Highly porous structures, namely Cellular structures, are open and closed cell foams (e.g.,
honeycombs [35]), resulting in high-strength, low-weight structures, capable of resisting buckling

and bending and increasing toughness, for instance, turtle shells [36] and bird bones [3].

Suture structures are wavy or interdigitating interfaces that are found within a variety of plates
and bones and generally consist of two phases [37]: rigid suture teeth and a compliant interface
layer to control the intrinsic strength and flexibility of a material interface. Suture structures are

observed in armadillo osteoderms [38] and ammonite shells [39].

Overlapping structures, a group of structures consisting of TIMs, are structures composed of a
number of individual plates or scales that can slide next to each other, forming a flexible protective
surface such as seahorse tails [40] shark skin [41]. Mechanically interlocked structures are part of
the group of overlapping structures that can ensure stiffness while allowing flexibility. The

structures above are shown in Figure 2.1 [37].

y b u\a‘

Figure 2.1: Diagram of the eight most common biological structural design elements [37]. Reproduced with

permission from the publisher.

In this research, we mostly focus on Topologically Interlocking materials in brittle materials
(also known as Masonry-type arrangement). These structures brought interesting characteristics
such as localizing impact damage and increasing fracture toughness. By letting individual elements

slide next to each other, high flexibility is achievable and applicable for a range of applications. In
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TIMs, adjacent plates are locked within the structures without using any other materials such as

adhesives and geometries are constrained by their peripheral supports.

Topologically Interlocked structures are mostly studied in impact applications [42]. TIMs
localize the damage by hindering the crack propagation through the structure, where blocks in
TIMs produce a solid structure by leveraging the friction between the tiles. The tough behavior of
these structures is mostly due to the asperities on two rough surfaces. Different contact surfaces
and designs of the blocks result in different interlocking architectures [43]. The idea of topological
interlocking materials was motivated by the key block theory [44]. Some studies explored the
mechanical performance of interlocking structures, especially the designs with tetrahedron tiles
with mechanical testing [45].

VN5 N6 N \_AA_A_A_/
2587% Y NV ¥ ¥
(c) (d)

Figure 2.2: Topologically interlocked materials, tetrahedron design. (a) Schematic view of the adjacent tiles in
the design. (b) Overview of whole structure with missing one tile. (c), (d) A-A and B-B cross-sections in the whole

design [45]. Reproduced with permission from the publisher.

As well as mechanical testing, some mathematical models are established to capture the
behavior of these architectures. It is beneficial to have a decent understanding of the mathematical
models that inspire the development of codes and finite element analysis. According to
experiments, indentation is one way to calculate the forces and out-of-plane deformations in TIMs.
Khandelwal et al. tried to explore the mechanical properties of topologically interlocking material
systems by applying indentation in the middle tile, which will cause different resultant forces on
each cross-section plane [46]. Although results from experiments are more than 30% different

from the analytical model, force-displacement trends are the same [47]. One of the drawbacks of
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mathematical models is that they are limited to a certain boundary condition, and most of the time,
it is not possible to be extended to other boundary conditions and loads and structures. The
mathematical model of TIMs indentation is only valid for the same tetrahedron blocks, and it will
be puzzling for analyzing structures containing different shapes of tetrahedron blocks. In Chapter
3, the FEM analysis is employed to calculate out-of-plane deformation and forces. Also, the
randomness of different tetrahedrons with different angles is considered by leveraging machine

learning (ML) models.

Some studies cover the usage of the other shapes of interlocking structures [43]. Also, the
studies of TIMs are expanded by utilizing 3D printing and additive manufacturing methods [48],
which give the ability to fabricate more complicated designs. Although 3D printing revolutionized
the whole research area about bioinspired materials, there are still some challenges in printing all
ranges of materials with desired porosity and strength, such as nonporous ceramics. Not only 3D
printing, a variety of techniques such as Machining [49, 50], the casting of polyester [43] and
cement paste [51] are used for the fabrication of TIMs. Some efforts have been made for
manufacturing ceramic TIMs, for example, by freezing the gelation of ceramic slurries [52].
Ceramic panels produced by this way have more than 90% less compressive strength than
nonporous ceramics, making them not favorable in harsh environments. Although nonporous
ceramics have great performance, there are still many challenges in the manufacturing section.
This study will discuss a laser cutting method to fabricate nonporous ceramics tiles in

Topologically Interlocked structures.

In most of the studies, architectured panels, especially TIMs, outperform the monolithic form
of the material in terms of energy absorption, impact resistance and damage tolerance, but at the
expense of flexural strength [43, 48, 50]. Architectured panels display large and permanent
deformations generated by the sliding and rotation of the tetrahedral blocks rather than by their
materials' inherent characteristics. The force-deflection curve is shown (Figure 2.3) in 3D printed
structure to demonstrate their behavior [24, 47]. Large deflection results in high energy absorption;
this is observed in the area under the graph. Friction between the tiles plays a great role by
dissipating energies and at the same time making the structure rigid [53]. These make TIMs
attractive for impact-resistance applications [42, 50, 54, 55]. It is shown monolithic plain materials,
which are made of brittle materials, fail catastrophically and can not absorb a higher amount of

15



energy. In contrast, interlocked architectures by localizing the damage could absorb higher

energies till the whole structure collapse.

Another benefit of using TIMs is that some tiles remain intact and damaged tiles can be
replaced [56]. In these materials, stiffness and toughness can be controlled by changing the design
and arrangement of the tiles and still take advantage of other characteristics of brittle materials
such as oxidation resistance, low thermal and electrical conductivity, refractory and most

importantly, maintaining strength in high temperatures.

Many other shapes and contact surfaces can be designed and Finite Element Modelling assists

us in exploring a limited number of designs [42, 47, 50, 53].

7 Pressure
- ~ Sensors

14 ¢ == Solid plate

Load (kN)

M Architectured plate

0 2 4 6 ‘& 10 1 11 I
Deflection (mm)

(@ (b)
Figure 2.3: (a) 3D printed structure in impact test [47]. (b) Graph showing the tough behavior of interlocked

architectured materials [24]. Reproduced with permission from the publisher.

Despite the simplifications that the FEM models rely on, they can sometimes be accurate [47,
57, 58] and sometimes up to 14 times different from experiments [50]. Therefore experiments are
needed for the validation of the results [57-59]. There are some limitations in the usage of FEM
analysis; for example, FEM models are time-consuming. Recently new algorithms have been
developed for increasing the speed of FEM models. Hybrid Machin learning and FEM algorithms
are faster in time and beneficial to explore all possible designs. In the next section, we study
different ML algorithms and we explore the usage of Machine Learning algorithms in mechanical

engineering applications, especially architectured materials design.
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(b)

Figure 2.4: Comparison of catastrophic failure monolithic plate and localized damage in interlocked design. (a)

Monolithic plain plate. (b) Topologically interlocked design [56]. Reproduced with permission from the publisher.
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2.2 Machine Learning Algorithms

2.2.1. What is Machine Learning?

Machine learning is an application of artificial intelligence (Al) that provides systems the
ability to observe and learn from existed data and predict the output for new input data. Most
machine learning algorithms are divided into two problems which are regression and
classification. In this chapter, after going through the definitions, we focus on the two most used

regression algorithms, Logistic Regression and Neural Networks [60].
Regression and classification

In problems where training data is available and the model can be trained based on input
vectors (instances) along with their corresponding target vectors, supervised learning algorithms
are used. Cases such as image and digit recognition where the aim is to assign each input vector to
one of a finite number of discrete categories are called classification. When the target vector
(output) consists of continuous variables, the problem is called regression. An example of a
regression problem would be predicting the depth of cuts in laser machining with specified input

variables (we will elaborate on it in detail in this chapter).

2.2.2. Linear Regression

As we mentioned, Regression is supervised learning and its goal is to predict the value of one
or more continuous target variables t given the value of a D-dimensional vector x of input variables.
The polynomial fitting is an example of a broad class of functions called linear regression models.
The simplest forms of linear regression models are linear fitting functions of the input variables.
Besides linear and polynomial functions, we can obtain many more useful functions by taking
linear combinations of a fixed set of nonlinear functions, known as basis functions. Given a
training data set comprising N observations as instances and target values as outputs, the model
will be trained based on the data. The goal of the model is to predict the value of output for new
instance X.

From a probabilistic perspective, we aim to model the predictive distribution p(tjx) because
this expresses our uncertainty about the value of the predicted outputs for each value of x. Another
goal is to minimize the expected value of a suitably chosen loss function from this conditional

distribution. The loss function evaluates how well the algorithm models the dataset. The common
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choice of loss function for real-valued variables is the squared loss. Linear regression, which is a
linear combination of input variables, can be extended to different models by considering linear
combinations of nonlinear functions of the input variables (basis functions) [60]:

y(x,w) = wy + w;X; + -+ WpXp (1.a)

yxw) = Y5 w;0;(x) = wTd(x) (1.b)

Where X is known as the input vector and w is know as the weights. @; is the base function.

There are many possible options for base functions.

Polynomials, sigmoidal, Gaussians base functions in order are [60]:

3;(x) =% (2.a)
0,00 = o(=) | 0(a) = ;o (2)
0;(x) = exp {— %} (2.c)

/ ‘/ /

-1

Figure 2.5: Comparison of Polynomials, sigmoidal, Gaussians base functions [60]

Weights of these basis functions are optimized by minimizing the loss function. The likelihood
of the dataset is needed to be considered to interpret the probabilistic view of the functions. The
likelihood function is a function for calculating the conditional probability of observing the data
sample. The goal is to maximize the likelihood function that will result in minimizing the error
function. Let us focus on linear basis functions and a probabilistic view of linear regression.

Likelihood and log-likelihood and optimal weights are presented in order:

L(w) = [TNz1 pe (y™]x™) (3.)
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(@) = Yn—=— (y™ — wTX(“))Z + constant (3.b)

252
w* = argmax,l(w) = argmin,, %Zn(y(“) — wa(“))z (3.0

To find the minimum of the above function, the gradient of it is calculated and set to be zero.
In this condition, a direct solution can be achieved however it is computationally expensive. For
complex functions that direct solution is not applicable, methods such as gradient boosting are

used to find the gradient of the functions [60]:
o' = (XT™X)"1XTy 4)

In this condition, nothing will be changed if we have nonlinear bases, f,, = >4 w494(x) and

the solution simply becomes: w* = (®T®)~1dTy, where @ is a matrix containing @ .

2.2.3. Neural Networks

Mathematical representations of information processing in biological systems [61] that can be
used for pattern recognition in other applications called Neural Networks algorithms [62-65]. This
section focuses on the specific class of neural networks that have proven to be of the greatest
practical value, namely the multilayer perceptron [66, 67]. The goal is to extend the previous
regression model by making the basis functions @,(x) depend on parameters and then to allow

these parameters to be adjusted, along with the coefficientsw;.

Neural networks use basis functions that are nonlinear functions of linear combinations of the

inputs. A basic neural network model with two hidden layers is presented below [60].

1 2
a; =Xk, oo].(i )i, A = ]-l\io u)l((j)zj (5.a)
1
Y% w) = o(TH, 0 h(ZR, 0 x))) (5.b)

Inthis formulaj =0, ...,Mand k = 0, ..., K and superscript 1 and 2 indicate parameters in the

first and second layers. Weights are presented by a)j(l.l) and a),(j.). a; and a; are known as

activations. (a;) In the first layer is transferred to the second layer using differentiable and
nonlinear activation function h. There are a couple of choices for activation functions, namely,

reLu, sigmoid and tanh. To find the network outputs y,, output unit activations a; are calculated.

The output activations are then transformed using an appropriate activation function. For binary
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classification problems, each output unit activation is transformed using a logistic sigmoid function
(o) [60, 68]. This idea can be extended to the models with more layers and a combination of

different activation functions.

Figure 2.6: Schematic view of artificial neural networks with weights and activation functions.

In the next section, we demonstrate some applications of machine learning algorithms,

especially regression algorithms, in manufacturing and designing.

2.2.4. Support Vector Machine Regression (SVR)

The SVR is the SVM implementation for regression and function approximation which has
yielded good results in many regression problems in data mining [69]. The standard SVR
formulation uses Vapnik’s e-insensitive cost function on the residuals y; — ((9(x;), w) + b) in
such a way that errors up to € are not penalized, and all further deviations will incur in a linear
penalization. Briefly, SVR finds weights w by minimizing the following regularized functional
[70]:

mingg, {51017 + € 2iE + &)} (6.2)

With respect to w and to &, (fori =1, ---, n), and constrained to:

yi —((@(x),w)+b) <e+&, Vi=1,..,n (6.b)
(@), w)+b)—y; <e+&,Vi=1,..,n (6.c)
§&,67=0,Vi=1,..,n (6.d)

Where &;" are positive slack variables to deal with training samples with an absolute prediction

error larger than € (¢>0), and C is the penalization parameter applied to these ones. Note that C
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trade-offs the minimization of errors and the regularization term, thus controlling the

generalization capabilities.

2.2.5. Decision Tree and Gradient Boosting

A decision tree learner, a nonparametric supervised method, builds regression models in the
form of a tree structure [71]. The goal is to predict the value of a target variable by learning simple
decision rules inferred from the data features. Starting from the root (with the whole training data),
data sets are broken down (split) at decision nodes into smaller and smaller subsets considering at
each split the feature with maximal reduction of a weighted (with the number of samples)
variability measure (e.g., mean square error). After a termination criterion is met, e.g., a
prespecified maximum depth or maximum width is reached or, the result is a tree with decision
and leaf nodes. A decision node has two (binary) branches, each associated with a set of values for
the tested feature, while a leaf node represents a prediction (average value of the samples at the

node) of the numerical target, i.e., function output.

GB as gradient boosting is designed to promote diversity among base learners in decision tree
algorithm, hence reducing the covariance component of the generalization error and potentially
improving prediction estimates, be robust to overfitting, which is the key factor to have better
accuracies. As a by-product of the modeling process in gradient boosting algorithm, generate
preliminary importance measures of the feature variables. We claim these objectives can be
achieved by adopting a homogeneous ensemble approach based on decision trees and gradient

boosting considering subsampling and random subspace strategies [72].

2.2.6. Machin Learning and Manufacturing

Every day unprecedented volume of data from experiments, simulations and measurements is
produced in many fields such as engineering and manufacturing. Machine learning can act as a
powerful tool to extract information from data and explain the pattern underlying the data. ML
models also can augment new knowledge and automate different tasks that can assist in the
understanding of models and optimization actions. This powerful framework can be beneficial in
fields such as fluid mechanics [73, 74], where we should deal with massive amounts of data from
experiments, field measurements, and large-scale numerical simulations. Over the past 50 years,
Machine Learning techniques have been improved and extend their usage not only in applied

science but also in industrial fields, such as manufacturing [75, 76].
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Many different keys are playing a role in increasing the use of ML algorithms. Our generation
is experiencing an unprecedented confluence of (a) vast volumes of data; (b) advances in the
computer industry, (c) new efficient algorithms; (d) significant and ongoing investment by the
industry on data-driven problem solving [77].

Recently scientific inquiry shifted from first principles to data-driven approaches as the
models' accuracy needed to be increased and accomplish their goals. Since this thesis aims to focus
on architectured ceramic materials, in this section, we will explore the usage of Machine Learning
algorithms in manufacturing ceramic panels using laser cutting. Later in Chapter 3, the usage of

machine learning in exploring the behavior of architectured materials.

2.2.7. Smart machining:

Manufacturing sectors are now working on smart factories to improve productivity by
processing the accumulated data using Al. There has been a steady increase in the demand for
extracting information from large amounts of manufacturing data. Smart machining is a machining
process that can adjust its parameters to achieve a certain objective. Some parameters are difficult
to be tuned during conventional machining processes even by having the same operational
condition. The smart machining process can be implemented to optimize process parameters and
obtain optimum processing performance and product quality. There are various areas in machining
that Al assists engineers, for example, milling for the purpose of toll wear monitoring [78-80],
turning for the prediction of machine parameters [81] and abrasive waterjet for the prediction of
surface roughness [82, 83]. This section mostly focuses on the laser cutting machine to produce
deep ceramic cutting and Topologically Interlocked structures. We study machine learning
algorithms' development for exploring the input parameters, which are amplitude, wobble
frequency, linear speed, number of passes, and focal position to angle and depth of the cuts

produced by the picosecond laser machine.

2.2.8. Laser cutting:

One of the main challenges with processing ceramics for interlocked structures is the
machinability of ceramics for producing complex structures. Unlike metals, ceramics cannot
maintain strength with traditional subtractive manufacturing techniques as the machined cuts are
not damage-free [84]. Micro cracks produced as a result of machining of ceramics lead to crack

initiation and finally, it can greatly reduce the strength of the ceramics [85-88]. With laser
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processing, the material is no longer subject to vibration or cutting forces (shear forces) and instead
is exposed to a high-energy beam, resulting in rapid ablation of the material. Ablation or
sublimation is defined as the solid to gas phase transformation, bypassing the melting regime and
liquid phase of the ceramic material. Characteristics of the surfaces and the properties of the work
piece and the laser machine are important to the material removal during laser machining [89].
The interaction between surface and laser machining is influenced by controlling other machine-
tool parameters such as pulse frequency, peak power, scanning speed and overlapping. Although
many of these process parameters can be adjusted but still to obtain the desired quality and
optimize the efficiency of the features being produced, we face many difficulties [90]. A few
studies have been performed on the laser ablation of alumina ceramics [91-93] and some on
systemically exploring the effects of the laser process parameters on high-quality cut geometries
with a high degree of precision for alumina ceramics [94]. Ablation produced by laser cutting
machine is utilized for manufacturing the interlocking ceramic panels. To have a better overview
regarding the laser machine, Figure 2.7 illustrates the overall laser system located at the National
Research Council of Canada (NRC-CNRC). The laser machine parts are broken down into Laser
Chamber, Dust Collector, Cooler, Laser Unit (Ytterbium Picosecond Fibre Laser [YLPP-25-3-50-
R, IPG Photonics, USA]), Computer and Monitor.

Laser Chamber

Monitor

Dust Collector

C___J

Computer

(@)
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Figure 2.7: Schematic and realistic view of the laser system illustrating all the essential subsystems. (a) The

laser machine system. (b) Laser chamber and its parts.

For the precise and deep cutting of ceramic samples, there are parameters to be tuned, such as
the amplitude, wobble frequency, speed, number of passes and focal position. It is hard to control
all of these parameters and there is a lack of knowledge about how different combinations of these
parameters will affect the laser machining process. Various studies have investigated how laser
process parameters independently affect the quality of the laser cuts. The influence of Amplitude,
linear speed and the number of passes independently on cut quality and angle and depth of the cuts
in alumina ceramics is studied in one of our previous works [91]. In another study, modifying
pulse intensity, pulse frequency, pulse duration and air pressure resulting in a change in depth is
studied [95]. Kumar and Gupta also investigated the influence of laser power, pulse frequency,
number of scans and air pressure on the groove depth with a nanosecond pulsed fiber laser on

stainless steel and aluminum [96].

Machine Learning (ML), a branch of Al, assists us in studying the effects of a different
combination of parameters on the quality and depth of the cuts. ML is useful in the optimization
and prediction of laser parameters. Karazi et al. investigated the effects of laser power, pulse
frequency and scanning speed on the width and depth of the microchannels using artificial neural
networks and compared ANN and DoE models to predict the width and depth of the channels [97].
Desai and Shaikh also predicted the depth of the cuts using ANN [98]. Also, other Al models such

as Bayesian Networks are used to predict surface roughness [99]. In this section, the performance
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and accuracies of different machine learning algorithms are investigated over 190 data points from
experiments. The parameters that are studied in this section are presented in Table 2.1 with their

definition and symbols.
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Figure 2.8: 3D laser scanning microscopy images and topography of ceramics for the linear speed of 20 mm/s
with different wobble amplitude [91].

The correlation of input parameters which are amplitude, wobble frequency, linear speed,
number of passes and focal position to angle and depth of the cuts, are investigated in the
preprocessing step. Normalizing and scaling help the ML models converge and make the training
less sensitive to features' scale. As shown in Figure 2.9, the correlation between the parameters
indicates valuable information regarding the parameters. The number of passes and focal position
has less impact on the angle of cuts than the amplitude, linear speed and wobble frequency. Focal
position, number of passes and amplitude have less effect on the cuts' depth than linear speed and
wobble frequency. In our previous works [91, 94], input parameters, the number of passes, linear
speed, focal position, amplitude and wobble frequency are considered independent. However, the
correlation between the parameters indicates that the linear speed and wobble frequency are highly
correlated. Python and Matlab regression toolbox provide ML algorithms to explore different ML
algorithms' accuracy (Linear regression, SVM, Tree, Gradient Boosting, Gaussian process
regression and MLP) and to find the best performing algorithm. Multilayer perceptron (MLP), the
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so-called feedforward artificial neural network for the regression problem (ANN) [60], shows
lower Root Mean Square Error (RMSE) and higher R square values (Table 2.2) [100]. For this
purpose, MLP regressor from the Sklearn library is used in Python. ReLu activation function has
been used due to its higher accuracy than the logistic activation function. ReLu activation outputs
directly the positive input and outputs the negative input to zero [101, 102]. Randomly, 10% of
the dataset is picked for the test set and five-fold cross-validation is chosen to prevent overfitting.
The mean accuracy of the MLP model reaches 85%, which shows the promising performance of
the algorithm. Figure 2.10 true values and predicted values of depth and kerf taper are shown,

which is another indication of the algorithm's performance.

Table 2.1: Laser input parameters with their symbols and definitions.

Parameter Symbol Description
Linear speed (mm/s) Vv The speed at which the tracking stage traverses
Amplitude (mm) A The diameter of the circles in the wobble
Wohble frequency (Hz) fu Number of circular patterns per second
Number of passes N Number of times the laser scans a line

The distance between the laser focus and the

Focal position (mm) Dy surface of the workpiece
Kerf taper (angle°®) 0 The measured angle relative to the vertical axis
Depth (um) D The measured depth of the cuts
Vector speed
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Figure 2.9: (a) Presentation of input parameters [94]. (b) Presentation of output parameters of the laser
machine [103]. (c) Correlation of input and output parameters of the laser machine.

Table 2.2: Comparison of ML algorithms with Root Mean Square Error and R-square Error. MLP has lower
RMSE and higher R-square.

Linear Gradient
RMSE ] Tree SVM ] Gaussian MLP
Regression Boosting
Depth 90.08 80.11 50.17 86.03 41.34 36.73
Kerf taper 4.97 3.51 1.68 4.94 1.51 1.50
Linear Gradient )
R-square ) Tree SVM ) Gaussian MLP
Regression Boosting
Depth 0.66 0.73 0.90 0.69 0.93 0.95
Kerf taper 0.72 0.86 0.97 0.72 0.97 0.97

28



Predicted Response

MLP Regression-Kerf Taper (angle®)

70
65
60
55
50
45 L.
40 /

35 .

30 “

25

25 30 35 40 45 50 55 60 65 70

True Response

MLP Regression-Depth (um)

1100
1000
900
800
100

600

Predicted Response

500

400

300

300 400

500 600 700 800

True Response

900 1000 1100

Figure 2.10: Presentation of the performance of MLP model by indicating the true and predicted responses.

For producing the interlocking ceramic samples, the trained machine learning algorithms play

a great role in setting the laser machine's input parameters to specific values for the desired angle.

In Figure 2.11, the laser machine cut the sample in two rounds and between the rounds, the ceramic

sample is flipped and rotated. In Figure 2.11, 3x3, 5x5 and 7x7 interlocking ceramic samples are

shown. At the end of Chapter 3 in the manuscript, we propose manufactured interlocking panels

produced using the information mentioned above.

Initial cut of monolithic ceramic panel
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Figure 2.11: (a) Schematic of two round laser cutting for manufacturing of topologically interlocked panels. (b)
3%3, 5x5 and 7x7-block manufactured interlocked panels and the fixture for impact and thermal shock testing.

2.3 Machine Learning and Architectured Materials

In previous sections, we explored the architectured materials and machine learning algorithms
separately. This section focuses on their combinations and reviews the growth and state of the art

of new research efforts on architectured materials design using ML.

Material engineering and mechanical engineering communities are aware of the great
opportunities of leveraging ML as a powerful tool and a new paradigm. ML techniques have been
utilized to search for new materials, exploring different material properties such as elasticity,
plasticity, fatigue life, wear performance and buckling [13, 19, 104-108]. Some studies used ML
in designing new materials with desired properties and validated results with different
experimental techniques such as 3D printing of the newly designed architectured materials [13,
23, 109]. Machine learning methods are used to develop design guidelines for biocomposites with
high tensile strengths [110]. The production of data from FEM is efficient in terms of timing and
cost compared to experiments. Integrated approaches combining finite element method and ML
are developed to investigate the effect of constituent materials on composites' mechanical behavior
[111]. MLP and convolutional neural networks demonstrated their capacity to accurately and
efficiently predict the toughness and strength of two-dimensional (2D) composites [112] and it is
possible to obtain the optimum structures of the composites in terms of strength and toughness. In
another study, ANN predicted the unconfined compressive strength of cemented paste backfill
[113]. ML models are employed to predict the compression strength of heat-treated woods [114].
Deep learning approaches were used for mining structure-property linkages in high contrast
composites from simulation data sets [115, 116]. Deep learning models are also employed to
capture nonlinear mapping between three-dimensional material microstructure and its macroscale
stiffness [115].
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2.4 Connecting Statement

Chapter 2 provided an extensive literature review on three important subjects to clarify the

basics and help with the next chapter's comprehension.

(@) Architectured materials, especially topologically interlocked structures (T1Ms)
(b) Machine learning algorithms, especially regression models.
(c) Employment of machine learning algorithms in manufacturing and Design of TIMs.

In Chapter 3, all subjects above are combined and are used to accelerate the design of topologically
interlocked ceramic samples with tunable thermal resistance via hybrid machine learning and finite

element approach.
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3 Accelerated Design of Architectured Ceramics with Tunable Thermal
Resistance via Hybrid Machine Learning and Finite Element Approach

E. Fatehil 2, H. Yazdani Sarvestani?, B. Ashrafi*, A.H. Akbarzadeh® 3
1Department of Bioresource Engineering, McGill University, Montreal, QC H3A0C3 Canada
2Aerospace Manufacturing Technology Center, National Research Council Canada, Montreal, QC H3T 2B2
Canada
3Department of Mechanical Engineering, McGill University, Montreal, QC H3A0C3 Canada

Abstract

Ceramics have outstanding thermal performance; however, they are brittle that limits their
applications in high-temperature environments. Designs such as topologically interlocked
architectures can transform ceramics into tougher materials, while making the material design
procedure a cumbersome task. One of the design challenges is to consider all feasible designs
based on the topologically interlocked material strategy. Modeling the whole architectural design
space is not efficient and to some degrees is not viable. In this study, we propose a hew approach
to design architectured ceramics, using machine learning (ML), trained with finite element
modelling (FEM) data and together with a self-learning algorithm, to discover high-performance
ceramics in thermomechanical environments where inferior designs are phased out for candidates
with superior properties. First, topologically interlocked panels are parametrically generated.
Then, a limited number of designed architectured ceramics subjected to a thermal load is studied
using ANSYS finite element package. Finally, the multilinear perceptron is used to train the
machine learning model using FEM data in order to predict the thermomechanical performance of
architectured panels with varied design parameters (e.g. interlocking angle and number of blocks).
Overall, the developed machine learning based framework can boost the architectured ceramic
design efficiency and open new avenues for their functional controllability for various high-
temperature applications in aerospace. This study demonstrates that the architectured ceramic
panels with ML-assisted engineered patterns show up to 30% improvement in frictional energy
dissipation and 7% in the sliding distance of the tiles and 80% reduction in the strain energy,
leading to a higher safety factor and the structural failure delay compared to plain ceramics
subjected to a thermal load.

“Address correspondence to: A.H. Akbarzadeh (hamid.akbarzadeh@mcaqill.ca, Tel: +1 (514) 398-7680) and B.
Ashrafi (behnam.ashrafi@nrc-cnrc.gc.ca, Tel: +1 (514) 283-7421).
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3.1 Introduction

Ceramics are used in a wide range of industrial sectors, including electronics [117], aerospace
[118], medicine and biomedical devices [119-121], owing to their excellent properties such as
oxidation resistance, low electrical conductivity, high refractory and maintaining their mechanical
properties at high temperatures [122]. The low thermal conductivity of ceramics is used to protect
space shuttles and keep satellites safe from serious damages [118], while their thermal stability
property is critical in hypersonic flights and propulsion applications [123]. In spite of the excellent
thermomechanical properties of ceramics, they generally suffer from brittleness [103, 122] that
limits their multifunctional applications where ductility and toughness are required in addition to
stiffness, strength and thermal resistance. Inspiration from natural and biological materials can
assist to engineer the next generation of ceramics that can overcome the aforementioned drawback
[124, 125].

Superior mechanical properties of biological species, such as a combination of high strength
and high toughness, have inspired material scientists and engineers [126] to develop advanced
high-performance materials [11]. In biological composites (e.g. bones, shells, horns and teeth),
brittle organic materials such as calcium carbonate, calcium phosphate (hydroxyapatite), and
amorphous silica [127] are employed by nature to design biomaterials that offer a combination of
high strength, stiffness, flexibility, fracture toughness, and wear resistance [35, 128]. For example,
the fracture toughness of abalone, conch shell and nacre with a brick and mortar microstructure
[11, 129], is up to seven times higher than their material constituent, i.e., calcium carbonate [37].
Tooth enamel, as the hardest material in vertebrates, has also shown high toughness due to its
microstructure that consists of tightly packed hydroxyapatite rods [3]. As a universal construction
principle, these biological materials are made of hard and stiff building blocks bonded by weaker
interfaces [130]. This finely-tuned strategy can result in deformation/failure mechanisms that
enable the amplification of toughness. For example, the staggered architecture in nacre-like
materials can result in progressive tablet sliding and crack blunting, deflecting, and bridging [131].

33



These microstructural designs have recently inspired the development of a new class of tough
architectured structures out of brittle materials such as ceramic and glass [55, 132].

One of the material design strategies to achieve superior mechanical performance is developing
interlocked building blocks for architectured materials that acts as a strain hardening mechanism
to localize damages and spread the deformation to a larger volume of brittle materials [130]. The
resulting materials are called topologically interlocked materials (TIMs) [133, 134]. Researchers
have made considerable progress in the design and fabrication of TIMs to enhance their energy
absorption and impact resistance capacity [50, 135-137]. Toughness has been improved in brittle
materials by interlocked and segmented designs [50, 124]. The toughening mechanism is observed
due to segmentation of blocks and the existence of weak interfaces (e.g. soft polymers such as
ionomer or Ethylene-vinyl acetate (EVA) resins as an engineering replacement of protein in nacre)
between microscale building blocks with tetrahedral, octahedral and cubic architectures [47, 53,
54, 57, 138]. These configurations offer a vast design space since the architectural features of the
building blocks can be tailored by tuning their dimensions [57, 124] and interlocking angles [50,
54].

Machine Learning, a branch of artificial intelligence for discerning patterns from complex
datasets, enables systems to learn from existing information in order to predict new results. ML
algorithms have opened a great window to the horizon of all branches of science, such as diagnosis
of diseases [139], discovering drugs [140] and image recognition [141]. Recently, ML algorithms
have also found their applications to material selection and exploring new material properties [20,
105, 107, 108, 142-144]. While these studies demonstrate possible applications of using ML in
materials design [142] (especially mechanical performance and architectures), they have been
mainly focused on using ML models to predict the properties of materials rather than designing
new structures with desired properties or functionalities.

Despite encouraging results of topologically interlocked panels in impact and energy
absorption, more efforts are required to first evaluate and then optimize their performance in
thermal applications. There are not sufficient studies on the thermal behavior of bioinspired brittle
materials and specifically ceramics. In this study, the thermal performance of architectured
ceramics with topologically interlocked designs is studied and a new approach is introduced to
design architectured ceramics using a combination of FEM and ML (Figure 3.1). Here a database

of 400 panels from finite element analysis is used to train a model for discovering high-
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performance ceramic panels. This hybrid ML-FEM model is computationally efficient for
evaluating the thermal and mechanical performance of the designed architectured ceramics. The
dissipation energy through friction between blocks, energy absorption and architectural failure
based on safety factor are explored using finite element analysis to find high-performance
architectural designs. Neural Networks are used to explore the performance of 400,000
topologically interlocked designs with distinct dimensions and interfacial angles between
neighboring blocks. At the end, the designs are analyzed by FEM to explore the accuracy of
predictions. In Figure 3.1, the schematic of the design algorithm is presented: (Step 1)
Architectured panels are designed and design parameters are set using a CAD software package;
(Step 2) Architectured designs with specific dimensions are produced; (Step 3) Boundary
conditions and external thermal load are applied on the panels; (Step 4) Performance of alternative
designs are explored by specifying the output parameters (e.g. deflection, energies, reaction forces
and safety factor); and (Step 5) ML algorithms are trained by all results from the previous

procedure in order to select better performing architectural designs.
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Figure 3.1: Schematic of the design algorithm for finding the best performing architecture with respect to the
desired output (e.g. safety factor, energies (strain, frictional dissipation, work), and reaction forces). Jigsaw panels
are used to represent an example of architectured materials.
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3.2 Design Methodology

Topologically interlocked panels [50] are built from truncated non-platonic tetrahedron
ceramic blocks (see Figure 3.2a). The blocks with an interlocking angle (o and $) less than 90° are
contained by adjacent blocks, resulting in a topologically interlocked design. A non-regular
truncated tetrahedron has two planar surfaces: a square on the bottom and a rectangle on the top
(Figure 3.2a). A non-regular tetrahedron is truncated unsymmetrically from top and bottom to

ensure a square area with [ x [ dimensions on one side of truncated tetrahedron is produced. Angles
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on sides AA and BB may be different (a and g in Figure 3.2b). For each block two faces are tilted
outward, and the other two are tilted inward. The height of the building block is set to be h =
2.54 mm (0.1 inch) and dimensions of the rectangular section is [ + 2h X tan(a) and |l — 2h X
tan(B). The panels with different numbers of blocks, including 3 x 3, 5x 5 and 7 X 7, are
considered. The overall size of the3 x 3, 5x5and 7 x 7 panels is set to be10 x 10 cm?.
Considering two symmetry planes, the panels have 4, 6 and 8 possibilities of different interlocking
angles forthe 3 x 3,5 x 5 and 7 x 7 structures, as reported in Table 3.1, respectively. Interlocking
angles studied here are 5°, 10°, 15°, 20° and 25° that result in 625, 15625 and 390625 combinations
for 3x 3, 5x5 and 7 x 7 panels, correspondingly. Three-dimensional displacements and
rotations on all four boundaries of the panels are constrained to make fully interlocked geometries.
These panels are fully constrained without using any other materials between the tiles, like
adhesive. A thermal load applied to the center of the architectured panel generates transverse
mechanical forces and frictional interactions between blocks. The panel also experiences an out-
of-plane deformation that is distinct from the pristine ceramic panel as a baseline for comparing

the thermomechanical behaviors.

Table 3.1. All possible architectured designs by changing the angles between blocks. Each color represents an angle

(a,B).
. Number of designs with
Number Interlocking angles alternative interlocking Arrangement
of blocks (a, B) angles

3x3 5° 10°, 15°, 20°, 25° 54 =625 s

¢
\ 4

5%5 5°,10°, 15°, 20°, 25° 50 =15625

7x7 5°,10°, 15°, 20°, 25° 58 =390625
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Figure 3.2: Overview of the design of the topologically interlocked panel. (a) Truncated non-regular tetrahedron.
(b) Block with different angles in AA and BB surfaces and the locking configuration of adjacent blocks in the 3x3
block panels. (¢) Symmetry planes in the architecture panel and different angles of blocks on each side (a,p).

3.3 Finite Element Modeling

FEM is performed using ANSYS Workbench 2019 R3 on panels with different numbers of
building blocks and interlocking angles. Panels with the 3x3 (9), 5x5 (25) and 7x7 (49) arrays of
blocks as well as 5°, 10°, 15°, 20° and 25° interlocking angles are considered. The architectured
designs have two symmetry planes, one normal to the x-direction and one normal to the y-direction
(see Figure 3.2c). Material properties of non-porous alumina ceramics are assumed to be isotropic
linear elastic. Different properties of the alumina ceramics are listed in Table 3.2 [124]. These
properties are considered constant in the range of temperature analysis. Transient thermal analysis
is first performed to evaluate the thermal performance of different architectured designs. A
constant temperature (i.e., thermal load) is applied to a circular area with a radius of 10 mm in the
middle of the panel. The rest of the panel containing edges is exposed to free convection with a
w
m2K

expansion of the panel results in in-plane forces between building blocks. A thermomechanical

. Due to the fixed boundaries in peripheral blocks, the thermal

heat transfer coefficient of 10

study is performed to explore the mechanical behavior of the panels under the thermal load.
Coulomb-Mohr failure criterion (see Eq. 3.1) for brittle materials is employed to evaluate the
safety factor (SF) of each design, which is the minimum of the safety factor of all material points

in the architectured ceramic [145]:
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SF = min 4 S, %t 20203 (3.1)

Where the maximum and minimum principal stresses are represented by o; and a5; S, and S, are
tensile and compressive ultimate strength, respectively. As shown in Figure 3.3, the temperature
in the circle with a radius of 10 mm in the middle of panels is increased to 700 °C in 60 s then the
middle circle area is kept at 700 °C for 540 s; 700 °C is picked for the maximum temperature since
the average safety factor in this condition lies between 1 and 2. This transient thermal analysis is
done within 600 s. The input and output energies of the system are equal at 600 s and the whole
panel reaches a steady-state condition. Identical temperature distributions for the panels with 3 x
3,5 x 5and 7 x 7 arrays of blocks are observed as each block is perfectly in contact with adjacent
blocks (Figure 3.3b to 3.3e). Mesh sensitivity is conducted to assure the reliability of the FEM
results. Mesh sizing is set to be 10 m over the whole panel and on contacts are set to be 8x10*
m. Therefore, the small amount of temperature difference in Figure 3.3a (1-2 °C) is due to the gaps
generated to geometries of building blocks where some materials between corners of blocks are
removed to achieve interlocking designs. Material removal is causing less than 0.9% difference in

the volume of structures due to the gaps.

Table 3.2. Material properties of non-porous alumina ceramics used in FEM [50, 124].

Properties Value Properties Value

Tensile strength 220 (MPa) Specific heat 880 (J/Kg°C)
Compressive strength 2100 (MPa) Thermal conductivity 24.6 (W/m.K)
Modulus of Elasticity 303 (GPa) Thermal expansion coefficient 82.8 (10~7/°C)
Density 3800 (Kg/m3) | Static coefficient of friction 0.24
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Figure 3.3: Temperature response of ceramic panels: (a) Transient temperature variation; Temperature
distribution at the end of the analysis (t=600 s) for (b) Plain panel and architectured panels with (¢) 3 x 3, (d) 5 x
5 and (e) 7 x 7 arrays of blocks.

Temperature distribution causes distinct thermal expansion at different locations of the panels; for
example, the middle tile is exposed to a higher temperature that leads to a higher out-of-plane
deflection compared to the others. The out-of-plane deflection is due to in-plane deformation
caused by a combination of sliding, thermal buckling and bending. The in-plane thermal stress has
been computed by importing the determined temperature distribution to the mechanical module of
ANSYS Workbench. The static coefficient of friction between ceramic blocks is set at 0.24 [50].
Different thermal expansion of adjacent tiles causes sliding and energy dissipation through contact.
Displacements in all three directions of x, y and z are fixed on all four edges of the ceramic panels
and the temporal behavior of the panels is studied. Energy balance is calculated to observe the
mechanical performance of the panels [146]:

U=Q+ W, (3.2)
Wi = Estrain + Erpe + Weny (3.3)

where U, Q and W, are internal energy, thermal energy and mechanical energy, respectively.
Estrain, Erpp and W,,, are strain energy, frictional dissipation energy and work on the
environment, respectively. Thermal energy stored in the system is determined by the specific heat

of alumina ceramic. To compute the internal and thermal energy of the system, ANSYS Fluent is
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used. Att =600 s, inlet and outlet of the internal energy of the system are equal and 8.71 kJ energy
is stored as internal energy. This 8.71 kJ is separated into thermal energy Q = 8.58 kJ (98% of total
internal energy) and mechanical energy as W, = 0.13 kJ that consists of three parts: (1) Strain
energy that is the mechanical energy stored in the system, (2) Frictional dissipation energy and (3)
Work on the surrounding environment by deflection of the architectured panel. Mechanical energy
is calculated by fixing the whole of the plain panel and setting the displacements in all three
directions equal to zero. In this approach, the mechanical energy is equal to the strain energy of
the panel as W,,, and Eppg is set equal to zero. The total amount of energy received by all
designed architectured panels is the same, leading to equal thermal energy and mechanical energy
for all panels. However, strain energy (Eg:rqin), frictional dissipation energy (Erpg), and work on

the surrounding environment (W,,,,,) vary for alternative designed architectures.

3.4 Machine Learning (ML)

ML is an application of artificial intelligence and a data-driven approach to find a pattern in
existing data. In this work, ML is used to examine the thermomechanical performance of a series
of alternative architectured ceramic panels. Interlocking angles and the number of blocks are
inputs, while safety factor, max deflection, sliding distances, reaction forces on the boundaries,
frictional dissipation and strain energies are outputs of the model. For each of the 3 x 3,5 x 5 and
7 x 7-block architectured panels, 100 random designs have been analyzed by FEM. Interlocking
angles in the designs are varied from 5° to 25°. The correlation of input parameters to outputs is
investigated in the preprocessing step. Normalizing and scaling help the ML models to converge
and make the training less sensitive to the scale of features.

Middle architectured ceramic blocks interact with four surrounding blocks, while blocks on
edges and corners interact with two or three blocks, respectively. The vast design space (Table
3.1) is computationally expensive to be modelled only by using FEM; ML algorithms can assist in
exploring all possible designs. Multilayer perceptron (MLP), so-called feedforward artificial
neural network for the regression problem (ANN) [60] is employed due to its better performance
compared to other models [100] ( appendix 1). For this purpose, MLP regressor from Sklearn
library is used in Python. Hyperparameters such as the number of hidden layers, the L2 penalty
parameter, the initial value for learning rate and the max number of iterations are tuned by

conducting a grid search. ReLu activation function has been used due to its higher accuracy than
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the logistic activation function. ReLu activation outputs directly the positive input and outputs the
negative input to zero [101, 102]. Randomly, 10% of the dataset is picked for the test set and five-
fold cross-validation is chosen to prevent overfitting. The mean accuracy of the ML models for
predicting each output are reported in 3.Al.

_________________________ Manufacturing

Apply thermal

loads

Setting Design Setting Design
parameters parameters

Angles and
number of tiles
Optimum  design

input Train model output

| Feed forward artificial neural networks |

Validation

Figure 3.3: Schematic of the algorithm for studying the thermomechanical performance of architectured materials.
By varying interlocking angles from 5° to 25°, 406875 different architectured panels can be produced, which are
studied by a Neural Network algorithm (MLP).

3.5 Results and Discussion

In this section, the effects of interlocking angles on the thermomechanical response of
architectured ceramic panels are studied. All boundary conditions and thermal loads remained
unchanged for the sake of comparison of the performance of alternative architectured ceramics.
First, we compare the responses when all blocks have identical interlocking angles. Then, ML
algorithms are used to investigate all possible panels that have building blocks with dissimilar
interlocking angles.

Figure 3.5 presents safety factors, reaction forces on boundaries and strain for plain and
architectured (10° interlocking angle) ceramic panels during a time span of 600 s. While the plain
ceramic panel fails after 50 s, all the architectured panels remain integrated over the period of the
time considered in this study. A higher amount of strain energy inside the plain panel and higher
reaction forces on fixed boundaries are observed, resulting in a rapid failure compared to the
architectured ceramic. Meanwhile, for this architectured design, about 3% of the mechanical
energy is dissipated through sliding and friction in the constitutive building blocks. The energy
dissipation assists the architectured panels to resist the same thermal load in a larger time frame.
The 7 x 7-block architectured panel with uniform distribution of interlocking angle 10° presents
a higher safety factor compared to the 3 X 3 and 5 x 5-block architectured panels. Architectured

ceramic panels with alternative interlocking angles are explored in the next section to ensure the
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accuracy of the comparison of the thermomechanical performance of panels. It can be concluded
that the plain panel performs poorly compared to the designed architectures in terms of failure

resistance, the application of higher forces on the boundaries and the development of higher strain
energy.
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Figure 3.5: (a) Comparing strain energy and safety factor of the architectured panels with the plain panel. The
plain panel fails earlier than architectured designs, and it suffers from a higher amount of stress inside the panel.
(b) Comparing reaction forces on fixed boundaries of the architectured panels with the plain panel. The plain panel
applies higher forces to fixed boundaries.

3.5.1. Architectured Designs with Uniform Interlocking Angles

Architectured panels with a uniform distribution of interlocking angles are studied here. The
analysis considers all blocks having the uniform interlocking angles; however, they can be varied
from 5° to 25°. In Figure 3.6, strain energy, frictional dissipation energy (FDE), reaction force and
out-of-plane deformation are presented. As seen in Figure 3.6a, the values of FDE are negligible
for interlocking angles of less than 10°. At 10° interlocking angle, FDE starts to increase and a
drop is observed in the strain energy, indicating that the sliding begins at 10°. Frictional sliding
mechanism is one of the key factors to have better resistance to failure. Stresses and energies inside

the panels are reduced when more energy is dissipated through friction. For interlocking angles
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larger than 15° FDE in the 3 x 3-block panel is higher and consequently, its average safety factor
is higher than the 5 X 5 and 7 x 7-block panels.

In general, less strain energy in the panels results in a lower reaction force on the boundaries.
As shown in Figure 3.6c¢, for the interlocking angles between 15° and 30°, the 3 x 3-block panel
has a lower force on the boundaries and a higher safety factor compared to the other panels. Out-
of-plane deformation of the panels (Figure 3.6b) with interlocking angles more than 15° is less
than their counterparts with lower interlocking angles. At 10°, a drop in the out-of-plane
deformation is observed because the panel experiences a locking behavior that hinders blocks from
being deformed. This trend is different for the 5x5-block architectured panels because the
deflection depends on the area where the temperature is applied (a circle with a diameter of 10 mm
that is ~3% of the total area of the top surface). Except the 3 x 3-block panel, the heat is applied
to more than 1 block. As expected for the higher interlocking angles, more sliding occurs as shown
in Figure 3.6d. The results show that the sliding distance, which represents the sum of the path of
the movement, is highly correlated to the panel safety factor. Even though the 3 X 3-block
architectured panel has less contact areas, this panel reveals more sliding and a higher safety factor.
Higher sliding is a representation of dissipating more energy, the energy that can be stored in the
panel causing stress inside the panel. In the next section, ML algorithms are adopted to explore the
dependence of the architectures with variable angles on the outputs.
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Figure 3.6: Comparing the performance of architectured designs with the uniform distribution of the interlocking
angles. (a) Energy comparison and safety factor, (b) Out-of-plane deformation, (c) Force reaction on fixed
boundaries and (d) Total sliding distance of adjacent blocks over the whole of the architectured panel.

3.5.2. Exploring Designs with Variable Angles using Machine Learning

Data from FEM is imported to ML models to find better-performing architectured panels with
respect to each output (e.g. strain energy and out-of-plane deformation). These panels are made
concerning the accuracies presented in 3.3. To enhance the quality of data, preprocessing has been
done over ML models. The preprocessing includes determining the correlation of each interlocking
angle to output, which shows some of the interlocking angles in designs have a small correlation
to the outputs. Low correlation can reduce the accuracy of the ML models. Exploring correlation
indicates that some of the interlocking angles do not affect outputs; for example, the interlocking
angle 2 (4,) has a negligible correlation to the frictional dissipation energy of the 3 x 3-block
architectured panel. These slightly correlated angles are removed in the training process as
identified as @ in Table 3.3. Different numbers of building blocks as inputs need three different
ML models (see Section 4) with specific hyperparameters to be developed. In Figure 3.7,
correlations between inputs and outputs are shown in different designs. It is observed that
interlocking angles in structures with a higher number of building blocks have less correlation to
the outputs (Figures 3.7e and 3.7f). This can be addressed by having a small amount of training
data for the 7 x 7-block panel compared to the 3 x 3-block panel.
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Highly correlated parameters can reveal great information about which interlocking angles
should be controlled in each architectured panel. For example, all four interlocking angles in the
3 x 3-block panel have a higher negative correlation to the total strain energy over the whole panel,
suggesting small interlocking angles bring a higher amount of strain energy. Maximum and
minimum strain energies, safety factor, total frictional dissipation through contacts, sliding
distances, out-of-plane deformation and reaction force on boundaries are presented. ML algorithms
suggest a series of designs that can achieve maximum or minimum of the aforementioned outputs.
In this regard, panels with more similar interlocking angles are selected since they are more
favorable in terms of manufacturing [147] (see Figure 3.A2). Some interlocking angles have a
small impact on the output because of that any values can be picked for those angles with 6 in
Table 3.3.

Table 3.3. Machine learning algorithms for architectured ceramic designs with minimum and maximum outputs.
Each output and the mean accuracy for each model are reported.

Mean accuracy  R?

3x3-block panel Ay A, A3 Ay As Ay A; Ag (%) error

Max strain energy 5° 5° 5° 5> . . o

Min strain energy 25° 25° 25° 25° - - - - 84 0.96

Max deformation 5 B° 25° 15° - -- -- --

Min deformation 25° 25° Kh° 25° - -- -- -- 73 0.77
Max avg. safety factor ~ 25° 25° 25° 25° - - - - Y 0.95
Min avg. safety factor 5° 5 5° 25° -~ - - - :

Max total FDE 15° 6 20° 15° - - - -

Min total FDE 5° 9 5 5 o o o o 65 0.32
Max total sliding distance 15° 20° 6 10° -- - - - 79 0.93
Min total sliding distance  5°  5° 0 5° -- -- -- -- '

Max force on the 5o 5o {50 5o . B B B

boundaries 24 0.94

Min force on the gEe ogBe pEe ogBe .

boundaries
2
5x5-block panel A, A, A; A, As Ay A, Ag Mea”(";(’f):“racy eﬁor

Max strain energy 50 5 5° 5° 5° 5° - - 85 071

Min strain energy 25° 25° 25° 25° 25° 25° - -- '

Max deformation 5 25° 5° 25° G5° 5° == == 86 0.70

Min deformation 25° B5° 25° K° 25° 25° -- '
Max avg. safety factor ~ 25° 5° 25° 5° 25° 25° - - 85 0.88
Min avg. safety factor 5 5 5° 5 5° H5° - - '

Max total FDE 25° B5° B° g §o go - -

Min total FDE 5 25° 95e 2ge  Ge o5 60 0.85
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Max total sliding distance  5° 25° 5° 6 25° 25° - -

Min total sliding distance 5° 5° 5° 6 5° 5° - - & 0.32
Max force on the e 5o §° 5o o go o __ .
boundaries
Min force on the 0 0.89
. 25° 25° 25° 25° 25° 25° - --
boundaries
Mean accuracy  R?
7x7-block panel Ay A, A3 Ay A Ay A; Ag (%) error
Max strain energy 5¢ 5° 25° 5° 25° 5° 5° 25° 50 0.62
Min strain energy 25° 15° 15° 25° 20° 25° 25° 15° '
Max deformation 5° 25° 25° 5° @ 5° 5° 9 67 0.36
Min deformation 5°  5° 5° 5° 9§ 25° 25° 0@ '
Max avg. safety factor ~ 25° 25° 25° 25° 5° 25° 25° 5° 80 0.71
Min avg. safety factor 5 5 5° B5° 5° B5° 5° h° '
Max total FDE 5° 25° 5° 25° © 25° 25° 6 54 0.13
Min total FDE 25° 5° 20° 5° 6 5° 5° 0 '
Max total sliding distance 25° 6 5° 6 5° 25° 6 25° 57 0.13
Min total sliding distance 25° 6 25° 6 25° 10° © 5° '
Max force on the o Eo 950 950 Bo g 25° 95o
boundaries
Min force on the & 0.58
X 20° 15° 5° 5° 25° O 20° 5°
boundaries

Grey highlight in this table represents the structures that have been further investigated with FEM.
O represents the angles that have a small correlation to the outputs.
A,-Ag represent the angles which are shown in Figure 3.7.

Panels with a greater number of inputs need more data to predict accurately. The mean
accuracy for the output parameters in the 7 x 7-block architectured panel is much less than 3 x 3
and 5 x 5-block panels; this indicates that training a model for the 7 x 7-block panel is more

challenging than the other architectured panels.
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Figure 3.7: (a, c, e) Correlation between input parameters as interlocking angles and output parameters. Schematic
of (b) the 3x3-block architectured, (d) 5x%5-block architectured panel, (f) 7x7-block architectured panel and
symmetry planes. Each number represents a different interlocking angle.

Here, we explore the accuracy of predicted output values by ML through comparison with the
FEM results. In Figure 3.8, the performance of the suggested varied-angle architectured panels
from ML is compared with the FEM results for the architectured panels with uniform interlocking

48



angles across the panel. The maximum and minimum values of the outputs are reported in Figure
3.8. In most cases, ML could increase the maximum and decrease the minimum of outputs.
However, ML could not increase the maximum out-of-plane deformation and frictional dissipation
energy (FDE) in the 7 x 7-block architectured panel due to the low amount of training data. The
deformations and FDE in the 3 x 3 and 5 x 5-block panels can be increased by using ML and
designing varied-angle architectured panels. In the 3 x 3-block panel, 15%, 7% and 30%
improvements in maximum out-of-plane deformation, sliding distance and frictional dissipation
energy are observed, respectively. In addition, 70%, 80% and 30% reductions in the minimum out-
of-plane deformation, sliding distance, and frictional dissipation energy are observed, respectively.
In the 5 X 5-block panel, 3%, 35% and 4% improvements in maximum out-of-plane deformation,
sliding distance and FDE are observed, respectively. 70%, 15% and 52% reductions in minimum
out-of-plane deformation, sliding distance and frictional dissipation energy are noticed,
respectively. Machine learning is not providing new designs to maximize or minimize the force
on the boundaries, strain energy, and safety factor. Proposed designs from the ML algorithms are
explored by FEM to further verify the ML predictions. For this purpose, three outputs from Table
3.3 (highlighted in grey), which are FDE and sliding distance in the 3 x 3-block panel and out-of-
plane deformation in the 5 x 5-block panel, are chosen to be further investigated. These outputs

are chosen due to their high accuracy.
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To achieve the maximum frictional dissipation energy for varied-angle architecture panels
of 3x3, ML suggested selecting angle 1(a) = 15° angle 3(y) = 20° and angle 4(5) =
15°. Interlocking angle 2(B) in this design can be varied due to a small correlation to the frictional
dissipation energy (FDE). Figure 3.9b indicates the effect of changing interlocking angle 2() on
the frictional dissipation energy (FDE) of the panel. This horizontal blue line indicates that
interlocking angle 2(B) does not play a great role in the maximization of FDE. Also, it can be
concluded that the varied-angle architectured panels found from ML increase the maximum of
outputs and decrease the minimum of outputs (the horizontal blue line is higher than the black
line). The same logic can be used for the sliding distance and the varied-angle panel with @ = 15°,
B = 20°yand & = 10° (see Figure 3.9¢). In Figure 3.9d, the out-of-plane deformation of the
varied-angle panel with the 5 x 5 arrays of blocks is compared with the uniform-angle panel. It is

shown that the maximum out-of-plane deformation of the 5 x 5-block architectured panel is 3%

increased.
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Figure 3.9: Comparison of the varied-angle and uniform-angle architectured panels. (a) Schematic of 3 x 3-bock
panel with varied-angle; « = angle 1, B = angle 2, y = angle 3, § = angle 4. (b) Suggested varied-angle
panel to maximize frictional dissipation energy; a = 15°, 8, y = 20°, § = 15°. The results of the varied-angle

design are shown in the blue line, which shows a change in § does not play a great role in the total sliding distance.
(c) The suggested varied-angle panel, « = 15°, § = 20°, y, § = 10°, to maximize the sliding distance. The results
of the varied-angle design are shown in the blue line, which shows a change in y does not play a great role in the
total sliding distance. (d) Comparison of maximum out-of-plane deformation in the 5 x 5-block architectured panels
with the varied-angle and uniform-angle designs.

3.6 Concluding Remarks

Despite the excellent thermal stability of ceramics, most of the research endeavors have
focused on evaluating the mechanical performance of architectured ceramics under quasi-static or
impact loading rather than a thermal stimulus. In this study, finite element modeling is used to
evaluate the thermomechanical performance of architectured ceramics made of interlocked
building blocks. It is shown that the architectured designs outperform monolithic ceramics in the
energy dissipation and results in an 80% strain energy reduction that causes less stress in the
structure and postpones the structural failure, a 67% reduction in forces on the fixed boundaries,
and a 90% increase in the safety factor. We have proposed a systematic approach by adopting a
hybrid ML-FEM algorithm to design high-performance architectured ceramics experiencing
thermal loads. The thermomechanical performance of the architectured ceramics is first explored
using FEM, and then the ML models are trained using the FEM data of hundreds of randomly
generated interlocked architectures. While the proposed approach may need a high amount of the
training datasets to reach higher accuracy, this algorithm presented promising results that are
verified by FEM. In this analysis, the out-of-plane deformation, strain and frictional dissipation
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energies, reaction forces, safety factor and sliding distances of adjacent blocks in the architectured
ceramics made of interlocked building blocks are explored. MLP algorithm is used to find the
designs with maximum and minimum outputs by changing the angle of cuts between building
blocks. It is shown that the suggested designs from ML algorithms perform better for the desired
output. For example, these designs can dissipate 30% more energies through friction and 7% more
sliding between blocks compared to the interlocked architectures with constant cutting angles and
will result in superior thermomechanical performance. In addition, the interlocked angles and
architectures generated in the current method can serve as an initial guess for further investigations
in practically important cases such as impact or thermal shock applications. This algorithm can be
readily adopted in broad applications.

It is demonstrated that the architectured ceramic panels perform better in a thermomechanical
environment compared to the monolithic ones. ML tool is easy to use and computationally efficient
to run a parametrical study and investigate the effects of architectural parameters on performance.
This new approach is orders of magnitude computationally faster than conventional methods,
making the search for high-performance materials in a vast design space possible. In this algorithm
higher number of inputs act as limitations; for example, it is harder to train a model for the 7 x 7-
block panel. In addition, instead of only using FEM data for the ML algorithms, there is a
possibility to use data from experiments and combine it with FEM data to increase the accuracies
of ML models. In future studies, experimental data can be produced by employing laser cutting
techniques to validate our results (see appendix, Figure 3.A2 [103, 147]). The novel paradigm
offered by advanced additive/subtractive manufacturing along with machine learning tools can
facilitate the development of advanced ceramic materials that can prevail material property
tradeoffs found in monolithic materials (e.g. toughness in brittle materials). This work not only
provides a new method that harnesses simulation data and machine learning to potentially design
future bioinspired, architectured and composite materials in an experience-free and systematic
manner but also opens a new avenue to address various inverse design problems in different

industrial sectors such as aerospace, automotive, transportation and energy.
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3.8 Appendix
The performance of ML models concerning accuracies is compared in Table 3.Al. For this
purpose, MATLAB Regression Learner toolbox is used. It is shown that MLP has lower Root

Mean Square Error (RMSE) and better performance compared to Linear Regression, Tree, SVM

and Gradient Boosting models.

Table 3.AL. RMSE comparison of ML models.

RMSE Linear regression  Tree SVM  Gradient Boosting MLP

3%3 1.54 241 1.33 1.56 0.47
5x5 1.83 1.90 1.36 1.18 0.57
X7 1.25 1.80 0.88 1.12 0.62

In Figure 3.A1, the results presented in Section 5.2 are shown in triangular radar graphs. These
graphs can facilitate a comparison of the performance of alternative architectured panels for
specific applications.
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Figure 3.A1: Comparing uniform-angle architectured designs and their output parameters for the panel selection
process in a defined application. (a) Out-of-plane deformation, force reaction on fixed boundaries and sliding
distances are compared. (b) Strain energy, total frictional dissipation energy and minimum safety factor are
compared.
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The laser cutting method, named wobbling, using a picosecond fiber laser, has recently been

adopted for defect-free manufacturing of industrial-grade alumina ceramics [8]. The developed
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laser system is suitable for the fabrication of engineered net shaping material systems. An example
of topologically interlocked ceramics has been manufactured and is shown in Figure 3.A2.

33.32mm
h= 2 54mmE—————

33.32mm
33.32mm

(@) (b) (©)

Figure 3.A2: Manufacturing of interlocked ceramic samples using laser cutting. (a) CAD modeling of the truncated
tetrahedral ceramic block in TIMs. (b) Truncated tetrahedral ceramic block. (c) 3D laser scanning microscopy
image and topography.
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4 Summary, Discussion and Recommendation for Future Studies

4.1 Summary and Discussion

A thorough review of existing literature over bioinspired architectured materials and machine
learning algorithms and their usage in manufacturing and designing architectured materials provided
in Chapter 2 for the readers to prepare them for the manuscript provided in Chapter 3. According to
the literature review, a gap in the analysis of architectured materials (especially topologically
interlocked structures) under thermal loads was observed and the new idea of using Machine learning
for the design process was developed. Next, in Chapter 3, Finite Element Modeling was conducted
over the thermomechanical performance of Topologically Interlocked architectured ceramic samples.
In the first section of the analysis, we focused on evaluating the energies, including strain energy, work,
frictional dissipation energy, out-of-plane deformation, sliding distance, forces on the boundaries and
safety factor in plain samples and samples with 3x3, 5x5 and 7x7 number of tiles in topologically
interlocked designs. The analysis indicates that only ~3% energy is dissipated through frictions
between contacts of tiles; however, this small amount of energy assisted the architectured designs to
achieve 80% reduction in the strain energy, a 67% reduction in forces on the fixed boundaries, and
a90% increase in the safety factor, leading to the structural failure delay compared to plain ceramic
samples. To further increase the thermomechanical performance of architectured ceramic samples,
varied-angle interlocked panels and uniform-interlocked panels with 3x3, 5x5 and 7x7 number of tiles
studied.

Considering all possible combinations of designs for varied—angle panels resulted in 400k designs
that are not feasible and efficient to be modeled only using finite element modelings. Machine learning
algorithms were employed on the limited number of data from FEM analysis and predicted the
thermomechanical performance of the vast design space. Out of all predictions, the designs with
maximum and minimum strain energy, frictional dissipation energy, out-of-plane deformation, sliding
distance, forces on the boundaries and safety factor were reported. In the 3 x 3-block panel, 15%,
7% and 30% improvements in maximum out-of-plane deformation, sliding distance and frictional
dissipation energy are observed, respectively. In addition, 70%, 80% and 30% reductions in the
minimum out-of-plane deformation, sliding distance, and frictional dissipation energy are
observed, respectively. In the 5 x 5-block panel, 3%, 35% and 4% improvements in maximum
out-of-plane deformation, sliding distance and FDE are observed, respectively. 70%, 15% and

52% reductions in minimum out-of-plane deformation, sliding distance and frictional dissipation
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energy are noticed, respectively. Out of all the designs with improvements, three different cases
were selected to be validated by doing another round of finite element analysis. Finally, the validated
designs could dissipate 30% more energies through friction and 7% more sliding between blocks
than the interlocked architectures with uniform cutting angles. A straightforward benefit ML
brought to this study was promoting the efficiency of materials designs with FEM data. Exploring
a massive design space of novel architectured materials was too complicated to achieve using only
FEM analysis. Instead, the hybrid ML-FEM design approach could incorporate materials and
mechanical features during the preprocessing of input data, learn the relationship between
materials structures and mechanical behaviors during training and could provide targeted designs

using the trained models.

4.2 Recommendation for future studies

In this study, we studied the material designs using machine learning and finite element
modeling. Studies in computer science, material science and mechanical engineering have been
flourished over the past decades. Now it is time to combine the ideas. The possible
recommendations for future studies are summarized as follow:

1. The hybrid ML-FEM design algorithm showed a promising approach for investigating and
developing new designs; however, experimental tests are needed to strengthen and validate the
simulations' results. According to the pandemic limitations in 2020 and 2021, the designs provided
in this research could not be tested; however, the interlocked samples could be manufactured using
picosecond laser machines. The input parameters provided on Chapter 2 can produce the desired
angle of cuts. For validation of the results deflection and force on boundaries can be evaluated by
the fixture provided in Chapter 2. Thermomechanical testing can be done at NRC experimental
center in Ottawa and the results can be used for validation of the models.

2. The laser cutting of architectured ceramics is a challenging procedure and only a small number
of research centers have access to the picosecond laser cutting machines. The algorithm developed
in this study is not limited to architectured ceramic panels. 3D printing machines available in the
labs are valuable facilities for manufacturing interlocking samples and other architecture materials.
In this way, the designs provided by ML-FEM algorithms can easily be validated by simple
mechanical testing on 3D printed samples.
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3. In this work, we focused on the mechanical performance of architectured materials in high-
temperature environments. The algorithm can be employed in different applications, and a specific
design will be developed for a specific application. For example, for developing architectured
materials for impact application, the same procedure can be employed.

4. Theory-guided data science (TGDS) is an emerging paradigm that aims to leverage the wealth
of scientific knowledge for improving the effectiveness of data science models. The combination
of mathematical models of scientific knowledge with finite element analysis and experimental data
will further improve the effectiveness and accuracy of machine learning algorithms.

5. A convolutional neural network (CNN or ConvNet) is a class of deep neural networks most
commonly applied for analyzing visual imagery. In this research, we imported the data as numeric
input; however, the shape of designs can be imported to the ML models as visual images to find a
design with better characteristics.
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