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Abstract

The field of atlas-based organ segmentation is multifaceted and has a long history. The

selection, or creation, of the atlas is itself a rich area of research; the results of

segmentation depend heavily on how representative this reference image is of the subjects

to which it corresponds. The first goal of this thesis is to create a head and neck

segmentation pipeline that uses an atlas constructed from representative images selected

from our dataset of computed tomography (CT) scans, and evaluate segmentation accuracy

with the Dice score. Our second goal is to explore whether anatomical subtypes can be

automatically discovered through clustering, and subsequently used to create

anatomy-specific atlases.

The initial atlas is created by the co-registration of four CT scans, of different subjects,

extracted from our larger dataset. For the first objective, all images in our collection and

their corresponding organ contours are registered to the atlas. Then, the STAPLE algorithm

is used to create a consensus labelling from a training subset of images, which is then used

to segment another subset of images. To address the second objective, k-Means clustering is
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applied to the entire set of images, to automatically group them into anatomical subtypes.

For each cluster, a representative atlas is created, through the co-registration of the three

images that are closest to the cluster centre.

While the segmentation pipeline achieved varying results, its performance was strongly

correlated with the similarity of the original images to the atlas. This highlighted the

relevance of the clustering experiment, which successfully partitioned the images into four

groups, based on anatomical similarity. The creation of the atlases for each anatomical

subtype was not successful, suffering from poor registration between images. This was in

part due to image distortion caused by metallic artifacts; thus, a larger dataset with

artifact-free images may resolve this issue.
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Résumé

Le domaine de la segmentation d’organes basée sur l’atlas est complexe et a une longue

histoire. La sélection, ou la création, de l’atlas est en elle-même un riche domaine de recherche

étant donné que les résultats de la segmentation dépendent fortement de la représentativité

de l’image de référence envers les individus correspondants. L’objectif de cette thèse est,

premièrement, de créer une méthode pour segmenter les images de tomodensitométrie (TDM)

de la tête et du cou, en utilisant un atlas construit à partir d’images représentatives. Ensuite,

la précision est évaluée avec le coefficient de Dice. Le deuxième objectif est d’explorer la

possibilité d’améliorer les segmentations en les basant sur plusieurs atlas provenant de sous-

types anatomiques automatiquement découverts grâce au regroupement ‘k-Means’.

Pour le premier objectif, un atlas est produit avec le recalage de quatre

tomodensitogrammes, chacun provenant d’un individu différent de nos base de données.

Toutes les images de notre collection et leurs contours d’organes correspondants sont

recalées à l’atlas. L’algorithme STAPLE est ensuite utilisé sur une portion des images

réservée pour l’entrâınement afin d’en dériver des étiquettes, qui sont par la suite utilisées
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pour segmenter le reste. Le deuxième objectif vise à améliorer les résultats de la première

en utilisant plusieurs atlas basés sur les regroupement k-Means des sous-types

anatomiques. Pour chaque regroupement, un atlas représentatif est créé en se basant sur

les trois images les plus proches du centre.

Alors que la première méthode de segmentation a obtenu des résultats variables, celles-ci

étant fortement corrélées à la similitude des images originales avec l’atlas, le regroupement

k-Means des images en fonction de la similitude anatomique a bien marché et a produit

quatre groupes. Par contre, la création des atlas pour chacun des sous-types a échoué dû

à un mauvais recalage entre les images. Cela était en partie dû à la distorsion des images

causée par des artefacts métalliques. Un ensemble de données plus volumineux avec des

images sans artefact devrait résoudre ce problème.
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Chapter 1

Introduction

The accurate delineation of the organs in the head and neck is vital in the diagnosis,

treatment, and observation of head and neck cancer patients. For example, many such

patients undergo radiation therapy; a precise labelling of the affected region is needed to

avoid damaging the organs surrounding the tumor area [1–3]. Manual organ segmentation

is a time-consuming process subject to variability even amongst experts [1]. Thus, it is

extremely advantageous to have automated segmentation tools for medical image analysis.

In recent years, image segmentation research has shifted toward deep learning approaches.

While these methods have had many successes, they still suffer from certain limitations, such

as the need for large amounts of data, which is often not available in medicine [4]. In the

case of supervised deep learning methods, this vast quantity of data must also be labelled.

In this thesis, we focus on more traditional atlas-based methods.
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To understand atlas-based segmentation, it is first necessary to understand image

registration. Image registration is the process of transforming one image into the space of

another image such that the maximum number of corresponding points between the images

are aligned [5]. For example, one may wish to register two images of a patient taken at

different times to monitor disease progression.

In atlas-based segmentation, a novel image is registered to an atlas, which is a labelled

anatomical reference template. The new image deforms to align with the atlas, and then the

labels from the atlas may be transferred to the new image.

Figure 1.1: Example of atlas-based segmentation, adapted from BrainSuite [6]. Here, the
colours represent different anatomical structures in the brain. After registration, the labels
are transferred to the subject.

Originally, these methods used only a single atlas, which was either based on a single

patient, or a generated ”average” image [7, 8]. However, a single reference image is not

sufficient to capture anatomical variability across a subject pool, and may lead to inaccurate,

or significantly biased results. This led to the development of ”multi-atlas” techniques, where
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a novel image could be registered to, and segmented using, multiple reference templates. The

results of these multiple segmentations can be consolidated in various ways, the most common

of which involve a form of majority voting process [9].

Another technique to reduce bias and ensure that segmentation is accurate for a

subgroup of people is to use a population-specific atlas. For example, Ridwan et al. [10]

created a template for the older adult brain after noticing that most brain studies for this

population were using standardized references, such the MNI-ICBM templates [11], which

are not optimized for the older brain. The brain changes over time, so certain brain

patterns common in older adults may not be present in references based on young or

middle-aged adults.

Such atlases can be generated using techniques involving image registration. Several

images are co-registered in order to obtain the ”average image” of the group. A common

method of atlas creation is ’symmetric group-wise normalization’ (SyGN), by Avants et

al. [12], which covered in greater detail later in this thesis.

1.1 Motivation and Approach

This thesis is split into two parts. Both require an atlas, or reference template; this will

be an ”average” population image constructed from four dataset images.

The first portion of the thesis produces an atlas-based segmentation pipeline. We

generate labels for the previously created reference image with a technique inspired by
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multi-atlas segmentation. This experiment uses images that have corresponding

segmentations from radiologists. We first register all images to the reference template,

transforming them into a common space. We then apply these registration transformations

to the images’ corresponding segmentations, putting those in the space of the reference

template as well. The subjects are split into two groups, and then we use an algorithm

known as STAPLE to merge each set of contours, creating one consensus segmentation per

group. Finally, we segment each group of images by applying their inverse registration

transformations to the opposing group’s contour. We evaluate the results by comparing the

generated contours to the originals.

The second part of the thesis explores the automated clustering of subjects into

anatomical subtypes. This would allow the construction of group-specific templates, which

we hypothesize should lead to more successful segmentation for members of that group. So,

instead of aiming to create an atlas for a particular population, we use unsupervised

learning techniques to automatically partition the subjects into anatomical groups. More

specifically, this experiment proceeds as follows, using an unlabelled dataset. All images

are registered to the previously created reference template. After performing some

dimensionality reduction steps, clustering techniques are applied to the images; each group

represents an anatomical subtype. Then, a population-specific template is created for each

cluster. In future work, these group-specific templates can be used with the segmentation

pipeline from the first experiment to obtain more accurate segmentations.
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This research could have a few interesting applications. The combination of the

segmentation pipeline and the population subgroup clustering is significant in one main

way. Once the dataset images are partitioned into anatomical subgroups, one can obtain

labels from experts for only the subjects closest to the cluster centres. These labels can

then be used to generate the population-specific atlases, which can subsequently be used

with our segmentation pipeline to label the remaining subjects. This idea is similar to the

LEAP algorithm described by Wolz et al. in 2010 [13].

The clustering of anatomical subgroups could also be useful on its own. For other

atlas-based segmentation methods, one could simply compute the similarity between each

cluster centre image and a set of pre-existing atlases, using the most closely matched

template to label all subjects. This technique may also be applicable to other segmentation

pipelines, specifically, those using deep learning. In 2019, a French research group

introduced AtlasNet [14], which outperformed other state-of-the-art deep learning

frameworks for the segmentation of interstitial lung disease, by first registering its training

images to several atlases that represented different anatomical types. In this case, the

atlases were selected by radiologists, so it could be interesting to see how such pipelines

perform when anatomical subtypes are determined in a data-driven manner, as they are

here.
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1.2 Thesis Outline

The remainder of this thesis is constructed as follows. Chapter 2 provides background

about three relevant topics: image registration, image segmentation, and unsupervised

learning methods. Chapter 3 describes the datasets used and outlines the two experiments.

Chapter 4 presents the results of those experiments and discusses their significance.

Chapter 5 then summarizes the thesis work and suggests future directions of research.

1.3 Contributions

The main contributions of this thesis are summarized here:

• The creation of an atlas-based head and neck segmentation pipeline using selected

representative images from our head and neck CT dataset, with an assessment of

segmentation accuracy

• An investigation of the automated clustering of head and neck CT scans into subgroups

based on anatomical similarity

• The generation of anatomy-specific atlases for each cluster, which can subsequently be

used with the segmentation pipeline in order to improve segmentation accuracy in each

group
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Chapter 2

Background

2.1 Image Registration

2.1.1 Introduction

The goal of image registration is to match points in one image to their corresponding

positions in another image. The process of image registration aims to find the optimal

transformation to align one image to another, such that the correspondence between

homologous points is maximized. The image that undergoes this transformation is often

referred to as the ‘source’, or ’moving’, image; the image to which it is aligned is known as

the ‘target’, or ’fixed’, image [5]. Further details regarding the steps of registration are

discussed in sections 2.1.2 - 2.1.4.

There are numerous applications of image registration, in industrial settings as well as
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in the field of medical image analysis. In the industry, techniques often focus on matching

geometrically-shaped elements between photos [5]. For example, one may use image

registration to align photos of a city skyline taken at different positions, and then stitch

these photos together to create a panorama.

Medical Applications

In medicine, however, the process is not quite as straightforward. Anatomical

structures are not typically geometrically-shaped, and their location may differ between

subjects. In fact, some structures may not even exist in certain people. Thus, more

complex techniques are typically required to register medical images [5]. An example of

medical image registration is provided in Figure 2.1.

Components of Registration Algorithms

There are three main elements of a registration algorithm: the transformation model, the

similarity metric, and the optimization strategy [15,16]. The transformation model describes

the method used to align the source image with the target. The similarity metric evaluates

how well the transformed source matches the target, and the optimization strategy helps

minimize or maximize the similarity metric. All of these components are described in more

detail in the following sections.
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Figure 2.1: Example of medical image registration, adapted from [17]. Points in the source
image are aligned with corresponding points in the target image.

2.1.2 Transformation Models

As mentioned above, the transformation model describes the spatial transformation used

to map one image to another. There are two main classes of transformations in the context

of image registration: linear and non-linear.

Linear Registration

The linear portion of registration includes rigid and affine transformations. Rigid

transformations include only rotations and translations. In 3D, this amounts to six degrees

of freedom. Affine transformations may include scaling and shearing in addition to rotation
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and translation; they encompass 12 degrees of freedom in 3D [16]. A generic representation

of a 3D rigid or affine transformation is provided below, where matrix M may represent

rotation, scaling, or shearing, and matrix T represents a translation.



x′

y′

z′


= M3x3



x

y

z


+ T3x1 (2.1)

In medicine, rigid and affine transformations may be performed as a form of

preprocessing, or ‘pre-registration’, before a non-linear, deformable transformation.

Non-linear transformations are necessary in this context, as there is not likely to be a

uniform and linear relationship between all points in the source and target images [16].

Non-Linear Registration

Non-linear and deformable, or ‘free-form’, transformations describe a non-uniform

mapping between images. When choosing or creating non-linear, deformable registration

algorithms, the following four properties are commonly considered [18]:

• inverse consistency, which means that the forward and backward transformations must

be consistent,

• symmetry, which guarantees that the resulting transformation will not be affected by

the order of input images,
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• topology preservation, which ensures that the mapping is one-to-one and continuous,

with a continuous inverse, and

• diffeomorphism, which describes a property that is met when the transformation

function is invertible, and both the forward-mapping function and its inverse are

differentiable [18].

Different strategies for non-linear, deformable registration may exhibit some or all of these

properties. However, if an algorithm is diffeomorphic, the properties of inverse consistency

and topology preservation are already met, by the definition of diffeomorphisms [18,19]. The

process of diffeomorphic registration is, in fact, a series of diffeomorphic transformations

typically described as occurring over a time t, where t ∈ [0, 1]. If I is a source image being

deformed to a target image J , then at t = 0, I has not undergone any warping. At t = 1,

I has been fully warped to image J . If this process is stopped before its completion, we

obtain a partially deformed source image [19, 20]. This is a notable property, because it is

often interesting to calculate the ‘average’ of two or more images; the image obtained when

I is ’halfway’ registered to J , at t = 0.5, represents an average between these images. An

average image is useful to assess anatomical variability within a population [21]. A visual

representation of diffeomorphisms is presented in Figure 2.2.

Diffeomorphism, however, does not guarantee the property of symmetry. Symmetry is

also important, because if the registration result is dependent on the order of input images,

it is biased, and thus, less meaningful. Many registration algorithms attempt to achieve
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Figure 2.2: A visual representation of diffeomorphisms, adapted from [20].

symmetry by simultaneously estimating the forward and backward transformations, or

applying penalties for asymmetry [19].

Below, we discuss the symmetric normalization method (SyN), which is both

diffeomorphic and symmetric. While there are numerous strategies for deformable

registration, SyN, despite being created over a decade ago, is considered to be

state-of-the-art. It remains widely used by researchers, who note that it is still the top

performing algorithm of its kind [22, 23]. However, we acknowledge that many similar

algorithms exist, including those evaluated in this survey: [24].
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Symmetric Normalization (SyN) Method

Here, we discuss the symmetric normalization method (SyN), described in a 2008 paper

by Avants et al. [19]. It was developed as an extension to the authors’ previous work on a

Langrangian diffeomorphic deformable registration method; more details about this work can

be found here: [25]. Below, we examine how SyN exploits the properties of diffeomorphisms

in order to achieve symmetry.

Consider a diffeomorphism, φ. The result of registration for a source image I to some

target image can be described as φI:

φI = I(φ(x, t = 1)) (2.2)

where x represents a spatial coordinate in I, and the diffeomorphism is complete at t = 1,

as described in the previous section [19].

We note that the diffeomorphic transformation φ can be split into two parts, φ1 and φ2,

where φ1 represents the forward transformation, and φ2 represents the backward

transformation. Suppose that t ∈ [0, 1] and indexes both φ1 and φ2, but in opposing

directions. Then, for an image I being registered to another image, J , where y represents a

spatial coordinate in J [19]:
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φ1(x, 1)I = J (2.3)

φ−1
2 (φ1(x, t), 1− t)I = J (2.4)

φ2(φ−1
2 (φ1(x, t), 1− t), 1− t)I = φ2(y, 1− t)J (2.5)

φ1(x, t)I = φ2(y, 1− t)J (2.6)

Previously, to evaluate the similarity between a transformed source image I and target image

J , we would use:

|φ1(x, 1)I − J | (2.7)

but now we can instead use:

|φ1(x, t)I − φ2(y, 1− t)J | (2.8)

which means that the optimization problem can now be solved from both sides, toward the

middle, at t = 0.5 [19]. This is illustrated in Figure 2.3.

Since I and J are interchangeable, the problem is symmetric by nature, and the result is

guaranteed to be symmetrical, regardless of similarity metric used; details about similarity

metrics are provided in section 2.1.3. Additionally, in order to avoid any interpolation errors,

SyN also includes invertibility constraints in its optimization [19].
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Figure 2.3: An illustration of SyN, adapted from [19].

In the previously mentioned 2009 survey of deformable registration techniques [24], SyN

outperformed all other methods. Today, it is still considered to be one of the most advanced

registration algorithms, and is widely used [22,23].

2.1.3 Similarity Metrics

During registration, some measure is required in order to determine which transformation

is optimal. The chosen metric will calculate the similarity between the target image and the

transformed source image in order to find the best transformation. Depending on the strategy

chosen, it will be at its maximum or its minimum when the desired transformation is found.

There are two main categories of similarity metrics; feature-based and intensity-based.

Feature-based methods assess similarity based on the placement of particular structures in

the images. These structures could be organs, or, they could be predefined patches of the

image. Similarity between the images is determined based on the distances between

corresponding structures; Euclidean distance may be used for this purpose [16]. A related

area is feature-based morphometry, which aims to discover group-specific anatomical
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patterns by first detecting scale-invariant features, and then describing them through

probabilistic modelling [26]. These detected features can then be incorporated into

feature-based similarity measures.

Intensity-based methods, however, only consider the intensities of the voxels between

images. Such methods are more commonly seen in medical image registration, and three of

the most frequently used similarity functions are described below [16].

Sum of Squared Differences (SSD)

Suppose that the target image is represented by X, the source image is represented by Y ,

and T (Y ) denotes the transformed version of Y that is registered to X. The idea of the sum

of squared differences (SSD) approach is that after registration, voxels at the same location

in the overlapping domain, Ω, of X and T (Y ), should have similar intensities, because they

should correspond to the same anatomical structures. SSD can be calculated as follows,

where xi and yi denote corresponding voxels within X and T (Y ), i ∈ Ω, and N is the size

of Ω:

SSD = 1
N

∑
i∈Ω

(xi − yi)2 (2.9)

Thus, the lower the sum of squared differences value is, the better the registration has

worked; so, the optimal transformation occurs when SSD is minimized [16].
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Cross-Correlation (CC)

The cross-correlation (CC) method is motivated by the notion that a linear relationship

exists between the intensities of corresponding structures in two images. Suppose again that

the target image is represented by X, the transformed source image is represented by T (Y ),

and that xi and yi are corresponding voxels where i ∈ Ω, the overlapping domain of X and

T (Y ). Here, x̄ and ȳ represent the mean voxel values of X and T (Y ) in Ω. Then:

CC =
∑

i∈Ω(xi − x̄)(yi − ȳ)∑
i∈Ω(xi − x̄)2 ∑

i∈Ω(yi − ȳ)2 (2.10)

The more similar the intensities between the two images, the higher the CC value will

be; so, the optimal registration transformation is the one which maximizes CC [16].

Mutual Information (MI)

For pairs of images that have been obtained from the same form of medical imaging, also

known as ‘monomodal’ images, SSD and CC are successful because their intensities should be

similar, and can be directly compared. However, it is often interesting to register multimodal

images, for example, a computed tomography (CT) scan with a magnetic resonance image

(MRI) scan from the same patient. In such cases, differing intensity value patterns are

present due the different scanning techniques, so methods such as SSD and CC will not be

meaningful. However, there should still exist some relationship between the intensities of

the two images; this motivates the mutual information metric.
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Mutual information (MI), at its core, measures how well one image explains another

image. MI uses the concept of entropy, or ‘randomness’, calculated as follows, where H(X)

is the entropy of an image X, and p(X = i) is the probability that a voxel in image X will

be equal to i, for all possible values i:

H(X) = −
∑

i

p(X = i) log(p(X = i)) (2.11)

Then, we can similarly calculate the joint entropy of two images, X and Y , as follows, where

j represents all possible values for the voxels in Y :

H(X, Y ) = −
∑

i

∑
j

p(X = i, Y = j) log(p(X = i, Y = j)) (2.12)

Finally, the mutual information metric, MI, is calculated for images X, Y as follows:

MI(X, Y ) = H(X) +H(Y )−H(X, Y ) (2.13)

The optimal registration transformation is one that maximizes MI. This is logical because

the joint entropy term, H(X, Y ) will be minimized when a particular intensity value, a, in

X always corresponds to the same intensity value, b, in Y (a need not equal b). Figure 2.4

explains the intuition.
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Figure 2.4: Example of mutual information, adapted from [27]. The left and right images
are optimally registered when they align as seen in the middle image.

2.1.4 Optimization Strategy

In order to find the transformation which minimizes or maximizes the given similarity

measure, an optimization strategy is required. Many such optimization methods take an

iterative, coarse-to-fine approach. This means that for a specified number of iterations,

a lower resolution version of the source and target images are registered. The resulting

transformation is used as the initial transformation for the next step, where higher resolution

versions of the images are registered. This proceeds until some convergence criteria is met,

or until the maximum number of iterations at each step have been performed [16].

At each iteration, the function parameters must be adjusted in a particular way so that

they may proceed toward an optimum. Again, there are various ways to do this, such as those

examined in this survey: [28]. Here, we focus on a technique commonly used in registration

as well as machine learning, gradient descent (or ascent).
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Gradient Descent and Ascent

The goal of gradient descent or ascent is to find a local optimum for a function. In

gradient descent, the optimum is a minimum; in gradient ascent, it is a maximum. In either

case, the gradient techniques work by adjusting the parameters according to a ”learning

rate”, typically specified by the user. The larger the learning rate, the more quickly the

algorithm may proceed toward its optimum; however, if it is too large, it may hover around

the target value and never reach it. Conversely, if the learning rate is too small, it could be

a very long time before the optimum is found [29].

Consider an example using gradient descent with the sum of squared differences (SSD)

function seen in Equation 2.9. We recall that xi and yi are values at a corresponding voxel

i for target image X and registered source image T (Y ). We rewrite the equation as:

SSD = 1
N

∑
i∈Ω

(X(i)− T (Y (i)))2 (2.14)

Let each transformation T have a corresponding set of parameters, Θ. Then, SSD(Θ) is the

SSD corresponding to the transformation of Y with the parameters Θ.

SSD(Θ) = 1
N

∑
i∈Ω

(X(i)− T (Y (i); Θ))2 (2.15)

Then, we can calculate the gradient of this function as ∇SSD(Θ). If Θt represents the

parameters at time t, then let the parameters at time t + 1 be Θt+1. Gradient descent
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calculates Θt+1 in the direction of the negative gradient, as follows:

Θt+1 = Θt − τ∇SSD(Θt) (2.16)

Here, τ represents the learning rate discussed earlier. The value of SSD with the new

parameters is evaluated, and the process of updating the parameters and evaluating the

function continues until it is no longer possible to minimize the SSD.

2.1.5 Template Creation

As an extension to simple pairwise registration, it may be desirable to coregister all

images from a particular population in order to create a representative, ‘average’ image [12].

This technique can be used to generate a reference template that will later be used for atlas-

based segmentation, which is described in section 2.2.2. The main template that we created

for this thesis appears in Figure 3.3.

The most commonly used method to create such a template is an extension to the SyN

method discussed in section 2.1.2. It is known as symmetric group-wise normalization

(SyGN), also proposed by Avants et al. [12].

Suppose that we wish to find the optimal template, I∗, for a set of N images, {J i}, where

i denotes the ith image. Essentially, we are searching for the smallest ”parameterization” of

the dataset, meaning that the similarity metric for each pairwise registration is optimized,

and the length of each path of diffeomorphisms is minimized [12].



2. Background 22

Let E be a function representing these properties, to be minimized. Let Es represent a

pairwise registration problem to be solved with SyN. Let φi represent the path of

diffeomorphisms for each image, J i to register to a template, I. The template begins as an

average of all input images, and is updated at each iteration of the SyGN algorithm. The

template shape has its own corresponding diffeomorphism, and is represented by ψ.

Then [12]:

E(I) =
∑

i

Es(I, J i, φi), where ∀i, φi(x, 0) = ψ(x) (2.17)

Similarly to in section 2.1.3 where SyN was discussed, x is a spatial coordinate, and φi is

provided as input x, as well as a time t.

SyGN optimizes each pairwise registration where each image J i is initialized with the

deformation ψ. ψ begins as the identity transformation, but can be updated after E(I) is

optimized. Mathematical details regarding the calculation of a new ψ are found here: [12].

The steps are then repeated with a different ψ. Figure 2.5 explains the intuition behind the

process of SyGN.

2.1.6 Jacobian Determinant

While not explicitly tied to image registration, we use a ”Jacobian determinant” technique

on the 3D vector fields that arise from our non-linear, deformable registration in order to

calculate volumetric changes at each voxel, so we provide background about our Jacobian-
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Figure 2.5: A visualization of the SyGN process, adapted from [12].

related work here.

The goal of this technique is to obtain a single value at each voxel describing the

magnitude of image deformation that occurred at this particular location during

registration to the template. This is a common step in deformation-based morphometry, an

analysis technique which is often used to measure differences in brain regions over time, or

between patients [30–32]. This is what inspired the use of this method in our work.

Suppose that D(x, t) = (D1, D2, D3) is a 3D vector representing the deformation, or

displacement, of an image voxel, x = (x1, x2, x3), at time t. So, this means that x+D(x, t)

represents the spatial location of voxel x after being deformed at time t. The local change

in volume around voxel x at time t can then be represented by the Jacobian, J , which is the

gradient of D(x, t), calculated as follows [32]:
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∂D

∂x
(x, t) =



∂D1
∂x1

∂D1
∂x2

∂D1
∂x3

∂D2
∂x1

∂D2
∂x2

∂D2
∂x3

∂D3
∂x1

∂D3
∂x2

∂D3
∂x3


(2.18)

For simplicity, we can represent the Jacobian as J(x, t) and rewrite the matrix as such:

J(x, t) =



j11 j12 j13

j21 j22 j23

j31 j32 j33


(2.19)

Then, we can find the Jacobian determinant, |J |, which is a single value representing the

local volume change at x. This can be calculated as:

|J | = j11(j22j33 − j23j32)− j21(j12j33 − j13j32) + j31(j12j23 − j13j22) (2.20)

This will output a single value representing how the voxel has deformed. As seen in Figure 2.6

below, the voxels can be coloured according to the Jacobian determinant value to represent

their volumetric changes.
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Figure 2.6: Example of Jacobian determinant for deformation field, adapted from [32].
Here, red represents volumetric increase, blue represents volumetric decrease, and yellow
represents translation.

2.1.7 Challenges in Registration of Head and Neck Images

One significant challenge affecting medical image analysis is the issue of metallic

artifacts. These are distortions in images that occur due to metallic objects in subjects, as

demonstrated in Figure 2.7 [33]. In the head and neck area, which is featured in this thesis,

items such as dentures, metal fillings, or braces are often present. Since the advent of

modern computed tomography (CT) scanners over 40 years ago, methods of removing

these artifacts has been a topic of research and development. Their existence not only

hinders radiologists from properly assessing an image, but also impacts any subsequent

computational analysis [34]. In this thesis, we explain our efforts to manage these artifacts,

as well as their potential impacts on our results.
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Figure 2.7: Three CT scans affected by metallic artifacts (axial view).

Another difficulty in the registration of head and neck images is anatomical variability.

As demonstrated in Figure 2.8, there is a wide range of possible appearances for this area.

There is not only a difference in the size and location of certain anatomy, but there are also

often differences in the positions of patients. For example, in the third image, the patient’s

neck appears to have more significant curvature, and they are looking much more upward

than the others. All of these factors make registration, the alignment of common features

between images, significantly harder.

Figure 2.8: Examples of anatomical variation in head and neck CT scans (sagittal view).
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2.2 Image Segmentation

2.2.1 Introduction

In a general sense, the goal of image segmentation is to divide an image into its

constituent parts. How this division is performed and how many objects need to be

identified depends on the problem under consideration [35]. Segmentation can, of course,

be performed manually by an expert; however, this approach is too time-consuming and

expensive for many applications [36]. Thus, having computational techniques that can

annotate images accurately is extremely beneficial.

In medicine, image segmentation focuses on the automated identification of particular

anatomical structures, or abnormalities, such as tumors [9]. It is important to note that the

field of medical image segmentation has a rich history beyond the scope of this thesis; here,

we discuss some key concepts that relate to our experiments.

2.2.2 Atlas-Based Approaches

Atlas-based approaches involve the registration of a novel image to an ‘atlas’, or reference

image. Using the inverse of the registration transformation, the labels from the atlas can be

transferred to the new image.

Originally, an atlas was a single image, labelled by an expert. The image was either

a scan of one subject, or an ”average” image created from several subjects. However, this
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single-atlas approach is not sufficient to capture the potential anatomical variability across

subjects [9]. This issue led to the development of ‘multi-atlas’ techniques, which aim to label

a novel image by drawing information from several atlases.

The process of consolidating labels from multiple atlases is known as ‘label fusion’, and is

a vast area of research. The simplest method, ‘best atlas selection’, calculates the similarity

of a novel image to each of the templates in the group, and uses only the most similar

template to label the image. However, this ignores potentially useful information from

the other atlases. Another approach, majority voting, allows each atlas to ‘vote’ on which

segment each voxel in the target image belongs to. A common extension of majority voting is

weighted majority voting, where the labels of certain atlases carry more weight. For example,

the algorithm described by Sabuncu et al. in 2010 [37] automatically assigns more weight

to atlases that are most similar to the image being labelled. Another category of algorithms

based on STAPLE, described in detail in section 2.2.4, utilize weighted voting in a different

way. Here, more weight is given to atlases deemed to be reliable; atlas reliability is itself

determined by STAPLE [38].

There has been a considerable amount of previous work on head and neck atlas-based

segmentation pipelines. All research mentioned here uses the Dice score metric to evaluate

segmentation accuracy; this metric is described in more detail in the following section. In

2008, Han et al. [39] evaluated both single and multi-atlas methods of segmenting the head

and neck. They found that the multi-atlas pipeline outperformed the single-atlas method
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for most of the structures they examined. The partoid glands, which we are interested in,

had a corresponding average Dice score of 0.80 using an optimal single atlas, and 0.83 using

multiple atlases; the authors found this difference to be statistically significant. A 2012

MIT thesis [40] tested a multi-atlas approach with weighted voting, and achieved a mean

Dice score of roughly 0.77 for each parotid gland. In 2014, Fritscher et al. [36] combined

multi-atlas techniques with geodesic active contours and statistical appearance models, and

obtained a mean Dice score of 0.84 for the left parotid gland, and 0.81 for the right parotid

gland.

2.2.3 Evaluation Metrics

To evaluate a generated segmentation against the ground truth, a similarity measure is

required. There are various metrics that can be applied, but among the most popular are

the Dice score and the Jaccard index. For this thesis, we chose the Dice score due to its

widespread use and simplicity [41].

To calculate the Dice score, the number of overlapping pixels from the generated

segmentation, G, and the ground truth, T are multiplied by two, and this result is divided

by the total number of pixels of both contours; in other words, the score computes twice

the intersection over the union of the segmentations [42].

Dice(G, T ) = 2|G ∩ T |
|G|+ |T | (2.21)
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2.2.4 Simultaneous Truth and Performance Level Estimation

(STAPLE)

While the evaluation of a segmentation against a ground truth can be performed using the

Dice score or Jaccard index, it is less clear how to measure the quality of a segmentation when

no reliable ground truth exists. While the most reputable sources of reference segmentations

are domain experts, there is often significant inter-observer variability. If human experts

cannot agree on a correct contouring, it is difficult to establish how well an automated

algorithm has performed.

This issue motivated the development of the Simultaneous Truth and Performance Level

Estimation (STAPLE) algorithm in 2004, by Warfield et al. [43] STAPLE takes as input

several segmentations, generated by humans or automatically, and determines a ground

truth contouring using a probabilistic model. At the same time, it produces an accuracy

score for each of the individual segmentations. The algorithm establishes the hidden ground

truth segmentation as well as the performance accuracy of each annotator by determining

the maximum likelihood scenario [43].

Suppose that for an image with N voxels, there are M sets of segmentations. Then, let

p = {p1...pM}T represent the sensitivity and q = {q1...qM}T represent the specificity for

each of the M segmentations. The sensitivity is the proportion of voxels that are correctly

identified as part of the structure being segmented (”true positive rate”), and the specificity

is the proportion of voxels that are correctly identified as not being part of the segmented
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structure (”true negative rate”). Finally, let S be aNxM matrix representing all input binary

segmentation decisions, and T be an N -dimensional vector representing the ground truth

segmentation. Then, the segmentation sensitivity and specificity values may be estimated

as (p̂, q̂) for the (p, q) which maximize the probability mass function, f(S,T|p,q):

(p̂,q̂) = argmax
p,q

ln f(S,T|p,q) (2.22)

After the sensitivity and specificity for each segmentation are estimated, the ground

truth contouring can be found by assigning greater weight to more reliable segmentations.

STAPLE can also be altered to include a priori information, such as a statisical anatomical

atlas [43].

2.2.5 Deep Learning Methods

One cannot discuss modern medical image segmentation methods without touching on

deep learning. While the details of deep learning segmentation methods are beyond the

scope of this thesis, we cover the basic concepts as well as some of the drawbacks of these

approaches.

To train such models to perform segmentations, labelled medical image data is fed into a

deep neural network. These networks consist of several layers of interconnected nodes that

‘learn’ the properties of the training dataset. In this case, they learn which image areas

correspond to the target structure, and which do not. After the training phase is complete,
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a new image can be segmented using the model [4]. The first deep learning model to achieve

impressive segmentation results was the Fully Convolutional Network (FCN) [44], however,

the results were not sensitive enough to detail for medical images, in part due to the lack

of availability of labelled pixel data for training. Ronneberger et al. then proposed the U-

Net [45], which is trained on image patches, rather than full images. This approach uses the

training data more effectively, and allows for much more precise segmentation of anatomical

structures. Another approach trains on bounding boxes that encompass structures, rather

than using pixel-level annotations. This method leads to decreased segmentation accuracy,

but greatly reduces the cost of obtaining training data, as it is considerably easier to draw

a box which roughly encompasses a structure than to precisely label each pixel along the

structure border [46].

While deep learning methods have had numerous successes as mentioned above and in [4],

they also suffer from certain limitations. Deep learning models require a large amount of

data to be trained, and datasets that are sufficient for this purpose are rare in medicine. This

means that networks trained on medical images may be subject to overfitting, where they

are extremely sensitive to the images already in the dataset, but cannot successfully segment

new images. While this issue can be managed with data augmentation, this is obviously not

preferable to having enough unaltered images to use for training [4].

Another concern about relying on deep networks for segmentation relates to the potential

for a ‘combinatorial explosion’. This describes the idea that as time goes on, the problems
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we wish to solve will become increasingly complex. As deep learning methods are primarily

data-driven, this means that increasingly complex datasets will also be required. However,

such datasets may not be feasible to obtain [47].

Though it is of course worthwhile to pursue research in deep learning in medicine, it is

important to not to abandon more traditional image analysis methods that rely more heavily

on prior knowledge. In fact, combining these two approaches could help resolve certain deep

learning limitations, such as the lack of available data [21].

2.3 Unsupervised Learning Methods

2.3.1 Introduction

In this thesis, we are interested in identifying anatomical subtypes within our dataset

through the grouping of the deformations that arise from the registration of our images to

a common template. To achieve this, we require automated methods that can partition the

deformation fields based on similarity, without any prior information.

The idea of utilizing population subgroups is touched upon in a 2019 publication by

Vakalopoulou et al. [14], which presents their deep learning segmentation framework,

AtlasNet, tested on interstitial lung disease. They registered all of their initial images to

six pre-selected atlases representing different anatomies, and trained one network per atlas

group. The labels from each network were then merged into a consensus segmentation.
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AtlasNet achieved higher accuracy in the segmentation of interstitial lung disease

compared to other state-of-the-art techniques, such as SegNet, even with a smaller training

dataset [14].

In the case of AtlasNet, the representative atlases were selected by radiologists. This

serves as partial motivation for our research into the automated detection of population

subgroups; it would not only be useful in combination with our segmentation pipeline, but

could be relevant for other applications as well.

The field of unsupervised learning aims to find patterns in unlabelled data, and use this

information to construct a representative model. When this model receives new data, it

should be able to make decisions or predictions that are consistent with the properties of

the original dataset. There are many applications of unsupervised learning algorithms, for

example, anomaly detection, clustering, and dimensionality reduction [48]. Here, we focus

on the last two areas.

2.3.2 Dimensionality Reduction

Independent Components Analysis (ICA)

Independent Components Analysis (ICA) is a variant of ‘blind source separation’

algorithm which finds the user-specified number of independent vectors in a set of data

with many components [49]. In simpler terms, the idea of ICA is that a set of data was

generated by the mixing of several independent factors, which we would like to recover.
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This technique is commonly used to reduce the dimensions of a dataset prior to the

application of other machine learning techniques, to reduce computational complexity [50,51].

It has also previously been used to separate components of functional magnetic resonance

imaging (fMRI) images, which motivated our use of ICA for CT scan data [49, 52]. In

this thesis, we use ICA to help cluster deformation patterns in images to detect anatomical

subtypes in an unsupervised manner, as detailed in Chapter 3.

ICA works by assuming that an M -dimensional collection of data, x = [x1...xM ]T , was

generated by an N -dimensional vector of independent components, s = [s1...sN ]T , combined

with some mixing matrix A, of dimension MxN [52]:

x = As (2.23)

The goal of ICA is to estimate an unmixing matrix, W , of dimension NxM , such that:

y = Wx (2.24)

where y is a vector which estimates the true independent components, s [52].

t-Distributed Stochastic Neighbor Embedding (t-SNE)

In this thesis, ICA is used to reduce the dimensionality of our data before we perform

our key operations, such as clustering, which is covered in the next section. However, we
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still require a method of visualizing results for data in higher dimensions.

For this, we use t-Distributed Stochastic Neighbor Embedding (t-SNE). Essentially, t-

SNE maps higher-dimensional data into two or three dimensions based on the distances

between the datapoints in their original space. While the specifics of this algorithm are

beyond the scope of this thesis, details are available in this paper: [53].

2.3.3 Clustering

While there are many types of clustering, some of the most commonly seen categories of

clustering algorithms include hierarchical, distribution-based, and partitional [54].

In hierarchical clustering, each data point normally begins in its own cluster. Then,

neighbouring clusters are progressively combined until all points are part of the same cluster.

This algorithm may also work in the opposite way, where all points begin in one cluster and

are then progressively divided into smaller groups based on their characteristics. Examples

of these algorithms include BIRCH and CURE [54].

In distribution-based clustering, points are grouped together based on the distribution

from which they were generated. The parameters of the distributions are not known in

advance, but are discovered by using an expectation-maximization (EM) strategy. Here,

the expectation (E) step calculates the probability that each point belongs to each cluster,

and the maximization (M) step updates the relevant parameters of the model; this may

include values such as mean, variance, and density. This is repeated until the parameters
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that maximize likelihood are found. The most well known example of this is the Gaussian

mixture model (GMM) [54,55].

In partitional clustering, each data point may only belong to one cluster. The group to

which it belongs is determined based on the distance from the point to the cluster centres;

it will join the group whose centre point, or ‘centroid’, is the closest. Partitional clustering

is perhaps the most frequently used type of clustering, and the most popular algorithm to

perform this is k-Means [54]. k-Means is, in fact, a special case of Gaussian mixture model,

where the Gaussian functions are spherical, and points may only belong to one group. We

employ k-Means in our own approach, so we describe it in more detail below.

2.3.4 K-Means Algorithm

In k-means, there are two main steps performed at each iteration of the algorithm:

defining the centroids of each cluster, and assigning the remaining points to the appropriate

cluster. These can be thought of as the expectation (E), and maximization (M) steps,

respectively. In the context of this thesis, the cluster centres will represent an anatomical

subtype, and other subjects will join the cluster of the nearest centroid to them.

Initially, the cluster centres may be selected randomly. The number of clusters is defined

by the user. Next, the distances between the other points and each of the centroids is

determined. For a 2D dataset, this may be calculated as follows, where d is the distance of

some point p(x, y) from a cluster centroid Ck [56]:
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d = ||p(x, y)− Ck|| (2.25)

Each of the non-centroids is then ‘attached’ to the nearest cluster. Then, for all k clusters,

a new cluster centre is then calculated according to the new group. If {Ck} represents the

set of points associated with centroid Ck, then [56]:

Ck = 1
|{Ck}|

∑
y∈{Ck}

∑
x∈{Ck}

p(x, y) (2.26)

These steps are then repeated until the cluster centres no longer change, or a maximum

number of iterations is reached [56].

Determination of Cluster Number

As the number of clusters, k, is determined by the user, the question of how to

determine the optimal number of clusters is raised. While other techniques, such as the

average silhouette method, exist, the most widely used strategy is the ‘elbow method’. To

find the optimal number of clusters, one should plot the number of clusters against the sum

of squared errors (SSE), calculated as follows, for k clusters, where p represents a point in

the cluster [56]:

SSE =
k∑

k=1

∑
p∈{Ck}

||p− Ck||22 (2.27)
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The optimal value of k is where the SSE value drops dramatically, and the curve appears

to plateau. This is determined by visual inspection; the slope of the curve will suddenly

become much less steep after a particular number of clusters, and the SSE value will gradually

decrease after this point.

If this pattern is not observed, such as in the case where the slope undergoes a slow and

gradual decrease, then a meaningful clustering does not exist, since the SSE remains similar

despite the number of groups.
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Chapter 3

Methodology

In this thesis, we discuss two main experiments, both of which require the creation

of a reference template, as explained in section 3.3. The first experiment, described in

section 3.4, involves the use of registration to the reference template as a tool to perform

organ segmentation. The second experiment, detailed in section 3.5, explores the automated

clustering of subjects into anatomical subtypes, with the goal of creating anatomy-specific

reference templates. The grouping is performed based on the similarity of the images to the

reference template from section 3.3.

3.1 Datasets

The activities described in sections 3.3-3.5 are performed using the following two

datasets. Both were obtained from the Augmented Intelligence and Precision Health
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Laboratory (AIPHL), which is part of McGill University’s Department of Diagnostic

Radiology, in the Faculty of Medicine and Health Sciences [57].

Both datasets consist of computed tomography (CT) scans of the head and neck. A CT

scan is a common medical imaging technique that uses a beam of x-rays to create several

cross-sectional images of a patient. These cross-sectional images are known as ”slices”. An

intravenous ”contrast agent”, like iodine, is sometimes given to patients in order to better

visualize particular structures on the scan. CT scanners may also produce images at multiple

energy levels, measured in kiloelectron volts (keV). This is because some tissues or anatomical

features are easier to see at certain energy levels [58].

All images were collected with the same 64-slice dual-energy computed tomography (CT)

scanner, the Discovery CT750 HD from GE Healthcare. Patients were scanned after 80 mL

injection of the contrast agent iopamidol, dispensed at a rate of 2 mL/s. There was a delay

of 65s before scanning. While scans from 40-140 keV were obtained, here, we only use the

65 keV energy level, as it is optimal for tissues of the head and neck [59].

The datasets are aggregations of scans used in previous publications by the AIPHL lab,

examples here: [3, 59,60].

3.1.1 SRG Dataset

The SRG (‘spectral radiogenomic’) dataset consists of 3D CT scans of the head and

neck regions of 56 subjects. All patients have tumors in this region, either due to HNSCC
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(head and neck squamous cell carcinoma) or lymphoma. Each subject has corresponding

contours, which are labelled regions corresponding to the relevant anatomical structures and

the background, for nine normal organs. Here, however, we focus on only two organs: the

left and right parotid glands, seen in Figure 3.1. We chose the parotid glands simply because

they were the largest available contoured organs, and it is easier to visualize segmentation

results for larger structures.

Figure 3.1: The left and right parotid glands (left: axial view, right: coronal view).

Of the 56 subjects, two only have scans in which their mouths were open, so these are

excluded from the experiments, as the rest have closed-mouth scans. An additional four

subjects have contours that use different labelling schema, so they are excluded as well.

Thus, we consider the remaining 50 subjects.

3.1.2 HNSCC Dataset

The HNSCC (‘head and neck squamous cell carcinoma’) dataset also consists of 3D

CT scans of the head and neck, for 95 subjects. It was collected from patients who have
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HNSCC tumors at different stages. There are four subjects included who do not have tumors,

nor do they have metallic artifacts. These artifact-free subjects are used for the reference

template creation described in section 3.3. During the group template creation portion of the

experiment described in section 3.5, subjects with severe artifacts are filtered out (detailed

in section 4.2.2). This dataset does not have any corresponding contours.

3.2 Image Preprocessing

3.2.1 Masking

Many of the SRG and HNSCC images contain parts of the CT scan table. To avoid

negatively affecting the registration process, we must remove these from the images. The

subjects’ shoulders must also be cropped, for a similar reason; we are only interested in the

registration of the head and neck region, and inclusion of the shoulders will make registration

more difficult.

Both of these modifications are done via a ‘masking’ process using MATLAB, in which

every subject has a customized, elliptic cylindrical bounding box to remove the undesired

elements. The cylinder dimensions are determined manually by observing the masked result

in 3D Slicer, an open source software for medical image visualization [61]. The cylinder begins

aligned to the centre of the image, and is shifted and adjusted in size until the shoulders are

removed and any parts of the CT scan table are cropped. This process is partially inspired
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by a 2012 Master of Engineering thesis from MIT [40].

Figure 3.2: An example of the masking process. Top: original image, middle: mask,
bottom: masked image.

3.2.2 Image File Formatting

For most of our image registration and segmentation related work, we use the Advanced

Normalization Tools (ANTs) toolkit, implemented on the command line. ANTs is widely

considered to be a state-of-the-art medical image registration and segmentation toolkit,

popularly used in the research community. One of its creators is Dr. Brian B. Avants, who

pioneered SyN and its related algorithms, discussed in section 2.1.2 [62].

The ANTS toolkit notes a preference for the NIfTI file format. Since the HNSCC dataset

was in DICOM format, and the SRG dataset was in NRRD format, they are both converted
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to NIfTI using Plastimatch, another medical image analysis command line tool [63].

3.3 Reference Template Creation

Both of our experiments require the creation of an initial, single custom reference

template. To do this, we require images which are free of metallic artifacts and tumors, so

that the template is representative of a standard anatomy. If the reference image contains

abnormalities, the quality of subject registration may be diminished.

In the HNSCC set, we have four such images. We include all of these in our template, as

they represent reasonably different anatomical types. While we acknowledge that it would

be ideal to include even more images, template creation is a very time-consuming process

that requires the registration of all subjects to one another, so each added image greatly

lengthens the process. This is especially true for the head and neck region, which can

vary quite significantly between subjects. It is necessary to consider the trade-off between

the amount of anatomical variation that another image adds versus the time to create the

template. In our case, a smaller amount of images is sufficient, as our goal is only to create

a proof-of-concept for our pipeline.

To create the template, all four input images are registered to each other, resulting in

the final ”average” image. The process is illustrated in Figure 3.3. Further details about

template creation concepts were provided in section 2.1.5.
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Figure 3.3: The four input images with the result of template creation (sagittal view).

Our implementation uses the ANTs script ‘antsMultivariateTemplateConstruction2’, for

which relevant parameters are described in more detail in Appendix A.1.

We first perform an initial rigid body registration of inputs before template creation; this

is recommended by the ANTs documentation if there is no initial template, as is the case here.

During the creation of the template, we choose not to include the ‘full affine transformation’

in our template updates, meaning that the rigid portion is excluded. While this may seem

unusual, we obtained final results that were strangely warped and unrealistic when using the

full affine transformation. For the non-linear, deformable step, we use the SyN algorithm

with a cross-correlation similarity metric, described in sections 2.1.2 and 2.1.3, respectively.

The registration takes a coarse-to-fine approach (described in section 2.1.4), with four levels

of registration. Each level has corresponding shrink factors, smoothing factors, and levels of

iteration (parameters f, s, and q).
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Template Construction

antsMultivariateTemplateConstruction2.sh -d 3 -f 8x4x2x1 -s 3x2x1x0 -m CC

-r 1 -y 0 -t SyN[0.5,2,0] -g 0.4 -q 100x70x50x10

-o ${outputPath}[image 1] [image 2] [image 3] [image 4]

3.4 Segmentation using Reference Template

Registrations

In this experiment, we aim to use the registrations of the SRG dataset to the reference

template to create a consensus contouring for the template created with the HNSCC dataset.

We then use registration to map the template contours to new subjects.

3.4.1 Architecture

An overview of this pipeline is presented below in Figure 3.4:
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Figure 3.4: Architecture of first experiment.

3.4.2 Registration to Reference Template (SRG)

Image Registrations

For the initial step of registering the SRG dataset images to the reference template from

section 3.3, we use the ANTs toolkit script ‘antsRegistration’. This process is done in two
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parts; the rigid step and the non-linear, deformable step. While it is unusual, we exclude the

affine step here, after empirical observations that its inclusion resulted in strangely warped

and unrealistic images at the end of registration. The other parameters are chosen according

to recommendations in the ANTs documentation [62].

In the rigid registration, the ‘source’ is the input image, and the ‘target’ is the reference

template. In the deformable registration, the ‘source’ is the result obtained after rigid

registration, and the ‘target’ is still the reference template. For both steps, we use the

cross-correlation similarity metric. In the rigid step, the value in square brackets denotes the

gradient step size. In the SyN step, the values in brackets are: gradient step size, update field

variance in voxel space, and total field variance in voxel space. For the SyN step, we chose

to only have three levels of registration, excluding the last (finest) level. This is because the

difference between our results including and excluding the last level were minimal, but the

process took twice as long to run.

Relevant parameters of the ‘antsRegistration’ script are described in more detail in

Appendix A.2.

Rigid Registration

antsRegistration -d 3 -o ${rigidResult} -n Linear -w [0.005,0.995] -u 1

-r [${referenceTemplate},${inputImage},1] -t Rigid[0.1]

-m CC[${fixedPath},${movingPath},1,8] -c [1000x500x250x100,1e-6,10]

-f 8x4x2x1-s 3x2x1x0vox
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Deformable Registration

antsRegistration -d 3 -o ${finalResult} -n Linear -w [0.005,0.995]

-u 1 -t SyN[0.5,2,0] -m CC[${referenceTemplate},${rigidResult},1,8]

-c [100x70x50,1e-6,10] -f 8x4x2 -s 3x2x1vox

Application of Transformations to Contours

We then apply the rigid and deformable transformations to the SRG set’s corresponding

normal organ contours, so that these contours will also be in the space of the reference

template. We perform this step using the ANTs script ‘antsApplyTransforms’. There are

two steps here, as well, for rigid and then deformable registration.

Relevant parameters of the ‘antsApplyTransforms’ script are described in more detail in

Appendix A.3.

Rigid Registration

antsApplyTransforms -d 3 -i {originalContour} -o {resultDirectory}

-t {rigidTransform} -r {rigidResult}

Deformable Registration

antsApplyTransforms -d 3 -i {rigidResult} -o {resultDirectory}

-t {SyNTransform} -r {finalResult}
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3.4.3 Consensus Contouring

Again referring to Figure 3.4, we split the collection of 50 template-aligned contours into

two groups of 25. For each group, we create a ‘consensus contouring’, in the space of the

reference template.

This is performed using Insight Toolkit (ITK). ITK is an open-source library that

provides extensive scientific image analysis functionality. The creators have also produced

the ‘SimpleITK’ library for easy integration of ITK features into other code. It is available

for several programming languages, including Python, which we use in our

implementation [27]. Here, we execute the STAPLE algorithm described in section 2.2.4.

The ‘STAPLEImageFilter’ function used in the script below requires a specific

foreground value that references the object to be segmented, while the rest of the image is

considered as the background. We set the numerical foreground value as

‘STAPLE FOREGROUND VAL’. We then execute the function on our directory of subject

contours (‘IMAGE CONTOURS’), which are labelled regions of the structure area and the

background, that have been previously transformed according to section 3.4.2. As output,

we get a singular image representing the consensus contouring created from all of the

original contours that have been registered to our reference template.

We obtain one consensus contouring per group, for each desired normal organ. Here, we

compute the contours for the left and right parotid glands, giving us two consensus contours

per group, resulting in four total contours.
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STAPLE Execution

import SimpleITK as sitk

# Set up STAPLE filter

staple_filter = sitk.STAPLEImageFilter()

staple_filter.SetForegroundValue(STAPLE_FOREGROUND_VAL)

# Execute STAPLE

staple_img = staple_filter.Execute(IMAGE_CONTOURS)

3.4.4 Generation of Contours

As seen in Figure 3.4, for each of the groups, we use the opposing group’s consensus

contours to generate labels in the space of the original images. That is to say, we use the first

group’s consensus contours to generate automatic labels for the second group’s images, and

follow a similar procedure to get the first group’s labels from the second group’s consensus

contours.

To achieve this, we apply the inverse of the registration transformations generated in

section 3.4.2. We again use ‘antsApplyTransforms’ here, in two steps. Since we wish to

transform in the reverse direction, that is to say, back to the space of the original images,

we now perform the deformable step before the rigid step.

While the commands are the same as the forward transformations in section 3.4.2, the

‘rigidTransform’ and ‘synTransform’ parameters refer to inverted versions of the
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transformations. The ‘antsRegistration’ script already outputs the inverted deformable

transformation in a separate file, so we simply use this. For the rigid step,

‘antsApplyTransforms’ allows us to specify that the transformation should be inverted by

writing it as such: -t [rigidTransform, 1].

After this step, we have generated contours for all of the original SRG images, in the

original image space.

3.4.5 Evaluation

Dice Score

We then use the Dice score metric described in section 2.2.3 to evaluate these

segmentation results. The score will tell us the accuracy of the generated contours

compared to the original labels, which were obtained from radiologists.

Similarity to Template

After calculating the Dice scores of the segmentation results on a per patient basis, we

will examine a possible relationship between Dice score and the similarity of images to the

template.

To do this, we can use a sum of squared differences approach. For voxels in the registered

images that also exist within template area, we calculate the absolute value of the difference

in intensities between the template and the registered images. We add the square of these
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absolute value differences to a running total. This leaves us with a single numerical value

describing the similarity of a particular image to the template. The larger this value is, the

less similar an image is to the template.

3.5 Clustering Subjects into Anatomical Subtypes

In this experiment, we use the k-Means clustering technique described in section 2.3.4

to group subjects by anatomical similarity. We evaluate subject similarity to the reference

template using the deformable transformation that arose during its registration to that

template. In other words, the images will be clustered based on the magnitude of

deformation that they underwent at each voxel to align with the template. We then create

representative reference templates for each of the discovered anatomical subtypes, with the

goal of implementing the pipeline from section 3.4 within each group to improve

segmentation accuracy.

3.5.1 Architecture

To illustrate this process, we refer to Figure 3.5:
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Figure 3.5: Architecture of second experiment.

3.5.2 Registration to Reference Template (HNSCC)

Following the steps outlined in section 3.4.2, we register all of the HNSCC dataset images

to the reference template from section 3.3. Again, we exclude the affine registration step, after

empirical observations that doing so improved the quality of registrations for our particular

datasets.

For all HNSCC images, we now have the final warped-to-template registration results as



3. Methodology 56

well as the rigid and deformable transformations. In this case, we do not have any contours,

so there is nothing further to do in this step.

3.5.3 Jacobian Determinant

We then take the Jacobian determinant of the deformable registration transformation.

The goal of this step is to obtain a single value at each voxel describing the magnitude of

image deformation that occurred at this particular location during the registration to the

template, as described in section 2.1.6. A visualization of this is shown in Figure 3.6.

This step uses another ANTs script, ‘CreateJacobianDeterminantImage’, which simply

computes the Jacobian determinant of the image that it is passed as a parameter; the usage

of this command is described below. In our case, we have three dimensional images, and we

simply pass each image’s corresponding deformation field (transformation) to the script to

obtain the corresponding Jacobian determinant images.

Usage of ‘CreateJacobianDeterminantImage’

CreateJacobianDeterminantImage <imageDimension> <deformationField>

<outputImage>

We then apply a mask of the reference template to the resulting image, as we wish to

exclude any voxels that are not part of the template.
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Left to right (axial view): deformation field, Jacobian determinant image, masked Jacobian
determinant image.

Colour bar for determinant images. The leftmost colour represents the largest ’negative’
deformation, the rightmost colour represents the largest ’positive’ deformation, and the middle
colour represents no deformation. Note that ’negative’ and ’positive’ represent opposite directions.

Figure 3.6: Masked Jacobian determinant image

3.5.4 Independent Components Analysis

Our datasets consist of 3D CT scan images, of size 512x512x233. If we flatten one of

these images into 1D, we have 61,079,552 individual points. With this amount of data for

each of the 95 images, any operations or analysis will be very computationally heavy. This

is what motivates our use of Independent Components Analysis (ICA).

To do this, we use the Scikit-learn Python library, which is popular for computational

techniques related to machine learning [64]. We use Scikit-learn’s ‘FastICA’ function. We

tested a few different numbers of ICA components, and found that five components provided

a reasonable clustering result (described in the next step); so, we had FastICA extract five
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components. We set the maximum number of iterations to 500, and the tolerance to 0.05.

The defaults for these parameters were 200 and 1e-4, respectively, but they did not lead to

convergence for our data. Before adjusting the tolerance, FastICA did not converge, even

after thousands of iterations. After updating the tolerance to 0.05, FastICA was able to

converge in fewer than 500, but greater than 200, iterations.

We execute this using the ‘fit transform’ function of FastICA on the flattened

representations of our images (‘FLATTENED IMAGES’), the 1D arrays of size 61,079,552.

Scikit-learn FastICA Implementation

from sklearn.decomposition import FastICA

# Set up & run ICA

ica = FastICA(n_components=5, max_iter=500, tol=0.05)

ica_result = ica.fit_transform(FLATTENED_IMAGES)

3.5.5 k-Means Clustering

Now that each image is only represented by five components, we perform k-Means

clustering of the images, as described in section 2.3.4. To do this, we again use the

Scikit-learn library.

We import the ‘KMeans’ function and provide it with our desired number of clusters

(‘NUM CLUSTERS’). We then pass KMeans the ICA representations of all of our HNSCC
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images (‘ICA IMAGES’) for clustering.

All cluster numbers from 1 to the number of images will be tested. We test all of these

values not only to find the ideal number of clusters, but to determine whether a meaningful

clustering exists. Further details about cluster number selection are provided in the following

section.

Scikit-learn k-Means Implementation

from sklearn.cluster import KMeans

# Set up the KMeans clustering function

kmeans = KMeans(n_clusters=NUM_CLUSTERS)

# Cluster ICA representations of images

labels = kmeans.fit_predict(ICA_IMAGES)

3.5.6 Evaluation of Clustering

To find the optimal number of clusters, we perform the ‘Elbow Method’, as described in

section 2.3.4. For practical purposes, we do not want to have more than four or five clusters

to create our group-specific templates. However, we still wish to test each cluster size from

1 to the number of images for two reasons. First, we would like to learn what the optimal

number of clusters is; while it is impractical to create more than 4-5 group templates, if

the ideal cluster size is considerably higher than five, then we may not obtain noticeable
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anatomical similarity between cluster subjects in a fewer number of groups. The second

reason is that, if the ideal cluster size is equivalent to the number of images, then we can

conclude that no meaningful clustering exists.

3.5.7 Creation of Group Templates

The creation of the group-specific templates is the same as in section 3.3. However, here,

we use the three most representative members of the cluster to create the template. We use

the centroid image, which is the image closest to the centre of the cluster, and the two other

images that are closest to the centroid. By using the cluster members closest to the centre,

we are using the most representative images of that anatomical subtype. This allows us to

account for a significant amount of intra-group variance.

Since some of the clusters are not very large, we would like to use as few images as

possible that still capture adequate variance. As explained further in the next section, we

would eventually like to test the segmentation pipeline from section 3.4 in each cluster; so, if

all images are used in the group template, there will be no non-template images with which

to test segmentation.

Similar to the template creation discussed in section 3.3, it would be ideal to use a greater

number of images for the group templates; however, we are limited by our small dataset.

Again, in our case, we are developing a proof-of-concept, so we have a sufficient number of

images for this purpose.
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3.5.8 Evaluation of Group Templates

One way to assess the quality of each group template is by visual inspection. If we see

areas where it appears that registration did not complete (for example, if there are two noses

visible), then the template creation was not successful. If the resulting template looks like a

realistic CT scan, then it was successful.

We can also evaluate the effectiveness of the created templates by using them to segment

the images in their respective clusters with the pipeline from section 3.4. Theoretically, this

should lead to increased accuracy compared to the segmentation of the same images using a

generic template, as was used in the previous experiment.
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Chapter 4

Experimental Results

4.1 Segmentation using Reference Template

Registrations

Here, we examine the results of the segmentation pipeline described in section 3.4 for the

left and right parotid glands. We first observe some examples of registration; we consider

one subject where registration was successful, and another subject where it was unsuccessful.

We then evaluate the success of parotid gland segmentation by calculating the Dice score of

the generated contours against the original contours, for each desired organ.
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(a) The template to which subjects were registered

(b) The original subject image

(c) The result of subject registration to the template

Figure 4.1: An example of a successful registration. This particular subject was able to
align quite well to the custom template that we created. (Left to right: coronal, axial,
sagittal views)
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(a) The template to which subjects were registered

(b) The original subject image

(c) The result of subject registration to the template

Figure 4.2: An example of an unsuccessful registration. This subject had considerable
difficulty aligning to the custom template that we created. (Left to right: coronal, axial,
sagittal views)
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We note that five SRG subjects had a Dice score of zero for the left parotid gland

(LPG) segmentation, and six SRG subjects had a score of zero for the right parotid gland

(RPG). Upon further inspection of these subjects, we discovered that their original

contouring excluded these particular glands. Thus, we consider the scores of 45 total

subjects for the LPG and 44 total subjects for the RPG. Table 4.1 shows the average Dice

score for each group and organ, and the combined average score for each organ.

Left Parotid Gland (LPG) Right Parotid Gland (RPG)
Group 1 0.574 (Range: 0.107 - 0.764) 0.597 (Range: 0.007 - 0.820)
Group 2 0.559 (Range: 0.286 - 0.804) 0.621 (Range: 0.217 - 0.775)

All Subjects 0.567 (Range: 0.107 - 0.804) 0.608 (Range: 0.007 - 0.820)

Table 4.1: Average Dice score, including the range of values (minimum - maximum), for
LPG and RPG segmentations, calculated per group, and then across all subjects.

Upon inspection of our results, we observe that there are some instances where our

pipeline performs especially well and some where it performs much more poorly than average.

Figures 4.3 and 4.4 show examples of poor, average, and good segmentation outcomes.

We next examine whether the Dice score is related to the similarity of an image to the

template. Template similarity is determined by the sum of squared differences approach

described in section 3.4.5. Figures 4.5 and 4.6 show image distances from the template and

the corresponding Dice scores for each parotid gland.
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(a) Poor; Dice score = 0.107

(b) Average; Dice score = 0.566

(c) Good; Dice score = 0.804

Figure 4.3: Sample segmentation results for left parotid gland (LPG). Original contour is
blue, generated contour is yellow. (Left: axial view, right: coronal view)



4. Experimental Results 67

(a) Poor; Dice score = 0.007

(b) Average; Dice score = 0.613

(c) Good; Dice score = 0.820

Figure 4.4: Sample segmentation results for right parotid gland (RPG). Original contour
is blue, generated contour is yellow. (Left: axial view, right: coronal view)
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Figure 4.5: Dice Score vs. Distance from Template (LPG). Template distance is calculated
using sum of squared intensity differences.

Figure 4.6: Dice Score vs. Distance from Template (RPG). Template distance is calculated
using sum of squared intensity differences.
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For each parotid gland, we calculate the Spearman coefficient for the Dice score against

the sum of squared difference from template, shown in Table 4.2. We use the Spearman

coefficient as it does not assume an underlying distribution of the data, and our data does

not follow a normal distribution.

Spearman Correlation Coefficient
Left Parotid Gland -0.760

Right Parotid Gland -0.676

Table 4.2: Spearman correlation coefficient for LPG and RPG for Dice score vs. distance
from template.

We recall the subjects from Figure 4.5, where we presented results for the segmentation

of the left parotid gland. In order to further examine the relationship between distance

from template and Dice score, we observe the Jacobian determinant images created from the

deformation fields that arose during the registration of these subjects to the template.
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(a) Subject with poor segmentation outcome (Dice score = 0.107, image L2 norm: 942)

(b) Subject with average segmentation outcome (Dice score = 0.566, image L2 norm: 862)

(c) Subject with good segmentation outcome (Dice score = 0.804, image L2 norm: 700)

Colour bar for determinant images, as seen in Figure 3.6.

Figure 4.7: Jacobian determinant images corresponding to the subjects in Figure 4.3.
These images represent the Jacobian determinants of the deformation fields that arose from
their registrations. Areas with more intense colour correspond to deformations of greater
magnitude. Again, ’positive’ and ’negative’ are opposite directions relative to the template.
Dice scores and L2 norms calculated over full 3D (512x512x233) image. L2 norms calculated
only over template mask seen in Figure 3.6. (Left: coronal view, right: axial view)
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4.2 Clustering Subjects into Anatomical Subtypes

We now examine the results for the steps described in section 3.5, where we clustered

our images based on anatomical similarity, and attempted to generate one representative

template per group. After some experimentation, we chose to use five components for our

ICA, as it gave the most reasonable clustering result. This means that the k-Means clustering

was performed on five-dimensional representations of image data.

4.2.1 Results of Clustering

As described in section 3.5.6, we perform the elbow method to evaluate whether a

meaningful clustering exists. These results are presented below. However, as noted

previously, we do not wish to use more than four or five clusters, for practical purposes.

Figure 4.8: Elbow method result for our subjects. The ideal number of clusters is around
seven, showing that a meaningful clustering exists.
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After testing with four and five clusters, we determined empirically that four clusters gave

a more natural-seeming grouping. A representation of the clusters is presented in Figure 4.9,

visualized in two dimensions using Scikit-learn’s t-SNE function [64].

Figure 4.9: k-Means clustering of subjects, clustered in 5D, visualized in 2D with t-SNE.

In the following figure, we observe a selection of members from each of these clusters, in

order to visually compare their anatomies.
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(a) Three members of the blue cluster

(b) Three members of the red cluster

(c) Three members of the green cluster

(d) Three members of the orange cluster

Figure 4.10: Examples of cluster members. The red cluster members appear to have more
elongated necks, whereas the blue cluster members have shorter necks. The orange members
are facing upward, and the green members are facing straight ahead or slightly downward
and have similar nose shapes. A sagittal view is used to more easily see anatomical features.
Note that the original dataset images are shown (i.e. those before template registration).



4. Experimental Results 74

4.2.2 Filtering of Subjects with Artifacts

The step after clustering is the creation of group templates; however, many of the

subjects closest to the cluster centroids were discovered to contain significant metallic

artifacts. ”Severe” artifacts were filtered from the data, and ”mild” artifacts were allowed

to remain. See Figure 4.11 for examples of the two categories.

(a) Mild artifacts (b) Severe artifacts

Figure 4.11: Mild vs. severe artifacts (axial view)

In Figure 4.12, we see examples of histograms demonstrating sample intensity patterns

for subjects with no, mild, and severe artifacts. In subjects without artifacts, there are very

few, if any, image voxels with intensities above 2000. Thus, to judge which subjects have

severe artifacts and which do not, we examine only the tail end of the intensities; that is to

say, we only consider the intensity values above 2000. Through trial and error with filtering

criteria, we determined that severe artifact images were those that had over 15% of tail

intensities above 3000, and over 65% of the intensities above 3000 were also above 3050.
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(a) No artifacts (b) Mild artifacts

(c) Severe artifacts

Figure 4.12: Histograms of image intensities for subjects with no, mild, and severe artifacts.

Artifact-free Clustering

After the filtering, only 49 of 95 subjects remain. Figure 4.13 shows the clustering with

the filtered dataset. ”Artifact-free” images are those without severe artifacts.
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Figure 4.13: k-Means clustering of artifact-free subjects, clustered in 5D, visualized in 2D
using Scikit-learn’s t-SNE function.

4.2.3 Results of Group Template Creation

Finally, we attempt to create the group-specific templates with the artifact-free images.

An example of this effort for each cluster is presented on the following page.
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(a) Blue Cluster Template (b) Red Cluster Template

(c) Green Cluster Template (d) Orange Cluster Template

Figure 4.14: Examples of group template results, corresponding to the clusters in Figure
4.13. In each of the bottom two images, two chin bones are observed, which signals poor
registration. A sagittal view of the images is presented.
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Chapter 5

Discussion and Conclusions

In this thesis, we created a proof-of-concept for our atlas-based segmentation pipeline,

in which the atlas was constructed from representative dataset subjects, and labelled with

consensus segmentations generated using the STAPLE algorithm. We also investigated

whether it was possible to use clustering techniques to partition subjects into anatomical

subtypes, and create population-specific reference templates for these groups.

This work has three important contributions. The first is that, with the partitioned

dataset, one could obtain labels for only a subset of each group in order to make

population-specific templates. Then, one could contour the remaining images by

implementing our segmentation pipeline in each group. The second is that one could

simply select, for each cluster, the pre-existing atlas that is most similar to the centroid

image, and then label the group members using a standard atlas-based strategy. In future
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work, both of these techniques could lead to improved atlas-based segmentation accuracy

for anatomical subgroups that may not be well-represented by a standardized reference

template. Finally, our anatomical subtype clustering and template creation methods could

be integrated with other pipelines, particularly those based on deep learning. One such

example is AtlasNet [14], discussed in sections 1.1 and 2.3.1, which used the registration to

population-specific atlases to improve segmentation performance. In this case, the atlases

were selected by radiologists, but it would be interesting to test their framework with

anatomical subtypes that were discovered automatically.

5.1 Analysis of Segmentation Pipeline Results

5.1.1 Relationship between Template Similarity and Dice Score

After observing the results of our segmentations, such as the examples provided in

Figures 4.3 and 4.4, we were motivated to investigate whether a relationship existed

between the distance of a registered image from the reference template, and the Dice score.

This correlation would be logical, given that images that were originally less similar to the

reference template would have more difficulty with registration, and the final segmentations

are performed using inverse registration transformations. This is consistent with the

sample registration results that were presented in Figures 4.1 and 4.2; the subject who had

very poor registration is vastly different from our template.
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The Spearman coefficient results in Table 4.2 support this notion. The left parotid gland

showed a moderate to strong negative correlation between the distance from the template

and the Dice score, and the right parotid gland showed a moderate negative correlation.

This supports our hypothesis that the two values are related, and shows that the greater the

distance between an image and the template, the lower the Dice score, and thus, segmentation

accuracy, will be.

This relationship can also be demonstrated with the Jacobian determinant images seen

in Figure 4.7. In 4.7a, the subject with the poor segmentation outcome has sizeable areas

where the colour is very intense or dark; this indicates that these portions of the image

underwent a very large deformation. If such considerable deformations were necessary, we

can conclude that the original image must have been very different from the template. In

4.7c, which corresponds to a subject with a high Dice score, we do not observe any areas

with very intense or dark colour; the intensities across the image are much more uniform.

This means that this subject did not experience any immense deformations, so they must

have already been quite similar to the reference template; however, we know that minor

deformations were still required, since the image is not completely uniform.

5.1.2 Comparison with Previous Work

While other research efforts on multi-atlas segmentation for the head and neck, such

as those discussed in section 2.2.2, had achieved equivalent or higher Dice score accuracy
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compared to our pipeline, they had not explored the idea of population subgroups. As

observed in Figures 4.5 and 4.6, the Dice scores for images that are more similar to the

template are closer to 0.70-0.80, which is comparable to previous results. If our segmentation

pipeline is implemented in each of the clusters, we should be able to achieve that level of

accuracy or higher, for all subjects; however, this will need to be verified in future work.

Differences between Left and Right Parotid Glands

We note that the segmentation of the right parotid gland was slightly more successful

than the left parotid gland, across our subject pool, as seen in Table 4.1. The average Dice

score for the RPG was roughly 0.04 higher than for the LPG. This difference was found to

be statistically significant at the 0.05 level by the paired t-test; however, our sample size is

relatively small, so it would be beneficial to confirm this with additional data.

A possible explanation for these results could be that the LPG is more variable in

shape and size than the RPG, making it more difficult to construct an accurate consensus

contouring. Across other atlas-based segmentation efforts discussed in section 2.2.2, the

differences between the glands is not consistent. In the 2012 MIT thesis [40], the average

scores for the glands appear to be the same, and in Fritscher et al.’s work [36], the Dice

score for the LPG was 0.03 higher than for the RPG. A particular group of images, such as

our dataset and those used in the aforementioned papers, is typically labelled by one, or a

small group of, experts, so perhaps inter-observer variability plays a factor here.
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Experimentation on additional data would be required to see if this trend persists.

5.2 Analysis of Anatomical Subtype Clustering and

Group Template Creation

The anatomical subgroup clustering showed promise, as the subjects within groups

appeared to share common characteristics when inspected visually. However, we were not

able to successfully create all the population-specific atlases.

5.2.1 Success of Clustering

As discussed in section 2.3.4, the ideal number of clusters for k-Means clustering can be

found through the ”elbow method”. However, here, we did not want more than four or five

clusters for two practical reasons: 1) template creation is a time-consuming process, and 2)

we wanted to have several cluster members who are not in the template, to test registration.

Despite this fact, it was still interesting to use the elbow method results to confirm that

a meaningful clustering exists; these results were presented in Figure 4.8. In this case, the

optimal number of clusters was around seven; seven is much smaller than the number of

images, so this meant that a significant grouping did indeed exist.

We determined empirically that four clusters provided a grouping that appeared most

natural; a representation of these clusters was presented in Figure 4.9. We observed that the



5. Discussion and Conclusions 83

group members did bear clear anatomical resemblances, as seen in Figure 4.10.

5.2.2 Impact of Registration Method on Clustering

As discussed in sections 3.3, 3.4.2, and 3.5.2, we were not able to include the full affine step

in our registrations, as its inclusion led to strangely warped registration outcomes. Since

no affine registration step was incorporated into our experimental pipeline, the Jacobian

determinant, as calculated in section 3.5.3, will include the effects of scaling as well as

the effects of non-linear deformations. In other words, the Jacobian determinant quantifies

overall changes in the image (except for rotation and translation), and not strictly those that

are non-linear.

The exclusion of an affine registration step is certainly a limitation of our research,

which will need to be addressed in future work to improve our overall results. For example,

the registration of the subject seen in Figure 4.2 clearly suffered due to the lack of an

affine transformation. Thus, resolving this issue should improve experimental results for this

subject, as well as others that experienced similar issues.

5.2.3 Issues with Group Template Creation

Unfortunately, certain areas of the group templates suffered from poor registration.

Examples of this issue can be observed in Figures 4.14c and 4.14d, where two chin bones

are visible. There are at least two factors potentially contributing to the lack of template



5. Discussion and Conclusions 84

creation success that require further investigation.

Effects of Metallic Artifacts

As discussed in section 2.1.7, artifacts negatively impact registration; this is an issue for

two reasons. The first is that the registration during template creation will be inhibited, and

the second is that if these distortions exist in the group templates, then the registration of

novel images to the templates will be affected. Thus, it was necessary to filter out subjects

with significant artifacts from the dataset. As metallic objects were present in most subjects,

only those with severe artifacts (for example, Figure 4.11b) were excluded, and those with

mild artifacts (for example, Figure 4.11a) were allowed to remain. The filtering method

described in section 4.2.2 was derived based on the intensity patterns in subject images with

no, mild, and severe artifacts, represented in Figure 4.12.

After the filtering, only 49 of 95 subjects remained; the updated clustering results were

presented in Figure 4.13. The clusters were considerably smaller than when the full dataset

was used, and the subjects were further apart from each other. We performed tests using

three clusters instead of four, however, with three groups, the anatomical similarities amongst

members were not as clear. Four clusters gave groups with the same characteristics as prior

to the filtering, so it made the most sense to keep k = 4.

The more spread out the images within the clusters are, the less similar they will be. This

is certainly a limitation of our work; if this experiment was repeated on a larger artifact-free
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dataset, there may be more representative images closer to the cluster centre, allowing for

more successful registration during template creation.

Anatomical Differences

A second, but related, element that may be inhibiting template creation is simply

anatomical differences. While subjects who clustered together had features in common,

they were different enough from each other to make registration difficult. For example, in

the group seen in Figure 4.10d, the members are all looking upward, and the back of their

necks are less smooth compared to the other groups. However, they still have some

differences in anatomy between them, such as spine curvature, which may make it hard to

build the average image amongst them. Thus, it is possible that even with more images, it

would be difficult to create representative templates for the groups, because they may still

be too different from each other to register well. Again, a larger dataset of artifact-free

images is needed to further investigate the severity of this issue.

5.3 Current Limitations and Future Work

Our main limitations concern the small size of our dataset. For example, in sections 3.3

and 3.5.7, we note that the initial and group templates would benefit from being created

using more images. Furthermore, as detailed in section 5.2.3, one of the main issues affecting

our research is the lack of available dataset images without severe artifacts. If additional
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data, or a method to remove artifacts from our current data, allows the creation of the

population-specific templates, then we can pursue the following endeavours.

As mentioned in the beginning of this chapter, we would like to implement our

segmentation pipeline in each of the clusters, using the group-specific templates. We could

then compare, for each subject, the resulting segmentation accuracy to the accuracy

obtained when we tested our pipeline with the initial custom template.

Additionally, we are interested in combining our clustering work with deep

learning-based approaches to segmentation. As discussed earlier, we could test

AtlasNet [14] with population-specific templates generated based on automatically

discovered anatomical subgroups. However, the idea of registering training images to

anatomically representative templates for the purpose of data augmentation could certainly

be useful for many other deep learning medical segmentation frameworks.

5.4 Conclusion

To summarize, the first portion of experimentation tested whether a segmentation

pipeline with a custom atlas that used inverse registration transformations to label novel

images would be successful; the second part explored how this segmentation technique

could be improved if it was performed on groups of subjects who already shared anatomical

similarities. The clustering of dataset images into anatomical subgroups was successful,

while the subsequent creation of group-specific templates was not. This was possibly
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related to the lack of available dataset images without severe metallic artifacts; access to a

greater number of artifact-free images may lead to a different outcome. Thus, while our

techniques showed encouraging results, further investigation is necessary to fully realize

their potential.
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Appendix A

Relevant Parameters of ANTs Scripts

A.1 antsMultivariateTemplateConstruction2

Parameter Description
d Dimension of images
r Perform rigid registration of inputs
y Update template with full affine transform
t Transformation model for registration

(For ‘SyN’: [gradientStep, updateFieldVarianceInVoxelSpace,
totalFieldVarianceInVoxelSpace])

m Similarity metric for registration
f Shrink factors for each level
s (Gaussian) smoothing sigmas for each level
g Gradient step size
q Max iterations for registration at each level
o Output file path
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A.2 antsRegistration

Parameter Description
d Dimension of images
n Interpolation option, from ITK
w Winsorize image intensities

[lowerQuantile, upperQuantile]
u Histogram match images before registration
m Similarity metric for registration;

CC[fixedImage, movingImage, metricWeight, radius]
r Set initial moving transform,

[fixedImage, movingImage, initializationFeature]
t Transformation model for registration:

Rigid[gradientStep]
SyN[gradientStep, updateFieldVarianceInVoxelSpace,
totalFieldVarianceInVoxelSpace]

c ‘Convergence’, iterations per level;
[levelIterations, convergenceThreshold, convergenceWindowSize]

f Shrink factors for each level
s (Gaussian) smoothing sigmas for each level
o Output file path

A.3 antsApplyTransforms

Parameter Description
d Dimension of images
i Path to image to be transformed
t Transformation file
r Name for result file (transformed image)
o Output directory
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