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Abstract

This thesis investigates descent for the 2-fibration of cocomplete categories
over toposes and geometric morphisms. Change of base within this 2-fibration is
given by the left adjoint to the restriction functor. Pitts’ pullback theorem [P1i] is
important to descent in this context, and a new and more natural proof of it is
obtained. As in [Pi], the proof herein depends on Paré’s [P2] results on generated
topologies. The present context is 2-categorical, and an abstract 2-descent
theorem is obtained. Its first use is to show that a geometric morphism which is of
effective descent for cocomplete categories remains so for toposes.

Studying toposes as cocomplete categories is analogous to studying locales as
sup-lattices. Pure geometric morphisms are introduced in terms of the
cocontinuous dual of a cocomplete category. They are shown to be of effective
descent for cocomplete categories. Hence, a new proof of Moerdijk’s [M5] version
of a classification theorem for toposes originally due to Bunge [B4] is obtained.

Résumé

Dans cette thése on étudie la descente pour la 2-catégorie fibrée des catégories
cocomplétes par rapport aux topos et aux morphismes géométriques. Pour cette
2-categorie fibrée le changement de base est donné par 1’adjoint a gauche du
foncteur restriction. Le théoreme du produit fibré de Pitts [Pi] est important pour
la descente dans ce contexte ; on en donne une démonstration nouvelle et plus
naturelle. Comme celle de [Pi], notre preuve utilise les résultats de Paré [P2] sur
les topologies engendrées. Notre contexte étant 2-catégoriel, on obtient un
théoréme de 2-descente abstrait. On se servira en premier lieu de ce résultat pour
montrer qu’un morphisme géométrique de descente effective pour les catégories
cocomplétes reste de descente effective pour les topos.

L’étude des topos en tant que catégories cocomplétes est analogue a celle des
locales en tant que treillis complets. On introduit la notion de morphisme
géométrique pur et on montre que ces morphismes sont de descente effective pour
les catégories cocompletes. On obtient ainsi une nouvelle démonstration de la
version de Moerdijk [M5] du théoréme de classification des topos de Bunge [B4].
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INTRODUCTION

Principally, this thesis addresses the issue of descent along a geometric
morphism between toposes in the context of cocomplete categories over toposes.
These investigations find their application primarily within toposes and geometric
morphisms, but they are also of interest in themselves.

Descent theory was introduced by J. Giraud [Gil,2] in connection with his
work on non-abelian cohomology. Working within the framework of fibrations over
a Grothendieck topos, he formalized ‘descent’ as typified in situations arising in
Grothendieck [Grl]. Subsequently, M. Bunge and R. Paré [BP] developed descent
over an elementary topos S , for the regular epimorphism topology. They worked
within the context of indexed categories, and this is the context in which the
present work investigates descent theory.

Descent theory is formulated within the theory of fibered categories, or
fibrations. A fibration consists of a base category together with a collection of fiber
categories; a fiber category is assigned to each object of the base category. One is
also given a rule for ‘changing base’ within the fibration. Change of base within
the fibration occurs along morphisms which belong to the base category. To say
that an object of a fiber category ‘descends’ along a morphism of the base
category is to say that it essentially arises via change of base. A morphism of the
base category may have the property that every object which comes equipped with
descent data, does in fact descend along the morphism. Such a morphism is
referred to as one of effective descent. The question of descent then asks which of
the morphisms in the base category are of effective descent.

In some situations, descent data can be thought as a ‘local’ presentation of an
object which is thereupon retrieved by a ‘glueing’ operation. This would
constitute the descent of the local information. For example, let us take the base
category to be that of spaces and continuous maps.! The fiber category over a
typical space X is taken to be that of all spaces over X ; change of base is taken to
be the operation of pullback. A continuous map X—7Y is then of effective descent
if it has the property that every space Z over X which comes equipped with
descent data is necessarily of the form X xy W for some space W over Y. If the
map X—Y is an open surjection, then, it is of effective descent. This result was
proved by Joyal and Tierney [JT] and it falls within the descent theory they had
developed for locales and sup-lattices.

Descent theory for locales and sup-lattices is of interest in itself; however, it

1To follow [JT), this category is, by definition, the opposite of the category of locales and localic
maps. The ‘locale/frame’ terminology of [J5] is not used in this thesis.



was put to use in [JT] in the study of Grothendieck toposes. They used their
descent theory to establish a representation theorem for Grothendieck toposes.
They proceeded first by using the descent theory for locales to establish a descent
theorem for toposes. This theorem states that geometric morpisms which are open
surjections are of effective descent. In this context of descent, the base category is
taken to be that of Grothendieck toposes, and the fiber above a given topos is the
topos itself. Change of base is accomplished under the inverse image functors.
With this result in hand, the representation theorem is then established by using
the fact that any Grothendieck topos can be ‘covered’ by an open surjection such
that the covering topos is spatial.

As one may have guessed from the rather broad description of descent given
above, ‘descent theorems’ and their applications can vary greatly from one context
to the next. In a recent work of M. Bunge [B4], the descent theorem for toposes of
[JT] was used to establish a classification theorem for toposes. She proved that
the topos of etale G-spaces classifies G-torsors, where G is a groupoid in the
category of spaces and G is the etale completion of G . She proceeds by observing
that two certain fibrations are each the stack completion of (the fibration
determined by) G . One concludes that these two fibrations are equivalent. In yet
another application of [JT], Bunge [B3] has defined, under certain assumptions,
the fundamental groupoid of a topos. In general, this is a (totally disconnected)
spatial groupoid.

In the theory of locales and sup-lattices, the base category is in fact a
2-category (with non-trivial 2-cells since the ‘hom’ categories are posets). The
same is true of the fiber categories; they are posetal 2-categories. However, in this
case the 2-structure plays a neutral role, and the resulting descent theorem for
toposes of Joyal and Tierney can be regarded as within 1-dimensional category
theory. This changes when one considers Moerdijk’s [M5] recent descent theorem.
Here, the base category remains that of Grothendieck toposes, but the fiber
category over a topos in the base is taken to be the 2-category of toposes over that
topos. He shows that the descent theorem for toposes from [JT] can be combined
with his stability theorem [M3] to yield a 2-descent theorem. In this 2-categorical
context, he proves that open surjections are of effective descent. As a direct
consequence, he obtains a classification theorem [Chap. 4, Eg. 3.3] for toposes
" which is the 2-dimensional version of that previously obtained by Bunge [B4].
Moerdijk’s descent theorem (the spatial case) is a consequence of the descent
theorem [Chap. 4, Th. 4.5] of this thesis.

A good part of Chapter 4 of this thesis is spent developing a formal 2-descent
theorem [Chap. 4, Th. 2.13] as the context of descent in this thesis is a



2-categorical one. In this regard one could say that a morphism is of effective
descent at the level of objects, if the comparison functor, now actually a 2-functor,
is 2-fully faithful. The descent theorem for toposes from [JT] asserts, when stated
now in the terms of 2-descent, that open surjections are of effective descent at the
level of objects.

Another descent theorem has been recently established by M. Zawadowski
[Z21,2]. Grothendieck toposes are related to categorical logic (as originally observed
by Lawvere [L2], see below). In fact, a site can be thought of as a ‘theory’, and
the topos of sheaves on that site can be thought of as the ‘embodiment’ of that
theory. In connection with these ideas one has the notion of a pretopos, and
Zawadowski’s theorem is in the context of pretoposes. He considers laz-descent,
but at the level of objects.

Topos theory represents the confluence of essentially two streams of thought
which both have their origins in the early to mid 1960’s.2 The first stream
originates with the work of A. Grothendieck. He generalized the notion of a
system of open coverihgs, and extended the definition of sheaves on a topological
space to that of sheaves on a site. Sheaves on a site define a category, called a
Grothendieck topos. Thus, a topos is in this sense a generalized topological space.

The other stream of ideas to which topos theory owes its existence has its
origins in the work of F. W. Lawvere [L2]. He observed that a Grothendieck topos
has an internal logic, and that therefore one might be able to ‘free’ the theory of
its dependence on ‘external’ notions. Subsequently, he and M. Tierney laid down
the axioms of elementary topos theory. A topos is thus a theory of ‘variable’ sets
in which one can ‘do’ mathematics.

Given that mathematics can be done in a topos, and if the dependence on
classical set theory is to be ‘entirely’ removed, then a ‘large’ part of the theory is
needed. One would like to be able to do mathematics over a topos. This
programme, which also originates with Lawvere [L3], focuses on the notion of a
‘family of objects’ indexed by an elementary topos. From the point of view of
fibered categories, such a theory has been extensively studied by Bénabou (see
[Be], for example). Then in the mid 1970’s, Paré and D. Schumacher [PS]
published a monograph on indexed-category theory, taking as its goal the adjoint
functor theorems.

Thus, one can do category theory over an elementary topos. A category over
S is herein taken to mean an S-indezed category. The principal source for the
basics of indexed category theory is the aforementioned work of Paré and

2See P. T. Johnstone [J1] for a historical survery.



Schumacher. (Since this is to be indexed category theory, the word ‘indexed’ shall
henceforth be entirely omitted. The emphasis is instead on which base topos one
is working over.) In this thesis, the approach to descent for toposes is via
cocomplete categories over an elementary topos. Assigned to each object of the
base category, which is to say assigned to each topos, is the fiber category of
cocomplete categories over the topos. It is within this context, that the question of
descent is herein addressed. Which geometric morphisms are of effective descent in
the context of cocomplete categories?

According to A. Pitts [Pi], ‘one may be able to describe Grothendieck toposes
in terms of cocomplete categories in a way analogous to that in which Joyal and
Tierney have described the theory of locales as part of the “commutative algebra”
of complete lattices and arbitrary sup preserving maps’. To support his contention,
he proves that the pullback of a Grothendieck §-topos F along a geometric
morphism & P, S coincides with that cocomplete category over £ obtained from
F by changing base along p . This result, which is important in the treatment of
descent in this thesis, is analogous to the fact that the pushout of a diagram

A C

B

of locales and localic maps coincides with the tensor product of C and B as
calculated in A-modules. Questions about cocomplete categories over S , and
their relevance to toposes, can thus be motivated in this manner; however, unlike
the situation for locales and sup-lattices, no characterization of toposes within
cocomplete categories is known, but it is still profitable to operate at the level of
cocomplete categories and then restrict one’s attention (using any pertinent
considerations) to toposes. Thus, one can study toposes within cocomplete
categories as analogous to the study of locales within sup-lattices, but genuine
difficulties appear in the process. Proofs of theorems about toposes and
cocomplete categories are quite different to those of their counterparts in locales
and sup-lattices.

The descent theorem for locales and sup-lattices from [JT] states that a localic
map A—B is of effective descent if and only if it is pure. By ‘pure’ is meant that
for any A-module M, the universal morphism

M-Be, M

is faithful. Directly adapting this property to geometric morphisms is a possible
approach, but perhaps not the best. The approach that is taken in this thesis is to
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move to the cocontinuous dual, and then define in this context the appropriate
notion of purity. The main result of this thesis [Chap. 4, Th. 4.5] asserts that
pure geometric morphisms are of effective descent for cocomplete categories.

In keeping with Pitts [Pi], the notation COCTSgs is here used to denote the
2-category of cocomplete locally small categories over an elementary topos § . In
sections §0 through §4 of Chapter 1, the basic definitions concerning the
2-category COCTSs are to be found. The concept of a stack comes up in Chapter
2, in connection with sheaves in an arbitrary category over § . An important fact
is that any A € COCTS; is a stack [Th. 4.7]. The proof of this uses the
(Beck-) Bénabou-Roubaud [BR] characterization of stacks in terms of tripleability
[Th. 1.3]. Section §5 reviews the restriction 2-functor

( )p : Coctsg —COCTSs

induced by a geometric morphism & £,5.A topos over S is an object of
CoCTSs , and one has in fact a 2-embedding

p: Tops *— COCTSs .

Some basic results [Ths. 6.7 and 6.8] are derived in §6 of Chapter 1 as to when a
category over § is in the essential image of p . These results are later put to use in
Chapter 4 [Th. 3.4]. Among those properties possessed by a category within the
essential image of g is that of having universal coproducts. This property is
formally introduced, and referred to, as coproducts which satisfy Frobenius
reciprocity [Def. 6.2]. Related to Frobenius reciprocity is a result [Eg. 4.3] which
goes back to Bénabou. This result is extended in [Eg. 4.3]. It illustrates the
interplay of internal category theory with the general theory.

Chapter 2 begins with a discussion of internal diagrams on a small category
C taking their values in a category A . Let us denote this category by A€. The
main point here is that A€ is viewed as over SC, which differs from [PS] where
internal diagrams are viewed as over S . As a category over SC, A€ is locally
small and cocomplete if 4 has these properties over S . Section §2 is essentially a
review of Paré’s paper [P2]. These results are important for Chapter 3, although
the main theorem from that paper is in fact not used anywhere in this thesis
(except for Eg. 1.18-2 of Chapter 3). A proof of this theorem [Th. 2.11] has been
included. This proof is essentially that which is found in [P2]. The single theorem
of section §4 [Th. 4.3] is of particular note because of its connection (see Chap. 4,
§5) with the cocontinuous dual of a topos. This result does not, however, enter
into the proof that pure geometric morphisms are of effective descent.

5



A principal result [Th. 1.16] coming from Chapter 3 is that for 58
bounded, the restriction 2-functor ( )p has a right adjoint,

Coctss(€,_) : CocTss —COCTSs . o

This is established in §1 of Chapter 3 by first [Prop. 1.1] showing that the
adjointness holds for arbitrary (that is, not necessarily locally small) cocomplete
categories. As an immediate consequence, one obtains at this point that which is
introduced as the change of base formula. This is an invaluable tool. It is used, for
example, to show that if A is locally small, then so is CoCTSs(€, A) in the case
that p is bounded [Th. 1.7}, and hence one obtains e above. It is also used to show
that the adjointness ( )p 4 CocTSs(E,_) satisfies the Beck(-Chevalley) condition.
Consequently, the left adjoint (where defined) also satisfies the Beck condition.
This is important in the treatment of descent in Chapter 4.

The principal result from [Pi] states that the tensor product (that is, the left
adjoint of ( )p ) of a bounded topos with £ exists, and coincides with the pullback
as contructed in toposes. A new proof of this result is given in Chapter 3
[Th. 2.11]. The present proof differs from Pitts’ in that the result is here seen to
follow directly from the fact that ( )p 4 CoCTSs(E,_) satisfies the Beck
condition. In turn, the proof of the Beck condition takes advantage of the change
of base formula and also of Paré’s work on sheaves and generated topologies [P2].
Pitts’ original proof relies on [P2] as well.

Paré [P2] has introduced the notion [Chap. 2, Def. 2.1] of a j-sheaf in an
arbitrary category A over § , where j is a arbitrary topology on & . This coincides
with the usual notion in the case that A is S . Let sh;(A) denote the full
sub-category of .4 whose objects consist of the j-sheaves. In §2 of Chapter 3, it is
proved [Cor. 2.18] that under certain conditions, sh;(A) is the tensor product of
A with € over § , where £ denotes the topos of j-sheaves in S . One of these
conditions is that sh;(.A) be a reflective sub-category of A , and this presents an
avenue of further investigation perhaps leading to an improved theorem about
sh;(A) as the tensor product. These questions are pursued no further in this thesis
(in any case, Cor. 2.18 is not used in Chapter 4).

It is well known that descent can be rephrased in terms of cotripleability
(dually, tripleability) if the Beck condition is satisfied. Since this is the case in the
present context of locally small cocomplete categories, rather than going through a
lengthy translation, the definition of an effective descent morphism is here given
directly in terms of cotripleability. This is, however, 2-dimensional category
theory; the base category and the fiber categories are 2-categories. Thus, a
2-dimensional cotripleability theorem is required. Given the corresponding result
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in the 1-dimensional case, which is well known, such a 2-dimensional theorem is
readily obtainable. A 2-cotriple is herein taken to be a strong cotriple (see, for
example, [B1]). In section §2 of Chapter 4 a cotripleability theorem [Th. 2.13] for
strong cotriples is derived. This result hinges on the ‘correct’ definition being
given of a split equalizer in a 2-category [Def. 1.3]. Logically prior to this is the
notion of an equalizer in a 2-category [Def. 1.2]. An example of that notion of an
equalizer which is adopted in Chapter 4 can be found in [M3]. The 2-category in
that case is that of Grothendieck toposes. As in the 1-dimensional case, a split
equalizer is an equalizer. Armed with this fact, the proof of strong cotripleability
proceeds in a manner analogous to the 1-dimensional case. In fact, strong
cotripleability subsumes the 1-dimensional theorem. Generalizing the notion of a
split equalizer is that of a semi-split equalizer [Def. 1.5]. However, unlike a split
equalizer, a semi-split equalizer is not in general an equalizer. A theorem [Th. 1.6]
is then given specifying conditions on the 2-category under which a semi-split
equalizer is an equalizer. This result is used in §4 to show that pure geometric
morphisms are of effective descent.

The definition of a morphism of effective descent for cocomplete categories is
introduced in section §3 [Def. 3.1]. There is a minor hitch here in that the tensor
product is possibly not everywhere defined. However, with the help of the Beck
condition, one can easily ‘fix’ this. This fix-up is more for the purposes of ease of
exposition than anything else, and it makes available the cotripleability theorem of
§2. It is then shown, by using the cotripleability theorem, that a morphism of
effective descent for cocomplete categories remains so at the level of Grothendieck
toposes [Th. 3.4]. Results obtained about when a category comes from a topos
[Chap. 1, Ths. 6.7 and 6.8] are also used for this purpose.

Section §4 introduces the notion of a pure geometric morphism [Def. 4.4]. The
class of pure morphisms is contained in, but distinct from, the class of surjections.
A surjection which is also locally connected is pure, but more importantly, a spatial
open surjection is pure. To conclude §4, it is shown, by using the semi-split
equalizer theorem [Th. 1.6], that pure geometric morphisms are of effective descent
for cocomplete categories [Th. 4.5]. Finally, as an application of the cosheaf
theorem [Chap. 2, Th. 4.3], a result about the cocontinuous dual of a topos is
given in §5.



CHAPTER 1
Locally Small Cocomplete Categories
1.0 Categories over S

Let S denote an elementary topos. A category over S shall mean, in the
terminology of [PS], an S-indexed category.! Often just a category will be used if
the base topos is clear. The ‘indexed’ terminology will not be used. Of course the
same goes for functors and natural transformations. That is, they are functors and
natural transformations over S .

0.1 DEFINITION A category A over § is given by the following data:

1. for each object I €S, a category A, sometimes referred to as the fiber
category over I,

2. for each morphism I = K in S, a functor AX =, Al , called the substitution

functor for a,

3. for each pair «, # of composable morphisms of S, a natural isomorphism

¢a,ﬁ . /B*a* = (aﬂ)"

4. for each I €S, a natural isomorphism 77 : 17~ (1;)* of the identity functor
on A! with the substitution functor for I I .

This data is to be subject to the following coherence conditions:

v Brar T 228, Post 7*(ap)* a*(1)*
¢ﬁ,’ya‘ j l ¢aﬁ,'y ¢11,oz ‘ \Y*-TI
(By) e F. (aBy)” (lra)* — ™1y

where the bottom arrow in the triangle is equality. There is a third condition, one
similiar to the triangle but with o* on the right, which is a consequence of the two
above (see [MP]).

A functor over S , AL B , 1s given by the data:
1. for each object I €S, a functor F/ : AT— BT,

2. for each morphism K % I, a natural isomorphism 6, : o*FI~FKa*,

In terms of fibrations, an S-indexed category consists of a fibration and a chosen cleavage, see

[Gi2).



subject to the coherence condition

Do gF! ,,
g:a-FI__’a_ﬁ___'(aﬂ)uFI

50} |
,S'F"'-‘a' | Da

baa | |
SN FR(aB)",

FKﬁéa,ﬂ

where K5 L% Iin S . One might also expect that the condition

FITI . 91‘. = TIFI

be required to hold for every [ €S . This condition is a consequence of those
coherence ccnditions already given {see [MP]).

A natural transformation over S | F- G, consists of for every [ €S a natural
transformation ¢/ : F/—=G! such that for every morphism K = [ in S one has
a*t! = t¥a* . This ‘equality’ expresses the commutivity of the following diagram.

aF! ot a* Gl

|

- ™

FKQ: t?&: GKQ'

One verifies directly that categories, functors and natural transformations over
S comprise a 2-category.

0.2 DErINITION A functor A—— B over S is said to be:
1. faithful if for every I €S , F! is faithful.
2. fully faithful if F1if fully faithful for all €S .
3. essentially surjective if for every I and every Be B! there exists an
epimorphism HS57in S and an Ae A# such that FA(A)=p*(B).
4. a weak equivalence if F is fully faithful and essentially surjective.

An equivalence and an adjointness in the context of categories over an
elementary topos shall mean those notions available in any 2-category. In the
present context, it follows (see [BP]) that a functor F is an equivalence if and only



if every F! is an equivalence. See Appendix B for a review of the concept of an
adjointness in the context of categories over a topos.

The topos S itself becomes a category over S by letting §7 = S;r and by
defining the substitution functors to be pullback.

Following [PS], for a category A over § and for I €S, the localization of A at
I shall be denoted by A/ . It is a category over S;; with

(A1)* = AF, for K5 1.

For a4 B in Sy , the substitution functor for f over & is by definition f* as
originally supplied by A . Localization can be used to simplify a given
demonstration if the properties and constructions involved are stable under

localization.

1.1 Stacks

A stack is a ‘2-dimensional sheaf’. Let A be a category over S , and let H = ]
be an arbitrary morphism in § . Let K denote the kernel pair of o . That 1s, let

K- g

(D (0%

!
|
H—71
be a puliback. There is then the category Des4{a) defined as follows. Its objects

- vy 6 N
are pairs (4, 6) where Ae Af and 7j A= 7} A (7] means of course (74)*) is an
isomorphism in 4% which satisfies the cocycle condition,

7"61(9;’ - T1o(8) = mo(€)

where 7o, 712 and 7g, are the projections from H xyH x;H 1o K . The
appropriate canonical 1somorphisms must be inserted for this ‘equality’ to make
sense. It follows that the unii condition, §*(6) = 1, , is satisfied, where HS K i
the diagonal. Conversely, given a morphism rgAi 77 A satisfying the unit and
cocycle conditions, 1t follows that # must be an isomorphism.

The 1somorphism @ is referred to as descent data, and so one says that the
objects of Des4{a) are objects of A¥ equipped with descent data. Morphisms in
Des 4(@) are by definition morphisms in A¥ commuting with descent data. -

If Ae A7, ther @*A comes equipped with canonical descent data given by the
composite

matAx(amg"A = (am, " AxTi e A

o
<@



of canonical isomorphisms. In other words, a* factors as
Al = Des ()
o* U
.AH

where U is the forgetful functor, and & sends A to a*A equipped its canonical
descent data.

1.1 DEFINITION A is said to be a stack if for all epimorphisms H3TinS ,
& : Al— Des4(a)

is an equivalence. One says in this case that objects (morphisms) in A¥ equipped
(commuting) with descent data ‘descend’ uniquely to A7 .

One can speak of a category having the stack property with respect to a single
given epimorphism.

Clearly the forgetful functor U is faithful and reflects isomorphisms, so if A is
a stack then a* is faithful and reflects isomorphisms for any epimorphism « .

1.2 DEFINITION A is said to have £ satisfying the Beck condition, alternatively
small coproducts or S-coproducts, if for every morphism I J, the substitution
functor a* has a left adjoint ¥, such that if

IXJK-@’

m[ la

K—p~

is a pullback in &, then the canonical morphism Z, 75— 8*%, is an isomorphism.

1.3 Theorem (Beck-Bénabou-Roubaud) Assume that A has T satisfying the

Beck condition. Then A is a stack if and only if for every epimorphism HS] , the
substitution functor '

AL, A7

is tripleable.

11



A proof of 1.3 can be found in [BP}.
As with sheaves, one can speak of the associated stack, or the stack completion
of a given category. By this is meant a stack .4 and a functor A —- A which is

universal in the sense that any functor ALB , with B a stack, has an essentially

|

unique factorization through w.

The following is due to M. Bunge, a proof of which can be found in [B2].

1.4 Theorem Given A8 , then B is the stack completion of A if and only if

B is a stack and F is a weak equivalence.

1.2 Locally small categories

Let A be a category over S .

2.1 DEFINITION A is said to be locally small (or in the terminology of [PS], to
have small homs) if for every I €S and every A ,B e A! there is an object A/(A, B)
in 81 such that for every K 5 1 there is a bijection
a—A!(A,B) in §);
a*A—a*B in (A1) = AK
which is natural in a. The object A’(A, B) shall be referred to as the object in S);
which represents morphisms A—B in Aj.

If A is locally small over § then A is locally small over S/, as follows
directly from the definition.

The corresponding notion for a morphism between locally small categories is
referred to as that of a strong functor. This is a functor whose action is suitably
internalized. As it turns out, an arbitrary functor between locally small categories
~ is automatically strong, as are natural transformations. For a proof of this, and for
a precise formulation of these ideas, the reader is referred to [PS].

Let CAT;s denote the 2-category of locally small categories, functors and
natural transformations over S . For A and B in CATs, let FUNCTs(A, B) denote
the category whose objects are the functors from A to B over S . The morphisms
are the natural transformations over § .

12



Bunge has shown (see [B2]) that the stack completion of a locally small
category always exists. By using this fact, one deduces that locally small
categories have the following important property.

2.2 Proposition  If A is locally small, then for any epimorphism H—?»I, the
substitution functor * reflects isomorphisms.

proOF Let A =5 A denote the stack completion of A , where w is a weak
. . 8 . .
equivalence. Given H— 1 , there is then the commutative square
1

s g

~

.AH ———..wH .AH

where w! and w¥ are fully faithful. With respect to A, 8* reflects isomorphisms
because A is a stack. It follows therefore that 8* , with respect to A now, reflects
isomorphisms. g

1.3 Internal diagrams

Let C = (Co, C}) be an internal category in S, an elementary topos. The

notation
To o
C, ;’: C, 1?1 Co

will be used for an internal category, where §y is the domain map, é; is the
codomain, m is the composition of C and e is the ‘identities’ map. C, is the object
of composable pairs of morphisms, as in the following pullback.

CgL-Cl

m,l l50

01—51—’00

13



Such categories shall also be referred to as small. This is with respect to S .
There is then a category over § associated with C called the externalization of
C . A typical arrow in its fiber above I € S is by definition a diagram:

B
b ' c
G
N
C'0 CO 3

such that 6o = b and 6,8 = ¢. That is, 8 is an arrow with domain b and
codomain ¢. For K= I in S, the substitution functor for « is defined to be
composition with a. Of course, internal functors and natural transformations have
their corresponding external descriptions.

No notational distinction shall be made between the internal ‘world’ and its
externalization. One writes, for example, C! to denote the fiber above I of (the
externalization of) C. This is a minor break with tradition.

The localization Cy; is isomorphic to I*C , so ‘smallness’ is stable under
localization.

The topos of internal diagrams on C with values in § is denoted by

sc S5,

where C = (lim, C*) is the canonical geometric morphism. Also referred to as a

X
discrete opfibration, a typical object of SC shall often be written as X, or as
C

x = (zg, 1), where Xo3 Cj is the ‘rule’ for objects and X; = Cj is the rule for
morphisms.

3.1 DEFINITION Let A be an arbitrary category over S, and let C be a small
category.

1. The following data comprises an ordinary category, denoted A€, which is
called the category of internal diagrams on C with values in A . Its objects
are pairs (A,0), where Ae A% and 65A—9> 61 A in A" is the ‘action’ map

which is required to satisfy:

(a) e*(0) = 14 (preservation of identities)

14



(b) =}(8) - 75(8) = m*(8) (preservation of composition).

The appropriate canonical isomorphisms must be inserted for these
equalities to make sense. Morphisms (A, §) EA (B, ¢) are morphisms AL B
in A% commuting with the action maps.

2. AC is regarded as a category over S by defining the fiber above I €S to be
(AC)I — ACxI

where A pertains to the first part of the definition. For I3 K in S, the
substitution functor
(AC)K o (AC)I
is defined to be
a" (A, 0) ~ ((Ig, xa) A, ((1g, xa)*0) .

This definition extends in the obvious way to morphisms of (AC)K .

3.2 Examples

1. With A = S in the above definition, one obtains the topos of discrete
opfibrations previously mentioned.

2. Let H—'@rl be an epimorphism in § , and let H; denote the kernel pair of §.
Then Hg = (H, H;) is a small category, and there is a functor Hg ﬁ»I,
regarding I as a discrete category. Then Des4(8) is equivalent to AHs | and
A has the stack property with respect to 8 if and only if the induced functor

ﬂ-u . .AI—).AHﬁ
is an equivalence.

As is well known, along with internal categories and functors, an internal
diagram has its external description. That is, there is an isomorphism

A€ ~FuNcTs(C, A) ,

of categories over S which identifies the substitution functor a* with composition
with (the externalization of) « .

15



It is not hard to check that the construction AC is stable under, or commutes
with, localization over & . By this is meant, in this case anyway, that for any

I €S8 , there is a canonical equivalence
(A1) = A%,

of categories over Sy; .
This discussion on internal diagrams is continued in Chapter 2 where they are
realized as a category not over S , but over S€.

1.4 Cocomplete categories

Let A be an arbitrary category over § . For any small category C there is the

constancy functor

A4 —AC ,
which sends A € A to (C3(A),Cr(14)). A finite colimit in the fiber A’ is said to be

stable if it is preserved by the substitution functors.
4.1 DEriNnITION A is said to be cocomplete if for all T €S :
1. the fiber A has finite stable colimits, and
2. for all small categories D in &;;, the constancy functor
D™ : A— (A1)
has a left adjoint (over S;; }.

Cocompleteness is stable under localization as follows directly from the
definition.

Definition 4.1 is rather troublesome to work with as it is often easier 1c handle
colimits in terms of coproducts and coequalizers. The notion of coproducts has
already been defined {definition 1.2}, where 1t was also referred to as ‘X satisfying
the Beck condition’. A proof of the following theorem can be found in [PS).

4.2 Theorem A s cocomplete if and only if A has X satisfying the Beck

condition, and for every I€ S the fiber A* has stable finite colimits.
4.3 Example Let M = (M, M,) be an internal poset. The map

lseg : MY

s
ot



is by definition the exponential transpose of the classifying map of the sub-object
80,6 ) . . .
M, ( 2—>1)M>< M . Then |segis a poset map and M is, by definition, an internal

sup-lattice if | seg has a left adjoint. If such is the case the left adjoint is denoted by
VMM,

This concept is preserved under pullback. That is, for €S, I*(| seg) is equal to
lsegrem , and therefore I*M is a sup-lattice with VM = (VM) -

To be shown in this example is that a small poset M is an internal sup-lattice
if and only if M is cocomplete regarded as a category over S . This result goes
back to Bénabou, and a proof of it using the adjoint functor theorems can be
found in [PS]. The methods used here allow the result to be extended. It will also
be shown here that an internal sup-lattice is a locale if and only if it satisfies
Frobenius reciprocity as a category over § . See section §6 of this chapter for the
definition of ‘Frobenius reciprocity’.

To show the first claim, assume first that M is an internal sup-lattice. One
can calculate finite supremums in M as,

MxM5 M
(m,n) ~ Viy | Ya(((c 2 n) A (e 2 m) = = 2 1)},
and then for m,neM!, mVn is
"2 MxM% M

in M7,
For I €S , by definition the substitution functor

M —wm!
sends 1 5 M to I—-12 M . Define

T M—M
by letting £;(I 5 M) be the composite

1mam ¥y,

where 0., is the exponential transpose of the classifying map of (the image of) m .
To be shown is that %+ I*. For neM! and m e M/ one has 5;(m) =V -om < n
if and only if o, <|seg-n if and only if m factors through the sub-object of M
corresponding to | seg-n . Let us denote that sub-object by | seg(n) — M .
Observe that in the commutative diagram

17



1 seg(n) M, 1
‘ (50a 61)

Mx1] — Mx M——
1xn [ seg
the left square is a pullback since the right and outer squares are. Now

80,8 _ : .
M, ( &»l)Mx M —_:E M is an equalizer, and therefore m factors through |seg(n) if

t

and only if
I7 Mx1% MxM = M

commutes, which is true if and only if m < I*(n). This proves that £;4I*. To
get ¥4 in general, for K = I, one can proceed by localizing. It is not difficult to
then verify that the Beck condition holds.

Assume now that M is cocomplete in the external sense. Our aim is to exibit
a poset map V : QM — M , which is left adjoint to | seg. The method of the generic
element can be used to do this. Let Z denote 2" . Then Z*M = Mz is a poset in
Syz which is also cocomplete in the external sense. There is the ‘generic’ global
section

15 742y~ (2% M

in 8z , which gives us a sub-object 8 Z*M . Since M is assumed to be
cocomplete, there is given

L, (Z2*M)—(Z2*'M)" |
the left adjoint of s* over S;z . This gives the global section
(1) : 1-2Z2*M .

Define V : QM — M to be the transpose of X,(i) with respect to £z 4 Z*. To be
verified now is that \/ - |seg. Given generalized elements I = QM = Z and
IS5 M, one wants to show that

Va<z
a <lseg-z,

which, upon transposing to Syz , is true if and only if

Z*(V) AR
61y <lsegzenm - T,

where !, is the unique map a— 1, and where a2 Z*M denotes the transpose of
in Syz . By the definition of the morphism V/, one has

18



and therefore
Z*(V) - 6la = a* (i) = Tremi (),

where
1

axXs S

|

a—— 1

To

is a pullback in §;z . Hence

Z‘(V) R
Srnmi(l) L2
() < ()

6-lo <|segzopm - T -

The last equivalence in the above series could use some clarification. As
interpreted in Z*M , #(:) = ¢ - m; and 75(%) = & - mo . Transposing to (Syz ) , with
respect to L, - a*, produces

71(2) < 7€) in Sy
z); < 75(z) in (S)z)a >

where
R IR P A" §

and

wo(z) : mog— 1 LN VAT
are generalized elements of a*Z*M in (Syz)/. . By a previous argument (the one
which showed that o,, <|seg: n if and only if m < I*(n) ) one obtains
i~y < ()

o <lsegzoym - T,

o being the exponential transpose of the classifying map of i-m . That o
corresponds to é-!, under X, - a*, thereby concluding the proof of the first claim,
is by the following lemma. Its proof is left to the reader.

Lemma Given a pullback
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AxB L. B

|

A——1

To

in a topos 7 , and a sub-object B& X ,let 15 A*(Q%) denote the exponential

transpose of the classifying map of the sub-object 7r05’1‘> A*X | where — means
transpose under ¥4 1 A*. Then o = -4, where I 2, QX is the exponential
transpose of the classifying map of b.

To apply the lemma, take 7 to be S;7, bto be ¢, and A to be « .

The above methods can be used to prove that an internal sup-lattice is a locale
if and only if it satisfies Frobenius reciprocity (see §6 of this chapter). An internal
sup-lattice M = (M, M;) is by definition a locale if

1
M M x M
T A
oM —g— M

commutes, where
r(Y,z)={zAy | yeY}, (Y,2)e QM xM .

It is not hard to see that if M is a locale, then as a category over § , M satisfies
Frobenius reciprocity.

Let us assume that M satisfies Frobenius reciprocity, and show that M is a
locale. One always has V-7 < A - (Vx1), and so it suffices to show that

(4.4) A1)y <\Vor.

As before, let Z denote @M . Let ~ denote transpositon with respect to ¥z 4 Z*.
Transposing to Sz , 4.4 is true if and only if

(4.5) A (V1) <V or

Writing Z*M as ZxM 5 Z | note that 4.5 is a statement about elements of Z*M
at stage p. Form the product
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PXS$ s

|

p—1

in §;z . We have the two ‘elements’
sHZ'M, ph Z°M
of Z*M , and it follows that
A-(Vx1) = 1Ap*E,().
By using the Beck condition and Frobenius reciprocity, 1 A p*¥,(%) is equal to
LA ZR7i(2) = Ep(mgl A o).

Thus, the question comes down to showing that

—

(4.6) ol Awjt < 7r3(\/-‘r) ,

as elements of Z*M at stage pxs in §yz . The idea is to transpose 4.6 back to
S and verify the resulting inequality there. The element 71 A 7t is

pxs ™ MM Z2°M |
and its transpose is
MxEZMxMS M.

Note that the transpose of 7 is
e OMxM-M

where € is that sub-object classified by the ‘evaluation’ map QM x M—Q . Also
note that
Tz(pxs) = (MM xM)xgue= Mxe€ .

Hence, .
A - (lxz)(x,(Y,y)) =zAy,

where ye Y . The element 73(V/ ) is

—

pXSﬂpﬁZ'M,
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and its transpose is

Mx &2 M o s VT ar

Note that Xz(mo)(z, (Y,y)) = (Y, z), and hence,

V1 Zz(m) (,(Y,9)) =V z Av,

as v runs over Y . Thus,

A-(1x1) <\ - Zz(m) .

This proves 4.6, which concludes the proof that M is a locale. This concludes this
example.

A functor A—F—*B shall be said to be cocontinuous if it preserves all those
small colimits which may exist in .4 . Most often it will be the case that .4 and
B are cocomplete, and if such is the case, then F is cocontinuous if and only if F
commutes with the £’s, and for every I €S , F! preserves finite colimits. Denote
by CocTss(A, B) the full sub-category of FUNCTs (A4, B) whose objects are those
functors from A to B that are cocontinuous.

Let CoCTSs denote the 2-category whose objects (or 0-cells) are the locally
small cocomplete categories over S . For A and B in COCTSs , the category of
1-cells and 2-cells from A to B is CoCTss(A, B), as above.

An important fact about COCTSgs is that its objects are stacks.

4.7 Theorem Any locally small cocomplete category is a stack.

PrRoOF Let A4 € CoCTSs . Since A has ¥ satisfying the Beck condition, A is a

stack if and only if for every epimorphism [ S5 K, the substitution functor
AK N Al

is tripleable (1.3). Now a* has a left adjoint, and recall (2.2) that since A is
locally small, a* reflects isomorphisms. Moreover, AX has all coequalizers and a*
preserves them. So the result follows by Beck’s tripleability theorem. )

. 4.8 Corollary  Let A and B be objects of COCTSs . Then any weak equivalence

A B is an equivalence.
PrRooF  This follows by 4.7 and 1.4. o

This section is concluded with a special mention of a certain type of colimit.
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4.9 DErFINITION A is said to have small copowers if:

1. For any I Je& and any A€ A7, there exists an object a.A, the a-copower
of A, such that for any B € A7, there is a bijection:

a.A—B
oa*A—a* B,

natural in B . Let a*A%4 a*(a.A) (called the diagonal) denote the
morphism corresponding to a. A5 a.A .

2. The copowers a.A are stable. By this is meant that the morphism, call it 4,
arising from the following series of bijections:

(IxK).A™ 1.4
(IxK)yAS(IxK)1.A
M K*"A-71;K*1.A
m.(K*A) 5 K*(1.A)

is an isomorphism for any K €S, where IxK ™ I and Ix K5 K are the
projections. {Actually, what it means for the copower I.Ae A" to be stable

under K™ has been defined here.)

Given H -2 K, the morphism HA K.Ais by definition that morphism
corresponding to a*é, , plus some canonical isomorphisms.

If A has coproducts, then A4 has copowers with a.A = £,a"A . Furthermore,
in this case H.A%% K.A can be calculated (to within canonical isomorphism) as
Yk (exe4). where ¢ is the counit of ¥, 4 e”. In particular, if * is fully faithful,
then a.A is an 1somorphism.

A category over § possessing small copowers 1s in some sense an ‘S-module’,
the ‘action’ being given by copowers.

Any Ae A’ determines an ordinary functor from S” to A7, o~ a.J* A,
which shall be denoted as (®A4)7 . Then by stability, the functors {®.4)}’ define a

functor over S,
4. S—A.

Moreover, ® A is easily seen tc be cocontinuous. Similarly, any Ac 4" defines a
cocontinuous functor

q)KA : S/K"_"A/I{

over &k .

The following simple fact from [Pi] 1s of basic importance.



4.10 Proposition Let A be an arbitrary category over S , and assume that

A has small copowers. Then the passage A~ ®A is an equivalence
A = CocTss(S, A), which is natural in A .

PROOF The map A~» ®A defined above is obviously functorial. In fact, given
A2 B one defines a natural transformation ¢ f as follows. At I, for example, let
(®f)% = X.f, the morphism corresponding to ép - X*f,

xAY xB% xx.B
xA% xB,

for Xe€S . Going the other way, define a functor ¥ by letting ¥F= F(I). One then
routinely verifies that ® - U~1, and that ¥ - ®~1. For example, if
Fe CocTss(S, A), then

¢ U(F)(X)=X.F(1)=F(X)
for XeS . 0
The equivalence of 4.10 is an equivalence over § , where by definition
Coctss(S, A)f = Cocrtss,, (81, Ajr), IeS .

In the future, the notation ® A shall not be used to denote the cocontinuous
functor corresponding to A, instead simply A shall be used.

Let A € CATs , the 2-category of locally small categories over § . Then for any
A € A there is the ‘hom’ functor:

(A4,_): A —S,
which has a left adjoint if and only if .A has copowers of A. That is, one has
AH(A,_).
1.5 Restriction of scalars

Let € be an arbitrary topos, and let £ L£,Sbean arbitrary geometric
morphism. One should think of £ as an ‘extension’ of S , rather that as an ‘object’
over § . If B is a category over £ , then one can restrict B along p thereby
obtaining a category over § which shall be denoted by By . Let us write B,I, for the
fiber above I of B, . By definition,
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Qp

B; By

R
(pa)”

BP.I LI, Bpnhr

for K3 I'in S . Similarly, for a functor B Ficover € , define
I _ ep*l
Fl=FPl.
For a natural transformation F-5 G, let
I - p'I
th =

where [ €S . It 1s quite routine to verify that this is all well defined over & .

Next, observe that if B is locally small over £ , then By, is locally small over
S . In fact, given I €S, let v = BP'I(B, (), the object in £p.; which represents
morphisms B—C in Byp+;. Then the left side of the pullback

P p.0
O
L

I —— p.p*/

is the object in &; which represents morphisms B—C in (Bp);; . The bottom
morphism of this pullback is the unit of p* - p.. There i1s thus a 2-functor

D

{ Jp : CaTs —CATs

B ~ B

which is referred to as the resiriction functor, or as the restriction of scalars along
L.

If B is a cocomplete category over & , then By is cocomplete over S . This
follows by 4.2 and since p* is left exact. Alsc, if F is a cocontinuous functor
between cocomplete categories over £ , then Fy is cocontinuous. This gives us a
Z-functor

{ Jp : CocTss — CoOCTSss .

5.1 Examples

| ]
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1. Let A be a category over S, and let I €S . The notation used to denote the
fiber above I, A!, shall also be used to denote the restriction along
S/I—I—>S of the localization A . That is, by definition

Al = (An) .

The category A’ is over S . This notation follows [PS], although A was not
introduced there as (A4/;); . Observe that if A is locally small (cocomplete)
then A’ is locally small (cocomplete).

2. Given a geometric morphism £E-58 and a topos over £ , say Fie (see
the next section for the details of how a topos over S is viewed as a category
over § ), then the restriction Fp is obtained by composing with p . For
toposes, let us just write F again when it is clear that the restriction is along

P.

3. If Cis a small category in £, then Cp is small in § . In fact, C; is
isomorphic to p.C.

1.6 Toposes as cocomplete categories

TOPs shall denote the 2-category of toposes over S . A typical object in
ToPg shall be written

F

If
S

where F is a topos and f = (f,,f*) is a geometric morphism. A morphism between
toposes over S , say from F to H, is a pair (k,a) where FXHisa geometric
morphism and h - k 2 f is a natural isomorphism. A 2-cell of such morphisms
(k,a) -5 (1,b), is a natural transformation k* 5 I* (equivalently, a natural
transformation k. -5 l.) such that th*-a =b.

Given a topos over § as above, the topos F is in particular a category over
itself, in fact a locally small cocomplete one. Hence, its restriction along f gives
rise to a locally small cocomplete category over S . If morphisms between toposes
are sent to their inverse images, then this passage extends to a 2-functor

op

p: Tops ™ —COCTSs .
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Upon giving it a name, let us write instead of pF just F again to denote the
category over S coming from the topos F . Explicitly then, as a category over S,

}-I:J:/fol.

For a morphism « in S, the substitution functor is given by pulling back along
f*a. Morphisms (k,a) : F —H are sent by g to the cocontinuous functor p(k, a)
such that

pk,a)(z) = o’ - k'z,
where X 5 h*I is a typical object of H!. This definition extends in an obvious
way to morphisms in H’. The notation p(k,a) is unnecessary, so let us just write
k* to denote the cocontinuous functor coming from the geometric morphism (k, a) .

It is easy to see that as a functor over S , k* has a right adjoint over S .
Lastly, for natural transformations (k,a)= (I, b) over S, let

(got)zl: =tx,
where X 5 h*] is an object of H! .
The 2-functor g is evidently a 2-embedding, in the sense that:

1. for any toposes F and H over S,
O ¢ TOPs(F,H)— CocTSs(H, F)
is fully faithful, and

2. p is full on equivalences, which means that for all equivalences e in
CocTss(H, F), there is an equivalence d and a natural isomorphism

p(d) £ e.

A category (functor) over S shall be said to come from a topos (geometric
morphism) if it is in the essential image of g . The rest of this section is concerned
with when a category comes from a topos.

The reader is advised to read Appendix A before proceeding.

6.1 DEFINITION A category A is said to have small coproducts which satisfy
Frobenius reciprocity at 1€ S , if A has small coproducts which in addition satisfy
the property that for any I €S and any pullback diagram

P %,C
.
A—>—B
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in A?, the pullback

Q—2~C
Wl s
I"A —T‘—Z*I'B

exists in LA! and the induced map (X7, 1) : £1Q— P is an isomorphism.

Intuitively, Frobenius reciprocity says that if AxY" C; exists, then it is equal
to Z(A XC,') .

6.2 DEFINITION A category A is said to have small coproducts which satisfy
Frobenius reciprocity if for every I €S , A, has small coproducts which satisfy
Frobenius reciprocity at IeS;; .

There is some redundancy in definition 6.2 in that if A4 has coproducts over § ,
then 4/; has coproducts over §;; .

6.3 DEFINITION A is said to have small coproducts such that & reflects
isomorphisms at I if A has small coproducts such that ¥y reflects isomorphisms
for every I €S .

6.4 Proposition  Assume that A’ has a terminal object 1 . Then the following

are equivalent:

1. the fibers of A have the form A' = (A');, , identifying the substitution
functors o with puliing back elong a.1 . In which case, 1.A is the product
I.1x A, for every Ac A’ and every 1 €S .

2. A has small coproducts which satisfy Frobenius reciprocity at 1 and are suck

that ¥ reflects isomorphisms at 1.

prOOF  That 1. implies £. is left to the reader.

Assuming the conditions of 2., let /= K be a morphism in S . Let
@7 A (A s

denote the (ordinary) functor which sends an object Xe A’ to Z;(!} . where
, ,
sl .- . . - < R - 7 - .
X = I”1 i1s the unique arrow from X to the terminal object I*1 in A . There is &

natural isomorphism

[
(€]



where X, is composition with the morphism 1.1%3 K.1. The natural
isomorphism in 6.5 arises as follows. If € denotes the counit of £, 4 a* , then

Sl lxa(K*1)5 K*1

is the unique map from £,7*1 to the terminal object in A% . Applying Lk to this
map yields the morphism .1 down in A’ , and from this it follows immediately
that there is a natural isomorphism as in 6.5. By the results in Appendix A, the
functors ®! and ®X are equivalences, and by 6.5 above, a* is therefore identified
with pulling back along a.1. i

Categories of the form described in 6.4 can be thought of as categories with a
terminal object and with universal disjoint coproducts. The corresponding result
for functors between such categories is as follows.

6.6 Proposition  Let AFSB be a functor between categories as in 6.4, and
assume that F! preserves the terminal object 1 in A' . Then the following are
equivalent:

1. F! preserves all small copowers of 1, and F has the form F'~(F'), . By
this is meant that FI(A3 1.1) is isomorphic to the object

Fla: FIASFI(1.1)= 1.1
in B!, naturally in a .
2. F preserves coproducts at 1.

PROOF  Clearly 1. implies 2..
Conversely, assume that F preserves coproducts at 1. Let A= 1.1 be an

arbitrary object of A’ , and write Fl(a—!> 1) as

B b

1.1

1.1
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in B! . Then F/a is equal to the object B-5 I.1. On the other hand, F’a is equal to
FIAS 11 =F'Si(a> 1)=EFlaD 1),
This is the morphism B I.1. O

The following two theorems will be used in Chapter 4, §3.
6.7 Theorem A category A over S comes from a topos if and only if
1. A’ is an elementary topos,

2. A has smeall coproducts which satisfy Frobenius reciprocity at I and are such
that ¥ reflects isomorphisms at 1, and

3. A is locally small (although small homs at I will do).

PrROOF  Given a category A over & which satisfies the three conditions, let
F = A'. Also, let
f*7=11;1eS

£.X = AN1L,X): XeF |

where 1 is the terminal object in F . Since A4 is assumed to have small homs at I
it follows that f* -1, , and the left exactness of f* follows from the Beck conditon.
Thus, f = (f.,f*) is a geometric morphism, and by 6.4, A therefore comes from the

topos .’/’-'—f—uS'. O

6.8 Theorem A cocontinuous functor F between categories which come from
toposes, comes from a geometric morphism if and only if the ordinary funcior F?

ts left ezact and has an ordinary right adjoint.

M

proor  This follows by 6.6.
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CHAPTER 2
Internal Diagrams and Sheaves
2.1 Internal diagrams

In Chapter 1, the category of internal diagrams was defined as a category over
the base topos § . This definition shall now be revised slightly in that internal
diagfa.ms shall be regarded as a category over S€.

Let C be an internal categery in S .

1.1 DeFINITION Let A be an arbitrary category over S . Regard A as a

X
category over S€ by defining the fiber above (i:X €SC to be

/ X
(\Ac)sz :

where AX is the (ordinary) category of internal diagrams on X, as defined in
Chapter 1. For x-% y in S€, the substitution functor

(AC) 5 (ACH

is defined to be
a*: (A,0) ~ (aga,alb) .

This definition extends in an obvious manner to morphisms of (AC)Y .

The notation (AC)¢ is used for the restriction of AC along S€ L.s , and this
is in fact simply AC as previously regarded over S .

Recall that A;; denotes the localization of Aat I. A is a category over Sy,
and it is a special case of the more general construction given above. That is,
A = Al for the discrete category I. (This is not to be confused with A’ , which

denotes (A ), the restriction along 5/1——|—>S of A1, see Chapter 1, §5.) It is not
hard to check that the construction A is stable under, or commutes with,
localization over § . By this is meant, in this case anyway, that for any I €S there
is an canonical equivalence

(«4/1) "= ‘AC/C°1 )
of categories over (S/I)C/' = SC/C., .

X
Observe that for éx €SC, X is a small category in its own right. Therefore,

according to 1.1 one has the category AX over SX . This is precisely the
localization AC/X over Sc/x .
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If A is locally small, then, as is shown in [PS], the restriction (AC)c is locally
small over S . In fact, A€ is locally small over S€. This is shown in the
paragraphs that follow.

Let us show first that A€ has small homs at 1 SC. Given a = (4, 6) and
b= (B,¢) in A€, an object AC(a,b) in S€ is to be exhibited together with a
bijection

x*a—x*b in (AC)*
x—.A%(a,b) in S©

X
which is natural in éX € SC. Recall that SC is cotripleable over S)¢, with the

forgetful functor
U: SC—>5/CO
sending x = (2¢,21) to zo. Let G denote the right adjoint of U . The composite
UG is equal to Il4 67 .
Let (A, B) denote the hom-object in §/¢, which represents morphisms A— B

in .4/00 . Let

(6:4,6) : (534, 6B)=(5A, 6 B)

(6,61B) : (6]A. 6 B)—(&A, 6 B)

denote the morphisms in §;¢, corresponding to composition with ¢ and 6
respectively. Define AC(a,b) to be the equalizer in §€ of

G(A, B) CL G(Il,, (6 4,6 B))

1.2 A
(1.2) TIG(A.B\ //G((Ho'o(ﬁ', 6 B))
GUG(A, B)

where p is the morphism corresponding to (67 A, ¢) under the adjointness &; = I, ,
and 7 is the unit of U 4 G. Also, note that

UG(A.B) = I 87 (A, By =115 (65 A, 6 B) .
. 3 ’ . v f ; P . N v —~
Given x= G(A.B) in SC. let Ux<s (A, B} denote its transpose under [ 4G .
Now transpose 1.2 together with f, first with respect to U 4 G, and then with
respect to é; - Il; . One obtains the square



s2(Ux) —3L 204, B
(1.3) UF (654, 8)

61A,6:B) — (6,A, 01 B
(1 ’51 )(9,6{B)(0 » Y1 )

in Sy¢, , where Ef corresponds to Uf under &3 1 IIs,. Moreover, 1.3 commutes if
and only if f equalizes 1.2. But f = G(f) - nx , and hence Uf is the morphism

UF : 2o 2% T, 67 (z0) 05 T15,67(A, B) .
Therefore, one has

UF i 2 = 8(20) 2 G(a0) X 63(4, B)
Transposing this once again, with respect to L5, - 6] , one arrives at

Egl(xl)& oL (A, B).

Observe that the transpose of Uny is 6; . The upshot is that U f represents the
bottom composite morphism in the square

1R
1R

wi6d = Gpin Sl gerep = pepep

(1.4) 210 zi¢
1
in A%1, where the same symbol x(‘)A-j; z5B is being used to denote the arrow in

AXo represented by xo—fr (A, B) . The top morphism in 1.4 is represented by
554 o
I = 58(UX) - 60(A, B) ’

and hence 1.3 commutes if and only if 1.4 commutes. This establishes the
following series of bijections.

x*a—x*b in (AC)X

Ux— (A, B) in Sy¢,
such that 1.4 commutes

x—A%(a,b) in §€
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This bijection is natural in x , and this proves that AC has small homs over S€ at

X
1€ €. To show that A€ has small homs at éx in SC just repeat the above
argument replacing S€ by SX and A€ by AX.

1.5 Example Taking A = S in the above argument produces a proof that SC is
cartesian closed.

Recall that ‘small coproducts’, ‘S-coproducts’ and ‘¥ satisfying the Beck
condition’ all mean one and the same thing. This property, that of having small
coproducts, ‘lifts’ to discrete opfibrations. That is, if .4 has S-coproducts then AC
has SC-coproducts. In fact, let x5 y be an arbitrary morphism in S€. Define
to be

Ta t (ACY—(ACY
(A,0) ~ (E4A4,Z49),

where 25,6314—0» A, now regarding the fiber AX as the category of algebras for the
triple (whose functor part is) g, &; . & is the domain map of X, and §; the
codomain. This definition obviously extends to morphisms of algebras. Also note
that one has to insert canonical isomorphisms for the definition to make sense. For
example, the action map of £,(A,0) is really

55,6 o Az Bp, Do, G A= Do s, 60 A 3" £00A
Then £, 4 e*, and the Beck condition is satisfied over S€.
If the fibers of A have (stable) finite colimits, then this toc is true for .AC. For
example, pushouts in (AC)! are calculated as
(A,0) (B, ¢;
| |
l 4

(D7p) _'(D+AB,p+€¢)

which means that D+ 4B is calculated in .A°° , and p+4¢ in A" . Thus, one has
the following proposition.

1.6 Proposition  Suppose that A is cocomplete, and let C be ¢ smali caiegory in
S . Then AT is cocomplete over SC.

proor  Cocompleteness is equivalent to having small coproducts and stable finite
colimits in the fibers. 0
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1.7 Example Let A be a cocomplete category over S . As a category over S€,
the left adjoints to the substitution functors of A€ can be ‘externally’ described as
left Kan extensions. Indeed, let x>y be in §€. Then given ge (A€)* one would
like to describe X (g)e (AC)Y as the left Kan extension

X —4 vy

8 ~ Ea(g)

A .

Frequently an argument can be abbreviated by localizing. That is, if the
definitions and constructions relevant to the argument are stable under
localization, then it suffices to prove the given statement at the terminal object

1€ S . One first defines £,(g) at 1€S . Let 15 Y; € Y!, and form the small
category a/y. For example, (a/y)o is defined as:

(a/y)o—V1/y — 1
Y
Yo Yi—Y

61
bo

A
Xo g5~ Yo

where both squares are pullbacks. Then let £,(g)(y) = lim(gy) where ~ is the
obvious functor. The construction a/y is stable under localization, as is the
construction ACand as is the cocompleteness of A . Therefore, the definition of
¥.(g) can be considered to be complete. To define £,(g)!, I €S , one proceeds as

above, only now working over &;; .

We have established that if 4 € COCTSs , then ACeCocTssc . The ‘internal
diagrams’ construction constitutes a 2-functor

( )€ : Coctss — CoCTSsc

A ~ AC.

To conclude this section, a discussion of connectedness is included. This
notion will come up in Chapter 4, §5.
. 5 .
The coequalizer of C; :690 Co in S represents the ‘number’ of connected

components of C . Thus, one could say that C is weakly or internally connected if
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this coequalizer is isomorphic to €S . This is true if and only if sL£.5C 5 fully
faithful. There is a stronger external notion, to be simply called connected, which

is as follows.
1.8 DEFINITION A small category Cis said to be connected if:

1. the unique map Coy— 1 is an epimorphism, and

2. for any objects ¢,d € C’, there is an epimorphism K57Iin S and morphisms
fis..., fn€ CK connecting e*c with e*d,

€%c . . e*d
f’\ / \\ /f"

where no particular direction of any of the arrows f;,..., f, is intended.

1.9 Proposition  Let A be a category over S (not necessarily locally small or
cocomplete), and assume that A is a stack. Let C be a small connected category.
Then

C: A — (A%
is full and faithful.

proofF  Connectedness is stable under localization, as is the property of being a
stack. Therefore, it suffices to prove the proposition at e S. Recall that the
category (Ac)é: is 1somorphic to the category of functors from Cto Aover §. To
be showr is that C*7 is fully faithful. Suppress the ‘7’ notation writing, for
example, C* for C*'. Then, by definition, for A< Bin Aand ceC’ one has

(Al Ia
cnty = rs
(C*B)(c) I'c .

1 L ; . e s 1 L.
So suppose there is given a natural transformation C*A— C*B. That is, for every
. . a th . e :
ce C! | there is given an arrcw I*A-5 I*B. The naturality of ¢ says that if there is
i for all

d

an arrow ¢— d in C!, then t! = t{. The idea is to show that ¢! 7
c,de C!. So fix ¢,d e C'. By using condition 2. of ‘connected’ it follows that

>

e 4 < . - 3 N - v
th. = tX, for some epimorphism K~/ in S . Therefore, the diagram
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™
*
—
*
.
1R

K*A e* A
e(th) | | Je(ed)
K*B e I*B

R

12

m
*
—
*
t
12

commutes, where the center arrow is t&, = &, . The isomorphisms cancel out to
give e*(t}) = e*(t!), and therefore t] = ¢ since A is a stack. By using this, taking
I = CyxCp and ¢, d to be the two projections Cox Co—Cy , it follows that

3CsA = (CoxCo)A = miCiA

m3(1%) | | | m1(t8)
mCoB = (CoxCo)*B = mCiB

1R
1R

commutes, where the center arrow is tfg"% = tfl°"c° . The ‘object’ 1 is the identity
on Cy. The horizontal composite isomorphisms are the canonical descent data of
C3A and C§B . Since A is assumed to be a stack, and since Cy — 1 is, by

hypothesis, an epimorphism, one has téo = Csf for a unique AL B 1t follows
that t = C*f . This concludes the proof. a

By taking A = § in the above proposition we see that a small connected
category is weakly connected.

1.10 Corollary Let A € COCTSs, and let C be a small connected category. Then

Ill’nc'c)‘l = 1_A .
PROOF  One has limg 4 C* and, since A is necessarily a stack, 1.9 applies. O

If C has a terminal object, in the internal sense (see [J1], p. 74), then C s

connected.

2.2 Sheaves

Let A be a category over S, and let j be a topology on S. In [P2], the
following definition is made.

2.1 DEFINITION An object Ae A! is said to be a sheaf for the topology j, or
simply a j-sheaf, if for any j-dense monomorphism $<% T and any Be AT the
function

s": [B,T*A]—>[s*B,s"T*A]

is a bijection.
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The full sub-category of A! whose objects are sheaves shall be denoted by
sh;(A)! . One considers sheaves as a category over § by defining:

shi(A)" = shr;(An)*,

for Ie S . Explicitly, this means that an object of the fiber sh;(A)! is an object
A € A" such that for every TS I'in S/, every j-dense monomorphism ST, and
every Be AT | the function

s*:[B,£*A]—[s"B,s"¢" A

is a bijection. One sees directly that the substitution functors restrict to sheaves
giving us the category sh;(.A) over S .

If A has small copowers, then definition 2.1 is equivalent to the following more
‘sheaf-like’ condition on A: for any dense monomorphism S<»T and any Be AT,
every morphism s.B—T™* A lifts uniquely along the canonical morphism s.B— B,

s.B

N

B TT'A .

Furthermore, in this case the category sh;(.A)!, which is (sh;(.A)r);, is equivalent
to sh;(A"), which is sh;((A1);) , over S . The reader is referred to [P2] for a proof
of this.

2.2 Example The basic example is that of sheaves in the base topos S. Let
& denote the sub-topos of j-sheaves, in the original sense, in S. Then £ is
considered as a category over S (see Chapter 1, §6) by letting £/ = £ /i»1, Where

£ S is the inclusion. Then, as is shown in [P2], £ & sh;(S) as categories over

S.

Defined to be a full-subcategory of A, sh;(A) is automatically locally small if
A is. However, more is true, for any sheaf A and any B, the representing object
(B, A) is itself a sheaf. The following proposition is from [P2].

2.3 Proposition  Let A be locally small, and let Ae A. Then A is a j-sheaf if
and only if for every I eSand every Be A’ , (B,1*A)! is an I*j-sheaf in 81 .

The intention here is to consider sh;(A) as a category over £ , and in doing so
proposition 2.3 would then tell us that sh;(A) is locally small over £ .

38



2.4 DeriniTioN  sh;(A) is regarded as a category over £ by defining
shi(A)* = shi(A)""
for every K €& .

Then under this definition, by 2.3 sh;(.A) is in indeed locally small over £ if A is
locally small over S .

Given definition 2.4, one is led to consider the category sh;(A);, its restriction
back to S . It would be desirable that this category be equivalent (by an
equivalence natural in A ) to sh;(A) in its original definition as a category over S .
Why indeed should this be desirable? The answer lies in the fact that such an
equivalence can be interpreted as an ‘equivariance’ of the j-sheaves construction.
See Chapter 3 for a further discussion on this. For now, let us be content with the
observation that such an equivalence entails that sh;(A)¥ L»shj(/l)l be an

equivalence for every j-bidense morphism 1L K. To analyze this condition let us
begin with the following definition.

2.5 DEFINITION A is said to be a j-stack if A has the stack property with respect
to every j-bidense epimorphism.

Observe that the true stacks are then in fact the ¢-stacks. Also, if j < j/ then
any j/-stack is j-stack.

In the following proposition, sh;(A) is to be regarded as a category over § in
its original definition.

2.8 Proposition  Let A be an arbitrary category over S . Assume that sh;(A)
has small coproducts. Then the following are equivalent:

1. shy( AT < sh;(A) reflects isomorphisms for every j-bidense epimorphism
IS H,
2. sb,'(.A)KL»sbj(A)l is an equivalence for every j-bidense morphism JER K,
3. sh;(A) is a j-stack.
PROOF  (1.=>2.) Let I4 K bean ari)itrary bidense morphism. If f is factored as

an epimorphism followed by a monomorphism 7 SHS K , then g and A are both
bidense. Let us first consider h. Observe that

k* : [B, A]—=[h*B, h* 4]
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is a bijection for any sheaf Ae AX and any Be AX . In particular, when restricted
to sheaves in AKX | h* is fully faithful. Moreover, h* is essentially surjective because
for any Be sh;j(A)7 | the unit B—h*E,B is an isomorphism. This follows because

H—Ll-g

!

H—h——K

is a pullback and the Beck condition is satisfied. Thus, h* is an equivalence.

Let P denote the kernel pair of g .

E

I—g—*H

™

Let 15 P denote the factorization of the diagonal through P. Then 6 is a j-dense
monomorphism and

6" : [B, 1 A]—[6"B, 6"} A]
is a bijection for any sheaf A € A’ and any Be A" . In particular, for any sheaves
A,C e AT one has following series of bijections:

gL, C—A
LomgC—A
1oC -7l A
O ryC—6m1 A
C—A

which is given by composition with the unit C2S ¢*X,C . Therefore, there is a
morphism g“EgC—fv C such that p-nc = 1¢ . Then 75¢ - p is the identity on
g*2,C , since both 7¢ - p and the identity correspond to n¢ under the above
bijection. Therefore, 7¢ is an isomorphism. To see that the counit of ¥, - ¢* is an
isomorphism, observe that for any sheaf Ae A7 by what has just been shown,

- Ng»4 18 an isomorphism. But the inverse of 7,.4 is g*(€4), and by our hypothesis,
the counit €4 is therefore an isomorphism. Thus, ¢* is an equivalence.

(2.=8.) Let I-» H be an arbitrary j-bidense epimorphism. Then sh;(A) has
the stack property with respect to g, trivially so in fact, because ¢g* is assumed to
be an equivalence.
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(8.=1.) If sh;(A) is a j-stack then in particular the substitution functors
reflects isomorphisms along j-bidense epimorphisms. a

Let E—i—bS denote the inclusion of £ into & . Then under the conditions of
2.6 and under definition 2.4 one has, for any [ €S ,

sh;(A)f = shi(A)"" = shi(A)"! 2 sh;(A)"

since I—i,i*] is bidense. Since this equivalence is over § , it can be written as

(2.7) sh;(A); 2 sh;(A) .

Line 2.7 means that the restriction back to S of sh;(A) regarded as a category
over & , is equivalent to its original formulation as a category over § . This shall
be referred to as the equivariance of sheaves.

This section is concluded with a review of some facts from [P2]. Let A be an
arbitrary category over S , and assume for this discussion that A has small
powers. For a in Sy and Ae A¥ | let A* denote the a-power of A .

Let D be a full sub-category of Q. That is, for every I €S, a collection D! of
sub-objects of I is given such that for any K& IeD! and any H > I one has
ok e D | A sub-object of $<5Q determines such a category S by letting

S’ = { AS T | the characteristic map of a factors through s } .

2.8 DEFINITION A € A is said to be a D-sheaf if for every YeS , A has the sheaf
property with respect to every monomorphism X <Y in DY .

Let S<T be a given fixed monomorphism. Let (s) denote the full
sub-category of §) generated by s in the sense that

() = {a"s | IS5 T}
2.9 Proposition For a given A € A, the following are equivalent.
1. Ais an (s)-sheaf.
2. A has the sheaf property with respect to the monomorphism s .

3. The canonical map T*A—(T*A)* is an isomorphism.
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Denote by 12 J the factorization of 1 0 through J, where Jis the
sub-object of § classified by j. Then J = (d), and therefore A € 4 is a j-sheaf if
and only if J*A—(J*A)? is an isomorphism.

Given D, denote by D the full sub-category of { whose fiber at T¢ § is defined
to be

D’ = {S<T | there exists Y—T with e*se DY} .

D is the stack completion of D. Also, recall (Chap. 1, §1) that if A is a stack, then

for any epimorphism Y T, e* reflects isomorphisms.

2.10 Proposition  Assume that A has the property that e* reflects isomorphisms
for any epimorphism e. Then A€ A is a D-sheaf if and only if A is a D-sheaf.

The reader if referred to [P2] for proofs of 2.9 and 2.10. The main result from
that paper is the next theorem. The proof included here is essentially that which
is found in [P2]. It uses the following two facts, which will also be needed in the

next chapter. As usual, (j, J) denotes a topology on S .

1. If a sub-object S — 2 generates J , then any A € A is a j-sheaf if and only if
it is an S-sheaf.

9. Let F - § denote an arbitrary topos over § . Let K — {1r denote the
image of the characteristic map of f*d. Then

K = (f*d) .
One says that K consists of those monomorphisms which are locally
pullbacks of f*d.

v f 5 . , - T "
With 7 — & as above, let J denote the topology on F generated by K . with
characteristic map j . Then sh;(F) is a category over F .

2.11 Theorem (Paré} As categories over S, (shy(F))s = shi(F) .

prooF  The topos F 1s a stack and it has small powers, so the two preceeding
propositions apply. Let us demonstrate the expressed equality at 1€ S . An object
Xe Fis a j-sheaf if and only if X is a K-sheaf if and only if X is a (f'd}-sheaf if
and only if

(f'J)‘)(——)((_f'J)'X'){'d
1s an isomorphism if and only if

X —{J X))
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is an isomorphism, where F is now being viewed as a category over § . This last
statement is true if and only if X is a j-sheaf. O

2.12 Corollary  In the notation of the above theorem, we have shj(F) = ExsF
as categories over S .

PROOF The topos of j’-sheaves in F , in the ordinary sense, is the pullback
ExsF in toposes. The result follows by example 2.2 and theorem 2.11. )

In the terminology of Chapter 1 §6, the above corollary says that if A comes
from a topos, then so does sh;(.A).

2.13 Example In this example it is shown that the category of sheaves in a
small category is, with an additional assumption, again small. As an application of
the General Adjoint Functor Theorem, in [PS] it is shown that a small category is
complete if and only if it is cocomplete. Since the present context is within
cocomplete categories, the following result is stated in these terms.

Let C be a small cocomplete category. Then sh;(C) is small and cocomplete.
Furthermore, the object of objects sh; (C)o is itself a sheaf, as is the object of
morphisms sh; (C); .

Observe that the second statement in italics says that sh;(C) is a small
category in & = sh;(S) .

To prove our claims, one can use the fact that a category is small if and only if
it is locally small and there exists an object of objects (for a proof of this see [PS]).
Thus, our aim is to construct the object of sheaves, those elements of Cy that are
sheaves. Let ¢ be an arbitrary object in C!, that is, a morphism I -5 Cy. We work
over §/r. By 2.9, the object c is a sheaf if and only if the canonical morphism
(I*J)*c—((I*J)*c)T"? is an isomorphism. By the universal property of powers, and
since J - d = 1, this is true if and only if application of (I*d)* gives a bijection:

b (I"J)c
(Id)b 5 ¢

for any be C™ | In concrete terms this means precisely that composition with
dx 1 gives a bijection between commuting diagrams:

JxI
|
o
b + CTy
Ch
/5 BN
Co Co
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and commuting diagrams:

1
|

b(dx1) ? c
Ch

e BN

Co Co

Thus, the sheaves in C can be described using the internal language of the topos.
Define sh;(C)g to be the following sub-object of Cq:

feeCo | cis a sheaf]]

= flee Co | Vbe Cy VBe C1(((608 = bd) A (6,8 = ¢))
= e CY (6o = b) A (e = ¢J) A (B = ad)))]

One now verifies that a given I = Cj is a sheaf if and only if it factors through
sh;(C)o . One concludes that there is therefore an object of morphisms sh;(C), in
S . As for the cocompleteness of sh;(C), this follows because sh;(C) is complete
since C is, and being small, sh;(C) is therefore cocomplete.

It remains to show that the objects sh;(C)o and sh;(C), are themselves
sheaves. Let S<T be a j-dense monomorphism. As a general comment observe
that if A is an arbitrary category, then the substitution functor s* is fully faithful
when restricted to sheaves. In our case C is complete, and therefore so is sh;(C).
In particular, sh;(C) has II satisfying the Beck condition, and II is always fully
faithful along monomorphisms. Thus, restricted to sheaves, s* must be an

equivalence,

shi(C)" = sh;(C)*,

for the j-dense monomorphism S<>7T . Since s* is composition with s, it follows
that the objects sh;(C)o and sh;(C), are both sheaves.

2.3 Sheafification

“As in the previous section, S is the base topos, j is a topology on &, and
£ — S is the sub-topos of sheaves. For a category A over S, sh;(A) denotes the
full sub-category of A whose objects are the j-sheaves.
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8.1 DErINITION A is said to admit j-sheafification if sh;(A) is a reflective
sub-category of A .

When A does admit j-sheafification, the left adjoint of the inclusion functor
shall be denoted by a,

shy(4) £ A

where a 1. These are functors over S.
Let us say that A admits sheafification if A admits j-sheafification for all
topologies jon §.

3.2 Examples

1. Let B denote an arbitrary category over £ . Then the restriction B; admits
j-sheafification. Trivially in fact, because every object in B; is a sheaf. That

is, sh;(B;) = B; .

2. A topos over S admits sheafification. Recall that from the previous section
(corollary 2.12) that for F a topos over S , sh;(F) is equivalent to the
pullback £ xsF in toposes. This is a reflective sub-category of F .

3. Any small cocomplete category admits sheafification. In fact, let C be such a
category, and let j be a topology on §. C is necessarily complete, and
therefore so is sh;(C) as limits in sh;(C) are just computed in C. (This
second statement being true quite generally.) As was seen in the previous
section, sh;(C) is small. Therefore it satisfies the solution set of objects
conditior: {see Appendix B). Thus, since the inclusion functor is continuous.

it must have a left adjoint by the General Adjoint Functor Theorem.

Recall that sh;{ A} can be regarded as a category over & by defining the fiber
at K €& to be sh;(.4)"" . Under this definition one has the following.

3.3 Theorem  Let A € COCTSs , admitting j-sheafification. Then
sh;(A)e COCTS; , and is equivariant as ezplained in the previous section.

PrROOF  If sh;(A) is a reflective sub-category of A over § | then sh;{A4) is
cocomplete over S since S-colimits in sh;{A) can be calculated in A4 and then
reflected into sh;{.4). Obviously, sh;(A) is then cocomplete as regarded over £ .
By 2.3, sh;(A) is locally smali over £ . The equivariance follows by 2.6 since, being
cocomplete and locally small over S| sh;(4) is a stack. Alternatively, since A1s a
stack it follows in any case that sh;(A) is also. Since sh;{ 4 is assumed to be &
reflective sub-category of A, sh;{4) has coproducts, and 2.6 again applies. E
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The general problemn of when A admits sheafification is an interesting one in
itself, but to be pursued no further here. In the event that sh;(.A4) is a reflective
sub-category of A, in the next chapter it is seen that sh;(A) is in some sense a
‘module of fractions’; it has a universal property analogous to that of a module of
fractions in rings and modules. Theorem 3.3 is the first step towards proving such
a result.

In the study of sheaves in the opposite category, or ‘cosheaves’, to follow in the
next section, it is shown that 7 admits sheafification for F a topos over & . More
importantly, it will be seen that the category of cosheaves in a topos form a topos.

2.4 Cosheaves and open topologies

Let A be a category over S, and let j be a topology on S. Having defined
previously the notion of a sheaf in an arbitrary category, consider now the
category (sh;(A™))™ , which is a full sub-category of A . Let us simplify the
notation, and write sh;{.A%)% for this category.

4.1 DeriNiTION  The category sh;(A™)7 shall be called the category of
j-cosheaves in A .

Let us begin this section by investigating the category of j-cosheaves in the
base topos S.

Let U < I be a sub-object of I. Such an object is sometimes referred to as an
open object. The morphism

Q% axnza

1s a topology on S which is denote by jf; . It is called the open topology associated
with U. Furthermore, there is an equivalence shyp (5} = S, which identifies the
inclusion functor with II;;. The associated jf:-sheaf of an object Iis J*. These
facts are proved in [J1}. The map U ~ j{, is order reversing from the lattice of
sub-objects of I to the lattice of topologies on §.

For an arbitrary topology j on § define the interior of j to be the equalizer of
14 Q% and 13 Q% Denote this open object by int(j). There is a (contravariant}
Galois correspondence (see [J1]) between the lattice of sub-objects of {2 and itself,
which shall be denoted by /- r. If U is an arbitrary open cbject then U xQ is a
sub-object of {1, and it is the sub-object classifier in the topos shzo (S) . Therefore,
(Ux Q)" is the sub-object of Q classified by j§ . There is then the following series

of equivalences:
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U <int(j)
Ux0Q3Q :;3 ) commutes

UxQ <O, =J
J < (UxQ)
L,

for any j and any open U, where J denotes the sub-object of (2 classified by j. A
(contravariant) Galois correspondence has been established between the open
objects and the lattice of topologies on S ([J1] page 102, ex. 10).

A characterization of cosheaves in S can now be obtained.

4.2 Proposition An object I€S is a j-cosheaf if and only if I€int(j) .

PROOF  First observe that in the following diagram,

KxJ—m——J———I

J t
AN

dJm = 7 if and only if jr, = m, where K is any object.

Fix I €S. A cosheaf is by definition a sheaf in the opposite category, and so by
proposition 2.9 one sees that Iis a cosheaf if and only if the morphism [ (4D 7y J
is an isomorphism, in which case its inverse is the projection IxJ = I. Let
U < 1 denote the support of I. Then one has the following series of equivalences:

I (L4 o J 1s an isomorphism

U UxJ is an isomorphism

(1,dU)mo = 1, where UxJ 3 U
m(1,dU)my = my, where Ux J 5 J
is the projection, a monomorphism

dJr, = m,
since m1(1,dU)me = dJm
Jjm = 7, as in the diagram above
taking K = U
U < int(j)
Ieint(j)
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Thus, the category of j-cosheaves in § is isomorphic to Sjjn¢(j, by an
isomorphism which identifies the inclusion functor with jp¢ ;-

Cosheaves are an example of a ‘unity of opposites’. Let V = int(j). The
adjoint pair

induces an equivalence of categories Fix(¢) = Fix(7), where € is the counit, and 7
is the unit of the above adjointness. For an arbitrary object I, since V 1s a
sub-object of 1, it follows that V xIV ~V xI. By proposition 4.2, I is a cosheaf if
and only if I~V x I, and therefore if and only if the counit V xIV—I is an
isomorphism. Thus, Iis a j-cosheaf if and only if Je Fix(¢). Similarly, one sees
that Iis a j¢-sheaf if and omnly if Je Fix(n), and so the ‘unity of opposites’ says
that the category of j-cosheaves is equivalent to the category of ji -sheaves.

Any object Ie S has an associated cosheaf, it being the object int(j)xI. In
particular, the associated cosheaf of I is int(j). In this regard one can think of
int(j} as the union of those sub-objects of I that are cosheaves.

Let cI denote the associated cosheaf of I. Since j < Tint;) » €very J-dense
monomorphism is j;-’nt(j)—dense. Therefore, ¢ carries all j-dense monomorphisms to

isomorphisms since it does so with the jfnt( -dense ones. Hence, as we shall see in

i)
the next chapter, ¢ factors through i*, where £ — & is the inclusion of j-sheaves
into § . It follows that ‘

£n,5-5,5
1s cocontinuous. Moreover, the functor ¢ - i. 1s the terminal object in
Coctss(€,S8) . This fact plays a role in the study of the cocontinuous dual of
& (see Chap. 4, 84 and §3). The following theorem. in which 4.2 is generalized to

an arbitrary topos over &, will be used in those investigations.

4.3 Theorem Let F be an arbitrary topos over S, j a topology on S. Lei |

denote the topology on F induced by j. Then there is an isomorphism of categories,

P

Nat 1A%

i

sh; (F)7
identifying the inclusion functor with Ly, where V denotes the inierior of ;.

A proof of 4.3 shall be given in the examples at the end of section §1 of the
next chapter.

In particular, the category of cosheaves in a topos is a topos.
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4.4 Example Since A” admits j-sheafification if and only if sh;(A™)% is a

coreflective sub-category of A, by 4.3 F” admits sheafification for any topos
F over S.

Cosheaves are related to the category CocTss(€, A), the study of which
begins the next chapter.
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CHAPTER 3
The Adjoints of Restriction
3.1 The right adjoint

Let €58 be a topos over S, and let A denote an arbitrary cocomplete
category over S . Then CocTSs(€,.A), the category of S-cocontinuous functors
from € to A, can be viewed as a category over £ . In fact, the fiber above K €€ is
defined to be

Coctss (€, A) = Coctss(£X, A) .

For K3 L in £ , the substitution functor a” is defined to be composition with X,
(pertaining to £ ),
a*(F)=F-%,,
for Fe CocTss(E, A)X .
It is not hard to see that COCTSs(E, A) is cocomplete over £ . In fact, for any
morphism a of § , the substitution functor a* has a left adjoint, which is given by
composition with the pullback functor in £,

L,(F)=F-a".

Furthermore, one easily verifies that the Beck condition holds. Finite colimits in
the fiber CocTss(€,.A)X are computed ‘pointwise’, which the substitution
functors are seen to preserve.

If FeCoctss(€,A) and K €& | then the K-copower of F, which is denoted by
K.F, is the cocontinuous functor

£ Kegptne Fa.

Thus, (K.F)(X) = F(K.X) for any Xe€& .
The principal fact about the 2-functor 4 ~» CocTss(E, A) is that it is the
right adjoint of the restriction functor ( )p .

1.1 Proposition  For any cocomplete categories B over £ and A over S, there is
" an equivalence of categories

Coctss(Bp, A) = CocTsg(B, CocTss (€, A)) .

This equivalence is natural in A and B .
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PROOF The desired equivalence expresses a 2-adjointness for which the unit and
counit are as follows. The unit shall be denoted by

Ap: B—CocTss (€, Bp) .
Let us write A for Ag, dropping the ‘B’. For K €€ | to be defined is
AX : BX—Cocrtss(EK,Bp) .
So for Be BX and I €S define
AK(B) : e — B!
by setting
A (B)! (e B) = Zaf(B) ,

where M (25 p*Ix K is a typical object of &p« i . It follows that AX(B)is a
cocontinuous functor over § , and that A is cocontinuous over &£ .

Turning now to the counit, it is a cocontinuous functor over § which shall be
denoted by
Z4:CocTss(E,A)p—A.

Writing = for =4, define =/ for I €S by setting
=l(F)y =F(é1),

where Fe CocTss(€, A)g = Coctss(€f, A), and where §; is the diagonal
p*I—p*Ixp*I as an object of (E7)! = &ps(ix1y . = is indeed cocontinuous. Let us
show, for example, that = preserves coproducts. That is, considering the unique
map I— 1 (the general case - K is similiar), let us show that

=1
fun

Coctss(E7, A) Al
Xy J l Xr
Coctss(€,A) —= A

—

commutes. If Fe CocTss(€7,.A), then one has
Y -ZHF) = S(FI6) = F(2,6;) = F(1)
where 1 is p*I=» p*I , the terminal object in &7 . Going the other route,
Z- E(F) = Z(E,F) = (Z(F)(8;) = (F- I")(6:) = F(1) .
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Our task is to verify that COCTSs(E,Z4) - Acocrss(e,a) 18 Isomorphic over
€ to the identity functor on CocTSs(E, A), and that Z(s,) - (As)p is isomorphic
over S to the identity functor on Bp. Let us turn first to the functor
CocTss(€,Z4) - ACoctss(e,4) over € . For the remainder of this paragraph let A
denote CocTss(€, A), A denote A ;, and = denote Z4. For K €& and Fe AKX =
CocTss(EX, A), to be shown is that CocTss(E,Z)K - AK(F) ~F, where

Coctss(€,2)% : COCTSS(SK,AP)——COCTSS(SK,A)

G ~> =-G,

and

- ~

AK . AK—Coctss(EX, Ap) .

So, to be shown is that

(11

. (AKF) : EK——Mip—»A

is isomorphic to F over § . Let I €S, and let M) p*Ix K be an arbitrary
object of (£X)! . Then

(E- (A"F)) (e, ) = EN((A"F)(, B) = (AF) (e, ) (é1) -

At this point observe that from the definitions (AKF)!(e, B) is the cocontinuous

functor s
gro,gmza ek P4

Evaluating this functor at &7 (at stage I) yields F/(«, 8) because
Zh(e*(61)) = (e, B) .

Regarding E(gp) - (Ag)p over S, let us write = for Egp ,and A for Ag. Let
I€S, and let Be(Bp)! = BP'L. Then

='(AP(B)) = (AP"(B))!(61) = 117(B)= B,
since 6y = (1,1), where 1 is the identity on p*/ . This concludes the proof. a

If Fis a topos over £ , then by the above proposition, one obtains that which
shall be referred to as the change of base formula:

(1.2) Coctss(F, A) = Coctsg(F, Coctss (€, A)) ,

for any cocomplete category A over § . There is a small abuse of notation here in
that on the left, 7 has been written instead of Fp .
Recall that A/ denotes the localization of Aat I €S .
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1.8 Proposition For any I €S , there is an equivalence A = COCTSs(S)1, A) of
categories over 81, which is natural in A .

PrROOF  Define a functor
¢ : A;—CocTss (81, A)
by defining for A € (4)" = Al
QA S —A

to be
(®A) (o, B) = ZaB"A

where J €8 and K 0 Jx T is a typical object of (S/1)” = &/ s . Then A is a
cocontinuous functor over § . This defines @ at 1€ S/;, and the general definition
is obtained by localizing. One then routinely verifies that @ is indeed a functor

over 57 .

Next, define a functor
¥ : CocTss(Sy, A)— A

by setting
WF = FI(§),

where 725 I x I is the diagonal regarded as an object of (S;r)’ . Let us verify that
¥ is in fact a functor over S;; . To keep it simple let us consider the unique arrew
m—1 in §;; , where MZ [. Then

(- W)(E) = me(F(67)) = F¥ (1 m)*(61))
On the other hand,
(O™ m*)(F) = (F- To)M (6p) = FM(Toa (6a1)) -

Now observe that L, (ép) =~ (1xm)*(8;).

!
/

It remains to verify that ¥ and ® are mutual inverses, which is a routine

{1

calculation.

- Thus, by 1.3 and 1.1 applied to §;;— &, localization is right adjoint to

restriction in the sense thai
(14) COCTSS(Bl, .A) = COCTS&f}(E, ,4/1) .
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natural in cocomplete categories A and B . One can a priori view COCTSs(E, A)

as a category over S by defining
Cocrtss(€, A)! = Coctss (€1, A1) , I€S .

By 1.4, this category is equivalent to CocTSs((&1)1,A) . Recall (Chapter 1, §5)
that (&) is denoted by E7. Therefore, one has

Coctss(€, A = Coctss(E1, A) ,I€S .

The right side of this equivalence is, by definition, CoCTSs(E, A)é , and so
suppressing the variable I, one has

(1.5) CocTss (€, A) = CocTSs(E,A)p .

The equivalence 1.5 says that regarding CocTss(€, A) as a category over £ and
then restricting back to § is the same as a priori viewing CoCTss(€, A) as a
category over & . This is the equivariance of COCTSs(E, _) regarded as an
endofunctor of COCTSs . By analogy in locales and sup-lattices, if ALBisa
homomorphism of locales and M an A-module, then Homga (B,M) is an A-module
in two equivalent ways.

Also, the equivalence 1.5 identifies =4 with p* in the sense that

—

CocTss(E, A)y —2—~ A
(1.6) I IR
Coctss(€, A) — CocTss(S, A)

commutes up to natural isomorphism, where the bottom arrow is composition
with p* . This identification is of basic importance, and it shall in the future be

made sometimes without notice.

It is not clear that CoCTSs(E,.A) is locally small if A is. Our next aim is to
establish the following important fact.

1.7 Theorem Assume that £ S is bounded. Then for any A e COCTSs , the
category COCTSs(E, A) is locally small over £ .

1.8 Corollary  With £ as in 1.7, zf]-' denotes an arbitrary topos over S, then
ToPs(F,E) is locally small over £ .

PROOF TOPg(F, &) is a full sub-category of CocTss(E,F). ]

The proof of 1.7 uses the following two propositions.
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1.9 Proposition  Let A be a cocomplete category over S , and let C denote a
small category in & . Then composition with the Yoneda embedding gives an
equivalence COCTss(SC, A) = AC” as categories over SC.

A proof of 1.9 can be found in [Pi] with the difference here that these
categories are regarded as over SC. The category AC” is regarded as over SC by

X
letting (AC7)* = AX” | for éx €SC. For a morphism x> y in §€, the

substitution functor a* for AC” is given by composition with o (regarding o as
a functor between the total categories of x and y). To indicate that the equivalence

X
of 1.9 is indeed an equivalence over S€, let éx €SC. Let us consider the unique

map x— 1 in S€ (the general case x—y is similiar), and show that

CocTss(SC, Ay AC”

* *

(1.10)

X X

i
Cocrss(SX, A) = AX7

commutes (up to natural isomorphism). First note that

X °F x% Cor
Y| Y
§X —— €

commutes, where Ty sends a discrete opfibration ly to x-y. Then if
X

Fe Coctss(SC, A) . by going the top route in 1.10 one gets F- Y - xF~F. L, -V
which is the result going the other way in 1.10.

)

Proposition 1.3 is actually a special case of 1.9.

1.11 Proposition  Let j be a topology on S , and let £ — S denoie the sub-topos

of j-sheaves. Then.

1. For any cocomplete category A over S |
=4 CocTsg(E, A)— A

is fully faithful. Its esseniial image consists of those Ae A with the properiy
. £ . v . . . A -
that if S— T is an arbitrary j-dense monomorphism then S.A%5 T. A4 is an
_ tsomorphism.

&, ]
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2. If in addition A is locally small, and if ST is a given monomorphism such
that (s) (see Chapter 2, §2) generates J , then the essential image of =4
conststs of those Ae A such that S.A* T.A is an isomorphism.

8. For any cocomplete B over £ | the unit
Ag : B —Coctss(€,B;)
ts an equivalence.

proOF  I. In view of 1.6 (occurring just before Theorem 1.7), Z 4 is fully faithful
since composition with i* clearly is. Regarding the statement about the essential
image of =4, it is equivalent to the statement that Ge COCTSs(S, A) factors
through i* if and only if G takes j-dense monomorphisms to isomorphisms. The
necessity of this latter statement is clear. For the sufficiency, let & —G—>A be any
cocontinuous functor taking j-dense monomorphisms to isomorphisms. Then G
takes j-bidense morphisms to isomorphisms. In fact, an epimorphism 7-% K is
bidense if and only if the inclusion of I into the kernel pair of ¢ is j-dense. It
follows that Ga must be an isomorphism because G preserves coequalizers. Thus,

there is a natural isomorphism
GG i, 17,

since 15—, - i* is bidense. So if G-i. is shown to be cocontinuous, the proof of 1.
will be complete. But this follows easily. Indeed, let ve EP be a diagram in &,
where D is a small category in & . Let ¢ correspond under i* i, to the canonical

isomorphism

Then ¢ is bidense, and therefore

1

Em{G i, - yj=Glim{i, - 7)) = G - i (lmy)
1s an isomorphism. That is, G-i, 1s cocontinuous.

G : . . .

2. Let §— A be any cocontinuous functor taking the monomorphism s to
an isomorphism. Since A is assumed to be locally small, G has a right adjoint,
G- R. Then for any A€ 4, RAis seen to have the sheal property with respect to
s because Gs 1 1 hi By the results { [P2]. which w 1lewed i
s because Gs is an isomorphism. By the results from [P2]. which were reviewed iu
Chapter 2, RA is therefore an (s}-sheaf. Hence, RA is a sheaf since it is assumed
that (s) generates J, and so



It follows that G-i, 1i* - R, and upon taking left adjoints of 1.12 one has
G~ (G-i,) 1.

This concludes the proof of 2.

3. Let B be a cocomplete category over £ . Observe that the counit E(Bi) is
an equivalence. In fact, by 1. above, it is fully faithful. To see that E(Bi) 1s

essentially surjective let < T be j-dense. Then

s": BiT—bBis

is an equivalence since i*(s) is an isomorphism. It follows (see Chapter 1, §4, the
discussion on copowers) that S.B*3 T.Bis an isomorphism for every B € B;,
which shows that E(Bi) is essentially surjective. Now E(Bi) - (Ag); is isomorphic to
the identity functor on B;, and therefore (Ag); is an equivalence. It is easy to see
that ( ); reflects equivalences, and therefore, Ag is an equivalence. a

Observe, by 3. above, that ( ); is 2-fully faithful, which means that
Coctsg (A, B)—Coctss(A;, B;)

F ~ F;

is an equivalence for any cocomplete categories A and B over £ .
Proposition 1.11 has the following useful corollary.

1.13 Corollary  Let F be a topos over S , and j a topology on F with

€ = shj(F). Then for any cocomplete A, COCTSs(E, A) is equivalent to the full
sub-category of CoCTSs(F,.A) whose objects consist of those cocontinuous
functors taking j-dense monomorphisms to isomorphisms.

PROOF  We have
Coctss(€, A) = CocTsx(€, CocTss(F, A)) .

Therefore, by 1.11 CocTSs(€, A) is equivalent to the full sub-category of
CocTss(F, A) determined by those cocontinuous F 1 A such that

SEETF

is an isomorphism, for any j-dense monomorphism S<5T'. By recalling how
copowers are calculated in COCTSs(F,.A) over F , the result follows. 0
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Corollary 1.13 will be put to use (see Chapter 4, §4) in the case that F is a
topos of presheaves.
Let us now return to the proof of 1.7.

pROOF  (of 1.7) By the change of base formula 1.2, that is since
Coctss(£,.A) = CocTsse (£, CocTss(SC, A))

one can separate the cases £ = S€ for C a small category in § , and £ a sub-topos
of & . Let us first take the case £ = SC. Of course, if A is locally small, then A”
is also locally small. Therefore, (A%)C is locally small over S€. This was proved
in Chapter 2, §2. The opposite category of (A%)C is

AC” = CocTtss(SC, A),

and therefore, COCTSs(S C,A) is locally small over S€.

Let us now turn to the case that £ is the sub-topos of sheaves for a topology ;
on § . Observe that CocTSs(E, A) is locally small over S since it is a full

sub-category of A . But for a cocontinuous functor £ A4 , the hom-object
(A, X)eS is a j-sheaf, where A = =Z4(A) and X is any object of A . In fact, let
ST be an arbitrary j-dense monomorphism. Then S.A%S T.Ais an
isomorphism, and one has the following series of bijections:

S—(A, X)
S*A—-S5*X
S.A-X
T A-X
T*A-T*X
T—(4,X).

This bijection is given by composition with s, and therefore the object (A4, X) is a
sheaf. Thus, CoCTSs(E, A) is locally small over £ in the case of an inclusion. This
concludes the proof of the proposition. O

Recall that COCTSs denotes the 2-category of locally small cocomplete
categories over S . Thus, for £ S bounded, ( )p has a right adjoint. It is the
2-functor

Coctss(€,_) : Coctss —CoCTSe -

A key fact about the adjointness ( ), 4 COCTSs(€,_) is that it satisfies the Beck
condition.
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1.14 Proposition  Let £-2.8 be a bounded geometric morphism, and suppose
that

tn

is a pullback square of toposes. Then for any B € COCTSFr , there is a canonical

equivalence

Coctsx(P,B)q = CocTss(€, By)

of categories in COCTS¢ .

PROOF  First assume that £ = §C, for C a small category in S . Then P = Ffc,

X X
and if |x € SC, then q*x = |f*x. Let B € CocTSz . Then by definition,
C f*C

Coctsz(P,B)g = CoCcTs£(P/qex, B)

which is equivalent to

Coctsx(F'X B) = BF"X”
On the other hand,

CocTss(SC, Br)* = Cootss(SX, By) = (Br)X”

and this last category is in fact equal to BF'X” | Thus, the fibers at xe SC are
equivalent, and one only needs to verify that this constitutes an equivalence over
SC.

Now assume that p =i is an inclusion with £ = sh;(S). Let J denote the
sub-object of € characterized by j, and let 1 2, J denote the factorization of
150 through J. Let K «— §0r denote the image of the characteristic map of
f*d , and let J denote the topology on F generated by K . Then, as is well known,
P is equivalent to the topos of J-sheaves. Furthermore, K, the full sub-category of
Q) determined by K , consists of those .monomorphisms which are locally pullbacks
of *d. That is, K = (f*d) (see Chap. 2, §2). Being 2-fully faithful, ( )i is full on

equivalences, and so it suffices to show that

(Coctsz(P,B)q); = CocTss (&, By); ,
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and hence that
(1.15) (Coctsz(P,B),)s = CocTss(E, Bs)i -
By 1.11, the essential image of

Zp) Cocrtss(€&, Bs)i— Bs

consists of those Be Bs such that B*8 JBisan isomorphism. As calculated in B¢,
this means that (f*d).B is an isomorphism. Consider now the essential image of

= : CocTsx(P,B),—B

over F . It consists, again by 1.11, of those B € B such that (f*d).B is an
isomorphism. Here was used the fact that (f*d) generates J . Thus, the essential
images of Z(z) and (Zp)s in Bs coincide, as in the following diagram.

Coctss(€, Bs);
=(8¢)

(Cocts£(P,B)r)f ——— Bs
(Zs)f

This proves 1.15 (strictly speaking, 1.15 has only been demonstrated at 1€ S ).
The proof of the proposition is concluded by using the change of base formula. O

The following theorem summarizes the results so far.
1.16 Theorem Let £ =S be a bounded geometric morphism. Then
( )p : Coctsg —CoOCTSs
has a right adjoint which is
Cocrss(€,_) : Coctss —COCTS .
Furthermore, the Beck condition is satisfied as explained in 1.14.

To conclude this section, the dual of CocTsg(E, A) is calculated in the case
that £ S is bounded.

1.17 Proposition  Let C be a small category in S , j a topology on SC, and £ the
topos of j-sheaves. Then for any A € COCTSs , the dual of COCTSs(E, A) is
equivalent to sh;((A™)C) over £ .
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prRooOF  Consider first the case that p =i is an inclusion, with £ = sh;(S). By
1.11 the essential image of =4 consists of those A € A such that S.A%S T.Ais an
isomorphism, for every j-dense monomorphism S<»T . But, as was seen in the
proof of 1.7 (second paragraph), this is true if and only if the hom-object A(4, X)
is a sheaf in S for every Xe A, which is true if and only if A%(X, A) is a sheaf for
every Xe A% | which is true if and only if A is a sheaf in A”. In other words,

A COCTSs(E, A)i-——)Shj(Aop)op

is an equivalence over S . Both of these categories have a natural £ structure, with
respect to which =4 is an equivalence

Cocrss(€,A) = sh;(A™)”

over £ .

As for the general case, the change of base formula gives
CocTss (€, A) = CocTsse (€, CocTss(SC, A))
of which the right side is, by the first paragraph of this proof, equivalent to

sh;j(CocTss(SC, A)™)* = sh; ((A7)C)™ .

1.18 Examples

1. We are in a position to prove, as promised, theorem 4.3 from Chapter 2. Let
j be a topology on &, with £ the sub-topos of j-sheaves. Let fL»S be an

arbitrary topos over § . By our work on cosheaves and by using 1.17, one has

Fyv = shy(F*)” % Coots(P, )y

A

over F . Here V = int(y), the interior of the topology on F induced by j, and

o

V%)



is a pullback. Now restrict this equivalence along f. By line 1.15, we have
]'-/V = COCTSs(g, f)l = shj(fOp)OP .

The second equivalence is again by 1.17, but now over § . Furthermore,
these equivalences identify the following three functors:

Sy : Fjy—F, Z5: CoctSs(E,F)i—F , shj(F7)"—F.

The last one is the inclusion of cosheaves into F . In particular,
CocTtss(E, F); is a topos.

. With € as in the statement of 1.17, if A € COCTSs is complete, then

sh;(A€)”* = CocTss (€, A”) .

In particular, if F is a topos over S, then since shj(}"c) is equivalent to the
pullback £ xs F (Chap. 2, Cor. 2.12), one has

(€ xs F)* = Coctss(E,F7) .

That is, the dual of £ xs F is equivalent to the category of cocontinuous
functors from £ into the dual of F . Moreover, as shall be shown in the next
section, if F is bounded, then £ xgs F is the tensor product £8sF (i.e., the
left adjoint of ( )p ). Hence, the duality ‘formula’

(EosF )* = Coctss(E,FT)

holds.

. Let E5S bea topos over S . Let D denote a small cocomplete category in

S . To remind the reader, no notational distinction is made between a small
category and its externalization.

It is not clear that CocTss(E, D) is small in £ . However, in the case that

& =sh(X), X aspacein S, CoCcTSs(E,M) is small for M is a sup-lattice in
S . The intention is to show this. Fix M, a sup-lattice in § . A sup-lattice N
in £ shall be produced such that for any K €& , there is a bijection

(1.19) Coctss(E, M)XK
K—-N

as posets, which is natural in K . The following fact is from [JT].
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e Let J(X) denote the locale associated with the space X . Then there is

an equivalence

Ox : Mod(V¥(X))—sl(E)
of the category of 9(X)-modules with that of the sup-lattices in £ .

Furthermore, for any Le sl(S) there is a bijection

J(X)—L in sl(S)
1-®x(Hom(J(X),L)) in €

as posets, noting that Hom(9(X),L) is an 9(X)-module.

Let N = ®x(Hom(9(X),M)). By 1.13 and the above fact one has

Coctss(E,M)!
cocontinuous SYX)* —M taking
dense monos to isomorphisms
sup-lattice maps
J(X)—M in sl(S)
1-®x(Hom(¥(X),M)) in &,

and this proves 1.19 at Ie £ . To get the general case, one can proceed by
localizing as follows. Fix K €& , and let Y be a space in S such that
&k = sh(Y) . Then by our above work,

Coctss(&x, M)
1-®y(Hom(9¥(Y),M)) in &k .

However, &y (Hom(d(Y),M)) = &x(Hom(Q¥X ,N)), where
O : Mod(QF)—sl(&k)
is an equivalence, regarding K as a discrete space in £ . Then, since

1-® g (Hom(Q¥ N)) in &k
Q% 5N in sl(€)
K—-Nim¢&,

one obtains 1.19.

3.2 The tensor product

Let £ 28 be a topos over S . Recall that ( )p denotes the 2-functor taking a

category over £ to its restiction over S . Let A € CocTss .
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2.1 DeFINITION The tensor product of A with € over S is a pair (£8sA4,14),
where £©5.A is an object of COCTS¢ and 14 : A —(E®s.A)p is a cocontinuous
functor, such that the functor

(2.2) Coctse(E8sA,B)p — CoCTSs (A, Bp)

G ~ Gp 14

is an equivalence for every category B € COCTS¢ .

Observe that the passage G ~ Gpn4 is a functor between categories over S . The
definition then requires that this be an equivalence over S . However, as shall soon
be seen, that a given category be the tensor product it suffices that 2.2 be an
equivalence at €S , for every B € COCTS¢ .

Thus, the left adjoint of ( ), if it exists, shall be called the tensor product of
& with S . Pitts (see [Pi]) denotes this category by p*.A , a notation which shall
not be used here. He also talks about a tensor product, but instead meaning a
category over § which would represent cocontinuous bimorphisms. Here, however,
the primary interest is in change of base, so ‘tensor product’ will always mean the
left adjoint of ( )p .

To begin, the following basic fact is from [PS].

2.3 Proposition Let [ €S, and let A and B be arbitrary categories over S and
S)1 respectively. Then there is an equivalence

FuNcTs (41, B) = FUNCTs(A, By) ,
natural in A and B .

Since this is actually a slight improvement on [PS], in that there B was taken to be
of the form C;; for C a category over S, a proof is included.

PROOF The proposition expresses an adjointness for which the unit and counit
are as follows. For B a category over )7, the counit

¢: (Biyi—B ,
is a functor over S;; defined by setting
e =(z,1)" ,ze 81,

where
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X IxX
T To
I.
For A a category over S, define the unit
n: A—(A5)
at stage He S by setting
77H =7,

where Ix HD3 H . It is left to the reader to verify that the expressed equivalence
holds. a

2.4 Proposition  For A and B cocomplete, the equivalence of 2.3 restricts to
cocontinuous functors,

Coctss/i(Ar, B) = CocTss(A, By) .

PROOF  The restriction of a cocontinuous functor between cocomplete categories
is cocontinuous, and likewise for localization. The proposition now follows since

the unit and counit as defined in 2.3 are cocontinuous functors. a

Thus, A is the tensor product §;;®sA for any A € COCTSs . It now follows
that, as previously mentioned, for a given A € COCTS;s , if Xe COCTS satisfies 2.2
at 1€ S for every B € COCTSe , then X is the tensor product £8s5.A4 .

2.5 Example From the previous section, A is also equivalent to
CocTss(Syr,A) . Thus, for any I €S, there is a canonical equivalence

(2.6) Coct1ss(S)1,A) = 5/18s A , A e CoCTSs .
Line 2.6 is reminiscent of the fact that in locales and sup-lattices,
(2.7) Hom(Q,M)~Q'eM ,

where I €S , and M is a sup-lattice in § . Indeed, 2.7 is a special case of 2.6, for if
D is a small category in S, then Dy; is a small category in &y . In particular, if
- D = M is a sup-lattice in § , then §;;8sM =M, is a sup-lattice in S;; . Hence,

5/1®5M ~ QI(QIQDM)

since amongst sup-lattices they share the same universal property. The functor ®;
1s the equivalence

®; : Mod(Q)—sl(S)r) -

65



By 2.4, the property of being the tensor product is stable under localization
over £ . More precisely, if £8s5.A exists, then for any K €&,

(28) (5@5./4)/}{ = E/K®5.A

over &k . Recall that XK K €€ and Xe COCTS; , is shorthand for the category
(XK )k - This is a category over £ , namely the restriction of the localization of X
at K . For any A € COCTSs , let EK05.4 denote (§x®sA)K . EX®sA is a category
over £ . Thus, by 2.8 we have

(2.9) (Eos A)K = EKes A

over £ . In the case that K = p*I, let us write £/85.4 for £P"Tes.4 . Thus,
E®sA can be regarded as a category over § by setting

(E8sA) = (ElesA)! .

However, by 2.9 this is none other than the category (£®s.4)p . Therefore, it is
meaningful and correct to write

(8®5.A)p = g@s.A ,

as categories over § .
Since localization is both left and right adjoint to ( ), it follows that

Coctss(A!,C) = Coctss(A,CY),

for any cocomplete categories A and C over S, and any [ €S . From this one sees
that if £85.4 exists, then (£85.4)P°! is the tensor product £85(A7). This
establishes the second equivalence of the following proposition. The first
equivalence of this proposition has already been established above.

2.10 Proposition  Assume that £8s.A ezists, for A € COCTSs . Then both
Eles A and £85(A! ) ezist, and for every I €S we have

5l®5¢4 = (8®5.A)P‘I = g®5(AI )
over £ .

Proposition 2.10 expresses the equivariance over S of the tensor product. This
phenomenon has its obvious analogy in sup-lattices and locales.

In [Pi] Pitts has shown that the tensor product over § of a bounded topos
with € exists and that it coincides with the pullback as constructed in toposes.

66



2.11 Theorem (Pitts) Let f—LnS‘ be a bounded topos. Then the tensor product
of F with £ is the pullback € xsF as constructed in toposes. The universal
morphism nr is the inverse image functor of the projection £€xsF —F .

PROOF  Let P denote the pullback

P——¢
q P
F i S
with f bounded. By 1.14,
(2.12) Coctse(P,B)q = CocTss(F, Bp)

for any B € COCTS¢ . This is an equivalence of categories in COCTSx which when
carried to COCTSs under ( )f gives the desired result. In fact, applying ( )s to the
left side of 2.12 yields

(CocTse(P,B)q)s = (CocTse(P, B))p = CocTse (P, B)p .

Observe that the equivariance of CoCTSg(P,_) has been used here. Applying ( )¢
to the right side of 2.12 gives COCTSs(F,Bp) again, but now over § . This is the
equivariance of COCTSs(F,_). O

Y —

The above constitutes a new proof of Pitts’ result. As presented here, this
theorem should be viewed as a corollary of 1.14.

2.13 Example As is shown in [Pi], theorem 2.11 can be used to show that
locally connected geometric morphisms are stable under pullback, and that the
Beck condition is satisfied. Indeed, let

P F
r f

&

p S

be a pullback of toposes with f bounded and locally connected. By the naturality
of 1,
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f* f,

S F S F
7]51 nr s l nr
E0sS ——= E8sF E85S —— E@sF

Eesf* Eest

commute up to natural isomorphism, where f; 4 f* over S . The ‘( )’ notation has
been omitted in these diagrams since everything is over § . Let r, = £&sf;. It
must be that r*~£e&sf* | and hence ri - r* . Moreover, the right-hand square above
says that

=

pr-fizrn-q7,

since 7r is identified with q* and 5s with p*. That is, the Beck condition is
satisfied.

The Beck condition (in the context of cocomplete categories) holds for the
tensor product. This fact will be useful in Chapter 4.

2.14 Proposition  Suppose that

D

!

&

S

is a pullback square of toposes, with £-£58 bounded. Let A € COCTS: , and
assume that Pes A exists. Then (PegA), is the tensor product of Ay with F over
S. /

ProoF  This is a purely formal consequence of the fact that the Beck condition
holds for the adjointness { )p 4 CoCTss(E, ), see 1.14. C

Although the existence of the tensor product is in general unclear, by
imposing further conditions on A some results in this regard can be achieved when
& is the sub-topos of sheaves for a topology j or §. This is the intention in the
paragraphs that follow. Let £ — & denote the inclusion of £ into S .

Up till now sh;{.A4) has been regarded as a categorv over S . Recall from
Chapter 2 that shj{A) is made into a category over £ by defining

sh; (A = sh;(A4)"X .
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Under this definition, it was seen that if A is locally small then sh;(A) is locally
small over £ . Also recall from Chapter 2 that A is said to admit j-sheafification if
sh;(A) is a reflective sub-category of A , in which case the reflection functor is
denoted by a (also called the sheafification functor). It was shown that if

A € CocTss admits sheafification, then sh;(A) is cocomplete over S and hence
over £ , and so sh;(A)e COCTS¢ in this case. Moreover, sh;(.A) was seen to be
equivariant in the sense that

(2.15) Shj(.A)i = ShJ(A)

over § . This means that if one views sh;(A) as over & | then restricting back to
S gives the original category. This amounted to Shj(A)Ia_.’Sbj(.A)K being an
equivalence for every j-bidense morphism K- I'in S .
Recall (1.11) that for any B € COCTS¢ , the unit of the adjointness
( ); 4Coctss(€,_),
Ag : B —CocTtsg(€, B;)

is an equivalence. Let A € COCTSs , and assume that A admits j-sheafification.
Then sh;(A)e COCTS¢ , and therefore, there is an equivalence

A : shj(A)—CocTss(E, sh;(A);) ,
over £ . Now regard this equivalence, by restriction, as over S .
A : shj(A),— CocTss (€, shi(A));
By 2.15, there 1s therefore an equivalence
shj(A) = CocTSs(€, shj(A))

over § . This equivalence says that every cocontinuous functor & i>SIIJ~(.A)
factors through i*

Now let sh;(.A) F.Cbean arbitrary cocontinuous functor over § . Then for all
Ae Sb]' (.A),
Sy shi(A) e
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factors through i* . In other words, F itself factors through
=¢ : Cocrss(€,C);—C

and this factorization must be essentially unique because =¢ is fully faithful.
Thus, for any Ce COCTSg there is the functor

a* : CocTss(sh;(A),C)—CocTss(A, CocTss(E,C);)

sending F to F-a, which evidently is fully faithful. If A4 is assumed to satisfy the
hypothesis of the Special Adjoint Functor Theorem (see Appendix B), then a* is
an equivalence. All the hypothesis are summed up in the following theorem.

2.16 Theorem Let A € COCTSs , admitting j-sheafification. Assume that A has
a generating family and is cowell-powered. Then composition with the
sheafification functor induces an equivalence of categories

CocTss(shj(A),C)—CocTtss(A, CocTss(€,C)),
for any Ce COCTSs .

PROOF It remains to show that a* is essentially surjective. Let

A-S, CocTtss(€,C); be an arbitrary cocontinuous functor over S . Then by the
Special Adjoint Functor Theorem, G has a right adjoint which shall be denoted by
R. It follows that for all Ce CocTss(E,C);, RC is a sheaf. In fact, if U<V is
j-dense and if Ae AV is arbitrary, then first note that

GY(u.A)=u.GY(A)=G"(A)

regarding the j-dense monomorphism u — 1 in Syv . This follows because it is
true in C, and because Z; is fully faithful and cocontinuous. There is therefore the
following series of bijections:

u.A—V*(RC)

G’ (u.A)—»V*C
G (A)-V*C
A-V*(RC),

_ which is given by composition with u.A— A, establishing that RC is a sheaf. In
other words, R factors through

sh;(A) = A .

Hence R ~ i-a-Rand G-i4a-R. In particular, G -i is cocontinuous. By taking
left adjoints of R~i-a-R, one has G=G-i-a. O
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2.17 Example As pointed out in [Pi], the exponential adjointness
FuncTs(€ x A,C) = FuncTs(A, FuncTs(€,C))

restricts to

BiMs(€, A;C) = Coctss( A, Coctss(€,C)) ,

where the category on the left has as its objects those functors cocontinuous in
each variable separately, the so-called cocontinuous bimorphisms (see [Pi] for a
precise definition). Therefore, under the hypothesis of 2.16, sh;(.A) represents
cocontinuous bimorphisms over § . That is,

BiMs(€, A;C) = CocTss(sh;(A),C)

by an equivalence which is natural in C. This result can be extended (the details
have been omitted) to € bounded. This can be done by using the the change of
base formula, and the fact (from [Pi]) that if Cis a small category in S, then

BmMs(S€, A4;C) = Coctss((A)c,0),
by an equivalence which is natural in C.

2.18 Corollary  Under the conditions of 2.16, (shj(A),a) is the tensor product of
A with £ .

PROOF  Given an arbitrary B € COCTS¢ one has

CocTsg(sh;(A), B)
= Coctss(shj(A);, B;) , ()i is 2-fully faithful, see 1.11
= CocTss(shj(A),B;) , by 2.15
= Coctss(A,CocTss(E,B;);) , by 2.16
= CocTss(A,B;), ( );is 2-fully faithful.

This equivalence is natural in B , which establishes that sh;(.A) is the tensor
product. a

2.19 Examples

1. Any small cocomplete category satisfies the hypothesis of 2.16; that such a
category admits sheafification was shown in Chapter 2, §3.
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2. Let j be an arbitrary topology on § , with £ the sub-topos of j-sheaves.
Recall (Chap. 2, §2) that F”admits sheafification, for F an arbitrary topos
over § . If F is bounded, then F has a cogenerating family (see [PS], p.
102). F is well-powered as well, and so by 2.18, sh;(F) is the tensor
product £85(F ). Recall (1.18) that the dual of CocTss(E,F) is
equivalent to sh;j(F) . Therefore, one has the duality ‘formula’

Cocrtss(&E,F)* = E8s(F7),
for F a bounded topos over S .

3. Let X be an arbitrary space in S, and let £ = sh(X) . Then, as was seen in
§1 of this chapter, CocTSs(E,M™) is a small sup-lattice in £ , represented
by ®x(Hom(d(X),M%)). ®x is the equivalence

®x : Mod(¥9(X))—ssl(€) .
A fact from [JT] is that
Hom(J(X),M™)” = J(X)eM
as 9(X)-modules. Also, by 1.17 we have
CocTss(E,M™)” = sh;(M?(X)7) |

where j denotes the canonical topology on S*™)* | Thus, sh;(M?*)”) is a
small sup-lattice in £ , represented by ®x(J(X)eM) .
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CHAPTER 4
Descent

4.1 Equalizers and semi-split equalizers in a 2-category

Let XC denote an arbitrary 2-category, and consider the following diagram

A
‘—r—-
(1.1) B —= —.7’ D
LS p2

of 0-cells and 1-cells in K . Furthermore, suppose that there are given
2-isomorphisms

{ m n
PoT1 = P2 To Po To = p1- %o P2:Ty = P10 Ty
/\'76"0 ; 1B A'7r1 é’ lB.

1.2 DEriNiTION  For any 0O-cell Xe K, by a cone from X to the diagram 1.1 is
meant a pair (¢, z) where X 2y Bisalcelland g -¢ = 7y ¢ isa
2-isomorphism satisfying the unit and cocycle conditions:

vy - Az = uy prz = ny - pox - Iy - poz - My .

For a cone (%, z), the cocycle condition is sometimes easier to work with when
visualized as a commutative ‘cube’:

B C
I 7 |
1L/ EWG /O/ fo
_/ u / !
X B . '
I e
'd,?: ifc /ﬁ
|0 s
B——s——C

where the 2-isomorphisms belonging to the faces have been omitted from this
diagram.’ These isomorphisms are {, z,r,m,n, r in the order: back face, left, top.
right, bottom, and front face. In the future, when such a cube is given, the 2-celis
belonging to the faces will always be given in this order. The unit condition

expresses the commutativity of the following diagram.

1This 1s due to typographical difficuities. In any case, it is clear where they go and their
directions are immaterial because they are isomorphisms.
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The 2-isomorphisms that belong in this figure are z, v and v .
The cones from X to the diagram 1.1 are the objects of a category, where a

morphism (v, x) 4 (#,y) of two such cones is defined to be a 2-cell w/)i» ¢ such
that

1283

mo * Ty
WofJ lﬁf
Mo @ 'j Ty @

commutes. Let us denote this category by CONEy .

1.3 DEFINITION An equalizer of diagram 1.1 is defined to be a universal cone. To
be precise, it is a 0-cell A and a cone (6, k) from A to diagram 1.1 such that for

any O-cell X in X, composition with @,
(X, 0] : K[X, A)—CONEy ,

induces an equivalence of X'[X, A] with the category of cones from X to 1.1.

1.4 DEFINITION A split equalizer in the 2-category K is a cone (6, k) to 1.1,

0 *—7%'0— pO
AL p——=c".p
m P2

with in addition, 1-cells

1p S+ Mo

w8 tpo

i
re0 =1y 8+ M

t'pgélc tPl

e e
5~
~

To* S
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satisfying the following three coherence conditions:
1. axg - tl = 7od - cmy
2. am, -tn = m;d - bmy
3. kr-mpe-cmg = me-brg-tm .

To visualize these coherence conditions, the first one requires that the

following ‘prism’ commute.

B\ a
/m /m

To

As usual, the 2-isomorphisms have been omitted from the diagram, which in this
case are c, I, d and a. The second condition, involving isomorphisms &, n, d and
a , is similiar to this. The third condition expresses the commutativity of the

following cube.

A 6 B
/}6 / s)

7To

B C

| ;—“‘ c

ro{/ !Pc

1 S .

' v

¢ P1

The 2-1somorphisms belonging to this cube are, in the usual order: k,e,e,¢, b and
m.

The intention is to show that a split equalizer is an equalizer. Given a split
equalizer (A, 8, k,...) as defined above, it must be shown that for any 0-cell X in
K , [X, 6] is an equivalence. Composition with r induces a functor

[X,r] : CoNEx—K[X. A},

and sincer - ¢ & 1 , 1 X, 7} - {X, 6] is therefore isomorphic to the identity functor on
K[X,A]. To show that [X, 6] [X,r] is isomorphic tc the identity on CONEy. let

(v, z) denote an arbitrary cone from X . By definition.

(X, 0] - X.rlw,z)=(6-7 ¥, k-7-¢),
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and there is an isomorphism

pEYsmpEsmpTory,
which is seen to be an isomorphism of cones as follows. First apply ¢ to the
cocycle condition. Then by putting together the appropriate prisms and cubes one
deduces that ey - sz - dy is indeed an isomorphism of cones. Alternatively, this
derivation can be expressed with the single commutative diagram given below.
Note that the arrows in this diagram are all 2-isomorphisms, so no particular
direction of any of them is intended.

oS8T
WOV \ cmp
Wod'{/)
TS tpomiyp
moed,/ crgitroz, N\t arg)
molry tpomotp tpamotp To
krip ‘ tmay l , tpaz x
m10ry b tp1motp tPﬂﬂ/’T Y
7!'16’(#\ WO:‘[)/tplx\ '/tm/)
T18ToYP tpmy
7l'1d’(/)
™8T bﬂ']’(,b
T18T1Y

The center hexagon is ¢ applied to the cocycle condition for (¢,z) . The hexagon
on the left is the third coherence condition given by the split equalizer, applied to
1. The upper right and lower right squares are the other two coherence conditions
applied to ¥ . The remaining three squares commute by the axioms of a
2-category. Thus, the perimeter of the above diagram commutes, which says
. precisely that ey - sz - d is an isomorphism of the cones (¥, z) and (0riy, kry) .
This proves that [X, 6] - [X,r] is isomorphic to the identity functor on CONEy .
Thus, a split equalizer is an equalizer, one which, by its equational nature, is
preserved under any 2-functor.
The following generalization of a split equalizer will be used in section §4.
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1.5 DEFINITION A semi-split equalizer in a 2-category K consists of the same
data as a split equalizer with the difference that the 2-cells ¢, a and d are not
required to be isomorphisms. They are required to be 2-cells

r-0-5 1, s-m -5 1p t-pa—>1c
with the property that
1rf i dsmy
r-@.r-0—=<r-§ —1,4 §+M*+ 8T §-m—1p
r61 STy

be coequalizers, in the categories K'[A, A] and K[B, B] respectively. Furthermore,

a fourth coherence condition,
4. df-sk =6i-e0,

is required to hold. This condition can be visualized as

0
A B
;\7’ 7o ;—\3
B —|—C
S|
g B

where the 2-isomorphisms k and e have been omitted from the diagram.

1
A
With some assumptions on K, semi-split equalizers are equalizers.

1.6 Theorem Given a semi-split equalizer (A, B,...,0,7,...), assume that K
satisfies the following. '

1. For every 0-cell Xe K , K[X, A] has coequalizers.
2. For every 1-cell X =5 A, the functor
[a, A] : K[A, A|—K[X, A]
preserves coequalizers.
3. For every cone (Xi B,z), the functor
[¢, B] : K[B, B]—KI[X, B]

preserves coequalizers.
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4. For every 0-cell X , the functors
[X,6] : K[X,A|—K[X, B

and

[X, 7o) : K[X, Bl—K[X,C]
preserve coequalizers.
Then (A, B,...,0,7,...) is an equalizer.
To prove the theorem, let X be an arbitrary 0-cell in /C. Define a functor
[ : CoNEx— K[ X, A]
as follows. Given a cone (3, z), denote the composite 2-cell
0-7‘-1[)?3-70-1&?3-#1;1/)%:/;

by &(y4,z) - In the proof that a split equalizer is an equalizer, it was shown that
K(4,z) is a morphism of the cones (1, z) and (6rv, krip) . That proof remains valid
here, though now a and d are not necessarily isomorphisms. Let I'(¥, z) be the
coequalizer

iy q
rériy s ) ry —— (¥, )

in KC[X, A]. To see that T - [X, 6] is isomorphic to the identity on K[X, A], let
X — A be arbitrary. Then by assumption 2,

irfa i
rfrba ——= rfo —— «
rfia

is a coequalizer in KC[X, A]. By definition, T - [X, 6](a) is the coequalizer of
TK(9a,ko) and irfa . However, the fourth coherence condition of a semi-split
equalizer says that k(g = 07, and therefore

TK(fo,ka) = m(g,k)a = rfia.

Hence, I' - [X, 6]() is isomorphic to a .

To show that [X, 6] - T is isomorphic to the identity on CONEy, let (¢, z)
denote an arbitrary cone from X . The 1-cell component of [X, 4] - I'(4, z) is by
definition 0I'(+,z) as in the diagram
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Oiry
(L.7) 6rory — 6ry b9 0r(v,z) .

Or K(¢,z)

The 2-cell component of [X, 8] - I'(¥, z) is k['(v,z) . Diagram 1.7 is coequalizer by
assumption 4. By assumption $,

dsm ¢
(1.8) ST 8Ty ____1._.87r1¢) 2
LYY

¥

is a coequalizer in K[X, B]. Our task will be first to show that the parallel pair in
1.7 is isomorphic to the parallel pair in 1.8, and then that the resulting
isomorphism ¥ ~0'(+, z) is a morphism of cones. Let z denote the 2-1somorphism
sz - e, and let w denote the 2-isomorphism sk - €6 . Then dy - z = Ky, , and

df - w = Kk(gr) = i . We shall show that the squares

(1.9) brére vy, smifry —E spsmp
Oiry il i dsmy
bri = - ST Y
and
(1.10) bréry wr sm0ry ShE, ST 8T
07K v,y | | smydy
bry £ STy

commute. To see that 1.9 commutes, draw in the arrow
dbry: : swifri—bry .

while noting that
dory - wry = (df - wiry = Giry .

As for 1.10, rewrite it as

. ebrv . skryp ST1Z
Orlry ———— swpbry stibry —= smy57,0

‘ | !
6rK v | { SToK (y.z) U s du
Kiy.z) | ¢ | SR0Ny,z) s | 8T10Y:

' ' '

Ory ST , ST
ey ’ ST



In this figure, e8 commutes because, after removing s, it is simply the diagram
stating that k(y ) is a morphism of cones, noting that di) - z = k(3 4) . The square
e commutes by the axioms of a 2-category. Thus, 1.9 and 1.10 commute.
Therefore, there is an isomorphism k making

orp — 24 oL (4, z)

| I

STy i (U

commute. It remains to show that A is a morphism of cones. This follows by a

simple diagram chase involving the following three facts:
1. h-0q = di - 2 = K(yz) is a morphism of cones,
2. fq is a morphism of cones, and

3. since [X, 7] is assumed to preserve coequalizers, the 2-cell 7ofq is an
epimorphism in C[X,C] .

This proves that [X, 6] - I is isomorphic to the identity on CONEy, and concludes
the proof of the theorem.

4.2 2-Cotriples

A 2-cotriple is herein taken to be a strong 2-cotriple (see [B1]). There is no
need to keep using the prefix ‘2-’; so a 2-cotriple shall henceforth be referred to as
simply a cotriple. Let KC denote an arbitrary 2-category.

2.1 DEFINITION A cotriple G on K is a 6-tuple (G, ¢, 6,p, g, w) where G is a
2-endofunctor on X, and G—=+1 and G —%,G? are 2-natural transformations
together with modifying isomorphisms p, ¢ and w as in the following diagrams.

G_6_,G2 G_é_,GZ G_(S_,G2
| le Nde N
P

G 3G G G G

In these diagrams, G* means G applied n times. Furthermore, the following
coherence conditions are to be satisfied.
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8 ) 2 2
(1;\1 s AN DN 5 AN 1/6(;G AN\ e
§

G — WG? s G — G——o,-——G2 G‘Z -_ 1—>G3
/sG /562 /Gs /G25 5/ /66
G? s G3 G? 5 G? G F; G?

The modifying isomorphisms that belong in these diagrams have been omitted.
For example, in the prism on the left go the isomorphisms p, pG, w and €5, which
belong to the faces: left, right, front and bottom respectively. The isomorphism ¢,
is that supplied by ¢ as in the following square.

G2_€—G__’G

al |
G’g

G3 5(;2 G2

2.2 DEFINITION A coalgebra (again, to not use ‘2-coalgebra’) for the cotriple G is
a quadruple (B, 0, k,1) where Bis a 0-cell, 8 is a 1-cell, and k and ¢ are
2-isomorphisms as in

0 0

B GB B——GB
GJ ‘G() \1\§ €B
k
GBT'GZB B
B

satisfying the unit and cocycle conditions,
g0 - G(eg)k = G(2)8 G(6g)k = wpl - gk - 646 - G2(6)k - G(k)6 .

The 2-isomorphism &y is that supplied by § as in

§
GB —2—~ 2B
GoJ l G20
G’B 5—: GB.
GB

The cocycle condition expresses the commutivitity of the cube

5
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GB G’B
o e IG20

T g fen

9 /g 6%53

GB 5 G’B
B

where the 2-isomorphisms belonging to the back, left, top, right, bottom and front
faces are 6y, k, k, G(k), wp and k respectively.
A morphism (1-cell) of coalgebras is a pair

(F, ) : (A, 5, h)— (B, 8, k,1)

where A5 B is a l-cell and 6 F L G(F)( is a 2-isomorphism such that the
diagrams

04

GA G2A
G¢ F
¢,/ | oF / g As—L—B
/C G F \5/1 GF \63
A T GA gy 1 GA — |—GB
GB — G*B /C /9
F /9/ G%a A——B
B z GB

commute. The 2-isomorphisms belonging to the faces of the cube are, in their
usual order: éF, f, j, G(f), ¥ and f. In the prism, the isomorphisms which belong
to the triangular faces are h and ¢, and to the three square faces are the identity,
EF and f .

Finally, a 2-cell (G, g)= (F, f) between morphisms of coalgebras is a 2-cell
G5 F such that

G %~ G6(G)
001] ‘G(a)(

OF  F G(F)

commutes. Coalgebras in K for the cotriple G form a 2-category which shall be
denoted by g . This ends definition 2.2.
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Let
Ug: K:G——JC
denote the forgetful functor. Ug sends (B,8,k,i) to B, (F,f)to Fand ato a.

The intention is to establish a cotripleability theorem in the context of
2-categories. The first step is to observe that Ug reflects equivalences (an

equivalence between two objects K, L, in K is a quadruple (F, H, z,y) with
H

K L L

in K). Indeed, assume that there is given a morphism of coalgebras
(F7 f) : (Bao, k,i)—)(A,C,],h) ’

and a 1-cell AL B along with 2-isomorphisms F - H £ 14 and H-F 2 1gin K.
A 2-isomorphism GH -6 £ ¢ - H must be exibited making (H,g) a morphism of
coalgebras. Furthermore, z and y must be shown to be 2-isomorphisms in Kg .
Regarding z and y, a simple diagram chase shows that Ug reflects 2-isomorphisms,
so if z and y are shown to be legitimate 2-cells, then so are their inverses.

Let g denote the composite 2-isomorphism from GH - ( to 6 - H as in the front
face of the following cube. The commutativity of this cube is required for (H, g) to
be a coalgebra morphism.

/
A /GA G6
f/ |
Hl /F o)
7 Y
B—r— 6B+ GB

The inside cube in 2.3, with the appropriate 2-isomorphisms inserted, commutes
because (F, f) is a coalgebra morphism. If the two prisms on either side of it were

to commute, then this would show that (H,g) is a coalgebra morphism.
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Furthermore, the commutativity of the left prism would say that the
2-isomorphism z is a 2-cell of coalgebra morphisms. A similiar prism would show
the same thing for y, and in fact, G applied to that prism would be the right prism
in the diagram above. Thus, the question comes down to showing that the left
prism in 2.3 commutes. To see this, partition the prism’s left face (the left face of
2.3, that is) in the same way that the front face of 2.3 is, to give the following
figure of now just the prism.

/
v

GH g\ GA F\—H A
IGF /?
GB' =7 GB 7 B

In this diagram, the two triangular pyramids on the ends commute, as does the
inside prism. Therefore the whole thing commutes, and hence does 2.3. This
concludes the proof that Ug reflects equivalences.

The next step is to observe that coalgebras are split equalizers as defined in

the previous section. In fact, if (B, 6, k,1) is a typical coalgebra, then

G
£B G20

Go 5
6B —= g2p B, 3
g 565

(24) B

is a split equalizer in A, with. in the notation of the previous section, A = Geg.
7y = Gb. 7 = ép, po = G*6, p1 = Gép, p; = égp, and with r, st equal ¢

£B.£GE- G2 respectively. Furthermore, the 2-isomorphisms a,b, ¢, d, € and {,m.n
are pGg. €65+ £Go» PB, €6 and &g, Gk, wp respectively. All the commuting
conditions are routinely verified. For example. let us verify the three coherence
conditions of a split equalizer. Of those three, the first one follows by the
naturality of p for § . The second condition is by the first coherence diagram {at
B ) it the definition of a cotriple. The third condition requires that
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B GB
5% K S/G/ o
G0
N R
Go Af’ G""()/@B
G*B—g5— G°B

commute, which is true by the naturality of € . The 2-isomorphisms in this cube
are, in the usual order: k, €y, €4, €Gg, €55 and Gk . Thus, 2.4 is a split equalizer.

2.5 DEFINITION By an adjointness U+ R between 2-categories K and L shall be
meant a 6-tuple (U,R,e,n, 3,7), where £—2+/C and /Cibﬁ are 2-functors,
1-55RU and UR—51 are 2-natural transformations, and 8 and + are modifying
isomorphisms:

eU-Up £ 1 Re-gR 2 1R.

This notion is referred to as an i-weak quasi-adjointness in [Gra2] (p. 168).
As expected, an adjointness between 2-categories gives rise to a cotriple. The
notation 7,, denotes the modifying isomorphism supplied by 7 at 7 as in

n

——RU

1
[

~

RU R_Urf RURUY.

2.8 Proposition  Given an adjointness U- R with AC—U—JC , then
(UR, €, UnR, BR, U, Un,R) is a cotriple on K.

PROOF  To verify the coherence conditions of a cotriple, let us denote the data
(UR,E, U"]R’ﬂR) Uy, U’InR) by (Ga€a6) P49, w) . The condition

6
G G?
\d 5 \d
(2.7) Py G — §5G G?

/6G /€G2
3

G—F=F—G

G

with modifications p, pG, w and ¢; , transposes to
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nR
R \UR R6RG\77RG

e e
RG —R5 — RG?

where n,R is the modification in both the front and top faces. The other faces
have the identity as their modifying isomorphisms, and therefore this figure
commutes, which proves that 2.7 commutes. The other coherence conditions are
verified in a similiar way. a

The cotriple of 2.6 shall be called the cotriple induced by, or associated with,
U-R.

Given an adjointness U R with LYK , and with the induced cotriple G on
KC, the comparison 2-functor,

o: L — Kqg,
is then defined to be, for 0-cells, 1-cells, and 2-cells respectively,
LF,f ~ (UL) UnL»UnﬂLMBL),UFan-

It is easily verified that ® is indeed a 2-functor into the category of G-coalgebras.
U is said to be cotripleable if ® is a 2-equivalence, in the following sense.

1. ® is 2-fully faithful, which is to say that for all L, Me L, the functor
®rp: LIL,M]—Kg[®L, ®M)]
is an equivalence.

2. ® is 2-essentially surjective, which is to say that every coalgebra is
equivalent in Kg to ®L for some Le L .

For any Le L , the diagram

R
<UL (RU)2ny
RUnL RU
(2.8) RUL —— (RU)2L —RUL (ryy3L
TRUL M(RUy2L
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is one of the form 1.1, where my = RUnz, po = (RU)?7n, and so on. The
2-isomorphisms I, m,n and u,v are nRry,,, RU7n,,, TRUL and Ry, By respectively.
Furthermore, (nL,7,,) is a cone (see 1.2) from L to the above diagram, and U
applied to this cone along with 2.8 yields the split equalizer in K arising from the
coalgebra ®L .

In the context of 2-categories, the cotripleability theorems are then as follows.
In these theorems, which are the next three, G = (G, ¢, 6, p, ¢, w) denotes the
cotriple induced by U - R.

2.9 Theorem  The comparison 2-functor ® is 2-fully faithful if and only if for
every Le L the cone (n,n,,) is an equalizer of diagram 2.8.

PrRooF  For the sufficiency of the given condition, fix 0-cells M, N in L. To be
shown is that

Oy : L[M, N]—Kg[®M, ®N]

is an equivalence. Let CONEps denote the category of cones from M to the
diagram of the form 2.8 with N in the place of L. Define a functor

V: Kg[®M,dN]—CoNEy = LIM, N],

where the first arrow sends a coalgebra morphism ® M £, ®N to the cone whose
1-cell component is RF - npr . The equivalence in the definition of ¥ is by
hypothesis. Now for a given M -2, N both H and Uy H give rise to the cone
RUH - np in CONEyy as in the following diagram:

MM, ruM

VoynH || H RUH

~

N RUN.

NN
It follows that U®,sy is isomorphic to the identity on £[M, N]. On the other
hand, given a coalgebra morphism &M FoN , by the definition of ¥ F there is

an isomorphism of cones

™M

M RUM

UF RF

~

N —5~ RUN.
Applying U to this square gives
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Unar

UM GUM
(2.10)
UT F GF
UN —— GUN,

Unn

where observe that the horizontal arrows in 2.10 are the universal cones for the
split equalizers in K arising from the coalgebras ® M and ®N . Being a coalgebra
map, F also makes 2.10 commute. Therefore, Uny - F~Uny - UV F as cones from
UM . Thus, F' is isomorphic to U¥F = ®pyUF'.

For the converse, fix an Le L . To be shown is that composition with the cone
(7L, M, ) gives, for any Xe L, an equivalence

L[X, L]~ CoNEy ..

The categories Kg[®X,®L] and CONEyx are sub-categories (not full) of
K[UX,UL] and L[X,RUL] respectively, and it is not hard to see that the

equivalence

K[uX,UL) = L[X,RUL]
coming from the adjointness U 4 R restricts to
Kg[®X,®L)~ CoNEx .
By hypothesis, ® x; is an equivalence, and this concludes the proof. a

2.11 Theorem A coalgebra (B,0,k,1) is in the 2-essential image of ® if the
equalizer of

Rep

—E RGO
RO RS
(2.12) RB =—= RGB —2- RG?B
"IRB MRGB

ezists in L and U preserves it.

PROOF Let (B,0,k,t) denote an arbitrary coalgebra. By hypothesis, there exists
a universal cone (@, j) from say L to diagram 2.12. Applying U to diagram 2.12
and the cone (¢, ) gives

G
,ﬂ_ 620
U
v 2% ;3 23 28, cop |
Y2 5GB
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Since (0, k) is an equalizer of this diagram, in fact making it a split equalizer,

there exists

]
B é GB
a[ o
UL

where f is an isomorphism of the cones (U¢,Uj) and (@ - bk - J)) Furthermore, ¢

can be taken to be equal to eg - U, the transpose of ¢, because ep is the ‘r’ of the
split equalizer (B, 6, k,...). However, ¢.$ must be an equivalence in K because U is
assumed to preserve the equalizer (¢,7). Now consider the following figure.

GB —~G'B G4

In this figure, f is the 2-isomorphism in the left triangle, Uny goes in the square,
and Uvp goes in the lower right triangle. Denote the composite 2-isomorphism in
the above diagram from 6 - ¢ to G¢ - Uy by z . The claim is that

($,2) : ®L—(B, 6, k,1)

is a morphism of coalgebras. So, to be shown is the commutativity of

b R
GUI—E— gL

i~ GU |
Un/ ! Go /m’ ! G24
U ,

UL —2%—GUL 4,
| GB— | G*B
al | ~

4 / i(’%e
|, 4
B———F——GB

s . Ue . . . , ; . .
Insert the morphism UL — GB in as a diagonal on the left and front faces of the

above cube. The cube is thus divided inte two figures. One, which consists of the
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lower left corner together with the bottom face, commutes because f is a
morphism of cones. The other figure, which consist of the cube less the lower left
corner, is entirely within the image of U, which means that every 0-cell, 1-cell and
2-isomorphism in it is preceeded by a ‘U’. Upon removing U from this figure and
transposing it back to X, the following figure results.

GUL GUL
~ Un
G i
UL UL
U~ GB— | —1~GB
$ ¢ /
B

This figure commutes, which proves that (¢,z) is coalgebra morphism. Since Ug
reflects equivalences, (B, 8, k,1) is therefore equivalent to ®L in Kg . a

2.13 Theorem U R is cotripleable if and only if for all Le L the cone (nr,7my,)
is an equalizer of diagram 2.8, and for every coalgebra (B, 0, k,t) , the equalizer of
2.12 ezists in L and U preserves it.

PROOF  All that remains to prove is that if U- R is cotripleable, then for every
coalgebra (B, 4, k,1) , the equalizer of 2.12 exists in £ and U preserves it. Since ®
is 2-essentially surjective it suffices to show this for every coalgebra of the form
®L . But, since ® is 2-fully faithful, L with the cone (nz,7,,) is the equalizer of
2.12, where B = UL, § = Unp and so on. As previously remarked, U applied to this
equalizer is a split equalizer in K. a

Theorem 2.13 shall find its first application in the next section with the
following observation in mind. Suppose that

M——r M—F—r
v‘ e Iu ‘s' y ]R

are 2-categories and 2-functors, with natural equivalences e and d. Also, suppose
that U4 R and VS, and that d corresponds to Qe - ¢S under U 4R, where ¢
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denotes the counit of V-S. Then, assuming that U is cotripleable, if P preserves
and reflects equalizers and if Q reflects equalizers, then V is cotripleable.

4.3 Descent for cocomplete categories

Throughout this section £ -2 S shall denote a fixed arbitrary bounded
geometric morphism. Let £* denote the n-fold product of £ in TOoPs. Then &7,

n=1,2,..., exists and is the tensor product £€8s5€®s5...£ .

The immediate difficulty with descent in the context of locally small
cocomplete categories is that the tensor product is possibly not everywhere
defined. However, by using the Beck condition, this difficulty can be ‘done away
with’ as follows. Let COCTSye denote the full sub-2-category of COCTSs whose
objects are those A € COCTSs such that £"®s.A exists for n = 1,2,3,....

| CocTspe | = {A eCocTss | Emes A exists, n=1,2,3,...}
Similarly, let CoCTs, denote the full sub-2-category of COCTSs whose objects are
| CocTsp | = {B eCocTsy | E™*lesB exists, n =1,2,3,...} .

Here, £"*1¢.B means the tensor product taken along any one of the n + 1
projections £"*1—— € . Observe that it exists along one projection if and only if it
exists along all n + 1 of them.

Thus, there is a 2-functor

£es 1 CocTspe —COCTS,, .

Since the Beck condiilon {see Chap. 3, §2) is satisfied, it follows that the right

adjoint of £&g restricts to these 2-categories,

!

( Jp : CocTSp—COCTSpo .

For example, if B € COCTS,. then £&s(B,) exists and is equivalent to (£*@sB),, ,

where

12
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is a pullback of toposes.

3.1 DeriNITION  The geometric morphism p is said to be of effective descent for
cocomplete categories if

£&s : CocTspe — COCTSp

is cotripleable (in the sense developed in §2).

Normally, one would say that p is of effective descent if objects in
CocTsg equipped with descent data descend uniquely to COCTSs . Descent data
would be an equivalence

6: 82®5B = B®g£2

which satisfies the cocycle condition (in this context, up to coherent isomorphism).
The same would be required of 1-cells and 2-cells in COCTSg which commute with
descent data; they would be required to descent uniquely to CoCcTSs . However,
since the Beck condition is satisfied, this formulation of descent would then be
equivalent to 3.1. This ‘translation’ has been omitted.

Let GTOPs denote those toposes over S which are bounded. The
2-embedding (see Chap. 1, §6)

p: GTors"— COCTSs

factors through COCTSpo, and in this way one regards GTOPs™ as a
sub-2-category of COCTSpo. Similarly, GTOPs” is regarded as a sub-2-category of
Coctsp. Moreover, by Pitts’ theorem (Chap. 3, §2), the adjointness £&s 4 ( )p
restricts to bounded toposes. It would then be written as Xp 1 &% , or as
Lpdpx.

3.2 DeriviTION The geometric morphism p is said to be of effective descent for

toposes if
Exs : GTops— GToPg

is tripleable.

Let Set denote the topos of sets, and for the rest of this section assume that
S§ e GTOPg,; ; assume that S 1s a Grothendieck topos.

3.3 Example Pure geometric morphisms are introduced in §4, and they are
shown to be of effective descent for cocomplete categories. If p is a spatial open
surjection {the definitions of these notions are given in §4), then it is seen in §4
that p is pure. Hence, the foliowing theorem is established.
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Theorem Any spatial open surjection is of effective descent for cocomplete

categories.

By the theorem which follows this example, the following result due to
Moerdijk [M5] is thereby established.

Theorem (Moerdijk) Any spatial? open surjection is of effective descent for
toposes.

Moerdijk’s theorem has as a direct consequence the 2-dimensional version of a
classification theorem for toposes originally due to Bunge [B4]. Let us state and
prove this classification theorem.

Let G = (Gy, Gy) be a spatial groupoid in § . Assume that the domain and
codomain maps do and d; are open. Define BG to be the coequalizer

o /\

“m. o, p
Sh(G] X G, Gl) - Sh(Gl) 7—-: Sh(Go) — BG

1 1

in GToPs. That this coequalizer exists is shown later in this section. The same
symbols have been used to denote the geometric morphisms which correspond to
the continuous maps. The geometric morphism m is (that which corresponds to)
the composition of the groupoid. From the construction of BG (see below), it is
clear that p is a surjection, and since dy and d; are assumed to be open, it follows
that p is open (see [M3)). Since sh(Gy) is spatial over S, p is spatial over BG.
Therefore, p is of effective descent for toposes.

Let G denote the spatial groupoid obtained as the 2-kernel pair of p. In other
words, Gy is defined as the pullback

sh(G,) — sh(Gy)

P

~

Sb(Go) BG

P
in GToPs . In [M3], G = (Go, G’l) is called the etale-completion of G . Let

GTOPga

denote the 2-category of algebras for the triple on GTOPgp(g,) induced by the
adjointness ¥p 4px . An object of GTops€ is a topos over sh(Gy) equipped

2He proves the general case. His methods are entirely different from those used here.
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with a continuous action by G . The (2-dimensional version of the) classification
theorem is as follows.

Theorem (Bunge) Pullback along p induces an equivalence

GTorpg = GTOPSé .
PROOF  p is of effective descent for toposes. a
One says that BG classifies G-toposes. This concludes this example.

In the remainder of this section, the intention is to establish that a morphism
which is of effective descent for cocomplete categories remains so at the level of
toposes.

3.4 Theorem If p is of effective descent for cocomplete categories, then p is of
effective descent for toposes.

To prove 3.4, let us begin by examining equalizers in COCTSs . Given a

diagram
A Po
35 p——=cL=p
1 P2

of locally small cocomplete categories and cocontinuous functors with
2-isomorphisms

{ m n

Po Ty = P27 Po"To = p1°-%0 P27y = P17
u v

A-’Iro:lg A'ﬂ'lzlg

all over § , consider first only g and 7;. For I €S, let 2T denote the
sub-category of B! which has as its objects all pairs (B, k) where Be B! and

xiB % B is an isomorphism in C . A morphism (4,;) % (B, k) in 27 is defined
to be a morphism AL B in B such that

T A 1 A

4| |t
T B =B

E
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commutes. One sees easily that the substitution functors of B restrict to the
categories Z7 thereby giving us the category Z over S . Z is locally small. In fact,
the object in &)y which represents morphisms (A,j)—'L (B,k) in Z;; can be
calculated as the equalizer of

I
BI(A, B) —2 CI(xl A, %] B)

| B

Cl(xIA,#!B) e Cl(xlA,=IB),

where ko and oj are composition with k and respectively j . Furthermore, since 7
and 7, are cocontinuous it follows directly that Z is cocomplete, with colimits
being created by the inclusion of Z into B .

Now consider the full sub-category A of Z determined by those objects (A, 7)
which satisfy the unit and cocycle conditions:

UA')\(j)=UA Pl(j)'—'nA‘Pz(j)'lA'Po(j)'mA-

Then A is locally small since it is a full sub-category of a locally small category.
Moreover, A is cocomplete since A, po, p1, p2 are cocontinuous, with colimits being
created by the inclusion of A4 into B . It follows that A is the equalizer in
Coctss of diagram 3.5. Thus, COCTSs has equalizers.

The next step 1s to show that the 2-embedding

p: GTops”—CoOCTSs

creates equalizers. Let

A
(360 4 t.pg——=cL.p
™ I

be the equalizer in COCTSs of toposes and {the inverse images of ) geometric
morphisms in GTOPg. It must be shown that .4 comes from a topos and 8 from a
geometric morphism over § , and furthermore, that A is the coequalizer in
GToprs. The intention is to use the theorem {Th. 6.7) developed in Chapter 1
about when a category comes from a topos. First note that finite limits in A are
created by @ since all the functors in 3.6, except ostensibly € | are left exact. But
then 6 must be left exact.

The first requirement of theorem €.7 from Chapter 1 is that the fiber category

A’ be an elementary topos. Consider the data of 3.6 at 1e S .
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1r‘ * [
(3.1 4! 0! B! L—C’ _’L D!
7‘.*1 . ]
1 P2

In so forgetting the S structure, 3.7 is simply a diagram in GTOPg,; , with
ostensibly the exception of 4! and ¢/ . Given a diagram in GTOPg, such as 3.7,
it follows that A’ is in GTOPgs.: . A direct demonstration of this can be found in
[M3], and the reader is referred there for the details. Thus, the first requirement of
6.7 is satisfied. The second requirement, that 4 have coproducts which satisfy
Frobenius reciprocity and which reflect isomorphisms at 1, is satisfied because

A inherits coproducts and finite limits from B . The third requirement, that A4 be
locally small, has alfeady been shown to be satisfied. Thus, 4 does indeed come
from a topos over & (which is bounded over S since A€ GTOPs,; ). That is,

A eGTops.

The ordinary functor 6 is cocontinuous in the ordinary sense over Set because
8 is cocontinuous over S . Therefore, 8° is the inverse image of a geometric
morphism. However, the point is that one wants 8 to come from a geometric
morphism over § . By 6.8 of Chapter 1, this is the case. Also, given a cone in
GToprg from an Xe GTOPs to 3.6, the induced functor from X to A is left exact,
and it is clear that it must come from a geometric morphism over & . Hence, A is
the coequalizer in GTOPg. This proves that p creates equalizers.

Let us return now to the geometric morphism & s , and the full
sub-2-category COCTSpe of COCTSs . The 2-embedding g factors through
CoCTSpo,

p: GTors”—COCTS o .

By regarding @ as a functor into COCTSpe, we see that it preserves equalizers since
it creates them in COCTSs . A 2-embedding which preserves equalizers must alsc
reflect them (if they exist}. Therefore, @ reflects equalizers from COCTSpe. The

same is true at the level of £ . That is,
p: GTop,7—CoCTSs,

preserves and reflects equalizers. Given the work done in the previous section (see
the paragraph following 2.13). the proof of 3.4 is now complete.
4.4 Pure geometric morphisms

The intentiorn in this section is to show that pure geometric morphisms, to be
defined presently. are of effective descent for cocomplete categories.
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In [JT], a morphism of locales AL B is said to be pure if for every A-module
M, the universal morphism
™ : M—Be, M

is faithful. The category of A-modules is self-dual via the functor M ~» M . The
A-module M is the opposite sup-lattice of M, where supremums in M°? are
infimums in M. This passage sends an A-module map N M to its right adjoint
which can be denoted by a°. One shows (see [JT]) that a pure localic map f is of
effective descent by obtaining a retract of every 7p; . This can be done essentially
because the category of A-modules is self-dual. This line of argument will not
work in the context of cocomplete categories. However, the right adjoint of 73y is
of course n\ , and therefore, f is pure if and only if every 734 has a faithful right
adjoint. With this in mind, let us proceed to define the notion of a pure geometric
morphism.

To begin, the cocontinuous dual of a cocomplete category shall take the place
of the opposite category of a sup-lattice.

4.1 DEFINITION For any cocomplete category A , let A* denote the category
CocTss(A,S) . The fiber above I €S is

Al = Cocrtss,, (Ar1,81) & Coctss(A,S)r) -

For a morphism H = I in S , the substitution functor o* is given by composition
with the pullback functor §;;— &,y . A* shall be referred to as the cocontinuous
dual of A .

The category A* is cocomplete over S , though it may not be locally small
(even if A is).

For any cocontinuous ALf.B , composition with F gives us a cocontinuous
functor

F*: B*— A"
Let
AA . A—*.A**

denote the functor which sends an A € A to the cocontinuous functor
A _A(A) A — S

@ ~ p(A).

Then A 4 is itself cocontinuous, and A is natural in A .
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Let £ -+ S denote an arbitrary geometric morphism between elementary

toposes.
Recall that
m:A—EesA

is used to denote the universal morphism associated with the tensor product of
A with £ (wherever defined). Then there is a 2-natural transformation

7 s (Ees( )y —( )"

whose component at A is (94)*. A 2-natural transformation can have an adjoint,
and it is in the following sense that this is meant.

4.2 DEFINITION  Given 2-functors K -5 £ and £L-5K , and a 2-natural
transformation F -5 G, let us say that t has a right adjoint if for every 0-cell
K €K there is given an adjointness (tg, sk, €k, 7Kx) With tg 4 sk . Furthermore, it

1s required that for every 1-cell J JK in KC, the 2-cell corresponding to

PPN tss \ G{Hied ~, .
tk - F{f) - s, 25G(f) -ty s, G

under ty -4 sg be an isomorphism.

If 7* has a right adjoint, then let us denote the right adjoint of the component
(na)” by Ra .

4.3 DEFINITION Let us say that n* has a cocontinuous (resp. faithful) right
adjoint if * has a right adjoint such that every component Ry is cocontinuous
(resp. faithful).

4.4 DEFINITION A geometric morphism € 2.8 shall be called pure if ™ has a

cocontinuous faithful right adjoint.

One could introduce the notion of an S-pure geometric morphism £&—7F
between toposes over § . It would not be hard to see that S-pure geometric
morphisms would then compose and would be stable under pullback. As these
developments are not needed here, they are omitted.

The central result of this thesis 1s the following.

4.5 Theorem  An arbitrary {bounded) pure geometric morphism is of effeciive
descent for cocomplete categories. In other words, if £ == S is such a geomietric
morphism. then

Ees : COCTSpe — COCTS,

ts cotripieable.



To remind the reader, ‘cotripleable’ means the 2-categorical sense as developed
in section §2 of this chapter. The 2-categories COCTSpe and COCTS, were
introduced in §3.

4.8 Corollary  Pure geometric morphisms are of effective descent for

Grothendieck toposes.
prooF This is a consequence of the above theorem, and of 3.4. a

A geometric morphism p is said to be a surjection if p* is faithful. A geometric
morphism p is said to be locally connected if p* has a left adjoint over & . If such 1s
the case, then the left adjoint shall be denoted by p: .

4.7 Corollary  Any (bounded) locally connected geometric morphism which is a
surjection is of effective descent for cocomplete categories.

PROOF  We will see that any locally connected surjection is pure. a

A geometric morphism p is said to be open if the unique localic map
Q- (e )p

in S has a left adjoint (see [J3]). The locale ({¢)p is the restriction along p of the
sub-object classifier in £ . It is equal to the locale p.(§l¢) . A geometric morphism
p is said to be spatial® if £ is equivalent to sh(X) for a space X in & . If this is the
case, then (1¢)p is equal to 9(X), the locale associated with the space X .

4.8 Corollary  Any spatial geometric morphism whick 1s an open surjection is of

effective descent for cocomplete caiegories.
PrROOF  We will see that any spatial open surjection is pure. C

Let us begin the analysis of pure geometric morphisms with the foliowing
observation. As endofunctors of COCTSs , £&5 is left adjoint to CoCTSs(E,_) .
Therefore, CocTss(A,E*) = (€65 A)", and there are natural isomorphisms
between functors over § as in the following diagram. The center arrow in this

diagram 1s the functor COCTSs{A.Z¢) .

'This terminology follows [JT]. The term localic. which corresponds to the ‘locale/frame’ ter-
minology, is also used for such a geometric morphism.
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Coctss(€,A*) = CocTss(A,E%) =2 (EvsA)*

(4.9)

*

(14)

R

A*

Recall from Chapter 3 that =4« is the counit of the adjointness
( )p 1CocTSs(E,_) at A*. The equivalence on the left in 4.9 results because
both categories are equivalent to the category of cocontinuous bimorphisms

BiMs(A4,E;S) .

Thus, (n4)* is isomorphic to =4« . In particular, since s is equal to p*, we
can identify
(pt)* . 8*__}8*
with Zs« . Furthermore, since $* 2 S, (p*)* can therefore be identified with =5 .
That is, if (p*)* is regarded as a functor to S, then

(p")"(F)=Es(F) = F(Z¢)

where Fe £* .
Pure geometric morphisms are surjections. The following lemma can be used
to see this.

Lemma Let B —G—b.A be a cocontinuous functor with a cocontinuous right
adjoint F. Assume that epimorphisms in A are coequalizers. Then if F is faithful,
so is G*.

PROOF  G* is right adjoint to F* . Let ¢ denote the counit of this adjointness. It
suffices to show that F*(G*(¢)) =% ¢ is an epimorphism for every pe A*. For this to
be true, it suffices that for every A € A

(e0)a : F*(G*())(A)—¢(A)

be an epimorphism in § . By definition, F*(G*(¢))(A) = ¢(G(F(A))) and

(ey)a = p(wy) , where w denotes the counit of G- F. By hypothesis, w4 is a
coequalizer, and therefore so is (¢,)4 since ¢ is cocontinuous. Thus, (¢,)4 is an
epimorphism. O
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Now let p be a pure geometric morphism. Then (p*)* has a faithful cocontinuous
right adjoint. By taking G to be (p*)* in the lemma, one concludes that (p*)*™ is
faithful. But Ag - p* = (p*)"™ : As, and Ags is an equivalence. Hence Ag - p* is
faithful, and therefore p* is also.

Diagram 4.9 can be used to obtain the the following characterization of the
existence of a cocontinuous right adjoint to n* .

4.10 Proposition  The following are equivalent:
1. n* has a cocontinuous right adjoint.
2. n* has a right adjoint.
3. (p*)* has a right adjoint.

4. £* has a terminal object.

PrRoOF That 1. implies 2., and that 2. implies 3. are trivial.

If (p*)* has a right adjoint R, then R() is the terminal object in £*, and so 3.
implies 4..

Assume now that £* has a terminal object, which shall be denoted by 7.
View £* as a full sub-category of FUNCTs(E,S) as in the following diagram.

g*
(p)*

FUNCTS(E,8) =+ S

s

The functor u sends an Fe CocTSs(E,S) to F(1¢), and it has a right adjoint «
such that
K(X):E~ X

for all XeS and Fe& . Also, observe that for any XeS and Fe£*, the copower
X.Fin £* is equal to k(X)X F as calculated in FUNCTs(E,S) . Define a functor

R:S—¢&*

by letting R(X) = X.7 for every XeS . R is a cocontinuous functor over S .
Moreover, the following series of bijections, natural in Fe£* and Xe S , show that
R is right adjoint to (p*)*.
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(pr)*(F) = u(F)—X
F—r(X)
For(X)xT=X.T

Then CocTss(A,R) is right adjoint to CocTss( A, (p*)*) . Moreover,
CocTss(A ,R) is cocontinuous. By 4.9, it follows that n* has a cocontinuous right
adjoint. O

As the proof of 4.10 illustrates, if (p*)* has a (cocontinuous) right adjoint,
then the terminal object and the right adjoint correspond under the equivalence
E* = CocTss(S, &%), provided that one identifies S with S .

4.11 Proposition  The following are equivalent for a geometric morphism

e-ts.
1. p is pure.
2. n* has a faithful right adjoint.
3. (p*)* has a faithful right adjoint.
4. £ has a terminal object T, and the unique map T(1g)—1 is an epimorphism.

PrROOF That 1. implies 2., and that 2. implies 3. are trivial.

Assuming 3., let R denote the faithful right adjoint of (p*)*. R is cocontinuous
by 4.10. Let ¢ denote the counit of (p*)* 4 R. As usual, I denotes the terminal
object in § , and I¢ denotes the terminal object in £ . Identifying S with ¥, let T
denote R(1). R(1) is the terminal object in £*. We have

(P*)*(R(1)) = (p*)*(T) = 7(Le) .

The counit (p*)*(R(Z) )3 1 is an epimorphism since R is assumed to be faithful.
Thus, 3. implies 4..

To prove 1. from 4., one proceeds as in 4.10. That is, first one shows that
(p*)* has a cocontinuous right adjoint R. Then R() is isomorphic to T, and
therefore, (p*)*(R(1))=T(I¢). Thus, the counit

er: (P (R(1))—1

is an epimorphism. Then for any I €S , ¢; is an epimorphism since
(PT)(RI))=Ix(p")*(R(1)).
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This isomorphism identifies €; with I xe; . Therefore, R is faithful. It follows, by
using the fact that epimorphisms in § are coequalizers, that the cocontinuous
right adjoint of (n4)*, which is identified with CoCTSs(A, R) (see diagram 4.9), is
also faithful. o

4.12 Proposition  An arbitrary locally connected surjection is pure.

PROOF Let p be a locally connected geometric morphism with p: 4 p* over S .
Then

G
and consequently the terminal object in £* is (p1)*(7) . This is equal to p;. Also,
the unique morphism

pi(le)=pi(p*(1))—!

1s an epimorphism since p* is assumed to be faithful. Hence, by 4.11 p is pure. O
4.13 Proposition  An arbiirary spatial open surjection is pure.

PROOF  Let £ <= S denote an arbitrary opern surjection, with € = sh(X) . Our
alm 1s to show first that £ has a terminal object. Recall (Chap. 3, §1) that
composition with sheafification identifies £* with the full sub-category of
CocTss(S*X) S) whose objects are those cocontinuous functors

S __,8
which take dense (for the canonical topology) monomorphisms to isomorphisms.

Also recall that there is an equivalence

.
THX)
7

CocTss(SHX" 8y

12

which is given by composition with the Yonedz embedding. This equivalence

restricts to an equivalence

(4.14 £ = X—Cocts{S"X)) .

R

The category on the right in 4.14 is by definition the full sub-category of S¥(X/

whose objects are those functors
I(x)-5s

such that for every Ue ¥{X} and every covering sieve
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R——9(X)v

N

9(X),

the colimit of the diagram

R—¥(X) s
is D(U).

Next, the claim is that for any sup-lattice map (not necessarily localic)
I(X) L 9(Y)
between locales, the induced functor
[f,8]: 8?¥)—89X)

restricts to

/.51 Y~Cocts(S7)) —» X—Cocts(S"))

To see this, let R be an arbitrary covering sieve of UeJ(X). Let
DeY—Cocts(S*™)) . To be shown is that D(f(U)) is the colimit of the diagram

R—9(X) L) s,

Let [fR] denote the sieve generated by the image of R under f. Since f preserves
suprema, [fR] is a covering sieve of f(U). We have the following diagram.

rR—L (s

l 1

I X)yw  IY )

1 1

Thus, D(f(U)) is the colimit of the diagram
[fR—d(Y) =S .

The claim now follows since the poset map RL [fR] is cofinal (see [J1], p. 74).
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Since p is assumed to be open, there is a sup-lattice map
HX)DQ
which is left adjoint to the unique map
Q-5 9(X) .

Therefore,

[3,8] : 1-Cocts(8*)) — X—Cocts(S*X))

is right adjoint to [!,S], where I is the terminal in § and Q = ¥(1). Of course,
S = Coctss(S,S) = 1—Cocts(S)) |
and therefore, 1—Cocts(S*(!)) has a terminal object. In fact, it is the functor
sub: —8S

which takes an ‘element’ I3 Q of Q at ‘stage’ I to the sub-object of I classified by
a. Thus, X— Cocts(S‘g(X)) has a terminal object; it is the functor

I(X)Sabs.

We have shown that £ has a terminal object, which we shall denote by .
Our task now is to show that the unique map

T(Ig)—Ll

is an epimorphism (assuming that p is a surjection). Let tx denote the top element
of 9(X) . It follows that the support of T(I¢) is isomorphic to the sub-object

sub - a(tx) — ]

in § . As is well known, p is a surjection if and only if H(tx) ~t, where I 5 Q is
the top element of 2. So if p is a surjection, then

sub-I(tx)~sub(t)~1.

Thus, T(1¢)—1 is an epimorphism. The converse is true as well. That is, if
T(1¢)—1 is an epimorphism, then the open geometric morpism p is a surjection.
This concludes the proof. O
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The next proposition is a characterization of pure morphisms which will be
used in the proof of 4.5. Before getting to that proposition, let us set down some
notation. For any Fe COCTSs(€,S) and A € COCTSs such that £8s.4 exists, let

FoA : (EesA)p— A

—

denote the cocontinuous functor Z4 - (AF)p , where

A-TAL (E05A), EesA
AN | (4P, A
Coctss(€, A)p Cocrtss(€,A) .

The cocontinuous functor .AF is given by composition with F subject to the

identification

A = Coctss(S, A).
In making this identification, one has
AF(A)(E)=(F(E)).A,

for any Fe£ and AeA. Observe that CocTSs(€,.4) must be in COCTS , in
particular locally small, for the functor F&.A to exist. As demonstrated in the
previous chapter, this is the case if p 1s bounded. Then for any A€ A,

Fed - na(A) = =4 - AT(A) = (F(Le)).A
by an isomorphism whick is natural in A. I is the terminal object in £ .

4.15 Proposition A bounded geometric morphism p ts pure if and only if £~
has a terminal object T, and for every 14 there is a natural transformation
T€A - 14— 14 such that (writing n for n4)

i(ted - n(A
(4.16) (mA-q)ﬁ(A)(T )

e n(A)—24—~ A
T8A - n{i4)

is a (stable; coequalizer for all Ae A .
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PROOF  Assume that p is pure. Let R denote the faithful cocontinuous right
adjoint of (p*)*. Let ¢ denote the counit of (p*)* 1 R. As usual, I denotes the
terminal object in S , and I¢ denotes the terminal object in £ . Asin 4.15, let T
denote R(1), which is the terminal object in £*. As before, for this to make sense
one must identify & with §*. One has

(P (R(1)) = (p7)"(7) = 7(L¢) -

The counit (p*)*(R(1))Z5 1 is an epimorphism since R is assumed to be faithful.
Therefore,

ET(1¢) €,
(4.17) R(T(Ze))(Le) oy e T

is a coequalizer in § . In fact,
R(T(1e))(1e) = 7(1e).(R(1)(1e)) = T(Le)-T(Le) = (1) xT(1e)
by an isomorphism which identifies e1(;,) and R(e;)(1¢) with the two projections
(1) xT(1e) B T(1e)—1 .

Hence, 4.17 is a coequalizer since ¢, is an epimorphism.

For any A€ A, one can form the copower in A of 4.17 with A. The following
coequalizer in A results.

ET(1e)-A A

Recall that for any Ae A,
ro A na(A) = Sa- AT(A) = T(1e) A,

and hence

T0A - NA " T0A - ‘q_A(A) ~ T(Ig).(T@A . nA(A))
= T(1e).(r(1e)-A) = R((16))(Le).A.
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Define 74 to be the composite
T84 - qa(A) = T(1). A A

Then ¢ is natural in A, and diagram 4.16 is a coequalizer since diagram 4.18 is.

Assuming the given condition, to see that p is pure take A = S and A= 1.
Then since
™S8 - ns(1) = 1(1¢),

it follows that the unique map T(Ig)—1 is an epimorphism. Now use 4.11. a

If p is pure, then a simple diagram chase using 4.16 shows that every 14 is
faithful. It also follows that every n4 reflects isomorphisms. This gives another
proof, since s = p*, that (bounded) pure geometric morphisms are surjections. It
also proves that surjections are not in general pure. In fact, surjections are not in
general pullback stable, and if

is a bounded pullback of toposes with p pure, then q* = nx is faithful.
We can now proceed with the proof of 4.5.

PROOF (of 4.5) Let £ P,Sbean arbitrary bounded pure geometric morphism.

———————
Then €%, n =1,2,..., exists and is the tensor product £8s€8s...E . Also, recall
the categories COCTSpe and COCTSp. These categories were introduced in section
83, and our attention will be focused on them.

For this proof only, denote
€8s : CoCcTspe — COCTS,

and
( )p : CocTsp—CoCTSpo

by U and R respectively. We have U+ R, and the unit of this adjointness is 7 .
Let G = (G,¢, 6, p, q,w) denote the cotriple on COCTSp induced by the adjointness
U-R. The theorem from §1 on semi-split equalizers (Th. 1.6) will be put to use
here. Of course, our work on cotripleability in §2 will also be used.
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Let A be in COCTSpo. Since coequalizers are computed pointwise in
CocTss(A, A) , proposition 4.15 says that there is a natural transformation
T®A - 4 14 such that

i(T@A . T]_A)
(T®A - na)e

(T®.A-T]A)2 T®A - na 14

is a coequalizer in COCTSs(A, A) . Similiarly, writing B for RUA , there is a
natural transformation T®B - ng—dv 13 such that

d(veB - ng)

(T®B . T)B)d

(T®B . T]3)2 T8 - ns8 —d—* 13

is a coequalizer in COCTSs(B, B) . There is also a natural transformation
T8C - n¢ = 1¢ , where C denotes (RU)2.A. It follows that the data

Reya (RU)2n4
RUn
(4.19) (RU)2ALIRUA R 7y 4
N(RU)2A

along with T®A , T8 and T8C , comprises a semi-split equalizer in COCTSpo. For
example, the fourth coherence condition in the definition of a semi-split equalizer
requires that

A

B

- T®.A TOB
{

—C
/7IA 8

nA B

b—‘&_T

A

commute, where the back arrow B—C is RUn4 . This prism does commute
because the construction of 7 is natural in A . One readily verifies that the
2-category COCTS; satisfies the conditions of 1.6 ensuring that 4.19 is an equalizer
in COCTS; , and hence an equalizer in COCTSpo. For example, the second
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———

condition of 1.6 is satisfied because coequalizers are computed pointwise in
CocTss(X, A), for any Xe COCTSs .

The proof of the other half of the cotripleability equation, that the
comparison functor is 2-essentially surjective, now follows. Let (B,6, k,7) be an

arbitrary coalgebra for the cotriple G on COCTSp induced by the adjointness
U-R. Define A as the equalizer

Re
R4 RS

(4200 A ® \RB —: RGB—XE_. RG28
"RB TRGB

in CocTss . It will be shown that for any Xe CoCTS; , the (ordinary) functor
®y : CocTse (B, X)' —Coctss(A, RXY)*
F ~ R(F)- ¢

is an equivalence. This would show that the pair (B, ¢) is the tensor product UA .
(Recall that here £85.A4 is being denoted by U.A .) Moreover, the canonical
coalgebra structure of UA would then be identified with that given for B . Of
course, one would also have that .4 € COCTSpo because B is in COCTS,.

Fix an arbitrary X'e COCTSg . The first step is to show that 4.20 is a
semi-split equalizer. Consider the diagram

RGO
_RO RS
A—2 B =% Rop -8 . paw
TRB TRGB
¢ NRB TRGB RG20 TRG28
\ \ RG#E
(4.21) RB _R,@___ RGB =——= RQ2B M. RG3B
RéB R‘SG B
T 8 ¢ RGO Y
R Ré !
A—2— R =% Rjop -5 pa
IR8 NRGB

where s, t and y denote respectively T®(RB), T8(RGB) and T®(RG?B). Then r is
the induced morphism. Let us write 5 for yrg . By 4.15, there is a natural
transformation sn N 1grs such that the diagram
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dsn
(422) Lkl E—— Y _d_’lRB
snd

is a coequalizer in CocTSs(RB,RB) . The composite natural transformation

(4.23) bré=sndS

where the isomorphism arises as in 4.21, is a morphism of cones from 4 to RB .
Since 4.20 is an equalizer, the morphism 4.23 must be of the form ¢: for some
ré - 14 . Moreover, it follows that

irg .
(4.24) réré —= ré t 14

rot

is a coequalizer in COCTSs(A, . A). In fact, ¢ applied to 4.24 yields a diagram
which is isomorphic to

Diagram 4.25 is a coequalizer (in COCTSs(A,RB)) because 4.22 is a coequalizer.
Then, since ¢ reflects coequalizers, we conclude that 4.24 is a coequalizer. Hence,
the data (A4,RB,...,¢,RH,...) is a semi-split equalizer in COCTS;s .

Consider now, solely for the purposes of this argument, the (meta) 2-category
whose 0-cells are all finitely cocomplete categories (not over S ). Let us denote
this 2-category by CO . The 1-cells of CO are taken to be all finite colimit

preserving functors, and its 2-cells are all natural transformations.

For any 2-category K, let C” denote the 2-category obtained by reversing
the 1-cells of KU . Then a semi-split coequalizer in K is, by definition, a semi-split

~ equalizer in KC” . Also, let us say that a 2-functor X iy preserves colimits at

the level of 1-cells and 2-cells if for all 0-cells X,Ye X, the functor
ny H }C[X, Y]——-MC[FX, FY]

preserves colimits.

111



Lemma 1 Any semi-split coequalizer in CO is a coequalizer.

Lemma 2 For any Ce COCTSs , the 2-functor
Coctss(_,C)! : Coctss™—CO

preserves coequalizers at the level of 1-cells and 2-cells.

The first lemma follows directly from 1.6. CO? satisfies the conditions of 1.6
because finite colimits in the categories CO(V,U) are computed pointwise. The
second lemma follows just as easily since in the ordinary category CocTss(D,C)!
finite colimits are also computed pointwise.

Let H denote the 2-functor COCTSs(
the 2-functor

RX)!, as in Lemma 2. Let K denote

—)

Coctse(_,X)! : CocTsp”—CO .

By carrying the semi-split equalizer 4.20 to CO under H, one gets the bottom half
of the following commutative diagram.

G —
K(B) 20 K(GB)@ K(G*B) —— K(GB)
K(és)
(4.26)
X

H(RY)

-——

@) H(RGB) ~— H(RG2B)

H(A) H(RB)

H(nrs)

By Lemma 2, the bottom half of 4.26 is a semi-split coequalizer since 4.20 is
semi-split. By Lemma 1, the bottom half of 4.26 is a coequalizer in CO . The top
half of 4.26 is K applied to the split equalizer

,%_ G20
Go
B—Y . aB =22 2 S8, o
és das

in COCTSp. Therefore, the top half is also a coequalizer in CO since split
equalizers are preserved under any 2-functor, in this case K . The three vertical
arrows in 4.26 with no labels are equivalences which arise from the adjointness
UAR. Therefore, ®y is an equivalence. The proof of the theorem is complete. DO

112



4.5 The cocontinuous dual

As the previous section indicates, the completeness properties of the
cocontinuous dual are of some interest. £* may not in general be complete; it may
not, for example, have a terminal object. If £ P,8is spatial and open, or locally
connected, then it was shown in §4 that £* does have a terminal object. Moreover,
in both these cases, p is a surjection if and only if the unique map T(Zg)—1 is an
epimorphism, where T denotes the terminal object in £*.

Assume that p is bounded. In this case, £* is locally small (see Chap. 3, §1).

To begin, factor p as

£-Ls5¢ 55,

with £ = shj(SC) , where j is a topology on S€. It will be shown that (£*)C is a
locally connected (bounded) topos. :

Let F denote the category CocTss(SC,S8C). F is equivalent to the topos
SCC* over SC. Then we have

(5.1) £* = Coctss(€,8)—Coctss(€,5€) = CocTsse (€, F) .
The first arrow in 5.1 is CocTSs(E,C*), where
C*:5—SC

is the constancy functor. The equivalence in 5.1 is by the adjointness

( )¢ Coctss(SC,_). Recall (Eg. 1.18 1, Chap. 3) that the category
Coctssc(€, F) is a topos. In fact, it is equivalent to the topos of cosheaves
sh;(F™)* (see Chap. 2, §4). Furthermore, there is an equivalence (see [Pi])

Coctss(€,8€) = Coctss(€,8)C = (£%)C
which identifies CocTSs(&, C*) with the constancy functor
(5.2) C*: £ —(EC .

If C were chosen to be connected, and this can certainly be done, then 5.2 is fully
faithful. (Actually, for 5.2 to be fully faithful, weakly connected would suffice
since 5.2 is identified with CocTsg(&,C*). See Chapter 2, §1 for a discussion of
connectedness.) The following theorem is now established.

5.3 Theorem &* is a full reflective cocontinuous sub-category of a locally
connected (bounded) topos.
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PrRoOF Let 7 -4 S denote the topos
Cocrss(£,8C) = (€4)C .

Then t is locally connected since 7 is a slice topos of F . Moreover, t, is identified

with (p*)* . That is, there is a natural isomorphism

E*L’T
(P')*J ,t!
s = S,

Thus, although £* may not in general have a terminal object, one can ‘pick
up’ the terminal object by moving to a category of internal diagrams.
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CONCLUSION

The approach to descent for toposes in this thesis can be considered as
‘algebraic’. This is in contrast to the ‘geometric’ approach as exemplified by
Moerdijk.

One aspect of the ‘algebraic’ approach is the use of the fact that the Beck
condition holds. Related to this, is the use of the important theorem
[Chap. 3, Th. 2.11] of Pitts [P1i].

Another aspect of this approach is the use of the cocontinuous dual. Clearly,
the cocontinuous dual is related to descent theory for cocomplete categories, and
hence for toposes. Of course, the very definition of the cocontinuous dual
[Chap. 4, Def. 4.1], and of pure geometric morphisms [Chap. 4, Def. 4.4],
necessitates the introduction of cocomplete categories. The study of geometric
morphisms through their cocontinuous duals remains largely untouched.

A third aspect of the cocomplete categories approach is its 2-categorical
nature. Of course, this does not distinguish it from all other ‘descent theorems’.
For example, Zawadowski [Z1,2] has entertained the notion of lax-descent which
requires a 2-categorical setting. The methods used in this thesis do not preclude, in
fact they invite, further investigation along these lines (for cocomplete categories).

To close, two open questions shall be mentioned. In the spatial case, an open
surjection is pure. The general case remains unanswered. The other question is to
characterize those geometric morphisms which are of effective descent for
cocomplete categories.

All results herein not due to the author were so indicated. All others are
original.
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APPENDIX A: Frobenius reciprocity

Let B-25 C be an ordinary functor, and assume that U has a right adjoint R .

A.1 DeriNiTION U 4 R is said to satisfy Frobenius reciprocity if for all pullback
diagrams

P UB
|
C—g—D
which exist in C, the pullback
Q—*—B
S
RC —— RD

Ra

exists in B, and the induced map (Umg, 71) : UQ— P is an isomorphism.

A.2 Theorem Given B—C , the following are equivalent:

1. B= Cyp for some De C such that U is identified with the forgetful functor,
and C has products Cx D for every CeC .

2. U has a right adjoint R such that U 4 R satisfies Frobenius reciprocity, U
reflects isomorphisms, and B has a terminal object.

PROOF It is easy to check that 1. implies 2..

For the converse, let 1 denote the terminal object in B. Define functors
R: Cui—B; U B—Cuy

as follows. For an object B of B, let UB = UBZ U1 and for a morphism f, let
[7f =Uf. For C5 UL, let Rec be given as the pullback

Re ; 1
Wll 1771
RC —&— RU1

Re
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which exists in B because

c—5—1U1
|
C ——1U1

is a pullback in C and Frobenius reciprocity applies. 7 is the unit of U4 R .

It follows that U 4 R where the counit of this adjointness at an object
C 5 Ul is 77, where 7, is as in the definition of Rc. Observe that 7 is the
induced map (U!,7;) which, by Frobenius reciprocity, is an isomorphism.

The unit of U 4 & at an object BeB is given as the induced map from B to
the pullback

RUB——1

RUBW}%UI

That is, 78 = (!,78) , where B 51 By Frobenius reciprocity, the induced map
(Ux,71) : URUB—UB

is an isomorphism. But this map is 71, and its inverse is U#jp . Since U is assumed
to reflect isomorphisms, 7jg is therefore an isomorphism. 0
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APPENDIX B: The adjoint functor theorems

Let S denote an elementary topos. Here, all categories and functors are over
S.

A right adjoint to a functor A-F5B is a functor B—R5 A over S and natural
transformations FR-> 1g and 14— RF over S such that ¢F - Fy = 1f and
Re-nR=1R.

B.1 Theorem A functor A—FtB has a right adjoint if and only if there is given
for every I €S an adjointness (F/,RY,n!,e!) such that for every morphism J = [
in S, the canonical morphism

. Ja—1 J
o R "R RIEI Rl RUER it prplpt Rt e
is an isomorphism. (The isomorphism o F1 88 Flo* is that supplied by F.)

PROOF  Assume the given condition. Given J-3 I, let 6R denote the canonical
morphism in the statement of the theorem. At issue is the legitimacy of R, ¢, and
n . Regarding €, it must be shown that

(2) e/a" - FIOR . 0,RT = a*e! .
Let z denote the natural transformation a*e’ - ;'R?. Then
05 =R’z-n'a"RT,
and hence
FJ05 =F/R7z-FIpla*RT.

By the naturality of ¢/,

z-e'FlaRf =ea* - F/Rz .
Therefore, the left side of 2 is equal to

z-e'Fla*RT - FIpl R - G, R!

which is equal to
1

z-0,Rf = a%el .
This proves that € is a natural transformation over § . That the same is true of 5
can be shown in a similiar fashion. Now that we know the counit and unit are

legitimate, it follows that the 05 ’s satisfy the required coherence condition (see
Chap. 1, §1) because the 6,’s do.

Conversely, if FR over S, then it follows that the isomorphism 05 is equal
to the canonical morphism in the statement of the theorem. D
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B.S DeriniTion A functor A—— B satisfies the solution set of objects condition
if for every I € S and every Be B! | there exists J €S and Ae A’ such that for every
Ce A! and every FIC 5 B, there exists 15 J, Fli *A D B, and C-= i*A such
that b- (Fla) =z .

The following is Freyd’s General Adjoint Functor Theorem in the context of

categories over S .

B.4 Theorem (GAFT) Let AL.B bea functor with A and B locally small and
with A cocomplete. Then F has a right adjoint if and only if F is cocontinuous and
satisfies the solution set of objects condition.

If A has small coproducts, then the following can be taken as a definition of a
generating family in A .

B.5 DEFINITION A is said to have a generating family if thereisan I €S and an

object Ge A! such that for every J €S and every Ae A7 there exists K 1%y
and an epimorphism Zga*G— A in A’ .

It is shown in [PS] that a topos over S is bounded if and only if it has a
generating family when regarded as a category over § . Also, any small category
has a generating family.

B.6 DEriNiTION A is said to be cowell-powered if for every I and every A e A,

1
there is an object X A4 Tin 81 such that for every J = I there is a natural
bijection of morphisms a—Q’A in S;; with the stable quotient objects of a* 4 in

A7

A topos over S i1s cowell-powered, as is any small category.
The Special Adjoint Functor Theorem is as follows.

B.7 Theorem (SAFT) Let ALB be a functor with A end B locally small and
with A cocomplete. Assume also that A has a generating family and is

cowell-powered. Then F has a right adjoint if and only if F is cocontinuous.

See [PS] for proofs of theorems B.4 and B.7.
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