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Abstract 

This thesis investigates descent for the 2-fibration of cocomplete categories 
over toposes and geometric morphisms. Change of base within this 2-fibration is 

given by the left adjoint to the restriction functor. Pitts' pullback theorem [Pi] is 

important to descent in this context, and a new and more natural proof of it is 
obtained. As in [Pi]' the proof herein depends on Pare's [P2] results on generated 
topologies. The present context is 2-categorical, and an abstract 2-descent 

theorem is obtained. Its first use is to show that a geometric morphism which is of 
effective descent for co complete categories remains so for toposes. 

Studying toposes as cocomplete categories is analogous to studying locales as 

sup-lattices. Pure geometric morphisms are introduced in terms of the 

cocontinuous dual of a co complete category. They are shown to be of effective 
descent for cocomplete categories. Hence, a new proof of Moerdijk's [M5] version 

of a classification theorem for toposes originally due to Bunge [B4] is obtained. 

Resume 

Dans cette these on etudie la descente pour la 2-categorie fibree des categories 
cocompletes par rapport aux topos et aux morphismes geometriques. Pour cette 

2-categorie fibree le changement de base est donne par l'adjoint agauche du 
foncteur restriction. Le theoreme du produit fibre de Pitts [Pi] est important pour 

la descente dans ce contexte ; on en donne une demonstration nouvelle et plus 
naturelle. Comme celle de [Pi], notre preuve utilise les resultats de Pare [P2] sur 

les topologies engendrees. Notre contexte etant 2-categoriel, on obtient un 

theoreme de 2-descente abstrait. On se servira en premier lieu de ce result at pour 
montrer qu'un morphisme geometrique de descente effective pour les categories 
cocompletes reste de descente effective pour les topos. 

L'etude des topos en tant que categories cocompletes est analogue acelle des 

locales en tant que treillis complets. On introduit la notion de morphisme 
geometrique pur et on montre que ces morphismes sont de descente effective pour 
les categories cocompletes. On obtient ainsi une nouvelle demonstration de la 

version de Moerdijk [M5] du theoreme de classification des top os de Bunge [B4]. 
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INTRODUCTION 

Principally, this thesis addresses the issue of descent along a geometric 
morphism between toposes in the context of cocomplete categories over toposes. 

These investigations find their application primarily within toposes and geometric 
morphisms, but they are also of interest in themselves. 

Descent theory was introduced by J. Giraud [Gil,2] in connection with his 

work on non-abelian cohomology. Working within the framework of fibrations over 

a Grothendieck topos, he formalized 'descent' as typified in situations arising in 
Grothendieck [Grl]. Subsequently, M. Bunge and R. Pare [BP] developed descent 
over an elementary topos S , for the regular epimorphism topology. They worked 

within the context of indexed categories, and this is the context in which the 

present work investigates descent theory. 
Descent theory is formulated within the theory of fibered categories, or 

fibrations. A fibration consists of a base category together with a collection of fiber 

categories; a fiber category is assigned to each object of the base category. One is 

also given a rule for 'changing base' within the fibration. Change of base within 

the fibration occurs along morphisms which belong to the base category. To say 

that an object of a fiber category 'descends' along a morphism of the base 

category is to say that it essentially arises via change of base. A morphism of the 
base category may have the property that every object which comes equipped with 

descent data, does in fact descend along the morphism. Such a morphism is 
referred to as one of effective descent. The question of descent then asks which of 

the morphisms in the base category are of effective descent. 

In some situations, descent data can be thought as a 'local' presentation of an 

object which is thereupon retrieved by a 'glueing' operation. This would 

constitute the descent of the local information. For example, let us take the base 
category to be that of spaces and continuous maps.l The fiber category over a 

typical space X is taken to be that of all spaces over X ; change of base is taken to 
be the operation of pullback. A continuous map X~Y is then of effective descent 
if it has the property that every space Z over X which comes equipped with 
descent data is necessarily of the form X x y W for some space W over Y. If the 

map X~Y is an open surjection, then. it is of effective descent. This result was 

proved by Joyal and Tierney [JT] and it falls within the descent theory they had 

developed for locales and sup-lattices. 

Descent theory for locales and sup-lattices is of interest in itself; however, it 

1To follow [JT], this category is, by definition, the opposite of the category of locales and localic 
maps. The 'locale/frame' terminology of [J5] is not used in this thesis. 
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was put to use in [JT] in the study of Grothendieck toposes. They used their 
descent theory to establish a representation theorem for Grothendieck toposes. 
They proceeded first by using the descent theory for locales to establish a descent 
theorem for toposes. This theorem states that geometric morpisms which are open 

surjections are of effective descent. In this context of descent, the base category is 

taken to be that of Grothendieck toposes, and the fiber above a given topos is the 

topos itself. Change of base is accomplished under the inverse image functors. 
With this result in hand, the representation theorem is then established by using 

the fact that any Grothendieck topos can be 'covered' by an open surjection such 

that the covering topos is spatial. 
As one may have guessed from the rather broad description of descent given 

above, 'descent theorems' and their applications can vary greatly from one context 

to the next. In a recent work of M. Bunge [B4], the descent theorem for toposes of 
[JT] was used to establish a classification theorem for toposes. She proved that 
the topos of etale G-spaces classifies G-torsors, where G is a groupoid in the 

category of spaces and G is the etale completion of G. She proceeds by observing 

that two certain fibrations are each the stack completion of (the fibration 
determined by) G. One concludes that these two fibrations are equivalent. In yet 
another application of [JT], Bunge [B3] has defined, under certain assumptions, 

the fundamental groupoid of a topos. In general, this is a (totally disconnected) 

spatial groupoid. 
In the theory of locales and sup-lattices, the base category is in fact a 

2-category (with non-trivial 2-cells since the 'horn' categories are posets). The 
same is true of the fiber categories; they are posetal 2-categories. However, in this 

case the 2-structure plays a neutral role, and the resulting descent theorem for 
toposes of Joyal and Tierney can be regarded as within I-dimensional category 

theory. This changes when one considers Moerdijk's [M5] recent descent theorem. 
Here, the base category remains that of Grothendieck toposes, but the fiber 

category over a topos in the base is taken to be the 2-category of toposes over that 

top os. He shows that the descent theorem for toposes from [JT] can be combined 

with his stability theorem [M3] to yield a 2-descent theorem. In this 2-categorical 

context, he proves that open surjections are of effective descent. As a direct 
consequence, he obtains a classification theorem [Chap. 4, Eg. 3.3] for toposes 

which is the 2-dimensional version of that previously obtained by Bunge [B4]. 

Moerdijk's descent theorem (the spatial case) is a consequence of the descent 

theorem [Chap. 4, Th. 4.5] of this thesis. 

A good part of Chapter 4 of this thesis is spent developing a formal 2-descent 

theorem [Chap. 4, Th. 2.13] as the context of descent in this thesis is a 
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2-categorical one. In this regard one could say that a morphism is of effective 
descent at the level of objects, if the comparison functor, now actually a 2-functor, 
is 2-fully faithful. The descent theorem for toposes from [JT] asserts, when stated 
now in the terms of 2-descent, that open surjections are of effective descent at the 
level of objects. 

Another descent theorem has been recently established by M. Zawadowski 

[Zl,2]. Grothendieck toposes are related to categorical logic (as originally observed 
by Lawvere [L2], see below). In fact, a site can be thought of as a 'theory', and 

the topos of sheaves on that site can be thought of as the 'embodiment' of that 

theory. In connection with these ideas one has the notion of a pretopos, and 
Zawadowski's theorem is in the context of pretoposes. He considers lax-descent, 

but at the level of objects. 

Topos theory represents the confluence of essentially two streams of thought 

which both have their origins in the early to mid 1960's.2 The first stream 
originates with the work of A. Grothendieck. He generalized the notion of a 
system of open coverings, and extended the definition of sheaves on a topological 

space to that of sheaves on a site. Sheaves on a site define a category, called a 

Grothendieck topos. Thus, a topos is in this sense a generalized topological space. 
The other stream of ideas to which topos theory owes its existence has its 

origins in the work of F. W. Lawvere [L2]. He observed that a Grothendieck topos 

has an internal logic, and that therefore one might be able to 'free' the theory of 
its dependence on 'external' notions. Subsequently, he and M. Tierney laid down 
the axioms of elementary topos theory. A topos is thus a theory of 'variable' sets 
in which one can 'do' mathematics. 

Given that mathematics can be done in a topos, and if the dependence on 
classical set theory is to be 'entirely' removed, then a 'large' part of the theory is 

needed. One would like to be able to do mathematics over a topos. This 
programme, which also originates with Lawvere [L3], focuses on the notion of a 
'family of objects' indexed by an elementary topos. From the point of view of 

fibered categories, such a theory has been extensively studied by Benabou (see 

[Be], for example). Then in the mid 1970's, Pare and D. Schumacher [PS] 
published a monograph on indexed-category theory, taking as its goal the adjoint 
functor theorems. 

Thus, one can do category theory over an elementary topos. A category over 

S is herein taken to mean an S-indexed category. The principal source for the 

basics of indexed category theory is the aforementioned work of Pare and 

2See P. T. Johnstone [JI] for a historical survery. 
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Schumacher. (Since this is to be indexed category theory, the word 'indexed' shall 
henceforth be entirely omitted. The emphasis is instead on which base topos one 
is working over.) In this thesis, the approach to descent for toposes is via 

cocomplete categories over an elementary topos. Assigned to each object of the 
base category, which is to say assigned to each topos, is the fiber category of 

cocomplete categories over the topos. It is within this context, that the question of 

descent is herein addressed. Which geometric morphisms are of effective descent in 

the context of cocomplete categories? 

According to A. Pitts [Pi], 'one may be able to describe Grothendieck toposes 

in terms of co complete categories in a way analogous to that in which Joyal and 

Tierney have described the theory of locales as part of the "commutative algebra" 

of complete lattices and arbitrary sup preserving maps'. To support his contention, 

he proves that the pullback of a Grothendieck S-topos :F along a geometric 

morphism £ ~S coincides with that cocomplete category over £ obtained from 

:F by changing base along p. This result, which is important in the treatment of 

descent in this thesis, is analogous to the fact that the pushout of a diagram 

A ·e 

I 
B 

of locales and localic maps coincides with the tensor product of e and B as 

calculated in A-modules. Questions about cocomplete categories over S , and 

their relevance to toposes, can thus be motivated in this manner; however, unlike 

the situation for locales and sup-lattices, no characterization of toposes within 

cocomplete categories is known, but it is still profitable to operate at the level of 

cocomplete categories and then restrict one's attention (using any pertinent 

considerations) to toposes. Thus, one can study toposes within co complete 

categories as analogous to the study of locales within sup-lattices, but genuine 

difficulties appear in the process. Proofs of theorems about toposes and 

cocomplete categories are quite different to those of their counterparts in locales 

and sup-lattices. 

The descent theorem for locales and sup-lattices from [JT] states that a localic 

map A-.B is of effective descent if and only if it is pure. By 'pure' is meant that 

for any A-module M, the universal morphism 

M-.B®AM 

is faithful. Directly adapting this property to geometric morphisms is a possible 

approach, but perhaps not the best. The approach that is taken in this thesis is to -
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move to the cocontinuous dual, and then define in this context the appropriate 
notion of purity. The main result of this thesis [Chap. 4, Th. 4.5] asserts that 
pure geometric morphisms are of effective descent for cocomplete categories. 

In keeping with Pitts [Pi], the notation COCTSs is here used to denote the 
2-category of cocomplete locally small categories over an elementary topos S . In 

sections §O through §4 of Chapter 1, the basic definitions concerning the 
2-category COCTSs are to be found. The concept of a stack comes up in Chapter 
2, in connection with sheaves in an arbitrary category over S . An important fact 
is that any A E COCTSs is a stack [Th. 4.7]. The proof of this uses the 

(Beck-) Benabou-Roubaud [BR] characterization of stacks in terms of tripleability 
[Th. 1.3]. Section §5 reviews the restriction 2-functor 

( )p : COCTSe --.COCTSs 

induced by a geometric morphism £ ~S . A topos over S is an object of 

COCTSs , and one has in fact a 2-embedding 

p: Tops OP --.COCTSs . 

Some basic results [Ths. 6.7 and 6.8] are derived in §6 of Chapter 1 as to when a 
category over S is in the essential image of p. These results are later put to use in 

Chapter 4 [Th. 3.4]. Among those properties possessed by a category within the 
essential image of p is that of having universal coproducts. This property is 
formally introduced, and referred to, as coproducts which satisfy Frobenius 

reciprocity [Def. 6.2]. Related to Frobenius reciprocity is a result [Eg. 4.3] which 

goes back to Benabou. This result is extended in [Eg. 4.3]. It illustrates the 

interplay of internal category theory with the general theory. 
Chapter 2 begins with a discussion of internal diagrams on a small category 

C taking their values in a category A . Let us denote this category by AC . The 
main point here is that AC is viewed as over SC, which differs from [PS] where 
internal diagrams are viewed as over S . As a category over SC, AC is locally 
small and cocomplete if A has these properties over S . Section §2 is essentially a 
review of Pare's paper [P2]. These results are important for Chapter 3, although 
the main theorem from that paper is in fact not used anywhere in this thesis 

(except for Eg. 1.18-2 of Chapter 3). A proof of this theorem [Th. 2.11] has been 

included. This proof is essentially that which is found in [P2]. The single theorem 

of section §4 [Th. 4.3] is of particular note because of its connection (see Chap. 4, 

§5) with the cocontinuous dual of a topos. This result does not, however, enter 

into the proof that pure geometric morphisms are of effective descent. 
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A principal result [Th. 1.16] coming from Chapter 3 is that for £ ~ S 
bounded, the restriction 2-functor ( )p has a right adjoint, 

This is established in §1 of Chapter 3 by first [Prop. 1.1] showing that the 
adjointness holds for arbitrary (that is, not necessarily locally small) cocomplete 

categories. As an immediate consequence, one obtains at this point that which is 
introduced as the change of base formula. This is an invaluable tool. It is used, for 
example, to show that if A is locally small, then so is COCTSs ( £, A) in the case 
that p is bounded [Th. 1.7], and hence one obtains • above. It is also used to show 
that the adjointness ( )p -l COCTSs(£,_) satisfies the Beck{ -Chevalley) condition. 
Consequently, the left adjoint (where defined) also satisfies the Beck condition. 
This is important in the treatment of descent in Chapter 4. 

The principal result from [Pi] states that the tensor product (that is, the left 
adjoint of ( )p) of a bounded topos with £ exists, and coincides with the pullback 
as contructed in toposes. A new proof of this result is given in Chapter 3 
[Th. 2.11]. The present proof differs from Pitts' in that the result is here seen to 
follow directly from the fact that ( )p -l COCTSs (£, _) satisfies the Beck 
condition. In turn, the proof of the Beck condition takes advantage of the change 
of base formula and also of Pare's work on sheaves and generated topologies [P2]. 

Pitts' original proof relies on [P2] as well. 
Pare [P2] has introduced the notion [Chap. 2, Def. 2.1] of a j-sheaf in an 

arbitrary category A over S , where j is a arbitrary topology on S . This coincides 

with the usual notion in the case that A is S . Let shj(A) denote the full 

sub-category of A whose objects consist of the j-sheaves. In §2 of Chapter 3, it is 
proved [Cor. 2.18] that under certain conditions, shj(A) is the tensor product of 
A with £ over S , where £ denotes the topos of j-sheaves in S . One of these 
conditions is that shj(A) be a reflective sub-category of A, and this presents an 
avenue of further investigation perhaps leading to an improved theorem about 
shj(A) as the tensor product. These questions are pursued no further in this thesis 
(in any case, Cor. 2.18 is not used in Chapter 4). 

It is well known that descent can be rephrased in terms of cotripleability 

(dually, tripleability) if the Beck cond~tion is satisfied. Since this is the case in the 

present context of locally small cocomplete categories, rather than going through a 

lengthy translation, the definition of an effective descent morphism is here given 

directly in terms of cotripleability. This is, however, 2-dimensional category 

theory; the base category and the fiber categories are 2-categories. Thus, a 

2-dimensional cotripleability theorem is required. Given the corresponding result 
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in the I-dimensional case, which is well known, such a 2-dimensional theorem is 
readily obtainable. A 2-cotriple is herein taken to be a strong cotriple (see, for 
example, [BID. In section §2 of Chapter 4 a cotripleability theorem [Th. 2.13] for 
strong cotriples is derived. This result hinges on the ' correct' definition being 
given of a split equalizer in a 2-category [Def. 1.3]. Logically prior to this is the 

notion of an equalizer in a 2-category [Def. 1.2]. An example of that notion of an 
equalizer which is adopted in Chapter 4 can be found in [M3]. The 2-category in 

that case is that of Grothendieck toposes. As in the I-dimensional case, a split 

equalizer is an equalizer. Armed with this fact, the proof of strong cotripleability 
proceeds in a manner analogous to the I-dimensional case. In fact, strong 
cotripleability subsumes the I-dimensional theorem. Generalizing the notion of a 
split equalizer is that of a semi-split equalizer [Def. 1.5]. However, unlike a split 

equalizer, a semi-split equalizer is not in general an equalizer. A theorem [Th. 1.6] 

is then given specifying conditions on the 2-category under which a semi-split 

equalizer is an equalizer. This result is used in §4 to show that pure geometric 

morphisms are of effective descent. 

The definition of a morphism of effective descent for cocomplete categories is 

introduced in section §3 [Def. 3.1]. There is a minor hitch here in that the tensor 
product is possibly not everywhere defined. However, with the help of the Beck 

condition, one can easily 'fix' this. This fix-up is more for the purposes of ease of 
exposition than anything else, and it makes available the cotripleability theorem of 
§2. It is then shown, by using the cotripleability theorem, that a morphism of 

effective descent for cocomplete categories remains so at the level of Grothendieck 
toposes [Th. 3.4] . Results obtained about when a category comes from a top os 

[Chap. 1, Ths. 6.7 and 6.8] are also used for this purpose. 

Section §4 introduces the notion of a pure geometric morphism [Def. 4.4]. The 

class of pure morphisms is contained in, but distinct from, the class of surjections. 
A surjection which is also locally connected is pure, but more importantly, a spatial 

open surjection is pure. To conclude §4, it is shown, by using the semi-split 

equalizer theorem [Th. 1.6], that pure geometric morphisms are of effective descent 
for cocomplete categories [Th. 4.5]. Finally, as an application of the cosheaf 
theorem [Chap. 2, Th. 4.3], a result about the cocontinuous dual of a topos is 
given in §5. 

7 




CHAPTER 1 

Locally Small Cocomplete Categories 

1.0 Categories over S 

Let S denote an elementary topos. A category over S shall mean, in the 
terminology of [PS], an S-indexed category.l Often just a category will be used if 

the base topos is clear. The 'indexed' terminology will not be used. Of course the 

same goes for functors and natural transformations. That is, they are functors and 
natural transformations over S . 

0.1 DEFINITION A category A over S is given by the following data: 

1. 	for each object I E S , a category A I, sometimes referred to as the fiber 


category over I , 


2. 	 for each morph~sm I ~ K in S , a functor AK ~Al , called the substitution 

functor for a, 

3. 	 for each pair a, j3 of compos able morphisms of S , a natural isomorphism 

<Pa,{3 : j3*a* ~ (aj3)*, 

4. 	 for each lE S , a natural isomorphism TI : 11 ~ (11)* of the identity functor 
on Al with the substitution functor for I ~ I . 

This data is to be subject to the following coherence conditions: 

,*j3*a* ,*<Pa,{3. ,*(aj3)* a*(11 )* 

<P{3,-ra* J 	 J<Pa{3,-r 4>",. J ~.rl 
(j3,)*a* -A-.-_. (aj3,)* (1la)* - a*11 

'/'a ,f3-r 

where the bottom arrow in the triangle is equality. There is a third condition, one 

similiar to the triangle but with a* on the right, which is a consequence of the two 

above (see [MP]). 

A functor over S , A ~ B ,is given by the data: 

1. 	 for each object lE S , a functor FI : AI--+BI , 

2. 	 for each morphism K ~ I , a natural isomorphism Oa : a*FI ~ FKa* , 

1In terms of fibrations, an S-indexed category consists of a fib ration and a chosen cleavage, see 
[Gi2]. 
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subject to the coherence condition 

where K !..,. L.:!." I in S . One might also expect that the condition 

be required to hold for every lE S . This condition is a consequence of those 

coherence conditions already given (see [MP]). 

A natural transformation over S , F~ G , consists of for every lE S a natural 

transformation t l : FI~GI such that for every morphism K .:!." I in S one has 

tKa*tI = a· . This 'equality' expresses the commutivity of the following diagram. 

a*tl 
a*FI -a*G1 

IBa 
~ 

One verifies directly that categories, functors and natural transformations over 

S comprise a 2-category. 

0.2 	DEFINITION A functor A ~ 8 over S is said to be: 

1. 	 faithful if for every lE S , FI is faithful. 

2. 	 fully faithful if FI if fully faithful for all lE S . 

3. 	 essentially surjective if for every I and every BE 8 1 there exists an 


epimorphism H!..I in S and an AEAH such that FH(A)~j3·(B). 


4. 	 a weak equivalence if F is fully faithful and essentially surjective. 

An equivalence and an adjointness in the context of categories over an 

elementary topos shall mean those notions available in any 2-category. In the 

present context, it follows (see [BP]) that a functor F is an equivalence if and only 
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if every Fl is an equivalence. See Appendix B for a review of the concept of an 

adjointness in the context of categories over a topos. 
The topos S itself becomes a category over S by letting SI = S/1 and by 

defining the substitution functors to be pullback. 

Following [PS], for a category A over S and for lE S , the localization of A at 

I shall be denoted by AtI. It is a category over S/I with 

(Atl)Q = A K
, for K ~ I . 

For o:~ (3 in S/I , the substitution functor for f over S/1 is by definition r as 

originally supplied by A. Localization can be used to simplify a given 

demonstration if the properties and constructions involved are stable under 

localization. 

1.1 Stacks 

A stack is a '2-dimensional sheaf '. Let A be a category over S , and let H ~ I 
be an arbitrary morphism in S . Let K denote the kernel pair of 0:. That is , let 

K~H 

~l J J 0: 

H 0: II 

be a pullback. There is then the category DesA(O:) defined as follows. Its objects 

are pairs (A,O) where AE AH and ~~A ~ ~~A (~~ means of course (~o)*) is an 

isomorphism in AK which satisfies the cocyc/e condition , 

where ~OI, ~12 and ~02 are the projections from HXIHxJH to K. The 
appropriate canonical isomorphisms must be inserted for this 'equality' to make 

sense. It follows that the unit condi tion, 8*(0) = lA , is satisfied , where H ~ ]{ is 

the diagonal. Conversely, given a morphism ~~A ~ ~;A satisfying the uni t and 

cocycle conditions, it follows that emust be an isomorphism. 

The isomorphism 0 is referred to as descent data , and so one says th at the 

objects of DesA (0: ) are objects of AH equipped with descent data. Morphisms in 

DesA(O:) are by definition morphisms in AH commuting wi th descent data. ­

If A E Al , then 0:* A comes equipped with ·canonical descent data given by the 

composite 
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of canonical isomorphisms. In other words, a* factors as 

where U is the forgetful functor, and Q sends A to a* A equipped its canonical 
descent data. 

a 
1.1 DEFINITION A is said to be a stack if for all epimorphisms H -- I in S , 

is an equivalence. One says in this case that objects (morphisms) in AH equipped 
(commuting) with descent data 'descend' uniquely to AI . 

One can speak of a category having the stack property with respect to a single 

given epimorphism. 
Clearly the forgetful functor U is faithful and reflects isomorphisms, so if A is 

a stack then a* is faithful and reflects isomorphisms for any epimorphism a . 

1.2 DEFINITION A is said to have E satisfying the Beck condition, alternatively 
small coproducts or S -coproducts, if for every morphism I ~ J , the substitution 

functor a* has a left adjoint Ea such that if 

is a pullback in S , then the canonical morphism E1rl1ro-+{3*Ea is an isomorphism. 

1.3 Theorem (Beck-Benabou-Roubaud) Assume that A has E satisfying the 
a 

Beck condition. Then A is a stack if and only if for every epimorphism H -- I I the 

substitution functor 

is tripleable. 
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A proof of 1.3 can be found in [BP]. 
As with sheaves, one can speak of the associated stack, or the stack completion 

of a given category. By this is meant a stack .A and a functor A ~.A which is 

universal in the sense that any functor A..£... B ,with B a stack, has an essentially 

unique factorization through w. 

A 

wJ~ 
.A 3'· B 

The following is due to M. Bunge, a proof of which can be found in [B2]. 

1.4 Theorem Given A ~ B , then B is the stack completion of A if and only if 

B is a stack and F is a weak equivalence. 

1.2 Locally small categories 

Let A be a category over S . 

2.1 DEFINITION A is said to be locally small (or in the terminology of [PS], to 
have small homs) if for every I eS and every A ,B e AI there is an object AI(A, B) 
in SII such that for every K ~ I there is a bijection 

a-+AI(A,B) in S/I 
a*A-+a*B in (.,t1yJ)a = AK 

which is natural in a. The object A I (A, B) shall be referred to as the object in SII 

which represents morphisms A-+B in AtI. 

If A is locally small over S then AtI is locally small over SII , as follows 
directly from the definition. 

The corresponding notion for a morphism between locally small categories is 
referred to as that of a strong functor. This is a functor whose action is suitably 
internalized. As it turns out, an arbitrary functor between locally small categories 

is automatically strong, as are natural transformations. For a proof of this, and for 

a precise formulation of these ideas, the reader is referred to [PS]. 
Let CATs denote the 2-category of locally small categories, functors and 

natural transformations over S . For A and B in CATs, let FUNCTs(A, B) denote 
the category whose objects are the functors from A to B over S . The morphisms 

are the natural transformations over S . 
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Bunge has shown (see [B2]) that the stack completion of a locally small 
category always exists. By using this fact, one deduces that locally small 
categories have the following important property. 

2.2 Proposition If A is locally small, then for any epimorphism H!. I , the 

substitution functor f3* reflects isomorphisms. 

PROOF Let A ~A denote the stack completion of A, where w is a weak 

equivalence. Given H!. I , there is then the commutative square 

I 

AI w • AI 


p' j jp' 

AH H 
~ 

• AH 
w

I Hwhere w and w are fully faithful. With respect to A, f3* reflects isomorphisms 

because A is a stack. It follows therefore that f3* , with respect to A now, reflects 
isomorphisms. 0 

1.3 Internal diagrams 

Let C = (Co, Cl) be an internal category in S , an elementary topos. The 
notation 

will be used for an internal category, where Do is the domain map, Dl is the 
codomain, m is the composition of C and e is the 'identities' map. C2 is the object 
of composable pairs of morphisms, as in the following pullback. 

C2~Cl 

r. j jo. 
Cl~CO 
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Such categories shall also be referred to as small. This is with respect to S . 

There is then a category over S associated with C called the externalization of 
C. A typical arrow in its fiber above le S is by definition a diagram: 

such that 80 /3 = band 8d3 = c. That is, /3 is an arrow with domain band 
codomain c. For K ~ I in S , the substitution functor for a is defined to be 
composition with a. Of course, internal functors and natural transformations have 

their corresponding external descriptions. 

No notational distinction shall be made between the internal 'world ' and its 

externalization. One writes, for example, Cl to denote the fiber above Iof (the 

externalization of) C. This is a minor break with tradition. 

The localization ql is isomorphic to rc , so 'smallness' is stable under 

localization. 
The topos of internal diagrams on C with values in S is denoted by 

where C = (lj!!!, C*) is the canonical geometric morphism. Also referred to as a 

X 
discrete opjibration, a typical object of SC shall often be written as lx, or as 

C 
x = (xo, xd , where Xo ~ Co is the 'rule' for objects and Xl ~ Cl is the rule for 
morphisms. 

3.1 DEFINITION Let A be an arbitrary category over S , and let C be a small 
category. 

1. 	The following data comprises an ordinary category, denoted AC, which is 

called the category of internal diagrams on C with values in A. Its objects 

are pairs (A,O), where AeAco and 8oA!' 8;A in A C
! is the 'action' map 

which is required to satisfy: 

(a) e*(O) = lA (preservation of identities) 
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(b) 7r~(O)· 7r~(O) = m*(O) (preservation of composition). 

The appropriate canonical isomorphisms must be inserted for these 
equali ties to make sense. Morphisms (A, 0) ~ (B, </» are morphisms A ~ B 
in A Go commuting with the action maps. 

AC2. is regarded as a category over S by defining the fiber above lE S to be 

where ACxI pertains to the first part of the definition. For I ~ K in S , the 

substitution functor 

is 	defined to be 

This definition extends in the obvious way to morphisms of (AC)K . 

3.2 Examples 

1. 	 With A = S in the above definition, one obtains the topos of discrete 


opfibrations previously mentioned. 


2. 	 Let H.! I be an epimorphism in S , and let HI denote the kernel pair of (3 . 

Then H.a = (H, HI) is a small category, and there is a functor H.a ~ I, 
regarding I as a discrete category. Then DesA((3) is equivalent to AHp, and 

A has the stack property with respect to (3 if and only if the induced functor 

is 	an equivalence. 

As is well known, along with internal categories and functors, an internal 

diagram has its external description. That is, there is an isomorphism 

AC :::: FUNCTs(C, A) , 

of categories over S which identifies the substitution functor a* with composition 

with (the externalization of) a . 
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It is not hard to check that the construction AC is stable under, or commutes 
with, localization over S . By this is meant, in this case anyway, that for any 

le S , there is a canonical equivalence 

of categories over SII . 

This discussion on internal diagrams is continued in Chapter 2 where they are 

realized as a category not over S , but over SC. 

1.4 Cocomplete categories 

Let A be an arbitrary category over S . For any small category C there is the 

constancy functor 

C : A ---+Ac , 

which sends A eA to (Co(A),C;(1A))' A finite colimit in the fiber AI is said to be 

stable if it is preserved by the substitution functors. 

4.1 DEFINITION A is said to be cocomplete if for all le S : 

1. the fiber AI has finite stable colimits, and 

2. for all small categories D in S; I , the constancy functor 

has a left adjoint (over S;I ). 

Cocompleteness is stable under localization as follows directly from the 

definition. 

Definition 4.1 is rather troublesome to work with as it is often easier to handle 

colimits in terms of coproducts and coequalizers. The notion of coproducts has 

already been defined (definition 1.2) , where it was also referred to as 'I: satisfying 
the Beck condition '. A proof of the following theorem can be found in [PS]. 

4.2 Theorem A is cocomplete if and only if A has E satisfying th e Beck 

condition} and for every lE S the fiber AI has stable finite colimits. 

4.3 Example Let M = (M,M1 ) be an internal poset. The map 
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is by definition the exponential transpose of the classifying map of the sub-object 

M (Oo.Ot) M M Th I . d . b d fi . . . I1 ~ X • en +seg IS a poset map an M IS, Y e mtlOn, an mterna 
sup-lattice if 1seg has a left adjoint. If such is the case the left adjoint is denoted by 

V:D,M-+M. 

This concept is preserved under pullback. That is, for 1 ES , 1*(lseg) is equal to 

1seg[·M , and therefore 1*M is a sup-lattice with V [·M = 1*(VM) . 

To be shown in this example is that a small poset M is an internal sup-lattice 

if and only if M is cocomplete regarded as a category over S . This result goes 

back to Benabou, and a proof of it using the adjoint functor theorems can be 

found in [PS]. The methods used here allow the result to be extended. It will also 
be shown here that an internal sup-lattice is a locale if and only if it satisfies 

Frobenius reciprocity as a category over S . See section §6 of this chapter for the 
definition of 'Frobenius reciprocity'. 

To show the first claim, assume first that M is an internal sup-lattice. One 

can calculate finite supremums in M as, 

MxM~M 

(m,n) ~ V{y IVx( ((x ~ n) /\ (x ~ m)) =} x ~ y)}, 

and then for m, nE M[ , m V n is 

in M[. 

For 1 E S , by definition the substitution functor 

sends 1 ~ M to 1-+1 ~ M. Define 

by letting 'E[(I ~ M) be the composite 

1 ~ D,M':i M, 

where O'm is the exponential transpose of the classifying map of (the image of) m. 

To be shown is that 'Er' 1* . For nE M 1 and mE M[ one has 'E[(m) = V 'O'm :5 n 

if and only if O'm :51 seg· n if and only if m factors through the sub-object of M 

corresponding to 1seg . n. Let us denote that sub-object by 1seg(n) ~ M . 

Observe that in the commutative diagram 
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lseg(n) - Ml 1 

j j(co, c, ) jt 

Mxl-MxM n0 

1 Xn lseg 

the left square is a pullback since the right and outer squares are. Now 
(SQ,Sd v. . ( .

Ml '---+ M x M ::::; M 1S an eq uahzer, and therefore m factors through 1seg n) If 
11"1 

and only if 
m ~n VI-t Mxl-t MxM::::; M 

11"1 

commutes, which is trl!e if and only if m ~ I*(n) . This proves that ~I -11* . To 
get ~o in general, for K ~ I , one can proceed by localizing. It is not difficult to 
then verify that the Beck condition holds. 

Assume now that M is cocomplete in the external sense. Our aim is to exibit 

a poset map V : nM -tM , which is left adjoint to lseg. The method of the generic 

element can be used to do this. Let Z denote nM . Then Z*M = :l\1iz is a poset in 

8/z which is also cocomplete in the external sense. There is the 'generic' global 

section 
1 ~ Z*(Z)::: (z*n)ZOM 

in 8/z , which gives us a sub-object s c.!... Z* M . Since M is assumed to be 

cocomplete, there is given 

the left adjoint of s* over 8/z . This gives the global section 

Define V: nM -tM to be the transpose of ~s(i) with respect to ~z -1 Z*. To be 

nMverified now is that V -1 1seg. Given generalized elements I ~ = Z and 
I ~ M , one wants to show that 

V·a ~ x 

a ~lseg' x, 


which, upon transposing to 8/z , is true if and only if 

8·!0 ~!segZ'M . x, 

where !a is the unique map a-t 1 , and where a ~ Z*M denotes the transpose of x 

in 8/z . By the definition of the morphism V, one has 
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and therefore 

Z*(V)' 8·l o = a*~,,(i) = ~1!"o7r~(i), 

where 
7rl axs-s 

~o 1 1 

a • 1 

is a pullback in S/z. Hence 

The last equivalence in the above series could use some clarification. As 

interpreted in Z*M, 7r~(i) = i· 7rl and 7r~(x) = x· 7ro. Transposing to (S/z)/o, with 
respect to ~o -j a* , produces 

where 

i . -7rl : 7ro--+u* Z*M 

and 

are generalized elements of a* Z*M in (S/z)/o' By a previous argument (the one 
which showed that Urn ::;!seg' n if and only if m::; I*(n)) one obtains 

i-:-;rl ::; 7r~(±) 
U ::;!seg(Zo)'M';' 

U being the exponential transpose of the classifying map of i-:-;rl . That u 

corresponds to 8·'0 under ~o -j a* , thereby concluding the proof of the first claim, 

is by the following lemma. Its proof is left to the reader. 

Lemma Given a pull back 
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in a topos T, and a sub-object B~X , let 1 ~ A*(nX) denote the exponential 

transpose of the classifying map of the sub-object 7ro 6 A*X , where""" means 
transpose under EA -l A* . Then a = ~ , where 1!... nX is the exponential 
transpose of the classifying map of b . 

To apply the lemma, take T to be S/z , b to be i , and A to be a . 
The above methods can be used to prove that an internal sup-lattice is a locale 

if and only if it satisfies Frobenius reciprocity (see §6 of this chapter). An internal 

sup-lattice M = (M, Md is by definition a locale if 

commutes, where 

r(Y, x) = { x A Y I yE Y } , (Y, x) E nM x M . 

It is not hard to see that if M is a locale, then as a category over S , M satisfies 

Frobenius reciprocity. 

Let us assume that M satisfies Frobenius reciprocity, and show that M is a 
locale. One always has V·r :5 A· (Vxl) , and so it suffices to show that 

(4.4) A ·(Vxl) :5 V·r . . 

As before, let Z denote nM . Let ~ denote transpositon with respect to Ez -l Z* . 
Transposing to S/z, 4.4 is true if and only if 

(4.5) A· (Vxl) :5 V·r. 

Writing Z* M as Z x M ~ Z , note that 4.5 is a statement about elements of Z* M 
at stage p. Form the product 
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in S/z . We have the two 'elements' 

s~Z*M , p~ Z*M 

of Z*M , and it follows that 

/\ . (Vx1) = 1/\ p*E,(i ) . 

By using the Beck condition and Frobenius reciprocity, 1/\ p*E,(i) is equal to 

Thus, the question comes down to showing that 

as elements of Z* M at stage p X s in S/z . The idea is to transpose 4.6 back to 
S and verify the resulting inequality there. The element 1r~1 /\ 1r;i is 

(1ro.i1rl) Z*M Z*M /\ Z*Mp x S ----? X ---+ , 

and its transpose is 
lxi M M /\ MMx E ----? X ---+ . 

Note that the transpose of i is 

where E is that sub-object classified by the 'evaluation' map OM X M ---+0. Also 
note that 

Ez(pxs) = (OM XM)XOM E = Mx E 

Hence, 

/\. (1 xi)(x, (Y,y)) = x /\ y, 

where ye Y . The element 1r~(y.;.) is 
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and its transpose is 

Note that EzC7ro)(x,(Y,y)) = (Y, x), and hence, 

V·r. EZ(7ro) (x, (Y, y)) = Vx 1\ v , 

as v runs over Y . Thus, 

This proves 4.6, which concludes the proof that M is a locale. This concludes this 

example. 

A functor A ~ B shall be said to be cocontinuous if it preserves all those 
small colimits which may exist in A. Most often it will be the case that A and 

Bare cocomplete, and if such is the case, then F is cocontinuous if and only if F 
commutes with the E's, and for every le S , FI preserves finite colimits. Denote 

by CocTss(A, B) the full sub-category of FUNCTs(A, B) whose objects are those 
functors from A to B that are cocontinuous. 

Let COCTSs denote the 2-category whose objects (or O-cells) are the locally 

small cocomplete categories over S . For A and B in COCTSs , the category of 

I-cells and 2-cells from A to B is CocTss(A, B) , as above. 

An important fact about COCTSs is that its objects are stacks. 

4.7 Theorem A ny locally small cocomplete category is a stack. 

PROOF Let A e COCTSs . Since A has E satisfying the Beck condition, A is a 
er 

stack if and only if for every epimorphism 1-+ K , the substitution functor 

is tripleable (1.3). Now a* has a left adjoint , and recall (2.2) that since A is 
locally small, a* reflects isomorphisms. Moreover, AK has all coequalizers and a* 

preserves them. So the result follows by Beck's tripleability theorem. 

4.8 Corollary Let A and B be objects of COCTSs. Then any weak equivalence 

A ~ 8 is an equivalence. 

PROOF This follows by 4.7 and 1.4. o 

This section is concluded with a special mention of a certain type of colimit. 

22 


0 



4.9 DEFINITION A is said to have small copowers if: 

1. 	 For any I ~ J E S and any A E AJ , there exists an object a.A , the a-copower 

of A , such that for any BE A J , there is a bijection: 

a.A-+B 

a* A-+O'* B , 


8 . 
natural in B. Let a*A~ a*{a.A) (called the diagonal) denote the 

morphism corresponding to O'.A -..!... a.A . 

2. 	 The copowers O'.A are stab/e. By this is meant that the morphism, call it J1. , 

arising from the following series of bijections: 

(IxK).A1C~ I.A 


(I x Kt A-+(I x KtI.A 

7r~ K* A-+7r~K* I.A 


7r1.{K*A) ~ K*(I.A) 


is an isomorphism for any K E S , where I x K ~ I and I x K 4 J{ are the 

projections. (Actually, what it means for the copower I.AE Al to be stable 

under J{* has been defined here.) 

Given H ~ K, the morphism H.A ~ K.A is by definition that morphism 

corresponding to a-8A , plus some canonical isomorphisms. 

If A has coproducts, then A has copowers with o:.A = EaO'* A. Furthermore, 

in this case H.A ~ K.A can be calculated (to within canonical isomorphism) as 

EK{cKoA), where c is the counit of Ea -! 0'* . In particular, if 0'* is fully faithful , 

then O'.A is an isomorphism. 

A category over S possessing small copowers is in some sense an '5-module ', 
the 'action' being given by copowers . 

Any A E Al determines an ordinary functor from 5 J to A J , a ~ o:.J* A, 

which shall be denoted as (<I>A)J . Then by stability, the functors (<I>A )J define a 

functor over 5 , 

<I>A : 5 --tA . 

Moreover, <I> A is easily seen to be cocontinuous. Similarly, any AE.A.K defines a 

cocontinuous functor 

over S/K . 

The following simple fact from [Pi] is of basic importance . 

23 



4.10 Proposition Let A be an arbitrary category over S and assume that I 

A has small copowers. Then the passage A"'-+ q,A is an equivalence 

A ~ COCTSs(S, A) I which is natural in A . 

PROOF The map A"'-+ q,A defined above is obviously functorial. In fact, given 
A.L B one defines a natural transformation q,f as follows. At 1, for example, let 

(q,J)~ = X.f , the morphism corresponding to 8 B . X" f , 

X"A x:..; X"B ~ X"X.B 

X.A ~ X.B, 

for X e S . Going the other way, define a functor 'l' by letting 'l'F= F( 1). One then 

routinely verifies that cl> • 'l' ~ 1 , and that 'l' . cl> ~ 1 . For example, if 

Fe COCTSs(S, A) , then 

cl> • 'l'(F)(X) = X.F(1) ~ F(X) 

for XeS . o 

The equivalence of 4.10 is an equivalence over S , where by definition 

In the future, the notation q,A shall not be used to denote the cocontinuous 

functor corresponding to A , instead simply A shall be used. 

Let A e CATs, the 2-category of locally small categories over S . Then for any 
A e A there is the 'horn' functor: 

which has a left adjoint if and only if A has copowers of A. That is, one has 
A -l (A,_) . 

1.5 Restriction of scalars 

Let £ be an arbitrary topos, and ret £ ~ S be an arbitrary geometric 

morphism. One should think of £ as an 'extension' of S , rather that as an 'object' 

over S . If B is a category over £ , then one can restrict B along p thereby 

obtaining a category over S which shall be denoted by Bp . Let us write B~ for the 

fiber above Iof Bp. By definition, 
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11 

BP·I (P"~)~P"K 

for K ~ I in S . Similarly, for a functor B ~Cover £ , define 

FIp-- FP· I . 

For a natural transformation F"':' G , let 

t P• It I ~ p- , 

where lE S . It is quite routine to verify that this is all well defined over S . 
Next, observe that if B is locally small over £ , then Bp is locally small over 

S . In fact, given I ES ,let I = BP"I(B,C) , the object in £/po1 which represents 

morphisms B-tC in B/po] . Then the left side of the pullback 

p • p.D 

j P.1 

I P.. p·] 

is the object in S/1 which represents morphisms B-tC in (Bp);! . The bottom 

morphism of this pull back is the unit of p. -1 p•. There is thus a 2-functor 

( )p : CATe ~CATs 

which is referred to as the restriction functor , or as the restriction of scalars along 

p. 

If B is a cocomplete category over £ , then Bp is cocomplete over S . T his 

follows by 4.2 and since p" is left exaci. Also , if F is a cocontinuous fun ctor 

between cocomplete categories over £ , then Fp is cocontinuous. This gi ves us a 

2-functor 

5.1 Examples 
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1. 	 Let A be a category over 5 , and let I E 5 . The notation used to denote the 
fiber above I , AI , shall also be used to denote the restriction along 

51 I ~ 5 of the localization AtI. That is, by definition 

The category AI is over 5 . This notation follows [PS], although AI was not 

introduced there as (AtI)1 . Observe that if A is locally small (cocomplete) 
then A I is locally small (cocomplete). 

2. 	 Given a geometric morphism £ ~5 and a topos over £ , say F ~£ (see 
the next section for the details of how a topos over 5 is viewed as a category 

over 5 ), then the restriction Fp is obtained by composing with p. For 

toposes, let us just write F again when it is clear that the restriction is along 

p. 

3. 	 If C is a small category in £ , then Cp is small in 5 . In fact, C p is 


isomorphic to p.C. 


1.6 Toposes as cocomplete categories 

Tops shall denote the 2-category of toposes over 5 . A typical object in 

Tops shall be written 

F 
H 
s 

where F is a topos and f = (f., f·) is a geometric morphism. A morphism between 

toposes over S , say from F to 'H, is a pair (k, a) where F ~ 'H is a geometric 

morphism and h . k ~ f is a natural isomorphism. A 2-cell of such morphisms 
(k, a) ~ (I, b) , is a natural transformation k· ~ I· (equivalently, a natural 

transformation k. ~ I.) such that th· . a = b. 

Given a topos over S as above, the topos F is in particular a category over 

itself, in fact a locally small cocomplete one. Hence, its restriction along f gives 

rise to a locally small cocomplete category over S . If morphisms between toposes 

are sent to their inverse images, then this passage extends to a 2-functor 

p: Tops OP ---tCOCTSs . 
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Upon giving it a name, let us write instead of pF just F again to denote the 
category over S coming from the topos F . Explicitly then, as a category over S , 

For a morphism a in S , the substitution functor is given by pulling back along 

f*a. Morphisms (k,a) : F --tH are sent by p to the cocontinuous functor p(k,a) 
such that 

p(k,al(x) = a I 
. k*x , 

where X ~ h* I is a typical object of HI . This definition extends in an obvious 
way to morphisms in HI . The notation p(k, a) is unnecessary, so let us just write 
k* to denote the cocontinuous functor coming from the geometric morphism (k, a) . 

It is easy to see that as a functor over S , k* has a right adjoint over S . 
Lastly, for natural transformations (k, a) ~ (I, b) over S , let 

where X ~ h* I is an object of HI . 
The 2-functor p is evidently a 2-embedding, in the sense that: 

1. 	 for any toposes F and Hover S , 

is 	fully faithful, and 

2. 	 p is full on equivalences, which means that for all equivalences e III 


COCTss(H, F) , there is an equivalence d and a natural isomorphism 


p(d) ~ e. 


A category (functor) over S shall be said to come from a topos (geometric 

morphism) if it is in the essential image of p. The rest of this section is concerned 
with when a category comes from a topos. 

The reader is advised to read Appendix A before proceeding. 

6.1 DEFINITION A category A is said to have small coproducts which satisfy 

Frobenius reciprocity at le S , if A has small coproducts which in addition satisfy 

the property that for any I e S and any pull back diagram 

A---' Ba 
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in 	A1, the pullback ~ 
Q 11"0 ·C 	 ~ 

11"} j jb 
l"'A l"'Bl"'a 

exists in AI and the induced map (L;I1I"0, ii) : L;IQ~P is an isomorphism. 

Intuitively, Frobenius reciprocity says that ifAx E Ci exists, then it is equal 

to E(AxCi ). 

6.2 DEFINITION A category A is said to have small coproducts which satisfy 

Frobenius reciprocity if for every I ES , A;1 has small coproducts which satisfy 

Frobenius reciprocity at lE S/1 . 

There is some redundancy in definition 6.2 in that if A has coproducts over S , 
then A;I has coproducts over S/1 . 

6.3 DEFINITION A is said to have small coproducts such that L; reflects 

isomorphisms at 1 if A has small coproducts such that L;I reflects isomorphisms 

for every I ES . 

6.4 Proposition Assume that Al has a terminal object 1 . Then th e following 

are equivalent: 

1. 	 the Jibers oJ A have th e form AI ~ (AI )/1.} , identifying th e substitution . 

Junctors a· with pulling back along 0' .1 . In which case, I.A is th e product 

1.1 x A, for eve ry AE A l and every lE S . 

2. 	A has small coproducts which satisfy Frobenius reciprocity at 1 and are such 

that L; reflects isomorphisms at 1. 

PRO O F That 1. implies 2. is left to the reader. 

Assuming the conditions of 2. , let I ~ ]{ be a morphism in S . Let 

denote the (ordinary) fun ctor which sends an object X E A I to EI (!) I where 

X ~ r l is the unique arrow from X to the terminal obje~t rl in Al . T here is a 

natural isomorphism 
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where L:a.I is composition with the morphism 1.1 ~ K.l . The natural 

isomorphism in 6.5 arises as follows. If € denotes the counit of L:a -1 a* , then 

is the unique map from L:a I*1 to the terminal object in AK . Applying L:K to this 

map yields the morphism a.l down in Al , and from this it follows immediately 

that there is a natural isomorphism as in 6.5. By the results in Appendix A, the 
functors <}?I and <}?K are equivalences, and by 6.5 above, a* is therefore identified 

with pulling back along a.l . 

Categories of the form described in 6.4 can be thought of as categories with a 

terminal object and with universal disjoint coproducts. The corresponding result 

for functors between such categories is as follows. 

6.6 Proposition Let A~S be a functor between categories as in 6.4, and 

assume that F1 preserves the terminal object 1 in A l . Then the following are 

equivalent: 

1. 	 Fl preserves all small copowers of I, and F has the form FI::: (Fl );I.I . By 

this is meant that FI (A ~ 1.1) is isomorphic to the object 

in 	SI , naturally in a . 

2. 	 F preserves coproducts at 1 . 

PROOF Clearly 1. implies 2 .. 

Conversely, assume that F preserves coproducts at 1. Let A~ 1.1 be an 
arbitrary object of AI ,and write FI(a~ 1) as 

B b. 1.1 

bj/ 

1.1 
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in 8 1 • Then FIa is equal to the object B~ 1.1. On the other hand, Fl a is equal to 

This is the morphism B ~ 1.1 . 	 o 

The following two theorems will be used in Chapter 4, §3. 

6.7 Theorem A category A over S comes from a topos if and only if 

1. 	 A I is an elementary topos, 

2. 	 A has small coproducts which satisfy Frobenius reciprocity at 1 and are such 

that E reflects isomorphisms at 1, and 

3. 	 A is locally small (although small homs at 1 will do). 

PROOF Given a category A over S which satisfies the three conditions, let 
F = Al . Also, let 

f·I = 1.1 ; IES 

f.X = Al(l ,X); XEF 

where 1 is the terminal object in F . Since A is assumed to have small horns at 1 

it follows that f* -1 f. , and the left exactness of f* follows from the Beck conditon . 

Thus, f = (f., f*) is a geometric morphism, and by 6.4, A therefore comes from the 
ftopos F --7 S . 

6.8 Theorem A cocontinuous functor F between categories which come from 

toposes, comes from a geometric morphism if and only if the ordinary fun ctoT F j 

is left exact and has an ordinary right adjoint. 

PRoor This follows by 6.6 . 	 o 
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CHAPTER 2 

Inte-rnal Diagrams and Sheaves 

2.1 Internal diagrams 

In Chapter 1, the category of internal diagrams was defined as a category over 

the base topos S . This definition shall now be revised slightly in that internal 

diagrams shall be regarded as a category over SC. 

Let C be an internal category in S . 

1.1 DEFINITION Let A be an arbitrary category over S . Regard AC as a 
X 

category over SC by defining the fiber above 	lx E SC to be 
C 

AX(Ac)X = , 

where AX is the (ordinary) category of internal diagrams on X, as defined in 

Chapter 1. For x ~ y in SC, the substitution functor 

is defined to be 

a·: (A,e) "-+ (a~A,a~e) . 

This definition extends in an obvious manner to morphisms of (Ac)y . 

The notation (ACk is used for the restriction of A C along SC ~S , and this 

is in fact simply AC as previously regarded over S . 
Recall that A/I denotes the localization of A at I . AtI is a category over S/I, 

and it is a special case of the more general construction given above. That is, 
Atl = AI for the discrete category I. (This is not to be confused with Al , which 

denotes (AtI)I, the restriction along S/I~S of Atl, see Chapter 1, §5.) It is not 
hard to check that the construction A C is stable under, or commutes with, 
localization over S . By this is meant, in this case anyway, that for any lE S there 
is an canonical equivalence 

(At I)Ctr ~ AC/C.I , 

of categories over (S/I)Ctr ~ SC/Col' 

X 
Observe that for lx ESC, X is a small category in its own right. Therefore, 

C 
according to 1.1 one has the category AX over SX . This is precisely the 
localization Ac/x over SC/X • 
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If A is loca.lly small, then, as is shown in [PS], the restriction (Ac)c is locally 

small over S . In fact, AC is locally small over SC. This is shown in the 
paragraphs that follow. 

Let us show first that AC has small horns at lE SC. Given a = (A,O) and 

b = (B,</» in AC, an object AC(a,b) in SC is to be exhibited together with a 

bijection 

x*a~x*b in (Ac)X 
x~AC(a , b) in SC 

X 
which is natural in !x E SC. Recall that SC is cotripleable over Slco with the 

C 
forgetful functor 

U : · SC 
---+SICo 

sending x = (xo, Xl) to Xo. Let G denote the right adjoint of U . The composite 

UG is equal to IIso 0i . 
Let (A, B) denote the horn-object in Slco which represents rnorphisrns A~B 

in .Ayco . Let 
(~A , </» : (o~A,~B)~(~A, ~B) 

((},o;B): (o;A , 8;B)~(~A , 8;B) 

denote the rnorphisms in Slc
l 

corresponding to composition with 4> and e 
respectively. Define AC(a,b) to be the equalizer in SC of 

G(A,B) Gpp G(II6o(ooA ,ojB) ) 
(1.2) ~G(A.~ /c(II,o (O,5;B) ) 

GUG(A, B ) 

where p is the morphism corresponding to (ooA , 4» under the adjointness 00-I II oo , 
and 7] is the unit of U -I G. Also, note that 

Given xL G(A, B) in SC , let UxL (A,B ) denote its transpose under U -I G . 
Now transpose 1.2 together with j , first with respect to U -I G , and then with 

respect to 00 -I IIso . One obtains the square 
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80180(Ux) • 80(A,B) 

(1.3) 	 Uj j j(80A, <1» 

(8;A,8;B) (O,8;B) (80A,8;B) 

in Slc\ , where U j corresponds to U j under 80-l IIso' Moreover, 1.3 commutes if 
and only if j equalizes 1.2. But j = G(J) . 'f/x , and hence Uj is the morphism 

Therefore, one has 

-A ( ) U1}X ( ) s; f *( )U1 : Xl = ~ Xo -+ 6; Xo -+ 81 A, B . 

Transposing this once again, with respect to Es\ -l8; , one arrives at 

Observe that the transpose of U'f/x is 81 . The upshot is that U j represents the 

bottom composite morphism in the square 

x*8*A ~ 	 8*x*A 80/. 8*x*B ~ 1 0 	 0 0 0 0 

(1.4) xiO j 
X * C*A -	 c* *A c* *B - x* C*B1U1 -	 U1 X O ~lXO - 1 U1 

in AX 
\, where the same symbol xoA ~ xoB is being used to denote the arrow in 

AXo represented by Xo ~ (A, B) . The top morphism in lA is represented by 

Xl = ~(Ux) 6jJ 8~(A, B) , 

and hence 1.3 commutes if and only if 1.4 commutes. This establishes the 
following series of bijections. 

Ux-+(A, B) in Slco 

such that 1.4 commutes 


x-+AC(a,b) in SC 
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This bijection is natural in x, and this proves that A C has small horns over SC at 

leSC. To show that AC has small horns at 
X 
lx in SC just repeat the above 
C 

argument replacing SC by SX and A C by AX. 

1.5 Example Taking A = S in the above argument produces a proof that SC is 

cartesian closed. 

Recall that 'small coprod ucts' , 'S-coproducts' and 'E satisfying the Beck 

condition' all mean one and the same thing. This property, that of having small 

coproducts, 'lifts' to discrete opfibrations. That is, if A has S-coproducts then A C 

has SC-coproducts. In fact, let x~ y be an arbitrary morphism in SC. Define Eo 

to be 
Eo : (Acr----+(Ac)y 

(A, B) "-+ (EooA, EooB) , 
e . 

where EOI ~A --+ A, now regarding the fiber AX as the category of algebras for the 
triple (whose functor part is) EOI 8~ . 80 is the domain map of X, and o} the 

codomain. This definition obviously extends to morphisms of algebras. Also note 
that one has to insert canonical isomorphisms for the definition to make sense. For 

example, the action map of Eo(A, B) is really 

Then Eo -I cx· , and the Beck condi tion is satisfied over SC. 

If the fibers of A have (stable) finite colimits , then this too is true for A C . For 
example, pushouts in (AC)l are calculated as 

(A ,B) --" (B , </; ) 

j j 

which means that D+ A B is calculated in ACo , and P+e <P in ACI . Thus , one has 
the following proposition. 

1.6 Proposition Suppose that A is cocompiete, and let C be a small category in 

S . Then AC is cocomplete over SC. 

PROOF Cocompletene3s is equivalent to having small coproducts and stable fini te 

colimits in the fibers . 
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1.7 Example Let A be a cocomplete category over S . As a category over SC, 
the left adjoints to the substitution functors of AC can be 'externally' described as 
left Kan extensions. Indeed, let x~ y be in SC. Then given ge (Ac)X one would 
like to describe Ea(g)e (AC)y as the left Kan extension 

X _-=a=--__ y 

~lE.(g) 

A. 

Frequently an argument can be abbreviated by localizing. That is, if the 
definitions and constructions relevant to the argument are stable under 
localization, then it suffices to prove the given statement at the terminal object 

le S . One first defines Ea(g) at le S . Let I ~ 10 e y1 , and form the small 

category a/y. For example, (a/y)o is defined as: 

where both squares are pullbacks. Then let Ea(g)(y) = ~(g.,) where., is the 
obvious functor. The construction a/y is stable under localization, as is the 
construction ACand as is the cocompleteness of A. Therefore, the definition of 

Ea(g) can be considered to be complete. To define Ea(g)I, le S , one proceeds as 

above, only now working over SI1 . 

We have established that if A e COCTSs , then ACe COCTSsc . The 'internal 
diagrams' construction constitutes a 2-functor 

( )c : COCTSs --+COCTSsc 

To conclude this section, a discussion of connectedness is included. This 

notion will come up in Chapter 4, §5. 

The coequalizer of Cl 4! Co in S represents the 'number' of connected 

components of C . Thus, one could say that C is weakly or internally connected if 
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this coequalizer is isomorphic to le S . This is true if and only if S ~ SC is fully 

faithful. There is a stronger external notion, to be simply called connected, which 

is as follows. 

1.8 DEFINITION A small category C is said to be connected if: 

1. 	 the unique map Co~ 1 is an epimorphism, and 

2. 	 for any objects c, d E Cl, there is an epimorphism K ~ I in S and morphisms 

fll" • , fn E C K connecting c*c with c*d, 

where no particular direction of any of the arrows f1' ... , fn is intended. 

1.9 Proposition Let A be a category over S (not necessarily locally small or 

cocomplete) } and assume that A is a stack. Let C be a small connected category. 

Then 

is full and faithful. 

PROOF Connectedness is stable under localization: as is the property of being a 
stack. Therefore, it suffices to prove the proposition at lE S. Recall that the 

category (AC)C is isomorphic to the category of functors from C to A" over S . To 
be shown is that C* 1 is fully fai thful. Suppress the' l' notation wri ting, for 
example, ("' for ("' 1 . Then , by defini tion, for A ~ 

f 
B in A and C E C l one has 

(C*A)I(C) 

(C-f)~ 1 
(C*B)I(c) 

So suppose there is given a natural transformation ("' A ~ ("' B. That is , for every 

C E Cl , there is given an arrow r A1 r B . The naturali ty of t says that if there is 

an arrow c~ d in Cl, then it = t~. The idea is to show that it = t~ fo r all 

c, dE Cl. So fix C~ d E C l. By using condition 2. of 'connected' it follows that 

t~c = t~d for some epimorphism K -.:. I in S . Therefore, the diagram 
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c:* 1* A ~ f{*A ~ c:* 1* A 


c:*( t~) ! ! !c:*(t~) 

c:* 1* B ~ f{*B ~ c:* J*B 


commutes, where the center arrow is t~c = t~d' The isomorphisms cancel out to 

give c:*(t~) = c:*(tD, and therefore t~ = t~ since A is a stack. By using this, taking 

J = Co x Co and c, d to be the two projections Co x Co~Co , it follows that 

(Co x Co)*A 

! 
(Cox Co)* B 

commutes, where the cent er arrow is t~gxCo = t~tCo . The 'object' 1 is the identity 

on Co. The horizontal composite isomorphisms are the canonical descent data of 

C~A and C~B . Since A is assumed to be a stack, and since Co ~ 1 is, by 

hypothesis, an epimorphism, one has tfO = C~f for a unique A.L B. It follows 
that t = C* f . This concludes the proof. 0 

By taking A = S in the above proposition we see that a small connected 
category is weakly connected. 

1.10 Corollary Let A E COCTSs , and let C be a small connected category. Then 

~c·C* ~ 1.,4 . 

PROOF One has li!rc -l (* and, since A is necessarily a stack, 1.9 applies. 0 

If C has a terminal object, in the internal sense (see [Jl], p. 74), then C is 

connected. 

2.2 Sheaves 

Let A be a category over S , and let j be a topology on S. In [P2], the 
following definition is made. 

2.1 DEFINITION An object Ae A1 is said to be a sheaf for the topology j, or 

simply a j-sheaf, if for any j-dense monomorphism S~T and any Be AT the 
function 

s* : [B, T* A]~[s*B, s*T* A] 

is a bijection. 
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The full sub-category of A 1 whose objects are sheaves shall be denoted by 

sbj (A)l . One considers sheaves as a category over S by defining: 

for JES . Explicitly, this means that an object of the fiber shj(A)l is an object 

A EA I such that for every T ~ J in SI I , every j-dense monomorphism S ~ T, and 

every BE AT , the function 

s*: [B,CA]-+[s*B,s*CA] 

is a bijection. One sees directly that the substitution functors restrict to sheaves 

giving us the category shj(A) over S . 
If A has small copowers, then definition 2.1 is equivalent to the following more 

'sheaf-like' condition on A: for any dense monomorphism S ~ T and any BE AT, 
every morphism s.B-+T* A lifts uniquely along the canonical morphism s.B-+B, 

s.B 

l~ 
B~T*A 

Furthermore, in this case the category shj(A)I , which is (sbj(Ah)1 , is equivalent 

to sbj(AI) , which is Shj((.A;I)I) , over S . The reader is referred to [P2] for a proof 

of this. 

2.2 Example The basic example is that of sheaves in the base topos S. Let 

£ denote the sub-topos of j-sheaves, in the original sense, in S. Then £ is 
considered as a category over S (see Chapter 1, §6) by letting £1 = £/i.I, where 

£ ~S is the inclusion. Then, as is shown in [P2], £ ~ shj(S) as categories over 

S. 

Defined to be a full-subcategory of A , sbj(A) is automatically locally small if 

A is. However, more is true, for any sheaf A and any B , the representing object 
(B, A) is itself a sheaf. The following proposition is from [P2]. 

2.3 Proposition Let A be locally small, and let A EA . Then A is a j-sheaf if 

and only if for every J E Sand every BE AI , (B, 1*AV is an 1*j-sheaf in SII . 

The intention here is to consider sbj(A) as a category over £ , and in doing so 

proposition 2.3 would then tell us that sbj(A) is locally small over £ . 

38 



2.4 DEFINITION shj(A) is regarded as a category over £ by defining 

shj(A)K = shj(A)i.K , 

for every f{ E £ . 

Then under this definition, by 2.3 shj(A) is in indeed locally small over £ if A is 

locally small over S . 

Given definition 2.4, one is led to consider the category shj(A)i ' its restriction 
back to S . It would be desirable that this category be equivalent (by an 

equivalence natural in A ) to shj(A) in its original definition as a category over S . 

Why indeed should this be desirable? The answer lies in the fact that such an 

equivalence can be interpreted as an 'equivariance' of the j-sheaves construction. 

See Chapter 3 for a further discussion on this. For now, let us be content with the 
observation that such an equivalence entails that shj(A)K L shj(A)I be an 

equivalence for every j-bidense morphism I ~ f{ . To analyze this condition let us 

begin with the following definition. 

2.5 DEFINITION A is said to be a j-stack if A has the stack property with respect 
to every j-bidense epimorphism. 

Observe that the true stacks are then in fact the t-stacks. Also, if j ~ jl then 

any jl-stack is j-stack. 

In the following proposition, shj(A) is to be regarded as a category over S in 

its original definition. 

2.6 Proposition Let A be an arbitrary category over S . Assume that shj(A) 

has small coproducts. Then the following are equivalent: 

1. shj(A)H ~shj(A/ reflects isomorphisms for every j-bidense epimorphism 

9
I-+H J 

2. shj(A)K ~ shj(A)I is an equivalence for every j-bidense morphism I ~ f{ J 

3. shj(A) is a j-stack. 

PROOF (1.=}2.) Let I ~ K be an arbitrary bidense morphism. If f is factored as 

an epimorphism followed by a monomorphism I!.. H ~ K , then g and h are both 

bidense. Let us first consider h. Observe that 

h* : [B, A]-+[h* B, h* A] 
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is a bijection for any sheaf AE AK and any BE AK . In particular, when restricted 
to sheaves in AK , h* is fully faithful. Moreover, h* is essentially surjective because 
for any BE shj(A)H , the unit B-+h*EhB is an isomorphism. This follows because 

is a pullback and the Beck condition is satisfied. Thus, h* is an equivalence. 

Let P denote the kernel pair of 9 . 

P 7ro. I 

7rl J J9 

I g' H 

Let I ~ P denote the factorization of the diagonal through P . Then 8 is a j-dense 

monomorphism and 

8* : [B,7r;Al-+[8*B,8*7r~Al 

is a bijection for any sheaf A E AI and any BE AP • In particular, for any sheaves 

A, C E Alone has following series of bijections: 

C-+A 

which is given by composition with the unit C ~ g*EgC . Therefore, there is a 

morphism g*EgC ~ C such that p . T}e = le . Then T}e . p is the identity on 
g*EgC, since both T}e . p and the identity correspond to T}e under the above 

bijection. Therefore, T}e is an isomorphism. To see that the counit of Eg -! g* is an 

isomorphism, observe that for any sheaf AE AH , by what has just been shown, 

T}g*A is an isomorphism. But the inverse of T}g*A is g*(cA)' and by our hypothesis, 

the counit CA is therefore an isomorphism. Thus, g* is an equivalence. 

(2.=}3.) Let I~H be an arbitrary j-bidense epimorphism. Then sbj(A) has 

the stack property with respect to g, trivially so in fact, because g* is assumed to 

be an equivalence. 
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0 

(3.~1.) If shj(A) is a j-stack then in particular the substitution functors 
reflects isomorphisms along j-bidense epimorphisms. 

Let £ ~ S denote the inclusion of £ into S . Then under the condi tions of 

2.6 and under definition 2.4 one has, for any lE S , 

since I ~i*i* I is bidense. Since this equivalence is over S , it can be written as 

Line 2.7 means that the restriction back to S of shj(A) regarded as a category 
over £ , is equivalent to its original formulation as a category over S . This shall 

be referred to as the equivariance of sheaves. 

This section is concluded with a review of some facts from [P2j. Let A be an 

arbitrary category over S , and assume for this discussion that A has small 

powers. For a in S/H and AE AH , let Aa denote the a-power of A . 

Let n be a full sub-category of n. That is, for every lE S , a collection nI of 

sub-objects of I is given such that for any K ~ lE n I and any H ~ lone has 
a* k E nH . A sub-object of S ~n determines such a category S by letting 

SI = { A ~ I I the characteristic map of a factors through s} . 

2.8 DEFINITION A E A is said to be a n-sheaf if for every YES, A has the sheaf 

property with respect to every monomorphism X ~ Y in n Y • 

Let S~T be a given fixed monomorphism. Let (s) denote the full 
sub-category of n generated by s in the sense that 

(S)I = {a*s II~ T}. 

2.9 Proposition For a given A EA, the following are equivalent. 

1. A is an (s)-sheaf. 

2. A has the sheaf property with respect to the monomorphism s . 

3. The canonical map T* A~(T*A)6 is an isomorphism. 
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Denote by 1~ J the factorization of 1~ n through J , where J is the 
su b-ob ject of n classified by j. Then J = (cl) , and therefore A e A is a j-sheaf if 
and only if J-A -+ ( J*A)d is an isomorphism. 

Given D, denote by fi the full sub-category of 0 whose fiber at Te S is defined 

to be 

fiT = {S~T I there exists Y~Twith e-seDY}. 

fi is the stack completion of D. Also, recall (Chap. 1, §1) that if A is a stack, then 

e 
for any epimorphism Y -+ T, e- reflects isomorphisms. 

2.10 Proposition Assume that A has the property that e- reflects isomorphisms 

for any epimorphism e. Then A e A is a D-sheaf if and only if A is a fi-sheaf. 

The reader if referred to [P2] for proofs of 2.9 and 2.10. The main result from 

that paper is the next theorem. The proof included here is essentially that which 

is found in [P2]. It use£ the following two facts, which will also be needed in the 

next chapter. As usual, (j, J) denotes a topology on S . 

1. 	 If a sub-object S ~ 0 generates J , then any A e A is a j-sheaf if and only if 

it is an S-sheaf. 

2. 	 Let F ~S denote an arbitrary topos over S . Let I< ~ O.r denote the 
image of the characteristic map of f·d. Then 

K = (f-d) . 

One says that K consists of those monomorphisms which are locally 

pullbacks of f*d . 

With F ~ S as above, let j denote the topology on F generated by f{ ~ with 
characteristic map] . Then sh;(F) is a category over F . 

2.11 Theorem (Pare) As categories over S , (sh;(.1'))f = sbj(.1') . 

PROOF The topos .1' is a stack and it has small powers, so the two preceeding 
propositions apply. Let us demonstrate the expressed equality at le S . An object 

X e F is a ]-sheaf if and only if X is a K-sheaf if and only if X is a (f"d )-sheaf if 
and only if 

(f*J)*X -+((f*J)*Xfd 

is an isomorphism if and only if 
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is an isomorphism, where F is now being viewed as a category over S . This last 
statement is true if and only if X is a j-sheaf. 0 

2.12 Corollary In the notation of the above theorem, we have shj(F) ~ £xsF 

as categories over S . 

PROOF The topos of ]-sheaves in F , in the ordinary sense, is the pullback 

£ x sF in toposes. The result follows by example 2.2 and theorem 2.11. 0 

In the terminology of Chapter 1 §6, the above corollary says that if A comes 

from a topos , then so does shj(A). 

2.13 Example In this example it is shown that the category of sheaves in a 

small category is, with an additional assumption, again small. As an application of 

the General Adjoint Functor Theorem, in [PS] it is shown that a small category is 
complete if and only if it is cocomplete. Since the present context is within 
cocomplete categories, the following result is stated in these terms. 

Let C be a small cocomplete category. Then shj (C) is small and cocomplete . 

Furthermore, the object of objects shj (C)o is itself a sheaf, as is the object of 

morphisms shj (Ch. 
Observe that the second statement in italics says that shj(C) is a small 

category in £ = shj (S) . 
To prove our claims, one can use the fact that a category is small if and only if 

it is locally small and there exists an object of objects (for a proof of this see [PS]). 

Thus, our aim is to construct the object of sheaves, those elements of Co that are 
sheaves. Let c be an arbitrary object in Cl , that is, a morphism I ~ Co. We work 

over SII. By 2.9, the object c is a sheaf if and only if the canonical morphism 
(1* J)*c~((1*J)*c)/"d is an isomorphism. By the universal property of powers, and 

since J . d = 1 , this is true if and only if application of (J*d)* gives a bijection: 

b~ (1* J)*c 

(J*d)*b~ c 

for any bE C lxJ 
. In concrete terms this means precisely that composition with 

d x 1 gives a bijection between commuting diagrams: 
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and commuting diagrams: 

Thus, the sheaves in C can be described using the internal language of the topos. 

Define shj(C)o to be the following sub-object of Co: 

~c e Co Ic is a sheaf~ 

= ~ceCo I"IbeCg"l(3eC1(((co(3 = bd) 1\ (01(3 = c)) 

~ 3!aeCt((ooa = b) 1\ (cIa = cl) 1\ ((3 = ad)))~ 

One now verifies that a given I ~ Co is a sheaf if and only if it factors through 
shj(C)o. One concludes thatthere is therefore an object of morphisms shj(Ch in 

S . As for the cocompleteness of shj(C), this follows because shj(C) is complete 

since C is, and being small, sh j (C) is therefore cocomplete. 

It remains to show that the objects shj(C)o and shj(Ch are themselves 

sheaves. Let S~T be a j-dense monomorphism. As a general comment observe 

that if A is an arbitrary category, then the substitution functor s* is fully faithful 

when restricted to sheaves. In our case C is complete, and therefore so is shj(C). 
In particular, shj(C) has IT satisfying the Beck condition, and IT is always fully 
faithful along monomorphisms. Thus, restricted to sheaves, s* must be an 

equivalence, 
shj(cf ~ shj(C)s , 

for the j-dense monomorphism S ~ T . Since s* is composition with s , it follows 

that the objects shj(C)o and shj(Ch are both sheaves. 

2.3 Sheafification 

As in the previous section, S is the base topos, j is a topology on S , and 

£ ~S is the sub-top os of sheaves. For a category A over S , shj(A) denotes the 

full sub-category of A whose objects are the j-sheaves. 
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8.1 DEFINITION A is said to admit j-sheafification if sbj(A) is a reflective 

sub-category of A . 

When A does admit j-sheafification, the left adjoint of the inclusion functor 

shall be denoted by a, 

a 
'.) A 

I 

where a -j i . These are functors over S. 
Let us say that A admits sheafification if A admits j-sheafification for all 

topologies j on S. 

3.2 Examples 

1. 	 Let B denote an arbitrary category over £ . Then the restriction Bi admits 

j-sheafification. Trivially in fact, because every object in Bi is a sheaf. That 

is, sbj(Bj) = Bi . 

2. 	 A topos over S admits sheafification. Recall that from the previous section 

(corollary 2.12) that for :F a top os over S , sbj(:F) is equivalent to the 

pullback £ xs:F in toposes. This is a reflective sub-category of :F . 

3. 	 Any small cocomplete category admits sheafification. In fact, let C be such a 

category, and let j be a topology on S. C is necessarily complete, and 

therefore so is shj (C) as limits in shj (C) are just computed in C. (This 

second statement being true quite generally.) As was seen in the previous 

section, shj (C) is small. Therefore it satisfies the solution set of objects 

condition (see Appendix B) . Thus, since the inclusion functor is continuous , 

it must have a left adjoint by the General Adjoint Functor Theorem. 

Recall that shj(A) can be regarded as a category over £ by defining the fiber 
at K E [: to be shj(A)ioK . Under this definition one has the following. 

3.3 Theorem Let A E COCTSs J admitting j-sheafification. Then 

shj(A)E COCTS[ .. and is equivariant as explained in the previous section. 

PROOF If sbj(A) is a reflective sub-category of A over S , then shj (A ) is 
cocomplete over S since S-colimits in shj (A) can be calculated in A and then 

reflected into sbj (A ). Obviousiy, shj(A ) is then cocomplete as regarded over £ . 
By 2.3, shj(A) is locally small over £ . The equivariance follows by 2.6 since, being 

cocomplete and iocally small over S , shj(A) is a stack. Alternatively, since A is a ' 

stack it follows in any case that sbj(A) is also. Since shj(A) is assumed to be a 

reflective sub-category of A , shj(A) has coproducts , and 2.6 again applies . 
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The general problem of when A admits sheafification is an interesting one in 

itself, but to be pursued no further here. In the event that shj(A) is a reflective 

sub-category of A , in the next chapter it is seen that shj(A) is in some sense a 

'module of fractions'; it has a universal property analogous to that of a module of 

fractions in rings and modules. Theorem 3.3 is the first step towards proving such 

a result. 
In the study of sheaves in the opposite category, or 'cosheaves', to follow in the 

next section, it is shown that r admits sheafification for :F a topos over S . More 

importantly, it will be seen that the category of cosheaves in a topos form a topos. 

2.4 Cosheaves and open topologies 

Let A be a category over S , and let j be a topology on S. Having defined 

previously the notion of a sheaf in an arbitrary category, consider now the 

category (shj(A""))"" , which is a full sub-category of A . Let us simplify the 

notation, and write shj(AOP)"" for this category. 

4.1 DEFINITION The category shj(A"")OJ> shall be called the category of 

j-cosheaves in A . 

Let us begin this section by investigating the category of j-cosheaves in the 
base topos S. 

Let U <......t 1 be a sub-object of 1. Such an object is sometimes referred to as an 

open object. The morphism 

is a topology on S which is denote by jv . It is called the open topology associated 

with U. Furthermore, there is an equivalence shj~ (S) 2:' SIU which identifies the 
inclusion functor with nv. The associated jv-sheaf of an object 1 is IV . These 

facts are proved in [J 1). The map U ~ j~ is order reversing from the latti ce of 

sub-objects of 1 to the lattice of topologies on S. 
For an arbitrary topology j on S define the interior of j to be the equalizer of 

1 J.. nn and 11. nn. Denote this open object by int(j). There is a (contravariant) 

Galois correspondence (see [Jl]) between the lattice of sub-objects of n and itself, 

which shall be denoted by l-l r. If U is an arbitrary open object then U x D is a 

sub-object of D, and it is the sub-object classifier in the topos shj~(S ) . Therefore, 

(UXD)I is the sub-object of D classified by jfj. There is then the following series 

of equiva.lences: 
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U $int(j) 
11"1 1 

uxn~ n ~ n commutes 
J 

. < '0
J - Ju 

for any j and any open U, where J denotes the sub-object of n classified by j. A 

(contravariant) Calois correspondence has been established between the open 

objects and the lattice of topologies on S ([J1] page 102, ex. 10). 
A characterization of cosheaves in S can now be obtained. 

4 .2 Proposition An object lE S is a j-cosheaf if and only if lE int(j) . 

PROOF First observe that in the following diagram, 

dJ7rl = 7rl if and only if j7rl = 7r}, where K is any object. 

Fix lE S. A cosheaf is by definition a sheaf in the opposite category, and so by 

proposition 2.9 one sees that I is a cosheaf if and only if the morphism I (l.::!P I x J 
is an isomorphism, in which case its inverse is the projection I x J ~ I . Let 

U <.......+ 1 denote the support of I. Then one has the following series of equivalences: 

I (l ,dI) I J' . h' 
~ X IS an Isomorp Ism 

U (l,dU) U J' . h' 
~ X IS an Isomorp Ism 

(l,dU)7ro = 1, where UxJ~ U 
7rI(1, dU) 7ro = 7rll where U x J'!4 J 

is the projection, a monomorphism 


dJ7rl = 7rll 

since 7rl (1, dU)7ro = dJ7rl 


j7rl = 7rl, as in the diagram above 

taking K = U 


U ~ int(j) 
lE int(j) 

o 
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Thus, the category of j-cosheaves in S is isomorphic to S/int(j), by an 

isomorphism which identifies the inclusion functor with Eint(j)' 

Cosheaves are an example of a 'unity of opposites'. Let V = intU). The 

adjoint pair 

Vx( ) 

S ~ S 

induces an equivalence of categories Fix{c) ~ Fix(7J), where c is the counit, and 7J 
is the unit of the above adjointness. For an arbitrary object I , since V is a 

sub-object of 1, it follows that V x IV ~ V x I. By proposition 4.2, I is a cosheaf if 

and only if I ~ V x I, and therefore if and only if the counit V x IV ~I is an 

isomorphism. Thus, I is a j-cosheaf if and only if lE Fix(c). Similarly, one sees 

that I is a iv-sheaf if and only if lE Fix('7), and so the 'unity of opposites' says 

that the category of j-cosheaves is equivalent to the category of iv-sheaves. 

Any object lE S has an associated cosheaf, it being the object intU) x I. In 

particular , the associated cosheaf of 1 is int(j). In this regard one can think of 

int(j) as the union of those sub-objects of 1 that are cosheaves. 

Let cl denote the associated cosheaf of I . Since j ~ j'lnt(j) : every j-dense 

monomorphism is j'lnt(j) -dense. Therefore, c carries all j-dense monomorphisms to 

isomorphisms since it does so with the iint(jfdense ones. Hence, as we shall see in 

the next chapter, c factors through j* , where £ ~ S is the inclusion of j-sheaves 

into S . It follows that 

is cocontinuous . Moreover , the functor c· i. is the terminal object. in 

COCTSs (£, S) . This fact plays a role in the study of the cocon tinuous dual of 

£ (see Chap . 4, §4 and §5). T he following theorem, in which 4.2 is generali zed to 

an arbitrary topos over S , will be used in those investigations. 

4.3 Theorem Let;: be an arbitrary topos over S ) j a topology on S . Let j 
denote the topology on;: induced by j. Then there is an isomorphism of categories, 

identifying the inclusion functor with Ev , where V denotes the interior of j. 

A proof of 4.3 shall be given in the examples at the end of section §l of the 

next chapter. 

In particular , the category of cosheaves in a topos is a topos. 
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4.4 Example Since AOP admits j-sheafification if and only if shj(AOP)OP is a 

coreflective sub-category of A , by 4.3 r admits sheafification for any topos 

F over S. 

Cosheaves are related to the category COCTSs(£, A) , the study of which 

begins the next chapter. 
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CHAPTER 3 

The Adjoints of Restriction 

3.1 The right adjoint 

Let £ ~S be a topos over S , and let A denote an arbitrary cocomplete 

category over S . Then COCTSs(£, A) , the category of S-cocontinuous functors 

from £ to A, can be viewed as a category over £ . In fact, the fiber above K e £ is 

defined to be 

COCTSs(£, A)K = COCTSs(£K, A) . 

For K ~ L in £ , the substitution functor a* is defined to be composition with Ea 

(pertaining to £ ), 

a*(F) = F· Ea , 

for Fe COCTSs(£, A)K . 
It is not hard to see that COCTss(£,A) is co complete over £ . In fact, for any 

morphism a of S , the substitution functor a* has a left adjoint, which is given by 

composition with the pullback functor in £ , 

Furthermore, one easily verifies that the Beck condition holds. Finite colimits in 

the fiber CocTss(£,A)K are computed 'pointwise', which the substitution 

functors are seen to preserve. 

If Fe COCTSs(£, A) and K e £ , then the K-copower of F, which is denoted by 

K.F, is the cocontinuous functor 

Thus, (K.F)(X) = F(K.X) for any X e £ . 
The principal fact about the 2-functor A"-'+ COCTSs(£, A) is that it is the 

right adjoint of the restriction functor ( )p. 

1.1 Proposition For any cocomplete categories B over £ and A over S , there is 

an equivalence of categories 

COCTss(Bp, A) =::: COCTsdB, COCTSs(£, A)) . 

This equivalence is natural in A and B . 
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PROOF The desired equivalence expresses a 2-adjointness for which the unit and 
counit are as follows. The unit shall be denoted by 

Let us write I\. for 1\.13 , dropping the'B'. For f{ E £ , to be defined is 

I\.K : BK --+COCTSs(£K, Bp) . 

So for BE BK and lE S define 

by setting 
I\.K(B)I(a,j3) = L,Otj3*(B) , 

where M(c:1) p*Ixf{ is a typical object of £/poIXK. It follows that I\.K(B) is a 

cocontinuous functor over S , and that I\. is cocontinuous over £ . 

Turning now to the counit, it is a cocontinuous functor over S which shall be 

denoted by 
3,.4. : COCTSs(£, A)p--+A . 

Wri ting 3 for 3,.4., define 3 1 for I E S by setting 

where FE COCTSs(£, A)~ = COCTSs(£I, A) , and where DI is the diagonal 

p*I-+p*Ixp*I as an object of (£1)1 = £/p0(IxI)' 3 is indeed cocontinuous. Let us 
show, for example, that 3 preserves coproducts. That is, considering the unique 
map 1-+1 (the general case 1-+f{ is similiar), let us show that 

COCTSS(£I, A) 
-=1 • AI 

L,IJ JL,I 
~ 

COCTSs(£, A) ·A-= 

commutes. If FE COCTSs(£I, A) , then one has 

where 1 is p* I ~ p* I , the terminal object in £1 . Going the other route, 

3· L,I(F) = 3(L,I F) = (L, I F)(81 ) = (F· 1*)(81 ) ~ F(1) . 
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Our task is to verify that COCTSS(£,:=:.A)· ACoCTSs(£,.A) is isomorphic over 
£ to the identity functor on COCTSs(£, A) , and that :=:(Bp) . (AB)p is isomorphic 
over S to the identity functor on Bp. Let us turn first to the functor 

COCTSs(£, :=:.A) . ACoCTSs(£,.A) over £ . For the remainder of this paragraph let A 
denote COCTSs (£, A) , A denote A A ' and :=: denote :=:.A ' For K E£ and FE A K = 
COCTSs(£K,A), to be shown is that COCTSS(£,:=:)K. AK(F) ~F, where 

COCTSs(£,:=:)K: COCTSs(£K,Ap)--COCTss(£K,A) 

G :=:·G, 

and 
K AK K A

A : A --COCTSs(£ ,Ap). 

So, to be shown is that 

is isomorphic to F over S . Let J ES , and let M (~) p* J x K be an arbitrary 

object of (£K)I . Then 

At this point observe that from the definitions (AKF)I (a,,8) is the cocontinuous 

functor 
£1 ~£M L.B) £K £.A . 

Evaluating this functor at 81 (at stage J) yields FI(a,,8) because 

EMa*I (81)) ~ (a,,8) . 

Regarding :=:(Bp) . (AB)p over S , let us write:=: for :=:Bp , and A for AB. Let 
JES, and let BE (Bpl = BpoI. Then 

:=:I(APOI(B)) = (APoI(B))I(8I ) = El1*(B)~B, 

since 01 = (1,1) , where 1 is the identity on p*J. This concludes the proof. 0 

If F is a topos over £ , then by the above proposition, one obtains that which 

shall be referred to as the change of base formula: 

(1.2) CocTss(F, A) ~ CocTs£(F, COCTSs(£, A)) , 

for any cocomplete category A over S . There is a small abuse of notation here in 

that on the left, F has been written instead of Fp . 
Recall that AtI denotes the localization of A at I E S . 
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1.3 Proposition For any I eS I there is an equivalence Atl ~ COCTSs(SII,A) of 

categories over SII , which is natural in A . 

PROOF Define a functor 

~ ; Atr--+COCTSs(SII, A) 

by defining for A e (AtI)l = AI 

to be 
(~A)J(a,,s) = Ea,s*A , 

where J eS and K(~) JxI is a typical object of (SII)J = SIJxI. Then ~A is a 

cocontinuous functor over S . This defines ~ at lE SI1 , and the general definition 

is obtained by localizing. One then routinely verifies that ~ is indeed a functor 

over SII . 

Next, define a functor 

by setting 

\l1F = F/(OI) ' 

where I!.4JxI is the diagonal regarded as an object of (511)1. Let us verify that 

\l1 is in fact a functor over 511 . To keep it simple let us consider the unique arrow 

m-tl in S/I , where M ~ I. Then 

On the other hand, 

It remains to verify that \lI and <I> are mutual inverses , which is a routine 

calculation. 

Thus, by 1.3 and 1.1 applied to S/I~S , localization is right adjoin t to 

restriction in the sense that 
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natural in cocomplete categories A and B . One can a priori view COCTSs(£, A) 
as a category over S by defining 

By 1.4, this category is equivalent to COCTSS((£/I)" A) . Recall (Chapter 1, §5) 
that (£11) I is denoted by £1 . Therefore, one has 

COCTSs(£, Al ~ COCTSs(£I, A) ,lE S . 

The right side of this equivalence is, by definition, COCTSs(£, A)~ , and so 

suppressing the variable I , one has 

(1.5) COCTSs(£, A) ~ COCTSs(£, A)p . 

The equivalence 1.5 says that regarding COCTSs(£, A) as a category over £ and 
then restricting back to S is the same as a priori viewing COCTSs(£, A) as a 
category over S . This is the equivariance of COCTSs(£,_) regarded as an 

endofunctor of COCTSs . By analogy in locales and sup-lattices, if A~B is a 

homomorphism of locales and M an A-module, then HomA(B,M) is an A-module 
in two equivalent ways. 

Also, the equivalence 1.5 identifies ::::A with p* in the sense that 

COCTss(£,A)p _'::'~A-=---. A 

(1.6) 	 III III 


COCTSS(£, A) -- COCTSs(S, A) 


commutes up to natural isomorphism, where the bottom arrow is composition 

with p* . This identification is of basic importance, and it shall in the future be 
made sometimes without notice. 

It is not clear that COCTSs(£, A) is locally small if A is. Our next aim is to 
establish the following important fact. 

1.7 Theorem Assume that £ ~ S is bounded. Then for any A E COCTSs , the 

category COCTSs (£, A) is locally small over £ . 

. 
1.8 Corollary With £ as in 1.7, if F denotes an arbitrary topos over S , then 

ToPs(F, £) is locally small over £ . 

PROOF ToPs(F, £) is a full sub-category of COCTSs(£, F) . 	 o 

The proof of 1.7 uses the following two propositions. 
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1.9 Proposition Let A be a cocomplete category over S , and let C denote a 

small category in S . Then composition with the Yoneda embedding gives an 
equivale nce COCTSs (Sc , A) 8:' A COJ> as categories over SC. 

A proof of 1.9 can be found in [Pi] with the difference here that these 

categories are regarded as over SC. The category ACOJ> is regarded as over SC by 

X 
letting (AcOJ>)X = AXOJ> ,for 1x eSc . For a morphism x":; y in SC, the 

C 
substitution functor 0- for ACOJ> is given by composition with o op (regarding 0 as 

a functor between the total categories of x and y). To indicate that the equivalence 

X 
of 1.9 is indeed an equivalence over SC, let 1x e SC. Let us consider the unique 

C 
map x--+ 1 in SC (the general case x--+y is similiar), and show that 

COCTSs (Sc , A) ==- A COJ> 

(1.10) x· j jx· 

COCTSs(SX, A) ==- AXOJ> 

commutes (up to natural isomorphism). First note that 
xDpX op --'-'---_. cop 

y j _1y 

SX -=--:SC
Ex 

y 
commutes , where Ex sends a discrete opfibration ly to x . y. Then if 

X 
FE COCTSs(Sc , A ) , by going the top route in 1.10 one gets F· Y . xOP :::: F . Ex . Y , 
which is the result going the other way in 1. 10. 

Proposition 1.3 is actually a special case of 1.9. 

1.11 Proposition Let j be a topology on S ) and let £ ~ S denote the sub-topos 

of j-sheaves. Then: 

1. For any cocomplete category A over S I 

is fully faithful. Its essential image consists of those AE A with the property 

that if S ~ T is an arbitrary j-dense monomorphism then S.A ~ T.A is an 

_ isomorphism. 
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2. 	 If in addition A is locally small, and if S ~ T is a given monomorphism such 

that (8) (see Chapter 2, §2) generates J , then the essential image of =:.A 
consists of those Ae A such that S.A!4 T.A is an isomorphism. 

9. 	 For any cocomplete B over £ , the unit 

is an equivalence. 

PROOF 1. In view of 1.6 (occurring just before Theorem 1.7), =:.A is fully faithful 

since composition with j* clearly is. Regarding the statement about the essential 
image of =:.A , it is equivalent to the statement that GE COCTSs(S, A) factors 
through j* if and only if G takes j-dense monomorphisms to isomorphisms. The 

necessity of this latter statement is clear. For the sufficiency, let S ~ A be any 
cocontinuous functor taking j-dense monomorphisms to isomorphisms. Then G 
takes j-bidense morphisms to isomorphisms. In fact, an epimorphism I ~ [{ is 

bidense if and only if the inclusion of I into the kernel pair of a is j-dense. It 
follows that GO' must be an isomorphism because G preserves coequalizers . Thus, 

there is a natural isomorphism 

G~ G . i•. j* , 

since ls-+i•. i* is bidense. So if G·;. is shown to be cocontinuous, the proof of 1. 
will be complete. But this follows easily. Indeed, let ,E £D be a diagram in £ , 

where D is a small category in S . Let (J correspond under i" -i i. to the canonical 

isomorphism 

j*( ~(i•. , )) ~ l~(i· . i" . ,) ~ ~ID")' . 

Then (J is bidense, and therefore 

is an isomorphism. That is , G·i .. is cocontinuous. 

2. Let S ~ A be any cocontinuous functor taking the monomorphism s to 
an isomorphism. Since A is assumed to be locally small , G has a right adjoin t, 

G -l R . Then for any A EA: RA is seen to have the sheaf property with respect to 

s because Gs is an isomorphis~ By the results from [P2], which were reviewed in 

Chapter 2, RA is therefore an (s )-sheaf. Hence, RA is a sheaf since it is assumed 

that (s) generates J , and so 

(1.12) R~i.· (i"· R). 
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It follows that G . i* -! i* . R, and upon taking left adjoints of 1.12 one has 

G~(G·i*)·i* . 

This concludes the proof of 2. 

3. Let B be a cocomplete category over £ . Observe that the counit 3(Gj) is 
an equivalence. In fact, by 1. above, it is fully faithful. To see that 3(Gj) is 

essentially surjective let S ~ T be j-dense. Then 

s* : Br-tBF 
is an equivalence since i*(s) is an isomorphism. It follows (see Chapter 1, §4, the 

discussion on copowers) that S.B ~ T.B is an isomorphism for every B E Bj , 
which shows that 3(Gj) is essentially surjective. Now 3(Gj) • (AG)j is isomorphic to 
the identity functor on Bj , and therefore (AB)j is an equivalence. It is easy to see 

that ( )i reflects equivalences, and therefore, AB is an equivalence. 0 

Observe, by 3. above, that ( )j is 2-fully faithful, which means that 

F F·I 

is an equivalence for any cocomplete categories A and B over £ . 
Proposition 1.11 has the following useful corollary. 

1.13 Corollary Let F be a topos over S , and i a topology on F with 

£ = shj(F). Then for any cocomplete A, COCTSs(£, A) is equivalent to the full 

sub-category of CocTss(F, A) whose objects consist of those cocontinuous 

functors taking i-dense monomorphisms to isomorphisms. 

PROOF We have 

COCTSs (£, A) ~ COCTS:F(£, COCTSs (F, A)) . 

Therefore, by 1.11 COCTSs(£, A) is equivalent to the full sub-category of 

CocTss(F, A) determined by those cocontinuous F -£... A such that 

S.F~ T.F 

is an isomorphism, for any i-dense monomorphism S ~T. By recalling how 

copowers are calculated in CocTss(F, A) over F , the result follows. 0 
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Corollary 1.13 will be put to use (see Chapter 4, §4) in the case that F is a 

topos of presheaves. 
Let us now return to the proof of 1.7. 

PROOF (of 1.7) By the change of base formula 1.2, that is since 

COCTSS(£', A) ~ COCTSsc(£', COCTSs(Sc, A)) , 

one can separate the cases £' = SC for C a small category in S , and £' a sub-topos 
of S . Let us first take the case £' = Sc. Of course, if A is locally small, then A op 

is also locally small. Therefore, (AOP)C is locally small over Sc. This was proved 

in Chapter 2, §2. The opposite category of (AOP)c is 

and therefore, COCTSs (Sc, A) is locally small over Sc. 

Let us now turn to the case that £' is the sub-topos of sheaves for a topology j 
on S . Observe that COCTSs(£', A) is locally small over S since it is a full 

sub-category of A. But for a cocontinuous functor £' ~A, the horn-object 

(A, X)e S is a j-sheaf, where A = 3.A(A) and X is any object of A . In fact, let 
S~T be an arbitrary j-dense monomorphism. Then S.A~ T.A is an 
isomorphism, and one has the following series of bijections: 

S-+(A,X) 

S*A-+S* X 


S.A-+X 

T.A-+X 


T*A-+T*X 

T-+(A,X) . 


This bijection is given by composition with 8 , and therefore the object (A, X) is a 
sheaf. Thus, COCTSs(£', A) is locally small over £' in the case of an inclusion. This 
concludes the proof of the proposition. 

Recall that COCTSs denotes the 2-category of locally small cocomplete 

categories over S . Thus, for £' ~ S bounded, ( )p has a right adjoint. It is the 

2-functor 

COCTSs(£',_) : COCTSs --+COCTSE . 

A key fact about the adjointness ( )p -l COCTSs(£',_) is that it satisfies the Beck 
condition. 
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1.14 Proposition Let £ ~S be a bounded geometric morphism, and suppose 

that 

--p-' S 

is a pullback square of toposes. Then for any B E COCTS:F , there is a canonical 

equivalence 

COCTS:F(P,B)q ~ CocTss(£,Bf) 

of categories in COCTSe . 

PROOF First assume that £ = SC, for C a small category in S . Then P ~ r'c , 
X f*X 

and if lx E SC, then q*x = If*x. Let B E COCTS:F . Then by definition, 
C f*C 

COCTS:F(P, B)~ = COCTS:F(P/q'x, B) 

which is equivalent to 

On the other hand, 

and this last category is in fact equal to Bf-xop . Thus, the fibers at XE SC are 

equivalent, and one only needs to verify that this constitutes an equivalence over 
SC. 

Now assume that p = i is an inclusion with £ = shj(S). Let J denote the 
sub-object of n characterized by j, and let 1 ~ J denote the factorization of 
1 ~ n through J . Let K '-+ n:F denote the image of the characteristic map of 
f* d , and let j denote the topology on :F generated by K . Then, as is well known, 

P is equivalent to the topos of j-sheaves. Furthermore, K, the full sub-category of . 
n determined by K , consists of those monomorphisms which are locally pullbacks 

of f*d. That is, K = (f*d) (see Chap. 2, §2). Being 2-fully faithful, ( )i is full on 
equivalences, and so it suffices to show that 
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and hence that 

(1.15) 

By 1.11, the essential image of 

consists of those BE Bf such that B~ J.B is an isomorphism. As calculated in Bf , 
this means that (f*d).B is an isomorphism. Consider now the essential image of 

over F . It consists, again by 1.11, of those BE B such that (f*d).B is an 

isomorphism. Here was used the fact that (f*d) generates j . Thus, the essential 

images of 2(Bf) and (2B)f in Bf coincide, as in the following diagram. 

COCTSs(£, Bf)i 

12 (Bf ) 

(COCTS.:F(P, B)rh -(-~-)-. Bf 
=-B f 

This proves 1.15 (strictly speaking, 1.15 has only been demonstrated at lE S ). 
The proof of the proposition is concluded by using the change of base formula. 

The following theorem summarizes the results so far. 

1.16 Theorem Let £ ~S be a bounded geometric morphism. Then 

( )p : COCTSE --+COCTSs 

has a right adjoint which is 

COCTSs (£, _) : COCTSs --+ COCTSE . 

Furthermore, the Beck condition is satisfied as explained in 1.14. 

To conclude this section, the dual of COCTSs(£, A) is calculated in the case 

that £ ~ S is bounded. 

1.17 Proposition Let C be a small category in S , j a topology on SC, and £ the 

topos of j-sheaves. Then for any A E COCTSs , the dual of COCTSs(£, A) is 

equivalent to sbj((Aop)C) over £ . 
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PROOF Consider first the case that p = i is an inclusion, with £ = shj(S). By 

1.11 the essential image of:=:A consists of those A E A such that S.A~ T.A is an 
isomorphism, for every j-dense monomorphism S 4 T . But, as was seen in the 

proof of 1.7 (second paragraph), this is true if and only if the horn-object A(A,X) 
is a sheaf in S for every X EA, which is true if and only if AOP(X, A) is a sheaf for 

every X E A OP , which is true if and only if A is a sheaf in AOP. In other words, 

is an equivalence over S . Both of these categories have a natural £ structure, with 

respect to which :=:A is an equivalence 

over £ . 

As for the general case, the change of base formula gives 

COCTSs(£, A) ~ COCTSsc(£, COCTSs(Sc, A)) , 

of which the right side is, by the first paragraph of this proof, equivalent to 

o 

1.18 Examples 

1. 	 We are in a position to prove, as promised, theorem 4.3 from Chapter 2. Let 

j be a topology on S , with £ the sub-topos of j-sheaves. Let :F ~S be an 

arbitrary topos over S . By our work on cosheaves and by using 1.17, one has 

over:F. Here V = intO), the interior of the topology on :F induced by j, and 
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is a pullback. Now restrict this equivalence along f. By line 1.15, we have 

The second equivalence is again by 1.17, but now over S . Furthermore, 

these equivalences identify the following three functors: 

The last one is the inclusion of cosheaves into F . In particular, 


COCTSs (£, F)i is a topos. 


2. With £ as in the statement of 1.17, if A E COCTSs is complete, then 

In particular, if F is a top os over S , then since shj(FC ) is equivalent to the 

pullback £ Xs F (Chap. 2, Cor. 2.12)' one has 

That is, the dual of £ Xs F is equivalent to the category of cocontinuous 
functors from £ into the dual of F . Moreover, as shall be shown in the next 

section, if F is bounded, then £ Xs F is the tensor product E®sF (i.e., the 
left adjoint of ( )p). Hence, the duality 'formula' 

holds. 

3. Let £ ~ S be a topos over S . Let D denote a small cocomplete category in 

S . To remind the reader, no notational distinction is made between a small 

category and its externalization. 

It is not clear that COCTSs (£, D) is small in E . However, in the case that 

£ = sh(X) , X a space in S , COCTSs(£, M) is small for M is a sup-lattice in 
S . The intention is to show this. Fix M, a sup-lattice in S . A sup-lattice N 

in £ shall be produced such that for any K E £ , there is a bijection 

COCTss(E, M)K(1.19) 
K-+N 

as posets, which is natural in K . The following fact is from [JT]. 
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• 	 Let 'I9(X) denote the locale associated with the space X . Then there is 
an equivalence 

<I>x : Mod('I9(X))-+sl(£) 

of the category of 'I9(X)-modules with that of the sup-lattices in £ . 
Furthermore, for any Le sl(S) there is a bijection 

'I9(X)-+L in sl(S) 
l-+<I>x(Hom('I9(X),L)) in £ 

as posets, noting that Hom('I9(X), L) is an 'I9(X)-module. 

Let N = <I> x (Hom('I9(X), M)) . By 1.13 and the above fact one has 

COCTSs(£, M)l 

cocontinuous Sl1(X)OP -+M taking 


dense monos to isomorphisms 

sup-lattice maps 


'I9(X)-+M in sl(S) 

1-+ <I> x (Hom('I9(X), M)) in £ , 


and this proves 1.19 at le £ . To get the general case, one can proceed by 

localizing as follows. Fix K e £ , and let Y be a space in S such that 

£1 K ~ sh(Y) . Then by our above work, 

COCTSS(£IK, M) 
l-+<I>y(Hom('I9(Y), M)) in £IK . 

However, <I>y(Hom('I9(Y), M)) = <I>K(Hom(nK, N)) , where 

<I> K : Mod(nK)-+sl(£IK) 

is an equivalence, regarding K as a discrete space in £ . Then, since 

l-+<I>K(Hom(nK, N)) in £IK 

nK-+N in sl(£) 


K-+N in £, 


one obtains 1.19. 

3.2 The tensor product 

Let £ ~ S be a topos over S . Recall that ( )p denotes the 2-functor taking a 

category over £ to its restiction over S . Let A e COCTSs . 
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2.1 DEFINITION The tensor product of A with £ over S is a pair (£®sA,7]A ), 
where £®sA is an object of COCTS£ and 7]A : A --'(£®sA)p is a cocontinuous 
functor, such that the functor 

(2.2) COCTs&(£®sA,B)p --. COCTss(A,Bp) 

G 

is an equivalence for every category B E COCTS£ . 

Observe that the passage G ~ Gp ·7]A is a functor between categories over S . The 

definition then requires that this be an equivalence over S . However, as shall soon 

be seen, that a given category be the tensor product it suffices that 2.2 be an 

equivalence at 1E S , for every B E COCTS£ . 

Thus, the left adjoint of ( )p, if it exists, shall be called the tensor product of 

£ with S . Pitts (see [Pi]) denotes this category by p~A , a notation which shall 
not be used here. He also talks about a tensor product, but instead meaning a 
category over S which would represent cocontinuous bimorphisms. Here, however, 

the primary interest is in change of base, so 'tensor prod uct' will always mean the 

left adjoint of ( )p. 
To begin, the following basic fact is from [PS] . 

2.3 Proposition Let lE S , and let A and B be arbitrary categories over Sand 

SII respectively. Then there is an equivalence 

natural in A and B . 

Since this is actually a slight improvement on [PS], in that there B was taken to be 

of the form Cl1 for C a category over S , a proof is included. 

PROOF The proposition expresses an adjointness for which the unit and counit 

are as follows. For B a category over SII , the counit 

is a functor over SII defined by setting 

f-X = (x,I)* ,xESII, 

where 
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x -_..:....(x-,-'.....:.1)__, I x X 

~/-
I. 

For A a category over S , define the uni t 

at stage He S by setting 
H * 1] = 7rl , 

where I x H ~ H. It is left to the reader to verify that the expressed equivalence 

holds. 0 

2.4 Proposition For A and B cocomplete, the equivalence of 2.3 restricts to 

cocontinuous functors, 

PROOF The restriction of a cocontinuous functor between cocomplete categories 

is cocontinuous, and likewise for localization. The proposition now follows since 

the unit and counit as defined in 2.3 are cocontinuous functors. o 

Thus, Atl is the tensor product Sjl®sA for any A e COCTSs . It now follows 
that, as previously mentioned, for a given A e COCTSs , if Xe COCTS£ satisfies 2.2 

at lE S for every B e COCTS£ , then X is the tensor product £®sA . 

2.5 Example From the previous section, Atl is also equivalent to 
COCTSs(Sjl, A) . Thus, for any le S , there is a canonical equivalence 

(2.6) CocTss(Sj[,A)~Sjl®sA ,AeCOCTSs. 

Line 2.6 is reminiscent of the fact that in locales and sup-lattices, 

where lE S , and M is a sup-lattice in S . Indeed, 2.7 is a special case of 2.6, for if 

D is a small category in S , then DjI is a small category in SjI. In particular, if 

D = M is a sup-lattice in S , then Sjl®sM ~ l\1il is a sup-lattice in Sjl. Hence, 

Sjl®sM~ ~l(nl®M) 

since amongst sup-lattices they share the same universal property. The functor ~ I 

is the equivalence 
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By 2.4, the property of being the tensor product is stable under localization 

over £ . More precisely, if £®sA exists, then for any f{ E £ , 

over £IK . Recall that X K , f{ E£ and XE COCTS[ , is shorthand for the category 

(XIK) K . This is a category over £ , namely the restriction of the localization of X 

at f{ . For any A E COCTSs, let £K®sA denote (£IK®sA)K' £K®sA is a category 
over £ . Thus, by 2.8 we have 

over £ . In the case that f{ = p*I , let us write £I®sA for £p·I®sA . Thus, 

£®sA can be regarded as a category over S by setting 

However, by 2.9 this is none other than the category (£®sA)p . Therefore, it is 

meaningful and correct to write 

as categories over S . 
Since localization is both left and right adjoint to ( )1 , it follows that 

COCTss(AI ,C) ~ CocTss(A,CI) , 

for any cocomplete categories A and Cover S , and any I E S . From this one sees 

that if £®sA exists, then (£®sA)p· I is the tensor product £®S(AI). This 

establishes the second equivalence of the following proposition. The first 
equivalence of this proposition has already been established above. 

2.10 Proposition Assume that £®sA exists, for A E COCTSs. Then both 

£I®sA and £®s(AI) exist} and for every I ES we have 

over £ . 

Proposition 2.10 expresses the equivariance over S of the tensor product. This 

phenomenon has its obvious analogy in sup-lattices and locales. 

In [Pi] Pitts has shown that the tensor product over S of a bounded topos 

with £ exists and that it coincides with the pullback as constructed in toposes. 
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2.11 Theorem (Pitts) Let F ~S be a bounded topos. Then the tensor product 

of F with £ is the pullback £ xsF as constructed in toposes. The universal 

morphism'r}F is the inverse image functor of the projection £ xsF ~F . 

PROOF Let P denote the pullback 

rP • £ 

q 1 1p 

F '5f 

with f bounded. By 1.14, 

(2.12) 

for any B E COCTSe . This is an equivalence of categories in COCTSF which when 
carried to COCTSs under ( )f gives the desired result. In fact, applying ( )f to the 
left side of 2.12 yields 

Observe that the equivariance of COCTSe(P, _) has been used here. Applying ( )f 
to the right side of 2.12 gives CocTss(F, Bp) again, but now over S . This is the 
equivariance of CocTss(F, _) . 0 

The above constitutes a new proof of Pitts' result. As presented here, this 
theorem should be viewed as a corollary of 1.14. 

2.13 Example As is shown in [Pi], theorem 2.11 can be used to show that 
locally connected geometric morphisms are stable under pullback, and that the 
Beck condition is satisfied. Indeed, let 

P ---=-q_. F 

r f 

£---'SP 

be a pullback of toposes with f bounded and locally connected. By the naturality 

of 'r} , 
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f* f! 
S 'F S" F 

~s j j~F ~s j j~F 
£®sS £®sF£®sS £®sf: £®sF £®sf! 

commute up to natural isomorphism, where f! -l f* over S . The '( )p' notation has 

been omitted in these diagrams since everything is over S . Let r! = £®sf!. It 

must be that r* ~ £®sf· , and hence r! -l r* . Moreover, the right-hand square above 

says that 

since ~F is identified with q* and T]s with p* . That is, the Beck condition is 

satisfied. 

The Beck condition (in the context of cocomplete categories) holds for the 
tensor product. This fact will be useful in Chapter 4. 

2.14 Proposition Suppose that 

P 
r 

":F 

q j jf 

£ Sp 

is a pullback square of toposes, with £ ~ S bounded. Let A E COCTSe , and 

assume that P®eA exists. Then (P®eA)r is the tensor product of Ap with:F over 

S . 

PROOF This is a purely formal consequence of the fact that the Beck condition 

holds for the adjointness ( )p -l COCTSs(£,_) , see 1.14. 

Although the existence of the tensor product is in general unclear, by 

imposing further conditions on A some results in this regard can be achieved when 

£ is the sub-topos of sheaves fo~ a topology j on S . This is the intention in the 

paragraphs that follow. Let £ ~S denote the inclusion of £ into S . 

Up till now sb j (A) has been regarded as a category over S . Recall from 

Chapter 2 that sbj(A) is made into a category over £ by defining 
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Under this definition, it was seen that if A is locally small then shj(A) is locally 
small over £ . Also recall from Chapter 2 that A is said to admit j-sheafification if 
shj(A) is a reflective sub-category of A , in which case the reflection functor is 
denoted by a . (also called the sheafification functor). It was shown that if 
A E COCTSs admits sheafification, then shj(A) is cocomplete over S and hence 

over £ , and so shj(A)E COCTSe in this case. Moreover, shj(A) was seen to be 

equivariant in the sense that 

(2.15) 

over S . This means that if one views shj(A) as over £ , then restricting back to 
S gives the original category. This amounted to shj(A)I ~ shj(A)K being an 
equivalence for every j-bidense morphism K ~ I in S . 

Recall (1.11) that for any B E COCTSe , the unit of the adjointness 
( )j -1 COCTSs(£,_) , 

AB: B --tCOCTss(£,Bj) , 

is an equivalence. Let A E COCTSs , and assume that A admits j-sheafification. 

Then shj(A)E COCTSe , and therefore, there is an equivalence 

over £ . Now regard this equivalence, by restriction, as over S . 

By 2.15, there is therefore an equivalence 

over S . This equivalence says that every cocontinuous functor S ~sbj(A) 
factors through j* , 

Now let shj(A) ~C be an arbitrary cocontinuous functor over S . Then for all 

A E sbj(A), 
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factors through i*. In other words, F itself factors through 

and this factorization must be essentially unique because 3 c is fully faithful. 

Thus, for any Ce COCTSs there is the functor 


sending F to F'a , which evidently is fully faithful. If A is assumed to satisfy the 
hypothesis of the Special Adjoint Functor Theorem (see Appendix B), then a* is 

an equivalence. All the hypothesis are summed up in the following theorem. 

2.16 Theorem Let A e COCTSs I admitting j-sheafification. Assume that A has 

a generating family and is cowell-powered. Then composition with the 

sheafification functor induces an equivalence of categories 

for any Ce COCTSs . 

PROOF It remains to show that a* is essentially surjective. Let 

A-SCOCTSs(£,C)i be an arbitrary cocontinuous functor over S . Then by the 
Special Adjoint Functor Theorem, G has a right adjoint which shall be denoted by 

R. It follows that for all Ce COCTSs (£, C)i , RC is a sheaf. In fact, if U ~ V is 

j-dense and if Ae AV is arbitrary, then first note that 


regarding the j-dense monomorphism u <.......+ 1 in S/v. This follows because it is 
true in C, and because :=:c is fully faithful and cocontinuous. There is therefore the 
following series of bijections: 

u.A--+V*(RC) 
GV (u.A)--+ V*C 
GV (A)--+ V*C 
A--+ V*(RC) , 

. which is given by composition with u.A--+A, establishing that RC is a sheaf. In 

other words, R factors through 

Hence R ~ i· a . Rand G . i -1 a . R . In particular, G . i is cocontinuous. By taking 
left adjoints of R ~ i . a . R, one has G ~ G . i . a . 
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2.17 Example As pointed out in [Pi]' the exponential adjointness 

FUNCTS(£ x A,C) ~ FUNCTs(A, FUNCTs(£,C)) 

restricts to 
B1MS(£, A; C) ~ CocTss(A, COCTSs(£, C)) , 

where the category on the left has as its objects those functors cocontinuous in 
each variable separately, the so-called cocontinuous bimorphisms (see [Pi] for a 
precise definition). Therefore, under the hypothesis of 2.16, shj(A) represents 
cocontinuous bimorphisms over S . That is, 

B1MS(£, A; C) ~ CocTss(shj(A), C) , 

by an equivalence which is natural in C. This result can be extended (the details 
have been omitted) to £ bounded. This can be done by using the the change of 

base formula, and the fact (from [PiD that if C is a small category in S , then 

by an equivalence which is natural in C . 

2.18 Corollary Under the conditions of 2.16, (shj(A),a) is the tensor product of 

A with £ . 

PROOF Given an arbitrary B E COCTSt: one has 

COCTst;(shj(A), B) 

~ CocTss(shj(A)j, Bj) , ( )j is 2-fully faithful, see 1.11 

~ CocTss(shj(A), Bj), by 2.15 

~ COCTss(A, COCTSs(£, Bj)i) , by 2.16 

~ CocTss(A,Bj) , ( )j is 2-fully faithful. 


This equivalence is natural in B , which establishes that shj(A) is the tensor 
product. 

2.19 Examples 

1. 	 Any small cocomplete category satisfies the hypothesis of 2.16; that such a 

category admits sheafification was shown in Chapter 2, §3. 
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2. 	 Let j be an arbitrary topology on S , with £ the sub-topos of j-sheaves. 
Recall (Chap. 2, §2) that r"admits sheafification, for F an arbitrary topos 
over S . If F is bounded, then F has a cogenerating family (see [PS], p. 
102). F is well-powered as well, and so by 2.18, shj(r") is the tensor 
product £®s(r"). Recall (1.18) that the dual of CocTss(£, F) is 
equivalent to shj(r") . Therefore, one has the duality 'formula' 

for 	F a bounded topos over S . 

3. 	 Let X be an arbitrary space in S , and let £ = sh(X) . Then, as was seen in 
§1 of this chapter, COCTSs(£, MOP) is a small sup-lattice in £ , represented 
by <I>x(Hom(t9(X),MO")). <I>x is the equivalence 

<I>x : Mod(t9(X))---+sJ(£) . 

A fact from [JT] is that 

as t9(X)-modules. Also, by 1.17 we have 

where j denotes the canonical topology on S~(X)OP . Thus, shj(M~(X)OP) IS a 

small sup-lattice in £ , represented by <I> x (t9(X)®M) . 
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CHAPTER 4 

Descent 

4.1 Equalizers and semi-split equalizers in a 2-category 

Let IC denote an a.rbitra.ry 2-category, and consider the following diagram 

A po--wo ---rr:- ­
(1.1) B==:C~D 

1(1 ­ P2 

of O-cells and I-cells in IC . Furthermore, suppose that there a.re given 

2-isomorphisms 

I m n 
Po . 1(1 ~ P2' 1(0 Po . 1( 0 ~ PI . 11"0 P2 . 11"1 - PI . 11"1 


A '1(0 ~ lE A . 11"1 ~ lE . 


1.2 DEFINITION For any O-cell Xe IC, by a cone from X to the diagram 1.1 is 

meant a pair (.,p , x) where X ~ B is a I-cell and 1(0 • .,p ; 1(1 • .,p is a 

2-isomorphism satisfying the unit and cocycle conditions: 

mP' AX = u.,p PIX = n'l/; . P2 X . 1'1/; • poX' m.,p . 

For a cone (.,p, x), the cocycle condition is sometimes easier to work with when 

visualized as a commutative 'cube': 

B----C
11"1 

where the 2-isomorphisms belonging to the faces have been omitted from this 

diagram. l These isomorphisms a.re I, x, x, m, n , x in the order: back face, left , top , 

right, bottom, and front face . In the future, when such a cube is given, the 2-cells 

belonging to the faces will always be given in this order. The unit condition 

expresses the commutativity of the following diagram. 

lThis is due to typographical difficulties. In any case, it is clear where they go and their 
directions are iIIlIniterial because they are isomorphisms. 
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The 2-isomorphisms that belong in this figure are x, u and v. 
The cones from X to the diagram 1.1 are the objects of a category, where a 

morphism (-rp, x) ~ (4), y) of two such cones is defined to be a 2-cell-rp ~ 4> such 

that 

.... 
y 

commutes. Let us denote this category by CONEx • 

1.3 DEFINITION An equalizer of diagram 1.1 is defined to be a universal cone. To 
be precise, it is a O-cell A and a cone (0, k) from A to diagram 1.1 such that for 
any O-cell X in JC, composition with 0 , 

[X, 0] : JC[X, A]--+CONEx , 

induces an equivalence of JC[X, A] with the category of cones from X to 1.1. 

1.4 DEFINITION A split equalizer in the 2-category JC is a cone (0, k) to 1.1, 

with in addition, I-cells 

B-C--DA· r ts 

and 2-isomorphisms 

r . 0 ~ lA S • 11"1 ~ 
d 

1B S • 11"0 ~ O· r 

t· P2 ~ le t . PI ~ 
b 

11"1 • S t . Po & 11"0 ' S 
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sa.tisfying the following three coherence conditions: 

1. a1ro' tl = 1rod . C1rI 

To visualize these coherence conditions, the first one requires that the 

following 'prism' commute. 

As usual, the 2-isomorphisms have been omitted from the diagram, which in this 
case are c, 1, d a.nd a. The second condition, involving isomorphisms b, n, d and 

a, is similiar to this. The third condition expresses the commutativity of the 

following cube. 

The 2-isomorphisms belonging to this cube are, in the usual order: k, e, e, c, band 

m. 
The intention is to show that a split equalizer is an equalizer. Given a split 

equalizer (A, D, k, ... ) as defined above, it must be shown that for any O-cell X in 
K , [X, DJ is an equivalence. Composition with r induces a functor 

[X, r] : CONEx-+K[X, A] , 

and since r . D ~ 1, [X, r] . [X, Dj is therefore isomorphic to the identity functor on 

K[X,A]. To show that [X,Dj· [X,r] is isomorphic to the identity on CONEx , let 

(tP,x) denote an arbitrary cone from X . By definition , 

[X, DJ . [X, r]( tP, x) = (D . r . tP, k . T' • tP) , 
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and there is an isomorphism 

d~ ~x e~'Ij; ~ S . 7r1 • 'Ij; ~ S· 7rO . 'Ij; ~ (). r . 'Ij; , 

which is seen to be an isomorphism of cones as follows. First apply t to the 
cocycle condition. Then by putting together the appropriate prisms and cubes one 

deduces that e'lj; . sx . d'lj; is indeed an isomorphism of cones. Alternatively, this 

derivation can be expressed with the single commutative diagram given below. 
Note that the arrows in this diagram are all 2-isomorphisms, so no particular 

direction of any of them is intended. 

The center hexagon is t applied to the cocycle condition for ('Ij;, x) . The hexagon 

on the left is the third coherence condition given by the split equalizer, applied to 

'Ij;. The upper right and lower right squares are the other two coherence conditions 
applied to 'Ij;. The remaining three squares commute by the axioms of a 

2-category. Thus, the perimeter of the above diagram commutes, which says 

precisely that e'lj; . 8X • d'lj; is an isomorphism of the cones ('Ij;, x) and (()r'lj;, kr'lj;) . 
This proves that [X, ()] . [X, r] is isomorphic to the identity functor on CONEx . 

Thus, a split equalizer is an equalizer, one which, by its equational nature, is 

preserved under any 2-functor. 

The following generalization of a split equalizer will be used in section §4. 
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1.5 DEFINITION A semi-split equalizer in a 2-category K consists of the same 

data as a split equalizer with the difference that the 2-cells i , a and d are not 
required to be isomorphisms. They are required to be 2-cells 

t· P2 ~ l e 

wi th the property that 

ir()
r·()·r·() 

r()i 

be coequalizers, in the categories K[A, A] and K[B, B] respectively. Furthermore, 

a fourth coherence condition, 

4. d()· sk = ()i . e() , 

is required to hold. This condition can be visualized as 

where the 2-isomorphisms k and e have been omitted from the diagram. 

With some assumptions on K, semi-split equalizers are equalizers. 

1.6 Theorem Given a semi-split equalizer (A, B, ... , (), 1ro, ... ), assume that K 
satisfies the following. 

1. For every O-cell X E K , K[X, A] has coequalizers. 

2. For every 1-cell X ~ A , the functor 

[a, A] : K[A, A]--+K[X, A] 


preserves coequalizers. 


3. For every cone (X ~ B, x) , the functor 

[1/J, B] : K[B, B]--+K[X, B] 


preserves coequalizers. 
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4. For every O-cell X , the functors 

[X,Ol : K[X, Al~K[X, Bl 

and 

[X, 11"0] : K[X, B]~K[X, C) 

preserve coequalizers. 

Then (A, B, ... , 0, 11"0"") is an equalizer. 

To prove the theorem, let X be an arbitrary O-cell in K. Define a functor 

r : CONEx~K[X, A] 

as follows. Given a cone ('IjJ, x) , denote the composite 2-cell 

1I .1. e.p .1. 8X .1. d.p .1. u . r . 'f/ ~ S • 11"0 • 'f/ ~ S • 11"1 • 'f/ -t 'f/ 

by "'(.p,x) • In the proof that a split equalizer is an equalizer, it was shown that 

"'(.p,x) is a morphism of the cones ('IjJ, x) and (Or'IjJ, kr'IjJ) . That proof remains valid 
here, though now a and d are not necessarily isomorphisms. Let r('IjJ, x) be the 

coequalizer 

ir'IjJ 
rOr'IjJ q ,r('IjJ,x) 

in K[X, A] . To see that r . [X, 0] is isomorphic to the identity on K[X, A] , let 
X ~ A be arbitrary. Then by assumption 2, 

irOa 
rOrOa :::::;:==:' r Oa _-,z;.::::a=---_, a 

rOia' 

is a coequalizer in K[X,A]. By definition, r· [X,O](a) is the coequalizer of 

r"'(9a,lca) and irOa. However, the fourth coherence condition of a semi-split 
equalizer says that "'(9,1c) = Oi , and therefore 

r"'(9a,ka) = r"'(9,k)a = rOia . 

Hence, r . [X, 0](a) is isomorphic to a . 
To show that [X,O] . r is isomorphic to the identity on CONEx, let ('IjJ, x) 

denote an arbitrary cone from X . The I-cell component of [X,O] . f( 'IjJ, x) is by 

definition Or( 'IjJ, x) as in the diagram 
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Oirt/; Oq
(1.7) 	 OrOrt/; : Ort/; - Or(t/;,x) . 

Orlt(1/J,r) 

The 2-cell component of [X, 0] . r( t/J, x) is kr( t/J, x). Diagram 1.7 is coequalizer by 
assumption 4. By assumption 9, 

(1.8) 

is a coequalizer in K[X, B). Our task will be first to show that the parallel pair in 

1.7 is isomorphic to the parallel pair in 1.8, and then that , the resulting 

isomorphism t/; ~ Or( t/J, x) is a morphism of cones. Let z denote the 2-isomorphism 

sx . et/J , and let w denote the 2-isomorphism sk . e(). Then dt/J· z = 1t(1/J.r) , and 

d() . w = K.(9,Je) = ()i. We shall show that the squares 

wrt/J S7rIZ ,
()r(}rt/J ---'---po s7r}()rt/J S7r}S7rt"/Jpo(1.9) 

9ir~ j 	 jdS"I~ 
()rt/J ____--'z=--_____o S7r1 t/J 

and 

wrt/J STo}Z ,
(1.10 ) ()rOrt/J ---'_I s7r}()rt/J 0 S7r}S7r}1/J 

()rK.(1/J,r ) j 	 js7r}d1/; 

Orl/J ____---'z"--____• S7r} t{, 

commute. To see that 1.9 commutes , draw in the arrow 

while noting that 

d()r 'lj; . wr 'lj; = (d() . w)r t/J = ()ir 'lj; . 

As for 1.10, rewrite it as 

e()rw 	 , skrt/" S7r z
()rOr t/J --'-. _. S7ro0rtp • sTo}Or1/; }. S7r}S7r}tP 

9"'1'~) j • jS1'OKI"').. j''' Id>/; 

()r1/; ----. SToQ t/J -----------.c;·S 7rJ t/.' . 
e~ 	 sx 
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In this figure, •• commutes because, after removing s , it is simply the diagram 

stating that K(,p,x) is a morphism of cones, noting that d'IjJ . Z = K(,p,x) . The square 
• commutes by the axioms of a 2-category. Thus, 1.9 and 1.10 commute. 

Therefore, there is an isomorphism h making 

()r'IjJ -()--=q_. ()r( 'IjJ, x) 

Z ] 	 ] h 

commute. It remains to show that h is a morphism of cones. This follows by a 
simple diagram chase involving the following three facts: 

1. 	 h· ()q = d'IjJ . Z = K(,p,x) is a morphism of cones, 

2. 	 ()q is a morphism of cones, and 

3. 	 since [X,1I"0] is assumed to preserve coequalizers, the 2-cell1l"0()q is an 


epimorphism in K[X, C] . 


This proves that [X, ()] . r is isomorphic to the identity on CONEx, and concludes 

the proof of the theorem. 

4.2 2-Cotriples 

A 2-cotriple is herein taken to be a strong 2-cotriple (see [BID. There is no 

need to keep using the prefix '2-', so a 2-cotriple shall henceforth be referred to as 

simply a cotriple. Let K denote an arbitrary 2-category. 

2.1 DEFINITION A cotriple G on K is a 6-tuple (G, c, 6,p, q, w) where G is a 

2-endofunctor on K, and G~ 1 and G~G2 are 2-natural transformations 

together with modifying isomorphisms p, q and w as in the following diagrams. 

G _....:6'--_. G2 

.I] !e ]G.I 

In these diagrams, Gn means G applied n times. Furthermore, the following 

coherence conditions are to be satisfied. 
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The modifying isomorphisms that belong in these diagrams have been omitted. 
For example, in the prism on the left go the isomorphisms p, pG, wand cs , which 
belong to the faces: left, right, front and bottom respectively. The isomorphism cs 

is that supplied by c as in the following square. 

G2 cG. G 

G8 j ~ j8 

2.2 DEFINITION A coalgebra (again, to not use '2-coalgebra') for the cotriple G is 
a quadruple (B, 0, k, i) where B is a O-cell, 0 is a I-cell, and k and i are 

2-isomorphisms as in 

B o 'GB B~GB 

oj ! jGO ~jeB 
GB --:"8-' G2B B 

B 

satisfying the unit and cocycle conditions, 

qO . G(cB)k = G(i)O 

The 2-isomorphism 89 is that supplied by 8 as in 

GB 

GO j 

The cocycle condition expresses the commutivitity of the cube 
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where the 2-isomorphisms belonging to the back, left, top, right, bottom and front 

faces are 89, k, k, G(k), WB and k respectively. 

Amorphism (I-cell) of coalgebras is a pair 

(F, J) : (A, (,j, h)--+(B, 0, k, i) 

w here A ~ B is a I-cell and 0 F ~ G(F)( is a 2-isomorphism such that the 

diagrams 

commute. The 2-isomorphisms belonging to the faces of the cube are, in their 
usual order: 8F , j, j, G(f), k and j. In the prism, the isomorphisms which belong 
to the triangular faces are hand i , and to the three square faces are the identity, 

CF and j. 
Finally, a 2-cell (G, g)":; (F, J) between morphisms of coalgebras is a 2-cell 

G":; F such that 

OG G(G)( 

Oa I IG(a)( 
,..OF G(F)(
j 

commutes. Coalgebras in J( for the cotriple G form a 2-category which shall be 

denoted by J(G . This ends definition 2.2. 
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Let 
UG: /CG~/C 


denote the forgetful functor. UG sends (B, 8, k, i) to B , (F, J) to F and Q to Q. 

The intention is to establish a cotripleability theorem in the context of 
2-categories. The first step is to observe that UG reflects equivalences (an 

equivalence between two objects K, L, in /C is a quadruple (F,H,x,y) with 

K H .L L F .K 

~IF ~IH 

K L 

in /C). Indeed, assume that there is given a morphism of coalgebras 

(F, f) : (B, e, k, i)~(A, (,j, h) , 

and a I-cell A ~ B along with 2-isomorphisms F· H ; lA and H . F ~ lB in K. 
A 2-isomorphism GH . e ~ (. H must be exibited making (H,g) a morphism of 

coalgebras. Furthermore, x and y must be shown to be 2-isomorphisms in KG . 
Regarding x and y, a simple diagram chase shows that UG reflects 2-isomorphisms, 
so if x and y are shown to be legitimate 2-cells, then so are their inverses. 

Let 9 denote the composite 2-isomorphism from GH . ( to e. H as in the front 

face of the following cube. The commutativity of this cube is required for (H, g) to 

be a coalgebra morphism. 

(2.3) 

B ----. GB - GBe 1 

The inside cube in 2.3 , with the appropriate 2-isomorphisms inserted , commutes 

because (F,1) is a coalgebra morphism. If the two prisms on either side of it were 

to commute, then this would show that (B,g ) is a coalgebra morphism. 
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Furthermore, the commutativity of the left prism would say that the 

2-isomorphism x is a 2-cell of coalgebra morphisms. A similiar prism would show 
the same thing for y, and in fact, G applied to that prism would be the right prism 

in the diagram above. Thus, the question comes down to showing that the left 

prism in 2.3 commutes. To see this, partition the prism's left face (the left face of 

2.3, that is) in the same way that the front face of 2.3 is, to give the following 

figure of now just the prism. 

--'--, A .~ A~ 

GH ~ YlG-'F--=-- F -H ~ A 

GB 1GB . B 

In this diagram, the two triangular pyramids on the ends commute, as does the 

inside prism. Therefore the whole thing commutes, and hence does 2.3. This 

concludes the proof that UG reflects equivalences. 
The next step is to observe that coalgebras are split equalizers as defined in 

the previous section. In fact, if (B ,8, k, i) is a typical coalgebra, then 

(2.4 ) 

is a split equalizer in K , with, in the notation of the previous section, ), = G£B, 

hO = GB, hI = OB , Po = G2 
(}, PI = GOB , P2 = 0GB ) and with i , s, t equal to 

EB EGB ) EG2B respectively. Furthermore, the 2-isomorphisms a , b, c, d, e and l, rn , n 

are PGB , COB ' cGe , PB, ce and oe , Gk, WB respectively. All the commuting 
conditions are routinely verified. For example, let us verify the three coherence 

conditions of a split equalizer. Of those three, the first one follows by the 

naturality of p for () . The second condition is by the first coherence diagram (at 

B ) in the definit ion of a cotriple. The third condition requires that 
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B () • GB 

cy: I () Y jG() 
GB G() G2 B

GB-j ~G2B 
G() j ~B GyG2B 

G2 G3B G8 • B
B 

commute, which is true by the naturality of c. The 2-isomorphisms in this cube 

are, in the usual order: k, co, co, eGo, cSB and Gk. Thus, 2.4 is a split equalizer. 

2.5 DEFINITION By an adjointness U-l R between 2-categories K and .c shall be 

meant a 6-tuple (U,R,c,7],,8,,), where .c~K and K~.c are 2-functors, 

1 ~ RU and U R ~ 1 are 2-natural transformations, and ,8 and, are modifying 

isomorphisms: 

This notion is referred to as an i-weak quasi-adjointness in [Gra2] (p. 168). 

As expected, an adjointness between 2-categories gives rise to a cotriple. The 

notation 7]'1 denotes the modifying isomorphism supplied by 7] at 7] as in 

1 7]. RU 

7] ! '?!J !7]RU 

RU RUrj RU RU . 

2.6 Proposition Given an adjointness U -l R with .c ~K J then 

(UR, c, U7]R, ,8R, U" U7]'1R) is a cotriple on K. 

PROOF To verify the coherence conditions of a cotriple, let us denote the data 

(UR,c:,U7]R,,8R,U,,U7]'1R) by (G,c:,8,p,q,w). The condition 

with modifications p, pG, w and C:s , transposes to 
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R 7]R • RG 

~7]R R8j ~1]RG
R RG - ;m;-G2 

7] j /1 /1 

RG • RG 2 
R8 

where 7]'1R is the modification in both the front and top faces. The other faces 
have the identity as their modifying isomorphisms, and therefore this figure 
commutes, which proves that 2.7 commutes. The other coherence conditions are 

verified in a similiar way. o 

The cotriple of 2.6 shall be called the cotriple induced by, or associated with, 
U -1 R. 

Given an adjointness U -1 R with £ ~K , and with the induced cotriple G on 

K, the comparison 2-functor, 

is 	then defined to be, for O-cells, I-cells, and 2-cells respectively, 

L, F, f "-+ (UL, Urn, U1]'1L'/h), UF, Uf . 

It is easily verified that ~ is indeed a 2-functor into the category of G-coalgebras. 
U is said to be cotripleable if ~ is a 2-equivalence, in the following sense. 

1. 	~ is 2-fully faithful, which is to say that for all L, Me £ , the functor 

is 	an equivalence. 

2. 	~ is 2-essentially surjective, which is to say that every coalgebra is 

equivalent in KG to ~L for some Le £ . 


For any Le £ , the diagram 

(2.8) 
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is one of the form 1.1, where 7ro = RU7]L, Po = (RU)27]L and so on. The 

2-isomorphisms l,m,n and u,v are 7]RU'1L' RU7]'1L' 7]'1RUL and R,L, i3UL respectively. 
Furthermore, (7]L, 7]'1L) is a cone (see 1.2) from L to the above diagram, and U 
applied to this cone along with 2.8 yields the split equalizer in J( arising from the 
coalgebra <pL . 

In the context of 2-categories, the cotripleability theorems are then as follows. 

In these theorems, which are the next three, G = (G,€,b,p,q,w) denotes the 
cotriple induced by U -l R. 

2.9 Theorem The comparison 2-functor <P is 2-fully faithful if and only if for 

every Le C the cone (7]L, 7]'1J is an equalizer of diagram 2.8. 

PROOF For the sufficiency of the given condition, fix O-cells M, N in C. To be 
shown is that 

is an equivalence. Let CONEM denote the category of cones from M to the 
diagram of the form 2.8 with N in the place of L. Define a functor 

where the first arrow sends a coalgebra morphism <PM ~ <pN to the cone whose 

I-cell component is RF . TJM . The equivalence in the definition of W is by 

hypothesis. Now for a given M ~N both Hand W<PMNH give rise to the cone 
RUH . TJM in CONEM as in the following diagram: 

M TJM. RUM 

ifliflMNH jj H "j RUH 

N "IN' RUN. 

It follows that W<PMN is isomorphic to the identity on C[M, N] . On the other 
hand, given a coalgebra morphism <PM ~<PN , by the definition of wF there is 
an isomorphism of cones 

7]M • RUM 

" j RF 

N "IN· RUN. 

Applying U to this square gives 
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UM~GUM 
(2.10) 

U'l' F I ~ IGF 

UN- GUN,
U'r/N 

where observe that the horizontal arrows in 2.10 are the universal cones for the 

split equalizers in K arising from the coalgebras <I> M and <I> N . Being a coalgebra 

map, F also makes 2.10 commute. Therefore, U'r/N . F'::! U'r/N . UwF as cones from 

UM . Thus, F is isomorphic to UwF = <I>MNWF . 

For the converse, fix an Le £. To be shown is that composition with the cone 

('r/L,'r/T/L) gives, for any Xe£, an equivalence 

£[X, L] ~ CONEx ' . 

The categories KG [<I>X, <I>L] and CONEx are sub-categories (not full) of 

K[UX, UL] and £[X, RUL] respectively, and it is not hard to see that the 
equivalence 

K[ux, UL] ~ £[X, RUL] 

coming from the adjointness U-l R restricts to 

KG [<I> X, <I>L] ~ CONEx . 

By hypothesis, <I> x L is an equivalence, and this concludes the proof. o 

2.11 Theorem A coalgebra (B,(),k,i) is in the 2-essential image of <I> if the 

equalizer of 

RCB 
- RG()-R() RiS'B

(2.12) RB ==:: RGB • RG 2 B
'r/RB 7fRGB 

exists in £ and U preserves it. 

PROOF Let (B, (), k, i) denote an arbitrary coalgebra. By hypothesis, there exists 

a universal cone (</>,j) from say L to diagram 2.12. Applying U to diagram 2.12 
and the cone (</>, j) gives 

UL 
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Since (0, k) is an equalizer of this diagram, in fact ma.king it a split equalizer, - there exists 

B~GB 

~1 /u~ 
UL 

where f is an isomorphism of the cones (U~, Uj) and (0 . ~,k . ~). Furthermore, ~ 
can be taken to be equal to CB . U~, the transpose of ~, because CB is the 'r' of the 

split equalizer (B, 0, k, ... ). However, ~ must be an equivalence in K because U is 
assumed to preserve the equalizer (~, j) . Now consider the following figure. 

B--O--'GB 

In this figure, f is the 2-isomorphism in the left triangle, U7]iP goes in the square, 

and UIB goes in the lower right triangle. Denote the composite 2-isomorphism in 

the above diagram from o· J to G~ . U7]L by x. The claim is that 

(~ , x): <PL---+(B,O,k,i) 

is a morphism of coalgebras. So, to be shown is the comrnutativity of 

B----' GB
O 

Insert the morphism UL ~ GB in as a diagonal on the left and fron t faces of the 

above cube. The cube is thus divided int; two figures. One, which consists of the 
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lower left corner together with the bottom face, commutes because f is a 

morphism of cones. The other figure, which consist of the cube less the lower left 
corner, is entirely within the image of U, which means that every O-cell, I-cell and 

2-isomorphism in it is preceeded by a 'u'. Upon removing U from this figure and 

transposing it back to K, the following figure results. 

This figure commutes, which proves that (~, x) is coalgebra morphism. Since UG 

reflects equivalences, (B, (), k, i) is therefore equivalent to iPL in KG . 0 

2.13 Theorem U -l R is cotripleable if and only if for all Le £, the cone (r]L, TJlIL) 
is an equalizer of diagram 2.8, and for every coalgebra (B,(),k,i) , the equalizer of 

2.12 exists in £, and U preserves it. 

PROOF All that remains to prove is that if U-l R is cotripleable, then for every 

coalgebra (B, (), k, i) , the equalizer of 2.12 exists in £, and U preserves it. Since iP 
is 2-essentially surjective it suffices to show this for every coalgebra of the form 

iP L. But, since iP is 2-fully faithful, L with the cone (TJL, TJlIL) is the equalizer of 

2.12, where B = UL, () = UTJL and so on. As previously remarked, U applied to this 
equalizer is a split equalizer in K. 0 

Theorem 2.13 shall find its first application in the next section with the 

following observation in mind. Suppose that 

M ----:,P_£, 

V I ! Iu 
N 

are 2-categories and 2-functors, with natural equivalences e and d. Also, suppose 

that U-l R and V -l S, and that d corresponds to Qc: . e Sunder U -l R, where c: 
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denotes the counit of V -I S. Then, assuming that U is cotripleable, if P preserves 

and reflects equalizers and if Q reflects equalizers, then V is cotripleable. 

4.3 Descent for cocomplete categories 

Throughout this section £ ~ S shall denote a fixed arbitrary bounded 

geometric morphism. Let £n denote the n-fold product of £ in Tops. Then £n, 
n ... 

n = 1,2, ... , exists and is the tensor product £®s£®s ... t . 
The immediate difficulty with descent in the context of locally small 

cocomplete categories is that the tensor product is possibly not everywhere 

defined. However, by using the Beck condition, this difficulty can be 'done away 

with' as follows. Let COCTSpo denote the full sub-2-category of COCTSs whose 

objects are those A e COCTSs such that £n®sA exists for n = 1,2,3, .... 

I COCTSpo I= {A e COCTSs I £n®sA exists, n = 1,2,3, ...} 

Similarly, let COCTSp denote the full sub-2-category of COCTS£ whose objects are 

I COCTSp 1= {8 eCocTs£ I £n+l®£8 exists, n = 1,2,3, ... }. 

Here, £n+l®£B means the tensor product taken along anyone of the n + 1 

projections £n+l----.£ . Observe that it exists along one projection if and only if it 

exists along all n + 1 of them. 
Thus, there is a 2-functor 

Since the Beck condition (see Chap. 3, §2) is satisfied, it follows that the right 

adjoint of £®s restricts to these 2-categories, 

For example, if B E COCTS p, then £®s(8p) exists and is equivalent to (£2®£B)111 
where 
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is a pullba.ck of toposes. 

3.1 DEFINITION The geometric morphism p is said to be of effective descent for 

cocomplete categories if 

is cotripleable (in the sense developed in §2). 

Normally, one would say that p is of effective descent if objects in 

COCTS£ equipped with descent data descend uniquely to COCTSs . Descent data 

would be an equivalence 

which satisfies the cocycle condition (in this context, up to coherent isomorphism). 

The same would be required of I-cells and 2-cells in COCTS£ which commute with 

descent data; they would be required to descent uniquely to COCTSs . However , 

since the Beck condition is satisfied, this formulation of descent would then be 

equivalent to 3.1. This 'translation' has been omitted. 

Let GTops denote those toposes over S which are bounded. The 

2-embedding (see Chap. 1, §6) 

p : GToPs"" ---. COCTSs 

factors through COCTSpo, and in this way one regards GTops"" as a 

sub-2-category of COCTSpo. Similarly, GToP£"" is regarded as a sub-2-category of 

COCTSp. Moreover , by Pitts' theorem (Chap. 3, §2), the adjointness E®s -1 ( )p 

res tricts to bounded toposes . It would then be written as Ep -1 Exs , or as 

Ep-1p x. 

3 .2 DEFINITIO N 

toposes if 

The geometric morphism p is said to be of effective des ce nt fo r 

Exs : GToPs---.GToP£ 

is tripleable. 

Let Set denote the topos of sets , and for the rest of this section assume that 

S E GTopSet; assume th~t S is a Grothendieck topos . 

3.3 Example Pure geometric morphisms are introduced in §4: and they are 

shown to be of effective descent for cocomplete categories. If p is a spatial open 

surjection (the definitions of these notions are given in §4), then it is seen in §4 

that p is pure. Hence, the following theorem is eslc:blished. 
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Theorem A ny spatial open surjection is of effective descent for cocomplete 

categories. 

By the theorem which follows this example, the following result due to 
Moerdijk [M5] is thereby established. 

Theorem (Moerdijk) Any spatiaP open surjection is of effective descent for 

toposes. 

Moerdijk's theorem has as a direct consequence the 2-dimensional version of a 

classification theorem for toposes originally due to Bunge [B4]. Let us state and 
prove this classification theorem. 

Let G = (Go, Gl ) be a spatial groupoid in S . Assume that the domain and 

codomain maps do and dl are open. Define BG to be the coequalizer 

7ro- p
sh(Go) - BG 

in GTops. That this coequalizer exists is shown later in this section. The same 
symbols have been used to denote the geometric morphisms which correspond to 

the continuous maps. The geometric morphism m is (that which corresponds to) 

the composition of the groupoid. From the construction of BG (see below), it is 
clear that p is a surjection, and since do and dl are assumed to be open, it follows 
that p is open (see [M3]). Since sh(Go) is spatial over S , p is spatial over BG. 
Therefore, p is of effective descent for toposes. 

Let G denote the spatial groupoid obtained as the 2-kernel pair of p . In other 
words, Ch is defined as the pullback 

Shr~ShF 

sh(Go) -p-" BG 

in GTops . In [M3], G = (Go, Cl) is called the etale-completion of G. Let 

GTopsG 

denote the 2-category of algebras for the triple on GToPsh(Go) induced by the 

adjointness Ep -j px . An object of GTopsG is a topos over sh(Go) equipped 

2He proves the general case. His methods are entirely different from those used here. 
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with a continuous action by G. The (2-dimensional version of the) classification 
theorem is as follows. 

Theorem (Bunge) Pullback along p induces an equivalence 

GTOPBG ~ GTopsG . 

PROOF P is of effective descent for toposes. o 

One says that BG classifies G-toposes. This concludes this example. 

In the remainder of this section, the intention is to establish that amorphism 
which is of effective descent for cocomplete categories remains so at the level of 

toposes. 

3.4 Theorem If p is of effective descent for cocomplete categories, then p is of 

effective descent for toposes. 

To prove 3.4, let us begin by examining equalizers in COCTSs . Given a 

diagram 

A Po 
~~ 

(3.5) 8 ===: C 1'1. V 
7fI ­ P2 

of locally small cocomplete categories and cocontinuous functors with 
2-isomorphisms 

I m n 
po . 7fI ~ P2· 7fo po . 7fo ~ PI • 7fo P2 . 7fI ~ PI • 7fI 

A . 7fo ~ 18 A • 7ft ~ 18 

all over S , consider first only 7fo and 7fl • For I e S , let Z 1 denote the 

sub-category of 8 1 which has as its objects all pairs (B, k) where Be 8 1 and 

7f5B ~ 7f{B is an isomorphism in C . Amorphism (A,j) ~ (B, k) in Zl is defined 

to be a morphism A ~ B in 8 1 such that 

l 

..... 

k 
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commutes. One sees easily that the substitution functors of 8 restrict to the 

categories Zl thereby giving us the category Z over S . Z is locally small. In fact, 

the object in SII which represents morphisms (A,j)..!. (B, k) in ZII can be 

calculated as the equalizer of 

7r1 

BI(A,B) ~C/(7r6A,7r6B) 

7rf J J ko 

Cl (rof A, 7rfB) -,.. Cl (7r6A, 7rfB) , 
OJ 

where ko and oj are composition with k and respectively j . Furthermore, since 7ro 
and 7rI are cocontinuous it follows directly that Z is cocomplete, with colimits 

being created by the inclusion of Z into B . 
Now consider the full sub-category A of Z determined by those objects (A,j) 

which satisfy the unit and cocycle conditions: 

Then A is locally small since it is a full sub-category of a locally small category. 

Moreover, A is cocomplete since A, Po, PI, P2 are cocontinuous, with colimits being 
created by the inclusion of A into B . It follows that A is the equalizer in 

COCTSs of diagram 3.5. Thus, COCTSs has equalizers. 

The next step is to show that the 2-embedding 

p: GTopsDp~COCTSs 

creates equalizers. Let 

(3.6) A~B 

be the equalizer in COCTSs of toposes and (the inverse images of) geometric 

morphisms in GTops. It must be shown that A comes from a topos and () from a 

geometric morphism over S , and furthermore , that A is the coequalizer in 

GTops. The intention is to use the theorem (Th. 6.7) developed in Chapter 1 

about when a category comes from a topos. First note that finite limits in A are 

created by () since all the [undors in -3.6, except ostensibly () , are left exact. Bu t 

then () must be left exact. 

The first requirement of theorem 6.7 from Chapter 1 is that the fiber category 

A 1 be an elementary topos . Consider the data of 3.6 at le S , 
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(3.7) 

In so forgetting the S structure, 3.7 is simply a diagram in GToPSet , with 

ostensibly the exception of Al and (j1 • Given a diagram in GToPset such as 3.7, 

it follows that A l is in G TopSet. A direct demonstration of this can be found in 
[M3], and the reader is referred there for the details. Thus, the first requirement of 

6.7 is satisfied. The second requirement, that A have coproducts which satisfy 

Frobenius reciprocity and which reflect isomorphisms at 1, is satisfied because 

A inherits coproducts and finite limits from B . The third requirement, that A be , 
locally small, has already been shown to be satisfied. Thus, A does indeed come 

from a topos over S (which is bounded over S since Al EGTopset ). That is, 

A EGTops. 

The ordinary functor 81 is cocontinuous in the ordinary sense over Set because 

8 is cocontinuous over S . Therefore, 81 is the inverse image of a geometric 

morphism. However, the point is that one wants 8 to come from a geometric 

morphism over S . By 6.8 of Chapter 1, this is the case. Also, given a cone in 

GTops from an XE GTops to 3.6, the induced functor from X to A is left exact, 

and it is clear that it must come from a geometric morphism over S . Hence, A is 

the coequalizer in GTops. This proves that p creates equalizers. 

Let us return now to the geometric morphism £ ~ S , and the full 

sub-2-category COCTSpo of COCTSs. The 2-embedding p factors through 

COCTSpo , 

p: GToPsOP~COCTSpo . 

By regarding p as a functor into COCTSpo, we see that it preserves equalizers since 

it creates them in COCTSs . A 2-embedding which preserves equalizers must also 
reflect them (if they exist ). Therefore, p reflects equalizers from COCTSpo. The 

same is true at the level of £ . That is, 

p: GTop£OP~COCTSp 

preserves and reflects equalizers. Given the work done in the previous section (see 

the paragraph following 2.13), the proof of 3.4 is now complete. 

4.4 Pure geometric morphisms 

The intent ion in this section is to show that pure geometric morphisms , to be 

defined presently, are of effective descent for cocomplcle categories. 
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In [JTJ, a morphism of locales A!... B is said to be pure if for every A-module 

M, the universal morphism 
1]M: M~B®AM 

is faithful. The category of A-modules is self-dual via the functor M ~ M OP . The 
A-module MOP is the opposite sup-lattice of M, where supremums in MOP are 

infimums in M. This passage sends an A-module map N ~ M to its right adjoint 
Owhich can be denoted by a One shows (see [JT]) that a pure localic map f is of• 

effective descent by obtaining a retract of every 1]M . This can be done essentially 

because the category of A-modules is self-dual. This line of argument will not 
work in the context of cocomplete categories. However, the right adjoint of 1]M is 

of course 1]M , and therefore, f is pure if and only if every 1]M has a faithful right 

adjoint. With this in mind, let us proceed to define the notion of a pure geometric 

morphism. 
To begin, the cocontinuous dual of a cocomplete category shall take the place 

of the opposite category of a sup-lattice. 

4.1 DEFINITION For any cocomplete category A , let A* denote the category 

CocTss(A, S) . The fiber above lE S is 

For amorphism H ~ I in S , the substitution functor a* is given by composition 

with the pullback functor S/I--+S/H. A* shall be referred to as the cocontinuous 
dual of A. 

The category A* is cocomplete over S , though it may not be locally small 

(even if A is). 

For any cocontinuous A ~B , composition with F gives us a cocontinuous 

functor 
F* : B*--+A* . 

Let 

denote the functor which sends an A E A to the cocontinuous functor 

<p ~ <p(A). 

Then ~.A is itself cocontinuous, and ~ is natural in A . 
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Let £ -l.... S denote an arbitrary geometric morphism between elementary 

. toposes. 

Recall that 

7].A : A ---+£®sA 

is used to denote the universal morphism associated with the tensor product of 

A with £ (wherever defined). Then there is a 2-natural transformation 

whose component at A is (7].A)* . A 2-natural transformation can have an adjoint, 

and it is in the following sense that this is meant. 

4.2 DEFINITION Given 2-functors JC ~C and C ~ JC , and a 2-natural 

transformation F ~ G , let us say that t has a right adjoint if for every O-cell 

K E JC there is given an adjointness (tK' SK, CK, 7]K) with tK -! SK . Furthermore, it 

is required that for every I-cell J ~ K in JC, the 2-cell corresponding to 

under tK -! SK be an isomorphism. 

If 7]* has a right adjoint, then let us denote the right adjoini of the component 

(1]A)* by RA . 

4.3 DEFINITION Let us say that 1]* has a cocontinuous (resp. faithful) right 


adjoint if 7]* has a right adjoint such that every component RA is cocontinuous 


(resp. faithful) . 


4.4 DEFINITION A geometric morphism £ ~ S shall be called pure if 1]* has a 


cocontinuous faithful right adjoint. 


One could introduce the notion of an S -pure geometric morphism £---+:F 
between toposes over S . It would not be hard to see that S-pure geometric 

morphisms would then compose and would be stable under pullback. As these 

developments are not needed here, they are omitted. 

The central result of this thesis is the following. 

4.5 Theorem A n arbitrary (bounded) pure geometric moryhism is of effective 


descent for cocomplete categories. In other words) if £ ~ S is such a geometric 


moryhism) then-


is cotripleable. 
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To remind the reader, 'cotripleable' means the 2-categorical sense as developed 

in section §2 of this chapter. The 2-categories COCTSpo and COCTS p were 
introduced in §3. 

4.6 Corollary Pure geometric morphisms are of effective descent for 

Grothendieck toposes. 

PROOF This is a consequence of the above theorem, and of 3.4. o 

A geometric morphism p is said to be a surjection if p* is faithful. A geometric 

morphism p is said to be locally connected if p. has a left adjoint over S . If such is 

the case, then the left adjoint shall be denoted by p! . 

4.7 Corollary Any (bounded) locally connected geometric morphism which is a 

surjection is of effective descent for cocomplete categories. 

PROOF We will see that any locally connected surjection is pure. o 

A geometric morphism p is said to be open if the unique localic map 

in S has a left adjoint (see [J3]). The locale (nc)p is the restriction along p of the 

sub-object classifier in £ . It is equal to the locale p ..(Dd . A geometric morphism 

p is said to be spatiafI if £ is equivalent to sb(X) for a space X in S . If this is the 

case, then (D[)p is equal to t9(X) , the locale associated with the space X . 

4.8 Corollary Any spatial geometric morphism which is an open surjection is of 

effective descent Jor cocomp/ete categories . 

PRoor We will see th3.t any spat ial open surjection is pure. o 

Let us begin the analysis of pure geometric morphisms with the following 

observation. As endofunctors of COCTSs , £®s is left adjoint to COCTSs(£,_) . 
Therefore, CocTss (A, £*) ~ (£®sA)* , and there are natural isomorphisms 
between functors over S as in the following diagram. The center arrow in this 

diagram is the functor COCTSs (A , :=:s ) . 

IThis terminology follows [JT). The term localic, which corresponds to the 'locale/ frame' ter­
minology, is also used for such a geometric morphism. 
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COCTSs(£, A*) ~ COCTss(A, £*) ~ (£®sA)* 

(4.9) 

A* 

Recall from Chapter 3 that 3 A* is the counit of the adjointness 
( )p -l COCTSs(£, _) at A* . The equivalence on the left in 4.9 results because 
both categories are equivalent to the category of cocontinuous bimorphisms 

B1MS(A, £j S) . 

Thus, (7]A)* is isomorphic to 3A* . In particular, since 7]s is equal to p* , we 
can identify 

(p*)* : £*--+S* 

with 3s* . Furthermore, since S* ~ S , (p*)* can therefore be identified with 3s . 
That is, if (p*)* is regarded as a functor to S , then 

(p*)*(F)~3s(F) = F(1e) , 

where Fe£*. 

Pure geometric morphisms are surjections. The following lemma can be used 

to see this. 

Lemma Let 8 ~A be a cocontinuous functor with a cocontinuous right 
adjoint F. Assume that epimorphisms in A are coequalizers. Then if F is faithful, 
so is G* . 

PROOF G* is right adjoint to F* . Let c: denote the counit of this adjointness. It 

suffices to show that F*(G*(cp)) ~ cp is an epimorphism for every cpe A*. For this to 

be true, it suffices that for every A e A 

(C:cp)A : F*(G*(cp))(A)~cp(A) 

be an epimorphism in S . By definition, F*(G*(cp))(A) = cp(G(F(A))) and 

(C:cp)A = CP(WA) , where W denotes the counit of G -l F. By hypothesis, WA is a 

coequalizer, and therefore so is (C:cp)A since cp is cocontinuous. Thus, (C:cp)A is an 
epimorphism. 
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Now let p be a pure geometric morphism. Then (p*)* has a faithful cocontinuous 
right adjoint. By taking G to be (p*)* in the lemma, one concludes that (p*)** is 
faithful. But !:le' p* ~ (p*)** . !:ls , and !:ls is an equivalence. Hence !:le . p* is 
faithful, and therefore p* is also. 

Diagram 4.9 can be used to obtain the the following characterization of the 
existence of a cocontinuous right adjoint to TJ* . 

4.10 Proposition The following are equivalent: 

1. TJ* has a cocontinuous right adjoint. 

2. TJ* has a right adjoint. 

3. (p*)* has a right adjoint. 

4. £* has a terminal object. 

PROOF That 1. implies 2., and that 2. implies 3. are trivial. 

If (p*)* has a right adjoint R, then R( 1) is the terminal object in £* , and so 3. 

implies 4.. 
Assume now that £* has a terminal object, which shall be denoted by T . 

View £* as a full sub-category of FUNCTs(£,S) as in the following diagram. 

£* 

j~). 
FUNCTs(£, S) JI'S 

The functor I-' sends an Fe COCTSs(£,S) to F(1e) , and it has a right adjoint I\, 

such that 
I\,(X): E ~ X 

for all X e S and Ee £ . Also, observe that for any X e S and Fe £* , the copower 
X.F in £* is equal to I\,(X) x F as calculated in FUNCTs(£, S). Define a functor 

R: S--+£* 

by letting R(X) = X.T for every XeS . R is a cocontinuous functor over S . 

Moreover, the following series of bijections, natural in Fe £* and X e S , show that 

R is right adjoint to (p*)* . 
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(p*)*(F) = jl(F)-+X 

F-+II:(X) 


F-+II:(X) X T = X.T 


Then CocTss(A, R) is right adjoint to CocTss(A, (p*)*) . Moreover, 

CocTss(A , R) is cocontinuous. By 4.9, it follows that "1* has a cocontinuous right 

adjoint. 


As the proof of 4.10 illustrates, if (p*)* has a (cocontinuous) right adjoint, 

then the terminal object and the right adjoint correspond under the equivalence 
£* 9:' COCTSs (S, £*) , provided that one identifies S with S* . 

4.11 Proposition The following are equivalent for a geometric morphism 

£~S. 

1. p is pure. 

2. "1* has a faithful right adjoint. 

3. (p*)* has a faithful right adjoint. 

4. £* has a terminal object T, and the unique map T(1e)-+1 is an epimorphism. 

PROOF That 1. implies 2., and that 2. implies 3. are trivial. 

Assuming 3., let R denote the faithful right adjoint of (p*)*. R is cocontinuous 
by 4.10. Let C denote the counit of (p*)* -j R. As usual, 1 denotes the terminal 
object in S , and le denotes the terminal object in £ . Identifying S with S* , let T 

denote R(1). R( 1) is the terminal object in £* . We have 

(p*)*(R(1)) = (P*)*(T)~T(1e) . 

The counit (p*)*(R( 1) ) ~ 1 is an epimorphism since R is assumed to be faithful. 

Thus, 9. implies 4.. 
To prove 1. from 4., one proceeds as in 4.10. That is, first one shows that 

(p*)* has a co continuous right adjoint R. Then R( 1) is isomorphic to T, and 
therefore, (p*)*(R(1))~T(le). Thus, the counit 

Cl : (p*)*(R(1))-+1 

is an epimorphism. Then for any I E S , cl is an epimorphism since 

(p*)(R(I))~Ix(p*)*(R(1)) . 
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This isomorphism identifies ~1 with I X~l . Therefore, R is faithful. It follows, by 
using the fact that epimorphisms in S are coequalizers, that the cocontinuous 
right adjoint of (7].... )* , which' is identified with COCTSs(A, R) (see diagram 4.9), is 

also fai thful. 0 

4.12 Proposition An arbitrary locally connected surjection is pure. 

PROOF Let p be a locally connected geometric morphism with p! -1 p" over S . 
Then 

and consequently the terminal object in £* is (p!)*( 1). This is equal to p!. Also, 

the unique morphism 

is an epimorphism since p" is assumed to be faithful. Hence, by 4.11 P is pure. 0 

4.13 Proposition An arbitrary spatial open surjection is pure. 

PROOF Let £ -.!:...S denote an arbitrary open surjection, with £ = sb(X) . Our 

aim is to show first that £* has a terminal object , Recall (Chap. 3, §1) that 

composition with sheafification identifies £* with the full sub-category of 
COCTSs(St9(X)OP, S) whose objects are those cocontinuous functors 

which take dense (for the canonical topology) monomorphisms to isomorphisms, 
Also recall that there is an equivalence 

which is given by composition with the Yoneda embedding. This equivalence 
restricts to an equivalence 

(4.14 ) £1< =- X-Cocts(St1(X») . 

The category on the right in 4.14 is by definition the full sub-category of S!9(X ) 
whose objects are those functors 

19 (X)~S 

such that for every UE 19 (X ) and every covering sieve 
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R-13(X)/u 

~j

13(X) , 

the colimit of the diagram 
DR--+13(X) --+S 

is D(U) . 

Next, the claim is that for any sup-lattice map (not necessarily localic) 

13(X) ~ 13(Y) 

between locales, the induced functor 

[I, S] : st?(y) --+st?(X) 

restricts to 
[j,S] : Y-Cocts(st?(y») --+ X-Cocts(st?(X») . 

To see this, let R be an arbitrary covering sieve of Ue 13(X). Let 
De Y-Cocts(St?(y») . To be shown is that D(f(U)) is the colimit of the diagram 

f DR--+13(X)-+ 13(Y)--+S. 

Let [jR] denote the sieve generated by the image of R under I . Since I preserves 

suprema, [jR] is a covering sieve of I(U). We have the following diagram. 

R I . [jR] 

! ! 

13 (X)jU 'I?(Y)/fU 

! ! 

13(X) f 13(Y) 

Thus, D(f(U)) is the colimit of the diagram 

[jR] --+13(Y) ~ S . 

The claim now follows since the poset map R..!.. [jR] is cofinal (see [Jl], p. 74). 
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Since p is assumed to be open, there is a sup-lattice map 

t9(X)~ n 

which is left adjoint to the unique map 

I 

n~t9(X). 

Therefore, 
[~,S] : l-Cocts(S,,(J}) --+ X-Cocts(S"(X}) 

is right adjoint to [!, S] , where 1 is the terminal in Sand n = t9( 1) . Of course, 

S ~ COCTSs(S,S) ~ l-Cocts(S"(J)) , 

and therefore, l-Cocts(S,,(J}) has a terminal object. In fact, it is the functor 

sub: n--+s 

which takes an 'element' I ~ n of n at 'stage' I to the sub-object of I classified by 
a. Thus, X-Cocts(S"(X}) has a terminal object; it is the functor 

We have shown that £* has a terminal object, which we shall denote by T. 

Our task now is to show that the unique map 

is an epimorphism (assuming that p is a surjection). Let tx denote the top element 

of t9(X) . It follows that the support of T(1.d is isomorphic to the sub-object 

sub· ~(tx) <-+ 1 

in S . As is well known, p is a surjection if and only if ~(tx):::d , where 1 ~ n is 
the top element of n. So if p is a surjection, then 

sub . ~(tx)::: sub(t)::d . 

Thus, T( le)-+ 1 is an epimorphism. The converse is true as well. That is, if 


T( le)-+ 1 is an epimorphism, then the open geometric morpism p is a surjection. 


This concludes the proof. 
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The next proposition is a characterization of pure morphisms which will be 

used in the proof of 4.5. Before getting to that proposition, let us set down some 

notation. For any Fe COCTSs(£,S) and A e COCTSs such that £®sA exists, let 

denote the cocontinuous functor 2,A . (AF)p , where 

AF 

CocTss(£',A) . 

The cocontinuous functor AF is given by composition with F subject to the 

identification 

A ~ CocTss(S,A). 

In making this identification, one has 

AF (A)(E) ~ (F(E)).A , 

for any Ee £' and A EA. Observe that COCTSs(£', A) must be in COCTSE , in 

particular locally small, for the functor F®A to exist. As demonstrated in the 

previous chapter , this is the case if p is bounded. Then for any A EA, 

by an isomorphism which is natural in A. h is the terminal object in £' . 

4.15 Proposition A bounded geometric morphism p is pure if and only if ['" 

has a terminal object T , and for every '7,A there is a natural transformation 

T 0A . '7..4 -..:, 1..4 such that (writing '7 for '7..4) 

A 

is a (stable) coequalizer for all A EA. 
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PROOF Assume that p is pure. Let R denote the faithful cocontinuous right 
adjoint of (p*)* . Let c denote the counit of (p*)* -l R. As usual, 1 denotes the 
terminal object in S , and h denotes the terminal object in E . As in 4.15, let T 

denote R( 1) , which is the terminal object in E* . As before, for this to make sense 

one must identify S with S* . One has 

The counit (p*)*(R( 1) ) ~ 1 is an epimorphism since R is assumed to be faithful. 
Therefore, 

is a coequalizer in S ; In fact, 

by an isomorphism which identifies cT(1c) and R(Cl)( h) with the two projections 

Hence, 4.17 is a coequalizer since Cl is an epimorphism. 

For any A EA, one can form the copower in A of 4.17 with A. The following 

coequalizer in A results. 

(4.18) 

Recall tha.t for any A EA, 

and hence 

T®A· "lA' T®A· "lA{A) ~ T{1e).{T®A· "l,A{A)) 

~ T{Je).{T{Je).A) ~ R{T{1e)){Je).A. 
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Define iA to be the composite 

Then i is natural in A, and diagram 4.16 is a coequalizer since diagram 4.18 is. 

Assuming the given condition, to see that p is pure take A = S and A = 1. 
Then since 

it follows that the unique map T(1E)~l is an epimorphism. Now use 4.11. 

If p is pure, then a simple diagram chase using 4.16 shows that every T},A is 
faithful. It also follows that every T}.A reflects isomorphisms. This gives another 
proof, since T}s = p* , that (bounded) pure geometric morphisms are surjections. It 
also proves that surjections are not in general pure. In fact, surjections are not in 

general pullback stable, and if 

p--=-q_o F 

£--_oSp 

is a bounded pullback of toposes with p pure, then q* = T}F is faithful. 
We can now proceed with the proof of 4.5. 

PROOF (of 4.5) Let £ ~S be an arbitrary bounded pure geometric morphism. 
n 
" 

Then £n, n = 1,2, ... , exists and is the tensor product £®s£®s ... £. Also, recall 

the categories COCTSpo and COCTSp. These categories were introduced in section 
§3, and our attention will be focused on them. 

For this proof only, denote 

and 

( )p : COCTSp-+COCTSpo 

by U and R respectively. We have U -l R , and the unit of this adjointness is T} • 

Let G = (G,c,S,p,q,w) denote the cotriple on COCTS p induced by the adjointness 

U -l R. The theorem from §1 on semi-split equalizers (Th. 1.6) will be put to use 

here. Of course, our work on cotripleability in §2 will also be used. 
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Let A be in COCTSpo. Since coequalizers are computed point wise in 
CocTss(A, A) , proposition 4.15 says that there is a natural transformation 
T®A . TJ.A ~ 1.A such that 

is a coequalizer in CocTss(A, A). Similiarly, writing 8 for RUA , there is a 

natural transformation T®8 . TJB ~ 1B such that 

is a coequalizer in CocTss(8,8) . There is also a natural transformation 
T®C . TJe ~ le , where C denotes (RU)2A. It follows that the data 

(4.19) TJ.A • RUAA 

along with T®A ,T®8 and T®C , comprises a semi-split equalizer in COCTSpo. For 
example, the fourth coherence condition in the definition of a semi-split equalizer 
requires that 

commute, where the back arrow 8---+C is RUTJ.,4 . This prism does commute 

because the construction of i is natural in A. One readily verifies that the 

2-category COCTSs satisfies the conditions of 1.6 ensuring that 4.19 is an equalizer 

in COCTSs , and hence an equalizer in COCTSpo. For example, the second 
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condition of 1.6 is satisfied because coequalizers are computed pointwise in 

COCTSs (X, A) , for any X E COCTSs . 

The proof of the other half of the cotripleability equation, that the 
comparison functor is 2-essentially surjective, now follows. Let (8,0, k, i) be an 
arbitrary coalgebra for the cotriple G on COCTSp induced by the adjointness 
U -i R. Define A as the equalizer 

-RO 
(4.20) A RG8TjR8 

in COCTSs. It will be shown that for any X E COCTSe , the (ordinary) functor 

~x : COCTse(8, X)l ---+CoCTss(A, RX)l 

F R(F) . </> 

is an equivalence. This would show that the pair (8, </» is the tensor product UA .I 
(Recall that here £®sA is being denoted by UA .) Moreover, the canonical 

! coalgebra structure of UA would then be identified with that given for 8 . Of 

I course, one would also have that A E COCTSpo because 8 is in COCTSp. 

I Fix an arbitrary XE COCTSe . The first step is to show that 4.20 is a 
I semi-split equalizer. Consider the diagram

I 
4 

(4.21 ) 

where 8 , t and y denote respectively T®(RB) , T®(RG8) and T®(RG28). Then r is 

the induced morphism. Let us write TJ for TJRB. By 4.15, there is a natural 

transformation 8TJ ~ lRB such that the diagram 
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dSTJ
(4.22) 	 STJSTJ : STJ _-"d=--..... 1RB 

sTJd 

is a coequalizer in CocTss(RB, RB) . The composite natural transformation 

(4.23) 

where the isomorphism arises as in 4.21, is a morphism of cones from A to RE . 
Since 4.20 is an equalizer, the morphism 4.23 must be of the form <Pi for some 
r<p.i. lA . Moreover, it follows that 

ir<p 
_---..:...t__• lA(4.24) r<pr<p r<p

r<pi 

is a coequalizer in CocTss(A, A). In fact, <p applied to 4.24 yields a diagram 
which is isomorphic to 

(4.25) 	 d<p • <p.STJSTJ<P 

Diagram 4.25 is a coequalizer (in CocTss(A, RE)) because 4.22 is a coequalizer. 
Then, since <p reflects coequalizers, we conclude that 4.24 is a coequalizer. Hence, 
the data (A, RB, ... ,<p, RO, ...) is a semi-split equalizer in COCTSs . 

Consider now, solely for the purposes of this argument, the (meta) 2-category 
whose O-cells are all finitely cocomplete categories (not over S ). Let us denote 
this 2-category by Co . The I-cells of Co are taken to be all finite colimit 

preserving functors, and its 2-cells are all natural transformations. 

For any 2-category K, let KOf' denote the 2-category obtained by reversing 
the I-cells of K . Then a semi-split coequalizer in K is, by definition, a semi-split 
equalizer in KOf' . Also, let us say that a 2-functor K ~ £, preserves colimits at 

the level of I-cells and 2-cells if for all O-cells X, Ye K , the functor 

Fxy : K[X, Y]~£'[FX, FY] 

preserves colimits. 
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Lemma 1 Any semi-split coequalizer in Co is a coequalizer. 

Lemma 2 For any Ce COCTSs , the 2-functor 

COCTSs C, C) 1 : COCTSs OP ---+C0 

preserves coequalizers at the level of I-cells and 2-cells. 

The first lemma follows directly from 1.6. COOP satisfies the conditions of 1.6 

because finite colimits in the categories CO(V, U) are computed pointwise. The 
second lemma follows just as easily since in the ordinary category COCTSs(V, C)l , 
finite colimits are also computed pointwise. 

Let H denote the 2-functor COCTSsC, RX)l , as in Lemma 2. Let K denote 

the 2-functor 
COCTS£(_, X)l : COCTSpOP ---+CO . 

By carrying the semi~split equalizer 4.20 to Co under H, one gets the bottom half 

of the following commutative diagram. 

K(GO) _._
K(B) • K(O) 2

K(GB) k(b8) K(G B) K(G3B) 

(4.26) 

j j j
H(RO) ____<Ji;L. H(~) 

H(RB) : H(RGB) :== H(RG2B)
H(TJR8) 

By Lemma 2, the bottom half of 4.26 is a semi-split coequalizer since 4.20 is 

semi-split. By Lemma 1, the bottom half of 4.26 is a coequalizer in Co . The top 
half of 4.26 is K applied to the split equalizer 

B 

in COCTSp• Therefore, the top half is also a coequalizer in Co since split 

equalizers are preserved under any 2-functor, in this case K . The three vertical 

arrows in 4.26 with no labels are equivalences which arise from the adjointness 

U -l R. Therefore, cl> x is an equivalence. The proof of the theorem is complete. 

112 


0 



-

4.5 The cocontinuous dual 

As the previous section indicates, the completeness properties of the 

cocontinuous dual are of some interest. £* may not in general be complete; it may 
not, for example, have a terminal object. If £ ~ S is spatial and open, or locally 

connected, then it was shown in §4 that £* does have a terminal object. Moreover, 

in both these cases, p is a surjection if and only if the unique map T( le)~ 1 is an 

epimorphism, where T denotes the terminal object in £* . 
Assume that p is bounded. In this case, £* is locally small (see Chap. 3, §1). 

To begin, factor p as 

£~SC~S, 

with £ = shj(SC) , where j is a topology on SC. It will be shown that (£*)c is a 

locally connected (bounded) topos. 

Let F denote the category COCTSs(Sc,Sc) . F is equivalent to the topos 
SCxC

op 
over SC. Then we have 

(5.1) £* = COCTSs(£,S)--+COCTSs(£,SC) ~ CocTSsc(£,F). 

The first arrow in 5.1 is COCTSs(£, C*) , where 

is the constancy functor. The equivalence in 5.1 is by the adjointness 

( k -1 COCTSs(SC,_). Recall (Eg. 1.18 1, Chap. 3) that the category 

COCTSsc(£, F) is a topos. In fact, it is equivalent to the topos of cosheaves 

shj(r)op (see Chap. 2, §4). Furthermore, there is an equivalence (see [Pi]) 

which identifies COCTSs(£, C*) with the constancy functor 

(5.2) C* : £*--+(£*)C . 

If C were chosen to be connected, and this can certainly be done, then 5.2 is fully 
faithful. (Actually, for 5.2 to be fully faithful, weakly connected would suffice 

since 5.2 is identified with COCTSs(£, C*). See Chapter 2, §1 for a discussion of 

connectedness.) The following theorem is now established. 

5.3 Theorem £* is a full reflective cocontinuous sub-category of a locally ~ connected (bounded) topos. , 
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PROOF Let T ~S denote the topos 

Then t is locally connected since T is a slice topos of :F. Moreover, t! is identified 

with (p*)* . That is, there is a natural isomorphism 

£*~T 

(p*)* J ~ Jt! 

S* ~ S. 

o 

Thus, although £* may not in general have a terminal object, one can 'pick 

up' the terminal object by moving to a category of internal diagrams. 
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CONCLUSION 

The approach to descent for toposes in this thesis can be considered as 
'algebraic' . This is in contrast to the 'geometric' approach as exemplified by 

Moerdijk. 
One aspect of the 'algebraic' approach is the use of the fact that the Beck 

condition holds. Related to this, is the use of the important theorem 

[Chap. 3, Th. 2.11] of Pitts [Pi]. 
Another aspect of this approach is the use of the cocontinuous dual. Clearly, 

the cocontinuous dual is related to descent theory for cocomplete categories, and 
hence for toposes. Of course, the very definition of the cocontinuous dual 

[Chap. 4, Def. 4.1], and of pure geometric morphisms [Chap. 4, Def. 4.4], 

necessitates the introduction of cocomplete categories. The study of geometric 

morphisms through their cocontinuous duals remains largely untouched. 

A third aspect of the cocomplete categories approach is its 2-categorical 

nature. Of course, this does not distinguish it from all other 'descent theorems'. 
For example, Zawadowski [Zl,2] has entertained the notion of lax-descent which 
requires a 2-categorical setting. The methods used in this thesis do not preclude, in 

fact they invite, further investigation along these lines (for cocomplete categories). 
To close, two open questions shall be mentioned. In the spatial case, an open 

surjection is pure. The general case remains unanswered. The other question is to 

characterize those geometric morphisms which are of effective descent for 

cocomplete categories. 

All results herein not due to the author were so indicated. All others are 

original. 
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ApPENDIX A: Frobenius reciprocity 

Let 	B ~ C be an ordinary functor , and assume that U has a right adjoint R. 

A.I DEFINITION U ~ R is said to satisfy Frobenius reciprocity if for all pullback 

diagrams 

P UBo 

JbJ 
C a oD 

which exist in C , the pullback 

1roQ ·B 

1r1 J Jb 
RC Ra • RD 

exists in B, and the induced map (U1ro, 1r1) : UQ--+P is an isomorphism. 

A.2 	Theorem Given B ~ C , the following are equivalent: 

1. B ~ CjD for some De C such that U is identified with the forgetful functor, 

and C has products C x D for every Ce C . 

2. 	 U has a right adjoint R such that U ~ R satisfies Frobenius reciprocity, U 

reflects isomorphisms, and B has a terminal object. 

PROOF 	 It is easy to check that 1. implies 2 .. 

For the converse, let I denote the terminal object in B. Define functors 

R: Cju1---+B; (;: B---+CjU1 

as follows. For an object B of B, let (;B = U B ~ UI and for amorphism f, let 
A 	 c A

Uf 	= Uf. For C --+ UI , let Rc be given as the pullback 

Rc • I 

~I J J~I 
RC~RUI 
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which exists in B because 

c _-=-c_. Ul 

1 j j1 

C c· Ul 

is a pullback in C and Frobenius reciprocity applies. 1} is the unit of U -1 R . 

It follows that U-1 Rwhere the counit of this adjointness at an object 
C ~ Ul is 11"1 , where 11"1 is as in the definition of Rc. Observe that 11"1 is the 

induced map (U!, 1I"d which, by Frobenius reciprocity, is an isomorphism. 

The unit of U-1 Rat an object Be B is given as the induced map from B to 

the pull back 

RUB ----'*-. 1 

~l j j~l 
RUB Ruf RUl 

I 

That is, ~B = (!, 1}B) , where B ~ 1 . By Frobenius reciprocity, the induced map 

is an isomorphism. But this map is 11"1 , and its inverse is U~B . Since U is assumed 

to reflect isomorphisms, ~B is therefore an isomorphism. 
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ApPENDIX B: The adjoint functor theorems 

Let S denote an elementary topos. Here, all categories and functors are over 

S. 
A right adjoint to a functor A ~ B is a functor B ~ A over S and natural 

transformations FR~ 18 and 1.,4 ~ RF over S such that cF · F1] = IF and 

Rc ·1]R = IR . 

B.l Theorem A functor A ~ B has a right adjoint if and only if there is given 

for every I E S an adjointness (FI, RI, 1]1, cl) such that for every morphism J ~ I 
in S , the canonical morphism 

RJJ -RI RJ(J-IRI - I
a*RI"'~ RJFJa*RI ~ RJa*FIRI ~ RJa * 

is an isomorphism. (The isomorphism a*FI ~ FJa * is that supplied by F.) 

PROOF Assume the given condition. Given J ~ I , let O~ denote the canonical 
morphism in the statement of the theorem. At issue is the legitimacy of R, c, and 
1]. Regarding c , it must be shown that 

J(2) c a· . FJB~ . OaRI = a*cI . 

Let z denote the natural transformation a*cI . O;lRI . Then 

O~ = RJz .1]J a*RI , 

and hence 

By the naturality of cJ , 

Therefore, the left side of 2 is equal to 

z . cJFJa·RI . FJ1]Ja·RI . OaRI 

which is equal to 
1I RI * Iz· U a = a c . 

This proves that c is a natural transformation over S . That the same is true of 1] 

can be shown in a similiar fashion. Now that we know the counit and unit are 

legitimate, it follows that the O~ 's satisfy the required coherence condition (see 
Chap. 1, §1) because the Ba's do. 

Conversely, if F ~ Rover S , then it follows that the isomorphism O~ is equal 

to the canonical morphism in the statement of the theorem. 0 
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B.3 DEFINITION A functor A ~ 8 satisfies the solution set of objects condition 

if for every lE S and every BE 8 1 , there exists J E S and Ae A J such that for every 
ee AI and every FIe ~ B, there exists I ~ J , FIi"'A ~ B, and e ~ i"'A such 

that b· (FIa) = x. 

The following is Freyd's General Adjoint F\mctor Theorem in the context of 

categories over S . 

B.4 Theorem (GAFT) Let A ~8 be a functor with A and 8 locally small and 

with A cocomplete. Then F has a right adjoint if and only if F is cocontinuous and 

satisfies the solution set of objects condition. 

If A has small coproducts, then the following can be taken as a definition of a 

generating family in A . 

B.5 DEFINITION A is said to have a generating family if there is an lE S and an 

object Ge AI such that for every J E S and every Ae A J there exists K (c:!!) I x J 
and an epimorphism EJ3a"'G~ A in A J . 

It is shown in [PS] that a topos over S is bounded if and only if it has a 

generating family when regarded as a category over S . Also, any small category 

has a generating family. 

B.6 DEFINITION A is said to be cowell-powered if for every I and every A E AI , 

there is an object X ~ I in SII such that for every J ~ I there is a natural 

bijection of morphisms a-+Q I A in SII with the stable quotient objects of a"' A in 
AJ. 

A topos over S is cowell-powered, as is any small category. 

The Special Adjoint Functor Theorem is as follows. 

B.7 Theorem (SAFT) Let A~8 be a functor with A and B locally small and 

with A cocomplete. Assume also that A has a generating family and is 

cowell-powered. Then F has a right adjoint if and only if F is cocontinuous. 

See [PS] for proofs of theorems B.4 and B.7 . 
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