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ABSTRACT

This thesis describes a study of machine learning and its application to wait-

ing times in radiation oncology. Specifically, an evaluation of waiting time

estimates for daily radiation treatment appointments at the McGill Univer-

sity Health Centre was conducted and two unique communication tools for

conveying these waiting time estimates were developed. To evaluate waiting

time estimates, a subset of previously-treated patient records was used for

training and modelling by several off-the-shelf machine learning algorithms

and tested using treatment records unseen by the algorithms. Furthermore,

machine learning was explicitly used to predict treatment durations in order

to calculate an overall waiting time estimate. It was found that the random

forest regression algorithm provided the best model for daily radiation treat-

ment durations. On average, the model is able to predict treatment durations

to within 7.2 minutes. This is a significant improvement on the rough esti-

mates currently given to patients, and also on the estimates one would obtain

by conducting simple averages on all patients. One of the tools developed to

communicate waiting time estimates to patients made use of the best-trained

model by simulating the delivery of waiting time estimates to all patients in

real-time. Waiting time estimates from this study have not yet been delivered

to patients. However, a separate and ongoing research is discussed in this

dissertation, examining the delivery of personal health information, including

waiting time estimates, to patients via a mobile phone application.
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RÉSUMÉ

Ce mémoire décrit une étude de l’apprentissage machine et son application

aux temps d’attente en radio-oncologie. Plus précisément, le temps d’attente

des rendez-vous quotidiens des traitements externes au Centre universitaire

de santé McGill ont été estimé et deux outils de communication uniques pour

transmettre ces estimations ont été élaborés. Un sous-ensemble de patients

traités précédemment a été utilisé pour la formation et la modélisation à l’aide

de plusieurs algorithmes d’apprentissage machine. Ceux-ci ont été testés en

utilisant les données exclues par la modélisation. De plus, l’apprentissage ma-

chine a été utilisé explicitement pour prévoir les durées de traitement afin de

calculer une estimation globale du temps d’attente. L’algorithme de random

forest regression fournissait le meilleur modèle pour les durées quotidiennes de

trâıtement par irradiation. En moyenne, le modèle est capable de prédire la

durée des traitements à l’intérieur de 7,2 minutes. Il s’agit d’une amélioration

considérable par rapport à l’éstimation du temps d’attente actuellement trans-

mis aux patients et aussi par rapport aux estimations que l’on obtiendrait en

effectuant des moyennes simples. Un des outils pour communiquer le temps

d’attente simule la livraison des données à tous les patients en temps réel en

utilisant le meilleur modèle d’apprentissage machine. À ce jour, les estimations

de temps d’attente de cette étude n’ont pas encore été fournies aux patients.

Cependant, une recherche distincte examinant la distribution de renseigne-

ments personnels sur la santé, includant les estimations de temps d’attente

via une application mobile, est présentement en cours. Ceci est discutée dans

cette dissertation.
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CHAPTER 1
Introduction

1.1 Overview of Thesis

This thesis builds upon the subject of machine learning in radiation oncology

by adding a new application area – waiting times. This research presents an

effort to describe and evaluate waiting time estimates, and to communicate

these estimates to patients in radiation oncology at the McGill University

Health Centre (MUHC) in Montreal, Canada.

This chapter introduces the study of radiation therapy and cancer treat-

ment, and clinical services in radiation oncology, including the field of med-

ical physics and informatics. Chapter 2 describes the effects of waiting in

healthcare and outlines waiting in the context of radiation oncology. Chap-

ter 3 details machine learning and its application to waiting times in clinical

practice. Chapter 4 focusses on the rigorous methodology undertaken in this

project. Chapters 5 and 6 present the results and discussion, respectively. The

conclusions and future work for this research are described in chapter 7.

1.2 Radiation Therapy

Radiation therapy is a branch of medicine that is concerned with the use of

ionizing radiation to treat cancer and some benign diseases. Ionizing radia-

tion damages cells by destroying the genetic material (DNA) that controls how

cells grow and divide. While both healthy and cancerous cells are damaged

by radiation, the goal of radiation therapy is to deliver the maximum amount

of radiation to the cancerous cells, while minimizing the amount of radiation

to the surrounding healthy cells (Washington and Leaver, 2015). To achieve
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this goal, radiation therapy relies heavily on knowledge gained from the phys-

ical and biological sciences, as well as computer science and engineering. For

many patients with cancer, radiation therapy plays a vital role in their overall

treatment.

1.3 Cancer

In normal tissue cell growth, there is a regulated balance between cellular

division and self-limitation such that proliferation only occurs when necessary

(Macdonald et al., 2004). As a cell grows, it undergoes mitosis and divides into

daughter cells. The cell division process repeats in an ordered manner until

a mature cell with a specific function results. In tumours, however, cells may

continue to divide and grow with no resulting mature cell to halt the process,

causing abnormal cellular proliferation (Washington and Leaver, 2015).

Cancer is a class of many diseases in which cells undergo mutation towards

uncontrolled cell division, resulting in intrusions on surrounding tissues or

sometimes spread to different areas of the body to generate further growth

(metastasis). Most cancers form neoplastic tumours (layers of cancer cells),

but some, such as leukaemia, do not. Benign tumours are self-limiting tumours

that do not metastasize and are rarely life threatening, unless vital structures,

such as blood vessels or nerves, are constricted.

1.3.1 Cancer Outlook

The Canadian Cancer Society (2015) estimated that in 2015, 45% of Canadian

males and 42% of Canadian females have a lifetime probability of developing

some form of cancer, and approximately one in four Canadians will die of

cancer. According to the Canadian Cancer Society, 196,900 new cases of cancer

were expected to be diagnosed during 2015. Lung, breast, colorectal and

prostate cancer, were expected to represent more than half (51%) of these
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new cases. Cancer is the leading cause of death in Canada and is responsible

for 30% of all deaths.

1.3.2 Cancer Treatment

Cancer care demands a multidisciplinary approach. Cancer specialists includ-

ing radiation oncologists, medical oncologists, surgeons, medical physicists,

radiation therapists, nurses, radiologists, and other medical personnel, often

work together to create a patient’s overall treatment plan that effectively treats

the cancer while attempting to allow the patient to maintain a high quality of

life. Most cancer types can be treated using one or more of three treatment

modalities: (1) Surgery (localized resection of the tumour), (2) chemotherapy

(use of cytotoxic drugs that kill primary tumour cells and those that may

be circulating through the body), and (3) radiation therapy (use of ionizing

radiation to kill tumour cells).

Some patients with cancer may receive only one treatment modality (rad-

ical treatment) but most patients undergo a combination of treatments (ad-

juvant treatment). Radiation therapy may be used radically or adjuvantly

depending on the tumour type, location, stage (how advanced it is), grade

(how aggressive it is), patient preference, as well as the general health of the

patient (Washington and Leaver, 2015). More than half of all patients with

cancer receive radiation therapy as part of their treatment (El Naqa et al.,

2015).

1.4 Radiation Therapy In Practice

As stated above, the goal of radiation therapy is to deliver a prescribed dose of

radiation to a target (typically a tumour) while minimizing radiation damage

to the surrounding healthy tissue. Modern radiation therapy involves highly

conformal techniques such as intensity-modulated radiation therapy (IMRT),
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stereotactic radiosurgery, volumetric modulated arc therapy and proton ther-

apy that almost “paint” the target three-dimensionally with radiation, which

greatly spares normal tissues (Washington and Leaver, 2015). Following di-

agnosis, and a decision to treat with radiation therapy, a radiation oncologist

prescribes a dose of radiation, and works with the other members of the ra-

diation oncology team to determine a suitable treatment plan and treatment

schedule.

1.4.1 The Radiation Oncology Team

The effectiveness of patient care and treatment relies on unity and synergy

amongst the patient and members of the entire radiation therapy department

(Figure 1.1). From the receptionist to the physician, each team member has

a responsibility in achieving the goal of treating a patient with cancer. The

radiation oncologist has the overall responsibility for the patient’s care and

treatment. Other members of the radiation therapy team work under the

direction of the oncologist. The outlining of simple organs on radiographic

images is the responsibility of a dosimetrist. These images and outlines, set

up by the dosimetrists, are used by a radiation oncologist to conduct detailed

planning such as outlining the tumour and the organs at risk of radiation.

The treatment itself is administered by a radiation therapist. Responsibility

for the overall quality of the treatment (physical accuracy and reliable delivery

of the radiation dose) falls onto the medical physicist (See section 1.5). Table

1.1 provides an overview of the various radiation oncology team members with

their associated roles and responsibilities.

The patient is also an essential member of their radiation oncology team.

The patient works in collaboration with other members of the team by com-

plying with treatment requirements and reporting back the outcome of their
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Figure 1.1: The radiation oncology team is a patient-centred group that consists
of various radiation medicine personnel fulfilling the goal of diagnos-
ing and treating a patient with cancer. Proximity to the patient in
this model represents the closeness of involvement with the patient in
practice – Direct (inner ring) and indirect involvement (outer ring).
Table 1.1 provides descriptions of radiation oncology team members
with their associate responsibilities.
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Profession Responsabilities
Radiation Oncologist A specialized physician responsible for prescribing ionizing radiation to treat

cancer. Works with other members of the radiation therapy team to ensure each
treatment is delivered accurately and safely. Contours the tumour and organs at
risk (of radiation) on radiographic images.

Clinical
Medical Physicist

Ensures accurate delivery of radiation through calibration and maintenance of
treatment machines and other radiation related instrumentation. Maintains
proper radiation safety programs to prevent excessive radiation exposure to staff,
patients and the public. Collaborates with other members of the radiation ther-
apy team to solve various physical, mathematical and computational problems.

Radiation Therapist Administers radiation treatments by operating radiation therapy equipment.
Monitors the condition of patients and assesses changes in the treatment plan, if
required, such as re-positioning or dose re-calculation.

Engineer Ensures safe and secure operation of treatment machines and other radiation
related instrumentation. Works with a radiation safety officer to ensure proper
installation, maintenance, and decommissioning of radiation machines.

Nurse Monitors the patient’s radiation treatment experience including assessing symp-
toms, therapeutic communication, information, and overall care, psychosocial
support and referring to other radiation medicine professions to manage identi-
fied problems.

Receptionist Schedules appointments and check-ins for patients.

Social Worker Helps patients navigate through the hospital system so that they can receive
efficient and streamlined care. Provides counselling and supportive services.

Medical Dosimetrist Contours simple organs on radiographic images for radiation oncologists to use.
Employs treatment planning techniques to calculate where and how to distribute
radiation. Ensures the physician’s prescription is met while minimizing damage
to surrounding tissues.

Other Allied
Health Groups &
Professionals

A group of health care providers who apply their expertise and deliver support to
patients and other members of the radiation oncology team. Providers such as:
dentists (for Head and Neck patients), patient support groups, and nutritionists.

Table 1.1: Radiation oncology team members and a brief description of their re-
sponsibilities

treatment, including their concerns and worries on an emotional, social, psy-

chological, and physical level. The patient also brings in their family and

support system that can have an additional effect on their treatment out-

come. The relationship between the patient and radiation therapy staff is as

important as any other task accomplished by staff members during the course

of treatment. The complete radiation therapy process is detailed in section

2.2.1.
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1.5 Medical Physics

Medical physics is a discipline of physics that applies the science of physics to

medicine, namely in the diagnosis and treatment of disease using radiation.

Radiation includes both ionizing and non-ionizing radiation such as particulate

radiation, electromagnetic radiation, and ultrasound. In radiation oncology,

ionizing radiation is used to treat a wide variety of cancers through exter-

nal beam radiation therapy (in which radiation is delivered from outside the

patient’s body) or brachytherapy (in which a sealed radioactive source is tem-

porarily or permanently placed directly into the region of the patient’s body

to be treated). Medical physics research and a medical physicist’s clinical

services are essential to maintaining and improving the success of radiation

therapy.

1.5.1 The Role of a Medical Physicist

Medical physicists are concerned with three main areas of practice: clinical

services, research and development, and teaching.

Clinical Service

The American Association of Physicists in Medicine (AAPM) states that:

“The essential responsibility of the Qualified Medical Physicist’s clinical prac-

tice is to assure the safe and effective delivery of radiation to achieve a di-

agnostic or therapeutic result as prescribed in patient care” (aapm.org). In

other words, a clinical medical physicist is responsible for quality assurance

of all radiation therapy and diagnostic radiology equipment and associated

processes. This includes: (1) overseeing all treatment planning (for example

establishing adequate protocols to ensure accurate patient dosimetry); (2) in-

corporating proper radiation safety programs to prevent excessive radiation

exposure to staff and the public (from the design of radiation installations
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to the control of radioactive substances); (3) quality control and operation

for accurate measurement and reproducibility of radiation output employed

in imaging and therapy; and (4) assisting and collaborating with other health

care professionals by providing scientific advice and resources to solve various

physical problems that may arise in specialized medical operations.

Research and Development

Medical physicists play a crucial role in medical research. Their activities are

well established in the main areas of active research and development such as

academia (for example, investigating how radiation affects tissue) and industry

(for example, building new imaging and therapy systems). Medical physicists

are also concerned with the application of digital computers in medicine (see

section 1.5.2) including processing, storing, and retrieving medical images and

medical data. Indeed, the role of a medical physicist in research is to continu-

ally develop and improve instrumentation and technology for use in diagnostic

and therapeutic care.

Teaching

Many medical physicists are affiliated with universities, where they help teach

and train future medical physicists, radiation oncology residents, and ra-

diation therapists. They conduct courses in radiation physics, diagnostic

imaging, computers in medical physics, applied dosimetry, radiation biol-

ogy nuclear medicine and radiation protection. Many universities and clin-

ics across Canada provide training and teaching programs in medical physics.

The Commission on Accreditation of Medical Physics Education Programs

(campep.org), accredits most graduate programs and assures high educational

standards in medical physics.
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1.5.2 Informatics—The Future of Medical Physics

The current challenge of medical physics lies in a shift towards personal-

ized medicine (i.e. tailoring care and treatment on an individual-based level

using predictive outcomes). As radiation treatments become more precise,

physicists are becoming increasingly responsible for developing and monitor-

ing treatments using sophisticated instrumentation and computer-based plat-

forms. The delivery of patient services in radiation oncology is technologically

demanding and requires intense involvement of medical physicists at all lev-

els. Since the advent of computers, medical institutions increasingly process

information digitally. This growth of digital information has the potential to

move the practice of medical physics into a data-driven science known as in-

formatics, in which data can be used to inform clinical practice and promote

knowledge-sharing between radiation medicine professionals. The impact of

this transformation on the quality of patient care and personalized practice

has great potential. Realization of this potential, from a data perspective,

rests squarely on the shoulders of medical physicists.
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CHAPTER 2
Waiting Time Uncertainty — A Universal Challenge

Where there are encounters, there are waits. Whether it’s waiting for a service

personnel (electrician, plumber, internet service provider) to come and deal

with an issue, waiting to pick someone up from the airport, waiting for a

response (by email or phone), waiting in line to purchase goods, or waiting to

see a doctor after a call about test results, waiting is something we experience

on a daily basis. In most situations, waiting is inevitable and unavoidable

(e.g. insufficient resources to meet the demand or general lack of control of

the situation). The problem therein lies in the uncertainty of waiting, such

as unexpected delays or simply not knowing how long to wait. Situations

like these may appear unpredictable and out of control. As a result, waiting

may develop into an anxious and painful experience, that can have significant

psychological, social, financial, or physical costs on the entire service, including

those affected by the wait.

Waiting time uncertainty is a universal challenge that can occur anywhere,

and the healthcare system is no exception. This chapter first outlines some

of the key implications of waiting for healthcare services. Concerns about

waiting times have been linked to patient health, patient outcomes, and overall

quality of life. The remainder of this chapter describes waiting in the context

of radiation oncology at the MUHC and concludes with a method of addressing

waiting time uncertainty – through auditing electronic medical records to learn

from the experiences of previous patients.
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2.1 The Effects of Waiting in Healthcare

Delays in healthcare services are one of the most challenging problems facing

the Canadian healthcare system today (Fraser Institute, 2013). The impact of

delayed treatment varies by condition. For conditions such as cardiac disease,

cataract surgery, and cancer, longer waiting times can often lead to more seri-

ous and sudden adverse events such as deterioration, disability or even death

(Sobolev et al., 2008; Kulkarni et al., 2009; Hodge et al., 2007; Guttmann et al.,

2011). For orthopaedic surgeries, increased delays may have lifelong impacts

on health including mental and emotional well-being (Wright and Menaker,

2011). For some conditions, longer waits can be devastating for individuals in

terms of personal burdens on families and friends (Fraser Institute, 2013).

Waiting for healthcare in not a benign process nor are delays a mere

inconvenience for patients. Delays and the lack of explaining them can be ex-

tremely harmful to patients. In addition to important medical, psychological,

and personal consequences of longer waits, the uncertainty in waiting times

can lead to increased stress, dissatisfaction, poorer outcomes of care and can

impact the healthcare system overall (Fraser Institute, 2013; CIHI, 2012).

2.2 Waiting For Care in Radiation Oncology

In radiation oncology, waiting time concern is a well-known determinant of

overall patient satisfaction (Paul et al., 2012) but the effect of waiting time

uncertainty is often overlooked. In a recent local survey (Rossy Cancer Net-

work, AOPSS survey, private communication), 73% of MUHC cancer patients

who expressed dissatisfaction with their care stated that their initial consulta-

tion delay was not explained to them. 68% of MUHC cancer patients felt that

staff did not do everything they could to make their radiation therapy waits

comfortable. In the absence of progress in reducing waiting times, informing
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patients of their expected delays and providing explanations for them is one

way in which dissatisfaction may be reduced (Famiglietti et al., 2013).

The radiation oncology department at the MUHC operates on an elec-

tronic “tasking” system. These tasks consist of a time issued, due date and

time, and time completed timestamps, along with a description of the work

required, the name of the sender and the name of the receiver, and are sent

amongst staff members and doctors as records of events. Appointments in

the radiation oncology department also operate electronically, in which they

include the same metadata timestamps (i.e. the same timestamp information)

as tasks, and usually include information on the attending physician, rooms

to be booked, and patient information. Where there are recorded timestamps,

there are records of waits. The following two subsections describe the patient

radiation treatment pathway from start to finish and the periods in which

waiting can occur.

2.2.1 The Patient Pathway

The patient’s pathway in radiation oncology at the MUHC begins with a

consultation request sent via fax from the referring physician to the booking

centre. Two pieces of information are typically provided in the incoming re-

quest: (1) information on the referring institution and cancer type, and (2)

detailed patient information including tissue biopsies, diagnosis, and date of

diagnosis. After receiving the request, the booking staff choose from eight

consultation types, based on whether treatment is to be curative or palliative

(symptom-relief), patient hospitalization, and whether the patient is a new or

returning patient. The booking staff determine a time for the chosen initial

consultation according to doctor and patient availabilities, and the patient

then arrives at the set time for consultation.
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When arriving at the clinic, patients check in either at the reception or at

a self-check in machine (using their medicare card). The room, the time they

are seen, and the attending physician are all recorded electronically into their

electronic medical record. After the patient is seen, the time the appointment

was completed is recorded.

After the initial consultation, the patient’s radiation oncologist reviews

the patient’s chart, goes over the patient’s history, and ideally on the same

day, fills out a radiation oncology requisition (ROR). The ROR outlines a

basic recommended treatment plan, including an idea of prescribed dosage,

tumour/treatment site, and how long the patient can wait to be treated (pri-

ority level). Either treatment is not indicated, in which case the patient’s

radiation treatment pathway ends there, or the patient has missing lab tests,

in which case, tests are ordered and the patient follows up. If radiation treat-

ment is indicated, the patient is classified according to the provincial priority

level (four levels), and the patient start date must be set accordingly from the

date the patient is medically ready for treatment. From this point, a com-

puted tomography (CT) scan is tasked to the liaison office by the primary

physician. The patient is assigned both a CT simulation scanner for CT simu-

lation scan and a treatment machine for the duration of their treatment. The

liaison office communicates with other departments to determine, for example,

when chemotherapy finishes and radiation treatment is ready (or sometimes

chemotherapy can be administered adjuvantly with radiation). After the pa-

tient receives the CT simulation scan, they are sent home and a series of

steps–all mediated by the electronic tasking system–take place before they are

contacted for the beginning of radiation treatment.
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In external beam radiation therapy, radiation treatment planning starts

with the medical dosimetrists who contour the CT images for the physician, la-

belling the organs at risk of radiation damage. The physician is responsible for

contouring the tumour region (gross tumour volume, GTV), an additional mar-

gin for sub-cellular disease around the tumour (clinical target volume, CTV),

and subsequently a further region for planning setup and internal movement

variations (planning target volume, PTV) (Jones, 1994). After the physician

notes organ radiation limits and other restrictions in the CT planning sheet,

the plan is ready for dose calculation to ensure the PTV gets the full dose of

radiation and the surrounding tissues get minimal radiation, as per the physi-

cian’s intent. After dose calculation, the physician approves the treatment

plan (electronically) and writes a prescription note. The plan is ready then

for the medical physicists to approve the physical aspects. At any step, the

plan may need to be changed and must be sent back in the pipeline.

Finally, when the treatment plan is approved, the patient is contacted for

daily fractionated treatments, where a fraction of the total prescribed dose is

delivered on a daily basis. The patient routinely checks in at the clinic on a

daily basis to receive radiation treatment. On average, patients are treated

in 25 fractions (five fractions per week, Monday to Friday, for five weeks).

However, fractionated treatment can range between one and 35 fractions, de-

pending on the treatment intent and site. During the treatment session, Ra-

diation therapists set the patient up on the treatment table according to the

planned positions. Radiation delivery is administered by the radiation ther-

apists. Setup positions, images, the opening and closing of patient’s charts,

and radiation delivery are electronically recorded into the patient’s electronic

medical record. The radiation oncologist typically verifies patient positioning

using the recorded images on a weekly basis, depending on the treatment site.
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2.2.2 Waiting Time Occurrences

In the context of radiation oncology at the MUHC, patients encounter three

types of waiting time during their treatment pathway, as indicated by the

colours in Figure 2.1. The first type of wait is the interval between the time the

patient receives their CT-scan and their first treatment appointment. During

this time, the patient is waiting at home, usually for days to weeks, for their

treatment plan to be prepared by staff and physicians. The second wait occurs

on-site in the clinical waiting room, after the patient has been called to start

daily radiotherapy treatment. The patient arrives at the clinic on a daily basis

to receive fractionated treatment and may wait between minutes to hours.

The third type of wait occurs in the waiting room pre-, during, and post-

treatment, when the patient is scheduled for a visit with the physician for

consultation, intra-treatment examination, and follow-up, respectfully, and

may wait between minutes to hours. These waiting times are difficult for staff

to predict and typically rough estimates are provided, based on the personal

experience of the staff involved. The uncertainty inherent to these estimates is

a source of stress for staff who field inquiries from concerned patients/relatives

without confidence in the answers they provide. Due to this uncertainty, most

patients are left unable to plan their calendars and daily lives, making the

waiting experience in radiation oncology uncomfortable, even painful.

2.3 Waiting Time Studies

Over the past few decades, waiting times in Radiation Oncology have been

studied extensively (Robinson et al., 2005; Fortin et al., 2006; Jack et al.,

2007). The main focus of these studies was to investigate waiting time vari-

ations between pre-treatment events (such as initial consultation, diagnosis,
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Figure 2.1: An overview of the patient’s radiotherapy pathway with colour-coded
waiting periods. In radiation oncology, patients experience three types
of waiting times. One type of wait occurs when the patient is wait-
ing at home for their treatment plan to be prepared by staff after
receiving a CT-scan (purple). Another waiting period occurs in the
waiting room for daily fractionated radiotherapy (blue). Similarly, an-
other waiting period occurs in the waiting room to see a physician in
consultation, intra-treatment examination, or follow-up (green).

surgery or chemotherapy) to the start of radiotherapy treatment and the fac-

tors that cause variations among waiting times (Jack et al., 2007). A retro-

spective study in Quebec found that variations in the waiting time between

surgery and the start of post-operative radiotherapy for breast cancer patients

were due to the number of cases, demand and supply of treatment resources,

localized cancer stage and proximity to a radiotherapy facility (Fortin et al.,

2006). Another study hypothesized that a factor contributing to lengthening

waiting times could be the increase in treatment complexity associated with

recent widespread applications of three-dimensional conformal and intensity-

modulated radiotherapy (Robinson et al., 2005). These studies provide much

incentive to try to decrease waiting times for radiotherapy patients by at-

tempting to describe features that influence them.

Other studies address waiting times for daily radiotherapy appointments.

In one prospective study (Chan et al., 2010), treatment delays (calculated as
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the difference between the scheduled appointment time and the actual ap-

pointment time) were mainly attributed to an indirect cause of catching up

from previous delayed appointments. The mean wait time was found to be

longest for midday appointments. They also found that patients treated in the

pelvic region experienced the longest wait time due to its specific treatment

protocol, suggesting variations in wait time by treatment site.

2.4 The Significance of Electronic Health Records

Waiting times in radiation oncology have been extensively analyzed for the sole

purpose of understanding and explaining the factors that affect delays in order

to decrease waiting times for radiation therapy patients (Robinson et al., 2005;

Fortin et al., 2006; Jack et al., 2007). However, until now, there are no reports

in the literature that computationally approach the uncertainty in radiation

therapy waiting times; harnessing previous patient data from electronic health

records (EHRs) to provide predictions for future patients.

In the present era of EHRs, waiting times need not be uncertain. EHRs

contain digital information about a patient’s history, their treatment path-

ways, and their encounters including, but not limited to, demographics, diag-

noses, radiographic images, appointment dates, treatment plans, and lab test

results. The increased availability and growth of electronic health data can

drive deeper insights and guide decision-makers to improve performance and

the overall quality of care. For example, in large amounts, data within cohorts

of similar patients tend to cluster towards representative values which may re-

veal statistical patterns and trends. Similar patients, according to their health

records, may experience similar waiting times and thus personalized prediction

may be possible based on the data of similar previously-treated patients.

EHRs are creating new opportunities to use health data to personalize

care, support decision-making and improve patient outcomes (CIHI, 2013).
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Because of its volume, electronic health data must be analyzed and trans-

formed into information that enables personalized medicine in real-time to

benefit patients and clinicians. New analytical methods, more efficient pro-

cessing and automation tools are making it easier to draw insights from health

data. Technological innovations, such as machine learning, are enabling com-

puter systems to learn from large, potentially complex datasets and support

real-time predictive functions. Thus, today’s technology can play a vital role

in improving the quality of patient care. The potential to reduce waiting time

uncertainty through the use of data has never been better.
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CHAPTER 3
Machine Learning—The Personalized Solution

3.1 Overview

Machine learning (ML) is an area of computer science and artificial intelli-

gence that aims to develop sophisticated computer algorithms that learn from

data to solve particular tasks without being explicitly programmed (i.e. hard-

coded). These “soft-coded” algorithms are, in essence, designed to emulate

human intelligence by adapting to changing environments through repetition

(i.e. experience) such that they become better and better at reaching a desired

goal. The concept of adaption is referred to as training, in which samples of

input data are provided to the algorithm, along with the desired outcomes

for the algorithm to produce. During training, the algorithm self-optimizes in

such a way that it is not only able to produce the desired outcome from input

datasets but also able to generalize outcomes for new, previously-unseen data.

There are two benefits to a successful machine learning algorithm. The

first is that it can be used to substitute laborious and repetitive tasks. The sec-

ond is that it can potentially detect hard-to-discern patterns from large, noisy

or complex datasets better than the average human observer. These capabil-

ities are particularly beneficial to radiation therapy. For example, contouring

is an integral part of the treatment planning process in which several special-

ists outline tumours and organs at risk on radiographic images. Contouring

is a time consuming procedure that is highly dependent on the observer’s fa-

miliarity and knowledge of the human anatomy on radiographic images. This
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familiarity, though, has its limits, and consequently, there are risks of sub-

jectivity and inter-observer variability in the resulting contours. A machine

learning algorithm can aid in detecting patterns and subtleties in textures and

shapes by incorporating data from multiple observers, thereby combining the

experience to reduce the contouring uncertainty.

A significant portion of radiation oncology practice is dynamic and in-

volves not only intercommunication amongst treatment team members, but

also several stages of human-machine interactions and decision-making, which

naturally invite suitable machine learning algorithms to automate and opti-

mize these interactions. The ability of machine learning algorithms to learn

from current situations (and generalize into unseen data) allows improvements

in the overall quality and safety of radiation therapy practice and should lead

to better outcomes.

3.2 Learning From Data

Learning from data requires inference of unknowns from knowns. Using treat-

ment appointment durations as an example, the main components of a machine

learning problem are as follows. There exists an input vector, x, where each

xi represents a unique “feature” that describes the output, y (for example,

patient information that influences a patient’s appointment duration), an un-

known target function f : X → Y , which corresponds to the ideal formula

to predict the duration of an appointment, where X is the input space (the

set of all possible inputs x), and Y is the output space (the set of all possible

outputs y, in this case, a real-valued duration). There exists a dataset D of

input-output training examples (x1, y1), . . . , (xN , yN), where yn = f(xn) for

n = 1, . . . , N (inputs corresponding to previous patient data and their cor-

responding appointment durations known in hindsight). Finally, there exists

a learning algorithm that uses the dataset D to pick a formula g : X → Y
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Figure 3.1: An overview of the machine learning setup. Adapted from (Abu-
Mostafa et al., 2012).

that approximates f . The algorithm chooses g from a set of possible formulas,

called the hypothesis set H. To achieve that, the algorithm chooses the g

that best matches f on the training examples of previous patient data, with

the expectation that it will closely match f on new patient data. When a

new patient checks in for their appointment, their waiting time is inferred by

applying machine learning to estimate the appointment durations of those pa-

tients ahead in the queue who have yet to be seen (as described in section 4.3).

The predicted individual durations of those appointments is based on g (the

hypothesis that the learning algorithm produced), not on f (the ideal target

function which remains unknown). Figure 3.1 illustrates the components of

the learning setup.
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Figure 3.2: Machine learning according to the nature of the input training data.
In unsupervised learning, the outputs are not defined (i.e. unlabelled).
In semi-supervised learning, some of the outputs are defined (i.e. semi-
labelled). In supervised learning, all the outputs are defined (i.e. la-
belled).

3.2.1 Types of Learning

Depending on the nature of the problem, machine learning can be divided into

supervised, unsupervised, and semi-supervised learning, as shown in figure 3.2.

The learning problem that was discussed above (in the context of treatment

appointments) is an example of supervised learning. In supervised learning,

the algorithm is trained on a pre-defined set of training examples, where the

output is defined (i.e. labelled data). The algorithm’s job is to estimate an

unknown (input, output) mapping from the known (input, output) training

samples.

In an unsupervised setting, the training data does not contain any output

information at all. In other words, a machine learning algorithm is only given

input examples x1, . . . ,xN . Unsupervised learning can be interpreted as the

task of finding clusters and patterns in the input data space. For example,

if our task is to categorize a set of foreign coins, and we only use general
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properties of these coins (size, mass, etc.), then we can identify coins that

have similar properties and put them together, without knowing the underlying

denomination.

Semi-supervised learning is a combination of both supervised and unsu-

pervised learning where the input data is partially labelled and the labelled

part is used to infer the unlabeled portion. An example of semi-supervised

learning is studying for a written exam. The labelled data are the few exam-

ple problems that the teacher solves in class. The unlabelled data are the set

of unsolved problems the teacher provides either as: (a) a take-home exam (in

which the general goal is do well on them); or (b) as similar problems that

will be encountered during the real exam.

3.3 Learning Algorithms

Depending on the format of the desired output, machine learning algorithms

can be divided into two classes: classification and regression. Classification

involves estimating a discrete value, or more generally, a categorical variable.

For example, modelling a diagnostic image to predict whether a tumour is ma-

lignant or benign. The output variables in this case are one of two categories:

the tumour is malignant, or the tumour is benign. In the case of regression

problems, a machine learning algorithm maps the input data onto a continu-

ous output value. For example, predicting the time for tumour recurrence. In

this case, the output (i.e. time) is real-valued.

3.3.1 List of Common Machine Learning Algorithms

The following is a list of common machine learning algorithms that can be ap-

plied to almost any data problem. Table 3.1 provides a summary of algorithms

along with the type of learning.
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ML Algorithm Model Type Learning Method
Linear Regression Regression Supervised

Logistic Regression Classification Supervised

Decision Tree Classification & Regression Supervised

Support Vector Machine Classification & Regression Supervised

K-Means Classification Unsupervised

Random Forest Classification & Regression Supervised

Table 3.1: List of common machine learning algorithms along with the model type
(classification or regression) and learning method (supervised or unsu-
pervised)

Linear Regression

As the name suggests, linear regression is based on continuous variables. In

this problem, a relationship between independent (i.e. features) and dependent

(i.e. target output) variables is established by fitting a best-fit line. The best-

fit line is known as the regression line and is represented by a linear equation

y = a ∗ x+ b, where y is the dependent variable, a is the slope of the line, x is

the independent variable, and b is the intercept. The coefficients a and b are

derived based on minimizing the sum squared difference of distance between

the data points and the regression line.

A simple example of linear regression is the relationship between a per-

son’s height and weight, shown in figure 3.3. In this example, the best fit line

is determined. Using the equation of the best fit line, a person’s weight can

be determined from their height.

Logistic Regression

Despite its name, logistic regression is a classification algorithm, not a regres-

sion algorithm. It it used to estimate discrete values typically in the form of

binary classifications (true/false, 0/1, yes/no, etc.), based on a set of inde-

pendent variable(s). In essence, a logistic regression algorithm predicts the
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Figure 3.3: An example linear regression model. In this example, a person’s weight
is a function of one feature; the person’s height. With a regression line
defined (red), a new person’s weight can be predicted from their height.
Adapted from (Buitinck et al., 2013).

probability of an event occurring by fitting data to a logit function. Since it

predicts a probability, the output value lies between 0 and 1, as expected.

As an example, assume the relationship between the probability of passing

an exam and the hours spent studying, shown in figure 3.4. There are only

two outcomes in this scenario – pass or fail. However, in logistic regression,

the scenario is modelled as a probability of achieving either outcome. In this

example, if a person studied for three hours, they are around 80% likely to

pass. On the other hand, if a person studied for one hour, the probability of

passing is only 5%.

Decision Tree

A decision tree is a supervised learning algorithm that is used for both clas-

sification and regression type problems. In this technique, each node (i.e.

decision point) represents a single feature, xi, and a split is made on the most
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Figure 3.4: An example logistic regression model. In this classification example,
there are two outcomes – either a person passes an exam or fails. The
two outcomes are a function of one feature; the amount of hours spent
studying. A logit function (red) models the scenario as a prediction
probability of achieving either outcome. For example, if a person
studies for three hours, they are around 80% likely to pass. Adapted
from (Buitinck et al., 2013).
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Figure 3.5: A decision tree example. In this classification example, the objective
is to predict whether a person is male or female. According to the
decision nodes, the first split is based on the most significant feature;
a person’s height. If the person is shorter than 170 cm, then a sec-
ond decision is made based on the second most significant feature;
their weight. This is a crude example of course, but essentially new
outcomes are predicted by traversing the tree model and evaluating
the specific input features at each node (blue) until an end leaf node
(green) is reached.

significant feature that makes each child node as distinct as possible. The leaf

nodes (i.e. the end nodes) of the tree contain an output variable, y, which is

used to make the prediction.

An example of a decision tree model is shown in figure 3.5. Suppose a

dataset contains two features: height and weight, and the objective is to pre-

dict a gender classification: male or female. With this example, making a

prediction is relatively straightforward. Given a new input, the tree is tra-

versed by evaluating the specific features starting at the root node of the tree.

All split points of a decision tree are evaluated and chosen in a greedy

fashion (i.e. the best split feature is chosen at each node each time). For
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regression trees, the procedure of splitting the dataset involves minimizing the

sum squared error across all training samples that fall within the node.

Decision trees are very susceptible to overfitting. Unless some stopping

procedure is specified, splitting can occur repeatedly until every possible deci-

sion is made to fit the training data perfectly. Overfitting the training data is

likely to have poor performance on the testing set. The most common stop-

ping criterion is to specify the minimum number of training instances assigned

to each leaf node. If a split results in a count that is less than some minimum,

then the split is rejected and the current node is taken as the final leaf node.

Support Vector Machine

Support vector machine (SVM) algorithms are used for both classification

and regression type problems. In this technique, data points are plotted in

n-dimensional space (where n is the number of features) with the value of each

feature being the value of a particular coordinate. In a classification setting, a

support vector machine constructs a hyper-plane in high dimensional space to

achieve good separation that has the largest distance to the data points of any

class. Conversely, in a regression situation, a support vector machine seeks to

construct a hyper-plane that best fits the data to within some margin.

An example of a classification SVM problem is shown in figure 3.6. In this

two-dimensional example, there are two features and two classes. Each axis

represents a feature and each colour represents a class (blue and red). The

objective is to determine some line that best splits the two classes of data.

This will be the line such that the closest point in each class will be furthest

away from the line. With a line defined, the closest points in each class that

are the furthest apart from the line are known as support vectors. Support

vectors determine the margin in which separation occurs.
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Figure 3.6: A support vector machine classification example. In this example,
there are two features and two classifications. Each input feature
represents one coordinate and each target class is labelled as colours
(red and blue). The objective is to predict a class from new data. A
SVM model determines the best split on the training data such that
the closest training point(s) in each class are furthest away from the
line. These closest points are known as support vectors and are defined
as margins (dotted lines) in which separation occurs (Buitinck et al.,
2013).
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Figure 3.7: A support vector machine regression example. In this example, the
target output is plotted as a function of one feature. An SVM model
fits the training data to within some margin defined by an epsilon (ε)
parameter (dotted band). The optimization process ignores training
points that are located within the band and attempts to minimize
the errors on the training points outside the band. Adapted from
(Buitinck et al., 2013).

An example of a regression SVM problem is shown in figure 3.7. In this

one-dimensional example (similar to linear regression), each training sample

is plotted along one feature and its corresponding output, on the x- and y-

axes respectively. The objective is to construct a line that best fits these

points to within some margin. This margin is known as an epsilon band.

The optimization process ignores errors which are situated within the certain

distance of the true value (epsilon band) and minimizes the errors on the

training points outside of the band.
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An important and beneficial feature of SVM is that the construction of a

hyper-plane occurs in the smallest dimension that linearly separates (or fits)

the data. For example, if an ellipse (non-linear) bound is required to separate

two-dimensional data points, then a kernel function (i.e. non-linear mapping)

is applied on the data that maps the data into a higher dimension in which

linear separability is possible.

K-Means

K-means is an unsupervised algorithm that is used to classify data through a

certain number of clusters (k clusters). In essence, k-means is performed by

the following four steps: (1) the algorithm initially picks k number of points (at

random) for each cluster, known as centroids ; (2) the algorithm calculates the

sum of squares distance of each data point in a cluster to the centroid; (3) the

algorithm finds a new centroid data point in each cluster based of minimizing

the within-cluster sum of squares distance; (4) with new centroids, repeat steps

2 and 3. Repeat until convergence occurs (i.e. centroids do not change).

A visual example of a fully-formed k-means clustering is shown in figure

3.8.

Random Forest

Random forest is a versatile machine learning technique capable of performing

both classification and regression. A random forest is a random ensemble of

decision tress (hence the term “forest”). To classify an object, a random forest

model constructs multiple decision trees with randomly-selected input samples

and initial features (both sampled with replacement). Each tree decides (or

“votes”) on a classification or regression output based on the randomly selected

features. The forest chooses the output having the most votes over all the trees

in the forest. An illustration is shown in figure 3.9.
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Figure 3.8: A visual representation of a k-means example model. In this unsu-
pervised example, ten centroids are defined from unlabelled training
data. Clusters are developed based on the minimum sum of squares
distance from each data point to a centroid. With a fully-formed k-
means model, a class can be predicted based on which cluster new
data points fall into (Buitinck et al., 2013).

Figure 3.9: An example of a random forest model. A random forest is a collec-
tion of decision trees. When developing a model on training data,
each decision tree decides on an output based on randomly selected
input samples and features. The forest chooses the output based on a
majority vote from all decision trees.
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One of the benefits of random forests, compared to a single decision tree,

is its inherent capability of achieving better accuracy and model stability. As

more decision trees are added to the ensemble, each with its own bias and

variance, noise and error is reduced in the final prediction. It is also effective

in maintaining accuracy when a portion of the data is missing.

Another benefit is its ability to handle large datasets with high dimen-

sionality. A random forest model can handle thousands of input features and

identify the most significant feature(s). Feature importance is a very useful

dimensionality reduction technique that comes with random forest models.

One drawback to using a random forest model is the loss of intuition

when explaining the data. A single decision tree has the benefit of graphically

depicting exactly how and where a particular decision was made. In a random

forest mode, the graphical representation is lost (due to the ensemble of trees)

and there is very little control on what the model does.

3.3.2 Performance Evaluation

Once a model is obtained using one or more machine learning algorithms, it

is important to estimate its performance. The performance of a classification

model is measured in terms of specificity, sensitivity, accuracy, and area under

the curve (AUC). Specificity is defined as the proportion of true negatives that

are correctly observed, whereas sensitivity is given by the proportion of true

positives that are correctly identified by the classifier. Accuracy and AUC are

metrics used to evaluate the overall performance of the classifier. Specifically,

accuracy is a measure related to the total number of correct predictions. In

contrast, AUC is a measure that is based on a receiver operating characteristic

(ROC) curve that plots the tradeoffs between sensitivity and 1-specificity (false

positive rate). An example plot of various ROC curves is illustrated in figure

3.10.
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Figure 3.10: Example ROC plots of various classification models. A perfect model
would have an area under the curve (AUC) of 1.0 (i.e. 0.0 false posi-
tive rate and 1.0 true positive rate). The best model in this example
is the blue curve having an AUC of 0.91. A perfect random classifier
(shown by the dotted line) would have an AUC of 0.5. Adapted from
(Buitinck et al., 2013).

The performance of a regression model is measured in terms of mean

absolute error (MAE), median absolute error (MedAE), mean squared error

(MSE), and the coefficient of determination (also known as R2). The term

“error” here represents the difference between the predicted value and the

true value; this is also known as the residual. The absolute value or the square

of this difference is measured to capture the total magnitude of error across

all instances, as the difference between the predicted value and the true value

may be negative. The error metrics evaluate the predictive performance of a

regression model either in terms of the mean deviation or the median deviation

of its predictions from the true values. The lower the error values, the more

accurate the model is at making predictions. An overall error metric of zero

means that the model fits the data perfectly.
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Mean Absolute Error

If ŷi is the predicted value of the i-th sample, and yi is the corresponding true

value, the the mean absolute error, estimated over nsamples is expressed as

MAE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

|yi − ŷi| (3.1)

Median Absolute Error

The median absolute error is expressed as

MedAE(y, ŷ) = median(|y1 − ŷ1|, . . . , |yn − ŷn|) (3.2)

Mean Squared Error

The mean squared error is defined as

MSE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi − ŷi)
2 (3.3)

Coefficient of Determination

The R2 metric provides an overall indication of the goodness of fit of a set

of predictions to the actual values. The best possible value is 1, whereas the

worse value is 0. R2 is expressed as

R2(y, ŷ) = 1−
∑nsamples−1

i=0 (yi − ŷi)
2

∑nsamples−1
i=0 (yi − ȳi)2

(3.4)

where ȳ = 1
nsamples

∑nsamples−1
i=0 yi.

3.3.3 Sampling

The performance evaluation metrics introduced in the previous section are

computed from a testing set which is a subset of the overall input dataset.

In order to obtain reliable results in terms of the prediction performance of a
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model, training and testing sets should be sufficiently large and independent,

while the outputs of the testing samples should be known (in the case of

supervised learning). The most commonly-used methods for splitting the input

datasets into subsets are: (a) cross-validation, (b) bootstrapping, (c) holdout

method, and (d) random sampling. In cross-validation, each sample is used

the same number of times for training and only once for testing. The total

accuracy of this method is calculated as the average of all accuracies during

each validation cycle. In the bootstrapping approach, the input dataset is

separated into the training and testing sets. The samples chosen for training

are placed again into the entire dataset for resampling. In the holdout method,

the samples are simply partitioned into the two separate sets, typically in a

80/20 fashion for training and testing respectively. Random sampling is a

repetition of the holdout method, choosing the training and testing samples

randomly in order to better estimate the accuracy of the model.

In the case of the holdout method, there are two competing concerns

when dividing the overall input dataset into training and testing sets. With

less training data, the feature estimates will have a greater variance. With

less testing data, the performance statistics will have greater variance. For

a sufficiently large input datasets, there is very little dependence between

choosing a 80/20 ratio versus a 70/30 or 90/10. Thus, 80/20 is a typically

used ratio. However, for small input datasets, there may be no split that

would result in a satisfactory variance in the estimates. Thus, in this case,

other sampling methods, such as cross-validation or bootstrapping, can be

more appropriate.
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3.3.4 Feature Selection

Feature selection is an essential processing step prior to applying a machine

learning algorithm. Features are predictors that influence the overall perfor-

mance of the system. The objective of feature selection is three-fold: (1)

improving the performance of machine learning algorithms by the removal of

redundant and irrelevant input information, (2) dimensionality reduction by

providing faster and more cost-effective predictors, and (3) providing a better

understanding of the overall learning process. Ultimately, the degree in which

the output varies according to each feature value is what determines the best

and most influential feature.

Features can be selected ab initio according to an observer’s intuitive

understanding of the overall system. In other words, before constructing a

learning algorithm, a human observer can decide which attributes influence

the specific task at hand, thereby using a pre-determined feature set. This

has the benefit of narrowing the dimensionality of the system by introducing

human experience since humans know first-hand or at least have an idea of

the interdependencies of the overall system. However, the drawback to this

approach is possibly missing relevant, hidden information that the algorithm

itself may or may not find.

There are two common approaches in which a machine learning algorithm

evaluates the usefulness of features: (1) the wrapper method and (2) the filter

method. The wrapper approach uses the prediction performance of the learn-

ing algorithm to determine the usefulness of subsets of features (Guyon and

Elisseeff, 2003). A wide range of strategies are available to determine the best

possible features but the most commonly used are greedy strategies that are

computationally advantageous and resilient against overfitting. For instance,

the algorithm can start with no features and successively add predictors, or it
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(a) Wrapper method.

(b) Filter method.

Figure 3.11: Two methods for evaluating features for a machine learning algo-
rithm.

can start with all features and successively eliminate the least promising one.

The former is known as forward selection and the latter is known as backward

elimination (Guyon and Elisseeff, 2003).

The filter method is an alternative approach to feature selection. The

filter method considers features independent of the learning algorithm that

will use them. This methodology relies on general characteristics (such as cor-

relation) of the training set to select the most relevant variables and exclude

others. Compared to the wrapper method, the filter approach is computa-

tionally faster. However, the filter method tends to select redundant features

because it does not consider the relationship between features (Langley et al.,

1994). Figure 3.11 illustrate the wrapper and filter feature selection process.
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Figure 3.12: The machine learning process in radiation oncology. Previous patient
data are fed into a machine learning model in order to deliver a
waiting time estimate to new, checked-in patients. After the patient
undergoes treatment, their data is supplied to update the machine
learning model.

3.4 Modelling Waiting Times in Radiation Oncology

The current challenge is to design a learning algorithm that can adapt to a

dynamically changing situation, as is encountered in a busy radiation oncology

practice. Modelling waiting times in radiation oncology not only requires

previous patient data as experience for learning but also requires putting the

proper ML implementation steps into radiation oncology practice. Figure

3.12 describes the basic cycle of the machine learning process in the context of

waiting times in radiation oncology. The next two subsections describe how to

properly implement machine learning as well as introduce ways in delivering

waiting time estimates to patients using modern technology.

3.4.1 Steps to Applying Machine Learning in Clinical Practice

The first step for the application of machine learning in general, and in radia-

tion oncology in particular, is to define the nature of the problem in terms of

the input data and the desired outputs. In this dissertation, the problem at

hand is modelling waiting times for daily fractionated treatments. A detailed

description of what goes into the machine learning algorithm, what comes out,
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and why is explained in section 4.3. Essentially, what determines a patient’s

overall wait is the sum of the appointment durations of the preceding patients

who have yet to be treated. Therefore, the input data are a set of features

that influence a patient’s treatment duration and the output is the estimated

duration.

The second step is to filter out bad data from the training dataset. Ma-

chine learning is robust to noise, however, it should be noted that all models

are built on approximations (i.e. empirical solutions). In other words, “All

models are wrong; some models are useful” (Box et al., 1987). The quality of

the output is determined by the quality of the input. This is known as GIGO

(garbage in, garbage out). If bad data are introduced into the system, the

output is likely to be incorrect and uninformative.

A major limitation to the acceptance of machine learning is the “black-

box” stigma. Today, there are numerous off-the-shelf machine learning soft-

ware packages that are readily available without knowing the underlying the-

ory. These algorithms are essentially fed input data and performance metrics

can be extracted using simple helper methods provided by the software pack-

ages. Although these software packages reduce significant costs in terms of

time, resource and ability, most pre-existing machine learning algorithms are

unable to provide intuitive interpretation of the learning process (except in the

case of decision trees) that could potentially aid clinical practitioners in better

understanding their data and the resulting model and implementing real-life

changes that might improve practice. This is an undeniable limitation. In

this regard, caution should be taken into consideration when implementing

pre-existing machine learning packages in health informatics research.
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CHAPTER 4
Design and Implementation of a Clinical Machine Learning

Solution

Despite the prevalent use of electronic charting and tasking in our radiation

oncology department, our clinical database does not lend itself well to research

and discovery. There are several technical challenges that need to be addressed

to properly design and perform machine learning on our clinical dataset. First,

the use of relevant data requires accessibility (i.e. knowing where the data are

and how to access them). Second, managing the data requires standardiza-

tion (i.e. translating clinical information codes into meaningful taxonomies) to

neatly categorize similar data. Third, the use of off-the-shelf machine learning

software packages requires preprocessing (i.e. mapping the data into a repre-

sentable format) for proper machine learning implementation.

This chapter describes the methodology of addressing these technical chal-

lenges including automating data collection, calculating waiting times in the

context of daily radiation treatment appointments, processing the data for

learning, and communicating waiting time estimates to patients.

4.1 Data Background

EHR data for this project originated in Aria, a record-and-verify database de-

veloped by Varian Medical Systems (Palo Alto, California). Members of the

radiation oncology team at the MUHC use Aria for every aspect of day-to-day

clinical workflows, including tasking, scheduling, treatment planning, imaging

and treating. The Aria database includes a large number of fields correspond-

ing to all records of practice as well as detailed patient histories. Although

Aria is an excellent system for recording and managing patient health records,
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it does not come with any tools to analyze the collected data in aggregate.

However, the sheer amount of patient data that is available in Aria does lends

itself well to data-mining techniques to extract information and/or patterns

and in turn improve the quality and efficiency of treatment. Not all infor-

mation within Aria were necessary or relevant for the purposes of this current

study. A subset of Aria data was used and was extracted into a custom MySQL

database, which will be described below.

4.2 Data Collection

To collect data from the Aria database, a custom in-house software was de-

veloped, known as AEHRA (Automatic Electronic Health Record Auditing).

AEHRA was designed for two reasons: (1) to conduct studies on a central-

ized registry where information can be pulled from multiple clinical databases

and (2) to obviate the need for direct access to clinical database(s) when per-

forming regular (and oftentimes heavy) queries for these studies. To store

data, AEHRA uses MySQL, a free, open-source database management sys-

tem (Widenius and Axmark, 2002). Our centralized database is hosted on a

Ubuntu operating system server (ubuntu.com) inside our hospital’s intranet

with automatic mirroring to an independent fail-over server and nightly back-

ups to a backup server. Figure 4.1 presents a schema of the custom MySQL

database known as AEHRA db.

A schematic of the entire AEHRA software is illustrated in figure 4.2.

Select data are transferred from Aria to AEHRA db on a routine basis using

a “cron job” scheduler, hosted on our Ubuntu server, that copies across ap-

pointments, treatment information, patient demographics, and other relevant

information (see AEHRA db schema below). For the purpose of this study,

the cron job was scheduled for nightly data transfer. The exact metadata that

were copied across was set using an Alias interface. As described below, the
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Figure 4.1: The AEHRA database. Most tables are connected to each other
through the patient serial number as a foreign key. The database
includes individual data for each patient such as gender, date of birth,
information about the doctors and machines assigned to the patient,
the diagnosis for each treatment course the patient went through, as
well as events which are separated into tasks and appointments. Treat-
ment plans and treatment delivery records are also included.
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Figure 4.2: A flowchart of the AEHRA architecture. Select data from Aria (and
potentially other hospital EMRs) are copied across to our centralized
database, AEHRA db. The times at which transfers occur are de-
termined by the cron job scheduler and set using the Cron Control
Interface. The exact metadata that are copied is set using the Alias
Interface, in which internal clinical codes are translated and grouped
into standard taxonomies. AEHRA is a standalone software in which
many types of studies can be created (using the Study Interface) for
multi-purpose data analysis.

Alias interface is a webpage that allows users of the software to decide which

data are collected into AEHRA db.

4.2.1 Aliasing

The Alias interface is used to map internal clinical codes into standardized

taxonomies to categorize similar data. For example, daily treatment appoint-

ments are coded in Aria as: .EBC Daily Rx, .EBC Daily Rx (Electron Boost),

.EBC-Daily Rx (TBI), to name but a few. These codes describe the type

of daily treatment appointment but ultimately, they are all daily treatment

appointments. An alias is created that lists these internal appointment codes

under one standard taxonomy called Daily Treatment Appointment. Creating

an alias results in a trigger to pull the internal codes (along with associated

metadata such as timestamps, statuses, stakeholders, etc.) from Aria and

transfer them with appropriate labels to AEHRA db. By default, not all data
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Figure 4.3: Defining waiting in the context of daily radiotherapy appointments. In
this example, patient 6 arrives just as patient 2’s treatment appoint-
ment has finished. Both patient 1’s and patient 2’s appointments have
incurred a combined 10-minute delay at the time of patient 6’s arrival.
Machine learning is performed to calculate the treatment durations of
patients 3, 4, and 5, generating a cumulative duration that may or
may not run over into patient 6’s appointment. In this example, it
has. The total waiting time for patient 6 is thus the time of arrival
to the estimated start time inferred from the cumulative preceding
patient durations.

from the Aria database are copied across. Only data that have been aliased

using the Alias interface are transferred.

4.3 Waiting Time Calculation

It is important to define “waiting” in the context of radiation oncology, specifi-

cally for daily radiotherapy treatments. In practice, (unplanned) waiting boils

down to the delay between the time a patient is scheduled to start treatment

and the time they actually start treatment. This delay for a particular patient

is primarily the result of the treatment durations (and duration overruns) of

those patients who immediately precede them. Hence, to provide an arriving

patient with an estimate of their expected waiting time, we use our machine

learning algorithm to predict the treatment durations of those preceding pa-

tients who have yet to be treated. Figure 4.3 provides a detailed illustration

of how a personalized waiting time estimate is derived.
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4.4 Learning Process

To predict treatment durations, an off-the-shelf machine learning Python (python.org)

package was explored, known as scikit-learn (Pedregosa et al., 2011). Scikit-

learn, or sklearn for short, was designed for non-specialists to use a wide range

of state-of-the-art machine learning algorithms for supervised and unsuper-

vised learning problems. Using sklearn for our machine learning problem pro-

vided us with two benefits: (1) due its’ frequent use and maintenance by the

community (with over 700 contributors), it obviated the need to develop learn-

ing algorithms from scratch that would otherwise require significant resources,

and (2) sklearn readily provides performance metrics and feature selection

tools to evaluate models and automatically determine the most important

features, respectively.

Having the algorithms already implemented in Python, the preliminary

step was to define a set of features (predictors) that influence daily treatment

appointment durations. An initial feature set was put together based on feed-

back from professionals working in the radiation oncology clinic. Practitioners,

namely the radiation therapists who directly treat patients, were asked to es-

timate the duration of a select number of appointments on their schedule and

to provide reasons for their estimates. Essentially, they were asked to make

a prediction based on their personal experience and to come up with a list of

reasons (i.e. features) why appointments would last their predicted response.

Interestingly, the radiation therapists came up with a few common predic-

tors. If the patient was treated for the first time, they concluded that the main

contribution to treatment time was the treatment setup. In order to setup the

patient for treatment, the correct positioning and the condition of the patient,

in terms of the severity of the disease, must be taken into consideration. This
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Feature Data Type
Diagnosis Categorical
Physician Categorical
Course Categorical
Machine Categorical
Gender Categorical
Age Continuous
Appointment Day of the Week Categorical
Appointment Hour Categorical
Appointment Month Categorical
Plan Categorical
Body Orientation on Treatment Table Categorical
Radiation Type Categorical
Number of Treatment Beams Continuous
Previous Duration Continuous
Number of Images Taken Categorical
Imaging Duration Continuous
Radiation Therapist Categorical
Total Monitor Units Continuous
Total Monitor Units Coefficient Continuous
Fraction Number Categorical
Allocated Appointment Time Categorical
Median Past Durations Continuous

Table 4.1: List of features extracted for each input sample set. Features were
either categorical as string variables or real valued (continuous).

suggested that treatment positions and patient diagnoses were potential fac-

tors in the overall treatment duration. Furthermore, if the patient had been

treated more than once, then the radiation therapists felt more comfortable

in their estimates since they were already familiar with the patient. In other

words, their estimates were mainly based on how long the treatment took last

time. The main purpose of machine learning is to emulate human thought.

Defining an initial feature set based on the real-life experience of radiation

therapists can potentially guide the machine learning algorithm to accomplish

its task. Table 4.1 presents the proposed list of features used for this study.

With a preliminary feature set defined, the next step was to extract these

features from AEHRA db for learning. This is detailed in the next subsection.

4.4.1 Data Extraction

Retrospective data, including the feature set, along with the corresponding

appointment durations, were extracted from AEHRA db on a nightly basis
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for nightly training using a Python script. This was done by: (1) perform-

ing a relationship (also called an inner join) between the Patient, Diagnosis,

Doctor, Resource, Appointment, Course, Plan, Radiation and RadiationHstry

tables by the keys that those tables have in common (see schema in figure 4.1),

and (2) building a Python list (i.e. an array) for each retrieved record. Aria

and, in turn, AEHRA db, do not provide a direct connection between appoint-

ments and treatment information (Appointment and RadiationHstry tables,

respectively), which was pertinent in extracting the proper dataset. The Ap-

pointment table contains information about the start and end times of the ap-

pointment, status of the appointment, etc. The RadiationHstry table contains

information about the start and end times of the treatment, fraction number,

monitor units, etc. One can reach either table starting from the Patient table

however there is no key linking the two tables directly. These tables were

linked according to the dates patients were treated. In other words, the dates

of Appointment.ScheduledStartTime and RadiationHstry.TreatmentStartTime

provided the connection between each patient’s scheduled appointment and

their treatment records.

The physician and radiation therapist features were defined as being their

primary radiation oncologist and primary radiation therapist, as registered in

the database, respectively. In other words, it may be the case that multiple

physicians and therapists treat an individual patient but the precise informa-

tion on the degree of collaboration is not well defined in the database. Thus,

the primary metadata were used.

The previous duration and median past duration features were not ex-

plicitly recorded in the database. Gathering these data required additional

subqueries and helper functions to order the appointments by date (for the
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y2
...
yN

⎤
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Figure 4.4: Preprocessing the dataset using sklearn for learning required con-
structing a training input matrix of N samples and M features and a
separate matrix of N target values.

previous duration feature) and to calculate the median (for the median past

duration feature).

After extraction and careful construction of the retrospective dataset, ad-

ditional steps were required in order to properly represent the data for machine

learning using sklearn. The next subsection describes the preprocessing step.

4.4.2 Preprocessing

To facilitate the use of our retrospective dataset set with sklearn, several data

formatting conventions needed to be established. First, the input data and

the labelled outputs were structured as separate matrices. In other words, the

input dataset was constructed as an M x N matrix, where M is the number

of features and N is the number of treatment appointment records. The

labelled output data (i.e. the treatment appointment durations) were put into

a separate N x 1 matrix (essentially into an array). Figure 4.4 demonstrates

this process.

Next, all data types must be converted to floating point (fractional) num-

bers. Integer values can easily be converted to floats by assigning a decimal

point (e.g. 1 to 1.0). Categorical features, typically in the format of strings,

must be mapped in one of two ways depending on the machine learning model

used. One way to map categorical features is to use one-hot encoding. One-hot

encoding transforms a single feature variable with n distinct values to n binary

variables, where a value of “1” is assigned to the appropriate column and zero
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“dog” =

⎡
⎢⎢⎣
1
0
0
0

⎤
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1
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⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦

Figure 4.5: Example of one-hot encoding. In this example, there are four distinct
values for one feature of “animals.” Therefore, four binary variables
are used where a value of “1” is assigned to the appropriate value and
zero otherwise. Note that in this example, the feature space increases
by a factor of four.

otherwise. An example of one-hot encoding is illustrated in figure 4.5. There

is a trade-off to using one-hot encoding. Although each feature can be defined

as one of two states (on or off), the feature space itself is extended which can

be costly to server memory and CPU run-time performance.

Another method for mapping categorical data is to assign a numerical

value to each category. For example, [house, dog, car ] can simply be converted

to [0,1,2]. Although this is a simple mapping that contains the same cardinality

as the original set, this method imparts an ordinal property to the variables

(i.e. house < dog < car) which may or may not make sense. Some learning

algorithms (for example decision trees) can still operate independent of this

property. However, for most learning algorithms, this method may result in

inaccurate machine learning.

Once the retrospective data were sampled and formatting conditions were

established, various sklearn machine learning models were implemented. This

is described in the next subsection.

4.4.3 Machine Learning Models

The goal of model selection was to select the best model and output the best

hypothesis from that model. Specifically, the best model should have the

lowest MAE, MedAE, and MSE, while delivering the highest R2 score. To

determine these performance metrics and validate the models, a subset of the
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Figure 4.6: Sklearn’s “cheat sheet” for choosing the right algorithm(s). This study
involved predicting daily treatment appointment durations. In other
words, the outputs were real-valued. Thus, various supervised regres-
sion models (light blue section) were used in this study. Image taken
from http://scikit-learn.org/.

retrospective dataset was held-out for testing. The random sampling method

was used in a 80%/20% fashion representing the training and testing sets

respectively. With this partitioned dataset, various sklearn machine learning

models were applied to learn on the training set, were verified on the testing

set, and the best model was chosen. Figure 4.6 was used as reference to choose

the right sklearn regression models for our data.

4.4.4 Feature Selection

Based on the best model chosen, sklearn helper methods were used to de-

termine the most significant features and to improve the model’s accuracy.

By default, sklearn removes all zero-variance features (i.e features that have

the same value in all samples). Furthermore, features were considered unim-

portant and removed if the corresponding feature importance helper method
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returned values that were below a provided threshold parameter. The thresh-

old was initially chosen arbitrarily because ultimately, the feature importance

method returned relative percentages. In other words, features were assigned

a percentage of importance relative to all feature samples.

4.5 Communicating Waiting Time Predictions

In an effort to ultimately provide waiting time estimates to patients, two

novel communication routes were developed in parallel to the machine-learning

research: (1) a patient portal and smartphone application called Opal and (2)

a waiting time simulator to predict waiting times in real time.

4.5.1 Opal — The Oncology Portal and Application

Opal is a smartphone app and patient portal that was developed for radiation

oncology patients at our cancer centre (submitted for publication: Physics in

Medicine and Biology, August 2016). It is a novel communication tool that

aims to empower patients with their personal health information, including

their waiting time estimates. Opal was initially developed from inside our

hospital system to automatically personalize the provision of information to

patients according to diagnosis and stage of treatment using each patient’s

data within the hospital’s electronic medical record. Although this dissertation

solely focusses on addressing daily treatment appointment waiting times, Opal

is the main avenue in which waiting times will be communicated to patients

at our centre. Figure 4.7 illustrates Opal’s architecture.

4.5.2 Waiting Time Delivery Simulator

To monitor and evaluate the machine learning model’s performance on prospec-

tive data, a live web-based waiting time delivery simulator was developed. Ef-

fectively, this software simulates the delivery of waiting time estimates to all
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Figure 4.7: An overview of Opal’s communication architecture. Select data from
Aria and other hospital EMRs are transferred to a centralized database
known as OpalDB. Data transfer occurs using a “cron job” Auto Up-
date scheduler, that copies across approved appointments, tasks, doc-
uments, and lab test results. Approval and timing of data transfer are
determined by a list of “publishing rules” that are set using a Publish
Manager web interface. Secure serving of data through the hospital’s
firewall to Opal is facilitated by Firebase, a cloud database operated
by Google Inc. (firebase.com). Firebase it designed such that all appli-
cations connected to it are served data in real time. Data is encrypted
once before sending to Firebase and encrypted again by Firebase’s own
encryption protocols. Data ultimately reaches out to the patient in
the outside world on their mobile phone or web browser. A demo of
Opal can be found online at depdocs.com/opal.
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patients scheduled to be treated on the current date. Every morning, appoint-

ment data from AEHRA db are used by the trained model to get duration

estimates for each patient to be treated that day. These estimates are stored

back in AEHRA db to be used by the simulator. Every 30 seconds during clin-

ical hours, the simulator probes AEHRA db for any changes in the database

and constructs queues based on patients who are checked-in on the same treat-

ment machine. Depending on the patient’s position in the queue, a waiting

time estimate is printed and logged, along with the number of patients in the

queue and the overall schedule status of the clinic. A detailed version of figure

4.3 is presented in figure 4.8, providing a more illustrative description of the

simulated delivery process.

The possible time block estimates that can be delivered are: < 10 min-

utes, 10-20 minutes, 20-30 minutes, 30-45 minutes, 45-60 minutes, and > 60

minutes. These ranges were chosen to account for the errors in the summation

of treatment duration predictions (i.e. the more patients in the queue, the

larger the error in the total waiting time estimate). Most treatments at our

centre typically last 15 minutes and thus in most cases, a long waiting time

estimate would be the result of several patients in the queue. However, in some

cases, a single patient can be treated for a very long with a lower duration

estimate uncertainty than several shorter length treatments in a queue.

As mentioned above, the waiting time simulator logs estimates every 30

seconds. Therefore, timeline plots were implemented in this software to mon-

itor logs for each patient in real time. Figure 4.9 presents a timeline log of

the number of scheduled and actual patients queued before a selected patient.

Figure 4.10 shows a log of the estimated start time over time for a particular

patient. Figure 4.11 presents a log of the clinical schedule over time for a

selected patient.
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Figure 4.8: A magnified and detailed version of figure 4.3 describing the waiting
time delivery simulation process. In this example, patient 3 has started
treatment. Patients 4, 5, and 6 have yet to be treated on the same
treatment machine. For each pending patient, the simulator prints out
a live time block estimate (light blue) based on the sum of predicted
durations (yellow) of preceding patients, along with an indication on
the amount of patients in the queue and the status of clinical overruns
by the time their respective treatments start. For instance, patient
4 is after patient 3. The waiting time delivery simulator prints a
waiting time estimate range of “10-20 mins” since the actual wait is
15 mins ± error. Patient 5 is second in the queue. Therefore, the
simulator prints a waiting time estimate range of “30-45 mins” since
the actual wait is (15 + 15) = 30 mins± error, etc.
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Figure 4.9: A screenshot of a timeline log for the number of scheduled (black)
and actual (blue) patients in the queue for a selected patient. The
beginning of the timeline log represents the time the patient checked-
in. In this example, when the patient checked-in there was one pa-
tient already in the queue. Over time, the scheduled patients arrived,
checked-in, and the number of actual patients in the queue grew to
match the scheduled number of patients. As the preceding patients
underwent treatment, the number of pending patients decreased. The
end of the timeline log represents the time the patient was called in
for treatment. In this screenshot, the patient was called in before a
preceding patient finished treatment. The vertical line represents the
scheduled start time for this particular patient.
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Figure 4.10: A screenshot of an estimated start timeline log for a selected patient.
The beginning of the timeline log represents the time the patient
checked-in and the end of the timeline log represents the time the
patient was called for treatment. Red represents behind schedule
and green represents ahead of schedule. In this screenshot, preced-
ing patients were taking longer than their allocated scheduled time.
Thus, the patient’s estimated start was pushed over time. The in-
formation displayed in the blue box (upper right) represents details
about the data point at the end of the timeline. When the patient
was called in for treatment, a waiting time estimate of “< 10 min-
utes” was logged.
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Figure 4.11: A screenshot of the clinical schedule timeline log for a selected pa-
tient. The beginning of the timeline log represents the time the pa-
tient checked-in and the end of the timeline log represents the time
the patient was called for treatment. Red represents behind schedule
and green represents ahead of schedule. Over time, preceding pa-
tients were taking longer than their allocated scheduled time. Thus,
by the time the patient was called in for treatment, the clinic was 25
minutes behind schedule.
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At the end of the day, the machine learning model’s performance is eval-

uated according to the standard performance metrics (MAE, MedAE, R2) on

the predicted durations. This essentially evaluates the generalizability of the

machine learning model on prospective (i.e. unseen) data.

Note that the main purpose of this software was to simulate the delivery

of waiting time estimates to patients. Ultimately, the real communication of

estimates will be delivered via Opal. This simulator was developed as a helper

tool for monitoring and evaluating real-time estimates on a large scale (i.e. as

if every patient had the Opal app).
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CHAPTER 5
Results–Evaluation of Waiting Time Estimates

5.1 Prediction Models

Four machine learning regression models from the sklearn python package

were considered in this supervised learning problem: (1) linear regression, (2)

support vector machine (SVM), (3) decision tree, and (4) random forest. Each

model was fit to a training set and evaluation of its performance was done on

a testing set. The training set was constructed by randomly sampling 80% of

the whole retrospective dataset, while the remaining 20% was used for testing.

Of the 50840 retrospective appointment data samples initially extracted from

the AEHRA db database, only 44225 of those were used due to missing data

for one or more of the proposed features. Depending on the applied regression

model, categorical features were preprocessed either using one-hot encoding or

by mapping each distinct category to a numerical value. Continuous features

were left as is.

Table 5.1 displays a comparison of the sklearn regression models used

along with their performance metrics and the type of preprocessing imple-

mented. The accuracy of the regression models was compared by calculating

the mean and median absolute errors of the prediction from the actual value

as well as the standard deviation of these errors and the R2 value. The mean

squared error was not considered due to the sufficient evaluation provided by

the mean absolute error.

The best trained model, according the evaluations done on the testing set,

was found to be the random forest regression (RFR) model. A residual (i.e.
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Regression
Model

Preprocessing
Method

Mean
Absolute
Error

Median
Absolute
Error

Standard De-
viation Error

R2

[min] [min] [min]
Linear regression One-hot encod-

ing
4.9 3.9 6.4 0.25

SVM One-hot encod-
ing

4.9 3.4 7.2 0.13

Decision tree Numerical cate-
gorization

4.7 3.3 6.8 0.42

Random forest Numerical cate-
gorization

4.6 3.3 6.1 0.47

Table 5.1: Performance evaluation of each machine learning regression model used
for this study. The standard deviation error is the standard deviation
of the calculated residuals.

Feature Relative Importance
Allocated Appointment Time 40%
Fraction Number 24%
Median Past Duration 17%
Number of Treatment Beams 6%
Previous Duration 5%
Others 8%

Table 5.2: Top five features as defined by sklearn’s feature importance method
using the random forest regression model. Other proposed features
corresponded to a total remainder importance of 8%.

error) histogram is shown in figure 5.1. The mean absolute error was found to

be 4.6 minutes with a standard deviation of 6.1 minutes. The median absolute

error was found to be 3.3 minutes and the R2 value was determined to be 0.47.

According to the RFR model, only five out of the 22 features initially extracted

were determined to be most influential. The relative importance of each feature

was determined using sklearn’s feature importance method. A summary of the

top five features used, along with their relative feature importance, is displayed

in table 5.2.

5.2 Feature Trends

In an attempt to describe top predictors for daily treatment appointment

durations, correlation plots were obtained for the features used in this study.

Figure 5.2 displays average treatment duration as a function of diagnosis.

Average treatment durations according to appointment day of the week and
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Figure 5.1: A residual plot histogram for the performance of the random forest
regression model on the testing set.

appointment hour are depicted in figures 5.3 and 5.4, respectively. Trends for

fraction number and allocated appointment time are plotted in figures 5.5 and

5.6, respectively. The plot of appointment duration against the median past

duration is displayed in figure 5.7.

5.2.1 Imaging-Phase Study

A decision was made to sample post-2015 retrospective data for learning due

to a change in practice that followed a relocation of our radiation oncology

department in early 2015. New treatment machines were installed at our

new facility, incorporating state-of-the-art equipment for both treatment and

imaging. As was described in section 1.4, imaging is an essential part of the

treatment process to ensure proper patient setup and to monitor any anatomy

shifts that may have occurred since last treatment.

Before the relocation (pre-2015), imaging was typically performed on a

weekly basis. Thus, during the conduction of the research, when all pre-

and post-2015 retrospective data were included for learning, it was found that
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Figure 5.2: Plot of average treatment duration versus diagnosis for all retrospec-
tive data. Error bars represent the standard deviation of each cate-
gorical distribution (i.e. the dispersion).

imaging was a significant feature on the overall treatment time. That is, imag-

ing caused variance on the treatment durations. On the days that imaging oc-

curred, time was spent by radiation therapists imaging the patient, causing an

added time to the overall treatment duration compared to days when imaging

did not occur.

After the relocation (post-2015), new protocols required that imaging

be done daily. Thus, imaging no longer became a significant feature due to

its matching frequency with daily treatment durations. Figures 5.8 and 5.9

show the frequency of imaging for all patients according to their diagnosis and

fraction number.

5.3 Comparison Against Simple Averages

The best performing machine learning algorithm (random forest regression

model) was compared to simple averages of several categorical features. For
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Figure 5.3: Plot of average treatment duration versus treatment appointment day
of the week for all retrospective data (1 = Sunday, 7 = Saturday).
Error bars represent the standard deviation of each categorical distri-
bution (i.e. the dispersion).

64



Figure 5.4: Plot of average treatment duration versus treatment appointment hour
for all retrospective data. Error bars represent the standard deviation
of each categorical distribution (i.e. the dispersion). Missing error bars
are due to single value data points.

Figure 5.5: Plot of average treatment duration versus fraction number for all ret-
rospective data. Error bars represent the standard deviation of each
categorical distribution (i.e. the dispersion). Missing error bars are
due to a single value data points.
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Figure 5.6: Plot of average treatment duration versus allocated treatment appoint-
ment time for all retrospective data. Error bars represent the standard
deviation of each categorical distribution (i.e. the dispersion). Missing
error bars are due to a single value data points.
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Figure 5.7: Plot of treatment duration versus median past duration for all retro-
spective data. The red line represents a linear regression of all data
points.

Figure 5.8: Histograms of imaging occurrence as a function of fraction number per
diagnosis (pre-2015). The y-axis represents the frequency of imaging
and the x-axis represents the fraction number. Note that every patient
has a first fraction (i.e. treated for the first time) and imaging is always
done on the first fraction. The frequency at which imaging occurs in
later fractions decreases due to the decreasing number of patients that
are treated at higher fractions.
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Figure 5.9: Histograms of imaging occurrence as a function of fraction number per
diagnosis (post-2015). The y-axis represents the frequency of imaging
and the x-axis represents the fraction number. Note that every patient
has a first fraction (i.e. treated for the first time) and imaging is always
done on the first fraction. The frequency at which imaging occurs in
later fractions decreases due to the decreasing number of patients that
are treated at higher fractions.

example, the mean treatment duration of all patients treated for breast can-

cer was used to predict the treatment duration of future patients with breast

cancer. In other words, for each categorical feature, the mean of each cate-

gory was used to predict treatment appointment durations. Table 5.3 presents

performance metrics of several categorical features, individually used as pre-

dictors.

5.4 Results from Waiting Time Simulator

In order to evaluate performance on real, unseen data, the RFR model was

executed on live appointment data using the waiting time simulator software.

Every 30 seconds, during regular treatment hours, waiting time estimates were

generated for all patients waiting for treatment (i.e. checked-in patients). After

every execution, the software logged these waiting time estimates along with

additional information regarding the number of patients in the queue and
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Predictor Mean
Absolute
Error

Median
Absolute
Error

Standard De-
viation Error

R2

[min] [min] [min]
Allocated Appointment Time 5.4 4.2 7.5 0.18
Diagnosis 5.8 4.6 8.1 0.05
Physician 5.9 4.8 8.0 0.02
Radiation Therapist 5.9 4.8 8.3 0.02
Appointment Day of the Week 6.1 5.0 8.5 0.002
Appointment Hour 6.0 5.2 8.2 0.002
Fraction Number 5.6 4.4 7.9 0.10
Number of Treatment Beams 5.7 4.6 7.9 0.11
RFR Model 4.6 3.3 6.1 0.47

Table 5.3: Evaluation and comparison of the random forest regression (RFR)
model against simple averages. For each predictor listed here, the aver-
age of each distinct category was used to predict treatment appointment
durations. The standard deviation error is the standard deviation of
the residual (predicted minus actual).

Regression Model Mean
Absolute
Error

Median
Absolute
Error

Standard De-
viation Error

R2

[min] [min] [min]

Random forest 4.9± 0.4 3.5± 0.4 7.2± 1.3 0.43± 0.03

Table 5.4: Performance evaluation of the random forest regression model on
prospective data. Performance metrics were collected on a daily ba-
sis, between June 2016 and October 2016. The average and standard
deviation were taken for each metric.

the clinical schedule (see section 4.5.2). At the end of each treatment day, the

regression performance metrics were calculated and recorded into the database.

Table 5.4 provides a summary statistic of the RFR model’s performance on

prospective data since the waiting time delivery simulator software’s launch

in June 2016.

Another evaluation that was performed using the waiting time delivery

simulator software was capturing the logged information that was recorded the

moment patients were called in for treatment. Waiting time estimates logged

moments before the start of treatment was essential in determining what could

have been delivered to patients had the RFR model was used for predictions.

Figure 5.10 plots the waiting time estimates that were simulated to checked-in

patients prior to treatment.
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Figure 5.10: Pie chart showing the estimate details that were delivered to checked-
in patients immediately prior to treatment.

5.5 Prediction Provision

As was mentioned in section 4.5.1, the development of a successful in-house

technology paved the way to deliver waiting time estimates. This section

describes the smartphone app (Opal) that will be released in open-beta (late

November, 2016) to patients at our treatment facility.

5.5.1 Opal

The app’s Home screen, figure 5.11, provides the patient with easy access to

waiting time communications. On the day of the patient’s next appointment,

a “Check-in for your appointment” button is provided. It is only enabled when

the patient is geo-located within 200 m of the hospital, as determined by the

phone’s GPS. Once checked-in, the patient is provided with a waiting time

estimate as well as information pertaining to the busyness of the clinic and

the number of patients ahead of them (figure 5.11).
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Figure 5.11: Screenshots of waiting time communications in Opal. On the Home
screen (left), a patient is presented with a summary of their ap-
pointment(s). On the day of the appointment, a check-in button is
provided (center) and is enabled only when the patient is geo-located
to within 200 m of the hospital. Once checked-in (right), the patient
is provided with a waiting time estimate, as well as information re-
garding the number of preceding patients and the busyness of the
clinic, updated on a live basis.
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CHAPTER 6
Discussion

Providing patients with estimates of their overall waiting time is of current

interest in healthcare. In radiation oncology, however, no major successes have

been reported to date and only rough estimates are communicated to patients

(with very little confidence) at our comprehensive cancer centre. With the

abundance and availability of patient EHR data at our centre, one can meet

the challenge using machine learning. The results of our machine learning

model, applied to daily radiation treatment durations, provide better wait-

ing time estimates than simple averages and rough estimates. However, the

performance metrics on the random forest regression model suggest room for

improvement, as described below.

6.1 Model Performance

The random forest regression (RFR) model, as applied to our data, tends

to underestimate treatment durations. This may be due to bad data in the

sampled dataset. The appointment start and end timestamps are recorded

in the database based on the opening and closing of patient electronic charts,

respectively, on the treatment console. Occasionally, charts are left open before

a pause in practice (e.g. during lunch break or in between shifts), or they are

opened before the next patient enters the treatment room, or they are left open

on another treatment console, making treatment durations appear longer than

reality. Conversely, patient charts are occasionally opened after the patient is

fully set up on the treatment table rather than when the patient enters the

treatment room. This means that treatment durations are recorded as shorter
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than reality. However, from the data, the former occurs more frequently than

the latter, albeit sporadically, but not frequent enough to affect predictions.

In other words, the RFR’s model’s responds poorly to noise in the case of

longer-than-reality treatment durations (figure 5.1).

Another source of underestimation in the model is how appointments are

completed in the database when more than one time slot is allocated to a

single patient. Occasionally, patients are booked in multiple time slots for

billing purposes. For example, a patient can be booked for two 30-minute

blocks instead of one hour block. In theory, these time slots can be predicted

individually (even for the same patient), but in practice, most of the time, only

one appointment time slot is recorded as completed in the database on behalf

of all time slots for the same patient. In other words, the other appointment

time slots are left uncompleted (i.e. no end timestamp in the database) and

therefore unusable for machine learning. If a patient is indeed booked over

multiple time slots and remains in the same treatment room, there is very

little incentive for the radiation therapists to close the patient’s chart (which

would record a completed timestamp for the first appointment time slot) and

reopen the same chart for the second appointment time slot (which would

record a start timestamp for the second appointment time slot). Thus, the

patient’s chart is usually left open under the first appointment time slot until

the overall treatment is complete. A completed timestamp is recorded for

this first appointment time slot (and not the second) resulting in a seemingly

long appointment duration compared to its allocated time slot. This leads

to an underestimation in the predicted treatment durations since allocated

appointment time is the most significant predictor for treatment durations.

In the context of prospective data, the RFR model only slightly under-

performs on unseen data compared to retrospective testing data. One of the
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challenges in machine learning is to avoid overfitting and to generalize into un-

seen data. A retrospective testing set is a close representation of unseen data.

However, it may or may not reflect the true, unseen data. Our RFR model

demonstrates similar accuracies on real-time data compared to retrospective

testing data (table 5.4). Thus, we can conclude that it is able to generalize

well.

6.2 Feature Set

The top features of the random forest regression model agree well with human

intuition. As a first guess, since appointments are scheduled at our centre,

they tend to last their allocated appointment time (figure 5.6). The majority

of treatment appointments at our cancer centre are booked under 15, 30, or

45 minute time slots. These time slots are chosen based on the personal

experience of the booking staff. However, data suggest there is room to book

shorter appointment times for longer allocated appointments.

The next important predictor is fraction number. The first fraction tends

to take the longest because the radiation therapists must familiarize themselves

with the patient and the treatment setup. As daily fractionated treatments go

on, the therapists become more comfortable with the patient and can readily

setup and treat the patient in a shorter amount of time compared to the first

treatment. This is reflected in the data (figure 5.5) and matches the intuition

made by the radiation therapists when asked about an initial feature set (see

section 4.4). The first two significant features (allocated appointment and frac-

tion number) are of great importance when a patient undergoes treatment for

the first time. However, after the first few fractions, the third most important

feature (median past duration) becomes increasingly relevant.

The median past duration is a useful determinant in predicting treatment

appointment durations due to the fact that treatments tend to last around

74



their historical times (figure 5.7), regardless of the specific treatment protocol.

In other words, regardless of other features specific to the patient and their

treatment, such as diagnosis (figure 5.2), treatment machine, treatment tech-

nique, these features can be encapsulated (see table 5.2) by previous durations

since the patient is treated in the exact manner as previous treatments. The

median past duration is taken instead of the mean past duration because,

statistically, medians are pulled less by outliers than averages.

The appointment time and appointment day of the week have no signifi-

cant effect on the overall treatment time (figures 5.3 and 5.4).

As mentioned in section 5.2.1, imaging was initially taken as a feature.

However due to a recent change in practice, it is no longer a significant predic-

tor. Before the relocation (pre-2015), imaging was performed either on every

fifth fraction (1, 5, 10, 15, etc.) or performed after every five fractions (1, 6,

11, 16, etc.). This can be seen in the data on several plots representing several

diagnoses (figure 5.8). State-of-the-art treatment and imaging machines are

used at our new facility, delivering better image quality. Thus, imaging is done

before treatment on a daily basis for most diagnoses (figure 5.9). Essentially,

this suggests that a constant is added to every treatment time, due to daily

imaging, resulting in an invariable (and therefore insignificant) feature.

6.3 Real-Time Delivery of Waiting Time Estimates

Waiting time estimates from this study have not yet been actually delivered to

patients at our radiation oncology department. Opal, the oncology portal and

application, is one way in which waiting time estimates will be communicated

to patients. Predicting waiting times using machine learning and delivering

them on this unique platform is one way in which the stress due to the un-

certainty of waiting times may be reduced. There is opportunity for patients

to grab a coffee at the nearest cafeteria or go to the restroom, if waiting time
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estimates are to be delivered in this fashion – patients can be called in for

treatment remotely on their phone using Opal.

It is undetermined whether estimating waiting times can reduce waiting

times overall. At our radiation oncology facility, appointments are scheduled.

Therefore, there is an inherent expectation of a definite wait until one’s sched-

uled start time. The main concern to patients is whether their appointments

start on time or not; and if not, a realistic estimate and an explanation on

a delay (if it occurs) is vital to their overall satisfaction and health. In this

study, waiting time estimates were recorded for checked-in patients only (i.e.

patients who were already present in the waiting room). It would be more

valuable to deliver estimates to all patients (checked-in or not) so that even

patients at home (or generally outside the hospital) can decide when to arrive

to their appointment with little time to wait in the waiting room.

Based on the analysis that was performed to predict waiting times in

real-time using the waiting time delivery simulator, there is a great deal of

investigation that should be done to ensure patients receive the most accurate

waiting time estimates. It was recognized that multiple patients waiting in the

waiting room are called in by radiation therapists (at the same time) to wait

in another area (closer to the treatment room) and not necessarily called in

for immediate treatment. This does not affect treatment duration estimates.

However, this does cause a discrepancy in our simulated delivery of waiting

time estimates (figure 5.10) because there is nothing capturing the event that

patients may or may not be waiting in this “buffer” area before treatment.

It was also recognized that patients are sometimes called in before oth-

ers due to their immediate availability in the waiting room. For example,

if patient X is scheduled before patient Y , but patient X is checked-in but

unavailable and patient Y is waiting in the waiting room, then patient Y
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would likely be called in, due to the immediate absence of patient X. Waiting

time estimates should be delivered in a proper queue-like fashion based on

the number of patients who have yet to be treated in order of their scheduled

time. Perhaps with a way to call patients remotely (i.e. using Opal) there can

be a more ordered call-in and patients would not have to worry about being

skipped/missed.

Further to the discussion on waiting time delivery using the waiting time

delivery simulator, the majority of patients received (note: by simulation) “<

10 minutes left” and “10-20 minutes left” as their waiting time estimate the

moment they were called in by staff. This analysis, of course, is incomplete.

Whether a waiting time estimate is provided when they are called, or while

they wait, or when they check-in, or (favourably) when they are at home, all

patients should receive an estimate that reflects the time they will be treated,

regardless of when the estimate is provided. However, due to time limitations

of this research, the waiting time delivery simulation was evaluated only at

the time a patient was called in for treatment (figure 5.10). Of course, in this

case, all patients should receive “< 10 minutes left.”
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CHAPTER 7
Conclusions and Future Work

This research project involved developing a computational solution to address

the pain of waiting in radiation oncology at our comprehensive cancer centre.

The study investigated waiting times in terms of daily radiation treatment ap-

pointments, where patients wait in the waiting room for their treatments on

a daily basis. Although treatment appointments are scheduled at our centre,

appointments may start before or after their scheduled time. What is impor-

tant when calculating waiting times is to predict the duration of treatments for

patients who precede a current, checked-in patient. In other words, machine

learning was implemented to predict treatment durations in order to infer an

overall waiting time.

Several off-the-shelf machine learning algorithms from the sklearn python

package were studied in this project and were found to produce varied perfor-

mance metrics. The random forest regression model was found to be the best

performing algorithm. On average, we can estimate true treatment durations

to within 7.2 minutes. This is a significant improvement on the rough esti-

mates usually given to patients, and also on the estimates one would obtain by

simple averages of all patients with certain features. These initial predictions

are a promising start, but there is much work to be done to improve our model.

Although the accuracy of the model was improved through feature selection

and feature importance (i.e. the inputs of the system), the focus should be

on the labeled outputs (i.e. the true treatment durations) when training the

model. There is potentially a lot of inaccurate data in the database that add

variance to the set of data to be trained on. For example, the start and end
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timestamps recorded in the database for each treatment appointment are trig-

gered on the time a patient’s chart was opened and closed on the treatment

console, respectively. Occasionally, patient charts are left open and recorded

in the database as appointments that last longer than reality. It would be

helpful to define further rules, perhaps even a slight change in practice, to

make better use of this data.

The next step is to test and evaluate Opal, the smartphone app, that

will be in the hands of our radiation oncology patients by the end of autumn

2016. Opal was developed as a parallel project to automatically deliver per-

sonal health information to patients as well as to incorporate waiting time

estimates. Waiting time information was reported as one of the most needed

features in the app. Therefore, future reports should (a) investigate the im-

pact of these waiting time estimates on clinical workflow, (b) conduct patient

surveys about these waiting time estimates and monitor patient satisfaction,

and (c) determine the costs and benefits of implementing a fully automated

and personalized system.

If waiting is experienced and expected virtually anywhere, the problem

therein lies in the uncertainty of waiting. Waiting is a symptom of delayed

action caused by a preceding chain of events. Thus, it is worth evaluating

the lengths of these events (i.e. durations) rather than confronting waiting

times directly. This work in radiation oncology, if successful, might lead to

similar work in other specialties, including chemotherapy, surgery, and even

emergency departments.
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